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19.1   Introduction 

The aim of this paper is to present a statistical technique 
developed to meet a need in the project 'Statistical Analysis 
of Ceramic Assemblages' (Orton & lyers 1989), which now 
forms part of the PIE-SUCE package (Tyers & Orton, this 
volume). However, it seems to be of more general use, and 
is therefore presented separately here. 

The project has led to the representation of ceramic as- 
semblages as two-way tables of pseudo-counts (real num- 
bers that can be treated as integers for statistical analysis). 
When applied to ceramic data these numbers are called PIES 
(pottery information equivalents). Comparison of several 
assemblages becomes the analysis of a three-way table, the 
variables usually (but not necessarily) being context, fabric 
and form, using established methods of quasi-log-linear 
analysis (Bishop ef a/ 1975, pp. 177-228). Initial attempts 
at analysis gave suspiciously good fits to an absurdly simple 
model (model 1 = independence of context, fabricand form), 
even when interactions were visually apparent in the data. 
Inspection of the marginal tables showed the source of the 
problem: many cells with small expected values contributed 
very little to the x^ or G^ statistic, but boosted the degrees 
of freedom considerably. Such tables, which are commonly 
associated with ceramic assemblages, are too sparse for suc- 
cessful analysis as they stand. The opposite potential danger 
was also apparent in these tables; small expected values can 
give erratic and misleading goodness-of-fit statistics. 

This is not of course a new result. Conventional theory 
sets a general minimum 'expected' value of 5 per cell with 
an absolute minimum of 1 for the chi-squared test to be 
appropriate (Cochran 1954; Craddock and Flood (1970) 
suggest a limiting average value of around 1 in the case when 
the expected values are roughly equal). Two approaches 
seemed potentially useful: 

1. examination of the significance on individual cell 
values, 

2. rules for merging or deleting rows and columns. 

19.2   Theory 

19.2.1    Individual values 

Since individual significant values can be diluted by a back- 
ground of non-significant values, we have to ask what is the 
critical value for a single cell, rather than all taken together 
as in the chi-squared test. This is discussed by (Bishop 
etal 1975,pp. 136-155),butnoneof their answers seems 
particularly satisfactory, and they say that there is no single 
critical value (Bishop et al 1975, p. 140). 

Having failed to find any theoretical criterion for the 
significance of individual values, we looked empirically 
at some 'random' two-way tables. These suggested that for 
tables larger than say 5 by 5, with an average cell value 
of 1, individual contributions to chi-squared of up to about 
8 could occur frequently enough with random data for the 
significance of any contributions less than 8 to be in doubt. 

This i^proach did not seem useful in practice, and was 
abandoned in favour of a systematic procedure for merging 
rows and/or columns. 

19.2.2 Merging rows and/or columns 

It was initially decided to adopt the criterion that, for a two- 
way table, all cells should have an expected value of at least 
1.0, and that merging of rows and columns should be carried 
out with this aim in view. As experience accumulated, it 
became evident that this criterion was not necessary at this 
stage, but was best left to the final quasi-log-linear analysis. 
It was decided simply to merge rows and columns until no 
further merges seemed statistically reasonable. 

19.2.3 An approach based on the chi-squared 
metric 

We define a distance between a pair of rows or of columns, 
based on the chi-squared metric, i.e. 

(19.1) 
This is the metric used in correspondence analysis 

(Greenacre 1984) and just as in correspondence analysis 
the rows and columns can be envisaged as points in the 
same space. We need two sets of rules — merging rules and 
stopping rules. 

Merging rules 
1. calculate the weighted distance between each pair of 

rows and each pair of columns (see section 19.2.6), 
i.e. 

d^x.-,,Xij./(a;i,. -fa;,;,.) (19.2) 

Find the smallest weighted distance between either a 
pair of rows or a pair of columns, 
check that the distance between them is not too great 
to allow them to be merged. This can be done by 
comparing the weighted distance with a chi-squared 
statistic at a chosen probability level. The number 
of degi'ees of freedom is one less than the number of 
non-zero columns (if the distance is between a pair 

121 



CUVE ORTON AND PAUL TYERS 

or rows) and vice versa. The derivation of this test is 
given in section 19.2.4. 

3. if this condition is satisfied, merge, with the following 
steps: 

(a) recalculate the data matrix, 
(b) recalculate the profiles, i.e. the values Xij/xi, 

andx.j/x.. 
(c) recalculate the pairwise distances between the 

rows and between the columns, noting that if 
we have merged two rows, only the distances 
between the new merged row and all oû\ei rows, 
and between all pairs of columns, have to be 
recalculated. Other distances are unchanged. 

Stopping rule 
The merging procedure slops when the weighted distances 
between any pair of candidates are too great for merging. 

Discussion 
As well as working well in practice, this approach has some 
useful theoretical properties, e.g. 

1. the overall chi-squared statistic is reduced by a rel- 
atively small amount at each step, subject to over- 
riding archaeological constraints. Although the re- 
duction at each stq) is the smallest possible, this 
seems not to be a global property. 

2. the ratio of the current value of chi-squared to the 
initial value is a measure of the fit of the merged 
data to the original dataset. It is in fact the ratio of 
inertia accounted for/total inertia, as encountered in 
correspondence analysis. 

This ^proach has general ^plications as a data- 
reduction technique. It could be used as a way of removing 
noise from data as a preliminary, or even an alternative, to 
correspondence analysis. It is here christened 'simultaneous 
reduction of dimension' (SRD). 

19.2.4   The   distance   between   two   rows   (or 
columns) as a chi-squared statistic 

We start from the geometrical result that the total inertia 
of the rows, i.e. ^^ Xi{ith distance from centroid)^ is a 
chi-squared statistic whose number of degrees of freedom 
is one less than the numbw of columns (Greenacre & Hastie 
1987). So for just two rows we have: 

x2=^x.-.<i2 = xi.d?-Hx2.di (19.3) 
i 

where rf, = ith distance to centroid and 

d(l,2) = di+d2 (19.4) 

and 

xi.di = X2.rf2, i.e. d2 = {xi./x2.)di (19.5) 

Substitute 19.5 in 19.3: 

X^ = xi.rf?+^2.(xi./x2.)V? = dl{xr.+xl/x2.) (19.6) 

Substitute 19.5 in 19.4: 

d = <i(l, 2) = di + {Xi./X2.)di = diixi. + X2.)/X2. 
(19.7) 

SO that di = dx2./(xi. -I- X2 ) Substitute 19.7 in 19.6: 

X^  = (dX2./{xi.+X2.))'{xi.+X2.)ixi,/X3.) = d^ Xl.X2./ixi.+X2.) 
(19.8) 

19.2.5   Pre-treatment of data matrices 

In interpreting the outcome of an SRD, we sometimes en- 
counter 'meaningless' mo'ges, in which a very small unit 
(row or column) merges with another across a long dis- 
tance simply because its low weight reduces its inertia (chi- 
squared) to an insignificant level. It seems likely that some 
units are so small that they must merge with some other 
unit. This leads to an inconsistency, in that the very small 
units survive because they must merge with something else, 
while larger (but still small) units may be deleted at the end 
of the process because they failed to merge with anything 
else. The merging of the very small units is often arbitrary 
and uninformative, and it seems better in principle to merge 
or delete them before carrying out SRD. 

The problem is to detect such units — i.e. how 'small' is 
'very small'? It seems reasonable to say that if a unit is so 
small that, whatever its actual profile, it could not possibly 
be significantiy different from the overall mean profile, it 
should be deleted or merged in advance. In practice this 
means that the program should delete it; if the us^ wishes 
to reinstate it he should m^^e it with anoth« unit for a 
second run. The critical value for the significant difference 
of any point of a given weight depends on the geometry of 
the chi-squared space, i.e. on the number of dimensions 
it and the mean profile (x.i, x.2, • • •, x.t). If we assume 
that the sp^K^ is spheroidal, i.e. all dimensions have equal 
weight in the mean profile, we can represent this profile as 

(l/k,l/k,...,l/k) 

and the worst-case profile as(l,0,0,...,0) without loss 
of generality. Then using equation 19.1 we have 

rf2      = (1 - l/*:)V(l/fc) + (l/fc)V(l/fc) + ••• + (l/fc)V(lA)- 
= k{{k-\)/kf) + {k-l){l/k), 
= (k-l)^/k + (k-l)/k=k- 1 

We note further that if the smallest weight in the mean 
profile is 1/rk, and the rest of the weight is distributed evenly, 
this result becomes 

d^ = rk-l 

From equation 19.2, the weighted distance 

= d^xi.x./(xi. -H x.) = d^/(l/xi. -f- l/x.) « xi.d^ 

when X   is 'large'. So 

Xl-i = (k - l)xi. 
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and the critical value is 

XI. = xl-Jik - i) 

at the required probability level. 
This simple approach assumes that the space is 

spheroidal, while in practice it is often very far from being 
so. Since it is the smallest weight in, for example, the mean 
row profile that determines the critical value for the weight 
of a row, the critical value for rows is likely to be distorted 
downwards by the column weights which we would wish 
to eliminate had we looked at columns first, and vice versa. 
In other words, the very small values of column weights 
tend to 'ptobect' the very small row weights, and vice versa. 
It therefwc seems reasonably to calculate the critical value 
for rows by omitting the columns which appear to be 'very 
small', and vice versa. 

An alternative approach is to look for weighted distances 
that are 'significantly small' as well as those that are 'sig- 
nificantly large', e.g. ones which are less than the 95% 
probability level. In other words, we look for pairs of 
rows (or columns) that are significantly closer than would 
be expected if they were really two samples from the same 
parent distribution. Since the matrix of weighted distances 
has k{k -1)/2 distinct entries, we can expect such a level to 
be exceeded occasionally, but repeated occurrences would 
indicate rows (or columns) whose total weight is ' too small'. 
For example, a row which is 'significantly similar' to two 
or more other rows might be considered 'too small', and 
deleted before SRD. However, such rules are difficult to 
implement, because they can involve arbitrary decisions 
when, for example, two rows are significantly similar to 
each other, and each to one other row. 

Comparison of these three approaches suggests that the 
first, simple, approach is roughly the union of the second 
and third. That is to say, any row or column which would 
be deleted under either the second approach or the third, is 
likely to be deleted under the first. We therefore recommend 
the use of the first rule, which has the benefit of being the 
simplest; the procedure is here called 'pruning'. 

19.2.6   Extending the approach to three dimen- 
sions 

SRD is a technique for use on two-way tables, while we are 
working on a three-way data structure (e.g. context, fabric, 
form). SRD can therefore work directly only on the marginal 
tables. It can be followed by examination of the following 
models: 

lA: <2x3>: independence of fabric and form in a reduced 
table, 

IB: <3xl> : independence of form and context in a re- 
duced table, 

IC: <lx2> : independence of context and fabric in a 
reduced table. 

The reduced tables will not in general have the same 
groupings of the three variables. For example, the groupings 
of contexts need not be the same under models IB and IC 
— different groupings may be appropriate under different 
circumstances. 

lb extend this approach to the three-way table we intro- 
duce the idea of a 'doubly-reduced' table, which is con- 
structed as follows: 

1. suppose we have reduced the fabric-by-form marginal 
table, i.e. we are worthing with model <2x3> (ex- 
actly analogous procedures hold for the other mod- 
els). 

2. we construct a new three-way table in which the rows 
are the fabric-by-form combinations and the columns 
are contexts. 

3. we then reduce this table by SRD, except that we 
allow only columns (i.e. context) merges. To allow 
row-meiges would destroy the two-way nature of the 
marginal table. 

We thus have three further models: 

IIA: <23><1> : independence of fabric-by-form and con- 
text in doubly-reduced table, 

IIB: <31x2>: independence of form-by-context and fab- 
ric in doubly-reduced table, 

IIC: <12x:3> : independence of context-by-fabric and 
form in doubly-reduced table. 

Once again, the reduced tables do not necessarily share the 
same groupings of the three variables. 

19.3   Examples 

19.3.1   A ceram ic assemblage 

As an illustration of the method, we used some data from 
Silchester phase 1 (Fulford 1987), consisting of the pie- 
values of the combinations of 22 fabrics and 31 forms found 
in that phase. This is too large a table to examine with any 
ease, and it is not presented here. We shall concentrate 
on showing the method; archaeological aspects and impli- 
cations will be discussed elsewhere (lyers & Orton, this 
volume). 

The initial pruning stage reduces the data matrix to 8 fab- 
rics by 12 forms. The fabric codes E, F, G, O and S refer to 
fine, flint-tempered, grog-tempered, organically-tempered 
and sand-tempered wares respectively; the numbers refer to 
variant fabrics. The form codes I, II, III, VI and XI refer to 
jars, bowls, dishes, beakers and lids respectively; numbers 
refer to subdivisions of these forms and un-numbered codes 
refer to examples that can only be classified in general terms. 
Some structure can be seen but the matrix is still too large 
to be taken in comfortably (table 19.1). 

The SRD procedure starts by merging forms which are 
very similar in terms of their fabrics — II and III, 14 and 
XI6 (a jar form and a lid, but both are only present in fabrics 
Fl and Gl), 12 and 112,1 and 16,116 and I4/XI6 — then the 
majority fabric Gl absorbs the related minor fabrics GFl 
and GOl and an apparently unrelated one (S2), and I/I6 
merges with II and with 12, leading to a matrix in which no 
further merges are possible (table 19.2). 

The main features of the data are readily ^parent from 
this table: the fabric E6 and the form II/III form a separable 
component, and beakers VI2 occur only in fabric G4. There 
is a marked association between form IIIl (a bowl form) 
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or rows) and vice versa. The derivation of this test is 
given in section 19.2.4. 

3. if this condition is satisfied, merge, with the following 
steps: 

(a) recalculate the data matrix, 
(b) recalculate it» profiles, i.e. the values Xij/xi. 

saAxj/x, 
(c) recalculate the pairwise distances between the 

rows and between the columns, noting that if 
we have merged two rows, only the distances 
between the new merged row and all othea' rows, 
and between all pairs of columns, have to be 
recalculated. Other distances are unchanged. 

Stopping rule 
The merging procedure stops when the weighted distances 
between any pair of candidates are too great for merging. 

Discussion 
As well as working well in practice, this approach has some 
useful theoretical propeaties, e.g. 

1. the overall chi-squared statistic is reduced by a rel- 
atively small amount at each step, subject to over- 
riding archaeological constraints. Although the re- 
duction at each step is the smallest possible, this 
seems not to be a global property. 

2. the ratio of the current value of chi-squared to the 
initial value is a measure of the fit of the merged 
data to the original dataset. It is in fact the ratio of 
inertia accounted for/total inertia, as encountered in 
correspondence analysis. 

This approach has general ^plications as a data- 
reduction technique. It could be used as a way of removing 
noise from data as a preliminary, or even an alternative, to 
correspondence analysis. It is here christened 'simultaneous 
reduction of dimension' (SRD). 

19.2.4   The   distance   between   two   rows   (or 
columns) as a chi-squared statistic 

We start from the geometrical result that the total inertia 
of the rows, i.e. X)t *• («t*> distance from centroid)^ is a 
chi-squared statistic whose number of degrees of freedom 
is one less than the number of columns (Greenacre & Hastie 
1987). So for just two rows we have: 

x'=Y^Xi.df = x,.d\ + X2A (19.3) 
i 

where d, = ith distance to centroid and 

d{\,2) = dx-¥d2 (19.4) 

and 

x\.di = x-x.d-i, i.e. d-i = (xi./x2.)rfi (19.5) 

Subsütute 19.5 in 19.3: 

X^ = Xl.d?-|-»2.(Xl./X2.)V? = d?(xi +X?./X2.)   (19.6) 

Substitute 19.5 in 19.4: 

d = d(l, 2) = di -f (xi./x2.)di = di(xi. -I- X2.)/x2. 
(19.7) 

so that di = dx2./(xi. -I- X2 ) Substitute 19.7 in 19.6: 

X*  = {dx2./(xi.+X2.)f{xi.+X3.){xi./X2.) = d*Xl. j:2./(xi.-f X2.) 
(19.8) 

19.2.5   Pre-treatment of data matrices 

In interpreting the outcome of an SRD, we sometimes en- 
counter 'meaningless' merges, in which a very small unit 
(row or column) merges with another across a long dis- 
tance simply because its low weight reduces its inertia (chi- 
squared) to an insignificant level. It seems likely that some 
units are so small that they must merge with some other 
unit. This leads to an inconsistency, in that the very small 
units survive because they must merge with something else, 
while larger (but still small) units may be deleted at the end 
of the process because they failed to merge with anything 
else. The merging of the very small units is often arbitrary 
and uninformative, and it seems better in principle to merge 
or delete them before carrying out SRD. 

The problem is to detect such units — i.e. how 'small' is 
'very small'? It seems reasonable to say that if a unit is so 
small that, whatever its actual profile, it could not possibly 
be significantly different from the overall mean profile, it 
should be deleted or merged in advance. In practice this 
means that the program should delete it; if the user wishes 
to reinstate it he should m^ge it with anoth«* unit for a 
second run. The critical value for the significant difference 
of any point of a given weight depends on the geometry of 
the chi-squared space, i.e. on the number of dimensions 
it and the mean profile (x.i, x.2, • •., x.t). If we assume 
that the space is spheroidal, i.e. all dimensions have equal 
weight in the mean profile, we can represent this profile as 

(i/ib,iA,...,i/ib) 

and the worst-case profile as(l,0,0,...,0) without loss 
of generality. Then using equation 19.1 we have 

d2   = (1 - i/k)y(\/k) + (i/fc)V(iA) + ... + (1 A)V(iA). 
= fc((t-i)M)2) + (fc-i)(i/fc), 
= {k-\)^/k + {k-ï)/k = k- 1 

We note further that if the smallest weight in the mean 
profile is 1/rk, and the rest of the weight is distributed evenly, 
this result becomes 

d^ = rifc - 1 

From equation 19.2, the weighted distance 

= d^xi.x ./(x], -f x.) = dV(l/*i. + l/x..) « xi.d^ 

when X   is 'large'. So 
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and the critical value is 

XI. = xLi/{k - I) 

at the required probability level. 
This simple approach assumes that the space is 

spheroidal, while in practice it is often very far from being 
so. Since it is the smallest weight in, for example, the mean 
row profile that determines the critical value for the weight 
of a row, the critical value for rows is likely to be distorted 
downwards by the column weights which we would wish 
to eliminate had we looked at columns first, and vice versa. 
In other words, the very small values of column weights 
tend to 'iHOtect' the very small row weights, and vice versa. 
It therefore seems reasonably to calculate the critical value 
for rows by omitting the columns which appear to be 'very 
small', and vice versa. 

An alternative ^pro^h is to look for weighted distances 
that are 'significantly small' as well as those that are 'sig- 
nificantly large', e.g. ones which are less than the 95% 
probability level. In other words, we look for pairs of 
rows (or columns) that are significantly closer than would 
be expected if they were really two samples from the same 
parent distribution. Since the matrix of weighted distances 
has ib(Jb -1 )/2 distinct entries, we can expect such a level to 
be exceeded occasionally, but repeated occurrences would 
indicate rows (or columns) whose total weight is ' too small '. 
For example, a row which is 'significantly similar' to two 
or more other rows might be considered 'too small', and 
deleted before SRD. However, such rules are difficult to 
implement, because they can involve arbitrary decisions 
when, for example, two rows are significantly similar to 
each other, and each to one other row. 

Comparison of these three i^proaches suggests that the 
first, simple, approach is roughly the union of the second 
and third. That is to say, any row or column which would 
be deleted under either the second approach or the third, is 
likely to be deleted under the first. We therefore recommend 
the use of the first rule, which has the benefit of being the 
simplest; the procedure is here called 'pruning'. 

19.2.6   Extending the approach to three dimen- 
sions 

SRD is a technique for use on two-way tables, while we are 
working on a three-way data structure (e.g. context, fabric, 
form). SRD can therefore work directly only on the marginal 
tables. It can be followed by examination of the following 
models: 

lA: <2x3>: independence of fabric and form in a reduced 
table, 

IB: <3xl> : independence of form and context in a re- 
duced table, 

IC: <lx2> : independence of context and fabric in a 
reduced table. 

The reduced tables will not in general have the same 
groupings of the three variables. For example, the groupings 
of contexts need not be the same under models IB and IC 
— different groupings may be appropriate under different 
circumstances. 

To extend this ^proach to the three-way table we intro- 
duce the idea of a 'doubly-reduced' table, which is con- 
structed as follows: 

1. suppose we have reduced the fabric-by-form marginal 
table, i.e. we are woridng with model <2x3> (ex- 
actly analogous procedures hold for the other mod- 
els). 

2. we construct a new three-way table in which the rows 
are the fabric-by-form combinations and the columns 
are contexts. 

3. we then reduce this table by SRD, except that we 
allow only columns (i.e. context) merges. To allow 
row-meiges would destroy the two-way nature of the 
marginal table. 

We thus have three further models: 

IIA: <23xl> : independence of fabric-by-form and con- 
text in doubly-reduced table, 

IIB : <31 x2> : independence of form-by-context and fab- 
ric in doubly-reduced table, 

IIC: <12x3> : independence of context-by-fabric and 
form in doubly-reduced table. 

Once again, the reduced tables do not necessarily share the 
same groupings of the three variables. 

19.3   Examples 

19.3.1   A ceramic assembiage 

As an illustration of the method, we used some data from 
Silchester phase 1 (Fulford 1987), consisting of the pie- 
values of the combinations of 22 fabrics and 31 forms found 
in that phase. This is too large a table to examine with any 
ease, and it is not presented here. We shall concentrate 
on showing the method; archaeological aspects and impli- 
cations will be discussed elsewhere (lyers & Orton, this 
volume). 

The initial pruning stage reduces the data matrix to 8 fab- 
rics by 12 forms. The fabric codes E, F, G, O and S refer to 
fine, flint-tempered, grog-tempered, organically-tempered 
and sand-temjjered wares respectively; the numbers refer to 
variant fabrics. The form codes I, II, III, VI and XI refer to 
jars, bowls, dishes, beakers and lids respectively; numbers 
refer to subdivisions of these forms and un-numbered codes 
refer to examples that can only be classified in general terms. 
Some structure can be seen but the matrix is still too large 
to be taken in comfortably (table 19.1). 

The SRD procedure starts by merging forms which are 
very similar in terms of their fabrics — II and III, 14 and 
XI6 (ajar form and a lid, but both are only present in fabrics 
Fl and Gl), 12 and 112,1 and 16,116 and I4/XI6 — then the 
majority fabric Gl absorbs the related minor fabrics GFl 
and GOl and an £4)parently unrelated one (S2), and I/I6 
merges with II and with 12, leading to a matrix in which no 
further merges are possible (table 19.2). 

The main features of the data are readily apparent firom 
this table: the fabric E6 and the form II/III form a separable 
component, and beakers VI2 occur only in fabric G4. There 
is a marked association between form IIIl (a bowl form) 
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form 

I 
II 
12 
14 
16 

112 
116 
II 
III 
IIIl 
VI2 
XI6 
total 

E6 FI Gl 
fabric 

G2        G4 GFl      GOl S2 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.39 
1.36 
0.0 
0.0 
0.0 

0.076 
1.68 
0.0 
7.94 
0.0 
0.0 
6.09 
0.0 
0.0 
0.0 
0.0 
1.30 

1.65 
14.8 
8.20 
3.04 

10.8 
3.68 
0.0 
0.0 
0.0 
1.09 
0.0 
1.50 

0.0 
0.080 
1.42 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.07 
0.0 
0.0 

0.095 
1.22 
1.26 
0.0 
2.15 
0.0 
0.030 
0.0 
0.0 
0.035 
1.32 
0.0 

0.033 
0.0 
1.00 
0.0 
1.06 
0.024 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.094 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.056 
0.043 
0.0 
1.86 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

2.75     17.8 44.8 4.29      7.54      2.64      0.094    2.85 

Table 19.1: Silchester phase l.pies by fabric and form after pruning 

form fabric total 
E6 Fl Gl G2 G4 

1 0.0 2.44 45.6 2.22 5.58 55.9 
14 0.0 15.3 4.53 0.0 0.030 20.2 
II 2.75 0.0 0.0 0.0 0.0 2.75 

nil 0.0 0.0 1.09 2.07 0.035 3.51 
VI2 0.0 0.0 0.0 0.0 1.32 1.32 
total 2.75 17.8 51.2 4.29 7.54 83.6 

total 

3.69 
19.1 
13.3 
11.0 
15.9 
3.92 
6.39 
1.39 
1.36 
3.51 
1.32 
2.80 

83.6 

Table 19.2: Silchester phase 1, pies by fabric and form after SRD. The members 
of the groups are: 

Gl =G1 +GF1 +G01 + S2 
1=1 + 11 + 12+16 + 112 
I4 = I4 + I16 + XI6 
II = II + III 

and fabric G2, but the bulk of the pottery (81%) belongs 
of fabrics Fl and Gl/GF1/G01/S2and forms I/I2/I2/16/I12 
and I4/I16/XI6, with a very strong association between the 
former fabric and the latter form, and vice versa. 

Table 19.3 summarises the changes that come about as 
the original matrix is pruned and then shrunk. Pruning 
reduces the size of the matrix to 12% of the original, while 
retaining 80% of the total data and 31% of the chi-squarcd 
statistic. The SRD procedure reduces the matrix to 21 % of its 
pruned size while retaining 89% of the chi-squarcd statistic. 
The underlying pattern is considerably 'sharpcncd-up' by 
the SRD. It should be noted that even the final data matrix 
is not suitable for a chi-squared goodness-of-fit treatment 
as it stands because of some very small expected values. 
However, the main points can easily be picked out be visual 
inspection. 

19.3.2   Comparison    of 
across a site 

several    assemblages 

Here we take yet another look at the late Roman pit groups 
from Portchester Castle (Fulford 1975), as re-analysed by 
Millett (1979). The data consist of the percentages of eight 
broad forms in each of 73 pit assemblages; they have been 
converted to absolute numbers by Hargreaves (1988), who 
also corrected some anomalies in the original data. It should 
be noted that the data are based on vessels represented, not 

on lîviîs or PIHS. Because the forms have already been 
grouped, the procedure reduces the number of pits from 
73 to 10 linked groups before merging any forms, and 
then makes only one further reduction in the pit groups 
before stopping. The merged forms — flagons and lids are 
unrelated archaeologically and are probably merged simply 
because lids are the rarest form. The outcome is shown as 
table 19.4. 

Correspondence analysis was carried out on the data both 
before and after the application of srd. The original data 
showed a pattern in many dimensions — it took five of 
the seven original dimensions to account for 80% of the 
inertia. Despite the simplification of the reduction from 73 
pits to 10 groups, and from nine to eight forms, the higher 
dimensions are still need to account for the inertia: only 72% 
is accounted for by the first three dimensions, for example. 

The reason can be seen in the structure of table 19.4. Here 
values which appear to be significantly higher than 'ex- 
pected' are underlined. It can be seen that every form has a 
group of pits in which it is more common than expected, and 
that mortaria have two such groups, while storage jars and 
beakers share a group as well as having their own groups. 
As it stands, this result is archaeologically incredible, and 
combined with the high dimension of the data structure 
suggests we may be dealing with a 'frozen' view of a 
random pattern. This is supported by an informal spatial 

124 



19. A TECHNIQUE FOR REDUCING THE SIZE OF SPARSE CONTINGENCY TABLES 

data fabrics forms df as% pies as % X^ as % 
raw 
pruned 
SRD 

22 
8 
5 

31 
12 
4 

630 
77 
12 

100 
12 
2 

104.4 
83.6 
83.6 

100 
80 
80 

588.4 
184.8 
165.1 

100 
31 
28 

Table 19.3: Silchester phase 1 — effects on numbers of fabrics and forms, degrees 
of freedom, total pies and chi-squared statistic, of pruning and application of SRD 

forin groups 
pit dish bowl jar s-jar beaker flagon mon. total 
40 27 93 131 0 21 10 6 288 
41 87 129 154 1 47 41 20 479 
46 40 90 62 2 31 6 7 238 
54 24 44 51 7 6 1 5 138 
61 18 31 36 0 16 1 H 116 
62 7 28 35 5 18 0 4 97 
66 20 13 21 0 0 0 0 54 
87 2 11 10 1 0 0 7 31 
90 6 8 19 0 15 2 1 51 

total 231 447 519 16 154 61 64 1492 

Table 19.4: Number of vessels from late Roman pit groups at Portchester Castle, 
by broad form and pits as grouped by SRD. Each group is identified by the lowest- 
numbered pit that belongs to it 

analysis, which revealed no apparent spatial correlates of 
the suggested groupings. 

19.4   Discussion 

19.4.1    Rejected alternatives 

Unweighted distance 
Earlier versions of this approach used the unweighted dis- 
tance in step 1; this has now been abandoned in favour of 
the weighted distance. It might be thought that there would 
be little difference between the two approaches, since the 
unweighted version uses the weighted distance as a criterion 
for whether or not to permit a pair of rows or columns 
to merge. However, the order of merging differs, with 
small units tending to be merged sooner with the weighted 
distance, and to merge with other small units rather than 
with large ones. The effect seems to be to give a more even 
grouping of the units. 

Archaeological intervention in the merging process 

It was initially thought that some sort of archaeological 
intervention in the merging process would be desirable, i.e. 
that the archaeologists ought to have the opportunity to 
'approve' (or not) any merges suggested by SRD. Second 
thoughts reversed this opinion; if (for example) two contexts 
are so similar in terms of their constituent fabrics and/or 
forms, is the archaeologist ever in a position to over-rule 
this similarity? 

We now see the best place for archaeological input to be 
at an earlier stage — the archaeologist may if he wishes 
produce groupings of contexts, fabrics or forms brought 
together on archaeological criteria. 

Use of the 'cell expectations > 1 ' criterion in SRD 
The perceived purpose of SRD has undergone subtle changes 
since it was first devised. In the beginning, it was seen 
simply as a way of meeting the purely statistical need that 
no cell expectations should be less than 1. It gradually 
emerged that it was a valuable analytical tool in its own right, 
suggesting groupings of the values of each variable (usually 
context, fabric and form) which made sense in terms of 
their relationship with the values of one or both of the other 
variables. The values in individual cells became irrelevant 
at this stage of the analysis. Clearly, the criterion had to 
be employed somewhere for the quasi-log-linear analysis to 
work property, but it seemed more logical for it to be part 
of that stage, and it was transferred there. 

19.4.2   Statistical aspects 

The SRD procedure emerges as an answer to a pressing 
problem, and cannot yet be regarded as a fully-developed 
technique. For example, being related to the simpler ver- 
sions of cluster analysis, it suffers from some of the defects 
associated with such techniques. The most important is 
probably that of stability; it has been observed that, under 
certain circumstances, minor changes in the data can give 
rise to different groupings of the values of either or both 
variables. The answer in case of cluster analysis was the 
k-means approach (Doran & Hodson 1975, pp. 180-4); it 
seems likely that a comparable approach could be valuable 
here, but it has not yet been pursued. 

The possibility arises in section 19.3.2 that we have 
created a pattern out of mainly random data, by bringing 
together all the pits that differ from the norm in a certain way 
(e.g. more bowls than 'expected'). While no one such pit 
may differ significantly from the overall mean, it may be that 
we have created an aggregate which because of its increased 
size does differ significantly from the overall mean. The 
problem is that by choosing to merge pit-assemblages on the 
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basis of their similarity, we have distorted the significance 
levels on which subsequent tests are based. This aspect will 
be examined by simulation in the second stage of the project 
(1991-2). 
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