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Introduction 

Geographic Information Systems (GIS) are increasingly 
applied to holistic, inter- and intrasite investigations.' This 
powerful, computer-based technology accommodates a great 
variety of environmental, ecological and cultural 
information, by means of selective data capture, 
management, manipulation, analysis, modelling and spatial 
referencing (Ruggles, 1992: 108). However, GIS programs, 
like any other tool, are subject to a specific set of application 
characteristics (i.e., operational and functional parameters), 
that prescribe the process for integration, presentation and 
interpretation of the archaeological record. Based on the 
chosen software and hardware, there will be inherent 
conceptual and structural design limitations, that directly 
determine, or affect, the outcome of a study. Furthermore, 
success in obtaining acceptable and meaningful results can 
be severely restricted, depending on the quality of the data 
and, more important, the capacity of the GIS package to 
process the information, implemented in the form of 
modelled abstractions. This work looks at a new technology 
for archaeological investigations, by providing an 
introduction to Object-Orientation (OOf and to Object- 
Oriented Geographic Information Systems (OOGIS), which 
represent the basis for an ongoing evaluation into the 
potential of this tool. 

Object-Orientation in Archaeology 

OOGIS is by no means the only domain to adopt an Object- 
Oriented platform and structure (Booch, 1994: 78); others 
include software packages for air traffic control, animation, 
databases, operating systems, telecommunications, etc. In 
fact, commercial OOGIS seem to be among the most recent 
tools to make use of an OO design.^ 

Consequently, with regard to the role of OOGIS in 
archaeology, there is a marked absence in the general 
literature. Nonetheless, some specific attempts to introduce 
this technology have been made, with mixed success, 
including an investigation into isostatic uplift in Finland, 
using an OOGIS program called Miljöflex (Nunez, et al., 
1995). More current applications, using purpose built 
programs for archaeology that incorporate an OO approach 
in spatial analysis and modelling include FieldNote by Dr. 
Nick Ryan at the Computing Laboratory, University of Kent 

at Canterbury as well as CRISys, co-developed by César 
Gonzalez Perez, as part of the Grupo de Investigación en 
Arqueologia del Paisaje of the Universidad de Santiago de 
Compostela.* 

As a trend, there does seem to be an increasing interest, with 
regard to Object-Orientation within the discipline. In 
addition to the above, there are also a few publications 
available, that involve OO, but which are either concerned 
with application areas other than GIS, or provide a more 
general introduction into the potential of this technology. 
Examples of some of these include a look at archaeological 
database design (Stine and Lanter, 1990: 80-89, Feder, 1993: 
221-227), abstract data structures in GIS (Ruggles, 1992: 
107-112), the theoretical implications of raster, vector and 
OO systems (Zubrow, 1990: 69-71), Object-Oriented designs 
for excavation simulation (Barroca and Rahtz, 1992: 39-48), 
and OO for system analysis (Rold, 1993: 213-220). 

A Need for Change? 

OOGIS uses currently available microsystems hardware, 
while incorporating a comparable plethora of methods and 
routines, common in standard GIS packages (Smallworld, 
1991: 11). However, one of the questions to address is 
whether the latest gadgets, or theoretical models, come as a 
spontaneous consequence of bad practice. In other words, do 
we really alter our behaviour, or approach, from one day to 
the next, because the current way is suddenly considered too 
limited, or outdated?' By just implementing and advocating 
the most fashionable, and perhaps not always the best suited, 
products, it is easy to engage in a dangerous process of high- 
tech, punctuated equilibrium and, as a result, to end up 
exhibiting a complete disregard for any real, evolutionary 
understanding of the quantitative and qualitative changes in 
the data and the generated results.* In essence, due to the 
novelty value and the claimed advances, older and 
sometimes, well-proven technologies can become targets for 
replacement, with "newer, faster and better" tools, without 
properly assessing the potential benefits and consequences. 

At present, the most popular and technically versatile GIS 
packages are either raster or vector-based (Weibel 1997: 
113). Despite the fact that they often incorporate similar 
routines for processing spatial input, they are fundamentally 
different,   with   regard   to   their   conceptual,   structural, 

A fact exemplified by the number of works (328) compiled for a 
bibliography of GIS in archaeology (Pétrie, et al 1995). 

OO = [Objert-Orientation or Object-Oriented], depending on the 
grammatical context. 

Smallworld, one of the more successful OOGIS packages, was fu-st 
introduced in 1990 (Smallworld 1991: 5). 

Although the authors point out that Miljöflex has great potential for 
Cultural Resource Management, it is deemed limited for archaeological 
research (Nunez, etal 1995: 147). 

'http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fieldwork/papers/ 
''http://www-gtarpa.usc.es/Proyectos/crisys/index%20en.htm 

A tool should not automatically be considered useless just because it is not 
Object-Oriented (Feder 1993: 113). 
g 

The long-standing debate on the advantages and disadvantages between 
raster and vector which persists to date (Weibel 1997: 113) should serve as 
an example of this dilemma. 

Nowadays, many GIS programs can also accommodate both raster and 
vector data. 
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presentational, and analytical capabilities. Within this 
context, OOGIS should act as an enhancement and not as a 
replacement for established technologies, because even as a 
new tool, it still shares those overarching criteria, which 
define a computer program as a Geographic Information 
System - incorporating data collection, storage and retrieval, 
processing, analysis, and reporting facilities (Peuquet and 
Marble, 1990: 10). 

There is, however, the requirement for applications, using 
OOGIS, to identify and prepare data in such a way that it can 
fit the new OO model for past or present, natural, or cultural 
phenomena. The basic premise is that Object-Orientation 
allows us to employ improved concepts and tools, in our 
desire to create a close resemblance of a particular view of 
the "real" world (Henderson-Sellers, 1997: 13, Khoshafian 
and Abnous, 1995: 7).); for which, in return, we have to 
change the way we perceive and define our surroundings, 
when engaging in an Object-Oriented GIS study. 

A (GIS) World View 

Due to the fairly broad nature of the general theme (i.e., GIS 
in archaeology), it is obvious that at first, there must be some 
distillation process, which takes into account design issues 
for the available types of GIS technology. Then, followed by 
a description of the fundamental concepts, relating to Object- 
Orientation,'" the desired outcome should be a contextual 
understanding of both major components (GIS and OO), 
driven by archaeological theory and analysis. 

Undoubtedly, it is crucial to thoroughly understand the 
detailed processing parameters, with respect to any selected 
GIS program, in order to develop an application successfully. 
But, at Üie same time, the quahty in representing our world, 
or the world of a distant ancestry, using a GIS, will 
inadvertently relate to the tool's capacity for modelling 
complex sets of phenomenological abstractions. In other 
words, when introducing a new technology, there is often the 
promise of some improved, information handling. However, 
and as in the case of OOGIS, any such enhancements might 
not be identified, by the changes in the specific operational 
characteristics of the GIS, but rather come as the result of a 
new data model (the way a view of the world can be 
represented). The following sections, exemplified by 
potential archaeological scenarios, aim to describe the 
conceptual and overarching design characteristics for raster, 
vector, and Object-Oriented GIS, and how each manifests 
itself, in the form of the data model, data structure, data 
representation, and topology. 

A GIS Application Framework 

This work is not intended to establish a quaUtative 
assessment, with regard to any GIS technology. There is a 
deliberate emphasis in the use of generic and descriptive 
explanations, in order to avoid establishing a hypothetical, or 
even controversial, ranking system."    It seems clear that 

'" Explaining OO and OOGIS using only a few pages will be incomplete at 
times since it normally requires a whole book to address all the detailed 
aspects relating to this technology and research tool. 
" The basic premise is that the application needs should determine the 
choice of tool based on the requirements for the desired results (Feder 1993; 
223). 

each technology incorporates a set of useful application 
characteristics; otherwise, they would not find general and 
continued usage in many disciplines, including within 
archaeology. The primary purpose is to introduce OOGIS, 
through highlighting the respective differences between 
raster, vector, and OO, with regard to the main conceptual 
domains. 

Overall, any study or research, regardless of the selected GIS 
technology, will require some prior and expUcit thought, 
about the following design and implementation aspects 
(Table 1): 

Table 1: General GIS Application Domains 

Data Model The selected view of the 
world and its contents 

Data Structure TTie composition of the 
data within the GIS 

Data Representation The visual display 
parameters for the data 

Topology The relationship 
properties of the data 

When looking at the proposed schema in detail, there might 
be an issue, with regard to the semantics and overall 
definitions used. For example, the choice of "data model" 
and "data structure" can be blurred at times, the likely result 
of a colloquial misuse, and the popularity of the latter idiom 
(Bartelme 1995: 35). Nonetheless, it is essential to define 
and adhere to strict distinctions, when trying to identify any 
differences between standard GIS technologies and OOGIS, 
particularly, when a major change involves an overarching 
concept, rather than just a series of fancy, functional 
computer keystrokes. 

There is also no detailed separation of the compositional 
elements (storage, management, etc.) that make up the data 
structure domain, although, this does not deny the fact that 
major aspects, of intemal configuration, warrant an 
operation^ understanding, before engaging in a study. But, 
when opting for an affordable, commercial GIS package, one 
ab-eady tends to focus on relevant, structural components. 
As a result, the desired program characteristics and any 
explicit preference for a database type {i.e., relational or 00, 
using a local or remote filestore, etc.) will be satisfied, by 
acquiring the appropriate product. Furthermore, when 
equipped with good linking facilities, the specific, inherent 
data structure may be of limited importance, to those 
appücation developers, using other software tools to generate 
and maintain their data collections, thus limiting the GIS 
functionahty, purely to processing, or analysis. 

Once again, the aim is to highlight major, conceptual 
differences for each technology (raster, vector, and 00) 
based on the proposed application domains, and not to 
describe the in-depth, intemal characteristics of individual 
and currently available GIS packages. 

'^ This description of the data model, data structure, data representation and 
topology only addresses the fiindamental differences because any extensive 
detail would have been beyond the scope and topic of this paper. 
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The Data Model 

A general definition of a GIS data model might be: "a human 
conceptualization of the world (i.e., a selected view), which 
identifies the parameters and entities'^ relevant for an 
application." In essence, it is the description of any real, or 
abstract, objects, using a varying degree of complexity and 
accuracy, in the process of identification (Bartelme, 1995: 
17). These data model definitions may be augmented 
fiirthCT, to include: "a measurement framework (i.e., time, 
space, and attributes) combined with a representational 
scheme" (Chrisman, 1997: 23). Worboys (1995: 23), on the 
other hand, suggests an even more detailed data model 
construct comprised of the first four stages in a GIS 
application life cycle (Table 2), an ordered development 
process, defined by its (1) phenomena, (2) abstraction, (3) 
conceptual computer model (without an actual GIS tool in 
mind), and (4) computational design phase (incorporating 
specific data structure criteria, like relational database, OO, 
etc.) - where all four stages are prior to the actual (physical), 
GIS implementation. 

Table!: A GIS Life Cycle: 
Data Model 

1.  Application Domain Real-world phenomena 
(natural and cultural) 

2.  Application Domain 
Model 

Abstraction 

3.  Conceptual 
Computational Model 

Design without data 
structure criteria 

4.   Logical Computational 
Model 

Design with data structure 
criteria included 

Regardless of which definition one prefers, the basic premise 
remains, that the data model acts as the required interpreter, 
between phenomenological information and the GIS. In 
other words, the source domain (real world) is translated by 
the data model, via abstraction and simplification, into the 
target domain (i.e., the assigned GIS package), in order to 
become available for further processing wathin this latter 
context (Worboys, 1995: 145). This, then, also implies that 
any analysis, performed by a GIS routine, will in return, be 
available for the interpretation of the actual source entities, 
relationships, and the like. 

A Raster Data Model 

over the study area. The final outcome is a data model, 
which represents the world as a regular layout, composed of 
individual cells, and where each cell contains attribute 
values, according to the specific location, or entity, that 
might occupy its space. 

This technical description may be best highlighted by a 
hypothetical, archaeological example (Figure 1 : Raster GIS), 
where SITE A is a single representative of a thematic layer^^, 
called Iron Age Sites. What is important to know is that, 
regardless of the actual world size, the modelled 
measurements for SUE A will always be subject to the 
dimensional definition of the grid cells (Weibel, 1997: 
113).'* Hence, when using a raster GIS, the issue of 
resolution (the size of the grid cells, for the array to be placed 
over the world) determines the overall quality of the 
abstraction. Therefore, prior to the actual implementation, 
the data model becomes the most important source of 
analysis, utilized to determine the precision, or detail, as part 
of the specified requirements for a study. 

A Vector Data Model 

A vector GIS generally employs an object-based, data model, 
although the choice can be between exclusive usage, or a 
combined model, that additionally includes raster 
information.'^ WTiat this means is that, real-world entities 
are identified by their spatial characteristics, in order to be 
represented as part of an "exact" computer model. The 
actual process of abstraction, concerning natural and cultural 
phenomena, involves geometric primitives (i.e., point, line 
and area)'* subject to a specific location in the form of 
coordinate values, within a geo-reference system (Chrisman, 
1997: 62). Hence, the modelled entities primarily 
incorporate meaningful and possibly complex information, 
through their visual definition. But, because point, node, and 
line constructs tend to initially describe the drawing structure 
attributes, they don't actually support 00 and all-inclusive, 
"object" definitions, which can contain a whole host of 
contextual excavation and analysis data (Zubrow, 1990: 
70).'" 

The vector data model is also exemplified in Figure 1 
(Vector GIS). In this case. SITE A has been modelled, by 
using a point as its geometric entity representation. Some of 
its associated, drawing attribute values are shared with other 
entities,  and together they form  a thematic  coverage^°, 

The basic assumption for a raster GIS, data model suggests 
that an entire study area can be divided into smaller sections, 
subject to their homogeneous thematic content (Bartelme, 
1995: 46). This process, also known as a field-based 
approach, uses tessellation to transform a selected surface 
into a regular framework of abstract spatial distributions 
which is formalized as a mathematical construct, like grid 
cells, or pixels (Chrisman, 1997: 65). In essence, any 
collection of real-world phenomena, as identified by the 
researcher, gets a field assignment, when draping a grid array 

The use of "entities" for real-world spatial and cultural objects is an 
attempt to avoid confusion with "objects" as defined in the Object-Oriented 
sense, which describes a computer construct. 

It is clear that since the two most popular (spatial) data models to date use 
raster and vector technologies, Object-Orientation must yet establish itself as 
a viable third alternative. 

Several thematic layers overlaid on each other represent a composite map 
in a raster GIS (Bartelme 1995: 46). 
'^ Whether or not SITE A in reality is only lOm x 12m is ignored because the 
proposed example defines 50m x 50m cells and "A" will therefore be 
modelled by filling the extent of the cell with a uniform value. 
" "Object-based" should not be confused with "Object-Oriented" since 
vector GIS is primarily concerned with the representation and accurate 
geometric coding of entities. OOGIS, on the other hand, builds complete 
entity (object) models that simply incorporate all characteristics as attributes. 
'* Where area can also include and define surface representations (e.g., 
digital terrain (DTM) or elevation (DEM) models). 
"The situation may be remedied by the fact that database tables can be 
linked to the vector GIS entities as part of the data set. This results in a 
decentralized and distributed data organization which still does not represent 
a true "object" model but clearly aids to improve the overall information 
content. 

Although often used synonymously with "layer", a "coverage" as a digital 
overlay of attributed spatial data (Langram 1993: 50) is a term that pertains 
more to vector GIS due to the varying degree of areal cover potentially 
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depicting an Iron Age site distribution. However, because of 
its quality of precision, a vector GIS excels in accurate, 
spatial definitions and has its own set of rules, that affect this 
data model. For example, the actual boundaries for "A", 
when identified as part of a real-world phenomenology, 
could have easily been represented using the exact extents. 
Hence, the alternative over the point representation, for SITE 

A, was to draw a polygon, that demarcates the appropriate 
expanse. 

This decision, on how "A" is represented, is based on the 
detail, defined by the data model and, therefore, directly 
affects the amount of additional information, which needs to 
be stored in database tables and linked to the entity. Suffice 
to say, that the cartographic appearance, of a vector GIS, 
does allow a very precise abstraction of the real world, by 
virtue of its representational quality. However, to fully 
benefit from this data model, a clear and thorough 
application development (conceptual and physical) is 
demanded, which defines what, how, and where 
archaeological information is integrated into the GIS. 

An OO Data Model 

OOGIS uses an Object-Oriented design, but can make 
exclusive, or inclusive, use of either of the aforementioned 
data models. However, unlike raster or vector, the OO world 
view is an intuitive construct, inherently linked with human 
perception and the understanding of our surroundings. 
Objects represent real-world entities and their properties, 
while an OOGIS acts as a mediator, between the world and 
the way we perceive and model it (Freska and Barkowsky, 
1996: 110).^^ 

This means that any real entity (e.g., a "ditch") or abstract 
concept {e.g., "feature" for all non-portable cultural remains), 
situated within a given environment, is defined by the 
specific compositional characteristics and treated as a distinct 
inhabitant of this contextual setting. Hence, with an OO 
approach, natural and cultural phenomena are modelled as 
complete, object defmitions, using object classes within the 
OOGIS. In other words, these (geo-referenced) objects can 
incorporate all the attributes and behaviour, present in the 
real-world entities, which not only uniquely, distinguishes 
them from each other, but also establishes existing 
relationships between them, either as a result of spatial 
(proximal location)^^ or typological associations. 

Within an OOGIS, at first glance, there does not seem to be a 
clear distinction, using the archaeological example provided 
(Figure 1: Object-Oriented GIS), inasmuch as SITE A looks 
identical to the vector image.  This is basically an issue that 

leaving open spaces between entities.   In Arc/Info terminology, a layer is 
conceptual whereas a coverage is physical (Hadzilacos 1996: 242). 
^' This is a decision process that can easily result in an unproductive 
overemphasis for either the visual representation (i.e., too much detail in the 
visual representation which in turn contains too few database references for 
analysis) or the distributed data storage (.i.e., an extensive database table 
construct linked to a drawing composed of a graphical distinction between 
entities that is too limited). 
^^ An object in the real world is a unified construct which incorporates and 
controls all its distinguishing characteristics by virtue of its definitional 
name. 
^^ An inteiesting quote by Waldo Tobler (Worboys 1995: 145): " ...the first 
law of geography; everything is related to everything else, but near things 
are more related than distant things." 

pertains to the data representation, as subject to computer 
graphics, and it is described further, below. The difference, 
actually, relates to how this particular. Iron Age site has been 
identified as a tangible phenomena, and its subsequent 
conversion to an abstract object. 

In essence, with the 00 data model, one first looks at all the 
components that inhabit, or define, a particular space. Then, 
the major constituent parts are selected, to form the 
overarching object classes, using the relevant attributes and 
other compositional characteristics (behaviour). Within this 
context. SITE A represents a single instance of the object 
class, "Sites", and the specific and identifiable characteristics 
deemed important for "A", as a real-world entity, are 
incorporated in this class definition.^* This includes 
structural, as well as representational aspects {i.e., the 
drawing geometry), in order to achieve the closest 
compositional resemblance to the original and observable 
phenomenon. Objects are formed by the constituent parts, or 
traits, of an entity, and there is no artificial separation in the 
OOGIS, or by the 00 data model. Hence, OO allows an 
homogeneous representation of an archaeological reality, as 
encountered in the field, which is modelled by maintaining 
the integrity of the world as we perceive it. 

The Data Structure 

The data stmcture transforms the data model into the 
computational model. A world view is integrated in a GIS, 
using an arrangement of entities which permit the 
construction of relationships, through software operations 
(Chrisman, 1997: 57). The data structure, therefore, refers to 
more technical aspects than the data model, and, clearly, the 
most crucial element is the systematic organization of the 
selected space (Nievergelt and Widmayer 1997 : 186), 
which, inadvertently, pertains to the structural composition 
and storage of spatial data, for either a raster, vector, or 
Object-Oriented GIS. 

With regard to raster, the basic data structure is a Cartesian 
grid array. This (possibly geo-referenced) matrix defines a 
regular construct of cells, containing values {i.e., height, 
colour, etc.) divided into rows and columns. The example 
provided in Figure 1 (Raster GIS), shows that each cell 
represents a real-world surface area of 50m x 50m, and when 
using a possible archaeological case, we can see that SITE A 
has a specific location, occupying an entire cell, which also 
includes its associated attribute information: 

Row =  5 
Column = 12 
Height = 250m 
Colour = 9 {red in the specified colour scheme). 

However, every pixel, as the smallest indicator of any data 
variation, has to be stored as one record, and even though 
many might be identical, the image file storage will contain a 
direct model of the total number of mapped cells (Martin, 
1996: 108-109).^' This means that all cells combine, to form 

^^An object class is the template for each instance (object). 
" It may be worthwhile to point out that an image file for raster is not a 
database in the common sense. It also would be foolish, to say the least, to 
attempt to enter each pixel in a real database because of the excessive 
storage demand (Bartelme 1995: 279). Although, compression methods can 
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single, thematic layers, in this case, "Iron Age Sites", as part 
of a continuous surface data structure. 

Vector GIS, on the other hand, only contains values for those 
objects that actually occupy some information space, defined 
by a coordinate system (local, regional, UTM, or some other 
geo-referenced architecture). Furthermore, a distinction 
needs to be made between the spatial and non-spatial 
attribute data; the latter tends to be held in separate 
databases, while control is maintained through an entity's ID 
value (Martin 1996: 97). This is exemplified by Arc/Info, 
which uses such a hybrid architecture. Hence, the Arc 
system files (or filestore) control information on the spatial 
and graphical structure (i.e., point, line and area geometries, 
colour, text, etc., as well as topology), while Info (as a 
commercial DBMS) holds all other associated data 
(Worboys, 1995: 285).^* For SiTE A, in Figure 1 (Vector 
GIS), this means that the unique identifier (ID = "A") is 
associated with an entity's location (geo-reference) while at 
the same time, describing the characteristics of this 
geometric drawing entity, as part of a thematic coverage: 

Northing = 4271775 
Easting = 476575 
Altitude - 250m 
Geometry - Point 
Colour = Red (a selection from a colour palette) 
Text = A (based on a font and size) 
Coverage - Iron Age Sites 

This information forms the basis of the spatial data, whereas 
all additional, non-spatial attributes (i.e., excavation dates, 
finds, artefact types, etc., associated with SITE A) would be 
contained within an external DBMS and in the case of a 
relational database, through a (possibly) complex system of 
interrelated tables. 

Finally, OOGIS employs a fully integrated, object-data 
structure, that can also adopt the two, aforementioned 
technologies, either exclusively or in combination. However, 
unlike raster or vector, OO identifies each (geo-referenced) 
phenomenon, as belonging to one of a range of object 
classes, which means it is especially well suited for the 
natural and cultural data, that can be easily conceptualized as 
discrete objects (Martin, 1996: 105-106). This also results in 
an integration of spatial and graphical, as well as non-spatial 
attributes, for objects, and further facilitates the construction 
of seamless, spatial databases (Worboys, 1995: 287-288).^^ 

Any processing can, therefore, be performed on an object 
directly, which is in stark contrast to the plethora of external 
database tables, that may be affected by the same operation, 
when using a vector GIS. Furthermore, behaviour is 
included and applies to each instance of an object class. This 
means that programming routines, called methods, described 
further in the OO concepts section, below, can perform 

dynamic processing procedures , which also represent the 
most crucial part in the development of the data structure for 
an OOGIS, because objects can only be accessed, via their 
pre-defined methods (Taylor, 1990: 135).^' 

Using the archaeological example in Figure 1 (Object- 
Oriented GIS) we can see that SITE A is an instance of the 
object class, "Sites", which, in turn, prescribes the attributes 
and behaviour routines, as part of the conceptual abstraction 
of a real-world phenomena (i.e., all archaeological sites, 
regardless of cultural and chronological distinctions). This 
results in an all-inclusive description for SITE A: 

Object Class = Sites 
SITE A 
ID (Instance) = System-defined^'^ 
Northing = 4271775 
Easting = 476575 
Altitude - 250m 
Period = Iron Age 
Geometry - Point 
Colour - Red (defined for object class) 
Text - A (font and size for object class) 
calculate_ = 800m (create: calculate value 
distanceJo_ using this object class 
freshwater (behaviour) method) 

It needs to be pointed out that the behaviour method, 
"calculate_distance_to_freshwater", further explained in 
section 5.4, could be dynamic (update), inasmuch as changes 
in the path of the river, once recorded, trigger a renewed 
calculation, and hence, the current distance value is 
perpetually established, with respect to SITE A'S proximity to 
this freshwater source. 

Data Representation 

The data representation has already been touched upon, 
through the explanations of the data model and the data 
structure. Hence, raster, which has close ties to the physical 
layout of computer graphics hardware, divides a 
geographical region and its contents into an uninterrupted 
surface of uniform fields, using a grid cell or pixel array 
(Chrisman, 1997: 65-66). This way, all cells have (attribute) 
values associated with them, as part of a continuous image 
display. Vector drawings, on the other hand, use a series of 
geometric primitives (i.e., point, line, and area polygons) to 
describe entities within a specific location reference scheme; 
in addition, raster data can also be integrated, possibly as a 
background map, in a vector GIS (Clark, 1992: 16). 
Similarly, OOGIS can apply a combination of raster and 
vector, as part of its visual construct and interface. 

Thus, the specific requirements of a study should determine 
the data representation quality. In other words, the desired 
world view dictates whether raster is sufficient, or a more 

alleviate the problem of huge image data files by grouping continuous and 
contiguous cells. 

In practice it is possible to link other relational databases to Arc and there 
is no proprietary restriction. 
27 

A spatial database is seamless when devoid of any artificial boundaries 
that could be encountered by a user. 

Performing any variation of the basic create (independent/dependent), 
destroy (permanent) and update (transformation) operations (Worboys 1995: 
175). 
^' Where all methods will be defined as part of an object. 
'" Each object has an internal identity independent of any attribute value 
which means that it is unnecessary to provide an explicit instance variable 
for the purpose of identification (Worboys 1995: 86-87). It is therefore 
possible to distinguish between two separate objeas even when they have 
the same instance values. 
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complex vector depiction is needed, or, possibly a 
combination of both. At the same time, it does not imply 
that a raster GIS is the least desirable, and that vector, or 
Object-Oriented, GIS packages have better representational 
facilities. It is merely an issue of tool selection, depending 
on the topic of research and required extent of detail. 

Based on the examples in Figure 1, it would be easy to say 
that the first picture (Raster GIS), were it to be actually 
generated, using a raster GIS program, is quite sufficient for 
the purpose of demonstrating the provided (hypothetical) 
archaeological scenario. As a result, the two subsequent 
images (Vector GIS and Object-Oriented GIS) would be 
identified as "over the top", for actual illustration purposes. 
In the case of SITE A, we, therefore, are presented with a 
choice of whether or not to use a basic raster square cell, in 
red, to be indicative of "Iron Age Sites", or to alternatively 
use a geometric point representation, and all its necessary 
associated (intemal/extemal) attribute storage constructs by 
applying either a standard vector GIS or an OOGIS 
package.^' Decisions along these lines are fundamental in 
the design of a GIS application, and data representation plays 
a crucial role in selecting the appropriate tool for the job. 

Topology 

In everyday life, we often tend to take spatial relationships 
(i.e., proximity, leftyright, inside/outside, 
connected/disconnected, etc.) for granted. In contrast, this 
information actually forms a key element in a GIS (Clark, 
1992: 20). Referred to as the topology of a system, this data 
needs to be specifically declared as entered values. 
Topological information is generally used with vector data 
structures, which make clear distinctions between entities 
{i.e., point, line, and area representations), since it is much 
harder to encode explicit, spatial relationships using raster 
technology (Martin, 1996: 105, Chrisman, 1997: 64).^^ In 
essence, a connected network of nodes is required, and on its 
most basic level, topology defines the operational 
distinctions for boundary and interior spaces, which can be 
further expanded, to include overlap and covering (Worboys, 
1995: 173).^^ 

Because spatial relationships are integrated as attribute 
values, within a GIS, the same issues, as pointed out in the 
data structure section, are applicable. In other words, and 
excluding raster, topology is stored externally in system files, 
or a database, for vector GIS, while OOGIS includes this 
information as part of its object class definition. In Figure 1 
(Vector GIS and Object-Oriented GIS), we can imagine that 
the river has some relationship with SITE A: possibly 
identifying the distance from freshwater, in answer to some 
research question. However, the vector program would need 

It should be emphasized that a point representation in a vector system is a 
drawing entity with associated information whereas in an OOGIS the 
geometric style for the visual appearance of instances is merely an attribute 
pre-defined in object classes. 
'^ A basic reason for raster being less able to incorporate topology lies in the 
faa that spatial relationships are present in each thematic layer and it takes 
all themes, once overlaid, to combine this fi^gmented information (Baitelme 
1995: 150). 
'' There are numerous other spatial relationships that are defined within the 
relevant literature (e.g., ref.) depending on specific entity representations as 
being connected or disjoint; explained in more detail therein and beyond the 
scope of this work. 

to determine the closest node, as an explicit value, selected 
from the chain of nodes, created to represent the river. On 
the other hand, any topological information using an OO 
approach simply defines connected instances of object 
classes (e.g., objects of type "Sites", and, for the purpose of 
this example, objects of an additional class called, "Rivers", 
for all rivers in the study area), which automatically 
establishes the closest node reference as part of this 
relationship. The distance from SITE A to a river can then be 
calculated at run-time through a behaviour routine (method) 
incorporated in the relevant and (topologically) associated, 
object class definitions. 

Object-Orientation 

The chances are that archaeologists, in many cases, will have 
gained exposure to other OO programs, prior to applying an 
OOGIS package (current programming languages (Visual 
Basic and Object Pascal) or contemporary databases, are 
likely examples). However, for all 00 tools, the main 
concepts and data model criteria remain the same, while the 
application design changes, according to the task for which 
the program is intended. Whether or not it is a GIS for 
investigating the past, or a database product to record 
excavation discoveries, is circumstantial. What is important 
to know is how this technology affects the data, as well as its 
ability to present our world, and that of our ancestors, using a 
specific model for phenomenological abstraction. For this 
purpose, a general development of Object-Orientation and 
the differences, between standard programming techniques 
and OO, are explained further. 

Procedures, Modules and Objects 

Object-Orientation, as a conceptual idea, may certainly be 
older than the tangible 30 years, since the inception of 
Simula67,"' developed by the Norwegians, Ole-Johan Dahl 
and Kristen Nygaard (Henderson-Sellers, 1997: 1, 
Khoshafian and Abnous, 1995: 13). Yet, another 25 years 
passed, before the current and large mass appeal for 00 
technologies was identified as one of those "revolutionary", 
paradigm shifts for computer appUcations (Henderson- 
Sellers 1997: 6). The fact that this progression is by no 
means as dramatic, nor as swift, a punctuated event, as 
potentially indicated, by the above terminology, might be 
demonstrated successfully, by identifying the appropriate 
"evolutionary" milestones for this technology (Riel, 1996: 1). 
The overarching focus lies primarily with the conceptual 
ideas, that have been implemented, throughout the last 30 
years, and which have lead up to Object-Orientation. The 
purpose is to identify some gradual, structural changes, while 
including the potential landmark events, or the arrival stages, 
of some particular machinery, only when deemed as 
contributory or essential information. 

'" A general purpose progranmiing language, although  mostly used in 
simulation modelling. 
^^The emphasis is to avoid the standard exercise of listing ad nauseam the 
so-called "key moments" or "influential" people important in the historical 
development of Object-Orientation when the chances are that this 
information might provide little or no contextual understanding. 

308 



Procedural Language Structures 

For many of us, the most memorable progression in 
computer systems has to pertain to the basic user interface. 
Only 10 years ago a manual command-line (possibly, menu- 
driven), keyboard interaction was the standard. Nowadays, 
the most prominent form of software operation and 
management most certainly depends on graphical 
environments, or tools, and this characteristic is mostly due 
to products, wanting to compete successfully on a global 
market (Riel, 1996: 2). However, in the overall course of 
advancement this was a very recent step, and some prior 
developments, affecting Object-Orientation, warrant further 
description. 

Without actually going all the way to the beginnings of 
computer design and programming languages, it is obvious 
that some backtracking is required, to, at least, the point 
where the by-all-means-still-thriving, procedural 
programming methodology makes its mark. This long-time 
standard and persistent approach, to digital data handling, 
advocates structured programming techniques. It is very 
interesting to note that during the early 1970's, there were 
simultaneous developments, inasmuch as Niklaus Wirth 
introduced the programming language, "PASCAL", which 
greatly initiated the procedural approach, whilst a group 
around Alan Kay, at the University of Utah, set down the 
basis for "Smalltalk", the first Object-Oriented coding tool 
(Beekman, 1994: 192, Henderson-Sellers, 1997: 1). Thus, 
these two, successful programming and application 
techniques exhibit an evolutionary pattern, that quite clearly 
suggests a parallel genesis fi-om a common (unstructured) 
ancestry, and 00, therefore, does not follow a direct 
succession, or replacement path, from the current, procedural 
software architecture. 

In general, the development of structured programming has 
been a great step in the right direction and still serves its 
purpose, concerning complex data manipulation and 
management. It would, therefore, be quite wrong to identify 
them as "incorrect" techniques, requiring urgent change. But 
they must be considered limiting, when it comes down to the 
current requirements, needed for handling ever-increasing 
and diverse information sets.^* 

Modules versus Objects 

Another critical factor, in understanding the progressive 
developments, instrumental in what nowadays distinguishes 
00 from standard, coded procedures, pertains to the 
introduction of modularity. As a means to avoid the 
unsightly and often difficult to analyse "GO-TO" 
statements,^^  sub-programs,  called modules,  improve  the 

One of the major problems affecting the procedural approach is that it 
tends to be a one-way ticket in a single direction. Consequently, each 
advancing development stage represents a departure from the point where 
overall design or analysis errors can still be corrected. This is a dilemma 
within an industry-, business- and also academia-oriented environment 
where there is an increasing need to accommodate a demanding deadline 
schedule. 

These riddled the particularly large unstructured programming code in 
pre-1970's third-generation languages like BASIC or FORTRAN. The 
programming language "generations" are: 

general logic and cohesiveness of programs and applications, 
using a procedural design framework. Yet, modularity can 
not automatically remedy those cases, where poor design will 
also lead to bad code, and once the damage has been done, it 
is hard to return and fix the inherent, "drawing board" 
problems. 

These sub-programs can also be wrongly compared with 
Object-Oriented objects, inasmuch as they both seem to be 
small, task-specific modules, and represent elements of a 
greater application, or program, structure. But, it is this 
point, where it is critical to understand that modularity 
differs considerably from OO, which imposes a completely 
new perspective on any software design. Most crucially, an 
object contains both data and instructions (Hadzilacos, 1996: 
243).^* Alternatively, the module is a collection of code lines, 
performing singular, or sets, of functions, as part of the 
overall program execution. This means that a user will be 
able to "do it", or "accomplish a job", rather than the highly 
flexible, Object-Oriented task handling environment, that 
allows decisions on "what can", or "what needs to be done" 
(Beekman, 1994: 195). This fundamental, conceptual 
difference represents not just a semantic contrast, but 
manifests itself quite dominantly in the life cycle of a 
program (from analysis to maintenance), as well as in the 
necessary computer code.^' 

Concepts of Object-Orientation 

One problem, all approaches (procedural, modular, and OO) 
share, is the fact that programming languages have initiated 
the processes of change, before appropriate overarching 
analysis and design methods were developed (project 
management and modelling, being the last additions to a 
theoretical, OO application framework) (Henderson-Sellers, 
1997: 9). There is, therefore, a need to look more closely at 
what concepts are involved in an 00 implementation, with 
respect to archaeological circumstances, when applying this 
particular view of the world. 

The most fundamental question, relating to the idea of 
Object-Orientation is the following: what comprises the 
definition of an object? The simplest explanation, in 
conjunction with archaeology, can be put forth by using a 
(non-spatial) analogy, involving pottery. Archaeological 
ceramics illustrate the case for an OO approach, quite 
clearly, by the particularly healthy understanding of their 
physical, functional, and symbolic characteristics. Although, 
we must not forget that the aim is to model the world, using 
more "natural" interpretations and defmitions (Riel, 1996:2). 

First =    machine language, 
Second =    assembly language, 
Third =    high-level languages. 
Fourth =    non-procedural, English-like languages, 

where the basic progression is along the lines of each successive stage 
becoming easier to use and more like natural language (Beekman 1994: 
195). 
'' The term object can describe either (1) a real-world phenomenon (entity), 
(2) a conceptual or mathematical abstraction (a triangle or a mountain), or 
(3) its exact technical definition in the OO program model. In addition, an 
object without behaviour is unfeasible since it can not exchange messages 
with other objects; therefore any object requires at least one programming 
routine (method). 
" 00 is a way to handle a subject (e.g., a model for archaeological data) 
while OO as a technology applies to all steps in a system life cycle including 
analysis, design, implementation and use. 
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Object-orientation, therefore, forces us to adopt a new way of 
thinking, since it cannot be viewed as a mere extension of 
procedural, or action-oriented, methods. 

Class and Objects 

Each class, in essence, is a template that describes the state 
or structure of its objects (Khoshafian and Abnous, 1995: 3). 
If we, then, consider an arbitrary and deliberately, 
unspecified set of five pots, and aim for an initial and 
fundamental description, we would likely classify them 
broadly, as an assemblage of pots, or, better yet, simply as 
"Pottery" (an object class). Regardless of any further 
analysis, this point already exemplifies one of the 
fundamental, structural features of an Object-Oriented"" 
approach, namely the ability to group a specific 
phenomenon, whether it is a real and tangible occurrence or 
an abstract notion. 

Having established this object class, we can further elaborate, 
v\dthout actually looking at the pots themselves. The degree 
of in-depth knowledge, one has acquired, is quite irrelevant, 
when it comes down to describing some additional aspects of 
these pots. Without additional information, we might first 
apply a basic system, where each pot is uniquely identified, 
using a sequential code (i.e.. Object-IP, Object-2P, etc.), to 
represent individual instances of the previously created, 
"Pottery" class."' Within an archaeological context, certain 
cultural distinctions, among the assemblage, may also be 
assumed, in the form of separate spatial, regional, or 
temporal properties, as part of the imaginary data set, in 
order to apply a simple location, reference structure, where 
the pots might have been found."^ Finally, and again, 
without actually needing any further inspection, we can 
assume decorative, dimensional, functional, and symbolic 
aspects for these artefacts, since they most likely will exhibit 
these traits (attributes), to a varying degree of complexity. 

The importance of this example lies within our ability to 
conceptualise, or abstract, a whole series of factual 
information, without actually having seen or touched the 
artefacts themselves. Our a priori understanding, of the 
instances for "Pottery", is represented schematically (Figure 
2) and could result in the following compositional structure, 
for the first of the five pots (Table 3): 

"" The definition "Object-Oriented" is somewhat incorrect and the more 
appropriate   description   of  "Class-Oriented"   would   be   more   accurate 
(Henderson-SeUers 1997: 27). 
•" This unique identifier would of course normally be generated by the 
system and would not need an explicit (user-defined) attribute value for each 
object within an OOGIS application. 
•"^ For this example, a sequential system based on the instance ID's of a new 
object class called "Features" is used (i.e., Object-IF, Object-2F, etc.); 
which is introduced later as a case for OO abstraction of spatial phenomena 
in archaeology. 

Table 3: An A Priori OO Artefact Model 

Object Qass Pottery 
Attributes Instance Values 
ID (Instance) Object-IP 
Location Object-IF 
Colour Red 
Height 26cm 
Width 30cm 
Geometry Star 
Behaviour 
Type (determine) Jar 

The "geometry" and "type" variables need to be explained 
further, as part of this hypothetical archaeological example. 
The former has nothing to do with any actual 
phenomenological trait which might describe the shape or 
appearance of the five pots. It is a user-defined, attribute 
value that establishes the visual representation, or drawing 
properties, for the instances of "Pottery" in the OOGIS. 
Whatever a pot may actually look like, be it a real-world 
entity, on the screen or on a printout, it will be represented as 
a star-shaped symbol, indicating that the geometry attribute 
is an integral part of an all-inclusive, object definition. 

The method "type", on the other hand, is a dynamic variable, 
and in this example it can be either subject to the 
interpretational expertise of individual researchers, a visual 
recognition software, or some programming code to generate 
more information for each of the five pots. It is obvious that 
the object class, "Pottery", is just an overarching, abstract 
construct, and that a further separation, into more refined 
object classes, is possible, based on the specific properties 
that characterise different types of archaeological ceramics. 
What is important is the fact that any object definition 
includes behavioural faculties, in order to communicate with 
other objects, when using its methods to send and receive 
data, via messages^^ Hence, "type", when activated, is a 
means (behaviour) to determine typological distinctions for 
each instance of "Pottery", which in turn, produces an 
additional attribute value {i.e., "Jar'' for Object-IP). 

Overall, this example represents the mere beginnings, in 
what could be a useful and logical OO artefact, data model, 
similar to the one that has application in ceramic analysis, 
akeady (Sinopoli, 1991: 52-53), particularly, with regards to 
a type-variety typology, which advocates an organisation, 
ranging from broad pottery classes, to detailed differentiation 
of ceramics, based on distinct diagnostic traits. It is, 
therefore, clear that an 00 approach would and does lend 
itself to archaeological investigations, which focus on 
typological identification of artefact remains. 

However, this work mainly looks at the particular 
implications of Object-Oriented GIS, with respect to spatial 
analysis in archaeology. A far greater level of abstraction is 
required, when trying to quantify an often, large-scale 
regional phenomenology (natural and cultural). Hence, 
unlike the basic example of "Ditchbury" (Figure 3), any real- 
world entities are likely to have much  less, discernible 

Only by sending a message to an object can a desired method pre-defined 
for that objea be invoked. 
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properties, due to such problems as indeterminate 
boundaries. Considering a description similar to the 
ceramics example, an a priori 00 spatial model for the first 
feature (Object-IF), might therefore, look something like the 
following (Table 4): 

Table 4: An A Priori OO Spatial Model 

Object Qass Features 
Attributes Instance Values 
ID (Instance) Object-IF 
Location Ditchbury 
Length 25m 
Width 10m 
Height Im 
Geometry Area 
Behaviour 
Type (determine) Ditch 

If we look at the example of the five archaeological pots, as 
the instances of an object class, called "Pottery", and the 
"Ditchbury" objects, belonging to the "Features" class, we 
can establish an essential, conceptual OO criteria (Figure 4: 
Class and Objects). The specific reason for the above 
examples, using a very basic structure of classes and objects, 
is to highUght well-known elements of archaeological 
material culture or spatial phenomena and to subject them to 
an OO data model. Despite not having any greater insight 
into the physical characteristics, provenance, or any other 
archaeological context, the OO view of the world assumes 
that a variety of attribute and behaviour patterns must be 
implicitly present, by using identifiers, like "Pottery" and 
"Features". The idea is that the actual name of a class 
implies its attribute and behaviour (Riel 1996: 12-13).'*^ In 
other words, in 00, the class defines a phenomenon, through 
abstraction, while each object instance uses this class 
definition as a mould, to describe its properties."*' A ceramic 
artefact is, therefore instantiated from the "Pottery" class, 
and the "Pottery" class, in turn, is the abstract generalisation 
of all the ceramics, that exist in the real world. 

Polymorpliism 

Polymorphism, as one of the powerful concepts in OO, 
describes the use of methods (behaviour) that have the same 
name, in several different object classes (Taylor, 1990: 48, 
Worboys, 1995: 89).'** Therefore, identical messages can be 
sent to objects, which may exhibit close, or even no, 
definitional similarities (Henderson-Sellers, 1997: 186-187). 
However, it is also apparent that as an integral part of any 
object class definition, specific methods need to be created 

first, in order to receive, or reply to external 
communications.'*^ 

Expanding on the above archaeological scenario, a general 
object class, "System", with a method, "type", is introduced, 
which can activate the behaviour routines for objects, 
including instances of "Pottery" and "Features" (Figure 4: 
Polymorphism), based on the circumstance that, through an 
inheritance relationship (described below), every object 
class will have a method, called "type". This allows for a 
simultaneous execution of "type", despite "Pottery" and 
"Features" objects, requiring different processing values to 
perform their typological evaluation routine, in this case, 
using a series of specific, attribute information as the source 
data 48 

With regard to instances of the "Pottery" class, "colour", 
"height" and "width" provide the parameters for the 
automated analysis, performed by "type", which establishes a 
more refined distinction between ceramic artefacts {e.g., jars, 
bowls, etc.), and returns the value of "Jat" for "Object-IP" 
(Table 5A). The same goes for 'Features", where the 
dimensional values "length", "width" and "height" are used 
as the required input for its "type" method, distinguishing, in 
more detail, different spatial phenomena {i.e., ditches, pits, 
etc.), and which result in "Ditch" for "Object-IF' (Table 
5B). It is, therefore, clear that through polymorphism, a vast 
number of methods can be defined as part of any object, in 
order to create and customise a highly flexible OOGIS 
application, according to a specific research design and 
avoiding the potential for generating fairly generic, "off the 
shelf' type of GIS study results, which may come as a 
consequence of rigid and pre-defined, operational design, 
framework Umitations. 

Table 5A: 
The "type" Method Analysis for the 
"Pottery" Class 

Object Qass Pottery 
Attributes Instance Values Type Analysis 
ID (Instance) Object-IP 
Location Object-IF 
Colour Red Red 
Height 26cm 26cm 
Width 30cm 30cm 
Geometry Star 
Behaviour = 
Type (determine) Jar 

That this requirement is fulfilled is especially clear in the case of our 
imaginary ceramic assemblage where any imaginable decorative 
dimensional and functional characteristic that may apply can be identified 
and defined due to the specific and "natural" name for the object class, 
"Pottery". 

The class is the overarching template for objects inasmuch as it represents 
the basic abstract data type: 

Pottery =    Generalization of all ceramics, 
Features =    Generalization of all features, 

in the examples provided. 
Methods can have the same name to perform more or less the same task 

but with a different outcome (e.g., a "print" method may produce text output 
for one object while printing images for another). 

In addition, special overarching object classes comprised of only one 
instance can be defined which contain behaviour routines to globally interact 
with multiple objects (e.g., "System" as a "root" object in an OOGIS). This 
is in Une with the fact that all methods must have an explicit object class 
definition including the ones which are created as part of a general 
application domain. 

It is obvious that the attributes specified would never satisfy the input 
requirements for a fully operational automated typology analysis system. 
This example, therefore, serves only to illustrate an Object-Oriented concept 
(polymorphism) using a hypothetical archaeological scenario. 
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Table SB: 
// '            ^z "" 

The "type" Method Analysis for the 
"Features" Class SÄ 
Object Qass Features 
Attributes Instance Values Type Analysis 
ID (Instance) Object-IF 
Location Ditchbury 
Length 25m 25m 
Width 10m 10m 
Height Im Im 
Geometry Area 
Behaviour = 
Type (determine) Ditch 

Inheritance 

On the most basic level, inheritance refers to a class 
hierarchy system, defined by the degree of abstraction and 
detail in object class definitions. In other words, the 
superclasses (parents) are more generic, or abstract, than the 
subclasses (children) (Henderson-Sellers, 1997: 21). This 
also reflects a general, human understanding and knowledge 
structure, which employs concepts of generalisation, leading 
to specialisation. 

Inheritance is also a mechanism, which allows sub-classes to 
represent special cases of a superclass and hence, they 
automatically inherit all characteristics from their 
overarching classes (Taylor 1990: 22),'*' while defining their 
own attributes and behaviour.^" Much like biological 
taxonomies, when applying an inheritance, hierarchy system, 
in an OOGIS, a holistic and richer, semantic relationship, 
among entities in a given space, can be established 
(Khoshafian and Abnous, 1995: 82). 

Broadening the two, aforementioned, "Pottery" and 
"Features" object class definitions, a series of sub-classes, for 
specific types of archaeological ceramics and features, are 
introduced (Figure 5). In this example, "Jar" and "Bowl" 
represent children of "Pottery", the same way as "Pit" and 
"Ditch" are descendants of the parent, "Features". Each of 
these sub-classes has been selected, to represent their own 
object class, but they also acquire or inherit all traits from the 
overarching superclasses based on a Shlaer-Mellor 
inheritance model (Starr, 1996: 94-95). This, then, means 
that each real-world jar or bowl is an example of "Pottery", 
and, similarly, any actual pits or ditches represent 
archaeological "Features". In turn, within an OOGIS, 
instances of "Pottery" are sub-classed and must be either a 
"Jar" or a "Bowl", and likewise, any "Features" will be 
identified as either a "Pit" or a "Ditch". 

relationship?^ Looking again at our example of ceramic 
artefacts, it is, therefore, obvious, that a system-defined ID 
for an object, once established, is a value that remains 
constant, throughout the class hierarchy. However, the 
drawing geometry is not the same in "Pottery" and its 
children, because the superclass would likely use a general 
representation {e.g., a point) for all types of ceramics, and the 
two subclasses, "Jar" and "Bowl", override the parent with 
their respective and specific display symbols {i.e., a star and 
a circle), in order to visually distinguish between them, 
within the OOGIS apphcation. 

Furthermore, the method "type" for "Jar" and "Bowl" is 
inherited from "Pottery", and for each of these subclasses, 
this behaviour routine is distinct, as a result of requiring 
separate processing values for analysis. Therefore, "type" in 
"Pottery" represents the generic, automated process of 
evaluating typological definitions for ceramic artefacts.'^ 
This means that a message can be sent to the "type" method, 
for the instance "Object-IF' of "Jar", which in turn, executes 
the method "type" in "Pottery", using Object-IP as the target 
object. To explain this more simply, we need to clarify that 
methods are operations, designed to retrieve or update the 
state of an object, where the state of an object represents the 
stored attribute values (Khoshafian and Abnous, 1995: 104). 
For our example, the "type" methods, in either "Jar" or 
"Bowl", use a set of arguments, which merely add to, or 
modify, as required, the inherited behaviour routine, 
originally defined in "Pottery". This way, the appropriate 
variables from each sub-class are used in the analysis, to 
develop further typological distinctions {i.e., subdividing 
"Jar" into "Small Storage", "Liquid Storage", "Large 
Storage", etc., and "Bowl" into "Cooking", "Serving", etc.) 
(Table 6A). 

With regard to the "Features" object class, a very similar 
hierarchy exists to the one described for archaeological 
ceramics. Again, the ID's for spatial objects are established 
by the system, maintained by the object, and recognized 
throughout the inheritance structure. The drawing geometry 
for the superclass also uses a generic representation {e.g., a 
point), for all features, which is then overridden, by the 
display atffibutes of the subclasses, "Pit" and "Ditch" {i.e., 
circle and area) (Table 6B). 

In general, all structural attributes and behavioural methods 
are inherited by the sub-classes, through their superclass 

•"   Also  known   as  structural  (attributes)  and  behavioural   (methods) 
inheritance (Khoshafian and Abnous 1995: 82). 
'° Which potentially override (supersede) any chararteristics bequeathed 
from the respective superclasses. 

^' It should be emphasized that, there is no actual instance (object) for the 
superclass but only one for the subclass, which contains all its own attributes 
and methods in addition to all the ones not overridden fitrni the overarching 
superclasses. 
" Whereas, "type" in "Features" represents a different behaviour routine 
specific to spatial phenomena; see below. 
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Vable 6A: 
y for the Whe Inheritance Oass Hiërarch 

"Jar" Instance "Object-IF' 

Object Oass Jar 
Attributes Instance Available through 

Values Inheritance 
ID (Instance) Object-IP 
Handles No 
Spout No 
Portable Yes 
Geometry Star 

Superclass Pottery 
JD (overridden) 
Location 
Colour 
Height 
Width 
Geometry (overridden) 

Behaviour 
Type (determine) Small Storage 

Superclass Pottery 
Type (determine) 

Table 6A: 
The Inheritance Class Hierarchy for the                         | 
«Ditch" Instance "Object-IF' 

Object Qass Ditch 
Attributes Instance Available through 

Values Inheritance 
ID (Instance) Object-IF 
Linear No 
Fence Yes 
Geometry Area 

Superclass Features 
ID (overridden) 
Location 
Length 
Width 
Height 
Geometry (overridden) 

Behaviour 
Volume 250m^ 
Type (determine) Defence 

Superclass Features 
Type (determine) 

attributes and methods in "Features" are mutually shared by 
the "Pit" and "Ditch" sub-classes {i.e., generahsed from the 
two spatial phenomena), they have characteristics exclusive 
to their definition as an object class {i.e., specialised traits, 
which are unique to each). Inheritance is a powerful tool in 
GO, where a complex hierarchy of object classes can be 
established, using a logical and "natural" composition, which 
makes intuitive sense and this is also a construct, close to 
archaeological typology systems, and hence, should come 
quite readily to this discipline. 

Relationships 

In an OOGIS, relationships (including topology) are directly 
established between objects.^^ In other words, a relationship 
is an abstraction of real-world associations^" in the same way 
as an object is an abstraction of a real-world entity (Starr, 
1996: 49). Hence, universal, conceptual relations need to be 
established, that are valid for all situations where objects 
interact with each other (Freska and Barkowsky, 1996: 112). 
At the same time, it is clear that there are different types of 
relationships^^, which are described by a variety of terms, but 
essentially relate to the same concepts (Henderson-Sellers, 
1997: 28, Starr, 1996: 56) (Table 7): 

Table?: 
Relationship Types 

Henderson-Sellers 
1. Aggregation 
2. Association 
3. Inheritance 

Starr 
Binary 
Associative 
Supertype (Superclass) 

A point that needs to be made is the fact that relationships 
can also have their own attributes, independent of the 
involved objects (Worboys, 1995: 71). The process of 
relationship abstraction formalizes how objects interact with 
each other (Starr, 1996: 49). Aggregation refers to a basic 
connection between objects {i.e., "is_part_of') and may be 
the closest to topology within an OOGIS. Association is the 
relationship type, which requires the services of one or more 
objects, to create, destroy, or update instances within another 
object class, based on their associative interaction {i.e., a 
client/supplier affiliation).'^ Inheritance refers to the 
hierarchical structure (explained in the section above) for 
class relations {i.e., "kind_of', or "isjike"), which allows 
reuse of attributes and methods, defined in the respective 
superclasses. 

For the purpose of demonstrating an archaeological example, 
we are mainly concerned with aggregated and hierarchical 

Similarly, the method "type", in "Features", represents the 
overarching, automated routine to evaluate typological 
distinctions for its sub-classes, within the hierarchy, by using 
the necessary attribute values from each sub-class, in order to 
subdivide further instances of "Pit" into "Posthole", 
"Refuse", "BuriaP, etc. and "Ditch" into "Defence", "Field 
System", "Enclosure", etc.. However, for our example, the 
"Ditch" subclass adds some additional behaviour, in the form 
of a method, called "volume". This measurement routine is 
unique to the sub-class, and it highlights the issue of 
generalisation and specialisation.   For example, while the 

53 
A quote by D. Ingalls suggests that: "Instead of a bit-grinding processor- 

raping and plundering data structure, we have a universe [in OO] of well- 
behaved objects that courteously ask each other to carry out their various 
desires.", (Booch 1994: 97). 

Which holds systematically between instances of object classes in an 
OOGIS (Starr 1996: 47). 
" Identifying among other variations of dependency, generalization and 
specialization "many_to_many", "many_to_one" and "one_to_one" 
relationships for objects. 

VAT charges on goods are a prime example where an associative 
relationship can be constructed inasmuch as the correct percentage 
calculation can be handled by a separate object which returns the value to 
the original transaction object in order to update and print the overall total to 
be paid on the receipt for the customer. 
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relationship types.'^ Figure 5 (Inheritance and Relationships) 
shows that in addition to the link, that exists for the two 
superclasses and their respective sub-classes, there is also a 
direct connection between "Pottery" and "Features". The 
latter, aggregative relationship has been established, in order 
to describe a positional reference for individual, ceramic 
artefacts. In other words, Object-IP has a "location" 
attribute value (i.e., the place where it was found), which is 
in relation to a relevant instance {Object-IF), in "Features". 
Described as a many_to_one relationship, called 
"locatedjn", each "Features" instance can contain a spatial 
reference for many "Pottery" instances, but a single ceramic 
artefact can only have one "location" value. 

At the same time, the sub-classes, "Jar", "Bowl", "Pit", and 
"Ditch" interact with their respective superclasses using a 
many_to_one relationship, called "kind_of'. This also 
means that actual archaeological jars or bowls are single 
"Pottery" instances, but this object class can describe many 
of these real-world, ceramic artefacts. The same applies to 
"Features", where numerous pits or ditches can be recorded 
as instances of this object class, but where each spatial 
feature can only have a single reference to its superclass. 

In general, when establishing relationships for an OOGIS 
application, one danger is that the focus is too specific, on 
objects, when it should be on the connections, that exist 
between them. This undermines the overall quality and 
success of a study, since the power of a system depends 
largely on the amount and types of relationships 
implemented (Starr, 1996: 50), and requires a careful, and 
more substantial, analysis than the one provided in this 
example, which serves purely as a simplified archaeological 
demonstration. 

Encapsulation 

Another important concept in Object-Orientation is the idea 
of encapsulation, which combines data and methods and 
hides them from view - in line with a natural extension of the 
information-hiding strategy, developed in structured 
programming (Taylor, 1990: 31). While abstraction aims to 
define some visible behaviour for an object, encapsulation 
tries to hide the controlling mechanisms from general 
visibility (Booch, 1994: 49). Basically, the emphasis lies in a 
deliberate attempt to hide the operating details from any 
potential users, while the same system processes remain 
visible to other objects (Henderson-Sellers, 1997: 16). 

The philosophy is one, that aims to only provide access to 
necessary information, and which lets any functional and 
implementation aspects of an object remain private, while 
the behaviour methods, with which objects communicate, are 
available through the public interface (Figure 6: 
Encapsulation).'* In other words, the data can only be 
accessed by the object's methods, performing the standard 
tasks of reporting, storing, and calculating values (Taylor, 
1990: 31). This process is managed by messages, which 
advise a receiving object, to carry out an indicated method. 

and to return the result of that action. In contrast, relational 
database structures use a call-by-value approach, where 
entities are connected to other entities by their values. GO 
data, on the other hand, is addressed indirectly, because of 
encapsulation (Worboys, 1995: 87), thus, protecting the 
information from corruption by other objects. 

Figure 6 demonstrates information-hiding, for instances of 
"Pottery" and "Features", which can be accessed by the 
"System" method, "type", defined earlier in polymorphism, 
and the relationship, "located_in", that exists between the 
two object classes. It is clear, though, that a whole host of 
additional behaviours is needed, should we want to make 
Object-IP and Object-IF functional objects in a real OOGIS 
application.'' However, this example serves its purpose, 
inasmuch as it shows how information is encapsulated, and 
what means of access are available. 

The actual values for Object-IP and Object-IF are private 
and hidden. This is highlighted by their containment within 
the inner ellipse for each object diagram. Access to this 
information is gained by their methods, as defmed in their 
respective object classes, and represented by the outer, object 
ring in the same diagram. In other words, a message can be 
sent to either individual, or multiple, instances of "Pottery" 
or "Features", by means of the "System" method, "type", in 
an attempt to communicate with the respective behaviour of 
each object. This also shows that a plethora of application, 
object classes can be integrated in an OOGIS, which 
supplement overall object communication between objects, 
through specialised methods.^ 60 

With regard to the aggregative relationship for "Pottery" and 
"Features", it has akeady been established that the "location" 
attribute value is a positional reference for ceramic objects, 
which are linked, via "located_in", to their respective spatial 
objects. This indicates that relationship definitions act much 
like methods, although they are far more specific in 
generating the appropriate means for interaction, between 
instances of object classes. In an OOGIS application, 
encapsulation plays an important role in the preservation of 
the overall, compositional integrity of real-world entities, 
which includes how they interact and correspond with each 
other, thus, permitting access only through a series of 
different behaviour methods, protecting the actual object 
data. 

Advantages and Disadvantages for OOGIS 

Based on the topical analysis to date, the final section of this 
work briefly highlights some of the already identified 
characteristics of OOGIS, in a summarised fashion. This list 
of advantages (Table 8A) and disadvantages (Table 83), for 
appUcation of this GIS technology in archaeology, should 
indicate the general potential, before some actual case studies 
can substantiate, or identify, additional benefits/limitations. 
At the same time, this summary should not be viewed as a 
qualitative assessment of OOGIS, in relation to raster or 
vector systems, but rather as a compilaticMi of issues, that 

It is worth mentioning that for this example, messages can be sent bi- 
directional indicating that all objects can communicate with each other. 
" All data should be private and public methods need to be specifically 
designed to access desired pieces of infomiation; although private methods 
can be implemented indicating that not all methods must be public. 

" Including the desired input and output accewor methods. 
** Which introduces an additional level of flexibility to access encapsulated 
data. 
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suggest that this is a possibly, usefiil tool for archaeological 
research. 

Table 8A: Potential Advantages 

1. There is a growing interest in OO technologies, 
within archaeology, as witnessed by recent work. 

2. OOGIS should be considered an enhancement, and 
not a replacement, for raster or vector technologies. 

3. Mapping is done, according to a continuous and 
seamless design, which allows the integration of 
spatial and cultural data objects, that normally span 
more than one traditional map sheet. 

4. Objects represent abstractions of real-world entities 
and their properties; hence, an OOGIS acts as a 
skillful mediator, between the way we perceive the 
world and the way we model it. 

5. An object ideally describes an abstract 
representation of a real-world phenomenon, using a 
specific, semantic definition (i.e., descriptive name). 

6. The data structure is all-inclusive, by combining 
attributes and behaviour, into a holistic construct. 

7. OOGIS can use raster and vector representation 
methods, and the graphical characteristics are part 
of each object class definition. 

8. Topology is integrated as part of object class 
definitions. 

9. There is a clear, conceptual and organisational class 
hierarchy system for objects, which manages the 
relationships between individual object classes. 

10. Within the overall OOGIS design, object methods 
(behaviour) are incorporated, to allow interaction 
and communication between objects. 

11. OO uses encapsulation, which ensures data security, 
by only allowing access through object methods. 

12. OOGIS is an active research tool, and it should not 
be considered a one-off data store and display utility. 

Table 8A: Potential Disadvantages 

1. Objects need to be clearly defined spatially, a distinct 
problem in archaeology, considering researchers' 
discretionary practices (i.e., those "grey" or "fuzzy" 
areas, regarding concepts like site dimensions or 
general functional interpretations). 

2. // may be more difficult to integrate new object 
classes, within the main (parent) control levels of an 
existing OOGIS class hierarchy, thus, demanding a 
well-developed application design and implementation 
strategy, at the beginning of any project. 

3. The necessary hardware/software costs involved, in 
order to run an OOGIS operation, may still be higher 
than for a standard GIS implementation, using raster 
or vector technologies. 

4. The training in OOGIS may require a considerable 
time for novices in GIS, as well as for people skilled in 
raster and vector application design since the new 
data model requires a different conceptualisation 
process, for natural and cultural phenomena. 

Conclusion 

In general, a framework for archaeological fieldwork has 
been developed, which accepts change in practices, over 
time, in line with methodological improvements. However, 
with regard to OOGIS, there is not even an agreement, yet, 
on a conceptual application strategy for archaeological 
investigations.^' In other words, there will certainly be a 
long line of differing, "expert opinions", before any 
acceptance of OOGIS, as an effective tool among the palette 
of GIS products used within the discipline, is achieved. This 
work must, therefore, be seen as one of the steps that 
introduces OOGIS to archaeology, while actual case studies 
will have to act as later reference material, to develop a 
concise and useful implementation framework. 
Consequently, the descriptions of hypothetical archaeological 
cases, throughout this introduction to OOGIS, and as basic as 
they may be, should still provide some insight into the 
application potential of this tool. Overall, more research will 
have to follow, particularly, since OOGIS may hold the key 
to modelling spatio-temporal relationships, which would then 
come a step closer to a fully holistic GIS, analysis 
methodology. 
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