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34,1 INTRODUCTION

Seriation is the oldest and probably the most used
statistical technique in archaeology although its
importance has greatly declined since the intro-
duction of modern dating methods. A wide range
of approaches to the solution of the seriation
problem have been suggested. Many methods
start from a matrix of measures of correlation or
similarity between assemblages. These can be ma-
nipulated or permutated directly. Alternatively
most multivariate statistical techniques can be
used to produce unidimensional orderings of ar-
chaeological material and, theoretically at least,
such sequences may well represent time. There
are, however, a number of drawbacks to all these
approaches which makes their use questionable
and throws doubt on any conclusions obtained:

1) Choice of a similarity coefficient is usually an
entirely arbitary procedure and frequently lit-
tle or no consideration is given to the appropri-
ateness of the chosen coefficient or the degree
to which it effectively represents closeness in
time.

2) The unit of analysis is invariably the assem-
blage rather than the artifact. Consequently
each assemblage is given equal weight in the
analysis regardless of its size or the nature of
its constituents. Since larger assemblages con-
tain more information, or at least may convey
qualitatively different information, a more
natural procedure would be to treat the artifact
as the unit of analysis. Essentially the data has
a hierarchical structure with two levels, yet
this is ignored in all current seriation methods.

3) All current techniques are used just to provide
an ordering of archaeological material, al-
though some, for example multidimensional
scaling, could be used to scale instead. Esti-
mates of the accuracy of the positioning of any
individual assemblage within a sequence are

not provided. Thus there is no means of judg-
ing the accuracy of a derived sequence.

In addition to these difficulties there is another
aspect of seriation which is usually ignored in de-
scriptions of the technique. It may be that a chro-
nological ordering for a given set of material is
desired solely in order to clarify events for the
particular site from which the material came.
Sometimes however, once a sequence is formed,
itis used as a means of classifying other material.
The most obvious example here is Petrie’s Egyp-
tian sequence which is still in use today after
nearly a century. The question then arises, as a
problem distinct from the original seriation prob-
lem, as to the best way of matching extraneous
material to an already created sequence. At
present this would usually be done by hand since
none of the existing techniques deals with the
problem.

In one sense seriation can be considered as be-
ing a missing data problem since its primary pur-
pose is to estimate the value of a variable, time,
which is completely missing. Thus statistical
methods for dealing with incomplete data should
form an appropriate approach to seriation. In this
paper, incomplete data techniques are used to de-
velop a parametric method of seriation which
goes some way towards overcoming the draw-
backs associated with standard methods. It
should be pointed out that this method is not in-
tended to replace standard methodology but
rather to complement it. In many instances the
necessary distributional assumptions involved in
parametric modelling will not be appropriate for
the archaeological material involved. A paramet-
ric form of seriation was previously developed by
Kendall (1963) based on an analysis of the meth-
ods of Petrie (1899) but this was limited to the
study of artifacts classified into distinct varieties
and made no allowance for the possibility of uti-
lising continuous measurements.
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34.2 A PARAMETRIC SERIATION MODEL

In order to develop parametric seriation methods
itis necessary to derive a distributional model for
the variation within and between assemblages.
Suppose that the artifacts making up the assem-
blages can be divided into W distinct types and
that for each type a set of descriptive measure-
ments, continuous and discrete, is made. Denote
this set of variables by x and the age or date of an
artifact by t. The variable vector x is allowed to
differ in composition and dimension with the
type of artifact. The measurements used to de-
scribe pottery urns, for example, being unrelated
to those needed to adequately describe handaxes
or broaches. Represent the distribution of these
variables for type wby f(t,x|w), where wis a vec-
tor of Wbinary 0,1 elements each element index-
ing a particular artifact type, and suppose that the
overall prevalence of type w is given by p(w).
Thus the overall distribution of artifacts is given
by

(1]

This distribution can be thought of as in some
sense representing an imaginary infinite popula-
tion of artifacts from which assemblages are con-
structed. In some cases it might be possible to
identify the distribution with the population of
artifacts existing over the time span under con-
sideration. In most situations, however, the prob-
lems of site and artifact preservation make such
identification dangerous.

Consider now the “statistical” process by
which assemblages are created. For a set of N as-
semblages let the date or age, f,, of assemblage s
be randomly selected from some distribution g(#).
Similarly let the number of artifacts, n,, in assem-
blage s be randomly selected from the conditional
distribution h(ns ts) and let each artifact and its
associated measurements be randomly chosen from
the conditional distribution f (ws,-, xsilifs ),i =1l..n,,
where

) wsx/xsx/t /f

and f(t,) is the marginal distribution of #, ob-
tained from f(w,;,x,,t,). The likelihood of an ob-

sir7vsi/

served set of N assemblages is therefore
3]

H{ t)h |t was,,x } s=1,N,i=1,n,

This is a very general expression which, through
suitable choice and interpretation of the compo-

2] flw,, x,
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nent densities, can be used to represent a wide
range of seriation data and the processes by
which they are obtained. Suitable choices for the
density forms are now considered briefly before
the development of a specific model.

In most archaeological discussions of the seri-
ation problem, it is assumed that each artifact
type gradually increases in prevalence until it
reaches a peak and then declines. This unimodal
distribution over time has been thought of as ap-
plying to the proportion of assemblages contain-
ing the specified type of artifact, to the number of
such artifacts within assemblages, or to both. Ma-
nipulation of assemblage order to achieve such
“battleship” shaped curves formed the basis of an
early form of seriation (Ford, 1962). A natural
choice for f(#jw) is therefore the normal distribu-
tion. This choice is open to criticism on the basis
that the distribution of particular types of arti-
facts over time may well be skewed rather than
symmetrical. Kendall (1963) was careful to allow
for this in his analysis. The normal distribution,
however, has two advantages. Analytically it is
more tractable than most other candidate distri-
butions, and its multivariate form can be used to
encompass any continuous measurements made
on the artifacts. Suppose therefore, that the de-
scriptive variables x are all continuous and that
the distribution of x and t for each artifact type,
f(x t[w) is multivariate normal with mean of
=1, mean of t =1, variance of x=Y, varx-
ance of + =02 and covariance of x and t =
1, can be thought of as the time at which art1fact
type w was most prevalent and ¢2, as measuring
the range of time over which it was used. If x
does in fact contain discrete variables these can
be taken as defining new types of artifact and
hence absorbed into the variable w.

The normal distribution is also a natural choice
for g(t), since it implies that the set of assem-
blages cluster round some central date and be-
come less frequent as the time away from that
point increases. An alternative is to use f(t), the
marginal distribution of { obtained from flw,x,),
and this is the choice used here. If the average
number of artifacts in an assemblage is independ-
ent of time then, ignoring the obvious problems
of oversimplistic interpretation, use of f(t) implies
that f(w,x,t) can be interpreted as the distribution
of artifacts within the population of assemblages
as well as the population of artifacts available for
incorporation within assemblages.

The distribution of the number of artifacts in
an assemblage, h(n|t), can be modelled in a vari-
ety of ways. One of the most convenient is to as-
sume a Poisson distribution. Two alternatives



suggest themselves for the mean of this distribu-
tion. The first is to assume that the mean is pro-
portional to f(£). This is equivalent to assuming
that the average number of artifacts in an assem-
blage is proportional to the number of artifacts
available at any given time. The second and sim-
plest alternative is to assume that the mean is in-
dependent of time i.e. to use h(n) instead of h(nt).
Since assemblages containing no artifacts are in
general not included in seriation data sets, it will
usually be more appropriate to take h(1-1) as
Poisson rather than h(n). Suppose therfore that
h(n-1) is Poisson with mean m.

34.2,1 Model fitting

Once an appropriate choice of distributions is
made the likelihood given above is fully defined.
With the options chosen above

i I= HS{ flt, h(n, - 1)Hi f(ts,xsilws,-)r’(wsi)/ f (ts)}

s=1,N,i=1,n,

where w,; is the type of the ith artifact in assem-
blagesand x,; is the associated vector of continu-
ous measurements. The expressions w, and x,
will be used to represent the complete set of arti-
fact types and measurements within assemblage
s.

If t were known for each assemblage then the
parameters of the various distributions could in
theory be found by maximising ! or its log.
Equally if the parameters were known then they
could be used to predict the values of t. Since
both tand the parameters are in general com-
pletely unknown, neither of these procedures is
possible, but an alternative approach known as
the EM algorithm can be used (Dempster et al.
1977). Instead of maximising the complete log—
likelihood, the EM approach is to maximise the
expected value of the log-likelihood given the ob-
served information. In many situations, the algo-
rithm reduces to a simple two stage iterative
process. Starting with an initial guess at the pa-
rameter values, the algorithm would use these to
estimate the assemblage ages (more accurately
the sufficient statistics of the parametric model)
and then use the estimated ages to give improved
values for the parameter estimates. This process
is repeated until the values no longer change, at
which point the algorithm has converged and we
have estimates of both the parameters and the as-
semblage ages. In the present case, the expected
value of the log-likelihood is not analytically trac-
table so that implementing the algorithm, while
possible, is computationally difficult.
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One final problem remains, that of “anchoring”
the time distribution. If t is completely unob-
served, then the parameters 1, and ¢2 are not
strictly speaking identifiable. Similar problems
are encountered in factor analysis and other la-
tent variable techniques, where it is often as-
sumed that the latent variables have zero mean,
variance 1 and no correlation. In the present situ-
ation a variety of ways can be used to solve this
problem. If the age of some assemblages are
known, possibly through other da ting methods,
then the known dates can be included in the data
and serve to fix the time distribution. Alterna-
tively the mean age and range of a specific arti-
fact type may be known from other studies and
again this serves to fix the time distribution.
When ¢ is completely unobserved, other methods
must be used. Two dissimilar assemblages can be
chosen and given arbitary dates such as 0 and 1.
Alternatively the mean age and variance of one
chosen artifact type can be fixed at 0 and 1. In
both these cases, the resulting parameter esti-
mates will be relative to the chosen values. A
third alternative is to fix the overall mean and
variance of t in f(t) at suitable values and then to
maximise [ subject to these constraints.

Once the model has been fitted to a data set,
the estimated parameters can be used to provide
an ordering of the assemblages and hence a solu-
tion to the seriation problem. The conditional dis-
tribution of ¢,, f(ts ws,xs), can be used to obtain
the variance of ¢, for each assemblage as well as
its expected value. Hence, unlike standard
seriation methods, the proposed technique pro-
vides an indication of the accuracy and degree of
overlap of the predicted sequence. The problem
of dating or sequencing additional material is also
solved by this method since estimates can be pro-
vided in the same way for assemblages that were
not included in the analysis.

34.2.2 Model simplification

The seriation procedure proposed in the previous
section is, in practice, computationally expensive
since it involves a considerable amount of nu-
merical integration and maximisation. In the
present section a simpler method that approxi-
mates to this procedure while avoiding numerical
integration is considered. Examination of the rel-
evant expressions shows that the need for nu-
merical integration arises from two sources.
Firstly and most importantly is the need to form
the expected value of the log-likelihood with re-
spect to the “awkward” conditional distribution
f (tS Ixs,ws). Secondly is the presence of a term in-
volving ln{ () in the expression for the ex-
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pected value of the log-likelihood. This term
leads directly to the analytically intractable com-
ponents in the solution to the likelihood equa-
tions. This aspect of the problem is most easily
dealt with, by omitting the term from the likeli-
hood. This would appear to be a rather drastic
step but can be justified to some extent since the
intractable components are all expected values of
weighted averages of quantities that have expec-
tation zero with respect to the population of arti-
facts as a whole. Thus in large samples they
would be expected to be small anyway. For com-
plete data (i.e. for known f) the parameter esti-
mates from such a reduced likelihood are in fact
consistent although not maximum likelihood
(ML). In effect therefore omitting this term from
the likelihood converts the EM algorithm from
ML estimation to the estimation of a different
consistent estimator. Alternatively the reduced
likelihood can be thought of as corresponding to
amodel where each artifact is chosen separately
from f(t,x,w) but with certain groups of artifacts
known to have the same value of ¢. The param-
eter estimates are now

m=Y (n,~1)/N
p@)= 3 e/ 31
Bo=2 D wxsf/"
5l Y=Y (x i Ha)
T = X Nk ts)/nw
oL = nE(t,—1 )2/2 .,
Ay=Y % (xi—m,NE®)-1.)

where 1, is the number of artifacts of type win
assemblage s and 7, is the total number of arti-
facts of type w.

These estimates are simple to calculate apart
from the last three expressions which involve the
expectation of t; and #2 with respect to the condi-
tional distribution of f,. Analytic simplification of
these expectations is not feasible but an approxi-
mation to them is. The marginal distribution of ¢
over the population of artifacts, f(f), is a mixture
of normal distributions with overall mean

[6] 1= P,

and variance
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7] 0?=Y plw)(c} +7)-7

Approximating f(t) by a normal distribution with
this mean and variance gives

[8] fltale, w,,m,) = N(M,, 5?)
where

T(1_”5) T; +A€Qi_l(xsi _ui)
01 M, =[ o2 +2,~ o2 —ATQA, S:
and

-1
[10]  §*= (l‘”s)+2 L
? c? o7 — AJQ A,

so that
[11]  E(t)=M, and E(f?)=S?+M?

Thus use of a normal approximation to f(t) results
in a very simple seriation technique in the form of
an EM type procedure which alternates between
5 and 11 until convergence is reached.

The approximations made in deriving these
expressions are fairly crude. However some justi-
fication for their use can be made. Empirically the
procedure can be justified on the grounds that, as
shown in the following section, it appears to
work, producing reasonable parameter estimates
and accurate seriation sequences. Theoretically
further investigation of their adequacy is re-
quired.

The number of model parameters is propor-
tional to the number of artifact types and as this
increases, the instability of the estimative process
can increase markedly. This is largely due to the
proliferation of variance parameters. The problem
can be prevented by dating sufficient assemblages
to ensure that each artifact type has at least two
different observed dates. An alternative is to use
a model of constant within-type variance. Such a
model, as well as solving the problem, is also
likely to be more robust in general.

A special case to be considered is that of inci-
dence data where only the presence or absence of
each artifact type in each assemblage is recorded.
Three different approaches to this form of data
suggest themselves. Firstly it should be possible
to reformulate the parametric model to allow for
this type of data. Secondly incidence data could
be treated as an incomplete form of abundance



34 A parametric approach to seriation

Artifact type

1 2 3 4 5 6 7 8

Mean Age True 86.0 90.0 94.0 98.0 102.0 106.0 110.0 114.0
Predicted 87.6 81.6 93.0 %6.6 101.0  109.8 1127 113.2

s.d True 3.0 10.0 7.0 9.0 4.0 5.0 8.0 6.0
Predicted 2.0 10.0 7.9 11.7 6.3 4.2 8.1 7.2

Correlation  True 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Predicted 0.1 0.6 -0.1 04 0.1 0.1 0.0 0.2

Table 34.1: Comparison of true and estimated parameter values.

Assemblage No. Predicted Age

True Age s.e.

1 69.5 76.3 39
2 81.9 87.5 1.9
3 89.8 87.7 2.0
4 89.9 81.6 3.5
5 91.2 88.3 2.6
6 95.5 106.2 3.7
7 99.1 87.2 6.7
8 100.4 95.2 2.0
9 100.6 99.8 3.2
10 102.2 98.1 3.1
11 104.9 100.5 4.2
12 105.8 110.5 4.2
13 107.3 106.2 2.8
14 108.1 109.7 24
15 108.9 107.9 4.7
16 109.6 113.3 4.1
17 113.8 112.5 3.9
18 115.4 114.1 3.7
19 118.4 117.5 4.9
20 125.0 119.4 5.5

Table 34.2: comparison of true and predicted assemblage
ages for simulated data.

data where the missing values are the numbers of
each artifact type. This would entail taking expec-
tations with respect to these values as well as to
the missing age values, but in principle this
should be relatively straightforward. Neither of
these approaches is developed further here. The

final alternative is to treat the data as if it were
abundance data and apply the model as before.

34.3 EXAMPLE

The utility of the new seriation technique was ex-
amined through its application to a simulated
data set.

34.3.1 Simulation

An artificial data set was constructed, through
random number generation, consisting of 105 ar-
tifacts divided into 20 assemblages and 8 artifact
types. The artifact types were assumed to have
equal overall prevalence but age distributions
with differing means and variances. One continu-
ous measurement, x, was generated for each arti-
fact such that the joint distribution of age and x
within each artifact type was bivariate normal
with correlation coefficient equal to 0.3 and the
marginal distribution of x a standard normal dis-
tribution. The data for each assemblage was con-
structed by first generating an age value for the
assemblage from the mixture of normal distribu-
tions formed by amalgamating the individual age
distributions of the artifact types. Next the
number of artifacts in the assemblage was gener-
ated from a Poisson distribution with mean 5,
and the type of each artifact determined by ran-
dom selection from the conditional distribution of
artifact types at the appropriate age. Finally the
value of x for each artifact was generated from
the appropriate conditional normal distribution
given the artifact type and assemblage age.

34.3.2 Results

The simplified technique developed above was
applied to this data set. The true age values of as-
semblages 1 and 20 were taken as observed in or-
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Figure 34.1: Simulated data — true seriation sequence. Figure 34.2: Simulated data — predicted seriation
sequerce.
der to fix the overall age distribution. The proce- ages with their standard errors against the true
dure coverged fairly rapidly with the age means ages. Because the technique provides a scaling
stabilising much more quickly than the variances. rather than just an ordering of the assemblages it
Table 34.1 shows the true and estimated param- is possible to pick out clusters of assemblages and
eter values, while Table 34.2 gives the true and assemblages which are close together. The stand-
predicted assemblage ages, together with their ard errors do not reflect the uncertainty in the pa-
standard errors. All are surprisingly accurate rameter estimates and hence are to some extent
considering the proportion of missing data in- underestimated. Figure 34.4 would suggest how-
volved. Figure 34.1 shows the data in abundance ever that the extent of this underestimation is not

form arranged in the correct seriation sequence. It great.

appears very similar to real data sets, indicating

that the underlying distribution used to generate

the data may not be unreasonable. Figure 34.2 34.4 DISCUSSION

gives the corresponding predicted seriation se-

quence. The two are remarkably alike as is shown  The above example shows that a parametric form

by Figure 34.3 which plots the predicted against of seriation based on incomplete data methodol-
the true sequence. The advantage of this new ogy is not only feasible but in practice performs
technique over standard methods is reflected in reasonable well. Previous attempts to derive

Figure 34.4 which plots the predicted assemblage parametric forms of seriation (e.g. Kendall 1963)
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were generally based on the idea of permutating
the assemblage sequence in order to maximise
some specified criteria. In contrast the present
method more realistically regards the age of each
assemblage as a quantity to be estimated. This has
a number of advantages over previous methods:

1) Itis easily possible to incorporate additional
information and measurements, both continu-
ous and discrete, into the procedure. Previ-
ously this was only possible by categorising
continuous variables and regarding all such
additional variables as defining new artifact
types. Such a process can rapidly produce so
many types that very few are represented in
more than a handful of assemblages. In addi-
tion the ordering inherent in continuous vari-
ables is lost when they are categorised.

2) Because the method produces an estimated age
and standard error for each assemblage it is
possible to judge whether any two assemblages
are significantly different from each other.
Thus it is possible to examine the accuracy of
the predicted sequence. More importantly per-
haps it is possible to pick out those assem-
blages which have the largest standard errors
and hence are least accurately dated.

3) Since the method produces a mean age and
variance for each artifact type, it automatically
seriates types as well as assemblages and
makes it possible to compare their utility in age
discrimination.

4) Known dates can be incorporated into the
seriation procedure, where they act to anchor
and scale the time dimension. Thus unlike pre-
vious techniques the new procedure can be
fully integrated with modern dating methods.
This could be very useful for large data sets
where it is too expensive to date all assem-
blages. The dates from a representative sam-
ple, could be used to stabilise the seriation pro-
cedure, providing more accurate age estimates
for the remainder. Alternatively, if a reason-
able number of dated assemblages are avail-
able and there is doubt as to the validity of the
distributional assumptions of the technique,
the known dates could be used to calibrate the
time scale produced by the seriation proce-

dure. In any case the predicted values for
known ages act as a validity check.

The main drawback to the proposed technique is
the distributional assumptions used in its deriva-
tion. In any specific archaeological situation these
may be far from correct and in such cases the esti-
mated assemblage ages and standard errors may

34 A parametric approach to seriation
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Figure 34.3: Simulated data — Predicted vs True
assemblage rank
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Figure 34.4: Simulated data — Predicted vs True ages

be unreliable. However even if this is felt to be
the case, the technique can still be seen as an em-
pirical method for producing a seriation and pro-
vides an alternative to current methods. Prelimi-
nary investigation using simulated data
generated under different distributional assump-
tions suggests that the technique is robust to the
distributions used, although further investigation
is needed.
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