
An Introduction to Object-Oriented GIS in Archaeology
André P. Tschan

Institute of Archaeology. Oxford University.
36, Beamont Street, oxford, OXl 2PG. U. K.

E-mail: andre.tschan@arch.ox.ac.uk

Introduction

Geographic Information Systems (GIS) are increasingly
applied to holistic, inter- and intrasite investigations.' This
powerful, computer-based technology accommodates a great
variety of environmental, ecological and cultural
information, by means of selective data capture,
management, manipulation, analysis, modelling and spatial
referencing (Ruggles, 1992: 108). However, GIS programs,
like any other tool, are subject to a specific set of application
characteristics (i.e., operational and functional parameters),
that prescribe the process for integration, presentation and
interpretation of the archaeological record. Based on the
chosen software and hardware, there will be inherent
conceptual and structural design limitations, that directly
determine, or affect, the outcome of a study. Furthermore,
success in obtaining acceptable and meaningful results can
be severely restricted, depending on the quality of the data
and, more important, the capacity of the GIS package to
process the information, implemented in the form of
modelled abstractions. This work looks at a new technology
for archaeological investigations, by providing an
introduction to Object-Orientation (OOf and to Object-
Oriented Geographic Information Systems (OOGIS), which
represent the basis for an ongoing evaluation into the
potential of this tool.

Object-Orientation in Archaeology

OOGIS is by no means the only domain to adopt an Object-
Oriented platform and structure (Booch, 1994: 78); others
include software packages for air traffic control, animation,
databases, operating systems, telecommunications, etc. In
fact, commercial OOGIS seem to be among the most recent
tools to make use of an OO design.^

Consequently, with regard to the role of OOGIS in
archaeology, there is a marked absence in the general
literature. Nonetheless, some specific attempts to introduce
this technology have been made, with mixed success,
including an investigation into isostatic uplift in Finland,
using an OOGIS program called Miljöflex (Nunez, et al.,
1995). More current applications, using purpose built
programs for archaeology that incorporate an OO approach
in spatial analysis and modelling include FieldNote by Dr.
Nick Ryan at the Computing Laboratory, University of Kent

at Canterbury as well as CRISys, co-developed by César
Gonzalez Perez, as part of the Grupo de Investigación en
Arqueologia del Paisaje of the Universidad de Santiago de
Compostela.*

As a trend, there does seem to be an increasing interest, with
regard to Object-Orientation within the discipline. In
addition to the above, there are also a few publications
available, that involve OO, but which are either concerned
with application areas other than GIS, or provide a more
general introduction into the potential of this technology.
Examples of some of these include a look at archaeological
database design (Stine and Lanter, 1990: 80-89, Feder, 1993:
221-227), abstract data structures in GIS (Ruggles, 1992:
107-112), the theoretical implications of raster, vector and
OO systems (Zubrow, 1990: 69-71), Object-Oriented designs
for excavation simulation (Barroca and Rahtz, 1992: 39-48),
and OO for system analysis (Rold, 1993: 213-220).

A Need for Change?

OOGIS uses currently available microsystems hardware,
while incorporating a comparable plethora of methods and
routines, common in standard GIS packages (Smallworld,
1991: 11). However, one of the questions to address is
whether the latest gadgets, or theoretical models, come as a
spontaneous consequence of bad practice. In other words, do
we really alter our behaviour, or approach, from one day to
the next, because the current way is suddenly considered too
limited, or outdated?' By just implementing and advocating
the most fashionable, and perhaps not always the best suited,
products, it is easy to engage in a dangerous process of high-
tech, punctuated equilibrium and, as a result, to end up
exhibiting a complete disregard for any real, evolutionary
understanding of the quantitative and qualitative changes in
the data and the generated results.* In essence, due to the
novelty value and the claimed advances, older and
sometimes, well-proven technologies can become targets for
replacement, with "newer, faster and better" tools, without
properly assessing the potential benefits and consequences.

At present, the most popular and technically versatile GIS
packages are either raster or vector-based (Weibel 1997:
113). Despite the fact that they often incorporate similar
routines for processing spatial input, they are fundamentally
different, with regard to their conceptual, structural,

A fact exemplified by the number of works (328) compiled for a
bibliography of GIS in archaeology (Pétrie, et al 1995).

OO = [Objert-Orientation or Object-Oriented], depending on the
grammatical context.

Smallworld, one of the more successful OOGIS packages, was fu-st
introduced in 1990 (Smallworld 1991: 5).

Although the authors point out that Miljöflex has great potential for
Cultural Resource Management, it is deemed limited for archaeological
research (Nunez, etal 1995: 147).

'http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fieldwork/papers/
''http://www-gtarpa.usc.es/Proyectos/crisys/index%20en.htm

A tool should not automatically be considered useless just because it is not
Object-Oriented (Feder 1993: 113).
g

The long-standing debate on the advantages and disadvantages between
raster and vector which persists to date (Weibel 1997: 113) should serve as
an example of this dilemma.

Nowadays, many GIS programs can also accommodate both raster and
vector data.

303

presentational, and analytical capabilities. Within this
context, OOGIS should act as an enhancement and not as a
replacement for established technologies, because even as a
new tool, it still shares those overarching criteria, which
define a computer program as a Geographic Information
System - incorporating data collection, storage and retrieval,
processing, analysis, and reporting facilities (Peuquet and
Marble, 1990: 10).

There is, however, the requirement for applications, using
OOGIS, to identify and prepare data in such a way that it can
fit the new OO model for past or present, natural, or cultural
phenomena. The basic premise is that Object-Orientation
allows us to employ improved concepts and tools, in our
desire to create a close resemblance of a particular view of
the "real" world (Henderson-Sellers, 1997: 13, Khoshafian
and Abnous, 1995: 7).); for which, in return, we have to
change the way we perceive and define our surroundings,
when engaging in an Object-Oriented GIS study.

A (GIS) World View

Due to the fairly broad nature of the general theme (i.e., GIS
in archaeology), it is obvious that at first, there must be some
distillation process, which takes into account design issues
for the available types of GIS technology. Then, followed by
a description of the fundamental concepts, relating to Object-
Orientation,'" the desired outcome should be a contextual
understanding of both major components (GIS and OO),
driven by archaeological theory and analysis.

Undoubtedly, it is crucial to thoroughly understand the
detailed processing parameters, with respect to any selected
GIS program, in order to develop an application successfully.
But, at Üie same time, the quahty in representing our world,
or the world of a distant ancestry, using a GIS, will
inadvertently relate to the tool's capacity for modelling
complex sets of phenomenological abstractions. In other
words, when introducing a new technology, there is often the
promise of some improved, information handling. However,
and as in the case of OOGIS, any such enhancements might
not be identified, by the changes in the specific operational
characteristics of the GIS, but rather come as the result of a
new data model (the way a view of the world can be
represented). The following sections, exemplified by
potential archaeological scenarios, aim to describe the
conceptual and overarching design characteristics for raster,
vector, and Object-Oriented GIS, and how each manifests
itself, in the form of the data model, data structure, data
representation, and topology.

A GIS Application Framework

This work is not intended to establish a quaUtative
assessment, with regard to any GIS technology. There is a
deliberate emphasis in the use of generic and descriptive
explanations, in order to avoid establishing a hypothetical, or
even controversial, ranking system." It seems clear that

'" Explaining OO and OOGIS using only a few pages will be incomplete at
times since it normally requires a whole book to address all the detailed
aspects relating to this technology and research tool.
" The basic premise is that the application needs should determine the
choice of tool based on the requirements for the desired results (Feder 1993;
223).

each technology incorporates a set of useful application
characteristics; otherwise, they would not find general and
continued usage in many disciplines, including within
archaeology. The primary purpose is to introduce OOGIS,
through highlighting the respective differences between
raster, vector, and OO, with regard to the main conceptual
domains.

Overall, any study or research, regardless of the selected GIS
technology, will require some prior and expUcit thought,
about the following design and implementation aspects
(Table 1):

Table 1: General GIS Application Domains

Data Model The selected view of the
world and its contents

Data Structure TTie composition of the
data within the GIS

Data Representation The visual display
parameters for the data

Topology The relationship
properties of the data

When looking at the proposed schema in detail, there might
be an issue, with regard to the semantics and overall
definitions used. For example, the choice of "data model"
and "data structure" can be blurred at times, the likely result
of a colloquial misuse, and the popularity of the latter idiom
(Bartelme 1995: 35). Nonetheless, it is essential to define
and adhere to strict distinctions, when trying to identify any
differences between standard GIS technologies and OOGIS,
particularly, when a major change involves an overarching
concept, rather than just a series of fancy, functional
computer keystrokes.

There is also no detailed separation of the compositional
elements (storage, management, etc.) that make up the data
structure domain, although, this does not deny the fact that
major aspects, of intemal configuration, warrant an
operation^ understanding, before engaging in a study. But,
when opting for an affordable, commercial GIS package, one
ab-eady tends to focus on relevant, structural components.
As a result, the desired program characteristics and any
explicit preference for a database type {i.e., relational or 00,
using a local or remote filestore, etc.) will be satisfied, by
acquiring the appropriate product. Furthermore, when
equipped with good linking facilities, the specific, inherent
data structure may be of limited importance, to those
appücation developers, using other software tools to generate
and maintain their data collections, thus limiting the GIS
functionahty, purely to processing, or analysis.

Once again, the aim is to highlight major, conceptual
differences for each technology (raster, vector, and 00)
based on the proposed application domains, and not to
describe the in-depth, intemal characteristics of individual
and currently available GIS packages.

'^ This description of the data model, data structure, data representation and
topology only addresses the fiindamental differences because any extensive
detail would have been beyond the scope and topic of this paper.

304

The Data Model

A general definition of a GIS data model might be: "a human
conceptualization of the world (i.e., a selected view), which
identifies the parameters and entities'^ relevant for an
application." In essence, it is the description of any real, or
abstract, objects, using a varying degree of complexity and
accuracy, in the process of identification (Bartelme, 1995:
17). These data model definitions may be augmented
fiirthCT, to include: "a measurement framework (i.e., time,
space, and attributes) combined with a representational
scheme" (Chrisman, 1997: 23). Worboys (1995: 23), on the
other hand, suggests an even more detailed data model
construct comprised of the first four stages in a GIS
application life cycle (Table 2), an ordered development
process, defined by its (1) phenomena, (2) abstraction, (3)
conceptual computer model (without an actual GIS tool in
mind), and (4) computational design phase (incorporating
specific data structure criteria, like relational database, OO,
etc.) - where all four stages are prior to the actual (physical),
GIS implementation.

Table!: A GIS Life Cycle:
Data Model

1. Application Domain Real-world phenomena
(natural and cultural)

2. Application Domain
Model

Abstraction

3. Conceptual
Computational Model

Design without data
structure criteria

4. Logical Computational
Model

Design with data structure
criteria included

Regardless of which definition one prefers, the basic premise
remains, that the data model acts as the required interpreter,
between phenomenological information and the GIS. In
other words, the source domain (real world) is translated by
the data model, via abstraction and simplification, into the
target domain (i.e., the assigned GIS package), in order to
become available for further processing wathin this latter
context (Worboys, 1995: 145). This, then, also implies that
any analysis, performed by a GIS routine, will in return, be
available for the interpretation of the actual source entities,
relationships, and the like.

A Raster Data Model

over the study area. The final outcome is a data model,
which represents the world as a regular layout, composed of
individual cells, and where each cell contains attribute
values, according to the specific location, or entity, that
might occupy its space.

This technical description may be best highlighted by a
hypothetical, archaeological example (Figure 1 : Raster GIS),
where SITE A is a single representative of a thematic layer^^,
called Iron Age Sites. What is important to know is that,
regardless of the actual world size, the modelled
measurements for SUE A will always be subject to the
dimensional definition of the grid cells (Weibel, 1997:
113).'* Hence, when using a raster GIS, the issue of
resolution (the size of the grid cells, for the array to be placed
over the world) determines the overall quality of the
abstraction. Therefore, prior to the actual implementation,
the data model becomes the most important source of
analysis, utilized to determine the precision, or detail, as part
of the specified requirements for a study.

A Vector Data Model

A vector GIS generally employs an object-based, data model,
although the choice can be between exclusive usage, or a
combined model, that additionally includes raster
information.'^ WTiat this means is that, real-world entities
are identified by their spatial characteristics, in order to be
represented as part of an "exact" computer model. The
actual process of abstraction, concerning natural and cultural
phenomena, involves geometric primitives (i.e., point, line
and area)'* subject to a specific location in the form of
coordinate values, within a geo-reference system (Chrisman,
1997: 62). Hence, the modelled entities primarily
incorporate meaningful and possibly complex information,
through their visual definition. But, because point, node, and
line constructs tend to initially describe the drawing structure
attributes, they don't actually support 00 and all-inclusive,
"object" definitions, which can contain a whole host of
contextual excavation and analysis data (Zubrow, 1990:
70).'"

The vector data model is also exemplified in Figure 1
(Vector GIS). In this case. SITE A has been modelled, by
using a point as its geometric entity representation. Some of
its associated, drawing attribute values are shared with other
entities, and together they form a thematic coverage^°,

The basic assumption for a raster GIS, data model suggests
that an entire study area can be divided into smaller sections,
subject to their homogeneous thematic content (Bartelme,
1995: 46). This process, also known as a field-based
approach, uses tessellation to transform a selected surface
into a regular framework of abstract spatial distributions
which is formalized as a mathematical construct, like grid
cells, or pixels (Chrisman, 1997: 65). In essence, any
collection of real-world phenomena, as identified by the
researcher, gets a field assignment, when draping a grid array

The use of "entities" for real-world spatial and cultural objects is an
attempt to avoid confusion with "objects" as defined in the Object-Oriented
sense, which describes a computer construct.

It is clear that since the two most popular (spatial) data models to date use
raster and vector technologies, Object-Orientation must yet establish itself as
a viable third alternative.

Several thematic layers overlaid on each other represent a composite map
in a raster GIS (Bartelme 1995: 46).
'^ Whether or not SITE A in reality is only lOm x 12m is ignored because the
proposed example defines 50m x 50m cells and "A" will therefore be
modelled by filling the extent of the cell with a uniform value.
" "Object-based" should not be confused with "Object-Oriented" since
vector GIS is primarily concerned with the representation and accurate
geometric coding of entities. OOGIS, on the other hand, builds complete
entity (object) models that simply incorporate all characteristics as attributes.
'* Where area can also include and define surface representations (e.g.,
digital terrain (DTM) or elevation (DEM) models).
"The situation may be remedied by the fact that database tables can be
linked to the vector GIS entities as part of the data set. This results in a
decentralized and distributed data organization which still does not represent
a true "object" model but clearly aids to improve the overall information
content.

Although often used synonymously with "layer", a "coverage" as a digital
overlay of attributed spatial data (Langram 1993: 50) is a term that pertains
more to vector GIS due to the varying degree of areal cover potentially

305

depicting an Iron Age site distribution. However, because of
its quality of precision, a vector GIS excels in accurate,
spatial definitions and has its own set of rules, that affect this
data model. For example, the actual boundaries for "A",
when identified as part of a real-world phenomenology,
could have easily been represented using the exact extents.
Hence, the alternative over the point representation, for SITE

A, was to draw a polygon, that demarcates the appropriate
expanse.

This decision, on how "A" is represented, is based on the
detail, defined by the data model and, therefore, directly
affects the amount of additional information, which needs to
be stored in database tables and linked to the entity. Suffice
to say, that the cartographic appearance, of a vector GIS,
does allow a very precise abstraction of the real world, by
virtue of its representational quality. However, to fully
benefit from this data model, a clear and thorough
application development (conceptual and physical) is
demanded, which defines what, how, and where
archaeological information is integrated into the GIS.

An OO Data Model

OOGIS uses an Object-Oriented design, but can make
exclusive, or inclusive, use of either of the aforementioned
data models. However, unlike raster or vector, the OO world
view is an intuitive construct, inherently linked with human
perception and the understanding of our surroundings.
Objects represent real-world entities and their properties,
while an OOGIS acts as a mediator, between the world and
the way we perceive and model it (Freska and Barkowsky,
1996: 110).^^

This means that any real entity (e.g., a "ditch") or abstract
concept {e.g., "feature" for all non-portable cultural remains),
situated within a given environment, is defined by the
specific compositional characteristics and treated as a distinct
inhabitant of this contextual setting. Hence, with an OO
approach, natural and cultural phenomena are modelled as
complete, object defmitions, using object classes within the
OOGIS. In other words, these (geo-referenced) objects can
incorporate all the attributes and behaviour, present in the
real-world entities, which not only uniquely, distinguishes
them from each other, but also establishes existing
relationships between them, either as a result of spatial
(proximal location)^^ or typological associations.

Within an OOGIS, at first glance, there does not seem to be a
clear distinction, using the archaeological example provided
(Figure 1: Object-Oriented GIS), inasmuch as SITE A looks
identical to the vector image. This is basically an issue that

leaving open spaces between entities. In Arc/Info terminology, a layer is
conceptual whereas a coverage is physical (Hadzilacos 1996: 242).
^' This is a decision process that can easily result in an unproductive
overemphasis for either the visual representation (i.e., too much detail in the
visual representation which in turn contains too few database references for
analysis) or the distributed data storage (.i.e., an extensive database table
construct linked to a drawing composed of a graphical distinction between
entities that is too limited).
^^ An object in the real world is a unified construct which incorporates and
controls all its distinguishing characteristics by virtue of its definitional
name.
^^ An inteiesting quote by Waldo Tobler (Worboys 1995: 145): " ...the first
law of geography; everything is related to everything else, but near things
are more related than distant things."

pertains to the data representation, as subject to computer
graphics, and it is described further, below. The difference,
actually, relates to how this particular. Iron Age site has been
identified as a tangible phenomena, and its subsequent
conversion to an abstract object.

In essence, with the 00 data model, one first looks at all the
components that inhabit, or define, a particular space. Then,
the major constituent parts are selected, to form the
overarching object classes, using the relevant attributes and
other compositional characteristics (behaviour). Within this
context. SITE A represents a single instance of the object
class, "Sites", and the specific and identifiable characteristics
deemed important for "A", as a real-world entity, are
incorporated in this class definition.^* This includes
structural, as well as representational aspects {i.e., the
drawing geometry), in order to achieve the closest
compositional resemblance to the original and observable
phenomenon. Objects are formed by the constituent parts, or
traits, of an entity, and there is no artificial separation in the
OOGIS, or by the 00 data model. Hence, OO allows an
homogeneous representation of an archaeological reality, as
encountered in the field, which is modelled by maintaining
the integrity of the world as we perceive it.

The Data Structure

The data stmcture transforms the data model into the
computational model. A world view is integrated in a GIS,
using an arrangement of entities which permit the
construction of relationships, through software operations
(Chrisman, 1997: 57). The data structure, therefore, refers to
more technical aspects than the data model, and, clearly, the
most crucial element is the systematic organization of the
selected space (Nievergelt and Widmayer 1997 : 186),
which, inadvertently, pertains to the structural composition
and storage of spatial data, for either a raster, vector, or
Object-Oriented GIS.

With regard to raster, the basic data structure is a Cartesian
grid array. This (possibly geo-referenced) matrix defines a
regular construct of cells, containing values {i.e., height,
colour, etc.) divided into rows and columns. The example
provided in Figure 1 (Raster GIS), shows that each cell
represents a real-world surface area of 50m x 50m, and when
using a possible archaeological case, we can see that SITE A
has a specific location, occupying an entire cell, which also
includes its associated attribute information:

Row = 5
Column = 12
Height = 250m
Colour = 9 {red in the specified colour scheme).

However, every pixel, as the smallest indicator of any data
variation, has to be stored as one record, and even though
many might be identical, the image file storage will contain a
direct model of the total number of mapped cells (Martin,
1996: 108-109).^' This means that all cells combine, to form

^^An object class is the template for each instance (object).
" It may be worthwhile to point out that an image file for raster is not a
database in the common sense. It also would be foolish, to say the least, to
attempt to enter each pixel in a real database because of the excessive
storage demand (Bartelme 1995: 279). Although, compression methods can

306

single, thematic layers, in this case, "Iron Age Sites", as part
of a continuous surface data structure.

Vector GIS, on the other hand, only contains values for those
objects that actually occupy some information space, defined
by a coordinate system (local, regional, UTM, or some other
geo-referenced architecture). Furthermore, a distinction
needs to be made between the spatial and non-spatial
attribute data; the latter tends to be held in separate
databases, while control is maintained through an entity's ID
value (Martin 1996: 97). This is exemplified by Arc/Info,
which uses such a hybrid architecture. Hence, the Arc
system files (or filestore) control information on the spatial
and graphical structure (i.e., point, line and area geometries,
colour, text, etc., as well as topology), while Info (as a
commercial DBMS) holds all other associated data
(Worboys, 1995: 285).^* For SiTE A, in Figure 1 (Vector
GIS), this means that the unique identifier (ID = "A") is
associated with an entity's location (geo-reference) while at
the same time, describing the characteristics of this
geometric drawing entity, as part of a thematic coverage:

Northing = 4271775
Easting = 476575
Altitude - 250m
Geometry - Point
Colour = Red (a selection from a colour palette)
Text = A (based on a font and size)
Coverage - Iron Age Sites

This information forms the basis of the spatial data, whereas
all additional, non-spatial attributes (i.e., excavation dates,
finds, artefact types, etc., associated with SITE A) would be
contained within an external DBMS and in the case of a
relational database, through a (possibly) complex system of
interrelated tables.

Finally, OOGIS employs a fully integrated, object-data
structure, that can also adopt the two, aforementioned
technologies, either exclusively or in combination. However,
unlike raster or vector, OO identifies each (geo-referenced)
phenomenon, as belonging to one of a range of object
classes, which means it is especially well suited for the
natural and cultural data, that can be easily conceptualized as
discrete objects (Martin, 1996: 105-106). This also results in
an integration of spatial and graphical, as well as non-spatial
attributes, for objects, and further facilitates the construction
of seamless, spatial databases (Worboys, 1995: 287-288).^^

Any processing can, therefore, be performed on an object
directly, which is in stark contrast to the plethora of external
database tables, that may be affected by the same operation,
when using a vector GIS. Furthermore, behaviour is
included and applies to each instance of an object class. This
means that programming routines, called methods, described
further in the OO concepts section, below, can perform

dynamic processing procedures , which also represent the
most crucial part in the development of the data structure for
an OOGIS, because objects can only be accessed, via their
pre-defined methods (Taylor, 1990: 135).^'

Using the archaeological example in Figure 1 (Object-
Oriented GIS) we can see that SITE A is an instance of the
object class, "Sites", which, in turn, prescribes the attributes
and behaviour routines, as part of the conceptual abstraction
of a real-world phenomena (i.e., all archaeological sites,
regardless of cultural and chronological distinctions). This
results in an all-inclusive description for SITE A:

Object Class = Sites
SITE A
ID (Instance) = System-defined^'^
Northing = 4271775
Easting = 476575
Altitude - 250m
Period = Iron Age
Geometry - Point
Colour - Red (defined for object class)
Text - A (font and size for object class)
calculate_ = 800m (create: calculate value
distanceJo_ using this object class
freshwater (behaviour) method)

It needs to be pointed out that the behaviour method,
"calculate_distance_to_freshwater", further explained in
section 5.4, could be dynamic (update), inasmuch as changes
in the path of the river, once recorded, trigger a renewed
calculation, and hence, the current distance value is
perpetually established, with respect to SITE A'S proximity to
this freshwater source.

Data Representation

The data representation has already been touched upon,
through the explanations of the data model and the data
structure. Hence, raster, which has close ties to the physical
layout of computer graphics hardware, divides a
geographical region and its contents into an uninterrupted
surface of uniform fields, using a grid cell or pixel array
(Chrisman, 1997: 65-66). This way, all cells have (attribute)
values associated with them, as part of a continuous image
display. Vector drawings, on the other hand, use a series of
geometric primitives (i.e., point, line, and area polygons) to
describe entities within a specific location reference scheme;
in addition, raster data can also be integrated, possibly as a
background map, in a vector GIS (Clark, 1992: 16).
Similarly, OOGIS can apply a combination of raster and
vector, as part of its visual construct and interface.

Thus, the specific requirements of a study should determine
the data representation quality. In other words, the desired
world view dictates whether raster is sufficient, or a more

alleviate the problem of huge image data files by grouping continuous and
contiguous cells.

In practice it is possible to link other relational databases to Arc and there
is no proprietary restriction.
27

A spatial database is seamless when devoid of any artificial boundaries
that could be encountered by a user.

Performing any variation of the basic create (independent/dependent),
destroy (permanent) and update (transformation) operations (Worboys 1995:
175).
^' Where all methods will be defined as part of an object.
'" Each object has an internal identity independent of any attribute value
which means that it is unnecessary to provide an explicit instance variable
for the purpose of identification (Worboys 1995: 86-87). It is therefore
possible to distinguish between two separate objeas even when they have
the same instance values.

307

complex vector depiction is needed, or, possibly a
combination of both. At the same time, it does not imply
that a raster GIS is the least desirable, and that vector, or
Object-Oriented, GIS packages have better representational
facilities. It is merely an issue of tool selection, depending
on the topic of research and required extent of detail.

Based on the examples in Figure 1, it would be easy to say
that the first picture (Raster GIS), were it to be actually
generated, using a raster GIS program, is quite sufficient for
the purpose of demonstrating the provided (hypothetical)
archaeological scenario. As a result, the two subsequent
images (Vector GIS and Object-Oriented GIS) would be
identified as "over the top", for actual illustration purposes.
In the case of SITE A, we, therefore, are presented with a
choice of whether or not to use a basic raster square cell, in
red, to be indicative of "Iron Age Sites", or to alternatively
use a geometric point representation, and all its necessary
associated (intemal/extemal) attribute storage constructs by
applying either a standard vector GIS or an OOGIS
package.^' Decisions along these lines are fundamental in
the design of a GIS application, and data representation plays
a crucial role in selecting the appropriate tool for the job.

Topology

In everyday life, we often tend to take spatial relationships
(i.e., proximity, leftyright, inside/outside,
connected/disconnected, etc.) for granted. In contrast, this
information actually forms a key element in a GIS (Clark,
1992: 20). Referred to as the topology of a system, this data
needs to be specifically declared as entered values.
Topological information is generally used with vector data
structures, which make clear distinctions between entities
{i.e., point, line, and area representations), since it is much
harder to encode explicit, spatial relationships using raster
technology (Martin, 1996: 105, Chrisman, 1997: 64).^^ In
essence, a connected network of nodes is required, and on its
most basic level, topology defines the operational
distinctions for boundary and interior spaces, which can be
further expanded, to include overlap and covering (Worboys,
1995: 173).^^

Because spatial relationships are integrated as attribute
values, within a GIS, the same issues, as pointed out in the
data structure section, are applicable. In other words, and
excluding raster, topology is stored externally in system files,
or a database, for vector GIS, while OOGIS includes this
information as part of its object class definition. In Figure 1
(Vector GIS and Object-Oriented GIS), we can imagine that
the river has some relationship with SITE A: possibly
identifying the distance from freshwater, in answer to some
research question. However, the vector program would need

It should be emphasized that a point representation in a vector system is a
drawing entity with associated information whereas in an OOGIS the
geometric style for the visual appearance of instances is merely an attribute
pre-defined in object classes.
'^ A basic reason for raster being less able to incorporate topology lies in the
faa that spatial relationships are present in each thematic layer and it takes
all themes, once overlaid, to combine this fi^gmented information (Baitelme
1995: 150).
'' There are numerous other spatial relationships that are defined within the
relevant literature (e.g., ref.) depending on specific entity representations as
being connected or disjoint; explained in more detail therein and beyond the
scope of this work.

to determine the closest node, as an explicit value, selected
from the chain of nodes, created to represent the river. On
the other hand, any topological information using an OO
approach simply defines connected instances of object
classes (e.g., objects of type "Sites", and, for the purpose of
this example, objects of an additional class called, "Rivers",
for all rivers in the study area), which automatically
establishes the closest node reference as part of this
relationship. The distance from SITE A to a river can then be
calculated at run-time through a behaviour routine (method)
incorporated in the relevant and (topologically) associated,
object class definitions.

Object-Orientation

The chances are that archaeologists, in many cases, will have
gained exposure to other OO programs, prior to applying an
OOGIS package (current programming languages (Visual
Basic and Object Pascal) or contemporary databases, are
likely examples). However, for all 00 tools, the main
concepts and data model criteria remain the same, while the
application design changes, according to the task for which
the program is intended. Whether or not it is a GIS for
investigating the past, or a database product to record
excavation discoveries, is circumstantial. What is important
to know is how this technology affects the data, as well as its
ability to present our world, and that of our ancestors, using a
specific model for phenomenological abstraction. For this
purpose, a general development of Object-Orientation and
the differences, between standard programming techniques
and OO, are explained further.

Procedures, Modules and Objects

Object-Orientation, as a conceptual idea, may certainly be
older than the tangible 30 years, since the inception of
Simula67,"' developed by the Norwegians, Ole-Johan Dahl
and Kristen Nygaard (Henderson-Sellers, 1997: 1,
Khoshafian and Abnous, 1995: 13). Yet, another 25 years
passed, before the current and large mass appeal for 00
technologies was identified as one of those "revolutionary",
paradigm shifts for computer appUcations (Henderson-
Sellers 1997: 6). The fact that this progression is by no
means as dramatic, nor as swift, a punctuated event, as
potentially indicated, by the above terminology, might be
demonstrated successfully, by identifying the appropriate
"evolutionary" milestones for this technology (Riel, 1996: 1).
The overarching focus lies primarily with the conceptual
ideas, that have been implemented, throughout the last 30
years, and which have lead up to Object-Orientation. The
purpose is to identify some gradual, structural changes, while
including the potential landmark events, or the arrival stages,
of some particular machinery, only when deemed as
contributory or essential information.

'" A general purpose progranmiing language, although mostly used in
simulation modelling.
^^The emphasis is to avoid the standard exercise of listing ad nauseam the
so-called "key moments" or "influential" people important in the historical
development of Object-Orientation when the chances are that this
information might provide little or no contextual understanding.

308

Procedural Language Structures

For many of us, the most memorable progression in
computer systems has to pertain to the basic user interface.
Only 10 years ago a manual command-line (possibly, menu-
driven), keyboard interaction was the standard. Nowadays,
the most prominent form of software operation and
management most certainly depends on graphical
environments, or tools, and this characteristic is mostly due
to products, wanting to compete successfully on a global
market (Riel, 1996: 2). However, in the overall course of
advancement this was a very recent step, and some prior
developments, affecting Object-Orientation, warrant further
description.

Without actually going all the way to the beginnings of
computer design and programming languages, it is obvious
that some backtracking is required, to, at least, the point
where the by-all-means-still-thriving, procedural
programming methodology makes its mark. This long-time
standard and persistent approach, to digital data handling,
advocates structured programming techniques. It is very
interesting to note that during the early 1970's, there were
simultaneous developments, inasmuch as Niklaus Wirth
introduced the programming language, "PASCAL", which
greatly initiated the procedural approach, whilst a group
around Alan Kay, at the University of Utah, set down the
basis for "Smalltalk", the first Object-Oriented coding tool
(Beekman, 1994: 192, Henderson-Sellers, 1997: 1). Thus,
these two, successful programming and application
techniques exhibit an evolutionary pattern, that quite clearly
suggests a parallel genesis fi-om a common (unstructured)
ancestry, and 00, therefore, does not follow a direct
succession, or replacement path, from the current, procedural
software architecture.

In general, the development of structured programming has
been a great step in the right direction and still serves its
purpose, concerning complex data manipulation and
management. It would, therefore, be quite wrong to identify
them as "incorrect" techniques, requiring urgent change. But
they must be considered limiting, when it comes down to the
current requirements, needed for handling ever-increasing
and diverse information sets.^*

Modules versus Objects

Another critical factor, in understanding the progressive
developments, instrumental in what nowadays distinguishes
00 from standard, coded procedures, pertains to the
introduction of modularity. As a means to avoid the
unsightly and often difficult to analyse "GO-TO"
statements,^^ sub-programs, called modules, improve the

One of the major problems affecting the procedural approach is that it
tends to be a one-way ticket in a single direction. Consequently, each
advancing development stage represents a departure from the point where
overall design or analysis errors can still be corrected. This is a dilemma
within an industry-, business- and also academia-oriented environment
where there is an increasing need to accommodate a demanding deadline
schedule.

These riddled the particularly large unstructured programming code in
pre-1970's third-generation languages like BASIC or FORTRAN. The
programming language "generations" are:

general logic and cohesiveness of programs and applications,
using a procedural design framework. Yet, modularity can
not automatically remedy those cases, where poor design will
also lead to bad code, and once the damage has been done, it
is hard to return and fix the inherent, "drawing board"
problems.

These sub-programs can also be wrongly compared with
Object-Oriented objects, inasmuch as they both seem to be
small, task-specific modules, and represent elements of a
greater application, or program, structure. But, it is this
point, where it is critical to understand that modularity
differs considerably from OO, which imposes a completely
new perspective on any software design. Most crucially, an
object contains both data and instructions (Hadzilacos, 1996:
243).^* Alternatively, the module is a collection of code lines,
performing singular, or sets, of functions, as part of the
overall program execution. This means that a user will be
able to "do it", or "accomplish a job", rather than the highly
flexible, Object-Oriented task handling environment, that
allows decisions on "what can", or "what needs to be done"
(Beekman, 1994: 195). This fundamental, conceptual
difference represents not just a semantic contrast, but
manifests itself quite dominantly in the life cycle of a
program (from analysis to maintenance), as well as in the
necessary computer code.^'

Concepts of Object-Orientation

One problem, all approaches (procedural, modular, and OO)
share, is the fact that programming languages have initiated
the processes of change, before appropriate overarching
analysis and design methods were developed (project
management and modelling, being the last additions to a
theoretical, OO application framework) (Henderson-Sellers,
1997: 9). There is, therefore, a need to look more closely at
what concepts are involved in an 00 implementation, with
respect to archaeological circumstances, when applying this
particular view of the world.

The most fundamental question, relating to the idea of
Object-Orientation is the following: what comprises the
definition of an object? The simplest explanation, in
conjunction with archaeology, can be put forth by using a
(non-spatial) analogy, involving pottery. Archaeological
ceramics illustrate the case for an OO approach, quite
clearly, by the particularly healthy understanding of their
physical, functional, and symbolic characteristics. Although,
we must not forget that the aim is to model the world, using
more "natural" interpretations and defmitions (Riel, 1996:2).

First = machine language,
Second = assembly language,
Third = high-level languages.
Fourth = non-procedural, English-like languages,

where the basic progression is along the lines of each successive stage
becoming easier to use and more like natural language (Beekman 1994:
195).
'' The term object can describe either (1) a real-world phenomenon (entity),
(2) a conceptual or mathematical abstraction (a triangle or a mountain), or
(3) its exact technical definition in the OO program model. In addition, an
object without behaviour is unfeasible since it can not exchange messages
with other objects; therefore any object requires at least one programming
routine (method).
" 00 is a way to handle a subject (e.g., a model for archaeological data)
while OO as a technology applies to all steps in a system life cycle including
analysis, design, implementation and use.

309

Object-orientation, therefore, forces us to adopt a new way of
thinking, since it cannot be viewed as a mere extension of
procedural, or action-oriented, methods.

Class and Objects

Each class, in essence, is a template that describes the state
or structure of its objects (Khoshafian and Abnous, 1995: 3).
If we, then, consider an arbitrary and deliberately,
unspecified set of five pots, and aim for an initial and
fundamental description, we would likely classify them
broadly, as an assemblage of pots, or, better yet, simply as
"Pottery" (an object class). Regardless of any further
analysis, this point already exemplifies one of the
fundamental, structural features of an Object-Oriented""
approach, namely the ability to group a specific
phenomenon, whether it is a real and tangible occurrence or
an abstract notion.

Having established this object class, we can further elaborate,
v\dthout actually looking at the pots themselves. The degree
of in-depth knowledge, one has acquired, is quite irrelevant,
when it comes down to describing some additional aspects of
these pots. Without additional information, we might first
apply a basic system, where each pot is uniquely identified,
using a sequential code (i.e.. Object-IP, Object-2P, etc.), to
represent individual instances of the previously created,
"Pottery" class."' Within an archaeological context, certain
cultural distinctions, among the assemblage, may also be
assumed, in the form of separate spatial, regional, or
temporal properties, as part of the imaginary data set, in
order to apply a simple location, reference structure, where
the pots might have been found."^ Finally, and again,
without actually needing any further inspection, we can
assume decorative, dimensional, functional, and symbolic
aspects for these artefacts, since they most likely will exhibit
these traits (attributes), to a varying degree of complexity.

The importance of this example lies within our ability to
conceptualise, or abstract, a whole series of factual
information, without actually having seen or touched the
artefacts themselves. Our a priori understanding, of the
instances for "Pottery", is represented schematically (Figure
2) and could result in the following compositional structure,
for the first of the five pots (Table 3):

"" The definition "Object-Oriented" is somewhat incorrect and the more
appropriate description of "Class-Oriented" would be more accurate
(Henderson-SeUers 1997: 27).
•" This unique identifier would of course normally be generated by the
system and would not need an explicit (user-defined) attribute value for each
object within an OOGIS application.
•"^ For this example, a sequential system based on the instance ID's of a new
object class called "Features" is used (i.e., Object-IF, Object-2F, etc.);
which is introduced later as a case for OO abstraction of spatial phenomena
in archaeology.

Table 3: An A Priori OO Artefact Model

Object Qass Pottery
Attributes Instance Values
ID (Instance) Object-IP
Location Object-IF
Colour Red
Height 26cm
Width 30cm
Geometry Star
Behaviour
Type (determine) Jar

The "geometry" and "type" variables need to be explained
further, as part of this hypothetical archaeological example.
The former has nothing to do with any actual
phenomenological trait which might describe the shape or
appearance of the five pots. It is a user-defined, attribute
value that establishes the visual representation, or drawing
properties, for the instances of "Pottery" in the OOGIS.
Whatever a pot may actually look like, be it a real-world
entity, on the screen or on a printout, it will be represented as
a star-shaped symbol, indicating that the geometry attribute
is an integral part of an all-inclusive, object definition.

The method "type", on the other hand, is a dynamic variable,
and in this example it can be either subject to the
interpretational expertise of individual researchers, a visual
recognition software, or some programming code to generate
more information for each of the five pots. It is obvious that
the object class, "Pottery", is just an overarching, abstract
construct, and that a further separation, into more refined
object classes, is possible, based on the specific properties
that characterise different types of archaeological ceramics.
What is important is the fact that any object definition
includes behavioural faculties, in order to communicate with
other objects, when using its methods to send and receive
data, via messages^^ Hence, "type", when activated, is a
means (behaviour) to determine typological distinctions for
each instance of "Pottery", which in turn, produces an
additional attribute value {i.e., "Jar'' for Object-IP).

Overall, this example represents the mere beginnings, in
what could be a useful and logical OO artefact, data model,
similar to the one that has application in ceramic analysis,
akeady (Sinopoli, 1991: 52-53), particularly, with regards to
a type-variety typology, which advocates an organisation,
ranging from broad pottery classes, to detailed differentiation
of ceramics, based on distinct diagnostic traits. It is,
therefore, clear that an 00 approach would and does lend
itself to archaeological investigations, which focus on
typological identification of artefact remains.

However, this work mainly looks at the particular
implications of Object-Oriented GIS, with respect to spatial
analysis in archaeology. A far greater level of abstraction is
required, when trying to quantify an often, large-scale
regional phenomenology (natural and cultural). Hence,
unlike the basic example of "Ditchbury" (Figure 3), any real-
world entities are likely to have much less, discernible

Only by sending a message to an object can a desired method pre-defined
for that objea be invoked.

310

properties, due to such problems as indeterminate
boundaries. Considering a description similar to the
ceramics example, an a priori 00 spatial model for the first
feature (Object-IF), might therefore, look something like the
following (Table 4):

Table 4: An A Priori OO Spatial Model

Object Qass Features
Attributes Instance Values
ID (Instance) Object-IF
Location Ditchbury
Length 25m
Width 10m
Height Im
Geometry Area
Behaviour
Type (determine) Ditch

If we look at the example of the five archaeological pots, as
the instances of an object class, called "Pottery", and the
"Ditchbury" objects, belonging to the "Features" class, we
can establish an essential, conceptual OO criteria (Figure 4:
Class and Objects). The specific reason for the above
examples, using a very basic structure of classes and objects,
is to highUght well-known elements of archaeological
material culture or spatial phenomena and to subject them to
an OO data model. Despite not having any greater insight
into the physical characteristics, provenance, or any other
archaeological context, the OO view of the world assumes
that a variety of attribute and behaviour patterns must be
implicitly present, by using identifiers, like "Pottery" and
"Features". The idea is that the actual name of a class
implies its attribute and behaviour (Riel 1996: 12-13).'*^ In
other words, in 00, the class defines a phenomenon, through
abstraction, while each object instance uses this class
definition as a mould, to describe its properties."*' A ceramic
artefact is, therefore instantiated from the "Pottery" class,
and the "Pottery" class, in turn, is the abstract generalisation
of all the ceramics, that exist in the real world.

Polymorpliism

Polymorphism, as one of the powerful concepts in OO,
describes the use of methods (behaviour) that have the same
name, in several different object classes (Taylor, 1990: 48,
Worboys, 1995: 89).'** Therefore, identical messages can be
sent to objects, which may exhibit close, or even no,
definitional similarities (Henderson-Sellers, 1997: 186-187).
However, it is also apparent that as an integral part of any
object class definition, specific methods need to be created

first, in order to receive, or reply to external
communications.'*^

Expanding on the above archaeological scenario, a general
object class, "System", with a method, "type", is introduced,
which can activate the behaviour routines for objects,
including instances of "Pottery" and "Features" (Figure 4:
Polymorphism), based on the circumstance that, through an
inheritance relationship (described below), every object
class will have a method, called "type". This allows for a
simultaneous execution of "type", despite "Pottery" and
"Features" objects, requiring different processing values to
perform their typological evaluation routine, in this case,
using a series of specific, attribute information as the source
data 48

With regard to instances of the "Pottery" class, "colour",
"height" and "width" provide the parameters for the
automated analysis, performed by "type", which establishes a
more refined distinction between ceramic artefacts {e.g., jars,
bowls, etc.), and returns the value of "Jat" for "Object-IP"
(Table 5A). The same goes for 'Features", where the
dimensional values "length", "width" and "height" are used
as the required input for its "type" method, distinguishing, in
more detail, different spatial phenomena {i.e., ditches, pits,
etc.), and which result in "Ditch" for "Object-IF' (Table
5B). It is, therefore, clear that through polymorphism, a vast
number of methods can be defined as part of any object, in
order to create and customise a highly flexible OOGIS
application, according to a specific research design and
avoiding the potential for generating fairly generic, "off the
shelf' type of GIS study results, which may come as a
consequence of rigid and pre-defined, operational design,
framework Umitations.

Table 5A:
The "type" Method Analysis for the
"Pottery" Class

Object Qass Pottery
Attributes Instance Values Type Analysis
ID (Instance) Object-IP
Location Object-IF
Colour Red Red
Height 26cm 26cm
Width 30cm 30cm
Geometry Star
Behaviour =
Type (determine) Jar

That this requirement is fulfilled is especially clear in the case of our
imaginary ceramic assemblage where any imaginable decorative
dimensional and functional characteristic that may apply can be identified
and defined due to the specific and "natural" name for the object class,
"Pottery".

The class is the overarching template for objects inasmuch as it represents
the basic abstract data type:

Pottery = Generalization of all ceramics,
Features = Generalization of all features,

in the examples provided.
Methods can have the same name to perform more or less the same task

but with a different outcome (e.g., a "print" method may produce text output
for one object while printing images for another).

In addition, special overarching object classes comprised of only one
instance can be defined which contain behaviour routines to globally interact
with multiple objects (e.g., "System" as a "root" object in an OOGIS). This
is in Une with the fact that all methods must have an explicit object class
definition including the ones which are created as part of a general
application domain.

It is obvious that the attributes specified would never satisfy the input
requirements for a fully operational automated typology analysis system.
This example, therefore, serves only to illustrate an Object-Oriented concept
(polymorphism) using a hypothetical archaeological scenario.

311

Table SB:
// ' ^z ""

The "type" Method Analysis for the
"Features" Class SÄ
Object Qass Features
Attributes Instance Values Type Analysis
ID (Instance) Object-IF
Location Ditchbury
Length 25m 25m
Width 10m 10m
Height Im Im
Geometry Area
Behaviour =
Type (determine) Ditch

Inheritance

On the most basic level, inheritance refers to a class
hierarchy system, defined by the degree of abstraction and
detail in object class definitions. In other words, the
superclasses (parents) are more generic, or abstract, than the
subclasses (children) (Henderson-Sellers, 1997: 21). This
also reflects a general, human understanding and knowledge
structure, which employs concepts of generalisation, leading
to specialisation.

Inheritance is also a mechanism, which allows sub-classes to
represent special cases of a superclass and hence, they
automatically inherit all characteristics from their
overarching classes (Taylor 1990: 22),'*' while defining their
own attributes and behaviour.^" Much like biological
taxonomies, when applying an inheritance, hierarchy system,
in an OOGIS, a holistic and richer, semantic relationship,
among entities in a given space, can be established
(Khoshafian and Abnous, 1995: 82).

Broadening the two, aforementioned, "Pottery" and
"Features" object class definitions, a series of sub-classes, for
specific types of archaeological ceramics and features, are
introduced (Figure 5). In this example, "Jar" and "Bowl"
represent children of "Pottery", the same way as "Pit" and
"Ditch" are descendants of the parent, "Features". Each of
these sub-classes has been selected, to represent their own
object class, but they also acquire or inherit all traits from the
overarching superclasses based on a Shlaer-Mellor
inheritance model (Starr, 1996: 94-95). This, then, means
that each real-world jar or bowl is an example of "Pottery",
and, similarly, any actual pits or ditches represent
archaeological "Features". In turn, within an OOGIS,
instances of "Pottery" are sub-classed and must be either a
"Jar" or a "Bowl", and likewise, any "Features" will be
identified as either a "Pit" or a "Ditch".

relationship?^ Looking again at our example of ceramic
artefacts, it is, therefore, obvious, that a system-defined ID
for an object, once established, is a value that remains
constant, throughout the class hierarchy. However, the
drawing geometry is not the same in "Pottery" and its
children, because the superclass would likely use a general
representation {e.g., a point) for all types of ceramics, and the
two subclasses, "Jar" and "Bowl", override the parent with
their respective and specific display symbols {i.e., a star and
a circle), in order to visually distinguish between them,
within the OOGIS apphcation.

Furthermore, the method "type" for "Jar" and "Bowl" is
inherited from "Pottery", and for each of these subclasses,
this behaviour routine is distinct, as a result of requiring
separate processing values for analysis. Therefore, "type" in
"Pottery" represents the generic, automated process of
evaluating typological definitions for ceramic artefacts.'^
This means that a message can be sent to the "type" method,
for the instance "Object-IF' of "Jar", which in turn, executes
the method "type" in "Pottery", using Object-IP as the target
object. To explain this more simply, we need to clarify that
methods are operations, designed to retrieve or update the
state of an object, where the state of an object represents the
stored attribute values (Khoshafian and Abnous, 1995: 104).
For our example, the "type" methods, in either "Jar" or
"Bowl", use a set of arguments, which merely add to, or
modify, as required, the inherited behaviour routine,
originally defined in "Pottery". This way, the appropriate
variables from each sub-class are used in the analysis, to
develop further typological distinctions {i.e., subdividing
"Jar" into "Small Storage", "Liquid Storage", "Large
Storage", etc., and "Bowl" into "Cooking", "Serving", etc.)
(Table 6A).

With regard to the "Features" object class, a very similar
hierarchy exists to the one described for archaeological
ceramics. Again, the ID's for spatial objects are established
by the system, maintained by the object, and recognized
throughout the inheritance structure. The drawing geometry
for the superclass also uses a generic representation {e.g., a
point), for all features, which is then overridden, by the
display atffibutes of the subclasses, "Pit" and "Ditch" {i.e.,
circle and area) (Table 6B).

In general, all structural attributes and behavioural methods
are inherited by the sub-classes, through their superclass

•" Also known as structural (attributes) and behavioural (methods)
inheritance (Khoshafian and Abnous 1995: 82).
'° Which potentially override (supersede) any chararteristics bequeathed
from the respective superclasses.

^' It should be emphasized that, there is no actual instance (object) for the
superclass but only one for the subclass, which contains all its own attributes
and methods in addition to all the ones not overridden fitrni the overarching
superclasses.
" Whereas, "type" in "Features" represents a different behaviour routine
specific to spatial phenomena; see below.

312

Vable 6A:
y for the Whe Inheritance Oass Hiërarch

"Jar" Instance "Object-IF'

Object Oass Jar
Attributes Instance Available through

Values Inheritance
ID (Instance) Object-IP
Handles No
Spout No
Portable Yes
Geometry Star

Superclass Pottery
JD (overridden)
Location
Colour
Height
Width
Geometry (overridden)

Behaviour
Type (determine) Small Storage

Superclass Pottery
Type (determine)

Table 6A:
The Inheritance Class Hierarchy for the |
«Ditch" Instance "Object-IF'

Object Qass Ditch
Attributes Instance Available through

Values Inheritance
ID (Instance) Object-IF
Linear No
Fence Yes
Geometry Area

Superclass Features
ID (overridden)
Location
Length
Width
Height
Geometry (overridden)

Behaviour
Volume 250m^
Type (determine) Defence

Superclass Features
Type (determine)

attributes and methods in "Features" are mutually shared by
the "Pit" and "Ditch" sub-classes {i.e., generahsed from the
two spatial phenomena), they have characteristics exclusive
to their definition as an object class {i.e., specialised traits,
which are unique to each). Inheritance is a powerful tool in
GO, where a complex hierarchy of object classes can be
established, using a logical and "natural" composition, which
makes intuitive sense and this is also a construct, close to
archaeological typology systems, and hence, should come
quite readily to this discipline.

Relationships

In an OOGIS, relationships (including topology) are directly
established between objects.^^ In other words, a relationship
is an abstraction of real-world associations^" in the same way
as an object is an abstraction of a real-world entity (Starr,
1996: 49). Hence, universal, conceptual relations need to be
established, that are valid for all situations where objects
interact with each other (Freska and Barkowsky, 1996: 112).
At the same time, it is clear that there are different types of
relationships^^, which are described by a variety of terms, but
essentially relate to the same concepts (Henderson-Sellers,
1997: 28, Starr, 1996: 56) (Table 7):

Table?:
Relationship Types

Henderson-Sellers
1. Aggregation
2. Association
3. Inheritance

Starr
Binary
Associative
Supertype (Superclass)

A point that needs to be made is the fact that relationships
can also have their own attributes, independent of the
involved objects (Worboys, 1995: 71). The process of
relationship abstraction formalizes how objects interact with
each other (Starr, 1996: 49). Aggregation refers to a basic
connection between objects {i.e., "is_part_of') and may be
the closest to topology within an OOGIS. Association is the
relationship type, which requires the services of one or more
objects, to create, destroy, or update instances within another
object class, based on their associative interaction {i.e., a
client/supplier affiliation).'^ Inheritance refers to the
hierarchical structure (explained in the section above) for
class relations {i.e., "kind_of', or "isjike"), which allows
reuse of attributes and methods, defined in the respective
superclasses.

For the purpose of demonstrating an archaeological example,
we are mainly concerned with aggregated and hierarchical

Similarly, the method "type", in "Features", represents the
overarching, automated routine to evaluate typological
distinctions for its sub-classes, within the hierarchy, by using
the necessary attribute values from each sub-class, in order to
subdivide further instances of "Pit" into "Posthole",
"Refuse", "BuriaP, etc. and "Ditch" into "Defence", "Field
System", "Enclosure", etc.. However, for our example, the
"Ditch" subclass adds some additional behaviour, in the form
of a method, called "volume". This measurement routine is
unique to the sub-class, and it highlights the issue of
generalisation and specialisation. For example, while the

53
A quote by D. Ingalls suggests that: "Instead of a bit-grinding processor-

raping and plundering data structure, we have a universe [in OO] of well-
behaved objects that courteously ask each other to carry out their various
desires.", (Booch 1994: 97).

Which holds systematically between instances of object classes in an
OOGIS (Starr 1996: 47).
" Identifying among other variations of dependency, generalization and
specialization "many_to_many", "many_to_one" and "one_to_one"
relationships for objects.

VAT charges on goods are a prime example where an associative
relationship can be constructed inasmuch as the correct percentage
calculation can be handled by a separate object which returns the value to
the original transaction object in order to update and print the overall total to
be paid on the receipt for the customer.

313

relationship types.'^ Figure 5 (Inheritance and Relationships)
shows that in addition to the link, that exists for the two
superclasses and their respective sub-classes, there is also a
direct connection between "Pottery" and "Features". The
latter, aggregative relationship has been established, in order
to describe a positional reference for individual, ceramic
artefacts. In other words, Object-IP has a "location"
attribute value (i.e., the place where it was found), which is
in relation to a relevant instance {Object-IF), in "Features".
Described as a many_to_one relationship, called
"locatedjn", each "Features" instance can contain a spatial
reference for many "Pottery" instances, but a single ceramic
artefact can only have one "location" value.

At the same time, the sub-classes, "Jar", "Bowl", "Pit", and
"Ditch" interact with their respective superclasses using a
many_to_one relationship, called "kind_of'. This also
means that actual archaeological jars or bowls are single
"Pottery" instances, but this object class can describe many
of these real-world, ceramic artefacts. The same applies to
"Features", where numerous pits or ditches can be recorded
as instances of this object class, but where each spatial
feature can only have a single reference to its superclass.

In general, when establishing relationships for an OOGIS
application, one danger is that the focus is too specific, on
objects, when it should be on the connections, that exist
between them. This undermines the overall quality and
success of a study, since the power of a system depends
largely on the amount and types of relationships
implemented (Starr, 1996: 50), and requires a careful, and
more substantial, analysis than the one provided in this
example, which serves purely as a simplified archaeological
demonstration.

Encapsulation

Another important concept in Object-Orientation is the idea
of encapsulation, which combines data and methods and
hides them from view - in line with a natural extension of the
information-hiding strategy, developed in structured
programming (Taylor, 1990: 31). While abstraction aims to
define some visible behaviour for an object, encapsulation
tries to hide the controlling mechanisms from general
visibility (Booch, 1994: 49). Basically, the emphasis lies in a
deliberate attempt to hide the operating details from any
potential users, while the same system processes remain
visible to other objects (Henderson-Sellers, 1997: 16).

The philosophy is one, that aims to only provide access to
necessary information, and which lets any functional and
implementation aspects of an object remain private, while
the behaviour methods, with which objects communicate, are
available through the public interface (Figure 6:
Encapsulation).'* In other words, the data can only be
accessed by the object's methods, performing the standard
tasks of reporting, storing, and calculating values (Taylor,
1990: 31). This process is managed by messages, which
advise a receiving object, to carry out an indicated method.

and to return the result of that action. In contrast, relational
database structures use a call-by-value approach, where
entities are connected to other entities by their values. GO
data, on the other hand, is addressed indirectly, because of
encapsulation (Worboys, 1995: 87), thus, protecting the
information from corruption by other objects.

Figure 6 demonstrates information-hiding, for instances of
"Pottery" and "Features", which can be accessed by the
"System" method, "type", defined earlier in polymorphism,
and the relationship, "located_in", that exists between the
two object classes. It is clear, though, that a whole host of
additional behaviours is needed, should we want to make
Object-IP and Object-IF functional objects in a real OOGIS
application.'' However, this example serves its purpose,
inasmuch as it shows how information is encapsulated, and
what means of access are available.

The actual values for Object-IP and Object-IF are private
and hidden. This is highlighted by their containment within
the inner ellipse for each object diagram. Access to this
information is gained by their methods, as defmed in their
respective object classes, and represented by the outer, object
ring in the same diagram. In other words, a message can be
sent to either individual, or multiple, instances of "Pottery"
or "Features", by means of the "System" method, "type", in
an attempt to communicate with the respective behaviour of
each object. This also shows that a plethora of application,
object classes can be integrated in an OOGIS, which
supplement overall object communication between objects,
through specialised methods.^ 60

With regard to the aggregative relationship for "Pottery" and
"Features", it has akeady been established that the "location"
attribute value is a positional reference for ceramic objects,
which are linked, via "located_in", to their respective spatial
objects. This indicates that relationship definitions act much
like methods, although they are far more specific in
generating the appropriate means for interaction, between
instances of object classes. In an OOGIS application,
encapsulation plays an important role in the preservation of
the overall, compositional integrity of real-world entities,
which includes how they interact and correspond with each
other, thus, permitting access only through a series of
different behaviour methods, protecting the actual object
data.

Advantages and Disadvantages for OOGIS

Based on the topical analysis to date, the final section of this
work briefly highlights some of the already identified
characteristics of OOGIS, in a summarised fashion. This list
of advantages (Table 8A) and disadvantages (Table 83), for
appUcation of this GIS technology in archaeology, should
indicate the general potential, before some actual case studies
can substantiate, or identify, additional benefits/limitations.
At the same time, this summary should not be viewed as a
qualitative assessment of OOGIS, in relation to raster or
vector systems, but rather as a compilaticMi of issues, that

It is worth mentioning that for this example, messages can be sent bi-
directional indicating that all objects can communicate with each other.
" All data should be private and public methods need to be specifically
designed to access desired pieces of infomiation; although private methods
can be implemented indicating that not all methods must be public.

" Including the desired input and output accewor methods.
** Which introduces an additional level of flexibility to access encapsulated
data.

314

suggest that this is a possibly, usefiil tool for archaeological
research.

Table 8A: Potential Advantages

1. There is a growing interest in OO technologies,
within archaeology, as witnessed by recent work.

2. OOGIS should be considered an enhancement, and
not a replacement, for raster or vector technologies.

3. Mapping is done, according to a continuous and
seamless design, which allows the integration of
spatial and cultural data objects, that normally span
more than one traditional map sheet.

4. Objects represent abstractions of real-world entities
and their properties; hence, an OOGIS acts as a
skillful mediator, between the way we perceive the
world and the way we model it.

5. An object ideally describes an abstract
representation of a real-world phenomenon, using a
specific, semantic definition (i.e., descriptive name).

6. The data structure is all-inclusive, by combining
attributes and behaviour, into a holistic construct.

7. OOGIS can use raster and vector representation
methods, and the graphical characteristics are part
of each object class definition.

8. Topology is integrated as part of object class
definitions.

9. There is a clear, conceptual and organisational class
hierarchy system for objects, which manages the
relationships between individual object classes.

10. Within the overall OOGIS design, object methods
(behaviour) are incorporated, to allow interaction
and communication between objects.

11. OO uses encapsulation, which ensures data security,
by only allowing access through object methods.

12. OOGIS is an active research tool, and it should not
be considered a one-off data store and display utility.

Table 8A: Potential Disadvantages

1. Objects need to be clearly defined spatially, a distinct
problem in archaeology, considering researchers'
discretionary practices (i.e., those "grey" or "fuzzy"
areas, regarding concepts like site dimensions or
general functional interpretations).

2. // may be more difficult to integrate new object
classes, within the main (parent) control levels of an
existing OOGIS class hierarchy, thus, demanding a
well-developed application design and implementation
strategy, at the beginning of any project.

3. The necessary hardware/software costs involved, in
order to run an OOGIS operation, may still be higher
than for a standard GIS implementation, using raster
or vector technologies.

4. The training in OOGIS may require a considerable
time for novices in GIS, as well as for people skilled in
raster and vector application design since the new
data model requires a different conceptualisation
process, for natural and cultural phenomena.

Conclusion

In general, a framework for archaeological fieldwork has
been developed, which accepts change in practices, over
time, in line with methodological improvements. However,
with regard to OOGIS, there is not even an agreement, yet,
on a conceptual application strategy for archaeological
investigations.^' In other words, there will certainly be a
long line of differing, "expert opinions", before any
acceptance of OOGIS, as an effective tool among the palette
of GIS products used within the discipline, is achieved. This
work must, therefore, be seen as one of the steps that
introduces OOGIS to archaeology, while actual case studies
will have to act as later reference material, to develop a
concise and useful implementation framework.
Consequently, the descriptions of hypothetical archaeological
cases, throughout this introduction to OOGIS, and as basic as
they may be, should still provide some insight into the
application potential of this tool. Overall, more research will
have to follow, particularly, since OOGIS may hold the key
to modelling spatio-temporal relationships, which would then
come a step closer to a fully holistic GIS, analysis
methodology.

Aclcnowledgenients

I would like to thank Dr. Gary Lock for his continued
support and assessment of this work and Patrick Daly for his
expertise on the operational details of vector GIS programs.
Additional thanks goes to Francesco Menotti, for his clear
review, and Sarah Semple, for her much appreciated input on
archaeological artefacts and features. Furthermore, Jan
Pieters of EDS Netherlands BV, as well as Dr. John Atiayh
and Derek Hunter, of Smallworld UK, deserve explicit
mention for their invaluable know-how on Object-
Orientation and OOGIS. Dr. Nick Ryan and César Gonzalez
Perez are mentioned here as a result of personal discussions,
which confirmed the potential, and defined some interesting
areas for future research, using OOGIS. Last, but not least, I
greatly thank my wife, Colleen, for whom the world will
never look the same, now that objects, which seem to be
everywhere, have invaded our lives (and they need dusting!).

References

BARROCA, L., RAHTZ, S. (1992), Object-Oriented
design for excavation simulation programming, in:
LOCK, G.R. & MOFFETT J. (eds.), Computer
Applications and Quantitative Methods in
Archaeology 1991, BAR International Series S577,
Tempus Reparatum, Oxford.

BARTELME, N. (1995), Geoinformatik - Modelle.
Strukturen, Funktionen, Springer-Verlag, Berlin.

BEEKMAN, G. (1994), Computer Currents - Navigating
Tomorrow's Technology, The Benjamin/Cuimnings
Publishing Co. Inc, Redwood City.

BOOCH, G. (1994), Object-Oriented Analysis and Design-
With Applications, Addison-Wesley Publishing
Company, Menlo Park, Second Edition.

" Future research will therefore need to engage in some analysis that
specifies the general application requirements in addition to the development
of a theoretical implementation strategy for archaeological investigations.

315

CHRISMAN, N. (1997), Exploring Geographic
Information Systems, John Wiley and Sons Ine, New
York.

CLARK, M. J. (1992), The GIS Survival Guide, University
of Southampton. GeoData Institute.

FEDER, J. (1993), "Museumsindex - An object oriented
approach to the design and implementation of a data
driven Data Base Management System", in:
ANDRESEN, J., MADSEN, T., SCOLLAR, I.
(eds.). Computing the Past: Computer Applications
and Quantitative Methods in Archaeology 1992,
Aarhus University Press, Aarhus.

FRESKA, C, BARKOWSKY, T. (1996), "On the Relations
between Spatial Concepts and Geographic Objects",
in: BURROUGH, P.A., FRANK, A. U., (eds.).
Geographic Objects with Indeterminate Boundaries
- GISDATA 2, Taylor & Francis, London.

HADZILACOS, T. (1996), "On Layer-based Systems for
Undetermined Boundaries", in: BURROUGH,
P.A., FRANK, A. U., (eds.). Geographic Objects
with Indeterminate Boundaries - GISDATA 2,
Taylor & Francis, London.

HENDERSON-SELLERS, B. (1997), A Book of Object-
Oriented Knowledge - An Introduction to Object-
Oriented Software Engineering, Prentice Hall PTR,
New Jersey.

KHOSHAHAN, S., ABNOUS, R. (1995). Object
Orientation - Second Edition, John Wiley and Sons
Inc, New York.

LANGRAM, G. (1993), Time in Geographic Information
Systems, Taylor & Francis, London.

MARTIN, D. (1996), Geographic Information Systems -
Second Edition - Socioeconomic applications,
Routledge, London.

NIEVERGELT, J., WIDMAYER, P. (1997), "Spatial Data
Structures: Concepts and Design Choices", in:
VAN KREVELD, M., NIEVERGELT, J., ROOS,
T., WIDMAYER, P., (eds.). Algorithmic
Foundations of Geographic Information Systems,
Springer-Verlag, Berlin.

NUNEZ, M., VIKKULA, A., KIRKINEN, T. (1995),
Perceiving Time and Space in an Isostatically
Rising Region, in: LOCK, G.R., STANCIC, Z.,
(eds.). Archaeology and Geographic Information
Systems: A European Perspective, Taylor & Francis,
London.

PETRIE, L., JOHNSON, I., CULLEN, B., KVAMME, K.
(1995), GIS in Archaeology - An Annotated
Bibliography, Sydney University Archaeological
Methods Series 3. Sydney: Archaeology (P&H).
University of Sydney, Sydney.

PEUQUET, D.J., MARBLE, D.F. (1990), "Geographic
information systems: an overview", in: PEUQUET,
D. J., MARBLE, D. F., (eds.). Introductory
Readings in Geographic Information Systems,
Taylor and Francis, London.

RIEL, A.J. (1996), Object-Oriented Design Heuristics,
Addison-Wesley Publishing Company Inc, Reading
Massachusetts.

ROLD, L. (1993), "Synthesis in object oriented analysis"
in: ANDRESEN, J., MADSEN, T., SCOLLAR, I.
(eds.). Computing the Past: Computer Applications
and Quantitative Methods in Archaeology 1992,
Aarhus University Press, Aarhus.

RUGGLES, C.L.N. (1992), "Abstract Data Structures for
GIS AppUcations in Archaeology", in: LOCK, G.R.
& J. MOFFETT (eds.). Computer Applications and
Quantitative Methods in Archaeology 1991, BAR
International Series S577, Tempus Reparatum,
Oxford.

SINOPOLI, CM. (1991), Approaches to Archaeological
Ceramics, Plenum Press, New York.

SMALLWORLD. (1991), A Corporate Statement,
Smallworld Systems Limited, Cambridge.

STARR, L. (1996), How to Build Shlaer-Mellor Object
Models, Prentice Hall PTR, New Jersey.

STINE, R.S., LANTER, D.P. (1990), "Considerations for
Archaeology Database Design", in: ALLEN,
K.M.S, GREEN, S.W., ZUBROW, E.B.W., (eds.).
Interpreting Space: GIS and Archaeology, Taylor &
Francis, London.

TAYLOR, D. A. (1990), Object-Oriented Technology: A
Manager's Guide, Addison-Wesley Publishing
Company Inc, Reading Massachusetts.

WEIBEL, R. (1997), "Generalization of Spatial Data:
Principles and Selected Algorithms", in: VAN
KREVELD, M., NIEVERGELT, J., ROOS, T.,
WIDMAYER, P., (eds.). Algorithmic Foundations
of Geographic Information Systems, Springer-
Verlag, Berlin.

WORBOYS, M. F. (1995), GIS - A Computing Perspective,
Taylor & Francis, London.

ZUBROW, E.B.W. (1990), "Contemplating Space: A
Commentary on Theory", in: ALLEN, K.M.S,
GREEN, S.W., ZUBROW, E.B.W. (eds.),
Interpreting Space: GIS and Archaeology, Taylor &
Francis, London.

All Figures in CD-ROM.

316

