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Abstract. This paper examines three powerful concepts from nonlinear dynamics, deterministic chaos, complex adaptive

systems and complexity theory; they are the logistic equation, cellular automata and agent-based modeling. Some

archaeological models based on these ideas will be evaluated and critically discussed.
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1. Nonlinear Dynamics: the Logistic Equation

The logistic equation is a very simple mathematical

expression, but it is capable of yielding surprisingly

complicated dynamics, as established by Robert May (1976),

one of the pioneers of the now called deterministic chaos

science. May also discovered that in the boundaries of definite

ranges, population dynamics fluctuates chaotically: the

differences between equilibrium maintenance, periodicity and

chaos are in the order of a few decimal values. The logistic

equation is quite old; it was known as nonlinear and

capricious, but nobody knew that it was paradigmatically

chaotic. Pierre François Verhulst studied the equation before

1849, John von Neumann used it to generate random numbers

as early as 1945, and in the 1950s Stanislav Ulam explored its

weird properties, but falling short of describing it as the kind

of thing later identified with chaos.

The logistic equation describes a population dynamics, as

well as other phenomena responding to the same kind of

regulation. The logistic equation describes not only

population dynamics, but any other one variable system with

chaotic potentiality. It looks like simple, but it’s complex

enough. The control parameter involves negative feedback;

the use of the current value as a base for the next calculation

involves recursion.

We are going to explain the logistic equation in a few pages,

taking as departure points the logistic map description by

Edward Lorenz (1995: 198–99) and an excellent example

from the book of Douglas Kiel and Euel Elliott (1997); the

reader will be able to test equilibrium, periodic and chaotic

regimes just by using a standard spreadsheet like Microsoft

Excel. The logistic equation has this form:

We are going to examine the value of a variable, x. The

parameter or limit value of the formula is a constant, k. The

subscript t represents time; it’s the current value of variable x.

Subscript t + 1 represents a period of time of the variable x
following the anterior, xt. The factor (1 - xt) implements the

logistic factor of limited resources. To map the formula an

initial value is required; this is what in chaos theory is known

as initial condition, and is represented as the first value of xt,

or x
0
. Values for xt run from 0 to 1; 0 denotes extinguished

population, 1 overpopulation. Having said that, if you want to

examine the dynamic behavior of the logistic equation on an

spreadsheet, the initial value should be 0 < x
0

<1, and the k
constant should fall between 0 and 4. This constant represent

the reproduction rate: if it is 0, there is no reproduction at all;

is it is 4, it means that the population is reproducing at the

maximum possible rate. In the spreadsheet you can write now:

In cell A1, a fractional value for x
0

between 0 and 1. This is

the initial condition.

1. In cell B1, the value of constant k, greater than 0 and less

than 4.

2. In cell A2, the formula =($B$1*A1)*(1-A1). This is the

value of xt + 1.

3. Copy cell A2 until A30, for instance.

4. Generate the corresponding line graph for cells A1 to A30.

5. To modify the temporal series dynamics, just modify the

values for A1 (x) and B1 (k) such as the first is any value

between 0 and 1 and the second any value between 0 and 4. 

A fascinating aspect of the logistic equation is that each

behavior regime occurs within clearly defined mathematical

limits. For instance, values of k between 0 and 3 always

converge to an equilibrium situation after an initial shake.

Periodic behavior starts when k > 3; this regime start with an

oscillation which can be interpreted as a bifurcation; when the

value of k is 3.5 a four-cycle period appears in a likely “way

to chaos” (Feigenbaum 1978). With k equal to 3.567 an 8

period cycle appears, and incrementing k the system goes to

period 16, 32, 64… until reaching chaos in the deep sense. 

Chaotic behavior emerges when the values of k fall between 3.8

and 4, a tiny range indeed. What is peculiar of the chaotic

regime is the lack of a repetitive pattern, or a pattern char ac -

teris tically aperiodic. The famous Li and Yorke’s period 3 ap -

pears clearly between 3.8284 (1 + 8) and 3.8415. In the bi fur -

cation graphs it comes into sight as a white (or black) straight

stripe in the middle of a zone of apparently random points.
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The first graph of the series shows a steady state condition

with x
0

= 0.97 and k = 2.827. No matter how smaller or greater

the initial condition, the first oscillations would be different,

but in the long range the behavior stabilizes the same way.

The same scenario occurs in fixed-point cellular automata and

random boolean networks; in these ranges, there is an

attraction basin with area and volume leaning toward zero. 

This second example illustrates a period four cyclic behavior,

as when four branches open in the Feigenbaum fractal

bifurcation, for values of x
0

= 0.97 and k = 3.50. Small

differences in the initial value would result in a shifting of

cycles along time, but retaining the same cyclic structure.

Once stabilized, the cycle repeats itself all the time.

This is an example of aperiodic chaotic behavior for x
0

= 0.90

and k = 3.98. As in the famous Lorenz attractor, no long range

sequence patterns repeats itself exactly the same way.

Aperiodicity also differs from a random pattern. An aperiodic

curve such as the one in the figure is a representation of the so

called 1/f noise: human music, in whatever society (besides

the Western aleatory and stochastic music) follow this kind of

pattern. We want to emphasize two important outcomes of this

diacronic sequence: first, that it’s not possible, for a given

value of x, to assess the following or the preceding one;

second, that it will still be impossible to predict the next value

even having knowledge of a series as long as you want. It is

surprising that Gregory Bateson, ignoring almost everything

about the science of chaos, depicted exactly this exact

situation in his posthumous text (Bateson 1981: 24–25). 

This graph depicts what in chaos theory is known as the

extreme sensitivity to the initial conditions. Being k = 3.80,

the solid line corresponds to an initial value of x
0

= 0.666666

and the dotted line to x
0

= 0.666333. It is demonstrated this

way that when chaos conditions arise in nonlinear dynamics,

it is impossible to make long term predictions, because the

values of each run differ even when the differences between

any two initial values is minimal (a millionth or even less).

This is the famous “butterfly effect”, and an important issue

for social scientists: any two systems, identical in every other

respect, could develop very different stories. 

The last graph of the series portrays the formation of a chaotic

(strange) attractor, a pattern underlying the data under

examination. It’s a kind of mathematical miracle: not all

transitions are allowed. Even chaos has a structure, and a very

specirfic one indeed. The attractor effect reveals itself plotting

all the values of the series on the X axis, against the same

values displaced one cell down as Y axis in an XY graph.

Fig. 6 illustrates the bifurcation graph corresponding to the

logistic equation. It is a well known fractal, and as such it has

several emergent properties: self-similarity, recursion, fractal

dimension, period duplication determined by the universal

Feigenbaum constant (4.669…), strange attractors, power-law

distributions, scale independence, self-organised criticality,

1/f noise. There is too much stuff here to deal with in detail in

a short paper like this one. Some of these properties have been

studied now and then in the archaeological literature (Kohler
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Fig. 2. Periodic attactor (period 4).

Fig. 1. Fixed point attractor.

Fig. 3. Aperiodic (complex/chaotic) attractor.

Fig. 4. Sensitivy to initial conditions.

Fig. 5. Strange attractor.



et al 1999; Bentley and Maschner 2003); but there are not yet

acceptable developments that take seriously into account the

major consequences of nonlinear dynamics: namely,

impredictability, emergence, extreme sensitivity to initial

conditions and complex/fractal patterns. The case study

literature is still too far from the state of the art of the available

techniques and concepts.

2. Emergence: Cellular Automata

Cellular automata (CA) are an incarnation of one of the many

forms known under the name of emergent computation,

defined as a pattern of behavior resulting from information

processing by individual agents or cells. They are an example

of how simple things produce complex behavior: a complex,

adaptive system. Complex behavior emerges when a number

of agents designed to behave in a certain way involve in local

interactions with other agents, producing global patterns of

information processing at a macroscopic level. The high-level

implicit behavior emerges from the collective behavior of

individuals, explicitly defined only at an individual level.

Complex systems are characteristically nonlinear. Even of

you know the rules of the game, and although the system is

basically deterministic, there is no way of assessing what

happens before the system reaches a certain state. All

retrodiction becomes impossible. 

By the end of the 1960s, the british mathematician John Con -

way refined the description of the simplest CA capable of

universal computation. The cells of the Conway’s CA had

only two possible states, ‘on’ and ‘off’ and a set of simple rules

to determine the next state of the system. Conway called his

system (somewhat similar to the game of Go) “the Life

Game”, because of the binary “dead” or “alive” state of the

cells and its overall lifelike connotations.

The model of the Game of Life admitted a bidimensional

representation in the form of a board. Considering as

“neighbors” the eight cells that form the immediate perimeter

of a cell, the rules for the time evolution of life are as follows:

1 If a live cell has less than two neighbors, the it dies (loneliness).

2 If a live cell has more than three neighbors, then it dies

(overcrowding).

3 If an empty cell has three live neighbors, the it comes to

life (reproduction).

4 Otherwise (exactly two live neighbors), a cell stays as is

(statis).

In playing the game of life, the researcher may start from a

random configuration in order to examine the classes of object

than can be generated. The simplest behavior is that of the

static objects which do not change over time; the next class is

that of the periodic, iterative objects; the third class is that of

the object capable of movement, or reproduction, or both.

The third and fourth row of Fig. 7 show the simplest mobile

objects; those of the third row are glider types, moving one

diagonal space in four-step processes; those of the fourth are

called fishes. The Game of Life enthusiasts (and there are

thousands of them) know a lot of these objects and patterns.

The dynamic behavior of periodic and ambulatory objects, the

possibility of reproduction, are not issues that could be

anticipated starting from the simple inspection of the rules.

The visible compount objects are not fixed sets movind along

a trajectory; their particles are being created and destroyed all

the time. Their capabilities only exist as a product of strongly

nonlinear interactions between neighboring cells, as a

function of their states. Even if we restrict the attention to a

pattern of 5x5 cells, no analytic procedure known so far will

be able to predict the existence of, say, a gliding pattern

(Holland 1998: 140). This can be discovered only by

observation: a 5x5 matrix with 2 degrees of freedom has, after

all, 225, that is more than 33 million different potential

configurations. Along these lines, Mathematics is now not a

deductive exercise, but a experimental practice.

An interesting aspect of the CA has to do with its tipification.

The current CA taxonomies involve, by the way, a

classification of levels of complexity. There are several CA

taxonomies; here we are going to deal with the one proposed

by Stephen Wolfram (1984). His taxonomy consists of four

classes:

1 Class I. CA in this class always evolve to a homogeneous

arrangement, with every cell being in the same state, never

to change again.

2 Class II. CA in this class form periodic structures that

endlessly cycle through a fixed numer of states.

3 Class III. CA belonging to this class form “aperiodic”,

random-like patterns that are a lot like the static white

noise, with some white (or black) triangles here and there

4 Class IV. CAs in this class form complex patterns with

localized structure that move through space in time. The
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Fig. 6. Bifurcation for the logistic equation.

Fig. 7. Fixed, periodic and mobile objects.



patterns must eventually become homogeneous, like Class

I, or periodic, like Class II; or not.

Class I automata are analogue to trivial computation programs

that stop after a number of steps, or dynamic systems falling

into a fixed point attractor. An attractor is simple a set of points

towards which trajectories are dragged in along time. The most

obvious example of a fixed point attractor is the pendulum.

Class II CA are repetitive and reveal some resemblance to

infinite-loop programs, or dynamic systems characterized by

oscillations within periodic or quasi-periodic boundaries.

Class I and Class II automata are equivalent to regular

language grammars or sofic systems, requering no memory.

Class III CA are so extremely random that they don’t display

any interesting graphic pattern, but all of them have an odd

trait: they are extremely sensitive to the initial conditions; if

you commute a pair of cells at the beginning of a run, the

subsequent behavior will be totally distinct. Wolfram has

pointed the analogy of this class with context-sensitive

grammars. Some of their exemplares generate random, fine

grained static noise, while other produce symmetric or

asymmetric fractal structures, like the Sierpinsky triangle.

Class IV CA are by far the most fascinating. In the first place,

they can execute computations, and some of them are capable

of universal computation. Their diacronic evolution is also

hard to describe; it is not regular, nor periodic, nor random: it

has a little bit of all these types of behavior. It looks like the

dynamic behavior of these CA oscillate between chaos

(random) and periodicity. They are at the edge of chaos, a topic

too complex to deal with right now. Wolfram demonstrated

that complex automata generate fractal patterns of dimension

1.59 or 1.618, and he thinks that this capability will be useful

to explain the presence of self-similar structures in natural (or

cultural) systems. This class includes the Game of Life, and it

is analogue to Turing machines and to irrestricted languages in

the Chomsky hierarchy (Wolfram 2002: 231–249). 

The figure shows the behaviors or attractors defined by

Wolfram for each one of the four classes: (a) fixed point, (b)

periodic, (c) chaotic, and (d) complex, after a number of

iterations starting from random initial values (Wolfram 1988).

The most important issue right now is to highlight the

correspondence between attractors (a), (b), and (c/d) in the

CAs and the three characteristic behaviors of the distinct three

ranges in the logistic equation. There is a lot more on this (all

the fractal, 1/f, power law, self-organisation, Feigenbaum

universal constant); but we are running out of space.

3. Archaelogical Agent-Based Models

Agent-based models (ABM) are a natural extension of cellular

automata and Stuart Kaufman’s random boolean networks. In

them, the space may be heterogenouos and it is not necessarily

articulated in grids. The rules are also more complex, and they

can change along time, conditions, events. Some probabilism

could be implemented.

A classical application of ABM is Epstein and Axtell’s (1996)

Sugarscape. This mainly abstract implementation, with no

empirical findings associated to it, is a model capable of

modeling topics such as coalition formation, trade, ruled-

oriented social evolution, conflict, economy and other

processual phenomena. It’s all a mater of semantics and

interpretive imagination. Today there is a lot of work being

done on artificial societies and synthetic culture based on

extended CA and ABM.

One of these works is the study developed by researches of the

University of Arizona and the archaeologist George Gumerman

of the Santa Fe Institute, one of the notorious headquarters of

chaos and complexity science. This model is designed to explain

what happened in the history of the Anasazi, a tribe living in the

southwest of the United States between the I and the XIV century.

The main purpose was to generate an instance of an artificial

culture, situating it under (virtual) environmental conditions

experienced by the real Anasazi, and to implement several sets of

relatively simple rules in order to examine if the virtual behavior

matched the actual archaeological record. Several puzzles needed

to be elucidated. The Anasazi suddenly dissapeared around 1350,

an embarrassing fact for archaeologists, by the way. So far,

weather and climatic changes are not persuasive as explanations.

Other factors should be considered: clan formation, territorial

inheritance practices, external inducements, even cannibalism.

There are other problems as well: the archaeologoists have to

explain why nothing happened when maize was introduced 3000

years ago, and almost nothing happened when ceramics were

developed. Important social changes happened around the year

200 and nobody knows why, and there are no satisfactory

explanations for the constitution of a powerful regional center

between 900 and 1150, and the subsequent spectacular collapse

(Dean et al 2000). 

The drawing in Fig. 9 shows the contrast between the real

Anasazi setlements around 1270 and its virtual reproduction

in the work of Gumerman, Swedlund, Dean and Epstein

(2002). The discrepancies between them, however small,

prove that climatic and environmental factors are not

explanatory enough. Other factors should be tested. The

current “Artificial Anasazi” option in the AScape program, for

instance, considers variables such as maximum and minumun

age of fertility and death, basic nutritional needs, distance

from the harvest areas, volume of maize produced, size of the

household unit, rules of movement, metabolism and fission.

No definitive solutions has been found so far, although the

model is still running. No formal demarcation has been drawn

between substantial and secondary factors.

The Chaco Canyon Anasazi became the touchstone in the

study of change in a remarkable transdisciplinary exploration

(Lewin 1999: 1–22). The archaeologist’s “inflection points”

are being studied at the same level and with the same interest
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Fig. 8. The four Wolfram behaviors.



devoted to the biologist’s punctuations, the physicist’s phase

transitions, the chaologist’s bifurcations, the topologist’s

catastrophes and the cyberneticians morphogenetic processes.

All phenomena somehow involve the same kind of problems.

A solution found in one field could shed light on all the others.

Other scholars such as Charlotte Hemelrijk (1999) and Carlos

Gershenson (2001), are studying the situation of individuals

in equalitarian versus despotic societies using adaptive

systems similar to random networks and cellular automata;

Jim Doran and Mike Palmer (1995), are analyzing the growth

of social complexity in the late paleolythic using autonomous

agent models. These and other studies have little in common

with the traditional system research, infused with ideas of

holism and preservation of the equilibrium, such as Kent

Flannery’s (1986) studies on the origin of agriculture in

Mesoamerica. Today’s systems are not merely systems, but

complex systems, built bottom-up upon the modeling of the

behavior of individual agents (Bentley and Maschner 2003).

But the new models also deserve some criticism. In the first

place, the search of concordance between the real life

archaeological record and the behavior of the virtual model is

doomed by combinatory explosion. This is implied by the 225

possible outcomes of a simple 5x5, two degrees-of-freedom

cellular automata. What should be the size of a many

variables, many degrees-of-freedom problem space? A given

model could be running for centuries at lightning speed, never

reaching an acceptable match.

Besides, the experimentation on cellular automata has proved

that similar initial values result in very disparate global

behavior, and the same is true for the logistic equation and

other nonlinear models. Archaeologist, meanwhile, are

constrained to work based on roughly approximate values for

any variable. If any one of the underlying equations of, say,

the Anasazi simulation model, falls into the range of complex

aperiodic behavior, all the models will be affected by the

extreme sensititivy to the initial conditions. A butterfly

moving its wings in China could cause the downfall not even

of the Anasazi society, but of anything else anywhere. In other

words, nonlinear dynamics and cellular automata theory run

against the quest implicated in the simulation models. This is

what complexity and chaos science is all about. Just think

about it.
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Fig. 9. Anasazi Artificial Culture.


