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ON THE ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLE DATA 
USING LOG LINEAR MODELS 

Geoffrey A. Clark 

Introduction 

Department of Anthropology, 
Arizona State University, Tetipe, 
Arizona öSüöl, U.S.A. 

Even the most cursory inspection of recent literature makes it 
apparent that archaeologists are coming to rely more and more 
heavily upon the use of statistical procedures for data description 
and analysis (Azoury and Hodson 1973:292-306;  Hodson 1970:299-330; 
McNutt 1973:45-60;  Redman 1973:61-79;  Weiss 1973).  Unfortunately,' 
it seems that statistics are sometimes regarded as substitutes for, 
rather than adjuncts to rigorous thinking, as scholar after scholar 
jumps onto this latest of methodological bandwagons.  Occasional 
misapplication is inevitable, however, and does not detract fron 
the tremendous potential inherent in statistical procedures used 
with rigor to assist traditional methods of problem formulation 
and solution. 

Few would argue, then, that a degree of statistical expertise 
would be beneficial to most archaeologists.  It is unrealistic, 
however, to expect archaeologists to become statisticians 
themselves, a time-consuming process beyond the interests of most 
and the capabilities of many individuals.  Nevertheless, the 
professional should probably take the time to beccme familiar 
enough with basic statistical method and theory to be able to 
evaluate the use of statistical techniques in the literature 
pertinent to his field.  While we decry, and in fact assert the 
impossibility of the use of statistical methods In a theoretical 
vacuum, it is apparent that statistical procedures can greatly 
facilitate problem definition.  Whatever the theoretical stance 
might be which leads to the generation of problems in the broader 
sense of the term, problems so defined may be described in 
logically precise ways using inductive statistics , and thus 
become amenable to analysis through a programme of formal 
hypothesis formulation and testing. 

Below we present one technique which we consider promising.  It 
entails the construction of multidimensional contingency tables 
which are subsequently analyzed using log linear models 
(Fienberg 1970:419-433;  Goodman 1968:1091-1131;  1969:486-493; 
1970:226-256;  Muller and Mayhall 1971:149-153).  This technique 
addresses itself to the solution of a fundamental archaeological 
problem, that of distinguishing important or determinate sources of 
variation fron random variation or "noise".  The domain of 
investigation can be that of artifact, artifact type, feature, site 
or site aggregate;  scale is irrelevant, the structure of the 
problem is the same at all levels.  In the general case, if the 
total variation measured by variables a, b, c, . . .n is 
considered to adequately describe variation in a class of data 
(e.g. an artifact type), it is useful to know which variables 
are most important, and which contribute little or nothing to 
the descriptive power of the model employed.  The analysis of 
contingency table data, using log linear models, is one 
potentially useful approach to the solution of this general kind 
of problem.  We will describe the technique itself, and then 
illustrate its application with a trivial archaeological example. 
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Multidimensional Contingency Table  Analysis 

A   contingency   table may  be  defined   as   a  matrix   or   an  array  of 
counts  or   observations  which  simultaneously  cross-classify 
objects  as  belonging   to  one  or  more variables , which 
themselves  are  present   in  two   or  more mutually  exclusive 
states. 

A  simple  two-way contingency  table   is  presented   in  Table   1. 
Note   that  objects  are  classified   according   to   two  multistate 
variables:       Variable   1  is  present   in  three   states   (C.,C   ,C   ); 
Variable  2   Is  present   in  four   states   (C   ,C   ,C   ,C   ).     A ^ 
ccrimon  approach  to  this  kind  of   classification  p?oblem   is   to 
Insert raw counts   in  all   cells and  convert  these data   to 
relative  frequencies.     This,  of   course,   is  done  by using   the 
marginal  totals  as  estimators;     that   is,  one  can  convert   to 
percentages  using  row totals,  column  totals  or  N   (the  table 
total)   as estimators. 

By converting   to percentages,  one  obtains  an  empirical   estimate 
of   the  probabilities   of   obtaining  an  observation  with  a given 
value  on Vciriable   1  and  a given value  on Variable   2.     Counts 
are  thus  converted   to  expressions  of   probability: 

(1) n,.   /  N  =   p.. 

The constraints are those which apply to all probability 
statements:  no given probability can be less than zero (i.e. 
negative), nor can any given probability exceed one.  All 
probabilities must sum to one. 

(2) Pij>0 p^.   ^ 

(3)    P^.4 1 '• ^Pij =_^VL ij   
N 

The contingency table format is usually applied to non-metric 
data;  however, it can be used with metrical data (i.e. data 
which have a continuous underlying distribution) by establishina 
class intervals and Inserting counts in them. 

Conventionally, data of this sort are analyzed by using a Chl- 
Squared Test (Slegal 1956:42-47, 104-111, 175-179).  One might 
ask whether the horizontal distribution is the same for one 
state within a variable as it is for another, or, generally, 
how do the relative cell frequencies vary from cell to cell? 
Are the distributions homogenous or not?  Those familiar with 
X , however, will recognise that two constraints limit its 
usefulness.  The first is that expected cell counts must be 
greater than or equal to some number (usually 5 , sometimes 3) ; 

(4)    e^.. >,   5; e. j > 3 

Failure  to meet  this  constraint usually   leads  to  the  collapsing 
of   the  table,   which  in  turn results   in   lost   information.     Second, 
one  cannot  analyze  above  2-way  Interactions using  X   . 
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Contingency table analysis allows for expected cell counts 
to be zero, and permits the examination of higher order 
(i.e. greater than 2-way) interactions.  It also allows for 
zero raw cell counts, whereas an unmodified X  does not.  The 
method2is not, however, completely free of constraints.  As 
with X , a multinomial distribution is assumed for the data 
tabulated as a prerequisite for obtaining cell estimates.  One 
consequence of a multinomial distribution is that cells are 
theoretically independent;  thus marginal totals can be used 
as estimators.  A second constraint is that, for obvious 
reasons, no marginal total used in calculations can contain a 
zero. 

2 
In contingency table analysis , as in X , one generates 
expected counts using the marginal totals derived from a model 
designed by the investigator.  The expected values are the 
compared with the observed values.  The principle difficulty 
lies in casting investigator-generated hypotheses into explicit 
statements of relationship between variables.  If these 
hypotheses are properly defined, they can be expressed in the 
form of a linear equation.  It is in the sense of an equation 
that we use the term "model" here.  It is more convenient to 
express the model in terms of the natural logarithms of the 
cell probabilities than it is to try to deal with the cell 
probabilities themselves.  For this reason, the model is said 
to be a "log linear" one. 

Those readers familiar with statistical applications will note 
the similarity between the model described above and the 
analysis of variance (ANOVA) model.  It is useful to consider 
the case of the ANOVA model in order to explicate and define 
the terms in the CTAB equation. 

Consider the case of a 2-way ANOVA with no replications (the 
number of replications simply refers to the number of 
observations taken in each cell).  The equation is of the form: 

(5)    Y^.^  =/'+ <<i * /?j  + /i^  +  E ijn 

where y^j_ specifies the row, column and individual within the 
cell,^ Is a constant (the grand mean of the expected cell 
counts), ^ . is the row effect,^ . is the column effect,Y.. 
is the row/column interaction ternl, and E..  is the error tirm. 
If n = 1 (i.e. if only one observation is iSken per cell), then 
it is not possible to estimate the interation between the two 
variables and the formula collapses to: 

(6) Vij =7^ + '^i  + /^j  +  Eij 

'der   to cast  the Two-Way ANOVA equa 
y replace   the  above  terms with  the 

(7) log  p^.   = [l]    +    [A]^    +    [B], 

îcii 
5    si 

logs  of   the expected  counts, [Aj     is  the main effect due  to A. 

In order   to cast  the Two-Way ANOVA equation  into CTAB form, we 
simply replace   the  above  terms with  the relative  cell  frequencies: 

where   log  p..   specifies  the  natural   logarithm  of  an  observation 
identified   By  its  subscript,   where £l]   is  the  grand  mean  of   the 
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and fß]. is the main effect due to B..  The main effects 
refer ta a specified set of marginal"'totals selected by the 
model to be fit.  The method will generate expected cell 
values, on the basis of this particular subset of marginal 
totals.  These expected values are referred to as maximum 
likelihood estimates;  they express the most probable values 
for the observed cell counts to take on IF THE MODEL CHOSEN 
IS CORRECT. 

The technique then compares the maximum likelihood estimates 
with the original observed cell counts.  If the main effects 
fit by themselves, then it can be assumed that the 
interaction terms are negligible (i.e. they approximate 
zero).  If the expected values generated by the model do not 
agree with the observed values, then a non-zero interaction 
exists.  The marginals used to generate the expected values 
are the highest order interactions in the model.  The 
Importance of zero marginals becomes clear:  if any marginal 
total sums to zero, then no estimates can be obtained frcxn 
it.  Zero marginals are usually eliminated by adding a small 
constant (e.g.  .01) to all tabulated values. 

Given the similarity of this method to analysis of variance, 
it is pertinent to ask what advantages CTAB might have over 
ANOVA.  The main reason contingency table analysis is to be 
preferred is that it is not characterized by the strong 
underlying assumption of normality which is a feature of 
analysis of variance.  Also, zero cell counts are possible in 
CTAB analysis;  they must be corrected for in ANOVA. 

Model Formulation 

We turn now to the question of model formulation.  It is 
obvious that given even a few primary variables, a 
comparatively large number of models can be generated;  2 
models will result for n primary variables.  Two major 
approaches have been developed to generate and evaluate 
models of the form described above.  They can be labelled the 
Fienberg and the Goodman approaches, although those authors 
are not unique in their contributions to the problem. 

The Fienberg Approach 

Stephen Fienberg (1970:419-433), a statistician at the 
University of Chicago, has developed a method which takes a 
series of models, each one of which represents a set of explicit 
hypotheses about the data, orders these models into a hierarchy 
and evaluates that hierarchy on the criteria of adequacy and 
parsimony.  Hierarchical models are models (in this case 
equations) ordered from simple to complex, such that any given 
model contains all of the terms in the model which precedes 
it.  In the context of a contingency table analysis, this means 
that if an interaction term (AB) occurs in the model, then the 
primary variables (A) and (B) must also be included.  It might 
be the case that the investigator regards the primary variables 
(A) and (B) by themselves as meaningless;  nevertheless, they 
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must be included in the erruation. 

The Fienberg approach has the arlvantaqe of qreater precision, 
but assumes considerable forehand knowledae of the behaviour 
of the data.  Considerable thought about the hypotheses to be 
tested is a  prerequisite, but the technioue is more 
"elegant" in the mathematical usage of the word.  It has the 
disadvantage that it might not always prove to be adequate if 
the behaviour of the data is completely unknown, or if its 
behaviour is "masked" by unforeseen and complex interactions. 

The Goodman Approach 

The second approach, outlined in a series of papers by Leo 
Goodman (1968:1091-1131; 1969:486-4 98;  1970:226-256), fits 
the most complex (most complete possible) model to the data, 
and then tests whether the effects due to each term are zero 
or not.  In this way the terms in the model are successively 
reduced until all zero terms are eliminated, resulting in the 
simplest, adequate model. 

The Goodman approach has the advantage that it cannot fail to 
produce a model which adequately describes the pattern of 
variation in the data.  The variables isolated, however, might 
be so complex that they defy interpretation.  No previous 
knowledge of the data is required under the Goodman approach; 
there is no necessity to formulate explicit hypotheses.  By 
comparison with Fienberg's approach, this method is "sloppy" 
in the sense that a lot of extraneous information goes into 
the construction of the "most complete" model.  In either case, 
the final objective is to isolate the simplest and most 
comprehensive model. 

Decision Making Criteria 

Given that a number of models will be generated by the analysis, 
one must face the problem of how these models are to be 
compared if the isolation of a single "best" model is the 
objective. 

The obvious first step is to determine whether a model "fits" 
the data or not;  that is, whether the expected cell counts are 
good predictors of the observed cell counts.  It will probably 
be the case that a number of models "fit" the data in the sense 
defined above;  the second step is to make a choice among them. 
The only constraint for comparison is that the models be of a 
hierarchical nature (i.e. ordered from simple to complex);  if 
they are not, the tests used to compare them cannot assume 
independence. 

2 
The two models most frequently used to compare models are X 
and the log likelihood ratio (log^).  Chi-squared tests are 
widely known and used;  they require no further comment.  The 
lc3g likelihood ratio also makes use of the X  distribution. 
If X = the likelihood ratio, the expression 

(8)     - 2 log A approximates the X  distribution. 

The log likelihood ratio is obtained by taking the log of each 
quotient (observed / expected) cellwise, summing the logs, and 
multiplying by two: 
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(9) -   2   log  A =   2    2_  (   loq   O/E). 

The  values  for   the  X     distribution   are  well   tabulatod. 
2 

Although both X  and log ?» are suitable methods for testing 
the difference between models, log ^ has the advantage that 
it can be partitioned into independent parts such thit each 
partition is an independent test of a particular model. 
Chi-squared cannot be so partitioned.  Log ^ is also more 
stable for small values (4. 5) than is X . 

The steps discussed so far are simple but tedious i" done by 
hand.  There is, however, a computer progra-n (CTAB) in the 
SNAP series (University of Chicago) which provides output 
specifying cell estimates, log li)<elihood ratio and degrees of 
freedom fit for each model tested.  All that it is necessary 
to do,is to draw up a table showina the loa lil'.elihood ratios 
and degrees of freedom fit for each model.  Since the models 
are hierarchical, one can use these statistics to tost 
differences between them.  Evaluation proceeds pairwisp frm 
the most complex model to the simplest.  Two stopnina criteria 
are employed:  (1) when Model X adeouately descril^es the data 
and Model Y does not, choose Model X;  (2) when Model X and 
Model Y both describe the data, and there is a statistically 
significant difference between them choose Model X.  Because 
of the hierarchy and the evaluation procedure used. Model X 
will always be the simpler of the two. 

An Archaeological Example 

An illustration of the method using a concrete archaeological 
example is presented below.  Data come from an assemblage Vcnown 
as the Asturian of Cantabria (Vega del Sella 1923; Clark 1971a; 
1971b), found in the provinces of Asturias and Santander, on 
the north coast of Spain.  Sites consist of semi-brecciated 
midden deposits located in cave mouths along the Cantabrian 
littoral.  Large, crude quartzite tools form an important 
component of the lithic industry.  The assemblaae dates to the 
early Holocene (8,900-6,000 BP)(Claris 1971b:1245-12b7). 

The sample selected for analysis consisted of 92 pointed, 
uni-facial quartzite core tools called "Asturian Pic^;s".  These 
Implements are the so-called "guide fossil" for the industry. 
Each pick was classified by site and by a series of four rather 
trivial dimensions:  length (L), width (W), thickness (Th) and 
distance (D)(Fig. 1).  Dimensions were trivial because little 
confidence can be placed in provenience data, owing to 
inadequate cataloging procedures.  The high probability of mixed 
collections did not justify more elaborate recording of 
attribute data.  Nevertheless, the data selected are adequate 
to illustrate the method outlined above;  however, no attempt 
will be made to draw culturally relevant conclusions from the 
analysis. 

The five variables used are listed in Table 2;  the variable 
"site" was present in six states and each of the four dimensions 
was subdivided into "large" il)   and "small" (r).  Subdivisions 
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within  dimensions   are,   in   this  case,   arbitrary.     All dimensions 
were   plotted   and  were   found   to  have  unLTiodal  distributions; 
consequently,   no  obvious   criteria   for   subdivision  was 
available.     The median  was   selected   as  the  criterion  for 
dividing   "large"   from   "small".     The median  was  employed   for 
this  purpose  because   it   is  a  better measure  of   central 
tendency  than   the mean;      the  latter   is  influenced   by outliers. 
The  result   is  a   5-way  contingency   table,   formed   by a 
6x2x2x2x2 matrix   and  consisting   of   a   total of   96  cells. 

Table   3   shows   the  actual  contingency  table.     Note   the  high 
frequency  of   zeros  and   low  cell values,   both  features  which 
would   have made X     or  conventional  ANOVA  difficult or   impossible. 
Fig.   2   is   simply  an  attempt   to depict   the matrix more 
accurately;      it   is,   of   course,   impossible   to draw a   five- 
dimensional   space. 

The  Fienberq   Approach 

We   sought   first   to  apply  the Fienberg   approach  to  the  problem. 
A  non-parametric   test  called   the  Kruskal-Wallis  H  Test   (Wallis 
and  Roberts   1967:599-601;      Siegal   1956:185-193)   was  applied   to 
the data  as  a  preliminary  step  in   order   to derive  the   series  of 
explicit models demanded   by Fienberg's method.     The  Kruskal- 
Wallis  H   test   is  a   simplified   1-way  analysis   of  variance;     it 
does  not  assume  a  normal distribution.     The  test   simply 
evaluates  whether  or  not  the medians  of   k   samples  are derived 
from  populations  having   the  same  or   similar  underlying 
distributions.     The  formula: 

(10) H     = ^^ ^       _RJ_     -   3    (N  +   1) 

N   (N +   1)      i=l n^ 

where N is the total number of observations in all samples, k is 
the number of samples (in this case, sites), n. is the number 
of observations in a given sample and P. is the sum of the ranks 
squared for any given sample. ^ 

The results of the test indicated that, with respect to site, 
there are differences in the length and distance measurements 
of the picks, but none with respect to width and thickness.  The 
implication is that the effects due to width and thickness are 
not important by themselves;  therefore, they were not included 
in the hierarchy of models formulated on the basis of the 
Kruskal-Wallis test.  It is worth ccnmenting, parenthetically, 
that the Kruskal-Wallis test evaluates only main effects;  in 
fact it will be demonstrated below that it is the interactions, 
rather than the main effects, which constitute the important 
variables. 

The series of hierarchically ordered log-linear models developed 
using the Kruskal-Wallis test as a basis are presented in 
Table 4.  The CTAB progrcim generates log-likelihood ratios and 
degrees of freedom fit for each model run.  Evaluation simply 
entails consultation of a X  table at some predetermined level 
of significance (in this case .01 and .05 were both used). 
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Models which  are   SIGNIFICANTLY  DIFFERENT   (S)   for   specifiedod 
are   those  which DO NOT  fit  the data;   these  are  eliminated. 
Models  which   are   NOT   SIGNIFICANTLY  DIFFERENT    (NS)    adequately 
describe   the  pattern  of  variation   in  the data;     these  are 
retained   and   further   evaluated.     Differences  between models 
retained   are  also  tested   by  the   log-likelihood  ratio. 

Table   5  presents  the  evaluation  of   the models  formulated   on 
the  basis  of   the  Kruskal-Wallis  H  test.     The  result   is 
clearcut;     no model  adequately describes  the  observed  data. 
It  is  possible,   then,   to eliminate Models   1-5  from  further 
consideration;      terms  expressing main  effects  are  not 
adequate  in  themselves  to explain or describe variation  in 
the  data. 

The Goodman Approach 

Given   the  failure  of   one   set of  explicit  hypotheses,  the 
investigator   has  the  option  of  defining  other   sets,  on  the 
basis  of  different  criteria,   or  resorting   to  the Goodman 
approach  to  isolate   important variables.     As noted,   the 
Goodman approach defines  a  single model   incorporating  all main 
effects  and  all   possible   interaction  terms   (Table  6).      In  this 
case,   the model  contains  a  total  of   31   terms,   including   the 
main effects,   10  2-way  interactions,   10  3-way  interactions  and 
5  4-way  Interactions.     As  expected,   the model  fits  the data   in 
that  it  adequately describes  them   (Table  7);     however,   no 
distinction  can  be made  between  those variables  which  are 
important  and   those  vrfiich are  not.     The results  are,   at  this 
stage,  uninterpretable.     As  in  analysis  of  variance,   however, 
relative  estimates  of   the  effects   in  the model  can  be  obtained. 

For  each model   tested,   the CTAB  output  produces   statistics 
called  estimated  U-values.     These  assess  the  influence  of  each 
term  in  the  equation  against  the   total descriptive  power   of   the 
equation.     VcLriabJ.es  with  low U-values   (4-.20)   probably do not 
play an  Important role   in data  description  and may be 
eliminated.     Models  can  be made  ever more  explicit  by 
successive  runs,   systematically  eliminating   terms  with  low 
U-values. 

An examination  of  U-values  in  the most complete model permitted 
the  elimination  of   21  terms   (Table   8).     U-values   less  than   .20 
were regarded   as  insignificant;     associated   terms were 
consequently deleted.   *     The  result  is   immense  simplification; 
only three  terms are regarded  as definitely  important variables 
(U-values   >.50);     six  terms are possibly  important   (U-values 
>.20  but   < .50). 

The  final  step  is  to construct  a   set  of models using  only those 
terms regarded  as  important variables.     These models are 

* It  should   be  noted   that  this  elimination  procedure  is  a 
practical  and  useful,   but  essentially  impressionistic 
approach  to  the deletion  of unimportant  terms.     Goodman 
(1969:486-498)   advocates a more  rigorous  evaluation 
procedure;     each  term  is  tested   to determine  wether  a  non- 
zero Interaction exists.     Only zero  interactions are 
eliminated. 
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presented in Table 9.  Inspection of the models reveals three 
important points.  Note first that no 2- and 3-way interaction 
terms appear to be included.  These terns are actually included 
in any model which contains a 4-way interaction term;  because 
of the program format used, it is not necessary to specify them. 
Second, note that all of the terms regarded as important are 
underlined.  Other terms are incorporated into the models 
because of a constraint of contingency table analysis mentioned 
earlier:  all interactions must have their terms defined (i.e. 
if (AB) is in the equation, (A) and (B) must also be specified). 
Finally, note that the models are not entirely hierarchical. 
Inspection reveals that Model A is a subset of B and C;  B and 
C are subsets of D (but not of each other);  D is a subset of 
E and F;  and E and F are subsets of G (but not of each other). 

The models are ordered from simple to complex, and the partial 
hierarchy is represented graphically in Fiq. 3.  Employing the 
two stopping criteria defined above, evaluation proceeds from 
the most ccmplex model (G) to the simplest model (^).  Models D, 
E, F and G all adequately describe the data, moreover, there 
are no statistically significant differences between them. 
Model C also describes the data, but is significantly different 
from Model D.  While adequate in terms of the arbitrarily 
selected levels of significance, it explains the data less 
completely than does Model D.  Models A and B do not adequately 
describe the data;  they can be eliminated from further 
consideration. 

The first stopping criterion {X describes the data, Y does not) 
is applied to select Model D over Model B.  The second stopping 
criterion (X and Y describe the data, but there is a significant 
difference between them) results in the selection of Model D 
over Model C.  The application of the stopping criteria both 
result in the selection of Model D.  Model D consists of the 
2-way interaction (ST) and the 4-way interaction (SDWL). 

The conclusion is that these two variables are the most 
important in describing variation among samples of picJts from 
Asturian sites (at least insofar as that variation is measured 
by the trivial variables selected for this example).  One might 
speculate, however, that the variables (T) and (DVVTJ) are behaving 
in different ways with respect to the variable (S).  It might be 
argued that the (ST) interaction still reflects the original 
dimension of the flattened, oval cobbles on which the picks are 
manufactured.  Quartzite cobbles occur in the streeim beds and 
estuciries along which Asturian sites are distributed.  If raw 
materical adjacent to the site was utilized, one would expect 
sites and thicltnesses to vary together.  The difficulty with 
this is that the cobbles in a stream gravel vary greatly in 
size according to extremely localized conditions (e.g. gradient). 
Therefore, one would expect a range of cobbles of differing 
sizes to be available in the immediate vicinity of a site. 
However, if thickness was important to the site occupants, and 
if they were selecting cobbles of certain dimensions, this 
selection might be reflected in the (ST) interaction.  It seems 
probable that the original thicknesses of the cobbles selected 
were not altered much by the manufacturing process.  The (SDWL) 
interaction, on the other hand, might reflect variation due to 
the manufacturing process.  Distance, width and length measure 



FIGURE 3. THE REDUCED TERM MODELS ORDERED FROM SIMPLE (A) TO COMPLEX (G). 
Note that the graphical presentation reflects the partial hier- 
archy described in the text. Evaluation proceeds from bottom to 
top; a  = .01. Model D is selected on the criteria of adequacy and 
parsimony. 
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the extent to which the original cobble was modified to 
conform to a culturally-defined ideal.  One would expect these 
variables to be correlated with sites as the manufacturinq 
process for picks was essentially the same across all Asturian 
sites (Clark 1971a:268,269).  In short, the (ST) interaction 
might reflect human selection for a natural dimension;  the 
(SDWL) interaction might reflect the imposition of 
technological attributes on a natural object.  Taken toqcther, 
the two interactions adequately describe variation a'^ong the 
Asturian picks used in this example.  Whether these same 
interactions would be isolated using different samples re-iains 
to be determined. 

Summary 

A method for analyzing data cast into continaency table format 
is presented.  A series of models in the form of linear 
equations ordered in a hierarchy express relationships suspected 
eunong the variables selected for evaluation.  Marginal totals 
corresponding to terms in the models are used to generate 
expected cell values;  expected and observed cell values are 
ccmpared using a X distributed statistic called the loo 
likelihood ratio (log > ).  Models are evaluated on the criteria 
of adequacy and parsimony;  a "best" model is isolated.  The 
"best" model is the simplest model which adequately describes 
the pattern of variation in the data.  A simple example using 
archaeological data is presented to illustrate the approach. 
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