
New Approaches on Octilinear
Graph Drawing

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. (Bioinf.) Robert Krug

aus Ulm

Tübingen
2015

abc

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation 28.04.2015
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Peter Hauck

Acknowledgements

First and foremost I thank my advisor Prof. Dr. Michael Kaufmann,
for giving me the opportunity to be part of his great group and write this
thesis, for supporting me this whole time and enabling me to visit several
international workshops and conferences.
I am deeply grateful to my colleague Dr. Michael Bekos who not only par-
ticipated in every research project that made it into this thesis but also gave
me great support during the writing of this thesis and was a very pleasant
officemate.
My thanks also go to my current and former colleagues Till Bruckdorfer,
Philip Effinger, Andreas Gerasch, Niklas Heinsohn, Markus Geyer, Stephan
Kottler, Martin Siebenhaller and Christian Zielke who provided a very nice
working atmosphere and valuable input in many scientific and non-scientific
discussions during our coffee-breaks.
I thank all my coauthors, namely Michael Bekos, Markus Geyer, Martin
Gronemann, Michael Kaufmann, Thorsten Ludwig, Stefan Näher and Vin-
cenzo Roselli for the pleasant and productive collaborations.
I am most thankful to my friends Chrissi and Klaus who, together with Ju-
lian and Laura, always offered me delicious meals and delightful company
which I especially appreciated in stressful times of approaching deadlines.
I am very thankful to the proofreaders of this thesis, Michael Bekos and
Christian Zielke for their fast and helpful feedback.
Last but not least I thank my parents for supporting my studies.

Zusammenfassung

Graphenzeichnen ist ein Bereich der Informatik mit langer Tradition.
Insbesondere im Bereich des orthogonalen Graphenzeichnens wird seit den
1980er Jahren motiviert durch VLSI-Design (Chip-Design) und Grundriss-
planung intensiv geforscht. In dieser Arbeit wird das klassische orthogonale
Modell durch neue Elemente, unter anderem aus dem oktilinearen Graphen-
zeichnen, erweitert.

Die ersten Ergebnisse, die wir in dieser Arbeit vorstellen, befassen sich
mit oktilinearem Graphenzeichnen. Dieses Modell ist altbekannt und viele
Aspekte wurden schon untersucht. Wir entwickeln eine Methode mit der für
planare Graphen mit einem beschränkten maximalen Knotengrad (4 und 5)
Zeichnungen mit maximal einem Knick pro Kante erstellt werden können.
Außerdem zeigen wir, dass Graphen mit maximalem Knotengrad 6 nicht im-
mer mit einem Knick pro Kante gezeichnet werden können. Damit schließen
wir die Lücke zwischen bekannten Ergebnissen, die besagen dass Graphen
mit maximalem Knotengrad 3 immer ohne Knicke und alle Graphen bis zu
einem maximalen Knotengrad von 8 mit höchstens zwei Knicken pro Kante
oktilinear gezeichnet werden können.

Durch Nutzerstudien konnte gezeigt werden, dass die Lesbarkeit von
(Graphen) Zeichnungen durch Knicke auf den Kanten und schlecht identi-
fizierbare Kreuzungen besonders beeinträchtigt wird. An diesem Punkt setzt
unser neues Modell, das abgeschrägt orthogonale (engl. slanted orthogonal,
oder kurz: slog) Graphenzeichnen an. Im slog Modell ist der kleinste erlaubte
Winkel zwischen zwei aufeinander folgenden Kantensegmenten 135◦. Das hat
zur Folge, dass slog Zeichnungen keine normalen Knicke mehr haben, sondern
sogenannte Halb-Knicke. Um Kreuzungen besser erkennbar zu machen sind
im slog Modell Kreuzungen ausschließlich zwischen diagonalen Segmenten
erlaubt. Wir zeigen, dass eine knick-minimale slog Zeichnung mindestens
doppelt so viele Halb-Knicke benötigt, wie eine knick-minimale orthogo-
nale Zeichnung Knicke hat. Für das slog Modell werden in dieser Arbeit
Methoden zur Berechnung von knick-minimalen Zeichnungen vorgestellt. Da
diese exponentielle Fläche benötigen können, wird außerdem eine Heuristik

entwickelt, die nur quadratische Fläche benötigt, dafür aber mehr Knicke
zulässt. Die Ergebnisse einer experimentellen Evaluation des slog Modells
werden ebenfalls präsentiert.

Im Anschluss erweitern wir das slog Modell zu einer flexibleren Variante
die wir sloggy nennen. Das sloggy Modell hat alle Eigenschaften des slog
Modells, aber Kreuzungen werden jetzt auch zwischen orthogonalen Seg-
menten erlaubt. Dafür wird die Anzahl Halb-Knicke beschränkt auf genau
zwei Mal die Anzahl Knicke der entsprechenden knick-minimalen orthogo-
nalen Zeichnung. Außerdem wird die Anzahl an Kreuzungen zwischen dia-
gonalen Segmenten maximiert. Wir entwickeln eine Methode zur Berechnung
solcher Zeichnungen und zeigen, dass auch hier exponentielle Fläche benötigt
werden kann.

Das slog und das sloggy Modell sind auf Graphen mit einem maximalen
Knotengrad von 4 beschränkt. Deswegen wenden wir uns als nächstes dem
Kandinsky Modell zu, einem bekannten Modell mit dem Graphen mit be-
liebigem Knotengrad gezeichnet werden können. Wir erweitern das bekannte
Modell mit Elementen aus dem slog Modell, den Halb-Knicken, um so zu-
vor verbotene Konfigurationen zeichnen zu können. Mit unserer Erweiterung
wollen wir die Gesamtzahl an Knicken und die Größe der Zeichnungen ver-
kleinern. Wir entwickeln eine LP Formulierung, mit der die optimale Zeich-
nung berechnet werden kann. Da diese sehr lange Zeit zur Berechnung
beanspruchen kann, haben wir zusätzliche eine effiziente Heuristik entwi-
ckelt. In einer experimentellen Untersuchung vergleichen wir außerdem das
neue Modell mit dem klassischen Kandinsky Modell.

Im letzten Kapitel vereinen wir dann unsere Modifikation des Kandinsky
Modells mit dem slog Modell im sogenannten sloginsky Modell, um Graphen
mit beliebigem Knotengrad mit den Vorteilen des slog Modells zeichnen zu
können. Wir entwickeln eine Methode zur Berechnung knick-optimaler slo-
ginsky Zeichnungen, aber wir zeigen auch, dass eine solche Zeichnung nicht
für jede Eingabe möglich ist. Auch im sloginsky Modell kann eine Zeichnung
exponentielle Fläche beanspruchen, was in der experimentellen Evaluation
ebenfalls sichtbar wird.

Contents

Contents 7

1 Introduction 1
1.1 Thesis Contribution . 8

2 Preliminaries 13
2.1 Terminology . 13
2.2 Graph Drawing Aesthetics . 15
2.3 Algorithmic Tools . 16

2.3.1 Linear Programming 16
2.3.2 Network Flow . 17

2.4 Common Methods In Graph Drawing 18
2.4.1 TSM Approach . 19
2.4.2 Drawing Planar Graphs Step by Step 21

3 Planar Octilinear Drawings 27
3.1 Introduction . 27
3.2 Drawing 4-Planar Graphs with One Bend Per Edge 28

3.2.1 4-Planar Is Not Possible With Zero Bends 28
3.2.2 Triconnected Graphs 28
3.2.3 Biconnected Graphs 32
3.2.4 Simply-Connected Graphs 38

3.3 Drawing 5-Planar Graphs with One Bend Per Edge 40
3.3.1 Triconnected Graphs 41
3.3.2 Biconnected Graphs 44
3.3.3 Simply-Connected Graphs 48
3.3.4 Improving 5-Planar Drawings 49

3.4 6-Planar Graphs Require 2 Bends 50
3.5 Summary . 52

4 The Slanted Orthogonal Drawing Model 53
4.1 Introduction . 53
4.2 Orthogonalization Using Network Flow 55

4.2.1 Modifying the Flow Network 55
4.2.2 Properties of Bend-Optimal Slog Representations . . . 56

4.3 A Heuristic for Slog Drawings 60
4.4 Computing a Slog Representation Using ILP 64
4.5 Realizing the Representation 65

4.5.1 The Core of the Linear Program 66
4.5.2 Addressing Planarity Issues 68

4.6 Area Bounds . 75
4.7 Experimental Evaluation . 76
4.8 Sample Drawings . 82
4.9 Summary . 86

5 The Sloggy Orthogonal Drawing Model 87
5.1 Introduction . 87
5.2 Properties of Sloggy Drawings 89

5.2.1 The Number of Half-bends of Sloggy Drawings 90
5.2.2 The Area Requirements of Sloggy Drawings 92

5.3 Bend-optimal Sloggy Drawings 93
5.3.1 Cycle Systems . 93
5.3.2 An ILP to compute Sloggy Drawings 95

5.4 Sample Drawings . 99
5.5 Summary . 100

6 Extending the Kandinsky Model 103
6.1 Introduction . 103
6.2 Optimal Drawings with ILP 105

6.2.1 Bend-Optimal Kandinsky Representations 105
6.2.2 Bend-Optimal podevsaef Representations 107
6.2.3 Realizing the Representation 109

6.3 Heuristic . 110
6.3.1 Optimizing the Input for the Heuristic 111

6.4 Experimental Evaluation . 115
6.5 Summary . 118

7 The Sloginsky Model 123
7.1 Introduction . 123
7.2 Bend-Optimal Sloginsky Representations 125

7.2.1 Not Realizable Representations 126
7.2.2 Reduction of S-shapes 126

7.3 Realizing a Sloginsky Representation 128
7.3.1 Area Requirements of Sloginsky Drawings 129

7.4 Experimental Evaluation . 129
7.5 Summary . 130

8 Conclusion 135
8.1 Results . 135
8.2 Future Work . 139

Publications of the Author 141

Bibliography 143

1 Introduction

Graph drawing has been an important area in computer science for many
years. Even if graphs are at first abstract objects modeling relations between
entities, visualizing or drawing graphs has developed into a broad field of
research. And, while many people do not realize it, graphs are a part of
everyday life. For now, it is sufficient to know that a graph consists of a set
of vertices, which stand for the entities, and a set of edges connecting those
vertices, which model the relation between the respective entities.

We start with an example that probably everybody has encountered at
some point: metro maps. Almost every larger city has a plan of the public
transportation system, be it buses, trams or subways. Usually the informa-
tion about how to get from one place to the other and which line to use can
be retrieved the easiest from a map like the one in Figure 1.1. Of course this
information could also be conveyed using a large table containing all the stops
and the lines connecting them, but by looking at a map it is much easier to
figure out how to get to a certain place. Metro map layout is one field in graph
drawing that has received much attention in recent years [72, 96, 109]. The
concrete problem here is: given a set of metro stops with their geographical
positions and a set of lines connecting them, produce a nice drawing where

2 Chapter 1 Introduction

Neckar

Neckar

Neckar

äA

p

K

F·ß
ß·ß

ä

ßA·
ßU

·ßF

A·
K·

ßp

ßA·
ßU

·ßF

pPßßOupPäz

ßA

p
U

AK

K

Az
äW

pPßäOpPßA

ßP

ßP

z

z

z

Aä

Aß

Aß

A

ßF

ßF

ßU

ßU

äW
ßß

ßä

ßK

ßK

ßP

ßF

ßU

ßU

ppp ppp

U

U

AW

ßp

ßp

ßA

ßA

z

ppp

ä

ä

A P

P

ßW

ää

ää

ß

ß

ß

p

p

p

UäU
UäP

ppK

ppK

pPK

pPP

pPWCpPA

pPWCpPA

pzK

ppp·

A·K·ßp

ä

pFß

pFß
pFß

AP

K

ßA

ä A K

z

APU

P

F

UAK

Aß

AßP

ßF

ßU

Aä

Aä

ßP

ßß

ßä

äW

ß

ä

z

U

ßU

AP

ß p

z

ßp

ßW

ßFßK

AW

Az

äW

ää

ßK

A·K·ßp

F·ß
ß·ß

ä

F·ß
ß·ß

ä

U·
ßP

·A
W

U·ßP·AW

ß·
ä·

P·
p

ß·ä·P·p

Uä
P·u

Uä
U

pz
K

pzK·UäP·UäU

ppp
·

äA

ß·ä·P·p·äA
äA

ßA

ßA
*egelstrS

Neckarbrücke

Nonnenhaus

u xmelinstrS

RümelinstrS
*ölderlinstrS

Mohlw
strS

xoethestrS
jmuRotbad

(ngelfriedshalde

Ochsenweide

Schönblick

QorrensstrS

NiethammerstrS

Winkelwiese

Weißdornweg
Waldhäuser

StrS

Vufudem
©reuz

Sternwarte

Vhornweg

(rlenweg

PappelwegWaldhäuseruOst
Ulmenweg

Wolfgangw
StockwStrS

*außerstrS

jm
Winkelrain

Untere
*eulandw
steige

)alkenweg

Sand
Nordring

u Sand
Trosselweg

Paulinew©ronew
*eim

Landw
hausw
straße

Stuttw
garter

StrS
u:ürgensenstrS

NeuhaldenstrS

(ichhaldenstrS

ZenzstrS

TieselstrS

TorfstrSTeichelw
weg

Torfackerw
schule

Stäudach
Stauden

©äthew©ollwitzwStrS

*errlesberg

ZSwvSwSuttnerwStrS

xottfrSwPresselwWeg

Wolfsbaumweg
Steige

©reuzstraße
TorfackerstrS

Qarlow
Steebw
StrS

ToblerstrS

Wiew
landshöhe

©leiststrS
StauffenbergstrS

Scheefw
strS

Schwabw
strS

MühlstrS :ugendw
herberge

©ielmeyerstrS
*undskapfw

klinge
xartenstrS

VeulestrS

NürtingeruStrS

Österw
berg

Viktorw
RennerwStrS

)riedSw
ZundelwStrS

Sophienpflege

Zollernw
strS

Seew
strS

Rathaus

LindenstrS

Volksbank

Schönbuchhalle

LusstrS

Waldhorn

*oremer*aydnweg
Wanne

©unsthalle

©unsthalleZeethovenweg

)erdSwQhrSw
ZaurwStrS

*answxeigerwWeg

Zotanischeruxarten

ZxuUnfallklinik

Uniw©linikenuZerg

ZreiteruWeg

QalweruStraße

Parkhausu©önig

)rondsw
bergstrS

QuenstedtstrS

VufuderuMorgenstelle

Rathaus

Tornäckerweg

Zetriebshof
u TüZus

ZrückenstrS

LustnauuZahnhof

Neckaraue
VuuOst

(isenbahnstrSu-)ußgängertunnelI

*ügelstrS

Landesw
theater

Zlaue
Zrücke

Sternplatz

©iesäckerstrS

SudetenstrS

Zergfriedhof
Ost

Zergfriedhof
Süd

Zergfriedhof
West

©ö
nig

sb
er

ge
ruS

tra
ße

St
ad

tw
er

ke

Vixe
ruS

tra
ße

xörlitzeruWeg

Wennfelderuxarten

TilsiteruWeg

*echingeruStrS

*echingeru(ck

Loretto

VlexanderstrS
MemmingerstrS

*einlenstrS

)euerhägle

PaulwTietzwStrS

)uchsstrS

Nelkenweg

ZrühlstrS

NeuffenstrS
Terendingen

Zahnhof

Terendingen
©äppele

TanzigeruStrS

MarienstrS

Windw
feldstrS

MoltkestrSSchellingstrS

(ckhof

Vlbweg

©leeacker

Zläsibad

Waldhörnw
lestrS

Unter
demu*olz

(rnstwSimonwStrS

©neiple

Vlte
Landstraße

Rathaus

Rathaus

Rathaus Zahnhof Schloß
©eltengrab

©irchplatz Volksbank

Neuhalde

©reuzberg

Weilerhalde

*agellocher
Weg St

ep
ha

nu
sk

irc
he

)Sw
Tan

ne
nm

an
nw

St
rS

xös
str

aß
e

Vischw
bachstrS

Rappw
strS

Zwehrenbühl

*asenbühl

RheinlandstrS

Vorudem
©reuzberg

©rumme
Zrücke*aagtor

xerstenw
mühlstrSSchleifmühleweg

SchwärzlocheruTäle

Westbahnhof

Sindelfinger
StrS

StädtSu)uhrpark

Weststadt

)reibad

SchwärzlocheruStrSuKz

ßßß pF

Neckarhalde

u Lichtenberger
WegUnteresuZurgholz

Zurgholzweg

Zismarckturm

ZiesingerstrS

(rnstw
ZlochwStrS

u*irschauer
StrS*ennentalweg

Rappenberg

Mitte Sandäcker

ReutlingeruStrS

©reisw
sparw
kasse NeckarsulmeruStrS

VSw
ZebelwStrS

ZrunsstrS

SindelfingeruStrS
-ZuäUI

Lotharw
Meyerw

Zau

Süd
Zrunnenw

halde

*Sw*epperw
Turnhalle

ÖsterbergstrS

Zürgeramt

Rechter
Österberg

VlbrechtstrS
Regierungsw
präsidium

WankheimeruTäle

)ranzösischesuViertel

ZismarckstrS

WilhelmstrS

Steinw
bruchw

strS

Uniw©liniken
Tal

*errenbergeruStrS

Ziererw
strS

SchwärzlocheruStrS

UniuCuNeueuVula

Linsenbergw
strS

*ügelschule

Landespoliw
zeidirektion
Mühlbachw
äcker

Vorudemuxroßholz

Mühlenviertel

SchweickhardtstrS

Stadtw
graben

E

*auptw
bahnhof

Römerstraße

TüsseldorferuStrS

SchaffhausenstrS

WeberstrS

Zebenhausen

Lustnau

Pfrondorf

WaldhäuseruOst

*agelloch

Terendingen

©reßbach

*irschau

©ilchberg
Zühl

Weilheim

Unterjesingen

*allenbad
Nord

pzKunachuTettenhausenCZöblingen
UäPunachuTettenhausenCLeinfelden
UäUunachuTettenhausenC)lughafenu(chterdingen

upPPCZVZußunachuVlbstadtCSigmaringen

ppKunachuRottenburgC*orb

ßU
un

ac
h

W
ur

m
lin

ge
nC

Ro
tt

en
bu

rg
pP

KO
up

Fß
un

ac
h

Vm
m

er
bu

ch
C*

er
re

nb
er

g

pPWunachuReutlingenCStuttgart
pPAunach

ReutlingenCZaduU
rach

pPßßunachu©usterdingenCReutlingen
pPäzunachuWankheimCxomaringenpp

pu
na

ch
Vm

m
er

bu
ch

CN
ag

ol
d

pPßäunachuxomaringenOupPßAunachuTußlingenCMössingenpPääunachu©iebingenCRottenburg

StandD Tezember äWßA
erausgeberD VerkehrsverbundNeckarwVlbwTonauxmb
xrafikD © äWßAO digitale©artografie)S Ruppenthal xmb*O pPßAß©arlsruhe

E (ndhaltestelleuam
*auptbahnhofD
ßOPOFOßWOßßOßäOßpOääOäAO
AWOAßOAKOAzOpzKOpppO
pFßOUäPOUäUOpPßßO
pPßäOpPßAOpPääOpPäz

Liniennetzplan
StadtnetzuTübingen

Figure 1.1: Map of the bus net of Tübingen (obtained from http://www.naldo.
de).

the positions of the stops are as close to the real position as possible and
the lines are drawn in a simple-to-follow way that makes it easy to find the
connection between two stations in the map. The motivation here is that the
actual positions of the stops are not too important as long as the relative po-
sitions with respect to the neighboring stops reflect the geographical reality.
To make these drawings easy to read and as aesthetically pleasing as possi-
ble, it is commonly agreed upon that the number of crossings between lines
and the number of bends along lines should be as small as possible. Both
criteria have been studied and several results for minimizing the number of
crossings [95, 17, 11] and the number of bends [109, 87] are known, as well
as hardness results [94, 11]. In fact, the first results we present in this thesis
in Section 3, are motivated by minimizing the number of bends in drawings
of the octilinear model, which is very often used in metro map layouts.

In general, in the octilinear graph drawing model edges are drawn as
a combination of horizontal, vertical and diagonal (at 45◦) segments (see
Figure 1.4d for an example). It has been well studied, not only in the context
of metro map layout [72, 96, 109], but also in boundary labeling [16] and
wire-routing [90, 91].

http://www.naldo.de
http://www.naldo.de

3

Figure 1.2: A visualization of the relations in facebook (taken from [23]).

The second example where one encounters graphs today is in social net-
works. In such a network there are participants, the vertices of the graph,
and friendships between them, the edges of the graph. The graph drawing
challenges in this field are totally different than the ones for metro maps,
since social networks usually are very large (millions of vertices and edges).
When visualizing social networks rather than optimizing the number of cross-
ings or bends, the standard goal is to visualize the structure of the underlying
network. A nice example can be seen in Figure 1.2, a visualization of the well
known social network Facebook. Vertices represent places with active Face-
book users; the more users, the brighter the dot on the map is drawn. The
same holds for the edges, the more connections between two places exist, the
brighter the edge is drawn. The result is a drawing in which shapes roughly
resembling the continents with active Facebook users appear. This specific
visualization was created by Paul Butler, who is a member of Facebooks
data infrastructure engineering team, and published on the teams facebook
page [23].

Visualizations of social networks are very interesting for researchers in the
field of social network analysis [81], who try to find out what the relations
between people can tell about a society. Since a lot of information can be
obtained from the structure of a social network, much effort has been devoted
to obtain meaningful drawings of such graphs [67, 56, 26].

4 Chapter 1 Introduction

Figure 1.3: An edge-bundling visualization of the network of domestic flights in
the US (taken from[82])

Large graphs not only occur in social networks. Many other areas also
deal with large amounts of data that can be modeled as a graph. To support
researchers and to make the information accessible for other people, it is
often helpful to visualize the data. Since simply drawing each edge as a
straight line would in most cases result in a very cluttered picture, a method
to bundle the edges that connect neighboring vertices is often applied with
good results, as can be seen in the example in Figure 1.3. Much research has
been done in this area [99, 69, 68, 58, 45], since the size of the graphs that
need to be visualized is steadily growing and in order to be able to work with
them a meaningful drawing is essential.

A totally different field where graphs and also graph drawing play an
important role is VLSI chip design. Here the task is, to design the layout
for a chip on which a set of locations has to be connected by wires. Usually
this is done in an orthogonal way, meaning the wires (or edges) that connect
the locations (or vertices) are layouted using only horizontal and vertical
segments. This was one of the original motivations for the orthogonal graph
drawing model and primed a lot of research [83, 113, 114]. Many of the layout
aesthetics applied to drawings of graphs stem from this area, since the chip
design itself motivated the research into their optimization: having smaller
area allows for smaller chips, making the production more cost-effective [98];
having less bends on edges makes the routing of the wires easier, which in turn
makes the production of the chips easier and cheaper [19, 110]; minimizing
the number of crossings is of course also very important since on the actual

5

1 2

3
4

5

6

(a)

1 2

34

5

6

(b)

1 2

34

5

6

(c)

1 2

3
4

5

6

(d)

1

2

3

4

5 6

(e)

Figure 1.4: Drawings of the octahedron (a) in the straight-line model, (b) in the
orthogonal model, (c) in the smooth orthogonal model, (d) in the
octilinear model and (e) in the Kandinsky model.

chip wire crossings have to be avoided, but unfortunately this problem turned
out to be NP-complete [60].

In the classical orthogonal graph drawing model vertices are drawn as
points on an integer grid and edges as polygonal lines connecting those points
using alternating horizontal and vertical line segments (see Figure 1.4b for
an example). This naturally implies a bound of 4 for the maximal number
of edges incident to a vertex. This model has been studied for a long time,
initially motivated by VLSI layouts and floorplanning applications. Much
research has been done to optimize different aspects of orthogonal drawings.

Papakostas and Tollis [97] and Tamassia and Tollis [113] both present
linear time algorithms to compute planar orthogonal grid drawings on a grid

6 Chapter 1 Introduction

quadratic in size of the number of vertices with a constant number of bends
per edge. In a rectilinear drawing of a graph each edge is drawn as either
a horizontal or a vertical line. In a planar rectilinear drawing no two lines
intersect each other except at common endpoints. Garg and Tamassia [61]
showed that it is NP-hard to test whether a given graph admits a planar
rectilinear drawing and to approximate the minimum number of bends in a
planar orthogonal drawing of a graph over all embeddings. Tamassia [110]
on the other hand showed how to efficiently compute a bend-minimal or-
thogonal drawing for a graph with a given embedding, that is, the cyclical
order of edges around each vertex is given. It is NP-hard, though, to find the
embedding admitting the drawing with the minimal number of bends [61].
Biedl and Kant [19] and Liu et al. [86] both present algorithms that produce
planar orthogonal drawings with at most two bends per edge, except for the
octahedron (see Figure 1.4a), which requires three bends per edge. Both
algorithms require area quadratic in the number of vertices.

A more detailed overview can, for example, be found in [42].
To overcome the restriction to graphs with maximal degree four of the

classical orthogonal model, the Kandinsky model was developed [54]. It al-
lows for arbitrary vertex degree by drawing vertices as boxes with non-zero
side length. This way, multiple edges can be connected to the same side
of a vertex. The method makes use of two different grids; a coarse grid,
which is used to place the (center of) the vertex boxes, and a fine grid along
which the edges are routed (see Figure 1.4e for an example). This model
became very important in many practical applications, since it is able to
draw any graph. Several different variants have been proposed and stud-
ied [30, 77, 111]. Initially, a min-cost flow formulation was presented [54],
but Eiglsperger [41] showed that the formulation was not correct and gave
an efficient 2-approximation. Recently, Bläsius et al. [20] showed that the
bend-minimization problem in the Kandinsky model is NP-complete, which
was an open problem for more than two decades.

It is common to both octilinear and orthogonal graph drawing that the
number of different slopes of segments used to draw the edges is restricted (to
2 in orthogonal and to 4 in octilinear drawings). In a more general setting,
researchers investigate the planar slope number of planar graphs, which are

7

graphs that can be drawn crossing free. The planar slope number of a graph
G is the minimum number of different slopes required for edge-segments in
a crossing free drawing of G. Keszegh et al. [78] show that, if the maximal
number of edges connected to a vertex in a planar graph is d, it can be drawn
crossing free with

⌈
d
2

⌉
slopes, if two bends per edge are allowed. This implies

that, for graphs with maximal vertex degree up to 8, their method can be
used to compute octilinear drawings with at most 2 bends per edge. For
graphs with maximal vertex degree 3 Kant [76] and Di Giacomo et al. [32]
proved that planar octilinear drawings with zero bends always exist if the
graphs contains at least 5 vertices. For several restricted classes of graphs
the planar slope number is known [73, 79, 84, 89].

Since not all graphs can be drawn in a way that no edges intersect each
other, another restriction that came up in recent years aims at the angle
formed between two edges that cross [33, 10]. Since the quality of a drawing
is heavily influenced by crossings [100], much effort has been invested into im-
proving the drawings of non-planar graphs. One way to do that is to demand
that the minimum angle formed between two edges at a common crossing is
90◦, which is the rule in the so called right-angle crossing model (for short
RAC -model). Argyriou et al. [12] show that it is NP-hard to decide whether
a straight-line RAC drawing for a given graph exists. Other works charac-
terize classes of graphs admitting RAC drawings [34, 39] or investigate the
general crossing resolution in a drawing [36]. Van Kreveld [115] investigates
how drawing a planar graph in the RAC model influences aesthetics such as
area requirement, the ratio between the longest and the shortest edge and
angular resolution. The drawing models for non-planar graphs presented in
this thesis all have in common that crossings are drawn with right angles,
making them RAC drawings.

The straight-line drawing model does neither restrict the number of slopes
nor the angles at crossings, instead edges are drawn as a straight line, con-
necting the respective vertices. An example can be seen in Figure 1.4a. In
this model the vertices can be drawn with zero or non-zero size and the edges
can use arbitrary slopes. An important result discovered independently by
Fáry et al. [49] and other groups [107, 118, 106] is that any planar graph
admits a planar straight-line drawing. De Fraysseix et al. [29] showed how to

8 Chapter 1 Introduction

compute a planar straight-line drawing of a planar graph on an integer grid
that is linear in the number of vertices in width and height. The method
constructs the drawing in an incremental way, based on an ordering of the
vertices that we also use for some of our algorithms. We will give more details
in Section 2.4.2.

In polyline drawings edges are drawn as a combination of different seg-
ments which are connected at common points, so called bends (see Figure 1.4b
for an example). When using bends the number of available slopes for edge-
segments can be restricted, for example to two (Figure 1.4b), resulting in
orthogonal drawings, or four (Figure 1.4d), resulting in octilinear drawings.

Another method to draw edges is using curves. There are methods us-
ing Bezier curves [22, 51] or force-directed approaches [52]. In the so called
smooth orthogonal drawing model [15, 14, 7], edges are drawn using horizon-
tal, vertical and circular line-segments. Bends are drawn using the circular
segments. An example for a graph drawn in the smooth orthogonal model is
given in Figure 1.4c.

1.1 Thesis Contribution
After introducing necessary preliminaries in Chapter 2, we present our

first results for octilinear drawings of planar graphs with few bends in Chap-
ter 3.

From the research on the planar slope number of a graph it is known that
for planar graphs with maximal vertex degree up to 8 (meaning that there are
at most eight edges incident to any vertex in the graph) octilinear drawings
with at most 2 bends per edge exist [78]. On the other hand, for graphs with
maximal vertex degree 3 there is always a planar octilinear drawing without
bends [76, 32].

We investigate the gap between these results: 3-planar graphs (i.e. planar
graphs with maximal vertex degree 3) can be drawn with zero bends while
for all other graphs up to a vertex degree of 8 only methods that produce
drawings with 2 bends per edge are known.

To establish a lower bound we will first show that there exist infinitely
many 4-planar graphs for which a planar octilinear drawing requires a linear

1.1 Thesis Contribution 9

number of bends, but one bend per edge is enough. Then we give algorithms
to compute one-bend drawings for 4- and 5-planar graphs. Both algorithms
follow the same principle: We first show how to compute planar octilinear
drawings for triconnected graphs using the canonical ordering. Then we
extend this approach to biconnected graphs using SPQR-trees to decompose
the graphs intro triconnected components that are then drawn using the
algorithm for triconnected graphs. To further extend the approach to simply
connected graphs we decompose them into the biconnected components using
the BC-tree and then apply the biconnected algorithm to the subgraphs.

In the case of 4-planar graphs our algorithms produce drawings using
cubic area, while for 5-planar graphs there exist inputs which require expo-
nential area. For 6-planar graphs we show that one bend per edge is not
enough by giving an infinite family of graphs that require two bends on at
least one edge. By this we close the gap between the aforementioned results.

We published our results in [1], a more detailed version is available in [2]
and we also submitted our results to the Journal of Graph Algorithms and
Applications.

After this we turn our attention to one of the most established graph
drawing models, the orthogonal graph drawing, in Chapter 4 and introduce
an enhanced version which we call slanted orthogonal graph drawing (for short
slog). We improve orthogonal drawings by paying special attention to layout
aesthetics that were identified as very important, namely crossings and the
number of bends [100]. The new model makes it easier to identify crossings in
a drawing by allowing them only between two diagonal segments and, at the
same time, keeps the number of bends minimal. Additionally the appearance
of bends is improved by requiring the minimal angle between two consecutive
segments of an edge to be 135◦, resulting in a shape we call half-bends.

A representation of a graph is a description of the shape of a drawing of
the graph that contains for all vertices v the angles formed between incident
edges at v and for all edges e the number and direction of bends along e.
It does not contain any coordinates. In an orthogonal representation all
angles are multiples of 90◦, while a slog representation contains only angles
that are multiples of 45◦. We prove that the number of half-bends in a
bend-optimal slog representation is at least twice the number of bends of

10 Chapter 1 Introduction

the corresponding bend-optimal orthogonal representation and present an
algorithm to compute the bend-optimal slog drawing for a graph with a
given planar embedding. Our algorithm is based on the famous approach
of Tamassia [110], who uses a network flow formulation to compute a bend-
optimal orthogonal representation. We modify this flow network such that
we can use it for the slog model and show the correctness of our modification.

The improvements of the crossings and the bends are bought with an
increased area requirement. To counter this effect, which in the worst case
can lead to exponential drawing area, we present a heuristic that is able to
compute drawings in quadratic area by allowing more bends. The heuristic
takes a bend-optimal orthogonal drawing and transforms it into a drawing
in the slog model by stretching parts of the drawing and rotating vertices.
Despite an initial scale-up by a constant factor and the subsequent stretching
operations, the area requirement of drawings obtained by the heuristic is
polynomial. In fact, due to the final step of the heuristic, which compacts
the drawing as much as possible, the area requirements of slog drawings
obtained by the heuristic and orthogonal drawings seems to be comparable.
Drawings obtained by the heuristic contain at most twice the number of half-
bends of a bend-optimal slog drawing. However, we found that in practice
this number is significantly smaller.

Finally, we experimentally evaluate the slog model and compare bend-
optimal and heuristically obtained drawings with classical orthogonal draw-
ings.

We published our results for the slog model first in [5] and later extended
them in [4].

In Chapter 5 we extend the slog model to a more flexible variant that we
call sloggy. In this variant crossings are no longer allowed only on diagonal
segments, but also between horizontal and vertical segments. Slog drawings
may require significantly more half-bends than twice the number of bends of
the corresponding orthogonal drawing, which is mainly due to the constraint
that crossings have to be on diagonal segments. We prove that the number
of half-bends in sloggy drawings is exactly twice the number of bends of the
corresponding bend-optimal orthogonal drawing.

For sloggy drawings we require the number of crossings on diagonal seg-

1.1 Thesis Contribution 11

ments to be as large as possible, because we want to improve the visibility
of crossings as in the slog model. We develop a method to transform an
orthogonal drawing into a representation in the sloggy model by finding cer-
tain cycles in the dual of the graph and rotating parts of the graph according
to these cycles. We show that there always exists a system of such cycles
that allows us to transform an orthogonal drawing into a sloggy representa-
tion that has the minimum number of bends and the maximum number of
crossings on diagonals. However, we strongly suspect the problem of find-
ing this cycle system to be NP-hard, so we give an ILP formulation for this
purpose. Using this ILP formulation we can either optimize the number of
crossings on diagonals or try to distribute the half-bends as evenly as possi-
ble over the edges, which is a second optimization criterion we identified in
our experiments. Of course a weighted combination of both criteria is also
possible.

To draw a sloggy representation we show how to modify the approach for
the slog model such that we can use it also in the sloggy model. We prove
that, in the worst-case sloggy drawings also require exponential area.

We published our results on the sloggy model in [3].
For Chapter 6 we focus on the well known and widely used Kandinsky

model, that is able to draw graphs with arbitrary vertex degrees in an or-
thogonal fashion. We extend this model using elements from the slog model,
namely the half-bends, to be able to draw shapes that were previously for-
bidden in the Kandinsky model. By this we obtain drawings with less bends
and smaller area. As already stated, the bend-minimization problem in the
Kandinsky model is NP-complete [20]. This motivated us to give an ILP
formulation that is able to compute the bend-optimal representation for our
extended model. By a simple transformation of the result of this ILP we
obtain a representation that can be drawn using any known algorithm to
draw Kandinsky representations.

Since we found that there exist graphs for which the linear program re-
quires a very long time to solve, we also developed a heuristic that is able to
efficiently modify a classical Kandinsky representation into a representation
in the new model. The heuristic identifies faces in the given representation
that can be transformed into the new shapes we allow by using half-bends

12 Chapter 1 Introduction

and modifies the representation accordingly. Some of these transformations
require twice as many half-bends as the Kandinsky representation required
bends, but some also require the same number of half-bends. These are the
cases in which we profit the most from the new model. Since they only occur
when edges have a specific shape in the input Kandinsky representation, we
show how to modify the computation of the bend-optimal Kandinsky repre-
sentation we use as a starting point for the heuristic, such that it has as many
edges with this shape as possible but is still bend-optimal. The drawing for
the resulting representation is obtained by the same method we used for the
bend-optimal approach.

We experimentally evaluate both algorithms to verify the improvement
obtained with our extension.

Finally, in Chapter 7 we extend the slog model to graphs of arbitrary
vertex degree, based on the approach of Chapter 6. We call the new model
sloginsky. It transfers the advantages of the slog model (improved visibility
of crossings and smoother shape of the edges) to the high-degree setting. In
the sloginsky model we again require crossings to only occur between two
diagonal segments and the minimal angle between two consecutive segments
of an edge has to be 135◦. We give an ILP formulation that can be used to
compute a bend-optimal sloginsky representation of a given graph. To obtain
a drawing we show how to modify this representation such that the algorithm
used to draw a slog representation can be used to obtain a sloginsky drawing.

We also show that in the sloginsky model drawings may require exponen-
tial area and that there exist sloginsky representations that can not be drawn.
If, however, a drawing exists, we found in our experimental evaluation that
the computation can be done quite fast, allowing for practical use.

We present a conclusion in Chapter 8.

2 Preliminaries

In this chapter we introduce the theoretical backgrounds necessary through-
out this thesis. We start with the basic definitions in Section 2.1, then we
define the graph drawing aesthetics that are relevant for the vast majority
of graph drawing algorithms in Section 2.2. In Section 2.3 we revisit basic
algorithmic tools required throughout the thesis and in Section 2.4 we intro-
duce standard methods for drawing graphs, that we also use in some of our
approaches.

2.1 Terminology
A graph G = (V, E) is a tuple consisting of a set of vertices V and a set

of edges E ⊆ V × V with |V | = n and |E| = m. In a directed graph the
edges have a source and a target vertex, while in an undirected graph an edge
just connects two vertices. Two vertices that are connected by an edge are
said to be neighbors of each other. The set N(v) of neighbors of a vertex
v contains all vertices connected to v by an edge. If more than one edge
between two vertices is allowed, then G is a multigraph, otherwise G is called
simple. If the vertices of G can be separated into two sets U and V , such

14 Chapter 2 Preliminaries

that all edges connect only vertices from U with vertices from V and vice
versa, then G is called bipartite. A path P =< v1, v2 . . . , vk > is an ordered
set of vertices such that ∀vi, vi+1 with 1 ≤ i < k : (vi, vi+1) ∈ E, where k

denotes the length of the path. A cycle is a path of length ≥ 1 starting and
ending in the same vertex. A cycle of length 1 is a self-loop. In a connected
graph there exists for each pair of vertices u, v a path connecting u and v. If
a graph is k-connected, there exist k disjoint paths connecting each pair of
vertices. The degree d(v) of a vertex v is the number of edges connected to
v. The degree d(G) of a graph G is the maximum degree of all vertices in G,
that is d(G) = maxv∈V d(v).

A planar drawing Γ(G) of a graph G is a drawing in which no two edges
overlap, except at common endpoints. An embedding E(G) of a graph G is a
cyclic order of the edges around each vertex, which describes the topology of
the graph. A planar embedding is an embedding admitting a planar drawing.
A plane graph is a planar graph with a planar embedding.

A cycle of edges that are all consecutive in the cyclic ordering given by
a planar embedding at their common endpoints describes a face. The dual
graph G∗ of a plane graph G is a planar graph that contains a vertex for each
face of G. For each edge e of G there is an edge in G∗ connecting the two
vertices that correspond to the two faces adjacent to e.

Given a drawing Γ(G) of a graph G, we denote by pu = (xu, yu) the
position of vertex u ∈ V on the plane. Given a pair of points q, q′ ∈ R2, we
denote by |qq′| the Euclidean distance between q and q′. We refer to the line
segment defined by q and q′ as qq′.

A planar graph is a graph admitting a planar drawing. A maximal planar
graph is a graph where no edge can be added without violating the planarity.
Eulers formula for convex polyhedra [93] states that n + f − e = 2, where n

is the number of vertices, f is the number of faces and e is the number of
edges. It follows from this formula that any planar graph can have at most
3n − 6 edges. A k-planar graph is a planar graph with maximum degree k.

We also use the notion of a left or right turn, which we formally define in
the following.

2.2 Graph Drawing Aesthetics 15

Definition 1. Let e = (u, v) be an edge with at least one bend, say b, and let
s and s′ be two consecutive segments of e with b being the common bend of s

and s′. Furthermore, let ϕ be the angle formed by s and s′ on their left side
when moving along e from u to v. Edge e has a left turn on b if ϕ ≤ 180◦,
otherwise there is a right turn on b.

2.2 Graph Drawing Aesthetics
In Chapter 1 we introduced several different graph drawing models. There

exist various different aesthetic criteria that can be used to judge the quality
of a drawing of a graph. Purchase et al. [103] described how to validate
aesthetics important to graph drawing. In a subsequent study [100] she found
that crossings are the most important layout aesthetic, followed by bends
and symmetry. Further studies on different algorithms [101] and on metrics
able to measure the quality of a drawing of a graph [102] demonstrate the
importance of aesthetic aspects to graph drawing. We describe here the most
important aspects that any drawing algorithm should take into consideration.

Overlaps of elements of a drawing are considered as very bad drawing style,
since they dramatically decrease the readability of a drawing. Most
algorithms aim to avoid overlaps, especially if vertices in the model
have non-zero size. But since it can not always be guaranteed that
there are no overlaps, there is also research on how to post-process a
drawing obtained by any algorithm to remove them, for example the
work of Dwyer et al. [37].

Crossings of edges are, after the overlaps, the most important layout aes-
thetic, according to the study of Purchase [100]. While the general
problem of minimizing the number of crossings in a drawing for a given
graph is NP-complete [60], much research has been devoted to the gen-
eral problem and restricted versions of it [92, 74, 25], and heuristics
have been developed [40, 46, 13]. An experimental evaluation can, for
example, be found in [66]

16 Chapter 2 Preliminaries

Bends appear only in polyline drawings of graphs. The number of bends of
a drawing is very important for the perceived quality of a drawing [100].
This is because the larger the number of bends of a drawing gets,
the harder it becomes to visually follow the edges. Minimizing the
number of bends of a drawing has been mostly studied in the context
of orthogonal [110, 113, 19, 97, 86, 61] or octilinear [76, 78, 32] drawings
(refer also to the introduction of the orthogonal and the octilinear graph
drawing model in Chapter 1).

Symmetry in graph drawing is, according to the study of Purchase [100],
also very important for the perceived quality of a drawing. If parts of a
graph are very symmetric, this can identify an important information
in the respective context. There are several results for this problem [38,
70, 71], but we will not go into further detail here.

2.3 Algorithmic Tools

We now quickly recall some basic tools used at different points throughout
this thesis.

2.3.1 Linear Programming

Linear programming (for short LP) is a method to model linear optimiza-
tion problems. The core of the linear program is a set of variables x1, . . . xn

that are allowed to have any real number as value. It is possible to restrict
the values of the variables to be between a lower and an upper bound.

Additionally there is a set of m constraints of the form a1jx1 + a2jx2 +
. . . + anjxn ≤ cj for j = 1, . . . , m with a ∈ Rm×n and c ∈ Rm that have to be
satisfied by a valid assignment to the xi.

Finally there is an objective function, which is a linear combination of
a subset of the variables. The goal of the linear program is to find an as-
signment of values to the variables, such that all values are in the allowed
range, all constraints are satisfied and the value of the objective function is
maximized (or minimized).

2.3 Algorithmic Tools 17

Linear programming is a very powerful tool that can be used to obtain
optimal solutions for many problems as a plethora of research from many
different fields, not only restricted to computer science, indicates [62, 8, 116,
121, 48, 28, 50].

If the values of the variables have to be integer, the problem becomes NP-
complete [59] and is called integer linear programming (for short ILP). If only
some of the variables have to be integer, the problem is called mixed integer
programming. Despite its NP-hardness, todays solvers are often capable of
computing solutions even for large ILPs, which is one of the reasons why
they also received a lot of attention [117, 85, 9, 63, 104, 94].

An overview of linear programming techniques can, for example, be found
in [105].

2.3.2 Network Flow

A flow network consists of a graph G = (V, E), a set of sources S ⊂ V , a
set of sinks T ⊂ V and a capacity function c : (u, v) ∈ E → N. A valid flow
f assigns to each edge e = (u, v) a value respecting the following conditions:

• f(u, v) ≤ c(u, v); the flow on an edge is not allowed to exceed its
capacity

• f(u, v) = −f(v, u); the flow is symmetric

• ∀v ∈ V \{S ∪T} : ∑
(u,v)∈E f(u, v) = ∑

(v,w)∈E f(v, w); the total amount
of flow entering each vertex has to be equal to the total amount of flow
leaving it, except for source and sink vertices

The value of a flow val(f) is the amount of flow leaving all source vertices:
val(f) = ∑

s∈S,v∈V,(s,v)∈E f(s, v).
The maximum flow (for short max flow) for a given flow network is a valid

flow with maximum value. It can be computed in time O(n2√m) [6], where
n is the number of nodes and m the number of edges of the flow network.

It is possible to extend this model by introducing a second function as-
signing each edge a cost : (u, v) ∈ E → R, imposing a cost on each unit of
flow traversing an edge. The min-cost flow then asks for the maximum flow

18 Chapter 2 Preliminaries

with minimum cost. There exist several algorithms to solve this problem,
where a typical runtime is O((m log n)(m + n log n)) [6].

Both, the maximum flow and the min-cost flow problem can be extended
with additional constraints requiring a minimum flow on certain edges. Find-
ing the optimal flow for such a network can be done without increasing the
runtime of the original algorithms [6].

Network flow is an important tool in many areas of computer science and
has been used to solve a variety of problems [57, 47, 108, 120, 27, 119].

An overview over algorithms and techniques for network flow problems
can, for example, be found in [6].

2.4 Common Methods In Graph Drawing
We will now describe some standard practices employed by many graph

drawing algorithms, that will also be important in the methods developed in
this thesis.

A representation R(G) of a plane graph G is a description of the shape
of a drawing of G. It prescribes the angle between each pair of edges that
are consecutive in the circular ordering of the edges on a common vertex.
Also, the number of bends and their direction along each edge are prescribed
in the representation. With this information the shape of a drawing of G is
specified; but the actual geometric information is not contained.

An orthogonal representation uses only angles which are a multiple of
90◦. It consists basically of four values assigned to each edge e = (u, v),
two for each direction. The first is α(u, v) · 90◦ which corresponds to the
angle at vertex u between e and its cyclic predecessor on u. The second
is β(u, v), the number of left turns when traversing e from u to v, each
one being a 90◦ turn. In the classical orthogonal model 1 ≤ α(u, v) ≤ 4
and β(u, v) ≥ 0, which means that the maximal degree of any vertex is
restricted to four. Also, the sum of all angles around a vertex has to be
360◦, so ∑

v∈N(u) α(u, v) = 4. Also, from basic geometry it has to hold that
the sum of angles formed at vertices and bends of a bounded face f equals
180◦ · (p(f) − 2), where p(f) denotes the total number of such angles. This
implies that ∑

(u,v)∈E(f) α(u, v) + β(u, v) − β(v, u) = 2a(f) − 4, where a(f)

2.4 Common Methods In Graph Drawing 19

denotes the total number of vertex angles in f , and E(f) the directed arcs of
f in its counterclockwise traversal. If f is the outer face, the sum is increased
by eight.

A drawing of G that has the properties of a given representation is real-
izing this representation. Tamassia [110] shows how to efficiently compute
a drawing realizing a given orthogonal representation. However, it is not
always possible to compute a drawing for each representation. There ex-
ist examples of representations, for example in the octilinear graph drawing
model [94], that are not realizable.

2.4.1 TSM Approach

The topology-shape-metrics (for short TSM) approach was introduced by
Tamassia [110, 112] to compute orthogonal drawings for graphs with maximal
vertex degree four. Originally it was known as the GIOTTO approach, but
later it became the TSM approach [30]. It was used and extended in many
other works [18, 35, 54, 80]. Originally the TSM approach consists of three
phases:

Planarization: In the planarization phase a planar embedding of the given
non-planar graph is computed. If there is a crossing between two edges
e1 = (u, v) and e2 = (w, x), a dummy vertex c is introduced, connected
with u, v, w and x with new edges and e1 and e2 are removed.

We refer to the dummy vertices introduced to replace crossings as
crossing-vertices or c-vertices. The vertices of the original graph we
call real-vertices or r-vertices. By cc-edges we denote edges connecting
two crossing vertices, rr-edges connect two real vertices and rc-edges
connect an r- and a c-vertex.

Orthogonalization: In the orthogonalization phase a representation is
computed. Tamassia [110] shows how to compute a bend-optimal or-
thogonal representation of a given embedding using a flow network.
The properties of an orthogonal representation can be directly trans-
ferred to a flow network as follows: In general, one unit of flow in the
network corresponds to a 90◦ angle. For each vertex v of the original

20 Chapter 2 Preliminaries

v1 v2

v3

f1

f2

(a)

nf2

nf1

nv2
nv1

nv3

(b)

v1 v2

v3

f1

f2

(c)

Figure 2.1: (a) Exemplary input to the orthogonalization phase of the TSM ap-
proach. (b) Corresponding flow network (only edges with flow in the
solution are shown). (c) The drawing corresponding to the min-cost
flow.

graph, there is a node nv in the flow network with a supply of 4 units;
these nodes are called vertex-nodes. Also, for each face f in the original
graph, the network contains a node nf , with a demand of 2a(f) − 4 if
f is bounded, or 2a(f) + 4 if f is the outer face; these nodes are called
face-nodes. Again a(f) denotes the number of vertex angles of f . For
each angle α between two edges e = (u, v) and e′ = (u, w) at a vertex
u, nu is connected with the face-node representing the face incident to
α. The connection has capacity 4, cost zero and minimum flow 1 to
make sure of the angular restrictions. If in the solution of the network
flow there are i units of flow on such an edge, it means that α = i · 90◦.
Also, for each edge of the input graph, the nodes representing the two
adjacent faces are connected with arcs with infinite capacity and cost
1. Each unit of flow over one of those edges symbolizes a bend in
the representation. Since with this model each bend is penalized with
one unit of cost, a minimum-cost flow solution to the network gives a
bend-minimal representation.

We will demonstrate this with an example, refer to Figure 2.1. Fig-
ure 2.1a shows the graph for which we want to compute a bend-optimal
orthogonal representation, a simple triangle consisting of three vertices
and two faces. In Figure 2.1b the corresponding flow network is shown.
We only included edges with non-zero flow in a min-cost flow solution.

2.4 Common Methods In Graph Drawing 21

Solid edges means one unit of flow while dashed edges means three
units. Notice that from each vertex-node one unit of flow is passed to
face-node nf1 , which indicates a 90◦ angle at each vertex in face f1,
while the remaining three units of supply that each vertex has are sent
to nf2 , which is the outer face. Since the demand of nf1 is 2a(f1)−4 = 2
and the demand of nf2 is 10, one unit of flow has to be sent from nf1

to nf2 for a feasible solution, in the example through the edge corre-
sponding to the connection between v2 and v3. Figure 2.1c then shows
a drawing realizing this solution: The angles on all vertices adjacent to
f1 are 1 · 90◦, the angles adjacent to f2 are 3 · 90◦ and there is one bend
on edge (v2, v3).

Compaction: In the compaction phase a drawing realizing the representa-
tion from the previous step is computed. Tamassia [110] shows how to
compute a drawing realizing the orthogonal representation computed
in the previous step by again using network flow. For this it is neces-
sary that the faces of the representation have convex shape. Tamassia
achieves this by splitting all faces into rectangles by introducing ap-
propriate vertices and edges. Then he uses two flow networks, one to
compute the x- and one to compute the y-coordinates.

2.4.2 Drawing Planar Graphs Step by Step

The canonical ordering is an ordering of the vertices of a triconnected
graph. The ordering consists of an ordered set of layers, that contain the
vertices of the graph. Many graph drawing algorithms use this order to
construct a drawing in an incremental way by adding one layer of the ordering
after the other. One example is the well-known algorithm by De Fraysseix
et al. [29] that can be used to construct a planar straight line drawing on
a grid of quadratic size for a planar graph. They show how to do this by
first enriching the graph with additional edges until it becomes maximal
planar, then a canonical ordering is computed and one vertex after the other
is added to the drawing, according to the canonical order, while maintaining
planarity. The original definition of the canonical order of De Fraysseix
et al. [29] requires the graph to be triangulated. It was later improved by

22 Chapter 2 Preliminaries

Kant [75] such that it only requires the graph to be triconnected. The formal
definition of the canonical order (based on Kant [75]) is given in Definition 2.

Definition 2 (Canonical order [75]). For a given triconnected plane graph
G = (V, E) let Π = (P0, . . . , Pm) be a partition of V into paths such that
P0 = {v1, v2}, Pm = {vn} and v2 → v1 → vn is a path on the outer face of
G. For k = 0, . . . , m let Gk be the subgraph induced by ∪k

i=0Pi and assume
it inherits its embedding from G. Partition Π is a canonical order of G if
for each k = 1, . . . , m − 1 the following hold: (i) Gk is biconnected, (ii) all
neighbors of Pk in Gk−1 are on the outer face, of Gk−1 (iii) all vertices of Pk

with k < m have at least one neighbor in Pj for some j > k. Pk is called a
singleton if |Pk| = 1 and a chain otherwise.

When the graph for which a drawing should be computed is biconnected,
but the approach to enrich it with additional edges to make it triconnected
can not be applied (because, for example, there are restrictions on the max-
imal degree of a vertex), the SPQR-tree can be used. The standard-practice
is to decompose a biconnected graph into its triconnected components using
the SPQR-tree, then use an algorithm for triconnected graphs to draw those
components, and finally show how to combine the drawings of the subgraphs
in a way respecting the constraints of the used drawing model.

An SPQR-tree [31] provides information about the decomposition of a
biconnected graph into its triconnected components. It can be computed in
linear time and space [65]. Every triconnected component is associated with
a node µ in the SPQR-tree T . The triconnected component itself is referred
to as the skeleton of µ, denoted by Gskel

µ = (V skel
µ , Eskel

µ). We refer to the
degree of a vertex v ∈ V skel

µ in Gskel
µ as degskel

µ (v). We say that µ is an R-node,
if Gskel

µ is a simple triconnected graph. A bundle of at least three parallel
edges classifies µ as a P-node, while a simple cycle of length at least three
classifies µ as an S-node. By construction R-nodes are the only nodes of the
same type that are allowed to be adjacent in T . The leaves of T are formed
by the Q-nodes. Their skeleton consists of two parallel edges; one of them
corresponds to an edge of G and is referred to as real edge. The skeleton
edges that are not real are referred to as virtual edges. A virtual edge e in
Gskel

µ corresponds to a tree node µ′ that is adjacent to µ in T , more exactly,

2.4 Common Methods In Graph Drawing 23

to another virtual edge e′ in Gskel
µ′ . We assume that T is rooted at a Q-node.

Hence, every skeleton (except the one of the root) contains exactly one virtual
edge e = (s, t) that has a counterpart in the skeleton of the parent node. We
call this edge the reference edge of µ denoted by ref(µ). Its endpoints, s and
t, are named the poles of µ denoted by Pµ = {s, t}. Every subtree rooted at
a node µ of T induces a subgraph of G called the pertinent graph of µ that
we denote by Gpert

µ = (V pert
µ , Epert

µ). We abbreviate the degree of a node v in
Gpert

µ with degpert
µ (v). The pertinent graph is the subgraph of G for which the

subtree describes the decomposition.
Now, assume that G is a simple, biconnected k-planar graph, whose

SPQR-tree T is given. Additionally, we may assume that T is rooted at
a Q-node that is adjacent to an S- or R-node. Notice that at least one
such node exists since the graph does not contain any multi-edges, which
would be the case if only a P-node existed. Biconnectivity and maximum
degree of k yield basic bounds for the graph degree of a node v ∈ V , i.e.,
2 ≤ deg(v) ≤ k. By construction the pertinent graph of a tree node µ is a
(connected) subgraph of G; thus 1 ≤ degpert

µ (v) ≤ deg(v). For the degrees in a
skeleton graph Gskel

µ , we obtain bounds based on the type of the correspond-
ing node. Skeletons of Q-nodes are cycles of length two, whereas S-nodes
are by definition simple cycles of length at least three; hence, degskel

µ (v) = 2.
For P- and R-nodes the degree can be bounded by 3 ≤ degskel

µ (v) ≤ k, since
the skeleton of the former is at least a bundle of three parallel virtual edges
and the latter’s skeleton is triconnected by definition. The upper bound is
derived from the relation between skeleton and graph degrees: A virtual edge
e = (s, t) hides at least one incident edge of each node (not necessarily an
(s, t)-edge). This observation can be proven by induction on the tree. Hence,
2 ≤ degskel

µ (v) ≤ deg(v).
Next, we use this observation to derive bounds for the pertinent degree

by distinguishing two cases depending on whether v is a pole or not. Recall
that Gpert

µ is a subgraph of G that is obtained by recursively replacing virtual
edges by the skeletons of the corresponding children. In the first case when
v is an internal node in Gpert

µ , i.e., v /∈ Pµ, v is not incident to the reference
edge in Gskel

µ . Thus, every edge of G hidden by a virtual edge in Gskel
µ is in

Gpert
µ . Hence, degskel

µ (v) ≤ degpert
µ (v) ≤ k. In the other case, i.e., v ∈ Pµ, at

24 Chapter 2 Preliminaries

least one edge that is hidden by the reference edge, is not part of Gpert
µ , thus,

degskel
µ (v) − 1 ≤ degpert

µ (v) ≤ k − 1. Notice that the lower bounds depend on
the skeleton degree which in turn depends on the type of node, unlike the
upper bounds that hold for all tree nodes. The next lemma tightens these
bounds based on the type of the parent node.

Lemma 2.4.1. Let µ be a tree node that is not the root in the SPQR-tree
T of a simple, biconnected, k-planar graph G and µ′ its parent in T . For
v ∈ Pµ, it holds that degpert

µ (v) ≤ k − 2, if µ′ is a P- or an R-node and
degpert

µ (v) ≤ k − 1 otherwise, i.e. µ′ is an S- or a Q-node.

Proof. Since the case where µ′ is an S- or a Q-node follows from the fact
that G is k-planar and the reference edge hides at least one edge that is
not in Gpert

µ , we restrict ourselves to the more interesting cases where µ′ is
either a P- or an R-node. From our previous observations we know that
3 ≤ degskel

µ′ (v) ≤ k. Each of the at least three edges in Gskel
µ′ hides at least

one edge of G that is incident to v. However, the total number of edges is at
most k due to the degree restriction. Hence, we are left with the problem of
k edges of G being hidden by at least three virtual edges, each hiding at least
one. As a result the virtual edge that corresponds to µ cannot contribute
more than k − 2 edges to its pertinent graph Gpert

µ .

Lemma 2.4.2. In the SPQR-tree T of a planar biconnected graph G =
(V, E) with deg(v) ≥ 3 for every v ∈ V , there exists at least one Q-node that
is adjacent to a P- or an R-node.

Proof. Assume to the contrary that all Q-nodes are adjacent to S-nodes only.
We pick such a Q-node and root T at it. Let µ be an S-node (possibly the
root itself) with poles Pµ = {s, t} such that there is no other S-node in the
subtree of µ. By definition of an S-node, µ has at least two children. If
all of them were Q-nodes then there exists a v ∈ V skel

µ with s ̸= v ̸= t and
deg(v) = 2; a contradiction. Hence, there is at least one child µ′ that is a P-
or an R-node. However, since the leaves of T are Q-nodes and those are not
allowed to be children of P- and R-nodes by our assumption, there exists at
least one other S-node in the subtree of µ′ and therefore in the subtree of µ

which contradicts our choice of µ.

2.4 Common Methods In Graph Drawing 25

Should the given graph be simply connected, the SPQR-tree can not
be used. Instead the so-called BC-tree (see Definition 3) has to be used
to decompose the graph into its biconnected components. The resulting
structure will be a tree, that then can be used in a similar procedure as the
SPQR-tree for biconnected graphs: the biconnected components are drawn
using the SPQR-tree decomposition and the drawings are combined according
to the BC-tree and the rules of the applied model.

Definition 3 (BC-tree). The BC-tree B of a connected graph G has a B-node
for each biconnected component of G and a C-node for each cutvertex of G.
Each B-node is connected with the C-nodes that are part of its biconnected
component.

3 Planar Octilinear Draw-
ings

3.1 Introduction

Recall from Chapter 1, that in the octilinear graph drawing model edges
are drawn as a combination of horizontal, vertical and diagonal (at 45◦)
segments.

In this chapter we investigate the gap between known results: 3-planar
graphs can be drawn with zero bends [76, 32] while for all other planar graphs
up to a maximal vertex degree of 8 only methods that produce drawings with
2 bends per edge are known [78].

We will first show that there exist infinitely many 4-planar graphs for
which a planar octilinear drawing requires a linear number of bends, but
one bend per edge is enough. Then we give algorithms to compute one-
bend drawings for 4- and 5-planar graphs. For 6-planar graphs we show
that one bend per edge is not enough; by this we close the gap between the
aforementioned results.

Central to our algorithms is the principle of constructing a drawing for a
given graph in an incremental way, which was introduced in Section 2.4.2.

28 Chapter 3 Planar Octilinear Drawings

3.2 Drawing 4-Planar Graphs with One Bend
Per Edge

We will first show a family of 4-planar graphs that require a linear number
of bends when drawn with at most one bend per edge in Section 3.2.1. Then
we will describe how to compute planar octilinear drawings of 4-planar graphs
that require at most one bend per edge. To do so we start by giving an
algorithm to compute such a drawing for a triconnected 4-planar graph in
Section 3.2.2. We then extend to biconnected graphs using SPQR trees in
Section 3.2.3. Finally we show how to use BC-trees to construct drawings
for simply-connected graphs in Section 3.2.4.

3.2.1 4-Planar Is Not Possible With Zero Bends

Theorem 3.2.1. There exists an infinite class of 4-planar graphs which do
not admit bendless octilinear drawings and if they are drawn with at most
one bend per edge, then a linear number of bends is required.

Proof. In the orthogonal drawing model the drawing of a triangle requires at
least one bend, while a triangle can be drawn without bends in an octilinear
way, as long as its interior is empty. With a construction like the one depicted
in Figure 3.1 we make sure that for each triangular face there is always
something in the interior, thus forcing us to use at least one bend per face.
Since the example is triconnected, its embedding is fixed up to the choice of
the outer face. Our construction is heavily based on the so-called separating
triangle, i.e., a three-cycle whose removal disconnects the graph. Each vertex
of such a triangle has degree four. Any triangle which is drawn bendless has
a 45◦ angle inside. But since the triangles are nested and have incident edges
going inside of the triangles, this is impossible.

3.2.2 Triconnected Graphs

Let G = (V, E) be a triconnected 4-planar graph and Π = {P0, . . . , Pm}
be a canonical order of G. We momentarily neglect the edge (v1, v2) of the

3.2 4-Planar Graphs 29

Figure 3.1: Nested separating triangles each requiring one bend.

first partition P0 of Π and we start by placing the second partition, say a
chain P1 = {v3, . . . , v|P1|+2}, on a horizontal line from left to right. Since by
definition of Π, v3 and v|P1|+2 are adjacent to the two vertices, v1 and v2, of
the first partition P0, we place v1 to the left of v3 and v2 to the right of v|P1|+2.
So, they form a single chain where all edges are drawn using horizontal line-
segments that are attached to the east and west port at their endpoints. The
case where P1 is a singleton is analogous. Having laid out the base of our
drawing, we now place in an incremental manner the remaining partitions.
Assume that we have already constructed a drawing for Gk−1 and we now
have to place Pk, for some k = 2, . . . , m − 1.

In case where Pk = {vi, . . . , vj} is a chain of j − i + 1 vertices, we draw
them from left to right along a horizontal line one unit above Gk−1. Since vi

and vj are the only vertices that are adjacent to vertices in Gk−1, both only
to one, we place the chain between those two as in Figure 3.2a. The port
used at the endpoints of Pk in Gk−1 depends on the following rule: Let v′

i (v′
j,

resp.) be the neighbor of vi (vj, resp.) in Gk−1. If the edge (vi, v′
i) ((vj, v′

j),
resp.) is the last to be attached to vertex v′

i (v′
j, resp.), i.e., there is no vertex

v in Pl ∈ Π, l > k such that (v′
i, v) ∈ E ((v′

j, v) ∈ E, resp.), then we use the
northern port of v′

i (v′
j, resp.). Otherwise, we choose the north-east port for

(vi, v′
i) or the north-west port for (vj, v′

j).
In case of a singleton Pk = {vi}, we can apply the previous rule if the

singleton is of degree three, as the third neighbor of vi should belong to a
partition Πj for some j > k. However, in case where vi is of degree four we
may have to deal with an additional third edge (vi, v) that connects vi with
Gk−1. By the placement so far, we may assume that v lies between the other

30 Chapter 3 Planar Octilinear Drawings

v1 v2

vi vj
v′i v′j

(a)

vi

v1 v2

v

(b)

Figure 3.2: (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Placement
of a singleton Pk = {vi} with degree four.

two endpoints, thus, we place vi such that x(vi) = x(v). This enables us to
draw (vi, v) as a vertical line-segment; see Figure 3.2b.

The above procedure is able to handle all chains and singletons except the
last partition Pm, because vn may have 4 edges pointing downwards. One of
these edges is (vn, v1), by definition of Π. We exclude (vn, v1) and draw vn as
an ordinary singleton. Then, we shift v1 to the left and up as in Figure 3.3.
This enables us to draw (v1, vn) as a horizontal-vertical segment combination.
For (v1, v2), we move v2 one unit to the right and down. We free the west
port of v2 by redrawing its incident edges as in Figure 3.3 and attach (v1, v2)
to it. Edge (v1, v2) will be drawn as a diagonal segment with positive slope
connected to v1 and a horizontal segment connected to v2, which requires
one bend. Let (v2, vi) be the other incomplete edge according to Figure 3.3.
It will be drawn using a diagonal segment with positive slope connected to
v2 and a horizontal segment connected to vi, again requiring one bend.

So far, we have specified a valid port assignment and the y-coordinates

v2

vn

v3

v1

Figure 3.3: Final layout after repositioning v1 and v2.

3.2 4-Planar Graphs 31

of the vertices. However, we have not fully specified their x-coordinates.
Notice that by construction every edge, except the ones drawn as vertical
line-segments, contains exactly one horizontal segment. This enables us to
stretch the drawing horizontally by employing appropriate cuts. A cut, for
us, is a y-monotone continuous curve that crosses only horizontal segments
and divides the current drawing into a left and a right part. It is not difficult
to see that we can shift the right part of the drawing that is defined by the
cut further to the right while keeping the left part of the drawing on place
and the result remains a valid octilinear drawing.

To compute the x-coordinates, we proceed as follows. We first assign
consecutive x-coordinates to the first two partitions and from there on we
may have to stretch the drawing in two cases. The first one appears when
we introduce a chain, say Pk, as it may not fit into the gap defined by its
two adjacent vertices in Gk−1. In this case, we horizontally stretch the draw-
ing between its two adjacent vertices in Gk−1 to ensure that their horizontal
distance is at least |Pk| + 1. The other case appears when an edge that con-
tains a diagonal segment is to be drawn. Such an edge requires a horizontal
distance between its endpoints that is at least the height it bridges. We also
have to prevent it from intersecting any horizontal-vertical combinations in
the face below it. We can cope with both cases by horizontally stretching the
drawing by a factor that is bounded by the current height of the drawing.
Since the height of the resulting drawing is bounded by |Π| = O(n), it follows
that in the worst case its width is O(n2).

We are now ready to state the main theorem of this subsection.

Theorem 3.2.2. Given a triconnected 4-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge on an
O(n2) × O(n) integer grid.

Proof. In order to keep the time complexity of our algorithm linear, we em-
ploy a simple trick. We assume that any two adjacent points of the underlying
integer grid are by n units apart in the horizontal direction and by one unit
in the vertical direction. This a priori ensures that all edges that contain a
diagonal segment will not be involved in crossings and simultaneously does
not affect the total area of the drawing, which asymptotically remains cubic.

32 Chapter 3 Planar Octilinear Drawings

Gk

Gk+1

Hk+1Hk+1

(a)

Gk

Gk+1

(b)

Figure 3.4: (a) An example for which the triconnected algorithm requires
quadratic width. (b) The same example drawn with width four.

On the other hand, the advantage of this approach is that we can use the
shifting method of Kant [75] to cope with the introduction of chains in the
drawing, that needs O(n) time in total by keeping relative coordinates that
can be efficiently updated and computing the absolute values only at the last
step.

Note that our algorithm produces drawings that have a linear number
of bends in total (in particular, exactly 2|Π| = O(n) bends). From the
construction in Section 3.2.1 it follows that this bound is asymptotically
tight.

An example for which our algorithm actually results in quadratic width is
depicted in Figure 3.4a. The construction is as follows: the first layer of the
canonical ordering is a chain of length n

2 and then there are another n
2 layers

consisting of singletons of degree four. Every second singleton adds twice the
height of the current drawing Hcurrent to the width, which results in a total
width of O(n2). For comparison a drawing of the same graph requiring a
constant width of four units is depicted in Figure 3.4b.

3.2.3 Biconnected Graphs

Following standard practice, we employ a rooted SPQR-tree and assume
for a tree node that the pertinent graphs of its children are drawn in a

3.2 4-Planar Graphs 33

s

t

O(n)

O(n2)

es

et

(a)

t

s

t

(b)

Figure 3.5: (a) Schematic view of the layout requirements. (b) Creating a nose
at t.

pre-specified way. Consider a node µ in T with poles Pµ = {s, t}. In the
drawing of Gpert

µ , s should be located at the upper-left and t at the lower-
right corner of the drawing’s bounding box with a port assignment as in
Figure 3.5a. In general, we assume that the edges incident to s (t, resp.)
use the western (eastern, resp.) port at their other endpoint, except of the
northern (southern, resp.) most edge which may use the north (south, resp.)
port instead. In that case we refer to s and t as fixed; see es, et in Figure 3.5a.
More specifically, we maintain the following invariants:

IP-1: The width (height) of the drawing of µ is quadratic (linear) in the size
of Gpert

µ . s is located at the upper-left; t at the lower-right corner of
the drawing’s bounding box.

IP-2: If degpert
µ (s) ≥ 2, s is fixed; t is fixed if degpert

µ (t) = 3 and µ’s parent is
not the root.

IP-3: The edges that are incident at s and t in Gpert
µ use the south, south-

east and east ports at s and the north, north-west and west port at t,
respectively. If s or t is not fixed, incident edges are attached at their
other endpoints via the west port (east port, resp.). If s or t is fixed,
the northern-most edge at s and the southern-most edge at t may use
the north (south, resp.) port at its other endpoint.

Notice that the port assignment, i.e. IP-3, guarantees the ability to
stretch the drawing horizontally even in the case where both poles are fixed.

34 Chapter 3 Planar Octilinear Drawings

µ2

s
µ1

t

(a)

s
µ2

t

µ1

(b)

Figure 3.6: (a) First P-node subcase without an (s, t)-edge but s might be fixed
in a child µ1. (b) Second P-node subcase with an (s, t)-edge where t

might get fixed in a child µ2.

Furthermore, IP-2 is interchangeable in the following sense: If degpert
µ (s) = 2

and degpert
µ (t) = 1, then s is fixed but t is not. But, if we relabel s and t such

that t′ = s and s′ = t, then degpert
µ (s′) = 1 and degpert

µ (t′) = 2. By IP-2, we
can create a drawing where both s′ and t′ are not fixed and located in the
upper-left and lower-right corner of the drawing’s bounding box. Afterwards,
we mirror the resulting layout vertically and horizontally to obtain one where
s and t are in their respective corners and not fixed. Notice that in general
the property of being fixed is not symmetric, e.g., when degpert

µ (s) = 3 and
degpert

µ (t) = 2 holds, s remains fixed while t becomes fixed as well. For a
non-fixed vertex, we introduce an operation that is referred to as forming or
creating a nose; see Figure 3.5b, where t has been moved downwards at the
cost of a bend. As a result, the west port of t is no longer occupied.

P-node case: Let µ be a P-node. By Lemma 2.4.1, for a child µ′ of µ, it
holds that degpert

µ′ (s) ≤ 2 and degpert
µ′ (t) ≤ 2. So, t can form a nose in

µ′, while s might be fixed in the case where degpert
µ′ (s) = 2. Notice that

there exists at most one such child due to the degree restriction. We
distinguish two cases based on the existence of an (s, t)-edge.

In the first case, assume that there is no (s, t)-edge, i.e., there is no
child that is a Q-node. We draw the children of µ from top to bottom
such that a possible child in which s is fixed, is drawn topmost (see µ1

in Figure 3.6a). In the second case, we draw the (s, t)-edge at the top
and afterwards the remaining children (see Figure 3.6b). Of course,

3.2 4-Planar Graphs 35

µ1

µ2

µ4

µ3

s = v1

v2

v3

v4

v5 = t

(a)

vi vi+1 vj

µ′i µi

v′i v′j

µi+1 µ′j

Gk−1

(b)

Figure 3.7: (a) S-node with children µ1, . . . , µ4; µ3 is a Q-node representing
the edge (v3, v4). In all figures optional edges are drawn dotted.
(b) Example for a chain vi, . . . , vj with virtual edges representing
µi, . . . , µj−1 in the R-node case.

this works only if s is not fixed in any of the other children. Let µ′ be
such a potential child where s is fixed, i.e., degpert

µ′ (s) = 2, and thus,
the only child that remains to be drawn. Here, we use the property
of interchangeability to “unfix” s in µ′. As a result s can form a nose,
whereas t may now be fixed in µ′ when degpert

µ′ (t) = 2 holds, as in
Figure 3.6b. However, then degpert

µ (t) = 3 follows. Notice that the
presence of an (s, t)-edge implies that the parent of µ is not the root
of T , since this would induce a pair of parallel edges. Hence, by IP-2
we are allowed to fix t in µ. Port assignment and area requirements
comply in both cases with our invariant properties.

S-node case: We place the drawings of the children, say µ1, . . . , µℓ, of an
S-node µ in a “diagonal manner” such that their corners touch as in Fig-
ure 3.7a. In case of Q-nodes being involved, we draw their edges as hor-
izontal segments (see, e.g., edge (v3, v4) in Figure 3.7a that corresponds
to Q-node µ3). Observe that s and t inherit their port assignment and
pertinent degree from µ1 and µℓ, respectively, i.e., degpert

µ (s) = degpert
µ1 (s)

and degpert
µ (t) = degpert

µℓ
(t). So, we may assume that s is fixed in µ, if s

is fixed in µ1. Similarly, t is fixed in µ, if t is fixed in µℓ. By IP-2, t is
not allowed to be fixed in the case where the parent of µ is the root of
T . However, Lemma 2.4.2 states that we can choose the root such that
t is not fixed in that case, and thus, complies with IP-2. Since we only

36 Chapter 3 Planar Octilinear Drawings

concatenated the drawings of the children, IP-1 and IP-3 are satisfied.

R-node case: For the case where µ is an R-node with poles Pµ = {s, t},
we follow the basic idea of the triconnected algorithm of the previous
section and describe the modifications necessary to handle the drawing
of the children of µ. To do so, we assume the worst case where no
child of µ is a Q-node. Let µuv denote the child that is represented
by the virtual edge (u, v) ∈ Eskel

µ . Notice that due to Lemma 2.4.1,
degpert

µuv
(u) ≤ 2 and degpert

µuv
(v) ≤ 2 holds. Hence, with IP-2 we may

assume that at most one out of u and v is fixed in µuv. We choose the
first partition in the canonical ordering to be P0 = {s, t} and distinguish
again between whether the partition to be placed next is a chain or a
singleton.

In case of a chain, say Pk = {vi, . . . , vj} with two neighbors v′
i and v′

j

in Gk−1, we have to replace two types of edges with the drawings of the
corresponding children: the edges (vi, vi+1), . . . , (vj−1, vj) representing
the children µi, . . . , µj−1 and (v′

i, vi) ((vj, v′
j), resp.) representing µ′

i (µ′
j,

resp.). We place the vertices of Pk on a horizontal line high enough
above Gk−1 such that every drawing may fit in-between it and Gk−1.
Then, we insert the drawings aligned below the horizontal line and
choose for i ≤ l < j, vl to be the fixed node in µl, whereas in µ′

i (µ′
j,

resp.), we set vi (vj, resp.) to be fixed. Hence, for i ≤ l < j, vl+1

may form a nose in µl pointing upwards while v′
i and v′

j form each one
downwards as depicted in Figure 3.7b. For the extra height and width,
we stretch the drawing horizontally.

For the case where Pk = {vi} and i ̸= n is a singleton, we only outline
the difference which is a possible third edge (vi, v) to Gk−1 representing
say µ′

v. While the other two involved children, say µ′
i and µ′

j, are
handled as in the chain-case, µ′

v requires extra height now and we may
place vi such that µ′

v fits below µ′
j as in Figure 3.8a. Notice that

degpert
µ′

v
(vi) = 1 holds and therefore by IP-2 both vi and v are not fixed

in µ′
v. Hence, forming a nose at vi and v as in Figure 3.8a is feasible.

It remains to describe the special case where the last singleton Pk =
{vn} is placed. Since s, t ∈ P0, both have not been fixed yet. We

3.2 4-Planar Graphs 37

v

vi

v′i v′j
Gk−1

µ′i µ′j

µ′v

(a)

s

t

µsn
vn

s

(b)

Figure 3.8: (a) Singleton vi with possibly three incident virtual edges represent-
ing µ′

i, µ′
v, µ′

j . (b) Placing vn and moving up s which might be fixed
in µsn.

proceed as in the triconnected algorithm and move s = v1 above vn

as depicted in Figure 3.8b, high enough to accommodate the drawing
of the child µsn represented by the edge (s, vn). Since we may require
vn to form a nose in µsn as in Figure 3.8b, we choose s to be fixed in
µsn. However, we are allowed by IP-2 to fix s since t remains unfixed.
For the area constraints of IP-1, we argue as follows: Although some
diagonal segments may force us to stretch the whole drawing by its
height, the height of the drawing has been kept linear in the size of
Gpert

µ . Since we increase the width by the height a constant number of
times per step, the resulting width remains quadratic.

Root case: For the root of T we distinguish two cases: In the first case,
there exists a vertex v ∈ V with deg(v) ≤ 3. Then, we choose as
root a Q-node µ that represents one of its three incident edges and
orient the poles {s, t} such that t = v. Hence, for the child µ′ of µ

follows degpert
µ′ (t) ≤ 2. In the other case, i.e., for every v ∈ V we have

deg(v) = 4, we choose a Q-node that is not adjacent to an S-node,
whose existence is guaranteed by Lemma 2.4.2. In both cases, we may
form a nose with t pointing downwards and draw the edge as in the
triconnected algorithm.

38 Chapter 3 Planar Octilinear Drawings

Theorem 3.2.3. Given a biconnected 4-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge on an
O(n2) × O(n) integer grid.

Proof. The SPQR-tree T can be computed in O(n)-time and its size is linear
to the size of G [65]. The pertinent degrees of the poles at every node can
be pre-computed by a bottom-up traversal of T . Drawing a P-node requires
constant time; S- and R-nodes require time linear to the size of the skeleton.
However, the sum over all skeleton edges is linear, as every virtual edge
corresponds to a tree node.

3.2.4 Simply-Connected Graphs

After having shown that we can cope with biconnected 4-planar graphs,
we turn our attention to the connected case. We start by computing the BC-
tree of G and root it at some arbitrary B-node. Every B-node, except the
root, contains a designated cut vertex that links it to the parent. A bridge
for a biconnected component consists only of a single edge. Similar to the
biconnected case, we define an invariant for the drawing of a subtree: The
cut vertex that links the subtree to the parent is located in the upper left
corner of the drawing’s bounding box.

Any subgraph, say Gb, induced by a non-bridge biconnected component
can be laid out using the biconnected algorithm. However, to construct a
drawing that satisfies our invariant we have to take care of two problems.
First, the cut vertex, say vb, that links Gb to the parent, has to be drawn in
the upper-left corner of the drawing of the subtree. Second, there may be
other cut vertices of G in Gb to which we have to attach their corresponding
subtrees.

For the first problem we describe how to root the SPQR-tree Tb for Gb

so that vb is located in the upper-left corner. There are at least two Q-nodes
having vb as a pole (as Gb is biconnected) and the degree of vb in Gb is at
most 3. In the biconnected case, we distinguished for the root of the tree
between whether there exists v ∈ V with deg(v) ≤ 3 or not. Hence, we may
choose for the root of Tb a Q-node having vb as a pole and orient it such that
vb = t, thus, satisfying deg(t) ≤ 3. Then, we flip the final drawing of Gb such

3.2 4-Planar Graphs 39

vb = t

b′
s

(a)

v1 v2

vc = vi

b1

v′

(b)

Figure 3.9: (a) Rooting the SPQR-tree such that vb is in the upper-left corner.
(b) Attaching a subtree via a bridge to a cut vertex vc in an R-node.
The dashed edge (vi, v′) may only be present if vi = vn.

that t is in the upper left corner (see Figure 3.9a).
Next, we address the second problem. Let vc be a cut vertex in Gb that

is not the link to the parent. If vc has degree 3, then it may occur in the
pertinent graph of every node. However, in this case we only have to attach a
subtree of the BC-tree that is connected via a bridge. This poses no problem,
as there are enough free ports available at vc and we can afford a bend at the
bridge. We only consider S- and R- nodes here since the poles of P-nodes
occur in the pertinent graphs of the first two. For R-nodes we assume that
the south-east port at vc is free. So, we attach the drawing via the bridge by
creating a bend as in Figure 3.9b. In the diagonal drawing of an S-node, the
north-east port is free. So, we can proceed similar; see Figure 3.10a.

If vc has degree 2 in Gb, it only occurs in the pertinent graph of an S-node;
see v3 in Figure 3.10a. However, we may no longer assume that the bridge
is available. As a result, we can not afford a bend and have to deal with
two incident edges instead of one. We modify the drawing by exploiting the
two real edges incident to vc in the S-nodes layout to free the east and south
east port; see v2 in Figure 3.10a. This enables us to attach the subtrees
drawing without modifying it. We finish this section by dealing with the
most simple case where there are only bridges attached to a cut vertex. The
idea is illustrated in Figure 3.10b and matches our layout specification.

40 Chapter 3 Planar Octilinear Drawings

µ v1

v3

v2

b1

b2

b3

(a)

v

(b)

Figure 3.10: (a) All possible situations at an S-node µ. For attaching b2 to v2,
the layout had to be modified. (b) A cut vertex where all of its
children are attached via bridges.

Theorem 3.2.4. Given a connected 4-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge on an
O(n2) × O(n) integer grid.

Proof. Decomposing a connected graph into its biconnected components takes
linear time. It remains the area property. Inserting a subtree with n ver-
tices and the given dimensions into the drawing of an R- or S-node clearly
increases the width of the drawing by at most O(n2) and the height by at
most O(n). Hence, the total drawing area is cubic, as desired.

3.3 Drawing 5-Planar Graphs with One Bend
Per Edge

Analogously to the 4-planar graphs, we will first give a construction for
triconnected graphs, then extend to biconnected graphs using SPQR-trees
and finally to simply-connected graphs using the BC-tree. Additionally we
will show that the construction by the triconnected algorithm may result in
super-polynomial area in the worst case.

3.3 5-Planar Graphs 41

3.3.1 Triconnected Graphs

Let G = (V, E) be a triconnected 5-planar graph and Π = {P0, . . . , Pm}
be a canonical order of G. We place the first two partitions P0 and P1 of
Π, similar to the case of 4-planar graphs. Again, we assume that we have
already constructed a drawing for Gk−1 and now we have to place Pk, for
some k = 2, . . . , m − 1. We further assume that the x- and y-coordinates are
computed simultaneously so that the drawing of Gk−1 is planar and horizon-
tally stretchable in the following sense: If e ∈ E(Gk−1) is an edge incident
to the outer face of Gk−1, then there is always a cut which crosses e and can
be utilized to horizontally stretch the drawing of Gk−1. This is guaranteed
by our construction which makes sure that in each step the edges incident
to the outer face have a horizontal segment. In other words, one can define
a cut through every edge incident to the outer face of Gk−1 (stretchability-
invariant).

If Pk = {vi, . . . , vj} is a chain, it is placed exactly as in the case of 4-planar
graphs, but with different port assignment. Recall that by v′

i (v′
j, resp.) we

denote the neighbor of vi (vj, resp.) in Gk−1. Among the available northern
ports of vertex v′

i (v′
j, resp.), edge (vi, v′

i) ((vj, v′
j), resp.) uses the eastern-

most unoccupied port of v′
i (western-most unoccupied port of v′

j, resp.); see
Figure 3.11a. If Pk does not fit into the gap between its two adjacent vertices
v′

i and v′
j in Gk−1, then we horizontally stretch Gk−1 between v′

i and v′
j to

ensure that the horizontal distance between v′
i and v′

j is at least |Pk|+1. This
can always be accomplished due to the stretchability invariant, as both v′

i

and v′
j are on the outer face of Gk−1. Potential crossings introduced by edges

of Pk containing diagonal segments can be eliminated by employing similar
cuts to the ones presented in the case of 4-planar graphs. So, we may assume
that Gk is plane. Also, Gk complies with the stretchability invariant, as one
can define a cut that crosses any of the newly inserted edges of Pk and then
follows one of the cuts of Gk−1 that crosses an edge between v′

i and v′
j.

In case of a singleton Pk = {vi} of degree 3 or 4, our approach is very
similar to the one for 4-planar graphs. Here, we mostly focus on the case
where vi is of degree five. In this case, we have to deal with two additional
edges (called nested) that connect vi with Gk−1, say (vi, v) and (vi, v′); see

42 Chapter 3 Planar Octilinear Drawings

v1 v2

vi vj
v′i v′j

(a)

vi

v1 v2

v
v′

(b)

Figure 3.11: (a) Horizontal placement of a chain Pk = {vi, . . . , vj}. (b) Place-
ment of a singleton Pk = {vi} of degree five.

Figure 3.11b. Such a pair of edges does not always allow vertex vi to be placed
along the next available horizontal grid line; vi’s position is more or less
prescribed, as each of v and v′ may have only one northern port unoccupied.
However, a careful case analysis on the type of ports (i.e., north-west, north
or north-east) that are unoccupied at v and v′ in conjunction with the fact
that Gk−1 is horizontally stretchable shows that we can always find a feasible
placement for vi (usually far apart from Gk−1). Potential crossings due to
the remaining edges incident to vi are eliminated by employing similar cuts
to the ones presented in the case of 4-planar graphs. So, we may assume that
Gk is planar. Similar to the case of a chain, we prove that Gk complies with
the stretchability invariant. In this case special attention should be paid to
avoid crossings with the nested edges of vi, as a nested edge may contain
no horizontal segment. Note that the case of the last partition Pm = {vn}
is treated in the same way, even if vn is potentially incident to three nested
edges; see Figure 3.12.

To complete the description of our approach it remains to describe how
edge (v1, v2) is drawn. By construction both v1 and v2 are on a horizontal
line. So, (v1, v2) can be drawn using two diagonal segments that form a bend
pointing downwards; see Figure 3.12.

Theorem 3.3.1. Given a triconnected 5-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge.

Proof. In contrast to the corresponding proof for 4-planar graphs (see The-
orem 3.2.2), in the case of 5-planar graphs the x and y-coordinates are not

3.3 5-Planar Graphs 43

vn

v1 v2v3

Figure 3.12: Final layout (the shape of the dotted edges can be obtained by
extending the stubs until they intersect).

independent. However, since the y-coordinates of the vertices that have
been placed already do not change afterwards, we can still use the shifting
method of Kant and keep the running time of our algorithm linear. More
specifically, in order to determine the y-coordinate of a singleton vertex, we
only use the x-distances between its neighbors that have already been drawn.
The x-distances can be computed in time proportional to the length of the
path connecting them on the outer face of the graph in the tree structure of
Kant. Since each such computation will not involve the same set of vertices
more than once, the total time needed is linear in total (with respect to the
number of the graph’s vertices). Note that the aforementioned procedure is
not necessary for chains, as they do not impose restriction on the drawing’s
height.

Recall that when placing a singleton Pk = {vi} that has four edges to
Gk−1, the height of Gk is determined by the horizontal distance of its neigh-
bors along the outer face of Gk−1, which is bounded by the actual width
of the drawing of Gk−1. On the other hand, when placing a chain Pk the
amount of horizontal stretching required in order to avoid potential crossings
is limited by the height of the drawing of Gk−1. Unfortunately, this connec-
tion implies that for some input triconnected 5-planar graphs our drawing
algorithm may result in drawings of super-polynomial area, as the following
theorem suggests.

Theorem 3.3.2. There exist infinitely many triconnected 5-planar graphs
for which our drawing algorithm produces drawings of super-polynomial area.

44 Chapter 3 Planar Octilinear Drawings

v2v1

Gn

Gn+1

Figure 3.13: A recursive construction of an infinite class of 5-planar graphs re-
quiring super-polynomial drawing area.

Proof. Figure 3.13 illustrates a recursive construction of an infinite class of
5-planar triconnected graphs with this property. The base of the construc-
tion is a “long chain” connecting v1 and v2 (refer to the bold drawn edges
of Figure 3.13). Each next member, say Gn+1, of this class is constructed
by adding a constant number of vertices (colored black in Figure 3.13) to
its immediate predecessor member, say Gn, of this class, as illustrated in
Figure 3.13. If Wn and Hn is the width and the height of Gn, respectively,
then it is not difficult to show that Wn+1 > 2Wn and Hn+1 > 2Hn, which
implies that the required area is asymptotically exponential.

3.3.2 Biconnected Graphs

For the 4-planar case we defined several invariants in order to keep the
area of the resulting drawings polynomial. Since we drop this requirement
now we can define a (simpler) new invariant for the biconnected 5-planar
case. When considering a node µ in T and its poles Pµ = {s, t}, then in
the drawing of Gpert

µ , s and t are horizontally aligned at the bottom of the
drawing’s bounding box as in Figure 3.14a. If an (s, t)-edge is present, it can
be drawn at the bottom. An (s, t)-edge only occurs in the pertinent graph of
a P-node (and Q-node). Again, we use the term fixed for a pole-node that is
not allowed to form a nose. We maintain the following properties through the

3.3 5-Planar Graphs 45

s t

µ

(a)

s t

µ2

µ3

µ1

(b)

s tv1 v2

µ1 µ2 µ4

v3
µ3

(c)

Figure 3.14: (a) Layout specification; s and t are located at the bottom. (b) P-
node with an (s, t)-edge from a Q-node µ1. s and t form a nose in
µ2, µ3. (c) S-node example with four children µ1, . . . , µ4.

recursive construction process: In S- and R- nodes, s and t are not fixed. In
P- and Q-nodes, only one of them is fixed, say s. But similar to the 4-planar
biconnected case, we may swap their roles.

P-node case: Let µ be a P-node. It is not difficult to see that µ has at most
4 children; one of them might be a Q-node, i.e., an (s, t)-edge, which
can be drawn at the bottom as a horizontal segment. Since P-nodes
are not adjacent to each other in T , the remaining children are S- or
R-nodes. By our invariant we may form noses enabling us to stack
them as in Figure 3.14b, as s and t are not fixed in them.

S-node case: Let µ be an S-node with children µ1, . . . , µl. Instead of the
diagonal layout used earlier, we now align the drawings horizontally;
see Figure 3.14c. In the S-node case, the poles inherit their pertinent
degree from the children and the same holds for the property of being
fixed. However, by our new invariant this is forbidden, as it clearly
states that s and t are not fixed. It is easy to see that when µ1 is a
P-node, s is fixed by the invariant in µ1. In this case, we swap the roles
of the poles in µ1 such that s is not fixed. However, the other pole of

46 Chapter 3 Planar Octilinear Drawings

µ1, say v1, is fixed now. Since the skeleton of an S-node is a cycle of
length at least three, v1 ̸= t holds. As a result, both s and t are not
fixed in the resulting drawing.

R-node case: To compute a layout of an R-node, we employ the tricon-
nected algorithm (with s = v1 and t = v2). So, let µ be an R-node
and µe a child of µ that corresponds to the virtual edge e = (u, v) in
Gskel

µ . Then, degpert
µe

(u) ≤ 3 and degpert
µe

(v) ≤ 3 holds. When inserting
the drawing of Gpert

µe
, we require at most three consecutive ports at u

and v for the additional edges. As the triconnected algorithm assigns
ports in a consecutive manner based on the relative position of the end-
points, we modify the port assignment so that an edge may have more
than one port assigned. To do so, we assign each edge e = (u, v) in
Gskel

µ a pair (degpert
µe

(u), degpert
µe

(v)) ∈ {1, 2, 3}2 that reflects the number
of ports required by this edge at its endpoints. Then, we extend the
triconnected algorithm such that when a port of u is assigned to an
edge e = (u, v), degpert

µe
(u) − 1 additional consecutive ports in clockwise

or counterclockwise order are reserved. The direction depends on the
different types of edges that we will discuss next.

The simplest type of edges are the ones among consecutive vertices
vi, vi+1 of a chain. Recall that P0 = {v1, v2} is a special case and the
edge (v1, v2) is drawn differently. Also, the edges from P0 to P1 are
drawn as horizontal segments; see Figure 3.12. For each such edge we
reserve the additional ports at vi in counterclockwise order and at vi+1

in clockwise order; see Figure 3.15a. So, we can later plug the drawing
of the children into the layout as in Figure 3.15b without forming noses.
The second type of edges are the ones that connect Pk = {vi, . . . , vj} to
v′

i and v′
j in Gk−1. No matter if Pk is a singleton or a chain, we proceed

by reserving the ports as in the previous case, i.e., at vi clockwise,
(vj counterclockwise, resp.) and at v′

i counterclockwise (v′
j clockwise);

see Figure 3.15c. In case where (vi, v′
i) or (vj, v′

j) is a virtual edge,
we choose the poles such that vi (vj, resp.) is fixed in µ(vi,v′

i) (µ(vj ,v′
j),

resp.). Thus, we can create a nose with v′
i (v′

j, resp.). Having exactly
the ports required at both endpoints, we insert the drawing by replacing

3.3 5-Planar Graphs 47

vi
2

e

Gk−1

vi+1

2

(a)

vi

Gk−1

vi+1

µe

(b)

vj

v′j

2

3
e

Gk−1

(c)

vj

v′j

µe

Gk−1

(d)

vi

v
Gk−1

e

(e)

vi

v
Gk−1

µ
e

(f)

Figure 3.15: (a) Virtual edge e = (vi, vi+1) connecting two consecutive vertices
of a chain. At both endpoints the drawing of µe requires two ports.
(b) Replacing e in (a) with the corresponding drawing of the child
µe. (c) Example of an edge e = (vj , v′

j) that requires three ports
at vj and two at v′

j . (d) Inserting the drawing of µe into (c) with
vj being fixed and v′

j forming a nose. (e) Reserving ports for the
nested edges. A single port for a real edge is reserved and then two
ports for the virtual edge e = (vi, v). (f) Final layout after inserting
the drawing of µe.

the bend with a nose as in Figure 3.15d. The remaining edges from Pk

to Gk−1 in case of a singleton Pk = {vi} can be handled similarly; see
Figure 3.15. Notice that during the replacement of the edges, the fixed
vertex is always the upper one. The only exception are the horizontal
drawn edges of a chain. There, it does not matter which one is fixed,
as none of the poles has to form a nose.

Root case: We root T at an arbitrarily chosen Q-node representing a real
edge (s, t). By our invariant we may construct a drawing with s and
t at the bottom of the drawing’s bounding box, hence, we draw the

48 Chapter 3 Planar Octilinear Drawings

vc

(a)

vc = s t
µr

(b)

Figure 3.16: (a) Layout scheme for a BC-subtree rooted at vc. (b) Rooting Tb

at a Q-node µr.

edge (s, t) below the bounding box with a ninety degree bend using the
south east port at s and south west port at t.

Theorem 3.3.3. Given a biconnected 5-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge.

Proof. We have shown that the ability to rotate and scale suffices to extend
the result from 4-planar to 5-planar at the expense of the area. Similar to
the 4-planar case, computing T takes linear time. Hence, the overall running
time is governed by the triconnected algorithm.

3.3.3 Simply-Connected Graphs

In the following, we only outline the differences in comparison with the
corresponding 4-planar case. As an invariant, the drawing of every subtree
should conform to the layout depicted in Figure 3.16a. For a single bicon-
nected component b, let vc refer to the cut vertex linking it to the parent.
As root for the SPQR-tree Tb of Gb, we again choose a Q-node µr whose real
edge is incident to vc; see Figure 3.16b. Hence, the layout generated by the
biconnected approach matches this scheme.

It remains to show that we can attach the children. Since we are able
to scale and rotate, we keep things simple and look for suitable spots to at-
tach them. Recall that in the drawings of S-nodes and chains in R-nodes all
southern ports are free. Hence, we may rotate the drawings of the subtrees
and attach the at most three (two for a chain) edges to vc there (refer to Fig-
ure 3.17a for an example of a chain). The only exception are the singletons.

3.3 5-Planar Graphs 49

b′

vc

(a)

b′

vc

(b)

Figure 3.17: (a) Attaching a subtree at a chain and in (b) at a singleton inside
an R-node.

Assume that vi is a singleton that has one nested edge attached. Hence, it
has degree four, leaving us with a single bridge to attach the component;
Figure 3.17b. However, this does not hold in case vi = vn. Consider the case
where vn has a nested edge and we have to attach a subtree that requires
two ports. As a result vn has degree 3 in Gb and, thus, all northern ports are
free.

Theorem 3.3.4. Given a connected 5-planar graph G, we can compute in
O(n) time an octilinear drawing of G with at most one bend per edge.

Proof. We described how to attach any subtree to cut vertices inside a bi-
connected component. Furthermore, the component itself complies with the
layout scheme. In addition, this scheme enables us to compose such draw-
ings at a cut vertex using rotations. The running time follows from the fact
that the decomposition of a connected graph into its biconnected components
takes linear time.

3.3.4 Improving 5-Planar Drawings

One of the results of the study by Purchase [100] is, that bends have
a large impact on the perceived quality of a drawing. We can construct
planar octilinear drawings for 5-planar graphs with at most one bend per
edge, but it is possible that at some bends angles of 45◦ occur, as depicted
in Figure 3.18a. We call such bends sharp bends. To improve the readability
of a drawing, which is negatively affected by sharp bends, it is possible to

50 Chapter 3 Planar Octilinear Drawings

(a) (b)

Figure 3.18: (a) A sharp bend that may occur during the 5-planar construction.
(b) Removing the sharp bend by allowing one more bend.

remove them at the cost of one additional bend as depicted in Figure 3.18b.
The goal of minimizing the number of bends per edge is to obtain a drawing
which is aesthetically pleasing. Since this purpose may be better served by
allowing one more bend rather than having a 45◦ angle, it makes sense to
invest one more bend on such edges to avoid them. Note that it is always
enough to allow for one more bend to avoid sharp bends.

3.4 6-Planar Graphs Require 2 Bends

In this section, we show that it is not always possible to construct a planar
octilinear drawing of a given 6-planar graph with at most one bend per edge.
In particular, we present an infinite class of 6-planar graphs, which do not
admit planar octilinear drawings with at most one bend per edge.

Theorem 3.4.1. There exists an infinite class of 6-planar graphs which do
not admit planar octilinear drawings with at most one bend per edge.

Proof. Our proof is heavily based on the following observation: If the outer
face F(Γ(G)) of a given planar octilinear drawing Γ(G) consists of exactly
three vertices, say v, v′ and v′′, that have the so-called outerdegree-property,
i.e., deg(v) = deg(v′) = 6 and 5 ≤ deg(v′′) ≤ 6, then it is not feasible to draw
all edges delimiting F(Γ(G)) with at most one bend per edge; one of them
has to be drawn with (at least) two bends in Γ(G). Next, we construct a
specific maximal 6-planar graph, in which each face has at most one vertex
of degree 5 and at least two vertices of degree 6; see Figure 3.19a. This
specific graph does not admit a planar octilinear drawing with at most one

3.4 6-Planar Graphs 51

(a) (b)

Figure 3.19: (a) A maximal 6-planar graph in which each face has at most one
vertex of degree 5 (black-colored vertices) and at least two ver-
tices of degree 6 (gray-colored vertices). From Euler’s formula for
maximal planar graphs, it follows that any graph with this prop-
erty must have at least 12 vertices of degree 5. Hence, this is the
smallest graph with this property. (b) Illustration of the recursive
construction (crosses mark vertices introduced during the subdivi-
sion of edges).

bend, as its outer face is always bounded by three vertices that have the
outerdegree-property.

To obtain an infinite class of 6-planar graphs with this property, we give
the following recursive construction. We first subdivide each edge by intro-
ducing a new vertex (see Figure 3.19b). For each original face there are now
three new vertices. By pairwise connecting them as suggested in the figure
we obtain four new faces for each original face. Let w be a vertex introduced
while splitting edge e = (u, v) and let f and f ′ be the two faces adjacent
to e. Vertex w will be connected with u and v, with the two new vertices
introduced in face f and with the two new vertices introduced in face f ′,
giving w a degree of six. Note that this holds for all vertices introduced,
including the ones on the outer face, as can be seen in Figure 3.19b.

The newly created graph G′ is, by construction, maximal planar. Further-
more, the degree of the vertices of the original graph does not change during

52 Chapter 3 Planar Octilinear Drawings

this construction, and all newly introduced vertices have degree six. So, for
each face of G′, the adjacent vertices have the outerdegree-property.

3.5 Summary
In this chapter we presented algorithms to compute planar octilinear

drawings of 4- and 5-planar graphs with at most one bend per edge. Our al-
gorithms require linear running time and compute drawings in cubic area for
4-planar graphs and may require super-polynomial area for 5-planar graphs.
The basis of our algorithms is an incremental approach based on the canon-
ical ordering for triconnected graphs. Using the SPQR-tree and the BC-tree
we extended the algorithms to biconnected and connected graphs. For 6-
planar graphs we gave a construction of an infinite family of graphs that can
not be drawn using only one bend per edge.

With our construction we close the gap between known results: 3-planar
graphs always admit a planar octilinear drawing without bends and for all
planar graphs with vertex degree up to eight only methods were known to
construct planar octilinear drawings with two bends per edge.

We published our results in [1] and [2] and submitted a detailed version
to the Journal of Graph Algorithms and Applications.

Our work raises several open problems:

• Is it possible to construct planar octilinear drawings of 4-planar (5-
planar, resp.) graphs with at most one bend per edge in o(n3) (poly-
nomial, resp.) area?

• Does any triangle-free 6-planar graph admit a planar octilinear drawing
with at most one bend per edge?

• What is the complexity to determine whether a 6-planar graph admits
a planar octilinear drawing with at most one bend per edge?

• What is the number of necessary slopes for bendless drawings of 4-
planar graphs?

• Is it possible to extend our methods to non-planar graphs?

4 The Slanted Orthogonal
Drawing Model

4.1 Introduction
Recall from Chapter 1, that in the classical orthogonal model vertices

are drawn as points on an integer grid and edges as lines connecting those
points using alternating horizontal and vertical line segments. This naturally
implies a bound of 4 for the maximal number of edges connected to a vertex.

Purchase [100] found that the quality of a drawing is heavily affected by
crossings, bends and symmetry. Crossings influence the perceived quality of
a drawing the most, but bends and symmetry are also very important.

This motivated us to extend the classical orthogonal model to the slanted
orthogonal drawing model, or slog for short. In the new model:

• Vertices are still drawn as points, but edges are drawn using horizontal,
vertical and diagonal segments.

• Crossings are only allowed between diagonal segments.

• The minimum angle between two consecutive segments of an edge has
to be 135◦.

54 Chapter 4 The Slanted Orthogonal Drawing Model

(a) (b)

Figure 4.1: (a)-(b) Traditional orthogonal and slanted orthogonal drawings of
the same graph, assuming fixed ports.

Figure 4.1a shows a classical orthogonal drawing and Figure 4.1b a draw-
ing of the same graph in the new model. The minimum angle between con-
secutive segments does not allow classical bends, but results in half-bends
(see Figures 4.2a and 4.2b). With this modifications we aim to improve the
classical orthogonal model with respect to the layout aesthetics identified as
important by Purchase [100].

First we will develop a method to compute a bend-optimal slog represen-
tation in Section 4.2 and prove theoretical bounds on the number of half-
bends (Section 4.2.2) required by slog drawings. Then we will present a
heuristic to compute slog drawings (Section 4.3) with almost optimal num-
ber of half-bends. To obtain bend-optimal slog drawings we then present
a linear programming approach (Sections 4.4 and 4.5). After proving area
bounds (Section 4.6) we experimentally evaluate the algorithms (Section 4.7).

For planar slog drawings, observe that the problem of minimizing the
number of bends over all embeddings of an input planar graph of maximum
degree 4 is NP-hard. This directly follows from [61], since the bends of a
planar orthogonal drawing are in one to one correspondence with pairs of
half-bends of the corresponding slanted orthogonal drawing. This negative
result led us to adopt the TSM approach for our model. So, in the following,
we assume that a planar representation of the input graph is given. Then,

4.2 Orthogonalization Using Network Flow 55

(a) (b)

Figure 4.2: (a)-(b) Replacing a 90◦ bend by two half-bends of 135◦.

one can easily observe the following requirements: (I) all non-dummy vertices
(referred to as real vertices or r-vertices) use orthogonal ports and, (II) all
c-vertices use diagonal ports. This ensures that the computed drawing will
be a valid slog drawing that corresponds to the initial planar representation.
Recall that edges connecting real (crossing, resp.) vertices are referred to as
rr-edges (cc-edges, resp.), and edges between r- and c-vertices as rc-edges.

4.2 Orthogonalization Using Network Flow
Recall from the introduction in Section 2.4 that an orthogonal represen-

tation of a graph G is the description of the shape of a drawing of G, that
does not contain coordinates. The classical TSM-approach introduced in
Section 2.4.1 uses a flow network to compute a bend-optimal orthogonal rep-
resentation for a given plane graph with maximum degree four. We will now
adopt this approach for our new model.

4.2.1 Modifying the Flow Network

We now present how to modify the algorithm of Tamassia [110], in order
to obtain a slog representation of an input plane graph G with minimum
number of half-bends. Recall that G contains two types of vertices, namely
real and crossing vertices. Real (crossing, resp.) vertices use orthogonal
(diagonal, resp.) ports. Observe that a pair of half-bends on an rr-edge of
a slog drawing corresponds to a bend of an orthogonal drawing. The same

56 Chapter 4 The Slanted Orthogonal Drawing Model

g

f
vr

vc

0

(a) Zero units of flow, left-
turn from vr to vc

1

vr

vcf

g

(b) One unit of flow, right-
turn from vr to vc

Figure 4.3: Two configurations corresponding to zero or one unit of flow over an
rc-edge; f and g are the two adjacent faces.

holds for half-bends on cc-edges. However, an rc-edge must switch from an
orthogonal port (incident to the r-vertex) to a diagonal port (incident to the
c-vertex). This implies that each rc-edge has at least one half-bend, and, in
general, an odd number of half-bends.

Consider an rc-edge (vr, vc) that is incident to faces f and g (see Fig-
ure 4.3) and assume that the port of the real vertex vr is fixed. Depending
on the (diagonal) port on the crossing vertex vc we obtain two different
representations with the same total number of half-bends. To model this
“free-of-cost” choice, we introduce an edge into the flow network connecting
f and g with unit capacity and zero cost, i.e., through this edge just one unit
of flow can be transmitted and this is for free. Hence, the first half-bend of
each rc-edge is free of cost, as desired. For consistency we assume that, if in
the solution of the min-cost flow problem there is no flow over (f, g), then
there exists a left turn from the real to the crossing vertex on the bend before
the crossing; otherwise a right turn, as illustrated in Figures 4.3a and 4.3b.

4.2.2 Properties of Bend-Optimal Slog Representations

We prove that, for a planarized graph G, the computation of a slog repre-
sentation with minimum number of half-bends that respects the embedding
of G is always feasible. Then, we present a lower bound for the number of
half-bends in optimal slog representations. In the following we assume that,

4.2 Orthogonalization Using Network Flow 57

together with a planarization, the embedding is also given.

Theorem 4.2.1. For a planarized graph G of maximum degree 4, we can
efficiently compute a slog representation with minimum number of half-bends
respecting the embedding of G.

Proof. The idea is to use a reduction to Tamassia’s network flow algorithm.
In particular, since the original flow network algorithm computes a (bend-
optimal) orthogonal representation for the input plane graph, our algorithm
will also compute a slog representation. In the following, we prove that this
representation is also bend-optimal.

Assume that we are given an orthogonal representation O. We can
uniquely convert O into a slog representation S(O) by turning all crossing
vertices counterclockwise by 45◦. More precisely, the last segment of every
rc-edge before the crossing vertex will become a left half-bend. Furthermore,
every orthogonal bend is converted into two half-bends, bending in the same
direction as the orthogonal bend (see Figures 4.2a and 4.2b). Note that the
left half-bends at the crossings might neutralize with one of the half-bends
originating from an orthogonal bend, if the orthogonal bend is turning to the
right (see Figure 4.4). In this case, only the first one of the right half-bends
remains. Note that this is the only possible saving operation. Therefore,
since the number of rc-edges is fixed from the given embedding, a slog repre-
sentation with minimum number of half-bends should minimize the difference
between the number of orthogonal bends of O and the number of first right-
bends on rc-edges. However, this is exactly what is done by our min-cost
flow network formulation, as the objective is the minimization of the total
number of bends in O without the first right-bends on rc-edges.

This constructive approach can also be reversed such that for each slog
representation S, we can construct a unique orthogonal representation O(S).
Clearly, O(S(O)) = O and S(O(S)) = S. Note that this is true only for
bend-minimal representations. If this is not the case, then one has to deal
with staircases of subsequent bends; a case that cannot occur in min-cost
flow computations. From the construction, we can also derive the following.

58 Chapter 4 The Slanted Orthogonal Drawing Model

vr

vc

(a) Orthogonal input

vr

vc

(b) Three half-bends

vr

vc

(c) Reduction by 2 half-
bends

Figure 4.4: A case in which two half-bends can be eliminated.

Corollary 4.2.1.1. Let S(O) be a slog representation and O a corresponding
orthogonal representation. Let bS, rbS and rcS be the number of half-bends,
the number of first right-bends on rc-edges and the number of rc-edges in
S(O). Let also bO be the number of orthogonal bends in O. Then, bS =
2 · (bO − rbS) + rcS.

The following theorem gives a lower bound for the number of half-bends
in optimal slog representations.

Theorem 4.2.2. The number of half-bends of a bend-minimal slog represen-
tation is at least twice the number of bends of its corresponding bend-minimal
orthogonal representation.

Proof. Let Ropt
s be the bend-optimal slog representation and Ropt

o be the
bend-optimal orthogonal representation. Given a representation R (either
slog or orthogonal), we denote by hb(R) the number of half-bends and by
b(R) the number of bends of R. Assume for a proof by contradiction that
it holds that hb(Ropt

s) < 2b(Ropt
o). We will show how to construct an or-

thogonal representation R′
o that has less bends than Ropt

o , and so obtain a
contradiction.

To transform a slog representation into an orthogonal representation the
diagonal ports on the c-vertices have to become orthogonal. To this end, we
define the notion of rotating a vertex to the left or right, which means that
the ports assigned to the edges incident to it are rotated cyclically into the
respective direction and the number of bends on the edges changes according
to Figure 4.5. We consider rc-edges always in the direction from the crossing
to the real vertex. Note that if there is exactly one half-bend to the left from

4.2 Orthogonalization Using Network Flow 59

vr

vc

(a)

vr vc

(b)

vr

vc

(c)

Figure 4.5: Illustration for the proof of Theorem 4.2.2: (a) An rc-edge with a
left-turn from vc to vr. (b) Rotating c-vertex vc by 45◦ to the left
saves one half-bend. (c) Rotating c-vertex vc by 45◦ to the right
increases the number of half-bends.

a crossing-vertex vc to a real-vertex vr (see Figure 4.5a) and vc is rotated
by 45◦ to the left, the resulting drawing has zero bends on this edge (see
Figure 4.5b); a rotation by 45◦ to the right would result in two half-bends
(see Figure 4.5c).

By construction, all rr- and cc-edges have an even number of half-bends.
In order to obtain R′

o, we replace each pair of half-bends on rr- and cc-
edges of Ropt

s by an orthogonal bend (and reverse the process of Figures 4.2a
and 4.2b). So, for rr- and cc-edges it holds that hb(Ropt

s \ {rc-edges}) =
2b(R′

o \ {rc-edges}).
On the other hand, all rc-edges have an odd number of half-bends. Simi-

larly to the case of rr- and cc-edges, we replace each pair of half-bends except
the one half-bend closest to the crossing vertex by an orthogonal bend in R′

o.
Let C = {C1, . . . , Cl} be the set of maximal connected components consisting
only of c-vertices and the cc-edges between them. By maximality, it follows
that Ci ∩ Cj = ∅, for i ̸= j. Also, observe that if l = 0, then we already
would have a contradiction. Therefore, l > 0 must hold. Now, let lhb(Ci)
be the number of left half-bends and rhb(Ci) be the number of right half-
bends on the rc-edges connected to Ci that have not been replaced already.
If lhb(Ci) = rhb(Ci) for all i = 1, 2, . . . , l, then without loss of generality
we rotate all vertices in Ci to the left. This implies that all left half-bends
disappear and the right half-bends get replaced by orthogonal bends, which
contradicts the assumption that Ropt

o is bend-optimal.
So, there has to be at least one Ci with lhb(Ci) ̸= rhb(Ci). Assume

60 Chapter 4 The Slanted Orthogonal Drawing Model

lhb(Ci) > rhb(Ci) for some i = 1, 2, . . . , l. If we now rotate Ci to the left,
then we obtain an orthogonal solution that has even less bends than twice the
number of half-bends of the slog solution. Similarly, we can obtain a better
orthogonal solution when lhb(Ci) > rhb(Ci) by rotating Ci to the right.

By this construction, it holds that 2b(R′
o) ≤ hb(Ropt

s) < 2b(Ropt
o), which

is a contradiction to the assumption that Ropt
o is optimal.

4.3 A Heuristic for Slog Drawings

In this section, we present a heuristic which, given an optimal slog repre-
sentation, computes an actual drawing, which is close-to-optimal with respect
to the total number of bends and requires quadratic area. This is a quite rea-
sonable approach, since insisting on bend-optimal slog drawings may result
in exponential area requirements, as we will shortly see in Section 4.6. The
basic steps of our approach are outlined in Algorithm 1. In the following, we
describe them in detail.

Input : A slog representation S of a given plane graph G.
Output: A slog drawing Γs(G).

S1: Compute an orthogonal drawing Γ(G) based on S

S2: Replace each orthogonal bend by 2 half-bends {see Figs.4.2a and 4.2b}

S3: Fix ports on rc-edges using the spoon gadget {see Fig.4.6a}

S4: Apply cuts to fix ports on cc-edges {see Figs.4.6b and 4.6c}

S5: Optimize the number of rc half-bends {see Figs.4.7a and 4.7b}

S6: Optimize the number of cc half-bends {see Figs.4.8a, 4.8b and 4.8c}

S7: Heuristically compact the drawing (as post-processing)

Algorithm 1: Spoon Based Algorithm

In Step 1 of Algorithm 1, we compute an orthogonal drawing Γ(G) based
on the input slog representation. If there is flow on an edge e connecting faces
fi and fj that we added to Tamassia’s model, we treat it as if it was flow on
the other edge connecting fi and fj that was part of the flow network of the
original algorithm. With this we get a flow that is still valid and corresponds

4.3 Heuristic 61

vcvc

vr vr

(a) The spoon gadget

vc v′c

(b) Cut through (vc, v′
c)

vc

v′c

(c) 4 half-bends are needed

Figure 4.6: (a) Illustration of the spoon gadget. (b) The orthogonal input can be
transformed into a slog drawing when everything above the dashed
cut is moved up. (c) The result contains 4 half-bends.

to an orthogonal representation for which the algorithm of Tamassia [110]
can compute a drawing. In the next step, we replace all orthogonal bends
with pairs of half-bends. In Step 3 of Algorithm 1, we connect r-vertices with
c-vertices by replacing the segment incident to the c-vertex of each rc-edge by
a gadget, which we call spoon due to its shape (see Figure 4.6a). This gadget
allows us to switch between orthogonal and diagonal ports on an edge. Note
that the input slog representation specifies the ports on all vertices, thereby
defining which configuration is used.

In order to fix the ports of cc-edges (which still use orthogonal ports), we
employ appropriate cuts1 (Step 4 of Algorithm 1). A cut, for us, is either
(i) an x-monotone continuous curve that crosses only vertical segments and
divides the current drawing into a top and a bottom part (horizontal cut),
or, (ii) a y-monotone continuous curve that crosses only horizontal segments
and divides the current drawing into a left and a right part (vertical cut).
Observe that in order to apply a horizontal (vertical, resp.) cut, we have to
ensure that each edge crossed by the cut has at least one vertical (horizontal,
resp.) segment. This holds before the introduction of the spoons, as Γ(G)
is an orthogonal drawing. We claim that this also holds when all spoons
are present. This is because a spoon replacing a horizontal (vertical, resp.)
segment has two horizontal (vertical, resp.) segments.

To fix a horizontal cc-edge (vc, v′
c) with vc being to the left of v′

c in the
drawing, we first momentarily remove this edge from the drawing. Then
we use a horizontal cut which from left to right passes exclusively through

1A cut is a standard tool to perform stretchings in orthogonal drawings, see e.g. [53].

62 Chapter 4 The Slanted Orthogonal Drawing Model

vc

vr

(a)

vc

vr

(b)

vc

vr

(c)

vc

vr

(d)

vc

vr

(e)

Figure 4.7: Saving bends on rc-edges: (a) A vertical cut through a bend-less
rc-edge results in (b) a reduction by two half-bends. (c) Similarly,
a vertical cut through a bent rc-edge also results in (d) a reduction
by two half-bends. (d) However, the optimal may require four half-
bends reduction.

vertical segments. There exist two options for such a cut. The first one
starts in the outer face and continues up to the face below (vc, v′

c), then to
the face above and from there again to the outer face. The second one again
starts in the outer face and continues up to the face above (vc, v′

c), then to
the face below and from there to the outer face (see Figure 4.6b). Our choice
depends on the input slog representation that specifies the ports on each
crossing vertex. The result of such a cut is depicted in Figure 4.6c and has
a new horizontal and a new vertical segment that replaces edge (vc, v′

c). The
first (second, resp.) one is necessary for potential future vertical (horizontal,
resp.) cuts. Similarly, we cope with cc-edges with bends by applying the
same technique only to the first and last segments of the edge.

The resulting slog drawing has two additional half-bends for each rc-
edge (the spoon gadget adds three half-bends; one is required) and four
additional half-bends for each cc-edge (none is required), with respect to
the half-bends suggested by the input representation. With similar cuts as
the ones described above, we can save two half-bends for each rc-edge, by
eliminating the diagonal segment of the spoon gadget (Step 5 of Algorithm 1).
Our approach is illustrated in Figures 4.7a and 4.7b. Observe that in this
case the cut simply requires the removal of the diagonal segment that is to
be eliminated and not the whole edge. The result is optimal for bend-less rc-
edges (see Figure 4.7b). However, for rc-edges with bends (see Figure 4.7c),

4.3 Heuristic 63

vc vc

v′cv′c

(a) Reduction by 2 half-
bends

vc vc

v′cv′c

(b) Reduction by 2 half-
bends

vc vc

v′cv′c

(c) Reduction by 4 half-
bends

Figure 4.8: Saving bends on cc-edges by a local operation.

our approach guarantees two half-bends reduction (see Figure 4.7d), while in
the optimal case four half-bends could be removed (see Figure 4.7e). Observe
that the rectilinear segments of the edge are not affected, in order to be able
to apply future cuts.

As already stated, each cc-edge admits four additional half-bends (none is
required). It is always possible to remove two of them (Step 6 of Algorithm 1)
by applying a local modification as depicted in Figure 4.8. If for example the
horizontal part of such an edge is longer than the vertical one, a shortcut like
the one in the left part of Figure 4.8a can be applied. Note that this operation
does not require any cuts. If the horizontal and the vertical segments of the
cc-edge have the same length, then all four half-bends can be saved; see
Figure 4.8c.

Once the operations we described above are applied, the drawing will
contain zero additional half-bends on rr-edges and bend-less rc-edges and
at most two additional half-bends on each cc-edge and each rc-edge with
bends, with respect to the input representation. Note that in order to apply
our technique we need to scale up the initial drawing by a factor of five at
the beginning of our algorithm, to provide enough space for additional half-
bends. In subsequent steps, the cuts increase the drawing area. However,
since each cut implies a constant factor increment to the drawing area and
each edge yields at most one cut, the total drawing area asymptotically
remains quadratic. The following theorem summarizes our approach.

64 Chapter 4 The Slanted Orthogonal Drawing Model

Theorem 4.3.1. Given a slog representation of a planarized graph G of
maximum degree 4, we can efficiently compute a slog drawing requiring O(n2)
area with (i) optimal number of half-bends on rr- and bend-less rc-edges and
(ii) at most two additional half-bends on cc edges and rc-edges with bends.

Note that the scaling of the drawing by a factor of five in Step 2 of
Algorithm 1 does not asymptotically affect the drawing area; in practice,
however, it has negative effects. This motivated us to heuristically further
compact the drawing at the cost of some extra bends (as a post-processing;
Step 7 of Algorithm 1). First, we enrich all diagonal segments that are of a
certain length by a new horizontal and a new vertical segment, so that the
remaining diagonal segment is of unit length. To ensure planarity, we apply
a rectangular decomposition similar to the one of Tamassia [110] and then we
contract along horizontal and vertical cuts. Finally, we remove unnecessary
half-bends similarly to Step 6 of Algorithm 1 (see also Figure 4.8).

4.4 Computing a Slog Representation Using
ILP

One way to compute a bend-optimal slog representation is the modified
flow network presented in Section 4.2.1. We will now present an alternative
that is inspired by the LP formulation for the Kandinsky model of Eiglsperger
et al. [43].

For the ILP we require integer variables le and re for all edges e ∈ E,
that will hold the number of left (le) and right (re) half-bends on edge e and
have values ∈ {0, . . . , ∞}. Furthermore we need variables a(u,v) for each edge
that will hold the angle that edge (u, v) forms at vertex u with its cyclic
predecessor on u. We count the angle at vertices in 90◦ steps, which means
that a(u,v) = 1 stands for a 90◦ angle at u, a(u,v) = 2 stands for a 180◦ angle
and so on. Clearly a ∈ {1, . . . , 4}. Finally we need integer variables ze for all
edges e ∈ E, that model the parity of the number of half-bends on an edge.
We restrict the values of the z variables to be greater or equal to zero. In
Linear Program 1 an overview of the lp is given.

4.5 Realizing the Representation 65

min ∑
e∈E le + re

s.t. ∑
(v,u)∈E(v) a(v,u) = 4 ∀v ∈ V (1)∑
(u,v)∈f (2a(u,v) − r(u,v) + l(u,v)) = 4k − 8 f is inner face

4k + 8 f is outer face
∀f ∈ F (2)

r(u,v) = l(v,u) ∀(u, v) ∈ E (3)

r(u,v) + l(u,v) − 2z(u,v) = 0 (u, v) is rr- or cc-edge
1 (u, v) is rc-edge

∀(u, v) ∈ E (4)

Linear Program 1: The ILP to compute bend-optimal slog representa-
tions

With the minimization of the sum of half-bends on all edges in the ob-
jective function of Linear Program 1 we make sure that the representation
we get from the lp has the optimal number of half-bends. Constraint 1 of
Linear Program 1 ensures that the sum of angles around a vertex is 360◦.
With constraint 2 of Linear Program 1 we force the sum of all angles in a
face f to equal 180◦ · (p(f) − 2), where p(f) is the number of angles in f

(see also Section 2.4). The coefficients of this constraint stem from the fact
that a half-bend adds a 45◦ angle, but the angles at vertices are measured
in 90◦ steps. For consistency the next constraint 3 forces that the number of
half-bends to the left on an edge equals the number of half-bends to the right
on the reverse edge. Finally constraint 4 models the parity of the number
of half-bends on edges. It ensures that on rr- and cc-edges there is an even
number of half-bends and on rc-edges an odd number.

4.5 Realizing the Representation

In this section, we develop a linear program which, given an optimal slog
representation S of a plane graph G, computes an actual drawing Γ(G),
which is optimal with respect to the total number of bends; if one exists.
Before we proceed with the description of our linear program, we mention

66 Chapter 4 The Slanted Orthogonal Drawing Model

that despite the fact that every experiment we made on random and crafted
graphs led to a feasible solution, we could not prove the feasibility of the
linear program. However, we strongly believe that there always exists a slog
drawing realizing the given representation.

4.5.1 The Core of the Linear Program

Initially, we appropriately augment graph G and obtain a new graph
that is a subdivision of G and has at most one half-bend on each edge. More
precisely, let (u, v) be an edge of G with more than two half-bends (as defined
by the slog representation S). Let ⟨b1, b2, . . . , bk⟩, k ≥ 2, be the half-bends of
edge (u, v) and assume without loss of generality that b1, b2, . . . , bk appear in
this order along the edge (u, v), when traversing (u, v) from vertex u towards
vertex v. We first consider the case where vertex u is a real vertex. In this
case, we add a new crossing vertex w in G and then we replace the edge
(u, v) of G with the edges (u, w) and (w, v). The first half-bend b1 of the
edge (u, v) is assigned to the edge (u, w), while the remaining half-bends
⟨b2, . . . , bk⟩ of the edge (u, v) are assigned to the edge (w, v). The case where
vertex u is a crossing vertex is treated analogously, with the only exception
that in this particular case vertex w would have been a real vertex. If we
apply the procedure that we just described on each edge of G with more
than two half-bends (as long as there exist such edges), then we will obtain
an augmented graph, say Gaug, that is clearly a subdivision of G and has at
most one half-bend on each edge, as desired. Furthermore, neither the type
of each new vertex nor its ports are arbitrarily chosen, as they depend on
the types of its incident segments given by the input representation S (either
orthogonal or diagonal). This implies a new slog representation, say Saug,
for Gaug.

Now observe that each face f of G has a corresponding face f ′ in Gaug

such that: (i) the vertices of Gaug incident to face f ′ are the same as
the ones incident to face f of G, plus the ones from the subdivision; and
(ii) the sequence of slopes assigned to the segments bounding f ′ is the same
as the ones of the segments bounding f in G. Hence, a drawing Γ(Gaug)
of Gaug realizing the slog representation Saug is also a drawing Γ(G) of G

4.5 Realizing the Representation 67

(a) rr-edges

u v

yu = yv
xv − xu ≥ 1

u
v

xv − xu ≥ yu − yv + 1
yu ≥ yv + 1

u

v
xu = xv

yv − yu ≥ 1
yu − yv = xv − xu

yu − yv ≥ 1

u

v

yv − yu = xv − xu

yv − yu ≥ 1

u

v

(b) cc-edges

(c) rc-edges

u
v

xv − xu ≥ yv − yu + 1
yv ≥ yu + 1

u
v

xu − xv ≥ yv − yu + 1
yv ≥ yu + 1

u
v

xu − xv ≥ yu − yv + 1
yu ≥ yv + 1

yv − yu ≥ xv − xu + 1
xv ≥ xu + 1

yv − yu ≥ xu − xv + 1
yv ≥ yu + 1

yu − yv ≥ xu − xv + 1
xu ≥ xv + 1

yu − yv ≥ xv − xu + 1
xv ≥ xu + 1

u

v

u

v

v

u

v

u

Figure 4.9: The list of constraints used by the linear program for (a) rr-edges,
(b) cc-edges and (c) rc-edges, assuming that the y-axis points down-
wards.

realizing the slog representation S, where subdivided edges are routed as
their corresponding paths in Gaug.

We are now ready to describe our linear program, which computes a
drawing Γ(Gaug) of Gaug realizing the slog representation Saug. For each
vertex u of Gaug, we introduce a pair of variables xu and yu that corresponds
to the coordinates of vertex u on the plane. Then, for each edge (u, v) of
Gaug, we define a pair of constraints, depending on the type of vertices u and
v (i.e., real or crossing vertices). The detailed list of constraints is given in
Figure 4.9.

In order to obtain “compact” drawings, we indirectly minimize the area by
minimizing the total edge length. In particular, this is our objective function.
Note that the slopes of the segments allow us to express the Euclidean length
of each edge as a linear function. As an example, the length of the edge
depicted in the first cell of Figure 4.9c is defined as (

√
2−1)·(yu−yv)+xv−xu.

68 Chapter 4 The Slanted Orthogonal Drawing Model

4.5.2 Addressing Planarity Issues

The linear program, as described so far, models the shape of the edges
(and subsequently the shape of the faces) and the relative positions between
pairs of adjacent vertices. Since there are no constraints among non-adjacent
vertices, it is highly possible that the resulting drawing is non-planar. We
provide an example in Figure 4.10a, where the relative positions between ver-
tices (i) vr and vc, and, (ii) vr and v′

c are not defined by the liner program,
yielding to a (potential) crossing situation. To cope with this problem, un-
fortunately, we cannot follow an approach similar to the one that Tamassia
suggests in his original algorithm (i.e., he “splits” all non-rectangular faces
into rectangular ones), since in our case a face is not necessarily rectilinear.

In order to describe our approach to ensure that each face is drawn planar,
we first introduce some necessary terminology. We distinguish two types of
corners of a face in a slog representation; vertex-corners (or simply vertices)
and bend-corners (or simply bends). With respect to a face, a corner is either
convex, if the inner angle is ≤ 135◦, or non-convex otherwise. We ignore ver-
tices and bends on corners that form 180◦ angles, since by construction they
are always aligned with their neighbors. Hence, there are four possible types
of corners in total: convex vertex-corner, convex bend-corner, non-convex
vertex-corner and non-convex bend-corner. The configuration of a corner
describes the shape of the corner by the pair of orientations of its two inci-
dent segments in the order they are visited by a counterclockwise traversal of
the corresponding face. Possible orientations are horizontal (h), vertical (v),
diagonal-up (du), and diagonal-down (dd). For example, the configuration
of the bend-corner incident to segments s′ and s′′ of Figure 4.11a is given
by dd-h. The type of a configuration describes the corresponding corner in a
more general way by just distinguishing between orthogonal (o) or diagonal
(d) orientations. In the example of Figure 4.11a, the configuration of the
bend-corner incident to segments s′ and s′′ is of type d-o. We next define the
notions of a split-edge (Definition 4) and an almost-convex face (Definition 5),
that are both central in our approach.

4.5 Realizing the Representation 69

v′c

vc
vr

(a) A non-
planar face

(b) Split-edge (ver-
tex)

(c) Split-edge
(vertex) with
half-bend

(d) Split-edge
(bend)

Figure 4.10: In all figures, real (crossing, resp.) vertices are drawn as squares
(disks, resp.); split-edges are drawn dashed.

Definition 4 (split-edge). For a given face f , a split-edge is an edge that:

• is bend-less and connects a non-convex vertex-corner v with a new ver-
tex that we introduce by subdividing a side parallel to one of the edges
incident to v (see Figure 4.10b).

• or, has a half-bend and connects a non-convex vertex-corner v with a
new vertex that we introduce by subdividing a diagonal side of f (see
Figure 4.10c).

• or, is a bend-less edge that connects two new vertices that we introduce
by subdividing two parallel edges, when one of them is incident to a
non-convex bend-corner (see Figure 4.10d).

Definition 5 (almost-convex). A face is almost-convex if it does not contain
any non-convex vertex-corners and no split-edge exists that separates the face
into two non-convex faces.

First, we make all faces almost-convex (by further augmenting our graph).
Later, we will show that the linear program will always compute a planar
drawing if all faces are almost-convex.

A non-convex vertex-corner is eliminated by introducing a new split-edge
(corresponding to new constraints in the linear program) as shown in Fig-
ure 4.10b. When there is no parallel side to one of the segments incident
to the vertex-corner, we introduce a split-edge with a half-bend, as illus-
trated in Figure 4.10c. It is important to note that the elimination of a

70 Chapter 4 The Slanted Orthogonal Drawing Model

non-convex vertex-corner does not introduce new ones. Hence, all of them
can be eliminated sequentially by appropriately adopting one of the two ap-
proaches described above.

In order to eliminate a non-convex bend-corner of a face that is not
almost-convex, we search for a split-edge (again corresponding to new con-
straints in the linear program) that yields two non-convex faces. Such a
split-edge is illustrated in Figure 4.10d. We will appropriately introduce
such split-edges until all faces are almost-convex (without introducing non-
convex vertex-corners). To prove that it is always feasible to make all faces
almost-convex, we give the following lemma.

Lemma 4.5.1. Let s′ and s′′ be two segments of a face f incident to a non-
convex bend-corner. Face f contains a segment s /∈ {s′, s′′} that is parallel
to either s′ or s′′.

Proof. For a proof by contradiction, we assume that there is no segment of
face f parallel to s′ and s′′. Without loss of generality, we further assume that
s′ is a horizontal segment and s′′ is a diagonal segment of positive slope; see
Figure 4.11a. The cases, where s′ is a vertical segment and/or s′′ is a diagonal
segment of negative slope, are analogous (see Figures 4.11b, 4.11c, and 4.11d).
Let ps′ and ps′′ be the end-points of segments s′ and s′′, respectively, which
are not identified with the non-convex bend-corner incident to both s′ and s′′.
Since f is a face, there exists a polygonal chain of segments of f connecting
ps′ and ps′′ . In our drawing model, such a chain consists of horizontal, vertical
and diagonal segments. Now observe that a horizontal or a positively-sloped
diagonal segment of the chain connecting ps′ and ps′′ is parallel to s′ or s′′,
respectively, which contradicts our initial assumption that there is no segment
of face f parallel to s′ and s′′. Hence, the polygonal chain connecting ps′ and
ps′′ consists of vertical and negatively-sloped diagonal segments, which is a
contradiction since ps′ and ps′′ cannot be connected by such a chain, without
forming an angle of 45◦ at a corner of f (a situation that is not allowed by
our drawing model).

From Lemma 4.5.1, it follows that, for a non-convex bend-corner of a face
f , there is a split-edge emanating from one of its incident segments towards
a parallel segment of face f . If f is not almost-convex (and contains no

4.5 Realizing the Representation 71

ps′
ps′′

s′
s′′

f

(a)

ps′

ps′′s′
s′′

f

(b)

ps′

ps′′

s′

s′′

f

(c)

ps′

ps′′

s′ s′′

f

(d)

c1

f

c2

c3

(e)

Figure 4.11: (a)-(d) Different configurations used in the proof of Lemma 4.5.1.
(e) Configuration used in the proof of Lemma 4.5.2.

convex vertex-corners) and this edge is carefully selected such that it yields
exactly two non-convex “subfaces”, say f ′ and f ′′, of face f , then it is not
difficult to see that both f ′ and f ′′ have fewer non-convex bend-corners than
f . In addition, no convex vertex-corners are introduced. This implies that
if one recursively applies this procedure to f ′ and/or f ′′ (if either of these
is not almost-convex), f will eventually be split into a particular number of
“subfaces” that are all almost-convex. In addition, it is not difficult to see
that all additional edges, that are required to make all faces almost-convex
can be expressed by using the original set of constraints of our linear program.
So, it now remains to prove that almost-convex faces are drawn planar. To
do so, we give the following lemmas.

Lemma 4.5.2. An almost-convex face f has at most two consecutive non-
convex bend-corners.

Proof. Assume to the contrary that f has three consecutive non-convex bend-
corners, say c1, c2 and c3; see Figure 4.11e. Assume that c1, c2 and c3 appear
in this order in the counterclockwise traversal of face f . By Lemma 4.5.1,
there exists a segment of f that is parallel to one of the segments incident to
c2. This implies that there exists a split-edge that partitions f into two non-
convex faces; one containing c1 and one containing c3, which is a contradiction
since f is almost-convex.

Lemma 4.5.3. An almost-convex face has at most two non-convex bend-
corners.

72 Chapter 4 The Slanted Orthogonal Drawing Model

c1

f

c2

s1c1

s2c1

s1c2

s2c2

(a)

c1

f

c2

s1c1

s2c1

s1c2

s2c2

(b)

c1

f

c2

s1c1

s

s2c2

s1c3
c3

s2c3

(c)

c1

f

c2

s1c1

s

s2c2

s1c3
c3

s2c3

(d)

c1

f

c2s1c1

s2c1 s1c2

s2c2

c3

s1c3
s2c3

(e)

Figure 4.12: Different configurations used in the proof of Lemma 4.5.3.

Proof. In the proof we use the notion of a configuration. More precisely, we
assume to the contrary that an almost-convex face f contains at least three
non-convex bend-corners c1, c2 and c3 and distinguish four cases. In our case
analysis, we denote by s1

ci
and s2

ci
the segments incident to corner ci and

assume that s1
ci

precedes s2
ci

in the clockwise traversal of face f , i = 1, 2, 3.

Case 1: Two of these non-convex bend-corners have the same configuration;
see Figure 4.12a or 4.12b for an illustration. By Lemma 4.5.1, there
exists a parallel segment to either s1

c1 or s2
c1 , and thereby to either s1

c2

or s2
c2 . In both cases, one of the split-edges separates c1 from c2, so that

the resulting faces are both non-convex. Hence, f is not almost-convex;
a contradiction. So, in the following cases we assume that c1, c2 and c3

are of different configurations.

Case 2: Corners c1 and c2 are consecutive corners of f and the first segment
of c3 is parallel to the second segment of c2; see Figure 4.12c for an
illustration. We denote by s the segment that is incident to both c1

and c2 (i.e., s = s2
c1 = s1

c2). From the previous case it follows that c1

and c3 are of different configurations. In order to close the face there
has to be a segment that is parallel to either s or s2

c2 that is not s1
c3 ,

thereby allowing a split-edge that separates either c1 from c2 and c3,
or, c1 and c2 from c3. The resulting faces are both non-convex. Hence,
f is not almost-convex; a contradiction.

Case 3: Corners c1 and c2 are consecutive and the second segment of c3 is
parallel to the second segment of c2; see Figure 4.12d for an illustration.

4.5 Realizing the Representation 73

Again, we denote by s the segment that is incident to both c1 and
c2 (i.e., s = s2

c1 = s1
c2) and assume that c1 and c3 are of opposite

configurations. In this case there is a split-edge between segments s2
c2

and s2
c3 thereby separating c1 and c2 from c3 and resulting in two non-

convex faces. Hence, f is not almost-convex; a contradiction.

Case 4: Corners c1, c2 and c3 are pairwise non-consecutive; see Figure 4.12e
for an illustration. Since there are only two types of diagonals, at least
two non-convex corners, say c1 and c3, are of the same type. Since
they are forced to have opposite configurations (d-o or o-d) a split-edge
between those two parallel diagonals would separate the two respective
corners, resulting in two non-convex faces. Hence, f is not almost-
convex; a contradiction.

The proof is completed by the observation that one of these four cases will
always apply to every almost-convex face with more than two non-convex
bend-corners.

Lemma 4.5.4. An almost-convex face is always drawn planar.

Proof. Let f be an almost-convex face. By Lemma 4.5.3, face f has at most
two non-convex bend corners.

We claim that in the case where f has exactly one non-convex bend-
corner, f is drawn planar. In fact, since completely convex faces are drawn
planar by construction, we know that, if there is exactly one non-convex
bend-corner c and f is not drawn planar, then one of the two segments s1

c and
s2

c incident to c must be involved in a crossing. All the other vertex- and bend-
corners of f are convex or collinear by construction. Let s be the segment
that crosses s1

c or s2
c . Since s is only adjacent to convex corners or 180◦

corners, it is not possible to close f without violating the port assignments
as given by the representation. So, our claim holds.

Consider now the more interesting case where face f has exactly two non-
convex bend-corners, say c1 and c2. We denote by s1

ci
and s2

ci
the segments

incident to corner ci and assume that s1
ci

precedes s2
ci

in the clockwise traversal
of face f , i = 1, 2. We distinguish the following cases:

74 Chapter 4 The Slanted Orthogonal Drawing Model

f

c2

c1
s

s1c1

s2c2

(a)

f

c2

c1
s

s1c1

s2c2

(b)

f

c2

c1
s1c1

s2c2

s1c2

s2c1

(c)

f

c2
c1
s1c1

s2c2

s1c2
s2c1

(d)

f

c2
c1
s1c1

s2c2

s1c2

s2c1

(e)

Figure 4.13: Different configurations used in the proof of Lemma 4.5.4.

Case 1: Corners c1 and c2 are consecutive; see Figure 4.13a for an illustra-
tion. In this case, there is a segment, say s, that is incident to both c1

and c2 (i.e., s = s2
c1 = s1

c2). If there is a segment of f parallel to s, then
there exists a split-edge separating f into two non-convex subfaces; one
containing c1 and one containing c2 (see Figure 4.13a). Hence, f is not
almost-convex. It follows that there is no segment of f that is parallel
to s. By Lemma 4.5.1, there exist parallel segments to the other two
segments that are incident to c1 and c2 (see Figure 4.13b). However,
since f is almost-convex, a “split-edge” connecting the respective par-
allel segments would result in at least one convex face. We can move
these “split-edges” arbitrary close to c1 and c2, so that they separate f

into three convex regions. Since convex regions are drawn convex and
hence planar by definition, no crossing can occur.

Case 2: Corners c1 and c2 have the same configuration and orientation; see
Figure 4.13c for an illustration. This particular case is identical to
Case 1 of Lemma 4.5.3 and therefore cannot occur.

Case 3: Corners c1 and c2 have opposite configuration (meaning that they
are made of the same orthogonal and diagonal part but in different
orders) and orientation; see Figure 4.13d for an illustration. Since the
number of crossings that occur has to be even (otherwise ports would
be violated), and the only way to have two crossings requires that one of
the convex regions is drawn non-convex, this situation cannot introduce
any crossings.

4.6 Area Bounds 75

Case 4: Corners c1 and c2 have the same configuration but opposite orienta-
tions; see Figure 4.13e for an illustration. In this case, it is not difficult
to see that there exists a split-edge between the two orthogonal or the
two diagonal segments incident to c1 and c2, separating them into two
non-convex subfaces, so f cannot be almost-convex.

The proof is completed by the observation that one of these four cases will
always apply to an almost-convex face with exactly two non-convex bend-
corners.

4.6 Area Bounds
Slog drawings have aesthetic appeal and seem to improve the readability

of non-planar graphs, when compared to traditional orthogonal drawings.
However, in this section we show that such drawings may require increased
drawing area. Note that most of the known orthogonal drawing algorithms
require O(n) × O(n) area. The situation is different if one insists on slog
drawings of optimal number of bends. As the following theorem asserts, the
area penalty can be exponential.

Theorem 4.6.1. There exists a graph G whose slanted orthogonal drawing
Γ(G) of minimum number of bends requires exponential area, assuming that
a planarized version σ(G) of graph G is given.

Proof. The planarized version σ(G) of G is given in Figure 4.14a and consists
of n+1 layers L0, L1, . . . , Ln. Layer L0 is the square grid graph on 9 vertices.
Each layer Li, i = 1, 2, . . . , n, is a cycle on 20 vertices with 4 internal chords.
Consecutive layers Li−1 and Li, i = 1, 2, . . . , n, are connected by 8 edges
which together with the chords of layer Li define 12 crossings. Hence, G

consists of 20n + 9 vertices and 32n + 12 edges that define 12n crossings.
A slog drawing Γ(G) of G with minimum number of bends derived from

σ(G) ideally introduces (a) no bends on crossing-free edges of σ(G), and,
(b) two half-bends in total for each rc-edge. Now observe that at each layer
there exist four vertices, that have two ports pointing to the next layer (gray-
colored in Figure 4.14a). This together with requirements (a) and (b) sug-

76 Chapter 4 The Slanted Orthogonal Drawing Model

L0

L1 Ln−1 Ln

(a)

Li−1

Li

(b)

Figure 4.14: (a) A planarized version σ(G) of a graph G. (b) Edges involved in
crossings in σ(G) contribute two half-bends.

gests that the vertices of each layer Li should reside along the edges of a rect-
angle, say Ri, such that the vertices of Li whose ports point to the next layer
coincide with the corners of Ri, i = 0, 1, 2, . . . , n (with the only exception
of the “innermost” vertex of L0; in Figure 4.14b, Ri is identified with cycle
Li). Hence, the routing of the edges that connect consecutive layers should
be done as illustrated in Figure 4.14b. Since L0 is always drawable in a 3 × 3
box meeting all requirements mentioned above, and, σ(G) is highly symmet-
ric, we can assume that each Ri is a square of side length wi, i = 0, 1, 2, . . . , n.
Then, it is not difficult to see that w0 = 3 and wi+1 = 2wi +8, i = 1, 2, . . . , n.
This implies that the area of Γ(G) is exponential in the number of layers of
G and therefore exponential in the number of vertices of G (recall that G

has n + 1 layers and 20n + 9 vertices).

4.7 Experimental Evaluation

In this section, we present an experimental evaluation of the slog model.
We compare classic orthogonal drawings obtained with the implementa-
tion of the original Tamassia algorithm [110] provided by the yFiles library

4.7 Experimental Evaluation 77

0

0,05

0,1

0,15

0,2

0,25

0

20

40

60

80

100

120

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

d
en

si
ty

n
u

m
b

e
r

o
f

gr
ap

h
s

number of vertices

number of graphs

density

Figure 4.15: Number of instances and density of the test set.

(http://www.yworks.com) with bend-optimal slog drawings and drawings
computed by the heuristic presented in Section 4.3. As a test set, we used
the Rome graphs (obtained from http://www.graphdrawing.org) which are
approximately 11.500 graphs. We filtered them for connected graphs with
maximal degree 4, which left 1.122 graphs. Of this 1.122 graphs, 1.039 were
planar and 83 non-planar. The average density over all graphs was 0, 14;
recall that the density of a graph is defined as the ratio of the number of
its edges to the maximum possible number of edges. The number of vertices
ranged from 10 to 56. Figure 4.15 gives a more detailed description of the test
set: the number of instances and their average density are plotted against
the number of vertices of the test set.

We ran our experiments on a Linux machine with four cores at 2, 5 GHz
and 3 GB of RAM. All implementations were done in Java using the yFiles
library. For solving the linear programs, we used the Gurobi solver [64].

To obtain an input for our algorithms, we computed an embedding with
the Combinatorial Embedder from the yFiles library, which guarantees a pla-
nar embedding for planar instances. In all following plots, the curve denoted
by orthogonal stands for results for the orthogonal drawings, while the curves

78 Chapter 4 The Slanted Orthogonal Drawing Model

0

50

100

150

200

250

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

cp
u

-t
im

e
[m

s]

number of vertices

slog

heuristic

orthogonal

Figure 4.16: Cpu-time against number of vertices.

denoted by slog and heuristic correspond to the results for bend-optimal and
heuristic slog-drawings. To obtain the actual numbers, the results for all
graphs with the same number of vertices were averaged.

All results we present in this section were computed in less than 200
ms each, as depicted in the cpu-time chart in Figure 4.16. Apparently, the
heuristic requires the most computation time. We observed that this is due
to its last step, where the drawing is heuristically compacted. It seems that
the computation of the cuts, which are required in order to reduce the area,
is relatively time-consuming.

Of course, the graphs of our test set are rather small and not very dense.
However, even for hand-crafted dense graphs with more than 400 vertices,
the optimal slog drawings could be computed in less than 2 seconds, which
suggests that our LP-formulation can be useful for practical applications.
Note that these hand-crafted graphs are not included in the experimental
evaluation of this section; we simply used them in order to verify that the
LP can still be solved within reasonable time even for large and dense input
graphs.

In Figure 4.17, the required area is plotted against the number of vertices.

4.7 Experimental Evaluation 79

0

100

200

300

400

500

600

700

800

900

1000

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

ar
ea

number of vertices

slog

heuristic

orthogonal

Figure 4.17: Area against number of vertices.

As expected, the area of the slog drawings is larger than the corresponding
one of the orthogonal drawings. On the other hand, the bend-optimal slog
drawings and the ones computed by the heuristic presented in Section 4.3
are of comparable area, indicating that the minimization of the total edge
length as an objective function seems to be very effective. Recall that the
orthogonal drawing which is used as an input in the heuristic is scaled up
by a factor of five (which yields a factor of 25 in the total area). So, one
would expect that the drawings computed by the heuristic would (in practice)
require significantly more area than the corresponding orthogonal ones, which
apparently is not evident in Figure 4.17. This is due to the last step of the
heuristic, where the drawing area is reduced.

As stated in Section 4.2.2, the number of half-bends in the bend-optimal
slog drawings is at least twice the number of bends in the bend-optimal
orthogonal drawings. So, in Figure 4.18 we plotted twice the number of or-
thogonal bends against the number of half-bends produced by our algorithms.
As expected, the orthogonal drawings require the least amount of bends. We
measured that on average the bend-optimal slog drawings required 2.84 times
more half-bends than the orthogonal drawings, while the drawings computed
by the heuristic required 1.18 times more half-bends than the bend-optimal

80 Chapter 4 The Slanted Orthogonal Drawing Model

0

5

10

15

20

25

30

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

n
u

m
b

er
 o

f
(h

al
f-

)b
e

n
d

s

number of vertices

slog

heuristic

orthogonal

Figure 4.18: Number of bends against number of vertices.

slog drawings. In actual numbers, the bend-optimal slog drawings require (on
average) 5 more half-bends, while the drawings computed by the heuristic
require 8 more half-bends than the corresponding orthogonal drawings.

Figure 4.19 shows the total edge length in relation to the number of
vertices. In our experiments, we found that the plots of the total edge length
are comparable to the plots of the area (Figure 4.17). This is exactly as
expected, since the larger the area is the larger the total edge length is
expected to be. When comparing the ratio of the longest to the shortest
edge, again the orthogonal algorithm produced the smallest results, as can
be seen in Figure 4.20. This is because the orthogonal drawings were the
most compact ones. For the bend-optimal slog drawings, this ratio went
up to 37 in our experiments, while the heuristic had a better ratio between
the longest and the shortest edge. Note that the high ratios observed in
the bend-optimal slog drawings are caused by the long diagonal segments
required in the slanted model.

4.7 Experimental Evaluation 81

0

50

100

150

200

250

300

350

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

to
ta

l e
d

ge
 le

n
gt

h

number of vertices

slog

heuristic

orthogonal

Figure 4.19: Total edge length against number of vertices.

0

5

10

15

20

25

30

35

40

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

ra
ti

o
 lo

n
ge

st
:s

h
o

rt
es

t
ed

ge

number of vertices

slog

heuristic

orthogonal

Figure 4.20: Ratio of longest to shortest edge against number of vertices.

82 Chapter 4 The Slanted Orthogonal Drawing Model

4.8 Sample Drawings
In this section we present several sample drawings of graphs in the or-

thogonal and slog model.

Figure 4.21: An orthogonal drawing of minimum number of bends for the graph
of Figure 4.14 establishing the exponential area bound for slog draw-
ings.

Figure 4.22: The bend-optimal slog drawing corresponding to the one of Fig-
ure 4.21.

4.8 Sample Drawings 83

Figure 4.23: The close-to-optimal slog drawing corresponding (to the one of Fig-
ure 4.21) produced by our heuristic algorithm of Section 4.3 without
Step 7 of Algorithm 1.

Figure 4.24: The close-to-optimal slog drawing corresponding (to the one of Fig-
ure 4.21) produced by our heuristic algorithm of Section 4.3 with
Step 7 of Algorithm 1.

84 Chapter 4 The Slanted Orthogonal Drawing Model

Figure 4.25: A highly symmetric non-planar orthogonal drawing.

Figure 4.26: The bend-optimal slog drawing corresponding to the one of Fig-
ure 4.25.

4.8 Sample Drawings 85

Figure 4.27: A non-planar orthogonal drawing

Figure 4.28: The bend-optimal slog drawing corresponding to the one of Fig-
ure 4.27.

86 Chapter 4 The Slanted Orthogonal Drawing Model

4.9 Summary
In this chapter we introduced a new drawing model for graphs with max-

imum vertex degree four that we call slanted orthogonal or slog for short. In
the slog model crossings are only allowed between diagonal segments and the
minimal angle between consecutive edge-segments has to be 135◦, resulting
in a shape we called half-bend. We showed that the number of half-bends of a
bend-optimal slog representation is at least twice the number of bends of the
corresponding bend-optimal orthogonal representation. We gave a network
flow formulation to compute a bend-optimal slog representation and showed
how to realize it using linear programming. Unfortunately, bend-optimal
slog drawings can require exponential area. That is why we also developed a
heuristic that computes a slog drawing with at most two times the number
of half-bends of the optimal drawing but requires only polynomial area. In
an experimental evaluation we found that slog drawings can be computed ef-
ficiently and require slightly more bends and area than orthogonal drawings.
The advantages of the slog model however are that it becomes much easier
to identify crossings and to follow the edges, which in our opinion outweighs
the additional area and bends.

Our results have been published in [5] and [4].
The important open question in the slog model is: does every graph with

maximal vertex degree four admit a slog drawing? Our experiments lead us
to believe that it is true, but so far we could not prove it.

5 The Sloggy Orthogonal
Drawing Model

5.1 Introduction

We will now extend the slog model from Chapter 4, that allowed crossings
only between two diagonal segments, to a more flexible one we call sloggy,
that allows crossings to occur also between two orthogonal segments.

While one of the advantages of the slog model was the improved visibility
of crossings, this was often paid for with an increased number of half-bends.
That is why the new model uses the minimal number of half-bends, but at
the same time maximizes the number of crossings on diagonal segments (for
an example see Figure 5.1c).

Recall from Chapter 1 that in an orthogonal drawing of a graph every
vertex occupies a point on the integer grid and edges are drawn as a combi-
nation of horizontal and vertical segments. In the slog model, as introduced
in Chapter 4, vertices still are drawn on an integer grid, but edges are drawn
as a combination of horizontal vertical and diagonal segments. Additionally,
crossings are only allowed between two diagonal segments and the minimum
angle formed by any two consecutive segments of an edge at the common

88 Chapter 5 The Sloggy Orthogonal Drawing Model

point has to be 135◦.
For graphs G with maximum degree four we showed in Section 4.2.2, that

any planar orthogonal drawing Γo(G) can be transformed into a planar slog
drawing Γs(G) by appropriately replacing each bend of 90◦ of Γo(G) by two
“half-bends” of 135◦ in Γs(G); see Figures 4.2a and 4.2b. Hence, twice the
number of orthogonal bends of Γo(G) equals to the number of half-bends
of Γs(G). However, if G is not a planar graph, then the number of half-
bends of a bend-optimal slog drawing Γs(G) is at least twice the number
of orthogonal bends of a bend-optimal orthogonal drawing Γo(G), as stated
in Theorem 4.2.2. In fact, slog drawings often require significantly more
half-bends than twice the number of bends of the corresponding orthogonal
drawing, as we found in the experimental evaluation in Section 4.7 (refer to
the plot in Figure 4.18 and, for an example, see Figure 5.1).

(a) (b) (c)

Figure 5.1: Different bend optimal drawings, in which the crossings are illus-
trated as disks: (a) Orthogonal drawing with two bends. (b) Slanted
drawing with twelve half-bends. (c) Sloggy drawing with four half-
bends.

In order to reduce the total number of half-bends (that negatively influ-
ence the quality of the produced drawings), we propose a mixed approach,
according to which a crossing may involve either two rectilinear or two di-
agonal segments. We balance our preference for crossings that appear at
the intersection of two diagonal segments with the need to keep the num-
ber of half-bends low, by seeking for drawings that have the following two
properties:

Pr-1: The drawings are optimal in terms of the total number of half-bends

5.2 Properties of Sloggy Drawings 89

Pr-2: The drawings simultaneously maximize the number of crossings on
diagonals

We refer to such drawings as optimal sloggy drawings or simply as sloggy
drawings; see Figure 5.1c. We call crossings between two orthogonal segments
orthogonal crossings and crossings between two diagonal segments diagonal
crossings.

Figure 5.1 shows the usefulness of the new model and what we might
expect from it. More precisely, Figure 5.1a shows a bend-optimal orthogonal
drawing containing two bends. A bend-optimal slanted-orthogonal drawing
of the same graph is depicted in Figure 5.1b. Observe that the slanted-
orthogonal drawing requires 12 half-bends, while the orthogonal one requires
only two bends. If the same graph is drawn in the sloggy model as in Fig-
ure 5.1c, then it requires only four half-bends (that is, twice the number
of orthogonal bends of the bend-optimal orthogonal drawing). However, the
number of crossings that appear along two diagonal segments is reduced from
five to one.

Following standard practices from the graph drawing literature, in the fol-
lowing we will assume that the input of our problem is a planar representation
of a graph of maximum degree 4 (or planarized graph, for short), which can
be computed by the planarization step of the topology-shape-metrics (TSM)
approach [110]. By definition of sloggy drawings, it follows that all non-
dummy vertices must use rectilinear ports in the produced drawings, while a
c-vertex can either use rectilinear or diagonal ports. For consistency, we re-
fer to edges connecting real (crossing) vertices as rr-edges (cc-edges). Edges
between r- and c-vertices are referred to as rc-edges.

We will first investigate the properties of sloggy drawings in Section 5.2
before giving an ILP formulation to compute optimal sloggy drawings in
Section 5.3.

5.2 Properties of Sloggy Drawings

In this section, we will prove that the number of half-bends of a sloggy
drawing Γsℓ(G) of a planarized graph G with maximum degree 4, say hb(Γsℓ(G)),

90 Chapter 5 The Sloggy Orthogonal Drawing Model

is exactly twice the number of bends of a bend-minimal orthogonal drawing
Γopt

o (G) of G, say b(Γopt
o (G)), i.e., hb(Γsℓ(G)) = 2b(Γopt

o (G)). For ease of
notation let Γi

j(G) = Γi
j. To prove the claim, we omit property Pr-2 of

sloggy drawings, as it does not influence the total number of half-bends. In
particular, we will first prove that there is a sloggy drawing of G that con-
tains exactly 2b(Γopt

o) half-bends. Then, we will prove that there is no sloggy
drawing containing less than 2b(Γopt

o) half-bends.

5.2.1 The Number of Half-bends of Sloggy Drawings

Lemma 5.2.1. For a planarized graph G of maximum degree 4, there is
a sloggy drawing Γsℓ(G) with 2b(Γopt

o) half-bends, where b(Γopt
o) denotes the

number of bends of a bend-minimal orthogonal drawing Γopt
o (G) of G.

Proof. We employ Tamassia’s algorithm [110] to compute a bend-optimal
orthogonal drawing Γopt

o of G with b(Γopt
o) bends in total. Then, we can

transform Γopt
o into a sloggy drawing Γsℓ containing exactly 2b(Γopt

o) half-
bends, by adopting the approach of Section 4 that appropriately replaces
each bend of Γopt

o by a pair of half-bends in Γsℓ (see Figures 4.2a and 4.2b).
Note that Γsℓ does not maximize the number of crossings on diagonals, as
property Pr-2 suggests. In particular, Γsℓ does not contain any crossings on
diagonals. However, its existence is enough to show that there is a drawing
with the desired amount of half-bends.

In order to prove that there is no sloggy drawing containing less than
2b(Γo) half-bends, we will neglect the exact geometry of the drawing under-
neath and focus on its representation that simply captures the “shape” of the
drawing. Recall that an orthogonal representation [110] specifies for each ver-
tex of the graph the angles that are formed between its incident edges, and,
for each edge of the graph the number of bends that it contains. A sloggy
representation additionally specifies for each c-vertex whether its incident
edges use rectilinear or diagonal ports. So, let Rsℓ(G) (Ro(G)) be a bend-
minimal sloggy (orthogonal) representation of G with hb(Rsℓ(G)) half-bends
(b(Ro(G)) bends). For ease of notation let Ri

j(G) = Ri
j. It is known that

b(Ro) = b(Γopt
o) [110]. On the other hand, it holds that hb(Rsℓ) ≤ hb(Γsℓ).

So, it is enough to prove that hb(Rsℓ) ≥ 2b(Ro).

5.2 Properties of Sloggy Drawings 91

Lemma 5.2.2. For a planarized graph G of maximum degree 4 the num-
ber of half-bends hb(Rsℓ) of a bend-optimal sloggy representation Rsℓ(G) is
not less than twice the number of bends b(Ro) of a bend-minimal orthogonal
representation Ro(G) of G, i.e. hb(Rsℓ) ≥ 2b(Ro).

Proof. This proof is analogous to the one of Theorem 4.2.2 and also a proof
by contradiction. Assume there exists a bend-optimal sloggy representation
Rsℓ with hb(Rsℓ) half-bends and a bend-optimal orthogonal representation Ro

with b(Ro) bends and hb(Rsℓ) < 2b(Ro). We will show how to construct an
orthogonal representation R′

o from Rsℓ with b(R′
o) < b(Ro), thus constructing

the contradiction.
We use the same notion of rotating a vertex as in the proof of Theo-

rem 4.2.2, which is illustrated in Figure 4.5. By rotating a vertex by 45◦ to
the left or right we cyclically shift all ports accordingly, which transforms
crossing vertices with diagonal ports into real vertices with orthogonal ports.
We again consider rc-edges always in the direction from the crossing to the
real vertex. Recall that, if there is exactly one half-bend to the left from a
crossings vertex vc to a real vertex vr and vc is rotated by 45◦ to the left, the
result will be zero bends on this rc-edge (see Figure 4.5b).

Note that, in the slog model there always is an odd number of half-bends
on rc-edges. In the sloggy model however, there is an odd number of half-
bends on rc-edges that connect diagonal crossings with real vertices, while
the rc-edges connecting orthogonal crossings with real vertices have an even
number of half-bends. By construction, rr- and cc-edges always have an even
number of half-bends. Let Eeven be the set of all edges with an even number
of half-bends, and Eodd = E \ Eeven.

We can now describe how to construct R′
o:

We replace all pairs of half-bends on edges in Eeven by one bend (as in
Figures 4.2a and 4.2b). This means that the total number of half-bends on
all edges in Eeven in Rsℓ is exactly twice the number of bends on the respective
edges in R′

o.
For the edges in Eodd we replace each pair of half-bends except the

half-bend closest to the diagonal crossing vertex by a bend. Now let C =
{C1, . . . , Cl} be the set of maximal connected components consisting only of
crossing vertices using diagonal ports and the cc-edges between them. By

92 Chapter 5 The Sloggy Orthogonal Drawing Model

maximality Ci ∩ Cj = ∅ for i ̸= j. Also, l > 0, since otherwise R′
o would

already be an orthogonal representation with b(R′
o) < b(Ro), a contradiction.

Let lhb(Ci) be the number of half-bends to the left and rhb(Ci) the num-
ber of half-bends to the right on the edges connected to the crossing-vertices
in Ci. Note that, by construction, each of the edges connected to the Ci has
exactly one half-bend left, all other half-bends that this edges may have had
have already been replaced by orthogonal bends.

If for all i = 1, . . . , l rhb(Ci) = lhb(Ci), we rotate all vertices in the
components without loss of generality to the left, and obtain an orthogonal
representation R′

o by removing all left half-bends and replacing the right
half-bends by a bend. For the so obtained R′

o it holds that hb(Rsℓ) = 2b(R′
o)

which is a contradiction to the assumption of minimality of Ro.
This means there has to be at least one j with rhb(Cj) ̸= lhb(Ck). We

first assume that lhb(Cj) > rhb(Cj). By rotating Cj to the left we get an
orthogonal representation with even less bends than twice the number of
half-bends in Rsℓ. The same holds if lhb(Cj) < rhb(Cj) and we rotate Cj to
the right.

With this method we can construct an orthogonal representation R′
o, such

that 2b(R′
o) ≤ hb(Rsℓ) < 2b(Ro), which is a contradiction to the assumption

that Ro is optimal.

We are now ready to state the main theorem of this section.

Theorem 5.2.3. For a planarized graph G of maximum degree 4, the num-
ber of half-bends hb(Γsℓ(G)) of a sloggy drawing Γsℓ(G) is exactly twice the
number of bends b(Γo(G)) of a bend-minimal orthogonal drawing Γo(G) of G,
i.e., hb(Γsℓ) = 2b(Γo).

Proof. Directly follows from Lemma 5.2.1 and Lemma 5.2.2.

5.2.2 The Area Requirements of Sloggy Drawings

We now analyze the area requirements of sloggy drawings. For slanted
orthogonal drawings it is known that there exist infinitely many graphs whose
slanted orthogonal drawing of minimum number of bends require exponential

5.3 Bend-optimal Sloggy Drawings 93

area, assuming that a planarized version of the resulting drawing is given
(Theorem 4.6.1). Unfortunately sloggy drawings have the same property:

Theorem 5.2.4. There exists a graph G whose sloggy drawing Γs(G) of
minimum number of half-bends requires exponential area, assuming that a
planarized version σ(G) of G is given.

Proof. Analogous to the slanted-orthogonal case the sloggy drawing of the
graphs constructed according to the rules from Section 4.6 require exponen-
tial area, since in the sloggy drawing all crossings can be drawn diagonal
which results in a slanted-orthogonal drawing.

5.3 Bend-optimal Sloggy Drawings

In this section we will present two ways to compute bend-optimal sloggy
representations. The first method employs cycle systems which transform
orthogonal into sloggy representations (Section 5.3.1). Since it is not clear
how to efficiently compute the cycle system which gives the bend-optimal
sloggy representation, we then present an ILP formulation which can give
the optimal solution (Section 5.3.2). To realize the representations we use
the algorithm to draw slog representations from Section 4.5.

5.3.1 Cycle Systems

Consider a directed cycle C in the dual G∗ of G which contains in its
interior only c-vertices of the primal graph G; see the dotted cycle in Fig-
ure 5.2a. Initially, say that C is simple (i.e., an edge of G is crossed at
most once by the edges of C). If in the sloggy representation Rs(G) we
rotate all c-vertices in the interior of C by 45◦ in the direction implied by
the orientation of C, then we obtain a new sloggy representation in which
some edges, say L1(C) ⊆ E, of G that are crossed by C save one half-
bend, while some others, say L2(C) ⊆ E, admit an extra half-bend; see
Figure 5.2b. We say that C is a zero cycle, if |L1(C)| = |L2(C)|; cycle C

is called positive (negative, resp.), if |L1(C)| < |L2(C)| (|L1(C)| > |L2(C)|,
resp.). A set of simple cycles C1, . . . , Ck is called zero simple cycle-system,

94 Chapter 5 The Sloggy Orthogonal Drawing Model

(a) (b)

Figure 5.2: (a) A simple (zero) cycle in the dual graph. (b) The result of its
application

if ∑k
i=1 |L1(Ci)| = | ∑k

i=1 |L2(Ci)|. Similarly, we define the positive and neg-
ative simple cycle-systems. Non-simple cycles in the aforementioned notions
are treated as systems of simple cycles, as they are always decomposable
into a particular number of simple cycles. There can also be r-vertices in
the interior of some cycles, as long as their rotation in the rotation scheme
implied by the cycle-system is a multiple of 90◦.

Obviously, there can be no negative cycles or cycle-systems in bend-
minimal sloggy representations. In a 4-regular plane graph one can con-
vert any orthogonal or sloggy representation to another orthogonal or sloggy
representation respectively, just by employing appropriate cycles or cycle-
systems to rotate the vertices. The sufficiency of this operation is guaranteed
by the facts that there are no unoccupied ports at the vertices and that the
embedding is fixed.

If the planarized graph contains vertices of degree two or three, it might be
necessary to change some of the angles that are formed by the edges incident
to degree two or three vertices. This cannot be realized by the cycle-systems
that we have developed so far. However, Figure 5.3 illustrates a modification
of our cycle-system, which supports cycles that also pass through vertices
and are able to change the angles as well.

By employing appropriate zero cycles or zero cycle-systems consisting of
cycles of one of the two types that we presented in this section, one can trans-

5.3 Bend-optimal Sloggy Drawings 95

v

(a)

v

(b)

Figure 5.3: (a) A (zero) cycle in the “dual” graph. (b) The result of its applica-
tion on vertex v is a new port assignment at v.

form a bend-optimal sloggy representation as the one implied by the bend-
optimal drawing of Lemma 5.2.1 (which contains no crossings on diagonals)
into a bend-optimal one containing the maximum number of crossings along
diagonals (as property Pr-2 of sloggy drawings requires). Unfortunately, it
is not clear and we do not know yet how to efficiently compute the required
cycle-system that realizes this transformation. We strongly believe that this
problem is an NP-hard problem, but we have not managed to prove it. For
this reason, we give an ILP formulation for this problem in the next section.

5.3.2 An ILP to compute Sloggy Drawings

Since in sloggy drawings the number of half-bends has to be equal to two
times the number of orthogonal bends in a bend-optimal orthogonal drawing,
we compute in a first step a bend-optimal orthogonal representation Ro(G)
of the (planarized) input graph with the algorithm of Tamassia ([110]). From
Ro(G) we compute an initial port-assignment for all vertices. We use an ILP
to compute which crossings will be drawn diagonal and which crossings stay
orthogonal. An overview of the complete linear program is given in Linear
Program 2, we will explain the single constraints in detail.

We start with some notation: Let G = (V, E) be the planarized graph we
want to draw in the sloggy model. We denote the set of all crossing vertices
by C. By o(e = (u, v)) we denote the number of bends to the right on edge e

96 Chapter 5 The Sloggy Orthogonal Drawing Model

from vertex u to vertex v in Ro(G). Bends to the left are denoted by negative
values.

In the ILP we introduce an integer variable h for all edges e ∈ E that will
hold the number of right half-bends on the respective edges (again negative
values mean left half-bends). Additionally we need integer variables h+ for all
e ∈ E that will count the number of half-bends on edge e. Constraints 5 and 6
then give lower bounds to the h+ variables. The upper bound is implicitly
contained in the objective function, when the number of half-bends has to be
equal to two times the number of bends in Ro(G) and the number of diagonal
crossings is maximized.

max wd · (∑
v∈C bi(v)| i is odd) − wf · (∑

e∈E f(e))
s.t. h+(e) ≥ h(e) ∀e ∈ E (5)

h+(e) ≥ −h(e) ∀e ∈ E (6)∑
i∈{−7...7} bi(v) = 1 ∀v ∈ C (7)

h+(e)−1
2 ≤ f(e) ≤ h+(e)

2 ∀e ∈ E (8)∑
e∈E h+(e) = 2 · ∑

e∈E o(e) (9)

h(e) = 2 · o(e)
−b1(v1) − 2 · b2(v1) − . . . − 7 · b7(v1)
+b−1(v1) + . . . + 7 · b−7(v1)
+b1(v2) + . . . + 7 · b7(v2)
−b−1(v2) − . . . − 7 · b−7(v2)
−8 · c(v1) + 8 · c(v2) ∀e ∈ E (10)

Linear Program 2: ILP to compute bend-optimal sloggy representations

Furthermore we need binary variables bi, i ∈ −7, . . . , 7 for each vertex
v ∈ C that determine if the respective (crossing) vertex is rotated counter-
clockwise (negative indices) or clockwise (positive indices). The assignment
b1(v) = 1 then means that the ports on v are rotated clockwise by 45◦,
b2(v) = 1 means they are rotated by 2 · 45◦ and so on. Since each vertex has
to be rotated by exactly one value (with b0 = 1 signaling no rotation), we
require the sum of the bi to be equal to one (Constraint 7).

We also need integer variables c(v) for all vertices v ∈ C that hold the
number of 360◦ rotations (positive values meaning clockwise and negative

5.3 Bend-optimal Sloggy Drawings 97

values counterclockwise) that have to be applied to a vertex. To count the
number of full bends (2 half-bends ≡ 1 full bend) on an edge we introduce
variables f(e) for all edges, for which we assign the correct values with Con-
straint 8.

With Constraint 9 we make sure that the sloggy solution has the correct
number of half-bends.

Since we start from a bend-optimal orthogonal representation the angles
between adjacent edges on a vertex are fixed. If a vertex has degree less than 4
we may require this angles to change in order to compute an optimal solution.
This is modeled in the following way. For all edges e that are incident to
a vertex v with degree less than 4 we introduce variables p(v, e) that are
integer variables for degree 2 and binary variables for degree 3 vertices. If
p(v, e) has a value greater than zero in the solution it means, that the port
of e is rotated clockwise by p(v, e) · 90◦ around v. Degree 1 vertices require
no such variables since there is only one edge.

The set of constraints required to model the shifting of the ports around
a degree two or three vertex is given in Constraint Set 1. Constraint 1 is
added for each degree three vertex v, with e1, e2 and e3 being its three inci-
dent edges. For each pair of edges e and e′ consecutive in the clockwise order
around v the Constraint 2 of the set is added.
For each degree two vertex v with incident edges e1 and e2 we add the Con-
straint 3. For each pair of consecutive edges e and e′ on v we add one of the
Constraints 4-6, depending on the angle α formed between e and e′ on v.

1p(v, e1) + p(v, e2) + p(v, e3) ≤ 2
2p(v, e) ≥ p(v, e′)
3p(v, e1) + p(v, e2) ≤ 1
4α = 90◦ : p(v, e) ≤ p(v, e′)
5α = 180◦ : p(v, e), p(v, e′) ≤ 1
6α = 270◦ : p(v, e′) ≤ p(v, e)

Constraint Set 1: Constraints for degree two and three vertices.

The key constraints of the ILP are the ones assigning the correct value
to the h variables. We have to distinguish between edges connecting a real

98 Chapter 5 The Sloggy Orthogonal Drawing Model

vertex and a crossing vertex and edges connecting two crossing vertices. We
describe in Constraint 10 exemplary the constraints for an edge e = (v1, v2)
connecting two crossing vertices since it is the most complicated one. For
the rc-edges some of the rotations are forbidden (the real vertex must only
be rotated in 90◦ steps), and the constraint has to be modified accordingly.

With the constraints according to Constraint 10 the variables h get as-
signed the right value by “counting” the number of half-bends as follows:
If neither v1 nor v2 are rotated (d0(v1) = do(v2) = 1) then the number of
half-bends on e is twice the number of bends in Ro(G). If for example v1 is
rotated clockwise (b1(v1) = 1), this adds a left half-bend to e and therefore
we subtract b1(v1) from h(e). Since left half-bends cancel out right half-bends
and vice versa, we can determine the number of half-bends on e by summing
up the bi- and c-variables with appropriate coefficients.

Should a vertex v of e be of degree two or three, the equation for h(e)
has to be extended by ±2 · p(v, e) to account for the half-bends caused by
shifting e around v.

We also want to allow the ILP to rotate the ports on real vertices. Here
there are only three possible rotation values in each direction and each step
results in a difference of two half-bends. The constraints and variables are
chosen analogously to the crossing vertex case.

In the objective function for our ILP we use the strength of linear pro-
gramming that enables us to optimize with respect to several objectives at
the same time. In our experiments we realized that it not only makes sense
to maximize the number of diagonal crossings but also to strive for a drawing
where the half-bends are distributed over the edges of the graph as evenly as
possible. This can be achieved by minimizing the number of full bends (a full
bend consists of two consecutive half-bends on an edge) of the whole draw-
ing. To be able to weigh this two optimization criteria against each other we
introduce appropriate weights wd for the number of diagonal crossings and
wf for the number of full bends and include them in the objective function
as in Linear Program 2.

By adjusting the weights for diagonal crossings and full bends it is possible
to determine which part of the optimization is more important. By allowing
more bends per edge with a lower weight on the full bends more diagonal

5.4 Sample Drawings 99

crossings become possible, which makes it easier to distinguish them from
real vertices. Penalizing many bends per edge by increasing wf on the other
hand may lead to less diagonal crossings but edges of simpler shape, making
it easier to follow them.

The solution of this ILP determines which crossings can be drawn di-
agonally and which crossings have to stay orthogonal. By construction the
number of half-bends that the solution will use is two times the number of
bends in the bend-optimal orthogonal drawing. To compute the actual draw-
ing from the representation we get based on the result from the ILP we use
the algorithm to compute slanted-orthogonal drawings from Section 4.5 and
treat orthogonal crossings like normal vertices.

5.4 Sample Drawings
We implemented the approach from the previous section and used the

gurobi solver [64] to solve the ILP for the sloggy representation. We found
that even for large input graphs (> 600 vertices, > 1000 edges) we were able
to compute sloggy drawings in less than 10 seconds on a standard desktop
machine, which suggests that our algorithm is usable for practical applica-
tions.

In the following, we give some examples for drawings produced by our
algorithm. Figure 5.4a shows a bend optimal orthogonal drawing of the
input graph. It requires 16 bends. The sloggy drawings of the same graph
in Figures 5.4b, 5.5a and 5.5b all have 32 half-bends.

In Figure 5.4b we show the result of maximizing the number of diagonal
crossings by assigning a weight of 0 to the full bends. The result has 16
diagonal crossings but many edges that require two half-bends. In Figure
5.5a the number of full bends is minimized by assigning a weight of 0 to
the number of diagonal crossings, which results in a drawing where no edge
has more than one half-bend, but the total number of diagonal crossings is
reduced to 11.

The final Figure 5.5b shows the result if both weights are set to 1. There
is only one edge left that has more than one half-bend while the number of
diagonal crossings is 13.

100 Chapter 5 The Sloggy Orthogonal Drawing Model

The figures from this section show that our algorithm not only produces
aesthetically pleasing drawings, but is quite flexible with respect to the two
optimization criteria presented here, namely the number of diagonal crossings
and the number of the full bends. By adjusting the weights in the objective
function accordingly we can compute drawings adapted to the task at hand.

5.5 Summary
In this chapter we introduced a more flexible variant of the slog model

from the previous chapter, which we call sloggy. The sloggy model has the
same properties as the slog model, but additionally crossings are also allowed
between horizontal and vertical segments. This model is motivated by the
observation that insisting on crossings only on diagonals often leads to a
large number of half-bends. We showed that the number of half-bends of a
bend-optimal sloggy representation is exactly twice the number of bends of
the corresponding bend-optimal orthogonal representation. We gave an ILP
formulation to compute a bend-optimal sloggy representation and showed
how to realize it using the method for slog representations. Analogous to the
slog model, sloggy drawings also may require exponential area.

We published our results on the sloggy model in [3].
There are several open problems for the sloggy model:

• Is there an efficient algorithm to compute an optimal sloggy represen-
tation?

• If no such algorithm exists, what is the complexity to determine the
optimal sloggy representation?

• Given an (optimal) sloggy representation, how can a drawing realizing
this representation efficiently be computed? (This question is also still
open for slanted orthogonal drawings.)

• Can the exponential area requirement be avoided if one does not insist
on the maximum number of diagonal crossings?

• Investigate the effect of different combinations of weight factors in the
objective function of the ILP.

5.5 Summary 101

(a)

(b)

Figure 5.4: (a) Bend optimal orthogonal drawing of a graph. (b) Sloggy drawing
of the same graph with maximum number of diagonal crossings.

102 Chapter 5 The Sloggy Orthogonal Drawing Model

(a)

(b)

Figure 5.5: Sloggy drawings of the graph from Figure 5.4a: (a) with minimum
number of orthogonal bends. (b) with equal weights for diagonal
crossings and full bends.

6 Extending the Kandinsky
Model

6.1 Introduction

In this chapter we will present an extension of the well known Kandinsky
model [54]. Recall from the introduction (Chapter 1) that the Kandinsky
model employs two grids; a coarse one on which the vertices are placed, and
a fine one to route the edges. Vertices are drawn as boxes centered on grid
points on the coarse grid and edges are drawn as a combination of horizontal
and vertical line segments on the fine grid. The distinctive feature of the
Kandinsky model is that an arbitrary number of edges can be connected to
(any side of) a vertex.

A central aspect of the Kandinsky model is, that so called empty faces are
avoided, since they can either not be drawn without overlaps (see Figure 6.1a)
or make it very hard to distinguish between edges (see Figure 6.1b). Because
of their shape they are also called empty L and empty T. In order to avoid
this unwanted shapes usually the so called bend-or-end property is used,
which only allows one unbent edge on each side of a vertex. To achieve this,
Fößmeier et al. [54], for example, required that for each zero degree angle

104 Chapter 6 Extending the Kandinsky Model

(a) (b) (c) (d)

(e) (f)

Figure 6.1: Illustration of empty faces: (a) empty L and (b) empty T; Illustration
of almost-empty faces: (c) almost-empty L and (d) almost-empty T;
Illustration of a (e) Kandinsky drawing and a (f) podevsaef drawing
of the same graph.

between two edges connected to the same vertex, there has to be a bend, the
so called Kandinsky bend.

We now want to use diagonal segments, as introduced in the slog model
in Section 4, to be able to draw empty faces in a way that avoids the prob-
lems occurring in the orthogonal model. By employing diagonal segments,
we are able to draw the previously forbidden shapes in a way that makes the
faces almost empty, as can be seen in Figures 6.1c and 6.1d. To be consis-
tent in the way we draw bends, we also replace all 90◦ bends by two half-
bends, as in the slog model. We refer to this drawings as Kandinsky drawings
with almost empty faces or, for short, podevsaef drawings, which stands for
Planar Orthogonal Drawings with Equal Vertex Size and Almost Empty
Faces. The term podevsaef stems from another term that also refers to
classical Kandinsky drawings: podevsnef drawings, which stands for Planar
Orthogonal Drawings with Equal Vertex Size and No Empty Faces. Fig-
ure 6.1f shows an example drawing in the new model and the advantages
we get by allowing almost-empty faces: since two half-bends are always in
correspondence with one 90◦ bend, the total number of bends is reduced and

6.2 Optimal Drawings with ILP 105

the readability of the drawing increased, as can be seen when comparing with
classical Kandinsky drawings as in Figure 6.1e. For a larger example refer to
Figure 6.13.

If we ask for the bend-optimal podevsaef drawing, a recent result by
Bläsius et al. [20] immediately implies that the problem is NP-complete. This
is why we give an ILP formulation based on the one of Eiglsperger et al. [43],
that is able to compute the optimal solution in Section 6.2. As expected
and verified in our experiments, computing the optimal solution can be time
consuming. In fact, with increasing number of triangular faces (that allow
for empty L- or T-shapes) the ILP approach becomes unusable for practical
applications. This motivated us to also develop an efficient heuristic, which
we present in Section 6.3. The heuristic computes podevsaef drawings by
modifying classical Kandinsky drawings, but it results in drawings that are
not bend-optimal. We experimentally evaluate the approaches and compare
them with classical Kandinsky drawings in Section 6.4.

6.2 Optimal Drawings with ILP

Following the TSM-approach (see Section 2.4.1), we first compute a rep-
resentation, and, in a second step, a drawing realizing it. We will first recall
the ILP formulation for the bend minimization in the Kandinsky model as in-
troduced by Eiglsperger et al. [43] in Section 6.2.1. Then we will show how to
extend this formulation to the new podevsaef model in Section 6.2.2. Finally
we show in Section 6.2.3 how to use an easy transformation on the repre-
sentation to be able to use known compaction algorithms for the Kandinsky
model to compute podevsaef drawings.

6.2.1 Bend-Optimal Kandinsky Representations

For each edge e = (u, v), variable a(u,v) · 90◦ corresponds to the angle
formed by edge e and its cyclic predecessor at vertex u. Clearly, a(u,v) ∈
{0, 1, 2, 3, 4}. Since the sum of the angles around a vertex equals to 360◦, it
follows that for each vertex u ∈ V , ∑

(u,v),v∈N(u) a(u,v) = 4 must hold, where
N(u) denotes the neighbors of u.

106 Chapter 6 Extending the Kandinsky Model

min ∑
(u,v)∈E(l(u,v) + r(u,v))

s.t. 0 ≤ a(u,v) ≤ 4 ∀(u, v) ∈ E (11)∑
(u,v)∈N(u) a(u,v) = 4 ∀u ∈ V (12)∑
(u,v)∈f (a(u,v) + l(u,v) − r(u,v))

=

 2a(f) − 4; f bounded
2a(f) + 4; f unbounded

∀f ∈ F (13)

lbu
(u,v) + rbu

(u,v) ≤ 1 ∀(u, v) ∈ E (14)

lbu
(u,v) = rbu

(v,u) ∀(u, v) ∈ E (15)

lb(u,v) = rb(v,u) ∀(u, v) ∈ E (16)

lbv
(u,v) = rbv

(v,u) ∀(u, v) ∈ E (17)

a(v,u) + lbv
(v,w) + rbv

(v,u) ≥ 1 ∀(v, w), (v, u)
subsequent in N(v) (18)

Linear Program 3: The ILP from Eiglsperger et al. [43] to compute
bend-optimal Kandinsky representations.

In order to count the number of left turns (or simply left-bends) along
each edge e = (u, v), three variables, lbu

(u,v), lbv
(u,v) and lb(u,v), are employed,

which correspond to the left Kandinsky-bend (i.e., the special bend result-
ing from the bend-or-end property) at vertex u, the left Kandinsky-bend at
vertex v and the remaining left-bends of edge (u, v). For the right-bends,
variables rbu

(u,v), rbv
(u,v) and rb(u,v) are defined similarly. Clearly, for reasons

of symmetry lbu
(u,v) = rbu

(v,u), lb(u,v) = rb(v,u) and lbv
(u,v) = rbv

(v,u) must hold.
Note that variables lbu

(u,v), lbv
(u,v), rbu

(u,v) and rbv
(u,v) are binary, while variables

lb(u,v) and rb(u,v) are non-negative integers.

Since only one Kandinsky-bend is allowed at each end of each edge,
lbu

(u,v)+rbu
(u,v) ≤ 1 must hold for each edge (u, v) ∈ E. For ease of notation, we

denote by l(u,v) = lbu
(u,v) +lb(u,v) +lbv

(u,v) and r(u,v) = rbu
(u,v) +rb(u,v) +rbv

(u,v) the
total number of left and right bends per edge, respectively. Since the sum of
the angles formed at the vertices and at the bends of a bounded face f equals
to 180 · (p(f) − 2), where p(f) denotes the number of such angles, it follows
that ∑

(u,v)∈f (a(u,v)+l(u,v)−r(u,v)) = 2a(f)−4, where a(f) denotes the number
of vertex angles in f . If f is unbounded, the sum is increased by 8. Empty

6.2 Optimal Drawings with ILP 107

faces are forbidden by requiring a(v,u) + lbv
(v,w) + rbv

(v,u) ≥ 1, for all pairs of
consecutive edges (v, w) and (v, u) around all vertices v ∈ V . Of course, the
objective function of the corresponding ILP-formulation must minimize the
sum of all (i.e., either left or right) bends, that is min ∑

(u,v)∈E(l(u,v) + r(u,v)).
The complete linear program is given in Linear Program 3.

6.2.2 Bend-Optimal podevsaef Representations

To enable the ILP-formulation of the previous section to use the almost-
empty T and almost-empty L-shapes (see Figure 6.1a and 6.1b, respectively),
we first assume that a bend of a classical Kandinsky drawing always corre-
sponds to a pair of half-bends in our model (therefore, the notions of left and
right-bends are well-defined) and then we replace Constraint 18 of Linear
Program 3 with new ones (refer to Constraint Sets 2 and 3). More precisely,
for each triangular face f , we introduce two binary variables, say Tf and Lf ,
that are set to one if and only if f is drawn using the almost-empty T or
the almost-empty L-shape, respectively. We also employ a large constant M

which we use to “activate” or “deactivate” constraints; a common trick used
in formulating ILPs [24]. We denote the set of edges of a face f by Ef .

If variable Tf of face f is set to one (i.e., f is drawn using the almost-empty
T-shape), then Constraint 1 of Constraint Set 2 ensures that the angles at
all vertices of f are zero. Constraints 2 and 3 force f to have in total two
right-bends on all edges (so, the third edge of face f must be bend-less).
Constraint 4 ensures that no edge has any left-bend and Constraint 5 forces
all edges to have at most one right-bend in total. On the other hand, if Tf is
set to zero, then these constraints are all deactivated using the constant M ,
so that they impose no restriction on the representation.

The constraints for the L-shape are similar. If variable Lf is set to one,
then Constraints 6 and 7 of Constraint Set 3 ensure that there is a 90◦ angle
at exactly one vertex in face f and a 0◦ angle at all other vertices. Constraints
8 and 9 force f to have in total exactly one right-bend and Constraint 10
makes sure that there are no left-bends. Again, setting Lf to zero trivially
fulfills all these constraints and they pose no restriction on the representation.
Note that the constraints for T- and L-shapes exclude each other. So, there

108 Chapter 6 Extending the Kandinsky Model

1
∑

e∈Ef
ae ≤ 0 + (1 − Tf) · M

2
∑

e∈Ef
re ≥ 2 − (1 − Tf) · M

3
∑

e∈Ef
re ≤ 2 + (1 − Tf) · M

4
∑

e∈Ef
le ≤ 0 + (1 − Tf) · M

5∀e ∈ Ef : re ≤ 1 + (1 − Tf) · M

Constraint Set 2: T-shaped face f

6
∑

e∈Ef
ae ≤ 1 + (1 − Lf) · M

7
∑

e∈Ef
ae ≥ 1 − (1 − Lf) · M

8
∑

e∈Ef
re ≤ 1 + (1 − Lf) · M

9
∑

e∈Ef
re ≥ 1 − (1 − Lf) · M

10
∑

e∈Ef
le ≤ 0 + (1 − Lf) · M

Constraint Set 3: L-shaped face f

is no reason to add an extra constraint for this purpose.
Since we intend to allow either the almost-empty T or the almost-empty

L-shape, it follows that it suffices to replace Constraint 18 of Linear Pro-
gram 3 with the following constraint for each triangular face f :

a(u,v) + lbv
(v,w) + rbv

(v,u) + Tf + Lf ≥ 1, ∀(v, w), (v, u) subsequent in N(v)

Using this modified constraint it is also possible to restrict the almost
empty faces to only the L-shape or the T-shape by just adding the respective
variable. So, if for example only L-shapes are to be used, the constraint for
all triangular faces f would be:

a(u,v) + lbv
(v,w) + rbv

(v,u) + Lf ≥ 1, ∀(v, w), (v, u) subsequent in N(v)

Note that, even if the constraints for the Tf variables are still part of
the linear program, in the solution there will be no almost-empty T-shapes,
since without adding the Tf variable to the Constraint 18 the configuration
of the almost empty T-shape does not fulfill the restrictions posed by the
constraint.

6.2 Optimal Drawings with ILP 109

In order to prove that the solution of the modified ILP corresponds to a
valid podevsaef-representation, we first observe that by setting all Tf and Lf

variables to zero all new constraints no longer affect the equation system and
all old constraints stay exactly as in the original formulation of Eiglsperger
et al. [43]. So, the original proof of correctness holds. On the other hand, it
is not difficult to see that if a face is to be drawn either as an almost-empty
T or as an almost-empty L-shape, then Constraint Sets 2 and 3 respectively
ensure that all angles and edge-bends are appropriately computed.

6.2.3 Realizing the Representation

As already stated, in the compaction phase (where the computed repre-
sentation has to be transformed into an actual drawing) we employ a simple
transformation that allows us to use any known algorithm for the compaction
phase of the original Kandinsky model; for an example refer to [54, 55, 44, 21].
The transformation is illustrated in Figure 6.2. More precisely, for an almost-
empty T-shaped face a new auxiliary vertex is required (refer to the gray col-
ored vertex in Figure 6.2a) and the angles follow directly from the T-shape.
For an almost-empty L-shaped face, we simply ignore the bent edge involved
(see Figure 6.2b).

(a) (b)

Figure 6.2: (a) Transformation for T-shapes. (b) Transformation for L-shapes.

Once all almost-empty T-shaped and L-shaped faces are transformed ac-
cording to the rules of Figure 6.2, we proceed to draw the new representation
using one of the known compaction algorithms for the original Kandinsky
model. In the resulting drawing, the applied transformations can be easily
reversed by introducing the missing edges of the L-shaped faces and replac-

110 Chapter 6 Extending the Kandinsky Model

ing the auxiliary vertices of the T-shaped faces with the original edges. Note
that if at least one of the sides of an T or L-shaped face is of unit length, then
the whole drawing must be scaled-up by a factor of two to accommodate the
necessary diagonal segments on the underlying integer-grid. However, this
scale-up does asymptotically not influence the required drawing area.

6.3 Heuristic
In this section, we present a heuristic which, given an orthogonal repre-

sentation of minimum number of bends, computes a podevsaef drawing with
equal or even fewer bends (assuming that a bend of a traditional orthogonal
drawing is always in correspondence with a pair of half-bends of a podevsaef
drawing). This heuristic is motivated by the observation that insisting on
bend-optimal podevsaef drawings may require a lot of time to solve the corre-
sponding linear program for computing the required bend-optimal podevsaef
representation (as we will shortly see in Section 6.4).

The main idea of our approach is to start from a traditional bend-optimal
orthogonal representation and heuristically modify the shape of as many tri-
angular faces as possible, to become T-shaped or L-shaped. To achieve this,
we have identified several shapes that allow an easy transformation into the
new almost-empty shapes; see Figure 6.3. As in the previous section, these
transformations do not require a drawing, but they are directly applicable
on a given (not necessarily bend-optimal) orthogonal representation.

Once all triangular faces have been transformed according to these rules,
one can either proceed with the compaction phase to obtain the final drawing
(as described in the previous section) or heuristically try to further improve
the number of bends by adding another orthogonalization step, hoping that
the transformed graph allows a drawing with even less bends. For the second
orthogonalization step the transformations of Figure 6.2 need to be applied
to the graph first, and it has to be made sure that the affected edges are not
bent. This can be achieved by inflicting appropriate penalties on bends on
this edges. Since we start from a valid representation, the maximal number
of half-bends required is known, so this can be used as cost for bends on
fixed edges, thereby guaranteeing that they will not get bends in the second

6.3 Heuristic 111

(a) (b) (c) (d) (e) (f)

Figure 6.3: (a),(b) Shapes that can be transformed into an L. (c)-(f) Shapes that
can be transformed into a T.

orthogonalization step. Additionally, the angles formed at the edges involved
in almost-empty L-shapes or T-shapes also have to be fixed by imposing ap-
propriate restrictions in the orthogonalization phase. Theoretically this step
could be repeated as long as the number of bends is improved. However, in
our experiments we found that more than one repetition did not improve the
number of half-bends any further. Our result is summarized in the following
theorem.

Theorem 6.3.1. Given a Kandinsky drawing Γ(G) with b bends, the heuristic
computes a podevsaef drawing Γ′(G) with b′ half-bends with b′ ≤ 2b.

Figure 6.13 shows an example of a graph drawn in the classical Kandinsky
model and a bend-optimal podevsaef drawing as well as a drawing produced
by the heuristic of this section of the same graph.

6.3.1 Optimizing the Input for the Heuristic

As already mentioned, one bend of a Kandinsky drawing is in corre-
spondence with two half-bends of a podevsaef drawing. We denote by b(e)
the number of orthogonal bends on an edge e in the input Kandinsky rep-
resentation, and by hb(e) the number of half-bends of e in the podevsaef
representation computed by the heuristic. By applying the transformations
according to Figures 6.3a, 6.3c, or 6.3d, it holds for the transformed edges

112 Chapter 6 Extending the Kandinsky Model

that 2b(e) = hb(e). However, if one of the transformations according to Fig-
ures 6.3b, 6.3e or 6.3f is applied, for some edges b(e) = hb(e) holds. This is
true for edges with exactly one left bend and one right bend in the Kandinsky
representation. We say that such an edge has an S-shape.

In the original Kandinsky the S-shape is rarely used; in fact it only occurs
in the presence of Kandinsky bends. Since the overall number of half-bends
in a podevsaef representation decreases as the number of S-shaped edges
in the input Kandinsky representation increases, we now show a way to
modify ILP 3 such that it can be used to compute a bend-optimal Kandinsky
representation with maximum number of S-shaped edges.

We define for each edge e five new variables. Variables l0
e and l1

e are set
to one if and only if e has zero (l0

e = 1) or exactly one (l1
e = 1) left bend.

Variables r0
e and r1

e are defined for right bends accordingly. Additionally,
variable se is set to one if and only if in the representation e has an S-shape,
which is the case when e has exactly one left bend and one right bend. All
new variables are binary variables. Recall that we abbreviate the sum of
the left bends as lbe + lbu

e + lbv
e = le and the sum of the right bends as

rbe + rbu
e + rbv

e = re.

1l0
e ≥ 1 − le

2(1 − l0
e) · M ≥ le

3r0
e ≥ 1 − re

4(1 − r0
e) · M ≥ re

5l1
e ≤ le

6(1 − l1
e) · M ≥ le − 1

7le − 1 ≥ 1 − l1
e − 2l0

e

8r1
e ≤ re

9(1 − r1
e) · M ≥ re − 1

10re − 1 ≥ 1 − r1
e − 2r0

e

11l1
e + r1

e ≤ 1 + se

12se ≤ l1
e

13se ≤ r1
e

Constraint Set 4: Constraints for the recognition of S-shapes.

6.3 Heuristic 113

0

2000

4000

6000

8000

10000

12000

11 22 31 41 51 61 72 84 96 110 123 133 147

ar
ea

number of vertices

without optimization

with optimization

Figure 6.4: Area against number of vertices for the two variants of the heuristic.

The constraints in Constraint Set 4 then model the correct assignment of
values to the newly introduced variables. Constraints 1 and 3 ensure that l0

e

and r0
e are assigned value 1 when there are no bends on e. With Constraints 2

and 4 we make sure that, if there are bends on e, l0
e and r0

e are set to zero.
If e has no bends then Constraints 5 and 8 make sure that l1

e and r1
e are set

to zero, and if there is more than one bend on e this is taken care of with
Constraints 6 and 9. To force variables l1

e and r1
e to be one in the case that

there is exactly one bend on e, we add Constraints 7 and 10. As before, we
use a sufficiently large constant M to “deactivate” constraints when they are
not needed.

Now that the binary variables for zero bends and exactly one bend have
the right value, we can model the assignment for the binary variables that
indicate whether an edge has a S-shape in the representation. With Con-
straint 11 we make sure that se is set to one if e has exactly one left bend
and one right bend. Constraints 12 and 13 make sure that se has value zero
in any other case.

In order to maximize the number of edges that are drawn with an S-shape
we modify the objective function as follows:

min wb

∑
e∈E

(re + le) − ws

∑
e∈E

se

We weight the two parts of the objective function to make sure that the
solution stays bend-optimal by setting the weight of a single bend to wb = |E|

114 Chapter 6 Extending the Kandinsky Model

0

100

200

300

400

500

600

700

11 22 31 41 51 61 72 84 96 110 123 133 147

n
u

m
b

er
zo

fz
h

al
f-

b
en

d
s

numberzofzvertices

withoutzoptimization

withzoptimization

Figure 6.5: Half-bends against number of vertices for the two variants of the
heuristic.

and the weight of an S-shape to ws = 1.
To validate that this changes actually improve the results of the heuris-

tic, we implemented both variants and evaluated the number of half-bends,
the area requirement and the running time for a test-set consisting of 940
randomly created triangulations. All computations were done on a standard
Linux machine with 4 cores at 2.5 GHz and 3 GB RAM. In the following
plots the curve denoted by “with optimization” depicts the results for the
heuristic where the number of S-shapes has been maximized, while the curve
denoted by “without optimization” depicts the results for the heuristic when
applied to the representation obtained by the original ILP of Eiglsperger
et al. [43]. All implementations were done in Java using the yFiles library
(http://www.yworks.com) and the gurobi solver [64], to solve the ILPs.

Figure 6.4 shows that by maximizing the number of S-shaped edges the
area requirements of the resulting drawings can be reduced. This effect is
caused by the second improvement we could observe: The number of half-
bends in the drawings decreases by approximately 10%, if the number of
S-shaped edges is maximized, as Figure 6.5 suggests. This confirms the
usefulness of this extension. Of course this positive effects can most clearly
be observed in graphs with many triangular faces, since only there we can
save half-bends by using the almost-empty shapes of the podevsaef model.

However, this improvements are payed for with an increased running time,

http://www.yworks.com

6.4 Experimental Evaluation 115

0

1000

2000

3000

4000

5000

6000

7000

8000

11 22 31 41 51 61 72 84 96 110 123 133 147

cp
u

-t
im

ea
[m

s]

numberaofavertices

withoutaoptimization

withaoptimization

Figure 6.6: Cpu-time against number of vertices for the two variants of the
heuristic.

as can be seen in the curves in Figure 6.6. But since the overall running
time does not exceed 8 seconds even for the largest instances, we feel that
the reduction in the number of bends and the area justifies the increased
computation time.

6.4 Experimental Evaluation
In this section, we present an experimental evaluation of the podevsaef

drawing model. We compared bend-optimal Kandinsky drawings obtained by
implementing the original ILP of Eiglsperger [41] with bend-optimal pode-
vsaef drawings and drawings computed by the heuristic presented in Sec-
tion 6.3 with the modification that maximizes the S-shaped edges according
to Section 6.3.1. All implementations were done in Java using the yFiles
library (http://www.yworks.com) and the gurobi solver [64], to solve the
different ILPs. The experiment was performed on a standard Linux machine
with 4 cores at 2.5 GHz and 3 GB RAM.

As a test set, we used the Rome graphs (a collection of 11531 graphs with
average density1 of 0.07 obtained from http://www.graphdrawing.org), the

1Recall that the density of a graph is defined as the ratio of the number of its edges
to the maximum possible number of edges in a simple graph with the same number of
vertices.

http://www.yworks.com
http://www.graphdrawing.org

116 Chapter 6 Extending the Kandinsky Model

0

500

1000

1500

2000

2500

3000

3500

10 16 22 28 34 40 46 52 58 67 74 80 87 93

ar
ea

number of vertices

Kandinsky

podevsaef

heuristic

Figure 6.7: Area against number of vertices for the test set of the planar North
graphs.

North graphs (a collection of 1275 graphs with average density of 0.13 also
obtained from http://www.graphdrawing.org) and 940 randomly created
(planar) triangulations with average density 0.11. Of course, we filtered both
the Rome and the North graphs for planar graphs, which left 3279 Rome
graphs and 854 North graphs.

From our experiment, we quickly realized that the time required to solve
the ILP to compute a bend-optimal podevsaef representation increases rapidly
with the number of triangular faces of the graph. So, we set a time-limit of
300 seconds in our experiment. If the solver was not able to find any (close-to-
optimal) solution within this time-limit, then the instance counted as failed
and was excluded from the experiment (in total we found two such faulty
instances, both stemmed from the randomly created triangulations test set).

To obtain an input for our algorithms, we applied the combinatorial em-
bedder of the yFiles graph library, which guarantees that if the input graph
is planar, then the computed combinatorial embedding will be planar as well.
In all following plots, the curve denoted by Kandinsky stands for results for
orthogonal drawings, while the curves denoted by podevsaef and heuristic
correspond to the results for bend-optimal and heuristically-computed pode-
vsaef drawings, respectively. The values for a specific number of vertices were

http://www.graphdrawing.org

6.4 Experimental Evaluation 117

0

20

40

60

80

100

120

140

160

10 16 22 28 34 40 46 52 58 67 74 80 87 93

n
u

m
b

er
Ko

fK
(h

al
f-

)b
en

d
s

numberKofKvertices

Kandinsky

podevsaef

heuristic

Figure 6.8: Number of (half-)bends against number of vertices for the test set of
the planar North graphs.

obtained by averaging over all instances with the same number of vertices.
In Figure 6.7, the required area is plotted against the number of vertices

(for the test set of the planar North graphs). It seems that the podevsaef
drawings (both the bend-optimal ones and the ones created by the heuristic
of Section 6.3) require comparable and sometimes even less area than the
classical Kandinsky drawings for this test set. The results for the other test
sets are similar; see Figures 6.9 and 6.11.

In Figure 6.8, the required number of bends is plotted against the number
of vertices (again for the test set of the planar North graphs). Since a bend
of a traditional orthogonal drawing is always in correspondence with a pair
of half-bends of a podevsaef drawing, in Figure 6.8 we plotted two times the
number of orthogonal bends against the number of half-bends produced by
our algorithms. Clearly, all algorithms need very similar number of bends
for all instances. The same holds for the test set of planar Rome graphs; see
Figure 6.10. As expected, however, for the test set of the randomly created
triangulations, the profit is bigger; see Figure 6.12. The reason is that these
graphs contain only triangular faces, which explains why the podevsaef draw-
ings require less half-bends than twice the number of bends of the classical
Kandinsky drawings. In addition, it is worth mentioning that the computed

118 Chapter 6 Extending the Kandinsky Model

0

200

400

600

800

1000

1200

1400

1600

1800

10 15 20 25 30 35 40 45 50 55 60 66 71

ar
ea

number of vertices

Kandinsky

podevsaef

heuristic

Figure 6.9: Area requirements against number of vertices for the test set of the
planar Rome graphs.

number of half-bends for the test set of randomly created triangulations in
most cases was not the optimal one, as the time-limit was reached.

On the negative side, the time required by the ILP to compute bend-
optimal podevsaef representations increases rapidly with the number of tri-
angular faces of the graph. This behavior was not observed in the test sets
of planar Rome and planar North graphs, which are more or less sparse and
with very few triangular faces. However, in the test set of the triangula-
tions, we observed that only for graphs with at most 20 vertices we could
compute an optimal drawing within the time-limit of 300 seconds. On the
positive side, the solver was almost always able to compute at least a close-
to-optimal solution. On the other hand, both the ILP of Eiglsperger [41] and
the heuristic of Section 6.3 seem to have comparable running times.

6.5 Summary

In this chapter we introduced the podevsaef model, which can be used to
draw planar graphs with arbitrary vertex-degree. By using half-bends we are
able to draw shapes of faces that were forbidden in the classical Kandinsky
model. By allowing these shapes we want to obtain drawings with less bends

6.5 Summary 119

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50 55 60 66 71

n
u

m
b

er
yo

fy
(h

al
f-

)b
en

d
s

numberyofyvertices

Kandinsky

podevsaef

heuristic

Figure 6.10: Number of (half-)bends against number of vertices for the test set
of the planar Rome graphs.

and smaller area. Since the problem of minimizing the total number of
bends in this model turned out to be NP-complete [20], we modeled it as
an ILP. In our experimental evaluation we found that the time required to
solve these ILPs increases rapidly with the number of triangular faces of
the graph. In fact, for triangulations with more than 20 vertices it was not
possible to compute the optimal solution within a time limit of 300 seconds.
To compensate we also developed an efficient heuristic that can be used
to transform a given Kandinsky representation into a representation in the
podevsaef model. The experimental evaluation showed little improvement for
the test-sets of the Rome and the North graphs, but for the triangulations
both, the ILP and the heuristic, where able to compute drawings with smaller
area and less bends than in the classical Kandinsky model.

There are two possible directions for further research:

1. Develop a different approach that will allow for faster computation of
optimal (in terms of the total number of bends) podevsaef drawings,
especially when the input graph is triangulated.

2. A more sophisticated heuristic or a constant-factor approximation al-
gorithm for computing close-to-optimal podevsaef drawings would also
be of interest.

120 Chapter 6 Extending the Kandinsky Model

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11 22 31 41 51 61 72 84 96 110 123 133 147

ar
ea

number of vertices

Kandinsky

podevsaef

heuristic

Figure 6.11: Area requirements against number of vertices for the test set of the
randomly created triangulations.

0

100

200

300

400

500

600

700

11 22 31 41 51 61 72 84 96 110 123 133 147

n
u

m
b

er
Ko

fK
(h

al
f-

)b
en

d
s

numberKofKvertices

Kandinsky

podevsaef

heuristic

Figure 6.12: Number of (half-)bends against number of vertices for the test set
of the randomly created triangulations.

6.5 Summary 121

(a)

(b) (c)

Figure 6.13: A sample planar graph drawn (a) in the classical Kandinsky model
requiring 15 bends, (b) in the podevsaef drawing model with 30
half-bends and (c) with the podevsaef heuristic using 32 half-bends.

7 The Sloginsky Model

7.1 Introduction

In this chapter we extend the podevsaef model from the previous chapter
to non-planar graphs. Recall that the Kandinsky model and the podevsaef
model both allow arbitrary vertex degrees. In both models two grids are
used, a coarse one to place the vertices and a fine one to route the edges.
Vertices are drawn as boxes with non-zero side length and edges are drawn
as a combination of horizontal and vertical line segments (Kandinsky model)
and, additionally, diagonal segments in the podevsaef model.

An important aspect of the slog model is that crossings are only allowed
between two diagonal segments, which increases the readability of the draw-
ings since crossings become much easier to identify. In this section we will
combine the slog model and the podevsaef model into the sloginsky model.
In the new model vertices will be drawn as boxes with size greater zero,
edges will be drawn using horizontal, vertical and diagonal segments and
crossings will only be allowed between two diagonal segments. Additionally,
the minimum angle between two consecutive segments of an edge has to be

124 Chapter 7 The Sloginsky Model

Figure 7.1: Illustration of a sloginsky drawing.

135◦, resulting in half-bends, as in the previous sections. We also require
that vertices are only incident to vertical or horizontal segments. Note that,
for a planar graph a drawing in the sloginsky model is at the same time a
podevsaef drawing. An example sloginsky drawing can be seen in Figure 7.1.
As in the podevsaef model there is an almost empty face, marked with the
gray shade, and, as the sloginsky model requires, the crossing is between two
diagonal segments. For a larger example refer to Figure 7.8b.

As for the slog and the sloggy model, we again will adopt the TSM
approach (see Section 2.4.1) to compute sloginsky drawings. Since we are
mainly interested in non-planar graphs, the first phase of the TSM approach,
the planarization, is required. However, we assume it has already been ap-
plied, a planar embedding has been calculated and crossings have been re-
placed by dummy vertices. We use the same notation as before: we denote
the dummy vertices by crossing or c-vertices and the normal vertices as real
or r-vertices. Also, edges between two real vertices are called rr-edges, be-
tween two crossing vertices we call them cc-edges and between a real and a
crossing vertex we call them rc-edges.

We will first show how to modify the ILP formulation for the podevsaef
model to be able to compute bend-optimal sloginsky representations in Sec-
tion 7.2. Then we will give a method to modify the representation, such that
the linear program used to draw slog representations from Section 4.5 can be
used to compute sloginsky drawings in Section 7.3, if such a drawing exists.
We experimentally evaluate the Sloginsky model in Section 7.4.

7.2 Bend-Optimal Sloginsky Representations 125

7.2 Bend-Optimal Sloginsky Representations

min ∑
(u,v)∈E(l(u,v) + r(u,v))

s.t. 0 ≤ a(u,v) ≤ 4 (u, v) is rr-edge (19)

1 ≤ a(u,v) ≤ 4 (u, v) is rc- or cc-edge
u is a c-vertex (20)∑

(u,v)∈N(u) a(u,v) = 4 ∀u ∈ V (21)∑
(u,v)∈f (a(u,v) + l(u,v) − r(u,v))

=

 4a(f) − 8; f bounded
4a(f) + 8; f unbounded

∀f ∈ F (22)

lbu
(u,v) + rbu

(u,v) ≤ 1 ∀(u, v) ∈ E (23)

lbu
(u,v) = rbu

(v,u) ∀(u, v) ∈ E (24)

lb(u,v) = rb(v,u) ∀(u, v) ∈ E (25)

lbv
(u,v) = rbv

(v,u) ∀(u, v) ∈ E (26)

a(v,u) + lbv
(v,w) + rbv

(v,u) ≥ 1 ∀(v, w), (v, u)
subsequent in N(v) (27)

l(u,v) + r(u,v) − 2z(u,v) = 0 (u, v) is rr- or cc-edge (28)

l(u,v) + r(u,v) − 2z(u,v) = 1 (u, v) is rc-edge (29)

Linear Program 4: The ILP to compute bend-optimal sloginsky repre-
sentations.

The ILP-formulation to compute bend-optimal sloginsky representations
is similar to the one for computing bend-optimal podevsaef representations
of Section 6.2. Linear Program 4 gives the complete ILP to compute bend-
optimal sloginsky representations. The main difference is that the variables
that count the number of left and right bends are evaluated in terms of
half-bends, that is, they correspond to multiples of 45◦; see for example
Constraint 22 of Linear Program 4. Furthermore, there exists an additional
integer variable ze for each edge e to model the parity of the number of
half-bends on edge e. More precisely, this variable in conjunction with Con-
straints 28 and 29 of Linear Program 4 ensures that the number of half-bends
of an rr-edge or an cc-edge is always even (Constraint 28), while the number
of half-bends on an rc-edge is always odd (Constraint 29). This is enough to

126 Chapter 7 The Sloginsky Model

guarantee that r-vertices and c-vertices use orthogonal and diagonal ports,
respectively, which in turn guarantees that the ILP-formulation correctly
computes a bend-optimal sloginsky representation.

7.2.1 Not Realizable Representations

Unfortunately, however, there exist sloginsky representations that are not
realizable in the sloginsky drawing model. One example of such a represen-
tation is given in Figure 7.21 (with the prescribed port, bend and angle
assignment, it is not possible to draw the dashed edge in a legal way). One
way to heuristically cope with this problem is to equip Linear Program 4
with extra variables and constraints to reduce the S-shaped edges, which
are, in part, responsible for the infeasibility of the representation. We will
describe in Section 7.2.2 how this can be done. However, this does not com-
pletely solve the problem. Note that a similar problem arises in the octilinear
graph drawing model; Nöllenburg [94] presents a similar counterexample for
an octilinear representation that can not be realized.

In order to determine whether the computed realization is feasible (and in
the case of an affirmative answer to compute the corresponding bend-optimal
drawing), we employ another LP, that was also used in the compaction phase
in the slog model (see Section 4.5). Of course, we need to modify it appro-
priately in order to cope with vertices with more than one edge attached to
the same side (and subsequently, with vertices of degree greater than four).
We will describe the necessary modifications in Section 7.3.

7.2.2 Reduction of S-shapes

To reduce the number of S-shapes in the representation computed by the
ILP, we use the same set of variables and constraints as in the podevsaef
model to determine whether an edge has an S-shape (see Section 6.3.1). The
only difference to the S-shaped edges in the podevsaef model is that in the
sloginsky model an edge that has an S-shape has a left and a right half-bend,
while in the podevsaef model there was a left and a right bend. Nevertheless

1We thank Thomas Bläsius and Ignaz Rutter who, in a personal correspondence, pro-
posed the counterexample

7.2 Bend-Optimal Sloginsky Representations 127

Figure 7.2: A bend-optimal representation, which is not realizable in the slogin-
sky drawing model.

the variables and constraints are exactly the same for the sloginsky model,
so we will not repeat them here.

In order to minimize the number of edges that are drawn with an S-shape
we use the following objective function:

min wb

∑
e∈E

(re + le) + ws

∑
e∈E

se

We weigh the two parts of the objective function to make sure that the
solution stays bend-optimal by setting the weight of a single half-bend to
wb = |E| and the weight of an S-shape to ws = 1.

The reduction of the S-shapes is only a heuristic step that does not guar-
antee that each representation can be realized. In fact we found that there
are examples that can not be realized in any case, with the S-shape reduction
and without it. However, several instances that could not be solved admit
a drawing when the number of S-shapes is reduced. Additionally, we found
that reducing the number of S-shapes in the representation often leads to
drawings requiring less area. We present more detailed results in the exper-
imental evaluation in Section 7.4.

128 Chapter 7 The Sloginsky Model

(a)

v2 v1

v3

v4

(b)

v1

v2 v3

v4

(c)

Figure 7.3: (a) Vertices with more than one edge attached to a side are split; (b) a
slog drawing requiring 4 half-bends, and, (c) a sloginsky drawing of
the same graph requiring 2 half-bends.

7.3 Realizing a Sloginsky Representation

We will now describe how to modify the representation obtained with
the linear program from the previous section, such that the method used to
realize slog representations from Section 4.5 can be used.

Each vertex that has strictly more than one edge attached to the same
side (according to the computed sloginsky representation) “is split”, that is, it
is removed and replaced by several new vertices as follows: four new vertices
make up its corners and for each edge that is connected to it an additional
vertex is added; vertices that correspond to consecutive edges of the same
side of the original split-vertex are connected by an edge as in Figure 7.3a.
If there is no edge connected to a side of the vertex to be split, then the two
respective corners are connected directly. Additional constraints are added
to the LP to make sure that the sum of the lengths of the edges of each side
of the split-vertex structure equals the size of the normal vertices that have
not been split.

With this modifications we are able to use the drawing LP from Sec-
tion 4.5 to compute a drawing for a given sloginsky representation, if one
exists. We will shortly see that sloginsky drawings may require exponential
area (Section 7.3.1). On the positive side, however, a bend-optimal sloginsky
drawing of a given graph requires, in general, less bends than the correspond-
ing slog drawing (keeping the embedding unchanged); an example is given in
Figure 7.3b and 7.3c.

7.4 Experimental Evaluation 129

7.3.1 Area Requirements of Sloginsky Drawings

Sloginsky drawings also can require exponential area:

Theorem 7.3.1. There exists a graph G whose sloginsky drawing Γs(G) of
minimum number of half-bends requires exponential area, assuming that a
planarized version σ(G) of G is given.

Proof. Analogous to the slanted-orthogonal case, the sloginsky drawing of
the graphs constructed according to the rules from Section 4.6 require ex-
ponential area. The sloginsky drawings of these graphs have the exact same
properties as the slog drawings, resulting in the exponential area requirement.
For more details refer to the proof of Theorem 4.6.1.

7.4 Experimental Evaluation
In this section, we present an experimental evaluation of the sloginsky

drawing model similar to the one of Section 6.4. In particular, the exper-
iment’s setup is the same with two modifications. First, the test set we
used consisted of the non-planar Rome and non-planar North graphs (as the
sloginsky model is mostly appropriate for non-planar graphs). Second, we
employed the Smart Organic Layouter from the yFiles graph library, which
is basically a spring embedder algorithm, and as input to our algorithms we
used a planarized version of its output.

In all following plots, the curves denoted by Kandinsky show results for
orthogonal drawings (obtained by implementing the ILP of Eiglsperger [41]),
while the curves denoted by sloginsky correspond to the results for bend-
optimal sloginsky drawings.

As expected, the use of area seems to be more demanding in the sloginsky
drawing model; see Figures 7.4 and 7.6. On the positive side, however,
the total number of half-bends that are required in a sloginsky drawing are
comparable and sometimes even less than two times the number of bends
of a classical Kandinsky drawing for both test sets; see Figures 7.5 and 7.7.
Finally, the running times of both algorithms tested seem to be comparable
and we were able to compute all drawings within at most three seconds
(without any negative behavior, as the one observed in Section 6.4).

130 Chapter 7 The Sloginsky Model

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

10 16 22 28 34 40 47 54 60 66 76 84 94

ar
ea

number of vertices

Kandinsky

sloginsky

Figure 7.4: Area requirements against number of vertices for the test set of the
non-planar North graphs.

Figure 7.8 shows an example drawing of a graph in the Kandinsky and
the sloginsky model.

7.5 Summary

In this chapter we introduced the sloginsky model. It is appropriate for
(non-planar) graphs with arbitrary vertex degrees. In the sloginsky model
crossings are only allowed between diagonal segments, edges are drawn as a
combination of horizontal, vertical and diagonal segments and the minimum
angle between any two consecutive edge-segments has to be 135◦. Together
with the arbitrary vertex degree the sloginsky model unites the advantages
of both, the Kandinsky and the slog model. We gave an ILP formulation to
compute a bend-optimal sloginsky representation and showed how to modify
the representation in order to be able to use the compaction step from the slog
model to obtain an actual drawing. On the negative side we showed that there
exist sloginsky representations that can not be realized and that drawings
in the sloginsky model may require exponential area. In our experimental
evaluation we found that sloginsky drawings in general require more area and
more bends than drawings in the Kandinsky model.

7.5 Summary 131

0

50

100

150

200

250

300

350

400

10 16 22 28 34 40 47 54 60 66 76 84 94

n
u

m
b

er
Ko

fK
(h

al
f-

)b
en

d
s

numberKofKvertices

Kandinsky

sloginsky

Figure 7.5: Number of (half-)bends against number of vertices for the test set of
the non-planar North graphs.

There are several open problems connected to the sloginsky model:

• Is it possible to compute bend-optimal sloginsky representations that
are always realizable by a corresponding drawing?

• Bend-optimal sloginsky drawings may require exponential area. There-
fore, efficient heuristics that will result in sloginsky drawings with few
additional bends in polynomial area are of interest.

132 Chapter 7 The Sloginsky Model

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

ar
ea

number of vertices

Kandinsky

sloginsky

Figure 7.6: Area requirements against number of vertices for the test set of the
non-planar Rome graphs.

0

20

40

60

80

100

120

140

160

11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 107

n
u

m
b

er
Ko

fK
(h

al
f-

)b
en

d
s

numberKofKvertices

Kandinsky

sloginsky

Figure 7.7: Number of (half-)bends against number of vertices for the test set of
the non-planar Rome graphs.

7.5 Summary 133

(a)

(b)

Figure 7.8: Non-planar graph K6 drawn (a) in the classical Kandinsky drawing
model, and, (b) in the sloginsky drawing model.

8 Conclusion

In this thesis we presented results for several graph drawing models, some
of which were well known and studied before (octilinear graph drawing and
the Kandinsky model) and others we introduced (slog, sloggy and sloginsky).
Our approaches aim to optimize layout aesthetics known to be important for
the perceived quality of a drawing of a graph, such as crossings and the num-
ber of bends. We achieve this by making sure that in the drawings we com-
pute, crossings are realized in a way that makes it easy to distinguish them
with respect to vertices. We further improve the readability of our drawings
by using half-bends rather than traditional 90◦ bends, thereby smoothening
the shape of the edges, and by keeping the total number of bends minimal.

In this chapter we present an overview of the results of this thesis and
give several possibilities for further research based on our findings.

8.1 Results
We first studied octilinear drawings of planar graphs with one bend per

edge. Previously it was known that 3-planar graphs always admit planar
octilinear drawings with zero bends. It was also known that, for planar graphs

136 Chapter 8 Conclusion

with maximal vertex degree up to eight it is always possible to construct a
planar octilinear drawing when two bends per edge are allowed. Our results
close this gap:

• We showed that 4-planar graphs require one bend per edge to be drawn
in the octilinear model and we gave algorithms to compute such draw-
ings in cubic area in linear time.

• For 5-planar graphs we gave linear time algorithms to compute octilin-
ear drawings with one bend per edge that may require super-polynomial
area.

• We proved that for octilinear drawings of 6-planar graphs two bends
are necessary for at least one edge.

We introduced an enhanced version of the classical orthogonal graph drawing
model, the slanted orthogonal graph drawing, for short: slog. The minimum
angle between two consecutive segments of an edge in the new model has
to be 135◦, which leads to a bend shape we called half-bend. This improves
the readability of the drawing, since the smoother shape of edges makes it
easier to follow them. Additionally, we also allow crossings in slog drawings
only between two diagonal segments. By this it becomes easier to identify
crossings and distinguish them from vertices. We obtained the following
results for slog drawings:

• The number of half-bends in a bend-optimal slog drawing is greater
than or equal to twice the number of bends in the corresponding bend-
optimal orthogonal drawing.

• We developed a method, based on the well-known approach from Tamas-
sia [110], that can be used to compute a bend-optimal slog representa-
tion using network flow.

• To realize the representation we gave a linear programming formulation
that computes a drawing with minimum total edge length.

• Bend-optimal slog drawings can require exponential area.

8.1 Results 137

• To counter the exponential area requirement of slog drawings we devel-
oped a heuristic that requires quadratic area but uses for some edges
up to two times the number of half-bends required in the bend-optimal
slog drawing.

• Using the Rome graphs we experimentally evaluated the bend optimal
slog algorithm and the slog heuristic and compared them to orthogonal
drawings. We found that even though we use linear programming to
compute the actual drawing, the cpu time required to construct the
drawing is very small, allowing to compute a bend-optimal slog drawing
even for large graphs with more than 400 vertices in less than 2 seconds.

As a more flexible model we introduced the sloggy model, which basically
follows the same rules as the slog model, but crossings are now also allowed
between horizontal and vertical segments. This was motivated by the obser-
vation that the number of half-bends in slog drawings often is significantly
more than twice the number of bends of a corresponding bend-optimal or-
thogonal drawing. For sloggy drawings we found that:

• The number of half-bends of a bend-optimal sloggy drawing is exactly
twice the number of bends of a corresponding bend-optimal orthogonal
drawing.

• To compute a bend-optimal sloggy representation we gave a formulation
as linear program. With this linear program we maximize either the
number of crossings on diagonals or minimize the number of pairs of
half-bends on edges or a weighted combination of both.

• With minor modifications of the linear program used to realize slog
representations, we can also realize sloggy representations.

• Sloggy drawings can also require exponential area; the construction for
a family of graphs with this property is the same as for the slog model.

For graphs of arbitrary vertex degree we extended the classical Kandinsky
model with half-bends, to be able to realize empty faces, which were pre-
viously forbidden. The new model is called podevsaef, which stands for

138 Chapter 8 Conclusion

Planar Orthogonal Drawings with Equal Vertex Size and Almost Empty
Faces. We presented the following results:

• Since the NP-hardness of the bend-minimization problem for the Kan-
dinsky model was recently shown, and it could be immediately trans-
ferred to the podevsaef model, we developed an ILP formulation to
compute bend-optimal representations using our extended model. To
realize them we showed a set of transformations that allowed us to use
existing compaction algorithms for the Kandinsky model.

• The time required to solve the integer linear programs for the bend-
optimal podevsaef representations can become quite large when many
triangular faces are present. That is why we also developed a heuris-
tic that can efficiently transform a classical Kandinsky drawing into a
podevsaef drawing with few additional half-bends.

• An experimental evaluation of the podevsaef model showed that the
new model is able to compete with classical Kandinsky drawings in
terms of bends and area for the sparse graphs of the Rome library. For
graphs that contain more triangular faces the podevsaef model often
leads to drawings requiring less bends and smaller area.

To transfer the advantages of the slog model to graphs of arbitrary vertex
degree, we developed the sloginsky model. In sloginsky drawings crossings are
only allowed on diagonal segments, the minimum angle between consecutive
segments of an edge is again 135◦ and arbitrary many edges can be connected
to one side of a vertex. For the sloginsky model we obtained the following
results:

• Inspired by the ILP for the podevsaef model, we developed an integer
linear programming formulation to compute bend-optimal sloginsky
representations.

• On the negative side, there exist sloginsky representations that can not
be realized. Additionally, sloginsky drawings may require exponential
area.

8.2 Future Work 139

• To realize a sloginsky representation, if possible, we show how to modify
the representation so that the linear program used for slog drawings can
be used.

8.2 Future Work

There are several possibilities for future research on the different topics
studied in this thesis, some of which we present here as open problems:

• Is it possible to construct planar octilinear drawings of 4-planar (5-
planar, respectively) graphs with at most one bend per edge in o(n3)
(polynomial, respectively) area?

• Does any triangle-free 6-planar graph admit a planar octilinear drawing
with at most one bend per edge?

• What is the complexity to determine whether a 6-planar graph admits
a planar octilinear drawing with at most one bend per edge?

• What is the number of necessary slopes for bendless drawings of 4-
planar graphs?

• Is it possible to extend the algorithms we presented to compute octi-
linear drawings for 4- and 5-planar graphs to non-planar graphs using,
for example, the Mondschein sequence [88]?

• Is there a (bend-optimal) slog drawing for every graph with maximal
vertex degree four?

• Given a (bend-optimal) slog representation, is there a polynomial time
algorithm that can compute a drawing realizing this representation?

• Is there a polynomial time algorithm that computes an optimal sloggy
representation?

• If no such algorithm exists, what is the complexity to determine the
optimal sloggy representation?

140 Chapter 8 Conclusion

• Can the linear program used to compute bend-optimal sloggy repre-
sentations for graphs with maximal vertex degree four be extended to
graphs with arbitrary vertex degree?

• Given a (bend-optimal) sloggy representation, is there a polynomial
time algorithm that can compute a drawing realizing this representa-
tion?

• Can the exponential area requirement for sloggy drawings be avoided
if one does not insist on the maximum number of diagonal crossings?

• Investigate the effect of different combinations of weight factors in the
objective function of the ILP for bend-optimal sloggy representations.

• Develop a method to compute bend-optimal podevsaef drawings more
efficiently than with our ILP formulation (especially for graphs with
many triangular faces).

• Develop a more sophisticated heuristic or a constant-factor approxima-
tion algorithm for computing close-to-optimal podevsaef drawings.

• Is it possible to compute bend-optimal sloginsky representations that
are always realizable by a corresponding drawing?

• Bend-optimal sloginsky drawings may require exponential area. There-
fore, efficient heuristics that will result in sloginsky drawings with few
additional bends in polynomial area are of interest.

Publications of the Author

[1] M. A. Bekos, M. Gronemann, M. Kaufmann, and R. Krug. Planar Octi-
linear Drawings with One Bend Per Edge. In C. A. Duncan and A. Symvo-
nis, editors, Graph Drawing, volume 8871 of Lecture Notes in Computer
Science, pages 331–342. Springer, 2014.

[2] M. A. Bekos, M. Gronemann, M. Kaufmann, and R. Krug. Planar Octilin-
ear Drawings with One Bend Per Edge. arXiv preprint arXiv:1408.5920,
2014.

[3] M. A. Bekos, M. Kaufmann, and R. Krug. Sloggy Drawings of Graphs.
In IISA 2014, The 5th International Conference on Information, Intelli-
gence, Systems and Applications, pages 82–87. IEEE, July 2014.

[4] M. A. Bekos, M. Kaufmann, R. Krug, T. Ludwig, S. Näher, and
V. Roselli. Slanted Orthogonal Drawings: Model, Algorithms and Eval-
uations. Journal of Graph Algorithms and Applications, 18(3):459–489,
2014.

[5] M. A. Bekos, M. Kaufmann, R. Krug, S. Näher, and V. Roselli. Slanted
Orthogonal Drawings. In S. Wismath and A. Wolff, editors, Graph Draw-
ing, volume 8242 of Lecture Notes in Computer Science, pages 424–435.
Springer, 2013.

Bibliography

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice hall, 1993.

[7] M. J. Alam, M. A. Bekos, M. Kaufmann, P. Kindermann, S. G.
Kobourov, and A. Wolff. Smooth Orthogonal Drawings of Planar
Graphs. In A. Pardo and A. Viola, editors, LATIN 2014: Theoreti-
cal Informatics - 11th Latin American Symposium, volume 8392, pages
144–155. Springer, 2014.

[8] E. Anderheggen and H. Knöpfel. Finite Element Limit Analysis Using
Linear Programming. International Journal of Solids and Structures,
8(12):1413–1431, 1972.

[9] Y. P. Aneja. An Integer Linear Programming Approach to the Steiner
Problem in Graphs. Networks, 10(2):167–178, 1980.

[10] P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kauf-
mann, and A. Symvonis. On the Perspectives Opened by Right Angle
Crossing Drawings. In D. Eppstein and E. Gansner, editors, Graph
Drawing, volume 5849 of Lecture Notes in Computer Science, pages
21–32. Springer, 2010.

[11] E. N. Argyriou, M. A. Bekos, M. Kaufmann, and A. Symvonis.
On Metro-Line Crossing Minimization. J. Graph Algorithms Appl.,
14(1):75–96, 2010.

[12] E. N. Argyriou, M. A. Bekos, and A. Symvonis. The Straight-Line RAC
Drawing Problem is NP-Hard. In I. Cerna, T. Gyimothy, J. Hromkovic,
K. Jefferey, R. Kralovic, M. Vukolic, and S. Wolf, editors, SOFSEM
2011: Theory and Practice of Computer Science, volume 6543 of Lec-
ture Notes in Computer Science, pages 74–85. Springer, 2011.

[13] M. Baur and U. Brandes. Crossing Reduction in Circular Layouts. In
J. Hromkovic, M. Nagl, and B. Westfechtel, editors, Graph-Theoretic

144 BIBLIOGRAPHY

Concepts in Computer Science, volume 3353 of Lecture Notes in Com-
puter Science, pages 332–343. Springer Berlin Heidelberg, 2005.

[14] M. A. Bekos, M. Gronemann, S. Pupyrev, and C. N. Raftopoulou.
Perfect Smooth Orthogonal Drawings. In N. G. Bourbakis, G. A.
Tsihrintzis, and M. Virvou, editors, IISA 2014, The 5th International
Conference on Information, Intelligence, Systems and Applications,
pages 76–81. IEEE, 2014.

[15] M. A. Bekos, M. Kaufmann, S. G. Kobourov, and A. Symvonis. Smooth
Orthogonal Layouts. In W. Didimo and M. Patrignani, editors, Graph
Drawing, volume 7704 of Lecture Notes in Computer Science, pages
150–161. Springer, 2013.

[16] M. A. Bekos, M. Kaufmann, M. Nöllenburg, and A. Symvonis. Bound-
ary Labeling with Octilinear Leaders. Algorithmica, 57(3):436–461,
2010.

[17] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Line Cross-
ing Minimization on Metro Maps. In S.-H. Hong, T. Nishizeki, and
W. Quan, editors, Graph Drawing, volume 4875 of Lecture Notes in
Computer Science, pages 231–242. Springer, 2008.

[18] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing Orthogonal
Drawings with the Minimum Number of Bends. Computers, IEEE
Transactions on, 49(8):826–840, 2000.

[19] T. C. Biedl and G. Kant. A Better Heuristic for Orthogonal Graph
Drawings. In J. van Leeuwen, editor, Proc. of 2nd European Symposium
on Algorithms (ESA 1994), volume 855 of Lecture Notes in Computer
Science, pages 24–35, 1994.

[20] T. Bläsius, G. Brückner, and I. Rutter. Complexity of Higher-Degree
Orthogonal Graph Embedding in the Kandinsky Model. In A. S. Schulz
and D. Wagner, editors, Symposium on Algorithms, volume 8737 of
Lecture Notes in Computer Science, pages 161–172, 2014.

BIBLIOGRAPHY 145

[21] U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-
Driven Orthogonal Graph Drawing. In M. Goodrich and S. Kobourov,
editors, Graph Drawing, volume 2528 of Lecture Notes in Computer
Science, pages 1–11. Springer Berlin Heidelberg, 2002.

[22] U. Brandes and D. Wagner. Using Graph Layout to Visualize Train
Interconnection Data. In S. Whitesides, editor, Graph Drawing, volume
1547 of Lecture Notes in Computer Science, pages 44–56. Springer,
1998.

[23] P. Butler. Visualizing Friendships.
https://www.facebook.com/Engineering/notes, 2010.

[24] D.-S. Chen, R. G. Batson, and Y. Dang. Applied Integer Programming:
Modeling and Solution. John Wiley & Sons, 2011.

[25] M. Chimani, P. Mutzel, and I. Bomze. A New Approach to Exact
Crossing Minimization. In D. Halperin and K. Mehlhorn, editors,
Algorithms-ESA 2008, volume 5193 of Lecture Notes in Computer Sci-
ence, pages 284–296. Springer, 2008.

[26] C. D. Correa and K.-L. Ma. Visualizing Social Networks. In C. C. Ag-
garwal, editor, Social Network Data Analytics, pages 307–326. Springer,
2011.

[27] T. J. Cova and J. P. Johnson. A Network Flow Model for Lane-Based
Evacuation Routing. Transportation Research Part A: Policy and Prac-
tice, 37(7):579–604, 2003.

[28] G. B. Dantzig. Linear Programming and Extensions. Princeton uni-
versity press, 1998.

[29] H. De Fraysseix, J. Pach, and R. Pollack. How to Draw a Planar Graph
on a Grid. Combinatorica, 10(1):41–51, 1990.

[30] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

146 BIBLIOGRAPHY

[31] G. Di Battista and R. Tamassia. On-Line Graph Algorithms with
SPQR-Trees. In M. Paterson, editor, Automata, Languages and Pro-
gramming, volume 443 of Lecture Notes in Computer Science, pages
598–611, 1990.

[32] E. Di Giacomo, G. Liotta, and F. Montecchiani. The Planar Slope
Number of Subcubic Graphs. In A. Pardo and A. Viola, editors, LATIN
2014: Theoretical Informatics, volume 8392 of Lecture Notes in Com-
puter Science, pages 132–143. Springer, 2014.

[33] W. Didimo, P. Eades, and G. Liotta. Drawing Graphs with Right
Angle Crossings. In F. Dehne, M. Gavrilova, J.-R. Sack, and C. Toth,
editors, Algorithms and Data Structures, volume 5664 of Lecture Notes
in Computer Science, pages 206–217. Springer, 2009.

[34] W. Didimo, P. Eades, and G. Liotta. A Characterization of Complete
Bipartite RAC Graphs. Information Processing Letters, 110(16):687–
691, 2010.

[35] W. Didimo and G. Liotta. Computing Orthogonal Drawings in a Vari-
able Embedding Setting. In K.-Y. Chwa and O. Ibarra, editors, Algo-
rithms and Computation, volume 1533 of Lecture Notes in Computer
Science, pages 80–89. Springer, 1998.

[36] W. Didimo and G. Liotta. The Crossing-Angle Resolution in Graph
Drawing. In J. Pach, editor, Thirty Essays on Geometric Graph Theory,
pages 167–184. Springer, 2013.

[37] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast Node Overlap Removal.
In P. Healy and N. Nikolov, editors, Graph Drawing, volume 3843 of
Lecture Notes in Computer Science, pages 153–164. Springer, 2006.

[38] P. Eades and X. Lin. Spring Algorithms and Symmetry. Theoretical
Computer Science, 240(2):379–405, 2000.

[39] P. Eades and G. Liotta. Right Angle Crossing Graphs and 1-Planarity.
In M. van Kreveld and B. Speckmann, editors, Graph Drawing, volume

BIBLIOGRAPHY 147

7034 of Lecture Notes in Computer Science, pages 148–153. Springer,
2012.

[40] P. Eades and N. Wormald. Edge Crossings in Drawings of Bipartite
Graphs. Algorithmica, 11(4):379–403, 1994.

[41] M. Eiglsperger. Automatic Layout of UML Class Diagrams: A
Topology-Shape-Metrics Approach. PhD thesis, Universität Tübingen,
2003.

[42] M. Eiglsperger, S. P. Fekete, and G. W. Klau. Orthogonal Graph
Drawing. In M. Kaufmann and D. Wagner, editors, Drawing graphs,
volume 2025 of Lecture Notes in Computer Science, pages 121–171.
Springer, 2001.

[43] M. Eiglsperger, U. Fößmeier, and M. Kaufmann. Orthogonal Graph
Drawing with Constraints. In D. B. Shmoys, editor, Proceedings of
the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 3–11. ACM/SIAM, 2000.

[44] M. Eiglsperger and M. Kaufmann. Fast Compaction for Orthogonal
Drawings with Vertices of Prescribed Size. In P. Mutzel, M. Jünger,
and S. Leipert, editors, Graph Drawing, volume 2265 of Lecture Notes
in Computer Science, pages 124–138. Springer Berlin Heidelberg, 2002.

[45] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareiro, and A. Telea.
Skeleton-Based Edge Bundling for Graph Visualization. Visualization
and Computer Graphics, IEEE Transactions on, 17(12):2364–2373,
2011.

[46] G. Even, S. Guha, and B. Schieber. Improved Approximations of Cross-
ings in Graph Drawings and VLSI Layout Areas. SIAM Journal on
Computing, 32(1):231–252, 2002.

[47] S. Even and R. E. Tarjan. Network Flow and Testing Graph Connec-
tivity. SIAM journal on computing, 4(4):507–518, 1975.

148 BIBLIOGRAPHY

[48] A. Farag, S. Al-Baiyat, and T. Cheng. Economic Load Dispatch Mul-
tiobjective Optimization Procedures Using Linear Programming Tech-
niques. Power Systems, IEEE Transactions on, 10(2):731–738, 1995.

[49] I. Fáry. On Straight Lines Representation of Plane Graphs. Acta. Sci.
Math. Szeged, 11:229–233, 1948.

[50] J. Feldman, M. J. Wainwright, and D. R. Karger. Using Linear Pro-
gramming to Decode Binary Linear Codes. Information Theory, IEEE
Transactions on, 51(3):954–972, 2005.

[51] M. Fink, H. Haverkort, M. Nöllenburg, M. Roberts, J. Schuhmann, and
A. Wolff. Drawing Metro Maps Using Bézier Curves. In W. Didimo
and M. Patrignani, editors, Graph Drawing, volume 7704 of Lecture
Notes in Computer Science, pages 463–474. Springer, 2013.

[52] B. Finkel and R. Tamassia. Curvilinear Graph Drawing Using the
Force-Directed Method. In J. Pach, editor, Graph Drawing, volume
3383 of Lecture Notes in Computer Science, pages 448–453. Springer,
2005.

[53] U. Fößmeier, C. Heß, and M. Kaufmann. On Improving Orthogonal
Drawings: The 4M-Algorithm. In S. Whitesides, editor, Graph Draw-
ing, volume 1547 of Lecture Notes in Computer Science, pages 125–137,
1998.

[54] U. Fößmeier and M. Kaufmann. Drawing High Degree Graphs with
Low Bend Numbers. In F. J. Brandenburg, editor, Graph Drawing,
volume 1027 of Lecture Notes in Computer Science, pages 254–266.
Springer, 1996.

[55] U. Fößmeier and M. Kaufmann. Algorithms and Area Bounds for
Nonplanar Orthogonal Drawings. In G. Di Battista, editor, Graph
Drawing, volume 1353 of Lecture Notes in Computer Science, pages
134–145. Springer Berlin Heidelberg, 1997.

[56] L. C. Freeman. Visualizing Social Networks. Journal of Social Struc-
ture, 1(1):4, 2000.

BIBLIOGRAPHY 149

[57] D. R. Fulkerson. A Network Flow Computation for Project Cost
Curves. Management science, 7(2):167–178, 1961.

[58] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel Ag-
glomerative Edge Bundling for Visualizing Large Graphs. In Pacific Vi-
sualization Symposium (PacificVis), 2011 IEEE, pages 187–194. IEEE,
2011.

[59] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. Freeman & Co., San Francisco,
1979.

[60] M. R. Garey and D. S. Johnson. Crossing Number is NP-complete.
SIAM Journal on Algebraic Discrete Methods, 4(3):312–316, 1983.

[61] A. Garg and R. Tamassia. On the Computational Complexity of Up-
ward and Rectilinear Planarity Testing. SIAM Journal on Computing,
31(2):601–625, 2001.

[62] L. L. Garver. Transmission Network Estimation Using Linear Program-
ming. Power Apparatus and Systems, IEEE Transactions on, PAS-
89(7):1688–1697, 1970.

[63] F. Glover. Future Paths for Integer Programming and Links to Arti-
ficial Intelligence. Computers & Operations Research, 13(5):533–549,
1986.

[64] I. Gurobi Optimization. Gurobi optimizer reference manual, 2014.

[65] C. Gutwenger and P. Mutzel. A Linear Time Implementation of SPQR-
Trees. In J. Marks, editor, Graph Drawing, volume 1984 of Lecture
Notes in Computer Science, pages 77–90. Springer, 2001.

[66] C. Gutwenger and P. Mutzel. An Experimental Study of Crossing
Minimization Heuristics. In G. Liotta, editor, Graph Drawing, volume
2912 of Lecture Notes in Computer Science, pages 13–24. Springer,
2004.

150 BIBLIOGRAPHY

[67] J. Heer and D. Boyd. Vizster: Visualizing Online Social Networks.
In Information Visualization, 2005. INFOVIS 2005. IEEE Symposium
on, pages 32–39. IEEE, 2005.

[68] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Re-
lations in Hierarchical Data. Visualization and Computer Graphics,
IEEE Transactions on, 12(5):741–748, 2006.

[69] D. Holten and J. J. Van Wijk. Force-Directed Edge Bundling for Graph
Visualization. In Computer Graphics Forum, volume 28, pages 983–
990. Wiley Online Library, 2009.

[70] S.-H. Hong. Drawing Graphs Symmetrically in Three Dimensions. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing, volume
2265 of Lecture Notes in Computer Science, pages 189–204. Springer,
2002.

[71] S.-H. Hong, B. McKay, and P. Eades. Symmetric Drawings of Tricon-
nected Planar Graphs. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 356–365. Society for
Industrial and Applied Mathematics, 2002.

[72] S.-H. Hong, D. Merrick, and H. A. D. do Nascimento. Automatic Visu-
alisation of Metro Maps. Journal of Visual Languages and Computing,
17(3):203–224, 2006.

[73] V. Jeĺınek, E. Jeĺınková, J. Kratochv́ıl, B. Lidický, M. Tesar, and
T. Vyskocil. The Planar Slope Number of Planar Partial 3-Trees of
Bounded Degree. Graphs and Combin., 29(4):981–1005, 2013.

[74] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A Polyhedral Ap-
proach to the Multi-Layer Crossing Minimization Problem. In G. Di-
Battista, editor, Graph Drawing, volume 1353 of Lecture Notes in Com-
puter Science, pages 13–24. Springer, 1997.

[75] G. Kant. Drawing Planar Graphs Using the lmc-Ordering (Extended
Abstract). In FOCS, pages 101–110, 1992.

BIBLIOGRAPHY 151

[76] G. Kant. Hexagonal Grid Drawings. In E. Mayr, editor, Proc. of 18th
Workshop on Graph-Theoretic Concepts in Computer Science (WG
1992), volume 657 of Lecture Notes in Computer Science, pages 263–
276, 1992.

[77] M. Kaufmann and D. Wagner. Drawing Graphs: Methods and Models,
volume 2025. Springer Berlin Heidelberg, 2001.

[78] B. Keszegh, J. Pach, and D. Pálvölgyi. Drawing Planar Graphs of
Bounded Degree with Few Slopes. SIAM J. Discrete Math., 27(2):1171–
1183, 2013.

[79] B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth. Drawing Cubic Graphs
with At Most Five Slopes. Computational Geometry, 40(2):138–147,
2008.

[80] G. W. Klau and P. Mutzel. Quasi-Orthogonal Drawing of Planar
Graphs. Informatik-Spektrum, 20(4):199–207, 1997.

[81] D. Knoke and S. Yang. Social Network Analysis, volume 154. Sage,
2008.

[82] A. Lambert, R. Bourqui, and D. Auber. Winding Roads: Routing
Edges Into Bundles. In Computer Graphics Forum, volume 29, pages
853–862. Wiley Online Library, 2010.

[83] C. E. Leiserson. Area-Efficient Graph Layouts. In Proc. of 21st Annual
Symposium on Foundations of Computer Science (FOCS 1980), volume
1547, pages 270–281, 1980.

[84] W. Lenhart, G. Liotta, D. Mondal, and R. I. Nishat. Planar and Plane
Slope Number of Partial 2-Trees. In S. Wismath and A. Wolff, editors,
Graph Drawing, volume 8242 of Lecture Notes in Computer Science,
pages 412–423, 2013.

[85] J. D. Little. The Synchronization of Traffic Signals by Mixed-Integer
Linear Programming. Operations Research, 14(4):568–594, 1966.

152 BIBLIOGRAPHY

[86] Y. Liu, A. Morgana, and B. Simeone. A Linear Algorithm for 2-Bend
Embeddings of Planar Graphs in the Two-Dimensional Grid. Discrete
Applied Mathematics, 81(1-3):69–91, 1998.

[87] D. Merrick and J. Gudmundsson. Path Simplification for Metro Map
Layout. In M. Kaufmann and D. Wagner, editors, Graph Drawing,
volume 4372 of Lecture Notes in Computer Science, pages 258–269.
Springer, 2007.

[88] L. F. Mondshein. Combinatorial Ordering and the Geometric Embed-
ding of Graphs. PhD thesis, MIT, 1971.

[89] P. Mukkamala and D. Pálvölgyi. Drawing Cubic Graphs with the Four
Basic Slopes. In M. van Kreveld and B. Speckmann, editors, Graph
Drawing, volume 7034 of Lecture Notes in Computer Science, pages
254–265, 2012.

[90] M. Müller-Hannemann and A. Schulze. Approximation of Octilinear
Steiner Trees Constrained By Hard and Soft Obstacles. In L. Arge and
R. Freivalds, editors, Algorithm Theory–SWAT 2006, volume 4059 of
Lecture Notes in Computer Science, pages 242–254. Springer, 2006.

[91] M. Müller-Hannemann and A. Schulze. Hardness and Approximation
of Octilinear Steiner Trees. International Journal of Computational
Geometry & Applications, 17(03):231–260, 2007.

[92] P. Mutzel and T. Ziegler. The Constrained Crossing Minimization
Problem. In J. Kratochvil, editor, Graph Drawing, volume 1731 of
Lecture Notes in Computer Science, pages 175–185. Springer, 1999.

[93] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. AMC, 10:12,
2004.

[94] M. Nöllenburg. Automated Drawings of Metro Maps. Technical Report
2005-25, Fakultät für Informatik, Universität Karlsruhe, 2005.

[95] M. Nöllenburg. An Improved Algorithm for the Metro-Line Crossing
Minimization Problem. In D. Eppstein and E. Gansner, editors, Graph

BIBLIOGRAPHY 153

Drawing, volume 5849 of Lecture Notes in Computer Science, pages
381–392. Springer, 2010.

[96] M. Nöllenburg and A. Wolff. Drawing and Labeling High-Quality Metro
Maps by Mixed-Integer Programming. IEEE Trans. on Vis. and Comp.
Graphics, 17(5):626–641, 2011.

[97] A. Papakostas and I. G. Tollis. A Pairing Technique for Area-Efficient
Orthogonal Drawings. In S. North, editor, Graph Drawing, volume
1190 of Lecture Notes in Computer Science, pages 355–370. Springer,
1997.

[98] A. Papakostas and I. G. Tollis. Algorithms for Area-Efficient Orthog-
onal Drawings. Computational Geometry, 9(1):83–110, 1998.

[99] S. Pupyrev, L. Nachmanson, and M. Kaufmann. Improving Layered
Graph Layouts with Edge Bundling. In U. Brandes and S. Cornelsen,
editors, Graph Drawing, volume 6502 of Lecture Notes in Computer
Science, pages 329–340. Springer, 2011.

[100] H. Purchase. Which Aesthetic Has The Greatest Effect On Human
Understanding? In G. DiBattista, editor, Graph Drawing, volume
1353 of Lecture Notes in Computer Science, pages 248–261. Springer,
1997.

[101] H. C. Purchase. Effective Information Visualisation: A Study of
Graph Drawing Aesthetics and Algorithms. Interacting with Comput-
ers, 13(2):147–162, 2000.

[102] H. C. Purchase. Metrics For Graph Drawing Aesthetics. Journal of
Visual Languages & Computing, 13(5):501–516, 2002.

[103] H. C. Purchase, R. F. Cohen, and M. James. Validating Graph Drawing
Aesthetics. In F. Brandenburg, editor, Graph Drawing, volume 1027 of
Lecture Notes in Computer Science, pages 435–446. Springer, 1996.

[104] A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft
Trajectory Planning With Avoidance Constraints Using Mixed-Integer

154 BIBLIOGRAPHY

Linear Programming. Journal of Guidance, Control, and Dynamics,
25(4):755–764, 2002.

[105] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1998.

[106] S. K. Stein. Convex Maps. Proceedings of the American Mathematical
Society, 2(3):464–466, 1951.

[107] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der
Polyeder unter Einschluss der Elemente der Topologie. Springer-Verlag,
Berlin-New York, 1976. Reprint der 1934 Auflage, Grundlehren der
Mathematischen Wissenschaften, No. 41.

[108] H. S. Stone. Multiprocessor Scheduling With the Aid of Network Flow
Algorithms. Software Engineering, IEEE Transactions on, (1):85–93,
1977.

[109] J. M. Stott, P. Rodgers, J. C. Martinez-Ovando, and S. G. Walker.
Automatic Metro Map Layout Using Multicriteria Optimization. IEEE
Trans. on Vis. and Comp. Graphics, 17(1):101–114, 2011.

[110] R. Tamassia. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM Journal of Computing, 16(3):421–444, 1987.

[111] R. Tamassia. Handbook of Graph Drawing and Visualization, vol-
ume 10. Chapman & Hall/CRC, 2013.

[112] R. Tamassia, G. Di Battista, and C. Batini. Automatic Graph Drawing
and Readability of Diagrams. Systems, Man and Cybernetics, IEEE
Transactions on, 18(1):61–79, 1988.

[113] R. Tamassia and I. G. Tollis. Planar Grid Embedding In Linear Time.
IEEE Transactions on Circuits and Systems, 36(9):1230–1234, 1989.

[114] L. G. Valiant. Universality Considerations in VLSI Circuits. IEEE
Transaction on Computers, 30(2):135–140, 1981.

BIBLIOGRAPHY 155

[115] M. Van Kreveld. The Quality Ratio of RAC Drawings and Planar
Drawings of Planar Graphs. In U. Brandes and S. Cornelsen, editors,
Graph Drawing, volume 6502 of Lecture Notes in Computer Science,
pages 371–376. Springer, 2011.

[116] R. Villasana, L. Garver, and S. Salon. Transmission Network Plan-
ning Using Linear Programming. Power Apparatus and Systems, IEEE
Transactions on, (2):349–356, 1985.

[117] H. M. Wagner. An Integer Linear-Programming Model for Machine
Scheduling. Naval Research Logistics Quarterly, 6(2):131–140, 1959.

[118] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 46:26–32, 1936.

[119] H. Xiang, X. Tang, and M. D. Wong. Min-Cost Flow-Based Algo-
rithm for Simultaneous Pin Assignment and Routing. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
22(7):870–878, 2003.

[120] J. Xu and J. P. Kelly. A Network Flow-Based Tabu Search Heuristic for
the Vehicle Routing Problem. Transportation Science, 30(4):379–393,
1996.

[121] R. Yang and C. Chuang. Optimal Topology Design Using Linear Pro-
gramming. Computers & Structures, 52(2):265–275, 1994.

	Contents
	Introduction
	Thesis Contribution

	Preliminaries
	Terminology
	Graph Drawing Aesthetics
	Algorithmic Tools
	Linear Programming
	Network Flow

	Common Methods In Graph Drawing
	TSM Approach
	Drawing Planar Graphs Step by Step

	Planar Octilinear Drawings
	Introduction
	Drawing 4-Planar Graphs with One Bend Per Edge
	4-Planar Is Not Possible With Zero Bends
	Triconnected Graphs
	Biconnected Graphs
	Simply-Connected Graphs

	Drawing 5-Planar Graphs with One Bend Per Edge
	Triconnected Graphs
	Biconnected Graphs
	Simply-Connected Graphs
	Improving 5-Planar Drawings

	6-Planar Graphs Require 2 Bends
	Summary

	The Slanted Orthogonal Drawing Model
	Introduction
	Orthogonalization Using Network Flow
	Modifying the Flow Network
	Properties of Bend-Optimal Slog Representations

	A Heuristic for Slog Drawings
	Computing a Slog Representation Using ILP
	Realizing the Representation
	The Core of the Linear Program
	Addressing Planarity Issues

	Area Bounds
	Experimental Evaluation
	Sample Drawings
	Summary

	The Sloggy Orthogonal Drawing Model
	Introduction
	Properties of Sloggy Drawings
	The Number of Half-bends of Sloggy Drawings
	The Area Requirements of Sloggy Drawings

	Bend-optimal Sloggy Drawings
	Cycle Systems
	An ILP to compute Sloggy Drawings

	Sample Drawings
	Summary

	Extending the Kandinsky Model
	Introduction
	Optimal Drawings with ILP
	Bend-Optimal Kandinsky Representations
	Bend-Optimal podevsaef Representations
	Realizing the Representation

	Heuristic
	Optimizing the Input for the Heuristic

	Experimental Evaluation
	Summary

	The Sloginsky Model
	Introduction
	Bend-Optimal Sloginsky Representations
	Not Realizable Representations
	Reduction of S-shapes

	Realizing a Sloginsky Representation
	Area Requirements of Sloginsky Drawings

	Experimental Evaluation
	Summary

	Conclusion
	Results
	Future Work

	Publications of the Author
	Bibliography

