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Detection of Matching Fragments of Pottery
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Abstract. A major obstacle to the wider use of 3D object reconstruction and modeling is the extent of manual intervention
needed to construct 3D models. Such interventions are currently massive and exist throughout every phase of a 3D
reconstruction project: collection of images, image management, establishment of sensor position and image orientation,
extracting the geometric detail describing an object, merging geometric, texture and semantic data. This work aims to develop
a solution for automated documentation of archaeological pottery, which also leads to a more complete 3D model out of
multiple fragments. Generally the 3D reconstruction of arbitrary objects from their fragments can be regarded as a 3D puzzle.
In order to solve it we identified the following main tasks: 3D data acquisition, orientation of the object, classification of the
object and reconstruction.
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1. Introduction

Reassembly of fragmented objects from a collection of
thousands randomly mixed fragments is a problem that arises
in several applied disciplines, such as archaeology, failure
analysis, paleontology, art conservation, and so on. Solving
such jigsaw puzzles by hand may require years of tedious and
delicate work, consequently the need for computer aided
methods is obvious (Leitao and Stolfi 2002). The assembling
of an object from pieces is called mosaicing (Langenscheidt
1989). It is similar to the automatic assembly of jigsaw
puzzles (Burdea and Wolfson 1989). In archaeology, most of
the finds are in form of fragments, especially in the area of
ceramics. Therefore mosaicing is of great interest in this field,
since it enables both, a real and a virtual reconstruction of the
original object. Most of the ceramic is rotationally symmetric
since it was produced on a potter’s wheel. Using this fact, one
can solve the mosaicing problem even if there are gaps
between the fragments, just like a human would solve this
problem. Figure 1a shows a box filled with archaeological
fragments, which possibly could fit to each other. Figure 1b
illustrates manually identified, matching fragments.
More generally mosaicing can be seen as a special case of
object recognition by approximate outline matching: The
specific problem of identifying adjacent ceramic fragments by
matching the shapes of their outlines was considered by
(Üçoluk and Toroslu 1999, Hori et. al. 1999, Kong et. al. 2001
and Kanoh et. al. 2001). (Marques et al. 2002) present a 2D
object matching technique based on the comparison of a
reference contour to the contours in the image partition.
Similarly, (Leitao and Stolfi 2002) demonstrate a multiscale
matching method and (Papaioannou et. al. 2001) present a
semi-automatic reconstruction of archaeological finds
(Papaioannou et al. 2001). We observe a main focus on the
analysis of the outline of the break curve: 2D outline matching
is most common (Leitao and Stolfi 2002, Kanoh et. al. 2001,
Kong et. al. 2001, Burdea and Wolfson 1989, Kosiba et al

1994), but work on 3D outline matching exist (Üçoluk and
Toroslu 1999). Surface matching of fractured surfaces is
proposed in Papaioannou et al. 2001. So far, no complete
system from acquisition to reconstruction has been described.
This paper focuses on the reconstruction of pottery out of many
fragments based on the profile. With respect to our previous
work (Sablatnig and Kampel 2002), the paper describes the
finding and matching of candidate fragments as its main
contribution. Our approach to pottery reconstruction is based on
the following main tasks: After acquiring 3D data with the
Minolta VIVID 900, we start with the estimation of the correct
orientation of the fragment, which leads to the exact position of
a fragment on the original vessel. Next, the classification of the
fragment based on its profile section allows us to decide to
which class an object belongs to, presented in Section 2. Since
we know the orientation of the candidate fragments we defined
a two-degrees-of-freedom search space for representing the
alignment of two fragments. A matching algorithm based on the
point-by-point distance between facing outlines is proposed in
Section 3. Reconstruction results on synthetic and real data are
given in Section 4, followed by conclusions and outlook on
future work.

(a) (b)

Fig. 1. Archaeological objects: (a) Box with possibly, matching
fragments, (b) Matching fragments.



2. Determination of Matching Candidates

Archaeological pottery is assumed to be rotationally
symmetric since it was made on a rotation plate. With respect
to this property the axis of rotation is calculated using a
Hough inspired method (Sablatnig and Kampel 2002). In
order to reconstruct complete pots out of fragments, profiles
with similar attributes are to be found in an archive database.
Classification of newly found fragments of unknown type is
performed by comparing the description of the new fragment
with the description of already classified fragments. The
fragment structure is formed by its shape features (or
geometric features like the profile) and its properties (or
material like clay, color and surface). The description of the
fragment is structured in a description language consisting of
primitives and relations. Primitives are a representation of
shape features, relations represent the properties. 
The description language, which was originally designed to
solve 2D automatic visual inspection problems (Sablatnig
1997), is applied and extended in order to solve the
classification problems. The actual profile contains features,
which are a representation of shape features. To accomplish
classification, primitives are further subdivided into part-
models (or part- primitives), the consistency between part-
primitives is established by relations among part parameters
(see Sablatnig 1997 for details).
This method enables us to compute the confidence of a node
by summing up the weighted tolerances of each attribute of
the node and the overall confidence of the subgraph connected
to this node. By computing the consistency for different
descriptions, the one with the highest confidence value can be
chosen if the confidence is above a certain threshold. For a
given profile all primitives are represented in the description
of the profile.

3. Fragment Matching 

The optimal pairing of matching candidates obtained serves as
input for the fragment matching part. Consequently we know
those pairs of fragments which were probably adjacent in the
original object. In order to represent the matching of two
fragments, (G. Papaioannou et. al. 2001) describes seven pose
parameters. In their approach the two fragments are first
prealigned so that their broken facets face each other. In our

case we know the orientation of a fragment; consequently we
prealign two candidate fragments by simply aligning their
axis of rotation. As a result, a two-degrees-of-freedom con -
tinuous search space is defined. The transformation which
matches two candidate fragments consists of a translation
along the z-axis with parameter Tz and a rotation around the z-
axis with parameter Rz (see Figure 2).
The basic concept in our method for estimating is that the best
fit is likely to occur at the relative pose which minimizes the
point-by-point distance between the facing outlines. For this
reason, we introduce a matching error εM based on the mean
Euclidean distance between the corresponding points of the
outlines of the candidate fragments with points X = (x,y) and
X' = (x',y'):

(1)

where N is the number of data points used. The height of the
fragment, limits the length of the matching segments.
Different fragments types lead to the following matching
possibilities:
A Rim fragments: firstn Tz is computed by aligning the rim

along the orifice plane (Kampel 2003). Next Rz is es timated,
so that the positioning transformation with the smallest
matching error εM is considered to be the correct position. 

B B Bottom fragments: first Tz is computed by aligning the
bottom along the base plane. Next Rz is estimated in the
same way as for rim fragments.

C Wall fragments: Candidates are first aligned along their
profile sections. Next Rz is estimated in the same way as
for rim fragments. Since it is not clear whether a new
candidate fragment is in bottom up or bottom down
position, we have to compute Rz and Tz for both positions.
The positioning transformation with the smallest matching
error εM is considered to be the correct position.

Matching algorithm

 Define reference fragment Fref with its axis of rotation
ROTref : defines a new pot P, creates the pot coordinate
system, ROTref is aligned to the z-axis. 

 Prealignment of the candidate fragment Fcand by its axis of
rotation ROTcand: ROTcand is aligned to ROTref . These
results in a two-degrees-of-freedom search space:
Translation Tz along the axis of rotation (up/down) and
rotation Rz around the axis of rotation.

 Estimation of the translation parameter Tz: search for
minimal distance d between all y-values (radius) of the
profile of Fref and the profile of Fcand. Exception A: Rim
frag ments are aligned along the orifice plane. Exception B:
Bottom fragments are aligned along the base plane. When
the candidate fragment is a wall fragment, the minimal
distance d is computed for both positions, and the one with
the smaller is considered to be the correct position.

 Estimation of the rotation parameter Rz by finding the
position with the smallest matching error εM.
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Fig. 2. Fragment Matching with 2degreesoffreedom.



4. Results

In order to evaluate the results we have tested our method on
synthetic 3D data of three parts of a synthetic pot. The
orientation of the fragments is defined, which leads to three
perfect matching parts. The experiment has shown a 100%
theoretical accuracy of the approach. 
In order to get data of matching fragments of a whole pot, we
broke a flowerpot into 5 parts. We got three rim fragments,
one wall fragment and one bottom fragment. Each part was
digitized leading to a front and back view of each fragment.
The biggest part (nr. 2) covers half of the pot and consists of
135070 triangles, whereas the smallest consists of 8210
triangles. Next we computed the orientation of the fragments,
which leads to four matching candidates and one not
processable object: a large part of the bottom fragment
(Part 4) consists of flat area. It was therefore excluded from
further processing due to its curvature being too low. 
Starting with part one as reference fragment for each
candidate a matching error was computed. Next part two was
defined as reference fragment and again for each remaining
candidate a matching error was computed. This procedure was
continued until no candidate remained. Table 1 summarizes
Tz, Rz and the matching errors for each possible candidate.
RFnr and CFnr denote the number of the reference fragment
and the number of candidate fragment respectively, and εM

denotes the matching error. The value of εM for correct
matches ranges from 1.12 to 0.63, the combination of part 3
and 5 shows an incorrect match with an error εM of 12.92. 
Figure 3a displays the resulting match of part 1 and part 3 as
both parts are rim fragments. Figure 3b shows the resulting
match of part 1 and part 5. Since part 5 is a wall fragment the
εM was computed for both possible positions, and the position
with lower εM was finally chosen.
Figure 3c shows the final reconstruction of the pot. Correct
matches for all four candidate fragments have been found.
The missing bottom of the pot is due to part 4, not being
processable because of its flat shape.
We applied our technique to real archaeological fragments
(Nr: 319–71, 209–71 from the late Roman burnished ware of
Carnuntum (Sablatnig and Kampel 2002)). Both pieces are
rim fragments (Figure 4a and b). The alignment along the
orifice plane allowed the estimation of Tz = 7.49 cm. The
smallest εM = 0.31 was found Rz for = 3.35. Figure 4c shows
the matched outlines of the two fragments and Figure 4d
shows the final reconstruction. 
Another example on real archaeological fragments was done
on the common ware of Sagalassos Kampel 2003. One rim

and two wall fragments were recorded and processed. Table 1
summarizes Tz, Rz and the matching errors for each possible
candidate. Correct matches were found between part one and
part two (εM = 1.32) and part two and part three (εM = 1.21).
No correct match was found between part one and part three
(εM = 14.81), because there was no alignment of the profile
sections (part one is on top of part three). Nevertheless all
three fragments were matched together, since the matching of
part two succeeded for both candidates. 
The results demonstrate the possibility of automatically
matching adjacent fragments by our method. It works for
fragments which can be oriented and classified by our
approach with one exception: two adjacent fragments on top
of each other cannot be matched by our method, because they
do not have overlapping profile sections. Furthermore if the
surface of the fragment is too flat or too small or the
classification is not known, the fragment is not considered for
reconstruction.
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(a) (b) (c)

Fig. 3. Matched parts: (a) part 1 and part 3 (b) part 1 and part 5 (c)
Matching parts 1, 2, 3, and 5.

(a) (b)

Fig. 4. Archaeological rim fragments: (a) Part1, (b) Part 2, (c)
Matching outlines, (d).

(c) (d)

Flowerpot 1 2 12,03 22,81 1,12

Flowerpot 1 3 8,67 -41,29 0,81

Flowerpot 1 5 9,34 73,21 0,63

Flowerpot 2 3 -4,94 17,61 0,92

Flowerpot 2 5 -10,02 -26,75 0,71

Flowerpot 3 5 11,10 32,99 12,92

Carnuntum 1 2 7,49 3,35 0,31

Sagalassos 1 2 -4,29 11,70 1,32

Sagalassos 1 3 -1,61 7,59 14,81

Sagalassos 2 3 -5,19 15,76 1,21

Ware RZ (mm) εMTZ (mm)CFnrRFnr

Table 1. Results of the matching process.



5. Conclusions

We have proposed a method for the assembly of an object
from pieces, which in our case means the reconstruction of an
archaeological pot from its fragments. The outcome on vessel
reconstruction out of multiple fragments was described by
real 3D data. The ceramic documentation and reconstruction
system described was recently integrated into the virtual
excavation reconstruction project 3D MURALE. Future work
will be directed towards setting up a pottery database with
more then 100 fragments and applying the algorithm to find
matching pieces.
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