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Voronoi (1908) tessellation of the plane ( e.g. figure 1 ), also known as 

Dirichlet (1850) or Thiessen (1911) tessellation, is a technique often used 

( and abused ) by archaeologists. The idea is that 'centres' ( e.g. sites of 

manufacturing ) scattered over the land, may be regarded ( in the absence of 

known boundaries over the countryside ) as holding sway over all parts of the 

country that lie closer to each particular centre than to any other centre ( see 

figure 2 ). 

By this definition the boundary of influence between two neighbouring 

centres must be a line which is the perpendicular bisector of the line joining 

the two centres. As more centres are involved then the problem becomes more 

complex, and the resultant areas of influence prove to be convex polygonal 

areas. We stress the term convex, since a number of archaeologists have produced 

so-called Voronoi tessellations which include concavities ( Danks 1977, 

Hammond 1972, Renfrew 1973 ). There is no time here to give a complete survey of 

such applications, instead we will consider algorithms for calculating and 

drawing such tessellations. 

The simplest method, which is eminently suitable for a small number of 

centres ( usually the case for archaeology ) is to take any centre and place a 

large polygon ( initially a rectangle ) around it. Then arrange the other 

centres in increasing order of distance from the chosen centre. Taking these 

ordered centres one at a time, we calculate the perpendicular bisector of the 

line from this point to the original centre, and use the bisector to slice off 

part of the surrounding polygon. Eventually the radius of the polygon ( the 

maximum distance from the centre to any point in the polygon ) is smaller than 

the distance of each of the remaining centres from the original centre, and we 



have the Voronoi polygon for the chosen centre. Chosing each centre in turn will 

furnish us with the Voronoi tessellation. We demonstrate a BASIC program using 

this method for drawing a tessellation in Mode 0 on the B.B.C. microcomputer. 

Copies of this program are available from the authors. 

As the number of centres becomes larger then this method proves 

inefficient. The time taken to put the set of centres into order ( for every 

chosen centre ) proves wasteful, since most centres from the ordered set will 

not be used anyway as they will be at a distance far Larger than the final 

radius of the polygon for the chosen centre. One way around this problem is to 

divide the centres up into neighbourhoods and store each neighbouhood as a 

linked list. We can then start in the neighbourhood containing the chosen 

centre, and move slowly outwards in a manner similar to the first method. 

As the number of centres gets larger still, the order of thousands, then 

this method also tends to be inefficient. The next method, pioneered by Green 

and Sibson (1978), is to define the whole tessellation as a complex data 

structure. We interpret the tessellation as two arrays which hold the 

two-dimensional coordinates of the centres and the vertices of the tessellating 

polygons together with an array of nodes with one node for each centre. Each 

node points to two linear lists : the first list is circular and holds the index 

of the vertices of the polygon surrounding the centre, the second holds a list 

of indices of centres that are neighbours of the particular centre. To aid our 

explanation we refer to figures 3a,b in which we use bold numbers to refer to 

centres and non-bold numbers to refer to polygon vertices. Starting with one 

centre enclosed in a polygonal boundary, we define the initial structure to be a 

node pointing to two lists, the first ( circular ) containing 1,2,3,4 and the 

second empty. We then successively add the other centres one at a time. With 

each addition the computer must find the polygon of the present tessellation 

which will contain the new centre, and this polygon will obviously be split by 

the perpendicular bisector of the new centre and the centre of the polygon. 

Neighbours, which can be found directly from the data structure defining the 

tessellation, will also be altered with corresponding perpendicular bisectors. 
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We find the neighbours and construct the polygon for the new centre and add it 

to the array structure, and also adjust the lists in the structure which 

correspond to polygons in the old tessellation which are altered. See figure 3a 

which shows the addition of centre 2, and figure 3b which shows the addition of 

new centre 3. Note in this latter operation vertex 6 is no longer needed - the 

program must include a garbage collector so that discarded locations in the 

array of vertices can be re-used, thus minimising waste of store. Output from 

such a program is shown in figure 1, which shows a tessellation of a plane 

containing 1000 points. 

We are happy to help any archaeologists who need such output. If they 

write to us at the above address, enclosing planar coordinate data we will be 

pleased to supply them with a microfilm plot, similar to that used to print 

figures 1 and 2. 
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Fig. 3a 
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