%] Mathematical models for the reconstruction
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Thomas Weber

42.1 BASIC ASSUMPTIONS

If we wish to analyse prehistoric settlement pat-
terns via mathematical models, we have to pre-
sume that maps of recently found archaeological
material represent the real prehistoric situation at
least to a certain degree. There must not
necessarily be a linear connection, but it is most
important that the selection processes responsible
for the survival of the finds operate in the same
way on different groups with respect to their
settlement behaviour. Using techniques of point
pattern analysis as I shall show here, it is obvious
that all the sites observed in the landscape can
only be seen as points on the map — without any
gradation of their importance or size.

42,2 METHODS

Two large groups of methods can be distin-
guished for the description of point patterns. The
first one is based on cell counts — the whole map
is divided into a number of cells usually quadrats
of the same size. The numbers of items (find—
spots) in these cells are counted. The result of this
counting can be used to calculate the spatial
autocorrelation coefficient, measuring the ran-
domness of neighbourhood between quadrats
more, less or not filled with points. They can also
serve as a basis for establishing a frequency dis-
tribution showing the numbers of quadrats with
0,1,2,..,nfind-spots. Observed distributions
may be compared with theoretical (e. g. Poisson,
negative binomial, and Neyman) models adapted
to the given conditions.

The second group of point pattern descriptive
methods include distance measurements between

the sites observed on the map. Nearest neighbour
analysis based on the distance between each point
and its nearest neighbour is the best known ex-
ample. If we also use the distances to the second,
third, etc. nearest neighbour we speak of a sec-
ond, third order nearest neighbour analysis, up to
an “all neighbour” analysis (Dacey 1963; Cziesla
& Lindenbeck 1989).

Pair correlation functions represent the prob-
abilities of finding certain distances between the
points in the area measured on a continuous
scale. Observed curves of these values can be
compared with theoretically elaborated models.

Furthermore, triangulation and tessellation de-
scribing Thiessen polygons surrounding the sites
may give us a third way to analyse archaeological
distribution maps (Zimmermann 1991, pers.
comm.).

There have been several attempts to study the
spatial behaviour of prehistoric Central German
populations using different techniques of analy-
sis. The region between the Thuringian Forest, the
Erz Mountains and the North German Lowlands
(Figure 42.1) was a former part of the GDR, and
therefore there were poor conditions for obtain-
ing the necessary hard- and software. One of the
three attempts, however, was undertaken by a
foreign colleague.

42.3 EXAMPLES

42.3.1 Nearest Neighbour Analysis: Neolithic in
the Lower Saale area

N. Starling investigated the distribution of the
Neolithic cultures in a 4700 km? area surrounding
the Lower Saale primarily using the material in
the archives of the Halle Landesmuseum. He
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Figure 42.1: Map of Central Germany showing the working areas for Starling’s study of Neolithic sites, Stoyan's investiga-
tion of medieval and modern settlements, and research on Merovingian land—use in the 6th and 7th century by Schimpff

and Weber.

published his study in 1983 — especially the re-
sults of the spatial analysis (Starling 1983). The
area is mostly covered by Weichselian loess with
a black soil (Cernozem), giving high fertility and
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therefore used for agriculture from the early be-
ginnings of the Central European Neolithic (6th
millennium BC — Behrens & Riister 1981). The
plains are relatively dry with rainfall of about 500
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mm per year so that the flat and rather small
river valleys — Saale and Bode — and also the
smaller rivulets are important for settlement be-
haviour. They do not form real boundaries. Only
in the north—eastern corner of the map, the Elbe
separates the region of sandy soils from the main
area with its loess plains.

These conditions not only yielded a good basis
for prehistoric agriculture and settlement but —
of course — for modern tillage, too. Archaeologi-
cal surface finds as a result of ploughing were
and are very numerous during the last decades,
and quite well organised rescue archaeology was
able to find a larger number of remains. Compar-
ing the numbers of find-spots for the different
cultures discovered up to 1930 and between 1930
and 1980, one may establish the same relation-
ships notwithstanding the clearly increased abso-
lute numbers of sites. Therefore Starling seems to
be right when he believes the relationships are
representative for the area. The area itself may
also be seen as representative of a larger region in
the Central German Neolithic showing the char-
acteristic traits of this landscape at that time.

The nearest-neighbour statistics, including dis-
tances between each site and its five nearest
neighbours, showed interesting changes from the
Linear Bandkeramik to the following cultural
groups in this area. Points nearer to the border of
the map than to their nearest neighbours have
been excluded from the calculations to avoid
boundary effects. As for the different — mostly
pottery—defined — cultures numbers of sites vary
between 33 (Salzmiinde) and 266 (Corded Ware
— Schonfeld) all the nearest neighbour values are
significant at different levels (Figure 42.2; cf. Star-
ling 1983, table 1-3). For the calculations Starling
used the well-known formula

D,
R = 0oDs
[1] Dmn
1
[1a] where D,,,=—
2p

and p = point density (Starling 1983:9). The result
can vary between 0 for «a perfectly aggregated
and or clustered distribution» and 2.1491 for «the
maximum regularity ... in a uniform hexagonal
pattern», with a value of 1 «for an ideal random
pattern» (Whallon 1974:18).

Linear Bandkeramik has been found at 143
places included in the analysis. If we try to inter-
pret the relatively high nearest- neighbour value
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Figure 42.2: Nearest neighbour statistics for the Lower
Saale Neolithic including distances up to the fifth nearest
neighbour (after values given by Starling 1983). The (pot-
tery—defined) cultures ordered by calibrated radiocarbon
Years (abscissa) show different nearest neighbour coeffi-
cients (ordinate). Different circle radii represent different
numbers of sites.

of 0.739 we have to consider its duration of per-
haps more than 500 years. Thus Stichbandkera-
mik sites have been found in quite a more con-
centrated pattern (0.592) while for Rossen/Gar-
tersleben, the clustering decreased (0.712). High
continuity percentages above 75% (Starling 19835,
fig. 1) show an unbroken trend in the settlement
behaviour of the Early Neolithic populations.

Middle Neolithic finds begin with Baalberge at
a dispersed level of R = 0.734, are much more
concentrated in Salzmiinde (0.611) and have been
discovered at a higher degree of dispersion
(0.766) for the Walternienburg and Bernburg cul-
ture. The low continuity values (for Baalberge to
the Early Neolithic at 33.3% — Starling 1983:6,
fig.2) show the impressive settlement changes
from the Early to the Middle Neolithic even in a
limited loess—covered area.

The Late Neolithic material is divided in three
cultural strata all showing very dispersed settle-
ment patterns with tendencies to increase nearly
to pure random values (Globular Amphora 0.777;
Corded Ware/Schonfeld 0.838; Bell Beaker 0.845).
Following Starling this trend represents a grow-
ing use of the landscape with a re-colonisation of
abandoned areas and expansion into new ones
caused by increased population. All these cul-
tures, however, are primarily represented by
grave—finds.

42.3.2 Deserted and surviving villages in the
northern Harz Mountains’ forelands: pair
correlation functions

D. Stoyan (1986) analysed the distribution of
modern and deserted villages (Wiistungen) in a
1000 km? region north at the Harz Mountains
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Figure 42.3: Map of Stoyan’s 76 deserted (+) and 63 “surviving” medieval settlements in the region surrounding Hal-
berstadt with pair correlation curves for all distances (left), distances between modern “surviving” (central), and deserted
settlements (right). Broken lines indicate theoretical assumptions using a soft—core model. For further explanation, see the

text.

near Halberstadt. Using pair correlation functions
between geographical positions of the modern and
the medieval settlements he tried to explain the
late medieval settlement concentration process.
The Wiistungen are chiefly known from literary
sources, especially field names that survived to
the beginning of the 19th century and were col-
lected by the Historische Commission fiir die Provinz
Sachsen during its period of activity. Some of
them could be verified by surface finds so that
the chronology sometimes could be determined.
From the find material, and from the onomastic
and documentary viewpoint it may be concluded
that all the recently extant (“surviving”) settle-
ments already existed during the middle ages.
Stoyan investigated three populations in his study:

1) all medieval settlements containing the mod-
ern towns and villages as well;

2) presently extant (“surviving”) places; and

3) deserted villages (Wiistungen) abandoned for
different reasons mostly during the course of
the middle ages.
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Pair correlation functions describe the probabili-
ties of finding certain distances between points
(sites) measured on a continuous scale in this case
in km. (The construction depends on an observed
arithmetic mean A (Lambda) showing the number
of sites per km?2 so that AdF gives the probability
of placing a point (site) in an infinitesimal small
circle.) Pair correlations can be expressed by the
formula

[2]1 P(r)=g(r)AdEAdF,

where g(r) represents the pair correlation function
(Stoyan 1986:36-37). Its value tends to 1 for larger
7’s (independence of the observations), whereas
lower values imply rarer cases and higher rather
frequently found distances. These pair correlation
functions are used especially in physics for the
three—-dimensional case (Stoyan & Mecke
1983:51). In our case, of course, only two dimen-
sions are necessary.

Here three kinds of measurements may be
made:
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Figure 42 4: Distribution of 6th—century-sites (filled in circles) and 7th-century-sites (filled in triangles) in a 10 000 km?
region including the Thuringian Basin. Since many of the find— spots cannot be mapped exactly only the 2 km—quadrats are
indicated in which they have been found in varying numbers. The three size—categories of the symbols indicates 1, 2 and 3—4

finds respectively.

1) distances between all points (including modern
settlements and deserted villages),

2) between the modern settlements only, and

3) between the deserted villages alone.

Figure 42.3 (upper part) shows the map contain-
ing modern (o) and deserted (+) settlements and
the curves for the three pair correlation functions.
All points (practically the picture for the middle
ages) existed at a minimal distance of 0.4 km with
quickly growing probability up to 0.9 km, reach-

ing a value at 0.8 for g(r). Between 0.9 and 2 km
no important change could be found, while be-
tween 2 and 4 km a maximum appears with g(r)
=1.2 at 3 km. The modern settlements are much
further apart, at least 0.9 km. Values up to 2 km,
however, are rare, with g(r) between 0.3 and 0.4.
A slight increase follows with g(r) = 1 near 3 km.
If we consider the pair correlation function only
for the deserted villages, we can recognise the
special conditions responsible for settlement de-
cay. Small distances, of course, have been ob-
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served very often but not only on the smallest
level below 1 km. A clear maximum with g(r) =
1.2 is formed for distances between 1.5 and 3 km
(apparently corresponding to the low probabili-
ties in the modern settlement behaviour even at
these distances).

Stoyan tried to explain this picture using a
theoretical model: the so—called soft—core process.
For small distances, a strong repulsion between
the points must be recognised, while this repul-
sion tends to decrease when the distances are
larger. He simulated a point process beginning
with a dense distribution of points on a map —a
starting picture for modelling the medieval settle-
ment. To explain the following development all
the points have been supplied with a “strength
value” responsible for their prosperity (as a result
of geographical position, etc.). These values might
change between 0 and 1 independently from the
position of the sites (equal distribution). Later a
process of “thinning” took place: twice — for the
explanation of (i) the medieval and (ii) the mod-
ern situation. Only a limited number of (primary)
points survived, dependent on their strength
and/or their position on the map in the neigh-
bourhood of “stronger” points. Under certain
conditions (Stoyan 1986: 44—45), it was possible to
find critical distances for the development of set-
tlements — stronger points showed radii between
1.2 and 2.4 km (medieval situation) resp. 1.8 and
3.3 km (post-medieval abandonment process) in
which serious difficulties existed for surviving of
neighbouring villages while for the larger number
of “weaker” settlements this value lay only near
0.4 resp. 0.9 km (Figure 42.3, lower part). The
changed distances reflected the changed — in-
creased — economic territories in modern times.

42.3.3 Merovingian settlements in the
Thuringian Basin: Quadrat counts of site
densities

The question of an intensified land utilisation
(Landesausbau) in the Thuringian Basin during the
Merovingian period has been investigated in V.
Schimpff’s (1987) study. The distribution of find—
spots (mostly graves) in a 10000 km? area has
been compared for the 6th and the 7th century
using spatial autocorrelation coefficients and
square counts in different grids. As Schimpff
showed, the cemeteries were situated not far
from the villages so that their distribution actu-
ally reflects the settlement distribution in a way
quite more readily recognised than use of settle-
ment material itself, not least because grave
goods can be better dated. Since in this part of
Thuringia a well-established tradition of surface
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find collecting and rescue archaeology has existed
over a period of more than 100 years, the distri-
bution of material ought to mirror the actual pre-
historic pattern.

A larger part of the cemeteries has only been
recorded under the name of the parish in which
they have been found many years ago. The exact
find—spots have not been recorded. Under these
circumstances, a quadrat grid of 2 by 2 km
seemed to be the highest possible level of preci-
sion for the mapping of the find-spots. If precise
locations were known, a minimal distance be-
tween two burials of 200 m was accepted to form
two separate items so that different parts of the
same cemetery could be excluded.

The area is a more or less heterogeneous terri-
tory bordered by the Harz and Thuringian Forest
Mountains and divided not only by smaller hill
regions but also by the wet Unstrut lowlands.
Therefore a pure random distribution of settle-
ment points could be excluded a priori and an
equal distribution as well. The sites were distri-
buted inhomogeneously over the working area,
for the two centuries in different patterns (Figure
42.4). The question remained as to the character
and importance of this change.

A certain level of clustering could be recog-
nised for the find—spots «in an intuitive manner».
Our — the calculations have been done by myself
— first attempt tried to exclude these clusters us-
ing spatial autocorrelation for gauging grid—size:
Following Deiters (1974:55) Geary’s contiguity
ratio was calculated:

2
c=(N-1) 2: leij(xi “xj)

4AY" (x-%)

(3] izj

where N = number of quadrats (ij = 1,2,...N);
x;, x; = numbers of points in the quadrats

[3a] T= Y %

8; = “weights”: §; = 1 when both are connected
side by side, else 6 = 0; A = number of all connec-
tions between the quadrats. Its value can vary be-
tween <1 (positive autocorrelation, clustering) and
>1 (negative autocorrelation, regularity) whereas
the value 1 describes a real random distribution
of points on the map and is “desirable” in our case.
The difference between any one value calculated
from our observations and a spatial autocor-
relation at 1 can be verified using the Z-test. Null
hypothesis: No significant difference exists be-
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Figure 42.5: Spatial autocorrelation coefficients (c) for different grids of Early (MEROVA) and Late Merovingian sites
(MEROV]) in the Thuringian Basin. Observed values for the whole area (unbroken) for the map excluding the border quad-
rates to exclude “boundary effects” (broken) and limits for insignificant departure from random value c=1 with 0=0.05
(broken—pointed line). The abscissa indicates the quadrate—side length for the different grids (logathmically scaled).

tween the expected — no spatial auto—correlation
in the material — and the observed value. Under
the assumption of normal distribution we assign

the moments of sample distribution for c:

[4] M, =E(c)=1

(2A+D)(N-1)-2A?
(N+1)A?

[5] M,=V(c)=

1
here D=—) x;
[5a] where 5 ZI

(6] o, =4V()

We obtain

o o,

c

(7] Z=E(c)—c=1—c

using the standard normal distribution so that we
can prove the null hypothesis H(0): ¢ = 1 that
must be rejected when |Z| > Z(ot). (Here we sub-
tract the observed from the expected value for
agreement of sign with the direction of the spatial
autocorrelation.)

Figure 42.6 shows that these “ideal” conditions
for further quadrat investigations have been ful-
filled only one time: for the 2 km squares of the
later period. In this case, however, as mostly for

the smaller squares, the theoretical assumptions
for the different models do not differ significantly
for rather limited numbers of find-spots as we
have here. Whenever we try to use quadrat
counts to adapt any theoretical distribution to the
observations given in our example, we also have
to include the wider grids as always giving “clus-
tered” distributions (from the point of spatial
autocorrelation).

Table 42.1 shows the values observed with dif-
ferent grids for both distributions together with
estimated values for three theoretical models:

42.3.3.1 Poisson distribution

This model is based on E. Weber (1972:134). The
arithmetic mean calculated from the observed fre-
quencies of cells with 0, 1, 2 ... points serve as es-
timation value for Lambda. Therefore we get

(8] H, =ne™
and further

[9] H;=—H,,

The occurrence of a Poisson distribution reflects a
total random pattern of settlements without any
trend to clustering or to regularity. It can hardly
be expected under the conditions of natural di-
versity of the landscape that influenced the
possibilities of its use.

42.3.3.2 Negative binomial distribution
The series is given by the formula
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N points Poisson Binomial 2 N points Poisson Binomial 2
Grid size \l/ Observed J/ Binomial 1 Neyman Grid size Observed J« Binomial 1 ~L Neyman
2x2 km 0 2422 2409,67 2407,71 2425,62 - 17 0 0,00 0,07 0,14 0,14
- 1 69 88,68 76,38 12,23 - 18 1 0,00 0,06 0,12 0,11
- 2 6 1,63 12,51 12,23 2x2 km 0 2416 2409,67 242455 241527 241551
- 3 0 0,02 2,60 2,11 - 1 76 88,68 69,71 78,13 77 46
- 4 2 0,00 0,60 0,32 - 2 8 1,63 522 5,99 6,57
4x4 km 0 560 53945 529,39 576,33 4x4 km 0 549 539,45 558,90 547,79
- 1 54 7941 57,90 24,14 - 1 61 79,41 56,56 64,43
- 2 5 5,84 20,37 13,30 - 2 14 5,84 8,04 11,02
- 3 4 0,64 8,82 6,52 - 3 1 0,29 1,25 1,54
- 4 0 0,01 4,17 2,88 5x5 km 0 329 317,81 34237 32899 326,39
- 5 0 0,00 2,07 1,16 - 1 51 73,10 47,71 55,10 58,38
- 6 0 0,00 1,07 0,44 - 2 19 8,41 8,12 12,10 12,56
- 7 1 0,00 0,56 0,16 - 3 1 0,64 1,46 2,87 2,24
- 8 0 0,00 0,30 0,05 10x10 km 0 61 39,85 67,37 61,00 58,38
- 9 1 0,00 0,16 0,02 - 1 14 36,66 18,44 18,02 16,36
5x5 km 0 337 317,81 319,52 337,01 348,00 - 2 6 16,87 7,54 8,78 12,02
- 1 48 73,10 49,77 44,17 28,01 - 3 13 5,17 3,42 4,84 6,79
- 2 10 8,41 17,39 12,39 13,97 - 4 5 1,19 1,63 2,82 343
- 3 2 1,63 7,20 4,10 6,16 - 5 0 0,22 0,80 1,70 1,65
- 4 1 0,04 3,21 146 2,46 - 6 0 0,04 0,40 1,04 0,77
- 5 0 0,00 1,50 0,54 0,91 - 7 1 0,00 0,20 0,65 0,34
- 6 1 0,00 0,72 0,21 0,32 20x20 km 0 7 0,63 7,36 8,18
- 7 0 0,00 0,35 0,08 0,11 - 1 3 2,32 4,54 2,29
- 8 1 0,00 0,17 0,00 0,04 - 2 2 4,27 3,20 2,21
10x10 km 0 60 39,85 59,44 60,00 66,28 - 3 6 5,24 2,34 2,07
- 1 21 36,66 18,38 18,74 10,94 - 4 0 4,82 1,76 1,87
- 2 7 16,87 9,12 9,11 8,17 - 5 0 3,55 1,33 1,63
- 3 4 517 5,09 4,96 5,67 - 6 1 2,18 1,01 1,39
- 4 3 1,19 3,00 2,85 3,67 - 7 1 1,14 0,78 1,15
- 5 3 0,22 1,83 1,68 2,25 - 8 2 0,53 0,60 0,94
- 6 0 0,04 1,13 1,01 1,32 - 9 9 0,22 0,46 0,75
- 7 0 0,00 0,71 0,62 0,76 - 10 1 0,08 0,36 0,59
- 8 1 0,00 0,45 0,38 042 - 11 1 0,03 0,28 0,46
- 9 0 0,00 0,29 0,24 0,23 - 12 1 0,01 0,22 0,36
- 10 1 0,00 0,19 0,15 0,13 - 13 1 0,00 0,17 0,28
20x20 km 0 10 0,63 10,66 10,00 11,14 - 14 2 0,00 0,13 0,21
- 1 2 2,32 4,06 3,54 1,54
. 2 3 4,27 2,50 222 1,48 Table 42.1: 6th—(left column) and 7th—century-sites (right
; 3 0 5,24 1,74 1,60 1,41|  column) if1 Thuringia analysed with different grids with
i 4 . 482 127 123 132 quadrat sizes of 2x2, 4x4, 5x5, 10x10, and 2'0x20 krln. The
observed values are shown and compared with the fitted theo-
- 2 0 S99 0,96 047 1.22 retical distributions: Poisson; negative binomial estimated by
= 6 3 218 075 079 L0 ugyimum likelihood method (Binomial 1) and by a “short-
- 7 0 1,14 0,59 0,65 0,98 ened” technique — where possible (binomial 2); Neyman
= 8 0 0,53 0,46 0,55 0,85 (type A for the 7th century sites; type C for the 6th century
- 9 0 0,22 0,37 0,46 0,73|  sites).
- 10 1 0,08 0,30 0,39 0,61
- 11 0 0,03 0,24 0,33 0,51
- 12 1 0,01 0,20 0,29 0,42
- 13 0 0,00 0,16 0,25 0,34
- 14 1 0,00 0,13 0,21 0,27
- 15 0 0,00 0,11 0,18 0,22
- 16 0 0,00 0,08 0,16 0,18
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(n+x- 1)![EJ
q

[10] P.= mix-l pg N =L
¥ x x(n-1)lg"

where P, is the probability to obtain a quadrat
with x individuals; k (=np)is the exponent of the
distribution to be estimated; p = the probability of
getting a “positive event” (here: occurrence of a
find—spot in any one quadrat). As E. Weber
(1972:144) has shown in the case of “over—disper-
sion”, with a variance larger than the arithmetic
mean, it should become negative; and g = the
complementary event to p therefore will be >1.

When the sample size is n and there are a, oc-
currences for the x individuals the expectation for
a, can be expressed as

(k+x-1)!p"
xl(k=1)(1+p)"

[11] E(a,)=m, =n

The exponent k can be estimated in different
ways:
(a) using a maximum likelihood technique (E.
Weber 1972:220-221)

The number of observations larger than a(x)
for each x is marked as A(x):

[12] Ax = ax+1 +ax+2+'“

The maximum likelihood estimation for k is given

when
A —nln(l +—)f-)=0
k+x k

[12a] 2

This requirement has been met using a small pro-
gram in Basic.

(b) a “shortened” technique based on certain as-
sumptions (E. Weber 1972:219-220, 224). This
variant could be used for arithmetic means <10 if
the following inequality was fulfilled:

[13] (m+0.17)(P,-0.32)> 0.2

Sometimes this was the case, and it was remark-
able that the estimated values for cell frequencies
often fitted better to the observations than the re-
sults of the maximum likelihood method (cf. Fig-
ure 42.6).

Under these circumstances the frequency of
cells without points can be used for the estima-
tion

2 0

x n_
[14] R, log(x +R_J_ log(z—] =0

where

[14a]

[ have also done this iteratively using a small Ba-
sic program.

The negative binomial distribution may obvi-
ously be used in many cases to understand settle-
ment patterns. Perhaps the model shows the geo-
graphical inhomogeneity in a given area —
differences of its sources, relief, rivers, soil types,
flora and fauna patterns, etc. — and can often be
interpreted as reflection of the “basic situation”
when sites were “randomly” founded but under
“variable circumstances”. In that sense, not the
proof for a negative binomial distributed settle-
ment is the most interesting point in a study
about archaeological sites in a given landscape,
but rather the change of the parameters from pe-
riod to period or even the possible adaptation of
another kind of mathematical model for a later or
preceding phase.

42.3.3.3 Neyman—type—A,B, or C—distribution (E.
Weber 1972:154-157)

This «compound Poisson or apparent contagion
process simply implies random inhomogeneity in
the density of the population» (Hodder & Orton
1976:87) but may surely be seen here as a result of
a “contagious process” starting from a negative
binomial true clustered pattern by settlement fili-
ation in which the new founded villages prefer-
ably originated in the neighbourhood of former
existing sites.

The Neyman distribution can be adapted to an
observed series using its arithmetic mean and
variance. For the three types, there are different
algorithms characterised by the critical parameter
m (E. Weber 1972:155). Its value is given at 0
(Neyman A), 1(B), or 2(C). Special parameters are
calculated by

_(m+ 2)(s*-x)

15

[15] m, =

[15a] )
m,
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Figure 42.6: G (21) values for the differences between observed and adapted theoretical distributions of Early (MEROVA)
and Late Merovingian sites (MEROVY]). The abscissa indicates the side length of the quadrate for the different grids

(logarithmically scaled). For further explanation, see the text.

The probabilities are calculated with

k t
[16] P{X=k+l}_m‘mze Z—ti {X=k-t}

t=0

where X = number of events (points per quadrat).

For X = 0 we get

[16a] B, =P[R =) =g ™™
forX=1

[16b] P =P{X=1} =MP0
forX=2

[16c] P,=P{X =2}_m[13 +m,B)]
etc.
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The frequencies are calculated by multiplication
with the number of observations (archaeological
sites) for each probability in the series:

We get for X =0

[17a] H,=nP,
forX=1
[17b] H, =mm,e”™H,
forX=2

]
[17c] H,= "11—"’;3—[H1 +m,H,
etc.

The calculations have been carried out in accord-
ance with [16 and [17] using the values 0, 1, 2, ...
for k (E. Weber 1972:150).




42 Mathematical models for the reconstruction of prehistoric settlement patterns: Central German examples

Real distinction between “true” and “appar-
ent” contagion has been established for the inves-
tigation of negative binomial distributions by fu-
sion of neighboured cells and new calculation of
the p and k values for predicted frequency distri-
butions. In the case of a “true contagious process”
with real clusters the parameters for the original
and new quadrats are related by the formulae

[18] k, =sk,
and
[18&] ps =p1

whereas, if generated by a ‘spurious contagion’
situation, the relationships (Hodder & Orton
1976:88) would be

[19] k,=k
and
[19a] !

Ps=——F—<
1+s(1_p‘J
P

When solution (1) represents a total random con-
figuration of point structure, and solution (2) can
be understood as a strictly clustered pattern, so-
lution (3) may be interpreted as spatial realisation
of a “contagious process” combining a “clumped”
picture with a tendency of dispersed clusters.
Therefore its degree of point agglomeration de-
creases — compared with the negative binomial
model (Deiters 1974:49).

The results of the comparisons between ob-
served and expected distributions can be tested
using the Chi-square method (Deiters 1974:53-
54). As it is evident in our case, the assumptions
for the expected values can often be fulfilled only
when class frequencies are summarised so that
the differences between the models tend to be in-
significant. Under these conditions no objective
decision is possible as to which distribution opti-
mally represents the observed frequency pattern.

Thus the attempt has been undertaken to com-
pare expected and observed values using the G-
test (Log-likelihood—chi-square) (Sokal & Rohlf
1981; E. Weber 1980) using the well-known

formula
20 G=23 l(ﬂ’

which «can be seen as the sum of independent
contributions of departures from expectation
weighted by the frequency of the particular class»
(Sokal & Rohlf 1981:698). To use both directions
of departures — too small and too large values —
the absolute values have been used for sum calcu-
lations. All expected frequencies >0.5 (rounded 1)
were included. Frequency classes with expecta-
tions <0.5 were added. Of course, sometimes we
observe sequences that do not fulfil all the de-
mands for a serious use of the test (e. g. too many
classes with small expected frequencies), and the
degrees of freedom varied depending on the dif-
ferent additions of frequency classes for different
theoretical distributions.

Therefore the results given in Figure 42.6 only
show quite rough measurements of differences
between observed and adapted theoretical distri-
butions expressed by the 21 (or G) values. Gener-
ally, the Poisson model shows the largest differ-
ences between expectations and the observations
(for all the grids in both periods with the excep-
tion of the 4 km-grid in the earlier period where
the Neyman distribution yielded the largest de-
viation). Thus the patterns on the map seriously
differ from a purely random situation, and the
smaller G-values imply rather clustered settle-
ment pattern for the 6th and for the 7th century.

Interestingly, an evident distinction for the
both periods could be observed. Whereas the
early Merovingian sites follow the negative bino-
mial distribution (especially the model established
with the “shortened” estimation technique) for
the 7th century, the Neyman distribution gives
the best adaptation to the observed frequencies.
The results for most of the grids seem to indicate
that the supposed process of colonisation in the
Thuringian Basin (Landesausbau) really took place
in the transition from the 6th to the 7th century.

42.4 FURTHER POSSIBILITIES OF SPATIAL
STUDIES IN CENTRAL GERMAN
SETTLEMENT BEHAVIOUR

The archaeological material from the Middle
Elbe/Saale region is excellent for comparative
settlement studies. During most prehistoric peri-
ods, the fertile soils afforded the best oppor-
tunities for different populations. The intensive
agriculture of the last few centuries partly de-
stroyed the sources, but it created — together
with an elaborate tradition of surface find collect-
ing and rescue archaeology — the framework for
the discoveries of many sites in a larger territory
than any which could be studied under economic
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pressure (archaeological prospecting for open-
casts, mines, etc.) in the last decades using more
sophisticated site-localization techniques. Thus
further investigations may follow to answer the
questions for changing settlement behaviour of
our ancestors in this region. Different ideas, dif-
ferent methods, and different attempts are wel-
comed.
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