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Introduction

In many archaeological projects one is given the 
spatial coordinates of a set of points (e.g. sites, 
artifacts) and is asked to discover relational 
links, such that the resulting network becomes 
perceptually meaningful in some sense (Fig. 1).

In the case of archaeological sites, for example, 
we may want to explore several scenarios of 
inter-settlement relationships to figure out if 
they reveal some kind of regional organization. 
Once the network is drawn, we may want to 
identify sites that exercise a certain degree of 
control over the network structure, indicating 
perhaps that their position is more strategic 
than others. Alternately, we may want to 
measure how integrated/segregated each 
settlement is within the network and therefore 
within the region. After measuring control 
and integration, we then may use additional 
information to formulate heuristic hypotheses 
about the role and importance of each site 
within past cultural systems. As a way to tackle 
those issues, this paper: 

•	 Presents a method to derive a relational 
network purely from the spatial coordinates of 
a point set.

•	 Suggests measuring two connectivity 
properties in order to analyse the degree of 
accessibility and relative importance of each 
node of the network in an objective way.

The focus is on the method itself, not on its 
applications, which have been discussed in 
other publications (Jiménez-Badillo 2004; 
2006; 2009a; 2009b; Jimenez and Chapman 
2002). 

The approach relies on the graph theoretical 
notion of relative neighbourhood and therefore 
belongs to a perspective of spatial analysis 
based on morphological, topological concepts. 
This is different from the statistical analysis of 
point distributions. Given its spatial nature, 
the approach is also different from analyses 
focused on virtual links as in social network 
applications of graph theory (Nooy et al. 2005).
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The Relative Neighbourhood Concept

As its name suggests, the concept of relative 
neighbourhood captures the idea of points 
being “relatively associated” or “more or less 
related”. It has applications in situations where 
we need to establish contextual relationships of 
one point, say pi, with several adjacent points. 
In other words, when we want to determine 
whether pi has other significant spatial 
associations besides its nearest neighbour. In 
archaeological jargon we could refer to this 
as finding different degrees of “association” 

Figure 1. Many projects study point sets to find meaningful 
relationships between archaeological sites or artifacts. 
An interesting method is to derive networks purely from 
their spatial arrangement using the concept of relative 
neighborhood.

Figure 2. The so-called test of “region emptiness” used 
to discover meaningful relationships between points. Two 
sites are said to be relative neighbours if, and only if, 
their region of influence (shaded area) is empty. In this 
example, p1 and p2 are relative neighbours while p3 and 
p4 are not.

between sites or artefacts.

It is worthwhile to clarify the difference 
between the relative notion of neighbourhood 
and the absolute concept implicit in nearest 
neighbour. Nearest neighbour considers the 
location of one object against all the others to 
determine which item is the closest. To this end 
it measures linear distances. In contrast, the 
concept of relative neighbourhood associates 
“areas of influence” to pairs of points. The 
size and shape of such regions are determined 
by the relative separation among all possible 
pairwise permutations of points and therefore 
the connections are totally dependent on the 
morphological configuration of the point set. 
Approaches like Central Place Theory also 
involve drawing areas of influence around sites, 
but consider one region for each single site. In 
contrast, the relative neighbourhood concept 
defines regions of influence belonging to pairs 
of points.

Extraction of Relative Neighbourhood 
Networks

Imagine a point set P = {p1, p2, p3 ... pn} and take 
any two elements, say pi and pj. We say that pi 
and pj are relative neighbours if, and only if, 
both are at least as near to each other as they are 
to the rest of the points. In order to determine 
whether pi and pj comply with such definition 
it is necessary to perform the following test, 
known as ‘region-emptiness’: 

•	 The first step is to take the distance d(pi, 
pj) as the radius for drawing two circles Ci 
and Cj, centered at pi and pj respectively. The 
intersection of both circles delimits an almond-
shaped region called RRNG (vesica piscis in 
Latin), which represents the region of influence 
for that particular pair. The concept can be 
applied to point sets located in 2, 3 and higher 
dimensional space.

•	 The second step is searching for other 
members of P within the region RRNG. If RRNG 
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is empty (i.e. no other point of P lies inside), 
then pi and pj are relative neighbours and a line 
is drawn to join them. On the contrary, if any 
other element of P, say pn, lies within RRNG, then 
pi and pj are declared non-neighbours. Figure 
2 illustrates both cases. When every possible 
permutation of points is tested in the above way 
we obtain the so-called Relative Neighbourhood 
Graph (RNG). Notice how the RNG matches 
the visual perception of the point set topology 
(Figs 3 and 4).

The analysis of “relatively close” points dates 
back to 1969 when Lankford (1969) defined 
the concept mathematically. Then, others 
developed the idea further (Gabriel and Sokal 
1969; Matula and Sokal 1980; Kirkpatrick and 
Radke 1985; Toussaint 1980a, 1980b, 1980c, 
1988; Urquhart 1980, 1982, 1983). Besides 
the Relative Neighbourhood Graph, these 
efforts produced other proximity graphs such 
as the Gabriel Graph, the Beta-skeletons, the 
Limited Neighbourhood Graph, etc. Here, we 
refer to such graphs collectively as “proximity 
networks”. Simultaneously, several algorithms 
have been developed to compute these graphs 
(Huang 1990; Hurtado et al. 2001, Jaromczyk 
and Toussaint 1992; Jaromczyk and Kowaluk 
1987, 1991; Rao 1998; Su and Chang 1990, 
1991a, 1991b; Toussaint and Menard 1980).

The Gabriel graph is obtained by defining 
a circular region of influence instead of the 
almond-shape of the RNG (Figs 5 and 6). 

Another interesting variation results when a 
parameter beta is introduced in order to enlarge 
or reduce voluntarily the region of influence 
for exploratory reasons. The parameter can be 
applied both to the almond-shaped region and 
the circular region mentioned above (Figs 7 and 
8).

High values of Beta produce coarser networks, 
that is, structural views of point topology with 
few edges. On the contrary, low values of Beta 
produce networks with higher edge-density. 
Testing several values of Beta produces a 
parameterized family of networks known 

Figure 3. Relative Neighbourhood Graph for the point set 
illustrated in Figure 2.  This is extracted by applying the 
test of “region emptiness” to every combination of pair 
of points.

Figure 4. A sample of point sets and their corresponding 
Relative Neighborhood Graphs. Notice that the RNG 
captures the shape of the point distribution and therefore 
is a good descriptor of relationships between points.
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Figure 5. The test of “region emptiness” can also be 
applied using circular areas. The diameter of the circle 
depends on the separation of each pair of points.

Figure 6. The so-called Gabriel Graph (GG). This is 
derived from applying the test of “region emptiness” 
using circular areas, instead of the almond-shaped 
regions of the RNG.

Figure 7. Applying a Beta parameter to the almond-
shaped region of the RNG produces a family of graphs 
known as Beta-skeletons.

Figure 8.  A second type of Beta-skeletons is produced 
by applying the parameter Beta to the circular regions 
of the GG.
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as Beta-skeletons (Fig. 9). Two particularly 
interesting values of Beta are: 1) Lower 
Connectivity Threshold, defined as the highest 
value of Beta producing a connected Beta-
skeleton with the lowest number of edges, that 
is the highest beta value before the network 
gets split into two or more sub-networks 
(after a certain value, most networks become 
disconnected), and 2) The second is Upper 
Connectivity Threshold, defined as the lowest 
Beta value that yields a connected Beta-skeleton 
with the largest number of edges. Given that 
they represent the minimum and maximum 
connectivity scenarios for a particular point set, 
either one of them can be used as a benchmark 
to perform inter-network comparisons (see 
more details in Jiménez-Badillo 2004, 166-
172). 

The goal of extracting Beta-skeletons is to obtain 

“...a spectrum of progressively more detailed 
descriptions of internal structure”. In other 
words: “It allows us to visualize a spectrum 
of internal shapes of various edge densities. 
The entirety of this spectrum, including, in 
particular, the transitions between adjacent 
structures, provides an added dimension 
for the representation of structure. The 
second advantage is that it serves as a kind 
of benchmark with the aid of which empirical 
networks can be analyzed and, to some extent, 
compared” (Kirkpatrick and Radke 1985, 222).

Analysis of Relative Neighbourhood 
Networks

The advantage of the proximity networks 
described above is that they allow quantifying 
two important geometric properties, which can 
be used to derive archaeological conclusions. 
Inspired by the Space Syntax Theory developed 
by Hillier and Hanson (1984) in the field of 

architecture, and combining it with the notion 
of relative neighbourhood, we propose to focus 
on how symmetrical/asymmetrical a proximity 
network is and on how distributed/non-
distributed its structure is. As we explain below, 
symmetry will lead us to discover patterns of 
integration/segregation, while distributedness 
will allow us to derive conclusions about the 
control structure of the network.

Symmetry

Given a proximity network, the relation of two 
nodes a and b is said to be symmetric if the 
relation from a to b is the same as the relation 
from b to a. The simplest case occurs when two 
nodes are directly adjacent (Fig. 10a). More 
complex examples include arrangements of 
three and more nodes. Figure 10b, for example, 
represents nodes a, b, and c having symmetrical 
relationships with each other. Observe the 
relation from a to b, which is the same as from 
b to a. The same happens from a to c and from c 
to a, as well as from b to c and from c to b.

Figure 9. A point distribution and its corresponding 
family of Beta-skeletons. Among other things, these 
graphs can be used for exploratory applications in which 
it is necessary to analyze how strong or weak the links 
are.
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Asymmetry

In contrast, asymmetry occurs when one has 
to pass through an intermediate node when 
traveling from node a, for example, towards 
node c, as in figure 11. To reach node c from 
node a one necessarily has to pass through node 
b. Therefore, asymmetric relations necessarily 
involve a sense of depth, that is, step-distance 
from a certain starting-node to an ending-node. 
This depth is measured by counting how many 
edges exist in the path from the extreme nodes.

Measuring node integration

As it was said before, asymmetric relations 
involve the notion of depth or topological 
distance between nodes. A node has an 
asymmetric relation with regard to other 
nodes if it is located two or more steps away 
from them. In general, proximity networks 
where most nodes are a few steps away from 
each other are said to be shallow, while those 
networks whose nodes lay many steps away are 
said to be deep (Fig. 12).

Maximum shallowness exists when all nodes are 
connected directly to a single node. In this case, 
symmetric adjacency relations predominate 
among the nodes.

Maximum depth is registered in those systems 
where all nodes are arranged in a unilinear 
sequence away from one single node.

The value of integration for one particular 
node depends precisely on its shallowness or 

Figure 11.  Asymmetric relationships 
between points.

Figure 12. Shallowness and depth resulting from two 
different network structures. In the example (a) the 
structure is shallow from node p1 because almost all the 
remaining nodes are only one edge away. In contrast, the 
structure shown in example (b) is deep from p1, because 
most vertices are many steps away. In the later case only 
p2 is one edge away, while the distance between p1 and 
p3 is 8 edges.

Figure 10. Two examples of symmetric relationships 
between points.

12a

12b
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depthness with regard to all the remaining nodes 
of the network. In other words, integration 
measures the ‘relative asymmetry’ from one 
particular node to all the remaining nodes of 
the network. The following procedure, adapted 
from Hillier and Hanson (1984, 109), allows 
extracting the value of relative asymmetry:

1.	 Given a proximity network G, take one node 
at a time, say pi, and calculate depth values 
from that node to all the remaining nodes. 
Depth is just another name for the topological 
distance td(pi, pj), obtained by counting how 
many edges are included in each path from pi 
to pj, for all pj elements of P and pj different 
than pi.

2.	 Calculate the mean depth of pi, denoted by 

Figure 13. The integration structure of a particular 
network can be appreciated by scaling nodes according 
to integration values: the bigger the integration value 
the bigger the ball. In this example, the right side of the 
network is more integrated than the left, as shown by the 
red balls. The more segregated nodes are the small balls 
coloured in blue.

Figure 14. An example of distributedness 
between points.

mdi, by summing all the topological distances 
extracted previously (step 1) and dividing the 
result by the total number of nodes less one.

3.	 Then, calculate the relative asymmetry RAi 
of pi as follows:

Where mdi is the mean depth of the ith node and n is the 
total number of nodes in the system.

4.	 Repeat operations 1 through 3 for every node 
of the proximity network. The procedure will 
give a value between 0 (maximum symmetry) 
and 1 (maximum asymmetry) for each node 
of the system. A value closer to zero indicates 
that the system is shallow from that particular 
node. In other words, symmetric relations 
predominate between that particular node 
and the rest of the system. For such reason, 
the node is well integrated into the system. 
In contrast, a value closer to 1 indicates that 
the system is deep from that particular node, 
asymmetric relations predominate and the 
node is segregated from the rest of the system 
(Hillier and Hanson 1984, 109).

Symmetry versus asymmetry equals integration 
versus segregation. Symmetric relations 
would reflect arrangements of artefacts or 
archaeological sites holding a certain amount 
of cohesion, unity, solidarity, etc. Alternately, 
asymmetric relations would identify those 
elements in a system characterised by isolation, 
separation, confinement, exclusion, etc. (Fig. 
13).
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Distributedness

A third property of proximity networks is 
called distributedness. This measures how 
many different paths are possible for traveling 
between two nodes given the whole connectivity 
structure of the network. In figure 14, going 
from node a towards node c presents at least 
two possible alternatives: the first one is a direct 
route between a and c; the second is the route 
passing through b.

Non-distributedness

Non-distributedness occurs when two nodes, 
say a and b, are related in such a way that there 
is one and only one path connecting a to b. In 
figure 15, for example, there is only one route to 
relate each pair of nodes and such path always 
passes through node a. This means that node a 
exercises some kind of control over the rest of 
the nodes. In fact, none of the nodes b, c, or d 
can communicate with each other unless they 
reach node a first. 

Measuring node control

Distributedness yields a second measure called 
node control. This allows assessing the relative 
importance of artefacts or archaeological sites 
based on their local relationships.

Suppose that a certain node, say p
i
, gives to 

each of its immediate neighbours 1/n of control 
(where n is the number of neighbours of p

i
). At 

the same time, p
i
 receives a certain amount of 

control from its neighbours. This means that “...
each space is partitioning one unit of [control] 
value among its neighbours and getting back 
a certain amount from its neighbours (Hillier 
and Hanson 1984, 109). 

Nodes with values considerably greater than 
one exercise more control over the network 
structure than those nodes whose control value 

Figure 15. An 
example of non-
d i s t r i b u t e d n e s s 
between points.

Figure 16. An example of vertex control. In this graph, p1 
gives 0.25 of control to each of its four neighbors, while 
receiving 0.5 from p2, 0.5 from p3, 0.33 from p4, and 0.25 
from p5. At the end, p1 acquires more control over the 
graph structure than its immediate neighbors.

Figure 17. The control structure of a particular network 
can be apprciated by scaling nodes according to their 
control values. In this example, the big red balls represent 
nodes with bigger connectivity control than the small 
blue nodes.
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approaches zero. In the case illustrated in figure 
16, for example, node p

1
 partitions its unit of 

control among four direct neighbours (i.e. it 
gives 0.25 of control to each adjacent node), 
while receiving 0.50 from p

2
, 0.5 from p

3
, 

0.33 from p
4
, and 0.25 from p

5
. The procedure 

exposes p
1
 as the node of highest hierarchy 

with a total control of 1.58. In contrast, p
2 has the lowest control. It receives only 0.25 

from each of its two neighbours, which gives a 
total control of 0.5. Therefore, distributedness 
versus non-distributedness equals control 
versus dependence. Distributedness would 
reflect cases of lower hierarchy, subordination, 
dependence, etc., while non-distributedness 
would reveal sites of higher hierarchy, control, 
power, authority, domination, etc. (Fig. 17).

Obviously, empirical archaeological systems 
such as sites within a region or artifacts in 
an archaeological context do not contain 
exclusively one type of relational pattern. On 
the contrary, they embody a finite number 
of combinations of symmetry, asymmetry, 
distributedness and non-distributedness. 
Hence, the task of the analyst is to measure how 
every node of an empirical system behaves in 
relation to those geometric properties.

To some researchers the computation time and 
effort for extracting the measures of control and 
integration of each node may seem excessive, 
especially when large datasets are involved. 
However, we have developed a computer 
program called Relative Neighbourhood 
Explorer that automatically and efficiently 
calculates the above measures and produces 
both the relative neighbourhood networks 
and the graph-profiles for each measure (for a 
user guide and explanation of the software see 
Jiménez-Badillo 2004).

Conclusions

There are two main advantages in incorporating 
proximity networks into archaeological spatial 
analysis, namely:

1.	 The notion of relative neighbourhood 
provides a mathematical formal way to 
determine whether one archaeological site 
or artefact has other significant spatial 
relationships besides its nearest neighbour. 
Therefore, the adoption of the concept 
represents an appropriate mechanism of 
exploratory heuristic analysis allowing us to 
discover contextual relationships, both at small 
and large scales.

2.	 The extraction of proximity networks not 
only provides a graphic view of interesting 
hypothetical connections. It also allows 
quantifying global and local spatial properties 
of the system. We proposed measuring the 
level of integration as a way to formally assess 
the degree of accessibility of certain nodes 
in relation to others. On the other hand, we 
proposed a control measure to rank the relative 
importance of particular archaeological sites 
or artefacts. This would be useful when sites 
appear to be of the same hierarchy at the 
beginning of the analysis and one needs to 
assess the impact of location given the specific 
spatial layout of the whole system.

As usual when dealing with this kind of approach, 
there are also some limitations. We start with 
points assumed to represent a coherent set. In 
archaeology such an assumption is not always 
justified because the set of archaeological sites 
may not be complete (some archaeological sites, 
for example, may not have been discovered 
at the moment of the study, some places may 
have not survived, or the chronology of the 
settlements may be unreliable). However, 
this limitation is not inherent to the proposed 
method. Rather, it is a problem related to the 
nature of the archaeological record. We must 
therefore treat any data set with the same 
caution exercised when applying other more 
traditional approaches. 

On the other hand, the relative neighbourhood 
method is purely spatially oriented. It does 
not include any other variables in the analysis 
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(though some tuning would make this 
possible). From this point of view it is limited, 
and therefore it must be seen as a starting point 
in the analysis of archaeological systems when 
we do not know the real links existing in the 
past. The reliance on space, however, could be 
an advantage in itself, as it does not impose 
previous assumptions on the data, that is, 
patterns of relationships are discovered rather 
than imposed.

Since 1998 we have been developing tools 
for spatial analysis, applying, in particular, 
proximity networks to study archaeological 
contexts such as the Mexica offerings (Jimenez 
and Chapman 2002, Jiménez-Badillo 2004, 
2009a, 2009b).

In other countries, mainly the United 
Kingdom and Spain, other researchers have 
used the relative neighbourhood approach to 
answer archaeological questions. Particularly 
interesting is the work by Brughmans (2010) 
who has studied ceramic trade routes in the 
Mediterranean during the Roman Period using 
some of the proximity networks presented here. 
We expect that further developments would 
allow extending the range of applications for the 
proposed method to other kinds of problems.
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