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Uses of Multivariate Kernel Density Estimates in 
Archaeology 

Christian C. Beardah 

Abstract 

Though the technique of Kernel Density Estimation is now well established, it is still under-employed by 
archaeologists. For multivariate data this may be because the methodology is less well developed than in the case of 
univariate data. In this paper we aim to illustrate through archaeological examples some uses of multivariate Kernel 
Density Estimates (KDEs). In particular we shall examine the important issue of smoothing parameter selection in 
the bivariate case. Recent developments in the automatic data-based selection of smoothing parameters will be 
reviewed and particular emphasis will be placed on an illustration of the role of the so-called orientation parameter. 
Methods for the automatic selection of this parameter are in their infancy. We shall illustrate the effect it can have 
on the appearance of the KDE and therefore the archaeological conclusions drawn from it.  

1 Introduction 

For given bivariate data  X1 = (x1,y1)T,…,Xn = (xn,yn)T 
a bivariate KDE is formed by placing a "bump" at 
each data point (see the top left sub-figure of figure 
1). The value of the KDE at any point v = (x,y)T in 
the plane is found by summing the height of bumps 
which pass above the point v. In the most general 
terms this is mathematically expressed as 

𝑓�𝑣� = 𝑛−1|𝐻|−1/2 ∑ 𝐾(𝐻−1/2�𝑣 − 𝑋𝑖�)𝑛
𝑖=1           (1) 

where H is a symmetric positive definite 2 by 2 
matrix with structure 

𝐻 =  �ℎ1
2 ℎ3
ℎ3 ℎ22

�. 

Here h1, h2 > 0 and | h3 | < h1 h2. This means that we 
can write h3 = r h 1 h2 where -1 < r <1 . The values h1, 
h2 and h3 are called the smoothing parameters. 

The shape of the bump is defined by a mathematical 
function, the kernel, denoted by K(v) . This kernel 
function is usually a bivariate probability density 
function (pdf) such as the bivariate normal pdf, given 
by 

𝐾�𝑣� ≡ 𝐾(𝑥, 𝑦) = (2𝜋)−1 exp�−
1
2

(𝑥2 + 𝑦2)�. 

Figure 1. KDEs based upon a small dataset for 
illustration. 

Such functions have the property that their volume is 
1. The appearance of the KDE is not greatly 
influenced by the choice of kernel function (see 
Silverman (1986), or Wand and Jones (1995)). We 
shall therefore use the bivariate normal pdf 
throughout this paper. However the appearance of 
(and therefore the archaeological conclusions inferred 
from) the KDE does depend crucially upon the values 
of the smoothing parameters h1, h2 and h3. Three 
smoothing strategies are possible. 

1. Using h1 = h2 = h and h3 = 0 (a single smoothing 
parameter) causes the bumps which form the KDE to 
be spherically symmetric, i.e. they have circular 
contours. Smoothing is the same in both directions. 
With this simplification the representation of the 
bivariate KDE is given by  
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𝑓(𝑥, 𝑦) =
1
𝑛ℎ2

�𝐾(
𝑥 − 𝑥𝑖
ℎ

𝑛

𝑖=1

,
𝑦 − 𝑦𝑖
ℎ ). 

2. Using h1, h2 and h3 = 0 (two distinct smoothing 
parameters) causes the bumps to have elliptical 
contours, where the ellipsoidal axes are parallel to the 
co-ordinate axes. With this simplification the 
representation of the bivariate KDE is given by 

𝑓(𝑥, 𝑦) =
1

𝑛ℎ1ℎ2
�𝐾(

𝑥 − 𝑥𝑖
ℎ1

𝑛

𝑖=1

,
𝑦 − 𝑦𝑖
ℎ2

). 

3. Using three distinct smoothing parameters h1 , h2 
and h3 causes the bumps to have elliptical contours, 
where the orientation of the ellipsoidal axes is 
controlled by the value of h3. The KDE is given by 
equation (1). 

Figure 1 shows KDEs based upon a small bivariate 
dataset consisting of just five points. (A small dataset 
has been used for illustration only. In normal 
circumstances it would be unwise to apply KDE 
methods to such a small dataset.) The top left and top 
right sub-figures show surface and contour 
representations of the KDE based upon a single h 
value. The bottom left and bottom right sub-figures 
show contour plots of the KDE with two and three h 
values respectively. It is clear from the figure that h1 
and h2 control the dimensions of each bump in the 
two co-ordinate directions while h3 = r h1 h2 controls 
the orientation (or more exactly, the correlation) of 
the bump. In the bottom right sub-figure the value of 
r is h3 / (h1 h2) = 0.04 / (0.15 x 0.3) » 0.89, giving rise 
to a bump with high positive correlation. Using r =  
-0.89 leads to bumps with a high negative correlation. 
Finally, using r = 0 and hence h3 = 0, leads to the 
bumps shown in the bottom left sub-figure. 

Wand and Jones (1995) state that in general it is bad 
practise to use a single smoothing parameter for both 
co-ordinate directions. Furthermore, while in many 
cases two smoothing parameters will lead to an 
adequate representation of the underlying density, 
there is a strong case for using all three smoothing 
parameters in certain circumstances. 

For example, figure 2 shows contour plots of KDEs 
based upon data representing two ratios from the Kea 
lead isotope field (see Stos-Gale et al. (1996)). For 
this dataset n = 62. Contour lines join points on the 
KDE surface with equal height, and the heights at 
which contours are drawn are equally spaced. Other 
methods of contouring exist, for example see 

Bowman and Foster (1993) for an alternative 
methodology and Baxter and Beardah (1995), Baxter 
et al. (1997) for some archaeological examples.  

Figure 2. KDEs based upon the Kea lead isotope 
field data with various choices of h3. 

In figure 2 the values of h1 and h2 shown above each 
plot were chosen using an automatic data-based h 
selection algorithm. (Specifically a Direct Plug-in 
(DPI) rule, see section 2 for more details.) Keeping h1 
and h2 fixed, figure 2 shows the effect of varying the 
value of h3. Proceeding clockwise from the top left 
sub-figure, the values of r used are respectively r = 0, 
0.87, -0.62, 0.49. 

It is clear from figure 2 that the value of h3 can make 
a great deal of difference to the conclusions we can 
draw from these KDEs. Two of the KDEs suggest a 
unimodal structure to the underlying density, while 
the other two KDEs suggest very different bimodal 
structures. The question is, which of the KDEs in 
figure 2 is the most appropriate? We shall attempt to 
answer this question later. For now we simply note 
that the dataset has a natural orientation which is not 
parallel to the co-ordinate axes. When forming a 
KDE based upon such data it seems sensible to use 
kernel "bumps" which reflect this orientation. 

In section 2 we briefly review some methods for the 
automatic selection of smoothing parameters in the 
bivariate case. These methods are illustrated using an 
example. Finally, in section 3, we present the results 
of simulations which demonstrate the importance of 
the smoothing parameter h3. 

2 Automatic smoothing for bivariate data 

Methods for the automatic data-based choice of h3 are 
in their infancy and we shall not discuss such 
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methods here. Instead we offer a brief overview of 
available methods for the automatic choice of h1 and 
h2. 

The most basic method of choosing smoothing 
parameters h1 and h2 is to use a univariate method of 
h selection for each variable separately. By doing so 
we can draw upon several well known methods (see 
Jones et al. (1996) for technical details and Baxter 
and Beardah (1996) for some archaeological 
examples). This technique at least gives initial values 
for h1 and h2 which can be further adjusted, 
subjectively if necessary. However, it is often the 
case that the appearance of a KDE is fairly robust to 
the choice of smoothing parameters. Because of this, 
in many applications univariate methods give 
reasonable results when compared to the bivariate 
methods detailed below. 

Currently one of the best univariate h selection 
methods is the "solve the equation" method of 
Sheather and Jones (1991). Unfortunately this 
method does not readily extend to the bivariate case. 
However the closely related Direct Plug-in methods 
do have bivariate (indeed multivariate) extensions 
which we briefly discuss here. 

Under certain non-restrictive assumptions on the 
unknown density f it is possible to develop a simple 
asymptotic (large sample) approximation to the Mean 
Integrated Squared Error (MISE) of a bivariate KDE. 
This is simply a measure of the amount by which the 
true density f and the KDE 𝑓 differ. Since the KDE, 
𝑓, depends upon the values of h1 and h2 , then so does 
the asymptotic MISE, denoted by A(h1,h2 ). Explicit 
expressions for the values of h1 and h2 which 
minimise the function A can be found. These 
expressions depend upon quantities φy1 which in turn 
depend upon the unknown true density f. For 
particular values of r1, the value of φy1 can be 
estimated using KDEs based upon a single smoothing 
parameter g. Unfortunately the formula for g depends 
upon a different φ value, say φy2. To estimate φy2 we 
again use a KDE where the value of the single 
smoothing parameter depends upon a further φ value, 
say φy3. This circular calculation process can be 
resolved at some stage by "plugging in" a simple 
estimate for the latest φr value, where the estimate is 
usually formed by assuming that the true density is 
normal. The stage at which this simple estimate is 
plugged-in determines the stage of the so-called 
Direct Plug-in method which results. Theoretical 
considerations (see Wand and Jones (1995)) lead to a 
recommendation that at least two stages are used. If 
the simple estimate is made immediately (at stage 

zero) then the resulting method is called the normal 
scale (NS) rule. This is the most basic method of h 
selection and can also be used in the univariate case 
(see Silverman (1986)). 

Upon application to replicated samples from known 
densities, bivariate DPI methods result in values of h1 
and h2 which have low variability. However there 
does seem to be a tendency towards over-smoothing, 
i.e. h1 and h2 values which are too large, especially in 
cases where the density consists of widely separated 
modes (see section 2.1 below for an illustration). 

In fact it is interesting to speculate whether use of the 
univariate DPI rule to separately determine h1 and h2 
may in some way compensate for the inherent 
tendency of the bivariate DPI rule to oversmooth. 
The formulae for h1 and h2 used by the bivariate DPI 
rule essentially reduce to  

h1 = K2n-1/6, 

h2 = Lh1, 

where K2 and L are constants which depend on the 
data. On the other hand, the formula for the 
univariate DPI rule can be reduced to h = K1n-1/5 

where K1 is a data dependent constant. The important 
thing to note here is the difference in the power to 
which n is raised in the two formulae. Since  
n-1/5 < n-1/6 the univariate DPI rule tends to result in 
smaller smoothing parameters than the bivariate DPI 
rule (see section 2.1 below for an illustration). 

Another univariate method of h selection which 
generalises to the multivariate case is that of biased 
cross-validation (CV), see Sain et al. (1994). This 
method works by finding the values of h1 and h2 
which minimise a criterion function, B(h1,h2). The 
criterion function has the same form as the 
asymptotic MISE function, A(h1,h2), except that 
terms involving the unknown true density f are 
replaced by a cross-validation approximation. For a 
dataset with n data points, cross-validation involves 
using information about n reduced datasets (each 
with n-1 data points, formed by leaving one of the 
original data points out) to give information about the 
dataset as a whole. 

2.1 An archaeological example 

Figure 3 shows KDEs based upon four different h 
selection routines. These data represent the co-
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ordinates of 276 bone splinters and are a subset of 
Binford's (1978) Mask Site data. 

Figure 3. KDEs generated by four different h 
selection routines.  

While the four KDEs share features such as the 
clustering of the dataset into three main groups, only 
the univariate 2-stage DPI rule (and possibly the 
bivariate biased CV rule) split the lower right cluster 
into two further groups. Since these two sub-groups 
correspond to two separate hearth locations we can be 
reasonably sure that this is the true nature of the 
density and that h selection methods which do not 
reveal this structure are over-smoothing the KDE. In 
particular, note that the bivariate 2-stage DPI rule 
seems to have over-smoothed the KDE (as might 
have been expected with such widely separated 
modes in the underlying density). The bivariate 2-
stage DPI rule gives h1 = 0.53, h2 = 0.57 while 
separately applying the univariate 2-stage DPI rule to 
each variable gives h1 = 0.24, and h2 = 0.30. 

3 Choice of orientation parameter h3 

In order to investigate the effect of the smoothing 
parameter h3 on the resulting KDE, we now present 
the results of some simulations using known 
densities. The basic idea is as follows. Given a 
sample from a known density we generate several 
KDEs based upon different values of h3 (keeping h1 
and h2 fixed). For each sample we can then find 
which value of h3 (or equivalently, r) minimises the 
error between the KDE and the true density. This 
process is repeated for many samples (in practise 100 
repetitions were made). The measure of error that we 
use is the integrated squared error (ISE), i.e. the 
volume under the surface defined by (𝑓 − 𝑓)2, where 
f is the true density and 𝑓 is the approximate density 
given by the KDE. 

Figure 4. Four example bivariate NMDs. 

3.1 Simulations using bivariate normal 
mixture densities 

The known densities which we sample from are the 
family of bivariate normal mixture densities (NMDs). 
These are given by 

𝑓(𝑥, 𝑦) = �𝑤𝑖𝑁𝜇𝑖,∑𝑖(𝑥, 𝑦)
𝑘

𝑖=1

, 

where k is the number of normal densities used in the 
mixture, and 𝑁𝜇𝑖,∑𝑖 denotes the bivariate normal pdf 
with mean 𝜇𝑖 and covariance matrix ∑𝑖, and 

�𝑤𝑖 = 1
𝑘

𝑖=1

. 

The family of NMDs can be used to mimic all other 
type of density. For example figure 4 shows contour 
plots of four example bivariate NMDs (three of 
which are taken from Wand and Jones (1993)). 

The density in the lower right sub-figure is given by a 
mixture of k = 2 densities where w1 = 2/3, w2 = 1/3 
and 

𝜇1 = (0,0)𝑇, 
𝜇2 = (−0.4,0.3)𝑇, 

∑1 =  ∑2 = � 0.752 0.9 × 0.75 × 0.25
0.9 × 0.75 × 0.25 0.252

�. 

This density will be denoted NMD1. Note that both of 
the densities defining NMD1 have the same 
covariance matrix with a correlation coefficient of  
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r1 = 0.9. Samples from NMD1 show similarity of 
structure to that of the Kea lead isotope data 
illustrated in figure 2, for which n = 62. 

As described earlier, 100 samples (of size n = 100) 
were taken from NMD1. For each sample KDEs were 
formed using h1 and h 2 as automatically selected 
using the 2-stage DPI rule described in section 2 and 
various values of h3 (or equivalently, r ). The value of 
r, 𝜌�, which minimised the ISE between the true 
density and the KDE was recorded for each sample. 
The lower of the two histograms in figure 5 shows 
how the 100 values of 𝜌� were distributed. The upper 
histogram shows the distribution of 𝜌� when the 
univariate normal scale rule is used to select h1 and h2 
for each sample. 

Figure 5. Histograms of 𝝆� values for 100 samples 
from NMD1. 

Figure 6a shows a typical graph of ISE against r for a 
sample from NMD1. The lower (dashed) curve 
illustrates how the ISE varies when the 2-stage DPI 
rule is used to select h1 and h2. For this sample the 
error between the true density and the KDE is 
minimised when we use a r value of approximately 
0.88 (i.e. h3 = 0.88h1h2 ). So for this sample, 𝜌� = 0.88. 
It is clear that the error is minimised when the 
correlation of the bumps used to form the KDE (here 
0.88) agrees closely with the correlation of the modes 
in the true density (here 0.9).  

Figure 6. Typical graphs of ISE against r for 
samples taken from four different bimodal NMDs. 
Solid lines: univariate NS rule, dashed lines: 
bivariate 2-stage DPI rule. 

On the other hand, it is clear from figure 6a that the 
ISE curve rises only slowly to the left of the 
minimum. This suggests that for this sample there is a 
relatively wide range of values of r (or h3) which give 
rise to a "small" error. This is more noticeably the 
case when the univariate normal scale rule is used to 
select h1 and h2 (the solid curve in figure 6a). Also 
notice that, as might be expected, h selection via the 
bivariate 2-stage DPI rule gives rise to lower errors 
than h selection via the univariate normal scale rule. 
Finally, note that the simulation described here was 
repeated with a sample size of n = 62 (the same as the 
size of the Kea lead isotope field data), however no 
significant difference in results was apparent. 

The same procedure outlined above was repeated by 
taking 100 samples (of size n = 100) from three 
further bimodal NMDs where the two normal 
densities within each mixture both have correlation  
r2 = 0.7, r3 = 0.5 and r4 = 0.3 respectively. Figure 7 
shows histograms which illustrate how the 
minimising value of r, 𝜌� was distributed for these 
simulations. For completeness the case for NMD1 
(where the two densities within the mixture have 
correlation r1 = 0.9) is also included. In each case the 
values of h1 and h2 were chosen automatically via the 
2-stage DPI rule. Figure 6b-d shows typical graphs of 
ISE against r. 
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Figure 7. Histograms illustrating the distribution 
of 𝝆� based upon 100 samples of size n = 100 from 
four different NMDs. 

Based upon figures 6 and 7 we can make three 
observations. 

1. The minimising value of r is clearly distributed 
around the correlation of the underlying densities 
within the NMD (the "true r" value).  

2. As the true correlation decreases (i.e. the true 
value of r gets closer to zero) the distribution of 
the minimising value of r becomes more widely 
spread.  

3. As the true correlation decreases we find that a 
large range of values of r give rise to a small 
error (the curves of ISE against r in figure 6 are 
very flat). Furthermore, the size of the error is 
generally smaller than for cases where the true 
correlation is high.  

Wand (1992) has shown that in order to optimally 
estimate a bivariate normal density, one should use 
kernel "bumps" with the same covariance structure as 
the density itself. Since the densities used here are 
mixtures of two bivariate normal pdfs with the same 
covariance structure it is also natural to use kernel 
"bumps" with this covariance structure. However, 
what should our strategy be if a dataset consists of 
sub-groups with different covariance structure? (An 
example of this would be a sample from the NMD in 
the bottom left of figure 4.) An intuitive approach 
would be to use differently oriented kernel "bumps" 
within each sub-group. Unfortunately this approach 
assumes that we know to which sub-group each data 
point should be assigned, which is a difficult problem 
in its own right, and may indeed have been the point 
of the data analysis in the first place! 

Another approach would be to use a single overall 
"bump" shape based upon the covariance structure of 
the dataset as a whole. This approach is dismissed as 
"inappropriate" by Wand and Jones (1994) who argue 
that the overall covariance structure can be quite 
different from the structure of individual sub-groups 
within the dataset. As a simple illustration of this fact 
we note that the average value of the correlation 
coefficient for the 100 samples from NMD1 discussed 
earlier is 𝜌� = 0.63. By contrast, the true correlation 
coefficient of the two bivariate normal pdfs which 
make up the underlying density is 0.9. 

3.2 An archaeological example 

Figure 8 shows four KDEs based upon the rim 
diameter and overall height of n = 60 Bronze Age 
Italian cups. These data are a subset of material 
originally published by Lukesh and Howe (1978). 

The values of h1 and h2 used to form the KDEs in 
figure 8 were calculated using the 2-stage bivariate 
DPI rule. (This could be expected to over-smooth the 
KDEs as here the underlying density has two modes 
with a reasonable amount of between-mode 
separation. However, when other h selection rules are 
applied to this dataset, the resulting values of h1 and 
h2 are not significantly different to those used here.) 
Proceeding clockwise from the top left sub-figure, the 
values of h3 are -0.5, 0, 0.75 and 0.5 respectively. 
These values correspond to r = -0.52, 0, 0.78 and 
0.52 respectively. It can be seen from figure 8 that 
although a wide range of h3 values have been used, 
the overall appearance of the KDE does not change 
by much. In particular, the overall conclusion that 
there are two major groups within the dataset is 
independent of the value of h3 (or r ) used. 

Figure 8. Four KDEs exhibiting little variation in 
structure as h3 is changed. 
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Clearly this dataset consists of two sub-groups 
without any strong correlation (since the sub-groups 
are relatively circular). For this reason we can use a 
wide range of values of h3 without significantly 
altering the resulting KDE. In fact one could argue 
that there is no need to use the third smoothing 
parameter in this case and that two smoothing 
parameters (illustrated by the top right sub-figure) are 
adequate. 

4 Conclusions 

Since there are currently no automatic data-based 
methods of selecting the smoothing parameter h3, we 
are forced to rely upon more ad-hoc approaches. 
Fortunately, if a dataset has structure along the lines 
of the Kea lead isotope field data, or samples from 
NMD1 (where sub-groups within the dataset share 
some natural orientation) then it is a relatively 
straightforward matter to choose an appropriate value 
of h3 "by eye". Bearing this in mind, let us now 
reconsider our earlier example of the Kea lead 
isotope field data. We asked which of the KDEs in 
figure 2 is the most appropriate model of the true 

underlying density. Clearly this dataset has a strong 
natural orientation and we feel that the KDE in the 
top right of figure 2 best reflects this. The value of h3 
chosen has the effect of lining up the kernel "bumps" 
in the same direction as the natural orientation of the 
dataset. Note that the possible modality of the 
underlying density only becomes apparent upon 
making this choice of smoothing parameter. 

On the other hand, if the dataset has no natural 
orientation, or consists of sub-groups with no natural 
orientation, then it is usually the case that a wide 
range of values of h3 should give satisfactory results 
(see section 3.2). Indeed it may be more sensible to 
use only two smoothing parameters in these cases. 

Finally, if a dataset consists of sub-groups with 
different natural orientations (for example, samples 
from the bottom left NMD of figure 4) then the 
situation is less clear. Unless a categorisation of the 
dataset exists which makes it possible to use different 
values of h3 between sub-groups, then it is possibly 
best to use only two smoothing parameters in these 
cases. 
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