
POLEMON:
A Federated Database Management System for the

Documentation, Management and Promotion of Cultural Heritage

Ch. Bekiari
Institute of Computer Science, Foundation for Research and Technology-Hellas.

P.O. Box 1385. 71100. Heraklion, Crete, Greece.

Ch. Gritzapi
Institute of Computer Science, Foundation for Research and Technology-Hellas,

P.O. Box 1385. 71100. Heraklion, Crete, Greece
E-mail: gritzapi@ics.forth.gr

D.Kalomoirakis
Greek Ministry of Culture, Athens, Greece

Introduction

The Greek Archeological Service, one of the oldest, public
services in Greece, was organized from the very beginning to
be decentralized. The peripheral units, called Ephorates of
Antiquities, are now approaching 55, in number and include
a number of large , independent Museums as well as some
special services (Underwater Archaeology, Speleology etc.,)
are responsible for the field work, excavations,
restorations, protection and management of archeological
sites and monuments, and their environments.

A special Directive at The General Directorate of Antiquities
and Restoration, called the Directorate of Monuments,
Records, and Publications, was established in 1977. It
collects any useful documents, concerning sites and
monuments, compiles a general inventory, and classifies the
historical archives, which span the 160 years of works by
Greek Archeological Service.

The peripheral units may have their own database
management system, to manage their monument data and
they give permission to researchers, by request, to access this
data.

The dispersed and isolated cultural databases, along the
Ephorates, may have the same logical shema, although their
vendors and types may be varied, and they may concern
different types of monuments.

POLEMON's aim was the creation of a decentralized,
management information system for the National
Monuments Record, together with an integrated museum
information system, for implementation at the national level.
This project, entitled "Coordinated Informatics Services for
the Documentation, Management, and Promotion of Cultural
Heritage" has been finished. This was part of the EPET 11
program, administered by The (Greek) General Secretariat
for Research and Technology. The POLEMON project was
carried out by a consortium, headed by the Institute of
Computer Science, Foundation for Research and
Technology, Hellas (FORTH). Along with the Directorate of
Monuments, Records, and Publications, the consortium

included the faculty of Rural and Survey Engineering, at the
Aristotle University of Thessaloniki, Epsilon Software, S.A.,
the Institute of Computer and Communication Systems,
Intrasoft, S.A., and the Benaki Museum.

POLEMON was designed to cope with monuments of all
types, be supported by mapping facilities, and be capable of
supporting a wide range of administrative tasks. The latter
include making compulsory purchase orders, classifying and
declassifying archaeological sites, laying down protection
zones, controlling illicit trade in antiquities, planning
monument restoration works, etc.

The basic technical requirements and constraints for
POLEMON were:
a) The management of a very large volume of data. A

museum has, under its responsibility and control, tens or
hundreds of thousands' of objects.

b) The nature and frequency of transactions. Data entry
was massive and labor intensive. The main use of the
system was to retrieve information from remote,
eventually heterogeneous, management systems (like
relational databases - knowledge bases, relational
databases of different vendors) for administrative and
research purposes, and to perform administrative
functions locally or remotely.

c) Prior systems, abeady installed in the cultural
organizations, defined the initial conditions and
constituted a set of knowledge, methods, and systems.

To address the geographical distribution, a wide area
network, of interconnected, local area networks, was
implemented. Each museum, or unit, that belonged to The
Ministry of Culture had its own local area network and
application systems, for administrative documentation.

For the implementation of the local, administrative
documentation systems, relational database management
systems were used, supporting SQL.

These systems were efficient in the storage and refrieval of
very large volumes of formatted data, and provided efficient
support for adminisfrative operations. Also, the systems
cooperated in a federated environment, having significant

317

autonomy in their execution. Their participation in a
federation indicates that they could execute user requests,
that accessed the multiple databases of the federation.

One of the main components of TTie National Monuments
Record system is the Global Access System. The feature that
makes POLEMON stand out, from a purely technical point
of view, is the way in which the Global Access System, in
The National Monuments Record system, is built. This
provides the foundation, on which a federated database
system, can be put together effectively. This system allows
the user to define and execute queries, based on a global
view, over the federation. The Global Access System is
based on SIS, an object-oriented, semantic network database
system, developed by FORTH, in the last 5 years, and
contains the federated schema, which is an integration of
multiple export schemes. It also includes the equivalencies,
between federated schema and export schemes, and
information on data location, for driving a query generator
from federated to export schemes.

In this paper, we present the architecture of the Global
Access System, and a methodology for translating an SQL -
like query, expressed in a global schema, to SQL queries,
expressed in specific databases. The proposed methodology
covers schema integration and uses a three-layered, schema
architecture. Each layer represents an integrated view of the
concepts, that characterize the layer below.

The POLEMON project

In this section, we give a review of The National
Monuments Record system, built in POLEMON project.

The main structural and functional features of this
are as follows:

system

(1) It relates to fixed sites and moveable monuments, their
intorelationships and chronological contexts.

(2) It supports administrative documentation of monumoits and
objects.

(3) It is geographically dispersed, in line with the official
administrative plan and distribution of departmaits, within The
Greek Ministry of Culture. Archival information is collected and
undergoes specialist processing, at the local level, while The
Directorate of Monumaits Records, and PubHcations, within The
Ministry of Culture, is responsible for planning and co-
ordination, and retrieves data, mainly for administrative
purposes.

(4) It is in line with the latest, Greek legislation on Archaeology.

(5) Its architecture is that of a federated database system.

(6) It is connected to a system, which supports mapping
documentation and related fiinctions.

(7) It can be ünked to domain-specific, cultural documentation
databases, which are compatible with those of the integrated
museum information system.

(8) It can be linked to the museum information system.

Cartographic support within the system includes the
following features:
(9) Infrastmcture for drawing up The National Monumoits
Survey, using Geographical Information Systems (GIS).

(10) Land registry documentation, to cover areas in the vicinity
of monuments (mainly archaeological sites), within the
fi-amework of the geodesic and administrative reference grid, of
the National Land Register.

(11) Necessary requirements for the topographic recording of
monumoits.
The structure of local stations, in The National Monuments
Record, system is illustrated in Figure 1.

LAN

WAN
ACRONYMS :
GAS - Global Access System
GIS - Geographical Information System
IADS - Image Acquisition and Display
CMS - Collections Management System
TMS - Thesauri Management System

QP - Query Pioceuing
SIS - Setnantic Index System
AP - Answer Processing
RDB - Relation Data Base
TDB - Thesatm Data Base

Figure 1. Architecture of the National Monuments Record system It consists of tiie following major mtegrated subsystems:

318

(12) Administrative documentation system
(13) Global access system
(14) Cartographic system
(15) Image acquisition system
(16) Communications interface
(17) Authority service

(1) The administrative system is based on relational data
bases. All units have highly similar data schemata and
cx)ntain administrative data (e.g., museum codes, names,
types, administrative and general states etc., designs and
cartographic data (connections with specialized data
bases)), and may possibly contain images and text
(which can be stored separately).

(2) The global access system is based on SIS, and contains
the federated schema, which is an integration of
mappings of multiple export schemes. It also includes
the equivalencies, between federated schema and
mappings, and information on data location, for driving
a query generator from federated to external schemes.

(3) The cartographic system refers to the use of computer
graphic technologies for the organization, processing,
storage, display, and presentation of the geometric,
spatial, architectural and structural characteristics of
monuments, archeological sites, and other relative
information (location, usage, bas-reliefs). The image
acquisition system deals with image and text acquisition,
and processing.

(4) The Communications interface of the network handles
functions, such as query formulation, and query
processing from one network station to another, answer
receipt and transmission between network stations, data
transfer control(especially for multimedia data), and
periodic data dictionary updates. One of the system units
is responsible for the administration of the network,
using special programs for network management.

(5) The Authority service system creates, maintains and
accessed (browsing and direct querying) formal
knowledge structures for reference in, and index of,
cultural data.

The National Monuments Record system was installed in a
network of stations, with nodes in Komotini, Thessaloniki,
Athens and Heraklion (see Figure 2). Following this,
experience gained in the pilot stage will be used in the

HO•«',-

x'tir

!:>•>'•
!~t .*'# \''r i >

Figure 2. Polemon's pilot network

planned extension of the network, so as to serve all divisions
of The Ministry of Culture, nationwide.

The National Monuments Record System's federation
architecture

The architecture of The National Monuments Record
system's architecture is the architecture of a federated,
database management system (FDBMS) (Amit, 1990). It
consistes of cooperating, but autonomous, component
database management systems, which support monuments of
various types. The component DBMS can differ, in many
aspects, such as data models, query languages, etc. The
database management systems of a FDBMS may be
characterized, along three orthogonal dimensions:
distribution, heterogeneity, and autonomy.

Distribution

Data may be distributed among multiple databases. These
databases may be stored on a single computer system or on
multiple computer systems, which are geographically
distributed, but interconnected, by a communications system.
There are two basic reasons for the data distribution in The
National Monuments Record System. The first is the prior
database management systems that existed in The Ephorates
of Antiquities, before the beginning of the POLEMON
project, such as DELTOS' and FEIDIASl The second reason
is the geographical distribution and administrative structure
of The Ephorates of Antiquities, of the Greek Archeological
Service.

Heterogeneity

The types of heterogeneity, in most of the database systems,
can be divided into those differences, due to the differences
in DBMS, and those due to the differences in the semantics
of the data. In more detail, we have :
a) Differences in structure, where we can have differences

in data models, constraints or query languages.
b) Differences in the hardware of the database management

systems, where we can have differences in
synchronization, retrieval, etc.

c) Differences in the semantics of the data.

The (a) and (b) types of heterogeneity arise in The National
Monuments Record System, due to the different database
management systems, being used by the Ephorates. For
example, the T' Ephorate of Historic and Prehistoric
Monuments uses the INGRES RDBMS(in FEIDIAS); the
23"* Ephorate of Historic and Prehistoric Monuments uses
the SYBASE RDBMS (in DELTOS). The third type arises,
due to the different logical schemes which the geographically
dispersed, local databases may have.

For example, the content of the database, of the 13*
Ephorate of Byzantine and post-Byzantine antiquities.

DELTOS is a database management system for monuments and preserved
buildings and it has been developed by the Institute of Computer Science ,
Foundation for Research and Technology - Hellas (FORTH) and the
Archeological Museum of Crete-Hellas.
^ FEIDIAS is a database management system for movable monuments and it
has been developed by the Archeological Museum of Acropolis in Athens-
Hellas.

319

concerns site monuments and preserved buildings of Crete,
while the content of the database, of 23"* Ephorate of
Historic and Prehistoric Monuments, concerns ancient sites
and immovable monuments, of historic and prehistoric
periods of Crete; and, the content of the database, of the 1"
Ephorate of Historic and Prehistoric Monuments, concerns
movable objects, especially statues, offering objects, etc.
from Athens

Autonomy

A component DBS, participating in a FOBS, may exhibit
several types of autonomy. Some of these types are :
a) Design autonomy: refers to the ability of a component

DBS to choose its own design, including the data being
managed, the representation and the naming of the data
elements, the semantic interpretation of the data, the
constraints used to manage the data, and the functionality
of the system, or the implementation of the system.

b) Communications autonomy: refers to the ability of a
component DBS to choose whether to communicate with
other component DBMSs.

c) Execution autonomy: refers to the ability of a component
DBS to execute its local operations, without interfering
with the external operations, which are executed from
the other component DBMS, of the federation. The
component DBS can abort any external operation, that
does not meet its local constraints, without affecting its
local operations. This means that each, of the
POLEMON's DBS, is independent from the other.

d) Association autonomy: refers to the ability of its
component DBS to freely decide whether it wants to
associate, or disassociate itself from the federation. This
means that POLEMON's federation has been designed,
so that its existence and operation are not dependent on
any single component DBS.

POLEMON's federation is based on a three-level schema
architecture, that addresses the requirements of dealing with
the above dimensions, shown in Figure 3.

This architecture includes the following components :
• Local Schema : A local schema is the logical schema of

a component DBS, expressed in the data model of the
federated schema..

• Export Schema: An export schema is a subset of a local
schema, that is available to the FDBS. This happens,
because not all the data of a component DBS may be
available to the users of the federation. In our approach,
the export schema is declared implicitly, by defining
mappings from the global schema to local schemes.

• Federated Schema: A federated schema is an
integration of multiple, export schemes. This schema
also includes the information of data interconnection,
that is generated when integrating the export schemes. In
POLEMON, this schema is called, global schema, and it
is declared in a data model, which is capable of
expressing a variety of local schemes and mappings,
between export schemes and global schema. The global
schema consists of three parts:

* The first part concerns the integration of all of the
export schemes. In this paper, we will not give a

formal method for this integration. The problem of
integrating dissimilar database schemes has been
investigated by a number of researchers, and many
prototypes have resulted (Batini & Lenzerini, 1984;
Navathe & Gadgil, 1982; Navathe, et al., 1984;
Motro, 1987; Dayal & Hwang, 1984; Batini, et al.,
1986). In the section for Mapping Definition, we
present a couple of problems that arise during this
integration.

* The second part concerns the user's entry points.
They are constituted by a tree of labels, defining a

* meaningful view, for the final user, helping him to
construct queries to the federated schema.

* The third part include the mappings, between export
schemes and federated schema.

^
[Federaed Schema 1

) (

-^ ;, ^

] (

(

^

Expixt Sehen« 1
/ S

Ejipüït Schema 2 Export SctemaK J 1

M

r Local Schema I Local Schema: Local SctenaN J 1

J I i L M

f;^ -:5 (^ ~^
• • •

^^^^
Compcnert DB 1

(DELTOS)
Comiwiiert DB 2

(TEIDIAS)
CompoîienlDBN
(KXEMONDBl

^^^ mappmss

Figure 3.

We use a knowledge representation language and SIS (the
Semantic - network, object-oriented database management
system) to declare and store the above-mentioned schemes.
SIS is a tool for describing and documenting large, evolving
varieties of highly interrelated data, concepts, and complex
relationships. SIS consists of a persistent, storage
mechanism, and generic, interactive user- and program-level
interfaces. SIS offers significantly richer, referencing
mechanisms than relational, or ordinary, object-oriented
systems, offering a very high query speed, for references.

A semantic network usually is depicted as a graph, consisting
of nodes and links. Nodes represent entities, that are
elements in an enterprise, under certain interest. A node can
represent an integer, or a string, or a more complex element
such as a car, or even an abstract element, such as a bank
account.

Links, in a semantic network, represent any type of
connection between entities and are usually called attributes
or relationships. A link can represent a connection, between a
person and his name, or a person and his father, or even, a set
and its elements.
We have defined a semantic model (see Figure 4) for all of

the above information.

320

I Node I ^P^'°^^"= >[

kind, toconst.
condition,
convert from function.
convert to function

Figure 4. Semantic Model of a global access system database

This model contains classes and attributes for denoting a
database scheme, such as the tables and fields of each
database, all of the correspondence between database export
schema and global schema, and all of the information
concerning database servers, database kinds and database
distribution, existing in every node of the Polemon network.
Basic entities of the above. Figure 4, are the following:
• Node

this entity refers to a geographical location, where the
Ephorates of Antiquities exist.

• Ephorate
this entity describes all of the Ephorates of Antiquities.
Each of them can have one or more Polemon Server.

• PolemonServer
this entity refers to existing Polemon servers. Each
server has an attribute, to declare the unique ip_address
(entity Ip_Address), and may communicate with one or
more database servers.

• DatabaseServer
this entity represents the Database servers (DB -server).
Each DB-server has an attribute, to declare the version
e.g., SYBASE v. 10) and the kind (e.g. SYBASE) and it
supports one, or more database.
of the database PolemonCrete, which communicates
with a polemon server, having ip_address,
139.91.183.25, and belongs to a database server, with
the name SYBASEIO. We use the following syntax:

• Database
this entity represents the Databases, which participate in
the federation of The National Monuments Record
System. Each database can participate in this federation,
with one or more tables.

• Table
this entity represents the tables of one database.

• Field
this entity represents the fields of one table. Each field
has a data type (entity DatabaseDataType), which is
assigned to one of the Global Types (Integer, Float,
Char, Image, Date Time, etc.), used for results
integration. Finally, a field can participate in one or
more joins.

An example follows, showing the use of the above
information.

Suppose that we want to insert, into the global access system
database, a part of a local schema for the following tables:

321

Table name movable jobjects
Field names field types field description
code varchar(20) is the monument's code
published char(l) a flag declaring if the monument's

information has been published or
not

name varchar(50) monument's name or a brief
description

kind_code int(4) monument's kind code and it is a
foreign key to the table kinds

weight float(8) monument's dimensions.
dimension varchar(60) monument's dimensions.

Table name kinds

Fieldnames field types field description
kind code int(4) monument's kind code
kind name varchar(50) monument kind's name

Schema DceJaratum Example

NODE 139.91.183.25
DATABASE polemonCrete@SYBASE10
DB TYPE SYBASE

TABLE movable_objects HAS
code : varchar(20)£)A7'A_fQ/gMAr(AAKM),
published : char(1) DA TAJFORMA r(D),
name : varchar(50)DATA_FORMATi^),
kind_code -.mijA) DATA_FORMAT{X^),
weight : üoa.l{2,)DATA_FORMAT{T)),
dimensions : varchar(60) DATA_FORMAT{D)

TABLE kinds HAS
kind_code •.\nt{A)DATA_FORMAT{T>),
kind_name : varchar(50) DATA_FORMAT(jy)

FROM TABLE movable_objects
FROM FIELD kind_code
TO TABLE kinds
TO FIELD kind name
WHERE movable_objects.kind_code = kinds. kind_code

In figure 5, we can see a screendump, with the entry points to the Polemon Global Access Database.

322

, Néa Epûxnon (11

EmAoyrî OEMôIUJV; 'EvtDffn

B H -^ '^" ^
S D Aôtipomeuio i
B Q ùr\\ioa\zuueto

B O ^uvKpOTHMOia
^ ToTTiKri luiopiKtî (lepîoooç
^ YirnpEoio npocrraoïac -
^ l'OTnvopia uc'n'poCEiöiKn apXiKti xprian *

(jJOÉpaTM ^ncpiojjinuiii j •^ToytfOMnoji j ^ rtepivpoifri 1 f«: :uvTa5ti ^

i.tlpocnciiMC'OCu,'i-poiri|JcrTrfiMKM

iiripucn£uu£voi2iJVKpijirigaiaiKupia Ovopacn'a

Ai1po(ji£UiJÉvo\IuvKpoTripaTa\Eîôo;

<iOJOiMO Ktî8aptcrjj0f. Ahupwcrri ÊtriAoï/fi Kopfiijc

AlKlUO BmtttN Kofifioç s E^opci« i 8«oi)
C3 HpuKteio
a •B' Kr E n.K,A.

^ ûEATOç

J^ riotépiov
El o 7nEN.M. F n?.,r(eó;pietJoi > äTTO ur O/, n E P ùJ I ri ari g

Figure 5.

Finally, we should mention that this tree is very easy to
change, or to enrich.

Mapping's Definition

The cooperation between autonomous and already existing
databases, in order to share their data, while at the same time
maintaining their autonomy, has been the subject of many
works, and many approaches exist.

In such a heterogeneous environment, the user cannot be
expected to be familiar with every detail of each database of
the federation. For this reason, the FDBMS must give the
user the ability to have a uniform and integrated access to the
data, of all database-components. The problem of uniform
and integrated access, to the data of database-components, is
known as data sharing (Amit, 1990). There are three levels
of data sharing:
a) Transport of all data from database A to another

database, B.
b) Creation of an intermediate schema and transport of all

data under this schema.
c) Creation of an intermediate schema as an integration of

all the component-database schémas, and development
of appropriate mechanisms, which allow the user to pose
questions, to the intermediate schema, and get answers
from the component-databases.

One of the most important problems in this area is the
translation of a schema, SI, expressed in model Ml, to a
schema, S2, expressed in another model, M2. Closely
connected to this problem is the discovery of a mapping.

between the two different models. The real problem, in all
situations, is to be decided if the two schémas, or parts of
them, are equivalent, and many problems can arise in such
translations (Batini, et al., 1986; Castellanos, 1993; Chen,
1976; Lien, 1982; Castellanos, et al., 1994; Miller, et al.,
1994). Some of these problems can be classified, according
to the bibliography, as follows:

• Naming Conflicts: Objects in different schemes,
representing the same real world concepts, may have
dissimilar names, resulting in problems of two types:

- Homonyms, where the same name is used for
two different concepts, and

- Synonyms, where the same concept is found,
with more than one name.

• Type Conflicts: one object is represented by different
constructs in different schemes; for example, one
schema is represented as an attribute in one table, and in
another as a constant value.

• Key Conflicts: different keys are assigned to the same
concept, in different schemes.

• Behavioral Conflicts: these conflicts concern the
different policies that may be used during the
insertion/deletion operations, for the same concepts, in
different schemes.

• Missing Data: different attributes may be assigned to the
same concept in different schemes.

• Levels of Abstraction: this conflict arises when the same
concept is stored in dissimilar levels of detail in different
databases.

• Identification of Related Concepts: this conflict arises,
when concepts exist in the component schemes, that are

323

• not the same, but are related; in these cases, the user is
required to discover all the inter-schema properties, that
relate to them.

• Scaling Conflicts: these conflicts arise, when the same
concept is stored in dissimilar units of detail, in different
databases (for example, the weight of an object in one
database is stored in Kg, and in another, it is stored in

gr)-
• Multiplicity Conflicts: these conflicts arise, when the

relationship between two concepts can take multiple
values in one schema, but only one value in another
schema.

In POLEMON's implementation, we followed the thu-d kind
of the pre-mentioned case of data sharing, because it was the
most appropriate for our goals. During this implementation,
we faced Naming, Type, Key, Missing Data and Multiplicity
conflicts. In the next sections, we will present examples of
these conflicts and the solutions we adopted.

In order to store these mappings in the SIS, we defined a
semantic model, shown in Figure 6. This model has been
described in the S_Class level, and, in summary, contains the
following entities and the relationships, among them.

The Mapping entity represents the notion of a mapping and
can be described as follows:

* Each mapping has an attribute kind which declares
its kind. We distinguish two main kinds of mappings:
FIELD_TO_FIELD and FIELD_TO_CONST.

* from_db and to_db, are attributes declaring the from-
part and the to-part of a database correspondence.

* fromjable and tojtable, are attributes declaring the
from-part and the to-part of a table correspondence.

* fromjïeld and tojïeld, are attributes declaring the
from- part and the to-part of a field correspondence.
In some cases, a mapping doesn't correspond to a
field, but to one or more constants (to_const).

* condition, is an attribute denoting the semantics,
which should be added to the WHERE part of the
translated, SQL query.

* convertJ'rom and convertjto function, are atributes
declaring attached functions to a mapping, used in
cases with scaling conflicts (not implemented yet).

String
kind

to const, condition,
tableextend.
convert_froni_function,
convert to function

from db
to db

hasmapping

attribution

Figure 6.

In the rest of the paper, we will use the following syntax to describe the two kinds of mappings.

<mapping's kind>
fromjable
from_field
tojable
to_field/to_const
condition

<table name>
< table name>.<field name> [,< table name>.<field name>]*
<table name>
< table name>.<field name> [,< table name>.<field name>]*/< CONSTANT >
[< table name>.<field name> = < table name>.<field name> I CONSTANT
{AND <table name>.<field name> = < table name>.<field name> I CONSTANT]*]

324

Mapping FIELD_TOJFIELD

This mapping can be applied to solve naming, key, missing
data, and multiplicity conflicts. In the following examples we
illustrate how this mapping is applied, in each of the above
cases.

Naming Conflicts

Naming conflicts arise when objects in different schemes,
representing the same real world concepts, have dissimilar
names, resulting in problems of two types(homonyms and
synonyms). Here, we present an example with synonyms.

Suppose that we have the notion of movable objects, and
each movable object has, along with its other attributes, one
attribute which stands for its name. Also, suppose that in the
global schema, the movable objects are represented by the
table, kinita, described as follows:

kinita 1
Field Type Comment
aakm
onomasia

varchar(20)
varchar(50)

not null
null

monument's code
monument's name

In database FEIDIAS, the same notion is represented by the
table directory, described as follows:

directory
Field Type Comment
dimo
title

varchar(12)
varchar(lOO)

not null
nuU

monument's code
monument's name

We want that whenever we send a query, expressed in global
schema and asking for the values of the field kinita. onomasia
to the FEIDIAS database, to be able to retrieve the values of
the field directory.title. In order to achieve this, we have to
declare the mapping, FIELD_TO_FIELD, as follows:

FIELD_TO_FIELD
FROM_TABLE : kinita
FROM_FTELD :onomasia
TO_TABLE : directory
TO_FIELD :title

Missing Data Conflicts

Missing data conflicts arise, when different attributes may be
assigned to the same concept, in different schemes. Here we
present a problem of missing data, which concerns the place
of an object's discovery.

Suppose that the notion of the place of discovery, for one
movable object in the GLOBAL schema, is represented by
the table topos_aneyresis_kinita, described as follows:

directory
Field Type Comment
dimo varchar(12) not null monument's code
datofdiscy int null year of discovery
datofdiscm int null month of discovery
datofdiscd int null date of discovery
plaofdisc varchar(25) null place of discovery
wayofdisc varchar(25) null way of discovery

topos aneyresis kinita
Field Type Comment
aakm
paratiriseis

varchar(20)
varchar(50)

not null
null

monument's code
comments about place of
discovery

While at the same time, in database FEIDIAS, this notion is
represented in the table directory by the fields:

Here we note the following:

a. The GLOBAL scheme has less information than the
FEIDIAS scheme, about the discovery of a monument.

b. we want that whenever we send a question, expressed in
GLOBAL schema asking for the values of the field
topos_aneyresis_kinita paratiriseis, to the FEIDIAS
database to be able to get the values of the field, and to
take as a result, the values of the fields directory.title,
directory, datofdiscy, directory, datofdiscm,
directory.datofdiscd, directory.plaofdisc, and
directory, wayofdisc.

In order to achieve this, we must use the mapping,
FIELD_TO_FIELD, as follows:

FIELD_TO_FIELD
FROM_TABLE : topos_aneyr_kinita
FROM_FIELD :paratiriseis
TO_TABLE : directory
TO_FIELD : plaofdisc,
wayofdisc,datofdiscd,datofdiscm,datofdiscy

Key Conflicts

Key conflicts arise when different keys are assigned to the
same concept in different schemes. In POLEMON's
federation, we detected the following situation:

In GLOBAL scheme, the monument's key is an
alphanumeric field (20-characters long), and is called, aakm,
and it is produced by the concatenation of several parts, such
as:

* the global kind of monument (movable, immovable,
coin)

* the kind of Ephorate of Antiquities, to which the
monument belongs (Historic, Prehistoric, etc.)

* the prefecture's code, where the monument is kept,
and, finally

* the monument's insertion number in the local
database.

In DELTOS database, the monument's key is a numeric
field, called AAD, and it has the monument's registration
number, in the local database.

And finally, in FEIDIAS database, the monument's key is
called, dimo, and it is an alphanumeric field (12-characters
long), which the user gives, during the insertion transactiœi.

To overcome this conflict, we declared one mapping for
each field, associated with the monument's key from each
table (which had this field) of the GLOBAL scheme, to each
table (which also had this field) of the DELTOS or FEIDIAS

325

database. For example, suppose that in the GLOBAL
scheme, the movable objects were represented by the table,
kinita, described as follows:

use the mapping.

kinita
Field Type Comment
aakm varchar(20) not null monument's code

And that, in database FEIDIAS, the same notion was
represented by the table directory, described as follows:

Directory
Field Type Comment
dimo varchar(12) not null monument's code

We want that whenever we send a question, asking for
kinita.aakm, expressed in global scheme to the FEIDIAS
database, to take as a result, the values of the field
directory.dimo. In order to achieve this, we have to use the
mapping, FIELD_TO_FIELD, as follows:

FIELD_TO_FTELD
FROM_TABLE : kinita
FROM_FIELD :aakm
TO_TABLE : directory
TO_FIELD :dimo

Multiplicity Conflicts

Multiplicity conflicts arise when the relationship between
two concepts can take multiple values, in one schema, but
only one, in another schema.

Suppose that we have the notion of immovable objects, and
each one of them has, along with its other attributes, one
attribute which stands for the kind of monument. This
attribute is unique. Also, suppose that in the
GLOBALscheme, the immovable objects are represented by
the table, akinita, described as follows:

akinita
Field Type Comment

aakm
kwd_eidoys

varchar(20)
varchar(30)

not null
null

monument's code
monument's kind

Each immovable object, in DELTOS database can have
multiple kinds, which are stored in the table EIDOS_OBJ,
which is described as follows:

EIDOS_OBJ
Field Type Comment
AAD

akimto_eidos

int

varchar(lOO)

not null

nuU

monument's
code
monument's
kind

We want that whenever we send a query, asking for the
values of the field, akinita.kwd_eidoys, expressed in
GLOBAL scheme of the DELTOS database, to take as a
result, the values of the field EIDOS_0BJ.akinito_eidos. In

order to achieve this, we
FIELD_TO_FIELD, as follows:

FIELD_TO_FIELD
FROM_TABLE : akinita
FROM_FIELD : kwd_eidoys
TO_TABLE : EIDOS_OBJ
TO FIELD : akinito_eidos

Mapping FIELDJTOJCONST

This mapping can be applied to solve missing data and type
conflicts.

In order to see how this mapping works in each case we
should study the following examples.

Type conflicts

Type conflicts arise when one object is represented by
different constructs, in different schemes; for example, one
schema is represented as an attribute in one table, and in
another, as a constant value.

Suppose that we have the notion of movable objects, and
each movable object has, along with its other attributes, one
attribute which stands for the name of the Ephorate of
Antiquities, to which it belongs. Also, suppose that in the
GLOBAL scheme, the movable objects are represented by
the table, kinita, described as follows:

kinita
Field Type Comment
aakm

ypiresia_prostasias

varchar(20)

varchar(50)

not
nuU
null

monument's
code
monument's
Ephorate of
Antiquities

In database FEIDIAS, there is no field for Ephorate's, name,
because all the monuments have the same Ephorate, which is
named, "A' Ephorate of Historic and pre Historic
Monuments" :

We want that whenever we send a query, asking for the
values of the field, kinita. ypiresia_prostasias, expressed in
GLOBAL scheme to the FEIDIAS database, to take as a
result, the value "A' Ephorate of Historic and pre Historic
Monuments". In order to achieve this, we use the mapping,
FIELD_TO_CONST:

FTELD_TO_CONST
FROM_TABLE : kinita
FROM_FIELD : ypiresia_prostasias
TO_CONST : "A'EPKA"

A Query Translation Example

In this section, we give an example of the whole process. We
describe how the user formulates his query, how this query is
translated from a Global scheme to different local schemes,
and how the user retrieves the results of his query.

326

Suppose that a user constructs a query asking for :
* monument's code,

monument's name,
monument's general kind,
monument's material,
monument's main chronology, and
name and surname of the archaeologist, who registered
the monument data for all the immovable objects, which
are "Temple" or "TEMPLE'.

What the user should do, is select the subjects and describe
the constraints for his query. He can do this by using the
screens in Figure 7.

In the screen shown in Figure 7, we can see the tree of
subjects. The user can select, from this area, the subjects and
the constraints for his query. What he selects, appears in the
area, called "Selected Subjects"; he can then add, delete, and
sort (area "Sort Subjects") his selections; also, he can save
(button "Save Query"), or cancel (button "Cancel Query"), or
see the description of (button "Query's description") his
query. When the user finishes the construction of the query,
he selects the databases in which he prefers his query to be
executed.

In our example, the user selects the DELTOS database, of the
Archeological Museum of Heraklion, and the Polemon Crete
database, of the IS"" Ephorate of Byzantine and Post-
Byzantine. When he presses the "Send Query" button, the
query's translation phase starts.

Subjects

Non-movable objects

Cancel Query

Save Query

Select Database

Set constraints

Sort subjects

Query's descriptior

rode

•general kind
materials
main chronology
archaelogist name
archaelogist surname

DELTOS DB
• polemonCrete DB

Send Query

Figure?

The follovwng table presents the form of the prescribed
query:

^^^^^^yi^m^^^^&.

Subjects

Constraints

Object .Code, Object.Name,
Object.GeneralKind,
Object.Material,
Object.-MainChronology,
Object.ArcheologistName,
Object.ArcheologistSumame

Object.Kind = 'Temple" OR
Object.Kind = 'TEMPLE"

After applying the mappings, declared in the federated
scheme, the above query is expressed in the schemes, of each
one of the target databases. In our example, the resulting
queries are shown in the DELTOS's table and
PolemonCrete's table:

Object stands for immovable object

327

DELTO's table

Keyword Field

SELECT KEY.AAD,
F ASEIS_OB J-ONOM AS lA,

i "À",

FASEIS_OBJ.XR_PER_APO,
FASEIS_OBJ.XR_PER_EWS,
EPWNYMA.EPWNYMO,
ONOMATA.ONOMA,
KEY , FASEIS_OBJ , EPWNYMA,
ELEGTES , ONOMATA , FIDOS
(EIDOS.EIDOS LIKE "Iaüö%"
OR
EIDOS.EIDOS LIKE "IAÏÓ%") AND
FASEIS_OBJ.KYRL\= t AND
FASEIS_OBJ.EIDOS_KWD =EIDOS.EIDOS_KWD AND
FASEIS_OBJ.KYRL\= t AND
KEY.AAD=FASEIS_OBJ.AAD AND
KEY.AAD=ELEGTES.AAD and
ELEGTES.EPWN_KWD=EPWNYMA.EPWN_KWD and
ELEGTES.ONOMA_KWD=ONOMATA.ONOMA_KWD

FROM

WHERE

Mappin Remarks

g

F F' code
F I- name
F_C' gênerai kind

materials
F F main chronology
F F -II-
F F arch. Name
F_F arch. Surname

F F kind="Temple"
or
kind = 'TEMLE"

F_[-

the rest of
the joins among
the query's tables

Polemon Crete's table

ATevH'rtrrf Field

SELECT

FROM

WHERE

akinita.aakm,
akinitaonomasia,
aki ni ta. gen_ei dos,
eidi_ylikoy. yliko,
akinita-xronologisi,
atomo.onoma,
atomo.epwnymo
akinita , eidi_ylikoy , atomo,
eidi_mnimeioy, mnimeia_ylika
(eidi_miiimeioy.eidos LIKE "Iâuô%"
OR
eidi_mnimeioy.eidos LIKE "LÂÏO%") AND

akinita.kwd_eidoys =eidi_mnimeioy.kwd AND
akinita.gen_eidos ="A" AND
akinita-dimosieymeno ="I" AND
rtmimeia_ylika.kwd_ylikoy =eidi_ylikoy.kwd AND
akimta.aakm =mmmeia_ylika.aakm AND

Mappi ing Remarks

F„F code
F F name
F__F general kind
FF materials
F F main chronology
F F arch. Name
F_F arch. Surname

'^JP kind="Temple"
or
kind = 'TEMLE"

F..F
the rest of
the joins among
the query's tables

^^ *«S.

The translation process is invisible to the user.

Just after the translation of the query, a Waiting Results
Window appears on the user's screen (see Figure 8). In this
window, the user sees how many tuples satisfy the query, for
each of the target databases.

The user can see the results, by selecting the Confirmation
Button on the previous window. The results appear on his

screen, which is shown in Figure 9. The results window is
divided into five main areas:

* Database , the name of the database, where the data
come from

* Monument's Code, monument's code in this database
* Image, denotes if this monument has an image, or

not

"* F_F stands for FIELD_TO_FIELD mapping
^ F_C stands for FIELD_TO_CONST mapping

328

Waiting results window Query's name

P Hps• Kion jn E BMA.I no;4^Mwv
• Results from DELTOS
Results from polemonCrete

^ytjÇiuTr ^pj^ttfOriJ ETi?aeiui!yt Confinnation's Button

^SQL E&fj'arfcn
ISELECT
ïeLOBAL POLEMON akinlta GLOBALTOLEMON akinit«

til lUH Mtr- H Iht n
k I it t 11»- I t Query's description

Figures

Database Monument's code Data Image Map

name

chronology from

chronology to

archaelogist name

archaelogist surname

Selected tuple

Save Sort Show Map
results

Show Image
results

Figure 9

* Map, denotes if this monument has map information, or
not, and

* Data, all the rest of the data, that the user has asked
for, are presented in this area.

The user can save (button "Save") or sort (button "Sorf') the
results of his query.

Comparing the results (Figure 9 and Figure 10), coming from
the DELTOS and PolemonCrete databases, we see the
different structures of the tuples.

Conclusions

In this paper, we have presented two types of mappings,
between heterogeneous databases. These mappings have
been applied in the POLEMON project, and have been
successfiil in most of the cases encountered, although these
are not enough, for solving any kind of conflict arising,
during the integration of schemes, from two or more
heterogeneous databases.
Several problems need further research and development.
Some of them need immediate answers, within Polemon's
project scope, such as:

329

Database Monument's code Data Image Map

Selected tuple

Save Sort Show Map
results

Show Image
results

Figure 10

a. The investigation, design and implementation of further
mappings.

b. the lack of adequate, transaction management
algorithms, that provide a specified level of consistency
(i.e., are correct with respect to a given consistency
criteria) and fault tolerance with acceptable
performance, within the heterogeneity and autonomy
constraints of an FDBS.

c. a system for identifying and representing all semantics,
useful in performing various FDBS tasks, such as
schema translation and schema integration, and for
determining contents of schemes, at various levels.

Bibliography

BATINI C. and LENZERINI M. (1984), "A methodology
for database schema integration in the entity
relationship model", IEEE Transactions Software
Engineering, vol.SE-10, no. 6.

BATINI C, LENZERINI M. and NAVATHE S.B. (1986),
"A comparative analysis of methodologies for
database schema integration", ACM Computing
Surveys, vol. 18, no. 4, pp:323-364.

CASTELLANOS M., (1993), "A Methodology for
Semantically Enriching Interoperable Databases",
Proceedings, 11th British National Conference on
Databases, Keele, pp.58-75.

CASTELLANOS M., SALTOR F.and GARSIA-SALACO
M. (1994), an "Semantically Enriching Relational
Databases into Object-Oriented Semantic Model",
in: KARAGIANNIS D. (ed. j, Database and Expert
Systems Applications (5th International Conference
DEXAV4, Athens, Springer Verlag, pp. 125-134.

CHEN P.P. (1976), "The entity-relationship model - toward a
unified view of data", ACM Transactions on
Databases Systems , vol. 1(1), pp.9-36.

DAYAL U. and HWANG H. (1984), "View definition and
generalization for database integration in
MULTIBASE : A system for heterogeneous
distributed databases", IEEE Transactions Software
Engineering, vol.SE-10, no. 6,1.

HSIAO O.K. (1991), "Federated Databases and Systems :
Part I - A Tutorial on Their Data Sharing", VLDB
Joumal,\19, January, pp. 127.

LIEN E.Y. (1982), "On the Equivalence of Database
Models", Journal of the ACM, vol.29(2), pp. 333-
362.

LITWIN W., Mark L. and ROUSSOPOULOS N. (1990),
"Interoperability of Multiple Autonomous
Databases", ACM Computing Surveys, vol.22(3), pp.
267-293.

MANNAI D. N. and BUGRARA K. (1993), "Enhancing
Inter-Operability and Data Sharing In Medical
Information Systems", Proceedings of the ACM
SIGMOD International Conference on Management
of Data, vol.22, Washington, pp: 495-498.

MILLER R.J., lOANNIDIS Y.E. and RAMAKRISHNAN
R. (1994), "Schema equivalence in heterogeneous
systems Bridging theory and practice".
Information Systems, vol. 19(1), pp. 3-31.

MOTRO A. (1987), "Superviews : Virtual integration of
multiple databases", IEEE Transactions Software
Engineering, vol.SE-13, no. 7, July 1987.

NAVATHE S.B. and GADGIL S.G. (1982), "A
methodology for view integration in logical
database design", in: Proc. Eighth Int. Conf Very
Large Databases.

NAVATHE S.B., SACHIDHAR T. and ELMASRI R.
(1984), "Relashionship merging in schema
integration", in: Proc. Tenth Int. Conf. Very Large
Databases.

SHETH A. P. and LARSON J.A. (1990), "Federated
Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases", ACM
Computing Surveys, 22(3), pp. 183-236.

330

