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1   Introduction

Archaeological remote sensing using satellite and airborne 
sensors to collect multi- and hyper-spectral data is a well-
defined domain with huge opportunities for the efficient 
detection, mapping and management of cultural heritage 
sites. The possibility of locating unidentified archaeological 
sites by spectral recognition is, in fact, a valuable addition 
to traditional survey methods as already demonstrated by a 
decade of different projects from all over the world (Sever 
and Parry 2006:439-446, 477-502).

In recent years, there has been particular attention 
focused on the use of airborne hyperspectral sensors applied 
to archaeological research in Italy where, for concurrent rea-
sons, the MIVIS sensor has found large application. MIVIS 
(Multispectral Infrared and Visible Imaging Spectrometer) 
is a simultaneous multispectral imaging system that oper-
ates in the wide range of wavelengths from visible to 
Thermal-IR regions of the spectrum, with a high spectral 
resolution and elevated number of channels (102). The runs 
are taken from a distance of around 5000-6000 feet from the 
Earth surface: based on flight altitude their pixel resolution 
is usually around 10x10 ft. 

The main advantages of MIVIS reside in the relative 
ease of transportation of the sensor and in the fact that the 
shots can be scheduled with the aircraft company in charge 
of the shooting activity. This, unlike multispectal satellites 
images, where the purchasing politics limit the possibilities 
to define with good approximation the moment of acquisi-
tion without extra charges, make easier the access to data, 
the possibility of their collection in specific moment of the 
day and period of the year, and the opportunity to check in 
advance the weather conditions to make sure they fit with 
the research needs. The positive results of all the different 
projects involving its use in Italy (see Traviglia 2005:139 
and Traviglia In Press for a summary) have shown that 
MIVIS imagery can be considered an interesting additional 

data resource for archaeological goals. 
In the current research, the spectral content of the MIVIS 

images is used to reveal the presence of ancient buried sites 
and structures on the basis of the different spectral char-
acteristics of the terrain and of the vegetation in the area 
surrounding the ancient Roman town of Aquileia (northeast 
Italy). Various processes have been applied to the images 
and their results compared in order to identify the ones that 
better match the different research targets. The goal of the 
enhancement techniques is to increase and improve the 
optic distinction between traces recorded in the scene and 
the surrounding soil by generating a new image where the 
useful information is more easily identifiable. 

Among them, vegetation indexes have found promi-
nence. These indices in fact can enable the identification 
of underground archaeological deposits that enhance or, 
in opposition, limit the growth of the vegetation. As well 
known from the long tradition of studies applying aerial 
photographs, heterogeneity of the texture of the subsoil has 
a strong reflection on the growth of the vegetation, deter-
mining the appearance of the so called “crop-, grass-, or 
weed- marks” (Wilson 2000:67-80). The mechanism of for-
mation of these traces on the vegetation relies on the fact 
that, when some kinds of solid deposit—possibly archaeo-
logical—are present in the subsoil, the vegetation over them 
will have a slower growth rate compared to the surrounding 
plants. From the other side, when in the subsoil there are 
ditches of some sort, the growth of the plants over them will 
be faster than that of surrounding ones and the vigor more 
accentuated. Despite the large and often unjustified use of 
the NDVI (Normalized Difference Vegetation Index) in 
analogous studies, it can be demonstrated that different veg-
etation indices can work better for archaeological research, 
in accordance with certain environmental situations: for 
this reason, in this work experience, various indices have 
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been calculated, tested, and compared to determine the best 
method for evaluating vegetation. 

With the same criteria, problems related to situations in 
which the landscape appears deprived of vegetation have 
also been taken into consideration. The possibilities offered 
by studying the tonal variations of the bare soil (damp-mark) 
are another traditional trend in archaeology: their existence, 
in fact, can be an indication of the presence in the subsoil 
of archaeological structures or ditches that inhibit or facili-
tate the absorption of rainwater and the increase of humidity 
(Wilson 2000:53-67). The study of the different degrees of 
water absorption of a soil becomes, therefore, particularly 
useful for the identification of buried archaeological sites. 
A specific soil vegetation index needed, consequently, to 
be developed to support the investigation of the numerous 
traces over non-vegetated soil; emphasizing the wetness or 
the dryness of a portion of the ground, it allows the possible 
identification of underground structures. 

In the course of this research, different processes typi-
cal of the multispectral analysis have also been successfully 
applied to hyperspectral shots, like Principal Component 
Analysis (PCA). As with many other multispectral images, 
MIVIS images have a strong interband correlation. 
Contiguous bands of the images convey basically the same 
information (see below, Figure 7). This produces adjacent 
bands very similar to each other where the dimensionality 
of the dataset is increased and the redundancy in the data 
is high. The PCA is a procedure commonly used for reduc-
ing this redundancy (Lillesand et al. 2004:536-538). Useful 
in common multispectral analysis, PCA finds even better 
employment in hyperspectral datasets, where the increased 
number of bands magnifies the need for reducing the dimen-
sionality of the data. This type of transformation has been 
employed in this research mainly in the enhancement pro-
cesses preceding visual interpretation of the data, and as a 
pre-processing procedure prior to further data processing 
such as the classifications. In addition to the traditional 
PCA performance, a number of principal component images 
have been created through spectral subsets in order to con-
vey only the information of spectral regions of interest. A 
Selective Principal Component Analysis (SPCA) has been 
computed for groups of homogeneous bands belonging to 
different spectral regions or to different sensors’ spectrom-
eters. In archaeological terms, PCA and SPCA allow for a 
better discrimination of contiguous surfaces, which become 
more distinguishable in visual analysis allowing for easier 
recognition of variations in the texture of surfaces.

Finally, geographic information systems (GIS) technol-
ogy was used to provide and manage all the archaeological 
and topographical data necessary for the interpretation of 
the processed images, and for the eventual recognition of 
the surface anomalies on the images as ancient origin traces. 
In the GIS environment, the treated images are subjected to 
optic analysis and the identified terrain traces or anomalies 
are graphically traced on a separate layer in order to be com-
pared to the information extracted from different sources, 
such as archaeological, thematic and cartographic data, and 
in order to select the ones that with good approximation are 
linked to underground archaeological structures.

1.1   Methodological Approach

The methodological approach of the research consisted 
basically of two main phases that are not necessary always 
in a clear chronological sequence, but that can interact in all 
the different sub-phases in which they can be subdivided. 
The first part of the process resides in the observation and 
treatment of the hyperspectral images; the second part lies 
in the digital outlining of the identified anomalies and traces 
in the GIS, and in their selection and interpretation.

The first phase invariably starts after the needed prepro-
cessing operations for noise removal, with a performed-at-
screen visual analysis of the images; the goal of this optical 
survey is not only to identify surface anomalies and traces, 
that without a previous treatment of the pictures could not 
be so easily recognized, but also to form a general idea of 
the landscape and of its characteristics. In this step, the 
shots are usually analyzed both as single bands and as com-
posites, in true and false colors, using dedicated software 
for image processing (ENVI 4.0). In the next step, the visual 
analysis is supported by simple emphasizing techniques like 
linear, Gaussian, equalization stretches, filters, density slic-
ing, and de-correlation stretch. Finally, a string of advanced 
processes are applied to the images: depending on the target 
area and the searched results, arithmetic and statistic opera-
tions are applied to the whole image or to part of it, using 
all or part of the bands composing a run. In this paper, only 
some of the tested processes, the ones that provided better 
results, will be presented.

In the second phase of the research, the treated MIVIS 
images are imported in the GIS environment where they can 
be georeferenced, read, and interpreted following the criteria 
of archaeological photo-interpretation. The first step in the 
process of recognition of archaeological features consists of 
the observation and reading of the images, basically a visual 
analysis aiming to simply identify categories of objects on 
the landscape. Either during or after the completion of the 
photo-observation and interpretation, the traces recognized 
on the images are recorded by graphically transferring them 
to distinct vector layers of the GIS module. At this point the 
interpretation of the features can start. The nature and char-
acteristics of each element are determined and its causes 
investigated, also in relationship with the surrounding ele-
ments of the landscape and with published information and 
archaeological thematic cartography, in order to separate 
the traces due to modern landscape alterations from the ones 
related to the ancient landscape exploitation (Figure 1).

1.2   The Case Study Area

Located in northeast Italy, the case study area includes the 
Roman foundation town of Aquileia and its surrounding 
countryside, comprising the neighboring Communes of 
Terzo d’Aquileia and Fiumicello, all located in the Province 
of Udine (Figure 2). 

Probably an important center even before the coming of 
the Romans, the town was established by them as a colony 
in 181 BC and a frontier fortress on the northeast. Because 
of its strategic position, it soon became a leading center of 



304

trade, especially in agricultural products, and was elevated 
to the rank of municipium, probably in 90 BC. From that 
moment its importance grew ceaselessly, especially since 
Aquileia was the starting-point of several important roads 
leading to the northeastern portion of the Roman domain, 
and it reached its acme in the 4th century when it became a 
naval station and along with its already established status as 
a fortress of the Empire against the barbarians of the North 
and East. Its destruction at the hand of Attila’s Huns was the 
beginning of its demise, since, although rebuilt and repopu-
lated, it was much diminished and continued to exist until 
was once more destroyed (AD 590) by the Lombards; with 
this destruction followed a slow decline in the subsequent 
decades.

At the current state of the archaeological research, that 
has more than a century-long tradition, the issues related to 
the Roman urban area have been favored, with approaches 

designed to analyze mainly the plani-
metric characteristics of the ancient 
town (for a complete bibliography 
see Bertacchi 2003), while neglect-
ing the topographic research on the 
surrounding landscape (Maggi and 
Oriolo 1999:99). Just recently, hav-
ing recognized the importance of the 
suburban space for a deeper compre-
hension of the structural organization 
of the town itself, some topographic 
research has been undertaken in 
order to reconstruct the suburban 
settlement system and the functional 
distribution of its spaces (Carre and 
Maselli Scotti 2001:236-237; Maggi 
and Oriolo 1999; Bottazzi and Buora 
1999).

The investigated area is approxi-
mately 34 sq. miles in extent, distrib-
uted in a polygon around 4.2 mi in 
width and 7.8 mi in length (Figure 
2), ranging from a coastal tract to the 
internal flatlands. The morphological 

peculiarities of this territory, an alluvial flat plain mostly 
devoted to agricultural exploitation, with its strong archae-
ological potential and a long tradition of studies through 
extensive archaeological excavations, field-walking survey, 
aerial photography interpretation, and historical sources, 
make it ideal for the use of remotely sensed data such as 
MIVIS images to detect unknown suburban settlements or 
infrastructures, and as support in solving some of the prob-
lems concerning the area. These are in part connected with 
the landscape morphology, shaped by a long and complex 
process linked with the rising sea level, and the consequent 
migration of the local rivers that played, in the past, a funda-
mental role as part of the communication and trade network. 
Especially with these kinds of issues, the remote sensing 
data can take on an important role since the full comprehen-
sion of the changes in settlement distribution over time and 
the forms of spatial organization of the suburban area can 

support the comprehension of the 
planimetric distribution of the town 
itself.

2   Image Processing

2.1   Pre-processing Operations

The MIVIS images purchased in raw 
format are strongly affected from 
panorama distortions due to scan-
ner geometry and from effects intro-
duced by perturbations in position 
and attitude of the airborne platform. 
The rectification and georeferencing 
of the data is consequently a primary 
difficulty. A geometric correction 
that rectifies the images is made 

Figure 1. Process flow chart: the GIS manages the processed remote sensing data and the 
archaeological research data.

Figure 2. The case study area. In the image on the right, the study area is indicated in 
darker color.
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necessary not only to make the features on the landscape 
more understandable and recognizable but also to integrate 
the MIVIS data in the GIS environment. However, all of the 
most common procedures followed to rectify hyperspectral 
images risk compromising the radiometric information of 
the dataset. Thus, the procedure followed uses only raw 
data in the analysis stage and rectifies and georeferences the 
images for their integration into the GIS. 

Another aspect that has to be taken in consideration 
before processing the images is the atmospheric distortion 
and the consequent need for a correction. At the current 
state of the research, the Italian National Research Council 
(CNR) is still working on the development of appropriate 
algorithms to apply to MIVIS images, so it is not currently 
possible to perform a specific atmospheric correction to the 
images. However, it can be said that in the kind of analysis 
and processes that have been applied, the distortion intro-
duced from the atmosphere has been very small and effec-
tively irrelevant.

In order to overcome the shortcomings of the available 
datasets and improve the accuracy of the obtainable results, 
a noise removal process was tested and applied, obtaining a 
drastic reduction of the unwanted disturbance due to limita-
tions of the signal digitization and data recording process. 
In some cases, in fact, noise was not only degrading the 
true radiometric information content of the images but also 
masking it, to the point that several of them were useless. 
The noise removal process consists of two steps: the first 
operation, the MNF (Minimum Noise Fraction), extracts 
the noise through the inherent dimensionality of image data, 
segregates it, and reduces the computational requirements 
for subsequent processing (Boardman and Kruse 1994), the 
second step is the inverse transformation of the previous 
step (Inverse MNF) that allows for the elimination of the 
system noise from the original bands by performing the cal-
culation excluding the noise components. 

The images submitted to this process have shown a clear 
improvement of the information in terms of signal noise and 
have been used in lieu of original data for most of the analy-
sis processes (Figure 3). 

2.2   Vegetation Indices

Arithmetic operations on Red and NIR bands have been 
widely used in the study of vegetation monitoring since 
they were first demonstrated to be sensitive indicators of the 
presence and condition of green vegetation. Typically, they 
provide a black-and-white image that can show variations 
in the state of health of the plants, where vegetated areas 
appear in bright color (the higher the value, the healthier the 
vegetation) and remaining objects have darker colors.

For the current research, different vegetation indices 
were performed and tested. The results gained were com-
pared among themselves to determine the best method for 
evaluating vegetation health in the target area and with the 
original MIVIS image to verify the improvement in visibil-
ity that they offer. The comparison of the process results 
using a multi-criteria analysis has shown that the type of 
surface under examination must be taken into consideration, 
and that a single type of vegetation index cannot be applied 
to all the situations. This means that in studying a vast area 
presenting variations of vegetation cover, the vegetation 
indices must be singularly applied based on the type of 
canopy of the target fields. In the investigated area, very dif-
ferent types of ground cover conditions were encountered, 
ranging from differential vegetation grow (even inside the 
same field) to the heterogeneous density of the canopy.

In case of low vegetation cover, the better discrimination 
of the quality of the vegetation (and consequently in visibility 
of surface traces) were obtained using the DVI (Difference 
Vegetation Index). The DVI consists of a subtraction opera-

tion involving the use of the Red and NIR 
bands and performed on a pixel-by-pixel 
basis to assess the degree of change in the 
images used (Tucker 1979:128; Lillesand et 
al. 2004:468).

The formula to obtain the index is well 
known:

  DVI = NIR– Red       (1)

As result of this arithmetic operation, 
healthy-vegetated areas in the picture show 
high values because of the relatively high 
Near Infrared reflectance and low visible 
reflectance (Figure 4b); less-healthy-vege-
tated areas show lower values, while rock 
and bare soil areas have resulted in vegeta-
tion indices near 0.

 In those areas of inhomogeneous crop 
canopy, the NDVI (Normalized Difference 
Vegetation Index) has demonstrated to have 
very good sensitivity to changes in vegeta-
tion cover and to provide better results than 
any other vegetation index, but only in cases 

Figure 3. Comparison of an original MIVIS band: a) to one subjected to MNF/
Inverse MNF transformation; b) note the improvement of the data quality in terms 
of signal noise, especially in the detail panels.
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of high vegetation cover. It is common knowledge that the 
NDVI (Rouse et al. 1973) is the difference of the Red and 
Near Infrared band combination divided by the sum of the 
Red and Near Infrared band combination or: 

 NDVI = (NIR – Red )/(NIR + Red)      (2)

As in DVI, after its application, areas with vegetation 
yield high values and appear brighter in the picture, with 
their brightness varying based of their health and maturity. 
The strength of the NDVI is in its ratio-based concept, which 
reduces some of the types of noise (illumination differences, 
cloud shadows, topographic variations) present in multiple 
bands (Figure 4c); the main disadvantage, as stated, is its 
sensitivity to canopy background variations in the case of 
low or sparse vegetation.

Archaeological research has used NDVI almost exclu-
sively, but often more as a matter of routine rather than for 
a valid reason, which is demonstrated by the fact that it has 
been utilized indifferently over every kind of canopy con-
dition. NDVI, instead, should be preferred to simple DVI 
index for vegetation monitoring only in certain types of 
situations where normalization is needed to help compen-
sate for changes in illumination conditions, surface slope, 
aspect, and other extraneous factors. In fact, the application 
of the NDVI over the study area demonstrated that it is less 
effective with respect to the desired goals—such as the dis-
crimination of the growth of vegetation and of its health—
compared to the DVI in those areas where the situations 
(e.g., very homogeneous) did not require normalization.

In order to bypass the problems of the NDVI in areas 
of low plant cover, MSAVI2 (2nd Modified Soil Adjusted 
Vegetation Index), a recursion of MSAVI, was successfully 
applied. This vegetation index is computed through the for-
mula (Qi et al. 1994):

MSAVI2=(1/2)*[2(NIR+1)-√(2(NIR+1)2-8(NIR-Red))]  
(3)

As with the MSAVI, it was created to minimize the 
reflectance effects of the soil background on the Vegetation 
Indices for situations in which the background soil intro-
duces significant variations in the spectral response of the 

vegetation. These effects are particularly evident in areas 
where the coverage of the turf or of the cultivations is lean 
and/or scattered. This being the case in some portions of the 
target area, since the shots were taken during the autumn 
when most of the crops were harvested, the index has shown 
encouraging results. It is important to stress, however, that, 
despite the improvement in the attainable results in terms 
of accuracy, a difficulty that has to be kept in mind in using 
a vegetation index is an increase in the sensitivity to varia-
tions in the atmosphere, which alters the light seen by the 
instruments. This can cause variations in the calculated 
values of vegetation indices (Qi et al. 1994; Leprieur et al. 
1996). Since no atmospheric correction has been performed 
on MIVIS images, the atmospheric distortion could be the 
cause of some of the dissatisfying results obtained with a 
few of the runs. Like the NDVI, the MSAVI2 annuls the 
effects of shadows, allowing better discrimination of the 
traces previously hidden by the shadow itself (Figure 4d).

In conclusion, it is important to stress the need for a 
preliminary analysis of the target area to identify the type 
of vegetation cover and the morphological situation, and to 
evaluate the presence of objects that can cast large shad-
ows over the considered areas before applying any kind of 
index. Based on the positive experiences with some vegeta-
tion indexes, the aim of future research is to test a larger 
number of them that might better fit specific situations not 
investigated before, for example, partially submerged cano-
pies or crops at an advanced level of maturation. The ulti-
mate goal here should be to apply this comparative method 
across a large variety of environmental situations that can 
be encountered, especially when dealing with large surface 
areas.

2.3   Soil Line Index 

The Soil Line Index (SLI) created in this research for MIVIS 
data aims to provide an aid in the identification of anomalies 
on bare soil by increasing the optical distinction between 
the wetness or the dryness of a portion of the ground. 

The soil line is a well-known linear relationship between 
the near-infrared and red reflectance used originally in stud-
ies applied to Landsat MSS (Kauth and Thomas 1976; 

Figure 4. Comparison among vegetation indexes in a detail of one of the MIVIS runs: a) true color image; b) DVI; c) NDVI; d) MSAVI2. 
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Richardson and Wiengand 1977; Wiegand and Richardson 
1982; Baret et al. 1993). The relationship was introduced in 
the 1970s for identifying agricultural crops and was based 
on the concept that in a Red-NIR scatter plot of the two-
dimensional (2D) space, a definable region is occupied by 
agricultural crops and another one is occupied by pixels 
recognizable as water or soil; this last can be identify as a 
thin, lengthened ellipsoid. In the axis of this ellipsoid, pix-
els representing soils range from soils of low reflectance to 
those of high reflectance. The locations occupied in the scat-
ter plot by vegetation, soil, and water can be seen in three 
distinct areas forming a triangle, which Kauth and Thomas 
(1976) described as “a triangular, cap shaped region with 
a tassel.” Later studies have shown some of the limits of 
the equation defining mathematically the soil line (Mather 
2004:146) theorized in the PVI (Perpendicular Vegetation 
Index) and the need of the definition of the soil line using 
empirical data. Starting from this concept, with verificaiton 
that the assumption of the location of the three types of pix-
els created for Landsat data was true also for MIVIS data, 
the SLI was determined by identifying a soil line directly in 
the scatter plot of the radiance measured in the visible Red 
band against radiance in the NIR (Figure 5a), then deter-
mining mathematically the slope “m” through the applica-
tion of the slope equation formula:

  m = (y2-y)1 / (x2-x1)         (4)

and subsequently by applying the line equation formula:

  y = mx + b        (5)

In the scatter plot, a point (Z) has to be identified that 
is chosen arbitrarily, identifying the very first and lowest 
pixel among the ones lying between the soil line and the 

vegetation threshold, and representing the left-most pixel of 
the ones representing wet soil—that is to say, the highest 
humidity of the scatter plot area—and which can be taken 
as the lower-left-most point on the scatter plot. The distance 
from point Z to the projection of any pixel in the scatter 
plot onto the soil line can be consider as an indication of the 
moisture content of the soil, ignoring the differences due to 
soil type and texture (Figure 5b). The distance formula is a 
simple application of the Pythagorean Theorem. However, 
this provides the distance from Z to a pixel and not the value 
projected along the soil line, so it is necessary to look for 
the soil index component of that distance measure by pro-
jecting the distance onto the soil line. This is done trigono-
metrically through the function Cos of the angle (γ) formed 
between the segment connecting the point Z to each point P 
and the soil line:

 SLI (Soil Line Index) = DZP Cos (γ)      (6)

When applying the formula, the obtained image repre-
sents a soil humidity index wherein light colors represent 
the dryness of the soil and dark colors the humidity.

For most of the sample areas, the application of the SLI 
has shown a clear improvement in the differentiation of the 
typologies of the soils, accentuating the dry-wet discrimi-
nation and thereby making clear the distinction of lines or 
zones of different condition from the surrounding ground. 
A particularly interesting group of traces that were detected 
using this index is located in the west side of the urban 
settlement, close to the eastern wall of the Roman circus 
(Figure 6). The features, previously noted also through other 
processing, have been strongly emphasized by the SLI and 
they have become more clearly distinguishable. Perfectly 
aligned in parallel and perpendicular to the town orienta-
tion, their position and thickness allows one to suppose 

Figure 5. a) Soil line position in the R-NIR scatter plot of a MIVIS run (bands 13-19). The soil line extends from darker soils with low R 
and NIR image intensity (point A) to an upper region of bright soils with high R and NIR image intensity (point B). Point C represents a 
pure vegetation pixel and Point D represents a partially vegetated pixel; b) representation of the segment ZP’s projection onto the soil 
line in the R-NIR scatter plot.
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that they could refer to the alimentary market of the Roman 
municipium, built after the demolition of the previous one 
(Tiussi 2004:282). 

2.4   Principal Component Analysis and Selective
        Principal Component Analysis

Principal Component Analysis (PCA). The application of 
the PCA to archaeological study has great potential utility 
since it provides supplementary information compared to 
the original bands and avoids useless loss of time in case of 
a preliminary surveying of the images. Through the PCA the 
redundancy in data is reduced by transforming a set of cor-
related variables into a new set of uncorrelated ones. This 
transformation entails a rotation of the original axes to new 
orientations that are orthogonal to each other, and therefore, 
there is no correlation between variables. The goal of the 

process is to reduce the information previously contained 
in the original n-band dataset into a smaller number of 
new bands that can be used in place of the original ones 
(Lillesand et al. 2004:536-542).

In the analyzed MIVIS images subjected to PCA, more 
than 74% of the variability in the data is carried in the first 
“principal component” (PC) and around 24% in the second 
PC: together, the PC1 and PC2 in most cases account for 
98.9% of the total variability in the original bands. Usually, 
about 1% is found in 3rd PC. PC1, PC2, and PC3 show vir-
tually all of the variance in the scene (on average 99.6 %) 
and, consequently, of the total information. PCs from 4 and 
higher, together, usually contain only 0.60% of the variation 
in the data. However, some of these higher-order compo-
nents have been demonstrated to contain useful information, 
recognizable and identifiable only through a visual check of 
the image itself. The presence of significant additional infor-
mation that is not present in some of the lower orders has 
been noticed even up to the 30-40th PCs, the value varying 
from run to run. Technically, since in the PCA process the 
information is accumulated in the lower-order components 
and in the dataset the noise is evenly distributed, the lower-
order principal components might be expected to have 
a higher signal-to-noise ratio than the higher-order PCs, 
which could lead one to think that higher-order PCs are not 
worthy of consideration. This was not always the case with 
MIVIS images and necessitated visually checking of the PC 
images, singularly, using the knowledge of the study area, 
rather than relying solely upon the magnitudes of the eigen-
values as an indicator of information content. All of the PC 
images for each run have been taken in consideration, at 
least in the first stage of the work, in order to define which 
of them contained information that could be consider useful 
for the research. PC images are analyzed subjecting them to 
visual interpretation of the data both as separate black-and-
white images and as any three-component images combined 
to form a color composite Their enhancements are generated 
by displaying contrast-stretched images of the transformed 

Figure 6. Result of the application of a Soil Line Index (SLI): a 
better discrimination of the soils can be seen when applying the 
SLI (6 b) compared to an original band (6 a), and it reveals a larg-
er number of details. The detail shows a group of traces that have 
been interpreted as the alimentary market of Roman Aquileia.

Figure 7. a) 2D scatter plot of Green band 8 (vertical axis) vs. Red band 11 (horizontal axis) showing high correlation between the two 
bands; b) Band 8 of a MIVIS run; c) Band 11 of the same MIVIS run.
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pixel values. PC bands produce more colorful composite 
images than spectral color composite images because the 
data, once run through the process, are uncorrelated. The 
most common procedure consists of generating a RGB false 
color composite with the first three PCs of a scene (called 
PC1, PC 2, PC3): this creates six different combinations, 
but, in the case of MIVIS data, this means excluding from 
the composite many of the higher-order PCs that previously 
were shown to carry interesting information. Therefore, 
tests were made increasing the number of PCs used, bring-
ing it to four. Using any three of these four PC images in a 
color composite with various assignments of blue, green, 
and red produces a total of 24 different combinations. Of 
those, the image composed of PC4 shown in blue, PC1 
shown in green, and PC3 shown in red was the most inter-
esting in terms of visibility of the soil irregularities. A small 
percentage of the images that passed the first selection were 
chosen to be subjected to a deeper visual analysis and to be 
integrated into the GIS for the subsequent archaeological 
interpretation.

The PC images (single component or composite) have 
proven to be a good starting point for a general overview of 
the target landscape, and they enabled the detection of sev-
eral new features in the target area. However, many details 
that are visible analyzing the original bands singularly are 
not always recognizable in the PC because they are covered 
by the overlaying of information from other bands.

Selective Principal Component Analysis (SPCA). In 
order to overcome this problem and convey only the infor-
mation of spectral regions of interest, a number of PC 
images can be created through spectral subsetting, produc-
ing a Selective Principal Component Analysis (SPCA); that 
is to say, a PCA computed for a group of bands (Table 1), 
for example for the group of channels of the 1st spectrometer 
or for the channels of a spectral region (e.g., Blue or Red), 
instead of using all the bands of the run. This selection pre-
serves the separation of the spectra and the possibility for 
combination choices.

The visual analysis of the newly created bands of each 
spectral subset (SPCs) as single images reveal that the lower-
order SPCs of each grouping (like SPC1, SPC2, and so on 

of each subset) could provide a large amount of informa-
tion that cannot be recognized in the original bands of each 
relative spectral group. The first three PCs of the subset of 
the visible bands (i.e., the SPCA computed on the 1st spec-
trometer), for example, show what could be considered the 
best results of the groups of the subsets: several of the traces 
and anomalies on the investigated surface can be identified 
and better discriminated from the surrounding environment. 
The lower-order components of the subset of the 2nd spec-
trometer, summarizing the NIR bands, prove to be a valid 
instrument in studying the vigor of the vegetation. From the 
other side, they show little reliability in the discrimination 
of different soils. These can be better analyzed through the 
1st SPC image of the thermal subset of bands (i.e., spec-
trometer 4) where possible variations due to the presence of 
particular kind of sediments, rocks, or lateritious material 
in the subsoil can result in variation of the temperature. The 
useful information that can be provided by the single ther-
mal bands is magnified and more clearly observable here. 
The least useful appears to be the MIR subset of bands (i.e., 
spectrometer 3), where the differentiation between soils or 
quality of vegetation is only slightly recognizable.

The best outcomes in terms of recognizable features can 
be reached through the composite of different spectral sub-
sets, using a dedicated correlation matrix in order to identify 
the minimum set of SPCs able to provide complete infor-
mation without loss of spectral coverage. This process is 
made necessary by the large number of combinations pos-
sible for the many SPCs. The selection of the SPCs to use 
has been based on the Intrinsic Dimensionality (ID) of the 
data for each subset; that is, the amount of SPCs of each 
subset able to carry interesting and original information. 
The ID of the subset of the 1st spectrometer, for example, 
is 3, since the first three SPCs contain useful information, 
while for the subset of all the Red bands the ID is equal to 
1, since SPCs from Red channels after the 1st do not contain 
unique information (Table 2). Consequently, for each of the 
listed subsets of bands, the Eigenvalues have been evalu-
ated in order to define which of the SPCs were going to be 
selected and used, keeping only SPCs holding high values 
and consequently showing the maximum information for a 
given subset. 

Table 1. Table of the spectral subset for MIVIS runs: specific bands have been grouped together and subjected to SPCA. 
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The 12 selected SPCs were merged into one multi-bands 
image and used to calculate a correlation matrix. As a result, 
the SPCs mostly correlated (both negative and positive) to 
every other SPCs, were identified, which allowed the dis-
card of those components most correlated and consequently 
carrying redundant information (Table 3).

Using the matrix to identify the correlations between 
components, a minimal image subset containing all the 
information was selected yielding a combination of bands 
corresponding to PC1 of the 1st spectrometer, PC2 of the 1st 
spectrometer, PC1 of the 4th spectrometer, and PC1 of the 
Blue region subset bands.

A series of 24 combinations of the four selected PC 
images were used to create composites in the major part of 
the executed tests; the most successful visualizations appear 
to be the ones where the PC1 of the 1st spectrometer, carry-
ing information on the visible bands and the NIR, and the 
PC2 of the 1st spectrometer, which is correlated with NIR, 
MIR, and Blue, were present (Table 4). 

Again, in cases like this, one is faced with an elevated 
number of images to analyze visually: therefore, some kind 
of selection of the best results needs to be applied. An evalu-
ation of the quality of the composite can be done by selecting 
sample areas representative of anomalies already identified 
through other processes (in this example, four sample areas 
have been used: a sample area of traces on dry bare soil, one 
on wet bare soil, one on vegetation, one on sea water) and 
attributing to them a quality score from 1 (low visibility) to 
5 (high visibility). The sum of the four grades given for each 
combination provides the scale index of the quality of the 
composite and the first three or four images (with the high-
est index) of the scale are the ones that should be selected 
for visual analysis.

Table 2. PC images selected on the base of Intrinsic Dimension-
ality: the selected images are the ones containing the maximum 
amount of information for each groups subjected to SPCA. In the 
3rd column the “image #” identifying the band number assigned to 
the image for the correlation matrix (see next table). 
 

Table 3. Correlation matrix of the 12 SPCA images (see Table 2 for the key of the numbers identifying the SPCs “image #”). The dark 
highlighted values identify the highest positive or negative correlations of the other SPCs in the same column to the value of the examined 
SPC.

Table 4. Combinations of possible RGB color composites of SPCs 
(see Table 2 for the key of the numbers identifying the SP com-
ponents “image #”) listed in order of significance: their position 
in the list is based on the sum of the quality scores attributed to 
sample traces.
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Results of the PCA Application.  The application of the 
PCA to the MIVIS images has shown satisfactory results 
in the recognition of anomalous features on the landscape. 
Condensing in a few bands all the information previously 
scattered in hundreds of bands permits faster and more 
accurate research on traces over vegetation, bare soil, and 
water. Visual interpretation of the data has been strongly 
aided by the combination of PC images used to form a color 
composite: this was particularly valid when applied to PCs 
obtained from subsets of bands. As a method for using this 
kind of process, it is advisable to use primary PCs calcu-
lated using all the bands to gain a general knowledge of the 
studied landscape: this can provide the preliminary informa-
tion that can be further probed using PCs from the subsets. 
However, the PCA calculated using all the bands or a por-
tion of them (meaning the exclusion of the thermal bands) 
has been shown to be the least effective process, from the 
numerical point of view, of landscape feature identifications 
even if it is the best process to apply in terms of visibility 
of the traces. Consequently, the composite realized through 
the use of these types of PCs provide poorer results than the 
ones obtained by separating the bands.

The best results in terms of amount of recognizable 
features were reached though the composites of spectral 
subset components, selected from the correlation matrix. 
The features that were best emphasized when applying this 

operations were lineation of dry or wet soil in contrast with 
the surrounding soil, alterations in the health of the vegeta-
tion and its growth, filled riverbeds, and unexplainable alter-
ations in the surface texture. A remarkable result achieved 
through this analysis is the increased quantity of details in 
relation to the route of the ancient Via Annia (Annian Way), 
an important artery that, starting from the Roman town of 
Adria, ran across the Adriatic arch up to Aquileia. The track 
of the ancient consular way exiting on the east side of the 
town, known in many of its stretches, appears in the images 
obtained through the SPCA, acquiring definition and vis-
ibility, especially were the trace is visible on bare soil.

3   Archaeological Interpretation of Remotely
     Sensed Data through GIS

The processed MIVIS images, imported in the GIS envi-
ronment and georeferenced, are interpreted according to the 
principles of archaeological photo-interpretation. The fea-
tures present in these images are in fact identified through 
the recognition of the traditional factors of photo-interpre-
tation: proximity, dimension, alignment, orientation, shape, 
texture, pattern, tone, and size of the features. Obviously, 
not all of the traces visible on the landscape surface can 
be ascribed to factors of archaeological origin, since the 

mechanisms that produce them 
could have happened in any his-
torical period. For this reason, 
the nature and attributes of each 
feature must be investigated and 
their causes determined in rela-
tionship with the contiguous 
aspects of the landscape and with 
all the other data extracted from 
various sources that can lead to a 
valid interpretation. This collat-
eral documentation, organized as 
an archaeological thematic map 
in vector format, is created by a 
methodic collection of published 
information and thematic car-
tography. Traces and anomalies 
identified through MIVIS and 
aerial pictures can be compared 
at this point with modern and 
archaeological elements of the 
landscape. Based on the compari-
son, a selection can now be done 
to eliminate the features that are 
not ascribable to archaeological 
presences but must be due, more 
realistically, to modern interven-
tions on the territory.

To assist in the analysis of 
the identified anomalies, which 
are recorded by drawing them in 
layers of the GIS, several attri-
butes are also recorded, such as 
the mechanism of their formation 

Figure 8. Different archaeological objects on the archeological thematic map layer (hypo-
thetical tracks or locations are semi-translucent). The detail shows the central urban area of 
Aquileia.
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(positive, negative, and unknown) and the type of image 
processing from which they have been extracted (Figure 
9).

In order to overcome the lack of ground truth informa-
tion, still irreplaceable in order to give trustworthiness to the 
analysis, interpretation, and confirmation of the data, two 
indices have been created: the “archaeological reliability 
value” and the “visibility index.” These indices express an 
evaluation of the quality of the observed feature. Although 
unable to substitute the value of field-walking survey, they 
can at least emphasize those locations on the landscape in 
which there is a higher probability to find archaeological 
deposits. 

The index of “archaeological reliability” derives from 
the combination of data about the area surrounding a spe-
cific, identified trace. The index is expressed by a percent-
age from 10 to 100%, which indicates the level of reliability 
that a feature is of archaeological origin. When multiple data 
concur to confirm the hypothesis that the feature could be 
archaeological, the value of the percentage is elevated; on 
the contrary, when there are one or more hints showing that 
the feature could be from modern times, the percentage will 
be low (Figure 9). The “Index of Visibility” is an indicator 
of the quality of visual appearance of the traces; it is evalu-
ated through a scale of values 
from one to five, where one indi-
cates slight possibility to identify 
the trace and five means that the 
trace is extremely visible.

4   Conclusions

At the onset of this research, 
the main goal was to ascertain 
the usefulness of the MIVIS 
images in the identification of 
archaeological sites in the target 
area, simply meaning to identify 
the quality and quantity of new 
information produced. While 
still working toward new devel-
opments, it is possible to assert 
that MIVIS shots and the pro-
cessing of them have given very 
positive verification and demon-
strate MIVIS to be a valid instru-
ment for archaeological research 
if integrated in a global infor-
mation architecture managing 
various data. Due to its intrinsic 
characteristics, the level of detail 
provided by MIVIS images has 
proven to be useful for detec-
tion of potentially archaeologi-
cal landscape features and that 
it allows the identification of a 
large range of objects, showing 
to be efficient in recognizing also 
relatively small traces. It must be 

clearly stated, however, that in the case of the identifica-
tion of small objects, they were, most of the times, detected 
in the GIS module on the basis of indications offered from 
other remotely sensed imagery (like Orthophoto), and from 
the archaeological layers, emphasizing the need for an 
approach integratiing multiple tools and data. An efficient 
research strategy must in fact be oriented to the combined 
use of different remote sensing products managed in GIS 
environments, and to merge them with other information 
layers in order to obtain results that are otherwise unreach-
able. This also clarifies that the values of the MIVIS images 
are more in their hyperspectral content than in their spatial 
resolution, which cannot be considered completely adequate 
for the search of small archaeological remains. 

It is easy to see, also, that the application of different 
image processing techniques and analyses tends to a combi-
natorial explosion of the number of newly produced images. 
Consequently, since many of the different processes pro-
duce similar results that provide the same traces, the num-
ber of repeatedly identified and recorded features turns out 
to be very high. It becomes, then, necessary to create cor-
rect methodologies that reduce the redundancy of the data 
and that define a selection process to identify the small-
est set of processes that give complete coverage of all the 

Figure 9. Traces recognized on a processed MIVIS image and reported in a drawn layer of 
the GIS; they are differentiated on the base of the nature of their formation (positive, negative, 
unknown) by different colors.
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detected traces. In doing this, we must rely increasingly on 
external statistical tools and on the GIS. Until now the GIS 
platforms have been sparsely employed in archaeological 
remote sensing research or used only to provide and man-
age all the archaeological and topographical data, combin-
ing them through a simple overlay. The increased number of 
processed images and consequent data amount will impose 
the use of a more complex GIS architecture, the new needs 
pushing in the direction of more advanced structures that 
allow for more sophisticated storing and visualization tech-
niques. In this way the GIS will assume an indispensable 
role in the interpretation of remotely sensed data leading to 
a multi-tool approach which in a multi-scale and diachronic 
context is the only reliable way to deliver effective contri-
butions to the understanding of settlement patterns.
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