
6. Object-oriented design for excavation simulation programming 

Leonor Barroca 
Department of Computer Science, University, York YOl 5DD, U.K. 
email:lmb@uk. ac.york. minster 
Sebastian Rahtz 
ArchaeoInformatica, 5, Granary Court, St Andrewgate, York YOl 2JR, U.K. 

6.1 Introduction 

It is relatively unfashionable either to discuss the details 
of programming languages for archaeology, or even to 
imply that the average archaeologist needs to have any 
concept of what a programming language is. On the 
one hand, it is argued, any program can be written in 
any language, and arguments about which language to 
use are the province of the theoretical computer 
scientist; on the other hand, there are few applications 
which still need 'low-level' programming. The 
proceedings of the Computer Applications in 
Archaeology conference seem for some years to have 
eschewed even the discussion of database technology 
which was such a feature of earlier volumes. Why 
resurrect the language debate in the 1990s? 

We would argue against both of the premises outlined 
above about programming: 

1. The history of programming (Brooks 1982) has 
proved over and over again that only a small 
proportion of eventual effort has been spent in 
initial program coding; traditional projects have 
invested far more in maintenance. There are two 
solutions to this wasted effort: a complete and 
reliable system for the formal specification of 
programs, so that maintenance is minimized; and 
a programming environment which models the 
problem in a manner intuitive enough for the 
maintainer to be able to address conceptual 
problems rather than implementation bugs. 
Archaeologists involved in the creation of 
programs have to be part of the conceptual 
process. 

2. The traditional contrast between 'programming' 
and 'applications' is dying away, simply because 
the increased sophistication of applications now 
provide a complete programming environment (a 
computing system built on an application which 
itself sits over an operating system on a 'real' 
computer). The most obvious example of this is 
the very widely used HyperCard software on 
Macintosh computers (mimicked by more recent 
programs like Supercard, Plus and Toolbook). 
HyperCard is rightly regarded as 'application' 
software, functioning like a free form database in 
its simplest mode, but it can be extended in almost 
any direction, leading the user seamlessly via form 
creation and automated production of links, to 
structured scripts and even new functions coded in 
a conventional language. The same applies in a 
lesser degree to the more sophisticated 
spreadsheets like Excel, and word-processors like 
Word, which have very full programming 
languages attached. 

A large proportion of computer users 'indulge' in 
programming; just as the cheap camera lowered the 
standards of photography, just as instant food damaged 
careful food, and just as typewriters savaged typesetting 
(and as desktop publishing has recently gone over the 
corpse for a new assault), we may inevitably be in 
danger of more and more poor programming work 
taking place. 

This paper considers whether the choice of 
programming paradigm can materially affect the 
immediate project (in this case, an excavation 
simulation system), or the stable maintenance of a 
product. We will contrast three implementations of the 
same basic system, and try to assess which is most 
likely to succeed in the long-term. We will first 
describe the idea of object-oriented programming; then 
outline the scope of the problem and the current 
implementations; then deal with an object-oriented 
approach using Smalltalk; and finally try to assess 
which of the implementation approaches is most 
successful. 

6.2 Object-Oriented languages 

6.2a A bit of history 

The 'invention' of structured programming in the 1960s 
stands as a milestone which has very strongly 
influenced all of the developments that have taken place 
since. From the idea of structure, the concept of 
modularization evolved and with it ideas of 
encapsulation and ultimately of object. 

The first language that introduced the main concepts of 
object-orientation (Stefik & Bobrow 1986; Korson & 
McGregor 1990; Wegner 1990), object, class, and 
inheritance, was SIMULA (Dahl et al. 1970), a 
language written mainly for simulation and still in use 
today. Objects are entities with a state and a set of 
operations that alter that state. The state is hidden and 
the set of operations determine the messages to which 
the object can respond. Classes are descriptions of 
similar objects which serve as templates for the creation 
of new objects. Inheritance is the principle behind 
reusability — new classes can be defined based on 
classes which have already been defined. 

Smalltalk (Krasner 1983) was derived from a sequence 
of experimental languages in the 70s by Xerox, and 
became popular during the 80s partly because it 
combined a fundamentally new concept of 
programming with a complete system interface. The 
design of the latter has had an even wider effect than 
the language, as it is the origin of most of the 
windowing systems which are the desktop norm in the 
1990s (the Macintosh system, Microsoft Windows, 
GEM and the  X Window system are the obvious 

39 



LEONOR BARROCA & SEBASTIAN RAHTZ 

examples; the system which popularized the interface, 
the Macintosh, was very directly based on the Xerox 
work). 

Since their instantiation in Smalltalk, the ideas behind 
object-orientation have been widely applied in 
simulation, systems programming, artificial 
intelligence, and electronic publishing. The general 
term object-oriented has become very popular and there 
has been a great deal of research integrating the 
concept of object into other paradigms such as 
functional and logic programming, concurrency, and 
also database languages. The development of the C 
language into the object-oriented C++ has provided a 
very widely used implementation of the concepts. We 
must also stress that object-oriented design of programs 
independently of the chosen implementation language is 
a vital modem technique. Smalltalk has been used in 
the research described in this paper, simply as an 
example, rather than as a prescription for object- 
oriented programming. 

6.2b Object-Oriented databases 

Database research in the 1980s has been heavily 
influenced by the object-oriented paradigm, and the 
concept of object has been extended to this field. 
Object-oriented databases (Baroody & DeWitt 1981; 
Bancilhon et al. 1988; Kim & Lochovsky 1989) 
maintain the main characteristics of traditional 
databases; but they also have features which make them 
attractive for many applications, such as the possibility 
of defining complex objects. An object has an internal 
state that can be seen as a set of fields, but these fields 
can be defined as complex structures (sets, lists, tuples, 
or even actions) or as other objects. Object-oriented 
databases provide a way of guaranteeing the persistence 
of data; objects are maintained from one access of the 
database to the next, and they can be shared between 
different users and application programs as in 
traditional databases. Security and reliability of the data 
are important characteristics of databases that are also 
respected by the object model. A discussion of object- 
oriented databases is given in Barroca (1990). 

There are an increasing number of applications that 
have requirements which are not easily adjustable to 
traditional database schémas; there are various reasons 
for this: 

• the changing complexity of data, which is still 
difficult to deal with in the relational model; 

• the need for new data types (perhaps the biggest 
single problem with most database systems); 

• the need to assign and interpret a complex 
meaning to data, and the implications for 
updating; 

• the problem of integrating the database system 
with conventional programming, this remains a 
difficulty. 

It is in fields where such needs are felt that object- 
oriented databases have found important applications; 
although the ideas apply in many areas, databases of 
spatial information with complex structures, and image 
databases, have been promising fields. These are, of 
course, at the heart of archaeology. 

6.2c Smalltalk 

Smalltalk-80 was developed in Xerox Palo Alto 
Research Centre (Goldberg & Robson 1983; Goldberg 
1983; Krasner 1983). It consists of a graphical, 
interactive, programming environment which allows the 
programmer to think in terms of objects. An object in 
Smalltalk Consists of private memory, the data, and a 
set of operations, called methods, that it can perform; 
every object has an identity. The other main component 
of the system, a message, is a request directed to an 
object asking it to perform some action. It is up to the 
object that receives it, the receiver, to decide how the 
action will be performed — the method to be invoked. 
The set of messages that an object is prepared to 
answer is called its interface. 

Every object is an instance of a class. All the instances 
of a class have the same message interface and they all 
use the same set of methods. Each instance has its own 
set of instance variables (private data) and they share 
class variables. The class defines the behaviour and the 
attributes of the instances, and also how new instances 
are created. A class can inherit from another class (the 
superclass) and speciiy new attributes and behaviour; 
this new class is called a subclass. Therefore a 
hierarchy of classes can be defined; the Smalltalk-80 
system provides a set of classes with a basic 
functionality. 

Smalltalk/V (Digitalk Inc. 1986) is a reduced version of 
Smalltalk-80 that has been used for this 
implementation. It is available for an IBM-PC 
compatible running PC-DOS or MS-DOS, with at least 
512K of RAM and a graphics card. 

The Smalltalk system is menu-oriented and the 
interaction with the environment is done through the 
selection of options in the menus. Several windows can 
be opened; each window has its own menu. A window 
can be divided into different panes and there is a menu 
for each pane. Outside the windows the system menu 
allows the creation of new windows, and performing 
system functions. The Smalltalk interface was one of 
the first WIMP (Windows, Icons, Mouse, Pop-up 
Menus) interfaces with its panes, windows and menus. 

In Fig. 6.1 we show a special window provided by the 
system, the Class Hierarchy Browser. This class allows 
the browsing of the classes already defined, editing the 
definitions and creating new ones. It is divided in three 
main panes: class hierarchy list, method list and 
contents. The class hierarchy list on the top left shows 
the hierarchy of the classes already defined (e.g. 
Sygraph is a subclass of FreeDrawing, and Digging is 
a subclass of Sygraph); creating a new class 
corresponds to create a subclass of one of the classes 
already defined. The method list on the top right shows 
the list of methods of the class selected (e.g. 'digging' 
is an instance method of Sygraph; note that it is entirely 
distinct from the class 'Digging'). Under this pane 
there are two small panes which allow the selection of 
either instance or class methods. New methods can be 
created selecting the corresponding option in the 
method list pane. The description of the method 
selected appears in the contents pane at the bottom of 
the window. This pane can be edited. 

40 



OBJECT-ORIENTED DESIGN FOR EXCAVATION SIMULATION PROGRAMMING 

figging 
displag t-he trenclis alreadg defined for -this si-te or accept new 

l-trenchs" 
! depth defname! 

defnane := (nane isNil) ifFalse: [name] 
ifTrue: mSitel]. 

name := Prompter prompt: 'site?' default: defname. 
self clear. 

no (Digs includesKeg: name) 
tr ifFalse: [Digs at: name put: (Set new)] 

ifTrue: [(Digs at: name)  do: [:t ! t draw . 
depth := 1. 
(t actions) kegs do: 

Figure 6.1: Example of Smalltalk user interface. 

6.3 The SYASS project 

The history and aims of the SYASS project have been 
covered in some detail in other papers (Rahtz 1988; 
O'Flaherty et al. 1990; Wheatley 1991). The result was 
a resource-based graphical excavation simulation system 
written by Dave Wheatley, used for several years by 
students at Southampton and York; this was preceded 
by a simple text-based program (CemySyass), and two 
attempts have been made to rewrite the program 
(SMALLSY, discussed in this paper, and a version to run 
under Unix and the X Window graphical user interface, 
written by Mark French as a Computer Science 
undergraduate project at the University of 
Southampton). Each implementation consists of a 
database of material describing an archaeological site or 
area, and an interface which permits a user to 'buy' 
knowledge from the system (the equivalent of 
excavation) in order to try and find out what happened 
on the site. 

Fig. 6.2 shows a typical screen in SYGRAF, a two- 
dimensional representation of an excavation in progress 
showing features that have been recovered. 

6.4 The Smalltalk implementation of SYGRAF 

6.4a Object-Oriented design methodology 

Smalltalk has often been used as a tool for modelling 
and prototyping. We wanted to test its suitability in the 
initial phase of designing an archaeological project (in 
this case an excavation simulation) and rapidly creating 
a prototype. Subsequently we were able to develop the 
system to a point where we could compare it with other 
implementations. 

The initial approach followed an object-oriented design 
methodology (Henderson-Sellers & Edwards 1990; 
Bailin    1989;    Booch    1986)    because    it    seemed 

appropriate for such a hierarchical and object-like 
structure as the archaeological excavation. 

1. The problem is analyzed in terms of the objects 
that compose it and tiie services they provide. 

2. Once the objects are identified, we can define 
classes which contain the attributes and the 
functional characteristics of each object. 

3. Interactions between objects are established 
through the services they require and those that 
they provide. 

4. At the same time the internal structure of the 
objects is established in a bottom-up way. 

5. As a following step, we may decompose the 
classes into more detailed subclasses. 

This is a process that has to be iterated as new objects 
are identified. We will end up with a well defined 
hierarchical structure that directly reflects the virtual 
world which we are trying to model. The structure 
gives priority to the functionality. This has the 
advantage that the algorithms and the internal data only 
become fixed at a later stage, giving to the whole 
system a greater flexibility, and making it easier to 
approach changes at either the top or the bottom with 
greater confidence. 

6.4b The model 

For the archaeological excavation simulation, the 
hierarchy has a clear structure, shown in Fig. 6.3. The 
distinction between archaeological activity on the left, 
and raw data on the right, is fundamental to the design 
of all the SYGRAF projects. 

6.4b (i) The objects/classes 

A SMALLSY simulation is defined as having a set of 
sites, each with a unique name and a set of layers. 

41 



LEONOR BARROCA & SEBASTIAN RAHTZ 

ßrJd • 
Fïnd» • 

!i«;^'!!.,;!i|iijisi. 
Tiaa« •" # 
«• CtK # 
K Pin4^ # 
Redrau # 
PinSshed # 

Figure 6.2: Typical SYGRAF screen in the middle of excavation. 

Each layer has a depth, a set of contexts and a set of 
finds. 

Excavations are viewed in terms of the trenches that 
have been dug in a certain site. For the first prototype, 
we have not considered different users making an 
excavation on the same site, but this is an extension 
that can be easily achieved. 

Each trench is defined as a rectangle with information 
on the depth to which it has been excavated and the 
actions taken at each depth of digging. Each action 
contains the information relating to date, cost, tool 
used, etc. 

The objects identified will induce the classes SmallSy, 
Site, Layer, Find and Context for the required static 
information. The simulation involves Excavation, 
Trench and Action classes. 

6.4b (ii) Formalizing the Model 

This description given above can be formalized, 
defining the structure of each object in terms of data 
types. We will see afterwards how closely the following 
definition will be related to the implementation. 

SmallSy = tuple (Excavations, Sites) 

Sites = ff (Name, set Layer) 
Layer = Find U Context 
Find = tuple (Point, Description) 
Context = tuple (set (Point), Description) 

Excavations = ff (Name, set (Trench)) 
Trench = tuple (Rectangle, ff (Depth, Action)) 
Action = tuple (Date, Cost, Tool, ...) 

We have described above, in a formal way, the 
structure of each class. Each class corresponds to a 
type, and we build new types with constructors that 
operate on types. The constructors used above are the 
finite function, the union, the tuple and the set. A finite 
function (ff) constructs a new type from two types: the 
domain and the range. A finite function is a set of pairs 
whose first element (from the domain) is unique (a 
key). The union (U) builds a new type whose elements 
are members of one of the primitive types. The tuple 
(tuple) builds a new type whose elements have several 
components, each one corresponding to one of the 
primitive types. Finally, the set (set) builds a type 
whose elements are sets of elements of the primitive 
type. 

6.4b (iii) The hierarchy 

Defining the hierarchy of the classes can be sometimes 
a delicate question (Lieberherr & Riel 1989). We have 
to identify two main points: commonality and 
specialization. Commonality occurs when several 
classes have been identified and they share data and 
behaviour. This is the case of classes Context and 
Find. In this case an abstract class should be defined. 
Archaeological Object, from which the others will 
inherit data, the description and the behaviour related 
to it. 

Specialization occurs when there is a class for which a 
lot of software has been written and we want to add 
some items creating a new class. This happens, for 
example when we define our main class SmallSy as a 
subclass of a class provided with the system, 
FreeDrawing. We take advantage of the drawing 
facilities already defined and adapt them for our 
simulation. Specialization needs to be carefully thought 
out because changes cannot be made to the previously 
defined class without affecting the new one. 

42 



OBJECT-ORIENTED DESIGN FOR EXCAVATION SIMULATION PROGRAMMING 

Excavation 

t 
Trench 

Site 

Layer 

.    . Archaeological 
Object 

Find Context 

Figure 6.3: Hierarchical structure of SMALLSY; the left-hand 
side represents the archaeological activity, while the right- 
hand side represents the archaeological raw material. Note 
that the recording method which classes finds and contexts as 
entirely different objects was chosen arbitrarily, and would 
probably not be that used by the majority of excavators. 

6.4c The implementation 

We show the generic structure of the definition of tlie 
main class in the hierarchy, SmallSy. 

FreeDrawing subclass: #SniallSy 
instance VariableNames: 

class VariableNames: 
'Excavations Sites ' 

! SmallSy class methods ! 

! SmallSy methods ! 

Figure 6.4 is an example of a method which displays 
the excavations done in a site. 

This method prompts for the name of the site. We do 
not propose here to explain the details of Smalltalk 
syntax, but the patient reader will find the code which 
produces the prompt, a top-level condition (has this site 
been excavated already?), and a loop for each trench 
which draws itself, and the finds within it at each 
depth. If no excavations have been made for that site 
yet, it creates an empty set of trenches for that site and 
the excavation is defined, so that new trenches can now 
be added. As we recall from the formal definition, an 
excavation is a pair with a name and a set of type 
Trench. If we check the formal definition, we see that 
a trench has a finite function of Depth and Action. We 
look for the highest depth and send a message, 
showfinds, to itself to show the finds inside that trench 
for a certain depth. 

It is appropriate at this stage to refer briefly to the 
graphical concepts of Smalltalk and how they have been 
used here. 

Smalltalk/V is based on bitmapped graphics. Every 
graphic entity is represented as a vector of dots. A dot 
is displayed as a pixel and is stored as a Bitmap 
contained in a Form. Form is the class that defines the 
objects that hold images. Images are displayed by 
transferring a form that contains the image onto the 

Figure 6.4: Example method for displaying a site. 

digging 
"display the trenches already defined for this site or accept new trenches" 

I depth defnamej 
defname : = (name isNil) ifPalse: [name] 

ifTrue: [#Sitel]. 
name := Prompter prompt: 'site?' default: defname. 
self clear. 
(Excavations includesKey: name) 

ifPalse: [Excavations at: name put: (Set new)] 
ifTrue: [(Excavations at: name) do: [:trench 

depth := 1. 
trench draw. 

self newState: ^accept:. 
[:d 

(trench actions) keys do: 
[:key | (depth < key) 
ifTrue: [depth := key]], 
depth to: 1 by: -1 do: 

I self showfinds: trench at: d.]]]. 

43 



LEONOR BARROCA & SEBASTIAN RAHTZ 

Name Operating System Graphics Database Engine Program logic 

CemySyass Unix none Ingres Ingres 4GL 

SYGRAF MS-DOS Microsoft C Clipper/dBase files Clipper 

SMALLSY MS-DOS SmallTalk SmallTalk SmallTalk 

X-SyGraf Unix X Window Ingres C 

Fugawiland MS-DOS Turbo Pascal none (fixed data) Pascal 

Digging Deeper MS-DOS ? none (fixed data) 7 

Santa Barbara Apple Macintosh HyperCard fixed data in 
HyperCard 

HyperCard 

Table 6.1: Characteristics of SYASS software, and other archaeological simulations. 

display. This transfer is achieved by an instance of 
class BitBIt (bit block transfer). Smalltalk/V defines a 
class Pen as a subclass of BitBIt; this class has a series 
of methods to draw with a pen; a pen has a form as its 
source where the size and tip size are defined. As a 
subclass of BitBIt it also has a destination form. 

The definition in Fig. 6.5 is the method to draw a 
context that falls inside a trench. A context has an 
instance variable, points that contains a dictionary of 
points (each point has an order number). A pen is 
created, its colour is defined in a mask form. The pen 
is moved by the message goto:, and it is made to draw 
between all the points that are contained inside the 
trench. Note that there is no need for a special 
algorithm to design only the part of the context that is 
visible; this is easily done by defining the clipping 
rectangle of the pen to be the trench. 

6.4d The SMALLSY implementation 

Creating an initial skeleton of SYGRAF in Smalltalk took 
a few hours after the schema had been drafted on 
paper; there was no stage of translation into structured 
third generation language code. The model which 
solves the problem was drawn directly from the real 
situation (contexts are represented by a class of 
'context', rather than by entries in a database and a set 
of procedures), and the implementation was directly 
obtained from this model. An example session is shown 
in Fig. 6.6. 

Some problems arise from a complete implementation 
for the SMALLSY project. It is not straightforward to 
deal with external data files, as these can be handled in 
Smalltalk only as a sequence of characters; this meant 
that the interface with external databases is more 
complicated than in a language which directly supports 
database files. Smalltalk was not, however, intended to 
be a database system, so we do not regard this as a 
serious problem. Currently, our only method of 
achieving persistent data storage between excavation 
sessions is to save the Smalltalk memory image on disk 
(this is the standard way of working with the language). 

6.5 Comparison 

Table 6.1 shows the salient characteristics of the four 
Syass implementations which have been attempted, and 
three other systems which perform a similar job. 

None of these systems is ideal; apart from the fact that 
they all deal only with two dimensional data, they each 
suffer from at least one of the following problems in 
the delivered product: 

The database is insufficiently separate from the 
program, so that one cannot 'plug in' different 
data (Fugawiland, Digging Deeper). 
The   database   is   written   in   a   programming 
language, which has no convenient front-end for 
the casual user (SMALLSY). 

There is no graphical feedback (CemySyass). 
Speed of operation is relatively slow (SYGRAF). 

1. 

3. 
4. 

Figure 6.5: Method employed to draw a context that falls inside a trench. 

draw: aTrench colour: aDepth pane: pane 
"draw the points that are inside a trench. " 
I pen i rect | 

pen : = Pen new. 
rect : = pane frame, 

pen mask: (Form color: aDepth); 
clipRect: aTrench; 
place: (position scaleto: rect). 
i := 1 . 
[i < = points size] 

whileTrue: [temp: = (points at: i) scaleto: rect. 
pen goto: temp, 
i := i + 1.] 

44 



OBJECT-ORIENTED DESIGN FOR EXCAVATION SIMULATION PROGRAMMING 

I        FreeDrawing 
Class Hierarcllu Browser 

accept. 

Digc 
Sitf 

Lai 
fiti 

file out 
update 

add subclass 

addcoTttxt 
addfind 
clear 
cleargrid 
H irtn iv\n 
instance Iclass 

Recept: aChar 
when an object is clicked its description is 

message window" 

! pointl point obj lagers lager trench tre 
exists continue find context  resl res2 

[ T em i na 1 mouseSe 1 ec t On ] 
whileFalse: [ Terminal next], 

pointl := CCursor offset), 
point  := pointl backscale: (pane frame). 

Figure 6.6: SMALLSY excavation in progress. 

5. There is a need for a commercial database engine 
(X-SYGRAF). 

6. A non-standard graphical user interface is used 
(SMALLSY, SYGRAF). 

Differences emerge when we consider the problem of 
maintaining the systems; the size of the current 
program code is revealing, as shown in Table 6.2. Each 
of the programs depends on existing libraries for the 
graphics, and the first two depend on database 
management systems. Even the decidedly smaller size 
of the Smalltalk code conceals the fact that the 
environment offers a clearer view of the program 
(because the source is grouped by methods for classes), 
making it faster to locate problems. 

The most likely problems arise in the area of program 
logic. In SYGRAF a hierarchical menu system is built in 
procedural code, involving a model of the program 
separate from the model of the excavation. In SMALLSY 
there is a single system of messages between objects, 
which involves fewer conceptual situations in which the 
programmer can go wrong. Similarly, in X-SYGRAF the 
C flow control is quite limited — the X Window system 

is event-driven, so it is simply necessary to link up the 
menu options and the event handlers to call C 
functions. Most of the time the system hangs around in 
a loop waiting for events to occur (XtMainLoop). The 
only code which is really not X or Ingres based is the 
code for handling the internal data structures (contexts, 
finds and trenches), and the code to work on the 
excavation, which then calls other separate functions to 
do the actual database work. 

6.6 Conclusions 

It is too early to talk about long-term maintenance of 
the Smalltalk version of SYGRAF, but the immediate 
project was a success. Apart from the fact that the 
design time was much shorter,' there was very fast 
development. A direct comparison was made between 
one author working on SMALLSY, and the other 
working on SYGRAF, on comparable computers; the 
incremental compilation and interpreted nature of 
Smalltalk meant that changes to the code took less than 
1 minute to implement and test, whereas the traditional 
edit/compile/link/run cycle under MSDOS for SYGRAF 
took about 5 minutes.   The cycle for recompiling X- 

Table 6.2: Comparison of developing the SYASS software. 

development lines of code result notes 

SYGRAF 6 months 5900 (Clipper) 
2000(C) 

MS-DOS 
executable 

time includes 
creation of site 
databases                   y 

X-SYGRAF 6 months c. 3500 Unix executable part-time only 

SmallSy 4 weeks 800 SmallTalk image no optimization for 
performance 

1. Partly, of course, because we were building on the work done by Dave Wheatley. 
2. Sceptics should note that use of the very slow Clipper rtlink linker was necessary for the project. 

45 



LEONOR BARROCA & SEBASTIAN RAHTZ 

ascription is 

pointl poin-t obj layers lager trench tre 
exists continue find context  resl resZ 
[Terminal mouseSelectOnl 

uhileFalse: [ Terminal next]. 
pointl := CCursor offset). 
point  := pointl backscale: (pane frame). 

i'igure 6.7: SMALLSY excavation and class browser in use at the same time. 

SYGRAF on a Unix workstation varied from 48 seconds 
to over 5 minutes when many files were affected (the 
resulting executable file is 1.3Mb in size). There was 
even greater speed offered by Smalltalk, however, in 
dealing with conceptual problems; issues could be 
quickly related to the appropriate object in the system, 
and its methods inspected and changed. Moreover, 
SMALLSY is a system which can be extended at any 
time by adding new classes or methods, without the 
conceptual overhead of translating these into abstract 
procedures. 

The next generation of SYASS software could well be 
implemented in Smalltalk. Its prototyping facilities 
which offered positive results from the start were 
encouraging. Using Smalltalk/V, we are tied to a 
proprietary product; SMALLSY only exists as a Smalltalk 
image, which cannot be distributed on its own. In fact, 
we are always tied to some proprietary software (such 
as MSDOS or Windows), but Smalltalk is insufficiently 
widespread to make it a good choice for an educational 
program. The Smalltalk user interface, while brilliantly 
ahead of its time when it came out, is sufficiently 
different from (say) Windows or Macintosh that users 
may have difficulty. We have lost the advantages of 
traditional database technology — enforcing of 
integrity, portability, re-useability, multi-user facilities, 
distributed data, etc. — by putting the data into 
Smalltalk objects, but we would hope that a final 
version would use an external database system for the 
main storage. 

The advantages of developing in Smalltalk were clear: 

1. We had a design of the system which we could 
use from the start. 

2. The graphic capabilities of the system were easy 
to harness, and there was no need for much effort 
to be invested in graphics algorithms, and the 

3. 

concept of 'methods' for drawing objects allows 
us to change the method very quickly for a 
different implementation. 
Creating new attributes of the objects or adding 
new behaviour were done in a very 
straightforward way without any need to change 
the rest. 
The facility for continual testing and prototyping 
during the development of the program without 
any added effort resulted in few problems. 
The main potential of the concept of object- 
orientation is its relation with simulation. Each 
real world object is represented by an object in the 
computer, and interaction between real world 
objects is modelled by message sending. 

We should distinguish between the advantages of 
Smalltalk/V as a development environment, and the 
advantages of an object-oriented design and 
programming philosophy. We could have the 
advantages of object-oriented design by using a 
language like C+-f- (which involves a traditional 
edit/compile/link/run cycle), but the speed of 
development using Smalltalk comes from object- 
oriented programming (developing classes and methods, 
and running the program, in the same graphical system 
(Fig. 6.7). The dynamic binding of Smalltalk, which 
permits us to easily develop object browsers as part of 
the running system, is not an inherent part of object- 
oriented programming. It is likely that in fiiture we 
would choose to use some system between C-t-l- and 
pure Smalltalk, such as versions of Smalltalk which use 
Windows or Presentation Manager as their windowing 
system, or platform-independent libraries of C-l-f- 
classes for the X Window, DOS or Macintosh systems. 

The most fundamental immediate problem of both 
SYGRAF and SMALLSY, we suggest, is that neither of 
them uses currently accepted standards for the user 

46 



OBJECT-ORIENTED DESIGN FOR EXCAVATION SIMULATION PROGRAMMING 

interface' or database. X-SYGRAF may be the product 
most likely to succeed for this reason, since it uses 
standardized software; the display part can be taken out 
and rewritten without affecting the statements which 
could request data from any SQL-conformant database. 

The difference between SYGRAF and SMALLSY relates 
to the distinction between the batch model (SYGRAF) 
and the interactive model (SMALLSY) of providing 
computer programs. SYGRAF is written using a 
programming environment which exists to build 
solutions, which will be executed in another context 
independent of the development, and the installation is 
accordingly a closed process. In the interactive model 
of SMALLSY, the programming environment is the same 
as the environment of the solution, and there is no 
distinction between development and installation. The 
system can be changed at any time, and continue to 
evolve. The vast majority of programs are delivered in 
a frozen, 'stand alone', state, interacting with a 
dynamic database. This artificial distinction between 
Data and Program, which is actually promoted by the 
relational database, can be abandoned by use of a 
technology (the object-oriented database) which allows 
objects and their methods to be stored in a persistent 
way together, and by working in an environment which 
supports the same objects as the program. 

The SYASS project has effectively ended. Regardless 
of the success of the actual product, we believe that this 
type of mixed software is both possible and desirable, 
if we can find a middle road between conformance to 
standards, and Metropolis-Vike mechanisation of 
computer-based resources. 

Archaeology must continue to develop a closer 
relationship between its data and its ideas by, at the 
least, using software technologies which maximize the 
importance of modelling their data. There are strong 
similarities between interpreting archaeology and 
object-oriented programming, both of which deal with 
a virtual reality which the user tries to relate to the real 
world. Both involve a continual search to identify 
objects (in the broadest sense), classify objects, and 
relate objects to one another. It does not necessarily 
follow that archaeological programs are best written 
using an object-oriented methodology, but if we are to 
make use of our large archaeological databases, we 
need to integrate them with our analytical tools. Many 
of our current databases are simply collections of dumb 
data, with no inherent structure to relate the tables to 
each other. To make use of them, archaeologists 
construct interpretations and models which refer back 
to the databases. We believe that it is time to explicitly 
link together our computerized resources into a 
coherent structured model, and we hope that this paper 
has demonstrated some of the advantages of an object- 
oriented paradigm in this endeavour. 

Acknowledgments 

This paper arises from a continuing collaboration 
between  the  authors   on  software  development  for 

archaeologists. We are grateful to the Universidade do 
Minho, Departamento de Informatica, for allowing 
Sebastian Rahtz to take a short sabbatical in Portugal 
while working on the SYGRAF project. We are very 
grateful to David Wheatley for the main SYGRAF 

program on which our system is based; Brian 
Molyneaux commented on the paper from the point of 
view of a SYGRAF teacher, and Mario Martins and 
Gillian Lovegrove commented from the point of view 
of computer science. 

References 

BAILIN, S. 1989. "An Object-Oriented Requirements 
Specification Method", Communications of the ACM, 
32(5): 608-623. 

BANCILHON, F., G. BARBEDETTE & V. BENZAKEN 1988. 
"The Design and Implementation of 02, an Object- 
Oriented Database System", Advances in Object- 
Oriented Database Systems, LNCS 334: 1-22. 

BAROODY, A. & D. DEWITT 1981. "An Object-Oriented 
Approach to Database System Implementation", 
ACM Transactions on Database Systems, 6(4): 
576-601. 

BARROCA, L. 1990. "Object-oriented database design in 
archaeology". Science and Archaeology, 32: 50-56. 

BOOCH, G. 1986. "Object Oriented Development", IEEE 
Transactions on Soßware Engineering, SE-12(5): 
211-221. 

BROOKS, F. 1982. The Mythical Man-Month, London, 
Addison-Wesley. 

DAHL, O., B. MYHRHAUG & K. NYGAARD 1970. Simula 
67, Common Base Language, Technical report, 
Norwegian Computing Centre. 

DiGiTALK INC. (ed.) 1986. Smalltalk/V: Tutorial and 
Programming Handbook. 

GOLDBERG, A. 1983. Smalltalk-80: The Interactive 
Programming Environment, London, Addison- 
Wesley. 

GOLDBERG, A. & D. ROBSON 1983. Smalltalk-80: The 
Language and its Implementation, London, Addison- 
Wesley. 

HENDERSON-SELLERS, B. & J. EDWARDS 1990. "The 
Object-Oriented Systems Life Cycle", 
Communications of the ACM, 33(9): 142-159. 

KIM, W. & F. LOCHOVSKY 1989. Object-oriented 
Concepts, Databases, and Applications, London, 
Addison-Wesley. 

KORSON, T. & D. MCGREGOR 1990. "Understanding 
Object-Oriented: A Unifying Paradigm", 
Communications of the ACM, 33(9): 40-60. 

KRASNER, G. 1983. Smalltalk-80: Bits of History, Words 
of Advise, London, Addison-Wesley. 

LlEBERHERR, K. & A. RiEL 1989. "Contributions to 
Teaching Object-Oriented Design and Programming, 
in    OOPSLA'89",    Proceedings    of   the    ACM 

The fact was noted by Dave Wheatley as soon as SYGRAF was started, but the immoderate learning curve for Windows 
forced the issue. 

47 



LEONOR BARROCA & SEBASTIAN RAHTZ 

Conference on Object Oriented Programming, 
Systems, Languages and Applications. 

O'FLAHERTY,   B.,   S.P.Q.   RAHTZ,   J.   RICHARDS,   &   S. 
SHENNAN 1990. "The Development of Computer- 
Based Resources for Teaching Archaeology", in S. 
Cacaly & G. Losfeld (eds.), Sciences Historiques, 
Sciences du Passe et Nouvelles Technologies 
d'Information: bilan et evaluation. Actes du Congres 
International de Lille (16-18 Mars 1989), CREDO, 
Université de Gaulle, Lille III, Lille. 

RAHTZ, S. 1988. "A resource-based archaeological 
simulation", in S. Rahtz (ed.). Computer and 
Quantitative Methods in Archaeology 1988 British 
Archaeological Reports (International Series) 446, 
Oxford, British Archaeological Reports: 473-490. 

STEFK, M. & D. BOBROW 1986. "Object-Oriented 
Programming: Themes and Variations", The AI 
Magazine, 6(4): 40-62. 

WEGNER, P. 1990. "Concepts and Paradigms of Object- 
Oriented Programming", OOPS Messenger: 7-87. 

WHEATLEY, D. 1991. "SyGraf: resource based teaching 
with graphics", in K. Lockyear & S. Rahtz (eds.). 
Computer Applications and Quantitative Methods in 
Archaeology 1990, British Archaeological Reports 
(International Series) 565, Oxford, Tempus 
Reparatum: 9—14. 

48 


