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Figure 1. Area represented in the Stonehenge environs database,
showing most of the original fieldwalking area numbers (from
Richards 1990) and locations mentioned in the text. The grid on
this and all subsequent images is the OS National grid, 1 km
intervals.

1 Introduction
Extensive field survey (such as fieldwalking and
geophysical prospecting) yields information of a funda-
mentally different nature to intensive investigations. The
resulting information lacks the spatial and chronological
detail of intensive investigation such as excavations but
generally provides greater spatial extent and chronological
depth. As a result, field survey provides data with an
appropriate spatial and chronological resolution to explore
landscape and offsite approaches (e.g., Foley 1981) to
archaeological explanation, and to focus attention on the
long term effects of the activities of individual human
agents within the entire landscape.

However, it is rarely possible within a field survey
project to obtain total coverage by fieldwalking. The
reasons for this are numerous but the most obvious is that
fieldwalking is not generally appropriate unless the area is
being actively ploughed, bringing artefacts to the surface.
Areas of meadow or woodland within a generally agricultural
landscape will therefore not be walked. The resulting data is
therefore extensive but discontinuous, requiring the
archaeologist to ‘fill in the gaps’, by estimating how the
observed artefact densities might extend outside the
surveyed areas.

One of the ideal tools for this kind of analysis is the
Geographic Information System (GIS). This provides the
archaeologist with the tools to visualise individual artefact
types and to explore relationships within the survey data
and between the survey data and other landscape indices.
The application of GIS to archaeology has now been
discussed by a number of authors (see e.g. papers in: Allen
et al. 1990; Harris 1986; papers in: Lock/Stancic 1995;
Wheatley 1993, 1995 for further details), therefore no
general introduction to GIS will be provided here. Instead
this paper will concentrate on how some of the methods
which GIS makes possible might be of benefit in the
interpretation of extensive survey data, in this case densities
of lithic remains recovered during fieldwalking.

2 The Stonehenge Environs Project
The data used for the investigation is a subset of that
collected under the direction of Julian Richards for the
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Historic Buildings and Monuments Commission for
England (HBMC or English Heritage) between 1980 and
1986, generally referred to as the Stonehenge Environs
Project (Richards 1990). This data was kindly made
available in digital form by Wiltshire County Council
Museums Service. The Stonehenge Environs surface
collection database covers a series of irregular shaped areas
to the east of the river Avon and immediately surrounding
the Stonehenge monument itself. The total surveyed area is
approximately 7.1 square kilometres, consisting of around
6500 50 m walked transects taken at 25 m intervals. In the
course of the project a total of 102,175 pieces of worked
flint were collected (Richards 1990: 15). The extent of the
surveyed areas is shown in figure 1.



Figure 2. Mapped distributions of total flint densities (left) and the mean-filtered flint densities (right).

Four categories of lithic information (counts of flint
flakes, flint cores, burnt flint and retouched pieces) were
uniformly present in the database together with total flint
density. No details of ‘type fossils’ (arrowheads, scrapers or
other tools) were sought, as the aim of the study was to
extract as much information as possible from the majority
of the flint data, rather than the minority.

Inspection of the lithic densities revealed a level of
random ‘noise’ in each of the images. This is to be
expected in a sample of this type, and represents the chance
effects of obtaining unrepresentatively high or low values in
the samples for some land units. To reduce the effects of
the noise within the images, a second series of data themes
were generated by applying a 3≈3 mean filter to the images.
In order to avoid the distortion which would arise due to
edge effects in this case, a basemap of only those cells
which had been sampled was used to force the filter to
regard cells outside the basemap as ‘no data’ rather than
zero values. Figure 2 shows the density of all flint within
the study area, together with the mean filtered version.

3 Previous work
No computer facilities were available for this type of
analysis as part of the Stonehenge Environs Project, and
the original analysis took the form of plotting the densities
of flint categories in categories derived from a frequency
histogram of the flint densities (Richards 1990: 16). Using

the procedure advocated by Hodder and Orton (1976), the
inflexions of this distribution were used to estimate classes
for plotting as distribution maps using different sized
symbols for the different classes. These distribution maps
then formed the basis of the interpretation of the lithic data
and the main findings were detailed by Richards (1990) —
these are not discussed in detail here for brevity.

Some analysis of the flint density data was undertaken by
Maskell (1993), who entered a subset of the data from the
paper record to a database, and then undertook some
analyses with the IDRISI GIS. Maskell’s main conclusions
were that the flint density data exhibited spatial auto-
correlation (high values in one location made it more likely
that high values would occur in neighbouring areas) and
that there may be a relationship between aspect and the
presence of some categories of flint artefacts.

4 Values at unsampled locations: prediction
from correlates

The fieldwalking data can be mapped and analysed in its
‘raw’ form, but its discontinuous nature makes it difficult to
estimate how the lithic densities varied in the unsurveyed
areas. One approach to ‘guessing’ the lithic densities at
these unsurveyed locations would be to use spatial inter-
polation techniques which rely on the spatial structure of
the artefact densities themselves, and to assume that the
pattern which is observed within the survey data persists
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outside the surveyed areas. Techniques for interpolating
surfaces from point data include polynomial trend surface
analysis, linear and non-linear contouring, topographic
interpolation with splines, inverse distance weighting and
optimal interpolation methods such as ‘Kriging’. Interesting
though these are, however, each has problems when applied
to data of this type, and none of these methods are the
subject of this paper. Instead, it is the aim here to examine
the extent to which predictive modelling techniques can be
used to perform the same task, and whether these offer any
advantages over spatial interpolation in this context.

In contrast to spatial interpolation, a predictive model
tries to estimate values at unknown locations by making use
of the correlations of the observed variable with other
spatial variables. In situations where the values of these
correlates are known for unknown locations, then this may
be used to predict the values of the observed variable
outside the sampled locations.

Predictive modelling was primarily developed within the
context of North American archaeology (see e.g.,
Carmichael 1990; Kohler/Parker 1986; Kvamme 1983b,
1985a, 1985b, 1988, 1990; Sebastian/Judge 1988; Warren
1990a, 1990b for examples) initially to aid the management
of an extensive, and only partially known archaeological
resource. In recent years some of the simpler types of
predictive models have been imported for cultural resource
management use within European archaeology (e.g., Brandt
et al. 1992; Van Leusen 1993). These have generally been
rule-based models, implemented with map-algebra
techniques. The map-algebra expressions which describe the
predictions have either been entirely deductive in nature or
inductive only to the extent that the weightings for the
equations were derived from ratios of expected to observed
numbers of sites in given classes of the predictors.

Far more promising for the interpretation of complex
archaeological patterns and remains are predictive models
which are based on multiple regression techniques in which
the relationship between the archaeological dependent
variable and the predictors (independent variables) is auto-
matically obtained from multivariate statistical computation.
Such an approach has many advantages, particularly that
regression procedures provide estimates of the influence
each supposed predictor has on the result, and of the total
extent of the variability within the result which is accounted
for by all the independent variables (Shennan 1988).

5 Multiple regression
Initially, a straightforward multiple regression will be
attempted, treating total lithic density as the dependent
variable, and a variety of possible correlates as independent
variables. Filtered values of lithic density will be used as
the dependent variable because it is held that these more

closely represent the true form of the population from
which the samples were drawn. Densities of retouched,
burnt flint and cores provide rather low ranges of values
which are therefore more prone to the effects of chance in
sampling. The difference between the total flint densities
and total flake densities is minimal, and therefore the
experiment attempted to predict the total flint densities.

Two types of independent variables were selected as
possible correlates: environmental indices and indices
describing the relationship to cultural features of the
landscape. Environmental variables employed described the
topography (elevation, slope, aspect), soil class, geological
substrate and proximity to water sources. These seemed
likely to have influenced the densities of lithics either
through the choices of the human individuals who dropped
the flints, or through differential recovery rates.

Three cultural indices were also included in the analysis
in the belief that the location of ceremonial monuments
may have had considerable influence on the activities of the
people responsible for leaving the lithic debitage, and
consequently on the form of the scatters. One of the
criticisms raised of predictive models (by e.g., Wheatley
1993), has been that of environmental determinism. The
most obvious feature of the cultural landscape is the
existence of earthen burial monuments, in the form of
earlier Neolithic long mounds and later round mounds.
There is now some evidence (Lock/Harris forthcoming;
Wheatley 1995a) that the locations of these monuments has
had some influence on the activities of contemporary and
later generations of people. Three variables intended to
reflect cultural aspects of the landscape were introduced as
possible predictors of lithic density. These were density of
round barrows, distance to long barrows and visibility of
long barrows. 

It is not the intention to devote much space to the details
of multiple regression analysis here. However, it should be
pointed out that one of the requirements of linear multiple
regression analysis is that the dependent and independent
variables are approximately normally distributed. If they are
not, then appropriate transformations such as logarithmic or
square root transforms must be applied to generate new,
normally distributed variables (Shennan 1988). Frequency
distributions for all the possible dependent variables were
examined. Each of the histograms reveals the skewed nature
of the flint densities. The transformed distributions for total
flint and flake densities, however, are markedly different
and although both exhibit a minor skew to the right and a
suggestion of bimodality the distributions are apparently
quite close to normal (fig. 3).

Frequency distributions of the independent variables were
also examined, and appropriate transforms applied to obtain
approximately normally distributed variables. Although
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Figure 4. Explanatory power of the variables remaining in the regression expressed as F-scores (left) increasing with explanatory power, and
significance of F-scores (right) reducing with explanatory power. Note the dominance of the ‘density of round barrows’ index.

Figure 3. Frequency distributions of mean filtered flint density (left) and the ln mean filtered flint classes (right) showing some skewness and
possible bimodality.

some care was taken to approximate normality, it should be
noted that results were not ideal, particularly in respect of
skewness within some of the predictors. Consequently there
must remain a suggestion that this may have biased the
result a little. However, although not recorded here in
detail, regressions omitting the most doubtfully normal
variables did not produce significantly different results
which supports the notion that the independent variables’
skewness was not influencing the general result. Categorical
variables (geology and soil class) were dissembled into
dummy variables, and introduced into the regression.
Further details of individual predictors are not given here
for brevity but may be found fully described in Wheatley
1995a.

5.1 APPLICATION OF THE MODEL

A stepwise linear multiple regression was then undertaken,
a summary of the results is given in table 1. This procedure
examines each variable as it is included in the model to
identify to what extent it contributes to the model.
Independent variables were only included in the regression
if they proved significant at the 0.15 level. The flint
densities show significant correlations with 11 of the
variables, which in reality represent 7 of the selected
variables once the dummy variables for geology and aspect
have been counted out.

The partial correlation coefficients (r2) and F scores for
each variable (fig. 4) show that the density of round
barrows index has the greatest explanatory power within the
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model, alone accounting for some 15% of the variation in
lithic density while the aspect variables, distance to stream
courses, soil indices and visibility of long barrows also
carry limited explanatory value. Surprisingly perhaps, slope
accounts for very little of the variation in lithic density
(around 1%) and elevation even less.

Probably the most significant statistic within the result
however, is the model correlation coefficient r2 of 0.2554,
or around 25% for all 7 explanatory variables. This
indicates that the independent variables can account for
only around one quarter of the variation within the lithic
density, leaving three-quarters of the variation unexplained
by the model. This is a very low value for r2 from a
regression analysis of this type, but a number of
experimental modifications to the analysis through

exclusions of independent variables and cases failed to
obtain a value higher than around 27% and as none of these
minor experimental alterations improved the methodological
rigour of the analysis they are not discussed here in detail.

Accepting the low correlation coefficient for the time
being, the model may now be used to express the predicted
lithic density at all locations in the landscape, and then be
translated into a prediction map (fig. 5 left) through a map-
algebra operation. This provides mapped predictions of
lithic densities for all locations in the study area.

5.2 DISCUSSION OF THE MODEL

The overall character of the prediction shows that the
model generally predicts rather low values for flint
throughout the sampled area, with the prediction never

279 D. WHEATLEY – BETWEEN THE LINES: THE ROLE OF GIS-BASED PREDICTIVE MODELLING

Table 1. Summary of stepwise multiple regression model for total flint density.

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 4.48422092 0.13117657 755.88447063 1168.59 0.0001
LOGSLOPE -0.07334661 0.03547191 2.76557247 4.28 0.0388
DSTREAMS -0.03190818 0.00284291 81.48413338 125.97 0.0001
VIEWSUM 0.01457195 0.00420610 7.76370920 12.00 0.0005
LOGDENRB -0.48342903 0.03451878 126.86697985 196.13 0.0001
GRYREND 0.41090168 0.08041348 16.88931830 26.11 0.0001
BRNREND 0.16700804 0.03942703 11.60594984 17.94 0.0001
TBCEARTH 0.44753602 0.07039656 26.14250292 40.42 0.0001
UCHALK 0.14062157 0.08714878 1.68412841 2.60 0.1067
NE 0.33501178 0.04170020 41.74820486 64.54 0.0001
SW -0.36472949 0.03930261 55.70483453 86.12 0.0001

Bounds on condition number: 1.852364,       134.823

All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Procedure for Dependent Variable LOGMTOT.

Variable Number Partial Model
Step Entered Removed In R**2 R**2 C(p) F Prob>F

1 LOGDENRB 1 0.1524 0.1524 348.0545 464.8721 0.0001
2 SW 2 0.0373 0.1897 221.2244 118.7974 0.0001
3 DSTREAMS 3 0.0277 0.2174 127.3268 91.5275 0.0001
4 NE 4 0.0182 0.2356 66.4410 61.4242 0.0001
5 HUMREND 5 0.0067 0.2423 45.3233 22.7708 0.0001
6 TBCEARTH 6 0.0033 0.2456 35.7845 11.4115 0.0007
7 VIEWSUM 7 0.0032 0.2488 26.6531 11.0514 0.0009
8 GRYREND 8 0.0032 0.2521 17.4324 11.1841 0.0008
9 BRNREND 9 0.0019 0.2540 12.9419 6.4831 0.0109

10 LOGSLOPE 10 0.0011 0.2551 11.0785 3.8633 0.0495
11 HUMREND 9 0.0005 0.2546 10.7186 1.6400 0.2004
12 UCHALK 10 0.0008 0.2554 10.1158 2.6036 0.1067



Figure 5. Mapped result of the multiple regression analysis (left) and the residuals from the regression (right).
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reaching more than around 80-90 within the convex hull of
the data points. The model seems to provide a fairly close
approximation of the observed densities for the region
around Normanton Down, and shows slightly higher
predictions (although never approaching the true densities)
for the surrounding areas. The areas of high density north
of the Cursus, around Coneybury Henge and north of
Stonehenge Down also show up as marginally higher values
although, again, these do not approach the real densities for
these areas.

One of the most obvious features of the model are the
high values which are predicted for many areas away from
the sampled region, for example in the northeast and
southwest corners of the image. It may be that the variable
most influential in the regression (density of long barrows)
is the main factor. It is, for example, a measure which may
be particularly prone to edge effects: the model predicts
high flint densities at low round barrow densities, and the
edge areas of the map may underestimate that index. It is
also possible, however, that the model is actually rather
‘over-trained’ in regard to this variable. The variation of
lithics with round barrow density may, at the scale of the
sampled area, be as described in the regression equation,
but at a larger scale be entirely the reverse. In other words,
within the general cluster of monuments on Salisbury Plain
the density of lithics is indeed higher in the gaps between
the monuments, but nevertheless the flint densities at the

edge of the study area might also be expected to decline
rather than increase with density of monuments. The high
predictions away from the core of the study area seem best
explained in this way, therefore, and, put simply, it is that
the model has no experience of lithic densities at the edge
and extrapolates unreasonably high densities as a result.

The main conclusion which may therefore be deduced
from the experiment is that while some of the ‘shape’ of the
distribution is modelled within the core of the study area,
this is clearly a poor model in the sense that it fails to
adequately account for a large proportion of the variation
within the dependent variable and in that it cannot be used
outside the scope of the area for which it was designed. 

The residuals of the regression were obtained within the
GIS by subtracting the result of the application of the
regression equation from the original observations in the
form of the mean filtered density map. The result is shown
in figure 5 (right), coded to show areas for which the model
underpredicts and areas for which the model overpredicts.
This supports the interpretation presented above, that the
model fits adequately the areas which exhibit a low-level
and low variation of lithic density. Thus the Normanton
Down areas are a good fit, as is the peripheral area
southwest of Fargo Wood (62). Practically all the very high
areas of flint appear as high residuals. It seems, therefore,
that the model explains the regular and therefore predictable
variation within the lithic values which might be termed



‘background’ variation. The areas which show high
residuals must then be interpreted as ‘unpredictable’ areas
which deviate dramatically from the trend.

It is worth making the point that the lack of success of
this approach should not be taken to devalue the experiment
itself. The failure of the model to adequately predict
absolute values for flint densities with the available
independent variables is, of itself, an interesting finding.

6 Logistic multiple regression models
One reason for the lack of success of this model may be
the choice of the dependent variable: total flint density
at any given point in the landscape may not be closely
related to the chosen independent variables because it is
archaeologically the result of a compound of different
activities involving manufacture, use and discard of flint
artefacts.

However, most of the other flint variables do not show
sufficient range of variation to be used as dependent
variables in linear multiple regression analysis. Logistic
regression, unlike linear multiple regression, can be used to
predict presence/absence of particular classes rather than
interval level values. Using logistic approaches, it is
therefore possible to turn to the flint classes with low
variability, and overall low values, such as core and
retouched pieces density, and to define some characteristic
of these variables which may be worth predicting.

6.1 CORE: RETOUCH RATIOS

It is possible to postulate, as a broad generalisation that
those areas with high levels of cores in comparison with
retouched pieces generally represent areas in which
manufacturing-related activity dominated. Conversely, that
areas with high levels of retouched artefacts represent areas
in which discard activity was more common than
procurement or manufacture. These might be termed
‘discard areas’ without prejudicing any interpretation of
such activity (the discard could be structured symbolically
or domestic and functional for example). It follows that if
the proportion of cores to retouched pieces is spatially
patterned, this might be evidence for persistent use of the
landscape for different activities. If there is no evidence of
differentiation between the distributions of cores and
retouched pieces then it may be that flint was manufactured,
used and discarded generally in the same places.

This ratio of cores to retouched pieces is biased towards
the distribution of cores (the maximum density of cores is
39 pieces per 50 m2, while the maximum count for
retouched pieces is just 13), but an unbiased variable can be
obtained by dividing the counts for each variable by these
maxima. The result varies around 0 for areas with similar
‘normalised’ core and flake densities, is positive below 1

for areas with higher core values than retouch, and negative
below -1 for areas with higher values for retouch than core.
Positive values can roughly be equated with ‘manufacturing
areas’ and negative ones with ‘discard areas’. In practice
the index varies between about -0.5 for ‘discard areas’ and
0.5 for ‘manufacture areas’.

Mapping this variable (fig. 6 left) and mean-filtering it as
above (fig. 6 right) clearly confirms an area of high core/
retouch ratio north of the cursus, and also several clusters of
low value. It is obviously tempting to interpret the latter as
‘domestic’ sites, but it should be remembered that what is
actually revealed are areas in which, over an extended
period of time, more discard activity took place than
manufacturing. They may be domestic sites of some type,
but equally they may represent deliberate discard of
artefacts at these places as part of ritual or ceremonial
activities. The high values around the Avenue are
particularly suggestive in this respect.

6.2 USE AS DEPENDENT VARIABLES

While the distribution of total flint densities may be the
result of many different activities (each with different
correlates), the core/retouch variable can be used for the
differentiation of these activities into separate variables.
Consequently it may be possible to use this variable for
predicting which activities might be expected in which parts
of the landscape.

To this end two normalised core/retouch ratio thresholds
were set which allowed the production of binary maps
indicating those areas which seem to have been used for
manufacturing activity (fig. 7 left) and those which seem to
have been used for discard (fig. 7 right). The aim of setting
the thresholds was to obtain two variables which provided a
clear distinction between these areas. After a little
experimentation, values of 0.9 or less were classed as
discard areas, while areas of 1.1 or above were classed as
manufacture areas.

6.3 APPLICATION OF THE MODELS

The same independent variables were adopted for the
logistic regressions as for the linear multiple regression
experiment, the only modification to the procedure for the
linear multivariate model was that all variables were used
untransformed because the logistic procedure does not
require normally distributed variables (Rose/Altschul 1988).
The output from the LOGISTIC procedure provides a
summary of the results of the regression and gives the
parameter estimates for those independent variables
remaining in the model (tables 2, 3).

These intercept and parameter estimates were then used
to generate an estimate of the probability of the event
represented by the dependent variable for all locations
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Figure 7. Manufacturing areas (left) defined as areas where the ‘normalised’ core:retouch ratio is below 0.9, and discard areas (right) where
the ratio is above 1.1.

282 ANALECTA PRAEHISTORICA LEIDENSIA 28

Figure 6. ‘Normalised’ core:retouch ratio index (left) and the same index mean-filtered as for total flint (right).



within the study area. This is achieved by the use of the
cumulative logistic distribution function (Kvamme 1988:
371). Both models were therefore returned to the GIS, and
the parameter estimates were used to solve the logistic
equation from the landform and cultural overlays for all
locations. Unfortunately, the difference in sample sizes
between nonsites and sites produces a prediction heavily
biased to the prediction of the larger sample: in this case
nonsites. This is often undesirable, but it is possible to
correct for the sample size bias after running the model by
adjusting the intercept parameter by the natural log of the
ratio of the sample sizes (Kvamme 1983b) and this
adjustment was made to both of these models.

6.4 MANUFACTURING MODEL

The manufacturing model (mapped as fig. 8 left) is complex
result, incorporating all of the independent variables to
generate the response. The probability of a site being a
manufacturing site is increased by lower slope, lower
elevations, easterly aspects, presence of chalk rather than clay
with flint or valley gravel, proximity to shelter, low visibility
of long barrows, low density of round barrows, greater
distance from the Avon and presence of brown rendsina soil.

Geographically, the manufacturing model generally
shows high values where they would be expected close
to the region of the sampled areas: north of the Cursus
(area 52) and around the southern rim of Normanton Down
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Table 2. Summary of logistic multiple regression model for ‘manufacture areas’.

Variable Number Score Wald Pr >
Step Entered Removed In Chi-Square Chi-Square Chi-Square

1 DLBARS 1 78.6853 . 0.0001
2 DRIVER 2 88.4108 . 0.0001
3 ELEV 3 86.4427 . 0.0001
4 CHALK 4 28.1790 . 0.0001
5 SLOPEF 5 42.2459 . 0.0001
6 SE 6 33.7102 . 0.0001
7 NE 7 98.5428 . 0.0001
8 BREND 8 14.5768 . 0.0001
9 DSTREAMS 9 20.9877 . 0.0001

10 VIEWSUM 10 9.1127 . 0.0025
11 DENSRBAR 11 4.6568 . 0.0309

Analysis of Maximum Likelihood Estimates.

Parameter Standard Wald Pr > Standardized
Variable Estimate Error Chi-Square Chi-Square Estimate

INTERCPT 3.6050 2.1878 2.7152 0.0994 .
ELEV 0.1080 0.0320 11.3757 0.0007 0.574173
SLOPEF 0.5415 0.0710 58.1830 0.0001 0.749372
NE -2.8268 0.3715 57.8992 0.0001 -0.638711
SE -2.5466 0.3264 60.8808 0.0001 -0.692974
CHALK -6.9748 1.2567 30.8042 0.0001 -0.835570
BREND -1.3809 0.2650 27.1575 0.0001 -0.380738
DSTREAMS 0.1549 0.0289 28.6652 0.0001 0.526867
DRIVER -0.0547 0.0110 24.7250 0.0001 -0.748168
DLBARS -0.1525 0.0189 65.4072 0.0001 -1.015312
VIEWSUM 0.2034 0.0577 12.4014 0.0004 0.476920
DENSRBAR 0.0666 0.0296 5.0416 0.0247 0.425465

Association of Predicted Probabilities and Observed Responses

Concordant = 93.2% Somers’ D = 0.874
Discordant = 5.8% Gamma = 0.883
Tied = 1.0% Tau-a = 0.085
(390630 pairs) c = 0.937



(south of area 67). Low values on Normanton Down (61,
79, 55), around Coneybury (51), south of Durrington Walls
(60, 71, 69) and at the eastern end of the Cursus (76, 66
and 85) are also consistent with the data.

However the model predicts manufacturing areas in an
unlikely proportion of the area southeast of the river.
Examination of the equation, and of the independent
variables suggests that the high values in the southeast are
primarily influenced by the distance to long barrows and
the density of round barrows indices. Both show extreme
values in this area, and both have the type of dual
relationship discussed above in relation to the linear
multiple regression model. The area of high value in the
northwest of the study area may be related to distance from
the river Avon, although this seems to be also partly an
effect of the distance to long barrows index.

For the same reasons as for the linear regression
therefore, it seems likely that predictions away from the
surveyed areas are unreliable and the model must be
regarded as internal to the cluster of monuments rather than
portable. 

6.5 DISCARD MODEL

The probability of a location being a discard site is
increased by the presence of brown rendsina soils and
absence of calcareous earths, higher altitudes, northeastern
aspect, proximity to the Avon, low density of round
barrows and low distance to long barrows. Both density of
round barrows and distance to long barrows decrease the
probability, which is curious as the two are inversely
related. This is in contrast with the manufacturing area
model, although the effects of these two variables may be
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Table 3. Summary of logistic multiple regression model for ‘discard areas’.

Summary of Stepwise Procedure

Variable Number Score Wald Pr >
Step Entered Removed In Chi-Square Chi-Square Chi-Square

1 BREND 1 94.3617 . 0.0001
2 DLBARS 2 38.0198 . 0.0001
3 VIEWSUM 3 29.1272 . 0.0001
4 NE 4 23.2454 . 0.0001
5 DRIVER 5 19.0265 . 0.0001
6 DENSRBAR 6 20.4722 . 0.0001
7 ELEV 7 10.0973 . 0.0015
8 VIEWSUM 6 . 0.0711 0.7898
9 TBCEARTH 7 9.6831 . 0.0019

Analysis of Maximum Likelihood Estimates.

Parameter Standard Wald Pr > Standardized
Variable Estimate Error Chi-Square Chi-Square Estimate

INTERCPT 6.1250 1.3314 21.1635 0.0001 .
ELEV -0.0521 0.0123 17.9639 0.0001 -0.276782
NE -1.0030 0.2136 22.0439 0.0001 -0.226632
BREND -2.7628 0.3861 51.1922 0.0001 -0.761737
TBCEARTH 2.7358 1.0944 6.2491 0.0124 0.420462
DRIVER 0.0383 0.00625 37.5140 0.0001 0.524288
DLBARS 0.1045 0.0108 93.1905 0.0001 0.695530
DENSRBAR 0.1170 0.0187 39.2001 0.0001 0.747777

Association of Predicted Probabilities and Observed Responses

Concordant = 87.5% Somers’ D = 0.757
Discordant = 11.8% Gamma = 0.762
Tied = 0.7 Tau-a = 0.063
(336660 pairs) c = 0.878



Figure 8. Probability of any location being a manufacturing area (left) or a discard area (right) according to the intercept-adjusted logistic
regression equation.

marginal compared to soil. The marginal influence within
the model of the cultural variables is enforced by the lack
of long barrow visibility which shows insufficient
correlation to appear in the model.

In spatial distribution (fig. 8 right), the ‘discard’ model
also shows some encouraging features: high probabilities of
discard sites around the elbow of the avenue (87), south of
Normanton Down (67) and south of Winterbourne Stoke
Crossroads (50) each seem to fit the data. Low probabilities
north of the Cursus (52) contrast with the high values of the
manufacturing model as should be expected as this forms
the major axis of variation between the two areas selected
as dependent variables.

6.6 OPTIMISATION AND ASSESSMENT OF PERFORMANCE

Assessment of the degree of confidence which should be
placed in the predictions is difficult. In an ideal situation,
further samples would be taken throughout the study area
and the results compared with the predicted outcome for
those locations. This is rarely possible, however, and it
is perhaps slightly ironic that in situations where this
were possible, there would then be rather less point in
constructing a model. 

One source of data concerning model performance is the
ratio of observed responses to predictions within the data
itself, and this is provided with the output from the

procedure. In the case of these models, this indicates that
the manufacturing area model makes 93% correct
predictions against nearly 6% incorrect, while the discard
area model is a poorer fit with 87.5% correct against nearly
12% incorrect predictions. However this is widely
recognised as an extremely optimistic assessment of the
performance of the probability model and Warren (1990b)
recommends withholding a random control sample of
observations from the prediction and then comparing the
predictions with these controls. Carmichael (1990), used the
control procedure advocated by Warren and found that a
72% correct prediction rate amongst the sites used for
prediction produced only 55% correct prediction amongst
the controls. 

In this case, however, the samples are grouped tightly
together within walked areas so that any randomly selected
subset of points would still have fallen within the same
surveyed areas as the cases included in the study. Intuition,
and experience with the linear regression model suggest that
these are likely to be the best performing areas of the
model. Consequently little confidence could be held in any
assessment of the model based on such a sample of sites,
and it was felt that insufficient benefit would probably be
obtained to offset the removal of the cases.

One method to assess the performance of the model is to
force it to predict the same percentage of the surveyed area
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Figure 9. Cut-off points for the intercept-adjusted manufacturing model (left) and for the intercept-adjusted discard model (right) based on the
probability which results in an equal proportion of correct positive and negative responses.

as a positive response as occurs within the sample data, and
then comparing this prediction with the actual result — a
procedure analogous in many ways to the examination of
residuals of linear regressions. To ‘force’ the prediction, a
threshold was selected for each probability map which
generated the same percentage of positive responses within
the worked areas as the original dependent variables.
An appropriate threshold was obtained from cumulative
frequencies of the probability maps for the surveyed areas.
The result of this procedure can then be compared with the
original dependent variable, with four possible outcomes.
The model may (1) correctly predict no site, (2) correctly
predict a site, (3) incorrectly predict a site or (4) fail to
predict a site.

It remains to decide on an appropriate threshold for
prediction of sites from the adjusted models. It has already
been seen that prediction of the ‘correct’ number of positive
responses will not provide a good prediction of presence.
Increasing the threshold which is used as a prediction
increases the number of incorrect predictions of negative
responses but also increases the number of correct
predictions of positive responses. The optimum solution
must therefore be sought from the models, and occurs when
the proportion of correct predictions for positive responses
is equal to the proportion of correct predictions for negative
responses. This probability value is referred to as the cut-off
point for the model, and can be obtained by graphing the
observed proportions of correct positive and negative
responses against the predicted probability. Observations for
these graphs were made by repeated application of the
models at appropriate intervals. The point where the
positive and negative response curves cross provides both

the optimum point of the model and the percentage of
correct predictions. From the graphs in figure 9 it can be
seen that this cut-off point for the manufacturing model
occurs at 15%, where the model correctly predicts 71% of
positive responses (manufacturing areas) and 72% of
negative responses. For the discard model, the cut-off
occurs at 44% where the model predicts 73% of positive
responses (discard areas) and 74% of negative responses.
The four alternatives within the known data values are
mapped as in figure 10 left (manufacture) and right
(discard).

6.7 USING THE LOGISTIC MODELS

The final models provide a method for assessing how likely
it is that any location within the landscape would contain a
lithic assemblage with either of two particularly interesting
characteristics. Clearly the most obvious application of
such a model is to the management of the archaeological
resource in which they might be used as a method for
assessing the relative impacts of alternative courses of
action on the (unknown) archaeological resource. However,
although using them for this purpose is valid, the models
must be understood before they can be best utilised.
For one thing, the predictions for manufacturing areas in the
far northwest and southeast of the study area are spurious,
and should be disregarded. An alternative model may be
developed for areas which are marginal or outside the
cluster of monuments, but these two are not applicable for
the reasons outlined above.

The models can be used to make predictions in a
sophisticated way. The optimum predictions which were
obtained from the cut-off points of the models may not be
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Figure 10. Comparison of predictions made at the selected cut-off points with the observed archaeological values for presence of manufacturing
areas (left) and discard areas (right).

the most useful predictions from an archaeological point of
view and alternative thresholds might be chosen in order to
predict more sites at the expense of nonsites. Given enough
resources, of course, an archaeological management strategy
would not require a model at all but include provision to
survey all areas. In reality, however, management strategies
are constrained by resources which in turn restrict the area
which may be surveyed. Depending on this, thresholds may
be defined which progressively reduce the area which needs
to be surveyed, while maximising the likelihood that the
interesting areas will be within them. For example, although
the manufacturing model predicts roughly 70% of the sites
at the cut-off point of 45%, a threshold of 20% may be
selected to obtain a prediction which accounts for 90% of
the manufacturing areas at the expense of predicting 40% of
the non-site areas as manufacturing areas also.

7 Conclusions
It was the aim of this paper to examine whether or not
predictive modelling approaches provide a reasonable
alternative to spatial interpolation techniques in the analysis
of lithic density data. The result of the attempt to use linear
multiple regression to predict the lithic densities from
correlated variables is, from this point of view, disappoint-
ing. That only 25% of the variability within the flint data
can be accounted for in this way suggests strongly that the

types of deterministic models applied with some success in
some North American situations may be inappropriate
within complex cultural landscape settings such as this. It is
particularly revealing that the majority of the predictive
power of the model (low though that is) is accounted for by
cultural indices, particularly the density of round barrows,
rather than the indices of landform which have been used in
other contexts. Although some of the failure of the linear
regression to account for the variation in the lithics might
be due to the compound nature of the dependent variable,
and the explanatory power of the logistic regression models
is far more difficult to assess, it is likely to be of the same
order as the multiple regression because the same predictors
were used for both.

In both cases, the portability of the models is compromised
by the use of predictors which seem to have complex
relationships with the data. The extreme predictions which
occur outside the convex hull of the surveyed areas in both
the linear multiple regression model, and both logistic
models seem best explained as ‘over-training’, in the sense
that the model is too specifically related to the variation
within the cluster of monuments to provide a useful
estimate of the density of lithics between monument
clusters. In a sense this is a problem of scale: at the local
scale, the relationship between density of monuments and
activity may be that the activity takes place away from
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monuments while at a regional scale this relationship cannot
be sustained.

Although untested at present, one way of circumscribing
this may be to restrict the variability of the independent
variables to that which is found within the data itself
through reclassification and in this way restricting the
prediction to variation which is within the ‘experience’ of

the regression. Alternatively the independent variables
may be left in an unclassified form so as to include the
maximum information in the regression, but the prediction
may be restricted to the maximum and minimum values of
those variables which are observed within the archaeologi-
cal data.

288 ANALECTA PRAEHISTORICA LEIDENSIA 28



289 D. WHEATLEY – BETWEEN THE LINES: THE ROLE OF GIS-BASED PREDICTIVE MODELLING

bibliography

Allen, K.M.S. 1990 Interpreting Space: GIS and Archaeology. London, Taylor & Francis.
S. Green
E.B.W. Zubrow (eds) 

Altschul, J.H. 1988 Models and the modeling process. In: W.J. Judge/L. Sebastian (eds), Quantifying the 
present, predicting the past, 61-96, Denver: U.S. Department of the Interior Bureau of 
Land Management.

1990 Red Flag Models: the Use of Modelling in Management Contexts. In: K.M.S. Allen/
S.W. Green/E.B.W. Zubrow (eds), Interpreting Space: GIS and Archaeology, 226-238,
London: Taylor & Francis.

Brandt, R. 1992 An experiment in archaeological site location: modeling in the Netherlands using GIS
B.J. Groenewoudt techniques, World Archaeology 24 (2), 268-282.
K. Kvamme

Burrough, P.A. 1986 Principles of Geographic Information Systems for Land Resources Management. Oxford:
Clarendon Press.

Carmichael, D.L. 1990 GIS Predictive Modelling of Prehistoric Site Distributions in Central Montana. In:
K.M.S. Allen/S.W. Green/E.B.W. Zubrow (eds), Interpreting Space: GIS and
Archaeology, 216-225, London: Taylor & Francis.

Carr, C. 1985 Introductory remarks on regional analysis. In: C. Carr (ed.), For concordance in 
archaeological analysis, 114-127, Kansas City: Westport Publishers.

Clarke, K. 1990 Analytical and computer cartography. London: Prentice Hall.

Crumley, C.L. 1990 Landscape: a unifying concept in regional analysis. In: K.M.S. Allen/S.W. Green/
W.H. Marquardt E.B.W. Zubrow (eds), Interpreting Space: GIS and Archaeology, 73-79, London: Taylor 

& Francis.

Ebert, J.I. 1988 Remote sensing in archaeological projection and prediction. In: W.J. Judge/L. Sebastian
(eds), Quantifying the present, predicting the past, 429-492, Denver: US Department of 
the Interior Bureau of Land Management.

Ebert, J.I. 1988 The theoretical basis of archaeological predictive modeling and a consideration of
T.A. Kohler appropriate data-collection methods. In: W.J. Judge/L. Sebastian (eds), Quantifying the 

present, predicting the past, 97-171, Denver: US Department of the Interior Bureau of 
Land Management.

Feder, K.L. 1979 Geographic patterning of tool types as elicited by trend surface analysis. In: S. Upham 
(ed.), Computer graphics in archaeology: statistical cartographic applications to spatial
analysis in archaeological contexts, 95-102, Arizona State University Anthropological 
Research Papers 15.

Foley, R. 1981 A Model of Regional Archaeological Structure, Proceedings of the Prehistoric Society 47,
1-17.

Gardiner, J.P. 1984 Lithic Distributions and Neolithic Settlement Patterns in Central Southern England. In:
R. Bradley/J. Gardiner (eds), Neolithic Studies: A Review of Current Work, 177-187, 
BAR British Series 133, Oxford: British Archaeological Reports.

Goodchild, M.F. 1987 Spatial autocorrelation. Concepts and techniques in modern geography 47. Norwich: Geo.



290 ANALECTA PRAEHISTORICA LEIDENSIA 28

Harris, T.M. 1986 Geographic Information System Design for Archaeological Site Information Retrieval.
In: S. Laflin (ed.), Computer Applications in Archaeology 1986, 148-161, Birmingham: 
University of Birmingham.

Hasenstab, R.J. 1990 GIS in Historical Predictive Modelling: the Fort Drum Project. In: K.M.S. Allen/
B. Resnick S.W. Green/E.B.W. Zubrow (eds), Interpreting Space: GIS and Archaeology, 284-306, 

London: Taylor & Francis.

Hodder, I. 1976 Spatial analysis in archaeology. Cambridge: Cambridge University Press.
C. Orton

Kincaid, C. 1988 Predictive modeling and its relationship to cultural resource management applications.
In: W.J. Judge/L. Sebastian (eds), Quantifying the present, predicting the past, 549-569, 
Denver: US Department of the Interior Bureau of Land Management.

Kohler, T.A. 1988 Predictive locational modeling: history and current practice. In: W.J. Judge/L. Sebastian 
(eds), Quantifying the present, predicting the past, 19-59, Denver: US Department of the 
Interior Bureau of Land Management.

Kohler, T.A. 1986 Predictive models for archaeological resource location. In: M. Schiffer (ed.), Advances in 
S.C. Parker Archaeological Method and Theory 9, 397-452, New York: Academic Press.

Kvamme, K.L. 1983a Computer processing techniques for regional modeling of archaeological site locations,
Advances in Computer Archaeology 6, 26-52.

1983b A manual for predictive site location models: examples from the Grand Junction District, 
Colorado. Colorado: Bureau of Land Management, Grand Junction District.

1985a Fundamentals and Potential of Geographic Information System Techniques for Archaeo-
logical Spatial Research. Paper presented at 50th meeting of Society of American 
Archaeology, Denver.

1985b Determining empirical relationships between the natural environment and prehistoric site 
locations: a hunter-gatherer example. In: C. Carr (ed.), For concordance in archaeological
analysis, 208-238, Kansas City MO: Westport Publishers.

1988 Using existing archaeological survey data for model building. In: W.J. Judge/L. Sebastian
(eds), Quantifying the present, predicting the past, 301-428, Denver: US Department of 
the Interior Bureau of Land Management.

1989 Geographic Information Systems in Regional Archaeological Research and Data Manage-
ment. In: M.B. Schiffer (ed.), Archaeological Method and Theory, Volume 1, 139-203, 
Tuscon: University of Arizona Press.

1990 The Fundamental Principles and Practice of Predictive Archaeological Modelling. In:
A. Voorrips (ed.), Mathematics and Information Science in Archaeology: A Flexible 
Framework. Studies in Modern Archaeology 3, 257-295, Bonn: Holos-Verlag.

Kvamme, K.L. 1989 The Environmental Basis of Mesolithic Settlement. In: C. Bonsall (ed.), The Mesolithic in 
M.A. Jochim Europe. Papers Presented at the Third International Symposium, Edinburgh 1985, 1-12, 

Edinburgh: John Donald Publishers.

Leusen, M.P. van 1993 Cartographic modelling in a cell-based GIS. In: J. Andresen/T. Madsen/I. Scollar (eds), 
Computing the Past, Computer Applications and Quantitative Methods in Archaeology 
CAA92, 105-123, Aarhus: Aarhus University Press.



291 D. WHEATLEY – BETWEEN THE LINES: THE ROLE OF GIS-BASED PREDICTIVE MODELLING

Lock, G.R. forthcoming Danebury revisited: an English Iron Age hillfort in a digital landscape. In: M. Alden-
T.M. Harris derfer/H. Maschner (eds), The anthropology of human behaviour through geographic 

information and analysis, New York: Oxford University Press.

Lock, G.R. 1995 Archaeology and Geographic Information Systems: a European Perspective. London: 
Z. Stancic Taylor & Francis.

Maskell, J.E. 1993 From ploughzone to pixel. University of Southampton: MSc Thesis.

Richards, J. 1984 The Development of the Neolithic Landscape in the environs of Stonehenge. In:
R. Bradley/J. Gardiner (eds), Neolithic Studies: A Review of Current Work, 177-187,
BAR British Series 133, Oxford: British Archaeological Reports.

1990 The Stonehenge Environs Project. Southampton: Hobbs.

Rose, M.R. 1988 An overview of statistical method and theory for quantitative model building. In:
J.H. Altschul W.J. Judge/L. Sebastian (eds), Quantifying the present, predicting the past, 173-255, 

Denver: US Department of the Interior Bureau of Land Management.

Sebastian, L. 1988 Predicting the past: correlation, explanation and the use of archaeological models. In:
W.J. Judge W.J. Judge/L. Sebastian (eds), Quantifying the present, predicting the past, 1-18, Denver: 

US Department of the Interior Bureau of Land Management.

Shennan, S.J. 1980 Meeting the plough damage problem: a sampling approach to area-intensive fieldwork. 
In: J. Highcliffe/R.T. Schadler Hall (eds), The past under the plough, Department of the 
Environment Occasional Paper 3, 125-133.

1985 Experiments in the collection and analysis of archaeological survey data: the East 
Hampshire Survey. Sheffield: Sheffield University Press.

1988 Quantifying Archaeology. Edinburgh: Edinburgh University Press.

Thomas, D.H. 1975 Non-Site Sampling in Archaeology: Up the Creek without a Site. In: J.W. Mueller (ed.), 
Sampling in Archaeology, Arizona: University of Arizona Press.

Thoms, A.V. 1988 A survey of predictive locational models: examples from the late 1970s and early 1980s. 
In: W.J. Judge/L. Sebastian (eds), Quantifying the present, predicting the past, 581-645, 
Denver: US Department of the Interior Bureau of Land Management.

Wansleeben, M. 1988 Applications of Geographical Information Systems in Archaeological Research. In:
S.P.Q. Rahtz (ed.), Computer and Quantitative Methods in Archaeology 1987, 435-451, 
BAR International Series 446, Oxford: British Archaeological Reports.

Warren, R.E. 1990a Predictive Modelling of Archaeological Site Location: a Case Study in the Midwest.
In: K.M.S. Allen/S.W. Green/E.B.W. Zubrow (eds), Interpreting Space: GIS and 
Archaeology, 90-111, London: Taylor & Francis.

1990b Predictive Modelling of Archaeological Site Location: a Primer. In: K.M.S. Allen/
S.W. Green/E.B.W. Zubrow (eds), Interpreting Space: GIS and Archaeology, 201-215, 
London: Taylor & Francis.

Wheatley, D.W. 1993 Going over old ground: GIS, archaeological theory and the act of perception. In:
J. Andresen/T. Madsen/I. Scollar (eds), Computing the Past, Computer Applications and
Quantitative Methods in Archaeology CAA92, 133-138, Aarhus: Aarhus University Press.

1995a The application of GIS to archaeology, with case studies from Neolithic Wessex. PhD 
Thesis: University of Southampton.



292 ANALECTA PRAEHISTORICA LEIDENSIA 28

1995b Cumulative Viewshed Analysis: a GIS-based method for investigating intervisibility, and 
it’s archaeological application. In: G. Lock G/Z. Stancic (eds), Archaeology and 
Geographic Information Systems: a European Perspective, 171-185, London: Taylor & 
Francis.

forth- A View to a Hill – the use of line-of-sight maps to understand regional variation in
coming earlier Neolithic Wessex. In: H. Maschner (ed), GIS and the Advancement of 

Archaeological Method and Theory, Carbondale: Southern Illinois University Press.

Williams, I. 1990 Using geographic information systems and exploratory data analysis for archaeological 
W.F. Limp site classification and analysis. In: K.M.S. Allen/S.W.,Green/E.B.W. Zubrow (eds), 
F.L. Briuer Interpreting Space: GIS and Archaeology, 237-239, London: Taylor & Francis.

Zubrow, E.B.W. 1990b Modelling and prediction with geographic information systems: a demographic example 
from prehistoric and historic New York. In: K.M.S. Allen/S.W. Green/E.B.W. Zubrow 
(eds), Interpreting Space: GIS and Archaeology, 307-318, London: Taylor & Francis.

David Wheatley
Department of Archaeology
University of Southampton
Southampton SO17 1BJ
United Kingdom
e-mail: dww@soton.ac.uk


