
22

PostScript for archaeological drawings

Kelvin Goodson*

22.1 Introduction

Integrating text and graphics is of fundamental importance in documenting archae-
ological information. Books and catalogues conventionally provide the medium for
recording, but computer databases offer a convenient alternative. There are disad-
vantages associated with each method. Books and catalogues must, to a great extent,
be processed serially by a human reader and have limited explicit cross referencing.
Databases impose a rigid structure onto the recording process, which may give rise
to losing certain information that doesn't quite fit the predefined format, while many
database user interfaces are so unfriendly that they deter people who are not computer
literate from using them.

One significant failing of most database management systems is their inability to in-
corporate and retrieve graphical information, or to display the results of data retrievals
by synthesising graphical representations. This paper describes the advantages of using
the PostScript programming language for graphics programming in general, and how
its integration with database systems can significantly improve the computer's user
interface.

22.2 PostScript's ptiilosophy

PostScript has a deep rooted and consistent philosophy that makes a fundamental
difference to the way in which programming is carried out, as compared with most
procedural high level languages.

PostScript is a programming language specifically designed for page description.
Text can be integrated with graphics in the form of drawings or photographs. The
language was originally developed in order that two processes, an application program
generating graphical output and an interpreter running on a printer, could communi-
cate by sending a program describing the required graphics (see Fig. 22.1). This was a
significant deviation from the conventional communication with a printer where data,
interspersed with a restricted and fixed set of control codes and sequences provided
the graphical description. This mode of operation offers a number of advantages in
that the information is highly compressed, new functions may be coded in PostScript

Department of Electronics and Computer Science,
University of Southampton,
Southampton S09 5NH

335

K. J. GOODSON

Application with
Linked Libraries

Data plus
restricted

control code; Output
Device

Application

PostScript
Program Device with

interpreter

e.g. to Apple Laser Writer
or to Ne WS server

Figure 22.1: Diagram to show the control of a PostScript interpreted graphics device by
sending a PostScript program rather than a restricted device oriented set of geometrical
data.

and the programmer need not consider the device characteristics when describing the
page layout (this is left to the PostScript interpreter). This contributes to the device
independence characteristic of the PostScript language.

22.3 The general user view of PostScript

In many cases a user will not be aware that it is PostScript that is generating his or her
graphics. In general one uses an application which generates the PostScript program
for rendering a picture or script. However, the great flexibility of systems that use
PostScript output will be noticed. Many professional typesetting packages and most
of the smaller ones generate PostScript output. It has become an industry standard
for typesetting. It is usually possible, with little or no modification, to include the
output of one application with that of another. For example, the illustrations in this
paper were produced with Adobe Illustrator using an Apple Macintosh computer. The
PostScript generated by this package was transferred to a Sun and previewed using
NeWS. The illustrations were then included directly into the output from the lATgX text
processing package and printed on an Apple LaserWriter. This is just one example of
the integration possible with the many different machines and application programs
that understand and produce PostScript.

22.4 Ttie PostScript imaging nnodel

The model for imaging that the PostScript language adopts considers an image to be
built up on a page by placing ink in selected areas in stencil and paint sequences (see
Fig. 22.2). All ink is opaque, so placing white ink on top of black results in a white
area. The ink can be any shade of gray or any colour. It can form text, outlines, filled
shapes or half tone representations of images. PostScript achieves device independence
through its imaging model. Three central concepts of the imaging model are the current
page, the current path and the clipping path.

336

22. POSTSCRIIT FOR ARCHAEOLOGICAL DRAWINGS

Figure 22.2: Stencilling and painting : the path of the large dark area has been painted
as an outline and an area; ink used on subsequent paths has obscured that used on the
large area.

337

K. J. GOODSON

The current page is independent of the output device. It is initially empty. PostScript
painting operators place marks on the current page. Each mark may be black,
white or a specified shade of grey or a colour. Whatever the nature of the mark
it is created as though it is opaque, i.e. a mark removes any previous mark that
it occludes.

The current path is a set of connected or disconnected paths that describe unrestricted
shapes. The current path may be used to generate lines on a page, filled regions
or used as a clipping boundary.

The clipping path is the boundary of the area which may be drawn upon. It will
initially be set to correspond with the full dimensions of the device that the
graphics are to be rendered on. The clipping path can be set to any user defined
path, but can not be expanded. When altering the clipping path the only way to
get back to the original is to save it and restore it.

22.4.1 The graphics state

The graphics state is a collection of data describing the context in which graphics
operators execute. It includes things like :-

• the current grey level or colour,

• the current point,

• the current path,

• the clipping path,

• a current transformation matrix that maps user space to device space,

• the halftone screen for rendering grey levels,

• the transfer procedure that maps user gray levels to device gray levels,

• the current font,

• and a number of parameters that control how lines are drawn.

The users coordinate system, or user space (see Fig. 22.3), is independent of the device
coordinate system and may be transformed by translation rotation and scaling. The
current transformation matrix maps the user space to device space, (see Fig. 22.4). It
is easy to modify the shape and position of a graphical object using any combination
of these operations. The graphics state, which includes the current user space origin,
orientation and scaling may be saved before making any changes and restored once
the graphical object has been generated.

338

22. POSTSCRIPT FOR ARCHAEOLOGICAL DRAWINGS

translation
rotation
scaling

i inch = 72 default
units in user space

Figure 22.3: The default user space, and 3 other user space states resulting from scaling,
translating and rotating the user space

Inf
User

Dfl<aij« Cbppifig

11 'M. riiöiëÈ fï r Device
space

Figure 22.4: The interpreter maps the state of user space to the device space

339

K. J. GOODSON

10 20 add

Figure 22.5: The PostScript code and the stack operand stack states for the process of
adding two integers

22.5 The language model

22.5.1 Stacks

PostScript is a stack based language. Programming is a procedure of placing objects onto
stacks for later retrieval or as arguments to procedures or PostScript operators.

There are four stacks :-

• the operand stack, which is used for storage of data objects that are to be used
by PostScript operators;

• the dictionary stack, which contains only dictionary objects, and is used for
lookup operations;

name

• the execution stack, which holds objects that are currently being executed. Pro-
cedure bodies may be placed on the execution stack temporarily until they have
been completely executed;

• and the graphics stack, which is used solely for saving and restoring the graphics
state.

The stack based nature of the language model has a significant effect on the appearance
of programs. Operands must be placed on the operand stack before the interpreter
encounters the operator. Hence the operands are placed in the text of the program
before the operator name, e.g. 10 2 0 add (see Fig. 22.5).

22.5.2 Objects

Objects are a unified representation of all entities in the PostScript language. They
are of fixed size, typically 8 bytes. This simplifies stack manipulation greatly Objects
have sets of attributes, e.g. an object will either be executable or literal. The distinction
becomes important when the interpreter encounters a name object. If the object is literal
then the interpreter will treat it as data and pop it on the operand stack. If however it
is executable the interpreter will execute it immediately. A literal name is introduced
by a slash '/' character, e.g. /PaintBox.

Simple Objects are objects which fit into the 8 bytes, e.g. integer, real, boolean, name
etc.

340

22. POSTSCRIIT FOR ARCHAEOLOGICAL DRAWINGS

Composite objects store pointers to their values, which are held elsewhere. These are

strings, arrays and dictionaries.

Strings are simply sequences of characters which are usually created by placing
the text of the string in parentheses, e.g. (A string of text ...).

Arrays are PostScript objects which contain a one dimensional sequence of Post-
Script objects. There is no restriction on what type of objects are stored in
an array, and the types of objects within an individual array need not be
the same, e.g a single array can contain other arrays, dictionaries, executable
and literal name objects and numbers.

Dictionaries are a unique data structure that generally reside on the dictionary
stack, although they obey all the rules for other composite objects. Items are
placed into dictionaries in key, value pairs, e.g. the name object xJimension
could be the key to the value in an integer object containing 100. Dictionary
look up operations are a fundamental aspect of the PostScript language,
particularly when the value of a pair is an executable array. When a look
up operation results in placing an executable array on the operand stack,
the contents of that array are executed. By default, two dictionaries exist
{systemdict and userdict) that cannot be removed from the dictionary stack.
The system dictionary which resides at the bottom of the dictionary stack
contains all the name value pairs of PostScript operators. The user dictionary
sits on top of the system dictionary and is available for the user to place key
value pairs in it. Other dictionaries can be created and placed on top of the
dictionary stack. The top dictionary is known as the current dictionary.
Dictionary look ups are performed from the top of the dictionary stack
downwards, thus allowing a simple mechanism for redefinition of PostScript

operators.
Procedures within PostScript are simply array which have the executable at-

tribute. Procedures are defined by placing executable arrays containing
PostScript code into a dictionary. When a procedure name is encountered the
PostScript interpreter searches a dictionary stack in order to find the appro-
priate procedure. Partially executed procedures are place on the execution

stack.

22.5.3 The interpreter
A scanner parses the byte stream into objects and associates appropriate attributes
^ith the objects before passing them on to the interpreter. For example the scanner
recognises string objects because they are enclosed in brackets, e.g. (Hello World).
A point to note here is that the scanner is responsible for detecting syntax errors, and
the only syntax error that can be generated in PostScript is unbalanced parentheses
around a string object. All other errors are semantic.

Any token that consists entirely of regular characters and that cannot be interpreted as
a number is treated as a name object. The name object is assigned the executable attribute
unless it is preceded by a 7', when it is given the literal attribute. The interpreter takes
each object and executes it immediately. Execution may simply mean placing the object
^n the operand stack, as is the case with say an integer. Most PostScript operators work

341

K. J. GOODSON

by taking data from the operand stack and/or the current graphics state, and leaving
a result on the operand stack or changing the graphics state.

22.6 Operators

22.6.1 Path operators

The operators which allow paths to be specified are newpath, moveto, lineto,
rlineto, curveto, arc, closepath and many others. The curveto operator
allows the specification of Bézier cubic splines. Many of the path extension operators
use the current point as part of their arguments. Fig. 22.6 shows a simple example
of a PostScript program which draws a box with some text in it. The text facilities of
PostScript are based around families of fonts. Each font is a dictionary object for which
the keys indirectly point to a path description that describes the outline of a given
character or symbol. In general these paths are used for filling with the current grey
level or colour, but the paths of text can be used as a clipping path, or stroked, just
as with a path generated using the previous path creation operators. A character'path
is added to the current path with the charpath operator. Each character has metric
information associated with it allowing the calculation of coordinates for placing a
sequence of characters on a page.

22.6.2 Painting operators

The current path may be made visible with the stroke or fill operators. Strings
may be made visible with the show operator. The show operator is effectively a path
and painting operator. A path is generated from the string on the operand stack using
the current font which has been previously scaled to the appropriate size. The path
generated from the string is then painted by filling it with the current grey level.

To generate a bit map image the image operator is used. This operator also takes
arguments that define the nature of the painting to be done before performing the
painting operation. The device that the graphics are to be rendered on often consists
of a rectangular array of picture elements or pixels which may be either black or white.
The generation of grey level images must therefore be performed by using halftoning
techniques. The user need not be concerned with the generation of the halftone screen,
which defines the way in which grey levels are built up from dot patterns, although
it is possible to specify the screen with the setsereen operator. There is a default
halftone screen for each device which is optimum for the characteristics of the device.

The user must supply a procedure as an argument to the image operator which
generates a string that contains the bit map image's data. This procedure is usually
something like the PostScript readhexstring operator followed by ascii text repre-
sentmg hexadecimal numbers corresponding to the images bit map.

22.6.3 Graphics state operators

A number of operators exist for modifying or enquiring about the graphics state
For example, the operators setgray and currentgray set and retrieve the current
gray level used for painting. Equivalently, sethsbcolor and setrgbcolor set the
current colour for painting using either a hue, saturation, brightness or red, green, blue

342

22. POSTSCRIPT FOR ARCHAEOLOGICAL DRAWINGS

%!PS-Adobe % standard PostScript program header

% define a procedure to create a rectangle path

/box {
moveto
/height exch def
/width exch def
0 height rlineto
width height rlineto
width 0 rlineto
closepath

} bind def

% width height x y box => rectangle path
% move to X y coordinates on top of stack
% put height with top stack object in current dictionary
% put width in current dictionary
% create path of left side of box
% create path of top of box
% create path of right side of box
% close the path to finish the box
% place 'box' and the procedure in the current dictionary

% define a procedure to stroke a rectangle path at specified position and orientation

/stroke-box {
gsave

translate
rotate
box
stroke

grestore
} bind def

% Begin the main program

0.8 setgray
100 50 0 0
45 100 100
stroke-box
/Times-Roman findfont
12 scalefont
setfont
20 20 moveto
(Hello)
show

showpage

% width height x y angle x,, y^ stroke-box => box stroked
% save the graphics state
% translate user space to x„ yu on stack
% rotate user space by angle on stack
% invoke box procedure
% stroke the current path
% restore the graphics state
% place 'stroke-box' procedure in dictionary

% set the current gray level to 0.8
% put width height x and y on stack
% put angle and space origin on stack
% create a box path with 'box' procedure
% put the Times-Roman font on the operand stack
% scale the font on the stack to 12 point
% set the current font to the one on the stack
% move the current position to coordinates 20 20
% put the string object 'Hello' on the stack
% fill the boundary formed by the path
% of the string on top of the stack
% using the current font
% with the current gray level
% at the current position

% put graphics onto device output

Figure 22.6: A simple PostScript program

343

K. j. GCX)DSON

colour space. Operators exist for setting and investigating all the parameters listed in
section 22.4.1.

22,6.4 Other operators

There are over 250 PostScript operators built in of which a small set are used very
frequently. Here are a few of the common ones.

• Program control operators such as loop, repeat, for, forall, if, ifelse,
exit.

• Stack manipulation operators, such as dup, pop, exch.

• Maths operators such as add, sub, neg, mul, div, abs, round, sqrt.

• Dictionary operators such as diet, begin, end, store, get, put,
currentdict.

• String Operators such as string, forall, search, stringwidth.

• Font operators such as findfont, scalefont, setfont.

• Optimisation operators such as bind.

22.7 NeWS: A Networked extensible Windowing System

NeWS is a PostScript based graphics environment, currently implemented on Sun com-
puter workstations. The NeWS server supervises the execution of PostScript programs,
many at a time, and places ink on the Sun's high resolution monitor. NeWS's PostScript
contains a number of extensions in order to facilitate the creation of windows on a
computer screen and interaction with those windows using the computer's keyboard
and mouse.

Graphics are produced in NeWS by PostScript programs running under supervision
of the NeWS server. The NeWS server itself knows no more about graphics than does
the PostScript interpreter on a printer. However, a number of default PostScript files
are executed by the NeWS server when the server is initialised. These files, amongst
other things, define default characteristics for a windowing environment.

Client programs, written in some other high level language, communicate with
the NeWS server using a serial byte stream, (see Fig. 22.7). The philosophy of the
communication between the interpreter and the client program using only ASCII text
is preserved in NeWS. However, the facility to use a compressed byte stream, or a
mixture of compressed and uncompressed is offered, in order to enhance the speed of
execution. Keyboard and mouse input is detected by the PostScript programs and can
be passed on to the client program, or the PostScript program itself can react to the
input.

The screen can be used as a single canvas and graphics can be generated on the
screen in the same way as using a printer. Alternatively offspring canvases can be
created. These can be built up into windows and can be made to react to events, such
as the depression of a mouse button.

344

22. POSTSCRIPT FOR ARCHAEOLOGICAL DRAWINGS

Pigure 22.7: NeWS operates using a client / server model; Client programs send
PostScript programs to the NeWS server and communicate with those programs using
byte streams. User input from the keyboard and screen may be handled by the
PostScript program or passed to the client program.

345

K. J. GOODSON

The windowing aspects of NeWS are implemented in an object oriented scheme. The
types of objects that are usually dealt with in NeWS are windows, buttons and sliders.
Buttons and sliders are used for simple purposes such as invoking operations or setting
numerical values.

One can define classes of objects that have default instance variables and methods. The
instance variables are static variables that describe attributes of the state of an object.
Methods, are the procedures that an object can carry out when asked to do so. The
class by itself can do nothing except be used to generate instances of itself. An instance
of a class, i.e. an object, inherits the instance variables and methods of the class.

An instance of a class is generated in NeWS by sending the message /new to the
class, along with any appropriate arguments that the class might require to generate
this instance. NeWS is supplied with a number of ready made classes for generating
windows, panel buttons, sliders, switches, icons etc. All that has to be done by the user
then is to redefine certain instance variables and methods in order to tailor a generic
object to one that has a desired behaviour. These redefinitions can be sent to the object
as a message.

One can make an object express an interest in certain events that might occur, such
as key strokes and mouse movements. The event may be absorbed by the object or
redistributed to other objects. Methods can be invoked'by certain events, thus making
for an interactive environment, where windows can react'to a users input. An example
of a PostScript program that generates a window and puts a bit map image into the
window is shown in Fig. 22.8.

22.8 Using PostScript in arctiaeoiogy

PostScript is a programming tool which can have a fundamental effect on performing
documentation in many disciplines, not just in archaeology However, our research into
image and graphical databases is ideally suited to the use of PostScript in a number of
different ways. PostScript provides for an integrated system which would otherwise
not be achievable. Fig. 22.9 shows the computing environment for research into an
archaeological graphical database at the University of Southampton.

Retrieval of information from a text based interface to an archaeological database is
far less rewarding than an interface which can provide additional images to peruse.
These databases are becoming more common, but are often constrained in their usage
by the hardware used for image display Often, only a single image can be displayed
at a time, the image is displayed at fixed size and cannot be modified in any way
News provides an environment in which the possibilities for interacting with multiple
images are unlimited. A snapshot from a database enquiry session is shown in Fig. 22.10,
depicting a window in which the database management system is running, images of
pots in open and iconic states, a distribution map and a pie chart.

Once an image has been generated in a window it can be manipulated by the process
that generated it (i.e. the database management system), or by the user. The interactions
that the user can make are defined by the methods of that particular instance of the
wmdow class. Resizing, moving and iconifying are some of the default methods
of the wmdow class, thus allowing the user to put aside the results of a database
retrieval for later comparison with other images. One could define methods that
allow measurements to be taken from single images, or stereo pairs, or to perform

346

22. POSTSCRIIT FOK ARCHAEOLOGICAL DRAWINGS

% create picture painting procedure
/pic {

thepicture readcanvas
pause

}def

% create main program procedure
/main {

% pic => canvas

/mywindow %

framebuffer %
/new DefaultWindow send %

def
{

/FrameLabel thepicture def

%

%
/PaintClient { %

ClientCanvas setcanvas %
clippath pathbbox scale pop pop %
pic imagecanvas pause %

} def
/Paintlcon { %

IconCanvas setcanvas
clippath pathbbox scale pop pop
0 0 moveto
pic imagecanvas IconCanvas setcanvas
0 strokccanvas

}def
} mywindow send %

literal as key for window
full screen canvas is argument to /new
send message /new to class 'DefaultWindow'
define /mywindow as window on the stack

redefine instance variable as file name string
redefine PaintClient to put picture in window
set current canvas to be ChentCanvas
scale canvas to window size
put result of pic onto current canvas

redefine Paintlcon to put picture in icon

%
send instance variables and
methods to mywindow

/reshapefromuser mywindow send

/map mywindow send

}def

/thepicture (sunrise.imS) def
main

% send reshape message to mywindow
% this invokes a method to stretch
% a rectangle on the screen
% make the window visible

% place 'main' procedure in current dictionary

% define the file name string
% invoke the main procedure

figure 22.8: A PostScript program which uses the NeWS extensions to PostScript in

order to place an image in a window on the Sun's screen

347

K. J, GOODSON

Apple LaserWrltar

c
\

Sun 3/50

PostScript
Images

Ingres
Application Frame

Grahiber
Monitor

Video
Mouse Camera

Figure 22.9: The central equipment for the archaeological database research

idy: ova! uiitn knotiOed ba;
af«per Usually LaHn but ;

Uotes iomell(«a one hardie has fattory name, other that of pntt.
'ormt

in A kllf. 3ltp Is kntxjr Bt fipatii, niwtr. of «r-tndl^i, ltal>

1

:ontant Probably olivB-oil, but i

5»tt Lkti C 2nd BC to m1d lit BC

Numbpr LXVI

Fabric I Visual charactertstl(I Petrolog 1c» 1 characaterlsticî.

1 iFairly hard, slightly rough fabric [BuOangular quartz grams and sna 1
,containing a -few gwail uihite iiicluslertg of limegtone, •scwie of 1t toi

NextMâit»r Qutry H#lp Enö []

ri' 'cïta's '^'^

-tîwi
.-^i,

Amphora Classes

Jmrntniaon

J

Figure 22.10: The contents of the Sun's screen during a database enquiry, session

348

22. POSTSCRIPT FOR ARCHAEOLOGICAL DRAWINGS

m
•-*';•;:

i.

" «• ;>•!»;:, - ;
1— \~~

• » P .'*>•.':'•:

w :-i*i':-:-
•:•:•:•:•

• i'-'«:-:-: tt

T S^x: w » ••m " • • • a ••• .. .

»
:;*::';: m •• •^':-^

liiîr!:

•"••:•
m

::-i».x iSx^'^m •M Wi
. ;--::^; Mi B M: :;»:;:; ':!'.'•:'•:

:••.•:•: .
•fäfi :;»ï" mi '^.•: W^ . . .
:•<•:•; . m ^•V*y. B . .

liii 1 ^M J_: :•»•]•] m We •;•*:•

.
. M M :''M':'_ W^ •:••:•'

n

•à»':. '•'»:'•- m- :-:i*^:: » w

•:^. •*•
» •iw;; Mi :îi • •'•it-'A . -

m ,
•;*•;•: ::•**•: ^ ?!*;:: •:*>;

. , 'M
. . . .

•"* • •

Falrford a^rdan Pike Potter; DIatrlbullon

Figure 22.11: An plot of geographical dispersion automatically generated from a
database retrieval.

image processing for producing shape descriptions, or with sensitive areas for revealing
further information when the mouse is used to select the area, etc. etc.

Graphical display need not be limited to the database's graphical data. A simple
PostScript program can filter numeric database retrievals to produce pie charts or bar
graphs or whatever form of graphical output may be desired. Geographic information
can be translated into picture form, perhaps with quantitative data superimposed (see
% 22.11).

These aspects of the use of PostScript all relate to the use of PostScript from within a
database environment using a computer monitor as the device for display. The database
environment effectively becomes all the books and catalogues that an archaeologist
rieeds, with all the flexibility that books on a desk top offer, and more. However,
there are times when it is not possible to consult the electronic database, and books are
rieeded. This is the time when a paper copy of the database contents is needed. For
*is situation a database application program can be generated that uses PostScript, or
a typesetting package that generates PostScript output, to produce a typeset version of
the contents of the database. The paper version would include all the relevant graphical
information, with suitable cross referencing and indexing.

349

K. J. GOODSON

The path description capabilities of PostScript may also offer a convenient method for
stonng artifact shape information not only for display but for data input into processes
which use or analyse the shape information for purposes such as artifact classification.

22.9 Conclusions

In conclusion, PostScript, integrated with a database management system (in our case
Ingres) and an video frame grabber and frame store (Imaging Technology) is providing
a powerful computing environment at Southampton, with a sufficiently friendly user
mterface that allows for an archaeologically useful tool. With suitably tailored front
ends to the database management system, archaeologists that are not particularly
mterested in computers per se will feel just as comfortable performing their research
catalogumg, or publication as they would with a desk full of books, drawings and noté
pads.

References

ADOBE SYSTEMS INCORPORATED 1985. PostScript language reference manual. Addison-
Wesley, Reading, Massachusetts.

ADOBE SYSTEMS INCORPORATED 1987. PostScript language tutorial and cookbook.
Addison-Wesley, Reading, Massachusetts.

ADOBE SYSTEMS INCORPORATED 1988. PostScript language program and design. Addison-
Wesley, Readmg, Massachusetts.

350

