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Zusammenfassung 

Thermoelektrische Materialien wandeln basierend auf dem Seebeck- und Peltiereffekt wechselseitig 

thermische Energie in elektrische Energie um. Für hohe Wirkungsgrade werden extrinsische Halbleiter 

mit bestimmten Eigenschaften benötigt, d.h. typischerweise einer Ladungsträgerkonzentration n im 

Bereich von 1019 cm-3, einer elektrischen Leitfähigkeit  von ca. 1000 S/cm, einer Thermokraft S von ca. 

200 µV/K, einem Powerfaktor S²von ca.40µW/cmK2, einer Wärmeleitfähigkeit von ca. 1 W/mK und 

folglich einer thermoelektrischen Gütezahl ZT = T S² von etwa 1. Für Raumtemperatur-

anwendungen werden Bi2Te3 und insbesondere die Mischkristalle bzw. Festlösungen dieser Verbindung 

mit Sb2Te3 und Bi2Se3 verwendet. Seit einigen Jahren finden umfangreiche Forschungsaktivitäten statt 

mit dem Ziel, die thermoelektrische Gütezahl ZT auf Werte deutlich über 1 zu steigern und so den 

Wirkungsgrad der thermoelektrischen Energiekonversion zu erhöhen. Hierzu sollen Effekte genutzt 

werden, die sich durch eine Nanostrukturierung des thermoelektrischen Materials ergeben. Hier sind  

vor allem Übergitter ‟ Strukturen [superlattice (SL)] von Interesse.       

 

Die chemische Zusammensetzung hat bei Bi2Te3-basierten Materialien einen sehr starken Einfluss auf die 

Dichte der Antisite-Defekte und hierdurch auf die Ladungsträgerdichte. Die Herstellung von 

elektronenleitenden (n-leitenden) Bi2Te3-basierten Dünnfilmen durch Molekularstrahlepitaxie (engl. MBE) 

und durch Sputtern auf heißen Substraten ist mit Problemen behaftet: Die temperaturabhängige Re-

Evaporation des relativ flüchtigen Te ist problematisch und erfordert die Anpassung des Te-Flusses an 

die jeweilige Substrattemperatur. Eine gezielte Stöchiometriekontrolle ist hier sehr wichtig, um eine 

Kontrolle über die Ladungsträgerkonzentration und die damit verknüpften elektrischen Eigenschaften zu 

erzielen. Aufgrund ihrer pseudo-hexagonalen Kristallstruktur weisen Bi2Te3-basierte Materialien eine 

Anisotropie der elektrischen und phononischen Transporteigenschaften und Diffusionskoeffizienten auf. 

Die elektrischen und thermischen Eigenschaften sind hierbei stark anisotrop, während die Seebeck-

Koeffizienten kaum betroffen sind. Bei der Mehrzahl der dünnfilmbasierten thermoelektrischen Bauteile 

findet der Ladungsträgertransport senkrecht zur Substratebene statt. Für SL-basierte Bauteile ist es 

vorteilhaft, wenn die c-Achse senkrecht zur Substratebene, d.h. parallel zur Wachstumsrichtung liegt.  

 

Ein Ziel dieser Arbeit war die Untersuchung neuer Methoden für die Herstellung Bi2Te3-basierter 

Dünnfilme und SL, wobei gleichzeitig der Herstellungsprozess vereinfacht werden sollte. Hierfür wurde 

neben epitaktischem Wachstum auch die sogenannte Nanoalloying-Methode angewendet: Nominell 

stöchiometrische Filme wurden durch eine alternierende Abscheidung von dünnen Elementschichten mit 

entsprechenden Dicken und einem anschließenden Temperschritt erhalten. Aufgrund der Abscheidung 

auf kalten Substraten kann die Re-Evaporation von Te umgangen werden. Ausserdem kann auf die 

Verwendung von Substraten, die epitaktisches Wachstum gewährleisten würden, verzichtet werden. Die 

Filme wurden in einer kalibrierten MBE-Anlage und einer Sputteranlage abgeschieden. Die 

Gesamtschichtdicke betrug etwa 1 µm, während die Elementschichtdicken im Bereich von nm oder 

darunter lagen. Es wurden verschiedene Substratmaterialien verwendet, d.h. (111)-orientiertes BaF2 für 

ein epitaktisches Wachstum und Si/SiO2 ‟ Wafer, mit denen eine kostengünstige Massenproduktion 

realisierbar ist. Zur Durchführung des Nanoalloying-Verfahrens wurden die hergestellten Filme und SL 

einem Niedertemperatur-Temperprozess in Te-reicher Atmosphäre unterzogen. Dieser Prozessschritt ist 

besonders kritisch: Während des Tempervorganges soll einerseits die Verbindungsbildung aus den 

Elementen durch eine Festkörperreaktion stattfinden, andererseits soll die nanoskalige SL-Struktur bei 

der Temperung erhalten bleiben. Eine neue Zweizonen-Temperprozedur in einer Te-reichen Atmosphäre 

ermöglichte für Filme aus Bi2Te3 eine Einstellung der Zusammensetzung und bemerkenswerterweise 

auch des Ladungsträgertyps. 

 

In dieser Arbeit wurden umfangreiche Probenserien hergestellt und untersucht, d.h. insgesamt ~100 

binäre Dünnfilme und SL mit der Nanoalloying-Methode auf “kalten” BaF2 und Si/SiO2 Substraten und 

~30 epitaktische binäre Filme und SL durch gleichzeitige Abscheidung der Elemente auf heißen 

Substraten. (i) Binäre Bi2Te3 und Sb2Te3 Filme wurden durch Nanoalloying hergestellt, und die 

Elementschichtdicke, chemische Zusammensetzung und die Temperbedingungen wurden variiert. 

(ii) Bi2Te3 / Sb2Te3 SL wurden durch Nanoalloying in einer MBE-Anlage hergestellt, und p-leitende Sb2Te3 / 
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(Bi,Sb)2Te3 und n-leitende Bi2Te3 / (Bi,Sb)2Te3 Filme wurden durch Sputtern hergestellt. (iii) Schließlich 

wurden binäre Bi2Te3 und Sb2Te3 Filme und Bi2Te3 / Sb2Te3 SL mit der MBE-Anlage epitaktisch  

abgeschieden. Bei den SL wurden die Dicken der Bi2Te3 und Sb2Te3 Einzelschichten bzw. die 

Periodenlängen bis minimal 6 nm variiert. 

 

Die Ladungsträgerkonzentration und ‟mobilität, die Thermokraft und die elektrische Leitfähigkeit 

wurden entlang der Filmebene (in-plane Richtung) gemessen während die Wärmeleitfähigkeit in der 

senkrecht dazu liegenden Wachstumsrichtung (cross-plane Richtung) gemessen wurde. Diese 

Vorgehensweise wurde gewählt da (i) die cross-plane Wärmeleitfähigkeit empfindlicher auf die 

Beschaffenheit der SL-Struktur reagiert und weil (ii) die elektrische in-plane Charakterisierung einfacher 

durchzuführen ist, da hierfür keine Mikrostrukturierung der Probe erforderlich ist und so eine 

umfangreichere Anzahl an Proben charakterisiert werden konnte. Alle Messungen wurden bei 

Raumtemperatur durchgeführt. Aufgrund der Anisotropie der Transporteigenschaften durfte ZT nicht 

direkt aus den elektrischen und thermischen Transporteigenschaften berechnet werden. Stattdessen  

wurden unter verschiedenen Annahmen Ober- und Untergrenzen für diesen Wert abgeschätzt. 

Rasterelektronenmikroskopie und energiedispersive Röntgenspektroskopie wurden genutzt, um die 

Mikrostruktur und chemische Zusammensetzung der Proben zu untersuchen. Weitere strukturelle 

Untersuchungen (Röntgenstrukturanalyse, Transmissionselektronenmikroskopie) wurden von 

Partnerinstituten ausgeführt. Besonderes Augenmerk wurde in dieser Arbeit auf den Zusammenhang 

der Textur mit der thermischen Stabilität der SL-Struktur, den elektrischen Eigenschaften und der 

Wärmeleitfähigkeit gelegt. Für die Bi2Te3 / Sb2Te3 SL wurden zudem Kompensationseffekte, die sich 

durch das Stapeln von n-leitendem Bi2Te3 auf p-leitendes Sb2Te3 ergeben untersucht. 

 

Bei den durch Nanoalloying hergestellten binären Filmen konnte gezeigt werden, dass die 

Ladungsträgerkonzentration und die elektrischen Transportgrößen durch die chemische 

Zusammensetzung eingestellt werden können. Die Proben wurden hierzu isotherm für typischerweise 

2 h bei 250 °C getempert. Auf diese Weise gelang die Synthese von Sb2Te3 Dünnfilmen mit niedrigen 

Ladungsträgerkonzentrationen (~ 1019 cm-3) und hohen -mobilitäten (> 400 cm²/Vs). Im Gegensatz zu 

Sb2Te3 Volumenmaterialien erweisen sich damit Sb2Te3 Filme als für thermoelektrische Bauteile geeignet. 

Bei Tempertemperaturen von 500 °C konnten n-leitende Bi2Te3 Filme bemerkenswerterweise in p-

leitende Materialien umgewandelt werden. Die Textur der Filme konnte über die Elementschichtdicken 

eingestellt werden.  

 

Insgesamt erwies sich die Nanoalloying-Methode als sehr gut geeignet für die Herstellung von 

elektronen- und löcherleitenden Bi2Te3-basierten Filmen und SL. Mit der Methode konnten diese Filme 

mit kontrollierter chemischer Zusammensetzung, Ladungsträgerkonzentration und elektrischen 

Eigenschaften hergestellt werden, wodurch eine hohe thermoelektrische Güte erzielt werden konnte. 

Sowohl n- als auch p-leitende Filme konnten hergestellt werden. Unter praktischen Gesichtspunkten ist 

die Erkenntnis, dass n-leitendes gesputtertes (Bi,Sb)2Te3 anstelle des bekannten Bi2(Te,Se)3 verwendet 

werden kann, von hoher Relevanz. Hierdurch kann die technologisch schwierige Verwendung von Se 

Sputtertargets umgangen werden. Die Ausrichtung der c-Achse parallel zur Wachstumsrichtung und die 

sich hierdurch ergebenden optimalen Transporteigenschaften parallel zur Substratebene können sowohl 

durch epitaktisches MBE-Wachstum auf BaF2 Substraten als auch durch Sputtern auf Si/SiO2 Wafern 

durch entsprechende Wahl der Elementschichtdicken erzielt werden. Die Kontrolle über die Filmtextur 

spielte auch bei der thermischen Stabilität der Multilagenstruktur eine Schlüsselrolle. Diese ist wichtig, 

um eine möglichst niedrige Wärmeleitfähigkeit zu erzielen. 

 

Von den mit der Nanoalloying-Methode hergestellten Filmen wiesen insbesondere die p-leitenden 

gesputterten SL herausragend hohe, mit einkristallinen Volumenmaterialien vergleichbare 

Powerfaktoren > 40 µW/cmK² auf. Die Filme waren stark texturiert und wiesen eine niedrige 

Wärmeleitfähigkeit auf. Die starke c-Orientierung der Filme führte zu einer erhöhten thermischen 

Stabilität der SL-Struktur aufgrund verminderter Diffusion entlang der Wachstumsrichtung. Die 

epitaktisch gewachsenen Übergitter zeigten eine sehr starke Textur und selbst für sehr niedrige 

Periodenlängen von 6 nm scharf getrennte Einzelschichten. Diese SL wiesen gegenüber den per 

Nanoalloying hergestellten SL eine deutlich erhöhte thermische Stabilität auf, und die 
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Gitterwärmeleitfähigkeit konnte gegenüber den binären Filmen um ~60% (d.h. auf 0.28 W/mK) 

reduziert werden.   

 

Venkatasubramanian erzielte für Bi2Te3 / Sb2Te3 Übergitter spektakuläre ZT-Werte von 2.4. Diese 

Ergebnisse konnten allerdings bislang nicht reproduziert werden und werden fortlaufend kontrovers 

diskutiert. Im Rahmen dieser Arbeit konnten p-leitende gesputterte SL-Systeme mit hohen ZT-Werten im 

Bereich von schätzungsweise 1.0 (konservative Schätzung) bis 1.9 (optimistische Schätzung) hergestellt 

werden.  

 

Die in dieser Arbeit gezeigten Ergebnisse zeichnen sich dadurch aus, dass zwei wichtige 

Abscheideverfahren (thermische Verdampfung und Sputtern), zwei verschiedene in-situ Verfahren zur 

Verbindungsbildung (MBE und Nanoalloying) und zwei verschiedene ex-situ Temperverfahren 

angewendet wurden. Im Ergebnis erhielt man eine Vielzahl verschiedener Dünnfilme mit 

maßgeschneidertem Schicht- und Filmaufbau. Auf Si/SiO2 Substraten abgeschiedene Filme wiesen trotz 

der amorphen Struktur der Substratoberfläche eine starke Textur auf. Durch MBE-Wachstum auf heißen 

BaF2-Substraten konnte epitaktisches Wachstum erzielt werden. Die gewählten Abscheide- und 

Temperbedingungen ermöglichten eine präzise Einstellung der Dotierung, Textur und Übergitterstruktur 

und ergaben Filme mit hervorragenden thermoelektrischen Eigenschaften, die so bislang noch nicht 

publiziert wurden. Die gezeigten Ergebnisse sind auch für andere Forschungsgebiete von Nutzen. Die 

Verwendung der Nanoalloying-Methode zur Filmherstellung ist insbesondere dann vorteilhaft, wenn die 

verwendeten Elemente große Unterschiede beim jeweiligen Dampfdruck aufweisen, was die 

Abscheidung auf heißen Substraten und daher die Kontrolle der Stöchiometrie und der 

Ladungsträgerkonzentration erschwert, z.B: (i) bei photovoltaischen Anwendungen basierend auf CdTe 

Dünnfilmen mit Sb2Te3 Rückseitenkontakten und (ii) für Bi2Te3-basierte topologische Isolatoren, die eine 

niedrige Ladungsträgerkonzentration erfordern.  
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Summary 

 
Thermoelectric materials yield mutual conversion of thermal to electrical energy by the Seebeck and 

Peltier effect. For high efficiencies, extrinsic semiconductors with specific transport properties are 

required, typically a carrier concentration n of ~1019 cm-3, an electrical conductivity  of ~1000 S/cm, a 

thermo power S of ~200 µV/K, a power factor S²of ~40 µW/cmK2, a thermal conductivity of ~1 

W/mK, and in summary a thermoelectric figure of merit ZT = T S² ~ 1. For room temperature 

applications, Bi2Te3 and in particular its hole- and electron conducting solid solutions with Sb2Te3 and 

Bi2Se3 are used.  Recently, there have been great efforts to increase ZT significantly beyond 1 by 

exploiting the beneficial effects of nanostructuring thermoelectric materials, particularly by introducing 

superlattice (SL) structures.  

In Bi2Te3-related materials the chemical composition strongly determines the density of antisite defects 

and thereby the charge carrier density.  n-type Bi2Te3-related thin films and SLs deposited by Molecular 

Beam Epitaxy (MBE) and sputtering on hot substrates revealed several complications: temperature-

dependent re-evaporation of the volatile Te is a severe problem and requires the re-adjustment of the Te 

flux for each substrate temperature. Thus, stoichiometry control is critical for controlling the carrier 

concentration and the related electrical properties. Due to their pseudo-hexagonal crystal structure, 

Bi2Te3 ‟ related materials exhibit an anisotropy of the transport coefficients of electrons and phonons 

and diffusion coefficients, note that electrical and thermal conductivity are strongly anisotropic while the 

Seebeck coefficient is hardly affected. For the majority of thin-film based thermoelectric devices  carrier 

transport takes place perpendicular to the substrate plane. For SL-based devices it is favorable if the c 

axis lies perpendicular to the substrate plane, i.e. parallel to the growth direction.   

One aim of this work was to investigate new routes of synthesis of high-ZT Bi2Te3-based thin films and 

SLs and to facilitate their fabrication. For this, besides epitaxial growth the nanoalloying method was 

applied: Nominally stoichiometric films can be obtained by alternative deposition of elemental layers 

with appropriate thicknesses and a subsequent annealing step. Te re-evaporation is avoided by 

deposition on cold substrates, and epitaxially compatible substrates are not required. Films were 

deposited in a calibrated MBE system and a sputtering system, film thicknesses were around 1 m and 

the thickness of elemental layers was in the nm to sub-nm range. Different substrate materials were 

used, i.e. (111)-oriented BaF2 for epitaxial growth and Si/SiO2 wafers that are suitable for a mass-

production. During the nanoalloying process, the films and SLs were exposed to a low-temperature 

annealing process in a Te rich atmosphere, this processing step being especially critical: during annealing 

compound formation should take place via a solid state reaction, however,  the  nanoscaled SL structure 

should be retained during annealing. A new two-zone annealing in a Te rich atmosphere yielded a post-

deposition control of the composition of as-grown Bi2Te3 thin films and, most strikingly, their charge 

carrier type.  

Sample series were deposited, i.e. ~100 binary thin films and SLs with the nanoalloying method on cold 

BaF2 or Si/SiO2 substrates and ~30 epitaxial binary films and superlattices by co-deposition of the 

elements on hot BaF2 substrates. (i) Nanoalloyed binary Bi2Te3 and Sb2Te3 films were grown and  the 

elemental layer thicknesses, the chemical composition, isothermal annealing conditions, and two-zone 

annealing conditions were varied for the binary films. (ii) Nanoalloyed Bi2Te3 / Sb2Te3 SLs were grown in 

a MBE system and p-type Sb2Te3 / (Bi,Sb)2Te3 and n-type Bi2Te3 / (Bi,Sb)2Te3 SLs were grown by 

sputtering. (iii) Finally, binary Bi2Te3 and Sb2Te3 films and Bi2Te3 / Sb2Te3 SLs were grown epitaxially in the 

MBE system. For the SLs, the ratios of Bi2Te3 and Sb2Te3 layer thicknesses and period lengths were varied 

down to 6 nm.   

Carrier concentration and ‟mobility, thermo power and electrical conductivity were measured along the 

film plane (in-plane direction) while thermal conductivity was measured in the growth direction (cross-

plane direction). These measurement directions were chosen (i) because  the cross-plane thermal 

conductivity is more sensitive to the quality of the SL structure and (ii) because in-plane electrical 

characterization is simpler and does not require microstructuring of the samples. Thus a larger series of 

samples could be characterized. All measurements were carried out at room temperature. Due to 

transport anisotropy, electrical and thermal transport properties cannot be directly combined to 
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calculate ZT, therefore different cases were considered to estimate ZT.  Scanning electron microscopy 

and energy dispersive X-ray spectroscopy were used to investigate the microstructure and chemical 

composition. Further structural characterization (X-Ray diffraction, transmission electron microscopy) 

was carried out elsewhere. Special attention was paid to the relation of texture to the electrical 

properties of the films and SLs. Texture also affected the thermal stability of the SL structure and its 

thermal conductivity. Also for SLs, carrier compensation effects induced by stacking n-type Bi2Te3 on p-

type Sb2Te3 layers were investigated. 

For nanoalloyed binary films it was proven that carrier concentration and electrical properties can be 

adjusted by the chemical composition via isothermal annealing conditions, typically 250 °C for 2 h. In 

this way, Sb2Te3 thin films with low carrier concentrations (~ 1019 cm-3) and high mobilities (> 400 

cm²/Vs) could be synthesized successfully. It could be shown that Sb2Te3 thin films are suitable for 

thermoelectric devices, in contrast to Sb2Te3 bulk materials. Bi2Te3 thin films could even be converted 

from n- into p-type at annealing temperatures of 500 °C and the elemental layer thickness allowed to 

control film texture.  

The nanoalloying synthesis method was successfully applied for the fabrication of electron and hole 

conducting Bi2Te3 related thin films and SLs. Such films were deposited with controlled chemical 

composition, carrier concentration and electrical properties and yield improved thermoelectric figures of 

merit. Both n and p-type films could be obtained, it is also of significant practical importance that n-type 

sputtered (Bi,Sb)2Te3 could be used to replace Bi2(Te,Se)3 thin films and avoid Se targets, which are 

difficult to handle. A c axis parallel to the growth direction and thus optimum in-plane transport 

properties can either be achieved by epitaxial MBE growth on BaF2 substrates or by sputtering on Si/SiO2 

wafers with appropriate choice of elemental layer thicknesses. The control of texture in the films was 

also of key importance for the thermal stability of multilayered structures during annealing and hence 

for retaining a low thermal conductivity.  

Record power factors > 40 µW/cmK² were obtained for the nanoalloyed SLs, particularly for sputtered 

p-type films  and were similar to bulk single crystals. These films revealed a high degree of texture and a 

low thermal conductivity. Also, a higher degree of c-orientation in the films resulted in a higher thermal 

stability of the SL structure due to a reduced  diffusion along the growth direction. The epitaxially grown 

SLs yielded a very strong texture with sharply separated layers even for period lengths as small as 6 nm. 

These SLs  proved to be more thermally stable than nanoalloyed SLs  and the lattice thermal conductivity 

was reduced by up to ~60% (i.e. down to 0.28 W/mK) as compared to binary films.  

Venkatasubramanian reported a spectacular ZT value of 2.4 in Bi2Te3 / Sb2Te3 superlattices, however, 

these results could not be reproduced and are still under debate. In this work, for the sputtered p-type 

films a high ZT value was estimated being 1.0 for a conservative estimation and 1.9 under optimistic 

assumptions.  

The  results obtained in this study are unique in the sense that  two powerful deposition technologies 

(evaporation and sputtering), two different in-situ compound formation techniques (MBE and 

nanoalloying) and two ex-situ annealing techniques have been applied yielding a large number of thin 

films with tailored film architecture. Films deposited on Si/SiO2 substrates reported in this study were 

strongly textured, despite the amorphous structure of the substrate top layer. In case of MBE on hot 

BaF2 substrates epitaxial growth was achieved. It could be shown that doping, texture and SL structure 

can be precisely controlled for all deposition and annealing conditions and yielded outstanding 

thermoelectric film properties not reported before. Other research fields may also benefit from these 

results. The nanoalloying method is clearly advantageous when elemental species show large differences 

in vapor pressure, complicating the deposition on hot substrates and thus control of stoichiometry and 

charge carriers: (i) in photovoltaic applications for CdTe thin films and Sb2Te3 back contacts and (ii) for 

Bi2Te3 based topological insulators that require low charge carrier concentrations.  
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Chapter preview and overview over deposited films 

 

 
The first 4 chapters serve as introduction and description of experimental details.  

 

Chapter 1 is a phenomenological introduction to thermoelectricity.  

 

Chapter 2 shows the interplay of the transport properties and the performance of thermoelectric 

materials and gives an introduction into (thermoelectric) transport theory for bulk materials and in 

particular for 2D nanostructured superlattice (SL) systems. 

 

Chapter 3 gives an overview over the examined material system, i.e. Bi2Te3, Sb2Te3 and (Bi1-xSbx)2Te3 

solid solutions. Properties of bulk as well as thin-film materials are shown. The second part of the 

chapter is an in-depth review of the record-breaking MOCVD-grown Bi2Te3 / Sb2Te3 SLs and an analysis 

of the accompanying phenomena and publications. Their outstanding properties reported in 2001 

initiated a boost for synthesis of thermoelectric thin films and many other types of nanomaterials.  

 

In Chapter 4 the fabrication methods and setups that were used to synthesize the films are described, 

i.e. the nanoalloying and epitaxial method and the used molecular beam epitaxy and sputtering system. 

It is pointed out that the nanoalloying method has several advantages over more conventional methods 

such as co-deposition on a hot substrate. A broad selection of characterization methods was used to 

characterize the structure and transport properties of the films. The applied methods are elaborated 

together with the used measurement parameters. 

 

Experimental results are given in chapters 5 to 9. An overview over the used deposition patterns and 

deposited structures is given below. The thicknesses d of the element and compound layers are given as 

well as the number of deposited periods and the annealing temperature. pBT  and pST  indicate the 
number of Bi-Te and Sb-Te quintuples in chapter 6. 

 

 
Chapter 5: Binary MBE nanoalloyed thin films 
 
Chapter 5 shows results for binary Bi2Te3 and Sb2Te3 thin films grown by MBE. Different deposition and 

annealing conditions are used and Te content, element thicknesses and annealing methods are varied.  

 

 
 
 
 

Te
Sb
Te
Sb
Te

Te

Sb

Te
Bi
Te
Bi
Te

Te

Bi

3 4

1 2

Nr. dBi [nm] dSb [nm] dTe [nm] Periods Anneal.Temp. [°C]  
1 0.2  0.2 999 250, 400, 450, 500  

2 0.2-1.7  0.2-2.4 250-

999 

250  

3  0.2 0.2 999 250  

4  0.2-1.5 0.2-2.6 250-

999 

250  

Used substrate materials: BaF2 and Si/SiO2. Only properties 

determined with BaF2 as substrate are shown, properties on 

Si/SiO2 were similar and are not shown. TEM images were 

acquired with Si/SiO2 as substrate.  
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Chapter 6: Bi2Te3 / Sb2Te3 superlattice thin films grown by MBE  

 

In chapter 6, Bi2Te3 / Sb2Te3 SL structures fabricated with a MBE setup with different ratios of 

Sb2Te3:Bi2Te3 compound layer thicknesses and annealing temperatures are characterized. The effects of 

the quality of the SL structure on transport properties (e.g. thermal conductivity and carrier 

compensation effects) are investigated.  

 

 
 
 
 
Chapter 7: Sputtered p-type Sb2Te3 / (Bi,Sb)2Te3 multilayer systems 
 

In Chapter 7 results obtained on p-type nanoalloyed sputtered Sb2Te3 / (Bi0.2Sb0.8)2Te3 SLs with a period 

length of 50, 25 and 12.5 nm are shown. Annealing temperatures, period length and total film 

thickness are varied.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Te
Sb
Te
Sb
Te

Te
Bi
Te
Bi
Te
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12.5 0.6 1.9 4.0 2.4 4.0 120 150  

Used substrate materials: Si/SiO2  

Used substrate materials: BaF2 and Si/SiO2. Most properties were 

determined  with BaF2 as substrate. 
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Chapter 8: Sputtered n-type Bi2Te3 / (Bi,Sb)2Te3 multilayer systems 

 
In Chapter 8, sputtered n-type nanoalloyed homogeneous compound films of Bi2Te3 and (Bi,Sb)2Te3 and 

Bi2Te3 / (Bi0.9Sb0.1)2Te3 SL films are investigated. The upper half of the shown deposition pattern is used 

for the deposition of (Bi,Sb)2Te3 and the lower half is used for Bi2Te3. For the homogeneous films, the Sb 

content is varied. For the SL films, the annealing temperatur is varied.   

 

  
 
 
 
Chapter 9: Epitaxial Bi2Te3 and Sb2Te3 binary films and superlattices 
 
Chapter 9 shows results for epitaxial films grown by MBE, i.e. binary Bi2Te3 and Sb2Te3 films and SLs. 

The results are analyzed with regard to the previously published works. 
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Used substrate materials: BaF2.  

Binary Sb2Te3 films were deposited with a substrate 

temperature of 330, 350 and 370 °C. The deposition 

temperature used for the superlattices was 350 °C, if not 

indicated otherwise. 
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engineering have enabled the fabrication of thin-film based microscale modules, which enable high 

cooling power densities of several 100 W/cm². Due to their low thermal mass, the desired temperatures 

can be attained extremely fast, usually within ~100 ms. Their low size allows to integrate them into very 

small energy harvesting systems that can be attached to a wide range of heat sources, for example to 

power energy-autarkic sensor systems.  

 

 

1.1 The Seebeck, Peltier and Thomson effect and its applications 

The Seebeck, Peltier and Thomson effect are the basic effects of thermoelectrics (see e.g. [9,10,11]) and 

can be illustrated with the thermocouple shown in Figure 1.2.    

 

 

Figure 1.2 Left: Simple thermocouple consisting of materials A and B with junctions 1 and 2 and free ends 3 and 4. 

Right: Unicouple, representing the working principle of a thermoelectric generator. 

Seebeck effect : The Seebeck effect can be seen as a consequence of thermally induced charge carrier 

diffusion [12].  If a small temperature difference T is established between the material junctions 1 and 

2 with junction 1 having a higher temperature than junction 2 and the free ends 3 and 4 of the material 

B are kept at the same temperature, a potential difference V is established between the free ends. The 

differential Seebeck coefficient (also referred to as thermopower) SAB is defined as the ratio of this 

potential and temperature difference by 
  

 

and is given by the difference of the Seebeck coefficients SA and SB of the materials. SAB is defined as 

positive if the potential difference induces a conventional current flow from the hot to the cold junction 

and negative if the opposite is the case. In practical Seebeck coefficient measurements (see e.g. sect. 

4.2.2), always the differential Seebeck coefficient is measured since the material always has to be 

connected to some kind of conductor (e.g. Cu) in order to determine the Seebeck voltage V. 

Conveniently, usually the absolute Seebeck coefficient S is given for a single material which is then 

defined as positive (negative) for p (n)-type conductors.  

 

Peltier effect: The Peltier effect is the phenomenologically reverse effect of the Seebeck effect. If a DC 

current I flows through materials A and B and junctions 1 and 2, one of the junctions heats up while the 

other cools down depending on the direction of the current. The differential Peltier coefficient AB gives 

a relation between the current I and the amount of heat Q transported per time: 
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AB is defined as positive if current flows from material B to A and junction 1 heats up while junction 2 

cools down and defined as negative if the opposite is the case. An absolute Peltier coefficient for each 

material can be defined in the same fashion as for the Seebeck coefficient. 

 

Thomson effect: Contrary to the Seebeck and Peltier effect, the Thomson effect generally applies to 

single materials A and B. Suppose the ends of the material are subjected to a temperature difference T 

while simultaneously an electrical current I flowing in the same direction as the gradient is applied to the 

material. The material then exchanges heat Q with its surroundings according to   
 

 
with the Thomson coefficient T. The Thomson effect plays a rather minor role in thermoelectrics and 

can mostly be neglected. 

 

Kelvin relations: Peltier, Seebeck and Thomson are related to each other via the Kelvin relations: 
 

 

With these equations, the Peltier and Thomson coefficient can be calculated from the relatively easily 

obtainable Seebeck coefficient. 

 

1.1.1 Thermoelectric devices and the figure of merit ZT 

The working principles behind thermoelectric energy conversion can be well illustrated with a single 

thermocouple consisting of a leg of n- and p-type semiconductor (SC) material (Figure 1.2). A basic 

derivation of device performances is outlined in [10]. 

 

The thermoelectric cooler: In this and the next section, an index p (n) will mark the transport property 

of the p (n) ‟ type leg. The hot and cold side temperatures will be given by TH and TC, respectively.  
The most important property of a thermoelectric cooler is the coefficient of performance (COP) which 

is defined as the ratio of the heat extracted from the source to the expenditure of electrical energy. 

The maximum COP max  that can be reached under optimum current conditions is: 
 

 

with the mean temperature Tm = (TH+TC)/2. Expressed with the maximum COP C = TC / (TH-TC) that can 

be reached in a Carnot cycle it can be seen that eq. 1.5 is the Carnot COP multiplied with a loss factor 

depending on the material parameters and hot and cold side temperature. The influence of all material 

parameters is summarized in the figure of merit Z. Under optimal leg geometry, Z is given by 

 

 

In the search for improved materials, a variant of Z that characterizes the performance of a single 

thermoelectric material would be convenient. With the material´s (total) thermal conductivity , electrical 

conductivity  and Seebeck coefficient S one can define a figure of merit z for a single material by  
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where the numerator that characterizes the electrical transport properties of the material is commonly 

called the power factor (PF=S²). In literature on thermoelectrics, it is common to denote the quantity z 

by Z, so Z will be used instead of z for the following sections of this work. Multiplying z or Z with T 
yields ZT, a dimensionless form of the figure of merit which is commonly used to characterize the 

thermoelectric performance of a material. Rewriting ZT with the lattice thermal conductivity l (obtained 

by substracting the electronic part of the thermal conductivity, e from ), the charge carrier mobility 

and ‟concentration µ and n and Lorentz number L shows that ZT is determined by the ratio of l to µ, 

which is a key point for material improvement considerations. 

 

The thermoelectric generator: As shown in Figure 1.2, a thermoelectric generator converts thermal 

energy into electrical energy that it delivers to an application with load resistance RL. The system can be 

characterized by the efficiency , i.e. the ratio of electric output power to the thermal power that is 

drawing heat from the hot side. For optimized leg properties (load matching etc.), the maximum 

efficiency max  is given by: 
 

 

The definition of Z is analogous to the case of thermoelectric cooling as well as the structure of max 

compared to max. The maximum efficiency is given by the Carnot efficiency C that applies to a 

reversible process multiplied with a loss factor induced by the irreversible processes due to irreversible 

losses (Joule heating, thermal conduction). max in dependence on ZTm is plotted in Figure 1.3 for 

different hot side temperatures and is far below the maximum values that can be achieved in an ideal 

Carnot process. Increasing ZT to a value of 2 (a perhaps realistic goal) would yield significant 

improvements, significantly expanding the application field for thermoelectric energy conversion.   

The ZT values of the most important state-of-the-art-thermoelectric p-type materials for bulk and thin 

films are given in Figure 1.3 in dependence on temperature. Clearly, a significant improvement in 

performance was achieved by the introduction of nanostructured materials (indicated by an asterisk in 

the figure).  

 

 

Figure 1.3 Left: Thermoelectric generator, plot of max vs. ZTm (eq. 1.8) for different hot side temperatures. Solid lines: 

Cold side kept at 300 K, Brown dashed line: Cold side kept at 360 K (typical application case). Efficiency gains by 

increasing ZT from the classic value of 1 to a higher value of 2 are indicated for some temperatures. The Carnot efficiency 

C for selected temperatures is indicated on the left. Right: Current data for ZT of the currently most important p-type 

state-of-the-art thermoelectric materials. Asterisks indicate nanostructured materials. References: [8,13,14,15,16,17,18, 

19,20,21,22,23,24,25].  
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2 Thermoelectric transport in bulk and nanoscale materials 

The thermoelectric energy conversion is determined by the ratios of the transport coefficients and thus 

fundamental parameters of the electron and phonon systems. In the first part of this chapter the 

interrelations of the transport properties is explained for bulk materials based on the band theory for 

crystalline solids and solution of the linearized Boltzmann transport equations. It is further sketched how 

thermal conductivity can be described by the Debye-Callaway model. Electron and phonon scattering 

mechanisms are discussed and electron and phonon-related criteria for good thermoelectric materials 

are given. As a summary, in bulk materials best efficiencies are obtained for extrinsic semiconductors 

(i.e. semiconductors with enhanced electrical conductivity caused by additional dopand species). Specific 

values of the transport properties are necessary to yield a high efficiency. Typical values are                             

n ~1019 cm-3,  ~1000 S/cm, S ~200 µV/K and a power factor S²of ~40 µW/cmK2. In addition to that, 

a low thermal conductivity is required, typically elis around 1 W/mK. The transport 

parameters S and e involved in the definition of ZT all depend sensitively in a different manner on 

the position of the chemical potential with respect to the band edges and thus carrier concentration 

(Figure 2.1), complicating materials optimization.  

 

 

Figure 2.1 Interconnection of electrical conductivity, Seebeck coefficient, thermal conductivity and ZT on carrier 

concentration for Bi2Te3 [16] (details on crystal structure not given in reference). The optimum carrier concentration for 

this material is in the range of 1019 ‟ 1020 cm-3.  

The transport parameters and ZT are also dependent on temperature. For thermoelectric applications 

around room temperature, Bi2Te3 and in particular its hole- and electron conducting solid solutions with 

Sb2Te3 and Bi2Se3 are used. Material properties of these compounds will be explained and discussed in 

the next chapter in detail. As a brief introduction for this chapter, these materials are characterized by a 

pseudo-hexagonal crystal structure. Transport is strongly anisotropic in these materials, i.e. electrical and 

thermal conductivity and diffusion coefficients are much lower parallel to the c-axis than perpendicular 

to it. This is why it is always important to consider the texture of the films and the direction in which 

these properties were measured. The directions referred to as “in-plane” and “cross-plane” direction 

correspond to the direction parallel and perpendicular to the film plane, respectively. In this work, the 

electrical properties were characterized in in-plane direction while the thermal conductivity was 

measured in cross-plane direction.       

 

The second part of the chapter is dedicated to thermoelectric transport theory for nanostructured 

materials. Note that while there is no theoretical limit on ZT, several authors have dealt with the limits of 
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ZT of non-nanostructured materials under practical considerations, giving a practical maximum ZT of 1-2 

[26] or a value of 2 at room temperature and ~ 4 at 1200 K [27]. It was concluded by the authors that 

radically different concepts such as nanostructures are required to increase ZT beyond that limit which is 

why there is a great amount of research activity in that field. The two major mechanisms for ZT 

improvement are, firstly, an improvement of the product of Seebeck coefficient and carrier 

concentration (or electrical conductivity) and secondly a reduction of thermal conductivity. Examples for 

both are given for 2D nanostructured superlattice systems. Recent results directly related to the record-

breaking V2VI3 SLs are described in detail. 

 

2.1 Bulk materials 

2.1.1 Electrical properties 

2.1.1.1 Boltzmann transport theory 

The following considerations (see e.g. [9,10,11..]) apply to isotropic semiconductors with a single band 

and parabolic dispersion for electrons. Analogous considerations apply to holes as charge carriers. In the 

parabolic approximation, the energy E = E(k) of a charge carrier is related to its momentum k and 

effective mass     by           . In the most general case, the effective mass is a tensor with 

principal values of the effective masses          along the crystal axes. The bulk energetic density of 

states is then given by  

 

 

with the density of states (DOS) mass       ⁄         
    that is a geometric mean of          

multiplied with the number of band extrema K. The Fermi-Dirac distribution for fermions in thermal 

equilibrium is given by eq. 2.2 with EF as Fermi energy and kB as Boltzmann constant. The Fermi 

distribution can be approximated by the Boltzmann approximation for (E-EF) >> kBT, yielding a simple 

exponential distribution (right-hand side of eq. 2.2) [28]. 

 

 

The carrier concentration n is given by 

 

 

Applying the Boltzmann approximation in eq. 2.3 results in a simple exponential dependence for the 

carrier concentration on the position of the Fermi level EF relative to the lower edge of the conduction 

band EC. For heavily degenerate semiconductors (EF moves into the conduction band), the Boltzmann 

approximation tends to get inaccurate and the integral form of eq. 2.3 has to be used to get accurate 

results. 

 

Starting with the Boltzmann Transport Equation (BTE) in the relaxation time approximation [29-p.246] 

and taking into account the definitions of heat and electrical currents, expressions for the electrical 

conductivity, Seebeck coefficient and Lorentz number L that gives a relation between electrical and 

electronic thermal conductivity can be derived [9-p.403-417]:   
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 represents the -integral and s the scattering parameter. s has a value of -1/2 for acoustic phonon and 

alloy scattering and 3/2 for scattering on ionized impurities [10-p.59ff]. In the equations, a numerically 

convenient form of the so-called transport integrals as given in [10-p.35] is used: 

 

 

with the reduced dimensionless Fermi level energy  and the Fermi integral Fz. L for different solid 

solutions of (Bi1-xSbx)2Te3 is given in Figure 2.2. For metals or generally, materials with very high carrier 

concentrations, L approaches the value of 3/3 (kB/e)2 = 2.45 x 10-8 V²/K.  

 

Different simplifications for the transport equations exist. A very useful and widely used one is the 

Pisarenko relation, derived for a single carrier type in the Boltzmann approximation [30-p.307] which is, 

however, not accurate for metals and heavily degenerate semiconductors:  

 

 

with C as a constant that depends on the electron scattering mechanism. The relation explains why 

semiconductors in the non- or only slightly degenerate regime have a linear dependence of the Seebeck 

coefficient on logarithmic charge carrier concentration. 

 

 
Figure 2.2 Calculated Lorentz number L in dependence of n for single crystalline (Bi1-xSbx)2Te3 for different x md for x=1 

(n-type) was taken from [11-p.118], for the other values of x (p-type) the values of md were taken from Table 3.3 or [31]. 

The calculated L for x = 0.75, 0.85 and 0.9 are nearly identical, thus only L for x = 0.85 is shown. 
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2.1.1.2 Carrier compensation effects on electrical conductivity 

For intrinsic and extrinsic semiconductors, the intrinsic carrier concentration ni is connected to the 

electron concentration n and the hole concentration p by [28]: 

   

   √    √                 
( 2.10) 

 

with p0 for the holes defined analogously to n0 for the electrons in eq. 2.3. As an example,using the 

material data for Bi2Te3 presented in section 3.3, ni = 1.4 x 1018 cm-3 for Bi2Te3 can be calculated.  

 

The total carrier concentration ntot determines the electrical conductivity by  = entotµ and can be 

calculated by: 
 

           
      ( 2.11) 

 
where n and p are electron and hole concentration, respectively. Figure 2.3 shows ntot in dependence of 

p. This corresponds to a one-band n-conducting semiconductor (ni is constant) in which charge is partly 

carried by holes, corresponding to a compensated semiconductor. Evidently, the addition of holes 

reduces the conductivity until a ntot that corresponds to twice the intrinsic carrier concentration is 

reached. Since also the Seebeck coefficient is reduced by compensation effects (see eq. 2.17 below), 

these effects are clearly detrimental for the thermoelectric performance. 

 

 

Figure 2.3 Calculated total carrier concentration ntot in dependence of hole concentration p for Bi2Te3.    

2.1.1.3 Electronic scattering processes  

Scattering by acoustic phonons is the predominant process in the Bi2Te3-based materials at room 

temperature and above. The carrier mobility under acoustic phonon scattering is limited due to 

fluctuations of the periodic potential and given by              
       [32-p.69].  

For alloy scattering, no quantitative expression is given in [32] and subrefs. One may consider the 

scattering on neutral impurities. According to [9-p.409], the mobility due to scattering on neutral 

impurities is inversely proportional to the concentration of scatterers NN. Indeed, it appears that for 

some compounds the decrease of electrical conductivity or mobility is roughly linear to the content of 

foreign atoms if their concentration is small, e.g. for the alloy Bi2Te3-Sb2Te3 (p-type), Figure 2.4, Bi2Te3-

Bi2Se3 (n-type) [6] or Cu-Ni [29-p.255].   

Electron grain boundary scattering was investigated by a number of authors. The consensus is that the 

increase of resistivity gr over that of a single crystal due to boundary scattering is proportional to the 
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inverse grain diameter d [33] according to the relation     
    

      
    where Rref is the reflection 

coefficient and SV   d-1 the total boundary surface per unit volume. 

Ionized impurity scattering is not of great importance despite the high number of acceptors and donors 

in typical highly doped thermoelectric materials, [32-p.70]. 

 

The influences of different scattering mechanisms associated with carrier mobilities µi on the total 

mobility µtot can be combined by Matthiessen´s rule,        ∑       .  
 

 
 

Figure 2.4 Electron mobility in dependence of composition in the Bi2Te3 - Sb2Te3 system. Data from [6] (details on crystal 

structure not given in the reference).   

2.1.2 Lattice thermal properties, phonon transport: The Debye-Callaway model 

After the collision of two phonons with wave vectors k1 and k2, the resulting wave vector is given by k3 

plus a reciprocal lattice vector G [9-p.328], i.e.           . Here, G=0 characterizes N(ormal)-

processes during which the total phonon momentum is conserved and heat transport is not impaired, 

yet phonon momentum is redistributed. U(mklapp)-processes occur for G≠0, meaning that the crystal 

lattice participates in the scattering process and the resulting wave vector k3 leads outside the Brillouin 

zone which is possible if the initial phonon momenta are sufficiently high. U-processes are associated 

with phonon momentum reversal and tend to restore the phonon distribution towards the equilibrium 

distribution and thus give rise to thermal resistance.  

 

The Debye-Callaway (DC) model is a sophisticated model for the calculation of the thermal conductivity 

of elements and compounds. It assumes that collisions change the phonon energy distribution by 

momentum-conserving N-processes (relaxation time N) and non-momentum conserving processes 

(relaxation time R) which have to be treated separately. Asen-Palmer et al. [34] and finally Morelli et al. 

[35] pointed out that the total lattice thermal conductivity l consists of two terms (see eq. 2.13) of 

which the second one cannot be neglected for very pure, defect-free samples and that good results can 

be obtained by treating transverse and longitudinal phonons separately. Only acoustic phonons are 

considered since optical phonons hardly carry any heat due to their low group velocity due to their flat 

dispersion /k [36]. l is given by adding up longitudinal and transversal phonon thermal conductivity 

L and T [35]: 

 

 

Here, only the case of longitudinal phonons (indices L1 and L2) is sketched in eq. 2.13. Expressions for 

transversal phonons are analogous and C, D, , vS, B  and   
   (see below) have to be taken accordingly.  
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According to Matthiessen's Rule, the influence of scattering processes can be combined by adding up 

the inverses of the relaxation times. In this sense, the relaxation time R sums up all resistive, phonon-

momentum changing scattering processes. C sums up all of these scattering processes plus the normal 

processes with N. The scattering processes associated with the given relaxation times  are Umklapp 

scattering (U), mass-fluctuation (point-defect) scattering (I), boundary scattering (B) and normal 

scattering (N) that are added up by: 

 

 

Each  has a different dependence on phonon frequency  and temperature T:  

 

 

Here, d is the dimension of the crystal or grain. The prefactors B contain material-specific properties 

such as the phonon group velocity vs and are given e.g. in refs. [10-p.71,35]. Specifically, the point-

defect scattering prefactor BI is proportional to the mass disorder, i.e. the sum of the deviations of the i-

th unit cell atomic mass Mi (with a concentration xi) from the average mass per unit cell   ̅̅ ̅ divided by 

the number N of unit cells per volume [32-p.78].  

 

 

Figure 2.5 (left) shows schematically the limitation of  due to different scattering mechanisms           

[32-p.80]. The upper boundary is given by the ² dependence of U and N processes that occur in every 

solid. Point defect scattering reduces the thermal conductivity strongly in the high-frequency regime due 

to the 4 dependence. For low frequencies, point defect scattering is negligible and boundary scattering 

becomes more and more important which was verified in several experiments (sect. 2.1.2.1).   

 

2.1.2.1 Scattering of phonons on grain boundaries in polycrystalline materials 

Figure 2.5 (left) explains why boundary scattering by grains can indeed reduce the thermal conductivity 

although the average phonon MFP is several orders of magnitude lower than the grain size: In a typical 

(alloyed) thermoelectric material with its high number of point defects due to alloying, the high phonon 

frequencies are cut off by point defect scattering and only the phonons with long wavelength (much 

larger than the typical average of 10-9 - 10-10 m) and MFP remain [32-p.80]. It is concluded that these 

remaining long-wave phonons can be successfully scattered by the boundaries of nm to µm sized 

grains, which was experimentally proven on irradiated Si and SiGe [32-p.81] and V2VI3 compounds. 

 

Figure 2.5 (right) displays the results of experiments carried out by Boikov et al. [37]. l of 

(Bi0.25Sb0.75)2Te3 and Bi2Te3 deposited on different substrates (at 250-270 °C) with and without annealing 

(at 370-380 °C) are compared. The thermal conductivity in alloy (i.e. point-defect rich) (Bi,Sb)2Te3 films 

deposited on nylon was found to be strongly reduced (by ~ 40 %) in unannealed films compared to 

annealed films due to the increased number of grain boundaries. In Bi2Te3, as theoretically predicted the 

reducing effect on l is lower (~ 20 %). A reduction of l compared to bulk single crystals [11-p.126], 
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Bi2Te3: 1.4 - 1.7 W/mK, (Bi0.25Sb0.75)2Te3: 0.55 - 1.2 W/mK is evident. Since simultaneously the electrical 

properties remained stable, an improvement of ZT compared to the best room-temperature values of 

bulk single crystals (~ 1.0 for (Bi0.25Sb0.75)2Te3  [11]) obtained up to the time of the publication is 

reported.  

 

 
 

Figure 2.5 Left: Schematic dependence of thermal conductivity on phonon frequency [32-p.80]. Note that the symbols 

for the prefactors differ from those given in eq. 2.15. Void area: Only Umklapp / Normal scattering is effective. Single 

hatched area: Thermal conductivity reduction due to alloy scattering in a solid solution. Double-hatched area: Reduction 

of () by boundary scattering for small crystallite sizes. Right: Lattice thermal conductivity (black symbols) and ZT (red 

symbols) of (Bi0.25Sb0.75)2Te3 and Bi2Te3 on different substrates. Data from [37]. 

 

In another experiment reported by the groups of D.C. Johnson and D. Cahill, the (total) thermal 

conductivities of polycrystalline Bi2Te3 and (Bi0.5Sb0.5)2Te3 thin films were analysed in dependence on 

grain size d [38] and compared to the predictions of an extended DC model for the lattice thermal 

conductivity (Figure 2.6). The parameters and assumptions used to construct the model are described in 

the reference. For the alloy, point defect scattering was included by estimating  = 0.3.  

 

Similarly, Takashiri et al. measured the cross-plane thermal conductivity of nanocrystalline (Bi,Sb)2Te3 

films (grain size = 150 nm) and found a thermal conductivity of 0.6 W/mK, which they describe as a            

20 % reduction to the corresponding bulk single crystal alloy [39]. 

 

 
Figure 2.6 Plot of thermal conductivity vs. grain size of Bi2Te3 and (Bi0.5Sb0.5)2Te3  thin films [38]. Symbols are described in 

the key. Black solid line: l derived from DC model for Bi2Te3. Black dashed line: l from DC model plus electronic thermal 

conductivity for Bi2Te3. Red dotted line: l derived from DC model for (Bi,Sb)2Te3.  
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2.2 Nanoscale materials 

2.2.1 Electronic aspects, quantum confinement 

Multilayered stacks can be described in a transport matrix formalism [40], treating them as bulk and not 

taking into account nanoscale effects. Two layers A and B are considered and the transport properties S, 

, ,  and thicknesses d are indexed accordingly.  In the case of current flow parallel to the layers of the 

ML system, the transport properties C, SC, C of the whole layer system are given by [54] 

 

 

with C = C+ TCSC².  After further detailed considerations, the authors conclude that ZCT for a “bulk” 

ML system is always smaller than that of a single layer. Similar considerations apply for a current flow 

perpendicular to the MLs, showing that the improvement of ZCT by synthesizing ML systems is only 

possible by exploiting nanoscale effects. 

The basic idea behind the nanostructuring of thermoelectric materials (presented e.g. by Dresselhaus et 

al. [7] in the 1990s) was the modification of the electronic dispersion relation and thus the density of 

states, allowing new opportunities to vary S, , and  quasi-independently for length scales small 

enough to give rise to quantum-confinement effects. Considering the electronic properties, the main 

goal for the introduction of nanostructures is the improvement of the relation of S and , i.e. an 

increase of the power factor. Here, the focus will be set on thin film materials in the form of 2-

dimensional so-called multi(ple) quantum well (MQW) structures. A MQW structure can be defined by a 

periodic arrangement of quantum wells (Figure 2.7) with a depth of VB that are separated by barriers. 

An ideal MQW has an infinite depth, e.g. VB = . The electron wave function r must fulfill the 

Schrödinger equation [29-p.450] for the three components mi of the effective mass. Separating r  

into a simple plane wave for the electrons that are free in the x and y direction and a function n(z) that 

describes the confinement in the z direction allows to separate eq. the Schrödinger equation into two 

differential equations: 

 

 

This gives the dispersion relations for the discrete energy levels En in each ideal quantum well with         

VB =  according to eq. 2.19. The dispersion relation can be interpreted as so-called subbands that are 

continuous along kx and ky but discrete for different kz (Figure 2.7). Each subband has a constant DOS 

of m /  ²  [29-p.451] and the DOS for the 2D system of all subbands (E)2D is given by a staircase-like 

function with H as the Heaviside function:  
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Figure 2.7 a) Schematic of MQW structure, consisting of multiple quantum wells with a width of dA, spaced apart by the 

period length d=dA+dB. b)  Schematic of subbands in a single quantum well (VB = ) for the discrete energy levels En. The 

energy difference between the subbands is given by eq. 2.19. c) DOS for a two-dimensional nanostructure. 

Dresselhaus et al. assumed an ideal quantum well embedded in a wide-bandgap semiconductor i.e. a) 

the electrons occupy only the lowest (n=1) subband, b) no tunneling takes place through the wide-gap 

semiconductor and c) the wide-gap semiconductor does not conduct [7]. The transport parameters were 

recalculated under these conditions, yielding under further assumptions a  Z2DT that depends also on the 

well width dA. Altogether, a significant improvement of Z2DT over the bulk ZT value was evident 

depending on dA. An experimental proof, refinement and extension of the concept discussed above was 

later presented in [41]. However, in a more realistic scenario the transport properties of the whole 

system (wells and barriers) must be taken into account. Furthermore, in a real SL structure the barriers 

are not infinitely high and the well wave function penetrates into the barriers, where it decays 

exponentially and “leaks” into the other wells. By this well interaction, minibands form and the DOS is 

no more a sharp step function but “smears out”, becoming more and more similar to a 3D dispersion 

relation [42-p.35]. Altogether, it is not surprising that in more realistic models a much lower effective ZT 
than given by the first simplified calculations is obtained [43]. In conclusion, it is evident that under 

realistic conditions, electronic effects induced by 2D nanostructuring play a rather minor role in directly 
improving ZT, in particular for Bi2Te3-based SLs as treated in this work.  

 
Electron filtering effects: When the Fermi level moves deeply into the band, the so-called differential 

conductivity           that is related to the electrical conductivity by   ∫     ( 
      

  
)   

 

 
 

becomes more and more symmetric with respect to the Fermi energy EF due to the flat square-root 

shape of the bulk DOS [44].  Then, the contributions from electrons below and above EF cancel out each 

other in the Seebeck integral [45]  
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and a low Seebeck coefficient results, which is the case in a metal or very heavily doped semiconductor. 

Contrarily, a highly asymmetric differential conductivity in combination with high electron energies 

should yield a high Seebeck coefficient. Venkatasubramanian proposes the mechanism to lead to high 

PFs in cross-plane direction of Bi2Te3/Sb2Te3 ‟ SLs [46] through a filtering effect caused by the valence-

conduction band offset due to band gap differences of the binaries.  

 

2.2.1.1 Electrical anisotropy in Bi2Te3 / Sb2Te3 SLs 

The Mertig group in Halle recently published a series of results dealing with the electrical properties of 

Bi2Te3/Sb2Te3 stacks with special focus on the severe reduction of transport anisotropy in the SLs as 

proposed in [8] (see Figure 3.6) for cross-plane/in-plane electrical conductivity, an unexpected 

phenomenon that is still not well understood. Transport properties of Bi2Te3 and Sb2Te3 under strain [47] 

and the anisotropy of Bi2Te3 and Sb2Te3 in a stack arrangement in a nanoscale heterostructure [48] were 

examined. Interestingly in the case of p-conduction, the heterostructure showed an electrical 

conductivity anisotropy comparable to bulk material [48]. A clear preference for the in-plane transport 
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Specular and diffusive scattering of phonons at interfaces: Chen considered interface roughness 

in SLs by taking into account a certain proportion of diffuse scattering mixing with specular scattering 

[56]. Several models were presented, including the elastic acoustic mismatch model that gives interface 

reflectivity as  
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)
 

  
( 2.21) 

 

with as normal angle and Z = vs as acoustic impedance of the material which is the product of 

density  and speed of sound vs. It was found that especially for SLs thinner than the phonon MFP, the 

effective is to a large degree controlled by the interfaces and not the bulk scattering processes in the 

single layers. Thus, the authors conclude that many good thermal conductors (such as Si or Ge) can be 

engineered to yield low- structures. As expected, l is strongly dependent on the period thickness and 

also on the value of the specularity.  

 

Diffusive transport and phonon localization: Based on the thermal conductivity data on MOCVD-

grown Bi2Te3/Sb2Te3 SLs (Figure 2.9), Venkatasubramanian explained the interconnection of thermal 

conductivity and SL period with simple models based on diffusive transport analysis and Bragg reflection 

at the interfaces [57]. It is concluded that a low-frequency cutoff      (    )
  

 exists that is directly 

related to the phonon mean free path lmfp. The proposed near-complete transmission of high-frequency 

phonons and lossy transmission of low-frequency phonons is in agreement with previous observations 

on GaAs / (Al,Ga)As SLs [55]. The frequency cutoff increases for smaller lmfp and less phonons can 

participate in heat transfer, leading to lower thermal conductivity. Furthermore, acoustic mismatch is 

considered to explain the drop in lwith decreasing period length. To explain the following rise of lfor 

very small period lengths < 5 nm it is proposed that the two layers get coupled when the cutoff 

wavelength approaches the thickness of both layers, reducing the effect of acoustic mismatch and 

enabling phonon transport across the interface.  

 

Addditionally, localization criteria known from the analysis of electron and photon scattering in media 

with substructural features such as SL are applied to explain the data. Generally, the argument is that 

localization occurs if klmfp < 1 [58]. Then, the phonon MFP is so small in comparison to the wavelength 

that the wave cannot execute one single oscillation before being scattered again [59]. Consequently, a 

small klmfp product indicates strong transmission blocking and localization. In [8] the klmfp products of 

holes and phonons are calculated and compared. klmfp for holes is 7.6 while that of the phonons is only 

0.5, which illustrates the phonon-blocking / electron-transmitting nature (Figure 2.9) of the MOCVD-

grown SLs.  
 

Specular and diffusive scattering of phonons at interfaces: Pattamatta and Madnia adopt the 

features of Chen´s model [56] to model the heat transfer in Bi2Te3 / Sb2Te3 SLs [61]. Results of 

calculations are shown in Figure 2.9 in comparison with experimental data. A p of 0.8 ‟ 1 fits the 

experimental data appropriately for period lengths down to 5 nm. The model fails to predict the rise of 

thermal conductivity k with small period lengths Lp. The authors reason that this rise is due to the wave 

nature of phonons [57] while the presented model treats them as particles. 
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Figure 2.9 Left: TEM image of a SL with 60 Å (6 nm) period length [60], representing a so-called Phonon Glass Electron 

Crystal (PGEC) structure. Dark lines = Bi2Te3, bright sections = Sb2Te3. Right: Variation of lattice thermal conductivity 

(here, k) with period length Lp for Bi2Te3 / Sb2Te3 SLs (black squares, data from [57]) together with model data from 

Pattamatta et al. [61] (description below).   

Analysis of optical and acoustic phonons in SLs by ultrafast time-resolved pump-probe 
methods and transport modeling: Wang et al. carried out measurements of phonon lifetimes in 

MOCVD ‟ grown SLs [8] by time-resolved pump-probe experiments. Both optical [62] and acoustic [63] 

phonons were examined. The oscillations of certain optical phonon modes can be directly made visible 

in the oscillatory change of reflectivity. The reflectivity change signal decays exponentially with a time 

constant corresponding to the scattering rate. In comparison it was found that the signal for  Bi2Te3 / 

Sb2Te3 SLs decayed noticeably faster than that of single Bi2Te3 and Sb2Te3, showing that the phonon 

lifetime in SLs is shorter and suggesting phonon-interface interactions.  
Likewise, acoustic phonon scattering was examined for long-wavelength phonons [63] by examining the 

reflectivity signals (Figure 2.10). The change in reflectivity is proportional to the phonon amplitude after 

traveling forth and back through the film with acoustic reflections at the film/substrate (binary) or 

film/buffer (SLs) interfaces. The authors found that upon increasing the film thickness, the phonon 

signal amplitude was hardly diminished for Bi2Te3 but reduced by 40-50 % for the SLs while 

simultaneously the speed of sound derived from the from the reflectivity signal time delay was also 

found to decrease. To conclude, the experiments reveal that both phonon reflectivity amplitude and 

sound velocity are reduced by the nanostructuring, effectively resulting in a lower thermal conductivity. 

 

 

Figure 2.10 Coherent acoustic phonon signal for Bi2Te3 and a SL with 3nm Bi2Te3 / 3nm Sb2Te3. Film thicknesses are 

indicated. For increased thickness, the phonon reflectivity signal amplitude decreases significantly faster in the SL [63]. 

To conclude this sections it is noted that a broad multitude of physical models was used to explain the 

reduction of thermal conductivity in different SLs. Some of the models are validated by experimental 

data and/or phonon frequency probe methods. Finally, a single universal theory that describes the 

phononic aspects of all SLs has not yet been presented.      

 

1.1 µm 0.5 µm 1.5 µm0.6 µm
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3 The material system (Bi,Sb)2Te3 

 

3.1 Overview over general structural properties 

Bi2Te3 and Sb2Te3 and its solid solutions belong to the space group   ̅ . The hexagonal representation 

of the unit cell is shown in Figure 3.1. The stacking order ABCABC… of the single atomic layers 

corresponds to a cubic close-packed structure. The unit cell consists of so-called quintuples which are 

merely held together by van der Waals force, meaning that covalent, ionic-covalent and van der Waals 

bonds alternate in the direction of the c-axis. In contrast to this, only covalent bonds exist between the 

atoms perpendicular to the c-axis, i.e. parallel to the so-called basal plane of the unit cell. The particular 

structure of the unit cell leads to a strongly expressed anisotropy of the crystal that manifests itself in 

three important properties which apply to all compounds from the (Bi,Sb)2Te3 subgroup. 

 

Mechanical properties: The crystals cleave much easier along the basal plane of the unit cell than 

parallel to the c-axis and the thermal expansion coefficient is larger in the direction parallel to the c-axis. 

Diffusion processes: the diffusion coefficient parallel to the c-axis is by orders of magnitude lower 

than parallel to the basal plane [64]. 

Transport properties: Electronic and thermal transport are strongly favored parallel to the basal plane 

(section 3.3). 

 

 

Figure 3.1 Left: Complete Bi2Te3 unit cell, hexagonal representation. Right: Detail image of one quintuple with interlayer 

spacings between the atomar layers, bond types are indicated and alternate along the c-axis. Images from [42-p.47]. 

3.1.1 Suitable substrate materials 

Barium fluoride: An overview of low-mismatch materials that may serve as substrates for the epitaxial 

growth of (Bi,Sb)2(Se,Te)3 based materials was recently given in ref. [65]. Si, GaAs, BaF2, Bi, CdTe and 

Al2O3 are more or less suitable candidates. Among those are many cubic materials on which films can be 

grown on the (111) surface as described below exemplarily for BaF2. The insulator BaF2 crystallizes in the 

CaF2 structure (   ̅ ) and is well cleavable parallel to the (111) plane. Along the [111] direction, layers 

of Ba and F alternate and the atoms are arranged hexagonally, meaning that the surfaces of (111)-

oriented BaF2 and (00.l)-V2VI3 material are well-matched (Figure 3.2). The “hexagonal lattice constant” 

ah that is associated with the cubic lattic constant ac by       √  for (111)-BaF2 (Table 4.1) clearly 

shows a very low mismatch of 0.1 % for Bi2Te3 and -2.7 % for Sb2Te3. Another great advantage of this 

van der Waals

van der Waals

covalent-ionic

covalent-ionic

covalent

covalent



 

 

 
CHAPTER 3: THE MATERIAL SYSTEM (BI,SB)2TE3 
 

 

34 

substrate material is the very good match of the thermal expansion coefficient to that of Bi2Te3 and 

Sb2Te3 which is a necessary prerequisite for the fabrication of films with a thickness greater than a few 

µm (there is tendency for thicker films to develop cracks on nonmatched substrates). For all these 

reasons, BaF2 is used in our work group since discovered by J. Nurnus roughly 15 years ago at 

Fraunhofer IPM as a very good substrate for the growth of high-quality V2VI3 and IV-VI films. 
 

Silicon / silicon dioxide: The other substrate material that is used in this work is oxidized silicon. 

Though amorphous, it can be used as a cheap and readily available substrate for nanoalloyed 

polycrystalline films. However, due to the very large difference in thermal expansion coefficient the film 

thickness must be kept within few µm, otherwise cracks will occur in the film. Sputtered films with a 

thickness of 1.5 µm showed no signs of thermal stress while 6 µm thick films were found to exhibit a 

significant amount of microcracks. 

 

Table 3.1 Relevant structural properties of thin film materials and used substrate materials. Given are the densities  [66-

p.189], lattice constants a,c,ac,ah [67,68,65], linear thermal expansion coefficients perpendicular to the c-axis  

[69,70,71,72,73], specific heat capacities per volume cv [53] and melting points TM [66-p.197]. ac and the associated 

“hexagonal” lattice constant ah are defined below. Values that are not of relevance here are omitted.  

 

 
Figure 3.2 Crystal structure of BaF2. Blue = Ba, Orange = F atoms. Along the [111]-direction,the Ba and F atoms are 

hexagonally arranged (green outline) with a distance corresponding to the hexagonal lattice constant ah, allowing the 

growth of (Bi,Sb)2Te3 thin films on BaF2. 

 

 

3.2 Phase diagrams  

The Bi-Te system: Note that different phase diagrams have been published for the system [74] and 

possibly not all of the numerous Bi-Te phases have been discovered or characterized yet. A well-

described phase diagram was published by Abrikosov et al. [66-p.173] and shows three peritectic 

reactions at 312, 420 and 540 °C as evident from Figure 3.3. The homogeneity range of the Bi2Te3 

phase (~ 0.2 at % to both the Te and Bi-rich side) was described by Brebrick et al. [75] and other 

authors. Literature values for the homogeneity range differ somewhat as pointed out in the reference. 

Bi2Te3 pulled from a stoichiometric melt is always strongly p-type since the maximum melting point is 

not exactly at 60 at. % Te but slightly shifted towards Bi, which generates BiTe antistructure defects. 

 

The Sb-Te system: The phase diagram of Sb-Te around the composition Sb2Te3 displays a wide range 

of solid solutions from 0 ‟ 60 at. % Te [66-p.165]. Three peritectic reactions occur at 548, 550 and 558 

°C. Above a Te content of 60 at.%, an eutectic of Te and Sb2Te3 forms. Strictly stoichiometric Sb2Te3 

exists only at temperatures close to the liquidus curve (Figure 3.3). If not straightly quenched from the 

melt, the composition of the -phase phase shifts in the direction of excess antimony and the 

compound is inherently unstoichiometric. 

ac
ah

Material 
[g/cm3]

Lattice  
constants [Ǻ]  

  
[10-6 / K] 

cv  
[J / cm³K] 

TM       

[°C] 

Bi2Te3 7.86 a: 4.386, c: 30.497 14.4 1.29 585 

Sb2Te3 6.57 a: 4.264, c: 30.458 18.0 1.31 621 

      

BaF2  ac: 6.196, ah: 4.381 18.7   

Si  ac: 5.430, ah: 3.840 2.6   

SiO2  amorphous 0.56   
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Figure 3.3 a) Bi2Te3 phase diagram [66-p.173]. b) Homogeneity range of the Bi2Te3 phase [75]. c) Sb2Te3 phase diagram 

[66-p.165]. 

In the Bi-Te system, all other binary phases besides Bi2Te3 were found to be members of the 

homologous series (Bi2)m(Bi2Te3)n [76]. Nine phases of this type were reported which consist of stacked 

Te-Bi-Te-Bi-Te quintuples (Q) with Bi2 bilayers (B) in between. These phases can be p- or n-type and have 

widely varying Seebeck coefficients (Figure 3.4 a). Most of them have metal-like characteristics [76]. As 

an example, the BiTe phase with the sequence Q-B-Q-Q-B-Q is reported as n-type with a low S of 

around -30 to -50 µV/K at 300 K, in contrast to the high Seebeck coefficient of the semiconducting 

Bi2Te3 phase. In analogy to the Bi-Te system, the Sb-Te system also forms homologous series 

(Sb2Te3)m(Sb2)n. In [77] structural data are given on five members of the series that have been found. 

 

 

Figure 3.4 a+c) Comparison of the connection of Seebeck coefficient and Te content, corresponding to the phase 

diagrams shown in Figure 3.3 [66-p.174 and 165]. The dependence of S on Te content is clearly different in the Bi-Te and 

Sb-Te system. b) Examples of phases of the homologous series (Bi2)m(Bi2Te3)n [76]. Gray blocks = Te-Bi-Te-Bi-Te quintuples, 

white blocks = Bi bilayers. 

The solid solution of Bi2Te3 with Sb2Te3: A careful and recent analysis of the phase diagram was 

carried out by differential scanning calorimetry by Caillat et al. [78]. Between 580 and 620 °C, Bi2Te3 

and Sb2Te3 form a continuous range of solid solutions. With increasing Sb2Te3 content, Bi2Te3‟Sb2Te3 

solid solutions tend to deviate from stoichiometric lines towards Bi and Sb which has a direct impact on 

(a) (b) (c) 

(a) (c) (b)

Bi-Te Sb-Te
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defect chemistry and transport properties. Furthermore, it was observed that the lattice constant a 

decreases upon increasing the content of Sb2Te3 while c remains almost constant [66-p.208].   
 

 

3.3 Transport properties 

Note that newer results of other authors indicate that the “single crystalline” ingots described here may 

actually contain other phases due to their deviations from stoichiometry [76]. Doping experiments 

carried out by several groups with foreign dopands including several halogens, metals, germanium and 

others will not be described here.  

 

Binary compounds 
 
Bismuth telluride, Bi2Te3 : The transport properties of Bi2Te3 are governed by its defect chemistry and 

much research was devoted to this matter. There is a general agreement that in Bi2Te3 the hole and 

electron generating antistructure defects BiTe and TeBi (Bi on Te site and Te on Bi site, respectively) and 

the vacancy defects VBi and VTe exist [79] and that defects of the antistructure type play the clearly 

dominant role. Generally, antisite defects are prominent in materials with low differences in 

electronegativity such as Bi2Te3. In this case, the formation energy for such defects is low, i.e. ~ 0.4 eV 

in contrast to ~ 1 eV for vacany defects [80]. The presence of antisite defects was first postulated by 

Harman et al. [81] and later proven experimentally by Miller et al. by precision density measurements 

[80] under the assumption that each antisite defect generates one charge carrier. Corresponding to this 

assumption, tight binding studies of Pecheur et al. reveal that BiTe and TeBi each give one hole and 

electron, respectively [82]. Kröger postulated that the ratios of current carriers to excess bismuth and 

tellurium are 3/5 and 2/5 respectively [83]. It is noted that some authors claim that besides antisite 

defects also vacancy defects play a role for carrier generation. A very good overview and calculations 

were recently given by Hashibon et al. [84]. The calculations show that BiTe and TeBi have the lowest 

formation energies of all mentioned defects and are thus clearly dominating the transport properties of 

Bi2Te3. Recently, first experiments with high accuracy chemical analysis using Wavelength-dispersive X-

Ray Spectrometry (WDX) [85] allowed to quantitative inference about the TeBi antisite defect 

concentration in Te-rich thin films, assuming that non-stoichiometry is only compensated by this type of 

point defect.  
 

The band structure of Bi2Te3 is commonly described by a six-valley model for both conduction and 

valence band extrema [11-p.115], although newer calculations [86] indicate that the conduction band 

minimum may be a two-valley minimum. In any case, the effective masses were found to be strongly 

anisotropic, resulting in the known anisotropy for the electrical conductivity [87]. The bandgap of Bi2Te3 

is indirect and values from 130 - 200 meV are reported [88,91]. The DOS effective mass md is given as 

0.58me for electrons and 1.07me for holes (me = electron mass) at 300 K under the assumption of 

acoustic phonon scattering [11-p.118]. From these parameters, an intrinsic carrier concentration of 1.4 x 

1018 cm-3 can be calculated using eq. 2.10. It is noted that Austin reports a n-type Bi2Te3 sample with a 

carrier concentration of 1.7 x 1018 cm-3 as extrinsic and one with a measured n of 1.7 x 1017 cm-3 as 

intrinsic [89]. As has been recently confirmed by calculations [84], donor and acceptor levels (caused by 

antistructure defects) lie extremely close to the conduction and valence band edges, respectively, 

meaning that carriers are never frozen out even at very low temperatures [11-p.117]. In order to achieve 

a high ZT, the Seebeck coefficient should be around 200 µV/K. This is the case at temperatures not too 

far away from room temperature due to the small bandgap of the material. The lattice thermal 

conductivities at 300 K are 1.5 (0.7) W/mK perpendicular (parallel) to the c-axis, respectively [11-p.118].  

 

Exemplaric transport properties of selected n-type samples of Bi2Te3 grown with the Traveling Heater 

Method (THM) are given in Table 3.2. The Seebeck coefficient is reasonably isotropic within 10 % in 

contrast to the other properties that exhibit a pronounced anisotropy. The material changes from p to 

n-type above a (liquidus) Te content of slightly lower than 63 at. % Te as demonstrated on THM grown 

crystals [90] and crystals pulled from the melt [91]. A liquid with this Te content is in equilibrium with 

stoichiometric Bi2Te3. The maximum melting point is nonstoichiometric and contains a slight Bi excess, 
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leading to p-type conduction. Generally, deviations from stoichiometry increase n and lower the 

absolute value of S. The ZT value is not a monotonous function of the Te content and is very sharply 

peaked, making accurate stoichiometry control very critical. The alloys of Bi2Te3 with Bi2Se3 and Sb2Te3 

extend the range of optimum compositions somewhat, which is why they are preferred over the pure 

compound for the fabrication of thermoelectric devices.  

  

Antimony Telluride, Sb2Te3 : For the defect chemistry of Sb2Te3, similar considerations as for Bi2Te3 

apply. However, the inherent nonstoichiometry of the compound leads to a high number of SbTe antisite 

defects and the bulk compound is always p-type with carrier concentrations in the 1020 to 1021 cm-3 

range. Figure 3.4 c) shows the Seebeck coefficient in dependence on Te content. Interestingly, upon 

entering the existence range of the Sb2Te3 phase, the Seebeck coefficient ( in the figure) climbs very 

steeply by ~ 50 % and adding Te to Sb2Te3, thus exceeding the stoichiometric composition increases the 

Seebeck coefficient even more. Nevertheless, it has never been achieved to yield n-conduction in Sb2Te3 

either by adding Te or foreign dopands. The valence band structure can be described by a six-valley 

band model. The valence band structure is complex since with increasing carrier concentration two 

subbands which correspond to different effective mass values are occupied progressively [90]. The 

maximum Seebeck coefficient achieved for bulk material is 133 µV/K at room temperature [11-p.122]. 

For the lattice thermal conductivity, values ranging from 1.0 to more than 2.0 W/mK were reported in 

the a direction [11-p.122]. Optical measurements of the band gap gave a value of 290 meV [92] 

whereas electrical measurements yielded 190 meV [93]. Transport properties of selected samples are 

given in Table 3.2. 
With the low Seebeck coefficients and high thermal conductivities, only low ZT values can be attained 

with bulk Sb2Te3. Compared to Sb-rich compositions, Te-rich ones show clearly higher S, µ and lower  

and thus yield higher ZTs. Contrarily to Bi2Te3, ZT is higher parallel to the c-axis. The Seebeck coefficient 

in this compound is evidently anisotropic which can be explained by assuming an anisotropic relaxation 

time for the carrier scattering that is a mixed scattering on acoustical phonons and also ionized 

impurities [92]. The impurity scattering is associated with the large n in contrast to Bi2Te3 where clearly 

acoustical scattering dominates. 

 

Table 3.2 Selected transport properties of Traveling Heater Method (THM)-grown and annealed binaries Bi2Te3 (n-type), 
Sb2Te3 and (Bi0.2Sb0.8)2Te3 [90]. Anisotropy factors are given in red columns. Units: Te concentration cTe in at. % (liquidus 

composition), electrical conductivity  in S/cm, carrier mobility µ in cm²/Vs, carrier concentration n in cm-3, Seebeck 

coefficient S in µV/K, power factor PF in µW/cmK², thermal conductivity  in W/mK. Subindex 11 and 33: Property 

measured perpendicular / parallel to c-axis. For (Bi0.2Sb0.8)2Te3 , no cTe was given in the reference and the annealing 

temperature is given instead. 

Material cTe S11 
S11 

/S33
11 

11 

/33 
PF11 

PF11 

/PF33
11 333

11 

/33 
µ11 

n 
x1019 

ZT11 
ZT11 

/ZT33 

Bi2Te3 
63.5 -

70.5 

-115 -  

-224 

isotr. 559 -

3846 

4.2 -

6.7 

28 -

58 

4.2 -

6.7 

1.92 -

3.24 

1.0 - 

1.3 

2.0 -

2.5 

152 -

227 

0.7 -

14.6  

0.35 -

0.87 

2.0 -

2.7 

Sb2Te3 
44.2 -

82.0 

37 -    

83 

0.7 -

1.2 

5263 -

9346 

2.6 -

4.9 

8 - 

37 

1.2 -

6.6 

5.01 -

7.52 

0.85 -

1.63 

3.8 -

7.1 

31 -

313 

10.6 -

106 

0.04 -

0.20 

0.3 -

1.1 

(Bi0.2Sb0.8)2Te3 
510 -

570 

172 -

194 

0.88 -

0.96 

1005 -

1715 

2.6 -

3.0 

37 -

51 

2.1 -

2.7 

1.26 -

2.15 

0.68 -

0.88 

2.1 -

2.4 

146 -

176 

4.8 - 

7.5 

0.69 -

0.89 

0.9 -

1.1 

 

 

The solid solution of Bi2Te3 and Sb2Te3, (Bi1-xSbx)2Te3  
 

Champness et al. and a series of other authors have carried out systematic investigations of the 

transport properties of (Bi1-xSbx)2Te3 in dependence of x. The results are summarized in ref. [122] and 

shown in Figure 3.5. If n-type Bi2Te3 is alloyed with small amounts of Sb2Te3 the Seebeck coefficient 

increases at first, followed by a sharp drop and a change of sign at x ~ 0.5 where the proportions of 

Bi2Te3 and Sb2Te3 are roughly equal. Simultaneously, the electrical conductivity has a minimum at this 

concentration since carrier compensation minimizes the number of extrinsic carriers. Consequently, the 

power factor also has a minimum in the compensation regime and the figure of merit will become very 

small. For higher Sb2Te3 contents, ZT rises again up to the well-known high values at x ~ 0.75. The 

lattice thermal conductivity is minimal at 70 mol % of Sb2Te. The electron mobility of n-type                     
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thermoelectric applications. However, the maximum ZT of 0.69 reported by Champness et al. for 

(Bi0.875Sb0.125)2Te3, Figure 3.5, is not much smaller than that of the best Se-based materials 

Bi2(Te0.975Se0.025)3 and Bi2(Te0.95Se0.05)3 with a ZT of 0.87 [90]. Under certain conditions the use of                 

(Bi1-xSbx)2Te3 instead of Bi2(Te1-xSex)3 based solutions may be advantageous, as was pointed out by 

Scherrer et al. due to various problems with accurately maintaining small Se concentrations and 

achieving homogeneity [94]. They fabricated (Bi1-xSbx)2Te3 with varying x by mechanical alloying and 

found n-conduction if the Sb2Te3 content was below 50 wt. %. Carrier concentrations in the favorable 

range of 1019 cm-3 were observed for the n-type compositions, showing their potential for 

thermoelectric applications. Also in sputtering technology, the replacement of problematic Se (see 

section 4.1.4.4) could be beneficial.  

 

 

3.4 Thin films  

There are many reports on thin films of (Bi1-xSbx)2Te3 grown by a wide variety of methods like MOCVD, 

MBE, Sputtering, Pulsed Laser Deposition (PLD), Co-, flash- and monoevaporation, Hot-Wall epitaxy 

(HWE). The most important works together with obtained results are summarized in Table 3.4 and serve 

as a comparison base to the film properties obtained in this work. In general the best films (highest 

carrier mobilities and power factors) are obtained around the stoichiometric composition. Precise 

stoichiometry control is usually an issue since a part of the Te impinging on the substrate re-evaporates, 

depending on substrate temperature. The atomic flux ratio of Te to Sb is therefore larger than unity 

(mostly around 2-3 : 1). If not deposited epitaxially, V2VI3 films are usually polycrystalline and have a 

distinct tendency to grow with a more or less distinct c-texture with the exception of electrodeposited 

films. The grain size as well as the degree of c-orientation typically grows with increasing annealing 

temperature.  

 

A very interesting and mostly not directly addressed phenomenon is the defect chemistry of the V2VI3 

thin films that is distinctly different from bulk material. Regardless of Te content, thin film Bi2Te3 seems 

to be n-type in the very most cases, see e.g. refs. [130,114,95]  save for a few exceptional cases where 

high substrate temperatures were used. For instance, Zou managed to deposit p-type Bi2Te3 (albeit with 

low Seebeck coefficient) by significantly increasing the substrate temperature above the optimum 

temperature for n-Bi2Te3 and a large Bi/Te flux ratio [111]. Uher et al. found a high-temperature growth 

regime for MBE growth where any excess Te evaporates during growth and only stoichiometric / Bi-rich 

Bi2Te3 results which is always p-type ([96], unpublished information). The hole-generating antisite defect 

BiTe seems to be significantly less dominant in thin films. This issue will be detailed in chapter 5, sect. 

5.2.1.  

 

Generally, there are significantly more reports on Bi2Te3 than on Sb2Te3. Also Sb2Te3 in thin film form 

seems to be “less stronger p-conducting” (i.e. has lower carrier concentration / higher Seebeck 

coefficient) than its bulk counterpart, indicating that also in this material the SbTe antisite defect plays a 

less dominant role in thin films. Carrier concentrations in the range of 1018 - 1019 cm-3 can be easily 

obtained in contrast to bulk. 
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Table 3.4 Properties overview of (Bi,Sb)2Te3 alloy and binary thin films grown with different methods. If not otherwise 

stated, the transport properties were obtained at room temperature. Values for the films with highest ZT or PF are given. 

If the films were fabricated using a range of growth or annealing temperatures, the substrate temperature TSub which 

yielded the best PF is given as growth temperature. If not indicated otherwise with *, the electrical properties were 

measured in in-plane and thermal conductivity in cross-plane direction (standard procedure). ** Thermal conductivity of 

1.5 W/mK was assumed. Symbols: ‟ information not provided, a) from ref. [97]  b) annealing temperature c) co-

sputtering d) compound target e) Bi / Te element multilayers, f) annealed material, g) significant impurities (Te and TeO2) 

present in the film. h) study on multiple substrates: glass, mica, MgO, Pt, Al2O3. i) Properties of films deposited on 

different substrates differ strongly. j) Overview article. Results for many different substrate types are reported. k) A heat 

shield was used in the sputtering apparatus. l) Best properties were not obtained at room temperature x) Thermoelectric 

properties not measured on same sample. The film orientation (or.) is given by: n = no distinct or only slight crystalline 

orientation, c = slightly, cc = strongly, cc(c) = almost exclusively (minor other reflexes,), ccc = exclusively c-oriented, (a) = 

tendency towards a-orientation. Units as previously defined. If not directly given, the PF was calculated from given  and 

S values. If was not given it was calculated from  = enµ for the PF calculation. 

 

 

 

 

 

 

 

 

Method Film Sub-
strate 

TSub Or. cTe d µ n         
x1019 

 S PF  ZT Ref. 

MOCVD Sb2Te3 GaAs,Al2O3 - ccc - - - - - 115 - - - 98 

MOCVD (Bi0.25Sb0.75)2Te3 GaAs,Al2O3 - ccc - - 384 - - 186 - 1.65 - 98 

MOCVD Bi2Te3 GaAs 225 ccc - - 145 1 - - - - - 60 

MOCVD Sb2Te3 GaAs 225 ccc - - 350 1 - - - - - 60 

MOCVD Bi2Te3 Pyrex - - - 0.6 52 10 909 -213 41 - - 99 
MOCVD Sb2Te3 Pyrex - - - 0.6 50 30 2500 110 30 - - 99 

MOCVD (Bi0.27Sb0.73)2Te3 Pyrex - - - 0.6 67 5 476 240 27 - - 99 

MBE x) Bi2Te3 BaF2 290 ccc - - 150 4 960 (~200) - 1.8* 0.6* 100 
MBE Bi2Te3 CdTe 250 ccc - 5 670 0.6 1000 -190 36 - - 101 

MBE Sb2Te3 CdTe 200 ccc - 2.5-3.5 279 0.8 - 126 5 - - 102 
MBE (Bi0.2Sb0.8)2Te3 CdTe 200 ccc - 3 64 4.5 ~500 184 16 - - 103 
MBE x) Sb2Te3 Al2O3 350 ccc - 0.07 a) 680 1.2 1250 -  - - 65 

Sputtering c),f) Bi2Te3 Si/SiO2 300 b) n - ~20 - - - -160 16 - - 104 

Sputtering c),f) (Bi0.25Sb0.75)2Te3 Si/SiO2 300 b) n - ~20 - - - 180 25 - - 104 

Sputtering d),f) (Bi0.15Sb0.85)2Te3 Kapton 250 k) cc(c) - 1-2 360 - 1140 182 38 - - 105 
Sputtering f) (Bi0.15Sb0.85)2Te3 Polyimide - - - 1 - - - ~200 36 - - 106 
Sputtering e),f) Bi2Te3 Si/SiO2 200 b) n g) - ~0.5 - - 435  -202 18 0.71 - 107 

PLD Bi2Te3 Si, Mica 250 cc(c) - 0.5 - 2 90 10 ~700 -184 24 l) - - 108 
PLD f) Bi2Te3 Glass 190 cc - - - - 690 -195 26 0.34 - 109 

PLD f) (Bi0.15Sb0.85)2Te3 Glass 240 - - - - - 950 198 37 - - 109 

Co-evapor. Bi2Te3 
h) 260 cc(c) 60.1  1 125 1.8 345 -228 18 - - 110 

Co-evapor. Sb2Te3 
h) 270 cc 60.5  1.1 - - 810 149 18 - - 110 

Co-evapor Bi2Te3 Glass 314 cc 58.8 0.7 15 160 3125 81 21 - - 111 

Co-evapor. Bi2Te3 Glass 260 cc - ~0.7  75 6.5 770 -228 40 ** 0.3 112 
Co-evapor. Sb2Te3 Glass 230 cc(c) - ~0.7 173 3.4 960 171 28 ** 0.3 112 

Co-evapor. Bi2Te3 Polyimide 270 cc 62.0 ~1 - - 794 -248 49 ~1.3 - 113 

Electroch. f), j) Bi2Te3 
j) RT (a) - 200 - - - -100 18 - - 114 

Electroch. f)  (Bi0.38Sb0.62)2Te3 Si/Cr/Pt RT n(a) 59.6 ~23 35 7 400 182 13 1 0.4 115 
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3.5 Superlattice thin films 

This section gives a review of the outstanding properties of MOCVD-grown SL structures reported by 

Venkatasubramanian that still have not been reproduced, despite significant synthetic efforts 

undertaken by many groups with growth methods such as MOCVD, MBE, (Co)-sputtering and Co-

evaporation, electrochemical deposition and Pulsed Layer Deposition (PLD). For details on results 

achieved with these methods the author refers to his overview article [116].  

 

3.5.1 Structural properties of MOCVD-grown films 

The structural results reported for the SLs deposited on (100) GaAs are quite astonishing. It is known 

that the V2VI3 compounds with threefold symmetry can be grown on cubic (111) surfaces that are also 

characterized by threefold symmetry, see section 3.1.1. There are several reports of successful epitaxial 

growth of Bi2Te3-based materials on cubic substrates such as BaF2 or CdTe [65] resulting in films with 

high structural quality [42,100]. However, these considerations do not apply to cubic (100) surfaces with 

fourfold symmetry such as GaAs. The problem of symmetry mismatch was not addressed specifically in 

the associated publication(s), where instead a lattice mismatch of 22 % was stated [60] that was 

apparently derived with the lattice constants ah = 4.386 Å of Bi2Te3 and ac = 5.653 Å of the GaAs 

substrate. Despite these obvious obstacles, the authors report to have obtained “single crystalline” films 

though it seems that rotational order was not verified, e.g. by showing an XRD pole figure 

measurement. The XRD results presented are restricted to the (00.15) reflection of a Bi2Te3 film 

deposited on Al2O3 [117]. In conclusion, it must be emphasized that there remains significant doubt if 

the reported film growth of V2VI3 compounds on (100)-GaAs can be really considered as “epitaxial”. 

Due to the high crystalline quality, the samples produced by MOCVD are purported to exhibit a low 

intermixing between the Bi2Te3 and Sb2Te3 layers. TEM micrographs show a sharply defined SL structure 

which was also confirmed by the presence of satellite peaks in the double-crystal XRD pattern [60] and 

in-situ spectroscopic ellipsometry that confirmed “perfect superlattice growth with an abrupt interface 

between the two constituent films” [118].  

 

3.5.2 Transport properties of MOCVD-grown films 

Already the first transport data for the short-periodic (period length ≤ 10 nm) Bi2Te3/Sb2Te3 SLs 

published in 1996 were extremely promising [98]. For asymmetric SL structures varying in period length 

with Bi2Te3 thickness fixed at 15 Å, very high in-plane carrier mobilities of more than 600 cm²/Vs were 

reported combined with very high in-plane Seebeck coefficients of ~ 200 - 270 µV/K, leading to an 

outstanding PF of 59 µW/cmK², even exceeding that of state of the art p-type bulk alloy. Remarkably, 

these electrical properties were achieved while simultaneously the cross-plane thermal conductivity 

(minimum value of 0.22 W/mK) was a factor of 4-7 smaller than that of bulk material. The high quality 

of the SL structure is the predominant reason for the significant reduction of the thermal conductivity. 

Furthermore, low contact resistances in the range of 10-8  cm² are apparently possible with the 

displayed technique, enabling the fabrication of high-performance thermoelectric coolers. 

 

The carrier mobility and Seebeck coefficient for SLs were also studied in more detail, but unfortunately 

the thickness of the single binary layers was not clearly mentioned [117]. The values reported in this 

publication are slightly lower than for the asymmetrical SLs mentioned above.  

Remarkably, it was also stated that the binary MOCVD-grown Bi2Te3 is always n-conducting while the 

binary Sb2Te3 is always p-conducting. This is puzzling since usually, stacking a p-conductor on a n-

conductor evokes compensation effects as observed in this work on nanoalloyed and also epitaxial SLs 

fabricated by a MBE system, see sections 6.2.1, 9.2 as well as refs. [119,120,121]. The Seebeck 

coefficients SA and SB of compounds A and B with their opposite signs theoretically cancel out each 

other according to eq. 2.17.  In contrast, the Seebeck coefficients of the MOCVD grown SLs are very 

high and exceed 250 µV/K. This particular phenomenon is subject to further debate. For instance, it is 

possible that the interfaces are not exactly atomically abrupt (this cannot be determined from the TEM 

image shown later in [60]). If this is the case for asymmetric SLs where the Sb2Te3 layer is thicker than 

the Bi2Te3 layer, significant Sb interdiffusion into Bi2Te3 may have occurred, yielding the ternary phase 
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4 Experimental details:  Deposition and characterization methods 

4.1 Deposition methods and thin film fabrication 

4.1.1 The “Nanoalloying” method 

The “nanoalloying” method is based on the 1.) (nominally) stoichiometric deposition of element layers 

with a thickness in the nm range on a cold substrate and 2.) the application of a low-temperature 

annealing process. In this process, the compound formation takes place in a solid-state reaction. For the 

examined compounds in most cases annealing temperatures between 150 ‟ 350 °C were used. The 

process is schematically illustrated in Figure 4.1. In actual deposition processes more complex patterns 

are used as will be shown in the respective sections of the following chapters. The method is closely 

related to the Method of Elemental Reactants (MER) introduced by D.C. Johnson et al. [123]. 

 

 

Figure 4.1 Left: Schematic illustration of the nanoalloying process for a Bi2Te3 / Sb2Te3 SL. Note that the boundaries 

between the compounds in reality are not sharp as suggested by the schematic but smeared out by interdiffusion. Right:  

Dependence of sticking coefficient on substrate temperature for Bi and Te [124].  

Nanoalloying offers several advantages compared to “conventional” growth by the deposition on a 

heated substrate:  

 

 The crystal growth is not epitaxial and starts at the interfaces of the element layers. No epitaxial 

relation to the substrate is needed, allowing the use of a much wider (and likely cheaper) range 

of substrate materials compared to epitaxial growth.  

 In contrast to co-deposited material, the films exhibit a strong texture that can be influenced by 

the element deposition pattern (section 5.1). 

 The sticking coefficient is strongly dependent on substrate temperature which aggravates 

accurate stoichiometry control for films co-deposited on heated substrates (Figure 4.1). The 

deposition on a substrate at ambient temperature  facilitates stoichiometry control and enables 

a fast composition screening.  

 Deposition is carried out in a setup without integrated heater (including sputtering systems) 

which is easier and less expensive to accomplish. 

 The compound formation takes place at very low temperatures and starts at ~ 100 °C for 

(Bi,Sb)2Te3 (section 5.3) allowing the use of temperature-sensitive substrates such as polymer 

foils for film fabrication.  

 The nanoalloyed films (when annealed at moderate temperatures) are very smooth compared to 

hot co-deposited thin films, which tend to exhibit a significant roughness [42,p. 62]. 

 High deposition rates are possible (section 5.4).  
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 When the element thicknesses are chosen such that a (near-)stoichiometric V2VI3 compound 

results, generally no other phases besides the V2VI3 phase were observed on the films grown in 

this work.  

 

However, some disadvantages must be taken into account: 

 

Grain growth: The fabricated V2VI3 films are all polycrystalline since crystal growth starts practically 

everywhere at the chalcogen-(semi)metal interface at once.  

Grain growth during the annealing process can be seen as Ostwald ripening or competitive growth, i.e. 

the growth of larger particles at the expense of smaller particles [125, p.1ff][126]. According to a 

calculation by Lifshitz, Slyozov and Wagner, the growth rate of the average particle radius  ̅ is related to 

temperature T, time t and diffusion coefficient D where EA is the activation energy and R the gas 

constant by [127]:  ̅  (
 

 
  )

   
 (       ( 

  

  
)  

 

 
 )

   
. This explains why increasing the annealing 

temperature should have a much stronger effect on the crystalline structure than increasing annealing 

time due to the exponential dependence.  

 

Interdiffusion takes place in the films before crystallization, e.g. in the (partially) amorphous as-grown 

precursor state [128] which is detrimental to the formation of sharp SL interfaces. Since interdiffusion 

softens out the boundaries between compound layers, the resulting SLs are referred to as “soft 

superlattices”. 

Generally, diffusion in the case of a non-infinite source can be described by a Gaussian profile. With                   

         ( 
  

  
)  as the diffusion coefficient containing the activation energy EA it is useful to define 

a diffusion length, given by    √  .  Literature data on diffusion coefficients D in the Bi2Te3-Sb2Te3 

system are scarce. There is one report of Boltaks on D of Sb in Bi2Te3 [129-p.298f.] stating that               

D = 10-13 cm2/s at 250 °C, however it was not stated along which crystal direction D was measured and 

how the crystal structure of the material was. For a 2 h annealing procedure this D yields a diffusion 

length as large as 537 nm, which can certainly not apply to diffusion along the c-axis of the SLs 

deposited in this work.  

 

4.1.2 Calculation of element layer thicknesses 

The following material properties are necessary to calculate the required element thicknesses for the 

fabrication of the desired compound: 

 

AS:  sample surface area  

nBST: number of moles of compound (Bi1-xSbx)2Te3 

MBST:  molar mass of compound (Bi1-xSbx)2Te3 

BST :  density of compound (Bi1-xSbx)2Te3 

BT:  density of Bi2Te3 

ST:  density of Sb2Te3 

dBST:  thickness of layer of compound (Bi1-xSbx)2Te3 

nZ:  total number of moles of element Z 

MZ:  molar mass of element Z 

mZ:  number of moles of elem. Z in compound 

Z:  density of element Z 

dZ:  thickness of layer of element Z 

 

All required material properties are listed in Table 4.1.  

 

Table 4.1 Material properties of used elements and compounds. Data for Te,Bi,Sb taken from [28-p.621], compound 

data taken from [66-p.189].  

Element Molar mass M [g/mol] Density  [g/cm³] 
Te 127.66 6.25 

Bi 208.90 9.79 

Sb 121.75 6.69 

Bi2Te3 800.80 7.86 

Sb2Te3 626.32 6.57 
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A desired compound layer thickness dBST corresponds to 

 

 

moles of the compound, where BST  is given by  

 

 

which means that the density of (Bi1-xSbx)2Te3 is linearly interpolated between the densities of Bi2Te3 and 

Sb2Te3. From nBST, the number nZ of moles of element Z can be calculated by  

  

 

which yields the necessary element layer thickness of each element: 

 

 

Examples for calculated thicknesses are given in the following chapters. The numbers of periods was 

chosen such that a total film thickness of 1 µm for the MBE films and 1.5 µm for the sputtered films is 

obtained. A film thickness in the range of µm increases transport property measurement accuracy and 

faciliates structural characterization. 

 

Often, the deposition rate of the elements has to be readjusted. In most cases this applies to Te, either 

due to the constant decay of the deposition rate during sputtering or the fabrication of films with 

different Te content (section 5.2). If the current Te content is given as C and the desired content is given 

as D, then the content has to be corrected by an amount xc to achieve the desired content according to  

 

 

The deposition rate R0 then has to be corrected as follows to give the new rate Rc: 
 

 

 

4.1.3 Molecular Beam Epitaxy (MBE) 

4.1.3.1 Description of setup and growth process 

Molecular beam epitaxy (MBE) is an evaporation-based deposition method used to deposit films with 

high purity and crystalline quality. Typical features of a MBE system are the ultra high vacuum in the 

growth chamber (to prevent a large amount of gaseous contaminants from entering the grown film), a 

heatable substrate holder (to supply the impinging atoms with enough thermal energy to arrange to 

crystalline layers) and substrate shutters to be able to select the deposited species with high accuracy.  

The method and its features are described e.g. in [131]. Three growth modes can be observed in MBE 

growth: 1.) Van der Merwe growth during which films grow layer by layer and a new layer is started 

only if one layer is complete. 2.) Volmer-Weber growth that is characterized by island-like growth and 

3.) Stranski-Krastanov mode where the film grows as a layer at first but later changes to island growth.  
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where the parameter exp(B) and all other parameters given in the above equations are summarised into 

a variable parameter CBEP shows a good agreement with the recorded data. The data from the fit can be 

used to adjust the BEP via the growth temperature such that the desired growth rate is attained. The 

standard BEPs were chosen to give a good compromise between deposition rate and sub-nm accuracy 

and are given in Table 4.2 together with cell temperatures and growth rates. 

 

 

Figure 4.3 BEP in dependence of effusion cell temperature with fit after eq. 4.8. The growth rates are directly 

proportional to the BEP for each element. The standard BEPs used in this work are indicated in the plot (in units of Torr). 

Table 4.2 Used effusion cell parameters during growth. The approximate growth rate was determined from single 

element films. The cell temperature needed to sustain a certain pBEP varies slightly from run to run by up to ~ 5 °C.  

Element Typical cell 
temperature 

[°C] 

pBEP                    
[Torr] 

Approximate 
growth rate 

[nm/min] 

Melting point             
[K / °C] [72] 

Te 355 4.5 x 10-7 13.9 723 / 450 

Bi 645 4.0 x 10-7 6.8 514 / 271 

Sb 490 3.4 x 10-7 4.0 904 / 631 

 

However, the Knudsen equation is fully valid only as long as the evaporating surface (e.g., the surface of 

the source material inside the cell) is large compared to the orifice, which is not the case in the effusion 

cells used inside the shown MBE system with their relatively large orifices. Under these circumstances, 

the pressure becomes dependent on the evaporating surface to some degree [133-p.78ff.]. The 

evaporation surface is changing during evaporation of the source material and therefore, the molecular 

cell fluxes have a tendency to drift during growth. This is also evident from Figure 4.3, where the 

temperature required for setting the standard BEP varied significantly between growth runs. During one 

single growth run, the effusion cell pressures were found to vary by up to 5-10 %. Flux stability could 

be improved by keeping the effusion cells at their working temperature for ca. 1 hour before starting 

growth and by re-adjusting cell pressures once in the middle of each run. Overall due to the mentioned 

fluctuations, the desired elemental composition could be attained with a precision of about 0.5 -                

1 at. %.   

 

The element layer thickness was controlled by the shutter opening time while the molecular beam flux 

from each cell was maintained at a constant value. The growth rate that has to be known for setting 

the shutter opening time was determined by SEM from single element films as shown in Figure 4.4. The 
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Bi and Sb films showed a Frank-van der Merwe-like growth and were relatively smooth and dense and 

had a specular appearance. In contrast to this, the Te films exhibited a more island-like (Volmer-Weber) 

growth, were rough, porous and looked dully black, resembling soot. Thus, the growth rate is 

overestimated when taking the Te element layer thickness as observed in the cross section and as a 

consequence, first compound films had a lower Te content than intended. A re-calibration using EDX to 

determine the actual layer composition and re-adjusting shutter opening times was necessary to achieve 

stoichiometry. For the element layer deposition with the MBE setup, two different deposition patterns 

(quintuple and bilayer pattern) were applied. Details are given in section 5.1. The standard growth rate 

of the compound films was ~ 0.3 µm/h for Sb2Te3 and ~ 0.4 µm/h for Bi2Te3. 

 

 
Figure 4.4 Cross sections of element single layer thin films.  The Te film is rough and not fully dense. 

 

 

4.1.3.3 Preparation of substrate materials 
 

Barium fluoride (BaF2): Single crystalline (111)-oriented BaF2 platelets with a thickness of around 700-

1000 µm were used. The platelets were hand-cleaved right before growth from 10 x 10 x 25 mm³ bars 

using a trapezoidal blade and a hammer. The bars were supplied by Crystec GmbH, Berlin, Germany.  

 

Oxidized Silicion (Si/SiO2 wafers): 4 inch wafers of (100)-oriented Czochralski-grown dry-oxidized 

silicon (100 nm oxide thickness) were supplied by Siegert Consulting e.K., Aachen, Germany. This type 

of substrate was only used for the nanoalloying experiments. Before deposition, the so called “base 

piranha” pre-cleaning procedure consisting of baths in 1. HCL and 2. NH4OH / H2O2 was applied to the 

samples in order to remove organic and metallic surface contaminants. At the end, the wafers were 

cleaved into 10 x 10 mm² substrates suitable for MBE growth using a diamond scriber, model RV-125 

supplied by ATV Technologie GmbH, Vaterstetten, Germany.   

 

Nanoalloying: After a pre-bake step at 180 °C for 18 min in the introduction chamber under a vacuum 

in the 10-7 to 10-8 Torr range to desorb the biggest part of water and atmospheric contaminants, the 

substrate holders were transferred to the buffer chamber. Here, the final bakeout at 300 °C for 1 hour 

took place under vacuum in the 10-9 to 10-10 Torr range. After cooling down, the holders were 

transferred to the growth chamber. 

 

Epitaxial growth: Only BaF2 freshly cleaved before growth was used as substrate. Prior to growth, the 

substrate was heated at 425 °C in the growth chamber for 25 minutes to desorb residual water and 

gases. Further details concerning epitaxial growth are given in chapter 9.  
 
 

4.1.4 Sputtering 

4.1.4.1 Magnetron sputtering 

Sputtering is a process where atoms are ejected from a target surface due to momentum exchange by 

bombarding ions [134-p.7ff], Figure 4.5. The process takes place under vacuum and a sputter gas 

pressure mostly between 10-4
 

and 10-2 mbar. The bombarding ions are typically formed by a glow 

discharge process where an inert gas (in most cases, Argon) is ionized by an electric discharge to form a 

Te Bi Sb

1 µm 1 µm 500 nm
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plasma. The target is negatively biased and works as the cathode, attracting the positively charged ions. 

Behind the target a permanent magnet is mounted that forces the electrons in the plasma on cyclic 

trajectories, increasing the plasma density by a decade and resulting in an increase in the flux of 

sputtered atoms. The highest sputtering rate is observed when the magnetic field is parallel to the 

target since the electron confinement ist most effective there and a typical circular sputter trench 

develops which has a width of a few cm (in our setup, ~ 1.5 ‟ 2 cm).  

 

 

Figure 4.5 Principles of magnetron sputtering. Argon ions impinge on the target, leading to the ejection of target atoms 

and molecules (pink).   

For the sputtering of low-conductivity and insulating materials a HF voltage with a frequency in the MHz 

range is applied to the target, preventing the buildup of a positive surface charge and a resulting 

repulsion of Ar ions. Se and Te have low electrical conductivity and must thus be deposited by HF 

sputtering, while DC sputtering is sufficient for Bi and Sb. 

 

4.1.4.2 The sputtering system FHR MS150x4 and deposition parameters 

All sputtered films shown in this work were deposited by the sputtering system MS150x4 assembled by 

FHR Anlagenbau, Ottendorf-Okrilla, Germany. The setup consists of a turntable with six substrate 

carriers. A homogeneous deposition on 4” and 6” wafers is achieved by a double-rotation scheme, 

where the turntable as well as every single substrate holder is rotating continuously. The system was 

calibrated such that for all elements a very homogeneous deposition results with an inhomogeneity 

span between 1 and 2 %.  

An advanced programming and automatization language is integrated into the control software. Each 

period consisted approximately of 40 single operation steps, resulting in a total of ca. 4800 single steps 

for a SL with a period of 12.5 nm and a total thickness of ~ 1.5 µm. The whole setup and a screenshot 

of the user interface software are shown in Figure 4.6. The setup in its original state had several flaws 

(timing inaccuracies, mechanical problems etc.) that were fixed with several upgrades and modifications 

during this thesis. The modifications allow the accurate deposition of the nanometer ‟ thin element 

layers and guarantee the stability of the deposition process. 

The background pressure in the setup was always around 2-3 x 10-7 mbar. The Ar sputter gas pressure 

was kept at 5 x 10-3 mbar during growth. The target bias voltages were around 250 V for DC sputtering 

and 600 V for HF sputtering. In most cases, whole 4” Si/SiO2 wafers (see section 4.1.3.3) are used as 

substrates. For a few exceptional cases, i.e. film thicknesses > 2 µm, cleaved BaF2 is additionally used. 

For the removal of residual atmospheric contamination (e.g. water vapor) from the substrates the 

inverse sputter etching chamber was used. Here, the substrate instead of the target is bombarded by 

ions, resulting in an effective “scrubbing action” of the substrate surface [135-p.127]. 
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Figure 4.6 Left: Main sputtering chamber with targets inserted. Right: Screenshot of controlling software. Red = main 

sputter chamber, orange = sputter etching chamber, blue = intro chamber.  

 

4.1.4.3 Morphology of sputtered element films and thickness calibration 

A widely accepted and popular description of microstructural growth during sputtering was given by 

Thornton [136] who presented the Thornton zone model (TZM, Figure 4.7) several decades ago. 

According to the model, the two parameters that influence growth are given by the ratio of substrate 

temperature to melting temperature, T/TM and the sputter gas pressure. In Zone I (T/TM < 0.3) the low 

adatom mobility results in a morphology that is characterized by the growth of large dome-shaped and 

loosely bound crystallites. In Zone II (0.3 < T/TM < 0.5) deposited films show large faceted columnar 

grains with dense boundaries (leading to a rough surface), changing to a recrystallized grain structure in 

zone III for T/TM < 0.5 where bulk diffusion starts to set in. In transition zone T between zone I and II, 

densely packed small-scale fibrous grains, leading to a smooth morphology are reported. 

 

 

Figure 4.7 Thornton Zone model for sputtered films. Several growth zones are obtained for different gas pressures and 

substrate temperatures. Red line: Used sputtering gas pressure of 3.8 mTorr = 5 x 10-3 mbar. 

The used sputtering Ar pressure of 5 x 10-3 mbar corresponds to 3.8 mTorr in the diagram. A 

correspondence between the TZM and sputtered elementary thin films was found as demonstrated by 

Sb Se
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Figure 4.8. The T/TM ratios of Te, Sb and Bi are 0.4, 0.3 and 0.5 respectively (see Table 4.2). Sb falls fully 

into zone T and exhibits a very smooth growth (mirror-like surface) with very small grains that are not 

distinctly visible at 20 k magnification. The Te surface is closer to zone II and slightly larger, 

distinguishable grains form. Nevertheless, the surface is still smooth and mirror-like. Bismuth with its 

higher T/TM ratio lies in the transition zone between zone T and II and clearly exhibits distinct features 

from zone II. Single large faceted columnar grains are evident and the films appear opaque. The 

roughness of sputtered Bi was also noted by other authors [107] and leads to a higher roughness of 

nanoalloyed films with a high Bi content such as the Bi2Te3-based films shown in chapter 8.  

 
 

 

Figure 4.8 Surface morphology of sputtered element thin films. The morphology corresponds to the prediction by the 

TZM.  

4.1.4.4 Thickness calibration of sputtering system 

The thickness of sputtered films was determined with a lift-off technique. Analyzing the film remaining 

after the lift-off process with a profilometer (model Veeco Dektak 6M) yields the layer thickness and 

thus the growth rate if the deposition time is considered. Understandably, this approach is not fully 

applicable to the very rough Bi films. The profilometer needle has a diameter of 10 µm while the grains 

on the Bi film surface are spaced apart by only few µm. Thus, instead of probing the surface, the needle 

“hops” from grain to grain and a film thickness higher than actually present is determined. From EDX 

measurement, it was found out that a correction factor of roughly 0.55 has to be applied to the 

measured film thickness to get the “mole-equivalent” full-density thickness. 

 

The accuracy of the calibration can be increased by determining the growth rate for different sputtering 

powers and applying a linear fit. A plot of growth rate vs. power shows a linear relationship for lower 

power ranges (Figure 4.9). At higher powers, the top target surface tends to melt up partially, 

generating droplets in the process and the rate vs. power relationship is no more linear. In this case, a 

part of the energy brought into the target by the impinging ions is not used to knock atoms out of the 

target but instead is lost to supply the latent heat needed to melt up the material, which results in a 

lower sputtering rate than anticipated from the extrapolation. It is strongly advisable not to operate in 

this high power range due to the detrimental effect of the droplets. The sputtering powers of Sb and Te 

were kept below 170 W and 300 W, respectively to avoid droplet formation.  
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Figure 4.9 Sputtering rate vs. power for the elements used in this work determined in calibration runs. At higher power, 

the target surface partially melts up, the deposition rate drops and the linear relationship is no more valid as can be 

observed for Te and Sb.  

Unfortunately, the sputtering rate is subject to a long-time drift due to changes in target morphology. 

The large difference in energy between the bombarding species and the sputtered species and the 

relatively low yield for most target materials means that as much as 80-90 % of the impinging ions 

energy is converted to heat which has to be transported away by cooling [134-p.16]. While the 

deposition rate drift of Bi and Sb is rather slow, Te is problematic since it has a low thermal conductivity 

of ~2-3 W/mK [72]. This means that a relatively large temperature gradient between surface and top as 

well as between sputter trench and the rest of the target is established during continuous sputtering. 

Since Te is brittle, this leads to a continuous degeneration of the target material. The material becomes 

rough, porous and tends to develop cracks and thus the thermal conductivity drops even more, further 

aggravating the situation. Additionally, since a porous surface generates less sputtered atoms [134-

p.12], the sputtering power has to be increased to get the same deposition rate as before, accelerating 

the degeneration even more. The rate usually drops by up to 10 % after the deposition of 5-10 µm 

compound film which translates to a Te content reduction of around 3 at. % in the film, having a 

drastic impact on the electrical properties. The amount of deposition rate drift is unpredictable which 

makes depositing of near - stoichiometric films difficult and requires frequent re-calibration of the 

sputtering system.  

Note that Se is also extremely critical under the mentioned aspects. Due to its very low thermal 

conductivity of 0.5 ‟ 2.9 W/mK and its low melting point of 221 °C [72-p.4-122], already the 

application of low sputtering powers (80 W) lead to the partial melting of the target, rendering it 

unusuable, which is why an alternative material system to Bi2(Se,Te)3 was developed (chapter 8). 

 

4.1.5 Annealing system 

4.1.5.1 Annealing setup 

For compound formation by the nanoalloying method, the element layer stacks have to be annealed, 

preferentially under a defined atmosphere. For this purpose, a special homebuilt annealing system was 

assembled at Fraunhofer IPM, Figure 4.10. The sample is inserted into a quartz glass ampoule which 

consists of two parts that can be pushed together to seal the ampoule. The furnaces are calibrated such 

that the desired annealing temperature is homogeneous throughout the ampoule. For a one-zone 

isothermal annealing, only one furnace is pulled over a small ampoule that contains both sample and 

source. For a two-zone annealing (see next section), a longer ampoule is used and source and sample 

are kept at different temperatures with the two furnaces.  
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Figure 4.10 a) Annealing system used in this work. The setup is also capable of two-zone annealing experiments. b) 

Schematic drawing of ampoule and furnace position for two-zone annealing. c) Heating / cooling curves for an annealing 

temperature of 250 °C.  

Firstly, the furnace tube together with the open ampoule is evacuated down to pressures in the range of 

10-6 mbar after several nitrogen purging steps. Under this vacuum, the ampoule is sealed by pushing the 

two parts together via the transfer rod. Then, nitrogen is flowing through the furnace tube, acting as a 

purging gas and simultaneously leading to a pressure on the evacuated ampoule and keeping it tightly 

sealed. During the whole procedure, the furnace is heated up to the desired temperature without the 

ampoule inserted. After the ampoule evacuation procedure was carried out and the purge gas is 

flowing, the hot furnace is finally moved over the ampoule. After the desired annealing time has 

expired, the furnace is retracted from the ampoule, leaving it to cool down quickly. The heating / 

cooling curves are shown exemplarily for a temperature of 250 °C. After pulling the furnace over the 

ampoule it takes roughly 20 minutes to thermally equilibrate the ampoule and the sample with the 

furnace, i.e. to reach the desired annealing temperature within 10 °C. Upon removing the furnace, the 

temperature drops below 100 °C within 15 minutes. It is not likely the samples will change much below 

this temperature, so the properties, i.e. the annealed sample can be considered as quenched and the 

defect structure as “frozen in”. Annealing times given in this work specify the time between the points 

where the furnace is pulled over the ampoule and where it is removed again.   

    

Save for the high-temperature two-zone experiments described in 4.1.5.2, the annealing runs in this 

work were carried out under a Te atmosphere and isothermal one-zone annealing, meaning that a small 

amount of Te was inserted into the ampoule and the temperature in the ampoule was homogeneous. 

The function of Te was mainly to provide a safety against Te loss from the sample if the ampoule was 

not sealed entirely tight. From previous experiments with polycrystalline thin films annealed under Te 

atmosphere (unpublished work, Fraunhofer IPM) it was found that the presence of Te in the ampoule 

does not lead to a Te enrichment in the sample up to 400 °C. Additionally in this work, it was tested 

whether the Te source influences the sample at an annealing temperature of 250 °C. A long annealing 

time of 8 h was chosen and the samples were annealed with a Te source, under vacuum and under 

nitrogen inert atmosphere in the ampoule. No difference in composition, morphology or transport 

properties was observed between the variations of annealing conditions.  

 

4.1.5.2 Two-zone annealing 

The theoretical basics for the two-zone annealing were described in ref. [75]. For Bi2Te3 samples, 

Brebrick determined the dependence of the Te partial pressure on temperature and the Te content in 

the samples. The results are given in Figure 4.11 together with the vapor pressure of pure Te. As 

expected, a sample with higher Te content will generate a higher Te pressure at the same temperature.   
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Figure 4.11 Partial pressure of Te and Bi2Te3 samples with different Te content versus temperature [75]. 

On the other hand, the information provided in the diagram can also be utilized to adjust the Te 

content. The equi-compositional areas are given by lines. If, for instance, a composition of 59.9 at. % of 

Te is desired and the sample is to be annealed at TSa = 550 °C, a Te partial pressure of about 10-4 

atmospheres (0.1 mbars) has to be provided. This can be done by setting the temperature of a pure Te 

source such that said vapor pressure is established. As can be taken from the diagram, this source 

temperature is TSo = 419 °C. 

 

The whole process can be interpreted with regard to Gibbs´ phase rule, which states that 

 

 

where P  is the possible number of phases, F the possible degrees of freedom and K the number of 

components. As components, Te and Bi are present. If the considerations are limited to the 

homogeneity range of Bi2Te3, then only the gas and solid phase are present. Two degrees of freedom 

remain: The sample temperature and the vapor pressure around the sample, which can be set by 

adjusting the Te source temperature.   

 

However, the method only works for sufficient annealing temperatures and annealing times. In earlier 

annealing experiments with polycrystalline sputtered Bi2Te3 films (unpublished), the sample was kept at 

an annealing temperature of 350 °C for 2 hours and no influence on sample properties was seen when 

changing the source temperatures. From the experiments shown in this work a minimum temperature / 

annealing time of 400 °C / 2 h are anticipated in order to be able to see an effect. 

 

 

4.2 Transport property characterization – methods and application 

4.2.1 Van der Pauw method and Hall effect measurements 

For the determination of the electrical conductivity, charge carrier concentration and ‟mobility, a 

measurement setup that makes use of the standard van der Pauw Method as derived and described in 

ref. [137] and [138] is used here. Two measurements with different contact configurations are carried 

out, yielding two resistance values that can be used to calculate the specific resistivity el or its reciprocal 

value, the electrical conductivity . For getting accurate results, there are requirements on the film 

properties and the contacts, which  must be sufficiently small and located at the circumference of the 

        ( 4.9) 
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sample. Carrier concentration and ‟mobility are determined by making use of the Hall effect. If a 

current I is applied to opposite contacts of a sample with thickness d while a magnetic field with 

strength B perpendicular to the current is active, the Lorentz force drives the charge carriers away 

perpendicularly to the flow direction. This results in the buildup of an electric field and a Hall voltage UH 

that is given by              with the Hall coefficient RH. In the most general case where electrons 

and holes are simultaneously present as carrier types, the Hall coefficient is given by 

 

 

where p, µp and n, µn are the carrier concentration and ‟mobility for holes and electrons, respectively. 

For the typical case of extrinsic conduction, acoustic scattering and a distinct anisotroy of longitudinal 

and parallel effective masses which obviously also applies to the materials examined in this work [139], 
the Hall prefactor FH can be assumed as unity [140-p.114].   

If one carrier type clearly dominates, i.e. n >> p (n-type electron conduction) or p >> n (p-type hole 

conduction), equation 4.10 simplifies to:  

 

 

and the charge carrier concentration can be easily determined.  Finally, the charge carrier mobility µ is 

determined by dividing the obtained electrical conductivity by the carrier concentration. 

 
Contact to the samples is made by pressed contact pins with a pointed end, minimizing contact 

diameter as required by the van der Pauw Method. The pins are plated with gold which has been 

known for some time to form ohmic low resistance contacts with many thermoelectric materials, 

including (Bi1-xSbx)2Te3 [141]. The applied magnetic field is 0.9 Tesla. Currents of typically 5 mA, 2.5 mA 

, -2.5 mA and -5 mA are applied to the sample while the voltage is simultaneously measured. 

The measurement error in the van der Pauw method is systematic, i.e. too low values for resistivity and 

carrier concentration and too high values for the mobility are determined because of a violation of the 

contact idealizations that are assumed for the derivation of the relations shown above. The error can be 

estimated by the relations given by van der Pauw [137]. Under the assumption of realistical values for 

the contact circumference, diameter and displacement from the sample boundary, the error of the 

electrical resistivity is around 1 % and can be neglected in comparison to the uncertainty of the film 

thickness which is assumed as ~ 5 %, leading to an error of ~ 5 % for the electrical resistivity. For carrier 

concentration and mobility an error of about 10 % can be estimated. The errors in the measurement of 

voltage, current and magnetic field strength are negligible in comparison to the errors caused by the 

contact nonideality. 

 

 

4.2.2 Seebeck coefficient measurement  

Room temperature setup 
 

The Seebeck coefficient at room temperature is determined by a setup constructed at Fraunhofer IPM, 

Figure 4.12. The sample is laid on two copper blocks that are heated and cooled using thermoelectric 

modules. Two probes consisting of two type T copper-constantan (Cu-CuNi) thermocouples each are 

applied to the sample. They allow the simultaneous measurement of the two sample temperatures TH 

and TC and the Seebeck voltage US caused by the temperature gradient (T = TH-TC) between the two 

different Cu-CuNi junctions that are in contact with the sample. This yields the Seebeck coefficient S of 

the sample:  
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In our implementation of the setup, the measurement is repeated with reversed temperature gradient 

and the two obtained results are averaged.  

 

It is noted that an international standardized calibration procedure for Seebeck measurement setups has 

not yet been established. To avoid errors during measurement, during this thesis a validation procedure 

taking place every one or two weeks was introduced: 1.) Validation with a Ni sample with known S and 

2.) Measurement of one or more V2VI3 reference samples with high S and comparison with previous 

results obtained on the samples. Special care was taken to ensure proper junctions and good contact to 

the film. The junctions are inspected by eye prior to the measurement.  Faulty junctions will yield too 

large Seebeck coefficients, leading to their immediate replacement. It is altogether difficult to give a 

measurement error for this setup. If the values obtained on the reference sample do not deviate by 

more than 5 % from the reference value, the setup is considered as validated. Thus, the measurement 

error can be roughly estimated as 5 % and has a systematic character due to the mentioned reasons. 

 

Temperature-dependent measurement of Seebeck coefficient and electrical resistivity with the 
SRX setup 
 

S and are measured in dependence on temperature with the homebuilt setup „IPM-SRX“. The 

measurement setup is based on a prototype set up at the Ioffe Institute of Physics in Sankt Petersburg in 

the early 1990s [142] and additional ideas from the MLU Halle [143]. A description of the setup is given 

in ref. [144]. A type K thermocouple consisting of the alloys chromel and alumel is used in the setup. 

The sample holder is shown in Figure 4.12 together with a wiring diagram. The chromel/alumel 

thermocouples are pressed to the bottom of the sample by spiral springs. The sample holder is 

surrounded by a radiation heat shield. For the measurement of the Seebeck coefficient, a linear 

regression method proposed by Boffoué et al. is used [144], eliminating undesired residual voltages in 

the electric circuit that are present due to various reasons.  

Prior to the measurement, the samples were cut into stripes with a length of 10 mm and width of 2-3 

mm to increase the temperature gradient and thus measurement accuracy. Typical maximum 

temperature gradients are between 2 and 6 K. The sample chamber was evacuated and then kept 

under a nitrogen pressure of 100 mbar to protect the sample against evaporation and to achieve good 

thermal contact between sample and copper block. For each sample, several incremental 

heating/cooling cycles were carried out. The maximum temperature was increased stepwise in each 

heating cycle. If no stabilization of the electrical properties was observed on cooling, further 

heating/cooling cycles were carried out. A measurement uncertainty of 7 % is estimated. 

 
The simultaneous measurement of the electrical conductivity is done with a standard 4-point probe 

method. A current I is injected into the sample with length l. The resistance R is measured by using the 

Alumel branches as the voltage probe to determine the voltage drop U on the sample with a cross 

section of A (corresponding to a thickness of d and a width of w). For rectangular samples such as the 

ones characterized in this work, the electrical conductivity of the sample is then given by 

 

 

The measurement is carried out with 3 different voltages and currents. The obtained resistances are 

averaged. Residual voltages are determined prior to the measurement of the electrical resistivity and 

subtracted from the measured voltage. A measurement uncertainty of ~ 10 % is estimated. Often, the 

measured stripes show an irregular shape or cracks. In this case, the obtained  have to be normalized 

to values obtained at room temperature by van der Pauw measurements (section 5.3). 
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Figure 4.12 Left: Room temperature measurement setup for Seebeck coefficient. Right: Sample holder of SRX 

measurement setup (CAD drawing). 

 

4.2.3 Time Domain Thermal Reflectance (TDTR) 

4.2.3.1 Description and setup 

The method of time domain thermal reflectance (TDTR) [145] that is used in this work to determine the 

cross-plane thermal conductivity is basically a pump-probe experiment. A “pump” laser beam impacts 

on a sample and causes a local heating and a certain temperature distribution on the sample surface. 

The subsequently arriving probe beam “probes” the temperature rise caused by the pump beam by 

analyzing the change in reflectivity Rth caused by the temperature rise T. Both are connected through 

the relation  

 

 

with Rth/T as material-specific thermoreflectivity. The analysis of the temperature rise, i.e. reflectivity 

change yields the thermal conductivity of the characterized thin film. The measurement principle for a 

multilayered system is sketched in Figure 4.13.   

 

 

Figure 4.13 TDTR measurement principle. A laser pump beam heats the sample surface, causing a change in reflectivity 

that is “probed” by the probe beam. The reflected probe beam signal can be evaluated in dependence on delay time t 

to obtain the thermal conductivity of the characterized thin film.  

A schematic of the measurement setup is shown in Figure 4.14. The laser beam, generated by a 

Ti:Sapphire solid state laser is pulsed with a frequency of 80 MHz and has a wavelength of 775 nm. The 
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laser beam is split up by a polarizing beam splitter into pump (vertically polarized) and probe beam 

(horizontally polarized) after the optical isolator. The pump beam is modulated with a frequency of 10.7 

MHz by an electro-optic modulator. The delay stage that is passed by the pump beam allows one to set 

a variable time delay between pump and probe beam. Both beams are directed to the sample by a pair 

of beam splitters and focused on the sample by an objective. The focused laser spots have a diameter of 

16-18 µm in our experiment. One of the beam splitters is polarizing, blocking the pump beam from 

reaching the photodetector. An additional aperture is blocking out any residues of the pump beam that 

leak through the polarizing beam splitter. The reflected probe signal is picked up by two lock-in 

amplifiers. The first one is locking on the modulation frequency of 10.7 MHz of the pump beam, while 

the second one is locking on a frequency of 220 Hz that the probe beam is chopped with (not shown in 

Figure 4.14). The CCD camera is used to observe the sample surface and position the laser beam. For 

the actual measurement, the corresponding beam splitter is removed in order to get a higher probe 

beam intensity and signal. Long pass and short pass filters were introduced to reduce measurement 

uncertainties due to sample roughness [146]. 

 

 

Figure 4.14 Time domain thermal reflectance measurement setup. Red block = long pass wavelength filter, blue block = 

short pass wavelength filter. 

A derivation of the theoretical basics of the TDTR method and the relations shown here is given in ref. 

[145]. The temperature distribution caused by the modulated pump beam can be described by a point 

source oscillating with frequency  on a semi-infinite solid. In the z-direction, the thermal penetration 

depth of the heat wave is limited to the thermal penetration depth dt, similar to an electromagnetic 

wave penetrating an electrical conductor (skin effect). dt can thus be considered as a the “depth of 

information” of the measurement. 

 

 

The thermal diffusivity Dt = /cv is a means to quantify how quickly a solid body assumes the 

temperature of the environment. As shown in Figure 4.13, each sample consist of multiple layers, 

including phonon-scattering interfaces between the layers. The mathematical model can be generalized 

to a layered geometry by an iterative matrix algorithm which is similar to matrix methods used in fields 

such as electrical engineering or optics [145].  It is important to note that using this algorithm each layer 

can be fully modeled by taking its thermal conductivity , thermal diffusivity D (i.e. cv) and thickness Ln. 

Phonon-scattering interface layers between different materials are modeled by a layer with small 

thermal conductivity and small thickness.  
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For the selection of an appropriate laser power, one also has to consider the steady-state heating of the 

substrate and the film. In the film, the heat spreads linearly since the thickness of the films is mostly 

lower than the laser beam diameter 2w0 (~ 17 µm in our setup). Then, the temperature rise   ̅  caused 

by an impinging laser power A0 can be calculated as given by eq. 4.16 for a film with a thickness of d 

with thermal conductivity . For estimating the heat rise in the substrate (the heat spreading here is 

three-dimensional), the low frequency limit, < D / w0² is considered. Then, one can derive a useful 

relation that can be used to estimate the steady-state substrate temperature rise   ̅  in the substrate 

[145]. For calculating the total sample temperature rise   ̅   , the contributions of film and substrate 

have to be added according to eq. 4.16. It is noted that the absorbed laser power is only 13 % of the 

incident laser power since only 15% of the incident power are absorbed by the Al film (the rest is 

reflected) and the transmission of the optical elements of the setup is 85%. 

 

  

For the analysis of V2VI3 films the laser power has to be kept low enough to ensure no significant steady-

state heating occurs during the analysis. Using eq. 4.16 to calculate the steady-state heat rise in film and 

substrate with a chosen total incident laser power of 27 mW, one obtains an acceptable total steady 

heating of 16 K for a V2VI3 thin film of 1.5 µm thickness with a low thermal conductivity of  = 0.45 

W/mK on a BaF2 substrate with  = 10.9 W/mK [72-p.12-212].  

 

4.2.3.2 Measurement details 

Sample preparation  
 

The sample preparation for the TDTR method is simple. Only an unstructured metal layer as transducer 

and reflector layer is necessary. Due to its high thermoreflectivity R/T and other advantages (easy 

deposition, well-known properties etc.) Al was chosen. A thickness of 70 nm is optimal for films with 

low thermal conductivity as can be inferred by exemplaric data modeling.  

 

Measurement procedure 
 

The probe beam signal can be divided into a real and imaginary part, corresponding to the in-phase and 

out-of-phase signal voltages Vin and Vout picked up by the lock-in amplifier. Since both real and 

imaginary part of the signal are analogously affected by frequently occuring nonidealities in the 

experiment (beam defocus, incomplete overlap of probe and pump beam) taking the ratio of both as 

measurement signal makes the method more robust to perturbations and increases measurement 

accuracy [147]. The actual measurement procedure is carried out by varying the time delay t between 

pump and probe beam and measuring the signal voltages Vin and Vout for each t. Plotting the ratio of 

these vs. the time delay yields the ratio-time transient, to which the model data calculated by the 

procedure described above is fitted. Some examples are given in refs. [145,148,147]. 

 

The thermal penetration depth for this film, calculated by eq. 4.15 is only around 100 nm and the total 

film thickness is around 1.5 µm. Hence, the substrate can be neglected in the model calculation which 

was the case for all films analysed in this work. The complete layer system consists of 3 layers including 

a thermal interface layer between Al and V2VI3 material. Each layer is described by thickness, heat 

capacity and thermal conductivity, resulting in a total of 9 parameters in the model. For the Al and the 

V2VI3 film, the heat capacity values cv are taken from refs. [72-p.4-124][53] and the thermal conductivity 

of Al was calculated from the electrical conductivity with the Wiedemann-Franz law, eq. 2.5. The 

determination of the local thickness of the Al layer is possible through acoustic impedance effects (eq. 

2.21), which can be observed due to the picosecond timescale of the experiment as described nicely e.g. 

in [148].  

With all data, two parameters that are varied to fit the model to the data remain: The thermal 

conductivity of the V2VI3 film and the interface thermal conductance. Since the variation of these two 
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parameters affects the fits differently the variation of one parameter does not influence the other. A 

good fit yielding a thermal conductivity of 0.45 W/mK can be obtained assuming an Al-V2VI3 interface 

thermal conductance of 32 MW/m²K. This value is rather low since, inevitably, a thin oxide layer has 

formed on the V2VI3 film, acting as a thermal resistance. All V2VI3 thin films examined in this work could 

be modeled with a similar interface resistance.  

 

Measurement uncertainty 
 
The measurement uncertainty can be estimated by the time-dependent sensitivities of the mathematical 

model to the parameters. The dependence of the sensitivity Sy of the ratio R(y) on a certain parameter y 
is given by taking the logarithmic derivatives [147,149-p.17].  

 

 

The sensitivity is generally dependent on the delay time. With the definition of the sensitivity as given in 

eq. 4.17, the ratio depends exponentially on the sensitivity.  A small sensitivity value Sy means that the 

model is not very sensitive to the respective parameter y, resulting in a high uncertainty for the 

parameter. 

The uncertainty for any parameter    with sensitivity Si propagates to the measurement uncertainty 

  
     of the thermal conductivity V-VI of the V2VI3 film by eq. 4.18 [149-p.17]. In the data modeling 

range between 40 and 3600 ps the sensitivity on the Al thickness   
   = -0.37 overwhelms all others, 

making only this parameter relevant for the determination of   
    : 

 

 

The ratio of the sensitivities    
     

    | for the analysed thin films is around 1.75 - 1.9. The uncertainty 

  
   of the Al thickness determination by the acoustic reflexes is estimated as 5 %, meaning that   

     is 

roughly 9-10 %. This can be seen as a lower limit for the measurement uncertainty since other 

parameters such as surface oxides, nonideal beam overlap and shape etc. also influence the 

measurement signal. An additional uncertainty is caused by sample roughness which causes the 

measurement data to get distorted by a long-range oscillation-like pattern. This phenomenon was 

restricted to the slightly rough samples shown in chapter 8. The uncertainty range can be estimated by 

giving an upper and lower limit for the fit. Typically, an additional uncertainty on V-VI of roughly 10 % is 

observed which adds up to the uncertainty due to the Al thickness as given above.  

 

The system was validated after installation using a Si/SiO2 wafer test sample (oxide thickness of 500 nm). 

A thermal conductivity of 1.30 W/mK for the SiO2 was determined in very good agreement with the 

literature value of 1.33 W/mK [150]. The test measurement was repeated on each measurement day to 

ensure that correct results are obtained. 

 

Comparison and validation of thermal conductivity obtained with TDTR measurements and 
the 3 method 
 
An extended validation of the TDTR setup specifically for V2VI3 thin films was carried out by comparing 

measurement results to results obtained with the well-established and technically completely different 

3 method (setup in Fraunhofer IPM). Results on several sputtered homogeneous and multilayered thin 

films annealed at different temperatures are compared in Table 4.3. 
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Table 4.3 Comparison of thermal conductivity values  obtained with the TDTR and 3 method for different nanoalloyed 

thin films.  

Film Annealing 
temperature [°C] 

 - TDTR 
[W/mK] 

 - 3          
[W/mK] 

Bi2Te3 200 0.65 ± 0.07 0.59 ± 0.06 

(Bi0.95 Sb0.05)2Te3 200 0.50 ± 0.05 0.45 ± 0.05 

Bi2Te3 / (Bi0.95Sb0.05)2Te3 ‟ SL 150 0.57 ± 0.06 0.53 ± 0.05 

(Bi0.2Sb0.8)2Te3 200 0.57 ± 0.06 0.46 ± 0.05 

 

4.3 Structural characterization – methods and application 

4.3.1 X-ray Diffractometry (XRD) 

Crystals represent three dimensional diffraction gratings. At certain incidence angles depending on the 

distance between two lattice planes dhkl, constructive interference of the X-rays with wavelength XRD 

occurs according to the Bragg-equation  

 

 

with n as diffraction order. For cubic and hexagonal systems, dhkl is given by  

 

 

where ac = cubic lattice constant, ah and c = hexagonal lattice constants. For calculating the positions of 

the reflexes, the lattice constants for Bi, Sb, Te, Bi2Te3 and Sb2Te3 were taken from refs. [151], [152], 

[153], [67], [68], respectively. 

 

For some samples, the grain size p was calculated using the Debye-Scherrer equation: 

 

          
       

      
 

( 4.21) 

 

wFWHM is the full width at half maximum of the reflex at the angle 2 and KS the Scherrer constant. The 

value of K depends on the crystal shape. Usually (and also in this work) a value of 0.9 is used going back 

to first calculations by Scherrer as mentioned in [154].  

 

In this work, all XRD scans were carried out in Bragg-Brentano geometry (-2 scan) except for some 

scans as indicated in section 5.1.2 and 5.3. For the latter, the grazing incidence geometry was used. 

Details on the XRD apparatus are given in [155]. Additionally, in chapter 9 a PANalytical Empyrean 2 

with a 2x Ge 220 Monochromator was used to acquire the XRD data. 

 

4.3.1.1 Superlattice XRD satellites and pole figures 

Superlattices correspond to artificial period structures superimposed on the crystal lattice. If there is a SL 

structure with sufficient quality (sharpness, periodicity) present in the sample, so-called SL satellites are 

centered equidistantly around the zeroth-order peak which corresponds to the average lattice constant 

of the SL structure. The period of the SL dSL can be calculated from the angles of the satellites by 

subtracting the Bragg equation for two different SL reflexes indexed with their order m and n. The 

intensity of the SL reflexes decays with increasing order. A high intensity at high orders is indicating a 

good long-range order, i.e. a high quality of the SL structure. 
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A pole figure provides information about the orientation of the crystallites present in a sample. It can be 

interpreted by considering the intersections of the normal of the selected (hkl)-planes with an imaginary 

hemisphere situated above the sample surface. The two-dimensional projection of this hemisphere 

results in a pole figure. The intensity in each point is proportional to the number of grains in the film 

that have their normal to the selected (hkl)-planes and point to the respective coordinates on the 

hemisphere. Pole figures of the V2VI3 materials are constructed by first setting the angle 2 to the strong 

Sb2Te3 (01.5) reflex at 28.2° [42-p.68]. The pole figure is given by the angle representing the “radius” 

of the pole figure and representing the rotational angleof the figure. In order to be able to obtain a 

reflection, andmust be such that the reflection condition is fulfilled. Since (01.5) and (00.l) enclose 

an angle of =59° in Sb2Te3, (00.l) reflections occur on a circle defined by this angle. During rotation 

around the sample normal by a certain amount of reflexes will appear in dependence on crystal 

symmetry. The [00.l] direction in the V2VI3 materials exhibits a threefold rotational symmetry, so three 

reflexes should appear if there is perfect rotational order in the crystal. The pole figures were recorded 

with a PANalytical Empyrean 2 with Cu-Kα1 and - Kα2 radiation.  

 

4.3.1.2 Rietveld refinement 

Most Rietveld refinements of the diffraction data obtained at room temperature were carried out using 

the GSAS Suite of Programs [156] together with the graphical user interface EXPGUI. The peak profiles 

were refined using the Pseudo-Voigt function described in the GSAS manual [156-p.156ff]. Spherical 

harmonics were used to model the texture level in the samples. The orientation index was also 

determined from the Rietveld refinements and can be used to judge the degree of texture. For a 

randomly oriented crystal, the index is 1 and increases without boundary for an increasing degree of 

texture [156-p.139]. The grain size p was calculated from the parameter LX that describes particle size 

broadening in the Pseudo-Voigt model as given in [156-p.164]. This calculation is similar to eq. 4.21 but 

takes into account the broadening of all reflexes in the pattern and thus represents an average grain 

size.  

All refinements were carried out with GSAS save for chapter 8 where the program TOPAS Academics 

[157] was used with the March Dollase Model [158] to refine the strongly preferred orientation parallel  

to the c-axis. The effect of the surface roughness was corrected using an approach by Suortti [159]. 

 

 

4.3.2 Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Analysis 
(EDX)  

Scanning Electron Microscopy (SEM): A scanning electron microscope (SEM) uses a focused electron 

beam to scan over the surface or the area of interest and forms an image from the collected 

backscattered and secondary electrons. In this work, the method was used to examine the sample 

morphology and cross-sections of the film. Two SEM systems were used: 1.) The Hitachi S-4700, a Cold 

Field Emission Scanning Electron Microscope (FE-SEM) with a secondary electron (SE) detector, a 

standard back scattered electron (BSE) detector and an additional ring-shaped BSE detector that can be 

moved into the sample chamber if needed, yielding a superior element contrast. 2.) The Hitachi SU-70, a 

FE-SEM with a Schottky electron gun that provides high beam currents. It is equipped with the same 

detectors as the S-4700.  
For both SEMs an acceleration voltage of 12 kV was applied. The samples were electrically contacted 

using silver paint. The measurement of film thicknesses was carried out by analyzing the film cross-

section in fast-scan mode to prevent distortion effects by image shifting which occurred during slow-

scan mode. The film thickness measurement was carried out on 3-4 different parts of the cross section 

and averaged. The measurement uncertainty for the film thickness is estimated as ~ 5 %. For analyzing 

the cross-section, the samples were cleaved using a diamond cutter.  
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The imaging of the cross-section via SEM can be used at room temperature to visualize the 

nanostructuring. The scattering probability e() for electron scattering for angles >  is related to the 

relativistically corrected wavelength el and the atomic number Z by          
      [161-p.378]. 

Elementary Bi has a higher atomic number than the elements Sb and Te, a larger backscattering 

coefficient and thus shows up as a bright line in the cross-section image. However, the capability of the 

BSE detector to distinguish between the elements was only sufficient for unannealed films.  

 

Energy-Dispersive X-ray Analysis (EDX): Energy-Dispersive X-ray Analysis (EDX) was used to analyse 

the chemical composition in the films. The sample is irradiated by the electron beam, causing the 

ejection of inner shell electrons. The empty electron shells are occupied with electrons from outer shells 

with higher energies under emission of characteristic X-ray radiation. The intensity of the X-ray radiation 

generated by each element is measured and, after a ZAF correction (backscattering and energy loss 

dependent on atomic number, absorption and fluorescence) the element concentration can be 

determined. Two EDX systems were used in this work. The S-4700 is equipped with an EDAX Phoenix 

EDX detector controlled by the Genesis software package. The SU-70 is equipped with an Oxford X-Max 

EDX System with an INCA detection unit and the INCA software package. The incident electron count 

rate was set to yield a deadtime of ~ 30-35 % in both detectors, yielding a count rate of ~ 1 kcps and ~ 

3-4 kcps in the EDAX and Oxford system, respectively. The voltage was chosen as 12 kV, which fulfills 

the requirement that the overvoltage should be at 2-5 x of the respective X-ray line [160]. For Bi, Sb and 

Te the M, L, and L line were used with -line energies of 2.42, 3.61 and 3.77 keV, respectively.  
 

The measurement error caused by the overlap of the L lines of Sb and Te can be somewhat 

compensated by using element standards that also serve for regular calibration of the EDX system. For 

this, near-stoichiometric element standards for Bi2Te3, Sb2Te3 and (Bi0.25Sb0.75)2Te3 with known 

compositions were used. They were provided by the Martin-Luther University in Halle-Wittenberg by Dr. 

Matthias Stölzer and consist of Bridgman-grown material synthesized by H.-T. Langhammer during his 

PhD thesis. For the calibration, three measurements were carried out on the standards and averaged. 

The correction factor, giving the deviation between measured and nominal element composition was 

determined from the experiment and applied to subsequent measurements on samples to yield the 

“true” element composition. The (Bi0.25Sb0.75)2Te3 standard was used for all samples consisting of              

(Bi1-xSbx)2Te3 with x ≥ 0.5. It is noted that for lower Sb concentrations, it is not certain that using the 

standard yields correct results. It is also not guaranteed that the application of the calibration data 

obtained from a homogeneous standard measurement to layered films yields fully accurate results. 

For each determination of chemical composition, three measurements with an acquisition lifetime of 

100 live seconds were carried out and averaged. The uncertainty of the obtained atomic concentrations 

is estimated as ~ 0.3 - 0.5 at. % (see also [42]).  

 

4.3.3 Transmission Electron Microscopy (TEM) 

In a transmission electron microscope (TEM) the electron beam travels trough a thin material slice. By 

using a system of electromagnetic lenses, a two-dimensional projection that represents sample structure 

on a screen is possible. TEM analysis of thin film samples was carried out at the University of Tübingen 

by the Eibl group (mainly by Dr. Nicola Peranio) and the University of Kiel by the Kienle group (mainly by 

Dr. Ulrich Schürmann and Torben Dankwort).  

 

The instrumental details for the TEM analysis by the Eibl group are given in [166]. For analysis in the 

Kienle group for most imaging tasks the TEM Tecnai G² F30 with the S-TWIN objective lens and an 

acceleration voltage of 300 kV was used. The spherical aberration coefficient CS is 1.2 mm. The system 

is also capable of High-Resolution TEM (HRTEM). Also, integrated high-resolution Scanning Transmission 

Electron Microscopy (STEM) is possible. The STEM is a “hybrid” of the TEM and SEM, which uses 

deflection coils to scan a finely focused converged electron beam across the surface of a thin specimen, 

each point on the sample creates a corresponding point contrast on the screen. In the system, a High 

Angle Annular Dark Field (HAADF) detector is used. This type of detector is centered on the optic axis of 

the STEM and has a hole in the middle. Only electrons with an off-axis angle of > 50 mrads (~ 3°) are 

aquired, blocking out the “background” of Bragg-diffracted electrons and enabling the acquisition of Z-
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contrast images [161-p.379f.] Thus, element distributions such as chemical variations accompanying 

superlattice structures can be clearly imaged. EDX elemental mapping was performed in the STEM mode 

using the M-line and the K-Line for Bi and Sb, respectively. For EDX analysis a Si/Li detector (EDAX 

System) was used.  

For imaging in dependence on temperature and in-situ annealing of multilayered films, a 652 Double 

Tilt Heating Holder by Gatan was used. The temperature was increased stepwise with a heating rate of 

5-7 K and held for 20 minutes at the respective temperature with roughly 10-15 minutes of imaging 

time each.  The sample preparation at Kiel was carried out by Focused-Ion Beam (FIB) [161-p.188f.]  

The HAADF-HRSTEM images shown in chapter 9 were acquired at the CAMCOR lab at the University of 

Oregon, Eugene, using an FEI Titan 30-800 with an acceleration voltage of 300 kV, corresponding to a 

resolution of 1.4 Angstrom as specified by the manufacturer. 

 

4.3.4 Secondary Ion Mass Spectroscopy (SIMS) 

Depth profiles of the chemical composition of SLs are determined with dynamic secondary ion mass 

spectroscopy (SIMS). The sample is irradiated with a primary ion beam whose intensity is so high that 

the atoms of the film are sputtered away as secondary ions that can be analysed in a mass 

spectrometer. This procedure yields a depth profile of the thin film. SIMS has been used for several years 

in our group to evaluate the quality of SL structure. A clear correlation between SL quality and 

sharpness of the depth profile was evident, e.g. from annealing experiments as shown in [162-p.176ff]. 

The Johnson group is also working with this method to evaluate nanostructured MLs [128]. 

In this work, the secondary ion mass spectrometry (SIMS) depth profiles were recorded using a Cameca 

SIMS 4500 with Caesium (Cs+) primary ions at an impinging angle of 45° and detecting secondary ions 

of MCs+ (with M = Bi, Sb, Te). Using Cs+ ions results in a high secondary ion yield for the elements Bi, Sb 

and Te. For all sputtered SLs, the standard Cs+ ion energy of 5 keV was used. For the strongly 

interdiffused ML structures shown in chapter 6, the ion energy was reduced to 1 keV to improve the 

visibility of the element oscillations. A way to check for validity of the results is the direct comparison of 

the ion signals. If there really is a ML structures in which the Bi and Sb contents vary, then the two ion 

signal intensities must behave complementary, e.g. a dip of one signal must be accompanied by a peak 

of the other. This was always the case for the observed nanostructures.  
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5 Bi2Te3 and Sb2Te3 thin films grown with an MBE setup by 

nanoalloying 

The binaries Bi2Te3 and Sb2Te3 form the basic building blocks of the high-performance p-conducting SLs. 

Therefore, as a starting point comprehensive studies were carried out on the nanoalloying approach for 

compound binary films. Unless otherwise stated, all characterized films in this chapter were grown on 

BaF2 substrates. The films characterized by TEM were grown on Si/SiO2 substrates. Films grown on BaF2 

and Si/SiO2 exhibit no significant differences in structural and transport properties [121].  

 

 

5.1 Dependence of texture on deposition pattern and initial element layer 
thickness 

The results reported in ref. [8] and the impact of the crystal orientation on the thermal stability of 

nanoscale multilayer structures [64] suggest that a strong degree of c-orientation seems to be a 

necessary prerequisite for creating V2VI3 ML structures with sufficiently sharp interfaces, low thermal 

conductivity and high ZT values. Experiments on sputtered nanoalloyed layers revealed a dependence of 

the degree of c-orientation on the initial element layer thickness [163]. To examine the influence of the 

thickness of the initial element layers on the crystalline orientation after annealing, thin films with 

different deposition patterns and element layer thicknesses were prepared and characterized. Two 

deposition patterns with different initial layer thicknesses were used (Figure 5.1). For the quintuple 

pattern, the element layer thicknesses were chosen to mimic the unit cells of Bi2Te3 and Sb2Te3 (space 

group:   ̅ ) with lattice parameter c of ~ 3 nm for Bi2Te3 and Sb2Te3 [67, 68]. Since Bi2Te3 and Sb2Te3 

crystallize in a rhombohedral layered structure with three quintuple stacks with the sequence Te-M-Te-

M-Te (M = Bi or Sb), an analogous quintuple deposition pattern corresponding to this structure was 

chosen. The exact thicknesses were adjusted such that three quintuples correspond to one unit cell of 

Bi2Te3 or Sb2Te3, resulting in individual element layer thicknesses of ~ 0.2 nm. Additionally, a simpler 

bilayer pattern was used where the elements were stacked in an alternating fashion with an element 

layer thickness ratio of 2:3 for M:Te. All element layer thicknesses were deposited to maintain the 

stoichiometric 40:60 ratio for M:Te of the respective compound. All films shown in this chapter were 

annealed isothermally at 250 °C for two hours. 

 

 

Figure 5.1 Quintuple and bilayer pattern used to deposit the initial element layers.  

5.1.1 Bi2Te3 

The nominal element layer thicknesses, chemical composition and in-plane transport properties are 

summarized in Table 5.1. The Te content deviated slightly from the intended 60 at. % due to 
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fluctuations of the effusion cell fluxes during growth (section 4.1.3.2). The total film thickness d of 

sample BT-Q determined from the SEM cross section after annealing was slightly larger than the 

thickness calculated from the nominal inital element layer thickness and the number of deposition 

periods.  

 

Table 5.1 Bi-Te samples: Nominal element initial layer thickness for deposition patterns shown in Figure 5.1, chemical 

composition and room-temperature in-plane transport properties after annealing at 250 °C for 2 hours. Units: Te 

concentration cTe in at. %, electrical conductivity  in S/cm, carrier mobility µ in cm²/Vs, carrier concentration n in cm-3, 

Seebeck coefficient S in µV/K, power factor PF in µW/cmK², thermal conductivity  in W/mK. dTe : nominal thickness of Te 

initial layer in nm, dBi : nominal thickness of Bi initial layer in nm, dper : total thickness of deposition pattern = period length 

in nm, Nper: total number of periods. d: total thin film thickness as determined by SEM cross sections in µm. A negative 

sign for n indicates electron conduction. 

Deposition pattern              

(sample name) 

dBi  dTe  dper  Nper cTe d µ n 
 


 

S PF 

Quintuple (BT-Q) 0.2 0.2 1.0 999 59.1 1.17 77 -2.4 x 1019 303 -168 9 

Bilayer 1 (BT-B1) 0.4 0.6 1.0 999 60.6 1.03 58 -6.5 x 1019 597 -140 12 

Bilayer 2 (BT-B2) 0.9 1.2 2.1 500 61.5 1.04 39 -1.2 x 1020 745 -113 10 

Bilayer 3 (BT-B3) 1.7 2.4 4.1 250 60.9 0.95 81 -8.6 x 1019 1105 -127 18 

 

Bi2Te3 with the quintuple pattern showed the highest value for S of all samples. However, the 

conductivity was relatively low leading to small values for the PF. The highest PF (18 W/cmK2) was 

observed for the film with “thickest” inital layers that also exhibited the highest mobility and 

conductivity. 

Figure 5.2 shows the XRD patterns of annealed Bi2Te3 samples. Rietveld analysis was carried out and the 

XRD data could all be fitted well using the Bi2Te3 structural model [67]. The refined lattice parameters 

and texture index are summarized in Table 5.2. The sizes of coherent scattering domains, i.e. the 

crystallite sizes (Table 5.2) do not increase with increasing element layer thickness. Diffuse scattering 

observed underneath the intensive> Bragg peaks particularly in the samples BT-Q, BT-B1 and BT-B2 

indicates disorder which was treated as modulated background during the fitting procedure. This local 

disorder may be due to small variations of chemical composition and/or strain. In this context, we note 

that an impurity nanoscaled Bi-rich phase was identified in nanoalloyed Bi2Te3 samples [164].  

For sputtered nanoalloyed Bi2Te3-based thin films with higher initial element layer thicknesses, it is 

known that the level of preferred c-orientation increases with decreasing element layer thickness [163]. 

However, the XRD data indicate that the present Bi2Te3 samples do not follow this fashion, which is 

apparent from the intensities observed for the (00.3), (00.6) and (00.15) Bragg reflections. The annealed 

Bi2Te3 film with the thinnest initial element layers exhibits the lowest level of preferred c-orientation. The 

calculated texture index implies that the preferred orientation level increases slightly when the initial 

layer thickness increases up to 0.9 nm/1.2 nm (Bi/Te) and increases sharply when the thickness is 

roughly doubled. Changing the deposition pattern from quintuple pattern to the bi-layer pattern while 

keeping the period unit of the deposition pattern constant at nominally 1 nm seems to have no 

influence on the texture of the thin films.  

 

The formation of strongly c-oriented thin films can be achieved if the formation of the covalent/ionic Bi-

Te or Sb-Te bonds takes place along the substrate normal such that layers of the same atoms are lying 

in parallel to the substrate plane. In this case, the basal plane of the unit cell is also lying parallel to the 

substrate plane. The observations made here indicate that, besides an upper limit observed on 

sputtering such films [163], there may exist a lower limit of the individual layer thickness below which a 

strong c-texture cannot be established. Johnson et al. have discussed the critical thickness of the initial 

element layers, stating that there exists a critical layer thickness below which diffusion of the elements is 

finished before interfacial reaction (i.e. crystallization) occurs [123]. In this situation, the interfaces 

between the elements serving as nucleation centers are absent and cannot act as a starting point for the 

growth of crystallites with the c-axis perpendicular to the element interfaces.  
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Figure 5.2 Diffraction patterns of annealed Bi2Te3 film samples. In order to deal with the intensive reflections from the 

BaF2 single crystal substrate, the intensities are shown in logarithmic scale. The element layer thickness dBi and dTe are 

given in nm and increase from bottom to top. (00.l)-reflections are indexed and indicated by dashed lines. Green arrows 

point to reflections that most clearly indicate the difference of film orientation. For comparison, a powder diffractogram 

(JCPDS database) is shown as vertical bars below the experimental patterns.  

Table 5.2 Refined lattice parameters, orientation index from Rietveld analysis and the crystallite size of Bi-Te samples. 

Estimated standard deviations are given in parentheses. The crystallite size was calculated from the width of the (00.18) 

reflex (indicated by W) and through the Rietveld refinement  (section 4.3.1.2, indicated by R).  

Sample a, b [Å] c [Å] Orientation Index Crystallite size W / R [nm] 
BT-Q 4.3894(5) 30.5693(10) 5(3) 27 / 110 

BT-B1 4.3908(4) 30.5468(14) 6(2) 30 / 180 

BT-B2 4.3862(3) 30.4908(14) 7(3) 25 / 170 

BT-B3 4.3855(4) 30.5293(12) 14(3) 20 / 170 

 

The change of orientation is also clearly seen in SEM cross-section images of cleaved edges of the 

samples (Figure 5.3). With increasing c-orientation, the grains tend to show a shape which resembles 

horizontal bars. These horizontal bars correspond to the typical appearance of Bi2Te3 crystallites 

(hexagonal platelets [42-p.62,165]) viewed perpendicular to the c-axis, i.e. parallel to the basal a-b plane 

(see also Figure 7.5). The sample with the highest degree of c-orientation shows the highest in-plane 

charge carrier mobility and the highest in-plane electrical conductivity (Table 5.1) as expected from the 

reported behavior of anisotropic bulk material whose electrical conductivity is higher perpendicular to 

the c-axis, section 3.3. 
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Figure 5.3 SEM cross sections of cleaving edge of annealed Bi2Te3 samples. Horizontal bar-shaped grains corresponding 

to hexagonal platelet shaped crystallites viewed parallel to the a-b plane (red boxes) can be observed in the samples with 

the highest degree of c-orientation (BT-B3). 

A thorough texture analysis by high-energy XRD experiments carried out at the 6-ID-D high-energy 

station, APS, Chicago, on samples analogous to BT-Q revealed that the c-axis of the crystallites is tilted 

by up to 30° with respect to the growth direction, i.e. there is a preferential texture [166]. No epitaxial 

relation to the substrate was found. 

 

One could speculate that the adaption of the total thickness of the element film deposition pattern to 

the unit cell length (lattice parameter c) might increase the c-orientation of the crystal. Thus, films with 

period lengths of 3.1 and 6.3 nm, corresponding of to a whole and double unit cell length were grown. 

In comparison to the best c-oriented film BT-B3, no clear trend towards a stronger preferential 

orientation could be observed and reflexes different from (00.l) were still strongly expressed. Increasing 

the rotation speed of the substrate rotator could potentially improve element layer homogeneity, 

providing a better base for c-oriented growth to start at the element layer interfaces. In fact, increasing 

the rotator speed from 10 to 25 rpm led to slightly more pronounced c-reflexes but the effect was 

small. Consequently, the transport properties of the films with adapted thickness and increased rotator 

speed did not differ significantly from the ones shown in Table 5.1.    

 

 

5.1.2 Sb2Te3 

For Sb2Te3 (ST) samples the element initial layer thickness, deposition pattern, chemical composition and 

transport properties are listed in Table 5.3. Figure 5.4 shows the corresponding XRD patterns.  

 

Table 5.3 Sample properties of Sb-Te samples: Nominal element initial layer thickness for deposition patterns shown in 

Figure 5.1 together with chemical composition and room temperature in-plane transport properties after annealing at 

250 °C for 2 hours. Units as previously defined in Table 5.1. dSb = Sb initial element layer thickness in nm. 

Deposition pattern              

(sample name) 

dSb  dTe  dper  Nper cTe d µ n 
 


 

S PF 

Quintuple (ST-Q) 0.2 0.2 1.0 999 61.1 1.11 402 3.0 x 1019 1933 125 30 

Bilayer 1 (ST-B1) 0.4 0.6 1.0 999 61.7 1.04 444 2.6 x 1019 1815 129 30 

Bilayer 2 (ST-B2) 0.8 1.3 2.1 500 58.5 0.98 119 9.7 x 1019 1857 104 20 

Bilayer 3 (ST-B3) 1.5 2.6 4.1 250 59.9 0.99 373 2.4 x 1019 1450 142 29 
 

The ST samples prepared in the current study via the nanoalloying approach are clearly among the best 

Sb-Te thermoelectric films reported (Table 3.4) even though the Seebeck coefficients are still lower than 

for films prepared via ion beam sputtering and co-evaporation.  
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Figure 5.4 Diffraction patterns of Sb2Te3 for different deposition patterns and element initial layer thicknesses after 

annealing. The element layer thicknesses dSb and dTe are given in nm and increase from bottom to top. (00.l)-reflections 

are indexed [68] and indicated by dashed lines. For comparison, a powder diffractogram (JCPDS database) is shown as 

vertical bars below the experimental patterns. Inset: Magnified section around 2 = 27°, sample ST-B1. Sb2Te3 reflexes 

indexed in blue, Te reflexes indexed in green. 

Table 5.4 Refined lattice parameters, orientation index from Rietveld analysis and the crystallite size of Sb-Te samples. 

The crystallite size was calculated from the width of the (00.18) reflex (indicated by W) and through the Rietveld 

refinement  (section 4.3.1.2, indicated by R). For unknown reasons, the mathematical calculation routine for the Rietveld 

refinement did not converge to reasonable values for sample ST-B2.  

Sample a, b [Å] c [Å] Orientation Index Crystallite size W / R [nm] 
ST-Q 4.26536(9) 30.4382(8) 61(11) 32 / 140 

ST-B1 4.2638(2) 30.736(2) 2978(11) 32 / 130 

ST-B2 - - - 21 / - 

ST-B3 4.2640(1) 30.438(1) 1085(70) 29 / 120 

 

All patterns expect for those obtained on Te-rich samples could be fitted with the Sb2Te3 structural 

model [66-p.179ff.] with refined cell parameters, texture indices and crystallite sizes being summarized 

in Table 5.4. All four samples exhibited a preferred c-orientation with sample ST-Q showing the lowest 

level of preferred orientation that was however still more pronounced than that of BT-Q. Using a bi-

layer pattern with larger element initial layer thicknesses further increased the degree of c-orientation 

(sample ST-B1). However, the degree of c-orientation apparently does not depend on the initial element 

layer thickness in a monotonous fashion.  

 

Concerning grain size, it is not sure if the Debye-Scherrer formula based calculation can be used here 

since grain sizes up to 100-200 nm are already at the upper limit for the application of the formula. 

Values obtained from the (00.18) reflex and the Rietveld refinement differ strongly since the crystallites 

formed by nanoalloying appear to be smaller along the c-direction (see also Figure 7.15 and Figure 5.5). 

Altogether, TEM cross sections taken on the samples should yield more accurate results and indicate 

that the grain size in Sb2Te3 (350-650 nm) is larger than in Bi2Te3 (150-350 nm) and no foreign phases 

are present [167], Figure 5.5). The Te concentration in the shown Sb2Te3 and Bi2Te3 film was 59.7 and 

59.6 at. %, respectively. 
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Figure 5.5 TEM images of nanoalloyed annealed Sb2Te3 (left) and Bi2Te3 (right) grown with the quintuple pattern.  

The pronounced texture can also be observed in SEM cross-sections (Figure 5.6). Grains with a 

hexagonal shape lying parallel to the basal plane are most pronounced in sample ST-B1 with the highest 

degree of c-orientation. Comparable to Bi2Te3, the sample with the highest degree of c-orientation has 

the highest charge carrier mobility. However, the samples cannot be compared straightforwardly as 

their compositions are slightly different. Extended texture analysis on a film analogous to ST-Q revealed 

that the c-axis is almost parallel to the growth direction with a maximum deviation of 10° [166]. No 

epitaxial relation to the substrate was found. 

 

 

Figure 5.6 SEM images of Sb2Te3 cross sections. Horizontal bar-shaped grains corresponding to hexagonal platelet- 

shaped crystallites viewed parallel to the a-b plane (red boxes) can be observed in the samples with the highest degree of 

c-orientation (ST-B1). 

In samples with Te excess reflexes that could be assigned to Te were found, for example on sample ST-

B1. This is in agreement with the phase diagram of Sb-Te displayed in Figure 3.3 that shows that 

exceeding a Te content of 60 at. % results in a two-phase region where the phase Sb2Te3 and pure Te 

coexist. From the FWHM of the (10.1) reflex at 2= 27.6° and using eq. 4.21, a Te grain size of ca. 30 

nm is estimated. 

 

Finally, similar experiments as described for Bi2Te3 (matching element layer thicknesses to multiples of 

unit cell length and increasing substrate rotator speed) were carried out for Sb2Te3. Adapting the total 

stack thickness to the unit cell length did not improve c-orientation. Increasing the substrate rotator 

speed led to a slight increase in c-orientation, yet the effect was weak. Overall, the results were similar 

to the ones obtained for Bi2Te3. 
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5.2 Dependence of transport properties on Te content  

5.2.1 Bi2Te3 

The dependence of the electrical properties on the Te content of the nanoalloyed film samples is 

presented in Figure 5.7. Data from films fabricated with the quintuple deposition pattern as well as with 

the binary pattern with different initial layer thicknesses are shown. 

 

 

Figure 5.7 Electrical properties of nanoalloyed annealed Bi2Te3 in dependence of Te content. Full black squares: 

Nanoalloyed thin films with element initial thickness of 0.2 nm (quintuple pattern). Empty triangles: Nanoalloyed thin 

films with element initial thickness > 0.2nm (bi-layer pattern). Note that the data represented by red triangles cannot be 

directly compared to the data on the other films since the associated films (BT-B3) exhibit a significantly stronger c-

orientation, affecting mainly µ and PF. Empty circles: Data from ref. [95] for MBE epitaxial thin films. A negative sign of n 

indicates electron conduction. Dashed line: Eyeguide. 

All films exhibit n-type conductivity even for an excess of Bi in contrast to bulk materials where an 

excess of Bi generally leads to p-type conduction. The majority of publications on Bi2Te3 thin films also 

reports that only n-type conducting Bi2Te3 could be observed, details are given in section 3.4 and Table 

3.4. 

As was pointed out in [166,167] there are strong indications that the point defect physics is governed 

by deposition temperature. Generally, thin film growth processes occur at much lower temperatures 

than bulk crystal growth processes. It may be concluded that besides antistructure defects which are 

usually seen as the main cause for the generation of electrons, other defect mechanisms may play a role 

in determining the sample properties. To illustrate this fact, Figure 5.8 shows a plot of BiTe and SbTe 

antisite defect density in Bi2Te3 and Sb2Te3 vs. deposition temperature.  
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Figure 5.8 and eq. 5.1 Left: Antisite defect densities of Bi2Te3 and Sb2Te3 in dependence on temperature [167]. The 

vertical lines indicate (1) the annealing temperature of 250 °C for nanoalloying, (2) the congruent melting point of Bi2Te3 

at 585 °C, and (3) the congruent melting point of Sb2Te3 at 617 ° C. Right: Relation given in [80] used for calculation. 

Lower temperatures yield significantly lower densities of antisite defects and thus reduced carrier 

densities. An experimental confirmation is given by the low antisite density in low-temperature 

fabricated (i.e. thin film) Sb2Te3 compared to bulk material [167], section 5.2.2. The carrier 

concentrations of ~ 3-4 x 1018 cm-3 predicted by eq. 5.1 are close to the experimentally obtained 

minimum values of ~ 1-2 x 1019 cm-3 (Figure 5.10).  For Bi2Te3, the antisite defect density at the growth 

temperature of 250 °C likely is so low that other electron-generating defects not included in the 

“antisite only” model overwhelm the effects of the antisites. These effects could be of the following 

nature: When deviating from the stoichiometric composition towards higher Bi contents, from the 

phase diagram of Bi-Te it can be assumed that in addition to Bi2Te3, the formation of Bi and the phase 

BiTe (layered phase consisting of Bi-Te quintuples and Bi2 layers, see section 3.2 takes place. Both phases 

are strongly n-conducting with low Seebeck coefficients (BiTe: ~ -50 µV/K, Bi:  -20 to -70 µV/K 

according to Figure 3.4 and [11]). It is well possible that these n-type phases are formed instead of the 

hole-generating point defects. This suggestion is in conformance with TEM experiments [166]: For a 

sample with 40.5 at. % Bi grown with a quintuple pattern analogous to BT-Q, a nanoscale Bi-rich 

secondary phase was found at the grain boundaries (Figure 5.9). Altogether, the TEM experiments 

indicate that grain boundaries act as sinks for point defects.  

Plotting the obtained Seebeck coefficients vs. the logarithm of the carrier concentration provides useful 

information. If a linear relationship exists, one can conclude from the Pisarenko relation (eq. 2.9) that 

the basic transport parameters such as effective (DOS) mass, scattering type etc. remain the same for all 

samples, i.e. there is no change in sample composition that leads to another compound dominating the 

transport property measurement. Evidently, this is the case for the samples examined here (Figure 5.9), 

the data points agree well with a linear fit of S vs. the logarithm of n. At high carrier concentrations         

> 2 x 1020 cm-3 (films with strong Bi excess) there appears to be a slight deviation from the straight line, 

meaning that other compounds besides Bi2Te3 may start to influence the transport properties.  

 

 

𝜇𝐵𝑖𝑇𝑒   𝑘𝐵𝑇𝑀  𝑙𝑛 (
𝑛𝐵𝑖𝑇𝑒 

𝑁𝑇𝑒

)      

 

where  

𝜇𝐵𝑖𝑇𝑒 = formation energy of antisite defect 

𝑇𝑀= Melting temperature 

𝑛𝐵𝑖𝑇𝑒 = Antisite defect density 

 𝑁𝑇𝑒= Concentration of Te atoms per unit volume 
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5.2.2 Sb2Te3 

The electrical properties of Sb2Te3 films as a function of Te content are shown in Figure 5.10. As 

expected, all Sb2Te3 films exhibited p-type conduction. The Seebeck coefficient rises up to 60 at. % Te 

and remains roughly constant with a slightly rising tendency for higher Te contents, significantly 

exceeding typical values for bulk materials (maximum ~ 110 µV/K according to [90], Table 3.2). The 

obtained values are similar to films synthesized by co-deposition on a hot substrate [110]. The rise of S 

with increasing Te content was also reported for bulk materials, albeit with generally lower values of S 
(Figure 3.4). Correspondingly to the Seebeck coefficient, the charge carrier concentration drops sharply 

at ~ 60 at. % Te and in contrast to Bi2Te3 also remains at the same level for larger Te contents. 

 

 

Figure 5.10 Electrical properties of nanoalloyed annealed Sb2Te3 films as function of Te content. Full squares: 

Nanoalloyed thin films with element initial thickness of 0.2 nm (quintuple pattern). Empty triangles: Nanoalloyed thin 

films with element initial thickness > 0.2nm (bi-layer pattern). Dashed lines: Eyeguide.  

From the appearance of Te reflexes in the XRD patterns (Figure 5.4), one may conclude that the excess 

Te (in contrast to Bi2Te3) does not form electron-generating TeSb antisites but instead precipitates into 

relatively large crystallites. Te as an element is an intrinsic semiconductor with low electrical conductivity 

(2-3 S/cm [169]). The Te excess has a small, but noticeable effect on the transport properties, as can be 

inferred from the Pisarenko plot presented in Figure 5.11: Films with a Te excess show a different S/n 

relationship than films with a Te deficit. 

The drastic change of the electrical transport properties for Te contents  60 at. % is also observed in 

the pronounced increase of carrier mobility. Strikingly high µ of more than 400 cm²/Vs were achieved 

despite the polycrystalline nature of the film, exceeding typical µ reported for thin films and even that of 

single crystalline bulk materials of 313 cm²/Vs, Table 3.2. It is noted that only very recently higher room 

temperature carrier mobilities of ~680 cm²/Vs were published by Wang et al. [65] while for decades the 

record for epitaxially grown films was at 350 cm²/Vs, Table 3.4. The high µ compared to bulk material 

can be explained as follows: Due to the presence of a large number of SbTe antistructure defects, for 

Sb2Te3 bulk materials the minimal n is usually much larger than that attained in this work for Te 
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contents beyond 60 at. %. Hence, the relatively low carrier concentration in the nanoalloyed samples is 

likely associated with a lower number of SbTe antistructure defects and as a consequence a reduced 

defect scattering of carriers compared to bulk materials. Additionally, carrier-carrier scattering is reduced 

due to the lower n. With increasing Te content, the high µ accompanied by the large S translates to 

high PFs  of about 30 µW/cmK² in the nanoalloyed samples with a Te content ≥ 60 at. % which is not 

much lower than the values of single crystals. The electrical conductivity is generally high and does not 

show a clear dependence on Te content (Figure 5.11). 

 

Figure 5.11 Left: Electrical conductivity in dependence on Te content of Sb2Te3. Right: Seebeck coefficient in dependence 

of the logarithm of carrier concentration together with Pisarenko fit (red lines). Empty squares, dashed line: samples with 

Te excess. Full circles and full lines: Samples with Te deficiency.  

For sample ST-Q, a thermal conductivity of 1.6 W/mK was determined. This value is between the  
obtained for single crystalline bulk material of about 0.9-1.4 W/mK parallel and ca. 5-7 W/mK 

perpendicular to the c-axis (Table 3.2). The similarity to the  of bulk material can be explained by the 

fact that 1.) nanoalloyed Sb2Te3 with its large grains (size of 350-650 nm determined by TEM, Figure 5.5 

from [164]) exhibits a low degree of grain boundary scattering and electrical conductivity that is close to 

bulk single crystalline material and 2.) in the analysed near-stoichiometric sample no foreign phases 

were found in the TEM analysis. ZT can be estimated with the same assumptions used for Bi2Te3. An 

upper and lower limit for cross-plane ZT of 0.6 and 0.14 were obtained for an anisotropy ratio of 1 and 

4, respectively. 

 

 

5.3 Electrical and structural properties in dependence on temperature  

To monitor annealing effects on the properties of Bi2Te3 and Sb2Te3 films fabricated by nanoalloying, the 

electrical conductivity and Seebeck coefficient of two binary thin films deposited using the quintuple 

pattern (sample sets BT-Q and ST-Q) were determined in the un-annealed state as a function of 

temperature for several “incremental” heating/cooling cycles in combination with a temperature-

dependent XRD analysis. The results obtained by this combined approach can also be used for finding 

the optimum annealing conditions for each respective compound.  

 

Temperature-dependent XRD patterns (Figure 5.12) show that crystallization of both compounds starts 

and finishes at similar temperatures of around 100 ‟ 120 °C, evidenced by the disappearance of 

element-related reflexes and the appearance of compound reflexes. This is also reflected in the electrical 

properties (Figure 5.14). In the as grown state, the Bi-Te sample consists of a mixture of Bi2Te3, Bi and Te 

(Figure 5.12 and Figure 5.13). The sample has metallic properties due to the presence of n-conducting 

Bi which dominates the electrical properties due to its high metal-like conductivity. At ~100 °C, S 

exhibits a drastic increase while the conductivity drops sharply. After the first heating/cooling cycle no 

further changes can be observed for the following heating/cooling cycles. The early stabilization of the 

properties is in accordance with results obtained by standard isothermal annealing (section 5.2).  In a 

long-time annealing experiment, an annealing time of 72 h yielded no significantly different results 
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compared to a standard annealing time of 2 h (with only the mobility being higher by about 40 %), 

indicating that a general stabilisation of properties should take place in under 2 h.  

 

 

Figure 5.12 Temperature resolved XRD patterns of Bi2Te3 (left)  and Sb2Te3 (right), quintuple deposition pattern. The X-ray 

intensity is color-coded (going from low to high: blue, green, yellow, orange, red). The temperature regime at which the 

compound formation starts and is completed is indicated by red horizontal bars. Further increase of the temperature 

results in a narrowing of the reflections. White arrows indicate element reflexes. Reflections that can be assigned to 

certain elements or compounds are indicated by dashed vertical bars. For the sake of clearness, only compound (00.l) 

reflections are indexed.  

 

Figure 5.13 Room-temperature XRD patterns of Bi2Te3 (left) and Sb2Te3 (right), as grown and annealed, quintuple 

deposition pattern. Compound (00.l) reflections are indicated by dashed vertical bars. In as-grown Bi2Te3, compound 

reflexes as well as additional element reflexes (x = Bi, l = Te) can be identified. As-grown Sb2Te3 has a rather amorphous 

character and broad reflexes make the identification of single elements and the compound difficult. XRD patterns were 

also recorded for Si/SiO2 substrates and showed almost exactly the same features [121]. 

After the first heating cycle, the formation of Bi2Te3 is obviously complete and the thin film shows a 

typical semiconducting behaviour, i.e. the conductivity increases with increasing temperature. A 

decrease of the Seebeck coefficient for increasing temperature indicates the generation of additional 

charge carriers which may either be caused by the onset of intrinsic conduction (which is assumed to 

occur for the decrease of the Seebeck coefficient after reaching the temperature where it is maximal 

[170]) or defect-generated impurity levels. The “flattening” of the data near room temperature shows 

that the maximum of S is near room temperature, suggesting that the mentioned carrier generating 

mechanisms start becoming relevant at this temperature. Similar observations were made on epitaxial 

Bi2Te3 films with comparable n [42-p.75f.]  

The Sb-Te sample shows a different behaviour. In the as grown state, the XRD pattern is typical for an 

amorphous material, which can also be seen in a /2 pattern collected at room temperature (Figure 
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5.13). The reflections are rather broad and an assignment to a specific element is difficult. A 

pronounced increase of  is observed at 100 °C, indicating crystallization of the compound while S 

starts to increase at 120 °C. With each heating/cooling cycle, S decreases, suggesting an increase of n 

since, generally, S   ln(1/n) (eq. 2.9). This is likely induced by an evaporation of Te from the sample in 

the measurement setup which, unlike the standard annealing system, does not provide a Te-rich 

atmosphere. According to EDX analysis the sample contains 60.5 at. % Te in the as grown state. The 

carrier concentration increases sharply when the Te content drops below 60 at. % (Figure 5.10), 

indicating that a small evaporation of Te has drastic effects on the electrical properties.  increases with 

each heating/cooling cycle which can be partly traced back to this increase of n, but certainly also to an 

increase in µ due to grain growth. Overall, the temperature dependent behaviour of the Sb-Te sample is 

influenced by different annealing effects like grain growth, phase formation, and evaporation of Te and 

shows no stabilization even after the third heating/cooling cycle.  

 

 

Figure 5.14 Seebeck coefficient and electrical conductivity in dependence on temperature. Top: Bi2Te3, bottom: Sb2Te3. 

The measurements were carried out for several heating/cooling cycles (M1, M2 and M3).  

 

5.4 High-rate deposition experiments 

In order to monitor the influence of deposition rate on film properties, the films with the thickest 

element layers, i.e. Bi2Te3 (Sb2Te3) with 2.6 / 3.7 nm Bi/Te (2.3 / 3.9 nm Sb/Te) were regrown with 

deposition rates increased five- and tenfold (by increasing effusion cell temperatures), resulting in 

growth rates of ~ 3 µm/h for for Sb2Te3 and ~ 4 µm/h for Bi2Te3. These rates are quite high in 

comparison to typical rates reported in literature for co-deposited films, see e.g. [101,105,108,109] - 

only PLD-grown films exceed growth rates of ~ 4 µm/h. Remarkably, the electrical properties of the films 

did not degrade noticably upon increasing the growth rate and only a very small increase in film 

roughness was observed (Table 5.5 with image). This is in contrast to conventional hot co-deposition 

where a too high deposition rate results in only partial formation of the desired compounds from the 

elements. Due to the negligible change in transport properties, it is anticipated that the deposition rate 

can be increased even more, opening a path for cost- and time-efficient film fabrication. 
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Table 5.5 and Figure 5.15: Electrical transport parameters and cross sections of films grown with increased deposition 

rate. Units as previously defined in Table 5.1. A negative sign of n indicates electron conduction. 

 

 

Sample Flux 
rate 

cTe d µ n 
 


 

S PF 

 Bi2Te3 1 x 59.9 1.04 -59 -6.0 x 1019 564 -137 11 

Bi2Te3 5 x 59.8 1.12 -61 -6.1 x 1019 599 -142 12 

Bi2Te3 10 x 60.0 1.24 -49 -5.0 x 1019 387 -161 10 

         

Sb2Te3 1 x 62.4 1.09 434 1.9 x 1019 1300 139 25 

Sb2Te3 5 x 61.5 1.11 438 2.0 x 1019 1400 140 27 

Sb2Te3 10 x 60.2 1.14 375 2.3 x 1019 1395 143 29 

 

 

 

 
 

5.5 Two-zone high-temperature annealing experiments with Bi2Te3 

As will be shown in chapter 6, compensation effects due to different carrier types of single layers in a 

Bi2Te3 / Sb2Te3 ML stack severely degrade the thermoelectric performance of the ML films. The problem 

originates from the carrier type of Bi2Te3 (section 5.2.1). No hole conduction can be achieved under the 

described experimental conditions. The hypothesis that the defect chemistry is strongly affected by 

annealing temperature (Figure 5.8) could be confirmed by high-temperature two-zone annealing 

experiments as described in section 4.1.5.2 using Figure 4.11, carried out on three as-grown Bi-Te 

samples from different growth runs with different Te contents. The annealings were carried out for 2 h, 

except for the 500 °C annealing (24 h). Remarkably, the attained Te contents were equal for all samples 

at 450 °C and 500 °C and corresponded very well (deviation of max. 0.2 at. %, smaller than EDX 

uncertainty) to the expected content of 59.9 at. %, giving experimental proof that the proposed two-

zone annealing method can indeed be used to precisely adjust the Te content in Bi2Te3 samples. 

 

 

Figure 5.16 Left: Te concentration in dependence on annealing temperature for Bi2Te3. With increasing annealing 

temperature, the Te content of all 3 samples equalizes to the value of 59.9 at. % indicated by the purple horizontal bar 

and predicted by the two-zone annealing diagram. Black square: Sample 1, red circle: Sample 2, blue triangle: Sample 3. 

Right: Cross-section of sample 3 after annealing at 500 °C / 24 h.  
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The transport data (Figure 5.17) reflect the defect structure in dependence on annealing temperature. 

The samples are strongly n-conducting at 250 °C and then get into the zone of mixed conduction at 

400 ‟ 450 °C. This is indicated by the deviation from the Pisarenko line (Figure 5.9), i.e. one or more 

samples has a low S and a contradicting n. The films finally become clearly and distinctly p-conducting 

at 500 °C (i.e. a sufficient number of holes was generated as majority charge carriers) with high S over 

170 µV/K at n of 4-5 x 1019 cm-3. However, due to the low carrier mobility, the power factors are low. 

Using XRD it was verified that the film indeed consisted solely of Bi2Te3 so that no other phase could be 

the reason for the low carrier mobility. Instead, this effect is most likely caused by the rough and porous 

morphology of the samples induced by solid-state recrystallization induced at this high temperature 

(Figure 5.16). At 500 °C, film sample 1 was so brittle that no measurement of the electrical properties 

was possible.  

 

 

Figure 5.17 Electrical Properties of Bi2Te3 in dependence on annealing temperature.  Black square: Sample 1, red circle: 

Sample 2, blue triangle: Sample 3. Purple dashed line: Eyeguide for S of samples 2 and 3. Note that due to compensation 

effects in the mixed conduction regime at 400-450 °C the determination of n and µ is unreliable, see section 6.2.1 for 

details. A negative sign of n indicates electron conduction. 

Finally, it is noted that unfortunately the method cannot be used to overcome the compensation 

problems in nanoallyed multilayers since the necessary temperature of 500 °C is far beyond the stability 

limit of these ML (section 6.2.1). 
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5.6 Conclusions 

In summary, the nanoalloying method has been shown to yield Bi2Te3 and Sb2Te3 thin films with good 

thermoelectric properties and stoichiometry control. Crystal formation was found to start at a 

temperature as low as ~100 °C, enabling the use of temperature-sensitive substrates during compound 

fabrication. Changing the element initial layer thickness and deposition pattern provides a novel method 

to influence the film texture while altering the Te content in the samples provides a way to influence the 

electrical properties. Very high deposition rates can be applied without a degradation in transport 

properties.    

 

Nanoalloyed Sb2Te3 films exhibit very high charge carrier mobilities (~ 400 cm²/Vs) and high power 

factors (~30 µW/cmK²). Thus, it could be shown that Sb2Te3 thin films are suitable for thermoelectric 

devices, in contrast to bulk materials. A value for the thermal conductivity as low as 0.4 W/mK was 

determined for the Bi2Te3 sample with a quintuple deposition pattern. However, TEM experiments 

revealed the presence of an oxidized Bi-rich “electron blocking phase” in nanoalloyed Bi2Te3 films. 

 

For films isothermally annealed at temperatures of 250 °C under Te atmosphere, a defect chemistry 

clearly different from bulk material grown from the melt was observed. For Bi2Te3, only n-type samples 

were obtained regardless of Te content. A new two-zone annealing procedure under controlled Te 

atmosphere was applied for as-grown Bi2Te3 films, allowing to adjust the film composition. It was found 

that the transport properties, majority carrier type and defect structure (concentration of hole-

generating BiTe antisite defects) strongly depend on annealing temperature. With a sufficient annealing 

temperature, p-type Bi2Te3 films can be fabricated. This is in qualitative accordance with defect structure 

models that predict a strong dependence of defect chemistry, e.g. carrier concentration on compound 

formation temperature. 
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6 Bi2Te3 / Sb2Te3 superlattice thin films grown with a MBE setup 

by nanoalloying  

 

 

For the fabrication of the nanoalloyed SLs, the quintuple pattern shown in section 5.1 was used for each 

partial layer of Bi2Te3 and Sb2Te3. The 1 nm pattern was repeated until the desired thickness was 

reached for each binary partial layer. All films were grown on BaF2 if not otherwise indicated. Annealing 

times were always 2 h for the samples shown in this section. 

 

 

6.1 Structural properties 

6.1.1 Composition and structure 

SL stacks with ratios of Sb2Te3 to Bi2Te3 ranging from 1:1 to 7:1 were fabricated and characterized. The 

compositions and nominal compound layer thicknesses of the samples are given in Table 6.1. The 

nominal compositions expected from the ratios of the compound layer thicknesses are in good 

agreement with the actual sample compositions determined by EDX. Deviations may be caused due to 

the overlap between the L-lines of Sb and Te which introduces an error if the actual composition 

deviates from the (Bi0.2Sb0.8)2Te3 calibration standard used and due to the fact that the samples have a 

multilayered structure in contrast to the homogeneous calibration standard used (4.3.2).  

 

Table 6.1. Structural properties of SLs. Units as previously defined in Table 5.1. d-Sb2Te3 and d-Bi2Te3 are single 

compound layer thicknesses in nm. cBi and cSb are element concentrations determined by EDX in at. %.  

Ratio Sb2Te3 : Bi2Te3 d-Sb2Te3 d-Bi2Te3 Nper cBi cSb cTe d 

1 : 1 9 9 56 18.2 21.8 60.0 0.98 

3 : 1 9 3 83 9.2 31.3 59.5 1.02 

5 : 1 15 3 56 6.4 33.5 59.1 1.03 

6 : 1 18 3 48 4.7 33.9 61.4 1.10 

7 : 1 21 3 42 4.2 34.5 61.3 1.09 

 

XRD patterns taken of the 1:1 SL, Figure 6.1, show a polycrystalline structure with a well-expressed 

degree of texture along the c-axis like the Sb2Te3 binary samples (section 5.1.2), however there is a 

significant amount of grains with other orientations, the most prominent being the (10.10)-reflex at            

~ 38.0°. In the as grown state, the structure appears amorphous or very small-crystalline. The presence 

of the (10.10) and (00.15) compound reflexes indicates that the compound formation takes place 

already during deposition on the cold substrate. Grain growth for increasing exposition temperature is 

indicated by a sharpening of the reflexes. Neither after annealing at 150 °C nor 250 °C any trace of 

satellite reflexes that indicate the presence of a ML structure could be observed. This is attributed to the 

limited crystalline quality of the SL and the diffuse boundaries between the binary constituents. 

Experiments with sputtered films showed that a much larger degree of c-texture and thermal stability is 

required in order to be able to observe signs of SL satellites (section 7.6.1).  

 



 

 

 
CHAPTER 6: BI2TE3 / SB2TE3 SUPERLATTICE THIN FILMS GROWN WITH A MBE SETUP BY NANOALLOYING 
 

 

82 

 

Figure 6.1 XRD pattern of the 1:1 SL in dependence of annealing temperature. Calculated (00.l)-reflections are indicated 

by dashed lines. For comparison, a powder diffractogram (JCPDS database) is shown as vertical bars below the acquired 

patterns.  

The SEM cross sections were similar for all thin films shown in this work and are exemplarily shown for 

the 1:1 SL. In the as grown state, the film had an amorphous appearance with no grains distinctly 

visible. After annealing at 150 °C, the formation of small grains was evident. Annealing at 250 °C 

produced distinctly larger grains.  

 

 

Figure 6.2 SEM cross sections of 1:1 SL samples. SLs with other ratios exhibited an analogous appearance. 

 
 

6.1.2 Thermal stability 

The stability of the multilayer nanostructuring can be evaluated using a variety of methods. For high 

crystalline quality films, the standard way to verify a periodic SL structure is to look for SL satellite 

reflexes corresponding to the SL period. However, this was not possible for the polycrystalline 

nanoalloyed MBE-grown films as discussed above, thus alternative complementary methods had to be 

used. On very smooth nanoalloyed thin films the stability of the ML structure can be readily evaluated 

with SIMS depth profiling (section 4.3.4). The amplitude of the element signal “oscillations” for a 

multilayered structure decreases for a stronger degree of interdiffusion.  However, if the films are 

slightly rough and the single compound layers are wavy (see Figure 6.4), the element ions tend to get 

mixed even if the actual layer only consists of one single element, smearing out the depth profile and 

suggesting that no ML structure is present where there actually is one. For this reason, the stability was 

also evaluated by SEM and STEM imaging.  
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Generally, the multilayer structure was evident in the smoothed SIMS depth profiles (Figure 6.3) for all 

samples in the as grown state and annealed at 150 °C. At 250 °C, the ML structure is quite smeared out 

and hardly visible, if at all. An example is shown for the 1:1 SL.. As expected, the signals of Bi and Sb 

follow a periodic pattern. Corresponding to the layer structure of the 1:1 SL, the period length is 18 nm. 

The Bi and Sb pattern are complementary, i.e. a Bi-dip is always present when there is a Sb peak. For all 

ratios of Sb2Te3:Bi2Te3, the period length observed by SIMS corresponded to the nominal values. 

 

 

Figure 6.3 SIMS depth profiles of the 1:1 SL (Sb ion signal = red, Bi ion signal = blue, signal smoothing applied). Numbers 

indicate peaks and dips.  

Very similar experiments [128] were reported by the group of D.C. Johnson on Bi2Te3 / Sb2Te3 SL films 

deposited by thermal evaporation with the MER method. The period length was between 6 and 12 nm. 

Even though a very high degree of c-orientation was evident, SIMS depth profiling revealed that also 

these SLs exhibited significant interdiffusion of Bi and Sb in the amorphous precursor state.   

 

To further study interdiffusion phenomena, (S)TEM and HRTEM studies were carried out on the 1:1 SL in 

the as-grown state and after ex- and in-situ annealing, see Figure 6.4. As grown-images revealed a 

significant degree of waviness (i.e. roughness) of the ML structure. During annealing, compound 

formation of Bi2Te3 and Sb2Te3 from the deposited element stacks took place, accompanied by 

temperature-driven interdiffusion of Bi and Sb. The STEM cross sections micrographs demonstrated that 

the grain sizes are larger for higher annealing temperatures. Interestingly, the SL structure exhibited a 

discontinuous or “patchy” distribution in the annealed state, meaning that it was visible just within a 

part of the cross section. After annealing at 150 °C the SL structure seemed to remain stable inside the 

core of the respective grains but degraded near the grain boundaries owing to the fact that diffusion in 

solids was generally enhanced at or near grain boundaries which is demonstrated clearly by the images 

taken after in-situ annealing at 250 °C. Furthermore, the SL structure did not remain stable in all of the 

grains. It is assumed that the degree of interdiffusion depends on the relation of the direction of the 

multilayer stacking to the direction of the c-axis for each individual grain since diffusion in V2-VI3 

materials is by orders of magnitudes smaller in the direction parallel to the c-axis than perpendicular to it 

(section 3.1 [64]). Consequently, if the layers are stacked in a sequence parallel to the c-axis, 

temperature-driven interdiffusion should be relatively weak which was confirmed by the high thermal 

stability of epitaxial, exclusively c-oriented material grown by MOCVD and MBE (section 9.2). Since every 

grain had a different orientation, the relative orientation of stacking direction to the c-axis varied for 

each grain, leading to a different stability of the SL structure. For ex-situ annealing at 150 °C, the sizes 

of the domains where the SL structure remained observable varied between ~ 50 - 400 nm which 

corresponded to the grain sizes observed. While after annealing ex-situ at 150°C the nanostructure 

could, in comparison, still be seen relatively well, ex-situ annealing at 250 °C yielded a SL structure that 

was smeared out to a large extent. Only in a few regions of the cross section the SL structure was still 

visible, mainly in the core region of the larger grains. The analysis of a large crystallite by HRTEM after 

in-situ anneal at 250 °C and simulation showed a good match of the reflections with the metrics of 

homogeneous (Bi0.5Sb0.5)2Te3.  
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Figure 6.4 Results of HAADF-STEM studies on 1:1 SLs [171]. a) As grown state. b) Cross-section after in-situ anneal at 

250 °C, nicely showing enhanced interdiffusion at grain boundaries. c) Cross-section after ex-situ anneal at 150 °C / 2 h. 

d) Cross-section after ex-situ anneal at 250 °C / 2 h. 

As a supplement to the obtained results, the thermal stability of the ML structure was studied by SEM 

on the craters sputtered into the thin films during SIMS depth profiling (Figure 6.5). If the SIMS depth 

profiles are unclear due to single layer roughness or waviness, this method can be used to get an 

impression of the quality of the ML stacking. The walls of the SIMS craters have a slope with a very small 

tilt angle. When viewed from above, the single binary layers with a thickness dL in the nm range appear 

with a thickness dV of a few µm and can be observed with relatively low magnifications. Note that this 

experiment only gives qualitative information about the ML structure since the slope of the crater is not 

constant. The information gained from this experiment was in agreement with the experimental results 

of SIMS and (S)TEM analysis, i.e. the ML structure in total was relatively weakly expressed after 

annealing at 150 °C, particularly compared to sputtered or epitaxial SLs (see next chapters).  

 
Due to the relatively weakly expressed ML structure already at relatively large period lengths of ~ 18 nm, 

no SLs with smaller period lengths were synthesized by the nanoalloying method since the chance of 

them “surviving” the annealing treatment was deemed very small. 
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Figure 6.5 Observation of the ML structure by SEM. a) Due to the slope of the SIMS crater, the layers appear to be 

spaced apart much farther than the actual layer thickness and an imaging at the microscale is possible. b+c) Image of 

SIMS crater in the as grown and ex-situ annealed state.  

 

6.2 Transport properties 

6.2.1 Electrical properties 

Figure 6.6 shows S, n, µ and  of the nanoalloyed SLs in dependence of the Sb2Te3:Bi2Te3 single layer 

thickness ratio. For some ratios, more than one sample was characterized, demonstrating the good 

reproducibility of transport properties. For annealing at 250 °C, no significant difference between 

Si/SiO2 and BaF2 substrates was observable.  

Particularly the electrical properties of the 1:1 SL showed unusual features and poor thermoelectric 

properties. n was reported as positive while the Seebeck coefficients were low and reported as negative. 

There are strong indications that this can be attributed to layer compensation effects since nanoalloyed 

Bi2Te3 was always found to be n-type at the used annealing temperatures while Sb2Te3 always showed 

p-type conduction (see section 5.2). If there is mixed conduction in a layer system and if the hole 

mobility µp (~ 200-400 cm²/Vs for the given element composition) is clearly larger than the electron 

mobility µn (~ 50-80 cm²/Vs),  the Hall coefficient RH as defined in equation 4.10 may become positive 

despite electrons being the majority carrier type (n > p). Additionally, n cannot be derived correctly from 

RH by eq. 4.11 in the case of mixed conduction and will be reported as too large. As n reported for the 

1:1 SLs is most likely not correct, the same applies to the mobility µ which was calculated by µ = /en 
and is thus reported as too low. Actually, the carrier mobility at 150 °C annealing was very much (factor 

of 3 for all ratios of Sb2Te3:Bi2Te3) lower than at 250 °C which is assumed not only to be caused by a 

smaller grain size but also by compensation effects that disappeared during homogenization. Note that 

such a small µ for 150 °C annealing temperature compared to 250 °C was not observed on 

compensation-free sputtered SLs (see section 7.2). Finally, the total electrical conductivity of the films 

was low since the real number of carriers actually participating in charge transport was most likely very 

low due to the compensation effects (see also section 2.1.1.2). Additionally, p/n ‟ junctions may be 

formed between n-Bi2Te3 and p-Sb2Te3, resulting in a high resistance of the SL stack.  

The Seebeck coefficient should be reduced according to eq. 2.17 for a stack of mixed conducting layers. 

Indeed, at 150 °C annealing for all ratios Sb2Te3 : Bi2Te3 the Seebeck coefficients were significantly 

lower than at 250 °C although the carrier concentration was also lower in the films annealed at 150 °C, 

contradicting the normally observed reciprocal relation. It is instructive to compare experimentally 

determined S in dependence of n to calculated values from the BTE-based model described in section 

2.1.1.1, eq. 2.6 for one-band conduction, parabolic bands, acoustic scattering (s=-1/2), the integral 

form for n (left side of eq. 2.3) and md values for the solid solution (Bi1-xSbx)2Te3 from Table 3.3 as 

shown in in Figure 6.7. Evidently, the strongly interdiffused samples annealed at 250 °C could be 

described in good approximation (non-systematic deviation of ≤ 15-20 % to calculations) with a model 

for homogeneous solid solutions, indicating a loss of the ML structure while the experimental S of the 

samples annealed at 150 °C systematically fell below the calculated values by as much as ~ 22-70 %, 

indicating that a multilayered structure still is present in the samples at that temperature. 

A drastic improvement of S, µ, and the PF (Figure 6.9) could be achieved by increasing the Sb2Te3 : 

Bi2Te3 ratio and simultaneously reducing the thickness of the Bi2Te3 layer. Interdiffusion led to a mixing 
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of the partial layers to (Bi1-xSbx)2Te3. For increasing ratios of Sb2Te3 : Bi2Te3 an increasing part of the films 

consisted of (Bi1-xSbx)2Te3 with x > 0.5 and became p-conducting, reducing compensation effects. 

 

 

Figure 6.6 Transport properties of nanoalloyed MBE SLs with different ratios of Sb2Te3:Bi2Te3. Squares: BaF2 substrate, 

full: 250 °C annealing, empty: 150 °C annealing. Full triangles: Si/SiO2 substrate. Error bars were omitted for clarity.  

 

Figure 6.7 S vs. n for nanoalloyed MBE SLs with different ratios of Sb2Te3:Bi2Te3. Stars: Calculated data (see text). 

Squares: Experimental data. Full symbols: 250 °C annealing, empty symbols: 150 °C annealing. Colors: see key. 

The results obtained here are relevant with regard to the results presented by R. Venkatasubramanian 

mentioned in section 3.5.2. Analogous to the results obtained with nanoalloyed binary films it appears 

that only n-type Bi2Te3 was obtained by the MOCVD method used for the fabrication of the SLs [117]. 

Despite of this, no compensation problems were ever reported. It is reckoned that the consideration of 

compensation effects might have lead to the decision to create “asymmetric” MLs with ratios of Sb2Te3: 

Bi2Te3 different from 1:1. For these structures, high Seebeck coefficients were attained which was 

explained by the “ordered alloy concept”, see discussion in section 3.5.2 and Figure 6.8. In addition to 
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this concept, it is well possible that also interdiffusion plays a big role in the transport properties of the 

high-ZT MOCVD films, consisting of 5 nm of Sb2Te3 on only 1 nm of Bi2Te3. From the only TEM images 

presented for the high-ZT SLs [60], interdiffusion of Sb into Bi2Te3 cannot be ruled out. In the same 

work, XPS studies on a single < 5 nm Sb2Te3 layer grown on a Bi2Te3 layer are presented which show 

only a negligible amount of Bi in the Sb2Te3 layer. This indicates a high stability against thermal 

interdiffusion but does not necessarily imply that the more extreme and opposite case is also true, e.g. 

that there is no interdiffusion of Sb into a Bi2Te3 layer with a thickness of only 1 nm. 

 

 

Figure 6.8 Left: Schematic representation for the SL structure presented by Venkatasubramanian. The stacking of Sb2Te3 

on Bi2Te3 with a Bi2Te3 thickness of only 1 nm is supposed to lead to an “ordered alloy” [46] of p-type (Bi0.33Sb0.67)2Te3 and 

thus eliminate compensation effects. Right: Layer structure for the 1:1 SLs presented in this work.  

6.2.2 Thermal conductivity 

As evident from Figure 6.9, although high PF could be obtained an efficient reduction of the thermal 

conductivity has not been achieved by the multilayer 2D nanostructuring. For all ratios of Sb2Te3:Bi2Te3, 

the total and estimated lattice thermal conductivity of the SL structures was not lower than that of 

both binary compounds that were created with the same deposition pattern as the SLs, in contrast to 

the data reported on the MOCVD SLs [57]. Instead, and l just varied between the values of the binary 

compounds (see section 5.2). Additionally for the 1:1 and 3:1 SL, although the ML structure was clearly 

more pronounced in the sample annealed at 150 °C, the thermal conductivity was not lower than that 

of the sample heated at 250 °C.  

 

 

Figure 6.9 PF of nanoalloyed Bi2Te3-Sb2Te3 SLs deposited by MBE for different ratios of Sb2Te3:Bi2Te3. (error bars were 

omitted for clarity). Right: Thermal conductivities of SLs together with binaries (sample sets BT-Q and ST-Q, chapter 5) 

Triangles: Film on Si/SiO2 substrates, squares: BaF2 substrates. Full data points: 250 °C annealing, empty points: 150 °C 

annealing. Full lines: Binaries, 250 °C annealing. Dashed lines: Binaries, 150 °C annealing. Black / red: Total / lattice 

thermal conductivity.  
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Altogether, the ML-type nanostructure appeared to have no clearly observable effect on the thermal 

conductivity. This phenomenon can be explained by the particular situation of a superlattice structure 

superimposed on a nanocrystalline material. Qualitatively, it can be inferred from Matthiessen´s rule 

(section 2.1.2) that multiple scattering effects are not directly cumulative and adding a weak multilayer-

induced phonon scattering to significantly pronounced grain-boundary scattering (see e.g. section 7.3) 

should not significantly influence the total relaxation time. A deeper analysis requires considering the 

particular effects of nanostructures on the phonon spectrum: A nanocrystalline structure causing 

pronounced boundary scattering leads to a cutoff of the low-frequency range of the phonon spectrum 

(see Figure 2.5) while the SL structure is believed to affect the low-frequency range, too (2.1.2.1). Thus, 

it can be concluded that qualitatively, the cutoff-effect on phonon frequencies, i.e. the reducing effect 

on thermal conductivity by adding a SL structure to an already nanocrystalline material, should not be 

very strong. If additionally the layered structure is ”softened out” as demonstrated here, its cutoff-effect 

should be reduced even further. A more pronounced reduction of thermal conductivity was possible by 

SL structures with a better definition, specifically epitaxial SLs (section 9.2). 

 

The cross-plane ZT can be roughly determined by making similar assumptions as described in section 

7.5. With an electrical conductivity anisotropy factor of 1 ‟ 3.3, a ZT of 0.3 ‟ 0.9 was estimated.  

 

As a note, the shown l was calculated from  as follows: The Lorentz numbers were calculated as 

described in section 2.1.1.1 on the base of the BTE formalism with effective DOS masses as given in 

Table 3.3 for the SLs and Sb2Te3 and for Bi2Te3 from [11-p.118]. For the calculation of the electronic part 

of the thermal conductivity el by eq. 2.5, the electrical conductivity cross in cross-plane direction was 

estimated from in by estimating the electrical conductivity anisotropy factor. This factor was estimated 

from bulk material data, i.e. 4 and 3.9 for Bi2Te3 and Sb2Te3 and the weighted values of 2.9 (ratio 5:1) 

and 3 (ratio from (Bi0.2Sb0.8)2Te3 (2.6) and Sb2Te3 (3.9) [90]). All anisotropy factors were divided by 2 as 

an approximation due to the not strongly expressed c-texture of the films.   

 

 

6.3 Conclusions 

Polycrystalline Bi2Te3 / Sb2Te3 SLs with different ratios of Sb2Te3:Bi2Te3 and period lengths were 

fabricated by nanoalloying with a MBE setup. Clearly, interdiffusion had a strong impact on transport 

properties. Structural analysis by SIMS, SEM and TEM revealed that the ML structure was only weakly 

expressed, especially after annealing at 250 °C. The low stability could be traced back to the 

polycrystallinity and crystal orientation of the grown material, the degree of c-texture was not strongly 

expressed.   

 

An efficient reduction of thermal conductivity by the SL structure was apparently not achieved. Taking 

into account the phonon spectrum, it was concluded that the scattering effect on the phonons by the 

weakly expressed SL structure was small compared to the scattering caused by the polycrystalline 

structure.   

 

As expected from the exclusive electron conduction in nanoalloyed Bi2Te3 and hole conduction in 

Sb2Te3, for some SL films strong carrier compensation effects were found to adversely affect SL 

transport properties. These effects were interconnected to the Sb2Te3:Bi2Te3 ratio and the quality of the 

SL structure. Choosing a high ratio and an annealing temperature of 250°C led to high power factors          

of ~30-40 µW/cmK². A ZT of 0.3 - 0.9 was estimated for the SLs. aaaaaaaaaaaaaaaaaaaaaaaaaa
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7 Sputtered p-type Sb2Te3 / (Bi,Sb)2Te3 multilayer systems grown 

by nanoalloying 

The structural stability and thermoelectric properties of the SLs presented in chapter 6 were afflicted 

by significant interdiffusion and carrier compensation effects. During growth in the MBE system, the 

beam fluxes were observed to drift (see section 4.1.3.2), which is suspected to adversely affect the 

formation of well-oriented crystallites. In contrast to the effusion cell drift, the drift in sputtering rate 

takes place on a much larger time scale, i.e. was more constant during a single growth run.  

Consequently, in order to improve the degree of c-orientation and layer homogeneity, it was 

decided to use sputtering to deposit the element thin films and change the deposition patterns 

(Figure 7.1). Moreover, in order to exclude compensation effects, it was decided to deposit the p-

type compound (Bi,Sb)2Te3 instead of Bi2Te3. For all films, Si/SiO2 wafers were used as substrates. 

 

 

Figure 7.1 Deposition patterns used for the sputtered thin films shown in this chapter. Each film shown consists of 30 

periods of this pattern, yielding a total film thickness of ~ 1.5 µm. 

In the annealing experiments, five different combinations of annealing temperatures and times were 

used: 150 °C / 2 h, 250 °C / 2 h, 250 °C / 24 h, 300 °C / 2 h and 350 °C / 2 h.  

 

 

7.1 Structural properties 

The compositions of the thin films were analysed using EDX, cf. Figure 7.2. Small fluctuations in the 

element concentrations are due to the measurement uncertainty. More pronounced variations of the 

composition are observed at higher annealing temperatures (e.g. for 350 °C), where matrix effects 

caused by the thin film changing from a layered to a more homogeneous structure and the increasing 

film roughness were introduced. The actual Te content was slightly lower than the intended  

59.5 - 60 at. % due to a sputtering rate drift of Te.  
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Figure 7.2 Composition of the thin films in the as deposited state and after annealing at different temperatures. 

The SIMS depth profiles shown in Figure 7.3 are very even and homogeneous throughout the whole 

thickness of the SL, indicating a high structural quality of the nanoscale multilayer structure. As 

expected from the deposition pattern used the profiles follow a complementary pattern, i.e., every Bi 

peak is accompanied by a Sb dip at the same position. The period of the Bi “oscillation” corresponds 

very closely to the nominal period length of 50 nm. The intensity of the oscillations decreases 

continuously for higher temperatures. The SIMS profiles of the sample heated at 300 °C exhibit less 

pronounced oscillations indicating a significant degradation of the ML structure by interdiffusion. At 

350 °C the ML structure appears completely lost and the corresponding SIMS depth profile (not shown 

here) consists of flat lines for the ion signals of all elements.   

 
Figure 7.3 SIMS depth profiles of the SLs annealed at different temperatures. At 300 °C, the SL is significantly smeared 

out due to interdiffusion. Black: Te, red: Sb, blue: Bi. 
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A closer inspection of the depth profiles in the as deposited state and after annealing at 150 °C/2 h 

Figure 7.4) confirms that the reaction path from the initial element layer stack in the as grown state to 

the compound stack follows the path suggested by Figure 7.1. In the as deposited state, the Sb-rich 

areas and the Te layers have a spacing of 25 nm. The different Sb contents in these areas are also 

reflected in the profiles. After compound formation, the distance between blocks with the same Sb and 

Te content (i.e. the distance between two Sb2Te3 or (Bi,Sb)2Te3 blocks) increases to 50 nm. The 

separation distance between Bi-rich areas remains at 50 nm before and after compound formation.  

 

 

Figure 7.4 Detailed view of the SIMS depth profiles in the as-deposited state (left) and after annealing at 150 °C for 2 h 

(right). The periodicity of the Sb and Te ion signal increases from 25 nm to 50 nm after the annealing process.  

SEM cross-section images taken along the cleaving edge of the films in slow-scan mode are given in 

Figure 7.5. As already shown in section 5.1.1, the grains exhibit a typical hexagonal platelet-like shape 

as described e.g. in [165]. This can be best observed in the thin film annealed at 350 °C that shows the 

largest grains. The fact that the hexagonal platelets that make up the grains are oriented 

perpendicularly to the growth direction indicates that the thin films are strongly textured with [00.l] 
parallel to the growth direction of the films. The atomic number dependent contrast (Z-contrast) of the 

back scattered electron (BSE) image taken in the as deposited state shows Bi-rich areas as bright lines 

with a spacing of 50 nm. The smoothness of the films is preserved up to an annealing temperature of 

300 °C (not shown in Figure 7.5, roughness corresponds to thin film annealed at 250 °C). The grain size 

(i.e. also the crystallite size as inferred from Rietveld refinements) increases drastically when increasing 

the annealing temperature from 300 to 350 °C. Additionally, the films become very rough and porous, 

indicating recrystallization with pillar shaped crystal growth induced by the onset of bulk diffusion. A 

similar morphology of films, i.e. a high roughness and formation of pillar-shaped grains was observed 

for MOCVD Bi2Te3 thin films grown at the same temperature [60].  

For films as deposited and annealed at 150 °C / 2 h, 250 °C / 2 h, 250 °C / 24 h, 300 °C / 2 h and                      

350 °C / 2 h the total film thickness was determined from cross-sections as 1.62, 1.72, 1.65, 1.61, 1.72 

and 1.65 µm respectively. For the rough thin film annealed at 350 °C, the thickness was estimated by 

averaging several values measured at different positions of the film.   
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Figure 7.5 Left: SEM cross-sections of the SLs for different annealing temperatures. In the cross-section image of the thin 

film in the as deposited state, a BSE image is shown in the inset. Note that the exact film thicknesses can not be extracted 

from the slow-scan images shown in this figure due to image distortions caused by charging effects. Right: a) Drawing of 

hexagonal crystallites. b) SEM images of sputtered Bi2Te3 films, substrate temperature 400 °C [165]. It is noted that the 

films deposited by nanoalloying are much smoother than the films reported in [165], so the grains cannot be seen in top 

view with SEM on the films shown in this work.  

In the as deposited state, the XRD patterns for the films (Figure 7.6) show very broad reflections that 

can be assigned to very small grained or amorphous elemental constituents Bi, Sb and Te or the 

compound phase (reflections near the (00.24) and (00.27) reflections). After annealing, a very 

pronounced c-texture is prominent for all annealing temperatures by strong intensities (00.l), in 

accordance with the morphology observed in the SEM images. Reflections corresponding to other 

crystallite orientations are weak and scarce. The X-ray intensity is high even for high-order c-reflections 

like e.g. (00.33). Grain growth at increasing annealing temperatures is indicated by a narrowing of the 

reflections. In Figure 7.6, the degree of c-texture can be readily evaluated by comparing the ratios of the 

intensities of the (00.l)- reflexes to the other reflexes. A monotonous decrease of this ratio is observed 

for increasing annealing temperatures, i.e. the pronounced c-texture remains stable and even gets 

stronger for higher annealing temperatures.  

 

Rietveld refinements on the XRD data for the sample annealed at 150 ºC, 250 ºC and 350 ºC (Figure 

7.7, plots for 250 °C omitted) show a reasonable fit for the samples annealed at lower temperatures, 

i.e. 150 ºC and 250 ºC. The intensity could not be modeled correctly for the sample annealed at 350 ºC 

due to the very high level of preferred orientation which is at the limits of what the Rietveld analysis 

method can be applied to, given that it is designed for the analysis of powder data. The patterns show 

different levels of diffuse scattering beneath the sharp Bragg peaks for samples annealed at 

temperatures of 150 and 250 °C, indicating the presence of defects that can only be eliminated at 350 

°C.  
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Figure 7.6 XRD patterns of the nanoalloyed SLs for different annealing temperatures. The positions and indices of the 

reflections (00.l) of Sb2Te3 are specified for comparison with the XRD data. A very strong degree of c-texture is evident. In 

the as grown state, broad reflections are evident that can be assigned to the elements or the compound phase. Reflex 

positions: x = Bi, / = Te, o = Sb.  

 

Figure 7.7 Plots of Rietveld-fitted XRD profiles for  samples with 50 nm period length annealed at 150 ºC and 350 ºC.  

The average crystallite size was calculated from the refined peak profile parameter Lx (section 4.3.1.2). 

The refinement results give crystallite sizes of 26, 64, 65, 221 nm at 150, 250, 300 and 350 °C, 

respectively and confirm that besides grain size also the degree of c-texture increases with annealing 

temperature (details given in [172]). The average crystallite size appears considerably smaller than for 

MBE-deposited binary compounds also annealed at 250 °C, shown in section 5.1, however the film 

texture has to be taken into account in this consideration. On the strongly textured sputtered SLs, 

almost only c-reflexes are observed. It also appears that the grains are flat (Figure 7.5 and Figure 7.15), 

i.e. the dimension in c-direction is smaller. In contrast, the binaries show a clearly lower degree of 

orientation and the grains are not flat. From this it is assumed that the crystallites are larger in the 

crystalline directions observed in the XRD pattern. 

 

 

7.2 Electrical properties 

The electrical properties of the SLs are given in Figure 7.8 and Figure 7.9. Two samples were analysed 

for each annealing temperature.  

The film annealed at 350 °C had a rough and porous structure (Figure 7.5). The thickness value 

obtained by averaging over the cross section was used to calculate  and µ from the Hall-van-der-Pauw 

measurements. However, it is generally questionable if the Van-der-Pauw method with its idealizations 

[137] can be applied accurately to rough and porous samples.  For this reason, the electrical values, 

though following the expected trend are to be treated with caution, especially when comparing them to 
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the ones obtained on the smooth films annealed at lower temperatures. Before annealing, the SLs have 

rather (semi)metallic properties, i.e., a low S and a high n. This behaviour can be explained on the basis 

of the XRD results that clearly demonstrate that the as deposited film contains a mixture of elements 

and traces of V2VI3 compounds. After annealing, n drops sharply to 3-5 x 1019 cm-3 for all annealing 

temperatures while S ranges from ~150 to ~190 µV/K. The carrier mobility increases monotonously for 

an increasing annealing temperature, which can be explained with the grain growth and also the 

stronger degree of c-orientation of the films since for the examined compounds the highest µ are 

obtained perpendicular to the c-axis (section 3.3). Extending the annealing time from 2 h to 24 h leads 

to a significant increase of µ resulting in a high PF. In comparison, increasing the annealing temperature 

from 250 to 300 °C seems to have a stronger effect on µ and PF which can be explained by grain 

growth following Ostwald ripening (section 4.1.1). 

The Seebeck coefficient in dependence of annealing temperature follows a characteristic parabolic trend 

that was apparent in all sputtered nanoalloyed films (see also the n-type films presented in chapter 8). 

At 150 °C, strongly expressed diffuse scattering (Figure 7.7) indicates a significant number of 

unspecified defects in the films. It is possible that a part of these defects is electrically active, generates 

charge carriers and lowers S. At 250 °C, diffuse scattering is noticeably reduced and S increases. For 

higher annealing temperatures and thus larger grain sizes, S decreases again. An explanation may be 

the effect of grain boundaries. Experiments on nanocrystalline PbTe [173] and Bi2Te3 [174] showed that 

S decreases with larger grain sizes. For PbTe, an energy filtering effect (see section 2.2.1) is proposed. 

The grain boundaries are theorized to act as a sort of filter for low-energy electrons and thus increase S 

[173].  

 

 

Figure 7.8 Electrical properties as function of annealing temperature. Black squares: 2 h annealing time. Blue stars: 24 h 

annealing time. Error bars were omitted for clarity. 

Additionally, a Pisarenko plot (description see section 5.2, actual plot not shown here) was carried out. 

All data points were found to be on one Pisarenko line, confirming that only one compound, i.e. the 

V2VI3 phase as already seen in the XRD data is contributing to carrier transport. 
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7.3 Power factor and thermal conductivity 

Overall, power factors of more than 40 µW/cmK² could be achieved (Figure 7.9), exceeding the best 

values reported for p-type sputtered material that is similar in composition but homogeneous (maximum 

PF of 39 µW/cmK², see Table 3.4 in section 3.4). The obtained PF were even comparable to bulk single 

crystals of (Bi0.2Sb0.8)2Te3 (37-51 µW/cmK², measured along the basal plane [90]). Further attempts were 

made to improve the electrical properties by adjusting the stoichiometry to stoichiometric proportions, 

i.e. near the composition of 40:60 for (Bi/Sb):Te. It was found that the properties of the films strongly 

depend on the composition of the deposited material (Table 7.1). The deviation from the stoichiometric 

composition induces crystal defects (e.g. antistructure defects as described in section 3.3) and thus 

affects the transport properties, predominantly the charge carrier concentration and -mobility. The 

highest charge carrier mobility is obtained for sample 3, which can be seen as near stoichiometric taking 

into account the measurement uncertainty of ~ 0.5 at. %. Compared to sample 2 (properties shown in 

Figure 7.8 and Figure 7.9), the PF increased by 25 %. If this increase is extrapolated to higher annealing 

temperatures, power factors of nearly 50 µW/cmK² could be possible. This assumption seems to be 

justified since for similar nanoalloyed MBE films with the same nominal composition, power factors of 

52 µW/cmK² were reported for an annealing treatment at 350 °C [175].   

 

Table 7.1 Electrical properties of nanoalloyed SLs with slightly different Te contents annealed at 250 °C for 2 hours. Units 

as previously defined in Table 5.1. cBi and cSb are element concentrations determined by EDX in at. %. 

Sample No. cBi cSb cTe d µ n  S PF 

1 4.8 38.6 56.7 0.82 82 6.5 x 1019 850 136 16 

2 3.9 37.4 58.7 1.65 149 3.2 x 1019 761 189 27 

3 4.3 36.1 59.6 0.85 228 3.2 x 1019 1160 172 34 

 

The cross-plane thermal conductivity of the thin films was determined by TDTR. The results are shown in 

Figure 7.9. Due to the very high roughness of the film annealed at 350 °C no TDTR measurement was 

possible. The unannealed film had a relatively high thermal conductivity due to the large electrical 

conductivity of the elemental constituents. Similarly as described in section 6.2.2, for the annealed films 

l was calculated with el that was calculated from  assuming an anisotropy factor of 3.3 (average 

value of bulk, see section 7.5) and the Lorentz number of bulk, calculated as described in section 

2.1.1.1 on the base of the BTE formalism. 

As expected, the thermal conductivity increases with higher annealing temperature due to the increased 

grain size, which also has a positive effect on the electrical conductivity. The cross-plane thermal 

conductivities of the c-oriented SLs are generally lower than that of comparable bulk single crystals of 

(Bi0.2Sb0.8)2Te3 (~ 0.7 W/mK) or Sb2Te3 (0.9 - 1.4 W/mK) measured parallel to the c-axis [90]. A reference 

homogeneous sample of (Bi0.2Sb0.8)2Te3 annealed at 200 °C for 2 h also shows a reduced thermal 

conductivity compared to bulk material.  

 

From the available data, it can be concluded that there are two effects that reduce the thermal 

conductivity of the SLs compared to bulk material:  

1.)  There is a general reduction of thermal conductivity due to the polycrystalline nature of the thin 

films. Already in previous works on V2VI3 materials, a smaller grain size was found to correlate with a 

lower value for the thermal conductivity. For Bi2Te3, a reduction of ~25 - 45 % was found in comparison 

to single crystalline material [38,39], details see section 8.2.2. Related results were given for a c-oriented 

polycrystalline film of (Bi0.25Sb0.75)2Te3 on mica by Boikov et al. [37] who reported a thermal conductivity 

reduction of 15 % when comparing an unannealed film with more grain boundaries to an annealed 

film, details see section 2.1.2.1. 

2.) The nanostructuring should also affect the thermal conductivity. The film annealed at 150 °C, which 

after annealing has the most perfect or best defined ML structure according to the SIMS depth profiles 

clearly shows the lowest total and lattice thermal conductivity of all SL films (Figure 7.9, right). In 
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comparison to its components Sb2Te3 and (Bi0.2Sb0.8)2Te3 annealed at the same temperature,  and l 

appear slightly lower, yet the difference does not exceed the measurement uncertainty. In comparison 

to the predictions of the Debye-Callaway model for homogeneous (Bi,Sb)2Te3 (section 2.1.2.1 [38], grain 

sizes taken from Rietveld refinement), the measured values for l are generally lower. Remarkably, l of 

the film annealed at 150 °C falls below the DC model for a homogeneous alloy by 30 %, while the 

values of the more homogenized films annealed at 250 and 300 °C are only lower by 10 - 20 %. 

 

To conclude, it appears that the ML structure indeed has a slight, albeit hardly measurable influence on 

thermal conductivity in contrast to the MBE-deposited nanoalloyed SLs shown in section 6.2.2 and the 

n-type sputtered SLs shown in chapter 8 where no clear effect could be observed. It is noted that 

further evidence on the effect of 2D nanostructuring on thermal conductivity for nanalloyed material is 

shown in section 7.6. A (lattice) thermal conductivity of (0.26) 0.40 W/mK that is clearly lower than that 

of both SL components can be achieved by reducing the period length of the sputtered SLs. However, it 
must be noted that due to interdiffusion effects at higher annealing temperature it was not possible to 
combine a 2D-nanostructure-related low thermal conductivity with a high power factor – this is a key 

point to achieve high ZT values with SL structures as demonstrated on the MOCVD-grown films [8].   
 

 
Figure 7.9 Left: Power factors as function of annealing temperature. Black squares: 2 h annealing time, blue stars: 24 h 

annealing time. Error bars were omitted for clarity. Right: Cross-plane total (full symbols) and lattice (empty symbols) 

thermal conductivity and las function of annealing temperature. Squares: SL, 2 h annealing. Stars: SL, 24 h annealing. 

Green circle: SL component (Bi0.2Sb0.8)2Te3. Green triangle: SL component Sb2Te3. Blue diamonds: Prediction of l by 

Debye-Callaway model (section 2.1.2.1 [38]). Error bars of binaries (same size as error bars of SLs) were omitted for clarity  

 

7.4 Upscaling of film thickness and cross-plane measurement of electrical 
conductivity 

For a mass fabrication of sputtered thin films, the question whether the film thickness can be upscaled is 

a very important one since efficient microscale thermoelectric devices need film thicknesses of at least 

several 10 µm [176]. For this reason the film thickness of the nanoalloyed films was upscaled to 18 µm. 

The experiments were carried out on BaF2 substrates due to the low mismatch of thermal expansion 

coefficient with the film that becomes relevant at high film thicknesses. The sputtering times required 

for this thickness were ca. 50 h. Due to the high requirements on the process stability, deposition 

required considerable preparation and surveillance of the sputtering process (see also section 4.1.4).  

For the films, critical points to be clarified were the preservation of the ML structure in spite of the the 

long sputtering times and the ion-impact induced film heating during sputtering. SEM cross-sections on 

unannealed films (Figure 7.10) with a thickness of ~18 µm revealed that the nanoscale ML structure 

could be sustained throughout the whole thickness of the films and that, just as in the thinner films, an 

annealing at 250 °C for 2 h lead to a complete crystallization. A slight roughness in the element layer 

pattern was caused by the formation of Te droplets as described in section 4.1.4.4. 
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Figure 7.10 SEM cross sections of SLs with ~ 18 µm thickness, BSE image. Left: As grown. The ML structure is clearly 

visible. Right: After annealing at 250 °C for 2 h. The whole film has crystallized and is still relatively smooth. The inset 

shows the grain structure in higher magnification. 

The transport properties of a reference film with a thickness of 0.85 µm deposited with the same 

deposition parameters, sample 3 in Table 7.1, were nearly identical to that of the ~18 µm thick film, 

showing together with the structural properties that the SL fabrication process can be upscaled and 

leads to very well reproducible film properties.   

 

7.4.1 Electrical cross-plane conductivity measurements on thick films 

First measurements or rather estimations of the cross-plane electrical conductivity were carried out on 

the films at the laboratory of Ali Shakouri, University of Santa Cruz, California using the quadratic pillar 

structure shown in Figure 7.11. The samples were annealed at 250 °C for 24 hours and then prepared 

in cooperation with Micropelt GmbH using Inductive Coupled Plasma etching. The process parameters 

as well as the metals used as contacts are confidential. The current was applied and the voltage taken 

between the Bi cap layer, serving as (nominally) equipotential contact pad and the layer “metal 1”, 

serving as back contact. A total of four measurements were carried out on pillars with side lengths of 70 

and 80 µm. Due to the high thickness (d ~ 20 µm) of the films, well measurable resistances RP in the 

range of 40-50 mOhms were obtained. The contacts were ohmic as evident from the linear voltage / 

current relation. The contact resistance for the material combination was estimated to be around 1 

mOhm and thus was negligible. The cross-plane conductivities c were obtained by c= d/(ARP) with A 

as pillar footprint. The obtained average of the four measurements was 725 S/cm. 

 

 

Figure 7.11 a) Fabricated pillar structure used for the measurement of cross-plane electrical conductivity. b) Exemplaric 

voltage transient observed during measurement on bulk Bi2Te3 [177]. c) Voltage / current lines on different pillars (70 and 

80 µm side length), showing that an ohmic contact was established. 

However, thermoelectric effects have to be taken into consideration. When a current is applied to the 

pillar structure, the Peltier effect leads to a temperature gradient between top and bottom of the pillar. 

Through the gradient, a Seebeck voltage VSP is generated that is superimposed on the ohmic part of the 
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voltage VR which is used to determine the pillar resistance RP (Figure 7.11 and ref. [178]). VSP rises 

gradually, with the rise time being proportional to sample thickness. Due to the extremely fast voltage 

signal rise time in the range of few ms on the thin films, it was not possible to separate the two voltage 

components with the measurement equipment currently available, so the total voltage Vtot = VR + VSP 

had to be used to calculate R.  
There is a considerable error when calculating c from this R. According to Harman, the ratio of VSP to 

VR is directly proportional to the ZT value, e.g. ZT = VSP / VR [179]. Figure 7.11 shows as an example a 

recorded voltage transient for bulk Bi2Te3 (ZT ~ 0.6) with a voltage overestimation of ~ 60 % and thus a 

conductivity underestimation by ~ 40 % if Vtot is taken instead of VR. The error in the examined films 

should be qualitatively similar. Furthermore, it is not fully clear how good the top Bi layer fulfills its 

idealized role as an equipotential contact pad with negligible resistivity. Nevertheless, the obtained value 

can serve as a first estimate. Currently, extensive works are underway to assemble a measurement setup 

and sample structuring technique that can be applied to determine VR  and thus the conductivity 

accurately, however this is beyond the scope of this thesis.  

 

 

7.5 Estimation of ZT 

To obtain or estimate the ZT value, the electrical data obtained in in-plane direction (in this case, 

perpendicular to the c-axis) must be appropriately combined with the data for the thermal conductivity 

obtained in cross-plane direction (parallel to the c-axis) taking into account the anisotropy of the 

transport properties in the examined materials. Until now, only little is known about the anisotropy of 

the Seebeck coefficient for SL thin films in the examined material system. Hence, a basic assumption is 

made that S is isotropic, similar to bulk (Bi0.2Sb0.8)2Te3 that exhibits a S anisotropy of only ~ 3-13 % [90]. 

Then, ZT can be estimated as follows: 

1.) Concerning the electrical conductivity, one of the reasons that Venkatasubramanian´s SL has reached 

very high ZT values was the elimination of the electrical conductivity anisotropy [8]. Assuming that this is 

also the case for the sputtered SL thin films annealed at 300 °C, a cross-plane value for ZT of ~1.9 is 

obtained being unusually high for sputtered thin films and being able to compete with the values 

presented by Venkatasubramanian.  

2.) Another estimation can be made based on the assumption that the conductivity anisotropy factor 

corresponds to bulk values of ~3.3, being an average of the anisotropy factor for Sb2Te3 of ~ 3.9 for 

comparable material and of (Bi0.2Sb0.8)2Te3 of ~ 2.6 [90]. Using this average anisotropy factor ZT is 

reduced to ~ 0.6, which is still a good value for sputtered nanocrystalline thin films (see Table 3.4).  

3.) The correct value of ZT is expected to be between the two values given in 1. and 2. Using the 

estimated cross-plane electrical conductivity of c = 725 S/cm, the cross-plane  = 0.6 W/mK and in-

plane S = 165 µV/K, a ZT value of 1 can be estimated. This is to be considered a lower limit for ZT since 

c is underestimated by up to 50 % as described above. In this case of underestimation, a value of 2 

would be the upper limit. A more accurate definition of the cross-plane ZT for the thin films requires the 

determination of the Seebeck coefficient and electrical conductivity in cross-plane direction. Further 

efforts are under way to enable this type of sophisticated characterization. 

 

In conclusion, evidence is that ZT should be in the range of 1-1.9, which is a very good value for 

(sputtered) thin films (see also Table 3.4). 

The reduction in thermal conductivity necessary for this high value was achieved by nanocrystallinity 

rather than through a SL type nanostructure. A ZT of 1.4, i.e. within the range of values for the 

sputtered SLs obtained here was also reported by Boikov et al. on polycrystalline p-type material, see 

section 2.1.2.1. Recent calculations for Bi2Te3 / Sb2Te3 SLs (section 2.2.1.1) give a maximum ZT value of 

0.9-1.3 which is also comparable to the estimated values for the sputtered SLs. 
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7.6 Reduction of period length 

According to literature, a reduced period length (PL) should result in a lower thermal conductivity (i.e. 

potentially improved thermoelectric performance) as proposed in previous work, see e.g. 2.2.2. In order 

to verify this, the PL of the system was reduced by halving and quartering the initial element layer 

thicknesses given in Figure 7.1, resulting in a multilayer PL of 25 nm and 12.5 nm. In order to ascertain 

a weak interdiffusion of the SL structuring, annealing was only carried out at 150 °C for 2 h.  

 

7.6.1 Structural properties 

According to first experiments with sputtered nanoalloyed thin films [163], the degree of c-orientation 

should be more pronounced when reducing the element layer thickness in the deposition pattern. 

Indeed, the film with the smallest PL was almost exclusively c-oriented already after annealing at 150 °C 

with almost no reflections except the (00.l) series observed (Figure 7.12). To the best of our knowledge, 

the films presented here show the highest degree of c-orientation ever obtained for sputtered V2VI3 thin 

films.  

 

 

Figure 7.12 XRD patterns of nanoalloyed SLs with reduced PLs of 25 and 12.5 nm. The positions of the (00.l) reflections 

of Sb2Te3 are indicated together with the respective indices.  

In additional SIMS depth profile analysis of the SL with nominally 12.5 nm PL, the ML structure is clearly 

present throughout the whole thin film even at this small SL dimension (Figure 7.13). High-resolution 

XRD analysis of the (00.6) and (00.9) lattice reflexes reveals weak SL reflexes in the form of peak 

shoulders. Their position closely matches the diffraction angles calculated for the SL satellites (eq. 4.22) 

with the corresponding PL. At the position of a peak, the slope shows a local minimum. Therefore, to 

better indicate the position of the shoulders the first derivative is also plotted. To the best of our 

knowledge, this is the first report of SL satellites observed on sputtered V2VI3 thin films. 
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Figure 7.13 Left: SIMS depth profile of low-periodic SL, the spacing of the dips and peaks corresponds to the nominal PL 

of 12.5 nm. Slight signal smoothing is applied (thick lines). Right: HRXRD analysis of the (00.6) and (00.9) reflexes in the 

same SL, showing satellite shoulders. Additionally, the first derivative exhibits local minima at the shoulder diffraction 

angles. 

SEM images (Figure 7.14) indicate that the 25 nm ‟ film exhibits a grain structure similar to the 50 nm 

film (Figure 7.5) with slightly larger grains and that the grains of the 12.5 nm film exhibit a significantly 

larger size parallel to the film plane. The XRD patterns exhibit sharper and more intense reflexes with 

decreasing PL. The width of the (00.9) reflex decreases from 0.55° to 0.5° to 0.47° when going from 50 

to 25 to 12.5 nm, i.e. the crystallite size in c-direction ranges from 14-17 nm according to eq. 4.21. 

 

 

Figure 7.14 SEM images of SLs with a PL of 25 and 12.5 nm, showing large grains for the latter.  

A STEM image, Figure 7.15, displays the high quality of the ML structure with a remarkably smooth 

layer structure that is evident through virtually all the sample area analysed, in strong contrast to the 

“spot-like” remainders of the ML structure in MBE-deposited SLs shown in section 6.1.2. As anticipated, 

the stronger c-orientation clearly results in a higher stability of the ML structure against interdiffusion. 

The crystallites are flat (as already suggested by the SEM analysis) with a length of ~ 50-150 nm parallel 

to the film plane and ~ 20-40 nm perpendicular to it. Their basal plane is mostly parallel to the substrate 

plane, i.e. the element layers in the deposition pattern (see SAED pattern). A slight tilt is evident by a 

weak splitting of the (00.l) related diffraction spots. The SAED pattern shows a superposition of at least 

three zones ([11.0],[21.0],[31.0]), indicating rotational disorder of the crystallites.   
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Figure 7.15 STEM images of sputtered SLs with reduced PL. a) Overview, showing the consistency and high smoothness 

of the ML structure. b) Detailed image of the SLs with higher magnification. c) SAED pattern showing a superposition of 

different zones and a slight grain tilt, indicated by a weak splitting of the diffraction spots belonging to the (00.l) reflexes 

(white oval).  

 

7.6.2  Transport properties 

The transport properties of SLs with different PLs are shown in Figure 7.16. The most prominent trend is 

an increase of carrier mobility with decreasing PL in accordance with the stronger c-orientation and 

higher grain size in in-plane direction as described in the preceding section.  

 

 

Figure 7.16 Electrical properties of SLs with different PLs in comparison. For each run, 2 samples were analysed.  
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 was measured and lcalculated as already described in section 7.3.  The main goal of reducing the 

thermal conductivity by the SL structure could be partially reached. There clearly is a reduction of 

(lattice) total thermal conductivity when going from 50 to 25 nm PL. The l of 0.26 W/mK is as low as 

the lowest l reported for the MOCVD-grown SLs (0.22 W/mK [8]), however the PF is again clearly 

lower. Due to the well-defined SL structure, apparently a reduction of l by the 2D SL structure is 

possible despite the already strong reduction by the nanocrystallinity. However, no further reduction 

was observed when reducing the PL further (Figure 7.17).  

 

 

Figure 7.17 Left:  (black full squares) and l (red empty squares) of SLs with reduced PL. Right: Schematic of SLs with 

different PL, assuming equal diffusion lengths or interdiffusion zones. A loss of “material contrast” or homogenization is 

evident as illustrated by the coloration.  

Two competing effects are supposed to be at work when reducing the PL: An increase of phonon 

scattering with lower PL and a simultaneous reduction of material contrast, i.e. a homogenization due 

to interdiffusion that is present even for perfectly c-oriented films since a significant amount of 

interdiffusion already takes place in the (partially) amorphous precursor state, see section 6.1.1. 

Assuming that the diffusion length or interdiffusion zone at the same annealing temperature is equal, 

samples with lower dimensionality will exhibit a higher level of ”relative intermixing” (as illustrated in 

Figure 7.17 with colors) and the whole system becomes more and more similar to a homogeneous alloy. 

This assumption is supported by the SIMS depth profiles that show a reduced oscillation amplitude of 

the Bi signal. The ratio of peak to dip intensity decreases from 3.5 to 2 and 1.6 at PLs of 50, 25 and 

12.5 nm, respectively. Possibly, the two mentioned effects cancel out each other so that no effective 

reduction of thermal conductivity occurs. Lastly, the grain size in the 12.5 nm film is apparently bigger 

than that of the other films (Figure 7.14). It is possible that this increase in grain size has led to an 

increase in that superimposes a small reduction by the reduction of the PL. 

 

 

7.7 Conclusions 

Nanoalloyed p-type Sb2Te3 / (Bi,Sb)2Te3 SL films (period length of 50 nm) with very strongly expressed c-

orientation and high smoothness were fabricated by sputtering. The SL films yielded low ~ 0.45 - 0.65 

W/mK and very high PF > 40 µW/cmK² comparable to single crystalline bulk materials, with potential for 

further improvement. A ZT between 1.0 (conservative estimation) and 1.9 (optimistic assumptions) was 

estimated. The film thickness could be upscaled to ~ 18 µm while the properties could be maintained, 

opening a path for an application of the technique to actual device mass-fabrication.  

 

The SL structure was well-expressed up to annealing temperatures of 300°C, but increasingly smeared 

out at higher temperatures. A small effect of the SL structure on lattice thermal conductivity was 

observed, however it appeared rather small compared to the effects of the nanocrystallinity. After 

lowering the period length, an exclusive c-orientation was observed and the SL structure was so well-

expressed that SL satellite reflexes were observed on sputtered V2VI3 thin films for the first time. A very 

low  of 0.4 W/mK (l = 0.26 W/mK) was found when going to a PL of 25 nm.                              . 
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8 Sputtered n-type Bi2Te3 / (Bi,Sb)2Te3 multilayer systems grown 

by nanoalloying 

Böttner et al. have shown that the nanoalloying process can be applied to create n-type Bi2Te3 / 

Bi2(Se,Te)3 ‟ SLs by sputtering [163]. The obtained thin films were strongly c-oriented and showed power 

factors of around 20 µW/cmK². However, as also experienced during this work the sputtering of Se can 

cause several problems due to its low melting point and thermal conductivity combined with very high 

vapor pressure. Se deposition is also a problem in thermal evaporation methods since Se is known to 

evaporate in the form of Sex (x ≥ 2) molecules with poor chemical reactivity, necessitating the use of a 

cost-intensive cracker cell [180]. For these reasons, an alternative n-type SL system was developed where 

the Bi2(Se,Te)3 layer was replaced with n-type (Bi,Sb)2Te3, Figure 8.1.  

 

 
Figure 8.1 Left: Bi2(Se,Te)3 ‟ based SL system examined in [163]. Right: n-type (Bi1-xSbx)2Te3 ‟ based system examined in 

this work. The shown pattern was repeated 30 times to give a total thin film thickness of ~ 1.5 µm. 

 
 

8.1 Optimization of Sb-content in (Bi,Sb)2Te3 

The optimal Sb-content in (Bi1-xSbx)2Te3 for the SL films had to be determined. On one hand, the 

reduction of thermal conductivity is expected to be more pronounced for higher Sb-contents. On the 

other hand, (Bi1-xSbx)2Te3 bulk samples tend towards p-type conduction for higher Sb contents x. 

However, it had previously been found that the defect chemistry and transport properties of                     

(Bi1-xSbx)2Te3 thin films differ remarkably from that of bulk materials, (see e.g. section 5.2) so that 

previous results from bulk materials could not be transferred to thin films. Consequently, to determine 

the optimum Sb content three nanoalloyed homogeneous films of (Bi1-xSbx)2Te3 with x = 0.05, 0.1, 0.2 

were examined. The measurement of the element concentrations by EDX proved to be problematic 

since there is a strong overlap of the Sb and Te peaks in the spectrum and no element calibration 

standard was available for low Sb concentrations. Therefore, the Sb fraction was extrapolated from 

experiments with EDX concentration measurements with alloys of Sb+Bi. The determined Te content of 

the films ranged between 59.4 and 60 at. %. The electrical transport properties in dependence x are 

given in Figure 8.2.  

Compared to the bulk material, the carrier mobility for the examined material compositions close to 

Bi2Te3 is significantly lower. The inferiority of µ compared to bulk material was already observed for 

binary nanoalloyed and epitaxial Bi2Te3 films grown with an MBE setup, section 5.2.1 and Table 3.4. The 

decrease in charge carrier mobility with increasing Sb content can be explained by alloy scattering of the 

charge carriers. The decrease of mobility does not exactly follow the linear trend reported for bulk 

materials (section 2.1.1.3). Interestingly, for x = 0.05 and 0.10, the Seebeck coefficient increases slightly 

(in conformance with reports from literature, section 3.3) while the charge carrier concentration remains 

constant, yielding an increased PF. For x = 0.2, there is a sharp drop in n while S remains constant which 

may be explained by the introduction of first holes as charge carriers with larger Sb contents that 

compensate with the electrons. As a consequence of the low charge carrier concentration, the power 

factor drops significantly.  
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Obviously, a Sb content of x = 0.1 offers the best compromise between sufficiently high element 

contrast and good electrical properties. Thus, (Bi0.9Sb0.1)2Te3 was used in the SL systems. 

 

 

Figure 8.2 Electrical properties of (Bi1-xSbx)2Te3 in dependence on Sb content x after annealing for 2 hours at 250 °C. To 

verify reproducibility and consistency of the results, two samples from each growth run were analysed. A negative sign of 

n indicates electron conduction. 

 

8.2 Bi2Te3 / (Bi,Sb)2Te3 – SL systems 

8.2.1 Structural characterization 

The Bi2Te3 / (Bi0.9Sb0.1)2Te3 SLs were annealed at 150, 200, 225, and 250 °C for 2 hours. The determined 

Te contents of the annealed films ranged from ~ 59.1-60.3 at. %. This measurement is not completely 

reliable due to Sb and Te peak overlap in EDX and the absence of an appropriate calibration standard 

with similar matrix properties. SEM cross-sections of the as-grown and annealed films are shown in 

Figure 8.3. The thin films become slightly rough during sputtering and are covered with spherical bumps 

with a diameter of ~ 500 nm and a height of ~ 100 nm. These bumps gradually appear in sputtered Bi-

rich layer systems after the total thin film thickness exceeds ca. 800 nm. The appearance of the bumps is 

due to the roughness of sputtered Bi as shown in section 4.1.4.3. During deposition, the roughness 

caused by Bi gradually adds up and leads to a roughening of the total layer system. In the as-grown 

state, BSE imaging clearly reveals a multilayered structure with a spacing of 25 nm for the Bi-rich areas 

and a period length of 50 nm as intended (Figure 8.3, top left). After annealing platelet-like grains 

appeared which are preferably aligned parallel to each other. Such morphology was found as a 

characteristic feature on similar p-type nanoalloyed films (chapter 7), demonstrating a strong c-axis 

orientation of the films. The grain sizes increase with annealing temperature. At an annealing 

temperature of 250 °C, additional hill-like structures with a height of several 100 nm begin to appear 

that mark the onset of recrystallization processes due to increasing bulk diffusion. Similar to p-type SLs, 

a further increase of annealing temperature would lead to very rough thin films with holes, unsuitable 

for device fabrication (Figure 7.5). The degradation of thin film morphology was observed in a 

homogeneous thin film of (Bi0.9Sb0.1)2Te3 that was annealed at 300 °C (not shown here).  
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Figure 8.3 SEM cross-sections of Bi2Te3/(Bi0.9Sb0.1)2Te3 SLs in as-grown and annealed state for different annealing 

temperatures. The as grown image is a back scattered electron image. Images for 150 °C and 225 °C are shown as 

secondary-electron-only image for a better resolution of the individual grains and for demonstration of grain growth. The 

grain size increases with annealing temperature and starting at 250 °C, the film roughness increases significantly, i.e. 

additional flat and large hill-like structures appear (red arrow).  

Figure 8.4 shows XRD patterns for samples annealed at three temperatures and in the as grown state. 

Already for the as-grown sample broad reflections of the compound phase can be observed. Additional 

broad reflections arise from amorphous or not fully crystallized material. For the annealed samples 

pronounced reflections of the (00.l) type beside weak (hk.l) reflections are detected. The sharpening and 

increasing intensity of the (00.l) reflections with increasing annealing temperature indicates larger grain 

sizes in agreement with the SEM images.  

 

 

Figure 8.4  ‟ 2 scan of Bi2Te3/(Bi0.9Sb0.1)2Te3 ‟ SLs, logarithmic intensity scaling. From top to bottom: 250, 200, 150 °C, 

and as grown. (00.l) ‟ reflections of Bi2Te3 are indicated by dashed lines. For comparison, a powder diffractogram (JCPDS 

database) is shown as vertical bars below the experimental patterns. X = Bi, l = Te.  
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Rietveld analysis was carried out on the XRD patterns recorded for the samples annealed at 150, 200, 

250 °C, yielding crystallite sizes of 38, 86 and 124 nm, respectively (more details on the refinement are 

given in [181]). All data could be fitted to a rhombohedral unit cell with the space group   ̅ .  

 

The characterization of the ML structure via SIMS depth profiling proved to be difficult since the thin 

films exhibited considerable roughness as mentioned above and consequently, the mass spectrometer 

signals for the different ions were noisy. For the SIMS analysis, a modified layer system was deposited 

where the sequence of the metal/chalcogen layers was inverted so that the thin film growth started 

with Bi instead of Te. The films deposited with the inverted deposition pattern exhibited less roughness, 

allowing a better evaluation of the ML structure. However, XRD patterns showed that there was a much 

less defined c-texture than for the original sequence, so the SIMS profiles (Sb ion signals), shown in 

Figure 8.5, give only a lower limit for the thermal stability of the ML structure. After annealing at 250 

°C, there is no clear proof that a ML structureis still present. At 200 °C, the thin film definitely shows a 

chemical segregation of Sb, and therefore the stability of the SLs is considered to be stable up to that 

temperature.  

 

 

Figure 8.5 SIMS depth profiles of Bi2Te3/(Bi0.9Sb0.1)2Te3 ‟ SLs with modified stacking sequence annealed for 2 h at 

different temperatures. The Sb ion signal is plotted versus the crater depth. Numbers indicate the peak positions. The 

spacing between the peaks corresponds to a SL period length of 50 nm.  

Overall, the chemical segregation appears significantly less defined than for similarly grown, nanoalloyed 

sputtered p-type Sb2Te3/(Bi0.2Sb0.8)2Te3 SL films (section 7.1) and was not observed throughout the whole 

film. SEM images of the SIMS crater support this assumption as shown in Figure 8.6: At 150 °C 

annealing temperature, only very faint indication of the SL structure was observed, while the SL was 

clearly observed in the p-type films annealed at 250 °C. We assume that this is predominantly a 

consequence of the lower degree of c-texture compared to the p-type samples. It is also possible that 

the diffusion coefficient of Sb in Bi2Te3 is higher than that of Bi in Sb2Te3, however due to a lack of 

literature data on this subject this cannot be verified. 

 

 

Figure 8.6 SEM images of SIMS craters of n-type Bi2Te3/(Bi0.9Sb0.1)2Te3 and a p-type Sb2Te3 / (Bi0.2Sb0.8)2Te3 SL (section 7.1). 

In spite of the lower annealing temperature, the ML structure in the n-type SLs (only faint traces visible, see white arrrow) 

appears only weakly expressed in comparison to the p-type SL that could be observed throughout the entire film. 
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8.2.2  Transport properties 

In Figure 8.7, the electrical properties of the SLs are shown and compared to the results of the sputtered 

Bi2Te3 / Bi2(Se,Te)3 ‟ SLs [163]. As already observed on nanoalloyed binaries (section 5.3), the as-grown 

film has metallic characteristics (low S and µ, high n) due to the presence of pure Bi layers (see XRD 

patterns). The dependence of electrical properties on annealing temperature is analogous to the p-type 

SLs shown in section 7.2 and 7.3. With increasing grain size, µ improves for higher annealing 

temperatures and S follows a parabolic trend. A high maximum S of ~ -190 µV/K was achieved.   

 

 
 

Figure 8.7 Electrical transport properties of Bi2Te3 / (Bi0.9Sb0.1)2Te3 ‟ SLs annealed at different temperatures. Full squares: 

Thin films from this work, annealed for 2 h. Blue stars: Thin films from this work, annealed for 12 h (250 °C) and 24 h 

(200 °C). Black empty circles: Bi2Te3 / Bi2(Se,Te)3 ‟ SLs [163] with a similar period length of 45 nm, annealed for 2 h. Note 

the broken axis in the top graphs. Error bars omitted for clarity. A negative sign of n indicates electron conduction. 

Generally, a longer annealing time leads to a higher power factor as seen in Figure 8.8. With an 

annealing time of 2 h, power factors of ~20 µW/cmK² can be attained. Increasing the annealing time to 

12 h offers the possibility to gain another small increase in power factor up to 22 µW/cmK². This is 

among the highest values reported for n-conducting Bi2Te3-based sputtered thin films (see Table 3.4), 

however, the texture of the deposited material also has to be taken into account when comparing 

different values. Another very important point is that the SL system Bi2Te3 / (Bi0.9Sb0.1)2Te3 can compete 

with similarly textured Bi2Te3 / Bi2(Se,Te)3 SLs in terms of electrical properties while being significantly 

easier to sputter due to the substitution of problematic Se by Sb. 

 

The cross-plane thermal conductivity at room temperature was determined with the TDTR method in 

dependence of the annealing temperature, Figure 8.8. For the annealed films, the shown l was 

estimated from  in a similar manner as shown in section 6.2.2 and 7.3, i.e. by assuming 1.) the Lorenz 

number for Bi2Te3 (Figure 2.2) and 2.) an electrical conductivity anisotropy factor of 4 (value for Bi2Te3 

[90]). Due to the roughness of the films the estimated measurement uncertainty is higher than for 

smooth films and is around 11-20 %. The homogeneous films serving for comparison were prepared 

with the Bi2Te3 and (Bi1-xSbx)2Te3 partial pattern from the SL deposition pattern. 
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Figure 8.8 Left: PF of Bi2Te3 / (Bi0.9Sb0.1)2Te3 ‟ SLs versus annealing temperature. Dashed line: Eyeguide. Right: Cross-plane 
total and lattice thermal conductivity and las function of annealing temperature. Black full squares: SL, 2 h annealing. 

Black star: SL, 24 h annealing (at 200° C, not visible since value is identical to the one after 2 h annealing). Green circle: 

Homogeneous film of (Bi0.95Sb0.05)2Te3. Green triangle: Homogeneous film of Bi2Te3. Blue bar: Range of l as predicted by 

Debye-Callaway model. Grain sizes L of the films in this work were taken from the Rietveld refinement (values given in 

section 8.2.1).  Empty data points: l corresponding to the  value given by the filled data point. 

The cross-plane thermal conductivity of the strongly c-axis oriented homogeneous thin film of Bi2Te3 is 

significantly lower than that of comparable single crystalline bulk Bi2Te3 ( ~ 1 W/mK along the c-axis 

[90]). This reduction is due to the polycrystalline nature of the material. Analogously, in previous works a 

smaller grain size was also found to correlate with a lower value for (section 2.1.2.1, 

[39][38])Thermal conductivities of 0.55 - 0.75 W/mK for polycrystalline Bi2Te3 with a grain size from           

30 - 100 nm were reported in agreement with the value for Bi2Te3 measured here. 

 

Figure 8.8 reveals three characteristic features that indicate that the ML nanostructuring has no 

measurable effect on thermal conductivity within the measurement uncertainty limits.  

1.) and l of the SL at any annealing temperature are not lower than the average thermal 

conductivities of comparable homogeneous compounds Bi2Te3 and (Bi0.95Sb0.05)2Te3.  

2.) There is also no minimum in and l at 150 °C where the SL is still relatively well preserved.   

3.) The l of the films are comparable to values given by a Debye-Callaway (DC) model for 

homogeneous films of Bi2Te3 and (Bi,Sb)2Te3, section 2.1.2.1. From the model, a lower boundary for l 

of 0.53 W/mK is obtained for (Bi,Sb)2Te3 with a grain size L = 38 nm and an upper boundary of 0.79 

W/mK is obtained for Bi2Te3 with L = 124 nm. The Bi2Te3/(Bi0.9Sb0.1)2Te3 ‟ SLs are “weakly alloyed” with 

low contents of Sb and fall between a binary and the modelled alloy. Thus, it is sensible to compare 

them to the range given by each of these two l as indicated in the figure. Evidently, the measured l of 

the SL films are only slightly below this range, meaning that they are compatible to model predictions 

for homogeneous films. We note that also for homogeneous (Bi,Sb)2Te3 films, lower  and consequently 

l than anticipated from the model were observed in the reference.  

The absence of any measurable reduction in and l is not surprising since, at a period length of 50 

nm, already for the p-type Sb2Te3 / (Bi0.2Sb0.8)2Te3 SLs the observed reduction of the thermal conductivity 

was very small, if at all measurable (section 7.3). A plausible explanation for the weak effect was 

proposed in section 6.2.2 for MBE-grown SLs. Grain boundary scattering and ML nanostructuring act on 

the same phonon frequency range. Thus, it is possible that  is so strongly reduced by the 

nanocrystalline structure that it cannot be further reduced by the, in the case of n-type SLs, weakly 

expressed ML-type 2D nanostructuring that is smeared out and has a low material contrast.  
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8.3 Conclusions 

In this chapter, sputtered nanoalloyed n-type homogeneous compound films of Bi2Te3 and (Bi,Sb)2Te3  

and SL films were investigated. It was shown that n-type sputtered (Bi,Sb)2Te3 could be used to replace 

Bi2(Te,Se)3 layers, thus avoiding the use of Se targets which is of significant practical importance since 

these targets are difficult to handle. Power factors of 22-25 µV/cmK² that are very high for sputtered n-

type material were obtained for optimized Sb content, i.e. for (Bi0.9Sb0.1)2Te3. Relatively smooth films 

could be obtained for an annealing temperature of up to 225 °C.  

 

Furthermore, a symmetric Bi2Te3 / (Bi0.9Sb0.1)2Te3 SL with a period length of 50 nm was synthesized using 

different annealing temperatures. A distinct c-orientation of the sputtered layers was evident. SIMS 

depth profiles revealed that the ML structure was present up to an annealing temperature of 200 °C. 

High Seebeck coefficients of up to ~ -190 µV/K were achieved. A relatively high maximum power factor 

of 22 µW/cmK² could be attained after annealing at 250 °C for 12 h. Cross-plane thermal conductivities 

were in the range of 0.55 to 0.6 W/mK. The thermal conductivity was generally reduced due to the 

nanocrystallinity of the material, however, there seemed to be no measurable reduction of the thermal 

conductivity by the SL-type 2D nanostructuring. 
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9 Epitaxial Bi2Te3 / Sb2Te3 binary thin films and superlattices 

 

9.1 Binary thin films 

For the growth of Bi2Te3 / Sb2Te3 SLs it was necessary to find an appropriate growth temperature and 

beam flux ratio that allowed  

1.) to uphold the SL structure, i.e. keep temperature-driven interdiffusion at levels as low as possible and  

2.) to grow both binary compounds as a smooth film with good transport properties. 

 

In this work, it was aimed to select Te:Bi/Sb ratios and thus growth temperatures low enough to satisfy 

point 1.) and high enough to satisfy point 2). The task was significantly aggravated by the fact that the 

actual temperature of the substrate surface is different for each vacuum system and varies depending 

on substrate holder material, thickness, chamber design etc. In most cases, the temperature sensing 

device is located close to the heaters that are located behind the substrate holder, thus the surface 

temperature of the substrate that sits on top of the substrate holder is generally lower than the 

temperature measured at that point. The majority of authors does not give details how and where 

exactly the substrate temperature was measured. A transfer of reported growth parameters directly to 

the setup used in this work was therefore not possible. However, the used Te:Bi/Sb ratio allowed 

qualitative inference concerning the used temperature used since, inevitably, in general a higher 

temperature must be chosen for higher Te:Bi/Sb ratios since otherwise no stoichiometric film results.  

 

9.1.1 Bi2Te3 

Bi2Te3 thin films were synthesized using the same MBE system that was used in previous works by 

Nurnus et al. [42][100]. The detailed properties of the films were described in detail in the refs. and will 

not be further discussed here. After the previous works, the MBE system substrate holder including 

thermocouple was rebuilt due to a mechanical defect, leading to a change in the relation of the 

substrate temperature measured by the thermocouple to the actual substrate temperature. Thus, the 

process parameters (heater temperatures) given in [42-p.59ff] could not be applied. For the current 

experiments, a growth temperature of 350 °C and cell pressures of 2.9 x 10-7 and 2.0 x 10-7 (flux ratio ~ 

3:2) Torr for were chosen for Te and Bi, respectively. Zou [111][112], Charles [130], George [182] et al. 

all used a ratio of ≥ 2:1 at different growth temperatures. Nurnus chose a ratio of 12:5 [100]. Despite 

the Te:Bi ratio being lower than typically reported in literature, the parameters used in this work yielded 

stoichiometric smooth epitaxial films with very good structural and electrical properties. The mobility of 

µ = 80 - 90 cm²/Vs at n = 1.4 - 1.6 x 1020 cm-3 even exceeds the values µ = 50 cm²/Vs at n = 1.0 x 1020 

cm-3 [100] reported by Nurnus on the same substrate type. Corresponding to the previous experiments 

and the reports on MOCVD films [117], the deposited Bi2Te3 was always n-type. The growth rate of 

Bi2Te3 films deposited with the mentioned parameters was 9.8 nm/min. 

 

9.1.2 Sb2Te3 

Parameters for growing high-quality epitaxial Sb2Te3 on the used system were unknown at the start of 

this work. In order to achieve suitable process parameters without having to examine too many 

combinations of effusion cell fluxes and substrate temperatures, the following optimization procedure 

to quickly find the optimum deposition temperature was applied:  

1.) A deliberately low Te/Sb flux ratio was chosen in order to be able to work with comparatively low 

substrate temperatures. Typical ratios found in literature are high since attention was paid to optimizing 

the properties of the homogeneous binary films rather than trying to synthesize stable low-periodic SL 

stacks. As a starting point, the effusion cell fluxes were adapted from the successful growth of epitaxial 

Bi2Te3, i.e. a flux ratio of 3:2 was used. In contrast to this, Chien used a Te:Sb ration of 2:1 [183], Kim 

[102] used 1.8-4.3:1 and Cho [103] even 3.4-5.5:1 for Sb-rich (Bi,Sb)2Te3.  

2.) For the chosen flux ratio of 3:2, the substrate temperature was varied between 330 and 370 °C, 

resulting in Te-rich films. At 330, 350 and 370 °C the Te contents were 65.2, 63.0 and 61.5 at. % Te, 
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respectively. Parallel experiments showed that high quality Bi2Te3 films could be grown at a temperature 

of 350 °C so this temperature was also chosen for the final optimization of the Sb2Te3 films in order to 

“unite” them to a superlattice with Bi2Te3. 

3.) To eliminate the mentioned residual Te excess, the beam fluxes were adapted using eq. 4.6. At a 

growth temperature of 350 °C a Te/Sb flux ratio of 1.2-1.3:1 was found to yield stoichiometric films.  

The growth rate of Sb2Te3 films deposited with the mentioned parameters was 6.9 nm/min. 

 

9.1.2.1 Structural properties 

The structural properties of the three films grown at 330, 350 and 370 °C were examined. XRD patterns 

showed a near perfect c-orientation of all films (Figure 9.1). Minor reflexes of which most correspond to 

other crystal planes of Sb2Te3 were evident, however the majority of these reflexes are only observable 

at 370 °C and do not exceed a peak height ratio of 100 ‟ 1000 to the neighboring (00.l) reflexes. As 

expected due to the slight Te excess in the films, besides pure Sb2Te3 reflexes there are further reflexes 

that can be assigned to both Sb2Te3 and Te or Te only.  
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Figure 9.1 XRD pattern of epitaxially grown Sb2Te3 for different growth temperatures. * =  substrate reflexes. + = 

reflexes belonging to Sb2Te3 with orientations different from (00.l), x = reflexes of Te.    

SEM imaging confirmed that the films were smooth up to a deposition temperature of 350 °C. The 

typical layered structure already observed on the Bi2Te3 films [42-p.62] is also evident here. At 370 °C, 

the growth mode abruptly changed to a three dimensional growth mode. A change to islandic growth 

at higher substrate temperatures was also described in [60].  

 

Figure 9.2 SEM cross sections of epitaxially grown Sb2Te3 for different growth temperatures.  
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XRD pole figures (Figure 9.3 a) reveal a three-fold symmetry and rotationally ordered growth. However, 

a small degree of rotational twinning, i.e. the existence of secondary crystallites with the same (00.l) 
orientation but rotated by a fixed angle of 60° towards the primary crystallites is evident. Analogous 

twinning was also recently reported by Wang and Uher for MBE-grown Sb2Te3 ([97], unpublished data) 

and earlier for MBE-grown Bi2Te3 by Nurnus et al. [42-p.69,184]. The integral intensity ratio of main to 

twinned phase is roughly 20:1 (Figure 9.3 b). The twinning also becomes evident in the surface topology 

that could be observed especially well on the roughest films grown at 370 °C (Figure 9.3 c).  

From a comparison of the -scan of Sb2Te3 to that of BaF2 (not shown in the figure), an epitaxial relation 

analogous to the relation reported for Bi2Te3 on BaF2 [42-p.69] was found.  

 

 

Figure 9.3 a) Pole figures of Sb2Te3.2 was set to 28.25°, corresponding to the (01.5) reflex. The range of was 0 ‟ 80°. 

Intensity is color coded, going from blue (lowest) over green to yellow to red (highest). b) Corresponding -scan carried 

out at = 58.8° and 2=28.25°.. c) SEM surface image of rough sample grown at 370 °C, illustrating that the secondary 

phase consists of crystallites rotated by 60° towards the primary phase (red circles). 

9.1.2.2 Electrical properties 

The dependences of µ, n and S on Te content are given in Figure 9.4. and can be best observed on the 

films grown at 350 °C (eyeguide). The behaviour is generally very similar to the nanoalloyed films 

(section 5.2.2), i.e. there is a quite drastic change when the Te content exceeds 60 at. %. The chosen 

low-temperature, low-flux ratio growth parameters yielded carrier mobilities reaching almost 500 

cm²/Vs which is to the author´s knowledge among the best values reported (Table 3.4) and is not much 

lower than the highest carrier mobility of 680 cm²/Vs recently reported by Wang and Uher ([65], growth 

temperature also 350 °C).  

The PFs are, remarkably, lower than that of the nanoalloyed polycrystalline films due to a different 

relation of S and n. For Seebeck coefficients of 120-140 µV/K, the carrier concentration is regularly 

around or above 2.5 x 1019 cm (Figure 5.10) while it is clearly lower for the epitaxial films. In turn, this 

also means that S is higher for the same n. Two possible reasons for this can be found:  

1.) Effects of crystal texture. Nanoalloyed Sb2Te3 (section 5.1.2) has a significant proportion of grains 

with their c-axis not perpendicular to the measurement direction, which is parallel to the film plane. It 

follows that in contrast to the strictly c-textured epitaxial films, the measured transport properties of the 

nanoalloyed films are also influenced by the crystal properties parallel to the c-axis. Finally, it is known 
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that for the same n, S is higher in c-direction in Sb2Te3 (Table 3.2), explaining the lower Seebeck 

coefficients of epitaxial films towards nanoalloyed films.   

2.) Effects of grain boundaries: In the nanoalloyed films, polycrystallinity can enhance S by grain 

boundary scattering, causing electron-filtering effects (details in section 7.2).  

 

 

Figure 9.4 Electrical properties of epitaxially grown Sb2Te3 films as function of Te content. Symbols: See key in S vs. n 

plot. Dashed line: Eyeguide for dependence on Te content at 350 °C. Multiple samples of each growth run (e.g. Te 

content) were analysed to confirm reproducibility. Error bars omitted for clarity. 

The electrical conductivity does not follow a clear trend with Te concentration. Similarly to the 

nanoalloyed films, the Pisarenko plot shows a different S/n relation for Te-rich and Te-deficient films 

(Figure 9.5). 

 

Figure 9.5 Left: Electrical conductivity of epitaxial Sb2Te3 films as function of Te content for different growth 

temperatures. Error bars omitted for clarity. Right: Pisarenko plot. The S/n relation is different for samples with Te excess 

(empty triangles, dashed line) and Te deficiency (full squares, full line). 
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Results on SLs with 6 nm period length 
 

The results of the XRD analysis of samples 2 and 4 in grazing incidence geometry are shown in Figure 

9.7. Both samples show clearly distinguishable SL satellites, indicating a very sharp definition of the SL 

structure. In sample 4, the SL satellites appear significantly more intense. The reason for that may be the 

slight Te excess. Experiments aiming at a clarification of this phenomenon are under way, however 

during this work it could not be clarified how exactly the sample composition can influence SL stability.  

Due to the large number of satellite reflexes, a convenient indexing convention which is commonly used 

by the group of D.C Johnson [123] was applied. The reflexes are considered as Bragg reflexes of the SL 

and not of the crystal lattice. By this convention, every sixth SL Bragg reflex coincides with a (00.l) reflex 

(l=3,6,9..) of the crystal lattice, provided that the SL period corresponds to a multiple of the lattice 

constant c (~ 3.05 nm). For an assumed period length of 6.12 nm, the nominal positions of all SL-

related reflexes were calculated using eq. 4.19 and showed a good agreement with measured reflex 

positions (Figure 9.7). Evidently, sample 2 has a similar PL as sample 4.  

In the recording of the XRD pattern it was tried to exclude substrate reflexes as much as possible. It is 

noted that the position of some reflexes was not fully clear either due to low intensity or remaining 

substrate reflexes superpositioning the SL reflexes. 

 

 

Figure 9.7 XRD pattern of samples 2 and 4 (intensity given in logarithmic scale). Sample 4 shows very well expressed 

satellite reflexes that are indexed as described in the text. Grey lines correspond to satellite positions calculated for a PL of 

6.12 nm. Some satellite position were not fully clear due to low intensity (grey) or overlap of BaF2 substrate reflexes (light 

blue).  

9.2.1.2 (S)TEM analysis 

HAADF-HRSTEM images (Figure 9.8 c and f) impressively demonstrate the extremely sharp, almost 

atomically abrupt definition of the SL structures. We note that this is the first reported reproduction of 

such low-periodic sharp SL structures since the works of Venkatasubramanian. The Bi2Te3 / Sb2Te3 

compound films appear clearly separated and EDX line scans display a clear chemical modulation.   

Furthermore, the layers exhibit a slight long-range bending and localized kink-like strong bending which 

was not reported for analogous MOCVD-deposited SLs [60]. However, superlattice bending was also 
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reported for n-type Bi2Te3 / Bi2(Se,Te)3 SLs grown on the same MBE system [168]. Two types of bending 

were identified in the previous work: A long range bending mainly due to film and layer roughness and 

localized kink-like strong bending caused by threading dislocations. Additionally, the presence of 

regions where the SL structure was strongly weakened was also associated with the dislocations. Since 

the lattice mismatch of substrate and film is 2.7 % for Sb2Te3 and 0.1 % for Bi2Te3 (Table 3.1), i.e. even 

larger than for the Bi2Te3 / Bi2(Se,Te)3 SLs, it is reasonable to believe that equal or more dislocations are 

present in the p-type SLs and cause a similar or even greater bending. Also in the p-type SLs the 

structure appears predominantly weakened in the vicinity to the strongly bent regions. 

 

HAADF-HRSTEM imaging of the region around the bending reveals a staircase-like structure of the 

Bi2Te3-layers in relation to the c-axis. Interdiffusion along the preferred a-axis can easily take place, 

indicating that the strongly bent regions act as centres for temperature-driven interdiffusion (see further 

experiments in section 9.2.3.1).  

 

 

Figure 9.8 STEM images of SL cross section. Bi-containing regions appear as bright lines. All images taken from cross-

sections of sample 2 except for c and f (sample 4).  a) HAADF-STEM image. b) Enlarged section of “a”. The dashed line 

indicates areas with a weakened SL structure. c) Magnified HAADF-HRSTEM image around SL bending, demonstrating a 

staircase-like structure. d) Further magnified HAADF-STEM image around SL bending.  e) EDX elemental map, Bi M signal. 

f) Further magnified HAADF-HRSTEM image of “c”. 

Apart from the imperfections associated with the layer bending, the film appeared to exhibit very high 

“single-crystalline” like quality. No evidence of grain boundaries and rotational disordering of the grains 

was found during the STEM analysis on sample 2. However, since twinning was found in the binaries 

(section 9.1.2.1), it is likely that this type of defect also exists in the SLs and was not found during the 

first TEM analysis.  

A further analysis of the film/substrate interface was carried out, confirming the epitaxial, rotationally 

ordered film growth (SAED patterns not shown). The patterns revealed an epitaxial relation as already 

found for analogously grown Bi2Te3 by Nurnus [42-p.69]. The (11.0) plane of the V2VI3 film is parallel to 

the (011) plane of BaF2. 
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9.2.2 Transport properties 

9.2.2.1 Electrical properties 

The transport properties of the SL films grown at 350 °C are given in Table 9.1. In contrast to the very 

high Seebeck coefficients of ~ 200-270 µV / K and carrier mobilities up to ~ 600 cm²/Vs that were 

reported for the MOCVD-grown SLs (section 3.5.2) all MBE-grown SLs did not exceed ~120 µV/K and ~ 

60 cm²/Vs. Consequently, the PFs are also far lower than reported for the MOCVD-grown SLs.  The low 

S and low µ can clearly be traced back to carrier compensation effects as already discussed in sections 

2.1.1.2 and 6.2.1. The interfaces between n-Bi2Te3 and p-Sb2Te3 
 are much more sharply defined than 

for nanoalloyed SLs (chapter 6) and no interdiffusion and formation of Sb-rich (Bi,Sb)2Te3 compounds 

with high S and µ takes place ‟ thus changing the Sb2Te3:Bi2Te3 to up to 5:1 did not bring an 

improvement in contrast to the nanoalloyed SLs.  

 

9.2.2.2 Thermal conductivity 

Cross-plane thermal conductivities were determined by TDTR and are shown in Figure 9.9. The data are 

compared to lattice thermal conductivities published for the MOCVD-grown SLs and Sb2Te3 (Figure 2.9, 

[57]). For this purpose, l was estimated by using cross-plane electrical conductivities calculated from in-

plane values by assuming the same anisotropy values for the electrical conductivity as published for the 

MOCVD-grown SL of the respective period (Figure 3.6 or Figure 1 in [8]). In the corresponding works, 

the Lorenz number of metals (2.45 x 10-8 V²/K²) is used to calculate l which is certainly not exactly valid 

in the carrier concentration range of 1019 ‟ 1020 cm-3. Therefore, in addition to the Lorenz number for 

metals as a better approximation also the Lorenz number calculated for homogeneous (Bi,Sb)2Te3 

(section 2.1.1.1) used here to calculate l. However, the two different Lorenz numbers do not yield 

significantly different results for l.  

 

 

Figure 9.9 Total (black filled squares) and lattice thermal conductivities of MBE-grown epitaxial SLs for calculated (red 

empty squares) and metal (blue empty squares) Lorenz numbers L. l of MOCVD-grown SLs and Sb2Te3 [57] (blue stars) 

are also given. Dashed line: average thermal conductivity of Bi2Te3 and Sb2Te3.       

Two main conclusions can be drawn: 

1.) The reported significant reduction of both  and l compared to the binary constituents of the SLs 

could clearly be confirmed. A reduction can be seen for all PLs while the lowest PL of 6 nm yields the 

most pronounced reduction of roughly 60 %. Since the epitaxial SLs have a monocrystalline character, 

the reduction in thermal conductivity can now clearly be attributed to the SL structure and not 

nanocrystallinity as in the nanoalloyed films shown in the preceding chapters. 
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2.) For most of the examined PLs the determined l are in good agreement to the published values for 

MOCVD films [57], particularly when considering that the used growth and measurement methods are 

technically different (3 for MOCVD, TDTR for MBE). The obtained value of l = 0.28 W/mK for 6 nm PL 

corresponds well to the previously published value of 0.22 W/mK if a scattering of 10 % between the 

measured total thermal conductivities due to measurement uncertainty is taken into account.  

 

 

9.2.3 Thermal stability of SLs with 6 nm period length 

In this section the stability of SLs with a PL of 6 nm under thermal treatment is discussed. Note that the 

thermal treatments described here (XRD, SRX, annealing system) are taking place ex-situ. The 

temperatures measured in these processes correspond well to actual sample temperatures in contrast to 

in-situ temperature measurement in the MBE system during growth that systematically reports a higher 

temperature than present at the sample surface (see preface of section 9.1,p.111). For this reason, 

growth and post-deposition temperatures cannot be compared directly.  

 

9.2.3.1 Structural analysis by temperature-dependent XRD and (S)TEM 

XRD patterns of sample 2 were recorded in dependence on temperature (Figure 9.10) around the (00.9) 

reflex where the SL satellites were well visible. Each temperature was held for 1 hour and the 

experiment was carried out under Helium atmosphere. Patterns recorded at 50 °C and 100 °C are 

omitted since they are identical to the pattern at 150 °C.  

First indications of interdiffusion can be found at 250 °C. The second order SL satellite (SL-2) vanishes, 

indicating a loss of long-range order that is likely associated with the loss of atomic sharpness that was 

observed in the pristine SLs (Figure 9.8). At 375 °C, a significant loss in intensity of the first satellite 

reflex is evident, indicating the beginning loss of the SL nanostructure. At 400 °C, all reflexes 

corresponding to a SL structure are absent from the XRD pattern. Additionally, broad extra reflexes such 

as the (01.5) reflex at roughly 28.1° appear, indicating the onset of recrystallization processes and a 

change in crystallite orientation. It is noted that the appearance of such reflexes seems to depend on the 

annealing environment since such recrystallisation processes were not apparent for isothermal annealing 

experiments at 400 °C (section 9.2.3.3). 

 

 

Figure 9.10 XRD pattern around (00.9) reflex in dependence on temperature. A reflex shift due to thermal lattice 

expansion is evident, room-temperature positions are marked with dashed lines. SL-1 and SL-2 are satellite reflexes of the 

first and second order. 
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Furthermore, cross-section HAADF-STEM images for different temperatures were taken of an area 

where pronounced layer bending was evident, Figure 9.11. Each temperature was held for 30 minutes. 

As already observed on p-type and n-type pristine SLs (sect. 9.2.1.2), also for the temperature-

dependent experiments a similar correlation between layer “slope” and interdiffusion is evident. Layers 

with a strong tilt appear prone to strong interdiffusion while (near-)horizontally aligned layers are 

relatively stable. In conformance with XRD results, at 250 to 300 °C there seems to be some loss of SL 

sharpness as indicated by a subtle broadening of the Bi2Te3 containing layers. At 360 °C, the ML 

structure begins to get erased completely in some regions. It is noted that the onset of bulk diffusion at 

roughly this temperature is assumed from experiments with similar nanoalloyed films (development of 

roughness and pillar-like structure, section 7.1). At 400 °C large proportions of the SL are clearly lost 

while at 450 °C, all nanostructuring is gone. We note that, starting at 400 °C, the films started to 

evaporate in the vacuum environment of the sample holder, complicating analysis and image acquisition 

at and above this temperature  

The TEM results are generally in agreement with the XRD analysis. While XRD patterns show no SL 

structure at 400 °C, remnants of the nanostructure are still visible at this temperature in the cross 

section. This is most likely due to the shorter temperature holding time in the TEM analysis and the 

tendency of the SL satellites to vanish easily if the SL structure loses sharpness (as was observed on 

nanoalloyed films).  

 

 

Figure 9.11 Cross-section HAADF-STEM images of area with pronounced bending, sample 2. Images taken in 

dependence on temperature demonstrate the progress of interdiffusion. Note that slight image drifting occurred during 

the analysis. Areas indicated by dashed lines serve for comparison of equal section.  

9.2.3.2 Transport properties in dependence on temperature 

Increasing the growth temperature to 400 °C resulted in an increase of S and µ, indicating a reduction 

of the compensation effects (Table 3.2). However, increasing the deposition temperature lead to 

drastically increasing re-evaporation as indicated by the pronounced shrinkage in film thickness, putting 

a limit to this type of experiment.  

Measuring the sample properties ex-situ after deposition proved to be a more flexible approach. The 

Seebeck coefficient of sample 4 was recorded in dependence on temperature using the SRX setup 

(Figure 9.12). After the first heating cycle ending at 342 °C and the subsequent cooldown, the Seebeck 

coefficient at room temperature increased significantly and was almost twice as high as before the heat 
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treatment. Apparently, compensation effects have been strongly reduced and there are hints for 

interdiffusion, turning the 5nm/1nm Sb2Te3/Bi2Te3 SL at least partially into a p-type solid solution with 

the composition (Bi0.16Sb0.84)2Te3. Indeed, the S of 160 µV/K corresponds very well to the values of ~160 

µV/K reported for a bulk solid solution with this composition (Figure 3.5,[122]).  

To conclude, the experiment indicates that significant interdiffusion has taken place below or at 340 °C, 

which corresponds to TEM images that indicate the beginning of interdiffusion of the Bi2Te3 layers at 

250-300°C. However, with this kind of experiment it is hard to track down exactly the onset of 

interdiffusion that should be noticable by an increase in the Seebeck coefficient since it is masked by 

other effects not related to interdiffusion:  Firstly an increase of S due to the shift of the Fermi level out 

of the valence band to the middle of the band gap and then a decrease most likely due to the onset of 

intrinsic conduction also influence the measurement. 

 

Table 9.2 Transport properties of SLs in dependence on substrate temperature Tsub [°C]. Units as previously defined in 

Table 5.1. Carrier concentration n in units of 1019 cm-3.  

Figure 9.12 Seebeck coefficient in dependence on temperature for ex-situ heating using the SRX system. A significant 

increase of the Seebeck coefficient is evident after the first heating cycle (arrow).  

 

 

 

   

 

 

 
 

 

9.2.3.3 Electrical properties after ex-situ isothermal annealing 

Two sets of samples with a composition analogous to samples 2 and 4 (1 nm Bi2Te3 / 5 nm Sb2Te3) were 

grown for annealing experiments. The isothermal annealing was carried out under nitrogen atmosphere 

at 400 °C for 2 hours in the annealing system shown in section 4.1.5.1.  

Table 9.3 Transport properties of SLs with 6 nm period before and after annealing at 400 °C. Units as previously defined 

in Table 5.1. Carrier concentration n in units of 1019 cm-3. Lattice thermal conductivity estimation as described in section 

9.2.2.2 with calculated Lorenz number. 

As grown After annealing 

cBi cSb cTe d              µ n  S PF 
          

l 
cBi cSb cTe d              µ n  S PF 

         

l 

5.5 32.1 62.4 1.02 80 1.7 212 92 1.8 
- 

- 
6.0 34.6 59.4 0.86 235 7.3 2756 129 45.9 

1.4   

0.81 

5.7 34.3 60.0 1.00 59 4.0 380 129 6.3 
0.73  

0.50 
5.9 34.7 59.4 1.03 182 10.7 3108 97 29.2 

1.4    

0.68 

 

In the XRD patterns of annealed films only lattice (00.l) reflexes were evident while satellite reflexes were 

completely absent, proving that most or all of the SL structure is lost and the compound (Bi0.16Sb0.84)2Te3 

has formed. The change in transport properties is obvious. The S/n relationship and µ change drastically, 

indicating the reduction of carrier compensation effects. As a result of the changes, the PFs increase 

massively to values usually observed on single crystalline alloys (Table 3.2). Noticably, S remains quite 

low ‟ it can be presumed that this is caused by the nonoptimized annealing environment, resulting in 

Tsub cBi cSb cTe d µ n  S PF 

 350 18 22.5 59.5 1.03 59 2.7 254 65 1.1 

400 6.0 34.2 59.8 0.84 150 2.1 515 153 12.1 

425 - - - 0.08 - - - - - 
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significant Te loss. Further improvement is likely possible by optimized annealing conditions, e.g. by 

using a powdered diffusion source of the same composition.  

The increasing PF is accompanied by a significant increase in both total and lattice thermal conductivity. 

The total thermal conductivity even exceeds that of epitaxial binaries and is in the region of single-

crystalline bulk material, i.e. between that of (Bi0.2Sb0.8)2Te3 (0.7-0.9 W/mK) and Sb2Te3 (0.9-1.6 W/mK) 

[90]. It may be presumed that the temperature-dependent SL interdiffusion is accompanied by general 

annealing effects on the crystal lattice, enhancing transport properties somewhat.  

 
 

9.3 Conclusions 

In this chapter, results on binaries and Bi2Te3 / Sb2Te3 SLs deposited epitaxially on (111)-BaF2 substrates 

by MBE were shown. All films were fully textured and exhibited a very high crystalline quality with 

mostly ordered growth.  

 

Binaries with good electrical properties were deposited. A low carrier concentration < 2 x 1019 cm-3 and 

a very high carrier mobility of ~ 500 cm²/Vs for epitaxial Sb2Te3 were determined.  

 

Epitaxial Bi2Te3 / Sb2Te3 SLs with period lengths as small as 6 nm were proven to be thermally stable, 

confirming the results reported by Venkatasubramanian. Very well expressed satellite reflexes in XRD 

analysis and (HR)STEM imaging  confirmed an extremely sharp definition of the SL structure. A reduction 

of thermal conductivity (i.e. a lattice thermal conductivity reduction by up to ~60 % compared to the 

binary compounds) was clearly evident which could be attributed to the SL structure and not, as in the 

nanoalloyed films, to the nanocrystallinity of the material.  

 

A clear difference, however, was evident for the electrical properties. Much lower Seebeck coefficients 

and carrier mobilities than reported for MOCVD-grown SLs were observed, owing to compensation 

effects. In conclusion, it remains unclear how the high S in the MOCVD-grown SLs could be reached or 

rather how the supposedly unavoidable compensation effects (it was stated in one of the previous 

works that only n-Bi2Te3 could be obtained in the growth experiments with MOCVD [117]) could be 

circumvented.  

 

Three possible mechanisms could be responsible: 

Ordered alloy: Venkatasubramanian proposes the formation of an “ordered alloy” ([46], see section 

3.5.2 and 6.2.1) corresponding to p-type Sb-rich (Bi,Sb)2Te3. To investigate this phenomenon, a total of 

six samples with the layer sequence 5 nm Sb2Te3 / 1 nm Bi2Te3 was deposited with slightly varying 

period lengths and Te contents (the properties of three of these samples are given in Table 9.1). 

However, for no sample the purported effects of an ordered alloy formation could be reproduced here 

and, consequently, µ, S and the PFs remained low.  

Doping: A p-doping of the Bi2Te3 films, either intentional by introducing foreign dopands such as group 

IV elements or unintentional by remaining carbon-based residues of the organic-based MOCVD growth. 

However, none of this was reported in any of Venkatasubramanian´s works.  

Interdiffusion: Finally, the possibility of slight interdiffusion transforming the only 1 nm thin Bi2Te3 

layer into p-type (Bi,Sb)2Te3 has to be taken into account. To shed some light on this point, the 

properties of annealed epitaxial SLs were analyzed. After annealing at 400 °C a loss of the SL structure, 

a very high carrier mobility, an improved Seebeck/charge carrier ratio and thus a massively improved PF 

of 45 µW/cmK² was evident, however at the prize of a significantly increased thermal conductivity. The 

path to a high ZT may be to achieve a narrowly defined degree of slight interdiffusion that provides 

good electrical properties and simultaneously a low thermal conductivity. It is possible that a process 

window that fulfills both these conditions was found by Venkatasubramanian during the MOCVD 

growth experiments. It is also possible that interdiffusion may have been caused by the growth mode of 

the films which, despite the assumptions of the author, is likely not epitaxial in the common sense (see 

section 3.5.1). Rotational crystalline disorder may be present in the films, allowing for slight defect-

enhanced interdiffusion not present in truly epitaxially grown material.  



 

 

123 

 

List of acronyms and symbols 

 

Acronyms 
 
(HA)ADF (High angle) annular dark field 

BEP Beam equivalent pressure 

BF Bright field 

BFM Beam flux monitor 

BSE Back scattered electron 

BTE Boltzmann transport equation 

BZ Brillouin zone 

COP Coefficient of performance 

DC Debye Callaway 

DF Dark field 

DOS Density of states 

EDX Energy-dispersive X-ray analysis 

FIB Focused ion beam 

HF High frequency 

HWE Hot wall epitaxy 

MBE Molecular beam epitaxy 

MER Method of elemental reactants 

MFP Mean free path 

ML Multilayer 

MOCVD Metal organic chemical vapor deposition 

(M)QW (Multi) quantum well 

PF Power factor 

PGEC Phonon glass electron crystal 

PL Period length 

PLD Pulsed laser deposition 

SAED Selected area electron diffraction pattern 

SE Secondary electron 

SEM Scanning electron microscopy 

SIMS Secondary ion mass spectroscopy 

SL Superlattice 

TDTR Time domain thermal reflectance 

(HR)TEM (High resolution) transmission electron 

microscopy 

STEM Scanning transmission electron microscopy 

THM Traveling heater method 

TZM Thornton zone model 

XRD X-ray diffraction 

XRR X-ray reflectometry 

 

 

Symbols 
 

A Area 

A Material specific constant in effusion cell 

pressure (section 4.1.3.2) 

Ae Orifice area of effusion cell 

AS Sample surface area 

A0 Amplitude of absorbed heat 

a (Cubic) lattice constant 

ah, ac Hexagonal and cubic lattice constant 

 Thermal expansion coefficient 

BU, BI, BN Prefactors for phononic relaxation times in 

Debye-Callaway model  

B Magnetic field strength (section 4.2.1)  

B Material specific constant in effusion cell 

pressure (section 4.1.3.2) 

T Thomson coefficient 

C Constant in Pisarenko relation  

C Current Te content (in section 4.1.2) 

CBEP Variable in effusion cell pressure fit 

c Hexagonal lattice constant  

cV Specific heat per unit volume 

D Desired content of element (in section 4.1.2) 
Dt Thermal diffusivity 

d Thickness or size 

dA, dB For multilayer system: Thickness of layer A 

and B, also thickness of quantum well / 

barrier 

dBST Thickness of layer of compound (Bi1-xSbx)2Te3 

dhkl Distance between two lattice planes with 

Miller index (hkl) 

dn Thickness of n-th layer 

dSL Superlattice period length 

dt Thermal penetration depth 

dZ Thickness of layer of element Z 

  ̅  Weighted average of the temperature 

distribution on surface 

  ̅  Steady-state temperature rise in thin film 

  ̅    Total steady-state temperature rise  

E Energy 

EA Activation energy 

EC Energy of lower edge of conduction band 

EF Fermi energy 

EG Width of band gap 

En Quantized energy level of electron in infinite 

quantum well 

Exy Continuous energy of electron in infinite 

quantum well 

e Electron charge 

Fz Fermi integral  

F Possible degrees of freedom 

FH Prefactor in Hall measurement 

f Electron distribution in non-equilibrium 

f0 Fermi-Dirac distribution in equilibrium 

 Coefficient of performance 

nz Wave functions for localized electrons in 

quantum well 

C Coefficient of performance in a Carnot cycle 

G Reciprocal lattice vector 

e Effusion rate 

 Parameter containing ,  and S  
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H Heaviside function 

  Planck constant 

 Efficiency (* = in an ideal quantum well) 

C Carnot efficiency 

max Maximum efficiency of a thermogenerator 

I Electric current 

IB, I0 Electric current in Hall measurement with / 

without magnetic field 

Imax Current of maximum coefficient of 

performance of a thermocooler 

K Number of components in Gibb´s phase law 

in section 4.1.5.2 

K Scherrer constant in section 4.3.1.2 

Ki Transport integrals 

k Momentum 

kB Boltzmann constant 

kx, ky  Continuous momentum of electron in ideal 

quantum well  

L Lorentz number 

    Momentum component in x-y plane 

Lp Period length  

l Sample length in 4-point probe method 

lmfp Mean free path length 

 Thermal conductivity 

AB Thermal conductivity of layer A and B 

e Electronic thermal conductivity 

el Electron wavelength 

l Lattice thermal conductivity 

p Phonon wavelength 

XRD Wavelength of X-ray radiation  

L Longitudal phonon thermal conductivity 

T Transversal phonon thermal conductivity 

V-VI Thermal conductivity of V2VI3 material 

 Total thermal conductivity perpendicular and 

parallel to crystal c-axis.  

M Molecular weight (of atomic species) 

MA Mean atomic weight 

MBST Molar mass of compound (Bi1-xSbx)2Te3 

MI Atomic mass of i-th unit cell 

MR Ratio of load / generator resistance 

MZ Molar mass of element Z 

 ̅ Average atomic mass of unit cells  

m Order of SL reflex 

md Density of states effective mass 

mZ Mole proportion of element Z 

m1,m2,m3 Effective masses along the crystal axes 

   Component of effective mass in x-y direction 

m* Effective mass 

µ Charge carrier mobility 

     
 Formation energy of antisite defect 

µi Partial charge carrier mobility 

µp, µn Carrier mobility of holes and electrons 

µtot Total charge carrier mobility 

 Charge carrier mobility perpendicular and 

parallel to c-axis 

N Planck distribution 

NA Avogadro number 

NN Concentration of scatterers 

N0 Initial source concentration 

N(x,t) Atomic concentration in diffusion profile 

n Order of SL reflex in section 4.3.1.1 

n Charge carrier concentration 

ni Intrinsic carrier concentration 

     
  Antisite defect density 

nBST Number of moles of compound (Bi1-xSbx)2Te3 

nZ Number of moles of element Z 

P Possible number of phases 

PF Power factor 

PF11, PF33 Power factor perpendicular and parallel to c-

axis 

p Specularity parameter 

p Grain size, obtained by Rietveld refinement 

(section 4.3.1.2) 

pBEP Beam equivalent pressure of effusion cell 

peq Vapor pressure in equilibrium 

n0, p0 Charge carrier concentration prefactor as 

defined in eq. 2.3 

  Peltier coefficient 

    Differential Peltier coefficient 

 ̇ Amount of heat exchanged per time (also 

cooling/heating power) 

Q Heat 

 Angle (mostly diffraction angle in XRD 

experiments) 

D Debye temperature 

m,n Superlattice reflexes at order m and n 

R Electrical Resistance 

Ram Interface reflectivity 

RH Hall coefficient 

RL Electrical load Resistance 

Rref Reflection coefficient 

Rth Thermoreflectivity 

RP Pillar resistance 

R(y) Ratio -Vin/Vout in dependence on parameter y 

r Position vector 

rac Ratio of acoustic impedances of two layers 

BST Density of compound (Bi1-xSbx)2Te3 

BT Density of Bi2Te3 

el Electrical resistivity 

 Mass density 

ST Density of Sb2Te3 

gr Resistivity increase due to grain boundary 

scattering 

Z Density of element Z 

(E) Energetic density of states  

S Seebeck coefficient 

SAB Differential Seebeck coefficient 

SA, SB, SC For multilayer system: Seebeck coefficient of 

layer A,B and Seebeck coefficient of whole 

stack  

Si Sensitivity of ratio Vin/V to other parameters 

SV Total boundary surface per unit volume 

Sx Seebeck coefficient of element x 

Sy Sensitivity of ratio -Vin/Vout to parameter y 

  
   Sensitivity of ratio -Vin/Vout to thermal 

conductivity of aluminum 

  
    

 Sensitivity of ratio -Vin/Vout to thermal 

conductivity of V2VI3 material 

S11, S33 Seebeck coefficient perpendicular / parallel to 

crystal c-axis 

s Scattering parameter 

si Uncertainty of other parameters in TDTR 
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measurement 

  
   Uncertainty of thermal conductivity of 

aluminum 

  
    

 Uncertainty of thermal conductivity of V2VI3 

material 

 Electrical conductivity 

e() Electron scattering probability in Rutherford 

scattering 

ABC For multilayer system: electrical conductivity 

of layer A,B and conductivity of whole stack 

 Electrical conductivity perpendicular and 

parallel to c-axis 

(E) Differential electrical conductivity 

T Temperature 

TH, TC Hot and cold side temperature 

Tm Mean Temperature of TH and TC 

TM Melting temperature 

t Time 

 Relaxation time 

RNC

UIB

Relaxation times for resistive, normal, total, 

Umklapp, impurity and boundary scattering. 

 Relaxation time prefactor  

UH Hall voltage 

US Voltage between copper wires in Seebeck 

measurement 

V Voltage 

V(z) Well potential 

VB Barrier potential, i.e. depth of quantum well 

Vin In-phase part of voltage measured by lock-in 

amplifier (TDTR) 

Vout Out-of-phase part of voltage measured by 

lock-in amplifier (TDTR) 

VSP Seebeck voltage generated by Peltier effect 

V0 Thermoelectric part of measured voltage 

v Velocity 

vS Speed of sound 

vA , vB Speed of sound in layer A and B 

W Electric power 

w Sample width in 4-point probe method 

wFWHM(2) Full width at half maximum of reflex at angle 

2 

w0 1/e² radius of pump beam 

 Angular frequency 

cut Low-frequency cutoff wavelength 

x Integration variable in some equations, 

otherwise proportion of constituent, e.g in 

solid solutions 

r Electron wave function 

Z Figure of merit of single material 

Z Atomic number (4.3.2) 

ZA, ZB Acoustic impedance of material A and B 

z Figure of merit of single material, afterwards 

replaced by Z 

ZT Dimensionless figure of merit 

ZCT Figure of merit of whole multilayer system 

Z2DT Figure of merit for idealized MQW system 

with strict 2D carrier confinement 

ZT11,ZT33 Figure of merit perpendicular / parallel to c-

axis 
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