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6.1 INTRODUCTION

In ideal circumstances, aerial archaeologists
would obtain their photographs in stereo pairs,
and would reconstruct the subjects in three di-
mensions with the aid of stereoscopic devices
such as analytical plotters. In practice, a large
proportion of aerial photographs are obtained as
single images, grabbed as opportunity allows,
and the use of analytical plotters is well beyond
the budget of the majority of archaeologists.

When the subject is a set of markings on the
ground surface, such as cropmarks, it may be
analysed and reconstructed from a single photo-
graph, provided that a sufficiently accurate
model of the ground surface is available. Further-
more, such an analysis need not involve the use
of expensive equipment; personal computers,
within the range now generally available at rea-
sonable prices, are perfectly adequate for the task.
It is only necessary to attach a small digitising
tablet, by means of which information may be
transferred from the photograph to the computer
(Haigh 1989).

Aerial archaeologists are then faced with the
problem of where to obtain an accurate model of
the ground surface. Assuming that they are not
willing to carry out their own detailed survey of
the site, and to do so would defeat the purpose of
aerial photography as a rapid technique of large-
scale preliminary survey, the most likely source
of information is a contour map. In Great Britain,
the best contour maps are generally the 1:10000
Series of the Ordnance Survey; doubtless maps of
similar standard are available in most industrial-
ised countries.

When the map is placed on the digitising tab-
let, the locations of points situated on contours of
known height may be transferred to the compu-
ter. In this manner, an assemblage of co-ordinates

of discrete points within the ground surface may
be created. Such an assemblage is known as a dig-
ital terrain model, or DTM, of the ground surface.
The number and spacing of the points necessary
to create a satisfactory DTM will be discussed in
Section 6.4.

In order to reconstruct the subject of the photo-
graph, it is necessary to estimate the ground
height not only at the discrete data points of the
DTM, but also at all intermediate points and, in
particular, at points between the contours of the
original map. The process of estimating the height
at intermediate points is known as Interpolation.
Interpolation between irregularly scattered data
points in two or more dimensions is usually more
difficult than in one dimension, since the concept
of ordering, which is the basis of many one-di-
mension methods, can no longer be applied.

A large number of mathematical techniques
have been advocated for interpolation in two or
more dimensions, of which one, the use of radial
basis functions (RBFs), has recently been discussed
in the context of archaeological applications by
this author (Haigh 1992); a number of back-
ground references are cited in the earlier paper.
The purpose of this paper is specifically to dis-
cuss how RBFs may best be adapted to the prob-
lem of creating DTMs, and to give some indica-
tion of the reliability of the results, in the light of
the author’s recent experience.

6.2 INTERPOLATION USING RADIAL BASIS
FUNCTIONS

A radial basis function is essentially a function
¢(r) of the radial distance  from the origin of co—
ordinates. The distance r may be taken in any
number of dimensions, but in this paper it will be
confined to two, corresponding to the co-ordi-
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nates of a map. Using the vector displacement x
to denote the location of a point with co—ordi-
nates (x, y), it is possible to write

(1] r=[xl, =y**+y*

Here the double vertical lines effectively denote
Euclidean distance in the plane of the map, but
the notation also applies in spaces of higher di-
mension.

The DTM, obtained from the digitising tablet,
constitutes a set of n data points x;, at each of
which the ground height u; is known, so that the
data set consists of n triads of three-dimensional
co-ordinates (x;,y;,u; ). With each data point may
be associated a RBF, whose argument is the radial
distance from the data point concerned:

2 ¢(|lx—x;||2)=¢(\/(x—x,~)2+(y—y,-)zj

The same functional form ¢ is retained for all the
data points.

The interpolant f is now taken to be a linear
combination of the RBFs for all the different data
points:

(3] 0= Y pllxx,)
j=1

The parameters A; are constants whose values
have to be determined. Since fis intended to be
an interpolant, rather than an approximant, it
must match the height u; at each of the data
points:

@3 ox-x], )=, i=1mn
j=1

Eq. [4] represents a set of n linear equations in the
n unknown parameters 7,. In general, such a set
of equations may be solved exactly, and the solu-
tion may be substituted into eq. [3] to give the
precise functional form for the interpolant f.

A variety of different functional forms for the
basis function ¢ have been proposed. The discus-
sion in the earlier paper (Haigh 1992) demon-
strated that only one functional form appeared to
be appropriate for the interpolation of DTMs,
namely the multiguadric function

(5] o) =Ar*+c
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Here the non—zero parameter c is introduced in
quite an arbitrary manner to avoid an awkward
singularity at the origin of the argument r. Al-
though the multiquadric function does not have
the some of the mathematical properties one
might expect, practical experience demonstrates
that it is the right choice for this and many similar
problems.

The received wisdom is that the form of the
interpolant f is largely insensitive to value of c,
but that generally speaking it should be made as
large as seems practically feasible. Such a formu-
lation does nothing to define what is the practical
upper limit for ¢, and gives no indication of how ¢
should be preselected within a general computer
application. Experience of using multiquadric
RBFs in the rectification of aerial photographs has
shown that the detailed results are sensitive to
the value of ¢, and that a good choice may be cru-
cial to the success of the technique. Much of this
paper will be devoted to discussing how to assign
a value to ¢, and the overall reliability of the RBF
technique will be assessed in the context of such
an assignment.

6.3 REFINING THE MULTIQUADRIC
INTERPOLANT

6.3.1 Fitting deviations from mean height
Before tackling the problem of choosing the pa-
rameter ¢, one small refinement of the RBF tech-
nique should be considered. One would expect
the fitted interpolant to depend only on the shape
of the ground surface, and not on the absolute
height. That is to say, the interpolant should be
the same, irrespective of whether the section of
terrain is near the top of a mountain or deep in a
valley, provided that the shape remains constant.
This cannot be the case when the interpolant f in
eq. [4] is fitted directly to the absolute heights 1,
at the data points.

The problem can be overcome by calculating
the mean height over all the data points:

— 1
(6] u =_Z”f
n4s

and then fitting the interpolant to the deviations
from the mean height, rather to the absolute
heights.

Corrected for the subtraction of the mean
height, and with the multiquadric basis function
of eq. [5] substituted for ¢ in eq. [3], the
interpolant f may then be expressed as
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j=1

The parameters A, are solutions of the simultane-
ous linear equations

(8] Noah =u—u,i=1,.,n
j=1

where the coefficients 4;; are given by

91 aisz(xi“xj)z"’(yi_yj)z +c?

Although the introduction of deviations from the
mean height is a small change to the overall cal-
culation, it can lead to a perceptible improvement
in the results, particularly around the outer fringe
of the distribution of data points. Indeed, it some-
times allows the model to be extrapolated a little
way beyond the distribution, without encounter-
ing excessive errors. Extrapolation should not be
relied on as a regular practice, since ground sur-
faces are always liable to behave in a manner
which cannot be predicted mathematically.

It should be noted that taking the mean height
into account does not improve the solubility of
eq. [8], which depends only on the coefficients 4;;,
which in turn depend only on the locations of the
data points in the plane of the map. This is in con-
trast to conventional least-squares fitting, where
mean values should always be taken into account
if the stability of the solution is to be guaranteed.
In the present case, it is the quality of the result-
ant solution which is likely to be improved.

6.3.2 Choosing a value for ¢

The parameter c in eqs [5], [7], and [9] has the di-
mension of distance. Furthermore, its value
should be related to the area density of the data
points, a high density of points indicating a small
value for ¢, since the distance between the data
points will then be small, and a low density of
points indicating a larger value for c. On the basis
of this argument, ¢ should behave in much the
same manner as the mean nearest-neighbour dis-
tance, a parameter often used to indicate the den-
sity of a distribution of points, with which it has
an inverse relationship. It seems reasonable to
suggest that ¢ should be taken to be a proportion
K of the mean nearest-neighbour distance:

[10] C=K Ty

6 Practical experience in creating digital terrain models

This conclusion creates some problems. A typical
section of terrain is likely to contain some level
areas and also some steep hillsides. The density
of data points over the hillside areas, where there
are many contour lines, is probably higher than
over the level areas, where there may be no con-
tour lines at all. Consequently the nearest-neigh-
bour distances may show distinct differences be-
tween the two types of area.

For the rectification of aerial photographs, the
variation in density is likely to be further empha-
sised, since the DTM is constructed not over the
plane of the map itself, but over the projection of
the ground surface through the lens on to the fo-
cal plane of the camera. Consequently, the effect
of perspective increases the density of points in
the more distant parts of the subject, and de-
creases it in the nearer parts.

Consideration of the last two paragraphs sug-
gests that there is a need for a formula for ¢ which
is not constant throughout the model, but takes
into account the variation in density. The obvious
solution is to take c not as a proportion of the
mean nearest-neighbour distance, fixed through-
out the model, but as a proportion of the actual
nearest-neighbour distance for each data point.
Then c is no longer a fixed parameter for the en-
tire model, but takes a specific value ¢, associated
with each of the data points.

Eq. [7] for the interpolant is then replaced by

(11] flx,y)=u+ iij(x—xj)z +(}/"}/,~)2 e
=1

The parameters A, are solutions of eq. [8], but eq.
[9] for the coefficients is replaced by

[12] aij:J(xi_xj)z'*'(yi_yj)z+CJ?

where the parameters c; are given by

[13] ¢; =% gy

Although these changes appear to provide a
straightforward answer to the problems, some
attention should be given to their consequences.
The first point is that the RBFs are no longer the
same for every data point, as eq. [2] specifies they
should be, but vary in detail from one data point
to another; this could be seen as destroying the
pure concept of RBFs. The second point is that the
matrix of the coefficients a; is no longer exactly
symmetric, which could significantly affect some
of its properties. After extensive testing, the au-
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thor has been unable to detect any undesirable
results from either of these two points, but there
remains a remote possibility of problems emerg-
ing in the future.

6.3.3 Choosing a value for K

In order to implement eqs [11]-[13], it is neces-
sary to choose a value for the constant of propor-
tionality K. A useful analogy is to think of the fit-
ting of multiquadric basis functions as stretching
arubber sheet over the data points. In the neigh-
bourhood of each data point the function takes
the form of a circular tent, possibly inverted, with
arounded peak.

A small value for K, and consequently for the
parameters c;, indicates that the rubber sheet is
very thin, so that it stretches very tightly between
the data points; the peaks will then be quite
prominent, and the overall appearance will not be
very smooth.

A larger value for K indicates that the sheet is
quite thick, so that it bends gently round each
data point, to take on an overall smooth appear-
ance. The problem here is that the thick sheet can-
not bend very readily, and may have difficulty in
moulding itself to neighbouring data points. Con-
sequently it may show a tendency to overshoot
the range of heights indicated in the data, to form
itself into creases, and possibly even to tear.

The author decided to examine a number of
DTMs for values of K in the range from 0.1 to 1.0.
On intuitive grounds, it seemed that anything less
than 0.1 would fail to perform its aim of smooth-
ing out the peak of the multiquadric basis func-
tion; anything greater than 1.0 would cause too
great an interaction between neighbouring points
or, in other words, make the rubber sheet too
thick.

The results were examined by displaying the
interpolated ground heights as colours on a VGA
screen. With the standard sixteen colours avail-
able, the effect was that of a coloured contour
diagram, which could be transferred to a laser
printer in the form of a simulated grey scale. The
output was arranged so that certain of the dis-
played contours corresponded exactly to those of
the original map. When the data points covered
fewer than eight distinct contours, some interme-
diate contours were generated on the computer
display, taking advantage of the full range of six-
teen available shades.

With values of K less than 0.3, the contours re-
produced in steeply sloping areas often show a
scalloped effect, as they wander off the direct line
between data points. This is the effect of pulling a
thin sheet too tightly over the points, and justifies
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the received wisdom of making the value of ¢ as
large as reasonably possible. The effect is illus-
trated in Figure 6.1, which shows a DTM for a
section of terrain, reconstructed from a set of 92
data points, using k=0.2. The scalloping can be
seen quite distinctly, particularly along the sides
of the valley at the bottom right-hand corner of
the figure. One intermediate contour has been in-
serted between each pair of contours on the origi-
nal map; the inserted contours tend to be smoo-
ther than the reconstructions of the originals.

As the value K of is increased, the scalloping
becomes gradually less prominent. For values of
K greater than about 0.7, new problems arise, but
they may not be quite so obvious in a contour
diagram. In fact, ridges and valleys become more
emphasised, and may eventually become grossly
exaggerated. This can be very noticeable during
the rectification of aerial photographs, when the
model may overcorrect for the effects of high
ground. Something of these effects can be seen in
Figure 6.2, which shows the DTM reconstructed
from the same data set as Figure 6.1, using
k =0.8. The contours show signs of unnatural
distortion in various parts of the figure, particu-
larly along the spur running up from the bottom
left-hand corner, and on the hillside in the upper
left. There is little sign of scalloping, however,
and most of the contours are remarkably smooth.

Thus values of K are required somewhere in-
termediate between 0.3 and 0.7, sufficiently large
to overcome the scalloping effect, but not so large
as to cause exaggeration of peaks and troughs.
Somewhat arbitrarily, the author has settled on a
value of 0.4, but would be prepared to accept 0.5.
The important thing is that detailed examination
limits the desirable values of K and, by implica-
tion, of ¢ to quite a narrow range, in contradiction
to the received wisdom that the results are insen-
sitive to the choice of c. The DTM reconstructed
from the same data set as Figure 6.1, using
K =0.4, is shown in Figure 6.3; although there are
some signs of scalloping, the extreme effects of
Figures 6.1 and 6.2 have been avoided success-
fully.

6.4. HOW MANY DATA POINTS?

6.4.1 The computational expense of RBF
techniques

As the author pointed out in his earlier paper
(Haigh 1992), a major disadvantage of RBF tech-
niques is that they are expensive both in compu-
tation time and in memory requirements, princi-
pally because of the need to invert a large matrix.
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Figure 6.1: A shaded contour diagram, representing a
DTM constructed from 92 data points on the map con-
tours, with ¥ = 0.2. Light shades indicate high ground,
and dark shades low ground,

As a general principle, the computation time may
be taken to be proportional to n° and the memory
requirement to be proportional to n*, where n is
the number of data points. A time of 40 seconds
was quoted to construct a DTM from 100 data
points, using a PC-compatible computer with 386
processor and 387 coprocessor running at 20
MHz. Such timings would inhibit calculations
with large numbers of data points, particularly on
slow machines, and on those which do not pos-
sess a floating—point coprocessor.

Two recent developments have improved the
situation considerably. The first is that the author
has adopted LU-decomposition as the standard
method of matrix inversion. This has proved to
be much faster than Gaussian elimination; al-
though the number of floating—point operations is
precisely the same in both methods, LU-decom-
position reduces the number of accesses to indi-
vidual elements of the matrix, and hence the
number of fixed—point operations. As a result, the
above time of 40 seconds can be reduced to
around 24 seconds, with even greater savings for
larger values of 1, since the computation time is
now rather better than n*. Unfortunately, users
who do not possess a coprocessor cannot expect
such a dramatic improvement.

The second development is the availability of
the 486DX processor at reasonable prices. A PC-

Figure 6.2: A DTM constructed from the same data set as
Figure 6.1, with x =0.8.

computer running such a processor at 50 MHz is
approximately six times faster than the 386 ma-
chine quoted above. Hence the DTM construction
for 100 data points may be reduced to about 4
seconds, and one for 300 data points should take
considerably less than 2 minutes. In fact, the last
calculation would exceed the MS-DOS restriction
to 640 KB of memory, but hardware and software
developments will soon make that restriction ob-
solete.

6.4.2 Recommendations for reducing the data set
Any users, equipped with modern personal
computers, should have the opportunity to con-
struct DTMs from large data sets, if they so wish.
The question then remains as to whether it is de-
sirable to use very large data sets. The author
believes that it is neither advantageous nor
desirable, other than in exceptional circum-
stances. In order to minimise the number of data
points, the following recommendations should
be followed:

e Do not construct a DTM larger than is neces-
sary for the purposes of rectification of photo-
graphs of a particular site;

e When two sites are recognised as separate enti-
ties, even if closely contiguous, construct a
separate DTM for each;
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Figure 6.3: A DTM constructed from the same data set as
Figure 6.1, with x=0.4.

e When the above recommendations are fol-
lowed, a DTM covering an area of 600 x 600
metres should be adequate for the majority of
archaeological aerial photographs;

e The spacing of data points along contours
should be roughly equal to the distance be-
tween contours (the user will have to exercise
some judgement in areas where the density of
contours changes rapidly);

e In areas where the ground slopes steeply, and
the contours are densely packed, it is usually
possible to omit some contours without losing
essential features of the landscape;

e Do not try to include unnecessary detail in the
DTM, but at the same time watch out for any
minor features which are likely to have a sig-
nificant effect on the rectification.

When these recommendations are followed, it has
been found that around 150 data points are quite
adequate for the majority of sites. Decreasing the
spacing between data points along contours, and
bringing in extra contours in regions of steep
slope, are likely to produce at best only a mar-
ginal improvement in the final results. Users with
access to the faster, modern, personal computers
should be able to construct reliable DTMs in rea-
sonable computation time, and without too much
personal effort. Those who still have to use older
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Figure 6.4: A DTM for the same site as Figure 6.1, but
constructed from 155 data points on the map contours,
with K =0.4.

and slower machine must give careful attention
to minimising the number of data points.

Figure 6.4 shows a DTM for the same section
of terrain as the earlier figure, but reconstructed
from 155 data points, all taken from the map con-
tours, using 1 =0.4. The results are not conspicu-
ously better than those in Figure 6.3, where only
92 data points were available. In particular, in the
valley running across the centre of the figure, the
intermediate contours are not centrally spaced
between the original contours. In order to obtain
good intermediate contours in the valley, it is
necessary to take advantage of the expectation
that there should be a uniform slope along the
bottom of the valley, and to add some extra data
points away from the original contour lines. In
Figure 6.5, ten additional points have been taken
along the valley, to make a data set of 165 points
in all, and the results are greatly improved.

This is one of the few instances where the au-
thor has found it necessary to take a judicious
sample of points in order to improve the results.
In every other case, a selection of points taken
from the contour line, in accordance with the rec-
ommendations above, has proved satisfactory.

6.4.3 Ill-conditioning
A disturbing report has circulated that the matrix
of coefficients, defined by eq. [12], becomes ill—



Figure 6.5: A DTM constructed from a similar data set to
that of Figure 6.4, but with an additional ten points in the
valley, using estimated contour heights; K = 0.4.

conditioned when the number of data points is in-
creased to about 300; that is to say, it becomes so
close to being singular that its inverse cannot be
calculated reliably. If this report is true, then it is
impossible to use multiquadric basis functions in
constructing DTMs from very large data sets. The
author has made many calculations involving 200
data points, and a few informal checks up to
about 300 points, but has found no evidence of a
problem. Unfortunately, a matrix inversion which
simultaneously checks for ill-conditioning in-
volves a much longer calculation than straightfor-
ward LU-decomposition; consequently the au-
thor has not yet had the opportunity to make a
large-scale, rigorous investigation of the point.

In spite of his recommendation that there is no
need to use such large data sets for the creation of
a DTM, the author intends to investigate the
problem thoroughly, when the necessary amount
of (both actual and processor) time can be de-
voted to it. It is unsatisfactory to recommend a
process which is likely to break down unexpect-
edly and without explanation. The obvious dis-
tortion of the contours in Figure 6.2 may point to
an explanation of the ill-conditioning. To follow
the analogy introduced at the beginning of Sec-
tion 6.3.3, the rubber sheet is becoming too thick
to bend around the data points satisfactorily. Its
effective thickness must be reduced by decreasing

6 Practical experience in creating digital terrain models

the value of K. The lack of flexibility at large val-
ues of K may have been overlooked by the origi-
nators of the report of illconditioning.

6.5. TRANSFERRING INFORMATION TO
OTHER SYSTEMS

Section 6.4.2 includes the recommendation that a
DTM should be constructed only for the region
local to the particular site under study. It is now
recognised that archaeological data should not be
confined simply to local purposes, but should be
made available within a global framework. How
can the information implicit in the DTM be
passed to large-scale systems, such as CAD or
GIS?

This question can perhaps be answered at two
levels. The calculations discussed here are used
as part of the author’s software package, which
produces vectorised outlines of archaeological
features. Provision has been made for the outlines
to be passed to AutoCAD, through which they
can be reconstructed in two or three dimensions,
and treated by all the facilities of the AutoCAD
package. Although the transfer routines are spe-
cific to AutoCAD, there is no reason why similar
routines should not be provided for any other
package, in the field of CAD, or database, or GIS.

If there is a desire to transfer the DTM itself,
then it is probably more useful to transfer it in the
form of a regular grid, rather than as scattered
data points. It is far easier to construct an inter-
polant from a regular grid of values. Thus the
RBF technique should be used to predict the
height at each of the vertices of a regular grid,
and the predicted heights should be transferred
to the CAD or GIS system. Where a number of
overlapping DTMs are in use, for instance, when
examining a group of neighbouring sites,
weighted averages can be used in the regions of
overlap.

6.6. CONCLUSIONS

Eq. [11] represents the form for the interpolant f,
developed in this paper in terms of multiquadric
basis functions. The parameters A, in eq. [11] are
the solutions of the n simultaneous equation of
eq. [8], where the coefficients 4, are given by eq.
[12]; the parameters c; are expressed in terms of
nearest-neighbour distance by eq. [13], where the
recommended value for the constant K is 0.4, or
possibly 0.5. This formulation has proved to be a
very successful means of constructing DTMs for
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use in rectifying aerial photographs. In his earlier
paper (Haigh 1992), the author has assessed the
success of RBF techniques under the headings of
reliability, robustness, and realism, and it is useful to
apply those concepts to the revised formulation.

The reliability is proved by the fact that the
technique has been applied to a large number of
sites, without any case of failure. The example
shown in Figures 6.1-6.5 was quoted because it
gives a fair demonstration of the principles, and
of some of the problems that may arise. The
shaded contour displays provide clear evidence
of success in modelling the terrain. Success in
terms of the original objectives is witnessed by
the fact that the outlines of archaeological fea-
tures have been located to a relative accuracy of
one or two metres. Similarly good results for the
location of features have been obtained from the
other sites, but it has not been possible to make a
detailed examination of the DTM in every case.

A comparison of Figures 6.3 and 6.4 points to
the robustness of the technique, since the final
form of the DTM is substantially independent of
the precise choice of the underlying data points,
provided that the recommendations of Section
6.4.2 are followed. Such robustness is particularly
important where the software is used by people
who are not familiar with the mathematical prin-
ciples. If archaeologists err on the side of caution
in selecting the data points, they may find that
they are wasting some computer time in con-
structing the DTM, but the results should be en-
tirely satisfactory.

The realism of the technique is indicated partly
by the satisfactory reproduction of the map con-
tours, and partly by the fact that intermediate
contours are constructed compatibly with human
preconception of the appearance of the landscape.
When its presence is indicated in more than one
map contour, a feature will normally be well rep-
resented in the intermediate contours. For in-
stance, when the DTM shown in Figure 6.3 was
used in rectifying aerial photographs, archaeo-
logical cropmarks on the spur in the lower half of
the figure were rectified accurately, showing that
the spur itself had been realistically recon-
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structed. Clearly problems can arise from time to
time, as is illustrated by the discussion of the val-
ley, in Section 6.4.2. Although the nature of the
ground surface is such that no mathematical for-
mulation can describe it completely, this method
can be seen to cope as well as any.

Overall, the author remains convinced that the
RBF technique, appropriately modified, is the
most reliable method, available for the construc-
tion of DTMs while rectifying aerial photographs.
The simplicity of its concept, and the accuracy
and realism of the results more than compensate
for the expense in computer time. The author has
adopted it exclusively for his work with aerial
photographs, and recommends that it be consid-
ered for other archaeological applications.
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