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23.1    Introduction 

The aim of this paper is to compare the use of some multivariate techniques for ana- 
lysing compositional data in archaeology, with particular reference to glass composi- 
tions. An attempt is made to assess the value of these methods for the archaeological 
scientist. 

Principal component analysis (PCA) is widely used as a data reduction method 
for aiding the perception of pattern in multivariate data. Correspondence analysis 
(CA) has similar aims and in this paper is treated as a form of PCA after suitable 
transformation of the data. Five variants of PCA, involving different transformations 
of the data, will be examined. 

Suppose n objects are available for analysis. The term 'compositional data' is used 
to imply that p commensurable variables are measured for each object and that the 
sum of the measurements is fixed, and the same, for each object. Such data are 
common in archaeology and present their own difficulties in statistical analysis. 
The paper deals with the chemical composition of glass specimens in which the 
percentage presence of a range of oxides or elements is measured and sums to 100%, 
apart from measurement errors. 

The problem examined here is that of deriving a classification of the objects 
based on the compositional data only. A successful classification would normally 
be interpreted in the light of any archaeological information available, but this 
information is not used in deriving the classification. 

In Section 23.2 the nature of glass compositions, as they commonly arise in ar- 
chaeological contexts, is described. A general strategy for statistical analysis is 
outlined in Section 23.3. Section 23.4 and Section 23.5 discuss the methodology 
and its application. Section 23.6 looks at the methodology from an archaeological 
perspective in which the questions the archaeological scientist is trying to answer 
in analysing such compositions are discussed. An attempt is then made to assess 
the usefulness, and limitations of, PCA based approaches in this context. The paper 
concludes with a brief discussion of areas where further research would be useful. 

The books by Jolliffe 1986 and Greenacre 1984 contain extensive accounts of 
PCA and CA respectively. Aitchison 1986 is the seminal work on the analysis of 
compositional data. More extensive applications of the methods discussed here are 
given in Baxter 1989a, and a paper using similar methodologies in the same spirit, 
though in a different archaeological context, is that of Ringrose 1988. 
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23.2   The composition of glass 

The study of glass from archaeological contexts has frequently involved the use of 
analytical techniques to obtain compositional data which can be used to interpret 
the raw materials used in glass production. Techniques such as neutron activation 
analysis (NAA), X-ray fluorescence (XRF) and inductively coupled plasma spectrome- 
try (ICPS) have been used to provide data on a range of oxides and elements in glass 
(Sanderson & Hunter 1982, Sanderson et al. 1984, Heyworth et al. 1988). 

Glass is a complex material which is manufactured by the fusion of silica, usually 
in the form of sand, with the aid of an alkaline flux, normally either soda or potash. 
Other substances such as calcium are usually added to increase the durability of 
the finished glass. Specific colourants, opacifiers and decolourants can be added to 
the glass batch, often in the form of metallic oxides, to produce a desired visual 
appearance: see Henderson 1985 for more details. 

The final appearance of a glass could also be affected by other factors such as 
the furnace temperature, furnace atmosphere, and the duration of the glass-making 
process. The recycling of scrap glass, known as cullet, was also practised in antiquity 
leading to intermediate compositions which do not necessarily directly reflect the raw 
materials used in the production of a particular batch of glass. 

A typical glass composition can therefore be broken down into suites of ox- 
ides/elements in terms of (i) the major oxides necessary to produce a working glass, 
usually silica, soda or potash and lime; (ii) minor oxides present as impurities in the 
raw materials; (iii) trace elements which are associated with the major and minor 
elements; and (iv) those elements which were added deliberately to the glass batch. 

It is therefore important in the study of glass compositions to obtain data for the 
full range of the major, minor and trace elements contained in the glass. It is then 
necessary to be able to manipulate the data effectively through statistical analysis to 
obtain the maximum information possible. This information can then be combined 
with any relevant archaeological or typological information to attempt to answer 
specific questions about the production of the glass. 

23.3   Analytical strategy 

The majority of analyses described in this paper were carried out using the MINITAB 
6.1 release. The increasing availability of such user-friendly interactive packages 
greatly facilitates the rapid exploratory analysis of complex data sets. 

Any proposed multivariate analysis is usefully preceded by standard descriptive, 
univariate and bivariate graphical approaches. For example, the examination of 
dotplots will often serve to identify multimodality with respect to variables that is 
subsequently reflected in a classification exercise. Similarly, unusual observations 
will be revealed and it is often sensible to remove these prior to further analysis. 
This kind of approach is illustrated in Section 23.5. 

It is possible to carry out PCA with similar ease so that the method can be regarded 
as a rapid data exploratory tool. MINITAB also allows the use of macros so that 
alternative forms of PCA are easily programmed, essentially by transforming the 
data and then using the MINITAB PCA command. Thus many different multivariate 
analyses can be undertaken very rapidly. 

Since such ease of application is likely to promote increased use of the available 
methodologies an understanding of their relationships and properties in practice is 
important. The view adopted here is that it will often be informative to examine the 
data in several different ways. Several possibilities arise. 

1. All the methods used lead to similar conclusions in which one may have a high 
degree of confidence. 
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2. Different methods give different and equally valid results. For example, one 
approach may be dominated by differences in the major elements, reflecting 
differences in the 'recipes' used to make the glass. A second approach might 
be dominated by the minor elements, reflecting differences in the colour of the 
glass or the origin of the raw materials used in making it. 

3. Different methods give rise to different results some of which are archaeologi- 
cally more valid than others. For example some of the methods to be discussed 
will sometimes produce results dominated by a single variable for essentially 
mathematical reasons. 

23.4   Methodology 

Assume that there are n specimens whose composition is measured with respect to p 
variables. Let Xij be the percentage of oxide j present in specimen i and assume, for 
the purposes of exposition, that the sum of oxides for each specimen is 100%. The 
n by p raw data matrix so defined will be denoted by X. The PCA is to be based on a 
transformation, Y, of X and the following transformations will be considered where 
Xj is the mean of the j'Xh variable and Sj the standard deviation. 

Y,^={X,^-X,) (23.1) 

Y,j^iX,,-X,)/S, (23.2) 

p 

y., = In(X.j) - p-^ ^ln(.Y,,) (23.3) 
j = i 

y,, =(X,, -X,)/yX~ (23.4) 

Y,, = {W,,-W,)I^, (23.5) 

where   
W,, - X,,/X, (23.6) 

and 

W,=p-'J2^V,j (23.7) 
j = i 

In the case of (23.5)-(23.7) the elements of the leading components are rescaled 
before plotting. 

The aim of a PCA as used here is to reduce the p dimensional data set defined by Y 
to a 2 dimensional set that can be plotted and inspected for structure. A geometric 
interpretation is that, on the scale of measurement used, the distance between two 
points, i and k, is defined by 

d^^k = E(^'^- - ^k^)' (23.8) 

The two dimensional configuration arising from a PCA attempts to reproduce these 
distances as closely as possible in two dimensions. Methodological details and 
reasons for using the transformations (23.1)-(23.5) are discussed in the references 
previously cited. 

Use of (23.1) and (23.2) involves a PCA of the covariance and correlation matrix 
of the raw data.   The latter approach is that often adopted.   Both approaches are 
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subject to the criticisms of Aitchison 1986 concerning the lack of interpretabiUty of 
the correlations induced by the row-sum constraint on the data. The problem arises 
because the compositional nature of the data means it is constrained to lie within a 
(p - 1) dimensional simplex rather than p dimensional Euclidean space. 

Aitchison's own approach, embodied in the use of (23.3), is to transform the data 
from the simplex to Euclidean space. Standard methods can then be applied to the 
transformed data. 

Correspondence analysis provides a method for the simultaneous graphical rep- 
resentation of the rows and columns of a matrix of non-negative elements. If the 
elements in each row sum to 100% exactly then CA of the raw data matrix, for the 
representation of rows only, is equivalent to a PCA based on (23.4). If, prior to 
applying CA, the data is 'preprocessed' by dividing by the column means as suggested 
by Underbill & Peisach 1985 then a PCA based on (23.5) results. 

Previous work (Baxter 1989b, Baxter 1989a) suggests the following points. 
1. Using (23.1) it is evident from the structure of (23.8) that only those oxides 

with a reasonably high (greater than 5%) presence will contribute significantly 
to the analysis. These are typically the oxides SiOj, CaO, NaaO and K2O, or a 
subset thereof. Thus the effective dimensionality of the data is reduced to 3 
or 4 for which simple graphical methods, such as the use of ternary diagrams, 
will suffice. Aitchison's critique of the use of the raw data applies particularly 
strongly here. Nevertheless a PCA will identify groups differing in their compo- 
sition relative to the oxides named above and this will often correspond to well 
established archaeological classifications such as the distinction between soda 
and potash glass. 

2. Use of (23.2) will typically involve more of the oxides in an analysis often 
resulting in less clear-cut results. Although Aitchison's (1986) critique applies, 
if a majority of the oxides have low absolute presence a reasonable analysis may 
still be obtained (see contributions to the discussion of Aitchison 1982). 

3. Empirically, with p of the order of 9 to 12, it has been observed that (23.2) 
and (23.4) often produce similar results.    This appears to happen because 
J% and 5j are often highly correlated (r > .9) so that (23.2) and (23.4) are 
similar. In these cases analysis of the raw correlation matrix approximates a 
correspondence analysis (and is perhaps justified on this basis). 

4. The structure of (23.3) in conjunction with (23.8) suggests that an analysis will 
be dominated by those oxides with a high relative variation. These are typically 
oxides with a low absolute presence (where the variation may be a function 
of experimental error, particularly when nearing detection limits). Experience 
confirms that this is often the case. 
In extreme cases three or fewer of the oxides will dominate, resulting in a large 
reduction in the effective dimensionality of the data. Although the classification 
obtained may make archaeological sense this is not inevitable. An example is 
given in the next section. 
Essentially this problem arises when some observations in a column are small. 
In extreme cases oxides may be recorded as traces or as zero, for which (23.3) 
is undefined. This problem may be resolved in various ways and an illustration 
is given in the next section. 

5. Empirically it has been observed that the results of using (23.3) are often very 
similar to the results of using (23.5). It can be shown that use of (23.5) is 
similar to a generalized PCA based on distances, (23.8), that are a first order 
approximation to the distances used in (23.3). 
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6. In summary, for both theoretical and practical reasons, none of the methods 
described are ideal or uniquely 'correct'. Different methods emphasise different 
aspects of the data so the use of more than one method is often revealing. Where 
apparently interesting results are not wholly a consequence of an interaction 
between unusual data and the method used interpretation is a matter for the 
subject specialist. 

All the analyses are readily carried out using MINITAB 6.1 commands or macros. With 
earlier versions macros need to be written for the basic PCA analysis. Details are 
available from the first author. 

23.5   An application 

As an example to illustrate points made in the previous section data given in Christie 
et al. 1979 will be used. They presented information on 19 specimens of Roman 
glass found in Norway and analysed with respect to 10 oxides SiOz.TiOz. AI2O3, FeaOg, 
Mn304, MgO, CaO, NajO, K2O and CuO. Their statistical analyses included the use of 
PCA based on (23.2). Baxter 1989a has examined the use of (23.2H23.5). Here a more 
detailed and slightly different treatment is adopted. 

The original publication may be referred to for the raw data. The 19 specimens will 
be labelled A B ... S in subsequent diagrams and discussion. Fig. 23.1 shows MINITAB 
dotplots for the raw data. This is the same, apart from the scales, as the plots for 
(23.2) and (23.4). 

Some multi-modality is evident, with respect to Si02 and TiOj for example, suggest- 
ing the likelihood of detecting some structure in the data. The sum of the composi- 
tions for specimens A to L was less than 97.5% and as low as 95.43% in the extreme 
case. It is inevitable that some measurement error will be present, particularly 
as the data is obtained from two different analytical techniques(atomic absorption 
spectrometry and X-ray fluorescence analysis), but the rather limited range of oxides 
analysed certainly means that the full glass composition is not available. Thus the 
data are not ideal for use with (23.3)-(23.5) which assume the composition sums to 
100%. This was investigated by (rather arbitrarily) recalculating the SiOj percentage 
so that the compositional sum was 100% and reanalysing the data. This had little 
effect on the results and will not be presented here. 

Inspection of the dotplots suggests the presence of outliers for Mn304 and CaO. 
These are associated with different specimens. As omission of the specimens has 
little effect on the results obtained using (23.1), (23.2) or (23.4) the full data set will 
be used. 

For the data transformed as in (23.3) the main feature of the corresponding dotplots 
in Fig. 23.2 is the clear outlier for Mn304 corresponding to a raw value of .02%. 
The effect of this is that Mn304 is an important determinant of the leading two 
components and the outlier is clearly isolated on the component plot (Baxter 1989a). 
In contrast with analyses previously reported the analysis based on (23.3) will omit 
the offending specimen I. The effect for the transformation based on (23.5) was not so 
dramatic but, to assist comparison, specimen I will also be omitted from this analysis. 

Specimens N, 0, P and Qhad zero values for CuO. In using (23.3) these were recoded 
as 0.0099, just slightly less than the next smallest value recorded for CuO. The effect 
of this is to ensure that the four specimens do not unduly influence the results 
obtained. 

The plots based on the leading two components for each of methods (23.1) to 
(23.5) are shown in Figs. 23.3-23.7. Figs. 23.6 and 23.7 represent approximate 
correspondence analyses (for rows only), because of the measurement error, but are 
similar to the exact analyses in Baxter 1989a. 
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 + + + + + + %Si02 

64.5      66.0      67.5      69.0      70.5      72.0 

 + + + + + + %Ti02 

0.060     0.120     0.180     0.240     0.300     0.360 

+ + + + + + %Al203 

1.20      1.50      1.80      2.10      2.40      2.70 

___ + + + + + + ---%Fe203 

0.20      0.40      0.60      0.80      1.00      1.20 

+ + + + + + %Mn304 

0.00      0.40      0.80      1.20      1.60      2.00 

_ + + + + + + %MgO 

0.45      0.60      0.75      0.90      1.05      1.20 

 + + + + + + -%CaO 

6.00      6.60      7.20      7.80      8.40      9.00 

_^. .| + + + + %Na20 

16.20 16.80 17.40 18.00 18.60 19.20 

 + + + + + + -%K20 

0.280     0.350     0.420     0.490     0.560     0.630 

+ + + + + + %CuO 

0.000     0.025     0.050     0.075     0.100     0.125 

Figure 23.1: Minitab dotplots for raw data 
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 + + + + + Si02 

3.80      4.00      4.20      4.40      4.60      4.80 

-3.00     -2.70     -2.40     -2.10     -1.80     -1.50 
-Ti02 

-AI2O3 
0.24 0.36      0.4Ï 0.60      0.72 0.84 

- + - 
-1.20     -1.00 

 + + + + Fe203 

-0.80     -0.60     -0.40     -0.20 

+ - 
-3.50 -2.80     -2.10     -1.40     -0.70 

-Mn304 
0.00 

-MgO 
-0.75     -0.60     -0.45     -0.30     -0.15      0.00 

 + CaO 

2.20      2.40 1.40      1.60      1.80      2.00 

 + Na20 
3.40 2.40      2.60      2.80      3.00      3.20 

- + + + + + + K2O 
-1.40     -1.20     -1.00     -0.80     -0.60     -0.40 

-5.00     -4.50     -4.00     -3.50     -3.00     -2.50 

Figure 23.2: Minitab dotplots for Aitchison transformed data 

233 



M. J.  BAXTER AND M.  P.  HEYWORTH 

EF 

-26.4+ 

PC2 

J H 

-27.6+ A G Q 
L N 

- K     2 R P 
C 

-28.8+ 

O 

-30.0+ 
 + - -+--PC1 

57.0 58.5 60.0 61.5 63.0 64.5 

Figure 23.3: Component plot—covariance matrix of raw data 
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Figure 23.4: Component plot—correlation matrix of raw data 
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-4.80+ R 
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-5.40+ D H 

C 
S 

B 

-6.00+ G 
P 
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Figure 23.5: Component plot—Aitchison transformed data 
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Figure 23.6: Component plot—correspondence analysis of raw data 
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Figure 23.7: Component plot—correspondence analysis of transformed data 
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As expected, apart from orientation, Fig. 23.4 is similar to 23.6 and Fig. 23.5 is 
similar to 23.7. Figs. 23.3-23.5, which will be discussed in more detail, are clearly 
different and illustrate that different methods can indeed give rise to different 
results. 

The percentages of variance explained by the leading two components in Figs. 23.3- 
23.5 are 91, 65 and 84. These are not directly comparable because of the effective 
reduction in dimensionality imposed by some of the methods on the data. In 
particular the leading component in Fig. 23.3 accounts for 80% of the variance and the 
component loadings are entirely dominated by silica. Thus the two or three groups 
discernible simply reflect the distribution of silica evident in the dotplots of Fig. 23.1. 
Since the use of (23.1) is both theoretically dubious and any potential revelation of 
structure is easily achievable by simpler means it is not recommended. 

Christie et ai. 1979 discern two groups in their analysis, comparable to the use 
of (23.2) and Fig. 23.4. The groups are judged to make sense both chemically and 
archaeologically. Nearly all the oxides are judged to contribute to the discrimination. 
This is reflected in the component loadings. The first component loads heavily 
(about 0.4) on SiOj, TiOj, AI2O3, FejOg, Mn304 and MgO with SiOa having a different 
sign from the rest (perhaps reflecting the negative bias problem that arises in using 
correlations of compositional data). The second component loads highly on CuO 
(-0.7), NazO (0.6), K2O (-0.3) and FcaOg (-0.3). Although, on Aitchison's (1986) critique, 
the methodology is unsound the results make archaeological sense in the opinion of 
Christie et ai. 1979. 

Turning to the application of Aitchison's (1986) approach in Fig. 23.5 three clear 
groups can be seen. Inspection of the component loadings shows that these groups 
are almost entirely defined by the oxides based on TiOo and CuO which have the 
lowest absolute levels and highest relative variation of the oxides recorded. The 
group consisting of specimens A, E, F, H and S includes all values of CuO greater than 
0.05%. The group D,j, K, L, M and R includes all values of TiOs of 0.20% or more. The 
remaining specimens have low values on both oxides. 

Given the nature of glass analyses as often reported this kind of outcome is 
common and sometimes predictable though not inevitable. From a purely statistical 
standpoint the three groups identified make perfect sense and would be identified by 
a simple bivariate plot of the oxides involved. From the chemical or archaeological 
standpoint information on eight of the oxides is effectively ignored in this analysis. 
While this outcome may be useful to define archaeological groups it is not necessarily 
helpful to the glass specialist wishing to identify the separate constituents of the 
glass where the relationship between the oxides/elements is important in deciding 
which entered the glass batch together. 

The purpose of this section has been to illustrate aspects of the methodology 
discussed in the preceding section. There are statistical limitations to each of 
the methods discussed and it is clear that different methods may reveal different 
aspects of the data. Some of these limitations arise because of the special nature of 
glass compositions. The extent to which the methods may help answer problems of 
practical interest is examined in more detail in the next section. 

23.6 Archaeological considerations 

The compositional analysis of archaeological materials such as glass is undertaken 
in an attempt to answer specific questions which relate to the mode of production, 
the raw materials and technology involved in the manufacturing process and the 
production location. In attempting to answer these questions it is necessary to use 
all the available data, not just the compositional data. It is particlarly important to 
include the typological and archaeological evidence that relates to the objects under 
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Study.   However, it is usually necessary to summarise the analytical information 
before it can be used in conjunction with the other available data. 

Any statistical method which reduces the amount of information provided by a 
multi-element analysis of a group of objects to a manageable form which can be more 
readily interpreted is helpful to the archaeological scientist.lt is particularly helpful 
if it not only provides information on any structure that exists in the data with regard 
to the objects but also shows which oxides/elements are responsible for the pattern. 

A common method of analysing compositional data in archaeology is to undertake a 
hierarchical cluster analysis to identify structure in the data. A stepwise discriminant 
analysis usually follows to obtain information on the variables that are producing 
the data structure. The procedures described in this paper seem to produce much 
more useful information and in a much more flexible manner. Often a publication of 
archaeological analyses will show a dendrogram from a single cluster analysis and 
all the discussion will stem from this. The use of an array of multivariate methods 
can now be achieved quickly and easily with modern computing facilities. This 
process will greatly aid the archaeological scientist since it allows more flexibility 
in approaching the analysis of the data. It is important to try different statistical 
techniques as each may provide different, but still significant, information. 

Both CA and PCA (through the use of a biplot) can be used for a joint display of rows 
and columns. This has not been exploited in this paper but is useful in identifying 
suites of oxides/elements that can be used in more detailed investigations of data 
structure. A practical limitation is on the number of objects and/or variables that 
can be used before the picture becomes unintelligible. 

The value of a multi-element compositional analysis is that the full range of major, 
minor and trace elements in the glass are quantified. The use of correlations to 
link oxides/elements together into suites that may have entered the glass melt in 
the same raw material is well known. Often it is the trace elements, present at 
parts per million level in the glass, that are the best discriminators between raw 
material types. Although the methods based on (23.3) and (23.5) can highlight such 
elements this may be at the expense of ignoring information from a majority of the 
oxides/elements. By contrast (23.2) and (23.4) appear to use more of the available 
information at the possible expense of 'smearing' real differences based on the minor 
and trace elements. 

There is no right or wrong method in these circumstances but each method can give 
important information. It is necessary to combine the information gained from the 
various methods to maximise the potential of compositional analysis for providing 
answers to archaeological questions posed by the material. 

23.7   Conclusions 

Statistical packages such as MINITAB 6.1 make it extremely easy to apply PCA inter- 
actively and use it as a tool for data exploration. Five variants of PCA have been 
examined, including two based on correspondence analysis approaches. 

It is clear that different methods may produce different results so that the reg- 
ular use of more than one method has potential advantages. The reasons for the 
emergence of any structure in the data need to be investigated and the structure in- 
terpreted in substantive terms if possible. Reporting the results of multiple analyses 
can be complicated but the temptation to present the 'best' or 'good' results only 
should be resisted. 

Despite theoretical objections to the use of PCA on the raw correlation matrix for 
compositional data useable results may still be obtained. This is possibly because 
many of the components of a typical glass composition are reasonably small. If there 
is a near linear relationship (through the origin) between the square roots of the 
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variable means and their standard deviations an approximation to a correspondence 
analysis of the raw data results. 

For typical glass compositions the theoretically sounder approach of Aitchison 
1986 will often produce results determined by a small number of variables. Although 
the results are often interprétable information contained in the major elements 
may well be ignored. Correspondence analysis after dividing observations by their 
column means produces an approximation to Aitchison's approach that is unaffected 
by zeroes in the data. It would be useful to have conditions under which the 
approximation is guaranteed to be good. 

The foregoing observations are largely based on experience with data sets con- 
taining 9 to 12 variables. Analytical techniques such as ICPS now routinely provide 
information on over 30 variables. These variables range from major elements present 
at levels over 60% to trace elements present at the parts per million level. It would be 
useful to have a range of sensible and easily applied methods for such data sets. Work 
in progress suggests that the methods discussed in this paper can be informative. 
Their empirical similarities are less clear cut and the methods based on (23.3) to 
(23.5) may ignore much of the information in the data. 

Separate analyses based on subsets of the variables are a possibility, but these 
would have to be undertaken using sensible groups of variables that could be defined 
in terms of the raw material components of the glass. A simple separation into major, 
minor and trace elements would not be useful in this context as correlations between 
different oxides/elements are of diagnostic importance in identifying additions to 
the glass batch. Cluster analysis is a widely used method and a comparative study of 
different methods using different scales of measurement would be useful. Finally, it 
may be noted that PCA attempts to explain the variance in a set of data, on whatever 
scale of measurement is used. Methods that focus on the covariance structure are 
also of interest and it is hoped to report on these at a later date. 
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