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This  paper reports an experiment with automated landform classification methods for  archaeological  predictive  
modelling purposes. The aim was to find out if these new techniques can produce geomorphological maps that are  
useful to archaeologists, save time, and provide a more objective interpretation of the landscape. It is concluded that  
object-based image analysis is a suitable technique, but it needs further development before it can be applied more  
widely.
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1. Introduction

Archaeologists routinely rely on geomorphological maps 
to predict the location of archaeological sites and to un­
derstand their location in the landscape. In the Nether­
lands,  the  availability  of  nation-wide  LiDAR-based 
DEMs has  highly increased  the  level  of  detail  of  the 
available information on landform. The mapping tech­
niques used are however still the same as they were in 
the 1960s:  visual  interpretation of elevation maps and 
aerial photographs is combined with field visits to draw 
the  maps.  A  classification  system  developed  in  the 
1970s (TEN CATE and MAARLEVELD, 1977), using 
an amalgam of geomorphometric and geomorphogenetic 
criteria, is used to perform landform classification. This 
procedure is subjective and highly time-consuming, to 
the  effect  that  high-resolution  DEMs have  only  been 
‘translated’ into geomorphological maps for some parts 
of the country (KOOMEN and MAAS, 2004), and are 
still only available at a 1:50,000 scale in order to guar­
antee compatibility with the older mapping. Archaeolo­
gists however are also interested in the small detail that 
is visible at the 1:10,000 scale since the location of ar­
chaeological  sites  often seems to be  tied to  relatively 
minor elevation differences and small landscape units. 
Therefore, they tend to create more detailed geomorpho­
logical maps of their own made for predictive mapping 
purposes.

In this paper,  we will report  an experiment with auto­
mated landform classification methods for archaeologic­
al purposes. The aim was to find out if these new tech­
niques can produce geomorphological maps that are use­
ful to archaeologists, save time, and provide a more ob­
jective interpretation of the landscape.

2. Geomorphometry and automated landform 
classification

Geomorphometry is a branch of the geo-sciences that is 
relatively young. It uses quantitative methods and tech­
niques to characterize the earth’s surface from digital el­
evation  models  (see  www.geomorphometry.org).  It  is 
especially concerned with the quantification of surface 
form parameters and the extraction of landscape features 
from DEMs. Geomorphometric methods are attractive to 
many disciplines, including soil science, hydrology, eco­
logy and archaeology.  Until  recently however,  archae­
ologists have not given it much attention. 

Archaeologists have been using DEMs for a long time. 
They are  probably among the  most avid  users  of  the 
high-resolution LiDAR-based elevation models that are 
increasingly available in many parts of the world. These 
images are  however,  in  most cases,  treated  as  if  they 
were aerial photographs. Hillshading and colour manip­
ulation will be about the only analytical tools that many 
archaeologists  use  when studying  these  images.  They 
will identify and delineate objects of interest (archaeolo­
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gical features and/or landform units) by means of visual 
inspection and manual digitizing. More advanced meth­
ods of landform characterization usually do not repres­
ent the earth’s surface in a way that allows for easy ar­
chaeological interpretation. For example, the multi-scal­
ar landform classification routines available in LandSerf 
(www.landserf.org) have attracted some interest as addi­
tional parameters to analyse and predict archaeological 
site location (LÖWENBORG, 2009; KAY and WITCH­
ER, 2009) but do not seem very well suited as tools to 
interpret and classify individual landforms.

A relatively new branch of geomorphometry however, 
automated landform classification, offers the potential to 
quickly create highly detailed landform maps for large 
areas.  Most published case studies consider mountain­
ous areas and seem to be reasonably successful in delin­
eating broad landform categories like plateaus, different 
types  of  hills,  slopes  and valleys  (MACMILLAN and 
SHARY, 2009). In order to see whether these new ap­
proaches might also be used to effect in a relatively flat 
landscape, an experiment was carried out with two dif­
ferent techniques for automated landform classification: 
the  unsupervised  nested  means  method  described  by 
IWAHASHI and PIKE (2007), and object-based image 
analysis  (DRĂGUŢ  and  BLASCHKE,  2006).  These 
were  then  compared  to  a  visual  interpretation  of  the 
DEM. The study area chosen is a 12x16 km area in the 
vicinity of  the  village  of  Someren,  located  approxim­
ately 25 km to the south east of the city of Eindhoven in 
the Netherlands. Elevations in this area range between 
approximately 15 and 30 meters above sea level.  The 
available DEM is a LiDAR-based elevation model at a 
resolution of 5x5 m obtained from the Dutch Ministry of 
Transport, Public Works and Water Management (Ac­
tueel Hoogtemodel Nederland or AHN). 

3. The unsupervised nested means approach

The unsupervised nested means method is based on the 
classification of three separate landform parameters that 
can be obtained with standard GIS routines. These are 

slope, the local convexity in a 3x3 neighbourhood, and a 
parameter called  texture, which is the median value of 
the elevation in a 3x3 neighbourhood, and is used as a 
measure  for  the roughness  of  the terrain.  The texture 
parameter did not provide very clear landform patterns 
in the study area. Therefore, it was decided to replace 
this parameter with a measure of relative elevation, the 
mean elevation within a 250 m radius.

Each  of  the  parameters  used  can  be  sliced  into  two 
classes,  below and above the mean value encountered 
for the whole study area.  These sliced parameters can 
then  be  combined  through  overlaying  into  8  classes 
(table  1).  When executing  this  approach  in  the  study 
area, it quickly became clear that the high resolution of 
the DEM created a lot of noise in the classification. The 
5x5  m  DEM  was  therefore  smoothed  and  then  res­
ampled  to  a  25x25 m resolution.  The  smoothing was 
done using a mean circular filter within a 5 cell neigh­
bourhood.

The method has the clear advantage of being extremely 
simple to execute and is independent of the elevation 
range encountered in a study area.  It  resulted in relat­
ively clear patterns for ridges, but less so for valleys and 
depressions  (figure  1).  Increasing  the  neighbourhood 
size for the calculation of relative elevation changes the 
scale at which the features become visible. At the down­
side, the method highly simplifies landform categories.
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sloping convex elevation high

elevation low

concave elevation high

elevation low

flat convex elevation high

elevation low

concave elevation high

elevation low

Table 1: Possible outcomes of the unsupervised nested means  
classification (modified after IWAHASHI and PIKE, 2007).

Figure 1: Landform classification based on the unsupervised  
nested means approach.
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4. Object-based image analysis (OBIA)

Object-based  image analysis  was originally developed 
for medical imagery and remote sensing purposes. It is a 
method that can be applied for recognition and/or classi­
fication  of  landforms (DRĂGUŢ and  BLASCHKE, 
2006). It creates image objects through the aggregation 
of  pixels  into  discrete  regions  that  are  homogeneous 
with regard to their spatial and spectral  characteristics 
by  means  of  image  segmentation  (BAATZ  and 
SCHÄPE, 2000; RYHERD and WOODCOCK, 1996). 
The method described by (DRĂGUŢ and BLASCHKE, 
2006) is not very well suited for flat areas as it largely 
depends  on  the  classification  of  hill-slope  profiles. 
Therefore, we adapted this method to landform classific­
ation in flat areas.

Figure  2:  Landform classification based on multi-resolution  
segmentation  of  the smoothed  DEM, using  elevation,  slope  
and curvature.

The multi-scale pattern of elevation was explored with 
the aid of the Estimation of Scale Parameters (ESP) tool, 
designed  as  a  customized  algorithm for  the  Definiens 
Developer® suite by DRĂGUŢ  et al. (2010). It  calcu­
lates  the  local  variance  (LV)  (WOODCOCK  and 
STRAHLER,  1987)  of  object  heterogeneity  within  a 
scene. The ESP tool iteractively generates image-objects 
at multiple scale levels (with different values of the scale 
parameter  used  for  segmentation)  in  a  bottom-up  ap­
proach, and calculates the LV for each scale. Variation 
in heterogeneity is  explored  by evaluating LV plotted 
against the corresponding scale level. The thresholds in 

rates of change of LV indicate the scale levels at which 
the  image  can  be  segmented  in  the  most  appropriate 
manner, relative to the data properties of the scene. 

The  5x5  m  DEM  was  smoothed  and  re-sampled  to 
25x25 m and slope and curvature layers were derived 
from this. Elevation, slope and curvature were used as 
input  layers  in  eCognition Developer  8.  Elevation  in­
formation was used as input for segmentation, while the 
other two layers provided information for classification 
only.

The multi-scale pattern of elevation was explored with 
the aid of the ESP tool, with the following parameters: 
increment of 1, starting at 1. For this dataset, the first 
threshold is located at a scale parameter of 6, visible as 
a small step in the decay curve of the rate of change of 
local  variance.  This  value  of  the scale parameter  was 
used to perform the segmentation of the elevation layer, 
without considering shape information (shape = 0). The 
965 segments thus obtained represent relatively homo­
geneous areas in terms of elevation (figure 2) and were 
further employed as building blocks for the classifica­
tion, using the logic followed for the unsupervised nes­
ted means classification. 

High and low regions were separated based on a ratio 
between the mean elevation value of a segment and the 
mean elevation value of segments in a radius of 2.5 km. 
This  value  was established  using a  trial-and-error  ap­
proach.  Ratio values  above 1  classify high areas.  For 
each  region  so classified,  flat  and  sloping areas  were 
classified based on the first quartile of slope values as 
averaged within the segments. The threshold value ob­
tained for this area was 0.41 degrees. 

Concave  and  convex  areas  were  classified  with  a 
threshold  of  0  in curvature  values  as  averaged  within 
segments.  Valleys  were  classified  based  on  a  ratio 
between the mean elevation of the target segment and 
the mean elevation of all its neighbour segments. The 
threshold was given by a standard deviation lower than 
-0.5, which in this area was -0.36 m.

Discussion

Our objective was to compare two methods for automat­
ic  landform  classification.  The  unsupervised  nested 
means  method  produced  a  detailed  classification  of 
slopes, plateaus and depressions, but also included much 
‘noise’  that  is  difficult  to  interpret.  It  cannot  be  con­
sidered good enough for archaeological  purposes.  The 
classification produced by the OBIA approach however 
shows  that  automated  landform classification  can  get 
close  to  producing interpretable  and  correct  landform 
maps of relatively flat areas at the scale that archaeolo­
gists are used to deal with. It is also very quick; whereas 
manual  digitizing  took almost  10  days,  setting up  an 
OBIA classification is a matter of hours, and transfer­
ring it to other regions will even be quicker.  An addi­
tional benefit of the approach is that it  can detect  the 
presence of various man-made features in the area. 
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There are however a few issues that need closer atten­
tion before these methods can be applied more widely. 

The segmented images still  need interpretation.  While 
the method used allows us to determine that a certain 
area is lower than its neighbouring segments and is flat, 
this does not mean that it is always correctly recognized 
as a valley or depression by the software. We are deal­
ing with difficult classification issues here that not just 
include  geomorphometric  knowledge.  We  need  to  be 
aware that these new techniques may not just replicate 
geomorphological maps, but also allow us to target spe­
cific landforms of interest to archaeologists. However, 
in order to achieve this we need to establish a conceptu­
al framework based on expert knowledge to define these 
landforms in such a way that these can be translated into 
formal, quantitative rules.

For further development of OBIA methods we also need 
to consider the software used. It seems that the remote 
sensing community is less involved in developing open 
source software than the GIS community. Yet, the avail­
ability of these methods to the relatively small-sized sci­
entific  community  of  archaeology  should  not  be 
hampered  by  lack  of  finances  or  closed  source  pro­
gramme code.
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