
1 Introduction
Magnetometry has become one of the most popular
techniques for the geophysical prospection of archaeological
sites. Modern instruments are reliable, easily portable,
convenient in use, and reasonably inexpensive. The data are
logged automatically and can readily be transferred to a
small computer for subsequent processing. Anyone who has
received proper training in the operation of field magneto-
meters can expect to survey a considerable area of ground
each day and, provided that conditions are favourable, be able
to present the results in an archaeologically meaningful form.

A typical opportunity for magnetometry occurs when
ancient ditches or pits have been cut into inert soil, but
have subsequently been filled in with material which is
magnetically active. The locations of the features can then
be detected as induced magnetic anomalies relative to the
earth’s main field. The response of the magnetometer to
such an anomaly is somewhat complicated, presenting a
positive lobe along the southern side together with a negative
shadow towards the north (Linington 1964). The relative
sizes of the positive and negative lobes depend on the mode
of operation of the magnetometer (gradiometer or single
mobile detector), on the survey’s location on the surface of
the planet, and on the depth of the archaeological features
below the modern ground surface.

Some care has to be taken in interpreting the results of a
magnetometer survey, because the actual position of the
anomaly corresponds neither to the positive lobe nor to the
negative lobe, but is close to the junction between them.
This may not be important when the survey reveals only a
limited number of well spaced features, but it may cause
crucial difficulties if there are many features, overlapping
each other at different depths.

The data logged by the magnetometer provide, in effect,
a digital image of the site. Such an image differs from more
familiar electronic images, such as those derived from
conventional photography, only in that it contains both
positive and negative readings, whereas in most cases only
positive intensities are permitted. Many different methods
of image restoration have been developed over the years,
and the majority are still valid when applied to images
containing a mixture of positive and negative values.

Standard methods of image restoration include spatial
filtering, for smoothing and edge enhancement, Fourier
transform methods, and construction of the inverse response
function. In recent years a number of alternative methods
have been developed, based upon statistical estimation
techniques, such as the EM algorithm which is discussed in
this paper. Such techniques model the distribution of the
survey data, on the basis of the known magnetometer
response. The magnetic intensity is then estimated from the
data, taking into account any reasonable prejudice about the
nature of the anomalies. These techniques are known
collectively as ‘inverse-data methods’.

The aim of our project is to apply suitable inverse-data
methods to various types of archaeological magnetic data,
and to appraise their success in comparison with standard
techniques of image restoration. Some preliminary results
are presented in this paper.

2 Outline of this project
Recognising that the analysis of full-scale archaeological
field data presented formidable problems, because of both
the size of the problem and the complexity of the response
function involved, it was decided that the project should be
developed in three distinct stages, each progressing towards
the ultimate objective.

Stage I
The analysis of digitised measurements of magnetic
susceptibility over the length of earth cores from
archaeological sites. These measurements arise from a
project undertaken by the Department of Archaeological
Sciences at the University of Bradford with the aim of
determining the location and depth of the magnetically
active regions of a site. Earth cores, extracted from several
locations over the site, are passed through a detector coil
which allows the susceptibility to be measured continuously
along the core; the readings are recorded digitally.

Since the detector coil is sensitive to the susceptibility
over a considerable length of the core, its effective response
function to the susceptibility of any point in the core has
very long tails (fig. 1a). In consequence, the curve of the
continuous measurements shows very broad, smooth peaks,

Gayle T. Allum Restoration of magnetometry data using
Robert G. Aykroyd inverse-data methods
John G.B. Haigh

 



and responses from different regions of the core may
overlap very strongly. Our aim is to account for the broad
spread of the response function and to allow the measured
susceptibility to be attributed to sharply defined regions of
the core, representing distinct epochs in the development of
the site.

Since the restoration of susceptibility values is a line
problem, it requires relatively little computing power.
Furthermore the response function does not possess the
positive and negative lobes which normally appear in
magnetometry work. Consequently this should provide a
fairly straightforward problem on which to test our
techniques.

Stage II
Gradiometer measurements along a line transecting linear
features. Rather than progress straight to full survey over an
extended area of ground, we first look at data from a survey
along a line transecting some linear feature, such as a long
straight ditch. Here the ground is modelled as a collection
of magnetised prisms of rectangular cross-section, and
infinite in length in the direction of the feature. The
response function has positive and negative lobes, and may
vary with location on the planet, the depth of the feature,
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Figure 1. Theoretical response functions for (a) measurements of
core susceptibility and (b) line magnetometer measurements.

and the strike (or transection) angle (fig. 1b). Nevertheless
the problem is more manageable than full area field survey
at Stage III. 

Stage III
Gradiometer measurements from area surveys. This type

of problem usually involves a large data set and a more
complex response function than either of the earlier stages.
Hence it is only to be tackled when we have gained
considerable experience of the methodology during the
earlier stages.

3 Techniques tested during Stage I, using
susceptibility data

Two forms of susceptibility data were used for testing
restoration methods. The first form was entirely simulated,
by convolving a known pattern of susceptibility with a
suitable response function, and finally adding some
Gaussian noise. The second form came from actual
measurements, but made on blocks of material of known
susceptibility fabricated to resemble earth cores, rather than
on true earth cores. The advantage of using ‘phantom’ data
of this type is that the expected answer is known, and
therefore the accuracy of the results may be judged.

All the techniques worked much as we would have
predicted with the simulated data. The straight Fourier
method and the direct calculation of the inverse response
function tended to give fragmented results in the presence
of noise, for reasons discussed below, but the other methods
worked well enough. We therefore decided to concentrate on
the ‘phantom’ data, since these should give a fairer indication
of how the various techniques would perform in practice.

3.1 FOURIER TRANSFORM METHODS

It is possible to calculate the (discrete) Fourier transform of
the response function, to find its exact inverse, which can
then be used to calculate the restored susceptibility. In fact
the results are extremely disappointing and have little
resemblance to the ‘known’ pattern of susceptibility.
The reasons for this poor performance are well known.
The response function used here is very smooth and has
long tails; consequently its Fourier transform has very small
amplitude in the high-frequency components. Hence the
inverse of the Fourier transform has very large amplitude in
those components. Furthermore, since the observed data
represent a convolution which includes the smooth response
function, they should have very small high-frequency
components; any significant component in those frequencies
is almost certainly associated with noise. One effect of
dividing by the transformed response function is to
exaggerate components arising from noise, which often
gives rise to unsatisfactory results.

(a)

(b)



One technique to counteract the exaggeration of noisy
components is the use of the Wiener filter (Gonzalez/Wood
1992). The basis of this method is an analysis of the
frequency spectrum resulting from the noise, but in practice
it is often interpreted as the simple addition of a small
positive constant F to the denominator of each component
of the inverse of the transformed response function. The
constant F prevents division by near-zero, but it is difficult
to provide a prescriptive formula for its optimum value; a
suitable value is usually found by subjective trial and error.

3.2 CONSTRUCTION OF INVERSE RESPONSE FUNCTION

It is possible to construct the inverse response from a set of
simultaneous equations derived from a precisely constrained
problem (Tsokas et al. 1991). The results are effectively
equivalent to the straight Fourier method, and have similar
deficiencies. Better results may be obtained by setting up an
over-constrained problem, which is solved by minimising a
sum of squares. This takes account of the presence of noise
in the data and leads to results which are qualitatively
similar to those from the application of the Wiener filter in
Fourier transforms. Singular value decomposition provides
a more stable and more controlled approach to the over-
constrained problem, but the results are not markedly
improved.

3.3 MAXIMUM LIKELIHOOD ESTIMATION

Our initial trial of inverse-data methods was based on the
well established Metropolis-Hastings algorithm (Hastings
1970; Metropolis et al. 1953). The calculations proved to
be extremely slow and the final results did not show any
significant improvement over those discussed above. These
conclusions are not entirely surprising since the algorithm
was devised in order to solve non-linear problems, whereas
the problems of fitting the magnetic data are linear ones. As
a result of these observations we abandoned the Metropolis-
Hastings method in favour of an alternative statistical
technique which has proved to be successful in other
imaging applications.

3.4 THE EM ALGORITHM

This algorithm was published by Dempster et al. (1977)
as a summary of various earlier methods, one of the best
known of which is the Lucy-Richardson method (Lucy 1974;
Richardson 1972). We offer a brief description of the algo-
rithm here, with the intention of publishing more of the
mathematical detail elsewhere.

Suppose that the susceptibility profile along the core is
divided into m discrete elements, that xj is the ‘true’
susceptibility of element j, and that xj is some estimate of xj.
Suppose also that data are observed at n locations, and that
yi is the observed value at location i, whereas mi is the

expected value when the ‘truth’ is convoluted with the
response function.

Then

m m
mi = S hijxj and yi = S zij

j=1 j=1

where hij is the response function coupling location i to
element j, and zij is the contribution to observation i from
element j. The values zij may be envisaged as ‘unobservable’
data whose expected values are hij xj. The introduction
of such ‘missing’ or ‘unobservable’ data is an essential
requirement of the EM algorithm.

The algorithm defines two separate steps:
E step: (Expectation), where zij is estimated by its condi-

tional expectation, given the data:

1
zij = E [zij | yi] = hij xj + (yi -mi)m

M step: (Maximisation), where the value xj is found to
maximise the log-likelihood, or minimise the error sum of
squares, assuming that the zij are observed data.

The E and M steps may be combined to give a revised
estimate of xj:

n n
xj

new = xj
old + S (yi-mi)hij / m S h2

ij
i=1 i=1

This equation provides an iterative process where the
estimate of each ‘truth’ element is decoupled from the
estimates of the other elements.

Since this simple implementation of the EM algorithm is
based on minimising an error sum of squares, the results
are essentially similar to those from the Wiener filter or the
other least squares methods. In consequence there is a
choice of methods leading to similar results:

EITHER The normal equations are set up for a least
squares calculation, or the equivalent Fourier transforms are
used, both of which involve very large arrays, so that the
calculation is memory intensive;

OR The EM algorithm may be used as described above,
which results in a very slowly convergent iterative process,
and hence is processor intensive.

The true advantage of the EM algorithm only becomes
apparent when the expected results are influenced by pre-
existing concepts of their pattern.

3.5 THE EM ALGORITHM WITH PENALISED LIKELIHOOD

There are likely to be many different solutions in the region
close to the optimum defined by a maximum-likelihood
procedure. The solution defined as strictly optimal is
unlikely to conform to our prejudices, so preferred solutions
are selected by introducing a penalty which favours resto-
rations felt to be more appropriate to the problem.
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Figure 2. Two sets of ‘phantom’ susceptibility data (solid lines),
measured from synthetic cores constructed from material of known
susceptibility (dotted lines).

In the case of the susceptibility, restorations are expected
to show features with clearly defined boundaries, and a
smooth variation of intensity elsewhere. The EM algorithm
can be modified to take account of such a penalty, but
strictly leads to a set of non-linear simultaneous equations.
A linear approximation may be obtained, however, by
replacing the value xj

new in the penalty term by the value
xj

old obtained from the last iteration step. This is known as
the OSL approximation (one step late), and has been shown
to be valid provided that convergence to the required
solution is reasonably slow (Green 1990).

The E step remains the same as in the previous
subsection, but a penalised likelihood is introduced into the
M step. On combining the two steps, the OSL approxima-
tion gives the following iterative formula for the estimated
susceptibility:

1  n ∂f  
xj

new = xj
old + S (yi-mi)hij - bs2  n

 i=1
∂xij xj

old

m S h2
ij

i=1

The function f, differentiated in the right-hand term,
defines the nature of the penalty and is often referred to as
the potential function; apart from this term, the equation is
identical to the pure EM algorithm. The value s2 is the
assumed variance of noise in the data and the coefficient b
defines the strength of the penalty. The larger the value of
bs2, the more likely is the restoration to conform to our
prejudices, at the expense of goodness of fit to the data.

One significant advantage of the EM algorithm with the
OSL approximation is that it is possible to introduce a
penalty without greatly increasing the computational expense.
This is not the case with other methods known to us.

4 Results from Stage I
The calculations described in the last section were applied
to two sets of phantom susceptibility data (fig. 2). The
observed data are shown as a solid line, and the underlying
‘truth’ as a dashed line; the ‘truth’ line is repeated in
subsequent figures.

The Wiener filter was first applied to both sets of data
(fig. 3); the solid line represents the answer returned by the
calculation. When distinct blocks of susceptibility are well
separated their locations are predicted quite well, but their
shapes are entirely wrong, since they are quite smooth and
contain no sharp edges. There is no meaningful information
to enable us to separate the three adjacent blocks in the
upper diagram. The side-lobes visible at the edges of the
main peaks are a characteristic feature of Fourier analysis.
The methods based on maximum-likelihood procedures,
including the simple EM algorithm, gave such similar
results to the Wiener filter, that we have not illustrated them
here.
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Using the EM-OSL algorithm for penalised likelihood
estimation, we experimented with several different types of
potential, of which two were found to give good results.
Following the suggestion of Besag (1989), our first choice
for the potential function f was the absolute difference
between the values of xj and its neighbouring elements, so
that the penalty was the sum of such differences. A suitable
value for the constant bs2 was determined by experimental
investigation; the final choice was made on the basis of a
subjective balance between goodness of fit and the anti-
cipated form of the results (fig. 4).

The separated blocks are more clearly defined than they
were with the Fourier and maximum likelihood methods,
but there is some filling of the intervals between them.
The triple block is not resolved and has the appearance of a
broad single block. All the blocks have sloping sides rather
than the sharply defined vertical edges shown in the ‘truth’,
indicating that they are made up of a succession of small
steps rather than one large step.

In an attempt to eliminate this last problem, we
introduced a second potential f which incorporates a cut



Figure 4. Restored susceptibility (solid lines) from the EM-OSL
algorithm applied to the data of figure 2; the potential function is the
absolute difference between neighbouring elements.

Figure 3. Restored susceptibility (solid lines) from the Fourier
method with Wiener filter applied to the data of figure 2.

It is possible that the small additional blocks may arise
from minor errors in the response function that was used in
the modelling.

5 Results from Stage II
Following the successful application of the EM-OSL
algorithm at Stage I, using the cut-off penalty function, it
was also tested at Stage II. Because of difficulty in locating
suitable field data, we decided to work entirely with
simulated data, creating various models in which the
magnetised features were prisms of infinite length and
rectangular cross section, each located at the same depth
below the soil surface.

A typical simulation from our tests comprised a large
prism of low magnetic intensity juxtaposed with a smaller
prism of higher intensity. This magnetic distribution was
convolved with the response function (appropriate to the
depth below the soil surface, the location of the model on
the planet’s surface, and the strike angle between the line of
survey and the line of the feature) and a reasonable measure
of Gaussian noise was added to give the simulated data
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off, so that a single large step is penalised less heavily than
an equivalent series of small steps. In this case, it was
necessary to find suitable values not only for the constant
bs2 discussed above, but also for the parameter defining the
cut-off. The blocks are now very sharply defined, with
nearly vertical sides (fig. 5). The positions and widths of
the blocks are largely coincident with the ‘truth’, but there
is still some filling-in of the intervals between the blocks,
and smaller blocks seem to appear on the edges of the main
blocks. The triple block is now partially resolved (fig. 5a),
but has not been fully accounted for along its left-hand
edge.

Of the various methods described above, it is clear that
the EM-OSL algorithm seems to produce the most realistic
results, particularly when used with the potential function f
which incorporates a cut-off. The general agreement
between the results and the assumed truth is excellent, apart
from the small blocks on the side of the main blocks and
the filling-in of the intervals between blocks. Since the data
used here are actual measurements, the precise mathemati-
cal nature of the response function is uncertain to an extent.



Figure 6. (a) Simulated line magnetometry data restored with EM-
OSL algorithm using response functions that assume (b) the correct
depth of the feature, (c) too shallow a depth for the feature, and
(d) too great a depth for the feature.

Figure 5. Restored susceptibility (solid lines) from the EM-OSL
algorithm applied to the data of figure 2; the potential function
incorporates a cut-off, penalising a single large step less than an
equivalent series of small steps.

(fig. 6a). The result of applying the EM-OSL algorithm to
the data can be seen to be in remarkable agreement with the
original model (fig. 6b).

Working with simulated data, we were confident that the
response function used in the restoration was precisely the
same as the one used to create the data. This might be an
unrealistic situation in practice, given the wide variation in
form of the magnetometer response function. We repeated
the restoration of the same data, but deliberately using
inappropriate response functions, first a response function
which assumed that the magnetic features were above their
true level (fig. 6c), and then one which assumed the
features were below their true level (fig. 6d). It can be seen
that the location and general shape of the simulated feature
are recovered reasonably well, but nowhere near as
accurately as with the correct search depth. There is also a
fair amount of spurious background activity.

In order to test the noise model, whose specification is
somewhat problematic for magnetometry data, we repeated
the whole simulation, doubling the magnitude of the noise.
The signal from the feature is now substantially hidden by
the noise (fig. 7a). The general shape of the feature is still
recovered by the EM-OSL algorithm, but the details are not
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as accurate (fig. 7b); there is a fair amount of spurious
activity in the background. The results from the searches at
the incorrect levels still give some indication of the location
of the feature, but are generally inaccurate in other respects
(figs 7c, 7d).

6 Questions to be answered
We have shown that the EM-OSL algorithm, maximising
the penalised likelihood, produces good results at both
Stage I and Stage II, with the ‘phantom’ susceptibility data
and the simulated data for linear traverses. The results
suggest that it is now worthwhile to set up the more
complicated calculations at Stage III, so that the algorithm
may be applied to data from magnetometer surveys over
areas of land. Before moving to Stage III, however, a
number of questions should be answered.

a. How should the parameter b (or the product bs2) and
the cut-off parameter in the penalty function be chosen?
We have experimented with various combinations of
values until finding a set which appeared to give a near
optimal restoration. Although the results are relatively
insensitive to the choice of these parameters, it is clear
that a more objective approach is desirable.

b. How can it be ensured that the response function is
appropriate to the physical conditions of the survey?
We have shown that the choice of response function for
the simulated magnetometry data makes a considerable
difference to the quality of the results. This is a critical
consideration when moving into 3-dimensional
modelling at Stage III, where the response functions are
more complicated than those at Stage II.

c. What noise model is appropriate to the data? We have
experimented with simple Gaussian models at Stage II,
using two different levels of noise, in order to see
how the amount of noise affects the quality of the
results. The choice of noise model for actual
magnetometer survey is problematic, since the signal
from features close to the surface is often regarded as
noise.

d. Is it possible to predict the vertical depth of restored
features as well as horizontal location? The response
function from magnetised features differs with depth, as
is clearly shown by our experiments in attempting to
restore data using the wrong depth. The question is
whether it is possible for the EM-OSL algorithm to
detect the difference between the response functions
sufficiently clearly to attribute a feature to the correct
depth. Our experiments suggest that it may be possible,
but the results are far from conclusive; further
experiments are needed at Stage II, before any depth
analysis is tried at Stage III.
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Figure 7. Similar to figure 6, except that noise of doubled intensity
has been incorporated into the simulated data.



e. Can a large data set be divided into manageable
‘chunks’ for calculation? Although each iterative step
of the EM-OSL algorithm is calculated quite swiftly,
it may still become burdensome if m and n (the number
of model elements and the number of observations) are
both large. Since a data set at Stage III may contain
several hundred thousand readings, it would be more
efficient to work with small subsets. It would then be
necessary to ensure that the results at the edges of each
portion matched correctly with those of neighbouring
subsets.

7 Prospects for Stage III
The good progress through Stages I and II of the project
has encouraged us to move on to Stage III as rapidly as
possible. It is at Stage III that the project will become
widely useful to archaeological geophysicists, allowing
access to plenty of field data on which to test our mathe-
matical methods. One important aspect of the usefulness of
the techniques is their likely computational cost, which we
now consider. With around 80 items of line data, the EM-
OSL algorithm requires about 2000 iterations to converge to
its final answer, taking about two minutes of processor time
on a Sun 4 workstation. It is likely that similar computation

times would be achieved on personal computers equipped
with the current Pentium processors.

Extrapolating to larger data sets for Stage III, we expect
the computational time to be roughly proportional to the
size of the data set, although allowance must be made for
the more complicated response functions of the 3-dimen-
sional model. A typical field data set of 400 readings over a
square grid might take 10 minutes to process on a fast
personal computer. If this estimate proves to be reasonable,
then it should be possible to process data as rapidly as it
can be produced from the field survey.

We conclude that the EM-OSL algorithm is capable of
providing the basis for a practical method to restore
magnetometry data. We are confident that satisfactory
answers to the questions of the previous section will be
found, allowing a useful implementation of the technique in
general archaeological field survey.
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