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This paper describes how Fourier analysis can be 
applied to the distribution of field boundaries of 
cadastral systems. It considers an example of current 
practice and, by means of a case study, seeks to show 
how the technique may be enhanced and used in 
conjunction with other sources of evidence. 

An initial study of the application of Fourier analysis 
forms part of a recent work by Rita Compatangelo 
(Compatangelo 1989). Her subject is a Roman cadastre 
in the Salentine peninsular, at the south-eastern 
extremity of Italy. This is a typical centuriation, with 
the major land divisions — which are often access ways 
— forming a grid of squares whose sides have a length 
of 2,400 Roman feet (pedes nwnetales). This 'module' 
is in this case equivalent to 705m. 

In certain parts of this cadastre there are also many 
other existing boundaries at the same orientation as the 
grid, which may be the remains of regularly planned 
internal subdivisions of the squares. Compatangelo 
looks for signs of such regularity because this may give 
clues to this cadastre's date and function, by allowing 
comparison with other better known Roman cadastres. 

Compatangelo's approach is to generate periodograms 
— charts which show the relative importance of 
frequencies contributing to the observed pattern. 
Frequencies with large amplitude may reveal 
underlying regularities in the field pattern, even in the 
presence of 'noise' arising from later modifications. 

In the analysis of discrete data, periodograms are 
obtained by generating Fourier transforms of n values 
which represent the distribution of the data within some 
fundamental interval. In this case the numbers are 
derived from a figure proportional to the length of 
boundaries falling in a series of equally spaced bands 

Figure 19.1. Generation of raw data from possible cadastral 
traces. 

parallel to one orientation of the cadastral grid, see 
Fig. 19.1. In order to compensate for degradation of 
the traces, which may have become irregular or been 
wiped out, data is summed from the corresponding 
bands of several grid squares. The fundamental interval 
is the module of the centuriation. 

The Fast Fourier transform (FFT) takes this real vector 
Z and creates a vector c whose values are the complex 
coefficients of the discrete Fourier transform of z. In 
the case of the MathCAD FFT routine used by the 
author, these coefficients satisfy 

C; = (-^)-Ev'"''*'" v« * 

FFT routines will produce (/j/2) +1 values of c, and the 
periodogram is the set of | Cj |. The periodogram values 
are proportional to the amplitudes of cosine curves, 
with phase arg(Cj), which, when added together, 
generate the distribution represented by the vector z. A 
cosine curve with phase zero will have maxima at the 
ends of the fundamental interval. 

This is equivalent to the form of representation (cf. 
Rayner 1971) in which any wave form is generated by 
the sum of a series of sinusoids with frequencies 0, 1, 
2, 3 etc., which have suitably chosen amplitude and 
phase. The periodogram values show the relative 
importance of the frequencies, and the corresponding 
phases measure the degree to which the cosine wave at 
that frequency is 'in step' with the fundamental 
interval. 

Fig. 19.2 shows an example of FFT using the 
MathCAD package. The distribution of features (upper 
chart) is represented by 64 values, held in a vector z. 
The periodogram (centre chart) is the distribution of the 
amplitudes of the 32 cosine curves, of frequencies 1 to 
32, which contribute to the spatial distribution (the 
amplitude of frequency zero is not shown because it has 
no information to provide about frequencies). The 
corresponding phases (lower chart) are expressed as 
values from -T to T. Those frequencies which are more 
nearly in phase are represented by points nearer to the 
central line. In this example these frequencies are 3, 6, 
9, etc. 

In Compatangelo's analysis the raw data take the form 
of possible traces at one of the cadastral orientations, 
summed over 20 squares. She divides the fundamental 
interval of 705m into 44 bands and produces three 
measures for each band: the sum of the length of 
traces, the number of occurrences of a trace and the 
ratio of these two. The periodograms of these discrete 
distributions have peaks which may represent the 
sought-for original divisions. For example, 
Compatangelo's Figure 53 shows highest amplitudes at 
frequencies of 2, 6, and 20, and possibly at 7 and 11. 
She appears to consider all of these to be potentially 
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Figure 19.2: An ideal simulated division by 3 and its Fourier transform. 

meaningful. 

This work is most interesting and original, but it gives 
rise to some questions. Do we need some form of 
'control'? What would we expect to see if we submitted 
a regularly divided cadastre to this process? Do we 
need to assess the statistical significance of a particular 
peak value, and how can we do so? What is the 
significance of phase? 

These problems were approached with the aid of the 
MathCAD package running on an IBM PS/2 70. The 
first question (what do we expect to see?) was tackled 

by simulating the distribution of traces in several 
squares of a regularly divided, but slightly degraded, 
cadastre. The first simulation. Fig. 19.2, takes a 
distribution which simulates a division by three into 
intervals of 800 feet. This simulated distribution 
generates a peak in the periodogram at frequency 3, as 
expected; but, as we have seen, it also generates 
harmonics, 6, 9,...,etc., which are in phase, and thus 
wrongly seem to indicate other subdivisions of the 
cadastral squares. Such harmonics are part of the 
description of the shape of the data but they are not a 
reflection of the field pattern which the distribution is 
intended to simulate. On the ground there would be no 
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Simulation 2: Two frequenclas (2 and 3) 
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Figure 19.3: Ideal simulated divisions by 2 and 3, and their Fourier transforms. 

such divisions of the spaces between the simulated 
divisions at intervals of SOOft. Clearly we cannot 
assume that such harmonics need necessarily indicate 
the presence of such divisions. These high periodogram 
values are therefore misleading. 

In Fig. 19.2, despite the presence of harmonics, the 
highest periodogram value indicates the 'correct' 
frequency, but unfortunately this is not always the case. 
If we construct a second distribution (Fig. 19.3) which 
simulates the pattern obtained by superimposing data 
from several squares, some divided in two and some in 
three, we obtain a periodogram whose highest value 

is 6. Again this is an accurate reflection, in terms of 
Fourier analysis, of the distribution, but it is 
misleading. A division by 6 was not part of the original 
simulated distribution of boundaries. This indicates that 
the appearance of non-prime frequencies which are in 
phase and which have large amplitude values in the 
periodogram need not necessarily indicate the presence 
of corresponding divisions on the ground. 

So, the analysis of simulated regular divisions shows 
that harmonics are to be expected; we should not too 
readily assume that a prominent peak in the 
periodogram necessarily reveals a physical division of 
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Figure 19.4: Possible traces of the South Norfolk A cadastre in the Scole-Dickleburgh area, derived from 19th Century 6 inch 
Ordnance Survey maps. 

the cadastre. 

Nevertheless it could be worth investigating the 
physical significance of such high peaks, provided that 
we had some measure of their statistical significance. 
We need to know how often a peak of a given height 
would occur in a periodogram derived from purely 
random data. This problem can be tackled analytically, 
by the use of Fisher's g statistic (Priestley 
1981:406-9), but another approach is possible, using 
a computer-based Monte-Carlo method which will 
shortly be described in the context of a case study. 

Figs. 19.1 and 19.2 also reveal a third factor in the 
analysis. This is the phase of the component frequency. 
Note that the prominent frequencies and harmonics in 
the periodograms derived from simulated distributions 

are all in phase. This should also be true of real 
distributions with real sub-divisions. A peak in the 
periodogram may be sufficiently high to be considered 
significant, but if the phase angle is too far from zero 
it is then clear that the frequency cannot possibly 
represent a genuine sub-division of the fundamental 
interval. 

So we can go further than Compatangelo by 
considering the three additional factors which have been 
outlined, i.e. harmonics, statistical significance and 
phase. A case study may indicate the sort of analysis 
that the author has in mind. 

A suspected Roman cadastre in South Norfolk has been 
under investigation for several years. Earlier 
publications (Peterson 1988a, 1988b) have indicated its 
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Figure 19.5: Distribution of North-South traces in Fig. 19.4 and its Fourier transform. 

Structure (a centuriation with a module of 709.5m), the 
methods used to model it, and its likely date of 
initiation in the 60s AD. A more recent study involves 
the application of Fourier analysis to the field 
boundaries in an area of dense traces lying at the 
cadastre's southern edge. This area, Scole-Dickleburgh, 
has attracted the attention of others (Fleming 1987; 
Williamson 1986, 1987) who currently seem to be 
convinced that the pattern of boundaries derives from 
a coaxial field system which was certainly in existence 
in the Romano-British period, before the construction 
of a main Roman road which crosses the cadastre 
obliquely, and which could have had a prehistoric 
origin. 

The area covered by the supposed coaxial field system 
was used for the study described here. There were two 
reasons for this. Firstly, its boundaries were determined 
independently, by Williamson; secondly, the source 
data, the Nineteenth Century 6 inch Ordnance Survey 
maps, are the starting point for both Williamson's 
analysis and that described here. It would thus be 
difficult to claim that the survey area or the basic data 

have been specially selected for this study. 

The 6 inch maps were processed manually to include, 
as shown in Fig. 19.4, only those features which 
conform, in the author's judgement, to a particular 
orientation. This is the orientation of the hypothetical 
Roman cadastre as a whole; its major divisions are 
shown by dots at the comers of the cadastral grid 
squares, forming lines at a constant angle slightly 
greater than 11 ° to the west of OS grid north (and at 
right angles). 

In this area the possible cadastral traces running in this 
direction (the 'north-south' direction) are more 
numerous and regular, so they were used as input to 
the Fourier analysis. Since the MathCAD Fast Fourier 
Transform routine expects the number of input values 
to be a power of two, the north-south traces in each 
hypothetical grid square were enlarged to fit a 
transparent overlay divided into 64 bands. The length 
of trace lying in each band was measured, by hand, to 
give 64 values for each square, giving a total of 808 
non-zero values over approximately 100 squares. 
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Figure 19.6: Histogram of periodogram values of randomised data, compared to their mean value. 

The corresponding values for each east-west row of 
grid squares were then summed (in the north-south 
direction) to give an array of 1024 values representing 
the east-west distribution of the boundaries. Then the 
corresponding values in each of the 16 blocks of 64 
cells in this array were summed to obtain the sum of all 
the data (Fig. 19.5, upper chart). The periodogram 
(Fig. 19.5 centre) of this distribution has a high peak, 
of 3.1 times the mean amplitude, at frequency 1 and a 
next highest peak, of just over twice the mean, at 
frequency 3. 

But what is the statistical significance of these peaks? 
How often would peaks this high be obtained by 
chance? In order to answer this question a new array of 
1024 values was constructed by assigning, to each cell, 
a value taken from a randomly determined cell in the 
original array of 1024 values. This data set was then 
reduced to 64 values by the procedure described above. 
The aim was to produce a data set with approximately 
the same mean and variance as the original, but in 
which any sign of periodicity would have been 
destroyed. 

This gives a new distribution and a different 
periodogram of 32 values (that for frequency zero not 
included). This randomisation process was repeated 100 
times and the 3,2{X) periodogram values were plotted as 
a histogram (Fig. 19.6) and tabulated as a cumulative 
percentage distribution. This indicates that, in this case 
and for this sort of data, none of the randomly 
generated values exceeded three times the mean value, 
but 4% are higher than twice the mean value. At first 
glance 4% looks quite a low chance; but, given 32 
values in each periodogram, it is likely that at least one 
will exceed this level. If we use the value of 4%, then 
the probability is 1 - 0.96'^ i.e. 0.73. 

Nevertheless, one might think that the chance that two 
values exceed twice the mean value would be 
considerably lower. But, again using the 4% figure, we 
can calculate that the chance of seeing exactly one 
value exceeding twice the mean value is ^^C, X 0.04 X 
0.96^' = 0.36. Thus the probability of seeing a 
periodogram with at least 2 such values is 0.73 - 0.36 

= 0.37. One must conclude that the periodogram 
obtained in this case is not at all unusual and, 
furthermore, one prominent frequency could be a 
harmonic of the other. This makes it necessary to 
examine the phase of these two components. 

Fig. 19.5 (bottom chart) shows that the component with 
frequency 1 is more out of phase than that with 
frequency 3. The respective values are, in fact, 0.98 
and 0.39. These numbers can be used to calculate the 
absolute displacement of the positions of the maxima of 
the respective Cosine curves from their 'in phase' 
positions (the positions in which they coincide with the 
limits of the fundamental interval). 

Any component frequency can have a phase with values 
from -X to X. This range of 2T represents the 
wavelength of the component, which, of course, varies 
according to its frequency. For the component with 
frequency 1 the wavelength is 709.5m; thus a phase of 
0.98 radians represents a spatial displacement, of the 
maxima of the Cosine curve from the 'in phase' 
position, of 

0.98 
2T: 

X 709.5 = 111m 

This displacement is large and it is perhaps explained 
by the way in which the traces tend to be most dense 
on the left hand side of the distribution (see Fig. 19.5). 

The wavelength of the component with frequency 3 is 
709.5/3 = 236.5m and its phase is 0.39. Thus its 
spatial displacement is 

0.39 
2n 

X 236.5 = 15w 

This component is much more nearly in phase, which 
suggests that it is unlikely to be solely a harmonic of 
the component with frequency 1, because there is 96m 
between their maxima. Despite the lack of statistical 
significance of its amplitude, it may indicate a genuine 
original subdivision of the cadastral squares into three. 
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Figure 19.7: Traces from Fig. 19.4 which may represent a division of the cadastral grid squares into three. 

Using this clue we can examine the supposed traces for 
physical evidence of this form of division (Fig. 19.7) — 
and there does seem to be clear evidence for it. It is 
also noticeable that these divisions are more uniformly 
distributed than the possible cadastral traces, considered 
as a whole. Possibly they reflect an original 
sub-structure of the cadastre, and the variable density 
of the other traces reflects different patterns of Roman 
and later land use. 

This form of subdivision was not initially expected. The 
author's study of a possible Roman cadastre elsewhere 
in Britain (Peterson 1990) seemed to have revealed a 
division by four, which is not evident in this part of 
this cadastre. Nevertheless, two things argue for the 
idea that this pattern is the work of a Roman land 
surveyor. Firstly, since 3 is a factor of 2,400, one can 

accept that, in a Roman context, squares with sides of 
2,4(X)ft can easily be divided in this way. On the other 
hand, although subdivision by 2 occurs (rarely) in 
prehistoric cadastres (Fleming 1988:65), other sorts of 
subdivision are not apparent, and not expected. 
Secondly the writings of the Roman agrimensores tell 
us that they did indeed divide land in this way. 
According to Hyginus, one square could be allocated to 
three men, and it has been suggested that in his time, 
around the end of the First Century AD (Hinrichs 
1988:81), this area of land was considered to be the 
normal allocation for one man and his family 
(Chevallier 1983:38 note 55). 

This case study suggests that, in this field, the 
technique of Fourier analysis needs to be grounded in 
the reality which the field boundaries represent. Not all 
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the information provided by periodogram analysis will 
necessarily be directly related to original cadastral 
subdivisions. Nevertheless, if used carefully — taking 
account of statistical significance, phase, physical 
evidence and the archaeological and historical 
background — the technique could be a useful tool ii) 
the analysis of well-structured cadastres. 
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