
460

1 Introduction

Archaeologists have been using vector-based digital tools
for years (Eiteljorg 1989), and today they are used routinely
in many areas of archaeological work. This method of orga-
nizing visual information using points, lines, and polygons
is a unique system that can inform the archaeological pro-
cess. Unlike raster images, which are made up of an array
of disparate pixels (Jones 1997), vector images exist within
a defined set of coordinates (Eisenberg 2002:2). The ability
of a vector image to “know where it is” is significant for a
spatial discipline like archaeology. Vector graphics are reso-
lution independent, and display the same clarity at any level
of magnification (Laaker 2002:7). Vector graphics can also
be used to organize drawings into layers (Watt 2002:xvii),
and the pan and zoom features make different forms of
analysis possible as well (Eiteljorg 1989). Raster (images
created using pixels) and vector graphics are not competing
forms of visualization; rather, they are different formats for
different purposes and are sometimes most powerful when
used in combination.

Creating and interpreting excavation plans, sections, and
site maps is an important part of visualization in archaeol-
ogy. Without this fundamental spatial information it would
be almost impossible to make sense of any archaeological
fieldwork. The transition of this information to a digital
format began in the late 1980s with archaeological survey
teams using vector-based CAD programs (Eiteljorg 1989;
Middleton 1998:6). CAD drawings can subsequently be
incorporated into a variety of other formats that use vec-
tor-based information like GIS programs. Today, most GIS
programs have the ability to create visualizations that are
both raster and vector based, and to use them in combina-
tion (Wheatley and Gillings 2002:16). In many cases, CAD
drawings are also the basis for three-dimensional Virtual
Reality (VR) modeling, which also combines raster and
vector technology to create a unique form of visualization
(Terras 1999).

2 Archaeology, Vector Graphics, and the Web

2.1 Using Archaeological Vector Graphics

Archaeologists have been displaying rasterized vector
images on the Web for years, but making them available as
true vector images that are functionally comparable to the
program used to create them can be problematic. The image
may be created in layers that can be turned on or off, and the
user controls the way elements are displayed. The ability to
pan or zoom to create different views of an image without
loss of resolution may be necessary in order to interpret the
image. The image may reference a database, and interaction
with the database through the image may be the most effec-
tive way of accessing the associated data. The image may
be generated by a database itself and only exist based on a
user-defined query. All of these functions are beyond the
capabilities of any static raster image, but are fundamen-
tal to much of the vector-based work currently undertaken
in archaeology. How this functionality can be presented on
the Web is a question that needs more exploration. There
are a variety of solutions available, each with their own
advantages and disadvantages. The fact that no consensus
has developed indicates that a satisfactory solution remains
elusive (Cagle 2002:9).

The publication of large plan and section drawings has
always been problematic in archaeology, both in print and
on the Web. Using vector graphics can address some of
these problems, but it is important to consider the inherent
differences associated with use of this technology, as well.
For example, a hard copy of a section drawing may be over
a meter long, but once digitized into vector format it can
be presented at any level of detail or in its entirety with-
out loss of resolution, and the user can choose which areas
are of interest (Figure 1). This is consistent with the trend
towards publishing more completely in archaeology, and
not just synthesizing conclusions (Clarke et al. 2003:402;
Livingood 1996). Although only one of many decisions
archaeologists make during the analytical process, by using

XML Based Visualization in Archaeology

Holly E. Wright

Department of Archaeology
University of York

York, UK
hew503@york.ac.uk

Abstract

This paper centers on ways archaeologists can present spatially derived visual information on the Web, and discusses the challenges
and opportunities surrounding the use of vector images, and their relationship to archaeology. In particular, it explores Scalable Vector
Graphics (SVG), which is the XML application for describing vector graphics on the Web, as a potential tool for archaeologists. It
includes some of the ways vector graphics are used in archaeology, and outlines the development and features of SVG, which are then
demonstrated in the form of a case study.

461

vector graphics in this way, an author or editor would not
have to pick and choose which details of an image to use,
and so a layer of subjectivity may be removed.

Use of layers in archaeological vector drawings can
be very helpful as an aid to interpretation, as well. They
may help simplify a complex drawing, or highlight areas
that may be of particular interest, without having to choose
a detail (Judith Winters pers. comm., July 2003). Because
layers can be turned on or off, the user can decide which is
most important, and in what combination (Eiteljorg 1989).
Layers can show how a site or section is organized or how it
has changed over time; but it can also illustrate the process
that went into creating a drawing (Figure 2). In particular,
this type of visualization can be used as an important tool
to help identify and communicate uncertainty in archaeo-
logical data, and provide alternative interpretations (Ryan
2002).

Computers are perceived as being more accurate than
humans; therefore, digital visualizations tend to convey a
sense of being more factual than images on paper. In real-
ity, authors will frequently have to combine digital data in
which they have varying degrees of confidence in order to
create something that communicates the information they
are trying to convey (Miller and Richards 1995:20). If a
drawing is divided into layers reflecting how conjectural the
data are, it leaves the user to decide whether they are in
agreement with the ideas presented by the author and makes
the interpretation more transparent. Although vector graph-
ics divided into layers may be used to show uncertainty, the
way in which layers are chosen and divided is still the result
of a subjective decision.

Vector-based information is very significant to archae-
ologists, as shown by the results of The Publication of
Archaeological Projects: a user needs survey (PUNS)
report, published by the Council for British Archaeology. It

places maps, plans, and sections as third in importance, only
behind the introduction and conclusion in an archaeological
report (Jones et al. 2001). Even photographic information
is not rated as highly. This is even more significant, as the
results of the survey indicate that very few people read a
publication in its entirety (Figure 3).

The PUNS survey was meant to evaluate the useful-
ness of archaeological project publications generally, and
reflects the way project reporting and analysis has been
traditionally communicated. In contrast, the recent Historic
Environment Information Resources Network (HEIRNET)
User Survey was designed to assess the needs of individu-
als and organizations, specifically using digital resources
for archaeology and the historic environment (Brewer and
Kilbride 2006). This survey produced some very interesting
contrasts between what archaeologists find useful generally,
and what is useful when it is presented in an online format
(Figure 4).

While the results are not exactly comparable, there are
some significant differences that are of interest, especially
with regard to archaeological visualization. Maps rated
extremely highly, as would be expected based on the PUNS
report. In contrast, graphics, which would be expected to
include elements like plans, sections, and other types of
vector-based spatial information, received the lowest rating.
In fact, of the 118 individuals who identified themselves
specifically as archaeologists, only five indicated online
graphics were “very useful.” Based on this information, it
is possible to conclude that a significant gap has developed
between the type of resources archaeologists rely upon for
their research, and the ability of Web technology to deliver
those resources in a useful way. If this is the case, consider-
able work needs to be done to improve how vector graphics
are presented on the Web. The advent of mature Web tech-
nologies like XML and their related concepts that are now

Figure 1. Example of a section drawing created in AutoDesk’s AutoCAD. Excavations in advance of an oil tank (Sector 2, Intervention
26) section view from the Tarbat Discovery Programme (Carver 1998), The Settlements at Tarbat, figure 5).

462

Figure 2. Example of a layered plan drawing created in AutoDesk’s AutoCAD. From the Dalton Parlours Iron Age Settlement and Roman
Villa in the parish of Collingham, West Yorkshire. Drawing shows all five Iron Age settlement phases, as designated by post-excavation
analysis by the West Yorkshire Archaeology Service. Digitized by the author from the Dalton Parlours excavation report (Wrathmell and
Nicholson 1990).

Figure 3. Graph showing the frequency of use of components of archaeological publication, reproduced with permission from “From The
Ground Up, The Publication of Archaeological Projects: a user needs survey” (Jones et al. 2001).

463

available not only have the potential to address this prob-
lem, but create archaeological visualizations that are more
accessible, substantive, and dynamic than their non-digital
counterparts.

2.2 Viewing Vector Graphics on the Web

Most of the vector graphics used in archaeology are created
with some form of proprietary software that was either not
designed with the Web in mind, or has features that cannot
be handled by particular browsers. In general, files must be
saved in special formats and a separate viewer or browser
plug-in may be required to interpret these files on the Web.
Often, these viewers have only limited functionality com-
pared to the original software and only work with particular
browsers or operating systems. While the software needed
to create a vector image may be expensive, the viewers and
plug-ins are usually available for download without cost to
the end user.

For files created in Illustrator, there is no particular
viewer needed. The Web format for Illustrator files is GIF,
and it is a standard that works in virtually any graphical
Web browser. Although Illustrator has the ability to divide
drawings into layers, the GIF format merely rasterizes the
vector document, so there is no way to access its functional-
ity. For files created in AutoCAD, the main viewer currently
available is AutoDesk DWF Viewer, which includes (like
its predecessors, Volo View Express and Express Viewer)
the functions of pan and zoom and the ability to control
layers (Figure 5). AutoDesk DWF Viewer is a new prod-
uct, which now allows the viewing of three-dimensional

(3D) DWF files, as well as object properties. AutoDesk
DWF Viewer is proprietary, and users are therefore lim-
ited to the compatibility choices made by AutoDesk. While
AutoDesk DWF Viewer is freely available, it is only com-
patible with Microsoft Windows XP or 2000, and Microsoft
Internet Explorer 6 (Anon. 2006a). Much like AutoCAD
itself, which is only available for the Microsoft Windows
operating system, this seems unacceptably exclusive, not
only for those who choose to use the Apple, Linux, or any
other operating system, but also for those who prefer to use
Opera, Firefox, or any other Web browser. There are third-
party options available for purchase that allow AutoCAD
files to be shared over the Web, but most are expensive and
also only available for the Windows operating system. It is
unrealistic to expect a significant number of users to make a
software purchase solely to view archaeological AutoCAD
drawings on the Web, and once again the solution remains
elusive.

Unlike programs such as AutoDesk DWF Viewer,
which are designed primarily for creating shared work
environments, Macromedia’s Flash (now owned by Adobe)
has long been established as the primary tool for creating
vector graphics for the Web. Flash files are viewed with
Macromedia’s corresponding browser plug-in called Flash
Player. This plug-in is available for all major Web brows-
ers and operating systems, and is already installed in vir-
tually all Web-capable computers (Laaker 2002:14). Flash
is a mature technology with many features that appeal to
archaeologists wishing to present vector graphics on the
Web. Most people already use Flash, it creates small vec-
tor files, and the Flash Player plug-in loads images quickly
and efficiently. Flash creates vector images that include

Figure 4. Graph showing the usefulness of different kinds of Internet resources to practitioners working in archaeology and the historic
environment, reproduced with permission from the HEIRNET User Survey 2005 (Brewer and Kilbride 2006).

464

typographic tools, animations, and dynamically generated
content (Watt 2002:504). More specifically, Flash allows
Adobe Illustrator files and AutoCAD files in .dxf format to
be imported and manipulated. Flash would seem to be an
ideal solution for presenting vector graphics on the Web, and
yet this technology is not widely used by archaeologists.

Looking more deeply at how Flash actually works, it
is easy to see why. Flash only supports the importation of
AutoCAD files in .dxf format (Release 10) and so is bound to
.dxf’s limitations. This includes lack of support for standard
system fonts, and the inability to use fills. Flash only sup-
ports two-dimensional (2D) .dxf files, so any 3D AutoCAD
files cannot be imported. In addition, Flash doesn’t support
scaling of .dxf files, which should be fundamental to any
vector image (Anon. 2006b).

3 Scalable Vector Graphics (SVG)

3.1 The Development of SVG

Scalable Vector Graphics (SVG) is something entirely new.
Far from being an inexpensive substitute for Flash, SVG
belongs to the growing family of open-source World Wide
Web Consortium (W3C) technologies that are actively shap-
ing the way information is presented on the Web, and it is
best understood when viewed within that context (Winter
and Neumann 2003). To understand SVG and how it fits
with other W3C recommendations, it is important to explore
how SVG developed. When Tim Berners-Lee founded the

W3C in 1994, his purpose was to help stabilize the imple-
mentations of his expanding HyperText Markup Language
(HTML) used to create the World Wide Web (Berners-Lee
2000:143; Cagle 2002:8). By bringing together develop-
ers from disparate and often competing vendors, the W3C
guides the intentionally unwieldy Web forward with some
sense of cohesion. The W3C tries to be a voice of reason,
and that voice has become increasingly authoritative (Castro
2003:16).

Through the W3C “official recommendations” system,
commercial and non-commercial developers are brought
together to give input into a standard, which creates a sense
of where a technology is going and how to concentrate their
own design efforts (Berners-Lee 2000:129; Watt 2002:xxiii).
SVG was developed to address the lack of an alternative to
the raster images that dominate the Web (Watt 2002:xvii).
XML is an entirely text-based language that creates com-
paratively small file sizes, so calling on its extensible
nature, developers looked for a way to develop a graphics
format that could be text-based as well. For example, SVG
is written in XML, so the SVG markup for a circle is simply
<circle> </circle> which makes it perfectly understandable
to humans. A circle, marked up in SVG, with a radius of 50
pixels and a black outline of three pixels looks like:

<circle r=”50” style=”stroke-width: 3: black: fill: none;”/ >

Because vector graphics render from text, they can
be recalculated using different variables each time they
are loaded (Watt 2002:xvi). By changing the radius from

Figure 5. Example of a CAD drawing displayed in AutoDesk’s proprietary Web viewer Volo View Express. Excavations in advance of an
oil tank (Sector 2, Intervention 26) plan view of horizons one and six from the Tarbat Discovery Programme (Carver 1998), The Settle-
ments at Tarbat, figure 4).

465

r=”50” to r=”100”, the size of the circle will become larger,
but it will retain all of its other characteristics. This allows
users to pan and zoom around an image at any magnifica-
tion without loss of image quality, because the vector image
just re-calculates each time. This ability is completely basic
to the workings of a vector graphic, but impossible for a
raster image.

The commercial sector was quick to see the potential
for defining a graphic specification for XML. Adobe and
Microsoft both submitted proposals to the W3C in 1998,
the same year XML became an official recommendation.
Adobe’s submission was called Precision Graphics Markup
Language (PGML) and Microsoft’s was Vector Markup
Language (VML) (Story 2000). Macromedia’s Flash speci-
fication was also released at this time in a non-XML binary
format. Macromedia chose to throw their support behind
Microsoft’s bid against Adobe, their traditional rival. The
SVG working group took both specifications under consid-
eration, and chose to merge the two technologies into what
would become SVG. Through the working group, a wide
variety of vendors were able to contribute to the process of
creating the specification. These included AutoDesk, IBM,
Netscape, Apple, Sun Microsystems, Xerox, Corel, Visio,
Hewlett-Packard, and Quark. Despite SVG’s subsequent
adoption as an official W3C recommendation, Microsoft,
in typical proprietary fashion, has continued to use VML.
The result of this is a browser plug-in that is only compat-
ible with Microsoft Internet Explorer 5 for Windows (Cagle
2002:10).

The development of SVG also set historic precedents for
the W3C. As stated by Chris Lilley, chair of both W3C SVG
working groups, SVG was:

a demonstration of the process that enables com-
peting companies to come together in a vendor-
neutral space and work on commonly agreed,
open specifications for the benefit of the Web in
general and to grow the market. SVG was the first
specification to not only have a test suite, but also
publish the results of testing on named implemen-
tations. During the Candidate Recommendation
phase, implementers and content creators gave a
large amount of valuable feedback that helped to
improve the clarity and technical accuracy of the
specification. As a result, compared to other speci-
fications at an equivalent level of maturity, SVG
was extremely well implemented by the time it
became a W3C Recommendation on September 4,
2001 (Watt et al. 2003:xxiv).

3.2 The Features of SVG

It is important to remember that some of its most compel-
ling features, such as platform independence and interoper-
ability with other XML technologies, are not exclusive to
SVG, they are just part of membership in the XML family.
Because SVG is freely available, nobody “owns” it and no
single software company can tailor it to their particular mar-
ket. Like HTML, SVG is made up of nothing more than text,
which can be viewed by developers and users alike, which
makes it easy to see and share the way SVG documents are

structured. For HTML, this resulted in hugely accelerated
development, and this will probably be the case for SVG.

One of the primary complaints about Flash is that docu-
ments are created in the proprietary .swf file format, which
is binary and therefore not meant to be read or accessed by
people (Laaker 2002:13). Users and developers can view
SVG, and the contents are understandable to humans and
not just computers (Jackson 2002). SVG allows selective
display of elements in an image. Because vector graphics
can be created in layers that can be turned on and off, those
layers can be preserved in SVG, and interacted with using
a scripting language like JavaScript (or more accurately,
ECMAScript) (Watt et al. 2003:17). The text that makes up
an SVG graphic is also available to search engines able to
read XML, so if a vector graphic contains text, it is still
recognizable as such even if it is embedded into an image
(Watt 2002:95).

This ability to recognize the textual parts of an SVG
image also allows for internationalization of its content. If
the settings in a browser are set for a particular language,
the SVG image will display the same graphical elements,
but the textual elements that are appropriate for that lan-
guage will be chosen and displayed (Watt et al. 2003:19).
Browser detection and SVG will also allow for greater
flexibility in the future for designing accessible websites..
SVG’s resolution independence already means users with
visual limitations can scale images to a level of magnifica-
tion that is comfortable. For users that require images with
different color contrasts or text only, SVG should be able to
serve a version of the same page to meet their needs. Rather
than designing websites for an accessible lowest common
denominator, developers could create one site that can be
viewed (or not, in the case of audio browsers) in a variety of
ways. This will be somewhat in the future, however, since
accessible SVG browsers and plug-ins will have to be cre-
ated first (Watt et al. 2003:510). SVG can also create graph-
ics that are data-driven and generated dynamically from a
server. This can be done in a variety of ways using existing
programming languages such as PHP, PERL, ASP, or JSP,
but the result is a visualization that can be created “on the
fly” based on user criteria (Watt et al. 2003:695-98).

While XML is a rapidly growing specification, all Web
browsers do not support it natively, but this is changing.
The most popular browsers that do offer such support are
Mozilla’s Firefox 1.5 and Opera 8. These are both avail-
able for a wide variety of operating systems, including the
most popular: Windows, Macintosh, and Linux. Recent
testing of the most recent versions of these two browsers
using Windows XP and Apple OSX revealed quite uneven
implementation using Firefox, while Opera was much more
solid. Because SVG is non-proprietary there are several
companies and organizations with an interest in further-
ing its development, and they have added SVG support
to their products or created plug-ins for other browsers.
Adobe’s SVG Viewer plug-in is the most widely used, with
the broadest distribution and compatibility with all major
browsers or platforms.

466

4 Cricklade: A Practical Archaeological
 Application of SVG

4.1 The Cricklade Publication

This section will look at some of the practical problems
for converting archaeological vector drawings into SVG,
and how to make the drawings more interactive by using
JavaScript to control layers. To demonstrate, AutoCAD
drawings prepared by Guy Hopkinson for the Internet
Archaeology publication “Excavations at Cricklade,
Wiltshire, 1975” by Jeremy Haslam (2003) were used.
As published, the drawings are viewed with AutoDesk’s
Volo View Express software. Volo View Express (like
AutoDesk DWF Viewer, which has recently replaced it) is
designed solely for use with Microsoft’s Internet Explorer
Web browser, and Microsoft’s Windows operating system.
Because AutoDesk only makes its products available for
Windows, it is often assumed that those interested in access-
ing CAD drawings on the Web will be Windows (and there-
fore Internet Explorer) users anyway (Watt et al. 2003:925).
This is shortsighted at best, and at worst perpetuates the
view that reliance on a particular vendor is sufficient for the
healthy development of the Web. As an open source, XML-
based markup language, SVG was explored as a possible
alternative to this proprietary solution.

The site of Cricklade is part of the 9th-century sys-
tem of Saxon urban fortresses and is located in Wiltshire,
England. The defenses show the rectilinear planning typical
of this type of defensive structure, and it is in a good state
of preservation. The site has been well researched by both
archaeologists and historians, and in 1975 excavations were
carried out in advance of housing development (Haslam
2003). In July 2003, the article “Excavations at Cricklade,
Wiltshire 1975” by Jeremy Haslam was published in Issue
14 of Internet Archaeology. Because this article published
the findings of excavations carried out in the 1970s, inclu-
sion in Internet Archaeology was an experiment in “retro-
spective conversion” or “retrospective publication”, which
is the process of digitizing existing hard-copy archaeologi-
cal drawings (Eiteljorg et al. 2002). The twelve ink-on-per-
matrace drawings from Cricklade were large format, with
some over 1.5 m long (Figure 6). If published at the time,
the drawings would have been scaled down for inclusion
in a print publication (Hopkinson and Winters 2003). In
print, this publication would most likely have appeared in
a regional journal, which would be small format (less than
A4) and unable to accommodate large plan and section
drawings because of the costs involved in producing foldout
images. (Judith Winters pers. comm., July 2003). Electronic
publication, specifically using vector graphics, has allowed
the presentation of these drawings in their entirety.

Figure 6. Judith Winters, Editor of Internet Archaeology, with one of the original large-format permatrace drawings from the 1975
Cricklade excavation.

467

4.2 The Cricklade Drawings

Guy Hopkinson prepared the drawings for publication, and
his brief was to determine a way to scan the large permatrace
drawings and clean the resulting images in a raster-editing
program like Adobe Photoshop. The original ink drawings
were monochrome, so color was added to take advantage
of the digital medium and to facilitate better interpreta-
tion. Three of the section drawings were to be digitized in
AutoCAD and saved in .dwf format for use with Volo View
Express (Hopkinson and Winters 2003).

As this publication was meant to be an experiment in new
forms of media publication, Hopkinson spent time explor-
ing the best ways to approach the problem. Some of the les-
sons learned revealed the lack of flexibility in raster images.
The publication went through an approval process with both
an editor and an author, and changes were requested at sev-
eral stages during image production. In particular, requests
for size increases of the raster images after clean-up work
had already been completed required a new scan at a higher
resolution, and the work would have to be repeated. In ret-
rospect, Hopkinson felt that a better solution would have
been to digitize all of the drawings into vector format from
the start, making changes easy to accommodate and saving
time in the long run (Hopkinson and Winters 2003).

While not part of the final project, Hopkinson also felt
that use of vector drawings could be further enhanced by
other functions allowed by Volo View Express. This included
embedding hyperlinks into an image to attach further visual
information. This could potentially create an interface for
the publication of an entire visual archive. He cites the main
drawback as lack of support for other operating systems
besides Windows (Hopkinson and Winters 2003). All of
these things, and much more, can be accomplished using
SVG, in a format that is not limited to a single operating
system.

4.3 The Case Study

Creating the SVG Images. The layered drawings created
by Guy Hopkinson for Internet Archaeology were prepared
specifically for electronic publication. Having already gone
through the editorial process, they were ideal candidates for
demonstrating how SVG might be used to produce results
that are comparable to, or better than, Volo View Express.
In order to achieve this, a structure in the form of a website
was created to house the drawings and provide a framework
for interaction to occur.

The website created for this purpose was based on
W3C design standards and validation, so that SVG ele-
ments would work in partnership with other open-source

W3C technologies. It was created in XHTML 1.0, with all
formatting controlled using external Level Two Cascading
Style Sheets. The site was also designed to conform to the
W3C Web Content Accessibility Guidelines 1.0 at the AA
level and the index page includes the relevant Dublin Core
metadata. Some concessions were made, owing to browser
limitations and lack of access to specialized technologies,
but they are minimal.

The tool used to create the SVG images was Adobe
Illustrator 10.0.3 for the Apple OSX operating system, but
other programs are available to create SVG files. Illustrator
can be used to create original artwork that is saved in SVG
or SVGZ (SVG with file compression) format. Documents
created in a wide variety of outside formats can be opened,
manipulated, and saved in SVG, as well. Layers created in
drawing programs like AutoCAD can be preserved when
brought into Illustrator, and subsequently saved into the
SVG file. Layers are designated using the “group” element,
and the original layer name becomes the group identifier. So
a layer in Illustrator converted to SVG creates markup tags
that look like:

<g id=”layer_name”></g>

It is important to note, however, that files saved as SVG
from Illustrator do not retain SVG “primitives.” This is to
say, while a circle may be created as a circle in AutoCAD
or Illustrator, when it is saved in SVG, rather than using the
<circle></circle> tags, it becomes a series of parameters in
a path (Anon. 2005a). So a layer in an SVG file will consist
of a group identity and series of paths holding the specific
information for each set of points, lines or polygons for that
layer (Figure 7). SVG code can be edited and optimized in
many ways after it has been saved from Illustrator, so path
tags could be replaced with SVG primitives if necessary.

The group tag allows human readers to recognize layers,
so these can be easily identified and manipulated. The group
designation can be used to work with any feature within a
layer as well. The SVG code can be edited at any time to
combine layers, isolate elements within layers or change
layer order. SVG groups are read from the bottom of the
file to the top, so the layer that is meant to display upper-
most will be the last layer in the SVG file. Informal testing
revealed that layer order was very important to those users
of the Cricklade SVG website with archaeological experi-
ence, and that the uppermost layer to be displayed should
always be the excavation layer. This is easily achieved by
moving the excavation layer group to the end of the appro-
priate code in the SVG file.

Use of the group tag is not limited to layers. It can make
any part of an image available for a wide variety of manipu-
lations either within the SVG file, or by using an external

Figure 7. Example of the code for a very simple layer in SVG, as exported from Adobe Illustrator.

468

scripting language like JavaScript. For example, a particular
polygon can be isolated for use in an animation, and the ani-
mation will run automatically when the image loads because
the code to control this behavior is part of the SVG file. In
contrast, an external action written in JavaScript can be used
to bring up an alert message when clicking on part of the
SVG image. In either case, the reason is the same, because
SVG is text that is human readable, information can be iso-
lated and made interactive in a wide variety of ways.

Creating the Website. In addition to the Cricklade draw-
ings, an SVG image was incorporated into the structure of
the website itself to demonstrate its potential as a design
element. This is the image that runs across the top of

the website, showing the title (see Figures 9, 11, 12). To
show how raster images can be incorporated into SVG, a
small black and white detail from an aerial photograph of
Cricklade is embedded in the right side of the image.

The left side of this image includes a hyperlink to the
main Cricklade article in Internet Archaeology, and the link
is embedded into the SVG image itself. This is done by
isolating the word GO into a group and housing the SVG
“xlink:href” attribute within it (Figure 8).

The formatting of the website is controlled externally
using CSS, so the SVG image is part of the XHTML layout
for the site (Figure 9). Because CSS allows elements to be
placed on a page with pixel precision, the XHTML format-
ting fits seamlessly around the SVG. It would be imprudent
to use SVG as part of the basic design for a website until all

Figure 8. Example of a simple interaction with an SVG group.

Figure 9. The design of the Cricklade website showing the SVG image along the top. The Turf Revetment and Palisade Trench SVG
image is in the content window. The positioning of the design is controlled using CSS, so the SVG and XHTML elements can be placed
together seamlessly.

469

browsers implement SVG natively. More and more basic
elements and functions could be handled this way in the
future, and ultimately SVG could become a Web-authoring
tool (Watt 2002:395). As it now stands, requiring a user to
download an SVG plug-in simply to view the title bar of a
website is unrealistic, so this is primarily a demonstration.

The six plan and section drawings in the website each
went through a similar process to convert them into SVG.
The drawings were opened in Illustrator in their original .dwg
format, and the layers were examined for problems (Figure
10). The drawings were compared in AutoCAD to deter-
mine if any changes or data loss had occurred. If the drawing
was unchanged, it was saved in SVG format. Experiments
using SVGZ data compression produced undesirable visual
changes and browser compatibility problems, so it was not
used. Once in SVG format, the files were checked again for
data loss and if they were found acceptable, the process of
incorporating them into the website began.

To display an SVG image in a website requires use of
the “embed” tag. This tag is deprecated (no longer valid)
in XHTML in favor of the object tag, but it is widely held
in the SVG community (and beyond) that use of the embed
tag is a necessary evil. Until current browser manufactur-
ers and the W3C sort out their differences over support
for the object tag, using embed is the only reliable way to
ensure SVG images will display in most browsers (Castro
2003:295; Eisenberg 2002:321; Watt 2002:321; Watt et al.
2003:486).

Using the Website. Once the images were placed in
XHTML using the embed tag, it was possible to view them
and adjust their size and placement. Adobe SVG Viewer has
built-in controls for viewing an image using pan and zoom
(Figure 11). These controls can either be activated with key
commands, or through a pop-up menu brought up with a
right-mouse click. This is one area where Volo View Express
excels over the functions of Adobe SVG Viewer. The former
allows the user to control the level of zoom incrementally by
panning the cursor up and down the image, whereas the lat-
ter only allows four preset levels of zoom. This is generally
sufficient, but an improvement in this area for subsequent
versions of Adobe SVG Viewer would be welcome.

Further interaction was introduced by giving control of
the layers in the drawings to the user. JavaScript was added
to the XHTML to turn the visibility of each layer on or off
through an external control panel (Figure 12). Layers are
made visible by clicking the corresponding checkboxes in
any order or combination, and they can be used when look-
ing at any part of the drawing or at any level of zoom. This
method offers far greater flexibility of presentation than
Volo View Express. While the layer names used in CAD
files may make sense for the creator of the drawings, they
may not be understandable to a non-expert viewer, espe-
cially if they rely upon a coded system like the CSA Layer
Naming Convention (Eiteljorg 2002). In order to change the
way layer names appear in Volo View Express, it is neces-
sary to return to the original CAD file and rename them.

With SVG, layer names can be left intact and changed
when brought into Illustrator, or later in the code of the

Figure 10. Example of a .dwg file in Illustrator, showing the control palette and the layers palette for the drawing of Anglo-Saxon De-
fenses. The layer names are preserved from the AutoCAD file and can be manipulated in Illustrator.

470

Figure 11. Example of SVG image interaction using the built in Adobe SVG Viewer interface.

Figure 12. Example of an SVG drawing in the Cricklade SVG website, showing the floating layer control panel on the right.

471

SVG file itself. This step is not strictly necessary either, as
long as the designer understands what the layers are. The
names can remain completely oblique, as long as the text
that corresponds to the checkbox in the layer control win-
dow is understandable to outside users. The order of the
checkboxes can also be changed at any point in the process,
without reference to the order of the JavaScript. The order
of checkboxes does not need to correspond with the group
order (and therefore layer display order) in the SVG file,
either. The flexibility for organizing and presenting layer
information is only limited by the functions of XHTML and
JavaScript, and allows far greater control than Volo View
Express.

While SVG opens up control of vector images to those
using a much wider variety of Web browsers and operat-
ing systems, one current drawback is the uneven sup-
port for the use of JavaScript with SVG images. Despite
various claims, testing of layer control for both the Apple
and Microsoft Windows operating systems using Internet
Explorer, Netscape, Firefox, and Opera returned disappoint-
ing results. Only Internet Explorer for Windows reliably
implemented the layer control, so it was important to make
sure the drawings could be understood without this func-
tion, and that users were made aware of the problem. While
this is discouraging from a Web standards point of view, it
is no worse than Volo View Express, which will probably
never move beyond this same proprietary limitation.

Because images created in Illustrator can come from
a wide variety of programs and file formats, SVG allows
greater aesthetic flexibility, which can help to promote more
effective communication. For the Cricklade drawings, Guy
Hopkinson created two versions of the detailed plan for
the excavation carried out in the southwest area of the site.
The original .dwg file from AutoCAD was used to produce
the .dwf file for use with Volo View Express. The drawing
was meant to convey the differences between the excavated
and conjectural information about the site, but because
AutoCAD can only render lines and solid fills, the result
was not as clear as one might wish (Figure 13).

To remedy this, Hopkinson took the .dwg file and
brought it into Illustrator to enhance the drawing and make
it easier to understand. The image uses transparency rather
than hatching in various colors to show the differences
between the excavated and conjectural parts of the drawing
(Figure 14). The result is very effective, but because of the
limitations of Volo View Express, the image could only be
rasterized and used as a static .gif in the final publication of
the article for Internet Archaeology.

SVG does not have these limitations, and the Illustrator
version of the drawing was used in the Cricklade website. It
effectively conveys the usefulness of layer control for vec-
tor images in archaeology, and the Illustrator image shows
the differences between the excavated, observed, and con-
jectural areas far better than the AutoCAD version.

Evaluation: As an exercise, the Cricklade website shows
some of the features of SVG and how it can be used as an
effective communication tool for archaeological visualiza-
tion. In particular, it shows the ease with which basic SVG

functions can be introduced into virtually any website, when
using a vector design tool like Adobe Illustrator. Illustrator
can be used as a stand-alone program for creating vector
graphics and saving them into SVG format, or as a pass-
through program for taking vector drawing files made in
other programs and converting them to SVG. As shown by
the drawing of the southwest corner of the Cricklade site,
the best results are often produced when used in combina-
tion. Many of the limitations of visual presentation in pro-
grams like AutoCAD can be addressed in Illustrator before
conversion to SVG.

The site also demonstrates how SVG can be taken fur-
ther, either with interaction built into the image itself or with
other forms of technology like JavaScript. Virtually every
element of an SVG image can be identified in the docu-
ment’s code and understood to be a separate object, which
can be manipulated. The JavaScript interface used to cre-
ate the layer control in the Cricklade website illustrates
this. Each drawing has a unique set of layers that can be
controlled by the user, allowing more complete access to
drawings as originally digitized, and thereby clearer under-
standing of the archaeology. At the same time, the versatility
of SVG when used with JavaScript and XHTML makes it
far easier to adapt archaeological information for a broader
Web audience, without having to make changes to original
data.

This practical demonstration has only scratched the sur-
face of what SVG can do, and how it might be applied to
archaeological visualization. The Internet Archaeology pub-
lication “Excavations at Cricklade, Wiltshire, 1975” shows
one way to present archaeological vector drawings on the
Web, and provides a good foundation to contrast the func-
tionality of SVG and JavaScript with Volo View Express.
On the surface these may seem to have roughly compatible
features, but they are fundamentally different. The power
and flexibility of SVG, especially when used in combina-
tion with other elements like JavaScript, has the potential to
outpace anything a proprietary program such as Volo View
Express can achieve.

5 Conclusion

The development of XML has opened up many possibili-
ties for working with archaeological information, both on
and off the Web. While print designers have used raster and
vector technology equally and in combination for years,
Web designers have been without a comprehensive vec-
tor graphics solution. Forced to work around the particular
issues associated with vector images for so long, SVG has
remained somewhat below the radar of many, but this will
almost certainly change. In addition to possessing the useful
qualities found generally in vector technology, SVG opens
up a host of additional possibilities. When combined with
other forms of technology like databases and JavaScript, it
is capable of interactivity that is both simple and complex.
SVG can be used to create high-quality graphical interfaces
for the visualization and analysis of archaeological infor-
mation, and make primary data easier to understand. As
archaeologists seek non-proprietary ways to preserve their

472

data, either for further active use or in the form of an archive
for future interpretation, forward migration of data is an
ever important issue (Anon. 2005b; Zeldman 2003). Using
standards-based W3C technology such as SVG will also
allow archaeological information to be brought to the Web
in ways that will produce data that can be better maintained,
easily migrated, and can serve multiple purposes.

References Cited

Anon. 2005a. Creating SVG with Adobe Illustrator CS2.
Adobe SVG Zone. Updated January 2005, http://www.
adobe.com/svg/pdfs/illustrator_svg.pdf (Accessed 15
January 2006).

Figure 13. The original *.dwg drawing of the southwest corner of the Cricklade site, where most of the excavation was carried out. This
image shows the line and solid fills (when the image is rendered in color), that must be used to differentiate information in AutoCAD.

Figure 14. The same drawing from Figure 13, showing the effective use of transparent color. The image shows the differences between
the parts of the drawing that were excavated and the parts that are conjectural.

473

Anon. 2005b. What is the ADS, and what do we do.
Archaeology Data Service Website. Updated May 2005,
http://ads.ahds.ac.uk/project/general.html (Accessed 20
February 2006).

Anon. 2006a. AutoDesk Website: AutoDesk DWF.
Updated 2006, http://usa.autodesk.com/adsk/servlet/
index?siteID=123112&id=6101753 (Accessed 15 March
2006).

Anon. 2006b. Adobe Website: SVG Zone. Updated 2006,
http://www.adobe.com/svg/overview/svg.html (Accessed
22 February 2006).

Berners-Lee, Tim. 2000. Weaving the Web. London:
Texere.

Brewer, Jeannette and Kilbride, William G. 2006.
HEIRNET User Survey 2005 Report. Updated February
2006, http://www.britarch.ac.uk/HEIRNET/survey/sec-
tion1.htm (Accessed 15 March 2006).

Cagle, Kurt. 2002. SVG Programming: The Graphical
Web. Berkeley: Apress.

Carver, Martin O. H. 1998. Bulletin of the Tarbat Discovery
Programme 4. Updated October 2003, http://www.york.
ac.uk/depts/arch/staff/sites/tarbat/bulletins/bulletin4/con-
tents.html (Accessed 20 March 2006).

Castro, Elizabeth. 2003. HTML for the World Wide Web.
Berkeley: Peachpit Press.

Clarke, Amanda, Fulford, Michael, and Rains, Michael.
2003. Nothing to hide—online database pubication and the
Silchester Town Life Project. In, Proceedings of the 29th
CAA conference held at Heraklion Crete, Greece, April
2002. M. Doerr, and A. Sarris, eds., pp. 401-404. Hellenic
Ministry of Culture.

Eisenberg, David. 2002. SVG Essentials. Sebastepol:
O’Reilly and Associates, Inc.

Eiteljorg II, Harrison. 1989. Computer-Assisted Drafting
and Design: New Techniques for Old Problems. Updated
April 1996, http://csanet.org/inftech/cadbklt.html (Accessed
23 January 2006).

Eiteljorg II, Harrison. 2002. CSA Layer Naming
Convention. Updated December 2002, http://csanet.org/
inftech/csalnc.html (Accessed 10 February 2006).

Eiteljorg II, Harrison, Fernie, Kate, Huggett, Jeremy, and
Robinson, Damian. 2002. CAD: A Guide to Good Practice.
Updated 2002, http://ads.ahds.ac.uk/project/goodguides/cad
(Accessed 13 February 2006).

Haslam, Jeremy. 2003. Excavations at Cricklade, Wiltshire
1975. Updated June 2003, http://intarch.ac.uk/journal/
issue14/haslam_index.html (Accessed 10 March 2006).

Hopkinson, Guy, and Winters, Judith. 2003. Problems with
Permatrace: a note on digital image publication. Updated
February 2004, http://intarch.ac.uk/journal/issue14/hopkin-
son_index.html (Accessed 9 March 2006).

Jackson, Dean. 2002. SVG On the Rise. Updated June 2002,
http://www.oreillynet.com/pub/a/javascript/2002/06/06/
svg_future.html (Accessed 15 February 2006).

Jones, Siân, MacSween, Ann, Jeffrey, Stuart, Morris,
Richard, and Heyworth, Mike. 2001. From The Ground
Up: The Publication of Archaeological Projects: a user
needs survey. Updated May 2001, http://www.britarch.
ac.uk/pubs/puns (Accessed 18 March 2006).

Jones, Susan C. 1 997. Raster And Vector Images—An
Important Distinction. Updated May 1997, http://csanet.org/
newsletter/spring97/nl059707.html (Accessed 2 February
2006).

Laaker, Micah. 2002. Sams Teach Yourself SVG in 24
Hours. Indianapolis: Sams Publishing.

Livingood, Patrick. 1996. Electronic Publication in
Archaeology. Updated 1996, http://www-personal.umich.
edu/~patrickl/sthesis_2.htm (Accessed 25 March 2006).

Middleton, Mike. 1998. Opinion. Association of
Archaeological Illustrators and Surveyors Newsletter.
Updated October 1998, http://www.aais.org.uk/html/news-
letter.html (Accessed 24 March 2006).

Miller, Paul, and Richards, Julian. 1995. The good, the
bad, and the downright misleading: archaeological adop-
tion of computer visualization. In, Computer Applications
and Quantitative Methods in Archaeology 1994. J.
Huggett and N. Ryan, eds., pp. 19-22. Oxford: TEMPVS
REPARATVM.

Ryan, Nick. 2002. Documenting and Validating Virtual
Archaeology. Updated April 2002, http://www.cs.kent.
ac.uk/people/staff/nsr/cvro (Accessed 9 March 2006).

Story, Derrick. 2000. Extensible Graphics With SVG.
Updated April 2000, http://www.oreillynet.com/pub/a/
network/2000/04/28/feature/svg.html (Accessed 23 March
2006).

Terras, Melissa M. 1999. A Virtual Tomb for Kelvingrove:
Virtual Reality, Archaeology and Education. Updated
November 1999, http://intarch.ac.uk/journal/issue7/terras_
index.html (Accessed 18 February 2006).

Watt, Andrew H. 2002. Designing SVG Web Graphics.
Indianapolis: New Riders Publishing.

Watt, Andrew H., Lilley, Chris, Ayers, Daniel J., George,
Randy, Wenz, Christian, Hauser, Tobias, Lindsey, Kevin, and
Gustavsson, Niklas. 2003. SVG Unleashed. Indianapolis:
Sams Publishing.

474

Wrathmell, S., and Nicholson, A. (eds.) 1990. Dalton
Parlours: Iron Age Settlement and Roman Villa. West
Yorkshire Archaeology Service.

Zeldman, Jeffrey. 2003. Designing With Web Standards.
Indianapolis: New Riders Publishing.

Wheatley, David., and Gillings, Mark. 2002. Spatial
Technology and Archaeology: The Archeological
Applications of GIS. London: Taylor and Francis.

Winter, Andréas M., and Neumann, Andreas. 2003. Vector-
based Web Cartography: Enabler SVG. Updated March
2003, http://www.carto.net/papers/svg/index_e.shtml
(Accessed 20 February 2006).

