
Person Detection, Tracking and Identification by Mobile Robots Using RGB-D
Images

Person Detection, Tracking and
Identification by Mobile Robots Using

RGB-D Images

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M. Sc. Duc My Vo
aus Hanoi, Vietnam

Tübingen
2015

Tag der mündlichen Qualifikation: 09.04.2015
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Andreas Zell
2. Berichterstatter: Prof. Dr. Andreas Schilling

For my family

Abstract
This dissertation addresses the use of RGB-D images for six important tasks of mobile
robots: face detection, face tracking, face pose estimation, face recognition, person de-
tection and person tracking. These topics have widely been researched in recent years
because they provide mobile robots with abilities necessary to communicate with humans
in natural ways. The RGB-D images from a Microsoft Kinect cameras are expected to
play an important role in improving both accuracy and computational costs of the pro-
posed algorithms for mobile robots. We contribute some applications of the Microsoft
Kinect camera for mobile robots and show their effectiveness by doing realistic experi-
ments on our mobile robots.

An important component for mobile robots to interact with humans in a natural way
is real time multiple face detection. Various face detection algorithms for mobile robots
have been proposed; however, almost all of them have not yet met the requirements of
accuracy and speed to run in real time on a robot platform. In the scope of our re-
search, we have developed a method of combining color and depth images provided by
a Kinect camera and navigation information for face detection on mobile robots. We
demonstrate several experiments with challenging datasets. Our results show that this
method improves the accuracy and computational costs, and it runs in real time in indoor
environments.

Tracking faces in uncontrolled environments has still remained a challenging task be-
cause the face as well as the background changes quickly over time and the face often
moves through different illumination conditions. RGB-D images are beneficial for this
task because the mobile robot can easily estimate the face size and improve the perfor-
mance of face tracking in different distances between the mobile robot and the human. In
this dissertation, we present a real time algorithm for mobile robots to track human faces
accurately despite the fact that humans can move freely and far away from the camera or
go through different illumination conditions in uncontrolled environments. We combine
the algorithm of an adaptive correlation filter (Bolme et al. (2010)) with a Viola-Jones
object detection (Viola and Jones (2001b)) to track the face. Furthermore, we introduce
a new technique of face pose estimation, which is applied after tracking the face. On
the tracked face, the algorithm of an adaptive correlation filter with a Viola-Jones object
detection is also applied to reliably track the facial features including the two external
eye corners and the nose. These facial features provide geometric cues to estimate the
face pose robustly. We carefully analyze the accuracy of these approaches based on dif-
ferent datasets and show how they can robustly run on a mobile robot in uncontrolled
environments.

vii

Abstract

Both face tracking and face pose estimation play key roles as essential preprocess-
ing steps for robust face recognition on mobile robots. The ability to recognize faces
is a crucial element for human-robot interaction. Therefore, we pursue an approach for
mobile robots to detect, track and recognize human faces accurately, even though they
go through different illumination conditions. For the sake of improved accuracy, recog-
nizing the tracked face is established by using an algorithm that combines local ternary
patterns and collaborative representation based classification. This approach inherits the
advantages of both collaborative representation based classification, which is fast and
relatively accurate, and local ternary patterns, which is robust to misalignment of faces
and complex illumination conditions. This combination enhances the efficiency of face
recognition under different illumination and noisy conditions. Our method achieves high
recognition rates on challenging face databases and can run in real time on mobile robots.

An important application field of RGB-D images is person detection and tracking by
mobile robots. Compared to classical RGB images, RGB-D images provide more depth
information to locate humans more precisely and reliably. For this purpose, the mobile
robot moves around in its environment and continuously detects and tracks people re-
liably, even when humans often change in a wide variety of poses, and are frequently
occluded. We have improved the performance of face and upper body detection to en-
hance the efficiency of person detection in dealing with partial occlusions and changes in
human poses. In order to handle higher challenges of complex changes of human poses
and occlusions, we concurrently use a fast compressive tracker and a Kalman filter to
track the detected humans. Experimental results on a challenging database show that our
method achieves high performance and can run in real time on mobile robots.

viii

Kurzfassung
Diese Dissertation befasst sich mit der Verwendung von RGB-D Bildern für fünf wich-
tige Aufgaben der mobilen Robotik: Gesichtsdetektion, Gesichtserkennung, Gesichts-
posenschätzung sowie Personenerkennung und -verfolgung. Diese Themen wurden in
den letzten Jahren umfassend untersucht, da sie mobile Roboter mit Fähigkeiten verse-
hen, die notwendig sind, um mit Menschen auf natürliche Weise zu kommunizieren. Die
RGB-D-Bilder von einer Microsoft Kinect spielen dabei eine wichtige Rolle bei der Ver-
besserung der Genauigkeit und des Rechenaufwands der vorgeschlagenen Algorithmen.
Wir tragen einige Anwendungen für mobile Roboter mit der Kamera Microsoft Kinect
bei und zeigen ihre Effektivität in realistischen Experimenten mit unseren mobilen Ro-
botern.

Eine wichtige Komponente für die natürliche Mensch-Roboter-Interaktion ist die gleich-
zeitige echtzeitfähige Detektion mehrerer Gesichter. Bisher wurden schon einige Ge-
sichtsdetektionsalgorithmen für mobile Roboter vorgeschlagen, aber die meisten dieser
Algorithmen erfüllen nicht die gewünschten Anforderungen an Genauigkeit und Ge-
schwindigkeit, um in Echtzeit auf einer mobilen Roboter-Plattform verwendet zu wer-
den. Im Rahmen unserer Forschung haben wir ein Verfahren zur Kombination von Farb-
(RGB) und Tiefenbildern (D) einer RGB-D Kinect-Kamera und Navigationsinformatio-
nen für die Gesichtserkennung auf mobilen Robotern entwickelt. Wir haben verschiede-
ne Experimente im Innenbereich mit anspruchsvollen Datensätzen durchgeführt. Diese
Ergebnisse zeigen, dass unsere Methode sowohl die Genauigkeit als auch den Rechen-
aufwand verringert und in Echtzeit läuft.

Die Verfolgung von Gesichtern in unkontrollierten Umgebungen bleibt eine schwie-
rige Aufgabe, denn das Gesicht und der Hintergrund ändern sich schnell über die Zeit,
und die Aufnahmen unterliegen verschiedenen Beleuchtungsbedingungen. RGB-Bilder
sind von Vorteil für diese Aufgabe, da der mobile Roboter die Gesichtsgröße leichter
schätzen kann, was wiederum die Leistungsfähigkeit der Gesichtserkennung bei unter-
schiedlichen Entfernungen zwischen Roboter und Mensch verbessert. In dieser Disserta-
tion stellen wir einen echtzeitfähigen Algorithmus für mobile Roboter vor, der in der
Lage ist, menschliche Gesichter in unkontrollierten Umgebungen genau zu erkennen
ungeachtet der Tatsache, dass sich der Mensch frei und weit entfernt von der Kamera
bewegt oder sich auch in verschiedenen Beleuchtungssituationen und in unkontrollier-
ter Umgebung befindet. Wir verbinden den Algorithmus eines adaptiven Korrelations-
filters (Bolme et al. (2010)) mit einer Viola-Jones-Objekterkennung (Viola and Jones
(2001b)), um das Gesicht zu erkennen. Ferner stellen wir eine neue Technik der Gesichts-
posenschätzung vor, die im Anschluss auf die Gesichtsverfolgung angewendet wird. Auf

ix

Kurzfassung

dem erkannten Gesicht wird der Algorithmus eines adaptiven Korrelationsfilters mit ei-
ner Viola-Jones-Objekterkennung angewandt, um zuverlässig die Gesichtsmerkmale ein-
schließlich der beiden äußeren Augenwinkel und der Nase zu erfassen. Diese Gesichts-
merkmale bieten geometrische Hinweise, um die Gesichtspose robust zu schätzen. Wir
analysieren sorgfältig die Genauigkeit dieser Ansätze auf der Basis verschiedener Da-
tensätze und zeigen, wie sie zuverlässig auf einem mobilen Roboter in unkontrollierten
Umgebungen eingesetzt werden können.

Sowohl die Gesichtsverfolgung als auch die Gesichtsposenschätzung spielen eine wich-
tige Rolle als wesentliche Vorverarbeitungsschritte für die zuverlässige Gesichtserken-
nung auf mobilen Robotern. Die Fähigkeit, Gesichter zu erkennen, ist ein wesentliches
Element für die Mensch-Roboter-Interaktion. Daher verfolgen wir einen Ansatz zur Er-
kennung und Erfassung menschlicher Gesichter durch mobile Roboter, auch wenn die
Gesichter verschiedenen Beleuchtungssituationen ausgesetzt sind. Aus Gründen der ver-
besserten Genauigkeit wurde die Erkennung des erfassten Gesichts unter der Verwen-
dung eines Algorithmus, welcher local ternary patterns (Tan and Triggs (2010a)) und col-
laborative representation based classification verbindet, realisiert. Diese Vorgehensweise
kombiniert die Vorteile des collaborative representation based classification-Algorithmus
(Zhang et al. (2011)), welcher schnell und relativ genau ist, mit denen der local ternary
patterns, welche robust gegen komplexe Beleuchtungsbedingungen sind. Diese Kombi-
nation steigert die Effizienz der Gesichtserkennung unter verschiedenen Beleuchtungs-
bedingungen und Hintergrundrauschen. Unsere Methode erzielt hohe Erkennungsraten
bei herausfordernden Gesichtsdatensätzen und kann auch in Echtzeit auf mobilen Robo-
tern ausgeführt werden.

Ein wichtiges Anwendungsfeld von RGB-D-Bildern ist die Personenerkennung und
-verfolgung durch mobile Roboter. Im Vergleich zu klassischen RGB-Bildern bieten
RGB-D-Bilder detailliertere Informationen, um Menschen präziser und zuverlässiger
zu lokalisieren. Zu diesem Zweck bewegt sich der mobile Roboter in seinem Umfeld
während er kontinuierlich Menschen erfasst und mit der Kamera verfolgt, auch wenn die-
se eine Vielzahl von Posen annehmen und häufig verdeckt sind. Wir haben die Leistung
der Gesichts- und der Oberkörperdetektion verbessert, um die Effizienz der Personener-
kennung im Umgang mit teilweiser Verdeckungen und Veränderungen der menschlichen
Posen zu erhöhen. Um die höheren Herausforderungen der Verfolgung von detektierten
Menschen mit komplexen Posenänderungen und -verdeckung zu bewältigen, verwenden
wir einen fast compressive tracker (Zhang et al. (2012)) und einen Kalman-Filter. Expe-
rimentelle Ergebnisse auf einer anspruchsvollen Datenbank zeigen, dass unsere Methode
eine hohe Performanz erreicht und in Echtzeit auf den mobilen Robotern ausgeführt wer-
den kann.

x

Acknowledgments
I would never have been able to finish my dissertation without the guidance of my com-
mittee members, the help from my friends.

First, I want to express my deep gratitude and many thanks to my advisor, Prof. Dr.
Andreas Zell, for years of guidance and interesting discussions. I would like to thank
him for encouraging me in my research and for his excellent guidance, caring, patience.
Your advice on my research is priceless. I would also like to thank Prof. Dr. Andreas
Schilling for reviewing my thesis.

I would like to thank Sebastian Scherer, who is my good friend, was always willing to
help and give his best suggestions. I would also like to thank Andreas Maselli, Barbara
Black, and Jacobo Jimenez for correcting my papers. Many thanks to Ran Liu, Artur
Koch, Lixing Jiang, Jacobo Jimenez, and other friends in the laboratory of Prof. Dr.
Andreas Zell for helping me to conduct experiments. My research would not have been
possible without their helps. Special thanks go to Barbara Black, Paul, Julia Louttit
Paterson, and Jacolien van Rij for proof reading of my thesis.

I am also grateful to Klaus Beyreuther for solving the hardware problems. Many
thanks to Vita Serbakova for taking care of all of our official processes and documenta-
tion.

Finally, I would also like to thank my parents, and my young brother. They were
always supporting me and encouraging me with their best wishes.

xi

Acknowledgments

xii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Person Detection . 1
1.1.2 Person Tracking . 3
1.1.3 Person Identification . 4

1.2 Contributions . 6
1.3 Outline . 7
1.4 Experimental Platform . 9

1.4.1 Experimental Environment . 9

2 Theoretical Background 11
2.1 Viola-Jones Face Detection . 11

2.1.1 Haar-like Feature . 11
2.1.2 Integral Image . 11
2.1.3 Adaboost Learning . 12
2.1.4 Cascade Architecture . 14

2.2 Naive Bayes Classifier . 15
2.3 Support Vector Machine . 16
2.4 Kalman Filter . 19

3 Real Time Face Detection Using RGB-D Images 21
3.1 Introduction . 21
3.2 Related work . 22
3.3 Real Time Face Detection Using RGB-D Images 23

3.3.1 Sampling . 24
3.3.2 Geometric constraints . 24
3.3.3 Navigation . 25
3.3.4 Gray world assumption . 26
3.3.5 Skin detection . 28
3.3.6 Depth-based skin segmentation 29
3.3.7 Face detection . 29

3.4 Experimental Setup . 30
3.4.1 Datasets . 31
3.4.2 Implementation Details . 31

xiii

Contents

3.5 Results . 32
3.5.1 Processing time . 32
3.5.2 Accuracy . 33

3.6 Summary . 34

4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter 37
4.1 Introduction . 37
4.2 Related Work . 39

4.2.1 Face Tracking . 39
4.2.2 Face Pose Estimation . 40

4.3 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter 44
4.3.1 Face detection . 44
4.3.2 Face tracking . 45
4.3.3 Facial feature tracking . 46
4.3.4 Face pose estimation . 46

4.4 Experimental Setup . 48
4.4.1 Evaluation of Face Tracking 49
4.4.2 Evaluation of Face Pose Estimation 50

4.5 Summary . 52

5 Person Detection and Tracking using RGB-D Images 53
5.1 Introduction . 53
5.2 Related Work . 55

5.2.1 Person detection . 55
5.2.2 Person tracking . 56

5.3 Overview of Histogram of Oriented Gradients Based Human Detection 58
5.3.1 Preprocessing . 59
5.3.2 Gradient computation . 60
5.3.3 Orientation Binning . 61
5.3.4 Normalization and Descriptors Construction 61
5.3.5 Support Vector Machine Classifier 63

5.4 Overview of Real-Time Compressive Tracking 63
5.4.1 Sparse Random Measurement Matrix 63
5.4.2 Real-Time Compressive Tracking 64

5.5 Person Detection and Tracking using RGB-D Images 66
5.5.1 Face detection . 68
5.5.2 Upper body detection . 68
5.5.3 Fast compressive tracking . 69
5.5.4 Kalman filter for occlusion handling 70
5.5.5 Hungarian algorithm for matching 72

5.6 Experimental Setup . 73
5.6.1 Dataset . 73

xiv

Contents

5.6.2 Results . 73
5.7 Summary . 74

6 Face Recognition Using Local Ternary Patterns with Collaborative Repre-
sentation 77
6.1 Introduction . 77
6.2 Related Work . 79

6.2.1 Overview of Face Recognition via Sparse Representation 81
6.2.2 Overview of Face Recognition via Collaborative Representation 84
6.2.3 Overview of Face Recognition using Local Binary Patterns . . . 86
6.2.4 Overview of Face Recognition using Local Ternary Patterns . . 91

6.3 Face Recognition Using Local Ternary Patterns with Collaborative Rep-
resentation . 93
6.3.1 Face detection . 94
6.3.2 Face tracking . 95
6.3.3 Eye tracking . 95
6.3.4 Face alignment and cropping 96
6.3.5 Facial feature extraction . 96
6.3.6 Collaborative representation based classification 96

6.4 Experimental Setup . 97
6.4.1 AR database . 98
6.4.2 LFW-a database . 100
6.4.3 Tuebingen dataset . 100

6.5 Summary . 101

7 Conclusions 103
7.1 Summary . 103
7.2 Future Work . 106

Bibliography 107

xv

Chapter 1

Introduction

1.1 Motivation
In the last two decades, the fields of person detection, tracking and identification have
made major contributions to the development of human-robot interaction systems. These
tools improve the ability of mobile robots to take over difficult tasks that previously might
have taken a great deal of human effort to perform. Examples of these tasks are listed
here: managing security for apartments, airports, agencies; taking care of old people
at home or patients in the hospital; delivering daily products to identified persons; and
rescuing people trapped in a collapsed building. The widespread development of vi-
sion sensors, such as Microsoft Kinect cameras, as well as upgraded robot platforms has
been key to the success of recent research in person detection, tracking, and identifica-
tion by mobile robots. However, there are still several serious challenges in these fields
which motivate us to find better solutions for mobile robots. This thesis provides several
fundamental algorithmic results that address some such challenges. We introduce three
fundamental research fields related to human-robot interaction, to which we have made
significant contributions. These fields are person detection, person tracking, and person
identification.

1.1.1 Person Detection
Person detection is a challenging task, with many applications which have attracted lot
of attention in recent years. In the field of mobile robots, person detectors are being
employed for security purposes, in crowded scenes such as airports, train stations, super-
markets, etc. Recently, many companies have begun to offer efficient safety and security
solutions based on robotics. In their systems, person detection is a crucial aspect of hu-
man activity recognition. A mobile robot, equipped with multiple sensors such as stereo
or RGB-D cameras, can quickly detect the full human body or body parts in a given
scene. By using pose estimation algorithms, human poses are estimated and actions
are recognized. Such detection is usually combined with face detection to enhance the
performance of the whole system.

Person detectors are also utilized in vision-based collision warning systems that can

1

Chapter 1 Introduction

be installed on mobile robots working in factories, in inventory storages, or in hospitals.
These robots usually perform some difficult tasks of carrying heavy goods, patients, or
packages of dangerous chemicals. When people are detected at a close distance, the
robot is first alerted by a warning system. The robot then has some specific solutions to
safely avoid collisions with people.

Although many researchers put a lot of effort into improving person detectors, the
performance of current person detection algorithms is still far from what could be used
reliably under realistic environments This is due to the difficulties associated with the
human body and the environment in which it is located. Because of the non-rigid na-
ture of the human body, people usually have wide variations in shape and posture. The
variations of orientation and size, due to the position and direction of the camera, also
pose some technical challenges. In addition, humans can change their clothes by vary-
ing colors and textures. This results in difficulties in recognizing human appearance.
Furthermore, the environment in which the human is located also causes changes of ap-
pearance in different ways. For example, the human appearance can be degraded due to
insufficient illumination or its orientation. Moreover, a cluttered background could cause
bigger challenges due to the possibility of occlusion. A person, for example, moving be-
hind others, will be partly or fully occluded. Eventually, the computational complexity
of person detection algorithms is also taken into account when we apply them to mobile
robots, which are required to run in real time.

In this thesis, we aim to develop a robust person detection framework which is able to
detect humans under partial occlusion and real time environments. To achieve this goal,
we employed an algorithm using a combination of a face detector and an upper body
detector. The face detector is fast and accurate when the human face is visible, while the
upper body detector also has significant advantages when dealing with the occlusion of
the lower body or the face.

In the process of face detection, we use a Microsoft Kinect camera to extract the depth
and color values of an arbitrary position in the scene. By combining color and depth
images from the Microsoft Kinect camera with navigation data, we can build an effective
real time system of face detection. This combination grants some significant advantages
to our face detector. First, we can compute 3D geometric constraints of objects based on
depth values from the Kinect. As a result, non-face regions can be found and removed.
Second, we can apply a new technique of depth-based skin segmentation for improving
the efficiency of finding human skin as well as increasing the speed of detecting faces.
By combining depth values, skin areas can be isolated in different objects and at different
distances. Furthermore, we can determine the distance from them to the Kinect camera.
Thus, the size of potential faces can be accurately estimated in every skin region to
reduce processing time. Third, by utilizing depth values and navigation data, mobile
robots are able to reliably determine 3D coordinates of every position in real world space.
Thus, robots can easily ignore background regions and only focus on the potential facial
regions.

In the upper body detection step, the information of geometric constraints, navigation

2

1.1 Motivation

and the technique of depth-based segmentation are also helpful for removing the back-
ground and reducing search areas. As a result, we have a small set of search areas where
the upper body detector is applied to detect humans. This is based on the method of his-
tograms of oriented gradients (Dalal and Triggs (2005)). Essentially, similarly to what
happens in face detection, we estimate the sizes of humans in these search areas in order
to significantly reduce computational costs. The upper body detector is trained by us-
ing a linear support vector machine. Specifically, search windows are divided into cells
which are used to compute a Histogram of Oriented Gradients. The upper body detector
classifies the search window running through every position and scale to find the human
location.

Based on extensive experiments, our face and upper body detectors are shown to be
fast, accurate, and run in real time in indoor environments.

1.1.2 Person Tracking
Despite numerous research efforts, the performance of current person detection algo-
rithms is still far from what could be used reliably in realistic environments. Person
detectors could fail due to large changes in the appearance of humans by illumination,
different poses or by partial occlusion. When these failures occur, an efficient and effec-
tive person tracker is necessary to follow the human and adapt to those complex changes
as well as to partial occlusion.

In practice, unfortunately, person tracking on mobile robots is extremely difficult. The
first challenge is that people′s appearances vary widely, and people change their appear-
ance in different environments. Furthermore, occluded people, as well as high contrast
illumination, are additional difficulties that mobile robots often encounter in indoor en-
vironments.

Another challenge is the complexity of motion trajectories of multiple people in the
same scene. Tracking a single person is sufficiently difficult as they move unpredictably.
Tracking multiple people, however, is complicated further by their interactions. For
example, a person, moving behind others, is partly or fully occluded. Moreover, due to
frequent movement, the mobile robot often has to change the field of view, causing fast
changes of the human appearance in each frame. Thus it is not easy for the mobile robot
to reliably track people over long periods of time. Eventually, the mobile robot has to
interact with many people in real time, resulting in limiting the computational cost of the
tracking system.

In this thesis, we propose a new algorithm of tracking multiple people on mobile
robots, which is based on the combination of a fast compressive tracker and a Kalman
filter. This combination enhances the efficiency of our system to adapt to human changes
of pose, scales and appearance as well as to partial or full occlusion.

This is due to the fact that the method of compressive tracking has been shown to sig-
nificantly outperform existing algorithms. Basically, this tracker is able to quickly adapt
to the object changes of pose, rotation, deformation, and self-occlusion. Furthermore,

3

Chapter 1 Introduction

this method is suitable for real time applications due to its low computational costs. An
improved compressive tracker can reliably track humans even when the mobile robot and
humans often move and change their directions and orientations. In addition, we utilize
the depth information from RGB-D images to reduce computational costs and false pos-
itives, resulting in a real time performance of person tracking on the mobile robot. In
order to improve tracking performance, a Kalman filter is also set up as an alternative
tracker in case the human is completely occluded by another person or large objects.
This means that the output of the Kalman filter is used for tracking when the human is
significantly occluded and the fast compressive tracker can not provide a reliable predic-
tion. Experimental results from a challenging database show that our method achieves
high performance and can run in real time on mobile robots.

1.1.3 Person Identification
The ability to recognize individuals is a fundamental requirement for human- robot in-
teraction in service robots. In particular, they have been designed to work in popu-
lated environments, such as hospitals, museums, office buildings, and supermarkets. In
these environments, mobile robots are often assigned to perform tasks such as cleaning,
surveillance, delivery, search and rescue. These mobile robots must have the ability to
cooperate with people. To enable this cooperation, a mobile robot needs to know who
they are. That is the fundamental problem of person identification with which we are
concerned in this thesis.

There are a number of possible solutions that can be used to uniquely identify any
person, such as fingerprints, the texture of the iris, etc. Because each of these features
is unique for each person, the methods for detecting them have very high accuracy rates.
However, these methods have many drawbacks in that mobile robots are not able to
interact with humans in a natural way. For example, fingerprint scanners require physical
contact with the device, which is very inconvenient for people when communicating with
mobile robots. The ideal system of person identification for mobile robots should be
able to recognize the humans in their natural environment without requiring any special
registration or scanning procedure.

For this reason, in this thesis, we develop a new face recognizer to identify individuals
because it allows mobile robots to identify someone in a natural way. In fact, mobile
robots are able to identify people in a group in the environments of hospitals, airports,
supermarkets, office buildings, etc.

Several approaches have been proposed for face recognition with varying degrees of
success; however, most of them assume that mobile robots are only allowed to recognize
people in unrealistic conditions. In these experiments, only frontal face images taken
under controlled lighting conditions were used. However, the performance of their algo-
rithms degrades significantly when tested across pose and illumination. It is due to the
fact that recognizing faces reliably across changes in pose and illumination is a much
harder problem. First, the face image is often taken under different conditions of illu-

4

1.1 Motivation

mination. Illumination is one of the most significant factors affecting the appearance
of faces. Due to the structure of the face, different lighting sources can make strong
shadows that diminish certain facial features. This results in the fact that differences in
appearance induced by illumination are larger than differences between individuals. For
this reason, most existing methods are accurate for recognizing faces in constrained il-
lumination conditions, but their performance is much worse in recognizing faces under
uncontrolled illumination conditions. Second, while both the humans and the robot move
in front of complex backgrounds, the face changes with wide variations of poses. Like
the problem of illumination variation, differences in appearance caused by rotations are
also larger than differences between individuals. Thus, handling varying poses is one of
the major challenges of uncontrolled face recognition. The system performance drops
significantly when pose variations are present in input images. In addition, most exist-
ing pose robust methods are too computationally complex to meet practical applications,
such as face recognition on mobile robots.

In this thesis, we propose a novel method of face recognition for mobile robots, which
is fast and can work well under unconstrained illumination conditions. To handle the
problems of illumination, misalignment, and noise, we propose an algorithm for recog-
nizing faces based on the combination of local ternary patterns and collaborative repre-
sentation based classification. This combination enhances the efficiency of collaborative
representation based classification in face recognition, which can help mobile robots to
recognize human faces even when humans move freely under different illumination and
noisy conditions. Furthermore, it significantly reduces computational costs to help the
robot run in real time. To counter the problem of pose, we present a robust method of
face pose estimation for human-robot interaction. In essence, we track some key facial
features, including the two external eye corners and the nose. These features provide
geometric cues to estimate precisely the yaw angle and the roll angle of the face, which
are important for the improvement of uncontrolled face recognition. We then combine
an adaptive correlation filter and a Viola-Jones object detection to track these features,
which are robust to face rotation, face deformation, occlusion, and complicated illumi-
nation. As a result, the face pose is also estimated efficiently based on some geometric
computation among the face features. Our feature based method of face pose estimation
is shown to be robustly running on a mobile robot in uncontrolled illuminations and en-
vironments. For future work, we intend to develop a robust algorithm for recognizing
faces across poses using this face pose estimator.

In summary, our system can be broken into three sequential stages: face detection, face
tracking and face recognition. In the first stage, the role of face detection is to reliably and
quickly find human faces in images. In the second stage, a robust method of face tracking
is adopted to adapt to changes of the face as well as to adapt to complicated changes
of illumination. This method is essentially based on the combination of an adaptive
correlation filter and a Viola-Jones face detection. In our method, face tracking is an
early and critical step that finds the face in images from which we can extract relevant
features which are used to reliably compute face alignment in face images. The more

5

Chapter 1 Introduction

precisely the face can be tracked, the more accurately it can be cropped, aligned, and
recognized. In the final stage, the aligned face is classified based on our face recognizer
using the combination of local ternary patterns and collaborative representation based
classification. Our method achieves high recognition rates on challenging face databases
and can run in real time on mobile robots.

1.2 Contributions
The contribution of this thesis concerns the problems of person detection, tracking, and
identification on mobile robots. Addressing the above discussed problems, in this thesis,
we propose novel solutions to effectively enhance the ability of mobile robots in find-
ing and identifying people in unconstrained environments. In particular, the following
contributions are given:

• We have developed an approach of combining color and depth images provided by
a Kinect camera and navigation information for face detection on mobile robots.
Based on this combination, mobile robots are able to localize human faces in real
time, and interact with humans in a more reliable way. This approach not only
achieves a high detection rate of true positives but also limits false positives in an
image. This work has been published at the 2011 IEEE International Symposium
on Robotic and Sensors Environments (Vo et al. (2012)).

• We propose an algorithm of tracking faces based on the combination of an adap-
tive correlation filter and a Viola-Jones face detection. This combination utilizes
the advantages of adaptive correlation filters to adapt to face changes of rotation,
occlusion and scale as well as to adapt to complex changes of background and il-
lumination. In addition, it can also remove drift effectively by detecting the face
and correcting its position after a period of time. This work has been published at
the 2013 IEEE European Conference on Mobile Robots (Vo and Zell (2013)).

• To efficiently estimate face poses, we present a robust method of face pose estima-
tion for human-robot interaction, which is only based on some key facial features,
including the two external eye corners and the nose. We combine an adaptive cor-
relation filter and a Viola-Jones object detection to track these features which are
robust to face rotation, occlusion and uncontrolled illumination. These features
provide geometric cues to estimate precisely the yaw angle and the roll angle of
the face. Our feature based method of face pose estimation is shown to run robustly
on a mobile robot in uncontrolled illuminations and environments. This work also
has been published at the 2013 IEEE European Conference on Mobile Robots (Vo
and Zell (2013)).

• We propose an algorithm for recognizing faces based on the combination of lo-
cal ternary patterns and collaborative representation based classification. Thus,

6

1.3 Outline

our method significantly helps mobile robots to recognize human faces that often
change appearance by altering their rotation, scale, and pose, by moving through
different lighting conditions, or by undergoing non-rigid deformation. Further-
more, it can reduce computational costs to help the robot run in real time. This
work has been published at the 2014 International Conference on Intelligent Au-
tonomous Systems (Vo and Zell (2014)).

• We have developed a new algorithm of detecting and tracking multiple people on
mobile robots. The first important component is a set of person detectors, helping
mobile robots in each frame to reliably find the location of humans and efficiently
update the person trackers. In order to provide reliable observation cues for track-
ing multiple humans, we use a face detector and an upper body detector. This is
due to the fact that the face detector is helpful and strongly reliable when the human
face is visible and the upper body detector has significant advantages when dealing
with the occlusion of the lower body or the face. The second key component in
our framework is a robust person tracker used to keep tracking people efficiently.
Due to complicated changes in human pose and appearance, our detectors can not
find the position of a person in every frame. Hence, we use a tracking method,
based on the combination of a fast compressive tracker and a Kalman filter. This
combination enhances the efficiency of our system to adapt to human changes of
pose, scales and appearance as well as to partial or full occlusion. In addition, we
utilize the depth information from RGB-D images to reduce computational costs
and false positives, resulting in a real time performance of person detection and
tracking on the mobile robot. This work has been published at the 2014 IEEE
International Conference on Robotics and Biomimetics (Vo et al. (2014)).

1.3 Outline
The thesis is structured as follows:

• In Chapter 2, we introduce in detail basic algorithms that are used in the following
chapters. Machine learning approaches for visual object detection like Adaboost
and Support Vector Machine are introduced in more detail. The Kalman filter
method for object tracking is briefly described.

• In Chapter 3, the face detection method using geometric constraints, navigation
and depth-based skin segmentation, is explained. This method is a necessary step
for our system of person detection, tracking and identification.

• In Chapter 4, we present a real time algorithm for mobile robots to track human
faces and estimate face poses accurately in realistic environments. Both face track-
ing and face pose estimation play key roles in our system of person identification,
which can be used as an essential preprocessing step for robust face recognition.

7

Chapter 1 Introduction

Figure 1.1: The mobile robots used for experiments: SCITOS G5.

• For a service robot, the ability to detect and track humans are the key problems. In
Chapter 5, we propose an algorithm for mobile robots to detect and track people
reliably, even when humans often adopt a wide variety of body poses, shapes, torso
rotations, and are frequently occluded. In order to quickly find people in each
frame, we have improved the performance of face and upper body detection. To
cope with the great challenges of complex changes of human poses and occlusions,
we combine a fast compressive tracker with a Kalman filter to track the detected
humans.

• In Chapter 6, we present an algorithm for recognizing faces based on the combina-
tion of local ternary patterns and collaborative representation based classification.
Our algorithm was shown to be robust to face misalignment, and also insensi-
tive to random noise and uncontrolled illumination. As a result, our mobile robot
can reliably recognize human faces even under different illumination and noisy
conditions. Furthermore, this algorithm has low computational costs and can be
implemented in real time.

• The thesis concludes with Chapter 7, which gives a brief summary. We also want
to indicate the potential directions of future research in this chapter.

8

1.4 Experimental Platform

1.4 Experimental Platform

1.4.1 Experimental Environment
We used a MetraLabs mobile robot SCITOS G5 which is shown in Figure 1.1. The robots
feature the following hardware:

• On-board computer: Our mobile robot is equipped with a mobile PC with Linux
operating system with a 2 GHz CPU.

• Laser range finder: Our mobile robot is also equipped with a laser range finder
SICK S300 that provides distance measurements.

• Motion unit: A differential drive is installed on the MetraLabs mobile robot SCI-
TOS G5 in order to supply odometry at a resolution of 1 cm.

• Microsoft Kinect camera: Our mobile robot possesses a Microsoft Kinect camera
which is used to acquire both RGB images and depth information for every pixel.
This RGB-D Kinect camera is developed by PrimeSense, which acquires 640×480
registered images and depth data at 30 frames per second.

9

Chapter 1 Introduction

10

Chapter 2

Theoretical Background
In this chapter, we discuss in more detail the basic algorithms that are used in our sys-
tem of person detection, tracking, and identification. In particular, the approaches of
objection detection and tracking including Adaboost learning (Viola and Jones (2001b),
Freund and Schapire (1997)), support vector machine (Vapnik (1995), Cortes and Vapnik
(1995)), and Naive Bayes classification (Hand and Yu (2001)), are explicitly explained to
provide the reader with the basic theoretical framework of machine learning algorithms.
The Kalman filter method (Kalman (1960)) for object tracking is also briefly described.

2.1 Viola-Jones Face Detection
In this section, we introduce the real time algorithm of face detection invented by Vi-
ola and Jones (2001b). Since the method of Viola and Jones was often used in our
research of human detection and face detection, a detailed explanation for this method is
necessary and important. Essentially, Viola and Jones presented a new image represen-
tation, namely, the integral image, that quickly can compute simple Haar-like features
at any position and scale. Furthermore, one of the most important techniques that make
the Viola-Jones algorithm accurate and fast is the boosting learning algorithm, which is
mentioned and discussed below.

2.1.1 Haar-like Feature
Viola and Jones present a set of simple Haar-like features computed by summing the
pixels in the white region and subtracting those in the dark region, as shown in Figure
2.1. The Haar-like rectangles are very efficient to compute in a integral image, which
is explained in the next section, and provide good performance to build face detectors
using the boosting learning algorithm.

2.1.2 Integral Image
Integral images are a technique for quickly and efficiently computing the sum of values
in a rectangle subset of a grid, which is very useful to extract Haar-like features. At a

11

Chapter 2 Theoretical Background

Figure 2.1: Typical examples of Haar-like features (adopted from (Viola and Jones
(2001b)).

given location (x, y) in an image, the value of the integral image ii(x, y) is the sum of the
pixels above and to the left of (x,y):

ii(x,y) = ∑
x′≤x,y′≤y

i(x′,y′) (2.1)

where i(x′,y′) is the pixel value of the original image at location (x′,y′). The following
formula shows how to efficiently compute the sum of a rectangular area, as shown in
Figure 2.2:

∑
(x,y)∈ABCD

= ii(D)+ ii(A)− ii(B)− ii(C) (2.2)

Since we only need four array references to calculate each rectangular feature, the
integral image can be efficiently applied for computing Haar-like features.

2.1.3 Adaboost Learning
The basic idea of the boosting method is to gain a ”strong” classifier by linearly com-
bining many weak classifiers, the accuracy of which is usually moderate. To aim at this
goal, we have to build a series of weak classifiers that choose the best Haar-like features
for classifying the positive and negative samples. Each weak classifier is trained to find
an optimal threshold classification function so that the number of misclassified samples

12

2.1 Viola-Jones Face Detection

Figure 2.2: The sum of the pixels within the rectangular area can be computed with four
array references: A, B, C, D.

is minimized.
Given a feature f j , a parity p j and a threshold θ j, the weak classifier h j(x) is designed

to classify the sample x as follows:

h j(x) =
{

1 i f p j f j(x) ≤ p jθ j
0 otherwise (2.3)

In order to train a strong classifier, we have to prepare a training set including the
sample images (x1,y1), ...,(xn,yn) in which yi equals 0 if the sample xi is negative and yi
equals 1 if this sample is positive. The weight ω1,i corresponding to the sample (xi,yi) is
initially computed as follows:

ω1,i =

{ 1
m i f yi = 0
1
n i f yi = 1

(2.4)

where m,n are the number of negatives and positives, respectively.
Essentially, the training process for the AdaBoost algorithm consists of T rounds of

boosting. In each round of boosting, we select one good feature from a set of potential
features. In each round t, the feature selection process consists of four basic steps. First,
all the weights must be normalized using the following formula:

ωt,i←
ωt,i

∑n
j=1 ωt, j

(2.5)

so that ωt is a probability distribution.
Second, for each feature j, the classifier h j is trained to determine the optimal thresh-

old classification function so that the number of misclassified examples are minimal. The

13

Chapter 2 Theoretical Background

error is evaluated as follows:

ε j = ∑
i

ωt
∣∣h j(xi)− yi

∣∣ (2.6)

In the third step, among the classifiers h j, the classifier ht , with the lowest error εt , is
chosen. In the last step, all the weights must be updated to improve the training result in
the next step. The update is calculated as follows:

ωt+1,i = ωt,iβ 1−ei
t (2.7)

where ei equals 1 if example xi is misclassified, ei equals 0 otherwise, and

βt =
εt

1− εt
(2.8)

After training the T weak classifiers ht , a strong classifier is gained by linearly com-
bining these classifiers as follows:

h(x) =
{

1 i f ∑T
t=1 αtht(x)≥ 1

2 ∑T
t=1 αt

0 otherwise
(2.9)

where

αt = log
1
βt

(2.10)

The accuracy of a strong classifier can be improved by increasing the number of its
weak classifiers. On the other hand, increasing the number of weak classifiers results in
expensive computational costs. To deal with the trade-off between accuracy and com-
putational costs, Viola and Jones proposed an algorithm for constructing a cascade of
classifiers which can reject many negative samples while detecting almost all positive
instances.

2.1.4 Cascade Architecture

In a cascade architecture, as shown in Figure 2.3, the first stage classifiers are trained
to discard the majority of subwindows and the next classifiers are more complex to gain
low false positive rates. This architecture is motivated by the fact that only a very small
number of subwindows contain faces. In the cascade, a strong classifier hi(x) is trained
to reject as many true negative samples as possible while detecting almost all faces (>
90%). This can be realized by adjusting the threshold τi. The first strong classifier h1(x)
only consists of one or two weak classifiers but it can discard more than 50 % of the
negative samples. The next strong classifiers comprises more weak classifiers because
the classification task is more difficult. With such a cascade architecture, most of the
negative samples are quickly rejected at the early stages and only a few positive samples

14

2.2 Naive Bayes Classifier

Figure 2.3: Cascade architecture of a face detection system (adopted from (Viola and
Jones (2001b)).

can pass over all the classifiers.

2.2 Naive Bayes Classifier

As a simple probabilistic classifier, the Naive Bayes classifier (Hand and Yu (2001)) is
used in our person tracker due to the fact that it can be trained very quickly. We can use
Naive Bayes when the training time is a crucial factor, such as online training process
of our person tracker. The Naive Bayes classifier is based on the assumption that the
features used in the classification are independent.

Given a probability model for a classifier which is described as follows:

p(C|F1,F2, ...,Fn) (2.11)

where C is a dependent class variable with a number of classes, which depends on several
feature variables F1 through Fn. Based on Bayes’ theorem, we can rewrite the conditional
model in (2.11) as follows:

p(C|F1,F2, ...,Fn) =
p(C)p(F1,F2, ...,Fn|C)

p(F1,F2, ...,Fn)
(2.12)

Since the denominator does not depend on C and the values of the features Fi are
given, the denominator is effectively constant. The numerator is equivalent to the joint
probability model in (2.13).

p(C,F1,F2, ...,Fn) (2.13)

Based on the definition of conditional probability, the numerator can be presented by
the following equation:

15

Chapter 2 Theoretical Background

p(C,F1,F2, ...,Fn) = p(C)p(F1|C)p(F2|C,F1)...p(Fn|C,F1,F2, ...,Fn−1) (2.14)

We assume that each feature Fi is independent of every other feature Fj for i 6= j. As a
result, we have the following equation:

p(Fi|C,Fj) = p(Fi|C) (2.15)

for i 6= j. Hence, the joint model can be computed as follows:

p(C,F1,F2, ...,Fn) =
1
Z

p(C)
n

∏
1

p(Fi|C) (2.16)

where Z is a scaling factor dependent only on F1,F2, ...,Fn.
In principle, the basic idea of a Naive Bayes classifier is to combine the Naive Bayes

probability model, which is discussed above, with a decision rule. One of the most
frequently used rules is the maximum a posteriori (MAP) decision rule, which is used to
choose the hypothesis that is most likely to happen. Based on this combination, a Naive
Bayes classifier is defined as follows:

classi f y(f1, ..., fn) = argmax p(C = c)
n

∏
i=1

p(Fi = fi|C = c) (2.17)

Naive Bayes is proven to be an efficient classifier, and is broadly used in image pro-
cessing and robotics.

2.3 Support Vector Machine
Support vector machines, which were proposed by Cortes and Vapnik (1995), are su-
pervised learning models which have been broadly applied to object detection, tracking,
classification, etc. In the field of person detection, a support vector machine is also an
efficient method for classification. A support vector classifier takes a set of input data,
and then predicts which of two possible classes the input belongs to. Thus a support
vector machine is essentially a non-probabilistic binary linear classifier. The basic idea
of support vector machines is to find a classifier that maximizes the minimal distance
between the closest points of the different classes.

In the case of linear problem, support vector machines are trained to find a hyperplane
to seperate the two classes:

〈w,xi〉+b≥+1 i f yi =+1 (2.18)

〈w,xi〉+b≤−1 i f yi =−1 (2.19)

16

2.3 Support Vector Machine

where b is a constant, and w is the normal of the plane. Since we usually have a family
of separating hyperplanes, our task is to choose the best one that maximizes the minimal
distance from the nearest training data to the plane.

The two points xl and xk are given. They are on different sides of the hyperplane.
Thus, they satisfy the following equations:

〈w,xk〉+b =+1 (2.20)

〈w,xl〉+b =−1 (2.21)

As a result, we have the following equation:

〈w,(xk− xl)〉= 2 (2.22)

Since the distances from xk and xl to the separating hyperplane are minimal, we can
find the maximal distance between these nearest points of different classes by the fol-
lowing formula:

dist(xk,P)+dist(xl,P) (2.23)

=
(
〈w,xk〉
|w| + b

|w|

)
−
(
〈w,xl〉
|w| + b

|w|

)
(2.24)

=
〈w,(xk− xl)〉
|w|

(2.25)

=
2
|w|

(2.26)

This results in the following optimization problem:

minimize
1
2
〈w,w〉 (2.27)

subject to yi(〈w,xi〉+b)≥ 1 (2.28)

By introducing Lagrange multipliers α , the previous constrained problem can be ex-
pressed as:

maximize
l

∑
i=1

αi−
1
2

l

∑
i, j=1

αiα jyiy jxix j (2.29)

subject to αi ≥ 0 (2.30)

17

Chapter 2 Theoretical Background

and
l

∑
i=1

αiyi = 0 (2.31)

This problem can now be solved by standard quadratic programming techniques. Thus
w can be expressed as a linear combination of the training vectors as follows:

w =
l

∑
i=1

αiyixi (2.32)

In addition, the parameter b can be computed based on the following formula:

ym(w · xm +b)) = 1 (2.33)

where xm is a training pattern.
In order to deal with nonlinear problems, a transformation is applied to map the data

into a new space where we can find a linear separating hyperplane. In addition, Boser
et al. (1992) used the kernel functions to create a non-linear classifier. In the case of non-
linear support vector classifiers, the resulting algorithm is similar except that every dot
product is replaced by a non-linear kernel function. This allows for a fitting of the max-
imum margin hyperplane in a transformed feature space. Particularly given a mapping
Φ from the input space χ to a higher dimensional space Ω, a nonlinear support vector
machine can be expressed as follows:

h(x) = sgn

(
l

∑
i=1

αiyik(x,xi)+b

)
(2.34)

where k is a kernel function which can be computed as follows:

k(x,x
′
) =

〈
Φ(x),Φ(x

′
)
〉

(2.35)

Kernel functions usually used in nonlinear support vector machines are:

• Polynomial: k(xi,x j) = (γxT
i x j + r)d, γ > 0.

• Gaussian radial basis function: k(xi,x j) = exp
(
−‖xi−x j‖2

2σ2

)
.

• Hyperbolic tangent: k(xi,x j) = tanh(κxi · x j + c) for some κ > 0 and c < 0.

The nonlinear support vector classifier can be trained based on the following quadratic
optimization problem:

maximize
l

∑
i=1

αi−
1
2

l

∑
i, j=1

αiα jyiy jk(x,xi) (2.36)

18

2.4 Kalman Filter

sub ject to
l

∑
i=1

αiyi = 0 (2.37)

where 0≤ αi ≤C with i = 1, ..., l, and C is the upper bound of coefficients αi.

2.4 Kalman Filter
Although the Kalman filter (Kalman (1960)) is a very old algorithm, it is still one of
the most important and common data fusion algorithms. This section provides a simple
explanation of the Kalman filter for object tracking, which is beneficial for our research
of human tracking. In the Kalman filter model, the state of a system at a time t is evolved
from the prior state at time t-1, as shown in the following equation:

xt = Ftxt−1 +Btut +wt (2.38)

Here, the state transition matrix Ft applies the effect of each system state parameter at
time t−1 on the system state at time t. And Bt is the control input matrix, which applies
the effect of each control input parameter in the vector of control inputs ut on the state
vector. In this equation, xt is the state vector at time t and wt is the vector containing the
process noise. The process noise wt is normally distributed with covariance given by the
covariance matrix Qt . Measurements of the system can also be performed as follows:

zt = Htxt + vt (2.39)

where zt is the vector of measurements, and vt is the vector containing the measurement
noise. According to this model, Ht is the transformation matrix that maps the state vector
parameters into the measurement domain. The vector of the measurement noise vt is also
normally distributed with covariance given by the covariance matrix Rt .

The Kalman filter algorithm consists of two stages: prediction and measurement up-
date. In the prediction stage, the state estimate vector x̂t−1 is predicted by:

x̂
′
t = Fx̂t−1 +But−1 (2.40)

In addition, the error covariance Pt−1 is also predicted by:

P̂
′
t = FtPt−1FT

t +Qt (2.41)

In the measurement update, the new state estimate vector x̂t can be computed based on
the vector of measurements zt as follows:

x̂t = x̂
′
t +Kt(zt−Hx̂

′
t) (2.42)

where Kt is the Kalman filter gain matrix computed by minimizing the a posteriori error

19

Chapter 2 Theoretical Background

covariance. The Kalman filter gain matrix can be derived from the following equation:

Kt = P
′
t HT (HP

′
t HT +R)−1 (2.43)

Finally, the a posteriori error covariance estimate can be calculated as follows:

Pt = (I−KtH)P
′
t (2.44)

20

Chapter 3

Real Time Face Detection Using
RGB-D Images

3.1 Introduction

Face detection is a necessary step for many other algorithms of face analysis such as face
recognition, face tracking and facial expression recognition. Thus, many researchers
tried to improve the face detection performance for mobile robots. With increased de-
velopment of sensor technology, robots will be equipped with more and more different
sensing modules, such as laser range scanners, sonar sensors and Microsoft Kinect cam-
eras. Among them, the Microsoft Kinect camera is a relatively new device from which
we can extract the depth values and color values of an arbitrary position in the image.
Therefore, the Microsoft Kinect camera becomes a powerful device to help robots to ex-
plore objects in 3D real world space. In this section, we describe a way to combine color
and depth images from the Microsoft Kinect camera with navigation data to build a real
time system of face detection. This combination gives us the following advantages:

First, we can compute 3D geometric constraints of objects based on depth values from
the Microsoft Kinect camera, which are used for removing non-face regions. Second, we
can apply a new technique of depth-based skin segmentation for improving the efficiency
of finding human skin as well as increasing the speed of detecting faces. By combining
depth values, we can isolate skin areas in different objects and at different distances.
Furthermore, we can determine the distance from them to the Microsoft Kinect camera;
and therefore, we can limit the size of potential faces in every skin region to reduce pro-
cessing time. Third, the combination of depth values and navigation data gives robots
an opportunity to determine 3D coordinates of every position in real world space. Thus,
robots can easily ignore background regions, and only focus on the potential facial re-
gions.

We tested our method and achieved remarkable results of computational speed and
accuracy. Figure 3.1 shows an example of our face detection which runs on the mobile
robot platform SCITOS G5. Our database includes 14 log files acquired from the mobile
robots PR2 and SCITOS with Microsoft Kinect cameras mounted on the top of robot
heads, containing RGB-D images, navigation data, and robot coordinates in an indoor

21

Chapter 3 Real Time Face Detection Using RGB-D Images

Figure 3.1: Our face detection is able to run in real time on a robot platform in an indoor
environment. By using geometric constraints, navigation and depth-based skin segmen-
tation, the average processing time can be reduced by a factor of 50, and false positives
are decreased by several tens of times.

environment, under different illumination conditions and different backgrounds.

3.2 Related work
There is a long history of researching face detection in images and in videos. Some of
these approaches can be applied to detect faces in real time, such as using skin color
(Kovac et al. (2003)), depth information (Wu et al. (2008)), texture information (Roy
and Marcel (2009)), and machine learning techniques (Viola and Jones (2004), Treptow
and Zell (2004), Kienzle et al. (2005)).

Especially, in applications for mobile robots, range data is used to make face detection
faster and more accurate. Kim et al. (1998) used stereo disparity histograms to segment
objects, and color transformation to localize the potential face areas. Blanco et al. (2003)
utilized laser range scanners to determine potential candidates before applying face de-
tection methods. Byers et al. (2003) combined skin detection, laser range scanners and
navigation to find potential facial positions. Kleinehagenbrock et al. (2002) applied laser
range scanners to extract legs and detect skin regions using a camera for finding faces.
Fritsch et al. (2004) used a stereo microphone to localize the voice of a talking person
and detect the person’s legs using a laser range finder. Such methods that use 2D laser
range scanners do not give highly accurate results because lasers provide poor features
that let robots confuse human legs with table legs or chair legs.

Additionally, geometric constraints based on depth information or lasers are also used
to limit the search of facial regions, which was shown by Dixon et al. (2007). Their
approach uses geometric constraints on possible human height and human facial size
and can remarkably reduce the amount of average computation as well as decrease a
large number of false positives. Even though this approach can reduce the computational

22

3.3 Real Time Face Detection Using RGB-D Images

Figure 3.2: Flow chart of our face detection process.

cost by 85 percent, it has not yet met the real-time requirements for an image resolution
of 640×480.

One further approach of face detection using depth information is reported by Bur-
gin et al. (2011). Their method uses depth data from a stereo camera to calculate the
corresponding size of faces, applies distance thresholding to avoid detecting faces in the
areas that are too far from the camera with too few face pixels. In addition, they suppose
that with traditional stereo cameras, which provide sparse information, it is impossible
to calculate depth values in the areas without texture, and in such areas, face detection
methods do not work. Therefore, the locations that do not contain depth information are
unnecessary to detect. In addition, the combination of depth values and context infor-
mation helps a robot to avoid finding faces in irrelevant locations, such as ceiling, floor
plane, etc. This method improved the processing time of face detection significantly. It
is able to run at a speed of 50 ms to 70 ms per frame, but it reduces the detection rate in
the case that faces are far from the camera or the faces are close to the image border.

3.3 Real Time Face Detection Using RGB-D Images
In this section, we describe our approach of real time face detection in detail. The whole
algorithm is illustrated as a flow-chart in Figure 3.2. Our approach includes six steps:
First, we use a strategy of sampling to reduce computational costs while not affecting
the accuracy of the algorithm. Instead of scanning the whole image, we only collect data
from several hundred sampling points that span the whole image. In the second step, we
evaluate these sampling points under geometric constraints to select appropriate points
for finding potential face regions. Similar to the second step, in our third step, we use

23

Chapter 3 Real Time Face Detection Using RGB-D Images

constraints of navigation to extract the sampling points that belong to the foreground
and remove those which belong to the background. In the fourth step, skin detection
is applied to the regions that are around the filtered sampling points. If the density of
the skin pixels around a sampling point is over a given threshold, this sampling point
will be kept for the next step. In the fifth step, all selected sampling points are used for
depth-based skin segmentation to isolate potential face regions as well as to estimate the
sizes of the faces that possibly occur in these regions. In the last step, these regions are
scanned by a face detector to localize human faces.

3.3.1 Sampling
A popular and efficient technique that we applied in this face detector is a sampling
technique. For not losing the information of potential face areas, the sampling interval
must be small enough to detect the smallest faces, which in our experiments have the
size of 20×20 pixels . We choose a sampling interval of 10 pixels in both horizontal and
vertical directions as described in Figure 3.3. In addition, the sampling positions in the
color image and in the depth image must have the same coordinates. In every sampling
point, the information set of depth value, skin region and navigation data is collected and
processed to serve the next preprocessing steps.

3.3.2 Geometric constraints
Based on the combination of color and depth images from the Microsoft Kinect camera
and knowledge of the camera’s geometry, we can compute 3D coordinates of every point.
The robot can now estimate the appropriate size of a human face at a certain sampling
point. A sampling point which is too far from the camera can be ignored because the
robot can not detect any faces there even if they occur. The robot is also able to ignore
irrelevant regions which do not contain human faces, for instance, floor and ceiling.
Furthermore, we limit the height of the search area because we know the minimum and
maximum height of humans when they sit on a chair, stand or walk. We now describe
how to apply geometric constraints for a mobile robot to limit the search space by using
depth values collected at sampling points:

First, we present the way to compute the transformation between coordinates of the
robot frame and 2D coordinates of the images. We denote the 3D coordinates of an
arbitrary point in the robot frame with respect to the Microsoft Kinect camera with
(cxp,

c yp,
c zp); ixp is the depth value of this point in the depth image; iyp and izp are

2D coordinates of this point in the color image. We mount the Microsoft Kinect camera
on the robot such that the normal vector of the depth image plane is parallel to the cxp
axis and cyp and czp axes are parallel to iyp and izp axes of depth image, respectively. We
can now compute the (cxp,

c yp,
c zp) coordinates:

cxp =
ixp (3.1)

24

3.3 Real Time Face Detection Using RGB-D Images

cyp =
(iyo− iyp)

ixp

fy
(3.2)

czp =
(izo− izp)

ixp

fz
(3.3)

where iyo and izo are 2D coordinates of the principal point, fy and fz are the focus lengths
of the camera. Now the height in robot frame coordinates of sampling points in the depth
image can be computed. The sampling points which are out of range from minimum
height hmin to maximum height hmax are ignored since they are unlikely in potential
facial areas. Furthermore, the sampling points that are too far from the camera are also
ignored, as mentioned above.

In addition, the robot can estimate the appropriate size of human faces at different
distances; therefore, it can limit the range of scales to detect faces. We assume that the
average size of a human face is 0.15 meters; therefore, the formula to estimate the size
of faces in images is:

s f ace =
0.15× fy

d
(3.4)

where s f ace is the average size of faces at the distance of d meters. The constraint of face
size contributes to a significant reduction of processing time because the robot only has
to scan potential facial areas in one scale instead of multiple scales.

3.3.3 Navigation

One of the advantages of current robot software is that it contains different modules,
including cameras and other sensors, motion control, navigation, etc. These modules
run concurrently and are able to share data. In our face detection task, we utilize the
navigation module for reducing the space of searching faces. We found that the Microsoft
Kinect camera allows a robot to determine 3D coordinates of every object with respect to
robot coordinates, while the navigation module provides a robot with its 3D coordinates
with respect to world coordinates. Therefore, we can track human activity around the
robot. The fusion of these modules gives a robot the ability to map the points in Microsoft
RGB-D images to cells of an occupancy grid map. This mapping helps the robot to avoid
searching the background regions whose corresponding cells are occupied in the grid
map, and focus on the regions of human activities, whose corresponding cells are free.

We note that (rxc,
r yc,

r zc) are 3D coordinates of the Microsoft Kinect camera with
respect to robot coordinates, (wxr,

w yr,
w zr) are the coordinates of the robot with respect

to the origin of the navigation map and θ is the rotating angle of the robot. Thus, the
coordinates of an arbitrary point in the world space with respect to robot coordinates,

25

Chapter 3 Real Time Face Detection Using RGB-D Images

Figure 3.3: Example of sampling. The sampling interval is 10 pixels in both horizontal
and vertical directions.

(rxp,
r yp,

r zp), are computed as:rxp
ryp
rzp

=

rxc
ryc
rzc

+

cxp
cyp
czp

 (3.5)

After that the coordinates of this point with respect to the origin of the grid map,
(wxp,

w yp,
w zp), are computed by the following formulas:wxp

wyp
wzp

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

rxp
ryp
rzp

+

wxr
wyr
wzr

 (3.6)

These coordinates are mapped to an occupancy grid map to determine the correspond-
ing cell. As a result, we use the above formulas for updating navigation information for
every sampling point. A sampling point would not be used for segmenting potential face
regions when it is mapped to an occupied cell in the grid map because it belongs to a
certain background area.

3.3.4 Gray world assumption
The gray world assumption is a white balance method which estimates the illumination
of images by computing the global space average color. Theoretically, the gray world

26

3.3 Real Time Face Detection Using RGB-D Images

assumption holds if we have a good distribution of colors in the scene. This method is
based on an assumption that, on average, the world is gray. The average reflected color
is then assumed to be the color of the light. Therefore, we can estimate the illumination
by computing the average color and comparing it to gray.

We assume that G(x,y) is a geometry term, Ri(x,y) the reflectance term, Li is the
intensity the current illumination emitted by the light source, and i is one of the color
channels in the image. So the color ci(x,y) can be expressed as follows:

ci(x,y) = G(x,y)Ri(x,y)Li (3.7)

Basically, we can achieve color constancy by dividing this expression by the illumina-
tion. The following formula is adopted to compute the average color:

ai =
1
n ∑

x,y
ci(x,y) (3.8)

=
1
n ∑

x,y
G(x,y)Ri(x,y)Li (3.9)

= Li
1
n ∑

x,y
G(x,y)Ri(x,y) (3.10)

We can assume that the geometry term and the reflectance term are independent ran-
dom variables. Thus the average color can be computed as follows:

ai = LiE[GRi] (3.11)

ai = LiE[G]E[Ri] (3.12)

We also assume that the reflectance term Ri is uniformly distributed over the interval
[0, 1]. The average color is then given as follows:

ai = LiE[G]
1
2

(3.13)

As a result, the color of the illumination can be estimated based on the following
formula:

Li ≈
2

E[G]
ai = f ai (3.14)

where f is a scale factor. Once the color of the illumination is known, we can compute
the output color oi by:

oi =
ci(x,y)

f ai
≈ ci(x,y)

Li
= G(x,y)Ri(x,y) (3.15)

27

Chapter 3 Real Time Face Detection Using RGB-D Images

3.3.5 Skin detection

In this section, we explain a skin detection technique, which is proposed by Kovac et al.
(2003). In general, the idea of this method is that it tries to eliminate the influence of non-
standard illumination before using a set of simple rules which are very efficient to classify
skin and non-skin pixels under standard illumination conditions. In order to quickly
eliminate non-standard illumination from images we use the gray world assumption of
color compensation, which is explained in detail above. With this presumption, we try
to find the scale factors which adjust the color channels R, G and B in such a way that
their mean values are equal to the ones under standard illumination. The scale factors are
calculated as follow:

sn =
tn
an

(3.16)

where sn is the scale factor of channel n, tn is the standard gray value of channel n, and
an is the average value of channel n. Because the computation of the gray world method
in the whole image is quite expensive while the illumination does not change too much
in a short time, the scale factors are only adjusted every second. After eliminating non-
standard illumination, image pixels are classified as skin or non-skin using a set of fast
and simple rules. So we denote I(i, j) as the skin value in a point at row i and column
j in the color image. I(i, j) is equal to 1 if the following rules (Kovac et al. (2003)) are
satisfied and equal to 0 if not:

R > 95 AND G > 40 AND B > 20 AND

Max{R, G, B}−Min{R, G, B}> 15 AND

|R−G|> 15 AND R > G AND R > B

where R,G,B are three values of red, green, and blue elements in an arbitrary pixel,
respectively. Such skin detection method will be applied to determine whether the area
around a sampling point in color image is skin or not. T (m,n) is defined as the sum
of skin values in a set of pixels around the sampling point at coordinates (m,n) and is
computed by the following formula:

T (m,n) =
2

∑
i=−2

2

∑
j=−2

I(sm+2i,sn+2 j) (3.17)

where s is the sampling interval. The area around the sampling point at coordinates
(m,n) is a skin area if T (m,n) is higher than a threshold, otherwise it is non-skin area.
The calculation of skin areas around sampling points improves the skin segmentation
that will be mentioned in the next session.

28

3.3 Real Time Face Detection Using RGB-D Images

3.3.6 Depth-based skin segmentation

Color-based skin segmentation is known to be a fast and efficient method of finding po-
tential facial regions. However, a drawback of this method is that it is much influenced
by different illumination sources and also detects skin-tone color objects (wood, hair,
some clothes...), which both cause the segmentation to fail. In many cases, segmented
areas would occupy a big part of the image. It makes the face detection system run
very slowly and less accurate. Furthermore, the previous method of skin segmentation is
used for classifying every pixel into differently labelled skin regions, which takes a lot of
time. In this section, we describe our technique of depth-based skin segmentation which
improves efficiency of finding human skin as well as reduces the computational cost.
Instead of classifying every pixel, we try to label every sampling point in such a way
that two sampling points have the same label if their sets of conditions of depth values,
geometric constraints, navigation constraints, and skin values are similar. The technique
of skin segmentation using sampling points remarkably reduces the processing time, in
our case by a factor of 100. The number of sampling points would be reduced further if
we use constraints of geometry and navigation together with skin detection to filter sam-
pling points out of interest ranges. After using such constraints, unnecessary sampling
points are removed, and we use a fast and accurate algorithm to segment these filtered
sampling points. This algorithm is used to classify filtered sampling points into different
labelled regions instead of classifying image pixels. In our algorithm, two filtered sam-
pling points A and B will have the same label if the distance between them is under a
threshold, which is set to a half of the average size of a face estimated at the sampling
points. This threshold is applied to remove the effect of disconnected skin regions on
a face which are made by noise and concave areas around eyes. With such a strategy,
all filtered sampling points are classified rapidly into different skin regions as described
in Figure 3.4. In this figure, the false positives in the background are removed by using
constraints of geometry and navigation, and the depth-based skin segmentation is applied
to isolate potential face regions.

The algorithm of depth-based skin segmentation is shown to be faster and more ac-
curate than previous algorithms of connected components since we can remove false
positives in the background and eliminate the effect of noise without using expensive
operators of erosion and dilation.

3.3.7 Face detection

In our system, we use the Viola-Jones algorithm (Viola and Jones (2004)) for our system
of face detection because it can process images extremely quickly and is very accurate.
There are three key contributions that result in the extremely efficient Viola-Jones algo-
rithm: the integral image, Adaboost learning, and the cascade architecture. The integral
image is an effective image representation to reduce computational costs when testing or
training Haar features. Adaboost learning allows to train a fast and accurate classifier by

29

Chapter 3 Real Time Face Detection Using RGB-D Images

Figure 3.4: Result of depth-based skin segmentation. The skin regions such as face and
hand are segmented while false positives in the background are removed by constraints
of geometry and navigation.

selecting a small number of the best features from tens of thousands of possible features.
Finally, these classifiers are combined to make a cascade architecture model to quickly
reject a large number of false positives in the stages until achieving a high detection rate.
Based on these contributions, the Viola-Jones method is likely the fastest machine learn-
ing method for face detection. However, when dealing with a high resolution image,
for instance, 640×480 in our system, the Viola-Jones method alone does not meet the
requirement of a real time face detection system for mobile robots. Therefore, in our
system, we apply the above preprocessing steps to reduce the computational cost before
using the Viola-Jones face detector.

3.4 Experimental Setup

In this section, we present the experimental evaluation of our system by using different
constraints. To evaluate the accuracy as well as the speed of our algorithm, we compared
it with the performance of the Viola-Jones algorithm of face detection built in the Intel
OpenCV library (Bradski (2000)). All experiments are based on our database collected
from two kinds of mobile robots, PR2 and SCITOS G5, and from different indoor envi-
ronments, including offices, corridors, kitchen, museum and laboratory. The robots are
equipped with Microsoft Kinect sensors and Sick S300 laser scanners. We use a PC with

30

3.4 Experimental Setup

a 2.4 GHz Intel Core 2 CPU to test our algorithms in these experiments.

3.4.1 Datasets
To evaluate our face detection algorithm, we used two challenge datasets. The first one
is the Michigan dataset which comprises seven ROS log files spanning from one to three
minutes, which are selected from datasets of detecting and tracking humans (Choi et al.
(2011a)). The selected log files must contain front faces in color images in different
indoor environments, and in different illuminations conditions. They are the log files
9, 17, 18, 19, 20, 24 and 27. These log files in the Michigan dataset recorded only
Microsoft Kinect color and depth images at 30 frames per second, but do not contain
an occupancy grid map; therefore, we just use it for the first experiment which does not
require constraints of navigation. All these log files are collected from a Willow Garage
mobile robot PR2 that moves around an office building with kitchens, corridors, meeting
rooms and offices to detect human front faces. The mobile robot PR2 is equipped with a
Microsoft Kinect camera that is mounted 2.0 meters high on the top of robot′s head, and
looks downward. The second dataset is the Tuebingen dataset which consists of seven
ROS log files collected from a MetraLabs mobile robot SCITOS G5. Every log file
lasts from one minute to three minutes, and contains Microsoft Kinect color and depth
images, tf transform messages, and laser range data. This mobile robot used a Microsoft
Kinect camera mounted 1.1 meters high and looking forward. To record the log files,
the mobile robot had to move around in our office building, including the laboratory,
the corridors and the museum with different backgrounds, and different illumination
conditions. Moreover, we provided an occupancy grid map of our building for mobile
robots; therefore, the Tuebingen dataset can be used for both of the experiments to test
face detectors with or without navigation. Both datasets contain tens of thousands of
image frames with many different front faces which can be used to test the accuracy as
well as the speed of face detectors in an indoor environment.

3.4.2 Implementation Details
To evaluate the efficiency of the constraints in improving the processing time and accu-
racy, we carried out two different experiments in which we compared our algorithm with
the OpenCV face detector. The OpenCV face detector was run from a smallest size of
20×20 pixels and scaled up by a factor of 1.2 in whole images. The first experiment
was implemented to evaluate the role of geometric constraints and depth-based skin seg-
mentation in improving the face detection performance. A face detector using geometric
constraints, depth-based skin segmentation but not navigation is shown to be able to
run efficiently in real time on mobile robot platforms as well as in surveillance systems.
This detector was compared with the OpenCV face detector in accuracy and processing
time. In the second experiment, a second face detector using geometric constraints, nav-
igation and depth-based skin segmentation was compared with the above face detector

31

Chapter 3 Real Time Face Detection Using RGB-D Images

without using navigation and the OpenCV face detector. This experiment was performed
to demonstrate the efficiency of navigation information in reducing the number of false
positives and the computational cost.

Our whole system is programmed based on the ROS system (Quigley et al. (2009)).
ROS is a powerful system for software developers which provides libraries, tools, message-
passing, package management for building robot applications. Our robot system consists
of many ROS nodes such as the node of controlling the laser range-finder, the node of
performing localization, the node of managing the Microsoft Kinect operation, the node
of providing the graphical view, and the node of process odometry information. By using
ROS, the color and depth images from the Microsoft Kinect camera can be synchronized
and fused with other sensors, and robot coordinates are also updated frequently based on
the tf package which is responsible for computing 3D coordinate frames. Furthermore,
an occupancy grid map of our building is used to provide the information of background
for mobile robots.

Our face detection system can run at 7.9 milliseconds per frame on average with an
accuracy of over 95 % in our datasets.

3.5 Results
In this section, we compare the results of the accuracy and speed between our face de-
tection algorithm and the OpenCV face detector. The first experiment of testing the
efficiency of geometric constraints and depth-based skin segmentation was implemented
in both datasets. The second experiment for testing the influence of navigation ran on the
Tuebingen dataset which includes the occupancy grid map, which is not available for the
Michigan dataset.

3.5.1 Processing time
Table 3.1 shows a distinguished difference between our detector and the OpenCV face
detector in processing time when they are run on both datasets. We denote the first
method as the face detection method using geometric constraints and depth-based skin
segmentation.

We can find that processing time of the face detector using geometric constraints and
depth-based skin segmentation is much less than that of the OpenCV face detector be-
cause its average processing time is only 8.7 ms in the Michigan dataset, and 13.1 ms
in the Tuebingen dataset. At such speed, it runs as much as 41 to 57 times faster than
the OpenCV face detector. It also means that the use of geometric constraints and depth-
based skin segmentation can reduce the computational cost by 98 %.

To evaluate the contribution of navigation, we continued implementing the second
experiment to compare the face detector using geometric constraints, navigation and
depth-based skin segmentation with two above detectors. Table 3.2 shows the results of

32

3.5 Results

Table 3.1: Comparison of processing time between the OpenCV face detector and the
first method.

Datasets OpenCV First Method

Michigan 500.1 ms 8.7 ms
Tuebingen 530.9 ms 13.1 ms

Table 3.2: Comparison of processing time among the OpenCV face detector, the first
method and the second method.

Dataset OpenCV First Method Second Method

Tuebingen 530.9 ms 13.1 ms 7.9 ms

the three methods which are run in the Tuebingen dataset. We denote the second method
as the face detection method using geometric constraints, navigation and depth-based
skin segmentation.

With average processing time of 7.9 ms, the second method is even faster than the first
method, and it also means that the computational cost are reduced by 99 %. Therefore,
the navigation information plays an important role in avoiding searching irrelevant re-
gions as well as avoiding unnecessary computations. That is one of the advantages of
mobile robots in building such real time systems as face detection, or face recognition.

3.5.2 Accuracy
To evaluate the accuracy of a face detection method, we have to consider both the ratio of
true positives and the ratio of false positives detected in the datasets. A good algorithm
must not only achieve a high detection rate of true positives but also limit false positives
in an image. In the experiments, we found that besides the advantage of processing
speed, our methods can also improve the accuracy of face detection significantly: the
ratio of detected true positives is similar to the OpenCV face detector, the ratio of false
positives is much lower.

In the first experiment, we use both datasets without the occupancy grid map for test-
ing the OpenCV face detector and the first method. Table 3.3 shows the comparison of
the accuracy between these face detectors. The correct detection rate of our method is
still high, 95 %, even though it is a little lower than the OpenCV face detector, 96 %. But
our method improved remarkably the average false positives per frame, only 0.003, com-
pared to the OpenCV face detector with 21 times more, 0.063. In general, the accuracy
of our method is still more reliable than the unmodified OpenCV face detector.

In the second experiment, we only use the Tuebingen dataset which contains the oc-
cupancy grid map for testing three face detectors. Table 3.4 shows the comparison of the
accuracy among them. We also compared the face detectors based on two criteria of the

33

Chapter 3 Real Time Face Detection Using RGB-D Images

Table 3.3: Comparison of the accuracy between the OpenCV face detector and the first
method.

Face Detectors Correct Detection Rate Average False Positives per
Frame

OpenCV 96 % 0.063
First Method 95 % 0.003

Table 3.4: Comparison of the accuracy among the OpenCV face detector, the first method
and the second method.

Face Detectors Correct Detection Rate
(%)

Average False Positives per
Frame

OpenCV 97 0.079
First Method 95 0.005

Second Method 95 0.005

correct detection rate and the average false positives per frame. Both of the first and sec-
ond methods achieve the correct detection rate of 95 %, which is slightly lower than the
OpenCV face detector but their average false positives per frame are 16 times less than
the OpenCV face detector. This showed that our face detectors are reliable for mobile
robots. The reason is that the preprocessing steps eliminate almost all of the background
which contains a lot of false positives, but do not affect the correct detection rate much.

Figure 3.5 shows the result of our face detection in different cases: a group of people
standing at roughly the same distance; several people standing at different distances to
the robot; people standing near a wall; people with different skin color; people at far
distances.

3.6 Summary

We demonstrated that the contributions of geometric constraints, navigation information
and depth-based skin segmentation to face detection are remarkable. Based on their com-
bination, mobile robots are able to localize human faces in real time, and interact with
humans in a more reliable way. In our future work, we focus on two promising direc-
tions that are task-based face detection, and face tracking using navigation information.
By combining Microsoft Kinect color and depth images with robot navigation infor-
mation, we may compute a face probability distribution of every familiar person in an
indoor environment. For instance, we could set a specific schedule for a mobile robot to
visit us in our office at 6 AM every working day. By using the available face probability
distribution and the map of our office building, we could make the robot to ignore faces

34

3.6 Summary

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Result of our face detection in different cases. 3.5b, 3.5c: A group of people
standing at roughly the same distance; 3.5a, 3.5d, 3.5e: Several people standing at dif-
ferent distances to the robot; 3.5g, 3.5h, 3.5i: People standing near a wall; 3.5e: People
with different skin color; 3.5f: People at far distances.

35

Chapter 3 Real Time Face Detection Using RGB-D Images

on the way to our office and detect only faces in the region that occur very often every
day, such as our working places, and identify the faces. In the case when the robot can
not find our faces, the searching regions will be extended to the positions of lower face
probability. We also develop a second direction for a mobile robot to utilize the available
face probability distribution to improve the accuracy of the 3D particle filter algorithm
for tracking faces. When human moving directions are repetitive, a robot can compute
prior probabilities to predict the next face positions in 3D space. The results of a 3D
particle filter should be more accurate because of a known face probability distribution.

36

Chapter 4

Face Tracking and Pose Estimation
Using an Adaptive Correlation Filter

4.1 Introduction

Both face tracking and face pose estimation play key roles for human-robot interaction
which can be used as essential preprocessing steps for robust face recognition or fa-
cial expression recognition. A reliable face tracker provides a setting where well aligned
faces in frames can be integrated over long runs, which potentially leads to more accurate
face recognition. In fact, the accuracy of tracking directly impacts the ability to recog-
nize human faces. As a result, an efficient face tracker, which significantly improves
robustness against abrupt appearance changes and occlusions, is crucial for successful
video-based face recognition. Similarly, a robust algorithm for face pose estimation can
be also beneficial to face recognition systems, because one of the key challenges for
current face recognition techniques is how to handle pose variations. Accurately localiz-
ing the face and estimating its pose are essential steps for further analysis, such as face
recognition.

Despite recent progress, tracking faces in uncontrolled environments still remains a
challenging task because the face as well as the background changes quickly over time
and the face often moves through different illumination conditions. Moreover, previous
tracking methods have significant drift due to sudden changes of the face and back-
ground. In this section, we propose an algorithm of tracking faces based on the com-
bination of an adaptive correlation filter (Bolme et al. (2010)) and a Viola-Jones face
detection (Viola and Jones (2001b)). This combination utilizes the advantages of adap-
tive correlation filters to adapt to face changes of rotation, occlusion and scales as well
as adapt to complex changes of background and illumination. Its computational cost is
only 7 ms per frame. Furthermore, it can also remove drift effectively by detecting the
face and correcting its position after a period of time. In addition, we utilize the depth
information from the Microsoft Kinect camera to estimate the corresponding size of the
face. Our tracker successfully runs on a mobile robot when both the humans and the
robot move and rotate quickly with different angles and directions.

The problem of face pose estimation for human-robot interaction also has some sig-

37

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

(a) (b)

(c) (d)

Figure 4.1: Examples of our face tracking and pose estimation on a moving mobile robot.
The white circles indicate the locations of facial features.

nificant challenges. First, the resolution of faces is very low when the humans move
far away from the robot. Most existing methods are accurate for estimating poses in
high-resolution face images, but their performance is much worse or they completely
fail to estimate poses in low-resolution face images. Second, while both the humans and
the robot move in complicated backgrounds and under different illumination conditions,
facial features change very quickly and the face also changes in a variety of poses. Ad-
ditionally, when the face changes by large angles of rotation, some parts of the face are
visible while the rest is occluded. In order to find a robust method of face pose estimation
for human-robot interaction, we track some key facial features, including the two exter-
nal eye corners and the nose. These features provide geometric cues to estimate precisely
the yaw angle and the roll angle of the face which are important for the improvement of
uncontrolled face recognition. Similar to our method of face tracking, we combine an
adaptive correlation filter and a Viola-Jones object detection to track these features which
are robust to face rotation, face deformation, occlusion and complicated illumination. As
a result, the face pose is also estimated efficiently based on some geometric computation
among the face features, such as shown in Figure 4.1. Our feature based method of face
pose estimation is shown to be robust to run on a mobile robot in uncontrolled illumi-
nation and environments while our whole system is operating at a speed of 21 ms per
frame.

38

4.2 Related Work

4.2 Related Work

4.2.1 Face Tracking

Although there are many publications of face tracking, it still remains a huge challenge,
because of changes of face appearance, occlusions, rotation, complex changes of the
surrounding background, partial or full changing illumination conditions. Most exist-
ing methods build a face model for tracking which does not adapt to the large variation
of face pose as well as illumination. These algorithms include some typical methods
of correlation-based visual tracking (Hager and Belhumeur (1996)), the condensation
algorithm (Isard and Blake (1996)) or the method using intensity gradients and color his-
tograms (Birchfield (1998)). In addition, deformable 3D models (DeCarlo and Metaxas
(1996), Decarlo and Metaxas (1998)) have been widely used for modeling textured 3D
faces. 3D faces can be generated automatically by transforming the shape and texture of
examples into a vector space representation. This method contributes to two main steps:
deriving a 3D face model from a face image, and modifying shape and texture in a natural
way. As a result, a face tracker using a deformable 3D model can be insensitive to illu-
mination and pose. In addition, this method is able to easily extract a face image from its
background, which is beneficial for recognizing faces or estimating face pose. However,
its great disadvantage is to require time-consuming work for the matching procedure. A
few extensions to these parameterized 3D deformable models include outlier rejection
(Goldenstein et al. (2004b)), use of Kalman Filters (Goldenstein et al. (2004a)), as well
as incorporation of optical flow constraints as an additional cue to the feature pool (De-
carlo and Metaxas (2000)). However, major update of the model parameters still depends
on the accuracy of the extracted image features. Moreover, methods for face tracking us-
ing a Kalman filter behave well for linear systems, but for non-linear systems, particle
filter implementations, for example, the condensation algorithm, (Heap and Hogg (1997),
Isard and Blake (1998)) achieve better performance. Other methods are based on statis-
tical point distribution models. This model is used to exploit the distinct structure and
shape of individual faces A popular example is the active shape model based methods
(ASM) (Cootes and Taylor (1997), Cootes et al. (1995), Isard and Blake (1998)), which
build statistical models of the shape of the object from a set of training images. All train-
ing images have been labelled with the 2D or 3D coordinates of landmarks, which are
normally located on the face′s contour, around the eyes, eyebrows, nose and mouth. A
similar example is the active appearance model, which can model texture variations on
the entire face region. Thus it gives a better match to the texture of the test face. Both
models, however, are sensitive to their initialization and can get stuck in local minima.
Cootes et al. (Cootes et al. (1995)) used a mixture of Gaussians to model shapes, while
Romdhani et al. (Romdhani et al. (1999)) applied Kernel PCA to overcome the linearity
limitation of active shape models. Kernel PCA allowed them to model non-linear shape
variation resulting from changes in the yaw head angle. Other extensions include the
work by Milborrow et al. (Milborrow and Nicolls (2008)), the Adaboost-based active

39

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

shape model, which is presented by Li and Ito (Li and Ito (2005)), the work by Rogers
and Graham (Rogers and Graham (2002)) and the work of Jiao et al. (Jiao et al. (2003)),
who incorporated wavelets into the face alignment algorithm.

Some recent research focuses on online learning methods to handle the complex ap-
pearance variation of human faces. Some examples of these algorithms include incre-
mental learning (Ross et al. (2008)), online random forests (Saffari et al. (2009)), online
multiple instance learning (Babenko et al. (2011)) and visual tracking using L1 min-
imization (Mei and Ling (2009)). Despite their high efficiencies, most of the online
learning methods fail due to the drift problem. Moreover, computational requirements
of these methods are usually huge which is not suitable for real time tasks of the robot.
Although not successfully eliminating drifts, the Minimum Output Sum of Squared Er-
ror (MOSSE) filter currently attracts the attention of researchers (Bolme et al. (2010)). It
adapts to wide variations of object poses and illumination, and is able to run at high frame
rates. In order to eliminate the drift problem we combine the algorithm of a MOSSE filter
with a Viola-Jones object detection. While the MOSSE filter is able to track the face dur-
ing a long period of time, the face detector is responsible for correcting the face position
in a constant period of time if it detects exactly the face location.

4.2.2 Face Pose Estimation
During the past 20 years, there has been a huge number of papers in the field of face pose
estimation. Basically, approaches of face pose estimation can be sorted in the following
categories.

The first category consists of appearance template methods which compare a new im-
age of a head to a set of examples in order to find the most similar view. Some typical
examples are the method of normalized cross-correlation at multiple image resolutions
(Beymer (1994)) and the method of mean squared error (MSE) over a sliding window
(Niyogi and Freeman (1996)). Basically, appearance templates do not require negative
training examples or facial feature points. Nevertheless, they are only capable of esti-
mating discrete pose locations. These methods are based on an assumption that the head
region has already been detected and the detection error can degrade the accuracy of
the head pose estimate. In order to overcome the limitation, Support Vector Machines
are adopted to detect and localize the face, and use the support vectors as appearance
templates to estimate the head pose (Ng and Gong (2002)). Another drawback of ap-
pearance template methods is the effect of identity which can cause more dissimilarity
in the image than from a change in pose. To decrease the effect of the pairwise similarity
problem, Gonzalez et al. (Gonzalez and Woods (2002)) used a Laplacian-of-Gaussian
filter to extract facial contours while removing some of texture variation across different
individuals. Similarly, the images can be convolved with a Gabor wavelet to emphasize
typical features, such as the vertical lines of the nose and horizontal orientation of the
mouth (Sherrah et al. (1999), Sherrah et al. (2001)).

The second category consists of detector array methods which estimate head pose

40

4.2 Related Work

by training multiple face detectors. Each of these detectors specifies a different pose.
An early example of a detector array used three support vector machines for three dis-
crete yaw angles (Huang et al. (1998)). An advantage of detector array methods is that
their localization step is not required, because each detector is also capable of making
the distinction between head and non-head. Another improvement is that detector arrays
employ training algorithms that learn to ignore the appearance variation that does not cor-
respond to pose change. Detector arrays are also well suited for high and low-resolution
images. However, disadvantages of detector array methods also exist. First, face detec-
tors are trained on many negative non-face examples, which require substantially more
training data. Additionally, if two detectors are trained to classify very similar poses, the
images that are positive training examples for the first detector must be negative train-
ing examples for the second one, and vice versa. Apparently, it is not easy to train face
detectors, when the positive and negative examples are very similar in appearance. Fur-
thermore, the computational requirements increase with the number of detectors, making
it difficult to implement a real-time system.

The third category includes methods using nonlinear regression (Li et al. (2000)).
These methods estimate face pose by learning a nonlinear mapping from the image space
to pose directions. Yongmin Li et al. (Li et al. (2000)) developed a pose estimator using
support vector regression, which can give a robust face estimation of the head pose with
only a small number of support vectors. In addition, the dimensionality of the training
data can be reduced by using principal component analysis so that the support vector
machine process is able to successfully identify a hyperplane classifier to estimate face
poses. Neural networks have also been widely used in face pose estimation. Liang Zhao
et al. (Zhao and Carlbom (2002)) adopted the multi-layer perceptron, consisting of many
feed-forward cells, to estimate face pose with accuracy within 10◦. This system has been
shown to be robust to illumination changes. However, it provides only a coarse estimate
of pose at discrete locations. Alternatively, a set of multi-layer perceptron networks with
a single output node can be trained individually for each degree of freedom, as mentioned
by Tian et al. (2003). This approach has been used for heads viewed from multiple
far-field cameras in indoor environments, using background subtraction to detect the
facial region. Gourier et al. (Gourier et al. (2004a), Gourier et al. (2004b)) applied an
associative neural network using data from facial feature locations. The advantages of
neural network approaches are that these systems are very fast, and only require cropped
labeled faces for training. Furthermore, they provide some of the most accurate head
pose estimates in practice.

Among face pose estimation methods, geometric methods have proven to be fast, sim-
ple and suitable for real time applications. Gee and Cipolla (1994) presented two simple
methods based on detecting and tracking some facial features such as the far corners of
the mouth and eyes, and the tip of the nose. Face model ratios were built to compare with
the real face ratios seen in images to calculate the face normal. This method is very fast
and accurate when the human face is near the camera. Horprasert et al. (1996) estimated
the face pose using five points, the inner and outer corners of each eye, and the tip of

41

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

the nose. The yaw angle is estimated based on the difference of the distance between
the left and right eye. The roll angle is calculated by the arctangent of the slope between
two eyes. The pitch angle can be found easily based on the distance between the nose
tip and the eye lines. All these geometric methods have some common drawbacks. First,
face features in their methods must be detected and tracked very precisely, which is not
easy when the humans move far away from the camera and the face resolution is very
low. Furthermore, some facial features can be missing when the face changes by large
angles of rotation. Therefore these methods can be much worse or can completely fail. In
addition, the depth information is used to improve the accuracy of head pose estimation.
Newman et al. (2000) combined techniques of stereo matching and feature matching to
track the three dimensional positions of six face features and maps positions of these
features to a head model for estimating the face pose. This method is able to estimate
the face pose when the humans stand near the camera. Fanelli et al. (2011) applied the
method of discriminative random regression forests in the depth image of a Microsoft
Kinect camera to estimate location and orientation of the head. Their system is able to
run in real time and is relatively accurate while the head changes with a large variation
of poses or is occluded partly. But this method fails when the humans move farther than
1 meter from the Microsoft Kinect camera. Cascia et al. (2000) used a manually ini-
tialized cylindrical head model and applied recursive least squares optimization to track
the head. Xiao et al. (2002) used dynamic templates to recreate the face model. The
drawback of these methods is the requirement of an accurate initialization of the face
location. Additionally, these methods are only applicable for near-field images and are
very time-consuming.

In video based applications, tracking methods are efficiently applied due to their abil-
ity to track the relative movement of the head between consecutive frames of a video
sequence. In these methods, constraints of motion are utilized to provide a reliable es-
timate of face pose over time. These systems typically demonstrate a high accuracy,
but an initial known head position is required. In addition, these approaches must be
reinitialized whenever the track is lost. Early work of tracking methods considered six
feature points, tracked using correlation windows, and determined the head movement
from weak-perspective geometry (Gee and Cipolla. (1996)). Another approach is to
assume the human face is a planar surface. In this case, two degrees of freedom can
be recovered by using weighted least-squares to determine the best affine transformation
between any two frames (Yao et al. (2001)). Lowe (2004) developed more complex tech-
niques that match feature points with robust SIFT descriptors. Arno et al. (1998) used
a 3D-textured polygon model to find the rotation and translation that best fits each new
image-based observation. As a result, face pose can be estimated by searching through
a set of transformations to find the one that minimizes the difference between the new
frame and the model. The advantage of tracking approaches is their ability to track the
head with high accuracy by discovering the small head movement between video frames.
The difficulty with tracking methods is the requirement of an accurate initialization of
position and pose to generate a new model. Basically, these approaches can only be used

42

4.2 Related Work

(a) (b)

Figure 4.2: Examples of face tracking through poses. Our face tracker is marked by the
red rectangle and the original MOSSE filter is marked by the black rectangle.

to discover the relative transformation between frames. These methods can not estimate
head pose in absolute coordinates. Nevertheless, some tracking approaches can be ini-
tialized automatically, using dynamic templates to recreate the model whenever the head
pose estimate is near the original view (Xiao et al. (2003)).

Model based methods, such as the elastic bunch graph based method (McKenna (1998)),
are also promising methods due to the ability of them to represent non-rigid objects. Ba-
sically, the idea of the elastic bunch graph based method is to find the minimum distance
between the features at every graph node location. For face pose estimation, a different
bunch graph is created for every discrete pose, and each of these are compared to face
images. This algorithm is shown to be relatively accurate in comparison to most other
head pose estimation techniques. Unfortunately, it is computationally expensive and can
not be applied to real time applications. Another model based method is the method
of the active appearance model (Cootes et al. (2000)), which estimates the variation in
facial shape and texture from a set of specific facial points including the corners of the
eyes, ear tips, nostrils, chin, and mouth. Each point has a 2D coordinate in an image, and
these points can be ordered and concatenated into a feature vector. The method of active
appearance model gives a precise and accurate head pose estimation. The main limita-
tion of active appearance model is that all of the facial features are required to be located
in each image frame. In practice, these approaches are limited to head pose orientations
because only some facial features are visible in frames. It is also not applied for far field
head pose estimation with low-resolution facial images.

43

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

(a) Frame 885 (b) Frame 1295

(c) Frame 1381 (d) Frame 1410

Figure 4.3: Examples of face tracking through occlusion and drift. We compare our face
tracker, which is marked by the red rectangle, and the original MOSSE filter, which is
marked by the black rectangle.

4.3 Face Tracking and Pose Estimation Using an
Adaptive Correlation Filter

4.3.1 Face detection

Face detection is an important component in our algorithm which allows mobile robots
to quickly locate the position of the face in the initial step and relocate it if our system
loses tracking. For this research, we use the face detection method mentioned in our
previous work (Vo et al. (2012)), which is very fast and accurate and runs in real time. By
using geometric constraints, navigation and depth-based skin segmentation, the average
processing time of this method is only around 8 ms. It is also more reliable than the
unmodified OpenCV face detector. Our face detection involves five basic steps: First,
we collect data from a small set of sampling points which span both the color image
and depth image. This step is to reduce computational costs. Second, we evaluate these
sampling points under constraints of geometry and navigation information to remove
the background. Third, we apply a robust technique of skin detection around filtered
sampling points. In the fourth step, a method of depth-based skin segmentation is used
to find the potential face regions and estimate the face size. In the last step, we apply the
Viola-Jones method to detect the face. We also use the technique mentioned in (Vo et al.

44

4.3 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

(2012)) to limit the range of scales to detect the face for the next steps. The average width
of the human face is about 0.15 meters. We denote s f as the average width of faces; d
is the distance from those to the camera and f is the focal length of depth camera. Then
we use the following formula to estimate the size of faces in images:

s f =
0.15 f

d
(4.1)

4.3.2 Face tracking

The tracking algorithm we propose is based on the combination of a tracking method
using the MOSSE filter and a Viola-Jones face detection. By using the Microsoft Kinect
camera, our algorithm is able not only to track the position of a face but also to estimate
its corresponding size based on the formula 4.1. The face position, which is located by
the face detector, is the initial position of the face tracker.

The filter is initialized by training eight randomly affine transformed versions (fi) of
a search window with a fixed size of 64×64 in the initial position (Bolme et al. (2010)).
Training outputs (gi) are generated from 2D Gaussian images, of which peaks are in their
centers. We denote the 2D Fourier transform of a training image fi as Fi, of the filter h
as H, and of a training output gi as Gi. In the initial position, the filter H can be found
based on the following formula:

H∗ =
1
N ∑

i

Gi�F∗i
Fi�F∗i

(4.2)

where ∗ indicates the complex conjugate, � is the operation of element-wise multiplica-
tion and N is the number of the training images.

In the next frames, the face is tracked by the search window in the center. By corre-
lating the filter over the search window, we can find the new position of the face in the
current frame, which is the area corresponding to the maximum value in the correlation
output. In addition, every search image is multiplied by a log function to reduce the effect
of illumination. Then it is multiplied by a cosine window to increase the effect of pixels
near the center of the search window. In order to compute the correlation operation, all
the search images and filters are transformed to Fourier space by using a Fast Fourier
Transform. We denote the 2D Fourier transform of a search image f as F = F(f). The
correlation output G takes the form:

G = F�H∗ (4.3)

In every 30 frames, the Viola-Jones face detector is applied for correcting the positions
of faces. The search window is scanned with the scale estimated based on the formula
(4.1) while the depth information in the face center is known. It significantly reduces
the processing time of face detection to an average of 3 ms. In the case that the face

45

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

detector finds a face, its position is considered as the new tracking position instead of
that predicted by the MOSSE filter. Therefore the drift problem can be solved efficiently,
such as shown in Figure 4.3.

In the tracking position, the MOSSE tracker must be updated online in order to quickly
adapt to the appearance changes of the face. To update online in frame i the MOSSE filter
is computed as follows:

H∗i =
Ai

Bi
(4.4)

Ai = ηGi�F∗i +(1−η)Ai−1 (4.5)

Bi = ηFi�F∗i +(1−η)Bi−1 (4.6)

where η is the learning rate, H∗i consists of the numerator Ai and the denominator Bi, Fi
and Gi are the 2D Fourier transforms of the training image fi and of the training output
gi, respectively. The MOSSE filter combines the computation of previous frames and
the current frame to adapt quickly and robustly to the changes of face pose, rotation,
deformation and illumination. Furthermore, it is possible to detect the failure of tracking
and to stop updating the face appearance by measuring peak strength called the peak
to sidelobe ratio (PSR) (Bolme et al. (2010)). As a result, the face tracking is possibly
recovered when the face reappears.

4.3.3 Facial feature tracking
After successfully tracking the face and estimating the face size using the formula (4.1),
we can resize and copy the face to a second image called facial feature image. In the
new image, the size of the face is fixed at 120×120 pixels; therefore, the sizes of facial
features including eyes and nose, are easily estimated. As a result, we can detect and
track the facial features in the same way as detecting and tracking the face. There are
three crucial features which are necessary to be tracked: the two external eye corners and
the nose. These features provide geometric cues to estimate the facial pose across a wide
variety of face rotations and scales. Figure 4.4 shows the result of facial feature tracking
in which white circles indicate their locations. In this figure, the yaw and roll angles
of the human face can be found simply and quickly based on these features. Basically,
the new facial feature positions are efficiently tracked based on the combination of the
MOSSE filter and a Viola-Jones object detection. The two basic steps of prediction and
online update for tracking facial features are the same as those used above for tracking
faces.

4.3.4 Face pose estimation
Based on the tracked facial features we can estimate the yaw angle of the face pose
denoted as γ and the roll angle of the face pose denoted as α . In our system, we did

46

4.3 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

Figure 4.4: Example of facial feature tracking. White circles indicate locations of facial
features.

not estimate the pitch angle of the face because it is not an easy task when the humans
move far away from the camera and the face resolution is low. The pitch angle is usu-
ally estimated with large errors. Estimating the pitch angle of a face in uncontrolled
environments is our future work.

In order to estimate the roll angle of the face pose, α , we calculate the angle of the line
joining the two external eye corners, which is the arctangent of the slope between these
corners. We denote the coordinates of the left external eye corner and the right external
eye corner as (x1,y1) and (x2,y2), respectively. The roll angle of the face pose can be
calculated as follows:

α = tan−1
[

y2−y1
x2−x1

]
(4.7)

In addition, we apply a simple technique to estimate the yaw angle of the face based
on the relative positions of three tracked points. We denote the distance between the left
external eye corner and the nose as L, the distance between the right external eye corner
and the nose as R. Because the size of the face is fixed in the feature image, we can
estimate the yaw angle by a function of R and L as follows:

γ =


aR−bL

L i f R > L

−aL+bR
R otherwise

(4.8)

where a = 33.3, b = 33.3.

47

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

Figure 4.5: Illustration of geometric constraints based on three facial features which are
the two the external eye corners and the nose.

4.4 Experimental Setup

For evaluating the accuracy of our face tracking we used a collection of four log files
recorded from a Microsoft Kinect camera mounted on our mobile robot SCITOS G5.
Every log file includes color and depth images and is recorded from two to three minutes
at 30 frames per second. We compared our method with the original MOSSE filter in
these challenging log files in which the humans move freely in front of the Microsoft
Kinect camera and rotate the face quickly in a wide variety of the poses in an uncontrolled
environment. Figure 4.2 and Figure 4.3 are examples extracted from our experiments in
which our method outperforms the original MOSSE filter.

To evaluate the accuracy and speed of our face pose estimation technique, we use two
data collections. The first one is the Tuebingen dataset which consists of 15 log files
of 15 people spanning around two minutes. Each of these log files records color and
depth images at 30 frames per second at a resolution of 640×480 pixels. Since our goal
is to evaluate the performance of face pose estimation in uncontrolled environments,
selected log files must contain faces in a wide variety of poses: looking left or right, up
or down, or tilting left or right while the humans are moving freely in front of the camera
under different illumination conditions. To measure the ground truth data, we used an
external tracking system, “Optitrack” by Natural Points, including 12 infrared cameras.
This tracking system is able to measure six degrees of freedom of the face. Because the
working space of the tracking system is limited, the human has to sit on a chair and move
freely in a range from 1 to 3 meters away from the camera while the face is allowed to

48

4.4 Experimental Setup

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Sample images from the Tuebingen dataset. The human face can rotate in a
wide variety of poses and the humans can move to the left, right side or move backward
and forward.

change the pose in different angles. For evaluation, we only focused on the yaw and
roll angles which are very important for the application of uncontrolled face recognition.
Figure 4.6 shows some sample images extracted from our dataset.

In order to compare our method with other state-of-the-art methods, we used the
Boston University dataset (www.cs.bu.edu/groups/ivc/HeadTracking) with the associ-
ated ground truth which was measured by a Flock of Birds 3D tracker. Each video
contains 200 frames and has a resolution of 320×240. In this dataset, we can not use
depth information to estimate the scale of the face. But human faces do not change the
scale too much; therefore, facial features are still tracked well. We compared our results
of accuracy and processing time with results of the methods proposed by Cascia et al.
(2000) and Xiao et al. (2002).

We used a PC with a 2.4 GHz Intel Core 2 Duo CPU to test our algorithms in these
experiments.

4.4.1 Evaluation of Face Tracking
We evaluated the tracking quality of our method and the MOSSE filter in four challenging
videos. The tracking output was manually labeled as good tracking, bad tracking in
which the tracking bounding box overlaps below 50 % of the ground truth bounding
box, and a lost track. Generally, the MOSSE filter is able to track the face well unless the

49

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

Table 4.1: COMPARISON OF TRACKING QUALITY BETWEEN OUR METHOD
AND THE MOSSE FILTER METHOD

video
MOSSE filter Our method

good bad lost good bad lost
1 26.9 % 73.1 % 0 % 90.6 % 9.4 % 0 %
2 56.8 % 43.2 % 0 % 90.9 % 9.1 % 0 %
3 100 % 0 % 0 % 100 % 0 % 0 %
4 32.4 % 0.4 % 67.2 % 100 % 0 % 0 %

Table 4.2: Mean absolute error (MAE) and standard deviation (Std) of the errors of our
system on the Tuebingen dataset.

MAE Std

Yaw (deg) 7.97 6.89
Roll (deg) 4.85 4.49

face pose changes by very large angles of rotation due to the drift problem. And because
the MOSSE filter is not able to recover automatically after drifts, it completely fails to
track the face in some of our testing videos.

Table 4.1 shows a distinguished difference between our tracker and the MOSSE tracker.
It shows that our tracker is able to track faces longer and more accurately than the
MOSSE tracker because it can correct the tracking position when the tracker drifts. The
processing time of our tracker is about 7 ms. Our tracker adapts to drastic changes of
illumination, background as well as face pose.

4.4.2 Evaluation of Face Pose Estimation

We evaluated the system in two experiments. First, we used our dataset for evaluating the
quality of face pose estimation in uncontrolled environments. Table 4.2 shows the mean
absolute error and standard deviation of the errors which are measured for our system of
face pose estimation in the Tuebingen dataset. As can be seen in this table, our system
estimates the face pose robustly while the humans are moving freely in 3D at near or
far distances. When the face moves far away from the camera, the face image is much
more noisy and blurred. Moreover, changing illumination conditions also produce a lot
of noise on the face. But our system can track facial features quite well in such blurred
images; therefore the face pose is still estimated relatively reliably in such conditions.
With the mean absolute error and standard deviation values of the yaw angle and the roll
angle as shown in Table 4.2, our system can meet the requirements of many applications,
such as a reliable preprocessing step of uncontrolled face recognition in surveillance
systems or on mobile robots.

50

4.4 Experimental Setup

(a) Yaw (b) Roll

Figure 4.7: Comparison of the estimated poses and the ground truth on the Boston Uni-
versity dataset.

Some results of our system are plotted in Figure 4.8, which show the estimated yaw
and roll angles compared to ground truth. The curve of the estimated yaw angle is quite
consistent with the curve of ground truth. In this figure, the errors which are in the
estimation of the roll angle mostly result from the deformation of the face when it rotates
in 3D space at a far distance. In general, the result of this estimation is robust for real
time application of mobile robots.

In addition, our system of face tracking and pose estimation can run at 21 milliseconds
per frame on average which meets the real time requirement of a mobile robot.

In controlled environments with uniform illumination conditions, our method is able
to track the face more accurately. Figure 4.7 shows the roll and yaw angles which are
estimated by our method and are compared with the ground truth. The curve of our
estimation is quite consistent with the curve of ground truth. Additionally, Table 4.3
shows the comparison of the accuracy and processing time between our method and
state-of-the-art methods proposed by Cascia et al. (2000) and Xiao et al. (2002). As can
be seen in Table 4.3 the accuracy of our proposed approach is slightly worse than two
others but it is much faster and can run in real time. While the methods proposed by
Cascia et al. (2000) and Xiao et al. (2002) run at a speed of 15 frames per second in
images which have the resolution of 320×240, our system is able to run at a speed of 50
frames per second even when the resolution of the image is 640×480. In addition, the
methods proposed by Xiao et al. and La Cascia et al. develop a robust cylindrical model,
which must be initialized and recovered in near distance. This means that our approach
is more robust as it can be initialized and recovered at larger distances. Therefore, under
aspects of performance and real time capabilities on mobile robots, our method is a better
choice than the methods proposed by Cascia et al. (2000) and Xiao et al. (2002).

51

Chapter 4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter

(a) Yaw (b) Roll

Figure 4.8: Comparison of the estimated poses and the ground truth on the Tuebingen
dataset.

Table 4.3: Comparison of accuracy and processing time between our method and state-
of-the-art methods on uniform-light set of the Boston University dataset.

Our approach Xiao et al. La Cascia et al.

Yaw (deg) 5.67 3.8 2.9
Roll (deg) 3.53 1.4 2.9

Frequency (fps) 50 15 15

4.5 Summary
In this chapter we presented a robust real time method for face tracking and estimating
its roll and yaw angles in uncontrolled environments. Our experimental results show that
this method is robust to track faces and estimate the face orientation, and suitable for
real time applications such as uncontrolled face recognition on mobile robots. For future
development, we will first try to find techniques to speed up our algorithm to be able to
estimate poses of many faces in a group. Second, it is possible to estimate the pitch angle
of the face pose, which is necessary for many real applications. Finally, the main goal
of our future research is to apply the technique of face tracking and pose estimation for
real time uncontrolled face recognition on mobile robots. Handling the changing poses
of the face is one of the major challenges of face recognition because the face image
differences caused by rotations are often larger than the inter-person differences used in
distinguishing identities. Moreover, recognizing the face in arbitrary poses will be more
difficult in uncontrolled environments under varying illumination. In the near future the
technique of face pose estimation in our current research will be able to improve the
performance of face recognition in our mobile robot systems.

52

Chapter 5

Person Detection and Tracking using
RGB-D Images

5.1 Introduction
This chapter targets the task of person detection and tracking on mobile robots. Our
focus is on developing a robust algorithm that is able to adapt to human changes of pose,
scales and appearance as well as to partial or full occlusion.

Detecting and tracking multiple humans has been the major focus of recent research
due to their importance for practical applications, such as human-robot interaction. Dur-
ing the last few years, human detection and tracking has received significant attention
from the robotics researchers. However, state-of-the-art algorithms have not yet solved
challenging problems owing to variations in pose, body shape, appearance, clothing, il-
lumination and background clutter. Those problems are as follows: First, the mobile
robot often has to track the moving humans in a large variability of pose and appearance.
Second, the mobile robot frequently has to cope with challenges resulting from full oc-
clusions or self-occlusions. Although state-of-the-art methods perform well for simple
scenes with walking people, they often fail in scenes where people are performing com-
plex activities or in those crowded with multiple people who frequently occlude each
other, either partially or fully. Moreover, due to frequent movement, the mobile robot
has often to change the field of view, which causes fast changes of the human appear-
ance in each frame. Thus, it is not easy for the mobile robot to reliably track people over
long periods of time. Eventually, the mobile robot has to interact with many people in
real time, making computational costs of the tracking system high.

Some state-of-the-art algorithms of human detection and tracking are introduced in
this chapter for their advantages, which motivate our research, and for their drawbacks
that we can overcome to improve our system when running on mobile robots.

First of all, we mention the method of human detection based on histogram of orienta-
tions which has shown to significantly outperform existing algorithms. Dalal and Triggs
(Dalal and Triggs (2005)) presented this algorithm with excellent detection results in
some challenging datasets. Their method uses a dense grid of histograms of oriented
gradients (HoG), computed over blocks with the size of 16×16 pixels to represent a de-

53

Chapter 5 Person Detection and Tracking using RGB-D Images

tection window. This representation is shown to be powerful enough to classify humans
by using a polynomial support vector machine. However, its computational complexity is
very high because a support vector machine based classifier is used at every position and
scale in images. Furthermore, this method can only detect people in an upright position.
It easily fails when humans move into difficult poses or when they are occluded.

In order to address these problems, we try to find out an efficient tracking method
which is able to adapt to human changes of pose, scale and appearance as well as to par-
tial or full occlusion. In the next section, we present an effective and efficient tracking
algorithm, namely, compressive tracking, which runs in real-time and outperforms some
state-of-the-art methods in terms of efficiency, accuracy and robustness. The key compo-
nents of the compressive tracking method consist of an appearance model, a very sparse
measurement matrix, and a Naive Bayes classifier with online update. The appearance
model is adopted to employ non-adaptive random projections that preserve substantial in-
formation of tracked objects. The sparse measurement matrix is employed to efficiently
compress features. By using the appearance model and the sparse measurement matrix,
the computational complexity in the procedure of tracking is significantly reduced. Fur-
thermore, the Naive Bayes classifier also achieves a higher accuracy in the compressed
domain. Although some disadvantages remain, such as full occlusion, it still motivated
our research to find out a good solution for detecting and tracking people on mobile
robots.

Taking inspiration from several state-of-the-art approaches (Choi et al. (2011b), Fer-
rari et al. (2008), Zhang et al. (2012)), we propose a new algorithm of detecting and
tracking multiple people on mobile robots. Our algorithm makes three main contribu-
tions. First, we introduce a technique of depth based segmentation to quickly locate
potential areas of human bodies and faces. This technique contributes to reducing com-
putation costs of the algorithms of human detection and face detection, which are both
relatively expensive, as well as discard almost all false positives in each frame. The
second important contribution is a set of person detectors that helps mobile robots in
each frame to reliably find out the location of humans and to update the human trackers.
This set includes the face detector and upper body detector. The face detector is helpful
and strongly reliable when the human face is visible and the upper body detector has
significant advantages when dealing with the occlusion of the lower body or the face.
Due to the complicated changes in human pose and appearance, our detectors can not
find the position of a person in every frame. Hence, to keep tracking people efficiently,
we use a tracking method, based on the combination of a fast compressive tracker and
a Kalman filter. This combination enhances the efficiency of our system in adapting to
human changes of pose, scale and appearance as well as to partial or full occlusion.

In next section of this chapter, we introduce in detail the related research on human
detection and tracking algorithms that include histogram of orientations, compressive
tracking and other state-of-the-art methods for mobile robots. We analyze in detail the
advantages of these algorithms as that they inspire us to design a robust system of human
tracking for mobile robots.

54

5.2 Related Work

5.2 Related Work

5.2.1 Person detection

Human detection has been an extremely active area over the past decade. The importance
of this area arises from its numerous applications such as smart vehicles, military appli-
cations and security systems. However, it has been shown that detecting humans from a
single image while maintaining a low false detection rate is a very difficult problem. The
difficulty results mainly from the lack of distinguishing visual features that characterize
human appearance. Dalal and Triggs (Dalal and Triggs (2005)), Zhu et al. (Zhu et al.
(2006)) and Gavrila and Philomin (Gavrila and Philomin (1999)) show that almost all
effective features are based on the gradient of the image of interest.

We can broadly classify the work in human detection into two main categories. The
first category is to detect human figures in still images, or what is called shape-based hu-
man detectors, such as the work of Gavrila and Philomin (Gavrila and Philomin (1999)),
Gavrila and Munder (Enzweiler et al. (2010)), Dalal and Triggs (Dalal and Triggs (2005))
and Zhu et al. (Zhu et al. (2006)). These methods extract gradient (or edge) features and
either match these features against human templates or use a binary classifier to decide
whether or not the extracted features are from a human. The second category is the so-
called motion-based human detectors, such as the work of Cutler and Davis (Cutler and
Davis (2000)), Ran et al. (Ran et al. (2005)) and Abd-Almageed et al. (Abd-Almageed
et al. (2005)). This class of algorithms depends on tracking an object for a short period
of time and analyzing the motion pattern of the object. A tracked object is classified as
a human if it exhibits a twin-pendulum-like periodic motion. Shape-based detectors suf-
fer from two main drawbacks, high false detection rate and slow performance, since the
entire image has to be scanned to find out human figures. Despite of the drawbacks, this
class of algorithms has two main advantages, the algorithms do not need to be initialized
and the motion-based methods have a low false detection rate. However, an object of
interest must first be detected in order to employ motion-based methods.

M. Hussein et al. (Hussein et al. (2006)) showed that an effective strategy to reduce
the overall false detection rate of a human detection and tracking system is to combine
both shape-based and motion-based methods. Shape-based methods are first used to de-
tect potential human objects. An object tracker is then used to track the object for a
sufficient period of time. Finally, the motion of the tracked object is analyzed to verify
if it resembles the motion of a human. The high false detection rate of the shape detec-
tor is due to the sensitivity of the detector in highly cluttered areas. After tracking such
false detections for a short period of time, the motion analyzer can easily determine that
these false alarms do not exhibit a human-like motion. Gavrila and Philomin (Gavrila
and Philomin (1999)) introduced a fast human detection algorithm based on the chamfer
distance transform (Borgefors (1986a)). They collected a database of silhouette images
of humans in various poses. During the training phase, K-means was used to cluster the
silhouette database based on the pair-wise distance, into a number of clusters. K-means

55

Chapter 5 Person Detection and Tracking using RGB-D Images

is then repeatedly applied to each cluster in order to further cluster it into a number of
sub-clusters. The process is repeated to yield a hierarchy of human silhouettes. To detect
whether or not a human exists in a given image, edges are extracted from the test image
and the distance is computed between the edge map and silhouettes in this hierarchy. A
human is detected if the computed distance is smaller than a specified threshold across
all levels of the hierarchy. The main advantage of this algorithm is speed. However, the
algorithm is highly sensitive to image clutter and noise. Recently, Gavrila and Munder
(Enzweiler et al. (2010)) integrated the detecting algorithm with stereo vision in order
to lower the number of false alarms. Dalal and Triggs (Dalal and Triggs (2005)) intro-
duced a learning-based algorithm to detect humans from a single image. The image is
divided into 16×16 rectangular neighborhoods and a feature vector, called the histogram
of oriented gradients (HoG), is computed for each neighborhood. The histogram of ori-
ented gradients represents the probability distribution of gradient orientation over a spe-
cific neighborhood. All HoGs from all image neighborhoods are concatenated to form
a larger feature vector that describes the image of interest. A support vector machine
(SVM) is used to classify whether or not the given sub-image contains a human. Gener-
ally, this method has a lower false alarm rate than that of Gavrila and Philomin (Gavrila
and Philomin (1999)). However, to check for humans at different scales, computing the
HoG feature vector and using the SVM to classify it becomes computationally expensive;
and hence, the detector is relatively slow. It was reported by Dalal and Triggs (Dalal and
Triggs (2005)) that the algorithm runs at 1 frame per second if 800 detection windows
from a 320×240 image are selected and analyzed. Zhu et al. (Zhu et al. (2006)) used
a cascaded Adaboost algorithm (Freund and Schapire (1997), Viola and Jones (2001a))
to rapidly detect humans in static images by using the HoG feature vector. In order to
improve the overall performance, they employed the concept of integral images (Viola
and Jones (2001a)) to compute the feature vector. A Support Vector Machine classifier
was used as the weak classifier of the Adaboost algorithm. Two main problems remain
unsolved. First, to detect humans at a given scale, the entire image has to be scanned
pixel by pixel. The second problem is that this process must be repeated for an arbitrary
number of scales in order to find out all humans at different distances from the moving
robot. These two problems increase the computational requirements and false detections
of these algorithms.

5.2.2 Person tracking
Tracking people over time presents additional challenges due to the complexity of data
association in different scenes. Several groups have investigated person tracking with
laser range finders (Montemerlo et al. (2002), Schulz et al. (2003), Arras et al. (2008)).
These approaches usually keep tracking only the motion of people and do not try to dis-
tinguish individuals. One approach which distinguishes different motion states in laser
data is presented by Taylor and Kleeman (2004). Combinations of laser and vision data
are presented by Bennewitz et al. (2005) and Schulz (2006). Both detect the position

56

5.2 Related Work

of people in the laser scan and distinguish persons based on vision data. Bennewitz et
al. (Bennewitz et al. (2005)) base the vision part on color histograms whereas Schulz
(Schulz (2006)) learns silhouettes of individuals from training data. This, however, re-
quires a time consuming learning phase for each new person.

In machine vision, people tracking is a well-studied problem. Two main approaches
can be distinguished: model-based and feature-based methods. In model-based track-
ing approaches, a model of the object is learned in advance, usually from a large set of
training images which shows the object from different viewpoints and in different poses
(Rohr (1994)). Learning a model of a human is difficult because of the large number of
degrees of freedom of the human body and the variability in human motion. Current ap-
proaches include simplified human body models, for example, stick, ellipsoidal, cylindric
or skeleton models (Breglera et al. (2004), Urtasun et al. (2006), Mikic et al. (2003)), or
shape-from-silhouettes models (Cheung et al. (2005)). Although these approaches have
reached good performance in laboratory settings with static cameras, they have usually
not been applicable in real world environments on a mobile system. They usually do
not operate in real-time and often rely on a static, uniform background. Other promis-
ing approaches for human tracking are online learning methods to handle the complex
appearance variation of human poses. The basic idea of online learning methods is to
typically learn a model to represent the target object and update this model in every frame
in order to adapt to appearance variation. Some examples of these algorithms include in-
cremental learning (Ross et al. (2008)), online multiple instance learning (Babenko et al.
(2011)) and visual tracking using L1 minimization (Mei and Ling (2009)). Jepson et
al. (Jepson and Fleet (2003)) use a Gaussian mixture model with online update to adapt
to object appearance variations. Kwon et al. (Kwon and Park (2008)) improve particle
filtering by using multiple observation and motion models to address large appearance
and motion variation. Although these methods achieved a considerable success, they still
have unsolved problems, such as drift. The drift problem usually occurs when the target
changes drastically while the number of training samples is not enough to cover the po-
tential areas far from the current tracked position of the object. Grabner et al. (Grabner
and Bischof (2006)) proposed an online boosting algorithm to select features for tracking
arbitrary objects. In fact, his appearance model is updated with one positive sample and a
few negative samples. The positive sample is taken from the current tracker location, and
negative samples are collected at the positions around the tracker location. If the tracker
location is not precise, the appearance model might update with a wrong positive sample.
Over time this can degrade the model, and can cause drift and misalignment. Babenko
et al. (Babenko et al. (2009)) improve the efficiency of online tracking algorithms by
using a multiple instance learning framework where samples are collected from positive
and negative bags. This method has been shown to be robust to partial occlusion and
drift. Nevertheless, its process of training samples has a high computational complexity;
therefore, it is infeasible to apply this method on mobile robots which are required to run
in real time. To deal with the appearance change of the object and its partial occlusion,
(Zhang et al. (2012)) proposed the method of compressive tracking. This method uses

57

Chapter 5 Person Detection and Tracking using RGB-D Images

compressed features, extracted from the tracked object, to online update a simple Bayes
classifier. As a result, this classifier is able to quickly adapt to the object changes of
pose, rotation, deformation, and self-occlusion. In addition, this method is suitable for
real time applications because of its low computational costs. Since the mobile robot
and humans often move and change their directions and orientations, an effective im-
provement of the compressive tracker can be a good solution for adapting to all of these
changes and reliably tracking humans.

Feature-based tracking approaches on the other hand do not learn a model but track an
object based on simple features such as color cues or edges. One approach for feature-
based tracking is the Mean Shift algorithm (Comaniciu and Meer (2002), Comaniciu
et al. (2000)) which classifies objects according to a color distribution. Variations of
this method are presented by Bradski (1998) and Perez et al. (2002). Although almost
all approaches have not been designed specifically for person tracking, they might be
applicable in this area as well. One limitation remaining with the above methods is that
they operate only on color and, therefore, are dependent on colored objects.

In the field of mobile robots, although there are many approaches to tracking mul-
tiple humans, such as sample-based joint probabilistic data association filters (Schulz
et al. (2001)), and Kalman filters (Bellotto and Hu (2009)), most of them have not been
successful in adapting to human changes of pose, scale and appearance as well as to par-
tial or full occlusions. State-of-the-art algorithms of human detection (Viola and Jones
(2001b), Dalal and Triggs (2005)), make a great contribution to tracking-by-detection
approaches (Wojek et al. (2009), Choi and Savarese (2010)), thus significantly improv-
ing the tracking capability of mobile robots. Choi et al. (Choi et al. (2011b)) proposed
a method of detecting and tracking people by mobile robots, based on the algorithm of
reversible jump Markov chain Monte Carlo particle filtering (RJ-MCMC). Due to de-
tecting humans based on relatively reliable observation cues of humans in each frame,
this method was shown to be robust to complicated changes of human poses and par-
tial occlusions. These observation cues include a human detector using a Histogram of
Orientations (Dalal and Triggs (2005)), a face detector using the Viola-Jones method
of objection detection (Viola and Jones (2001b)), and the detectors of skin, motion and
depth-based shape. However, the computational costs of the detectors and the tracking
algorithm of reversible jump Markov chain Monte Carlo particle filtering are very ex-
pensive. For human-robot interaction, the computational complexity of this algorithm
has not met the requirement of real time performance.

5.3 Overview of Histogram of Oriented Gradients Based
Human Detection

This section provides an explanation on the algorithm of human detection by using the
histogram of oriented gradient (HOG) features (Dalal and Triggs (2005)). It details the

58

5.3 Overview of Histogram of Oriented Gradients Based Human Detection

Figure 5.1: An overview of the histograms of oriented gradients approach.

implementation of the histogram of oriented gradients, such as gradient computation and
normalisation methods. Essentially, this algorithm extracts discriminative features by
using a grid of normalized local histograms of image gradient vectors over the image,
and it uses a machine learning algorithm to classify subwindows of the image. Briefly,
it can be summarized as follows. Preprocessing can be used to reduce the influence of
illumination effects, followed by the image gradient computation which captures shape
and appearance. Local gradient vectors are then binned according to their orientations,
weighted by magnitude, within a spatial grid (called cell). Normalization is performed
over local groups of cells that are called block. Within each block, a feature vector is
extracted by using the histogram of gradient vectors from the contributing cells. The in-
dividual cell is shared among several overlapping blocks and normalized in every feature
vector. The feature vectors for all blocks are collected to build a final descriptor which
is fed into a classifier for human detection. An overview of the histograms of oriented
gradients approach is shown in Figure 5.1.

5.3.1 Preprocessing

Some preprocessing is necessary to reduce the noise which can affect the field of image
gradient vectors. In order to do preprocessing, the image is usually convolved with a
filter. The convolution is performed by sliding the filter over the image, normally starting
at image origin, in order to move the filter through all the positions and sum products of
the filter coefficients with the corresponding pixels directly under the mask. Given a filter
m×n, an image f with the size of M×N at the coordinate (x,y) can be preprocessed by
the following function:

g(x,y) =
a

∑
s=−a

b

∑
t=−b

ω(s, t) f (x+ s,y+ t) (5.1)

where a = (m− 1)/2 and b = (n− 1)/2. To generate a complete filtered image this
equation must be used for x = 0, 1, 2,..., M - 1 and y = 0, 1, 2,..., N - 1. The filter is

59

Chapter 5 Person Detection and Tracking using RGB-D Images

operated on the whole image. The ω(s, t) is the kernel and its coordinate is defined as
(s, t). A two-dimensional Gaussian kernel-based convolution is applied before image
gradient computation to reduce noise interference and blur images. Blurring is a removal
of small details from an image prior to object extraction, and linking of small gaps in lines
or curves. Values on the Gaussian filter are considered as weights. When the convolution
is applied to the image, the original pixel is given the heaviest weight by the Gaussian
filter and neighboring pixels are processed by smaller weights when their distance to the
original pixel increases.

5.3.2 Gradient computation

The step of image gradient is employed to extract the information of appearance and
shape in an image. Gradient computation is the most common approach to feature ex-
traction. In this section, we denote the vector differential operator by O. Given a gray
level function f(x, y), the gradient vector O f can be computed as follows:

O f =
[

Gx
Gy

]
=

[
δ f
δx
δ f
δy

]
(5.2)

This function is based on calculating the derivatives δ f/δx and δ f/δy at every pixel
coordinate. In order to detect an edge, the magnitude of the vector f is computed as
follows: ∥∥G

∥∥= [G2
x +G2

y
]1/2 (5.3)

The magnitude of O f indicates the maximum rate of increase of f (x, y) per unit
distance in the direction of O f . In order to determine the direction of the gradient vector,
we compute the angle of the vector α(x,y) by the following formula:

α(x,y) = tan−1 Gy

Gx
(5.4)

The direction of an edge at α(x,y) is perpendicular to the direction of the gradient vector.
For the derivative mask, the approximations of gradient computation adopt spatial fil-

ters to do neighborhood operations. The masks include various one dimensional deriva-
tions, 3×3 Sobel operators and 2×2 Roberts cross operators, which are the most compact
centered two dimensional derivative masks. The one dimensional masks include uncen-
tered [-1,1], centered[-1,0,1] and cubic-corrected [1,8,0,-8,-1].

The mask [-1,1] is the simplest mask, but its orientation estimation suffers as a result of
the x and y filters based on different centers. In order to use a simple and centered mask,
[-1,0,1] is adopted to compute gradient in our experiment. It computes the gradient at
vertical and horizontal directions. The coordinate of a pixel is denoted (x,y), and its gray
level is f (x,y) in the image; finally the approximate operation calculation of gradient

60

5.3 Overview of Histogram of Oriented Gradients Based Human Detection

using Equation (5.2) can be expressed as:

Gx ≈ f (x+1)×1+ f (x)×0+ f (x−1)× (−1) (5.5)

Gy ≈ f (y+1)×1+ f (y)×0+ f (y−1)× (−1) (5.6)

When the result of Gx and Gy is computed, the equations (5.3) and (5.4) are used to
compute the magnitude and orientation of the gradient vector. For color images, the
separate gradients can be calculated from each color channel, and the largest norm is
taken for the pixel′s gradient vector.

5.3.3 Orientation Binning
In the HOG descriptor structure, the weighted magnitudes and binned orientations are
the key components. Each pixel provides a weighted magnitude which is fed into a
histogram of the edge orientation. The magnitudes are accumulated into bins over local
spatial regions which are called a cell. The bins are evenly spaced from 0 to 180 degrees.
In practice, Bnum denotes the number of orientation bins in one vector per cell. We denote
the index number of a bin for each pixel by Bind(x,y) which can be computed as follows:

Bind(x,y) =

{ α(x,y)
180/Bnum

if the gradient is unsigned
α(x,y)

360/Bnum
if the gradient is signed

(5.7)

where α(x,y) is the orientation computed in Equation (5.4).
Since a good orientation coding produces a good performance, a specific number of

bins is required. It is known that the performance is significantly improved when the
number of bins is increased, but the improvement in performance is not significant over
9 bins.

5.3.4 Normalization and Descriptors Construction
Sine local variations in illumination and contrast often cause the gradient strengths to
vary over a wide range, we use effective techniques of local normalization to eliminate
the bad effect and gain a better performance. There is a number of existing different
normalization techniques. Most of them collect cells into a block and normalize each
block separately. The blocks can be overlapped or non-overlapped. The main block
geometries involve rectangular circular C-HOG blocks and R-HOG blocks, as shown in
Figure 5.2.

In circular HOG (C-HOG) block descriptor, the cells are collected into grids of log-
polar shape. The C-HOG centers are distributed on rectangular grids. At each center,
the local image patch is divided into many angular and radial bins. The angular bins are
distributed over the circle and the radial bins are computed over log scales. Also radial

61

Chapter 5 Person Detection and Tracking using RGB-D Images

(a) (b)

Figure 5.2: Variants of proposed HOG descriptors. 5.2a: A circular HOG (C-HOG)
descriptor. 5.2b: A rectangular HOG (R-HOG) descriptor with 3×3 blocks of cells
(adopted from (Dalal and Triggs (2005))).

bins sizes are increased when the distance from the center is increased. In the outer
cells, more pixels are averaged than in the inner cells. Hence, the descriptor resolution
increases when going to the center.

R-HOG blocks are computed in dense grids at a single scale and use part of a vector
that encodes spatial position relative to the detection window. In R-HOG, the blocks are
made of overlapping rectangular cells. The blocks are computed over the grids which
are normally overlapped. But each block is normalized separately. The square R-HOG
usually is computed in 2×2 grids, which each block consists of 4 cells.

In practice, we can use three techniques of block normalization, as shown in Equation
(5.8), (5.9) and (5.10). We denote the unnormalized descriptor vector by ν . The three
normalizations can be formulated as follows:

L2−norm : ν → ν/
√∥∥ν

∥∥2
2 + ε2 (5.8)

L1−norm : ν → ν/(
∣∣ν∣∣1 + ε) (5.9)

L1− sqrt : ν → ν/
√∥∥ν

∥∥
1 + ε (5.10)

where ε is a small constant which is used to avoid the case that the norm can be equal to
zero.

62

5.4 Overview of Real-Time Compressive Tracking

5.3.5 Support Vector Machine Classifier

The final step collects the HOG descriptors from all blocks of a dense overlapping grid
of blocks covering the detection window into a combined feature vector for use in the
window classifier. We use a support vector machine to train such a feature vector for the
task of human detection.

5.4 Overview of Real-Time Compressive Tracking

5.4.1 Sparse Random Measurement Matrix

The theory of random projection and compressive sensing is widely employed in the
field of object tracking and pattern recognition. This technique aims to reduce the com-
putational complexity of object tracking caused by the high dimensional state space. In
this theory, the key idea is to find a random matrix R ∈ Rm×n in which a feature x from
the high-dimensional space Rm can be efficiently projected to a vector v from the low-
dimensional space Rn. This projection can be formulated as follows:

v = Rx (5.11)

where n� m. According to the theory of compressive sensing (Candes and Tao (2005),
Candes and Tao (2006)) the feature vector x is assumed to be the combination of K basis
vectors. Theoretically, this feature vector can be nearly constructed from a small number
of random measurements. By using the random matrix R, the low-dimensional vector
v still preserves the essential information of the original feature vector x as long as the
random matrix R satisfies the following necessary and sufficient conditions:

(1− ε)
∥∥x1− x2

∥∥2
l2
≤
∥∥Rx1−Rx2

∥∥2
l2
≤ (1+ ε)

∥∥x1− x2
∥∥2

l2
(5.12)

where x1, x2 are two arbitrary feature vectors from the high-dimensional space Rm, which
share the same K basis vectors. On the other hand, a random matrix R can be obtained
from the Johnson-Lindenstrauss (JL) lemma (Achlioptas (2003)). This lemma states that
given a finite collection of d points in Rm, 0 < ε < 1 and β > 0, if n is a positive integer
such that:

n≥ 4+2β
ε2/2− ε3/3

ln(d) (5.13)

and if the random matrix R ∈ Rm×n satisfies the following condition:

ri, j =

{
1 with probability 1

2
−1 with probability 1

2
(5.14)

63

Chapter 5 Person Detection and Tracking using RGB-D Images

or

rri, j =
√

3×


1 with probability 1

6
0 with probability 2

3
−1 with probability 1

6

(5.15)

then, with probability exceeding 1− d−β , the following statement holds: For every
x1,x2 ∈Q,

(1− ε)
∥∥x1− x2

∥∥2
l2
≤ 1√

n

∥∥Rx1−Rx2
∥∥2

l2
≤ (1+ ε)

∥∥x1− x2
∥∥2

l2
(5.16)

As a result, the feature vector x from the high-dimensional space Rm can be recon-
structed from the vector v from the low-dimensional space Rn as long as the random
matrix R satisfies the Johnson-Lindenstrauss lemma. In order obtain a real time perfor-
mance for object tracking, a random matrix R is applied to reduce the computational
complexity of tracking algorithms.

5.4.2 Real-Time Compressive Tracking

This section provides background information about the method of compressive tracking
which can be useful for a better understanding of our system. We essentially attempt to
provide an explicit explanation of their mechanism, advantages and drawbacks.

Among online learning methods, the method of compressive tracking has shown to
significantly outperform existing algorithms. In fact, this tracker is able to quickly adapt
to the object changes of pose, rotation, deformation, and self-occlusion. In addition, this
method is suitable for real time applications due to its low computational costs. Since
the mobile robot and humans often move and change their directions and orientations,
an efficient compressive tracker can be a good solution to adapt to all these changes and
reliably track humans. A compressive tracking method can be considered as a tracking-
by-detection method using a Naive Bayes classifier (Ng and Jordan (2002)). The target
is initially selected based on a tracking window centered on the object in the first frame.
At each frame, positive samples are collected near the center of the tracking window
and negative samples are sampled away from the object center so that the Naive Bayes
classifier is guaranteed to be updated over time. By classifying test samples from the
current target location, we can determine the position of the sample corresponding to the
maximal classification score. This position is also the new position of the tracked object
in the next frame.

In practice, one of the tracking problems is to deal with large scale change of object
appearance because the tracked object often moves far from the camera. To account for
this problem, all positive and negative samples are convolved with multiple-scale filters
h1,1, ...,hw,h computed as follows:

64

5.4 Overview of Real-Time Compressive Tracking

hi, j(x,y) =
{

1, 1 6 x 6 i,1≤ y≤ j
0, otherwise (5.17)

where i and j are the width and height of a rectangle filter, respectively. The result of
these computations of convolution is a multiscale image representation which is robust
to scale changes of the tracked object.

After computing convolution, filtered images are concatenated as a feature vectors x =
(x1, ...xm)

T ∈Rm where m = (wh)2. Since this feature vector x is very high dimensional,
we use a random projection to transform x ∈ Rm into a lower dimensional space v ∈ Rn:

v = Rx (5.18)

where R ∈ Rn×m is a random projection matrix. The elements of this random projection
matrix are defined as:

ri j =
√

s×


1, with probability 1

2s
0, with probability1− 1

s
−1, with probability 1

2s

(5.19)

where s = m/4.
In order to reduce the computational complexity, the random matrix R is fixed through-

out the tracking process. A typical advantage of the random matrix R is that every
nonzero entries of one row of R that multiplies an element in x, is equivalent to a rect-
angle filter that convolves the intensity at a fixed position of an input image, as shown
in Figure 5.3. As a result, each element vi in the low-dimensional feature v ∈ Rn is
presented by a linear combination of rectangle features as follows:

vi = ∑
j

ri, jx j (5.20)

In fact, this representation is similar to the basic representation of Haar-like features
which is successfully used in the Viola-Jones method of object detection (Viola and
Jones (2001b)). Essentially, the random matrix R provides a large set of Haar-like fea-
tures which are adopted to efficiently generate the compressive feature vector v. There-
fore the compressive feature vector v can be efficiently classified in the low-dimensional
space. By using a Naive Bayes classifier for each feature vector v ∈ Rn, we can find
the new position of the tracked human in the current frame, corresponding to the maxi-
mal response of this classifier. All elements in v are modeled with a Bayes classifier as
follows:

H(v) = log
(

∏n
i=1 p(vi|y=1)p(y=1)

∏n
i=1 p(vi|y=0)p(y=0)

)
=

n

∑
i=1

log
(

p(vi|y=1)
p(vi|y=0)

)
(5.21)

where p(y = 1) = p(y = 0), and y ∈
{

0,1
}

is a binary variable representing the sample

65

Chapter 5 Person Detection and Tracking using RGB-D Images

Figure 5.3: Example of a random projection matrix. In the random projection matrix
R, black, red and white rectangles represent negative, positive, and zero entries, respec-
tively. Every nonzero entries of one row of R that multiplies an element in x, is equiva-
lent to a rectangle filter that convolves the intensity at a fixed position of an input image
(adopted from (Zhang et al. (2012)).

label.
Since the conditional distributions p(vi | y = 1) and p(vi | y = 0) are Gaussian distri-

butions with

p(vi | y = 1)∼ N(µ1
i ,δ 1

i), p(vi | y = 0)∼ N(µ0
i ,δ 0

i) (5.22)

we have to update the parameters µ1
i , δ 1

i , µ0
i and δ 0

i in the classifier H. These parameters
are updated online as follows:

µ1
i ← λ µ1

i +(1−λ)µ1

σ1
i ←

√
λ (σ1

i)
2 +(1−λ)(σ 1)2 +λ (1−λ)(µ1

i −µ1)2
(5.23)

where σ1 =
√

1
n ∑n−1

k=0|y=1(vi(k)−µ1)2 and µ1 = 1
n ∑n−1

k=0|y=1 vi(k), and λ is a learning
parameter.

Essentially, the algorithm of compressive tracking is robust to pose variation, illumi-
nation change, occlusion, and motion blur. It has been shown to be suitable for real time
applications, such as human tracking on mobile robots.

5.5 Person Detection and Tracking using RGB-D Images
Figure 5.4 illustrates an overview of the proposed person detection and tracking frame-
work for mobile robots. Human detection is applied in each new frame. The detection
module is comprised of a face detector and an upper body detector. In order to meet the

66

5.5 Person Detection and Tracking using RGB-D Images

Figure 5.4: Flow chart of our approach.

requirement of real time mobile robot performance, one detector is used in the current
frame and the other one is used in the next frame, and so on. Figure 5.6 shows the result
of our person detection in different cases.

In the stage of face detection, the technique of depth-based skin color segmentation is
provided to speed up the search of the face and reduce the false positive rate. Since the
search areas in each frame are reduced significantly, the Viola-Jones method of face de-
tection (Viola and Jones (2001b)) is implemented to detect humans quickly and reliably.

In the stage of upper body detection, an upper body detector is trained on the CALVIN
dataset (Ferrari et al. (2008)). Since searching for humans in the whole image is a time
consuming operation, we decrease search areas in each image and estimate human scales
necessary to search in those areas. For this reason, the depth information is utilized to
segment potential areas where humans probably appear, and skip non-human areas in
each frame. As a result, the trained upper body detector can in real time quickly find the
humans in images.

Our tracking method is based on a fast compressive tracker and a Kalman filter. The
new position of our tracker is taken either from the output of the fast compressive tracker
or from the predicted position of the Kalman filter and it depends on whether large oc-
clusion regions are found in the current frame or not. If a complete occlusion is found,
the Kalman filter plays an important role to predict the next position of the temporally
occluded human. If no significant occlusion is recognized, the fast compressive tracker
provides a more accurately predicted position than the Kalman filter. Figure 5.8 shows
some sample images extracted from our experiments of person tracking. In our research,
the depth information has proven to be useful for detecting occlusions.

67

Chapter 5 Person Detection and Tracking using RGB-D Images

Figure 5.5: Flowchart of segmentation steps for upper body and face detection.

5.5.1 Face detection

As mentioned in our previous work (Vo et al. (2012)), if the image of the frontal face
is visible we apply our face detector to quickly and reliably detect people. As shown
in Figure 5.5, the information of geometric constraints, navigation and the technique
of depth-based skin color segmentation are provided to make our face detector much
faster and more accurate. Our face detection involves three basic steps: First, in order to
reduce computational costs we use a set of sampling points spanning the whole image to
collect the information of color, texture and depth. Second, the constraints of geometry
and navigation information are used to remove the background. Finally, the techniques
of skin detection and depth-based skin colour segmentation are applied around filtered
sampling points to find the potential regions in which the face detector is able to localize
the face position. In addition, we can speed up face detection by limiting the range of
facial scales, which is mentioned by Vo et al. (2012) and thus estimate the sizes of the
humans that are possibly present in these regions.

5.5.2 Upper body detection

Similar to the above step of face detection, the information of geometric constraints,
navigation and the technique of depth-based segmentation are helpful for removing the
background and reducing search areas, as shown in Figure 5.5. As a result, we have a

68

5.5 Person Detection and Tracking using RGB-D Images

(a) (b)

(c) (d)

Figure 5.6: Results of our person detection in different cases.

small set of search areas where the upper body detector is applied to detect humans, based
on histograms of oriented gradients (Dalal and Triggs (2005)). Essentially, similarly to
what happens in face detection, we estimate the sizes of humans in these search areas in
order to significantly reduce computational costs.

The upper body detector is trained by using a linear support vector machine. Par-
ticularly, search windows are divided into cells which are used to compute histograms
of oriented gradients. The upper body detector classifies the search window running
through every position and scale to find the human location.

5.5.3 Fast compressive tracking
If large changes in the appearance of humans by illumination, different poses or by partial
occlusion exist, the data association temporally fails. When these failures happen, the
fast compressive tracker plays a very important role, following the human and adapting
to these complex changes as well as to partial occlusion.

To keep tracking the human, the fast tracker uses a search window, which is updated
by each corresponding detection, as shown in Figure 5.7. First, we collect a set of image
samples near the current human location in the search window. Then we estimate the dis-
tance between the human, appearing in the search window, and the camera by sampling
the depth information in this search window. Similar to the segmentation step presented

69

Chapter 5 Person Detection and Tracking using RGB-D Images

Figure 5.7: Main components of a fast compressive tracker.

in our previous work (Vo et al. (2012)), we use a set of sampling points spanning the
whole search window to collect the information on depth. The technique of depth-based
segmentation is applied around sampling points to find the human, which is the biggest
segmented region in the search window. The distance between the human and the cam-
era is estimated based on the average depth value of the sampling points belonging to the
segmented region. In order to filter out samples, the above technique of depth-based seg-
mentation is used for all samples to segment objects in each of these samples. Because
a distance estimation between the human and the camera exists, a sample can be filtered
out if no segmented object is in the range closer than 0.5 meters from the tracking human
location. By applying the method of compressive tracking described in the section 5.4.2,
the remaining samples are classified to find the new position of the tracked object in the
next frame.

The fast compressive tracker is updated in every frame to adapt to human changes of
rotation, occlusion and scale as well as to adapt to complex changes of background and
illumination. For updating, we collect a set of positive samples near the current center of
the search window and a set of negative samples far away from this position. Similar to
the tracking step, low dimensional features v ∈ Rn are extracted from these two sets of
samples following the steps of depth-based filtering, multi-scale filter banks, and random
projection. We use these features to update the classifier parameters as presented in the
section 5.4.2.

5.5.4 Kalman filter for occlusion handling
When a new fast compressive tracker is initiated, a Kalman filter is also set up as an
alternative tracker in case that the human is completely occluded by another person or
large objects. That means that the output of the Kalman filter is used for tracking when
the human is significantly occluded and the fast compressive tracker can not provide a
reliable prediction.

A Kalman filter consists of measurement update equations and time update equations.
When the compressive tracker is still tracking the human efficiently without recognized
occlusion, the measurement update equations correct the Kalman filter by using the re-
liable output from the fast compressive tracker. The time update equations are used
to predict the current position of the human, and this prediction only replaces the one
from the compressive tracker when an occlusion is found. The Kalman filter state vector
includes five parameters which are x-y coordinates of the bounding box of the human
region, the velocity in the x and y directions, and the scale of the human region. The

70

5.5 Person Detection and Tracking using RGB-D Images

(a) (b)

(c) (d)

Figure 5.8: Results of our person tracking.

state-space representation of the Kalman filter is given as:
x̂t

ŷt

x̂′t
ŷ′t
ŝt

=


1 0 ∆t 0 0
0 1 0 ∆t 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




xt−1
yt−1
x′t−1
y′t−1
st−1

+Wt (5.24)

where x̂t , ŷt are the coordinates, and x̂′t , ŷ′t are the velocities, ŝt is the scale of the human
region. ∆t is defined as the time interval and Wt is the measurement noise. In order to
update the Kalman filter, the output of the Naive Bayes classifier in the fast compressive
tracker is given as the measurement input. The Kalman filter uses this data to effectively
correct the system. The measurement correction equation is represented as follow:

xt

yt

x′t
y′t
st

=


x̂t

ŷt

x̂′t
ŷ′t
ŝt

+Kt


mxt

myt

mSt

−
1 0 ∆t 0 0

0 1 0 ∆t 0
0 0 0 0 1




x̂t

ŷt

x̂′t
ŷ′t
ŝt


 (5.25)

where Kt is the Kalman factor, mxt , myt and mst are the measurement variables computed

71

Chapter 5 Person Detection and Tracking using RGB-D Images

Figure 5.9: Example of occlusion detection.

from the position and size of the human assessed by the compressive tracker.
The prediction of the Kalman filter is required whenever the human location can not be

found by the compressive tracker due to occlusion by other persons or objects. When the
human is significantly occluded, the fast compressive tracker can filter out all samples
since no segmented object closer than 0.5 meters to the tracking human location can be
found. Figure 5.9 shows an example of occlusion detection.

For this situation, the Kalman filter is considered in the short time interval as the
alternative solution to continue to track the occluded human. After to frames, if a new
detection is matched to the tracker, the fast compressive tracker is recovered at the new
detected position. Otherwise, if we can not find any detection matching the Kalman filter
during tk frames, the target is automatically terminated.

5.5.5 Hungarian algorithm for matching

When we find a new detection of a human we use the Hungarian algorithm to search the
tracker corresponding to this detection. If it is not matching any available tracker, a new
tracker is initiated on the new detected position. If the Hungarian algorithm finds the
corresponding tracker, this tracker is updated by the new detected position. On the other
hand, if no detections are found for the same tracker during a period of termination, this
tracker is automatically terminated.

The Hungarian algorithm is based on the cost values corresponding to the overlap ratio
between valid targets and new detections in each frame. In order to compute the cost for
each pair of a target and a detection, we based the formula on the overlap ratio between
them as follows:

72

5.6 Experimental Setup

Rk
i =

2∗ sO
ik

sD
i + sT

k
(5.26)

where sO
ik is the overlap area, sD

i is the area of the ith detection and sT
k is the area of the

kth target. The cost is computed as following:

Ck
i =

{
0 i f Rk

i ≤ Rmin
−log(Rk

i) otherwise
(5.27)

where Rmin is a threshold to evaluate whether the distance between the detection and the
target is too far or not. By minimizing the cost function as mentioned by Kuhn (1955),
an optimal solution is found to correctly match targets and detections.

5.6 Experimental Setup

5.6.1 Dataset

We used the first Michigan dataset (static dataset) (Choi et al. (2011b)), collected in
indoor environments with a fixed Microsoft Kinect camera mounted approximately 2
meters high, to test the accuracy and the processing time of our method and its competi-
tors. This database consists of 17 log files each spanning 2 to 3 minutes. For evaluating
the accuracy of our method under the conditions of a moving mobile robot, the second
dataset (the on-board dataset) was used with a Microsoft Kinect camera mounted on-
board a robot (PR2). This dataset consists of 18 log files recorded in offices, corridors
and a cafeteria. Our goal was to evaluate the performance of our method in indoor en-
vironments in which both the humans and the robot move under different illumination
conditions and in which the human either changes in a variety of poses or is occluded.
Figure 5.12 shows some sample images extracted from our datasets.

We evaluated the accuracy and the processing time of our method and its closest com-
petitor, the reversible jump Markov chain Monte Carlo particle filtering (RJ-MCMC)
(Choi et al. (2011b)). In all our experiments, humans are hand-annotated by bounding
boxes around upper bodies. The experiments implemented on both Michigan datasets
were carried out using C++ on a PC with 2.5 GHz Intel Core i5 CPU.

5.6.2 Results

We use the log-average miss rate (LAMR), mentioned by Wojek et al. (2011), to com-
pare the performances, shown by the curve of miss-rate versus false-positive-per-image
(FPPI). The log-average miss rate is computed by averaging miss rate at nine FPPI rates
evenly spaced in the range of 10−2 to 100. If a curve ends before reaching a given FPPI
rate, the minimum miss rate is applied. The log-average miss rate is computed by the

73

Chapter 5 Person Detection and Tracking using RGB-D Images

Table 5.1: Comparison of speed on the Michigan database.

First
dataset

Second
dataset

Platform

Ours 23.8 fps 22.2 fps CPU
RJ-MCMC 4 fps 4 fps GPU

following formula:

LAMR = log(
1
9

9

∑
i=1

10mi) (5.28)

where mi is the miss rate at the following FPPI rate:

xi = 10−2+0.2i, i = 1,2, ..,9 (5.29)

On the first dataset, we show the comparison of two algorithms in Figure 5.10. Our
algorithm significantly outperforms the RJ-MCMC with an improvement of 8.0 %. On
the second dataset, the improvement of our algorithm is 8.55 %, as indicated in Fig-
ure 5.11. These results prove that the combination of a fast compressive tracker and a
Kalman filter is more efficient than the RJ-MCMC, even when we do not use the ex-
pensive human detectors, such as the full body human detector, the depth based shape
detector, the motion detector and skin color detector. Although both the face detector
and the upper body detector can detect humans reliably, they can not detect the human in
certain complicated poses in many frames. In these cases, the fast compressive tracker
gives a high contribution to the performance of our algorithm due to its robustness to
different poses of humans as well as in partial occlusion. In addition, the Kalman filter
plays a significant role as the alternative to the fast compressive tracker to deal with a
full occlusion.

Besides the accuracy of an algorithm, the processing time is also a very important
factor in mobile robot performance. Hence, we also compare our algorithm with the
RJ-MCMC to point out which one meets the requirement of real time processing. The
speeds of our algorithm and the RJ-MCMC on the Michigan datasets are shown in Table
6.5. Although RJ-MCMC uses a GPU implementation, it is still much slower than our
algorithm. This is explained by some improvements in reducing the search space of
human detections as well as decreasing the number of search samples in compressive
trackers. In particular, in each frame the fast compressive tracker just has to classify
40 samples on average instead of more than 7000 samples as the original one. This
significantly improves the speed of the fast compressive tracker.

74

5.7 Summary

0

0.2

0.4

0.6

0.8

1

10-1 100

m
is
s
ra
te

false positives per image

OURS (52%)
RJ-MCMC (60%)

Figure 5.10: Results of human tracking on the first Kinect dataset. Our algorithm, with
an improvement of 8.0 %, significantly outperforms the RJ-MCMC.

5.7 Summary
In this chapter, we have introduced a system for multiple person detection and tracking
by a mobile robot. The results indicate that the fusion of detections from the face de-
tector and upper body detector provides reliable observation cues for tracking multiple
humans. Furthermore, the combination of the fast compressive tracker and Kalman filter
is robust to motion, pose variation and occlusion. In the future, we are trying to develop
an algorithm of human reidentification based on the information of color and depth in
order to combine it with the current tracking system. This combination will enable the
mobile robot to track people more reliably and be able to recover lost tracks caused by
long term full occlusions or temporary disappearance of humans in the robot′s field of
view.

75

Chapter 5 Person Detection and Tracking using RGB-D Images

0

0.2

0.4

0.6

0.8

1

10-1 100

m
is
s
ra
te

false positives per image

OURS (51.46%)
RJ-MCMC (60.01%)

Figure 5.11: Results of human tracking on the second Kinect dataset. Our algorithm,
with an improvement of 8.5 %, is better than the RJ-MCMC.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Examples of tracking results. The mobile robot can detect humans in dif-
ferent poses and in severe occlusions.

76

Chapter 6

Face Recognition Using Local Ternary
Patterns with Collaborative
Representation

6.1 Introduction

The ability to recognize faces is a crucial element for human-robot interaction. During
the last few years face recognition on mobile robots has received significant attention
from the researchers. There are many approaches for face recognition; however, these
assume unrealistic conditions for mobile robots, like having an image with an aligned
face under controlled illumination. In uncontrolled conditions, face recognition for mo-
bile robots still remains a challenging task. First, the face image is often taken under
different conditions of illumination. Illumination is one of the most significant factors
affecting the appearance of faces. Due to the structure of the face, different lighting
sources can throw strong shadows that diminish certain facial features. This results in
the fact that differences in appearance induced by illumination are larger than differences
between individuals. For this reason, most existing methods are accurate for recogniz-
ing faces in constrained illumination conditions, but their performance is much worse
in recognizing faces under uncontrolled illumination conditions. Second, while both the
humans and the robot move in front of complex backgrounds, the face changes with wide
variations of pose and scale. These variations may lead to a significant increase of oc-
cluded features in face images. In addition, it is not easy for the mobile robot to track the
face correctly in such conditions. Third, the captured images may include a great amount
of noise that significantly degrades face recognition performance. Noise may result from
environmental conditions, illumination or incorrect use of sensors. Fourth, many ap-
proaches to face recognition are too time-consuming to be able to run on a mobile robot.
Some state-of-the-art face recognition algorithms are introduced in this chapter because
of their advantages in addressing these problems as well as their drawbacks that we can
overcome to improve our system of face recognition. In this chapter, we also design and
analyze experiments with challenging datasets in order to compare our algorithm with
these competitors.

77

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

The first method mentioned is sparse representation based classification which has
shown strong ability in solving computer vision problems. The core issue of sparse rep-
resentation techniques is to solve an L1-minimization problem which is equivalent to an
L0-minimization problem under certain conditions. In terms of face recognition, it is
known that samples from a single class lie on an approximately linear subspace (Bel-
humeur et al. (1997), Basri and Jacobs (2003)). Thus, a test sample can be expressed
as a linear combination of those training samples from the class to which the test sam-
ple belongs. In theory, only a few of the computed coefficients of sparse representation
based classification are nonzero entries. Basically, if there are outliers in face images,
such as occlusion or pixel corruptions, the representation learned by sparse representa-
tion can address the problems of partial occlusion and noise. Therefore, sparse repre-
sentation based classification can perform robust face recognition compared to classical
methods. However, its computational complexity is very high due to solving a complex
L1-minimization problem.

Zhang et al. (2011) tried to find an explicit explanation of reasons making sparse rep-
resentation based classification powerful for face classification. By analyzing the role
of important elements of this algorithm, he proved that it is the collaborative represen-
tation but not the L1-norm sparsity that plays a crucial role in improving accuracy of
face recognition. As a result, it is not necessary to use expensive L1-norm constraints
to solve the problem of face recognition as presented by Zhang et al. (2011). Instead of
solving an L1-minimization problem, Zhang et al. (2011) proposed an advanced version
of sparse representation based classification namely, collaborative representation based
classification, which exploits the role of collaboration between classes in representing
test face images. By only using the much weaker L2-norm minimization, this method
is not only as accurate as other state-of-the-art algorithms such as sparse representation
based classification Wright et al. (2010), but is also much less time-consuming. This
algorithm achieves a high accuracy when tested on challenging datasets, but it can be
degraded when the cropped face image is misaligned or the mobile robot captures the
face image under varying illumination. In order to find a good solution for these draw-
backs, descriptor based methods have been proposed, such as local binary patterns and
its different extensions. Local binary patterns are simple, invariant against monotonic
gray scale transformations, and relatively robust with illumination changes. Therefore,
it has been widely used in many fields of computer vision, such as uncontrolled face
recognition. In the field of face recognition, local binary patterns are used to extract the
local information of texture and shape which is very important information for a suc-
cessful face recognizer. Nevertheless, in practice the efficiency of local binary patterns
deteriorates significantly due to random noise as well as large illumination variations.

Fortunately, we found an advanced extension of local binary patterns, local ternary
patterns (Tan and Triggs (2010a)). Instead of exactly thresholding at the value of the
central pixel, local ternary patterns sets gray- levels in a zone of width ±t around the
central pixel equal to zero. As a result, local ternary patterns not only inherits the key
advantages of local binary patterns but also significantly reduces the drawbacks of local

78

6.2 Related Work

binary patterns. Local ternary patterns are able to significantly reduce the influence of
uncontrolled illumination, in shady as well as in bright areas. In addition, it is not only
insensitive to random noise in face images but also relatively robust to misalignment.

In this chapter, we propose an algorithm for recognizing faces based on the combina-
tion of local ternary patterns and collaborative representation based classification. This
combination enhances the efficiency of collaborative representation based classification
in face recognition, which can help mobile robots to recognize human faces even when
humans move freely under different illumination and noisy conditions. Furthermore, it
significantly reduces computational costs to help the robot run in real time. Our system
can be broken into three sequential stages: face detection, face tracking and pose esti-
mation and face recognition. The goal of face detection is to reliably and quickly find
human faces in images. In our method, face tracking is an early and critical step that finds
the face in images, from which we can extract relevant features to improve the accuracy
of face recognition. The more precisely the face can be tracked, the more accurately it
can be cropped and recognized. In the second step, we use the method of face tracking
mentioned in our previous research (Vo and Zell (2013)), to adapt to the changes of the
face as well as to adapt to complicated changes of illumination. In the final stage, the
cropped face is classified based on our face recognizer using the combination of local
ternary patterns and collaborative representation based classification.

In the next section of this chapter, we describe in depth the related research on face
recognition algorithms that include sparse representation based classification, collabora-
tive representation based classification, local binary patterns, local ternary patterns and
the other state-of-the-art methods for mobile robots. We analyze in detail the advan-
tages of these algorithms that inspire us to design a robust system of face recognition for
mobile robots, as well as their disadvantages, which we need to take into an account.

In the third section, we present in detail our system of face recognition for mobile
robots. We demonstrate several experiments with challenging datasets to test the accu-
racy and the processing time of our face recognition method and its competing methods.
The results show that our method outperforms its competitors which are sparse represen-
tation based classification, collaborative representation based classification, local binary
patterns and local ternary patterns. Our method inherits most of the key advantages of its
competitors, such as invariance with noise and illumination, robustness to face misalign-
ment, and computational efficiency.

6.2 Related Work
Although there are many approaches to face recognition for human-robot interaction
(Lee et al. (2013)), most of them are focused on biometric applications, and consider an
image of a face under controlled conditions. For example, only frontal face images taken
under controlled lighting conditions were used. Lijin Aryananda (Aryananda (2001))
implemented an online and unsupervised face recognition system on a humanoid robot.

79

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

This method is capable to learn and recognize new individuals and to incrementally im-
prove its training images over time. Nevertheless, this online face recognition system
not only has a high complexity but also is unable to deal with face alignment and rota-
tion. Lee et al. (2005) used the combination of Gabor wavelets and an Enhanced Fisher
Model for the human-robot interaction. Kai-Tai Song (Song and Chen (2004)) proposed
an architecture of radial basis function networks for fast face recognition. In this pro-
posed architecture, each radial basis function network is independently trained for each
person. He also developed a real time system for detecting, tracking, and recognizing
multiple faces in a scene. This system not only achieves a significant improvement of
recognition rate relative to conventional approaches but also can run in real time on mo-
bile robots. The drawback of this system, however, is that the number of training faces
is small due to a limited number of radial basis function networks that are used for a
real time performance. Cruz (Cruz et al. (2008)) has developed an approach to help ser-
vice robots to be able to recognize faces in unconstrained environments. This method in
which SIFT descriptors are applied for extracting facial features, is robust to local affine
distortions of face images. Thus it achieved significant progress in face recognition un-
der different viewpoints and some environmental conditions. However, its performance
is worse under uncontrolled illumination conditions. Furthermore, this method is too
time-consuming to run in real time.

Recently, sparse representation, which was developed from the theory of sparse cod-
ing, has been applied in face recognition. In this theory, a face is represented as a com-
bination of the training faces of the overall training dataset. Then this face is classified
based on the least representation residual. Recent research has developed new algorithms
of face recognition motivated from sparse representation and they have achieved signif-
icant progress (Wright et al. (2010)). Although sparse representation has shown high
accuracy of face recognition, its computational cost is very expensive. For the field of
face recognition for human-robot interaction, the computational complexity of this algo-
rithm has not met the requirement of real time performance. Therefore, the collaborative
representation was proposed by Zhang et al. (2011), using non-sparse L2-regularization
instead of the L1-norm sparse regularization. This improvement makes a significant dif-
ference between collaborative representation and sparse representation. Collaborative
representation is nearly as accurate as sparse representation while it is much less time-
consuming. Collaborative representation achieved a high accuracy when tested on some
challenging datasets, but it is less successful when the cropped face is misaligned or the
mobile robot runs under uncontrolled illumination conditions.

Other promising approaches for face recognition are descriptor based algorithms such
as local binary patterns (Ahonen et al. (2004)), which use both shape and texture in-
formation to represent the face image. The key advantages of local binary patterns are
that they are invariant to gray-scale changes and their computational cost is very low.
Thus they achieved a considerable success in uncontrolled face recognition (Wolf et al.
(2008)). However, in practice the efficiency of local binary patterns deteriorates signif-
icantly due to random noise in the areas surrounding the face. Tan and Triggs (2010b)

80

6.2 Related Work

presented local ternary patterns which not only inherit the advantages of local binary pat-
terns but also significantly reduce noise sensitivity. The method of local ternary patterns
are tested on challenging databases chosen to compare the algorithms of face recogni-
tion under complicated illumination conditions. All the tests demonstrated that local
ternary patterns outperform local binary patterns in dealing with difficult illumination
conditions.

Due to the constraints and limitations encountered in a mobile robotics scenario,
such as low image resolution, motion blur or tight computational constraints, uncon-
strained face recognition for human-robot interaction remains a challenging problem for
researchers. In this chapter, we present a reliable face recognition system for mobile
robots, which achieves high recognition rates on challenging face databases and can run
in real time on mobile robots.

6.2.1 Overview of Face Recognition via Sparse Representation

This section provides background information on one of the state-of-the-art methods of
face recognition, sparse representation, and briefly describes the previous work relevant
to our research of face recognition for mobile robots. We also attempt to provide an
explicit explanation of their mechanism, advantages and drawbacks.

Recently, sparse representation, which was developed from the theory of sparse cod-
ing, has been successfully used in face recognition. Wright et al. (Wright et al. (2010))
presented a successful sparse coding model of face recognition using the L2-norm and
the L1-norm of the coding residual. Yang and Zhang (2011) proposed Gabor features
for sparse representation based classification to reduce the computational cost. Some
advanced versions of sparse representation are used to solve the misalignment or pose
change. The method, presented by Wagner et al. (2009), could deal with misalign-
ment and illumination variation. The face recognition method, proposed by Huang et al.
(2008), is invariant to image plane transformation. In this theory, a face is represented
as a combination of the training faces on the overall training dataset. Then this face
is classified based on the least representation residual. Recent research has developed
new algorithms of face recognition motivated from sparse representation and they have
achieved significant progress. Wright et al. (Wright et al. (2010)) proposed the sparse
representation based classification method to represent the face image y based on the
over-complete dictionary X with sparse coefficients as follows:

min‖α‖0 s.t. y = Xα (6.1)

To apply sparse representation based classification to face recognition, we build a
dataset X including training face images from k classes, where X =

{
X1, X2, ..., Xk

}
.

Basically, given training samples of class i, where Xi =
{

vi,1, vi,2, ..., vi,ni

}
∈ Rm×ni ,

a test face image y∈ Rm belonging to the same class i should be approximated by a linear
combination of the training samples from Xi as follows:

81

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Figure 6.1: Overview of face recognition via sparse representation (adopted from (Wright
et al. (2010)).

y =
ni

∑
j=1

xi, jvi, j (6.2)

Since X is the dictionary including the training face images from all the classes, the
test face image y can be presented as follows:

y = Xα (6.3)

where α =
{

0, ... 0, xi,1, xi,2, ... xi,ni, 0, ... 0
}T . α is the coefficient vector

in which most coefficients are zero except the ones associated with class i. Since the
entries of the vector α encode the identity of the face image y, we try to find efficient
methods to obtain this vector.

In principle, if m > n, the equation y = Xα is considered as an overdetermined system.
As a result, the solution for the coefficient vector α is unique. But in the field of face
recognition, the equation y = Xα is usually undetermined; therefore, the vector α is
not unique and it is hard to solve the equation y = Xα directly. By using the following
L2−norm minimization problem, a solution for the vector α can be found:

min‖α‖2 s.t. y = Xα (6.4)

Although the solution for the L2−norm minimization problem can be found easier, it
contains less information for face recognition. Consequently, the face image y can only
be encoded by the training images from the same class. This results in a better method to
find the sparse solution for y=Xα as described by the following L0−norm minimization
problem:

min‖α‖0 s.t. y = Xα (6.5)

82

6.2 Related Work

In theory, we can find the sparsest solution for the vector α by using the above L0−
norm minimization problem. But this problem is non-convex and actually NP-hard. John
Wright (Wright et al. (2010)) claimed that “if the solution for the vector α is sparse
enough, the solution of the L0−norm minimization problem (6.5) is equal to the solution
to the following L1−norm minimization problem”:

min‖α‖1 s.t. y = Xα (6.6)

Instead of dealing with an NP-hard problem, we just solve the equivalent problem by
standard linear programming methods as long as the solution of the L0−norm minimiza-
tion problem is sparse enough. In order to apply the method of sparse representation for
realistic face recognition applications, which usually suffer from noise, Equation (6.1)
can be extended as follows:

min‖α‖0 s.t. y = Xα + z (6.7)

where z is a noise term. The L1− norm minimization problem thus can be regulated
further in order to address the noise problem. The extended formulation of this problem
is presented as follows:

min‖α‖1 s.t. ‖y−Xα‖2 ≤ ε (6.8)

where ε > 0 is a given tolerance. In addition, we can apply second-order cone program-
ming to easily solve the above optimization problem.

In order to recognize the identity of the face y, we have to find a solution for Equation
(6.5) which is the same as solving the solution of Equation (6.3) mentioned above. Theo-
retically, the nonzero entries of the coefficient vector are only dependent on the columns
of the matrix X from the face class that the test face image y belongs to. However,
nonzero entries still exist in the columns from different classes due to noise and system-
atic errors. To solve this difficulty, we compute the regularized residuals of classes as
follows:

ri(y)) =
∥∥y−Xδi(α1)

∥∥
2 (6.9)

where δi is the characteristic function collecting the coefficients corresponding to the
training images in class i, and α1 is the sparse solution for Equation (6.8). The identity
of the face y is then computed by:

Identity(y) = argmini(ri(y)) (6.10)

With a sufficient number of training samples, sparse representation based classification
with random projection-based features can achieve a high accuracy. However, sparse
representation based classification assumes that the face image y and the training images
must be aligned. Thus, sparse representation based classification may fail in the case that
the face image is misaligned.

83

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

6.2.2 Overview of Face Recognition via Collaborative
Representation

As explained in the previous section, sparse representation based classification (SRC)
has been widely used for face recognition. Sparse representation based classification has
shown high accuracy of face recognition; however, its computational cost is very high.
For the field of face recognition for human-robot interaction, the computational complex-
ity of this algorithm has not met the requirement of real time performance. Therefore,
the collaborative representation was proposed by Zhang et al. (2011), using the non-
sparse L2-regularization instead of the L1-norm sparse regularization. This improvement
makes a significant difference between collaborative representation and sparse represen-
tation. Collaborative representation is nearly as accurate as sparse representation while
it is much less time-consuming. Collaborative representation achieved a high accuracy
when tested on some challenging datasets, but it is less successful when the cropped face
is misaligned or the mobile robot runs under uncontrolled illumination conditions.

Zhang (Zhang et al. (2011)) devoted his research to evaluate how the sparse represen-
tation based classification improves face recognition performance, which has not been
explicitly explained. Instead of emphasizing the role of sparse representation, he highly
evaluated the important factor of collaborative representation in making the sparse rep-
resentation based classification highly efficient. As a result, he proposed the method
of collaborative representation based classification with regularized least square (CRC-
RLS), which exploits the role of collaborative representation in significantly reducing
algorithm complexity for face recognition.

Theoretically, the dictionary matrix X is orthogonal; therefore, we usually use many
training images in order to sufficiently represent any test face image y. Thus, each train-
ing class Xi is overcomplete. But in practical face recognition scenarios, the training
samples for each class Xi are usually limited. This results in the fact that the sparse rep-
resentation of the test face image y is basically unstable. In order to solve the problem
of insufficient training samples , the face image y can be coded over the dictionary of all
training images X = [X1,X2, ...,XK] using an L1-norm minimization algorithm which is
simplified, as follows:

α̂ = argminα
∥∥y−Xα

∥∥2
2 (6.11)

Figure 6.2 geometrically illustrates the coding of y over the dictionary X . In this
figure, the vector ŷ = ∑i Xiα̂i is the projection of y onto the space spanned by X . The
reconstruction error of the class i can be analyzed as follows:

ei =
∥∥y−Xiα̂i

∥∥2
2 =

∥∥y− ŷ
∥∥2

2 +
∥∥ŷ−Xiα̂i

∥∥2
2 (6.12)

Since the element
∥∥y− ŷ

∥∥2
2 is a constant, only the element

∥∥ŷ−Xiα̂i
∥∥2

2 plays the main
role of classification of the test face image y.

We denote χi = Xiα̂i and χ̄i = ∑ j 6=i X jα̂ j. As χ̄i is parallel to ŷ−Xiα̂i, we have the

84

6.2 Related Work

Figure 6.2: Geometric illustration of the coding of y over the dictionary X (adopted from
(Zhang et al. (2011)).

following equation: ∥∥ŷ
∥∥

2
sin(χi, χ̄i)

=

∥∥ŷ−Xiα̂i
∥∥

2
sin(ŷ,χi)

(6.13)

As a result, the presentation error can be computed as follows:

e∗i =
sin(ŷ,χi)

∥∥ŷ
∥∥

2
sin2(χi, χ̄i)

(6.14)

The smaller the representation error is, the better the accuracy of sparse representation
is achieved. Equation (6.13) shows that there are two important factors affecting the
representation error. The first factor is the angle between ŷ and χi, which should be small.
The second one is the angle between χi and χ̄i, which should be big in order to reduce the
representation error. Both factors also show that the collaborative representation plays
a key role of improving the face recognition performance. And it is not necessary to
use the expensive L1-norm minimization algorithm to classify the face image y. Indeed,
we can replace the L1-norm constraint by a much weaker L2-norm constraint in order
to identify the test face image y. As a result, the fast collaborative representation based
classification is proposed to emphasize the role of collaboration between classes. The
test face image y is coded over the dictionary X by using the regularized least square
method as follows:

(γ̂) = arg minγ

{
‖v−T · γ‖2

2 +λ ‖γ‖2
2

}
(6.15)

where λ is the regularization parameter. Compared with the L1-norm sparse represen-
tation based classification, the collaborative representation based method shows a much
lower complexity and its accuracy is nearly the same.

85

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

6.2.3 Overview of Face Recognition using Local Binary Patterns

Other promising approaches for face recognition are descriptor based algorithms such as
local binary patterns Ahonen et al. (2004), which use both shape and texture information
to represent the face image. The method of face recognition, based on local binary pat-
terns, is usually simple, computationally efficient and have proved to be highly effective
features for face recognition (Wolf et al. (2008), Ruiz-del Solar et al. (2009), Ahonen
et al. (2006), Rodriguez and Marcel (2006)). Within LBP-based algorithms, most of the
face recognition algorithms using local binary patterns follow the approach proposed by
Ahonen et al. (2006). In this approach the face image is divided into a grid of small
non-overlapping regions, where a histogram of local binary patterns for each region is
constructed. The similarity of two images is then computed by summing the similarity
of histograms from corresponding regions.

The key advantages of local binary patterns are that they are invariant to gray-scale
changes and their computational cost is very low. Thus, they achieved a considerable
success in uncontrolled face recognition (Rodriguez and Marcel (2006)). The local bi-
nary patterns operator is a 3×3 kernel coding the local texture information of an image,
as described in Figure 6.3. We denote lc as the gray level of the center pixel, and lp as
the gray level of the neighbors in which p = 0,1, ...,7. Thus the LBP code is computed
as follows:

LBP =
7

∑
p=0

f (lp, lc)2p (6.16)

Here f (lp, lc) is a threshold function:

f (lp, lc) =
{

1 i f lp > lc
0 otherwise (6.17)

Furthermore, the LBP operator was extended to use neighborhoods of different sizes.
In this case a circle is made with radius R from the center pixel. P sampling points on
the edge of this circle are taken and compared with the value of the center pixel. To get
the values of all sampling points in the neighborhood for any radius and any number of
pixels, (bilinear) interpolation is necessary. For neighborhoods, the notation (P, R) is
used. Figure 6.4 illustrates three neighbor sets for different values of P and R.

If the coordinates of the center pixel are (xc, yc), then the coordinates of his P neighbors
(xp, yp) on the edge of the circle with radius R can be calculated with the sines and
cosines:

xp = xc +R.cos(2π/P) (6.18)

yp = yc +R.sin(2π/P) (6.19)

86

6.2 Related Work

Figure 6.3: The original LBP operator.

If the gray value of the center pixel is gc and the gray values of his neighbors are gp,
with p = 0, ..., P - 1, then the texture T in the local neighborhood of pixel (xc, yc) can be
defined as:

T = t(gc,g0, ...,gP−1) (6.20)

Once these values of the points are obtained, it is also possible to describe the texture in
another way. This is done by subtracting the value of the center pixel from the values of
the points on the circle. On this way, the local texture is represented as a joint distribution
of the value of the center pixel and the differences:

T = t(gc,g0−gc, ...,gP−1−gc) (6.21)

Since t(gc) describes the overall luminance of an image, which is unrelated to the local
image texture, it does not provide useful information for texture analysis. Therefore,
much of the information about the textural characteristics in the original joint distribution
(Equation (6.20)) is preserved in the joint difference distribution (Ojala et al. (1996)):

T ≈ (g0−gc, ...,gP−1−gc) (6.22)

Although invariant against gray scale shifts, the differences are affected by scaling. To
achieve invariance with respect to any monotonic transformation of the gray scale, only
the signs of the differences are considered. This means that in the case when a point on
the circle has a higher gray value than the center pixel, a one is assigned to that point,
and else it gets a zero:

T ≈ (s(g0−gc), ...,s(gP−1−gc)) (6.23)

where

s(x) =
{

1 i f x≥ 0
0 otherwise (6.24)

In the last step to produce local binary patterns for pixel (xc, yc), a binomial weight 2p

87

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Figure 6.4: Illustration of three neighbor sets for different values of P and R (adopted
from (Ahonen et al. (2004)).

is assigned to each sign s(gp−gc). These binomial weights are summed:

LBPP,R(xc,yc) =
P−1

∑
p=0

s(gp−gc)2p (6.25)

The local binary patterns characterize the local image texture around (xc, yc). The
original LBP operator in Figure 6.3 is very similar to this operator with P = 8 and R =
1, which is LBP8,1. The main difference between these operators is that in LBP8,1, the
pixels first need to be interpolated to get the values of the points on the circle.

A local binary pattern is called uniform if it contains at most two bitwise transitions
from 0 to 1 or vice versa. This means that a uniform pattern has no transitions or two
transitions. Only one transition is not possible, since the binary string needs to be con-
sidered circular. The two patterns with zero transitions, with for example eight bits, are
00000000 and 11111111. Examples of uniform patterns with eight bits and two transi-
tions are 00011100 and 11100001. For patterns with two transitions, there are P(P−1)
possible combinations. We denote the uniform patterns with P sampling points and ra-
dius R as LBPu2

P,R.
Using only uniform local binary patterns has two important benefits. The first one

is that it saves memory. With non-uniform patterns there are 2P possible combination.
With LBPu2

P,R, there are P(P-1) + 2 possible patterns. The number of possible patterns for
the neighborhood of 16 pixels is 65536 for standard local binary patterns and 242 for
LBPu2. The second benefit is that LBPu2 detects only the important local textures, like
spots, line ends, edges and corners.

We explained how the method of local binary patterns can be applied on images of
faces to extract the features which can be used to get a measurement for the similarity
between these images. The main idea is that for every pixel of an image, the LBP code
is calculated. The occurrence of each possible pattern in the image is kept up. The

88

6.2 Related Work

histogram of these patterns, also called labels, forms a feature vector, and is, thus, a
representation for the texture of the image. These histograms can then be used to measure
the similarity between the images, by calculating the distance between the histograms.

The face image is split in an image with only pixels with uniform patterns, which still
contains a considerable amount of pixels, and retains 99 % of the original image. So, 99
% of the pixels of the image have uniform patterns. Another impressive thing is the fact
that, by taking only the pixels with uniform patterns, the background is also preserved.
This is because all the background pixels have the same color (same gray value) and thus
their patterns contain zero transitions. It also seems that many pixels around the mouth,
the noise and the eyes, especially the eyebrows, have uniform patterns.

Once the local binary pattern for every pixel is calculated, the feature vector of the
image can be constructed (Zhao and Chellappa (1999)). For an efficient representation
of the face, the image is first divided into K2 regions. In Figure 6.5, a face image is
divided into K2 = 16 regions. For every region, a histogram with all possible labels is
constructed. This means that every bin in a histogram represents a pattern and contains
the number of its appearance in the region. The feature vector is then constructed by
concatenating the regional histograms to one big histogram.

For every region, all non-uniform patterns, which are more than two transitions, are
labeled with one single label. This means that every regional histogram consists of P(P -
1) + 3 bins in which P (P - 1) bins for the patterns with two transitions, two bins for the
patterns with zero transitions and one bin for all non-uniform patterns. The total feature
vector for an image contains K2(P (P - 1) + 3) bins. The local binary patterns codes
cannot be calculated for the pixels in the area with a distance R from the edges of the
image. This means that in constructing the feature vector, a small area on the borders
of the image is not used. The feature vector is an effective description of the face on
three different levels of locality: the labels contain information about the patterns on a
pixel-level; the regions, in which the different labels are summed, contain information
on a small regional level and the concatenated histograms give a global description of
the face.

Besides extracting the local texture information of the face image, the spatial infor-
mation also needs to be reliably retained for recognizing the face. Thus, the face image
is divided into blocks from which LBP codes are collected into LBP histograms. All
LBP histograms are concatenated into an enhanced histogram. The classification is then
performed by computing histogram similarities between the input face and all training
faces. This can be done with several possible dissimilarity measures for histograms:

Histogram intersection:

D(F,T) = ∑
i

min(Fi,Ti) (6.26)

Log-likelihood statistic:

89

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Figure 6.5: Face image divided into K2 regions, with a histogram for every region.

L(F,T) =−∑
i

Filog(Ti) (6.27)

Chi square statistic χ2:

χ2(F,T) = ∑
i

(Fi−Ti)
2

Fi +Ti
(6.28)

where F,T are the input face and the training face, respectively.

Because some regions of the face images, for example, the regions with the eyes, could
contain more useful information than others, a weight can be set for each region based
on the importance of the information it contains. The χ2 is statistic shown to perform
slightly better than histogram intersection and the log-likelihood statistic. By applying a
weight w j to region j, the equation for the weighted χ2 becomes:

χ2
ω(F,T) = ∑

i, j
ωi, j

(Fi, j−Ti, j)
2

Fi, j +Ti, j
(6.29)

where ω j is the weight for region j. This weighted χ2 for two (face) images, which is
calculated from the histograms, is a measure for the similarity between these images.
The lower the value of the χ2, the bigger the similarity.

90

6.2 Related Work

Figure 6.6: Illustration of the basic LTP operator.

6.2.4 Overview of Face Recognition using Local Ternary Patterns

Recent research of local binary patterns has achieved a considerable success in uncon-
trolled face recognition (Wolf et al. (2008)). However, in practice the efficiency of local
binary patterns deteriorates significantly due to random noise in the areas surrounding
the face. Tan and Triggs (2010b) presented local ternary patterns which not only inherit
the advantages of local binary patterns but also significantly reduce noise sensitivity. The
method of local ternary patterns are tested on challenging databases chosen to compare
the algorithms of face recognition under complicated illumination conditions. All the
tests demonstrated that local ternary patterns outperform local binary patterns in dealing
with difficult illumination conditions.

Local ternary patterns (Tan and Triggs (2010b)) are an advanced version of local bi-
nary patterns (Ahonen et al. (2004)), which are used to summarize local gray-level struc-
ture. The local ternary patterns operator works in a 3×3 pixel block of a face image in
which the difference between the center pixel and the neighboring pixel is encoded into
a trinary code. We denote lc as the gray level of the center pixel, and lp as the gray level
of the neighbors in which p = 0,1, ...,7. Thus the LTP code is computed as follows:

LT P =
7

∑
p=0

f (lp, lc, th)3p (6.30)

Here f (lp, lc, th) is the threshold function

f (lp, lc, th) =


1 if lp ≥ lc + th

0 if
∣∣lp− lc

∣∣< th
−1 if lp ≤ lc− th

(6.31)

where th is a threshold. In our research, th is equal to 5. The LTP encoding procedure is
illustrated in Figure 6.6. In order to reduce the dimensionality, the LTP code is split into
positive and negative LBP codes as follows:

fp(lp, lc, th) =
{

1 if lp ≥ lc + th
0 otherwise (6.32)

91

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

fn(lp, lc, th) =
{

1 if lp ≤ lc− th
0 otherwise (6.33)

Figure 6.7 shows an example of splitting an LTP code into positive and negative LBP
codes. To improve the efficiency of countering the effects of illumination changes, shady
and bright areas, some important preprocessing steps are simultaneously applied on face
images.

The step of gamma correction is employed first to improve the brightness of dark re-
gions and reduce the effect of strong illumination in local areas. The shady and bright
areas on a face are caused by the light reflected from the face surface in different di-
rections. Therefore, in the second step, an algorithm of feature enhancement, namely
difference of Gaussians (DoG), is applied to increase the visibility of edges and other
details present in the face image. The basic idea of this method is to subtract one blurred
version of an original face image from another, less blurred version of the original. These
blurred images are generated by convolving the face image with Gaussian kernels having
different standard deviations. As a result, the difference of Gaussians is a band-pass fil-
ter which is able to remove high frequency detail that often includes random noise while
still preserving useful information of edges in the face image. In the third step, we use
a mask to remove the irrelevant areas in the face images. In the forth step, we apply a
technique of contrast equalization to increase the global contrast in the face image. In
order to reduce the effect of extreme values produced by highlights, we use an estimator
with two following steps:

I(x,y)← I(x,y)
(mean(|I(x′,y′)|α))1/α (6.34)

I(x,y)← I(x,y)
(mean(min(τ, |I(x′,y′)|)α))1/α (6.35)

where α is the parameter for reducing the effect of large values, and τ is a threshold to
remove these values after the first step of normalization. Finally, the following function
is applied to reduce the influence of extreme values:

I(x,y)← τtanh(I(x,y)/τ) (6.36)

To utilize the advantages of local ternary patterns, Tan and Triggs (2010b) tried to build
a local ternary pattern based method for face recogntion. They proposed a matching
algorithm based on Distance Transforms (Borgefors (1986b)), which is claimed to be
better than the method proposed by Ahonen et al. (2004) in addressing the problem of
face misalignment. The implementation of the proposed method involves the following
sub-tasks. First, face images are transformed into images of local ternary patterns. These
images of local ternary patterns are then transformed into a set of sparse binary images
bk. Each of the images bk specifies the position of pixels corresponding to the local

92

6.3 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Figure 6.7: An example of splitting an LTP code into positive and negative LBP codes.

ternary patterns code equal to k. We then calculate the distance transform image dk of
each bk . Each image bk is also associated with an image of distance transform dk. In
each image dk, we calculate the nearest 2D Euclidean distances from its pixels to pixels
in image X associated with code k. Thus, the distance from the image X to the image Y
is computed by the following formula:

D(X ,Y)) = ∑
Y

ω(d
kY (i, j)
X (i, j)) (6.37)

which kY (i, j) is the code value of pixel (i, j) of image Y and ω is the function of Gaussian
similarity metrics, which is computed as follows:

ω(d) = exp(−(d/σ)2) (6.38)

Each pixel of dk gives the distance to the nearest image X pixel with code k.

6.3 Face Recognition Using Local Ternary Patterns with
Collaborative Representation

In this section, we present in detail our approach to real time face recognition for human-
robot interaction. Figure 6.8 shows the simple flowchart representing our approach to
face recognition on mobile robots. It consists of seven steps: First, we apply a method
of face detection described in our previous work (Vo et al. (2012)), in order to quickly
locate the position of the face in the initial step of the face tracker. In the second step,
the face is tracked based on a method using the MOSSE filter (Bolme et al. (2010))

93

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Figure 6.8: Flow chart of our approach.

and a Viola-Jones face detection (Viola and Jones (2001b)). This method, which helps
mobile robots to track the human face efficiently, has been presented in detail in our
previous paper (Vo and Zell (2013)). It is also used for the next steps when the tracked
face is frontal. Thirdly, after successfully tracking the face we detect and track two eyes.
After that, in the fourth step, the face image is aligned and cropped based on the two
tracked eyes. In the fifth step, we apply the local ternary patterns operator to encode the
textures of the facial regions. In the sixth step, the face image is divided into cells from
which local ternary patterns histograms are extracted and concatenated into an advanced
histogram. The technique of principal component analysis (PCA) is applied to transform
this advanced histogram from a high-dimensional space to a low-dimensional space. The
output of PCA is the facial feature vector. In the last step, the recognition is attained by
using collaborative representation based classification, of which the input is the facial
feature vector.

6.3.1 Face detection

As mentioned in our previous work (Vo et al. (2012)) a method of face detection is used
to find quickly the position of the face in the initial step of the face tracker. The infor-
mation of geometric constraints, navigation and the technique of depth-based skin color
segmentation are provided to make our face detector much faster and more accurate. Our
face detection involves three basic steps: First, in order to reduce computational costs we
use a set of sampling points spanning the whole image to collect the information of color,
texture and depth. Second, the constraints of geometry and navigation information are
used to remove the background. Finally, the techniques of skin detection and depth-based

94

6.3 Face Recognition Using Local Ternary Patterns with Collaborative Representation

skin colour segmentation are applied around filtered sampling points to find the potential
regions in which the face detector is able to localize the face position. In addition, we
can speed up face detection by limiting the range of facial scales, as mentioned by Vo
et al. (2012).

6.3.2 Face tracking

After detection, the face is tracked by using the method of face tracking presented by Vo
and Zell (2013). The MOSSE filter plays the role of an adaptive tracker which models
the face appearance by training on-line the face samples from previous frames to adapt
to the changes of its poses as well as the sudden changes of illumination. The face is
tracked by correlating this filter over a search window. The correlation output indicates
the relative position of the face in the current frame with respect to the previous one,
which is the area corresponding to the maximum value in the correlation output. Thus
we can efficiently find the next position of the face in image coordinates. The correlation
output is computed as follows:

M = N�F∗ (6.39)

where M, N and F are the 2 D Fourier transforms of the correlation output M, training
image N and the filter F , respectively. After moving the search window to the new face
position, the MOSSE filter is updated on-line with the current search image. In frame i,
it takes the form:

F∗i =
Ui

Vi
(6.40)

Ui = γMi�N∗i +(1− γ)Ui−1 (6.41)

Vi = γNi�N∗i +(1− γ)Vi−1 (6.42)

where γ is the learning rate.
The face detector in our system plays an important role to correct the tracking position

and eliminate drift. In addition the face size is estimated by using depth information
while the face is being tracked.

6.3.3 Eye tracking

While detecting the face, only the frontal faces are selected for recognition. Since the size
of the face is estimated by using depth information, we can apply a bilinear interpolation
algorithm to scale the face into an 120×120 image. Because the size of two eyes are
easily estimated they are detected and tracked based on the algorithm mentioned by Vo
and Zell (2013). Figure 6.10 shows the result of eye tracking.

95

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

(a) (b) (c)

Figure 6.9: Examples of face tracking through occlusion and drift. We compare our face
tracker, which is marked by the red rectangle, and the original MOSSE filter, which is
marked by the black rectangle. 6.9a, 6.9b: The drift problem occurs when the human
turns around or rotates. 6.9c: The face is occluded.

6.3.4 Face alignment and cropping
The roll angle of the human face, θ , is calculated simply as follows

θ = tan−1
[

y2−y1
x2−x1

]
(6.43)

where (x1,y1) and (x2,y2) are the coordinates of the left eye and the right eye, respec-
tively. In order to align the face, the face image is rotated at an angle of θ degrees. After
that we crop the face by using a window with a fixed size of 76×84. The center point
of the window is the tracking point of the face. Figure 6.10 also shows the cropped face
which is indicated by the white rectangle.

6.3.5 Facial feature extraction
In order to keep the local information and spatial locations of the face, we proposed the
extraction of LTP features from the face image by dividing the face image into cells. In
our research, every cell is fixed at the size of 8×8 pixels. Figure 6.11 illustrates all the
basic steps of our algorithm. In every cell, we extract a histogram of LTP codes. All these
histograms are concatenated into an advanced feature histogram. Since the advanced his-
togram consists of a large number of bins, the technique of principal component analysis
(PCA) is applied to the advanced histogram to reduce its dimensionality. The output of
PCA is a 30-dimensional vector called the facial feature vector.

6.3.6 Collaborative representation based classification
We apply the collaborative representation based classification (CRC) with the regular-
ized least squares for face recognition which codes a facial feature vector as a linear
combination of the training vectors on the whole dataset instead of each subset. We

96

6.4 Experimental Setup

Figure 6.10: Example of eye tracking and face cropping. White circles indicate locations
of the eyes. The white rectangle indicates the location of the cropped face.

denote the subset of the ith class as Ti of which the number of columns is same as the
number of training images. Furthermore, we denote the set of K classes of identities as
T = [T1,T2,T3, ...,TK] and every facial feature vector v ∈ Rm is coded over T by using
the regularized least square method as follows:

(γ̂) = arg minγ

{
‖v−T · γ‖2

2 +λ ‖γ‖2
2

}
(6.44)

where λ is the regularization parameter. The solution of the collaborative representation
based classification with regularized least squares is analytically derived as follows:

γ̂ =
(
T T T +λ · I

)−1
T T v (6.45)

In addition we compute the regularized residuals of classes as follows:

ri = ‖v−Ti · γ̂i‖2 /‖γ̂i‖2 (6.46)

where γ̂i is the coefficient vector of class i. By finding the minimal regularized recon-
struction error, the identity of v is computed as follows:

Identity(v) = arg mini {ri} (6.47)

6.4 Experimental Setup

In our experiments, the algorithm of local ternary patterns with collaborative representa-
tion based classification is denoted as LTP-CRC. For evaluating the performance of our
face recognition algorithm, we used three challenging databases. First, we used the AR
database (Martinez and Benavente (1998)) to test the accuracy and the processing time of
our face recognition method and its competing methods in controlled environments. For
evaluating the accuracy of face recognition in uncontrolled environments, we used the
LFW-a database mentioned by Wolf et al. (2010). In this database, all the training and

97

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

(a)

Figure 6.11: Diagram of facial feature extraction.

testing faces were aligned by using an algorithm of face alignment (Wolf et al. (2010)).
Thus, we did not need to apply the technique of face alignment in the preprocessing step.
Finally, the Tuebingen database for face recognition was built by us to test the algorithms
of face recognition on mobile robots in our own office environment.

The experiments carried out on both the AR database and the LFW-a database used
Matlab on a PC with 2.5 GHz Intel Core i5 CPU. Additionally, the experiment on the
Tuebingen database was implemented using C++ on a PC with 2.5 GHz Intel Core i5
CPU. For the methods of LTP-CRC and CRC we set the parameter λ as 0.001 in the
experiments. Figure 6.12 shows a sample of some images extracted from our dataset.

6.4.1 AR database
We used the AR database, which consists of 50 males and 50 females, to perform ex-
periments under controlled environments. For each subject we used seven images for
training, which are different in illumination and expression, and used the other seven
images for testing.

We did two experiments with this database. In the first experiment, the images were
cropped and resized to 60×43 pixels. And in the second experiment, the images were re-
sized to 32×32 pixels to show how the algorithms work in the database of low-resolution
images. We compared our algorithm LTP-CRC with its competing algorithms, which
are collaborative representation based classification (CRC), sparse representation based
classification (SRC), support vector machine (SVM) and nearest neighbor (NN). In our
algorithm and CRC, PCA is applied to reduce the dimension of the images to 300.

98

6.4 Experimental Setup

(a) (b) (c)

(d) (e) (f)

Figure 6.12: Sample images from the Tuebingen dataset. The human face moves through
different conditions of illumination and noise.

Table 6.1 shows the recognition rates of LTP-CRC, CRC, SRC and NN on the AR
database in the first experiment. It shows that the result of LTP-CRC outperforms CRC,
which is 5.2 % less accurate. It is also significantly better than the other methods. It
proves that local ternary patterns give a high contribution to the performance of face
recognition due to its robustness with regard to different forms of illumination.

Table 6.1 also shows the comparison of the processing time between our algorithm
and the state-of-the-art ones including CRC and SRC. We can see that the recognition
rate of LTP-CRC is higher than CRC and SRC, while its processing time is just 1.1 times
slower than CRC, but is 688 times faster than SRC. This implies that LTP-CRC is more
advantageous in real time application of face recognition.

In the second experiment we compared the accuracy of our algorithm with the others

Table 6.1: Recognition rate and processing time on the AR database in the first experi-
ment.

Recognition rate Time

NN 0.713 0.0013 s
SRC 0.933 1.7878 s
CRC 0.937 0.0024

LTP-CRC 0.989 0.0026 s

99

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Table 6.2: Recognition rate on the AR database in the second experiment.

NN SRC CRC LTP-CRC

69.3 % 90.1% 88.4 % 98.3 %

Table 6.3: Recognition rate on the LFW-a database.

NN SRC CRC LTP-CRC

13.6 % 46.4 % 43.7 % 59.5 %

in lower-resolution images. Their results are shown in the Table 6.2 which proves that
our algorithm is the best of the algorithms mentioned in this experiment. We can also
see that the accuracy of our algorithm is only slightly reduced in comparison with the
previous experiment, while all others are significantly degraded.

6.4.2 LFW-a database
The LFW-a database is the second one we used to compare our algorithm with some chal-
lenging methods including CRC, SRC, and NN. This database is selected for research of
unconstrained face recognition. It consists of 158 different individuals of different races,
ages and genders. For each of these individuals, we collected 5 training and 2 testing
images. All the faces in these images were cropped to 32×32 pixels, and those from
the same individual differed in pose, expression and illumination. In this experiment we
used PCA for our algorithm and CRC to reduce the dimension of the images to 300.

The accuracy of face recognition on the LFW-a database is shown in Table 6.3. Since
the LFW-a database is a very challenging one the accuracy of all algorithms in this
database is less than those of the AR database. However, our algorithm achieves the
best accuracy in comparison to the other algorithms mentioned above.

6.4.3 Tuebingen dataset
The Tuebingen dataset consists of 22 log files of 22 people recorded from a Microsoft
Kinect camera mounted on a mobile robot SCITOS G5. Each of these log files recorded
color and depth images at 30 frames per second at a resolution of 640×480 pixels. For
each subject we used only five images for training which were cropped to 76×84 pixels.
Our goal was to evaluate the performance of face recognition in indoor environments
in which both the humans and the robot move under different illumination conditions
and the faces change in a variety of poses. We compared the accuracy and the pro-
cessing time of our method with its competitors, which are collaborative representation
based classification (CRC), sparse representation based classification (SRC) and nearest
neighbor (NN). The processing times of these algorithms were measured, including face

100

6.5 Summary

Table 6.4: Recognition rate and processing time on the Tuebingen database.

Recognition rate Time

NN 67.55 % 9 ms
CRC 80.46 % 10 ms

LTP-CRC 89.75 % 12 ms

Table 6.5: Face recognition results with and without alignment on the Tuebingen
database.

Unaligned Aligned

NN 63.72 % 67.55%
CRC 76.75 % 80.46%

LTP-CRC 87.02 % 89.75%

detection, face tracking, eye tracking, face alignment and cropping in addition to face
recognition. By using PCA, the dimension of images was reduced to 30. In addition, on
this dataset we also evaluated the performance of face recognition with and without face
alignment in order to demonstrate the effectiveness of our alignment technique.

In Table 6.4 we evaluated the recognition rate and the processing time of our method,
LTP-CRC, with SRC and NN. It shows that LTP-CRC outperforms CRC by 12 % and
NN by 33 %. Although the computational cost of LTP-CRC is slightly higher than the
other methods, it is nevertheless fast enough to run in real time on mobile robots. We
can see that LTP-CRC is a fast and reliable face recognition algorithm for mobile robots
running in realistic environments. This is due to the fact that CRC is a relatively accurate
and fast method and LTP is a powerful feature descriptor which is insensitive to noise
and is resistant to lighting effects.

Table 6.5 shows the role of face alignment in the performance of face recognition. Our
technique of face alignment significantly improved the recognition rate of LTP-CRC,
CRC and NN, due to its robustness to changes in face pose as well as in varying degrees
of illumination. It contributes 2.73 %, 3.71 % and 3.83 % to the recognition rate of
LTP-CRC, CRC and NN, respectively.

6.5 Summary
In order to improve the performance of face recognition we proposed local ternary pat-
terns with collaborative representation based classification. Our experimental results
show that this algorithm achieved high recognition rates, and it is suitable for face recog-
nition on mobile robots under uncontrolled illumination conditions. The proposed face
recognition system requires on average 12 ms per frame on a PC with a 2.5 GHz Intel

101

Chapter 6 Face Recognition Using Local Ternary Patterns with Collaborative Representation

Core i5 CPU. Thus, it is able to run at video frame rate on mobile robots. For future de-
velopment, we intend to develop this algorithm for recognizing faces across poses using
the technique of face pose estimation mentioned by Vo and Zell (2013). Recognizing the
face in arbitrary poses will be more difficult in uncontrolled environments under varying
illumination. Nevertheless our approach is expected to be able to recognize the face with
large variations of face appearance.

102

Chapter 7

Conclusions

7.1 Summary
This dissertation has demonstrated several methods of person detection, tracking and
identification. The fields of person detection, tracking and identification have made ma-
jor contributions to the improvement of the ability of robots to take over difficult tasks.
The key contributions of this dissertation are as follows:

• An improved person detector. We proposed a reliable person detector that inte-
grates both a face detector and an upper body detector in a robust detection frame-
work. The face detector is fast and accurate when the human face is visible. This
is due to the fact that the use of a RGB-D camera in our system brings signifi-
cant advantages for our face detector. First, we can easily compute 3D geometric
constraints of objects based on depth values. This results in an advantage that non-
face regions can be efficiently found and removed. Second, by combining depth
values, the skin areas can be quickly isolated in different objects and at different
distances. Third, by utilizing depth values and navigation data, mobile robots are
able to reliably determine 3D coordinates of every position in a real world space.
As a result, robots can easily isolate the potential facial regions, and quickly ignore
background regions. To evaluate the efficiency of the constraints in improving the
processing time and accuracy, we carried out different experiments, as mentioned
in Chapter 3. We demonstrated that the processing time of the face detector is as
much as 41 to 57 times faster than the OpenCV face detector. It also means that
the computational cost is reduced by 99 %. Moreover, the correct detection rate
of our method is still high, 95 %, even though it is a little lower than the OpenCV
face detector, 96 %. However, our method improved remarkably the average false
positives per frame, only 0.003, compared to the OpenCV face detector with 21
times more, 0.063.

Due to complicated changes in human pose and appearance, our face detector can
not find the position of a person in every frame. Hence, we also use an upper body
detector in dealing with the occlusion of the lower body or the face. Similar to the
face detector, the upper body detector utilizes the information of geometric con-
straints, navigation and the technique of depth-based segmentation to efficiently

103

Chapter 7 Conclusions

remove the background and reduce the search area. As a result, we have a small
set of search areas where the upper body detector is applied to detect humans. In
Chapter 5, the upper body detector is shown to be fast and accurate and run in real
time in indoor environments.

• A new algorithm of tracking multiple people for mobile robots. We presented
a robust algorithm of tracking multiple people on mobile robots, which is based
on the combination of a fast compressive tracker and a Kalman filter. The com-
pressive tracker is able to quickly adapt to the object changes of pose, rotation,
deformation, and occlusion. This method is also suitable for real time applications
due to its low computational costs. In addition, the Kalman filter plays a significant
role as the alternative to the fast compressive tracker to deal with a full occlusion.
In Chapter 5, we evaluated the accuracy and the processing time of our method
and its closest competitor, the reversible jump Markov chain Monte Carlo particle
filtering (RJ-MCMC). Experimental results on a challenging database show that
our method achieves high performance and can run in real time on mobile robots.
We showed that our algorithm, with an improvement of 8.0 %, significantly out-
performs the RJ-MCMC.

• A real time method of face tracking and pose estimation for human-robot
interaction. In Chapter 4, we present a real time algorithm for mobile robots to
track human faces and estimate face poses accurately. Both face tracking and face
pose estimation play key roles in human-robot interaction, which can be used as
essential preprocessing steps for robust face recognition or person identification.

Tracking faces in uncontrolled environments still remains a challenging task due
to complex changes of background and illumination, as well as face changes of
rotation, occlusion and scales. In order to deal with this challenging task, we
proposed an algorithm of tracking faces based on the combination of an adaptive
correlation filter and a Viola-Jones face detection. For evaluating the accuracy of
our face tracking, we compared our method with the original MOSSE filter on a
challenging dataset in which the humans move freely and rotate the face quickly
in a wide variety of poses in an uncontrolled environment. We showed that our
tracker adapts to drastic changes of illumination, background as well as face pose.
This tracker is able to track faces longer and more accurately than the MOSSE
tracker. Moreover, the processing time of our tracker is only about 7 ms.

Handling varying poses is one of the major challenges of uncontrolled face recog-
nition. The system performance of face recognition drops significantly when pose
variations are present in face images. In order to counter the problem of pose, in
Chapter 4 we also presented a robust method of face pose estimation for human-
robot interaction. We combined an adaptive correlation filter and a Viola-Jones
object detection to track some key facial features, including the two external eye
corners and the nose. These features provide geometric cues to estimate precisely

104

7.1 Summary

the yaw angle and the roll angle of the face. As a result, the face pose is also esti-
mated efficiently based on some geometric computation among the face features.
We used a challenging dataset for evaluating the quality of face pose estimation in
uncontrolled environments, as presented in Chapter 4. Our experiment shows the
comparison of the accuracy and processing time between our method and state-
of-the-art methods. The accuracy of our proposed approach is slightly worse than
others (Cascia et al. (2000), Xiao et al. (2002)) but it is much faster. Our system
is able to run at a speed of 50 frames per second even when the resolution of the
image is 640×480. Thus, under aspects of performance and real time capabilities
on mobile robots, our method is a better choice than state-of-the-art methods.

• A real time face recognition for human-robot interaction. The ideal system
of person identification for mobile robots should be able to recognize the hu-
mans in their natural environment. For this reason, in Chapter 6, we proposed
a new face recognizer to identify individuals. The proposed algorithm is based on
the combination of local ternary patterns (LTP) and collaborative representation
based classification (CRC). This combination is shown to enhance the efficiency
of collaborative representation based classification in such a way that our face
recognizer can efficiently counter the problem of illumination, misalignment, and
noise. In our method, face tracking is an early and critical step to reliably find the
face and quickly extract relevant features to improve the accuracy of face recog-
nition. For evaluating the performance of our face recognition algorithm, we used
some challenging databases. We compared our algorithm of local ternary patterns
with collaborative representation based classification (LTP-CRC) with its compet-
ing algorithms which are collaborative representation based classification (CRC),
sparse representation based classification (SRC), support vector machine (SVM)
and nearest neighbor (NN). The experiments show that the result of LTP-CRC out-
performs CRC, and is significantly better than the other methods. It proves that
local ternary patterns give a high contribution to the performance of face recogni-
tion. Our experiments also show the comparison of the processing time between
our algorithm with the state-of-the-art ones. We indicated that the recognition rate
of LTP-CRC is higher than CRC and SRC, while its processing time is fast enough
to run in real time. This implies that LTP-CRC is more advantageous in real time
application of face recognition.

All proposed techniques were investigated by extensive experiments in different ex-
perimental environments. We used a MetraLabs mobile robot SCITOS G5. This mobile
robot possesses a Microsoft Kinect camera which is used to acquire RGB-D images. We
used this Microsoft Kinect camera to improve both the accuracy and computational costs
of the proposed algorithms for mobile robots. In particular, we utilized the applicability
of RGB-D images from this Microsoft Kinect camera for six important tasks of mo-
bile robots: face detection, face tracking, face pose estimation, face recognition, person
detection and person tracking.

105

Chapter 7 Conclusions

7.2 Future Work
There is a number of promising directions of person detection, tracking and identifica-
tion. One promising direction is to develop a further advanced face detector that can
detect faces under a wide range of poses: looking left or right (yaw axis), up or down
(pitch axis), or tilting left or right (roll axis). The future face detector should be highly
reliable, run in real time on robot platforms, and be robust to variations in yaw, roll, pitch,
as well as partial occlusion. In fact, our system of person detection would profit from
multiple-view face detectors because it can easily deal with a wider variety of human
poses.

Face pose estimation is important for face recognition. Thus, the improvement of face
pose estimation can lead to enhancing the robustness of face recognition algorithms. The
method of tracking facial features mentioned in Chapter 4, needs to be improved further
to provide a higher face pose estimation accuracy. Moreover, it is necessary to improve
this method to estimate the pitch angle of the face pose, which is very important for
many real applications. This can be solved by tracking more essential facial features
in order to gain a better estimation. In the future development, we also try to find new
techniques to speed up our algorithm in order to be able to estimate poses of many faces
in a group. As a result, we also intend to develop this algorithm for recognizing faces
across poses by improving further the algorithm of face recognition, which is presented
in Chapter 6. In fact, recognizing the face in arbitrary poses will be more challenging
in uncontrolled environments under varying illumination. Nevertheless, by using our
advanced technique of face pose estimation, our face recognizer is expected to be able to
recognize the face with large variations of face appearance.

For the future work of person detection, we try to address the problem of detecting
humans in various poses. Since the human is a non-rigid object, the shape and appearance
of humans are variable, depending on human poses. Therefore, detecting persons in
various poses is challenging and provides opportunity for future research.

In order to gain a more reliable and effective person tracker, we are also trying to de-
velop an algorithm of human reidentification based on the information of color and depth
in order to combine it with the current person tracking system. This promising algorithm
will enable the mobile robot to track people more reliably and be able to recover lost
tracks caused by long term full occlusions or temporary disappearance of humans in the
robot′s field of view.

106

Bibliography
Abd-Almageed, W., Burns, B., and Davis, L. (2005). Identifying and segmenting human-

motion for mobile robot navigation using alignment errors. In 12th International Con-
ference on Advanced Robotics, 2005. ICAR ’05. Proceedings., pages 398–403.

Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss
with binary coins. In Journal of Computer and System Sciences, vol. 66, no. 4, pp.
671687.

Ahonen, T., Hadid, A., and Pietikinen, M. (2004). Face recognition with local binary pat-
terns. In T. Pajdla and J. Matas, editors, Computer Vision - ECCV 2004, volume 3021
of Lecture Notes in Computer Science, pages 469–481. Springer Berlin Heidelberg.

Ahonen, T., Member, S., Hadid, A., Pietikinen, M., and Member, S. (2006). Face descrip-
tion with local binary patterns: Application to face recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28, 2037–2041.

Arno, S., Antonio, H., and Irfan, A. E. (1998). Head tracking using a textured polygonal
model. In Proc. Workshop Perceptual User Interfaces.

Arras, K., Grzonka, S., Luber, M., and Burgard, W. (2008). Efficient people tracking in
laser range data using a multi-hypothesis leg-tracker with adaptive occlusion proba-
bilities. In IEEE International Conference on Robotics and Automation, 2008. ICRA
2008., pages 1710–1715.

Aryananda, L. (2001). Online and unsupervised face recognition for humanoid robot:
Toward relationship with people. In Proceedings of the 2001 IEEE-RAS International
Conference on Humanoid Robots.

Babenko, B., Yang, M.-H., and Belongie, S. (2009). Visual tracking with online multiple
instance learning. In IEEE Conference on Computer Vision and Pattern Recognition,
2009. CVPR 2009, pages 983–990.

Babenko, B., Yang, M.-H., and Belongie, S. (2011). Robust object tracking with online
multiple instance learning. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 33(8), 1619–1632.

Basri, R. and Jacobs, D. (2003). Lambertian reflectance and linear subspaces. pattern
analysis and machine intelligence. In IEEE Transactions on 25: 218233.

107

Bibliography

Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. In IEEE Transactions on Pattern
Analysis and Machine Intelligence 19: 711720.

Bellotto, N. and Hu, H. (2009). Multisensor-based human detection and tracking for
mobile service robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 39(1), 167–181.

Bennewitz, M., Burgard, W., Cielniak, G., and Thrun, S. (2005). Learning motion pat-
terns of people for compliant robot motion. Internationl Journal of Robotics Research,
24, 31–48.

Beymer, D. (1994). Face recognition under varying pose. In 1994 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings
CVPR ’94, pages 756–761.

Birchfield, S. (1998). Elliptical head tracking using intensity gradients and color his-
tograms. In Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE
Computer Society Conference on, pages 232–237.

Blanco, J., Burgard, W., Sanz, R., and Fernandez, J. (2003). Fast face detection for
mobile robots by integrating laser range data with vision. In Proc. of the International
Conference on Advanced Robotics (ICAR).

Bolme, S., Ross, J., Bruce, D., and Yui, L. (2010). Visual object tracking using adaptive
correlation filters. In Computer Vision and Pattern Recognition, 2010 IEEE Computer
Society Conference on.

Borgefors, G. (1986a). Distance transformations in digital images. Comput. Vision
Graph. Image Process., 34(3), 344–371.

Borgefors, G. (1986b). Distance transformations in digital images. In Comput. Vision
Graph. Image Process. 34(3), 344371.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 144–152, New York, NY, USA. ACM.

Bradski, G. (2000). The opencv library. In Dr. Dobbs Journal of Software Tools.

Bradski, G. R. (1998). Computer vision face tracking for use in a perceptual user inter-
face. In Intel Technology Journal.

Breglera, C., Malik, J., and Pullen, K. (2004). Twist based acquisition and tracking of
animal and human kinematics. In International Journal of Computer Vision (IJCV).

108

Bibliography

Burgin, W., Pantofaru, C., and Smart, W. D. (2011). Using depth information to improve
face detection. In Proceedings of the 6th ACM/IEEE International Conference on
Human-Robot Interaction (Late Breaking Papers Track), Lausanne, Switzerland.

Byers, Z., Dixon, M., Goodier, K., Grimm, C. M., and Smart, W. D. (2003). An au-
tonomous robot photographer. In Proceedings of the IEEE/RSJ International Confer-
ence on Robots and Systems (IROS 2003, pages 2636–2641.

Candes, E. and Tao, T. (2005). Decoding by linear programming. In EEE Transactions
on Information Theory, vol. 51, no. 12, pp. 4203-4215.

Candes, E. and Tao, T. (2006). Near-optimal signal recovery from random projections:
Universal encoding strategies? In IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5406-5425.

Cascia, M. L., Sclaroff, S., and Athitsos, V. (2000). Fast, reliable head tracking under
varying illumination: An approach based on registration of texture-mapped 3d models.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 322–336.

Cheung, K., Baker, S., and Kanade, T. (2005). Shape-from-silhouette across time part ii:
Applications to human modeling and markerless motion. In International Journal of
Computer Vision (IJCV).

Choi, W. and Savarese, S. (2010). Multiple target tracking in world coordinate with sin-
gle, minimally calibrated camera. In Proceedings of the 11th European Conference on
Computer Vision: Part IV , ECCV’10, pages 553–567, Berlin, Heidelberg. Springer-
Verlag.

Choi, W., Pantofaru, C., and Savarese, S. (2011a). Detecting and tracking people using
an rgb-d camera via multiple detector fusion. In Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pages 1076 –1083.

Choi, W., Pantofaru, C., and Savarese, S. (2011b). Detecting and tracking people using
an rgb-d camera via multiple detector fusion. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pages 1076–1083.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space
analysis. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24,
No. 5.

Comaniciu, D., Ramesh, V., and Meer, P. (2000). Real-time tracking of non rigid objects
using mean shift. In Proc. Conf. Computer Vision and Pattern Recognition (CVPR),
vol. 2.

Cootes, T., Walker, K., and Taylor, C. (2000). Active appearance models. In Proc. Intl.
Conf. Automatic Face and Gesture Recognition.

109

Bibliography

Cootes, T. F. and Taylor, C. J. (1997). A mixture model for representing shape variation.
In Image and Vision Computing, pages 110–119. BMVA Press.

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active shape models
—their training and application. Comput. Vis. Image Underst., 61(1), 38–59.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. In Springer, New York, pages
273–297.

Cruz, C., Sucar, L., and Morales, E. (2008). Real-time face recognition for human-
robot interaction. In Automatic Face Gesture Recognition, 2008. FG ’08. 8th IEEE
International Conference on, pages 1–6.

Cutler, R. and Davis, L. (2000). Robust real-time periodic motion detection, analysis,
and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence.,
22(8), 781–796.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2005. CVPR 2005., volume 1, pages 886–893 vol. 1.

DeCarlo, D. and Metaxas, D. (1996). The integration of optical flow and deformable
models with applications to human face shape and motion estimation. In 1996 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 1996,
pages 231–238.

Decarlo, D. and Metaxas, D. (1998). Deformable model-based shape and motion analysis
from images using motion residual error. In Proceedings of the Sixth International
Conference on Computer Vision, ICCV 98. Washington, DC, USA. IEEE Computer
Society, pages 113–119.

Decarlo, D. and Metaxas, D. (2000). Optical flow constraints on deformable models with
applications to face tracking. International Journal of Computer Vision, 38, 99–127.

Dixon, M., Heckel, F., Pless, R., and Smart, W. (2007). Faster and more accurate face
detection on mobile robots using geometric constraints. In Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 1041 –1046.

Enzweiler, M., Eigenstetter, A., Schiele, B., and Gavrila, D. (2010). Multi-cue pedestrian
classification with partial occlusion handling. In 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 990–997.

Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time head pose estimation with
random regression forests. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 617–624.

110

Bibliography

Ferrari, V., Marin-Jimenez, M., and Zisserman, A. (2008). Progressive search space
reduction for human pose estimation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2008. CVPR 2008, pages 1–8.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119–139.

Fritsch, J., Kleinehagenbrock, M., Lang, S., Fink, G. A., and G., S. (2004). Audiovisual
person tracking with a mobile robot. In Proc. Int. Conf. on Intelligent Autonomous
Systems, pages 898–906. IOS Press.

Gavrila, D. and Philomin, V. (1999). Real-time object detection for smart vehicles. In
The Proceedings of the Seventh IEEE International Conference on Computer Vision,
1999, volume 1, pages 87–93 vol.1.

Gee, A. and Cipolla., R. (1996). Fast visual tracking by temporal consensus. In Image
and Vision Computing, vol. 14, no. 2, 1996.

Gee, A. H. and Cipolla, R. (1994). Determining the gaze of faces in images. In Image
and Vision Computing, volume 1, pages 639–647.

Goldenstein, S., Vogler, C., and Metaxas, D. (2004a). 3d facial tracking from corrupted
movie sequences. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004, volume 1, pages
I–880–I–885 Vol.1.

Goldenstein, S., Vogler, C., Stolfi, J., Pavlovic, V., and Metaxas, D. (2004b). Outlier re-
jection in deformable model tracking. In Conference on Computer Vision and Pattern
Recognition Workshop, 2004. CVPRW ’04, pages 19–19.

Gonzalez, R. and Woods, R. (2002). Digital image processing. In Prentice-Hall, pages
582–584.

Gourier, N., Hall, D., and Crowley., J. L. (2004a). Estimating face orientation from
robust detection of salient facial structures. In Proc. Pointing 2004 Workshop: Visual
Observation of Deictic Gestures, 2004.

Gourier, N., Maisonnasse, J., Hall, D., and Crowley, J. (2004b). Head pose estimation
on low resolution images. In Multimodal Technologies for Perception of Humans, Intl.
Workshop Classification of Events Activities and Relationships, CLEAR 2006. Lecture
Notes in Computer Science.

Grabner, H. and Bischof, H. (2006). On-line boosting and vision. In 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume 1,
pages 260–267.

111

Bibliography

Hager, G. and Belhumeur, P. (1996). Real-time tracking of image regions with changes
in geometry and illumination. In Computer Vision and Pattern Recognition, 1996.
Proceedings CVPR ’96, 1996 IEEE Computer Society Conference on, pages 403–410.

Hand, D. J. and Yu, K. (2001). Idiot’s bayes not so stupid after all? In International
Statistical Review 69 (3): 385399.

Heap, T. and Hogg, D. (1997). Improving specificity in pdms using a hierarchical ap-
proach. In A. F. Clark, editor, BMVC. British Machine Vision Association, 1997, pages
80–89.

Horprasert, T., Yacoob, Y., and Davis, L. (1996). Computing 3-d head orientation from
a monocular image sequence. In Automatic Face and Gesture Recognition, 1996.,
Proceedings of the Second International Conference on, pages 242–247.

Huang, J., Shao, X., and H., W. (1998). Face pose discrimination using support vector
machines (svm). In Prentice-Hall, pages 154–156.

Huang, J. Z., Huang, X. L., and Metaxas, D. (2008). Simultaneous image transformation
and sparse representation recovery. In IEEE Conference on Computer Vision and
Pattern Recognition.

Hussein, M., Abd-Almageed, W., Ran, Y., and Davis, L. (2006). Real-time human detec-
tion, tracking, and verification in uncontrolled camera motion environments. In IEEE
International Conference on Computer Vision Systems, 2006 ICVS ’06, pages 41–41.

Isard, M. and Blake, A. (1996). Contour tracking by stochastic propagation of condi-
tional density. In Proc. European Conf. Computer Vision, pages 343–356.

Isard, M. and Blake, A. (1998). Condensation - conditional density propagation for
visual tracking. International Journal of Computer Vision, 29, 5–28.

Jepson, A. and Fleet, D.J., E.-M. (2003). Robust on-line appearance models for vision
tracking. In IEEE Trans. PAMI, 25(10):1296-1311.

Jiao, F., Li, S., Shum, H.-Y., and Schuurmans, D. (2003). Face alignment using sta-
tistical models and wavelet features. In 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003. Proceedings., volume 1, pages
I–321–I–327 vol.1.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. In J.
Fluids Eng. 82, 35-45 (1960) (11 pages); doi:10.1115/1.3662552.

Kienzle, W., Bakr, G., Franz, M., and Schoelkopf, B. (2005). Face detection - efficient
and rank deficient. In Advances in Neural Information Processing Systems 17, pages
673–680. MIT Press.

112

Bibliography

Kim, S. H., Kim, N. K., Ahn, S. C., and Kim, H. G. (1998). Object oriented face
detection using range and color information. In Proceedings of the 3rd. International
Conference on Face & Gesture Recognition, FG ’98, pages 76–, Washington, DC,
USA. IEEE Computer Society.

Kleinehagenbrock, M., Lang, S., Fritsch, J., Lomker, F., Fink, G. A., and Sagerer, G.
(2002). Person tracking with a mobile robot based on multi-modal anchoring.

Kovac, J., Peer, P., and Solina, F. (2003). Human skin color clustering for face detection.
In EUROCON 2003. Computer as a Tool. The IEEE Region 8, volume 2, pages 144 –
148 vol.2.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. In Naval
Research Logistic Quarterly.

Kwon, J. and Park (2008). Visual tracking via particle filtering on the affine group.
In Proceedins of IEEE International Conference on Information and Automation, pp.
9971002.

Lee, S., Cho, H., Yoon, K.-J., and Lee, J. (2013). Adaptive face recognition for low-cost,
embedded human-robot interaction. In Intelligent Autonomous Systems 12, Barcelona,
Catalonia, Spain.

Lee, Y.-B., Moon, S.-B., and Kim, Y.-G. (2005). Face and facial expression recognition
with an embedded system for human-robot interaction. In Lecture Notes in Computer
Science: Affective Computing and Intelligent Interaction, pages 322–336. Springer
Berlin Heidelberg.

Li, Y. and Ito, W. (2005). Shape parameter optimization for adaboosted active shape
model. In Tenth IEEE International Conference on Computer Vision, 2005. ICCV
2005., volume 1, pages 251–258 Vol. 1.

Li, Y., Gong, S., and Liddell, H. (2000). Support vector regression and classification
based multi-view face detection and recognition. In Fourth IEEE International Con-
ference on Automatic Face and Gesture Recognition, 2000. Proceedings., pages 300–
305.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. In Intl J.
Computer Vision, vol. 60, no. 2.

Martinez, A. and Benavente, R. (June 1998). The AR face database. In CVC Technical
Report 24.

McKenna, S. (1998). Real time face pose estimation. In Real-Time Imaging, vol. 4, no.
5.

113

Bibliography

Mei, X. and Ling, H. (2009). Robust visual tracking using l1 minimization. In Computer
Vision, 2009 IEEE 12th International Conference on, pages 1436–1443.

Mikic, I., Trivedi, M., Hunter, E., and Cosman, P. (2003). Human body model acquisition
and tracking using voxel data. In International Journal of Computer Vision, vol. 53,
no. 3, pp. 199223.

Milborrow, S. and Nicolls, F. (2008). Locating facial features with an extended active
shape model. In Proceedings of the 10th European Conference on Computer Vision:
Part IV , ECCV ’08, pages 504–513, Berlin, Heidelberg. Springer-Verlag.

Montemerlo, D., Thrun, S., and Whittaker, W. (2002). Conditional particle filters for
simultaneous mobile robot localization and people-tracking. In IEEE International
Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02., volume 1,
pages 695–701 vol.1.

Newman, R., Matsumoto, Y., Rougeaux, S., and Zelinsky, A. (2000). Real-time stereo
tracking for head pose and gaze estimation. In Automatic Face and Gesture Recogni-
tion, 2000. Proceedings. Fourth IEEE International Conference on, pages 122–128.

Ng, A. and Jordan, M. (2002). On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Advances in Neural Information Processing
Systems, pp. 841848.

Ng, J. and Gong, S. (2002). Composite support vector machines for detection of faces
across views and pose estimation. In Image and Vision Computing, vol. 20, no. 5-6,
pp. 359368,.

Niyogi, S. and Freeman, W. (1996). Example-based head tracking. In Proceedings of the
Second International Conference on Automatic Face and Gesture Recognition, 1996,
pages 374–378.

Ojala, T., Pietikaeinen, M., and Harwood, D. (1996). A comparative study of texture
measures with classification based on feature distributions. In Pattern Recognition
vol. 29.

Perez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-based probabilistic
tracking. In Proceedings of the 7th European Conference on Computer Vision (ECCV)
London, UK, Springer-Verlag.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA Workshop on
Open Source Software.

114

Bibliography

Ran, Y., Zheng, Q., Weiss, I., Davis, L., Abd-Almageed, W., and Zhao, L. (2005). Pedes-
trian classification from moving platforms using cyclic motion pattern. In IEEE In-
ternational Conference on Image Processing, 2005. ICIP 2005., volume 2, pages II–
854–7.

Rodriguez, Y. and Marcel, S. (2006). Face authentication using adapted local binary
pattern histograms. Lecture Notes in Computer Science, vol. 3954, p. 321.

Rogers, M. and Graham, J. (2002). Robust active shape model search. In Proceedings of
the 7th European Conference on Computer Vision-Part IV, ECCV 02, pages 517–530.
Springer-Verlag.

Rohr, K. (1994). Forwards model-based recognition of human movements in image
sequences. In CVGIP Image Understanding, vol. 59, no. 1, pp. 94115.

Romdhani, S., Gong, S., Psarrou, A., and Psarrou, R. (1999). A multi-view nonlinear
active shape model using kernel pca. In British Machine Vision Conference, pages
483–492. BMVA Press.

Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental learning for robust
visual tracking. Int. J. Comput. Vision, 77(1-3), 125–141.

Roy, A. and Marcel, S. (2009). Haar local binary pattern feature for fast illumination
invariant face detection. In BMVC.

Ruiz-del Solar, J., Verschae, R., and Correa, M. (2009). Recognition of faces in uncon-
strained environments: A comparative study. In EURASIP Journal on Advances in
Signal Processing, vol. 2009, pp. 120.

Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line random
forests. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on, pages 1393–1400.

Schulz, D. (2006). A probabilistic exemplar approach to combine laser and vision for
person tracking. In Proc. of the International Conference on Robotics Science and
Systems (RSS 2006), 2006.

Schulz, D., Burgard, W., Fox, D., and Cremers, A. (2001). Tracking multiple moving
targets with a mobile robot using particle filters and statistical data association. In
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation,
2001, volume 2, pages 1665–1670 vol.2.

Schulz, D., Burgard, W., Fox, D., and Cremers, A. B. (2003). People tracking with a
mobile robot using sample-based joint probabilistic data association filters. In Inter-
national Journal of Robotics Research, 22(2), 2003.

115

Bibliography

Sherrah, J., Gong, S., and Ong, E. (1999). Understanding pose discrimination in similar-
ity space. In British Machine Vision Conference, 1999, pages 523–532.

Sherrah, J., Gong, S., and Ong, E. J. (2001). Face distributions in similarity space under
varying head pose. In Image and Vision Computing, pages 807–819.

Song, K.-T. and Chen, W.-J. (2004). Face recognition and tracking for human-robot
interaction. In 2004 IEEE International Conference on Systems, Man and Cybernetics,
volume 3, pages 2877–2882 vol.3.

Tan, X. and Triggs, B. (2010a). Enhanced local texture feature sets for face recognition
under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6),
1635–1650.

Tan, X. and Triggs, B. (2010b). Enhanced local texture feature sets for face recognition
under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6),
1635–1650.

Taylor, G. and Kleeman, L. (2004). A multiple hypothesis walking person tracker with
switched dynamic model. In in Proc. of the Australian Conf. on Robotics and Automa-
tion.

Tian, Y. L., Brown, L., Connell, J., Pankanti, S., Hampapur, A., Senior, A., and Bolle,
R. (2003). Absolute head pose estimation from overhead wide angle cameras. In in
Proc. IEEE Intl. Workshop Analysis and Modeling of Faces and Gestures, 2003, pages
92–99.

Treptow, A. and Zell, A. (2004). Combining adaboost learning and evolutionary search
to select features for real-time object detection. In Congress on Evolutionary Compu-
tation, 2004. CEC2004, volume 2, pages 2107 – 2113 Vol.2.

Urtasun, R., Fleet, D. J., and Fua, P. (2006). Temporal motion models for monocular and
multiview 3d human body tracking,. In Computer Vision and Image Understanding
(CVIU), special issue Modeling People.

Vapnik, V. N. (1995). The nature of statistical learning theory. In Springer, New York.

Viola, P. and Jones, M. (2001a). Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2001. CVPR 2001., volume 1, pages I–
511–I–518 vol.1.

Viola, P. and Jones, M. (2001b). Robust real-time object detection. In International
Journal of Computer Vision.

116

Bibliography

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vision,
57(2), 137–154.

Vo, D. M. and Zell, A. (2014). Real time face recognition using local ternary patterns
with collaborative representation based classification for mobile robots. In Interna-
tional Conference on Intelligent Autonomous Systems (IAS-13), Padova, Italy.

Vo, D. M. and Zell, A. (September 2013). Real time face tracking and pose estimation us-
ing an adaptive correlation filter for human-robot interaction. In European Conference
on Mobile Robots (ECMR 2013) (Oral), Barcelona, Catalonia, Spain.

Vo, D. M., Masselli, A., and Zell, A. (2012). Real time face detection using geometric
constraints, navigation and depth-based skin segmentation on mobile robots. In 2012
IEEE International Symposium on Robotic and Sensors Environments, Madenburg,
Germany.

Vo, D. M., Jiang, L., and Zell, A. (2014). Real time person detection and tracking
by mobile robots using RGB-D images. In 2014 IEEE International Conference on
Robotics and Biomimetics. Bali, Indonesia.

Wagner, A., Wright, J., Ganesh, A., Zhou, Z., and Ma, Y. (2009). Towards a practical
face recognition system: Robust registration and illumination by sparse representation.
In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009,
pages 597–604.

Wojek, C., Walk, S., and Schiele, B. (2009). Multi-cue onboard pedestrian detection.
In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009,
pages 794–801.

Wojek, C., Walk, S., Roth, S., and Schiele, B. (2011). Monocular 3d scene understanding
with explicit occlusion reasoning. In 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1993–2000.

Wolf, L., Hassner, T., and Taigman, Y. (2008). Descriptor based methods in the wild. In
Faces in Real-Life Images Workshop in ECCV 2008.

Wolf, L., Hassner, T., and Taigman, Y. (2010). Similarity scores based on background
samples. In Proceedings of the 9th Asian Conference on Computer Vision - Volume
Part II, pages 88–97, Berlin, Heidelberg. Springer-Verlag.

Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., and Yan, S. (2010). Sparse repre-
sentation for computer vision and pattern recognition. Proceedings of the IEEE, Spe-
cial Issue on Applications of Compressive Sensing and Sparse Representation, 98(6),
1031–1044.

117

Bibliography

Wu, H., Suzuki, K., Wada, T., and Chen, Q. (2008). Accelerating face detection by
using depth information. In Proceedings of the 3rd Pacific Rim Symposium on Ad-
vances in Image and Video Technology, PSIVT ’09, pages 657–667, Berlin, Heidel-
berg. Springer-Verlag.

Xiao, J., Kanade, T., and Cohn, J. F. (2002). Robust full-motion recovery of head by dy-
namic templates and re-registration techniques. In Proceedings of the Fifth IEEE In-
ternational Conference on Automatic Face and Gesture Recognition, FGR ’02, pages
163–, Washington, DC, USA. IEEE Computer Society.

Xiao, J., Moriyama, T., Kanade, T., and Cohn, J. (2003). Robust full-motion recovery of
head by dynamic templates and re-registration techniques. In Intl. J. Imaging Systems
and Technology, vol. 13, no. 1.

Yang, M. and Zhang, L. (2011). Feature based sparse representation for face recognition
with gabor occlusion dictionary.

Yao, P., Evans, G., and Calway, A. (2001). Using affine correspondence to estimate 3-d
facial pose. In Proc. Intl. Conf. Image Processing, 2001.

Zhang, K., Zhang, L., and Yang, M.-H. (2012). Real-time compressive tracking. In
Proceedings of the 12th European Conference on Computer Vision - Volume Part III,
ECCV’12, pages 864–877, Berlin, Heidelberg. Springer-Verlag.

Zhang, L., Yang, M., and Feng, X. (2011). Sparse representation or collaborative rep-
resentation: Which helps face recognition? In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pages 471–478, Washington, DC, USA.
IEEE Computer Society.

Zhao, L., P. G. and Carlbom, I. (2002). Real-time head orientation estimation using
neural networks. In Proc. Intl. Conf. Image Processing, 2002, pages 297–300.

Zhao, W. and Chellappa, R. (1999). Robust face recognition using symmetric shape
from-shading. In Technical Report, Center for Automation Research, University of
Maryland.

Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S. (2006). Fast human detection using a
cascade of histograms of oriented gradients. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, volume 2, pages 1491–1498.

118

	1 Introduction
	1.1 Motivation
	1.1.1 Person Detection
	1.1.2 Person Tracking
	1.1.3 Person Identification

	1.2 Contributions
	1.3 Outline
	1.4 Experimental Platform
	1.4.1 Experimental Environment

	2 Theoretical Background
	2.1 Viola-Jones Face Detection
	2.1.1 Haar-like Feature
	2.1.2 Integral Image
	2.1.3 Adaboost Learning
	2.1.4 Cascade Architecture

	2.2 Naive Bayes Classifier
	2.3 Support Vector Machine
	2.4 Kalman Filter

	3 Real Time Face Detection Using RGB-D Images
	3.1 Introduction
	3.2 Related work
	3.3 Real Time Face Detection Using RGB-D Images
	3.3.1 Sampling
	3.3.2 Geometric constraints
	3.3.3 Navigation
	3.3.4 Gray world assumption
	3.3.5 Skin detection
	3.3.6 Depth-based skin segmentation
	3.3.7 Face detection

	3.4 Experimental Setup
	3.4.1 Datasets
	3.4.2 Implementation Details

	3.5 Results
	3.5.1 Processing time
	3.5.2 Accuracy

	3.6 Summary

	4 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter
	4.1 Introduction
	4.2 Related Work
	4.2.1 Face Tracking
	4.2.2 Face Pose Estimation

	4.3 Face Tracking and Pose Estimation Using an Adaptive Correlation Filter
	4.3.1 Face detection
	4.3.2 Face tracking
	4.3.3 Facial feature tracking
	4.3.4 Face pose estimation

	4.4 Experimental Setup
	4.4.1 Evaluation of Face Tracking
	4.4.2 Evaluation of Face Pose Estimation

	4.5 Summary

	5 Person Detection and Tracking using RGB-D Images
	5.1 Introduction
	5.2 Related Work
	5.2.1 Person detection
	5.2.2 Person tracking

	5.3 Overview of Histogram of Oriented Gradients Based Human Detection
	5.3.1 Preprocessing
	5.3.2 Gradient computation
	5.3.3 Orientation Binning
	5.3.4 Normalization and Descriptors Construction
	5.3.5 Support Vector Machine Classifier

	5.4 Overview of Real-Time Compressive Tracking
	5.4.1 Sparse Random Measurement Matrix
	5.4.2 Real-Time Compressive Tracking

	5.5 Person Detection and Tracking using RGB-D Images
	5.5.1 Face detection
	5.5.2 Upper body detection
	5.5.3 Fast compressive tracking
	5.5.4 Kalman filter for occlusion handling
	5.5.5 Hungarian algorithm for matching

	5.6 Experimental Setup
	5.6.1 Dataset
	5.6.2 Results

	5.7 Summary

	6 Face Recognition Using Local Ternary Patterns with Collaborative Representation
	6.1 Introduction
	6.2 Related Work
	6.2.1 Overview of Face Recognition via Sparse Representation
	6.2.2 Overview of Face Recognition via Collaborative Representation
	6.2.3 Overview of Face Recognition using Local Binary Patterns
	6.2.4 Overview of Face Recognition using Local Ternary Patterns

	6.3 Face Recognition Using Local Ternary Patterns with Collaborative Representation
	6.3.1 Face detection
	6.3.2 Face tracking
	6.3.3 Eye tracking
	6.3.4 Face alignment and cropping
	6.3.5 Facial feature extraction
	6.3.6 Collaborative representation based classification

	6.4 Experimental Setup
	6.4.1 AR database
	6.4.2 LFW-a database
	6.4.3 Tuebingen dataset

	6.5 Summary

	7 Conclusions
	7.1 Summary
	7.2 Future Work

	Bibliography

