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17.1   introduction 

The analysis of archaeological datasets presents statistics 
with a unique and taxing combination of difficulties. They 
are inherently multivariate, with large numbers of mea- 
sured variables of both continuous and discrete type and 
in addition often suffer from high proportions of missing 
values. From such complex datasets the analyst, whether 
statistician or archaeologist, has to determine which of the 
many variables interact and how strongly, decide if the data 
can be condensed without loss of information and select one 
(or perhaps a few) parsimonious models or forms of analysis 
that adequately represent the data. Standard analyses for 
continuous data summarised by a variance or correlation 
matrix, such as principle components, have become well 
established. As have, to a lesser degree, log-linear methods 
for discrete data summarised in a contingency table. Until 
recently, however, multivariate techniques had not been 
generalised to mixed continuous and discrete data, nor to 
dealing with the problem of large scale missing data. 

The principle difficulty with such data, and perversely of- 
ten the primary objective of the analysis, is the assessment of 
association. In osteometrical studies, for example, attempts 
to characterise the shape of complex objects such as skulls 
has resulted in the definition of a multitude of standard 
measurements (Brothwell 1981, von den Driesch 1976). 
By their very nature many of these are strongly correlated, 
so that their value in distinguishing between sexes, species 
and populations is not always clear. Disentangling their 
interrelationships, complicated as they are by the presence 
of both continuous and discrete variables, is difficult, if not 
impossible, with standard multivariate methods. In contrast 
a new statistical technique known as graphical modelling 
can be used to summarise the patterns of interaction in such 
studies in an easily interprétable way. 

In the remainder of this paper a brief description is given 
of the most important aspects of graphical modelling meth- 
ods, illustrated by their application to a small archaeological 
data set. A more detailed exposition and bibliography can 
be found in Whittaker (1990). There still remain a number 
of practical problems which need to be overcome before the 
new technique is applicable to the bulk of archaeological 
data; in particular the difficulties caused by large numbers 
of variables and of missing values. The extent to which 
these problems have been resolved is discussed. 

17.2   Graphicai modeiiing 

Graphical modelling, has a theoretical basis in the concept 
of conditional independence, and is so called because it 
summarises the patterns of interaction between variables by 
means of a graph. The technique originated in the work of 
Darroch, Lauritzen and Speed (1980) who showed how a 
subset of log-linear models, the gnqjhical models, can be 
easily interpreted, theoretically and practically, from their 
associated independence graph. The approach of Lauritzen 
and Wermuth (1984,1989) extends the technique, allowing 
gnqjhical models to be applied in a unified way not only 
to the separate continuous and discrete cases but also to 
mixed models. The theory of graphical modelling has two 
essential ingredients. Firstly a parametric family of distri- 
butions which can be used to model the joint distribution 
of discrete and continuous variables and whose parameters 
can be interpreted as measures of association or interaction. 
Secondly the concept of a conditional independence graph 
which is used to represent the most important qualitative 
aspects of the fitted model. 

17.2.1   The conditional gaussian distribution 

Many of the commonest parametric statistical techniques, 
e.g. correlation, regression and log-linear modelling, are 
based on models derived using either the multinomial dis- 
tribution for discrete variables or the normal distribution 
for continuous variables. The conditional Gaussian, or CG, 
distribution is obtained by combining these distributions and 
is therefore a natural generalisation when dealing with data 
containing both types of variable. The discrete variables are 
regarded as forming a multidimensional contingency table 
whose cell probabilities are described by a multinomial dis- 
tribution. Within each cell of this table, i.e. conditional on 
the values of the discrete variables, the continuous variables 
are described by a multivariate normal distribution whose 
mean and covariance matrix are allowed to vary from cell 
to cell. Thus the general CG distribution for continuous 
variables x and discrete variables y can be written as 

/{^,ï) = p(y)(2^)^''|S(î/)l-'/'exp{-i(x-M(y))'E(v)-'(^-/^(3/))} 
(17.1) 

where p(j/) is the probability that the discrete variables 
have value y, fi{y) and JL{y) are the wilhin-cell mean and 
variance of the continuous variables, d is the number of 
continuous variables, and ' is used to denote vector or 
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matrix transposition. This representation makes explicit 
the derivation of the CG distribution as the product of a 
multinomial and a normal distribution. 

Because of its dmvation from these two standard dis- 
tributions, the most natural way to parameterise the CG 
distribution is in tCTms of the triplet of parameters {p, /i, E}. 
The main advantage of this natural or moment parameter- 
isation is that it is couched in terms of familiar concepts, 
proportions, means and variances, and thus results are easy 
to interpret. Restricted forms of the distribution, although 
not explicitly described as CG, have long been used in 
statistics for techniques such as discriminant analysis and 
analysis of variance. 

The moment parameterisation is not the only way of 
parametcrising the distribution. Lauritzen and Wermuth 
(1984), who appear to have introduced the name CG, write 
the distribution as 

fix, y) = exp{a(y) + /?(j/)'x - l/2x'Çl(y)x}     (17.2) 

using the triplet of parameters {a, ß, Çï), known as the 
canonical parameters. The advantage of this canonical 
parameterisation is its direct interpretation in terms of con- 
ditional independence. If any two variables do not occur 
together in any term of expression (17.2), then they are 
conditionally independent given the remaining variables 
(Lauritzen & Wermuth 1989), a property which forms the 
basis of the new technique. Edwards (1990) replaces each of 
the parameters {a, ß, Çl} by a hierarchical linear expansion 
in terms of the discrete variables y. Graphical modelling 
then involves setting groups of these expanded parameters 
to zero and testing if this is reasonable. Each imposed con- 
straint can be interpreted as the conditional independence 
of two variables given the remainder. Thus the qualitative 
interpretation of graphical modelling is straightforward and 
easily understandable by non-statisticians. The technique 
can be regarded as examining associations between vari- 
ables to see whether they can be explained by the remaining 
variables, a common investigative objective in many fields. 
In quantitative terms, however, interpretation is not always 
so easy. With variables of mixed type it is far from clear 
what the estimated values of the canonical parameters mean 
(apart from those set to zero), or what implications they have 
in terms of the more standard moment parameterisation. 

17.2.2   Conditional independence graphs 

As described so far graphical modelling might be regarded 
as merely an extension of log-linear modelling to include 
continuous variables. In fact it is the introduction of con- 
ditional independence graphs as a means of model repre- 
sentation that gives the techniques both its name and its 
wide applicability. Mathematically a graph consists of two 
components, a set of nodes or vertices representing vari- 
ables and a set of edges connecting nodes and representing 
association. More precisely the absence of an edge between 
two variables implies that the variables are conditionally 
independent given the remainder. Fig. 17.1a shows a pos- 
sible conditional independence graph for a model with four 
variables x, y, z and w. 

Of the six possible edges in this gr^h three, representing 
different conditional independencies, are missing. Depend- 
ing on the variable types these may be interprétable in terms 
of standard statistics. Thus for continuous variables the 
lack of an edge connecting x and z implies that the partial 
correlation coefficient of x and z given y and w is zero. 
Different symbols are commonly used for nodes of different 
types, circles for continuous variables and filled in circles 
or dots for discrete variables. 

The most important tool for interpreting such indepen- 
dence graphs is the separation property. Two variables 
or sets of variables in a graph are said to be separated 
by a third set if every path between the two sets passes 
through the third. The separation property states that sets of 
variables in a graph are conditionally independent given any 
separating set. Thus, in Fig. 17.1a, x and z are independent 
given either y and w together, or y alone. Use of a graph 
does more however than just represent the set of conditional 
independencies in a model. In the present case it 

• compactly represents the complete pattern of associ- 
ation among the variables, 

• highlights 3/ as the one crucial variable in analysing 
the interrelationships of the data, since x, z and w are 
all independent given y alone, and 

• gives the set of best predictors of each variable. So 
that regression with x, z or u; as dependent variable 
would require only j/ as an independent variable, 
whereas y dependent necessitates all of the other 
variables in the regression equation. 

The usefulness of the independence graph is most ap- 
parent for more complex data sets where it is invaluable 
in disentangling relationships, often suggesting meaningful 
clusters or chains of variables and highlighting variables 
which are directly associated. 

A further extension of graphical modelling theory is to the 
concept of a chain graph, where edges connecting variables 
may be arrows (Wermuth & Lauritzen 1990). This allows 
the incorporation, in the same diagram, of independence 
statements with different conditioning sets. The variables 
in such chain graphs can be divided into an ordered sequence 
of blocks, edges joining variables in different blocks being 
arrows while edges joining variables within the same block 
are lines. The direction of the arrows is restricted to be the 
same as the ordering of the blocks. Missing edges in chain 
graphs are interpreted as conditional independences given 
the other variables in the blocks containing and preceding 
the two unconnected variables. Thus in Fig. 17.1, b the 
variables form two blocks, one containing x and z, the other 
y and w. The variables x and z are marginally independent 
whereas the pairs x and w or z and w are conditionally 
indef)endent given y. 

The use of graphical chain models greatly extends the 
power and versatility of the technique. It also brings (we- 
ihet interpretational advantages. Recent work on graphical 
modelling at Lancaster (Scott 1990) has concentrated on 
two different aspects, the problem of missing data, and 
methods of fitting a particular form of two block model in 
which all the discrete variables are in the first block and all 
the continuous variables in the second. The advantage of 
this form of model is that the corresponding subset of CG 
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Figure 17.1: Graph examples 

distributions can be represented and fitted in terms closer to 
the moment parameterisation. Thus parameter and model 
interpretation is particularly easy for this class of models. 

17.2.3   Sottware 

At present the theory of graphical modelling has far out- 
stripped its practical implementation. The use of graphical 
chain models in their most general formulation promises 
to be a powerful data analysis tool, but efficient methods 
of fitting such models have still to be devised and cur- 
rent software is limited to restricted subsets of these more 
general models. The program MIM (Edwards 1987) was 
designed specifically to fit hierarchical interaction models 
(Edwards 1990), of which undirected graphical models are 
a subset. Unfortunately it is somewhat limited in scope, 
lacking, for example, any data transformation capability 
and not providing estimates of parameter standard errors. 
Packages such as Glim and Genstat can be used to fit limited 
forms of directed model through their regression facilities 
and the program EXA (Kreiner 1987) has been developed 
to fit chain models but for discrete data only. None of 
these allow for missing values. Software developed at 
Lancaster (the program ASP) can be used to fit the two 
stage models described in the previous section, although 
primarily intended for more traditional forms of analysis. 

17.3   Example 

The use of graphical modelling techniques is illustrated here 
by their application to a small archaeological data set. The 
data comprise thirteen measurements on a total of 121 hu- 
man skulls from two Egyptian cemeteries: Badari, a predy- 
nastic site from Upper Egypt, and Sedment, a IXth Dynasty 
site from Middle Egypt. The data were originally published 
by Stoessiger (1927) and Woo (1930) and the variables used 
here are a selection from over seventy recorded for each 
collection. Only skulls from adult individuals have been 
included. Apart from sex differences the data show little 
evidence of grouping within collections. They therefore 
make useful homogeneous collections for experiments with 
statistical methods. All the skulls had been sexed for the 
original publications, although 27 males and 21 females 
were marked as questionable. Further examination by one 
of the authors for a previous study (Hillson 1978,1985) con- 
firmed the majority of the original decisions but reclassified 
five of the questionable female skulls from Sedment as male. 

For the purposes of this paper, however, these 48 skulls are 
treated as being of unknown sex. 

Table 17.1 lists the variables used, together with the num- 
ber of values missing for each. For the continuous variables 
this ranges from 0% to almost 20% with an average of 5%. 
Even if sex were always known, over 30% of the cases 
would be incomplete. When sex is included this proportion 
rises to almost 60%. Apart from the missing information, 
however, this can be regarded statistically as a 'nice' dataset 
with no apparent peculiarities. 

Table 17.2 shows the correlation matrix of the fifteen 
variables with the non-significant values underlined. Not 
unexpectedly with data of this type, the majority of the 
values are strongly significant. There is some indication 
that a number of the continuous variables do not vary from 
site to site but apart from this it is difficult to know exactly 
how to interpret the table. 

As with other modelling procedures, the application of 
graphical modelling involves searching for parsimonious 
models; in this case by dropping or adding edges to the 
current graph. Edge type, whether directed or undirected, is 
not alterable by the search procedure but is fixed a priori by 
the initial specification of a block structure for the variables. 
Thus model comparison is always within a given structure. 
Sometimes this structure is determined by knowledge of 
the physical situation giving rise to the data. More often 
it is a matter of choice, and the wide variety of available 
models means that many models may fit equally well. For 
the present data the two block model described in section 
17.2.2 was prefered for ease of parameter interpretation. 

Tables 17.3 and 17.4 give the fitted values for the final 
model, separated into interaction and 'other' parameter sets. 
The entries in these tables can be interpreted in the same way 
as standard regression output. In particular the ratio of each 
parameter estimate to its standard error assesses significance 
and is used in the modelling process to decide which edges 
to drop from the current model. Fig. 17.2 shows the corre- 
sponding graph. Although at first sight this appears some- 
what confusing, it actually conveys a considerable amount 
of information about the data structure. This is clarified by 
Fig. 17.3 which is obtained from Fig. 17.2 by omitting the 
discrete variables, sex and site, and all lines connected to 
them. Thus Fig. 17.3 shows the association graph of the 
continuous variables within each combination of sex and 
site. It is made up of four separate groups of variables, 
the variables comprising each of these being independent 
of variables in other groups. Furthermore each group can 
be associated with a particular aspect of skull morphology. 
The first is largely made up of variables measuring overall 
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Variable Label Missing values 
No. % 

maximum cranial length L 0 0.0 
maximum breadth B 1 0.8 
basibregmatic height H' 4 3.3 
upper facial height G*H 3 2.4 
bimaxillary breadth GB 7 5.8 
basialveolar length GL 5 4.1 
nasal height NH' 3 2.4 
nasal breadth NB 2 1.7 
bidacryonic chord DC 16 13.2 
palatal length G-1 13 10.7 
palatal breadth G2 22 18.2 
orbital breadth O'l 11 9.1 
orbital height 02 0 0.0 
sex SEX 48 39.7 
site SITE 0 0.0 

Table 17.1: Variables used in the study 

Sex 1 
Site 1 1 
L .7 -.2 1 
B .5 .5 .3 1 
H' .7 .3 .5 .5 1 
G'H .5 .4 .4 .4 .5 1 
GB .6 :A .5 .2 .5 .4 1 
GL .5 -.1 .5 J. .3 .3 .6 1 
NH' .5 .5 .4 .5 .5 .7 .4 .3 1 
NB .4 -.1 .4 ä .2 .2 .5 .4 .2 1 
DC .4 -.3 .4 A 2 .2 .4 .4 .1 .4 1 
G'l .4 :A .4 A .3 .4 .5 .8 .3 .3 .3 1 
G2 .4 A .2 .3 .4 .3 .4 .4 .4 .2 2 .4 1 
O'l .5 .1 .6 .4 .5 .5 .5 .4 .5 .4 Q. .3 .3 1 
02 .4 .3 .2 .4 .4 .4 .3 £ .6 J. zl .0 .2 .5 1 

Sex Site L B H' G'H GB GL NH' NB DC G'l G2 O'l 02 

Table 17.2: Variable correlation matrix 

skull size, the second of variables measuring facial height, 
and the last of variables describing the skull base. 

The main points of interest shown by the full gr^h can 
therefore be summarised as follows 

1. Since sex and site are not directly connected, the 
relative proportions of the two sexes are the same for 
both sites. 

2. The continuous measurements fall naturally into 
groups representing different aspects of skull size and 
shape, each group being independent of the others. 

3. All of these groups show site differences and sexual 
dimorphism although this is mediated through differ- 
ent variables. 

17.4   Concluding remarks 

The importance of graphical models to both archaeology 
and statistics is that they provide a means of analysis in 
situations, such as those involving mixed data types, which 
were previously intractable. The simple graphical charac- 
terisation of such models is visually appealing and highly 
informative: the graph highlights those variables that are 

directly associated, may suggest meaningful clusters or 
chains of variables and identifies the set of best predictors of 
any particular variable. They also complement, rather than 
replace, more standard techniques, acting as an exploratory 
tool which can reduce complex data sets to manageable 
proportions and indicating fiuther suitable forms of analysis. 

The two main problems with applying the technique to 
archaeological data are the occivance of missing values and 
the large numbers of variables involved. The first of these 
difficulties has now been solved for some forms of model 
(Scott 1990), as shown by the analysis presented here. The 
second problem is mainly one of graph presentation and 
interpretation, which can be difficult for large numbers 
of variables. Some progress has been made in this area 
(Whittaker et al. 1988) and work is still continuing. 

Acknowledgement 

This work was performed under grant GR/E 94951 from the 
SERC 

114 



17. GRAPHICAL MODELLING OF ARCHAEOLOGICAL DATA 

Estimate        S.E. 
-1.453    0.9999 

E/SE.    Parameter 
-1.4529    Constant 

-0.1359 
0.2492 

4.638 
3.488 
1.883 
1.069 
1.331 
3.165 
3.441 
6.224 
5.906 

0.5956 
6.591 
1.350 
4.877 

Main Effects 
0.2635    -0.5159 
0.2607 

1.658 
1.039 

0.8743 
0.7318 
0.8061 

1.089 
1.279 
2.086 
1.146 
1.252 
2.173 
1.928 
1.127 

0.9560 
2.7967 
3.3552 
2.1546 
1.4610 
1.6521 
2.9058 
2.6906 
2.9827 
5.1544 
0.4755 
3.0336 
0.7003 
4.3238 

SEX 
SITE 
L 
B 
H* 
G'H 
GB 
GL 
NH' 
NB 
DC 
G'l 
G2 
O'l 
02 

Inverse Variance Parameters 
0.067261 
0.051827 
0.048252 
0.075222 
0.073159 
0.120159 
0.257611 
0.467055 
0.260354 
0.257775 
0.249182 
0.279585 
0.305647 

0.011000 
0.010402 
0.007894 
0.004687 
0.013764 
0.019700 
0.045574 
0.083100 
0.049048 
0.042549 
0.052339 
0.039095 
0.041708 

6.1145 
4.9822 
6.1124 
16.0484 
5.3151 
6.0993 
5.6525 
5.6203 
5.3080 
6.0582 
4.7608 
7.1513 
7.3281 

L 
B 
H' 
G'H 
GB 
GL 
NH' 
NB 
DC 
G'l 
G2 
O'l 
02 

Table 17.3: Fitted parameters — main effects and inverse variances 
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Estimate S.E. E/S.E. Parameter 
-0.3507 0.1048 -3.3448 L.SEX 
-0.3377 0.09471 -3.5653 L.SITE 
0.3363 0.1042 3.2244 B.SITE 
0.2197 0.06900 3.1844 H'.SITE 

-0.2178 0.08490 -2.5658 GL.SEX 
-0.4299 0.1316 -3.2666 NH'.SEX 
0.4495 0.1181 3.8065 NHT.SrrH(2) 

-0.3855 0.1970 -1.9565 NB.SEX 
-0.4971 0.2368 -2.0995 DC.SEX 
-0.3563 
-0.3270 
0.3771 

0.1539 
0.1843 
0.1369 

-2.3152 
-1.7741 
2.7543 

DC SITF 
po oT-v             Iterations    Likelihood     D.F.    Deviance    D.F. 
Q2SJTE                        38      -3813.177     1630       104.786       84 

-0.01814 0.005503 -3.2966 B.L 
-0.02479 0.006384 -3.8827 H'.L 
-0.03017 0.01010 -2.9862 GL.GB 
-0.08319 0.01738 -4.7861 NH'.G'H 
-0.05717 0.02006 -2.8495 NB.GB 

-0.1189 0.02301 -5.1662 G'l.GL 
-0.03136 0.01841 -1.7034 G2.GB 
-0.05253 0.01392 -3.7730 O'l.L 

-0.1034 0.02828 -3.6573 02.NH' 

Table 17.4: Fitted parameters — interactions 

SITE 

o'l O OG'I 

SEX 

Figure 17.2: Graph of filled model for skull data 
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Figure 17.3: Conditional graph of continuous variables 
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