Transforming Diversity into Uniformity — Experiments with
Meta-structures for Database Recording

Torsten Madsen

University of Aarhus, Dept. of Archaeology

Moesgaard 8270 Hojbjerg, Denmark

e-mail: farktm@moes.hum.aau.dk

1. Introduction

In the sixties a high-spirited optimism spread throughout many
parts of archaeology. The advent of the digital computer and the
promise of storage and handling of information on a grand scale
had an impact on archaeologists. As recalled by Scholz and Chenall
the prospect was to create “A framework or model for recording
any site, site feature, artefact, or archaeological situation, in the
form of a highly structured, though expandable, code for the de-
scriptive attributes of function, form, material, technique of manu-
facture, surface treatment, and design” (Scholz and Chenhall
1976:92).

However, the optimism did not last for very long. In the mid sev-
enties Scholz and Chenall noted “that a generalised data bank is
not very useful for research purposes”. Moreover it seems evi-
dent that a preliminary description of data is necessary to formu-
late ideas concerning the choice of variables, which need to be
observed and scaled for any specific purpose. The time to record
data on the computer would appear to be only after this prelimi-
nary descriptive step - i.e., when actual procedures and variables
have been defined for testing specific hypotheses. Data catego-
ries for observation, and conventions for recording data cannot
be chosen independently of problem orientation” (Scholtz and
Chenhall 1976:92).

The lesson learned by then was that there is no path leading to a
unified description of archaeological materials. Descriptions are
bound to particular research problems, and as these are ever chang-
ing, so will descriptions. Over the last 25 years the interest for
databases in archaeological research has been marginal. Many
researchers have created specialised databases for recording par-
ticular materials. As soon as the results of the research have been
published all interest in the databases and their content is lost.

On the other hand, administrative bodies associated with archae-
ology have systematically tried to develop the use of databases
over the last 30 years. Their answer to the Tower of Babel prob-
lem of database recordings has been - standardisation. If only we
can agree to the same description system, there will be no prob-
lem at all, they argue. The administrators have increasingly been
able to agree, and increasingly lost contact with the realities of
research.

On previous occasions | have argued that standardisation of con-
tent is a non-issue in archaeological research (Madsen 1998,
1999a). In the years to come we may find an increase in large-
scale standardised and centralised administrative databases, but
at the same time we will find an explosion in small local databases
with their own unique structure serving the research efforts of
individuals, projects or small organisations. Wherever research is
carried out there will be a need for individually designed record-

101

ing systems that will contain the base material for this research.
The content of these databases, however, are in grave danger of
being lost. As soon as the tasks for which they are created have
been accomplished, they merge into oblivion.

One possible remedy for this inherent anarchy in data recording
and consequent loss of data is to design a database structure that
will literally encompass all other structures. A database designed
in such a way that it does not represent any particular part of real-
ity, but rather represents the way we model reality for the purpose
of database recording using, for example entity-relationship mod-
elling. What we are looking for is a meta-structure for database
recording. One benefit of such a database is that accessing data
can always happen through the same application interface no matter
what particular data structure is actually at hand, and it will thus
be infinitely easier for users to access data. Furthermore, time
could be invested in creating efficient and powerful ways of search-
ing and presenting data, because the investment would not apply
to just one database instance, but to all instances.

Over the last three years | have experimented with a system called
GUARD (the name possibly an acronym for General Utility Ar-
chaeological Recording Database). Its background lies in the IDEA
project from the mid-nineties (Andresen and Madsen 1992, 19964,
1996b). This project, carried out together with Jens Andresen,
was aimed at creating a flexible database solution to excavation
recording. By the end of the project, which was partly a success,
we used the experiences gained to outline the principles for a meta-
structure for database recording. Although the design has been
modified considerably from what was originally conceived, it is
these principles that | have used now to implement a working
system.

2. The meta-structure design

The meta-structure | have chosen is not very complicated, but as
the level of abstraction is high it may not be easy to grasp how it
works at the first glimpse. However, if you keep in mind that what
is implemented is more or less the entity-relationship model, it is
not all that difficult. | have used six basic building blocks named
Entity types, Classes, Entities, Attributes, Entity Attribute Values
and Relationship Attribute Values. These are the entity types of
the meta-structure (figure 1).

The reason for including Classes as a separate entity type may not
be self-evident and has in fact caused much debate between Jens
Andresen and I. Why separate Classes from Entity Types? For
instance, if you take artefacts, these will surely constitute a basic
Entity Type in any specialist’s database aimed at artefact record-
ing. However, the artefacts will also be qualified according to
elaborate class-hierarchies, and different classes are likely to have

Relationship Attribute Values

on Attributes/
(0, n) ; ©.n ; ;
Attributes Relationship Types
Classes/ 1,1
Attributes (0, n) '
|
0, 0, ificati
(0. n) | ©.n) Classes Classification
(0, n)
11 |
0,
Classes/ ©.m (0,n)
Entiti ©,n) 0,n)
ntities (@ n) |
i Entity Type
Entity Types Relationships
(o, n)l
©.n) ©,n)
(1, 1)
11 (0,n)
(1, 1) |
Entity Attribute Values Entities Relationships
0, n)

Figure 1: Entity-relationship model for GUARD.

different descriptive attributes. According to the standard data-
base theory entities with different attributes should also be of dif-
ferent entity types. Ultimately, this would mean that each class
could end up as its own entity type with a separate unique identi-
fication number, which of course would not agree with the way
we normally use classifications.

To counter this problem Classes has been introduced as a kind of
entity type that does not posses identification numbers — well it
does, but the user is kept unaware. Otherwise it has all the quali-
ties of entity types. For practical reasons it has become Classes
and not Entity Types that have attributes associated with them.
Thus any instance of Entity Types has at least one class called the
root. If attributes are to be associated directly with an instance of
Entity Types this will happen through its root class. In addition,
any number of classes may be associated with an instance of En-
tity Types and each class may have its own set of attributes. Obvi-
ously, a relationship exists between Entity Types and Classes so
that an instance of Classes can only exist if linked to an instance
of Entity Types, and an instance of Entity Types must have at least
one instance of Classes associated with it. Further, a relationship
exists between Entity Types and Entities so that an instance of
Entities can only exist if linked to an instance of Entity types.

Six named relationship types tie the six basic entity types of
GUARD together. Three of these - Entity Type Relationships, Clas-
sification and Entity Relationships - are used to create an internal
structure for Entity Types, Classes and Entities respectively, with
a many to many cardinality between their entities.

The other three relationship types named Classes/Entities, Classes/
Attributes and Attributes/Relationship Types are used to tie differ-

ent entity types together with a many to many cardinality. Thus
Classes/Entities makes it possible for an instance of Entities to be
associated with many instances of Classes, and an instance of
Classes to be associated with many instances of Entities, while
Classes/Attributes makes it possible for an instance of Attributes
to be associated with many instances of Classes, and an instance
of Classes to be associated with many instances of Attributes.
Together these two are then linked to the Entity Attribute Values
entity type making it possible to assign a value to a unique combi-
nation of Entities, Entity Types, Classes and Attributes. The rela-
tionship type Attributes/Relationship Types makes it possible for
an instance of Attributes to be associated with many instances of
Entity Type Relationships and an instance of Entity Type Rela-
tionships to be associated with many instances of Attributes. At-
tributes/Relationship Types together with Entity Relationships are
linked to the Relationship Attribute Values entity type making it
possible to assign a value to a unique combination of Attributes,
Entity Type Relationships and Entity Relationships.

The Entity-Relationship diagram of GUARD is thus fairly straight-
forward, and the same is true if we look at the table structure
(figure 2). The only slight complication concerns the Entity At-
tribute Values and the Relationship Attribute Values. In both cases
it is not just one table that is needed but as many tables as there
are different data types involved. Each record in a table stores one
value and that value is of one type only for that specific table.
Thus, there are separate tables for text, double, integer, memo,
etc.

Many questions probably spring to mind when confronted with a
structure like this. Will it work at all? And if it works will it be

102

Attributes Attributes/Relationship types
Attribute Name — Entity Type ID2 ~ p——m -
Data Type -IJ_» Entity Type ID1 i_R_—A_tErEu_thalll_Je_ i
Classes/Attributes Measurement Unit —PR-Attribute Name + Entity ID1 —
E-Attribute Name Multiple Choice Role | Entity ID2 le—
Class ID Entity or Relationship Attribute Alias pIEntity Type ID2 *—
Attribute Alias IEntity Type ID1 !4—
}iR-Attribute Name i
Classes Classification *Role <
Class ID ——T]{Class ID1 valve I
[| Entity Type ID -|--> Class ID2
Class Name Father-Son
Classes/Entities Entity types Entity Type Relationships
Class ID € | —JEntity Type ID I PlEntity Type ID1
Entity Type ID jd— Entity Type Name —RlEntity Type ID2 J Roles
Entity ID < Role 4 Role
Cardinality Adverse role :-I
Participation
I'E-Attribute Value | Entities
Entity D - I P-Enity ID
:Enti[y Type ID ! P> Entity Type ID Entity Relationships
Class ID I Entity Name Role
J:E-Attribute Name } Entity ID Ly {Entity Type ID2
Ivale .. _I | Ly Entity Type ID1
Entity ID1
Entity ID2

Figure 2: The central table structure of GUARD. Fields in primary keys are underscored. Tables drawn with dotted lines indicate a
number of identical tables each holding values of specific data types.

painstakingly slow? Is it possible to create an intelligible user in-
terface to this spaghetti of cross-referenced ID-numbers? Can you
efficiently access and operate data, once it has been entered?

First of all it works. Surprisingly well, actually. It would be fool-
hardy to claim that | can depict any database design in GUARD,
but I have tried it out on many different designs, and so far | have
had no problems. In fact, database designs in archaeology are fairly
simple, and | believe that the ones that will not fit will be few and
far between.

Secondly, is it slow? In the beginning | feared this very much, but
it does not seem to be the case. The potential problem stems from
the way that every bit of information is atomised across many
tables, and at the same time being overloaded with identification
numbers. The latter surely has its price, as the size of any given
database will be much larger in GUARD than in its original form.
We are talking of a factor 3 or 4 in size. However, the numerous
identity numbers, which are all indexed, help to maintain speed in
searches. In fact the majority of searches associated with the user
interface are done on individual tables and all searches are on
indexed fields. The result is that the response time does not seem
to grow significantly with the growing amounts of data. | have
had the complete Danish SMR loaded on to GUARD taking up
some 600 MB of space. In the Entities table there were more than
one million entries, yet the result was merely a slight decrease in
response time. Slowness, where it appears, is foremost related to
the user interface itself and not to the table structure.

3. Design of the user interface

The user interface is the most complex part of GUARD. It is self
evident that the abstraction level of the table structure does not

103

allow forms to be drawn up in the usual straightforward way. It is
necessary to write fairly extensive pieces of code to make it work.
This is where the time investment in GUARD lies, but then of
course the interface will work with any database design imple-
mented.

Being a meta-structure GUARD has no inherent recording struc-
ture. A new database cannot record data before it has been struc-
tured. The structuring elements are themselves data, and they have
to be entered before “real data” can be recorded. Hence the user
interface has a number of forms through which it is possible to
define entity types, relationship types, class structures, variables,
lookup lists as well as setting links between variables and classes.
To define a recording database in this way is very challenging and
instructive. You have to be explicit in all your choices.

The main entry form presents you with the basic elements of
GUARD in a straightforward way (figure 3). In the upper left-
hand control the entity types are found. You only see those entity
type relationships that have an existence dependency between them
- shown as hierarchies in the control. The example in figure 3 is
the Danish SMR with a county (“Amt™), district (Herred), parish
(“Sogn™) and site number (“SB Nummer”) breakdown, and vari-
ous entity types related to the site number. At present you cannot
see if a relationship type exists between say “event” and “objects”,
but if it has been defined you can open a form through which you
can link instances of “event” with instances of “objects” using the
relationship type.

In the lower left-hand control the entities are found. When we
have a dependency structure as the one just described, we will
also have dependency among the entities, where a number of en-
tities will be the offspring of one entity of the independent entity
type. Selecting an entity type thus sets a selection path only. To

GUARD 1.2 - Daka Entry

Classes of current entity type

Variahle name

| Variabbe Value

Mumerc | | Cocedinates Nominal 1 |m,-|p|

ol B §Elroci]
=) At
Hesred
Sogn
= 5B Nummer
Begiverhed
iy
[- u rednings:
Bustration, Fredningssiatus
Aralyse
Epriery
B Aesaimenna =
Emtities for Entity Type
SH Husmarene il
B

0150102 5072
O 150102 5073

I§ Shaw entry Torm

Figure 3: The main form of GUARD to access the data
structure for data entry and editing.

reach a particular entity of the selected entity type we also have to
traverse the hierarchical structure of the entities. Ideally this can
be done in a tree view control as the one used for the entity types,
but since the number of entities typically will run into thousands,
the time it will take to build up the content of this control would
be devastating. Instead a list view control has been chosen, where
you start at the bottom of the entity type selection path, and from
where you can select your way through the entity hierarchy by
double clicking an entity, which will give you access to the next
level, etc.

In the centre of the form the class structure of the current entity
type is shown. In the example only the root class is present, but
there might have been an extended hierarchy class present. In the
rightmost control the attributes (here called variables) of the cur-
rent class is shown, and if values have been recorded for the at-
tributes these are shown as well.

You can enter and edit data in a form based on the attribute set-
tings for a particular class (figure 4). The input form is highly
standardised, and may appear rather primitive in its appearance.
The problem is that there is no way of knowing in advance, what
variables, and thus what data entry fields are needed, not only
from database application to database application, but indeed from
entity type to entity type, and from class to class. The solution is
to use a form containing a large number of data entry fields re-
lated to the different data types available, organised into pages by
way of a tab control. Whenever a class is selected the proper
number and types of entry fields are activated, and their record
sources are set to the proper slots in the database, while all unused
fields and unused pages of the control are hidden. This all-enclos-
ing data entry form works quite well despite its appearance.

From the main form you may call up a form in which to set entity
relationships between the current entities and other entities (fig-
ure 5). In the actual example we are about to set this is repre-
sented by the institution responsible for recording the position of
the current site. We have chosen the entity type “Institution”, we
have chosen the action or role “has been marked by” and we can
now choose the institution and link it. If there are attributes de-
fined for the entity type these will appear in the lower right-hand
control of the form, where they can be edited. The entity relation-
ships that may be created between entity types can be of one to
one, one to many or many to many cardinality. Naturally, relation-
ship types within individual entity types may also be established.

104

UM Zones (B9 320
Oan

1:25.000 korthdad: 011314 3 5V e =l
001314 3 50 Grlling
E1314 4 Ny Brabrand =
31314 4 N Arhus -
I~ abiint . | Ll—l
1:20.000 korthéad: Eun 2512 =l
MB 2513
IMA 2514 =
Owme s1s =
o |
CICet danzke Ky sELeT a
O 0et wongelige Dibliotek, Pligtafeveringskonoret -
A et wulturhistariske Centrabregiser
‘DDH nationalhistoriske muzeum pl Fraderikshorg =
Tttt | Ll_l
B 2551 at o 1 il
Dl tsat af prevatpersan. B kortrallerst
s at ud fra trvkde punkler B3 land-fsakor
Dl Cetauttsrd -
S | Ll—l

[roai]

Figure 4: Pop-up form for data entry and editing values for
entity variables.

Thus an intelligible and usable interface can be created. The same
applies to search procedures whether for tabular output or for re-
ports. Various experiments have been carried out and a standard-
ised user interface for data search is currently being developed. It
is too early, however, to say exactly how this interface will be
organised.

4. Prospects of GUARD

GUARD may be used directly as a “production” database, or it
may be used as a repository for already existing databases. My
experience so far shows that it is fairly easy to migrate data from
an existing database into GUARD. To do so you must be familiar,
however, with the table structure in GUARD, and most of the
migration process has to be run from VBA code modules. It will
be possible to write some standard procedures and functions, but
in each specific case it will be necessary to stitch them together
according to the specific structure of the database we wish to im-
port. Most standard research databases can be migrated with less
than a day’s work, which is not very much if you consider the
benefits gained from the common table structure. In the future it
will be easier for the curators of these databases, and it will also
be easier for future users to access the data, when all data-sets are
accessed in exactly the same manner irrespective of their struc-
ture.

GUARD may thus be well suited for archival purposes, but the
reasoning behind its development never was archival purposes.
Basically, it was to counter the tendencies to dictate data stand-
ards in archaeology. | have previously argued that we may seek
standards of form, which is exactly what GUARD does, but never
standards of content (Madsen 1998, 1999a). We need our record-
ing systems to vary according to the issues and problems. Re-
search carried out according to predetermined common standards
of what should be recorded and how it should be recorded will
soon cease to be research. It will be mere reproduction.

Thus GUARD is aimed at making archaeological recordings flex-
ible and versatile. A system that will allow users to create power-
ful database solutions with little effort and allow them to redesign
at least part of the recording structure on the fly, as recordings
progress, has great research potentials. At the same time, as the

CAARD 1.7 - Frlity relationshigs and vahies of sssocisted variabies

ble to 150102 8 =] | Enlities irked bo 150102 5676

andsby- OFL
n

Fthution D
< | Cet national

Sebect pasend for entity of nesd entity bpe ek

Role of 150102 5676 Fote of Linked entities
Erafsatal Har atsat

Fu
Fyns Kungtmuseum - FEM =)
4] T 4]

I Show antry tarm

12
Il

Entity type and antity linked from 5B Mummar: 150102 SbT8

Figure 5: Pop-up form for setting entity relationship links, and
to enter and edit associated relationship type variables.

structure of the database remains the same regardless of the struc-
ture and content of the recordings, we will hopefully be able to
shut the mouths of those who claim that the only way to achieve
compatibility is through conformity.

In developing GUARD for research purposes, special attention
was paid to the potentials of using proper classification systems
in connection with entity types. In most current applications, clas-
sification is a matter of choosing one class from a list of alterna-
tives. Thus an entity can have a class assigned to it from a set of
classes that are all at the same level. This is obviously not satis-
factory. In GUARD a classification can consist of a hierarchical
tree-structure with one root and as many branches and levels as
needed. Classifications are thus of a classic monothetic divisive
nature. At the moment | stick to this because, whereas the table
structure allows polythetic classifications, | have so far found no
satisfactory way to implement a polythetic structure in the user
interface.

Within any classification tree you may choose to assign only one
class to an entity, or as many classes as you wish. Further, you
may operate with as many parallel classification trees as you wish.
When, in the design phase, you assign an attribute to a class, all
classes in the branches of the tree structure above it will automati-
cally inherit this attribute. In this way it is ensured that all more
specialised classes will hold the basic attributes of their parent
class apart from what ever more specialised attributes they may
posses themselves. If you do not want a class to share attributes
with its parent class you may of course remove the attributes from
it.

Classifications are operational. That is, when searching for data
you may use the position in the classification tree as a parameter
in you searches. You can specify that you want all of this class
only, or all of this class and all classes lying in branches above it
in the classification tree.

Another area that | have given some consideration to is the possi-
bility of using the Entity Type Relationship and Entity Relation-
ships to depict complex relationships. It is mostly relationships
between entities of the same entity type that are of interest. Ar-
chaeology is full of such relationships. One example could be
contexts with contexts in an archaeological excavation leading to
statigraphy and the use of Harris Matrices to solve the complexity
of this. Another example could be the fitting together of artefacts

105

like pottery and flints and the use of graphs to elucidate the refit-
ting patterns. A third example could be the association of decora-
tive elements with each other leading to composition patterns.
Recently I have used GUARD in my work with the latter prob-
lem, and | found a clear potential for systematic studies within an
area that traditionally has been considered very difficult to handle
(Madsen 1999b).

GUARD is a general utility system. Its primary aim is to enhance
the quality of descriptive practice in archaeology. It offers a tool
that gives the researcher a better chance of creating a description
and recording system in accordance with the complexity of the
problems at hand. The database solution attained, however, is one
of a far greater scope than just providing flexible recording. The
use of a meta-structure design points towards a standardisation of
form in recording systems, detached from content, and hence it
points towards the area of archival standards. | do not intend to
suggest that GUARD is the solution, but I think it is an important
step in the direction we need to take if we do not wish for every-
thing to end up in either rigid conformity dictated by administra-
tors on the one hand, or chaotic ad hoc use of databases on a
primitive level and with a severe loss of information on the other.

References

ANDRESEN, J. and MADSEN, T., 1992. Data Structures for
Excavation Recording. A Case of complex Information
Management. In Larsen, C.U. (ed.), Sites and Monuments.
National Archaeological Records. The National Museum
of Denmark: 49-67

ANDRESEN, J. and MADSEN, T., 1996a. IDEA - the Integrated
Database for Excavation Analysis. In Kamermans, H. and
Fennema, K. (eds.), Interfacing the Past. Computer Ap-
plications and Quantitative Methods in Archaeology
CAA95. Analecta Praehistorica Leidensia 28, Leiden: 3-
14,

ANDRESEN, J. and MADSEN, T., 1996b. Dynamic classifica-
tion and description in the IDEA. 111 International Sympo-
sium on Computing and Archaeology. Archeologia e
Calcolatori 7: 591-602.

MADSEN, T., 1998. Digitaliseret registrering af udgravninger —
er der brug for datastandarder og falles strategier? Hansen,
H.J. and @degaard, V. (ed.), De Nordiske Museer og
Informationsteknologien — rapport fra en konference 1.-
3- december 1996. TemaNord 1998: 513, Nordisk
Ministerrad, Kebenhavn: 167-177.

MADSEN, T., 1999a. Digital recording of excavations: Do we
need data standards and common strategies? Hansen, H.J.
and Quine, G. (eds.), Our Fragile Heritage. Documenting
the Past for the Future. Kebenhavn: 131-138.

MADSEN, T., 1999b. Coping with Complexity. Towards a for-
malised methodology of contextual archaeology.
Archeologia e Calcolatori 10, 1999: 125-144

SCHOLTZ, S., CHENHALL, R.G., 1976. Archaeological Data
Banks in Theory and Practice. American Antiquity, Vol 41,
no 1: 89-96.

