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1 Summary 
 

It was a long held belief that adult mammalian central nervous is unable to regenerate 

in any condition and reiterated in Ramon y Cajal’s seminal work (Santiago Ramón y Cajal, 

1991). This idea was disproved when injured CNS axons were able to regenerate in PNS 

lesion environment and embryonic grafts shedding light on the reasons contributing to CNS 

regeneration failure (Richardson et al., 1980, Aguayo et al., 1981). Regeneration in the CNS 

is inhibited by myelin and astrocyte based inhibitors along with the presence of an inhibitory 

transcriptional environment, elicited and/or enhanced by the cascades induced by injury (Yiu 

and He, 2006).  

Extensive research has identified transcription factors and proteins which when 

modulated enhance regeneration of the injured adult CNS axons (Liu et al., 2011). 

Traditional approaches to promote a permissive molecular environment in neurons have 

provided crucial leads but not therapeutic options. Hence, novel approaches and targets 

need to be identified by studying molecules involved in developmental processes like 

neurogenesis, axon path-finding and neuronal morphogenesis. Ubiquitin ligases and 

ubiquitin ligase like proteins have been identified to play a role in neuronal morphogenesis, 

connectivity and degeneration after injury (Yamada et al., 2013). MDM4, a ubiquitin ligase 

like enzyme, has p53 as its prime substrate and interacts also with molecules like PTEN, 

Smads, p21, previously implicated in regeneration(Toledo and Wahl, 2006, Eva et al., 2012). 

MDM4 occludes the transcriptional activation domain of p53 limiting its transactivation while 

another E3 ubiquitin ligase MDM2 reduces the level and hence the activity of p53 (Marine, 

2011, Marine and Jochemsen, 2004).  

In this study, we have investigated the effect of modulating novel factors MDM2 and 

MDM4 on CNS regeneration using optic nerve crush as an injury model. Genetic ablation of 

MDM4 and pharmacological inhibition of MDM2 in retinal ganglion cells induced regeneration 

of optic axons, without substantially affecting neuronal survival. Genome wide gene 

expression analysis from FACS sorted pure RGCs revealed up-regulation of IGF1R gene 
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and its role was confirmed by its specific pharmacological inhibition. Hence this study 

represents MDM2-MDM4-p53-IGF1R as a neuronal signaling pathway that might present 

novel therapeutic targets for neuro-trauma patients. 

Along with identifying the role of p53 and its negative regulators MDM2 and MDM4 in 

regeneration, we also studied the role of histone acetyl transferases P/CAF and p300 which 

are known to be epigenetic modulators in neurons (as collaboration between colleagues at 

the same lab). Expression of p300, which acetylates specific lysine residues of p53 and 

histone H3, was decreases in RGCs upon maturation and hence was a potential valid target. 

Viral overexpression of p300 in RGCs enhanced regeneration after optic nerve crush 

coupled with boosting the pre-conditioning effect of lens injury. The pre-conditioning lesion 

primes the neurons to enter a regenerative state and enables the axons to overcome the 

inhibitory extrinsic environment. Pre-conditioning lesion effect can be induced in the spinal 

system (i.e in the dorsal root ganglia) by lesioning the peripheral axons which permits the 

regeneration of their central branches in the CNS. Regenerative effect of the conditioning 

lesion is elicited due to the expression of regeneration associated genes (RAGs), but the 

mechanism controlling their expression remains unknown. Here, we were able to clarify a 

unique role of p300/ CBP associated Factor (PCAF) following conditioning lesion. PCAF 

dependent acetylation at histone H3 lysine 9 (H3K9) along with a reduction in methylation of 

H3K9 (H3K9me2), was observed at the promoters of RAGs exclusively after PNS axonal 

injury. PCAF dependent acetylation of theses promoters increased RAGs expression, which 

was mediated by extracellular signal regulated kinase (ERK) axonal retrograde signaling. 

Hence we have established a unifying role for PCAF as a broad regulator for regeneration, 

following a conditioning lesion. Viral PCAF overexpression also promoted axonal 

regeneration after CNS injury in spinal ascending sensory fibers, though such an effect was 

not observed in the ONC system, owing mainly due lower PCAF expression levels observed.  

To conclude, in this study we were able to identify novel ubiquitin ligases, MDM4 and 

MDM2 which when deleted promote regeneration in the adult CNS. Additionally 
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overexpression of epigenetic modulators p300 and P/CAF was found to induce regeneration 

in the CNS. Development and validation of drugs that can specifically modify the activity of 

these targets can present novel therapeutic options.  
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Zusammenfassung 
 

Die lang vertretene Überzeugung, dass das adulte Zentralnervensystem nicht in der 

Lage ist sich zu regenerieren, wurde wiederholt in den bahnbrechenden Arbeiten Ramon y 

Cajals widerlegt (Santiago Ramón y Cajal, 1991). Es war gezeigt, dass sich verletzte ZNS 

Axone in PNS Läsionen und embryonalen Transplantaten regenerieren können(Richardson 

et al., 1980). Die Regeneration im ZNS wird von Myelin- und Astrozyten- Inhibitoren und 

einer inhibitorischen Transkriptions Umgebung, die durch Verletzungs-Kaskaden induziert 

und/oder verstärkt wird, gehemmt (Yiu and He, 2006). Umfangreiche Forschungen haben 

Transkriptionsfaktoren und Proteine identifiziert, die nach Modulation die Regeneration 

verletzter adulter ZNS Axone verbessern (Liu et al., 2011). Obwohl traditionelle Ansätze, die 

eine selektive molekulare Umgebung in Neuronen fördern, Weg-weisende Ergebnisse 

geliefert haben, müssen neue Herangehensweisen und Ziele, durch die Erforschung von 

Molekülen, die in Entwicklungsprozessen wie der Neurogenese, der axonalen Wegfindung 

und der neuronalen Morphogenese beteiligt sind, identifiziert werden. Es hat sich 

herausgestellt, dass Ubiquitin-Ligasen und Ubiquitin-Ligase-ähnliche Proteine eine Rolle in 

der neuronalen Morphogenese , der Konnektivität und der Degeneration nach einer 

Verletzung spielen (Yamada et al., 2013). MDM4, ein Ubiquitin-Ligase-ähnliches Enzym, 

dessen primäres Substrat p53 ist und das mit Proteinen wie PTEN, Smads und p21 

interagiert, wurde schon zuvor eine regenerative Wirkung beigemessen (Toledo and Wahl, 

2006, Eva et al., 2012). MDM4 verschließt die transkriptionelle Aktivierungsdomäne von p53, 

wodurch die Transkriptionsaktivierung von p53 begrenzt wird, während eine weitere E3-

Ubiquitin-Ligase MDM2 die p53 Konzentration und damit die Aktivität von p53 reduziert 

(Toledo and Wahl, 2006, Eva et al., 2012, Marine, 2011, Marine and Jochemsen, 2004). Für 

die vorliegende Arbeit haben wir die Wirkung der neuen modulierenden Faktoren MDM2 und 

MDM4 auf die Regenerationsfähigkeit des ZNS mittels Zerquetschung des Sehnerv als 

Verletzungs Modell untersucht. Die genetische Ablation von MDM4 und die 

pharmakologische Inhibition von MDM2 in retinalen Ganglienzellen, induzierte die 
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Regeneration von Axonen des N. Optikus, ohne das neuronale Überleben wesentlich zu 

beeinflussen. Genom-weite Genexpressions-Analysen von FACS-sortierten reinen RGCs, 

offenbarten eine Hochregulation des IGF1R -Gens. Dies wurde zusätzlich durch die 

spezifische pharmakologische Hemmung des IGF1R-Gens bestätigt. Deshalb stellt diese 

Studie den neuronalen MDM2 - p53 - MDM4 - IGF1R-Signalweg als neues therapeutisches 

Ziel für die Behandlung von Neuro-Trauma-Patienten vor. Neben der Identifizierung der Rolle 

von p53 und seiner negativen Regulatoren MDM2 und MDM4 bei der Regeneration, 

untersuchten wir auch die Rolle der Histon-Acetyl-Transferasen P/ CAF und p300, die 

bekanntlich epigenetische Modulatoren in Neuronen (als Zusammenarbeit zwischen 

Kollegen im gleichen Labor) sind. Die Expression von p300,welches spezifisch Lysin-Reste 

von p53 und Histon H3 acetyliert, war nach der Reifung der RGCs verringert. Dies machte 

p300 zu einem sehr vielversprechenden Ziel. Die virale Überexpression von p300 in RGCs, 

verbesserte die Regeneration nach Zerquetschung des Sehnervs und förderte den 

präkonditionierenden Linsen-Verletzungs Effekt. Die präkonditionierende Läsion sorgt dafür, 

dass die Neuronen in einen regenerativen Zustand übergehen und ermöglicht den Axonen 

die hemmende extrinsische Umgebung zu überwinden. Der präkonditionierende Läsions-

Effekt kann im spinalen System (d. h. in den Spinalganglien) durch Läsion der peripheren 

Axone induziert werden und ermöglicht die Regeneration ihrer zentralen 

Verzweigungsstellen im ZNS. Die regenerative Wirkung der konditionierenden Läsion wird 

durch die Expression Regenerations-assoziierter Gene (RAGs) hervorgerufen. Der 

Mechanismus der ihre Expression kontrolliert ist allerdings noch unbekannt. In dieser Arbeit 

gelang es die einzigartige Rolle von p300/ CBP assoziierter Faktor (PCAF ) nach einer 

konditionierenden Läsion zu klären. Die PCAF-abhängige Acetylierung an Histon H3 Lysin 9 

(H3K9) und die Verringerung der Methylierung von H3K9 ( H3K9me2 ), wurde bei den 

Promotoren der RAGs ausschließlich nach einer PNS axonalen Schädigung beobachtet. Es 

zeigte sich, dass die PCAF-abhängige Acetylierung dieser Promotoren die RAGs 

Expression, vermittelt durch die Extracellular-signal Regulated Kinase ( ERK ) und axonal 

retrograde Signalwege, erhöht wurde. Somit haben wir eine übergreifende Rolle für PCAF 
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als umfassenden Regulator der Regeneration nach einer konditionierenden Läsion 

nachgewiesen. Die virale PCAF Überexpression förderte auch die axonale Regeneration 

nach ZNS-Verletzung der spinalen aufsteigenden sensorischen Fasern, obwohl ein solcher 

Effekt nicht im ONC -System beobachtet werden konnte. was vor allem auf eine niedrigere 

PCAF Expression zurückzuführen sein könnte. 

Abschließend lässt sich sagen, dass wir in dieser Studie die neuartigen Ubiquitinligasen, 

MDM4 und MDM2 identifizieren konnten, die wenn sie ausgeschaltet werden die 

Regeneration im adulten ZNS fördern. Desweiteren zeigte sich, dass die Überexpression der 

epigenetischen Modulatoren p300 und PCAF die Regeneration im ZNS induziert Die 

Entwicklung und Validierung von Medikamenten, die gezielt die Aktivität dieser Ziele 

verändern , könnten neue therapeutische Möglichkeiten eröffnen. 
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1.1 Synopsis 

 

In this work, I describe the role of transcriptional regulation of CNS regeneration with 

a focus on ubiquitin ligase MDM2 and ubiquitin ligase like protein MDM4 along with the role 

of histone acetyl transferases p300 and P/CAF. Key results are followed by the relevant 

discussion, while the publications from the primary and collaborative works have been 

attached at the end. 

1.1.1 CNS regeneration- Cellular and molecular mechanisms following injury 

 

The central nervous system (CNS) is a remarkable plastic system functional, 

structural and molecular level and controls complex functions like sensory input, conscious 

motor, and behavioral output and subconscious autonomic physiological control. The CNS 

adapts and responds to various cues from physiological stimuli related to learning and 

memory to pathological insults like traumatic brain/spinal cord injury, stroke or 

neurodegenerative diseases.  

Injury to the adult mammalian CNS leads to severe clinical debility due to failure of 

damaged axons to instinctively regenerate. This failure can be(Yiu and He, 2006) attributed 

to inhibitory myelin environment and lack of neuronal intrinsic response. The immediate 

endogenous reaction to CNS trauma includes structural damage to the axons and/or their 

cell bodies, triggering a series of events. Injured axons retract from the injury site while a few 

axons are able sprout for a millimeter or less (Windle, 1980). Mammalian CNS axons lack 

the capacity to regenerate, but develop dystrophic growth cones or boutons, implicating the 

failed attempt to regenerate owing to intrinsic properties of the neurons and their interaction 

with the inhibitory extrinsic properties. Active secondary processes that follow after the 

primary insult also lead to additional structural and functional loss. SCI primarily leads to the 

disruption of the axonal tracts leading to paraplegia or quadriplegia, depending upon the site 

and the extent of the injury (Bradbury and McMahon, 2006).  
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Figure 1: Extrinsic inhibitors of CNS regeneration Transection of nerve fibres following an injury 

exposes the damaged axons to the inhibitory myelin environment. Astrocyte activation leads to the 

development of the glial scar, which together with myelin associated inhibitor represents an 

insurmountable barrier for the severed axons(Yiu and He, 2006).  

<EndNote><Cite><Author>Yiu</Author><Year>2006</Year><RecNum>65684</RecNum><Displa

Extensive research in the past decade has disputed Ramon y Cajal work stated in 

“Degeneration and Regeneration of the Nervous system” which mentioned “in adult centres, 

nerve pathways are something that are fixed, ended and immutable. Everything may die, 

nothing may be regenerated”(Llinas, 2003). Seminal work by Aguayo and colleagues 

demonstrated that injured CNS axons are able to regrow on transplanted peripheral nervous 

system grafts, indicating the inhibitory role of CNS myelin (David and Aguayo, 1981, Aguayo 

et al., 1981, Richardson et al., 1980).  

  Regeneration failure of adult mammalian CNS is attributed to growth inhibitory 

extrinsic adult CNS myelin and CSPG associated inhibitors , inadequate growth supporting 

environment at the lesion site as well as limited intrinsic neuronal growth potential of the 

adult CNS (Schwab and Thoenen, 1985, David and Aguayo, 1981, Silver and Miller, 2004, 

Lu and Tuszynski, 2008). Following injury, severed axons are exposed to myelin and 

oligodendrocyte-associated inhibitors along with CSPGs secreted by reactive astrocytes. 

Myelin associated inhibitors like Nogo (or Rtn4 ,a member of reticulon membrane-proteins 

family), myelin associated glycoprotein (MAG) (Mukhopadhyay et al., 1994, McKerracher et 

al., 1994), oligodendrocyte myelin glycoprotein (OMgp) (Wang et al., 2002), trans-membrane 

semaphorin 4D (Moreau-Fauvarque et al., 2003), ephrin B3 (Benson et al., 2005) have been 
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identified by in vitro and/or in vivo studies. Nogo, MAG and OmGP have been found to bind 

receptors Nogo-66 receptor (NgR) and PirB as well as co-receptors like p75, TROY and 

LINGO (Yiu and He, 2006). Binding of these myelin associated inhibitors to their receptors 

has been shown to induce GTPase RhoA and its effector Rho activated kinase 

(ROCK)(Schmandke and Strittmatter, 2007). Activation of ROCK induces growth cone 

collapse and axon guidance repulsion (Hall, 1998). Pharmacological or genetic ablation of 

these inhibitors have led enhance sprouting following spinal cord injury but to minimal or no 

regeneration without any functional recovery (Lee et al., 2010, Schmandke and Strittmatter, 

2007). 

Reactive astrocytes, initiated after the injury, are known secrete various types of 

CSPGs (aggrecan, brevican, neurocan, phosphacan, versican and NG2) neutralization of 

which by chondroitinase ABC promoted regeneration of corticospinal axons to enhance 

regeneration (Morgenstern et al., 2002, Bradbury et al., 2002). Discovery of these extrinsic 

inhibitors and the possibility of enhancing regeneration following neutralization was a 

breakthrough in CNS regeneration research, but did not lead to functional recovery. This 

pointed to the crucial role intrinsic neuronal potential played in inducing regeneration and the 

focus switched to identifying the important endogenous regulators of neuronal potential. 

Though the central hypothesis for limited CNS axonal regeneration has always been 

the inhibitory extrinsic environment, evidence from the past decade points towards lack of 

neuronal response after injury. This inability of neurons to excite a response can be 

attributed to locking the neuro-regeneration potential through maturation as well as the 

cascades initiated by injury could inhibit the neurons from responding (Liu et al., 2011).  
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1.1.2 CNS regeneration- Identified Molecular Mechanisms eliciting a response 

CNS regeneration potential, along with being dependent on external environment, is 

also dependent on and synchronized by the elicited neuronal gene expression of the 

extracellular and cellular signaling proteins, which remodel the cytoskeleton and alter axon 

growth cone activity and plasticity(Carmichael et al., 2005, Tedeschi, 2011, Liu et al., 2011).  

Responses to the injury 

Following an injury, the injured end of the axon reseals itself while the distal segment of the 

axons undergoes Wallerian degeneration (Fishman and Bittner, 2003, Schlaepfer and 

Bunge, 1973). Injured neurons then form a growth cone like structure or a retraction bulb and 

either initiate regenerative growth as observed in PNS or lead to dystrophic growth cones as 

seen in the CNS (Bradke et al., 2012). Local cytoskeletal remodeling at the growth cone 

allows the axon to sprout or to retract away from the lesion site. Adult mammalian CST 

axons are known to form retraction bulbs after an axotomy and withdraw themselves away 

from the lesion site (Bernstein and Stelzner, 1983, Bregman et al., 1989). Retrograde signals 

from the injury site induce chromatolysis in the cell body, severity of which depends upon the 

extent and distance of the lesion site from the cell body (Bradke et al., 2012). 

Development-dependent decline of axon growth ability 

Seminal work by the Aguayo lab showed that embryonic neurons are able to 

regenerate in the inhibitory CNS environment suggesting that CNS neurons have a reduced 

capacity for axon growth (Brown et al., 2009, Bernstein and Stelzner, 1983). Molecules like 

Bcl-2, KLFs and mTOR show a developmental dependent decline in Retinal ganglion cells 

and cortical spinal neurons(Park et al., 2008, Moore et al., 2009, Cho et al., 2005) . Down-

regulation of these crucial players has led to the enhanced regeneration in the CNS. These 

evidences suggest that various pathways and molecules contribute to the development 

dependent decline of axonal growth ability of CNS neurons (Liu et al., 2011).  
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Axon regenerative ability regulators in the mammalian CNS 

Reactivating trophic responses: 

Establishment of a concrete role of neurotrophins in axonal elongation and synaptogenesis 

during development hinted towards the possible positive role of trophic molecules in 

enhancing regeneration in the CNS (Reichardt, 2006, Zhou and Snider, 2006, Zweifel et al., 

2005). Growth promoting pathways have been re-activated in the injured CNS neurons by 

exogenous application of trophic molecules or overexpression of downstream signaling 

molecules(Leaver et al., 2006). In the optic nerve system, CNTF enhanced the regeneration 

elicited by the RGCs along with increasing the survival while BDNF intra-vitreal application 

resulted only in higher survival rates (Smith et al., 2009, Leaver et al., 2006, Nakazawa et al., 

2002, Pernet and Di Polo, 2006). However, in the CST only NT-3 was able to initiate 

sprouting rostral to the lesion site but BDNF and NGF did illicit any effect in this system. 

Ectopic IGF delivery was able to increase the survival rates of CST neurons but did not affect 

the regeneration ability (Hollis et al., 2009). Activation of the ERK pathways via the lent viral 

TrkB expression in cortical neurons led to higher sprouting which was shown to be 

dependent on Shc/FRS-2 activation domain of ERK(Hollis et al., 2009). Overexpression of 

ERK1/2 promoted neuronal survival but failed to induce neuroregeneration (Pernet et al., 

2005). 

Conditioning effect of a lesion in sensory neurons: 

Conditioning lesion effect, discovered in the primary sensory neurons from the dorsal 

root ganglia (DRGs), has elucidated transcriptional mechanisms involved in PNS and 

consequently CNS regeneration. Conditioning lesion effect, prompted by injuring the 

peripheral branch of the sensory neurons leads to activation of the gene expression program 

in the neurons, priming them to have a boosted regenerative response in a subsequent PNS 

or CNS lesion (Oblinger and Lasek, 1984). In the visual system, a conditioning lesion effect 

is stimulated by lens injury or zymosan injection which leads to macrophage activation 
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(Fischer et al., 2001, Leon et al., 2000, Yin et al., 2003). Macrophage activation induces the 

secretion of inflammatory factors with positive effects (eg: BDNF, IL-6, PDGF, GDNF) as well 

as negative effects (TNF-α and IL-1β). Also, it leads to clearance of the inhibitory myelin 

associated debris along with activating the RGCs transcriptional response(Yin et al., 2003).  

Hence, lens injury in the visual system or lesion to the peripheral branch in DRG system 

augments a recapitulation of development patterns of growth associated proteins (GAP43, 

CAP23, Sprrr1A and cytoskeletal associated proteins), up-regulation of transcription factors 

(ATF3, c-Jun, Sox11, Smad1), transcriptional regulators (p300, Smads, STAT3, SMARCC1, 

NF-κB) along with polyamine synthesis enzyme arginase 1. All these genes together have 

been termed as regeneration associated genes and are elaborated further, along with a few 

known vital transcriptional pathways.  

Transcriptional pathways involved CNS regeneration 

Conditioning lesion model has shown numerous transcription factors and activators 

like C/EBP, CREB, ATF3, c-jun, KLF4 that directly or indirectly regulate axon outgrowth and 

regeneration(Herdegen et al., 1997, Lane and Bailey, 2005, Makwana and Raivich, 2005, 

Raivich and Behrens, 2006). On this framework, cytokines ciliary neurotrophic factor (CNTF) 

and leukemia inhibitory factor (LIF) were investigated and found to be directly involved in 

eliciting a conditioning lesion response, since CNTF and LIF knockouts were unable to 

induce conditioning lesion effect after lens injury(Leibinger et al., 2009). Purified exogenous 

cytokines were hoped to mimic the conditioning lesion effect but presented only a moderate 

response(Muller et al., 2009, Leaver et al., 2006). This elusive effect was explained by recent 

work showing suppressor of cytokine signaling (SOCS) proteins to limit the efficacy of 

cytokines in promoting regeneration. SOCS3 conditional deletion led to a higher regenerative 

response in RGCs following optic nerve crush(Smith et al., 2009). Concurrent deletion of 

cytokine receptor gp130 and SOCS3 was found to interrupt this regenerative response 

explaining involvement of gp130 dependent pathway(Smith et al., 2009). Failed regenerative 
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response of optic nerve axons in a PNS graft after viral overexpression of SOCS3 in RGCs, 

confirmed the role of this SOCS3 pathway(Hellstrom et al., 2011). 

   CREB dependent transcription induced by specific PTMs regulates axon 

regeneration via Arginase I up regulation and polyamine synthesis, in the PNS as well as the 

CNS regeneration(Cai et al., 2002, Gao et al., 2004, Spencer and Filbin, 2004). Also, JNK/c-

Jun transcriptional pathway might act as a sensor in response to nerve injury and is known to 

mediate nerve regeneration, though the response elicited in CNS regeneration by activation 

of JNK pathway was found to be highly context dependent(Raivich et al., 2004, Carulli et al., 

2002).     

Deletion of Phosphatase and tensin (PTEN) homolog leads to enhanced regeneration 

in the optic nerve as well as following spinal cord injury(Park et al., 2008, Liu et al., 2010). 

PTEN deletion accumulates PIP3, leading to activation of phosphatidylinositol dependent 

kinase, hence activating AKT. AKT activation was found to activate the mTOR pathway 

inducing the S6 kinase and Elf4 dependent transcription of genes for cell growth, resulting in 

axonal regeneration after optic nerve injury(Park et al., 2010). But PTEN deletion was also 

found to activate TSC1, suggesting the role of more than one downstream pathway in 

enhancing regeneration(Park et al., 2010).  

KLF (Krüppel-like factor) mediated transcriptional pathway, already known to control 

cellular functions like cell cycle, proliferation, and cell death, also was recently found to 

regulate developmental axonal growth. Klf4, a transcriptional regulator and tumor 

suppressor, was also found to play a negative role in inhibiting CNS regeneration in vivo. 

Deletion of KLF4 specifically in RGCs using tissue specific conditional knockout system, led 

to higher regeneration after optic nerve crush injury(Moore et al., 2009). KLF4 is also acts as 

a direct transcriptional repressor of p53(Rowland et al., 2005). 

 P53 is ubiquitously expressed in the brain and the spinal cord and controls cell cycle 

regulation, apoptosis and has been recently identified to regulate neurite and axonal 
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outgrowth(Di Giovanni and Rathore, 2012). P53 has been lately shown to control axon 

outgrowth by transcriptional regulation mechanisms rather than spatial response at the 

growth cones of outgrowing axons(Di Giovanni et al., 2006, Gaub et al., 2010, Qin et al., 

2010b, Qin et al., 2010a, Tedeschi et al., 2009a). Analysis in the primary cerebellar and 

cortical neurons showed p53 to regulate genes associated with outgrowth and cytoskeletal 

remodeling, namely Coronin1b, Rab13 and GAP43(Di Giovanni et al., 2006, Moore et al., 

2009). Additionally p53 was shown to involved in the facial motor nerve regeneration by 

occupying GAP43 promoter, further strengthening the role of p53 in axonal 

regeneration(Fishman and Bittner, 2003). Posttranslational acetylation of p53 lysine residues 

K 320-372-3-82 by acetyl transferases p300 and P/CAF were credited for neuro regeneration 

observed post injury, giving an insight into the transcriptional mechanisms post injury in 

neurons(Moore et al., 2009, Tedeschi and Di Giovanni, 2009) 

Transcriptional pathways converge upon regeneration associated genes (RAGs) 

which are involved in axonal outgrowth and path-finding during development, and their up-

regulation is known to induce sprouting and axonal regeneration after injury. Proteins coded 

by RAGs belong to varied functional proteins families like cytoskeletal associated proteins (α-

tubulin, MAP1a and MAP2)(Gloster et al., 1994, Knoops and Octave, 1997), cell adhesion 

molecules (NCAM-L1CAM, TAG1) (Kamiguchi and Lemmon, 2000, Panicker et al., 2003), 

the synaptic and extracellular matrix components (SNAP-25, cpg15/neuritin) (Naeve et al., 

1997, Kimura et al., 2003, Di Giovanni et al., 2005) and growth associated proteins 

(SPRR1a, CAP-23 and GAP-43)(Caroni and Grandes, 1990, Aigner and Caroni, 1993, 

Aigner and Caroni, 1995). 

Successful regeneration is hence a cumulative effect of appropriate transcriptional 

activation of pro-growth molecules and factors countering the growth cone collapse and 

repulsive guidance signals (Liu et al., 2008). Understanding and enhancing the neuronal 

transcriptional response that boosts axonal outgrowth, sprouting and regeneration as well as 
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inhibit growth cone collapse will allow the de-encryption of the molecular mechanisms of the 

nervous system. 

1.1.3 Ubiquitin Ligases and p53-related signalling in CNS regeneration  

  Vital cellular functions are dynamically regulated by the post-translational 

modifications of proteins, including ubiquitination which is mediated by ubiquitin ligases. 

Ubiquitin-activating enzymes (E1), ubiquitin activating enzyme (E2) and ubiquitin ligases (E3) 

effect the ATP-dependent covalent linking of 76-amino acid ubiquitin moiety to protein 

residues. Ubiquitinated proteins are recognized by cellular machineries like endosomal 

sorting complex, DNA repair complex and ubiquitin proteasome enabling processes such as 

protein localization and degradation, cell proliferation and differentiation and apoptosis. 

Different E3 ubiquitin ligases are localized to distinct subcellular compartments in neurons 

and play critical roles in neuronal morphogenesis and connectivity. The nucleus, centrosome, 

Golgi apparatus, axon and dendrite cytoskeleton, and synapse are main milieus for E3 

ubiquitin ligase function in neurons.  APC (E3 RING finger) protein complex activators Cdh1 

and Cdc20 are highly expressed in the developing brain, overlapping with the axon and 

dendrite morphogenesis and synaptogenesis phases (Konishi et al., 2004, Kim et al., 2009).  

Figure 2: E3 ubiquitin ligases localized to distinct subcellular compartments control 
neuronal morphogenesis. E3 ubiquitin ligases operate in the nucleus, centrosome, Golgi 
apparatus, and axon and dendrite cytoskeleton in neurons. This figure summarizes the role of 
various ubiquitin ligases and their spatial control in regulating neuronal functions. 
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Nuclear E3 ubiquitin ligase complex Cdh1–APC regulates SnoN, Id2 and Smurf thereby 

controlling axon growth and patterning in cerebellar cortex granule neurons. On the other 

hand, centrosomal E3 ubiquitin ligase complex, Cdc20–APC, targets Id1 for degradation to 

induce dendrite growth and arborization of granule neurons in the rat cerebellar cortex. Along 

with this function, Cdh1–APC may also act in the cytoplasm to regulate Smurf1 levels to 

inhibit axon growth. Ubiquitin ligase Smurf1 and Smurf2 operate locally at the axon to 

regulate neuronal polarity by degrading Par6 and RhoA (Cheng et al., 2011, Schwamborn et 

al., 2007, Wang et al., 2003). Another E3 ubiquitin ligase Nedd4 functions at the axon growth  

cone to ubiquitinate the proteins PTEN and Comm in the control of axon morphogenesis. It is 

worth noting that the ubiquitin ligases are negatively regulating target implicated in molecular 

mechanisms controlling axonal regeneration.  

Ubiquitin ligases MDM2 and ubiquitin ligase like protein MDM4 negatively regulate 

transactivation of p53. Recent work from our laboratory has shown tumour suppressor and 

transcription factor p53 to be required for neurite outgrowth, axonal sprouting and  

 

regeneration both after facial nerve injury and spinal cord injury in mice(Tedeschi et al., 

2009a, Floriddia et al., 2012, Tedeschi and Di Giovanni, 2009, Tedeschi et al., 2009b, Di 

Figure 3: p53 regulation by MDM2 and MDM4 explained in a dynamic model. a. This figure 
describes the p53 response in an unstressed cell and after stress. MDM2 (orange circle) 
ubiquitinates p53 (blue circle, star signifies activity and size of circle shows amount of p53) while 
MDM4 binds to the transcriptional activation domain (TAD) inhibiting transactivation. b. After stress, 
MDM2 degrades itself and MDM4, leading to the accumulation and activation of p53, mounting a 
transcriptional response. c p53 transactivation leads to MDM2 expression, the increasingly 
abundant MDM2 degrades MDM4 more efficiently, enabling full p53 activation. d The accumulated 
MDM2 preferentially targets p53 again and p53 levels decrease, and as MDM4 levels increase, 
p53 activity also decreases. The switch that makes MDM2 preferentially target p53 for degradation 
in unstressed cells (a), then target itself and MDM4 after stress (b and c), and target p53 again 
after stress relief (d) is not precisely understood. (Toledo and Wahl, 2006) 
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Giovanni et al., 2006). Transcriptionally active p53 acetylated at K372-3-82 forms a 

transcriptional complex with acetyl transferases CBP/p300 and P/CAF that occupies 

promoters of selected RAGs, leading to neurite outgrowth(Tedeschi, 2011, Gaub et al., 

2010). Numerous stress signals following axonal injury converge on p53, which is tightly 

regulated at its protein levels and subcellular localization(Di Giovanni et al., 2005, Di 

Giovanni, 2009). As already stated, transcriptional activity of p53 is regulated by many 

factors, including the well-defined negatively regulators MDM2 and MDM4. MDM2, a E3 

ubiquitin ligase, targets p53 for degradation via the ubiquitin proteasome pathway and 

negatively regulates p53 cytoplasmic-nuclear shuttling. MDM4 is structurally similar to MDM2 

but is devoid of ubiquitin ligase function but occupies p53 transcriptional activation domain 

thereby inhibiting its transactivation. MDM4 prevents p53 nuclear translocation in association 

with MDM2 and competes with the acetyl transferases CBP and p300 for binding to lysines 

on p53 C-terminus, overall hindering p53 transcriptional activity (Markey, 2011, Toledo and 

Wahl, 2006, Francoz et al., 2006).   

Therefore we investigated whether disruption of MDM4-MDM2-p53 interaction would 

affect the axonal regeneration. The key results obtained by genetic and pharmacological 

inhibition of MDM4 or MDM2 specifically in RGCs have been summarized in the next section 

(Section: 1.1.4).  
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1.1.4 CNS regeneration and ubiquitin ligases 

As described already, lack of neuronal intrinsic regenerative response after CNS 

axonal injury might be credited to the inhibitory molecular environment, which exists prior to 

axonal injury or is elicited and/or empowered by the signalling cascades initiated by the 

injury. Post-translationally modified proteins/transcription factors and enzymes involved in 

these modifications play an important role in controlling the molecular environment of the 

neurons, during development and post-maturation. Ubiquitin ligases and ubiquitin ligase like 

proteins coordinate neuronal morphogenesis and connectivity both during development and 

after axonal injury. They mediate the turnover, localization and activity of a number of crucial 

proteins and transcription factors involved in the axonal regeneration program, including 

PTEN, p300, KLFs, Smads, p21 and p53(Yamada et al., 2013).In fact, a newly identified E3 

ubiquitin ligase Pirh2 was found to induce degeneration of distal segment of injured axons, 

via NMAT2.  All this evidence makes strong case for modulation of ubiquitin ligases in vivo to 

investigate their role in controlling the molecular environment following injury. Such proteins 

in conjunction with their regulators like ubiquitin ligases may represent a signalling hub 

synchronizing the post-injury regenerative neuronal response. Despite the appreciation of 

role of these indirect but decisive components in modulating the neuronal morphogenesis, 

connectivity during development and after injury, their role in regulation regeneration in 

injured post-mitotic neurons remains unanswered. MDM4, an ubiquitin ligase like enzyme, 

forms inhibitory protein complexes with at least four key proteins involved in the axonal 

outgrowth program: Smad1/2, p300, p53 and MDM2 (Markey, 2011, Kadakia et al., 2002). 

MDM4 expression is regulated during development in the retina and reaches its maximal 

levels upon maturation in adults, possibly keeping the post-injury RGC growth expression 

program under control.  
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MDM4 hence is an appealing target to be modulated in the injured CNS. Therefore, we 

wanted to define the role of MDM4-MDM2/p53 pathway via genetic ablation of MDM4 

specifically in RGCs. MDM2 was pharmacologically inhibited by Nutlin-3a, a drug that inhibits 

Figure 4. Conditional deletion of MDM4 in retinal ganglion cells enhances axonal 
regeneration after optic nerve crush.a. Schematic of the experimental design showing AAV-Cre 
or AAV-GFP intra-vitreal infection of RGC in MDM4

f/f
 mice 14 days before optic nerve crush. 

Regenerating axons were traced with Cholera toxin B (CtB). b. High magnification images of 
regenerating CtB labeled optic nerve axons 28d post-crush (asterisk) in MDM4

f/f
 mice after 

infection with AAV-Cre or AAV-GFP. Scale bar 100 μm. c. Quantification of regenerating optic 
nerve axons post-crush (experiment as in b). At least 4 serial sections were analysed from each 
animal (Student t-test, *p< 0.05 or **p<0.01 n= 7, each group). d. Anti-Tuj1 immunofluorescence 
shows surviving retinal ganglion cells (Tuj1+) 28 days post-optic nerve crush. Scale bar 50 μm. e.  
Quantification of surviving RGC as total percentage of surviving cells as compared to the intact 
contralateral retina (n=7, AAV-Cre infected animals; n=6, AAV-GFP infected animals).  
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the binding of p53 and MDM2 and stabilises p53.  We performed conditional deletion of 

MDM4 specifically in RGC by intra-vitreal injection of AAV2-CreGFP virus in MDM4f/f mice 

two weeks before ONC, while an AAV2-GFP vector was employed as control (Fig. 4a). AAV2 

infects RGCs very efficiently and rather specifically due to physical proximity although about 

10% of other neuronal populations can also be infected. Significantly, MDM4 deletion 

promoted robust axonal regeneration of the optic nerve as measured 28d after ONC (Fig. 4b, 

c), while it did not affect RGC survival  (Fig. 4d, e). Concomitant deletion of p53and MDM4, 

Figure 5: Conditional co-deletion of MDM4 and p53 does not lead to axonal regeneration 
a. Schematic of the experimental design showing AAV-Cre or AAV-GFP intra-vitreal infection of 
RGC in MDM4

f/f
p53

f/f
 mice 14 days before optic nerve crush. Regenerating axons were traced with 

Cholera toxin B (CtB). b. Representative images of CtB labelled optic nerve axons from 
MDM4

f/f
p53 

f/f
 mice infected with AAV-CreGFP/AAV-GFP. No regenerating axons were observed 

past the lesion site (asterisk). Scale bar 100 μm. c. Quantification of CtB labelled axons 
regenerating past the lesion site. At least 4 serial sections were analyzed from each animal (n=5, 
AAV-CreGFP group, n=4, AAV-GFP).  
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abrogated the regenerative effect suggesting a rolevp53 dependent pathways in enhancing 

regeneration after MDM4 deletion (Figure 5a,b).  MDM4 interacting proteins p300 and 

Smads have already been described to have a pro-neurite outgrowth and axon regeneration 

function and hence p300 dependent acetylation of regenerative promoters as well as TGFβ-

Smad signalling could possibly play a role (Gaub et al., Zou et al., 2009, Parikh et al.).  This 

is further supported by the fact that p300 acetylates p53 in RGC after ONC during p300-

dependent axonal regeneration, assisting the presence of this signalling network during 

Figure 6: Inhibition of MDM2/p53 interaction enhances axonal regeneration after optic 
nerve crush. a. Schematic of the experimental design showing intra-vitreal injection of Nutlin-3a 
(100nm). b. Regenerating CtB labeled optic nerve axons 28d post-crush (asterisk) in Nutlin 
treated wildtype mice. Scale bar 100 μm. c.& d. Quantification of regenerating optic nerve axons 
post-crush (experiment as in b). At least 4 serial sections were analysed from each animal 
(Student t-test, *p< 0.05 or **p<0.01 for each distance, n= 7, each group). e. Anti-Tuj1 
immunofluorescence shows surviving retinal ganglion cells (Tuj1+) 28 days post-optic nerve 
crush. Scale bar 50 μm. f.  Quantification of surviving RGC as total percentage of surviving cells 
as compared to the intact contralateral retina (n=7, Nutlin; n=6, vehicle). g. Immunoblotting from 
retinae treated with vehicle or Nutlin (100nM) at the time of ONC, 3 days post-ONC. Nutlin 
enhances P53 expression . 
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axonal regeneration(Gaub et al., 2011). MDM4 also forms a complex  with p21, whose 

function in axon regeneration and sprouting has been previously described(Tanaka et al., 

2004),(Markey).  P21 being a p53 target gene may also play a role in axonal regeneration. 

P21 and classical regeneration associated genes expression was enhanced after MDM4 

deletion in primary neurons, corroborating inhibitory role of MDM4 in limiting the regenerative 

gene expression program. While MDM4 controls the transcriptional activity of p53, MDM2 

controls the stability by ubiquitinating and targeting it for proteasomal degradation(Toledo 

and Wahl, 2006).  

To stabilise p53, we employed a small molecular MDM2 antagonist Nutlin-3a, which 

competes for the p53 binding site(Vassilev et al., 2004). Intravitreal administration of Nutlin-

3a(100nm) on the day of the crush and 7 days later was able to enhance axonal 

regeneration after optic nerve crush, mounting a response similar to MDM4 deletion (Figure 

6a,b,c) cell survival rate did not change (Figure 6c,d). Axonal regeneration of the optic nerve 

axons after crush was significantly reduced in Nutlin-3a treated p53-/+ mice as compared to 

wildtype (Figure 6b,d). These results further support the overall model where regeneration 

after deletion of MDM4 and inhibition of MDM2 both depend upon p53 transactivation. 

To further dissect in to the molecular pathways that might be modulated after MDM4 

deletion specifically in RGCs, we performed a genome wide analysis from FACS sorted pure 

RGCs, by injecting a fluorescent retrograde tracer in the superior colliculus thus tracing 

specifically RGCs. This assay revealed that MDM4 conditional deletion was accompanied by 

the expression of transcripts involved in cytoskeleton remodelling, axonal development and 

signalling, including genes involved in neuronal maturation (Table 1). This very elegantly 

suggests that MDM4 deletion modulates developmentally regulated pathways, which may 

support axonal regrowth. Along with controlling these complex development pathways, 

MDM4 deletion triggered optic nerve regeneration via IGF1R signalling. IGF1R inhibition 

using an established antagonist picropodophyllin (1um) annulled regeneration, observed 
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after MDM4 deletion, confirming the role of IGF1R signalling(Girnita et al., 2004) (Figure 

7b,c). 

 

Table 1: List of selected differentially regulated genes from RGC after ONC in MDM4fl/fl mice- AAV Cre vs GFP 

Functional Class  Fold change (Cre vs GFP) p value  Function 

Axonal signalling 

  

 

IGF1R 2,12 0,0122 Intracell signalling 

CXCR2 2,18 0.0222 Chemoattraction 

Klf11 1,764 0,0391 Axonal transport 

Cited4 1,69 0,0324 Transcription co-activ 

Sprr2b 1,866 0,004 Axon growth 

Neuronal morphology and cytoskeleton organization 

 

 

DCC -2,031 0,0476 Axon guidance 

GAD1 1,569 0,0365 Glut/GABA metab 

Arf1 3,505 0,02 GTP-bind prot 

FCER1A 1,71 0,018 IgE rec 

NKX2-2 -1,66 0,014 NeuroD1-cofact 

Nrg1 -1,84 0,006 Neuronal differ 

Rab23 1,516 0,01 GTPase 

Rin2 1,797 0,029 GTPase 

Mast3 -1,797 0,043 Microtub ass kinase 

Neuronal development 

  

 

GAD1 1,569 0,0365 Glut/GABA metab 

CAMKK2 1,595 0,004 CREB activator 

ZIC1 1,632 0,0385 Transc Activ-Neurogenesis 

ZNF423 1,762 0,0226 Smad coact-Neurogenesis 

LYNX1 2,222 0,0004 Synaptic plasticity 

ST8SIA2 1,683 0,02704 NCAM1 binding protein-rec 

DCC -2,031 0,0476 Axon guidance 
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The best characterized IGF1R targets include PI3K and JAK/STAT3, which are typically 

activated by IGF1R (Kim et al., 2012, Subbiah et al., 2011, Staerk et al., 2005, Serra et al., 

2007). Both PI3K and JAK/STAT3 activation is dependent upon phosphorylation of specific 

residues that has been shown to be necessary to promote axonal regeneration following 

deletion of PTEN or after JAK binding to IL-6 respectively(Park et al., 2008, Cao et al., 2006, 

Shah et al., 2006, Teng and Tang, 2006, Hakkoum et al., 2007). This points to a likely 

engagement of  MDM4-MDM2/p53-IGF1R signalling and related regenerative pathways, 

supporting the importance of our novel findings. In this study focussing on the ubiquitin ligase 

Figure 7 : Regeneration elicited by MDM4 deletion is reduced by inhibition of IGF1R 
signalling. a. Schematic of the experimental design.  Conditional MDM4 deletion in MDM4

f/f
 mice 

was followed by ONC and pharmacologically inhibition of IGF1R with the antagonist 
picropdophyllin (PPP). Axonal tracing was performed with CtB. b. Immunoblotting from retinae 3d 
after ONC and administration of PPP or vehicle. Shown is a strong reduction in the expression of 
IGF1R. c. Representative images of optic nerves showing regenerating CtB labelled axons of 
MDM4

f/f
 animals after MDM4 conditional deletion and vehicle. Not a significant number of 

regenerating axons were found after PPP administration post-ONC (asterix). Scale bar 100 μm. d. 
Quantification of regenerating optic nerve axons post-crush (experiment as in c). At least 4 serial 
sections were analysed from each animal (Student t-test, p< 0.05 for each distance, n= 6, each 
group). The number of regenerating axons was significantly hampered following AAV-cre-PPP 
treatment versus AAV-cre-veh. e. Anti-Tuj1 immunofluorescence shows surviving retinal ganglion 
cells (Tuj1+) 28 days post-optic nerve crush. Scale bar 50 μm. f.  Quantification of surviving RGC 
as total percentage of surviving cells as compared to the intact contralateral retina (n=6). 
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proteins, we have identified MDM4-MDM2/p53 as a regeneration-repressive protein complex, 

whose disruption activates the axonal regenerative program via IGF1R signalling.  Discovery 

of MDM4-MDM2/p53-IGF1R signalling pathway helps in de-encrypting the causes for failed 

regeneration and may provide a target for regenerative therapy, after CNS insult. Genetic 

ablation of MDM4 or pharmacological inhibition of MDM2-p53 interaction has been 

conclusively shown to induce tumour suppression and are currently in trials for cancer 

treatment (Brown et al., 2009). The recent discovery of specific small molecule inhibitors of 

MDM4 (Vogel et al., 2012, Reed et al., 2010) which are still awaiting confirmation in multiple 

studies, may also expand our regenerative therapeutic options.  
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1.1.5 Role of histone acetyl transferases p300 and P/CAF in CNS regeneration 

Gene expression is regulated by transcription, tightly controlling the neuronal intrinsic 

capacity to synthesize new proteins necessary for mounting a pro-axonal regeneration 

signaling. Indeed, transcriptional regulation controls axonal outgrowth during development as 

well as axon regrowth after injury in the adult (Butler and Tear, 2007, Goldberg et al., 2002, 

Raivich et al., 2004, Moore et al., 2009). Post-injury extrinsic signals are assembled to 

determine the intrinsic response of the cell. Modulation of these signaling pathways is 

sufficient to promote axonal outgrowth without additional inhibition of the inhibitory 

environment. In this work, we have attempted to determine if the pro-regenerative 

transcriptional machinery is repressed in adult CNS neurons post-maturation and injury. 

Gene expression is determined by the state of chromatin as well as by the occupancy of 

specific transcriptional complexes near gene promoters. The state of chromatin and the 

activity of transcription factors contributes to the fine-tuning of gene expression which is 

regulated by histone acetyl transferases and histone deacetylases. HATs and HDACs 

regulate and maintain a balance between the level of histone and transcription factor 

acetylation(Yang and Seto, 2007). Chromatin relaxation and transcription factor activation via 

histone deacetylases inhibition by trichostatin A enhances neurite outgrowth on permissive 

and non-permissive substrates. Specifically, this was due to an increased expression of the 

histone acetyltransferases CBP/p300 and p300/CBP-associated factor (P/CAF) that 

enhanced acetylation of H3 and p53, which stimulated the expression of several 

proregenerative genes (Tedeschi and Di Giovanni, 2009, Tedeschi et al., 2009a, Gaub et al., 

2010). However, this work described the role of histone acetyltransferases in axonal 

regeneration in vitro and we have here investigated its role in vivo. 

In the present study, we investigated the regulation and expression of HATs- p300, 

CBP and P/CAF- and their role in retinal ganglion cell maturation. Indeed,  histone 

acetylation and the expression of CBP and p300 are repressed in mature retinal ganglion 

cells and after optic nerve crush and hence were potential candidates to test in the ability of 

retinal ganglion cells to regenerate axons following optic nerve crush (Figure 8). 
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Overexpression of p300 but not histone deacetylases inhibition, promotes axonal 

regeneration after optic nerve crush (Figure 9 C, D). P300 leads to hyperacetylation of 

histone H3 and the transcription factors p53 and C/EBP, as well as increased p300   

occupancy and H3 acetylation of selected pro-axonal outgrowth gene promoters.  

Furthermore, p300 overexpression along with a conditioning lesion boosted the axonal 

Figure 8: Maturation and 
optic nerve crush are 
associated with decrease in 
expression of histone acetyl 
tranferase p300 in the retinal 
ganglion cell layer. 
A. Representatve pictures of 
RGC layer at different time 
points during the RGC  
maturation stained against 
CBP, p300 and H3K18,Scale 
bar 20μm. B. The level of 
protein was analyzed by 
analysis of fluorescence 
intensity and represented 
arbitratry units. and a decrease 
in adult, whereas CBP 
expression was not altered. 
P300 and H3 AcK18 level show 
a similar expression pattern 
during RGC maturation (n=3). 
Asterisks = unpaired two-tailed 
t-test, *P-value0.01; n=3. Each 
average value per time point 
was measured against the 
average value of all time points 
together.(C)RGC layer stained 
against H3 AcK18, CBP, p300, 
p53 Ac373 and p53, 24 h and 
72 h after optic nerve crush 
compared with sham. No 
change is observed for H3K18 
acetylation at either 24 h or at 
72 h after optic nerve crush 
compared with sham, whereas 
a decrease of p300 and CBP 
expression is shown along with 
a decrease of p53 Ac373, while 
p53 basal level was stable. 
Scale bar = 20 um. (D) The 
graph represents quantification 
of the protein level obtained by 
measurement of the 
fluorescence signal. 
Asterisks=unpaired 2-tailed t-

test, *P-value0.01; n=3. Error 

bars represent SD. OD=optical 

density. 
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regeneration (Figure 9 C, D). This for the first time shows that specific modification of 

epigenetic environment can promote axonal regeneration in vivo, likely by redirecting the 

transcriptional program on pro-regeneration promoters. 

 

Figure 9.p300 over-expression by adenovirus infection induces axonal regeneration of the 
optic nerve. (A) Representative pictures of RGC layer after immunostaining in the retina against 
p300 shows expression of p300 in green fluorescence protein (GFP)-positive cells 24 h after optic 
nerve crush (ONC) and AVp300 or AVGFP infection. An increase of p300 expression in the retinal 
ganglion cell layer is shown following AVp300-GFP versus AVGFP infection. Scale bar 20 μm. (B) 
Bar graph represents quantification of p300 protein levels analyzed by measurement of the 
fluorescence signal. Asterisks = unpaired two-tailed t-test, *P-value 0.01;n=3(C) Representative 
pictures of longitudinal optic nerve sections immunostained against GAP-43 14d after optic nerve 
crush and infected with AVGFP or AVp300-GFP (alone or in combination with lens injury) show 
axonal regeneration in AVp300-infected rats, which is enhanced by lens injury. Scale bar = 100 
μm. (D) Adenoviral overexpression of p300 alone or in combination with lens injury induces a 
significant increase in the number of axons past the lesion site compared with AVGFP-infected 
nerves alone or in combination with lens injury as shown in the bar graph (n = 4 per condition). 
Asterisks = unpaired two-tailed t-test, *P-value50.05. Error bars represent SD. 
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This study further highlights the need for an intrinsic response to be elicited by neurons after 

injury. Hyper acetylation of histones results in euchromatin, a higher transcription permissive 

state of the chromatin(Berger, 2007, Fraser and Bickmore, 2007). Hyperacetylation of 

histones can be induced by pan-HDAC inhibitors like Trichostatin A, which inhibits the activity 

of class I and II HDACs (Saha and Pahan, 2005). In our study, treatment of RGCs with TSA 

increased the survival of RGCs but did not induce regeneration after ONC. Pan-HDAC 

inhibition leads to an overall hyper-acetylation of histones and hence it is not possible to 

predict which gene would be induced in response to the treatment (Saha and Pahan, 2006, 

Dokmanovic et al., 2007). Hence to have a more specific epigenetic modulation, we chose to 

virally overexpress p300 in RGCs. P300 is a transcriptional coactivator and histone-

modifying enzyme, thus contributing to epigenetic changes responsible for enhanced 

transcriptional activity (Ogryzko et al., 1996). We had also recently reported that 

overexpression of CBP and p300 was able to promote neurite outgrowth on permissive and 

inhibitory myelin substrates in primary cerebellar neurons(Gaub et al., 2010).  Here, in vivo 

overexpression of p300 in RGCs led to higher axonal regeneration after optic nerve crush. 

This could be due to p300-dependent hyper-acetylation of histone H3, and of the promoters 

of several regeneration-associated genes leading to their expression. p300 overexpression 

also led to acetylation of p53 and C/EBP, which have been implicated in regeneration. 

Acetylation of p53 at lysine residue 373 been previously shown to promote neurite outgrowth 

in primary neurons and to be a hallmark of active p53 that is required for axonal regeneration 

(Tedeschi et al., 2009; Gaub et al., 2010). Acetylation of C/EBP enhances its transcription 

potential and has been shown to be induced in retinal ganglion cells after conditional lesion 

mediated axonal regeneration, and has been shown  to be necessary for axonal regeneration 

in the PNS (Nadeau et al., 2005). All this data points to scenario where in p300 may initiate a 

silent pro-regenerative gene expression program by driving the expression of several 

regeneration-associated genes by promoting transcription. 
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 Along with p300, we also studied the role of another histone acetyl transferase in 

controlling the transcriptional response mounted by dorsal root ganglia after conditioning 

lesion. Conditioning lesion as already mentioned induces strong transcriptional response in 

which several modulators have been identified. But, a broader transcriptional regulator was 

not identified until date. Studying dorsal root ganglia (DRG) after a sciatic nerve axotomy 

(SNA), showed an increase in P/CAF dependent acetylation of RAG promoters, along with a 

reduction of H3K9Me2, suggesting a unifying role for P/CAF in enhancing transcription.   

 

 

 

 

 

Figure 10: PCAF overexpression induces spinal axonal regeneration and expression of 
RAGs. a, MicroRuby tracing of the dorsal columns shows regenerating fibers invading into 
and past the lesion site after AAV-PCAF overexpression (upper right) versus a control AAV-
GFP virus (upper left). Insets show higher magnification of regenerating axons. D-R-C-V: 
anatomical coordinates, dorsal-rostral-caudal-ventral. cc: central canal. Scale bar, 250µm. b, 
Quantification of regenerating axons, N = 9 (AAV-GFP), N = 7 (AAV-PCAF), c, Quantification 
of longest regenerating axon per animal from PCAF overexpression SCI study and 
conditioning SCI study with PCAF -/- mice shows PCAF is required for regeneration from a 
conditioning lesion which can be mimicked by PCAF overexpression. d-f, Overexpression of 
AAV-PCAF in the SCI study promotes H3K9ac (8 weeks post-infection) (arrowheads) as 
shown by IHC (d). Nuclear intensity density analysis of H3K9ac (e) and PCAF (f) show 
enhanced PCAF and H3K9ac after PCAF overexpression. g,h, IHC RAG analysis of 
corresponding L4-L6 DRGs from infected AAV-PCAF and AAV-GFP animals show an 
increase in GAP-43, Galanin and BDNF expression, IHC (g) and DAB intensity analysis (h). 
Scale bars, 25µm. Error bars, s.e., (b) Welch’s t-test, *P<0.05, **P<0.01 and ***P<0.001. (c, 
h) P<0.0001, ANOVA, Bonferroni post-hoc tests, **P<0.01 and ***P<0.001, (e, f) Student’s t-
test, ***P<0.001, N = 3, performed in triplicate. 
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Viral P/CAF overexpression in dorsal root ganglia also showed an increase in fibers across 

CNS lesion and up to a distance of 1 mm rostral of the lesion site (Figure 10 a-d). To test if 

PCAF overexpression is also able to modulate regeneration in another CNS model, optic 

nerve crush, we delivered P/CAF to RGCs using AAV1 virus followed by optic nerve crush.  

 

But this approach failed to induce any effect even after 28 days in this system, which could 

be explained due to lesser infection efficiency of AAV1 for RGCs (Figure 11 a, b). 

Employment of AAV2 to target RGCs might induce a higher expression in RGCs and might 

induce better regeneration. 

Hence, this work shows that PCAF is required for conditioning-dependent spinal 

regeneration and the overexpression of PCAF is also able to promote regeneration of 

sensory fibers after spinal cord injury. Moreover, PCAF induced regeneration also led to a 

significant increase in H3K9 acetylation levels alongwith expression of GAP-43, Galanin and 

BDNF in the L4-L6 DRGs. Peripheral axonal injury leads to cascade of events which also 

Figure 11: P/CAF overexpression in RGCs using AAV1 does not induce axonal 
regeneration in optic nerve axons after optic nerve crush. a Representative pictures of 
longitudinal optic nerve sections traced using fluorescently labeled cholera toxin subunit B 
(CTB), 28 days after optic nerve crush and infected with AAV1-GFP or AAV1-P/CAF show  no 
axonal regeneration. Scale bar = 100 μm. b. Quantification of regenerating optic nerve axons 
post-crush At least 4 serial sections were analysed from each animal (n= 6, each group). The 
number of regenerating axons after AAV-P/CAF infection did not increase regeneration 
compared to control AAV-GFP infection. 
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includes a rise in cAMP levels and phosphorylation of multiple players involved transmitting 

information to the cell body(Bradke et al., 2012, Hanz and Fainzilber, 2006, Rishal et al., 

2010). These signals are transmitted to the cell body via retrograde transport machinery 

(Hanz et al., 2003, Perlson et al., 2005, Yudin et al., 2008, Shin et al., 2012), but the 

mechanisms translating these signals into gene expression inhibition are unknown. 

Expression of key axonal regeneration players, such as RAGs, is inhibited after injury but no 

mechanism has been shown until date that mediates the injury-triggered signals and 

chromatin remodeling.  Here, for the first time we show that after a PNS injury (SNA), PCAF 

is activated by phosphoERK. This leads to translocation of PCAF to the nucleus and 

acetylation of H3K9 as well as increased PCAF and H3K9ac at the promoters of GAP-43, 

Galanin and BDNF.  We observed that PCAF epigenetically communicates RAGs and 

induction of these genes is sufficient to simulate the regeneration response seen after a 

conditioning lesion. In fact, PCAF overexpression has been shown to induce higher 

regenerative ability than overexpression of single RAGs or transcription factors (Buffo et al., 

1997, Bomze et al., 2001, Gao et al., 2004, Seijffers et al., 2007). Hence here we have 

attempted to decode the complex epigenetic changes that occur to chromatin surrounding 

RAGs following a PNS injury. Hence in this study we shed light on the epigenetic scenario 

existing after neuronal injury and this hints towards the development of epigenetic-related 

regenerative therapies for SCI patients. 
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1.2 Concluding remarks and outlook 

 

Extensive research in the last decade has helped in understanding the complex 

scenario after a CNS injury. In spite of these advances, our knowledge about the cellular and 

molecular mechanisms controlling neuroregeneration in the adult CNS is still quite limited. 

Though many pathways have been shown to be involved in neuroregeneration, therapeutic 

optic targeting druggable pathways are still not known.  

This work identifies ubiquitin ligase MDM2 and ubiquitin ligase like protein MDM4as 

important regulators of intrinsic neuroregeneration mechanisms. MDM2 and MDM4 are 

extensively studied targets in for cancer. MDM2 antagonist Nutlin-3a is already being tested 

in clinical trials for cancer, making it a possible therapeutic option for spinal cord injury (SCI) 

patients. Development of drugs specific for MDM4 will also widen the options of therapeutic 

strategies available for spinal cord injury patients.  

Along with this, we were also able to identify epigenetic regulators p300 and P/CAF 

as crucial regulators involved in regeneration. While viral p300 overexpression induces 

regeneration in the optic nerve, P/CAF was shown to have a unifying role in mounting a 

transcriptional response following conditioning lesion. Viral P/CAF overexpression also 

enhanced the outgrowth of the ascending spinal fibers, suggesting a role in CNS 

regeneration. Role of P/CAF in another clinically relevant injury model awaits investigation. 

Viral overexpression is an impractical therapeutic approach, but these studies do present 

multiple pathways that can be targeted. This study we sheds light on the epigenetic scenario 

existing after neuronal injury and this hints towards the development of epigenetic-related 

regenerative therapies for SCI patients. 

Hence these studies provide an insight into the intrinsic neuronal mechanisms 

following injury along with a robust base for development of therapeutics targeting the 

mentioned pathways.   
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1.3 Abbreviations 

 

AAV Adeno associated virus NF-κB Nuclear factor kappa light chain 

enhancer of axtivated B cells 

AP Activator protein NCAM Neural cell adhesion molecule 

APC Anaphase promoting complex NgR Nogo receptor 

ATF Activating transcription factor NT Neurotrophin 

Bcl B-cell leukemia protein OMgp Oligodendrocyte myelin glycoprotein 

BDNF Brain derived neurotrophic factor ONC Optic nerve crush 

BMP Bone morphogenetic protein p21Cip1/

Waf1 

Cyclin dependent kinase interacting 

protein 

cAMP Cyclic adenosine monophosphate p300 E1-A binding protein p300 

CAP Cytoskeletal associated protein PCAF P300/CBP associated factor 

CBP CREB binding protein PDGF Platelet derived growth factor 

Cdc Cell division cycle protein PKA Protein kinase A 

Cdh Cadherin PNS Peripheral nervous system 

cGKI cGMP dependent protein kinase PTM Post-translational modificiation 

CNS Central nervous system PTEN Phosphotase and tensin homolog 

CSPG Chondroitin Sulphate proteo glycan RAG Regeneration associated gene 

CST Cortico spinal tract Rho Ras homolog gene 

CREB Cyclic AMP response element binding 

protein 

RGC Retinal ganglion cell 

ERK Extracellular signal-related kinase ROCK Rho associated protein kinase 

FACS Fluorescence activated cell sorting RTN Reticulon family protein 

GAP Growth associated protein Smad mothers against decapentaplegic 

homolog  

GDNF Glial cell derived neurotrophic factor SCI Spinal cord injury 

H3 Histone H3 SMARCC SWI/SNF complex subunit 

HAT Histone acetyl transferase Smurf Smad ubiquitination regulatory factor 

HDAC Histone de-acetylase   

Hsp Heat shock protein SNAP Synaptosomal associated protein 

IGF1R Insulin related growth factor 1 SnoN Ski-related novel protein 

JAK Janus Kinase Sp1 Specificity protein 

JNK Jun N terminal kinase Sprr1 Small protein rich repeat protein 

KLF Krüppel like factor STAT3 Signal transducer and activator of 

transcription 

L1CAM L1 cell adhesion molecule TFs Transcription factors 

MAG Myelin associated glycoprotein TNF Tumor necrosis factor 

MDM Murine double minute protein TSC1 Tuberous sclerosis 

mTOR Mammalian target of rapamycin Trk Trompomycin receptor kinase B 
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Abstract 

Regeneration of injured CNS axons is highly restricted causing neurological impairment. 

Despite recent advances, the complex signaling regulating the neuronal regenerative 

potential remains poorly defined limiting therapeutic options. Ubiquitin ligases and ubiquitin 

ligase binding proteins coordinate neuronal morphogenesis and connectivity during 

development and after axonal injury. However their role in CNS axonal regeneration remains 

unaddressed. Here we show that conditional deletion of the ubiquitin ligase-like protein 

MDM4 in retinal ganglion cells (RGCs) and sensory motor cortex promotes axonal 

regeneration following optic nerve crush and sprouting of the corticospinal tracts after spinal 

dorsal hemisection respectively. Use of double conditional deletion and small molecule 

inhibitors show that this regenerative phenotype depends upon MDM4 binding proteins p53 

and MDM2, a ubiquitin ligase. Finally, genome wide gene expression analysis from ex vivo 

fluorescent-sorted MDM4 deficient RGCs identifies the downstream target IGF1R, whose 

activity was found to be required for regeneration elicited by MDM4 deletion. Thus, our 

results conclusively show MDM4-MDM2/p53-IGF1R as a novel signalling hub that may be 

targeted for regenerative therapy.  
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Introduction 

The adult mammalian central nervous system (CNS) is unable to regenerate following 

axonal injury due to the presence of glial inhibition environment as well as to lack of neuronal 

intrinsic regeneration potential. Research in the past two decades has elucidated a number 

of key molecular mechanisms and pathways that limit axonal sprouting and regeneration 

following CNS axonal injury, including myelin or proteoglycan-dependent inhibitory 

signalling(Yiu and He, 2006, Giovanni, 2009, Bradke et al., 2012). More recently, 

accumulating evidence has suggested that the modulation of the neuronal intrinsic potential 

via the manipulation of selected genes in specific neuronal populations may enhance axonal 

regeneration in the injured CNS(Smith et al., 2009, Sun et al., 2011, Moore et al., 2009, Park 

et al., 2008). Often, these are developmentally regulated pathways that contribute to lock 

adult CNS neurons in a non-regenerative mode. As remarkable examples, deletion of PTEN 

in retinal ganglia cells (RGCs) or in corticospinal axons (CST) enhances mTOR activity and 

leads to robust axonal regeneration after optic nerve or CST injury respectively(Park et al., 

2008, Liu et al., 2010), which is further enhanced by conditional co-deletion of SOCS3 and 

PTEN(Sun et al., 2011). In addition, modifications of the developmentally regulated neuronal 

transcriptional program can lead to increased axonal regeneration after optic nerve crush 

(ONC) or spinal cord injury (SCI) as shown by deletion of KLF4, by overexpression of p300 in 

RGCs(Moore et al., 2009, Gaub et al., 2011); by overexpression of KLF7(Blackmore et al., 

2012) or RARß in corticospinal neurons(Puttagunta et al., 2011, Puttagunta and Di Giovanni, 

2011). Despite this progress, viable translational therapeutic options for axonal regeneration 

are still very limited, and there is need for the identification of specific molecular pathways 

with translational potential.  

Ubiquitin ligases and ubiquitin ligase like proteins coordinate neuronal morphogenesis 

and connectivity both during development and after axonal injury, and regulate the turnover, 

localization and activity of a number of proteins and transcription factors involved in the 

axonal regeneration program, including PTEN, p300, KLFs, Smads p21 and p53(Yamada et 

al., 2013). They may therefore represent a signalling hub orchestrating the regenerative 

neuronal response following injury. However their role in axonal regeneration remains 

unaddressed. The ubiquitin ligase like MDM4 can form inhibitory protein complexes with at 

least four key proteins involved in the axonal outgrowth program: Smad1/2, p300, p53 and 

MDM2(Markey, 2011, Kadakia et al., 2002). Additionally, MDM4 expression is 

developmentally regulated in the retina reaching its maximal levels in adulthood, potentially 

keeping the post-injury RGC growth program under check. Therefore, MDM4 appears to be a 

candidate molecule limiting the axonal regeneration program at first in the injured optic 

nerve.  
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In support of this, we found by pathway and gene network analysis using Genomatix 

bioinformatics tools that MDM4 lies at the centre of a signalling and transcriptional hub, 

potentially involved in repressing axonal regeneration signalling. Therefore we investigated 

whether disruption of MDM4 would affect the axonal regeneration program. Indeed, we found 

that MDM4 restricts the axonal regeneration program after optic nerve crush and also after 

corticospinal lesions, two classical models of non-regenerative axonal injury. In fact, MDM4 

conditional deletion in RGCs and sensory motor cortex leads to enhanced axonal 

regeneration of RGC axons following ONC and of the CST after spinal dorsal hemisection. 

Additionally, conditional co-deletion of MDM4 and of the target protein p53 in RGCs after 

ONC limits nerve regeneration elicited by MDM4 deletion alone. Similarly, pharmacological 

inhibition of the interaction between the MDM4 co-factor MDM2 and p53 via the MDM2/p53 

antagonist Nutlin-3a also enables robust regeneration after ONC, which is abolished in p53 

deficient mice. Lastly, genome wide gene expression analyses from pure RGC population 

after conditional deletion of MDM4 showed enhancement of IGF1R expression suggesting 

IGF1R signaling as a downstream effector of MDM4 deletion. Indeed co-inhibition of MDM4 

and IGF1R after ONC via a specific IGF1R antagonist impairs axonal regeneration. 

Together, this work portrays MDM4-MDM2/p53-IGF1R signalling hub as a novel 

molecular target for axonal regeneration. 

 

Materials and Methods 

Mice 

All experimental procedures were performed according to the animal protocols approved by 

Regierungspräsidium Tübingen.  Mice were housed in a colony maintained at 24 °C with a 

12h dark/light cycle and ad libitum food and water. For all surgeries, mice were anesthetized 

with xylazine (10mg/kg of body weight) and ketamine (100mg/kg of bodyweight), and eye 

ointment bepanthen was applied to protect cornea during the surgery.  

Intravitreal injections 

For intravitreal injections, pulled glass capillaries attached to a Hamilton syringe via a 

connector were inserted into the peripheral retina. A volume of vitreal fluid equal to the 

volume to be injected was removed to avoid intravitreal pressure elevation. The micropipette 

was deliberately angled in a way to avoid lens injury. Fundoscopic inspection was done after 

every intravitreal injection to check for any damage to the lens.  Animals with lens injury were 

excluded from the study. For performing the optic nerve injury, the left optic nerve was 

exposed intraorbitally and crushed for 10s, 1 mm from the optic disc with forceps (Dumont 5, 

FST). Care was taken not to injure the ophthalmic artery to avoid retinal ischemia. Animals 
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with injury to the ophthalmic artery were excluded from the study. For anterograde tracing of 

the RGC axons, 1 μl cholera subunit B (CtB) conjugated to Alexa fluor 555 (Invitrogen) was 

injected intravitreally at least 2 days before sacrificing the mice. Mice were killed with a lethal 

dose of anaesthesia and transcardially perfused with ice cold 0.1M PBS followed by 4% 

paraformaldehyde. Optic nerves and eyes were dissected and post fixed for 1 hr at 4 C, 

before cryoprotecting them with 30% sucrose solution.  

AAV-cre in MDM4 f/f mice and Nutlin-3a administration 

MDM4f/f mice were a gift from the J.C.M lab and were produced as described 

previously(Grier et al., 2006). Primers used for genotyping of the MDM4 mice were: a- 

(forward) - 5'-ggtgtccttgaacttgctgtgtagaa-3’; b-(exon2 reverse) - 5'-ctgggccgaggtggaatgtgatgt-

3’; c-(reverse) - 5'-tatccagtgtcctcttctggctt-3'. 1μl of the Adeno-associated virus expressing 

GFP (AAV GFP) or AAV CreGFP (titre in the range of 1 X10e8) were intravitreally injected in 

male mice aged P21 and optic nerve crush was performed 14 days later (at P35). 26d post-

optic nerve crush, CtB (Invitrogen, 2μg/ul) was intravitreally injected in the eye, 2 days before 

sacrifice by transcardial perfusion (28d). 1ul of 100nm Nutlin-3a or vehicle were intravitreally 

injected in C57/BL6 (Charles River) male mice aged P35 and optic nerve crush was 

performed on the same day. Another intravitreal dose of Nutlin-3a was given 7 days post-

optic nerve crush. 26 days later, CtB (Invitrogen, 2ug/ul) was intravitreally injected, and mice 

were sacrificed by transcardial perfusion 28 days post-optic nerve crush. Both wildtype and 

p53-/+ mice were employed for Nutlin-3a experiments. 

Experiments with MDM4f/f/p53f/f mice 

MDM4f/f were crossed with P53f/f mice (Strain name: B6.129P2-Trp53tm1Brn/J, Stock 

Number: 008462, Jackson Labs) to generate MDM4f/f/p53f/f mice. The same experimental 

design including AAV delivery and ONC was conducted in MDM4f/f/p53f/f as in MDM4f/f.  

Adeno associated virus preparation and purification  

Details about production of adeno associated virus 2 (AAV2-GFP/AAV2-CreGFP) has been 

described elsewhere(Berton et al., 2006, Grieger et al., 2006).  Plasmid vector for AAV-GFP 

and AAV-CreGFP production were a gift from Dr. Eric. J. Nestler. Briefly, GFP (control) or an 

N terminal fusion of GFP to Cre were cloned into a recombinant AAV-2 vector containing the 

human immediate early cytomegalovirus promoter with a splice donor acceptor sequence 

and polyadenylation signal from the human-globin gene. The vector was produced using a 

triple-transfection, helper-free method. The final purified virus was stored at -80°C. The titre 

was evaluated after infection in in HeLa cells and successful infection was also tested in vivo.   
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Whole mount retinal staining 

After perfusion, uninjured and injured eyes were dissected and post fixed for 1hr in PFA . Flat 

retinae were plated on a dish in PBS and then stained for Tuj1 to detect surviving RGCs and 

with DAPI to detect nuclei. The uninjured retinae were used as a control. The retinae were 

mounted with single coverslips with mounting medium (DAKO). At least 10 fields were 

imaged at 25X oil magnification specifically from the retinal ganglion cell layer using Zeiss 

Apotome. The number of Tuj1 positive cells was counted with the help of ImageJ. RGCs 

were quantified by an observer blind to the treatment. At least 15 high magnification images 

were taken from different parts of each retina and the total viable RGC number was obtained 

by multiplying the average number per field of TUJ1+ cells in the ganglion cell layer by the 

retinal area.  

Immunostaining of retina sections 

Post fixed and cryoprotected eyes were snap frozen and then cryosectioned longitudinally 

(10μm). Standard immunostaining procedures were followed. Antibody specificity was 

confirmed by using secondary antibody alone for each staining. The details of the antibodies 

are as follows: anti-p53 (1:200, Leica); anti-MDM4 (1:50, Sigma); anti-MDM2 (1:200, Novus 

Biologicals); anti-Cre (1:500, Novus Biologicals); anti-Tuj1 (1:1000, Covance and Promega), 

anti-GFP (1:500, Abcam); anti-p53ac 373 (1:200, Millipore), anti-GFAP (1:1000,Millipore). 

Detailed protocols are available upon request. 

Densitometry analysis 

A high-resolution image was obtained at 40X magnification using the Zeiss Axioplan 

Microscope (Axiovert 200, Zeiss Inc.). Images for the same antigen groups were processed 

with the same exposure time. Assessment of fluorescence intensity was performed using 

AlphaEaseFC 4.0.1 software by measuring the intensities specifically from retinal ganglion 

cells. Care was taken that the area analysed for each cell was the same for each set, 100 

cells from at least 6 sections per condition were quantified. The intensity values of each cell 

were normalized to the 4’,6’-diamidino-2-phenylindole signal and mean values of intensities 

were calculated for each animal (at least three animals per condition)(Gaub et al., 2011).  

Evaluation of regenerating axons 

Regenerating axons were counted as described previously(Leon et al., 2000, Park et al., 

2008). Longitudinal sections of nerves were mounted and imaged at 40X. Every 4th section 

and at least 4 sections per animal were quantified by drawing lines perpendicular to the 

crush site at a distance of 200 μm, 300 μm, 500 μm, 750 μm, 1000 μm, 1500 μm from the 
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crush site. CtB positive axons between these sections were counted and the cross sectional 

width of every nerve was also measured. An observer blind to the treatment counted the 

regenerating fibres. The number of axon per millimetre was calculated and averaged over all 

the sections Σad, the total number of axons extending distance d in a nerve having a radius 

of r, was estimated by summing over all sections having a thickness t (10 μm) 

Σad = πr2 x [average axons/mm]/t 

Cerebellar Granule Neuron Culture 

Cerebellar granule neurons (CGN) were prepared from cerebella of P7 MDM4f/f mice as 

described earlier(Bradke et al., 2012, Gaub et al., 2010). Briefly, the minced cerebella were 

incubated for 15 min at 37°C in an ionic medium with 0.025% trypsin and 0.05% DNase I 

(Sigma). Then trypsin inhibitor (0.04%, Sigma) was added followed by centrifugation. The 

pellet was triturated, centrifuged and suspended in the growth medium (basal Eagle's 

medium supplemented with 10% bovine calf serum, 25 mM KCl, 4 mM glutamine and 

gentamycin (100 ng/ml)). Cells were plated at a density of 1*105 cells on PDL/myelin 

(4μg/cm2) coated plates followed by infection with AV5-GFP/AV5-Cre. Cells were then fixed 

with 4% PFA 24 h later followed by staining with anti-Tuj1 and anti-Cre. At least 100 single 

transduced cells per condition (n=4) were traced manually with Neurolucida software.  

Quantitative RT-PCR 

Total RNA was extracted from CGN cells 24h after transduction with Trizol Reagent 

(Invitrogen). Complementary DNA (cDNA) was synthesized from 1 μg of RNA using oligo dT 

and SuperScriptTM II Reverse Transcriptase kit (Invitrogen).Complementary DNA (1 μl of 1:5 

dilution) was used in a reverse transcriptase polymerase chain reaction using Master Mix 

(Invitrogen) and for quantitative reverse transcriptase polymerase chain reaction, SYBR-

greenER (ThermoScientific) was used. RPL13a or 18SRNA were used as controls. Melting 

curve analysis ensured single amplified products. Primers sequences have been 

summarized in Table 2. 

Retinal Ganglion cell culture 

Dissociated retinal ganglion cell culture has been described previously(Gaub et al., 2011). 

Shortly, P7 eyes were dissected, and retinae were incubated in Dulbecco’s modified Eagle’s 

medium with Papain (Worthington, USA) and L-Cystein (Sigma) for 40 min. After incubation, 

retinae were dissociated in Dulbecco’s modified Eagle’s medium with B27 (Life 

Technologies) and penicillin/streptomycin (Sigma). Cells were plates at a density of 1*106 

cells per 2 cm2. Plated cell were immediately infected with AV-GFP and AV-Cre at 100 MOI. 
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Following incubation, cell were fixed with 4% paraformaldehyde for 20 min. Cells were then 

blocked with 8% bovine serum albumin, 0.1% TritonX-100 in phosphate-buffered saline and 

finally incubated with the primary antibodies overnight at 4°C: mouse anti-Tuj1 (1:1000, 

Promega). Cells were then washed with phosphate-buffered saline and incubated 

appropriate secondary antibodies (1:1000, Invitrogen) for 1 h at room temperature. At least 

10 images taken at 20X magnification with Axioplan inverted microscope (Zeiss) and were 

automated analysed for neurite outgrowth with ImageJ, NeuriteTrace plugin. 

Immunoblotting  

For immunoblotting, entire retinae were collected 6h after Nutlin-3a injection and ONC and 

flash frozen. Upon thawing, proteins were extracted with RIPA buffer (.50mMTris., 150mM 

NaCl, 2mM EDTA, 1%NP-40, 0.1% SDS,0.1 mM PMSF, 1X Protease inhibitor (Roche), 1X 

PhosphoStop (Roche).A portion of the lysate (30–50 mg of protein) was then fractionated by 

SDS-polyacrylamide gel electrophoresis, and the separated proteins were transferred to a 

nitrocellulose membrane and following blocking probed for different antigens, as follows. 

Rabbit anti-p53 (1:500,Santa-Cruz). Mouse anti-b-actin (Sigma) was used as a loading and 

transfer control. Immune complexes were detected with appropriate secondary antibodies 

(goat anti-rabbit IgG, goat anti-mouse IgG, label with horseradish peroxidase (Thermo 

Scientific, Germany) and chemiluminescence reagents (Pierce ECL Western blotting 

Substrate).  

Viral injections into the sensorimotor cortex 

MDM4f/f mice were anesthetized with ketamine and xylazine and then placed on a 

stereotactic frame. To infect layer V neurons, AAV1-GFP or AAV1-CreGFP under CMV 

promoter were injected with a 5μl Hamilton syringe in the right sensorimotor cortex 5 weeks 

before spinal cord injury. The viruses were injected after craniotomy in a total of 4 sites [0.8 

μl/site of AAV1-GFP or AAV1-CreGFP (3.1*109 gc/μl) (SignaGen, MD, USA)]. The 

coordinates used were 1.0 mm lateral, 0.6 mm deep, and +0.5,- 0.2, -0.7, and -1 mm with 

respect to bregma(Steward et al., 2008).  

Spinal cord injury surgical procedure and post-operative care 

The experimental procedure followed for SCI has been described previously(Floriddia et al., 

2012). Briefly, anesthetized Mdm4f/f mice (ketamine/xylazine) were kept on a heating pad to 

maintain the body temperature at 37°C during the whole procedure. An incision was made on 

the thoracic area after shaving and cleaning with Softasep N (Braun).  Muscle tissue right 

below the incision was dissected to expose laminae T8–T10. A dorsal hemisection at T9 until 
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the central canal was performed with a microknife (FST). To ensure that the lesion was 

complete, the microknife was passed throughout the dorsal part of the spinal cord several 

times. This kind of injury damages the dorsal and lateral CST, the dorsal columns, the 

rubrospinal, the dorsal and lateral raphe-spinal, and part of the reticulospinal tracts. After 

surgery, mice were placed back in their cages warmed up with an infrared light to prevent 

hypothermia. Mice underwent daily check for general health, mobility within the cage, 

wounds, swelling, infections, or autophagy of the toes throughout the experiment. The 

animals showed neither skin lesions nor autophagy throughout the study. Mice were injected 

subcutaneously with 1 ml of 0.9% saline twice daily for 3 d and once daily from days 4 to 7 

after surgery. Bladders were manually expressed twice daily for the first week after operation 

and once daily until needed. 2 weeks following spinal injury, the animals were injected with 

1.4 μl of a 10% (wt/vol) solution of BDA (fluorescent biotin dextran tetramethylrhodamine-

BDA (10,000 MW, Molecular Probes, 10% w/v in PBS) into four injection sites of the right 

sensorimotor cortex of the hind limb region to trace the CST as previously 

described(Simonen et al., 2003). 

Quantification of Corticospinal tract (CST) sprouting 

2 weeks following tracer injection, mice were perfused transcardially with 0.1 M PBS, pH 7.4, 

and 4% PFA in PBS, pH 7.4 under deep anesthesia. For each animal, at least three 

consecutive sagittal cryosections (18 μm) from the most ventral part of the spinal cord using 

the central canal as landmark were chosen and analyzed with the software AxioVision 

(Zeiss) to measure the CST dieback or Stereo-Investigator 7 (MBF Bioscience) to count 

axons, sprouts, and end bulbs. Dieback of the dorsomedial CST was measured as the 

distance between the axon bundle and the border of the lesion site identified by GFAP 

immunoreactivity(Shen et al., 2009). The quantification of the sprouting and end-bulb indexes 

of the dorsomedial CST was performed proximal to the lesion site at rostral and caudal level. 

For each section, the BDA-labeled sprouts, end bulbs, and axons were counted live. The 

sum of the total number of labeled sprouts or bulbs was normalized to the total number of 

labeled axons above the lesion site counted in all the analyzed sections for each animal, 

obtaining an inter animal comparable ratio considering the individual tracing 

variability(Schnell and Schwab, 1993, Steward et al., 2008). Sprouts and re-growing fibers 

were defined following the anatomical reported criteria(Steward et al., 2003, Joosten and 

Bar, 1999, Hill et al., 2004, Erturk et al., 2007). 

Immunohistochemistry for brain sections 

Coronal sections from brains (40 μm) were processed and stained in free-floating to detect 

GFP signal in the sensorimotor cortex. GFP signal was also enhanced using chicken anti-
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GFP antibody (1:500, Abcam). Sections were also stained with anti-CTIP2 antibody (1:500, 

Abcam) to mark layer V neurons.  

Retrograde labelling of RGCs for FACS and Affymetrix gene expression analysis 

DiI (Molecular Probes, Invitrogen, 2% in DMF) was injected in the superior colliculus of P28 

mice. Anesthetized mice were placed in a stereotaxic holder and approximately 2 μL DiI was 

then injected directly into the superficial SC (4.5 mm caudal to Bregma, 0.5 mm lateral to 

sagittal suture and 1-2 mm deep to brain surface) via 10μl gastight syringe (Hamilton) 

connected to an automated nano-injector. 7 days after superior colliculus injection, the optic 

nerve crush was performed. Three days (72h) after crush, retinae were dissected and 

incubated in digestion solution (20 U/ml papain, Worthington; 1mM L-cysteine HCL; 0.004% 

DNase; 0.5 mM EDTA in Neurobasal) for 25-40 min at 37°C, with gentle shaking every 5 

min. Digestion was stopped by adding Ovomucoid solution before trituration. Retinae were 

then passed through a 40μm filter. The obtained suspensions of the retinae were then FACS 

sorted. For microarray, total RNA was isolated from the FACS sorted RGCs using PureLink 

RNA micro kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. 

Affymetrix, Mouse Genome 430 2.0 Array from triplicate samples was performed at the 

Microarray Genechip Facility at Universitäts Klinikum, Tübingen. Data processing and 

analysis was performed according to standard procedures (GC-RMA, RMA, MAS5). Genes 

differentially expressed were selected based upon a 2 fold change cut-off and significant 

statistical difference (Anova with Bonferroni correction). The microarray data analysis was 

carried out by Ingenuity Pathway Analysis software (Ingenuity System Inc., Redwood City, 

CA, USA). Cluster analysis for selected probe sets was performed in R 3.0.1. Signal 

intensities were scaled and centered and the distance between two expression profiles was 

calculated using euclidian distance measure. Hierarchical cluster analysis was performed 

with average linkage for genes. Heatmaps were generated with Bioconductor package 

gplots. 

Results 

MDM4 conditional deletion stimulates robust optic nerve regeneration following ONC and 

CST axonal sprouting after spinal cord dorsal hemisection 

We performed conditional deletion of MDM4 specifically in RGC by intravitreal injection of 

AAV2-CreGFP virus in MDM4f/f mice two weeks before ONC, while an AAV2-GFP vector was 

employed as control (Fig. 1a). AAV2 infects RGCs very efficiently and rather specifically due 

to physical proximity although about 5-10% of other neuronal populations can also be 

infected. Significantly, MDM4 deletion promoted robust axonal regeneration of the optic 
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nerve as measured 28d after ONC (Fig. 1b, c), while it did not affect RGC survival  (Fig. 1d, 

e).  

 MDM4 was expressed as expected in RGCs predominately in the cytoplasm, and its 

expression remained elevated after ONC (Supp. Fig. 1a, b). Following AAV2-cre mediated 

infection (Supp. Fig. 1c) and conditional deletion we could confirm a strong reduction of 

MDM4 expression in infected cells (Supp. Fig. 1d). Additionally, AAV-cre mediated genetic 

deletion of MDM4 in primary retinal cells determined by semi quantitative PCR confirmed 

MDM4 deletion (Supp. Fig. 1e). In order to seek for generalization of this regenerative 

phenotype to another non-sensory clinically relevant CNS fiber tract, we investigated whether 

MDM4 conditional deletion may enhance axonal sprouting and regeneration of the CST after 

SCI . To this end, we performed AAV1-creGFP mediated MDM4 conditional deletion in the 

sensorimotor cortex (SMC) of MDM4f/f mice (Fig. 2a; Supp. Fig. 2a-b) and subsequently 

performed a thoracic dorsal spinal hemisection, which severs the main components of the 

CST. An AAV1-GFP virus was employed as control. Importantly, MDM4 was found highly 

expressed in the SMC including in laver V neurons (Supp. Fig. 2c-d). In line with the data in 

the optic nerve, we found significant axonal sprouting and regeneration after MDM4 

conditional deletion while control-infected mice displayed the expected collapse of the CST 

before reaching the lesion site (Fig. 2b, c; Supp. Fig. 3a-b). Indeed, in control mice collapsing 

bulbs were more prominent and already seen more rostrally, i.e. not only at the CST cut 

margin (data not shown). 

In support of the in vivo axonal regeneration findings, we investigated neurite outgrowth in 

cultured RGCs and cerebellar granule neurons (CGN) on both outgrowth permissive and 

myelin inhibitory conditions. AV-cre or AV-GFP control virus were employed to infect RGCs 

or CGN at the time of plating on poly-D-Lysine or myelin and neurite outgrowth was analysed 

at 72h and 24h respectively. Results showed that MDM4 deletion enhances neurite 

outgrowth in both RGC and CGN on both permissive and inhibitory substrates (Supp. Fig. 4).  

Together, these data suggest that MDM4 conditional deletion significantly lifts the CNS 

regenerative block enhancing axonal regeneration and sprouting after optic nerve and spinal 

injury in sensory and motor neurons respectively. 

MDM4 conditional deletion enhances optic nerve regeneration via p53 and is phenocopied 

by MDM2/p53 inhibition 

To gain mechanistic insight into the regenerative phenotype observed with MDM4 conditional 

deletion, we investigated the role of the MDM4 associated proteins p53 and MDM2. MDM4 

typically keeps p53 transactivation under check(Marine and Jochemsen, 2005), as supported 

by our findings in primary neurons where conditional deletion of MDM4 (Supp. Fig. 5a) 

enhances p53-dependent gene targets, including axon growth associated genes (Supp. Fig. 
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5b). Similarly to MDM4, p53 was expressed mainly in the cytoplasm of RGC both before and 

after ONC (Supp. Fig. 6). Therefore, we hypothesized that MDM4 deletion could enhance the 

regeneration program via p53 transactivation. To this end, we investigated whether double 

conditional deletion of MDM4 and p53 would block the regenerative phenotype observed with 

MDM4 deletion. We performed AAV2-cre conditional deletion of MDM4 and p53 in RGCs 

simultaneously in double MDM4f/f /p53f/f mice (Fig. 3a) and found that this abolished axonal 

regeneration induced by MDM4 deletion alone as the number of axons past the crush site 

were now similar to AAV2-GFP control infected mice (Fig. 3b, c), while RGC survival 

remained unaffected. This demonstrates that p53 is required for MDM4-dependent axonal 

regeneration. Next, we further explored the central role of ubiquitin ligase related signalling in 

this regenerative phenotype. Thus, we asked whether modulation of the MDM4 binding 

protein and ubiquitin ligase MDM2, also strongly expressed in RGCs (Supp. Fig. 7), would be 

phenocopying axonal regeneration as seen upon deletion of MDM4. Given that MDM2 

controls p53 protein levels by ubiquitination and proteasome degradation, we inhibited 

MDM2/p53 interaction by intravitreous injection of the well-characterized small molecule 

MDM2/p53 antagonist Nutlin-3a(Vassilev et al., 2004). Importantly, Nutlin-3a (100 nM) 

delivery at the time of ONC and 7 days later (Fig. 4a) promoted robust axonal regeneration of 

the optic nerve to a similar extent to MDM4 deletion without affecting the survival of RGC 28d 

after crush (Fig. 4b-c, e-f). Administration of Nutlin-3a enhanced p53 protein levels in the 

retina as expected (Fig. 4g). To investigate by genetic approach whether MDM2/p53 

inhibition promotes axonal regeneration via p53, we performed an analogous set of Nutlin-3a 

experiments, but in p53-/+ mice that typically retain only 25% of p53 expression and do not 

display aberrant cell metabolism as opposed to p53-/-mice. This would also address whether 

a “minimum” threshold p53 expression level is required for axonal regeneration similarly to 

p53 dosage effect found in cancer(Boehme and Blattner, 2009). Data analysis revealed that 

axonal regeneration of the optic nerve after crush was significantly reduced in Nutlin-3a 

treated p53-/+ mice as compared to wildtype (Fig. 4b, d) further supporting the overall model 

where regeneration after deletion of MDM4 and inhibition of MDM2 both depend upon p53 

transactivation. Indeed Nutlin-3a delivery in primary neurons enhanced p53 transactivation 

as shown by Q-RTPCR (Supp. Fig. 8). 

Optic nerve axonal regeneration after conditional MDM4 deletion depends upon the IGF1R 

pathway  

Data so far point to a model where disruption of MDM4-MDM2/p53 inhibitory protein complex 

triggers axonal regeneration after ONC. To explore directly in vivo in RGCs whether MDM4 

deletion would affect the gene expression program supporting the regenerative phenotype, 

we performed Affymetrix based genome wide gene expression arrays from fluorescently 
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activated sorted RGCs after ONC. DiI positive retrogradely traced RGCs were sorted three 

days after ONC from MDM4f/f mice that underwent either AAV2-creGFP or AAV2-GFP 

control intravitreous injections (Fig. 5a, b). Functional data analysis of differentially regulated 

and statistically significant transcripts was performed with Ingenuity pathway analysis 

platform. Unsupervised hierarchical clustering of the gene expression data showed a clear 

separation of the gene expression profiles between AAV2-cre and AAV2-GFP cells (Fig. 5c). 

Additionally, Ingenuity pathway analysis revealed that conditional MDM4 deletion was 

associated with a number of receptor-dependent signalling cascades involved in cell growth 

and metabolism (Fig. 5d, Table 1, Supp. Table 1-2). Highly ranked differentially regulated 

signalling were p53 and the related GADD45 signalling pathways (Fig. 5d, Supp. Table 2), 

supporting our model so far. Of special interest was the MDM4-deletion dependent activation 

of insulin and insulin receptor signalling pathways via overexpression of IGF1R, since insulin-

dependent pathways have a key role in cell growth and are highly neurotrophic. However, a 

function in axonal regeneration remains unclear. Careful analysis of IGF1R protein 

expression in RGCs revealed that in most cells where MDM4 deletion occurred, IGF1R 

levels were particularly elevated while in control AAV-GFP positive RGC, IGF1R was 

expressed at lower levels (Fig 5e). Next, we asked whether the IGF1R pathway might be 

critical for the downstream regenerative signalling elicited by conditional deletion of MDM4. 

Therefore, we decided to inhibit IGF1R signalling after MDM4 deletion and ONC. We chose 

to employ picropodophyllin (PPP), a highly selective and potent inhibitor of IGF-1R (IC50=6 

nM) that efficiently blocks IGF-1R activity and expression in vivo without noticeable toxicity. 

In preparation to the in vivo experiment, we performed a dose response analysis of PPP in 

primary neurons in permissive growth conditions and monitored toxicity (active cleaved 

caspase 3 positive neurons) and neurite outgrowth. This allowed identifying a dose between 

10 nM and 1 M that efficiently inhibited neuronal outgrowth without resulting in significant 

toxicity (Supp. Fig. 9a, b). After AAV2-cre MDM4 conditional deletion in RGCs of MDM4f/f 

mice (Fig. 6a), PPP 1 M was delivered both intra vitreous and at the site of the nerve crush 

at the time of ONC and optic nerve regeneration was evaluated at 28d post-injury. Indeed, 

PPP delivery strongly reduced the expression of IGF1R (Fig. 6b) and drastically inhibited 

optic nerve regeneration induced by MDM4 deletion, without affecting RGC survival (Fig. 6c-

f). Together, these data show that deletion of MDM4 triggers optic nerve regeneration via 

IGF1R signaling. 

Discussion 

The reasons underlying lack of a neuronal intrinsic regenerative potential after CNS 

axonal injury seem to be found in an inhibitory molecular environment, which either exists 

prior to axonal injury or is elicited by it. The present work defines MDM4-MDM2/p53 as a 
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novel regeneration-repressive protein complex, whose disruption activates the axonal 

regenerative program via IGF1R signalling.  Therefore, the discovery of MDM4-MDM2/p53-

IGF1R signalling pathway contributes to clarify the causes for failed regeneration and may 

provide a target for regenerative therapy after optic nerve and spinal cord damage.  

MDM4 was first identified as a p53 binding protein including in selected cancers 

where it inhibits p53 transcriptional activity promoting tumour progression(Markey, 2011). 

Similarly, MDM4 regulates cell cycle, survival and apoptosis by forming an inhibitory complex 

with a selected set of proteins that include MDM2, ASPP1 and 2, p300 and Smad1/2(Gaub 

et al., 2011, Sabbatini and McCormick, 2002, Wade et al., 2010). However a role for MDM4 

in neuronal biology and in axonal regrowth was until now missing. Our work shows that 

MDM4 lies at the centre of a regeneration-inhibitory signalling hub formed by MDM4-

MDM2/p53. In fact conditional deletion of MDM4 enhances axonal regeneration and 

sprouting after ONC and SCI and co-deletion of p53 or inhibition of MDM2/p53 interaction 

significantly diminish the MDM4-deletion dependent regenerative phenotype.  

We have recently shown that the tumour suppressor and transcription factor p53 is 

required for neurite outgrowth, axonal sprouting and regeneration both after facial nerve 

injury and spinal cord hemisection in mice(Tedeschi et al., 2009a, Floriddia et al., 2012, 

Tedeschi and Di Giovanni, 2009, Tedeschi et al., 2009b, Di Giovanni et al., 2006). 

Specifically, transcriptionally active acetylated p53 at K372-3-82 and the acetyltransferases 

CBP/p300 and P/CAF form a transcriptional complex that occupies promoters of selected 

pro-regenerative genes, driving neurite outgrowth. P53 integrates numerous stress signals 

including following axonal injury and it undergoes tight regulation of its protein levels, 

subcellular localization and of its transcriptional activity by several factors, including the best 

defined negatively regulators MDM2 and MDM4. MDM2, a E3 ubiquitin ligase, targets p53 for 

degradation via the ubiquitin proteasome pathway and negatively regulates p53 cytoplasmic-

nuclear shuttling. MDM4, although structurally similar to MDM2, is devoid of ubiquitin ligase 

activity, and rather regulates with MDM2 p53 cytoplasmic-nuclear shuttling and it occupies 

the p53 transcriptional activation domain thereby inhibiting p53 transactivation. MDM4 

prevents p53 nuclear translocation in association with MDM2 and competes with the 

acetyltransferases CBP and p300 for binding to Lysines on p53 C-terminus, overall hindering 

p53 transcriptional activity.  

Given the pro-neurite outgrowth and axon regeneration function of the MDM4 

interacting proteins p300 and Smads(Gaub et al., Zou et al., 2009, Parikh et al.), it is 

plausible that p300-dependent acetylation of regenerative promoters as well as TGFβ-Smad 

signalling may also contribute to axonal regeneration induced by MDM4 deletion.  In support 

of this, we have recently shown that p300 acetylates p53 in RGC after ONC during p300-

dependent axonal regeneration, supporting the presence of this signalling network during 
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axonal regeneration(Gaub et al., 2011). Given the axon regenerative/sprouting function of 

p21(Tanaka et al., 2004), the previously described inhibitory MDM4 protein complex with 

p21(Markey), which is also a classical p53-target gene, may also play a role in axonal 

regeneration. Interestingly, we found that MDM4 deletion in primary neurons enhanced p21 

gene expression levels along with other classical regeneration associated genes, supporting 

the inhibitory role for MDM4 in repressing the regenerative gene expression program.  

Further, genome wide analysis from FACS sorted pure RGCs after ONC revealed that 

MDM4 conditional deletion was associated with the enhancement of transcripts involved in 

cytoskeleton remodelling, axonal development and signalling, including genes involved in 

neuronal maturation (Table 1). This pattern of gene expression changes suggests that 

MDM4 deletion modulates developmentally regulated pathways, which may support axonal 

regrowth.  

Additionally, here we show that IGF1R signalling is required for axonal regeneration 

of the crushed optic nerve induced by MDM4 deletion and it lays likely downstream the 

transcriptional complex formed by MDM4-p53/MDM2. The best characterized IGF1R targets 

include PI3K and JAK/STAT3, which are typically activated by IGF1R (Kim et al., 2012, 

Subbiah et al., 2011, Staerk et al., 2005, Serra et al., 2007). Both PI3K and JAK/STAT3 

activation depends upon the phosphorylation status that has been shown to be necessary to 

promote axonal regeneration following deletion of PTEN or after JAK binding to IL-6 

respectively(Park et al., 2008, Cao et al., 2006, Shah et al., 2006, Teng and Tang, 2006, 

Hakkoum et al., 2007). This suggests a likely cross-talk between MDM4-MDM2/p53-IGF1R 

signalling and these regenerative pathways, supporting the importance and soundness of our 

novel findings.  

Given that genetic inhibition of MDM4 or pharmacological antagonism of MDM2-p53 

interaction have been shown to induce tumour suppression and are currently being explored 

in the clinic for cancer treatment(Brown et al., 2009), they may represent viable options for 

neuroregenerative therapy. The recent discovery of specific small molecule inhibitors of 

MDM4(Vogel et al., 2012, Reed et al., 2010) which are still awaiting confirmation in multiple 

studies, may also expand our regenerative therapeutic options.  
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Figure Legends 

Figure 1. Conditional deletion of MDM4 in retinal ganglion cells enhances axonal 

regeneration after optic nerve crush 

a. Schematic of the experimental design showing AAV-Cre or AAV-GFP intra-vitreal infection 

of RGC in MDM4f/f mice 14 days before optic nerve crush. Regenerating axons were traced 

with Cholera toxin B (CtB). b. High magnification images of regenerating CtB labeled optic 

nerve axons 28d post-crush (asterisk) in MDM4f/f mice after infection with AAV-Cre or AAV-

GFP. Scale bar 100 μm. c. Quantification of regenerating optic nerve axons post-crush 

(experiment as in b). At least 4 serial sections were analysed from each animal (Student t-

test, *p< 0.05 or **p<0.01 n= 7, each group). d. Anti-Tuj1 immunofluorescence shows 

surviving retinal ganglion cells (Tuj1+) 28 days post-optic nerve crush. Scale bar 50 μm. e.  

Quantification of surviving RGC as total percentage of surviving cells as compared to the 

intact contralateral retina (n=7, AAV-Cre infected animals; n=6, AAV-GFP infected animals).  

 

Figure 2. Conditional deletion of MDM4 in the SMC enhances CST sprouting following 

T9 dorsal hemisection in MDM4f/f mice 

a. and b. Schematic diagrams summarizing the experimental design. AAV-CreGFP/AAV-

GFP particles were injected in the SMC of adult MDM4f/f mice 5 weeks prior to T9 dorsal 

hemisection. BDA for CST labelling was injected 14 days before sacrificing the animal. c. 

Representative images of sagittal sections from MDM4f/f mice after cortical AAV-GFP/AAV-

CreGFP infection. The CST were traced by BDA injection (red) in the cortex. Spinal cord 

sections were also stained with GFAP (green) and DAPI (blue).  High magnification images 

show the sprouting axons past the lesion site, in the AAV-CreGFP infected mice. Scale bar 

500 μm d. Quantification of the BDA labelled sprouting CST axons in the spinal cord rostral 

and distal to the lesion site. (Mann Whitney test, **p< 0.001 n=10 for AAV-GFP and n=9 for 

AAV-CreGFP). 

Figure 3. Conditional co-deletion of MDM4 and p53 does not lead to axonal 

regeneration 

a. Schematic of the experimental design showing AAV-Cre or AAV-GFP intra-vitreal infection 

of RGC in MDM4f/fp53f/f mice 14 days before optic nerve crush. Regenerating axons were 

traced with Cholera toxin B (CtB). b. Representative images of CtB labelled optic nerve 

axons from MDM4f/fp53 f/f mice infected with AAV-CreGFP/AAV-GFP. No regenerating axons 

were observed past the lesion site (asterisk). Scale bar 100 μm. c. Quantification of CtB 

labelled axons regenerating past the lesion site. At least 4 serial sections were analyzed from 

each animal (n=5, AAV-CreGFP group, n=4, AAV-GFP). 
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Figure 4. Inhibition of MDM2/p53 interaction enhances axonal regeneration after optic 

nerve crush 

a. Schematic of the experimental design showing intra-vitreal injection of Nutlin-3a (100nm) 

on the day of optic nerve crush followed by second application 7 days later. Regenerating 

axons were traced with Cholera toxin B (CtB). b. High magnification images of regenerating 

CtB labeled optic nerve axons 28d post-crush (asterisk) in Nutlin treated wildtype mice. Only 

sporadic regenerating axons were observed 200 μm post-ONC in Nutlin treated p53+/- mice. 

Scale bar 100 μm. c. and d. Quantification of regenerating optic nerve axons post-crush 

(experiment as in b). At least 4 serial sections were analysed from each animal (Student t-

test, *p< 0.05 or **p<0.01 for each distance, n= 7, each group). e. Anti-Tuj1 

immunofluorescence shows surviving retinal ganglion cells (Tuj1+) 28 days post-optic nerve 

crush. Scale bar 50 μm. f.  Quantification of surviving RGC as total percentage of surviving 

cells as compared to the intact contralateral retina (n=7, Nutlin; n=6, vehicle). g. 

Immunoblotting from retinae treated with vehicle or Nutlin (100nM) at the time of ONC, 3 

days post-ONC. Nutlin enhances P53 expression. Blots from AV-p53 or control AV-GFP 

infected primary neurons were used as positive control of p53 expression. 

Figure 5.  Genome wide gene expression analysis in RGC after conditional MDM4 

deletion and sorting by FACS 

a. Schematic of the experimental design. MDM4f/f animals were infected with AAV-

CreGFP/AAV-GFP 14 days before the optic nerve crush. DiI was injected in the superior 

colliculus 7 days prior to crushing the optic nerve. DiI+ RGCs were sorted by FACS 3 days 

following ONC, and RNA extracted from these samples were used to perform gene 

expression analysis (Affymetrix). b. Whole mount retina showing highly efficient DiI tracing in 

the RGC layer. Scale bar 20 μm. c. Heatmap showing clear-cut separation of gene 

expression levels (green: low; red: high) between AAV-GFP and AAV-creGFP infected RGC. 

d. Differentially regulated signaling pathways up regulated in MDM4 deleted RGCs analysed 

with Ingenuity Pathways Analysis (IPA). These include p53, Gadd45 and IGF1-IGFR 

signaling pathways. e. Immunofluorescence micrographs showing high IGF1R expression 

level 3d after optic nerve crush in retinal ganglion cells (Tuj1*) infected with AAV-CreGFP, 

while a faint signal was observed in AAV-GFP+ RGC in MDM4f/f mice. Retinal ganglion cells 

have been counterstained with Tuj1. Scale bar 20um.  

Figure 6. Regeneration elicited by MDM4 deletion is reduced by inhibition of IGF1R 

signalling 

a. Schematic of the experimental design.  Conditional MDM4 deletion in MDM4f/f mice was 

followed by ONC and pharmacologically inhibition of IGF1R with the antagonist 
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picropdophyllin (PPP). Axonal tracing was performed with CtB. b. Immunoblotting from 

retinae 3d after ONC and administration of PPP or vehicle. Shown is a strong reduction in 

the expression of IGF1R. c. Representative images of optic nerves showing regenerating 

CtB labelled axons of MDM4f/f animals after MDM4 conditional deletion and vehicle. Not a 

significant number of regenerating axons were found after PPP administration post-ONC 

(asterix). Scale bar 100 μm. d. Quantification of regenerating optic nerve axons post-crush 

(experiment as in c). At least 4 serial sections were analysed from each animal (Student t-

test, p< 0.05 for each distance, n= 6, each group). The number of regenerating axons was 

significantly hampered following AAV-cre-PPP treatment versus AAV-cre-veh. e. Anti-Tuj1 

immunofluorescence shows surviving retinal ganglion cells (Tuj1+) 28 days post-optic nerve 

crush. Scale bar 50 μm. f.  Quantification of surviving RGC as total percentage of surviving 

cells as compared to the intact contralateral retina (n=6). 

 

Supplementary Figure 1.  

a. Representative fluorescent images at 24h and 72h after ONC showing MDM4 expression 

in retinal ganglion cells. Retinal ganglion cells were counterstained with Tuj1. MDM4 co-

localised with Tuj1. Scale bar 20 μm. b. Quantification of the expression level of MDM4 by 

fluorescence intensity measurement. MDM4 expression level did not change significantly at 

24h and 72h following ONC. At least six sections were analysed from 3 animals in each 

group. c. Representative image of a retina infected with AAV-CreGFP showing specific 

highly efficient infection in retinal ganglion cells. Scale bar 50 μm. d. Immunofluorescence of 

retinal ganglion cells infected with AAV-GFP or AAV-CreGFP showing MDM4 deletion 14d 

after infection. MDM4 expression could be detected by immunostaining in control AAV-GFP 

infected samples only (arrowheads). Scale bar 20 μm. e. Semi quantitative PCR from 

dissociated retinal ganglion cell culture 3 days after infection with AAV-GFP/AAV-Cre. MDM4 

expression was significantly reduced after Cre mediated recombination.  

 

Supplementary Figure 2. 

 

a. Shown are GFP and BDA labeling of the SMC after stereotaxic delivery of AAV-GFP or 

BDA. Inset shows layer V in the SMC. Scale bar 500 μm. b. Shown are cre-positive cells 

after anti-cre immunostaining in proximity of the injection site (asterix) of AAV-cre in the 

SMC. Scale bar 50 μm. c. Immunostaining for GFP and CTIP2 (layer V neurons marker) 

show AAV-GFP infection of  layer V neurons in the SMC. Scale bar 20 μm. 

 

Supplementary Figure 3.  
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a. Coronal section of a spinal cord 10 mm caudal to the lesion site showing completeness of 

the lesion with lack of BDA positive CST labelling after AAV-GFP infection in the SMC of 

MDM4f/f mice (5 weeks post-SCI).  Scale bar 500 μm. b. BDA+ CST sprouting axons 

(arrowheads) after AAV-cre delivery in the SMC of MDM4f/f mice (5 weeks post-injury). Scale 

bar 500 μm. 

 

Supplementary Figure 4. 

 

a. Dissociated retinal ganglion cells from MDM4f/f postnatal day 7 mice were cultured on 

permissive (PDL) and inhibitory substrate (myelin) for 72h following Ad-Cre/Ad-GFP 

infection. Neurites were traced with Tuj1. b. Quantification of neurite outgrowth 72h after AV-

GFP/AV-Cre infection. Semi-automatic analysis from more than 500 neurons per condition 

(n=3) showed a significantly higher outgrowth in the AV-Cre infected group. Student’s t-test, 

p<0.05. c. Cerebellar granule neurons from MDM4f/f mice were plated on permissive (PDL) 

and inhibitory (Myelin) substrate and infected with AV-GFP/AV-Cre. AV-Cre infected group 

showed a significantly higher neurite outgrowth 24h after infection. Neurites were traced with 

Tuj1. d. Quantification of neurite outgrowth of cultured CGN. Neurites were traced manually 

from single neurons that were infected with the virus. At least 100 neurons were analysed 

per condition per group. n= 4. Student’s t-test, p<0.05. 

Supplementary Figure 5.  

a. Semiquantitative PCR mice from MDM4f/f cerebellar granule neuron (CGN) cultures after 

infection with AV-Cre or AV-GFP. MDM4 expression was significantly reduced after Cre 

mediated recombination.  b. Real time quantitative PCR from MDM4f/f CGN cultures 24h after 

infection with AV-GFPor AV-Cre showed enhanced expression of several p53-target genes. 

P53 expression was not altered due to MDM4 deletion.  

Supplementary Figure 6.  

a. Representative fluorescent images at 24h and 72h after ONC showing p53 expression in 

retinal ganglion cells. Retinal ganglion cells were counterstained with Tuj1. P53 co-localised 

with Tuj1. Scale bar 20 μm. b. Quantification of the expression level of p53 by fluorescence 

intensity measurement. P53 expression level did not change significantly at 24h and 72h 

following ONC. At least six sections were analysed from 3 animals in each group.  
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Supplementary Figure 7.  

a. Representative fluorescent images at 24h and 72h after ONC showing MDM2 expression 

in retinal ganglion cells. Retinal ganglion cells were counterstained with Tuj1. MDM2 co-

localised with Tuj1. Scale bar 20 μm. b. Quantification of the expression level of MDM2 by 

fluorescence intensity measurement. MDM2 expression level did not change significantly at 

24h and 72h following ONC. At least six sections were analysed from 3 animals in each 

group.  

Supplementary Figure 8. 

a. Quantitative RTPCR from CGN treated with Nutlin-3a or vehicle (24h). Shown is enhanced 

expression of axon growth associated and p53 target genes with Nutlin-3a 100nM versus 

vehicle.18S RNA was used for nomalization. n= 3. (Student t-test, *p< 0.05 or **p<0.01). b. 

Apoptosis was evaluated 24h after administration of Nutlin-3a or vehicle in CGN. Pyknotic 

cells were identified with DAPI staining. n=3. (Student t-test, *p< 0.05 or **p<0.01). 

Supplementary Figure 9. 

a. Dose response of Picropodphylin (PPP, IGF1R antagonist) in cerebellar granule neurons 

was determined by counting the number of Cleaved Caspase 3 positive cells in a dose 

response curve. PPP 1μM or above showed significant cell death as compared to vehicle 

control. n= 3. Student’s t-test, p<0.05. b. Cells extending neuritis in response to PPP 

treatment (dose response) were counted. Cells treated with PPP 10nM or above showed 

reduced number of cells extending neurites. n= 3. Student’s t-test, p<0.05. 
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Functional Class  

Fold change (Cre vs 

GFP) p value  Function 

Axonal signalling 

  

 

IGF1R 2,12 0,0122 Intracell signalling 

CXCR2 2,18 0.0222 Chemoattraction 

Klf11 1,764 0,0391 Axonal transport 

Cited4 1,69 0,0324 Transcription co-activ 

Sprr2b 1,866 0,004 Axon growth 

Neuronal morphology and cytoskeleton 

organization 

 

 

DCC -2,031 0,0476 Axon repulsion 

GAD1 1,569 0,0365 Glut/GABA metab 

Arf1 3,505 0,02 GTP-bind prot 

FCER1A 1,71 0,018 IgE rec 

NKX2-2 -1,66 0,014 NeuroD1-cofact 

Nrg1 -1,84 0,006 Neuronal differ 

Rab23 1,516 0,01 GTPase 

Rin2 1,797 0,029 GTPase 

Mast3 -1,797 0,043 Microtub ass kinase 

Neuronal development 

  

 

GAD1 1,569 0,0365 Glut/GABA metab 

CAMKK2 1,595 0,004 CREB activator 

ZIC1 1,632 0,0385 Transc Activ-Neurogenesis 

ZNF423 1,762 0,0226 Smad coact-Neurogenesis 

LYNX1 2,222 0,0004 Synaptic plasticity 

ST8SIA2 1,683 0,02704 NCAM1 binding protein-rec 

DCC -2,031 0,0476 Axon repulsion 

Table1. List of selected differentially regulated genes from RGC after ONC in MDM4fl/fl mice- AAV 

GFP vs Cre  

Primers sequences 

 Gene Primer forward Primer Reverse 

p21 CGGTGGAACTTTGACTTCGT  AGAGTGCAAGACAGCGACAA 

GADD45 CAGGGGAGGGACTCGCACTT CGGGGTCTACGTTGAGCAGC 

GAP43 AAGCTACCACTGATAACTCCCC CTT CTTTACCCTCATCCTGTCG 

SCG10 

AGACTCCTCTCTCGCTCTCTCCG

C 

AGCCTCTTGAGACTTTCTTCGCTCCT

C 

CAP23 GGCGGCAGCGCTCCAACTCG CCGCCTGGGGTTCGCTCTCC 

p53 AGAGACCGCCGTACAGAAGA  CTGTAGCATGGGCATCCTTT 

MDM4 CAGCTAGGAGGGGGAGCGACT GCAGTTTTGGCCGCACCTGACTAA 

β-actin CTCTCSGCTGTGGTGGTGAA AGCCATGTACGTAGCCATCC 

L1CAM ATGCTGCGGTACGTGTGGCCCT CCACTTGGGGGCACCCTCGG 

BDNF AGTCTCCAGGACAGCAAAGC TCGTCAGACCTCTCGAACCT 

Sprr1a CCCCTCAACTGTCACTCCAT CAGGAGCCCTTGAAGATGAG 

18S RNA CTCAACACCGGGAAACCTCAC CGCTCCACCAACTAAGAACG 

β-actin CTCTCSGCTGTGGTGGTGAA AGCCATGTACGTAGCCATCC 

RPL13a GGCTGAAGCCTACCAGAAAG TTCTCCTCCAGAGTGGCTGT 

   Table 2. List of primer sequences 
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intrinsic axonal regeneration
Perrine Gaub,1,2 Yashashree Joshi,1,2 Anja Wuttke,1 Ulrike Naumann,3 Sven Schnichels,4

Peter Heiduschka4,* and Simone Di Giovanni1

1 Centre for Neurology, Laboratory for NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried
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Axonal regeneration and related functional recovery following axonal injury in the adult central nervous system are extremely

limited, due to a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. As opposed to what

occurs during nervous system development, a weak proregenerative gene expression programme contributes to the limited

intrinsic capacity of adult injured central nervous system axons to regenerate. Here we show, in an optic nerve crush model

of axonal injury, that adenoviral (cytomegalovirus promoter) overexpression of the acetyltransferase p300, which is regulated

during retinal ganglion cell maturation and repressed in the adult, can promote axonal regeneration of the optic nerve beyond

0.5 mm. p300 acetylates histone H3 and the proregenerative transcription factors p53 and CCAAT-enhancer binding proteins in

retinal ganglia cells. In addition, it directly occupies and acetylates the promoters of the growth-associated protein-43, coronin

1 b and Sprr1a and drives the gene expression programme of several regeneration-associated genes. On the contrary, overall

increase in cellular acetylation using the histone deacetylase inhibitor trichostatin A, enhances retinal ganglion cell survival but

not axonal regeneration after optic nerve crush. Therefore, p300 targets both the epigenome and transcription to unlock a

post-injury silent gene expression programme that would support axonal regeneration.
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Introduction
Mature neurons of the adult CNS lack axonal regeneration cap-

acity following axonal injury. The reason for such a regenerative

failure is 2-fold: (i) the presence of a non-permissive glial envir-

onment (Yiu and He, 2003, 2006); and (ii) an intrinsic lack of

proregenerative ability (Lee et al., 2010). This is in contrast to

the potential for axonal regeneration and outgrowth present in

the injured PNS (Huebner and Strittmatter, 2009) and in immature

neurons during development (Cai et al., 2001; Filbin, 2006).

The intrinsic properties of neurons are regulated by gene tran-

scription, which regulates gene expression, and therefore tightly

controls the neuronal intrinsic capacity to synthesize new proteins

needed for pro-axonal regeneration signalling. Indeed, transcrip-

tional regulation controls axonal outgrowth during development

(Butler and Tear, 2007) as well as axon regrowth after injury in

the adult (Goldberg et al., 2002; Raivich et al., 2004; Moore

et al., 2009). Intrinsic signals receive numerous inputs from extrin-

sic ones and are used here to describe those signals whose modu-

lation is sufficient to promote axonal outgrowth without additional

inhibition of the inhibitory environment.

Mature retinal ganglion cells fail to regenerate axons and under-

go apoptosis following optic nerve damage; however, experimen-

tal evidence has shown that enhancement of the intrinsic

properties of retinal ganglion cells can promote axonal regener-

ation of the injured optic nerve. Examples include the lens

injury-dependent activation of a proregenerative state character-

ized by gene expression comparable with that seen after periph-

eral nerve injury (Leon et al., 2000; Fischer et al., 2001, 2004). In

fact, a lens injury previous to the optic nerve crush induces, likely

via inflammatory molecules (Yin et al., 2006, 2009), the expres-

sion of progrowth genes such as Sprr1a and Narp as well as tran-

scription factors such as cyclic adenosine monophosphate

responsive element binding protein (CBP) and CCAAT-enhancer

binding proteins (C/EBP). In addition to lens injury, the combined

administration of several growth factors (Logan et al., 2006), as

well as the lens injury induced ciliary neurotrophic factor are other

well-established means to enhance intrinsic axonal regeneration of

the injured optic nerve (Lingor et al., 2008; Leibinger et al., 2009;

Muller et al., 2009).

Recent studies have demonstrated that the modulation of indi-

vidual intrinsic molecules such as PTEN (phosphatase and tensin

homologue) or the transcription factors KLF4 (Krupper-like factor

4) can promote axonal regeneration of retinal ganglion cells after

optic nerve crush (Park et al., 2008; Moore et al., 2009). Both

PTEN and KLF4 show repressive effects on neurite outgrowth,

while their suppression in retinal ganglion cells strongly enhances

axonal regeneration ultimately activating a proregenerative gene

expression response. These lines of evidence suggest that as

opposed to what occurs during development and in immature

neurons, the gene expression programme in mature retinal gan-

glion cells does not allow mounting an axonal regenerative re-

sponse unless modified by experimental manipulations.

We hypothesize that the proregenerative transcriptional machin-

ery is silenced or repressed in adult CNS neurons after neuronal

maturation and following axonal damage; however, it could be

reactivated by modulating genes that regulate the proregenerative

gene expression programme. Gene expression is controlled by the

state of chromatin as well as by the presence of specific transcrip-

tional complexes near gene promoters. The balance between the

histone acetyltransferases and histone deacetylases regulates the

level of histone and transcription factor acetylation, which modi-

fies the state of chromatin and the activity of transcription factors,

and overall contributes to the fine-tuning of gene expression

(Yang and Seto, 2007). We have recently reported that chromatin

relaxation and transcription factor activation via histone deacety-

lases inhibition by trichostatin A enhances neurite outgrowth

on permissive and non-permissive substrates. Specifically, this

was due to an increased expression of the histone acetyltrans-

ferases CBP/p300 and p300/CBP-associated factor (P/CAF) that

enhanced acetylation of H3 and p53, which stimulated the expres-

sion of several proregenerative genes (Gaub et al., 2010).

However, this work was performed in vitro and the role of histone

acetyltransferases in axonal regeneration in vivo is yet to be

investigated.

In the present study, we investigated the regulation of expres-

sion of the specific histone acetyltransferases p300, CBP and

P/CAF during retinal ganglion cell maturation and whether they

could thus become potential candidates to control the ability of

retinal ganglion cells to regenerate axons following optic nerve

crush. Indeed, we found that histone acetylation and the expres-

sion of CBP and p300 are repressed in mature retinal ganglion cells

and after optic nerve crush. Importantly, overexpression of p300

but not histone deacetylases inhibition, promotes axonal regener-

ation after optic nerve crush. P300 leads to hyperacetylation of

histone H3 and the transcription factors p53 and C/EBP, as well as

to increased p300 occupancy and H3 acetylation of selected

pro-axonal outgrowth gene promoters.

This is a first report showing that a specific modification of the

transcriptional and epigenetic environments can promote axonal

regeneration in vivo, likely by redirecting the transcriptional pro-

gramme on proregeneration promoters.

Materials and methods

Viral construction, production and
infection
AVp300 vector was created by using the AdEasyTM system (Luo et al.,

2007). p300 complementary DNA was purchased from Addgene (plas-

mid 10718) and subcloned into the pAdTrack-cytomegalovirus (CMV)

shuttle vector (Addgene plasmid 16405). Preparation of adenovirus

green fluorescent protein (AVGFP) has been described previously

(Naumann et al., 2001). The plasmid containing p300 and

pAdTrack-CMV was then linearized and recombined with the viral

backbone pAdEasy-1. All viruses were expanded in 293 cells (ATCC)

and tested to be replication-deficient by polymerase chain reaction

(primer: E1Afrwd GTTGGCGGTGCAGGAAGGGATTG and E1Arev

CTCGGGCTCAGGCTCAGGTTCAGA) and by immunoblot of the E1A

gene product (mouse-anti E1A, 1 : 10 000, BD Biosciences 554155).

Viral titres were assessed using a hexon titre kit (Clontech). The effi-

cacy of adenoviral gene delivery and expression was ascertained by

green fluorescent protein (GFP) fluorescence or by polymerase chain
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reaction for p300 messenger RNA expression. Infection with recom-

binant viruses in vitro was accomplished by exposing cells in vitro to

100 multiplicity of infection (MOI) of adenovirus immediately after

plating. In vivo, AVGFP as a control and AVp300 were injected intra-

vitreally immediately after optic nerve crush.

Retinal ganglion cell survival assay
Assessment of retinal ganglion cell survival was performed on

flat-mounted retinae. Eyes were dissected and the retinae removed

from the eye cup. The retinae were then washed in

phosphate-buffered saline and blocked in a solution of 10% bovine

serum albumin and 1% Triton X-100. After the blocking solution, the

whole retina was incubated in the same solution with mouse anti-b-III

tubulin (1 : 400) (Promega) overnight at 4�C. Retinae were then

washed with phosphate-buffered saline, incubated with the secondary

antibody anti-mouse Alexa 568 (1 : 1000, Pierce) and flat mounted on

slides with FluorsaveTM (Calbiochem).

Quantification was performed by taking pictures in the central,

intermediate and peripheral region for each quarter of flat mounted

retina under fluorescent illumination (n = 3) as previously reported

(Park et al., 2008; Kurimoto et al., 2010). b-III tubulin-positive cells

were then counted on each picture using the Neurolucida software

and normalized as a percentage to sham retinae (n = 3). Similarly,

additional counting was performed by evaluating the number of

GFP-positive infected cells (with a control AVGFP or AVp300)

co-expressing b-III tubulin only. GFP/b-III tubulin-positive cells were

then counted on each picture using the Neurolucida software and

normalized as a percentage to sham retinae (n = 3).

Retinal cell culture
Primary culture of retinal cells was performed following a previously

described protocol (Hauk et al., 2010). Briefly, P6–P7 eyes were dis-

sected, and retinae were incubated in Dulbecco’s modified Eagle’s

medium with Papain (Cellsystem) and L-cystein (Sigma). After incuba-

tion, retinae were dissociated in Dulbecco’s modified Eagle’s medium

with B27 (Life Technologies) and penicillin/streptomycin (Sigma) and

�1 � 106 cells per 2 cm2 were plated. Immediate infection by AV-GFP

and AV-p300 was carried out using 100 MOI. Cells were then fixed

with 4% paraformaldehyde for 30 min. Cells were washed with

phosphate-buffered saline, then blocked with 8% bovine serum albu-

min, 0.2% TritonX-100 in phosphate-buffered saline and finally incub-

ated with the primary antibodies overnight at 4�C: mouse anti-b-III

tubulin (1 : 1000) (Promega). Cells were then washed with

phosphate-buffered saline and incubated with an anti-mouse Alexa

564-coupled secondary antibody (1 : 1000) (Pierce) for 1 h at room

temperature. As a control, we stained with Hoechst 33258

(Molecular Probes) and then washed in phosphate-buffered saline

before mounting the coverslips on a slide with FluorsaveTM

(Calbiochem).

Optic nerve crush surgery and
intraocular injection
All animal experiments were conducted according to the European

Union and German regulations under the allowance of the animal

protocol number N03/07 and AK7/07 (University of Tübingen).

Surgical procedures were based on those described previously (Berry

et al., 1996; Fischer et al., 2000; Leon et al., 2000). Adult (2–3

months old) Crl-CD1 rats (400–500 g) were anaesthetized

intraperitoneally with 80 mg/kg of ketamine and 50 mg/kg of xylazine.

After shaving the head, rats were immobilized in an apparatus and a

1.5- to 2-cm incision was made in the skin in the middle of the head.

Under microscopic illumination, a longitudinal section above the right

orbit was made to access the orbital space below the bones. The

lachrymal glands and extraocular muscles were resected and retracted

to expose 3–4 mm of the optic nerve. The epineurium was slit open

along the longitudinal axis and the nerve was crushed 2 mm behind

the eye with angled jeweller’s forceps (Dumont #5, FST) for 10 s,

avoiding injury to the ophthalmic artery. Nerve injury was verified

by the appearance of a clearing at the crush site, while the vascular

integrity of the retina was evaluated by funduscopic examination.

Cases in which the vascular integrity of the retina was in question

were excluded from the study. For intraocular injections, the eye

was rotated to expose its posterior aspect. Injections were made

through the sclera and retina with a 30 gauge needle 1–2 mm superior

to the optic nerve head, inserting the tip of the needle perpendicular

to the axis of the nerve to a depth of 2 mm without infringing on the

lens (minimally invasive injection). Injection volumes were dependent

upon the solution. In a subset of rats, we performed lens injury as

described previously (Schnichels et al., 2011). Survival times ranged

from 1–3 days and 14 days after the surgery. Groups included sham

controls (n = 3), animals with optic nerve crush (n = 3), animals with

optic nerve crush and phosphate-buffered saline (n = 4) or trichostatin

A (T-8552, Sigma) (10 ng/ml; n = 4); animals with optic nerve crush

and AVGFP (7.5 � 107 pfu; n = 5) or AVp300 (7.5 � 107 pfu; n = 5).

Animals showing signs of lens injury or intravitreal haemorrhage after

puncture were excluded from the study. The surgical site was sutured

and closed. Animals were observed for postoperative recovery and

were housed with ad libitum access to food and water.

Evaluation of axonal regeneration
For evaluation of optic nerve axon regeneration following optic nerve

crush, GAP-43 immunofluorescence was performed. Photomicrographs

were taken with a fluorescence microscope using the Zeiss Axioplan

microscope (Axiovert 200, Zeiss Inc.). Images of whole sections were

assembled from single pictures taken with a �20 objective. The

number of regenerating axons at designated distances from the end

of the crush sites was evaluated per section as previously reported

(Planchamp et al., 2008). The number of regenerating axons per

nerve was then averaged over all sections of one nerve. The following

experimental conditions after optic nerve crush were analysed (n = 4):

AVGFP; AVp300; AV GFP + lens injury; and AVp300 + lens injury.

Tissue extraction
Postnatal CD rats at Days P0, P7 and P21, and adult rats were deeply

anaesthetized using 100 mg/kg of ketamine and 80 mg/kg of xylazine

and transcardially perfused with 100 ml of ice-cold phosphate-buffered

saline followed by 50 ml of ice-cold 4% paraformaldehyde. The eyes

were enucleated with the optic nerve and post-fixed overnight in 4%

paraformaldehyde followed by cryoprotection using 30% sucrose in

water. The eyes were later stored at �80�C. Three different retinae

were sacrificed at each time point.

Immunohistochemistry
Eyes and optic nerves were embedded in freezing medium and longi-

tudinal serial sections (10 mm) were cut and mounted on glass slides.

The sections were washed once with phosphate-buffered saline and

incubated in 4% sucrose for 30 min followed by ice-cold 100%
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methanol treatment for 15 min. For antigen retrieval, we used citrate

buffer [2.1 g citric acid (monohydrous); 0.74 g EDTA; 0.5 ml

Tween-20; in 1000 ml distilled water; pH 6.2] after the sucrose treat-

ment and the slides were heated at 98�C. The sections were then

washed with phosphate-buffered saline and blocked with 8% bovine

serum albumin, 0.2% TritonX-100 in phosphate-buffered saline and

then incubated in 2% bovine serum albumin, phosphate-buffered

saline with the primary antibodies overnight at 4�C: rabbit anti-acetyl

H3K18 (1 : 1000, Millipore); mouse anti-CBP (AC238, Abcam) (citrate

buffer treatment, 1 : 50); mouse anti-p300 (3G230, Abcam), (citrate

buffer treatment, 1 : 200); mouse anti-b-III tubulin (1 : 1000)

(Promega); rabbit anti-acetyl-p53 lys373 (1 : 200, citrate buffer treat-

ment) (06-916, Millipore); rabbit anti-p53 (1 : 200) (sc-6243,

Santa-Cruz); rabbit anti-C/EBP acetylated 215-216 (1 : 200) (09-037,

Millipore); rabbit anti-GAP-43 (1 : 500) (Chemicon, Schwalbach,

Germany). Sections were then washed with phosphate-buffered

saline and incubated with the respective secondary antibodies for 1 h

at room temperature: Alexa 488, 546 or 564-coupled secondary anti-

bodies (goat anti-rabbit IgG, goat anti-mouse IgG, Pierce). As a con-

trol, we stained with Hoechst 33258 (Molecular Probes) and then

washed in phosphate-buffered saline before mounting on slides with

FluorsaveTM (Calbiochem). For all experiments, a negative control was

performed by immunostaining with the secondary antibody only.

Controls for anti-CBP and p300 antibody specificity were carried out

previously by immunostaining after CBP and p300 gene silencing in

both cell lines and primary neurons (Gaub et al., 2010), which showed

reduced signal intensity in agreement with gene silencing. Specificity

for anti-p53 antibodies has been tested previously by both immuno-

blotting and immunocytochemistry after overexpression of p53 in both

cell lines and primary neurons (Di Giovanni et al., 2006; Tedeschi

et al., 2009; Gaub et al., 2010). Specificity for antibodies anti-H3Ac

has been supported by immunoblotting. In addition, the immunofluor-

escence signal has always been found specifically in the nucleus and to

change as expected whenever we modified acetylation levels with

either trichostatin A (T-8552, Sigma) or overexpression of CBP or

p300 (Gaub et al., 2010).

Assessment of fluorescence intensity
A high-resolution image was obtained at �40 magnification using

the Zeiss Axioplan microscope (Axiovert 200, Zeiss Inc.). Images for

the same antigen groups were processed with the same exposure time.

Assessment of fluorescence intensity was performed using

AlphaEaseFC 4.0.1 software by measuring the intensities specifically

within the retinal ganglion cell layer. Care was taken that the area

analysed for each cell was the same for each set, 20 cells per section

and two sections per retina were quantified.

The intensity values of each cell were normalized to the 4’,6’-dia-

midino-2-phénylindole signal and mean values of intensities were cal-

culated for each animal (three animals per condition). For statistical

analysis, ANOVA with Bonferroni test was performed using Origene

software. At least 100 cells were analysed in triplicates at each time

point and P-values of 40.05 (*) were considered significant.

Reverse transcriptase polymerase
chain reaction and quantitative reverse
transcriptase polymerase chain reaction
After the eyes were enucleated from the animal under deep anaesthe-

sia, unfixed retinae were dissected and RNA was extracted. RNA was

extracted using TRIzol
�

reagent (Invitrogen) and complementary DNA

was synthesized from 1 mg of RNA using oligo dT and random hex-

amers from the SuperScriptTM II Reverse Transcriptase kit (Invitrogen).

Complementary DNA (1 ml) was used in a reverse transcriptase poly-

merase chain reaction using Master Mix (Invitrogen) and for quanti-

tative reverse transcriptase polymerase chain reaction, SYBR-greenER

(Invitrogen) was used.

The RPL13A gene was used for normalization. The sequences of the

primers used were p300 forward 50-GGGACTAACCAATGGTGGTG–30

and reverse 50–ATTGGGAGAAGTCAAGCCTG–30 (386 bp), GAP-43

forward 50-AAGCTACCACTGATAACTCGCC-30 and reverse 50-CTTCT

TTACCCTCATCCTGTCG-30 (246 bp); coronin 1 b forward 50-GACCTG

TGCCCACATAACGATCAGG5C-30 and reverse 50-CACGATGCCGACT

CTCTTTGA-30; �-tubulin 1 a forward 50-GCTTCTTGGTTTTCCACA

GC-30 and reverse 50-TGGAATTGTAGGGCTCAACC-30 (162 bp);

SCG10 forward 50-CCACCATTGCCTAGTGACCT-30 and reverse

50-GAAGCACACACTCCACGAGA-30 (202 bp); Chl1 forward 50-CGC

CTACACAGGAGCTAAGG-30 and reverse 50-TTCTTTTGGAAGGCAGT

GCT-30 (231 bp); L1cam forward 50-CATCGCCTTTGTCAGTGCTA-30

and reverse 50-CTGTACTCGCCGAAGGTCTC-30 (162 bp); Lgals1 for-

ward 50-GCTGGTGGAGCAGGTCTCAGGAATCT-30 and reverse 50-A

AGGTGATGCACTCCTCTGTGATGCTC-30 (314 bp); Sprr1A like for-

ward 50-CTGATCACCAGATGCTGAGG-30 and reverse 50-TCCTGAGC

CATGGAAAGATT-30 (202 bp); RPL13A forward 50–CCCTCCACCCTAT

GACAAGA-30 and reverse 50–CCTTTTCCTTCCGTTTCTCC-30 (167 bp).

All primers were initially tested for their specificity by running reverse

transcriptase polymerase chain reaction samples on an agarose gel.

Only primers that under specific polymerase chain reaction conditions

gave a single band of the appropriate molecular weight were then

used for real-time polymerase chain reaction experiments. For quanti-

tative reverse transcriptase polymerase chain reaction, fold changes

were calculated following manufacture instructions (Invitrogen) and

normalized to the levels of a housekeeping gene (RPL13A).

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation assays were performed according to

the manufacturer’s recommendations (Upstate). Briefly, three retinae

per conditions (AVGFP versus AVp300 at 24 h) were dissected and

subsequently fixed in a 1% formaldehyde solution for 10 min at

37�C. Following cell lysis (0.5% sodium dodecyl sulphate, 100 mM

NaCl, 50 mM Tris–HCl, pH 8.0, 5 mM EDTA), extracts were sonicated

to shear DNA to lengths of 200–600 bp.

Chromatin solutions were incubated overnight with rotation using

4 mg of rabbit polyclonal anti-acetyl histone H3 K9-14 antibody

(Upstate) and mouse anti-p300 antibody (Abcam). The following

day protein A agarose beads, which had been blocked with salmon

sperm DNA, were added to each reaction to precipitate antibody com-

plexes. The precipitated complexes were washed and then incubated

for 4 h at 65�C in parallel with input samples to reverse the cross-link.

DNA was isolated by phenol chloroform iso-amyl alcohol extraction,

which was followed by ethanol precipitation in the presence of sodium

acetate.

‘Input’, ‘IP’ and ‘Mock’ fractions were then analysed by quantitative

polymerase chain reaction (ABI 7000) analysis with appropriate primer

pairs. The primers used were as follows: coronin 1 b 50 site 51 kb

forward 50-CTCCCAGCGTTATCATGTCA-30 and reverse 50-GGGAGA

CTCGAATGTCCTCA-30; GAP-43 50 site 51 kb forward 50-GCAGCTG

TAACTTGTGTGCA-30 and reverse 50-GGTCCAGATTGGAGGTG

TTTA-30; Sprr1al 50 site 5200 bp forward 50-ACCCTCTCACAAC

ACAAGCA-30 and reverse 50- GAAACACACTTGCCCCAGAT-30. For

real-time quantitation of polymerase chain reaction products and

fold-change measurements after chromatin immunoprecipitation,
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each experimental sample was normalized to ‘input’ and ‘Mock’ frac-

tions in triplicate from three independent samples, following the

manufacturer instructions (Upstate).

Results

The expression of the acetyltransferase
p300 is regulated during retinal
ganglion cell maturation, and is
repressed following optic nerve crush
Active gene expression is essential for axonal growth during de-

velopment (Condron, 2002). On the contrary, an active proregen-

erative gene expression programme is deficient after nerve injury

in the adult CNS, contributing to the lack of axonal regeneration

(Cai et al., 2001). First, we analysed the expression profile of

selected epigenetic markers for active gene expression including

H3 lysine K18 acetylation (H3AcK18), p300, CBP and P/CAF

during retinal ganglion cell maturation, as these three histone

acetyltransferases are responsible for H3K18 acetylation.

Importantly, in these initial experiments, although retinal ganglion

cells are organized in a clearly distinguishable layer of the retina,

the identity of retinal ganglion cells was confirmed by b-III tubulin

immunostaining (Supplementary Fig. 1). To tag retinal ganglion

cell maturation, we used sequential maturation steps of retinal

ganglion cells leading to full myelination of the optic nerve

(Tennekoon et al., 1977). Within the retina, the retinal ganglion

cell layer was stained by immunohistochemistry for H3AcK18,

p300, CBP and P/CAF before (P0), during (P7 and P21) and

after (adult) full myelination of the optic nerve (Fig. 1A).

Assessment of fluorescence intensity showed an increase of

H3AcK18 at P7 and P21 followed by a decrease in the adult

stage (Fig. 1B). All fluorescence signal measurements for the pro-

tein of interest were normalized to the nuclear 40,60-diamidino-2-

phénylindole signal (data not shown). The expression pattern

observed for H3AcK18 correlates with the expression of p300,

which increases during retinal ganglion cell maturation to decrease

in the adult (Fig. 1A and B). Conversely, CBP expression was

stable throughout the maturation of retinal ganglion cells, while

P/CAF appeared at very low and even expression levels along the

time course (data not shown).

Hence, H3 K18 acetylation seems to be regulated similarly to

the corresponding HAT p300 during retinal ganglion cell matur-

ation and to decrease in adult cells.

We then investigated the expression of H3K18 acetylation and

its acetyltransferases p300 and CBP by immunofluorescence at 24

and 72 h following optic nerve crush to investigate the post-injury

regulation of this developmental epigenetic signature, potentially

involved in axonal outgrowth. We chose a time window between

24 and 72 h for this experiment as optic nerve crush induces the

expression of early genes as early as at 24 h after injury (Robinson,

1994; Bormann et al., 1998), although the pro-regenerative pro-

gramme is not spontaneously triggered. In addition, proregenera-

tive gene expression is activated at �72 h in case of axonal

regeneration after optic nerve crush mediated by lens injury

(Fischer et al., 2004).

By immunofluorescence, we did not observe any change in

H3K18 acetylation level in the retinal ganglion cell layer after

optic nerve crush compared with sham neither at 24 nor at 72 h

(Fig. 1C and D). However, p300 and CBP expression decreased

significantly at 72 h after optic nerve crush (Fig. 1C and D).

Importantly, we also observed decreased acetylation of the tran-

scription factor p53 at lysine 373 (p53 K373) (Fig. 1C and D),

which is acetylated specifically by CBP/p300 at K373, and to-

gether with CBP/p300 can regulate neurite outgrowth in cultured

neurons (Tedeschi et al., 2009; Gaub et al., 2010). Significantly,

p53 basal level was not modified after optic nerve crush at neither

24 nor 72 h compared with sham (Fig. 1C and D).

Double immunofluorescence experiments with antibodies

anti-b-III tubulin/p300, anti-b-III tubulin/CBP or anti-b-III tubu-

lin/H3AcK18 confirmed that the expression observed in the granu-

lar cell layer is indeed localized almost exclusively in retinal

ganglion cells (Supplementary Fig. 2). In brief, optic nerve crush

does not modify the chromatin environment through histone H3

acetylation, which remains at similar lower levels in the adult as

compared with retinal ganglion cells during maturation even after

injury. However, optic nerve crush further downregulates the

enzymes responsible for lysine acetylation such as CBP and

p300, likely leading to deacetylation of p53 at K373.

The histone deacetylases inhibitor
trichostatin A enhances CBP expression,
induces retinal ganglion cell survival,
but not axonal regeneration
We have previously demonstrated that the histone deacetylases

I/II inhibitor trichostatin A induces CBP and p300 expression as

well as p53 acetylation leading to an increase of p53 binding on

specific progrowth gene promoters, thereby inducing neurite out-

growth in cultured neurons on permissive and non-permissive sub-

strates (Gaub et al., 2010). In order to explore whether the

administration of trichostatin A would enhance axonal regener-

ation after optic nerve crush via similar mechanisms, we injected

either trichostatin A (1, 10 or 100 ng/ml) or vehicle into the vit-

reous at the time of injury. Optic nerves as well as retinae were

subsequently analysed 14 days post-optic nerve crush. Trichostatin

A injection resulted in a significant increase of retinal ganglion cell

survival compared with vehicle 14 days post-injury based upon the

number of b-III tubulin-positive cells (Fig. 2A and B). Then we

performed immunohistochemistry for GAP-43 on optic nerve

sections to quantify axonal regeneration between trichostatin A

versus vehicle-treated animals. Trichostatin A-treated rats

showed a very limited non-significant increase of labelled axons

past the lesion site independently of the dose delivered, while

control animals receiving vehicle showed as expected no axonal

regeneration past the lesion site (Fig. 2C). As opposed to what we

observed previously in cultured cerebellar granule cells (Gaub

et al., 2010), trichostatin A did not induce p300 expression and

p53 K373-associated acetylation in the retinal ganglion cell layer

following optic nerve crush (Fig. 3A and B). Importantly, however,
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Figure 1 Maturation and optic nerve crush are associated with a decrease of histone acetyltransferase p300 in the retinal ganglion cell

layer. (A) Representative pictures of the retinal ganglion cell layer at different time points during retinal ganglion cell maturation (P0, P7,

P21 and adult) immunostained against CBP, p300 and H3AcK18. Scale bar = 20mm. (B) The level of protein expression was quantified by

analysis of fluorescence intensity and represented on the graph. The graphs show an increase of H3AcK18 and p300 between P0 and P21

p300 in axonal regeneration Brain 2011: 134; 2134–2148 | 2139

(continued)



trichostatin A did increase H3 acetylation, which is considered a

read-out of the activity of histone deacetylases I/II inhibitors as

well as of CBP (Fig. 3C and D). Hence, trichostatin A promotes the

survival of retinal ganglion cells concomitantly with induction of

histone acetylation and CBP expression. However, it is not able to

stimulate axonal regeneration at any of the doses employed and

does not promote the expression of p300 and of p53 acetylation,

previously shown to enhance neurite outgrowth in cerebellar neu-

rons cultured on inhibitory substrates (Gaub et al., 2010).

p300 induces axonal regeneration and
modifies the epigenome on select
proregeneration promoters
Since intravitreal trichostatin A administration fails to promote

axonal regeneration and is able to neither increase p300 expres-

sion nor p300-related p53K373 acetylation after optic nerve crush,

we decided to overexpress p300 in order to enhance axonal

Figure 1 Continued
and a decrease in adult, whereas CBP expression was not altered. P300 and H3 AcK18 level show a similar expression pattern during

retinal ganglion cell maturation (n = 3). Asterisks = unpaired two-tailed t-test, *P-value50.01; n = 3. Each average value per time point

was measured against the average value of all time points together. Error bars represent SD. (C) Immunohistochemistry of retinae shows

immunostaining of retinal ganglion cell layer against H3 AcK18, CBP, p300, p53 Ac373 and p53, 24 h and 72 h after optic nerve crush

(ONC) compared with sham. No change is observed for H3K18 acetylation at either 24 h or at 72 h after optic nerve crush compared with

sham, whereas a decrease of p300 and CBP expression is shown along with a decrease of p53 Ac373, while p53 basal level was stable.

Scale bar = 20 mm. (D) The graph represents quantification of the protein level obtained by measurement of the fluorescence signal.

Asterisks = unpaired two-tailed t-test, *P-value50.01; n = 3. Error bars represent SD. OD = optical density.

Figure 2 Histone deacetylases inhibition induces survival of retinal ganglion cells but not a significant enhancement of axonal

regeneration. (A) Representative pictures of whole mount retina immunostained against b-III tubulin showing an increase of retinal

ganglion cell survival 14 days after optic nerve crush (ONC) and injection of trichostatin A (TSA) 10 ng/ml, compared with optic nerve

crush with phosphate-buffered saline (PBS). Scale bar = 50 mm. (B) The bar graph shows quantification of retinal ganglion cells b-III tubulin

(Tuj1)-positive cells after optic nerve crush with phosphate-buffered saline or trichostatin A injection compared with sham.

Asterisk = unpaired two-tailed t-test, *P-value50.05; n = 3. Error bars represent SD. (C) Optic nerve longitudinal sections were

immunostained against GAP-43 14 days after optic nerve crush with phosphate-buffered saline or trichostatin A 10 ng/ml. Representative

pictures show sporadic short axons past the lesion site after trichostatin A stimulation. Scale bar = 100 mm.
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Figure 3 Histone deacetylases inhibition does not modify p300 expression or p53-dependent acetylation. (A) Retinae were immunos-

tained against p300, p53Ac373 and p53 24 h and 72 h after optic nerve crush (ONC) with or without trichostatin A (TSA; 10 ng/ml).

Shown are representative pictures of retinal ganglion cells showing no change for p300, p53 or p53Ac373 expression at 24 h or at 72 h

after trichostatin A, compared with phosphate-buffered saline (PBS)-injected animals. Scale bar = 20mm. (B) The bar graphs show

quantification of p300, p53Ac373 and p53 protein level analysed by measurement of the fluorescence signal. (C) Immunostaining against

H3AcK18 and CBP on retinal ganglion cells 24 h and 72 h after optic nerve crush with phosphate-buffered saline or trichostatin A

represented in the pictures show a significant increase of H3AcK18 and CBP 72 h after trichostatin A injection compared with

phosphate-buffered saline. Scale bar = 20 mm. (D) Quantification of expression levels of H3AcK18 and CBP are represented in the bar

graphs. Asterisks = unpaired two-tailed t-test, *P-value50.05. Error bars represent SD.
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Figure 4 p300 over-expression by adenovirus infection induces axonal regeneration of the optic nerve. (A) Representative pictures of

retinal ganglion cell layer after immunostaining in the retina against p300 shows expression of p300 in green fluorescence protein (GFP)-

positive cells 24 h after optic nerve crush (ONC) and AVp300 or AVGFP infection. An increase of p300 expression in the retinal ganglion

cell layer is shown following AVp300-GFP versus AVGFP infection. Scale bar = 20 mm. (B) Bar graph represents quantification of p300
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regeneration via both increased proregenerative transcription and

histone acetylation on select target promoters. Due to the large

size of p300 (8 kb), we decided to clone full-length p300 in a

size-compatible adenoviral vector carrying two cytomegalovirus

promoters driving either p300 or GFP for intravitreous in vivo

infection experiments. AVGFP virus was employed as a control.

AVp300/GFP (AVp300) or AVGFP were injected into the vitreous

at the time of injury. Optic nerves were extracted 14 days

post-injury and immunostained for GAP-43 to identify regenerat-

ing axons. Infection of p300 significantly increased p300 expres-

sion as early as at 24 h after infection (Fig. 4A and B) in the retinal

ganglion cell layer. More importantly, it resulted in a significant

increase in the number of regenerating axons compared with con-

trol GFP (Fig. 4C and D). Additionally, the combination of lens

injury, a well-known strategy to enhance neuronal intrinsic-

dependent axonal regeneration after optic nerve crush, and

p300 overexpression led to further enhancement of axonal regen-

eration as compared with lens injury or p300 overexpression alone

(Fig. 4C and D). However, we observed that AVp300 does not

induce survival of retinal ganglion cells compared with AVGFP

when counting the overall number of b-III tubulin-positive neurons

(Fig. 4E and F), therefore the pool of regenerating axons

stems from the limited pool of spontaneously surviving retinal

ganglion cells. This was confirmed by evaluating the number of

double b-III tubulin/GFP-positive cells in p300 and control virus-

infected retinae, which showed no difference (Supplementary

Fig. 3).

A percentage of retinal ganglion cells (17.7 � 3.4% SE of b-III

tubulin-positive cells, n = 3) were successfully infected as shown

by co-localization of GFP with b-III tubulin within the ganglion

cell layer in vivo (Supplementary Fig. 4). A number of cells were

also infected in the retina inner nuclear layer, corresponding

presumably to bipolar/amacrine and Müller cells (Supplementary

Fig. 4). In order to prove the cell autonomous effects of p300

overexpression specifically in neurons, we cultured primary retinal

cells and infected them with either AVGFP or AVp300. Retinal

ganglion cells were infected in culture as shown by expression

of GFP in b-III tubulin-positive cells (Fig. 5A). More importantly,

we found that overexpression of p300 induced a significant in-

crease in neurite outgrowth as compared with control-infected

neurons (Fig. 5B and C). All together, these data suggest that

p300 overexpression can promote axonal regeneration but not

survival of retinal ganglion cells following optic nerve crush and

that these effects are at least in part mediated by neuronal intrinsic

mechanisms.

Immunofluorescence experiments further showed that

overexpression of p300 induced both pro-axonal regeneration

transcription factor and histone H3 hyperacetylation in the retinal

ganglion cell layer following optic nerve crush. At both 24

and 72 h post-optic nerve crush, we observed a significantly

increased p53K373 acetylation in the retinal ganglion cell layer

in AVp300 versus AVGFP infection, while total p53 levels

remained unchanged (Fig. 6A and B). Similarly, we found that

the acetylation of the pro-axonal regeneration transcription

factor C/EBP, which can be acetylated on lysine 215 and

216 (Cesena et al., 2007; Wang et al., 2007), was enhanced

at 24 and 72 h after optic nerve crush by p300 overexpression

(Fig. 6A and B). Lastly, we confirmed as expected that p300

overexpression was able to induce H3K18 acetylation (Fig. 6A

and B).

Therefore, induction of p300 resulted in an increased acetylation

of p53 and C/EBP, which is associated with their increased

Figure 4 Continued.
protein levels analysed by measurement of the fluorescence signal. Asterisks = unpaired two-tailed t-test, *P-value50.01; n = 3.
Error bars represent SD. (C) Representative pictures of longitudinal optic nerve sections immunostained against GAP-43 14 days
after optic nerve crush and infected with AVGFP or AVp300-GFP (alone or in combination with lens injury) show axonal
regeneration in AVp300-infected rats, which is enhanced by lens injury. Scale bar = 100 mm. (D) Adenoviral overexpression of
p300 alone or in combination with lens injury induces a significant increase in the number of axons past the lesion site compared
with AVGFP-infected nerves alone or in combination with lens injury as shown in the bar graph (n = 4 per condition).
Asterisks = unpaired two-tailed t-test, *P-value50.05. Error bars represent SD. (E) Representative pictures of whole flat retina
immunostained against b-III tubulin (Tuj1) 14 days after optic nerve crush with AVGFP or AVp300 infection. Scale bar = 50 mm.
(F) Bar graphs show quantification of retinal ganglion b-III tubulin-positive cells on whole flat retina (n = 3) that reveals no
difference in retinal ganglion cell survival (as compared with sham) 14 days after optic nerve crush with AVGFP or AVp300.
OD = optical density.
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transcriptional activity, and with H3 hyperacetylation, signature of

active chromatin. However, in order to assess whether AVp300, in

addition to enhancing axonal regeneration, is also directly capable

of occupying and acetylating the promoters of proregenerative

gene targets, we performed chromatin immunoprecipitation

assays from dissected retinae after optic nerve crush and infection

with either AVp300 or AVGFP. Selected gene targets included

Sprr1a and GAP-43 as markers of pro-regenerative state of retinal

ganglion cells (Benowitz and Routtenberg, 1997; Fischer et al.,

2004), and coronin 1B as a pro-neurite outgrowth gene and

target of p53-dependent acetylation (Di Giovanni et al., 2006).

Following p300 overexpression, we found a significant increase

of p300 proximal promoter occupancy on GAP-43, coronin 1 b

and Sprr1a (Fig. 7A), which was paralleled by a strongly

enhanced promoter acetylation of H3 (Fig. 7B). Importantly, as

p300 promoter occupancy and p300-dependent promoter

acetylation are associated with gene transcription, we measured

gene expression by real-time reverse transcriptase polymerase

chain reaction post-optic nerve crush and AVp300 or AVGFP in-

fection. Indeed, we observed an increase in messenger RNA

expression of several pro-axonal outgrowth genes, including

GAP-43, Sprr1a and coronin 1 b (Fig. 7C), as well as �-tubulin

1 a, Chl1 and Lgals1 (Fig. 7D). Interestingly, all of these genes

contain p300-related p53 putative binding sites, and their

induction is likely to contribute to the pro-axonal regenerative

properties of p300. In summary, overexpression of p300 induces

axonal regeneration upon optic nerve crush, acetylates the

proregenerative transcription factors p53 and C/EBP, directly

occupies and acetylates the promoters of the regeneration-

associated genes GAP-43, coronin 1 b and Sprr1a and drives the

gene expression programme of several regeneration-associated

genes.

Figure 5 Overexpression of p300 induces neurite outgrowth in cultured cells. (A) Retinal cells were cultured on poly-D-lysine for 24 h and

infected with AVGFP or AVp300 at MOI 100. Immunostaining against b-III tubulin for retinal ganglion cells shows a colocalization with

infected green fluorescence protein (GFP)-positive cells. Scale bar = 20mm. (B) Representative pictures of dissociated retinal primary

culture immunostained against b III-tubulin show enhanced neurite outgrowth in p300-infected GFP-positive cells compared with control

virus infection. Scale bar = 20 mm. (C) Quantification of neurite length shows an increase in neurite outgrowth 72 h after infection of

AVp300 compared with AVGFP-infected cells. Asterisk = unpaired two-tailed t-test, *P-value50.01; n = 3. Error bars represent SD.

MOI = multiplicity of infection.
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Discussion
Variable degrees of axonal regeneration of the optic nerve have

been achieved by both inhibiting the extrinsic environment or by

enhancing the intrinsic capacity of retinal ganglion cells (Bertrand

et al., 2005, 2007; Park et al., 2008; Moore et al., 2009). As

far as the intrinsic strategies are concerned, lens injury, the

pro-inflammatory molecule oncomodulin, the Bcl-2 inhibitor

BAG-1 or ciliary neurotrophic factor have all led to substantial

axonal regeneration (Yin et al., 2006, 2009; Planchamp et al.,

2008). More recently, direct modifications of transcription or of

protein synthesis via KLF4 or PTEN deletion, respectively,

promoted axonal regeneration after optic nerve crush (Park

et al., 2008; Moore et al., 2009), and to a substantial distance

in the case of combinatory treatment with PTEN deletion, cyclic

adenosine monophosphate and oncomodulin (Kurimoto et al.,

2010).

Here, we show for the first time that intrinsic axonal regener-

ation of the optic nerve can be achieved by a different class of

molecules, via overexpression of a transcriptional coactivator and

epigenetic modifier, the acetyltransferase p300. Overexpression of

p300 induces axonal regeneration of the optic nerve following

crush, hyperacetylates histone H3, acetylates the promoters of

several regeneration-associated genes and induces their gene

expression. In addition, overexpression of p300 results in the

acetylation of the pro-axonal outgrowth transcription factors p53

and C/EBP. p53 K373 acetylation has been previously shown to

promote neurite outgrowth in primary neurons and to be a signa-

ture of active p53 that is required for axonal regeneration

(Tedeschi et al., 2009; Gaub et al., 2010). Acetylated C/EBP,

whose acetylation enhances its transcription potential, has been

shown to be induced in retinal ganglion cells during lens

injury-mediated axonal regeneration, and has been reported to

be required for axonal regeneration in the PNS (Nadeau et al.,

2005).

It is therefore conceivable that p300 may unlock a silent

pro-regenerative gene expression programme by driving the

expression of several regeneration-associated genes via enhanced

transcription.

We found initially that p300 was regulated during retinal gan-

glion cell maturation to decrease in the mature retinal ganglion

cells as well as following optic nerve crush. Importantly, the signal

for p300 and the related proteins does not follow the same pat-

tern of expression in the inner nuclear layer (data not shown),

suggesting that it is specific to the retinal ganglion cell layer. In

addition, in the ganglion cell layer, the expression of histone acet-

yltransferases is largely restricted to retinal ganglion cells, and is

only sporadically found in neighbouring glial cells.

Since mature adult neurons are known to be less plastic and to

express a less vigorous pro-regenerative gene expression pro-

gramme, we wondered whether p300 downregulation might be

in part responsible for the lack of intrinsic neuronal proregenera-

tive capacity. Indeed, after ruling out the pro-regenerative poten-

tial of a more general epigenetic strategy with the histone

deacetylase inhibitor trichostatin A, which does not enhance

p300 expression, we found that overexpression of p300 was

able to promote axonal regeneration of surviving retinal ganglion

cells. This supports the model where reactivating a silenced devel-

opmental programme in the adult may favour axonal

regeneration.

P300 is a transcriptional coactivator and histone-modifying

enzyme (Ogryzko et al., 1996), thus contributing to epigenetic

changes responsible for enhanced transcriptional activity.

Recently, we have shown that a transcriptional complex formed

by CBP/p300 and p53 occupies the promoter of GAP-43 driving

its expression during axonal regeneration following facial nerve

axotomy (Tedeschi et al., 2009). Subsequently, we also observed

that overexpression of CBP and p300 was able to promote neurite

outgrowth on permissive and inhibitory myelin substrates in

Figure 6 p300 overexpression leads to increased acetylation of

p53, C/EBP and H3 K18. (A) Immunohistochemistry of retinae

against p53 Ac373, p53, C/EBP Ac215/216 and H3AcK18

shows expression in the retinal ganglion cell layer 24 h after optic

nerve crush (ONC) and AVGFP or AVp300 infection. Shown is

an increase of H3AcK18, p53 and C/EBP acetylation. The basal

level of p53 is unchanged. Scale bar = 20 mm. (B) The bar graphs

represent assessment of fluorescence signal in retinal ganglion

cells for the different antigens. Asterisk = unpaired two-tailed

t-test, *P-value50.01; n = 3. Error bars represent SD.

OD = optical density.
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primary cerebellar neurons (Gaub et al., 2010). Here we show for

the first time that p300 can promote neurite outgrowth in retinal

ganglion cells, supporting the neuronal intrinsic effect of p300 in

axonal regeneration. We used adenoviral infection to achieve

p300 overexpression due to the large size of p300 (�8 kb),

which is too large for other viral vectors such as adeno-associated

virus (maximum insert size 55 kb) that have become the gold

standard for retinal ganglion cell infection in vivo in recent years

(Dinculescu et al., 2005). However, adenoviruses have been ex-

tensively used to infect both non-neuronal and neuronal cells in

the eye, both via intravitreal (Jomary et al., 1994; Li et al., 1994;

Weise et al., 2000; Zhang et al., 2008) or axonal retrograde in-

jection (Cayouette and Gravel, 1996; Isenmann et al., 2001), and

our findings suggest that our adenovirus is able to infect primary

neurons at very high efficiency in culture and at a lower efficiency

in vivo. It is possible that infection of bipolar/amacrine cells also

plays an important role in determining the intrinsic growth ability

of retinal ganglion cells (Goldberg et al., 2002), and that the

infection of glial cells may contribute to stimulating intrinsic

axonal regeneration of retinal ganglion cells. Conceptually, the

specificity of p300-dependent axonal regeneration is supported

by the negative findings following trichostatin A treatment,

where overall pro-transcriptional epigenetic changes do not en-

hance axonal regeneration. Interestingly, trichostatin A does

induce survival of retinal ganglion cells 14 days after optic nerve

crush, as well as increased CBP expression and H3K18 acetylation,

but fails to promote p300 expression and p53 acetylation.

Conversely, overexpression of p300 does not induce retinal gan-

glion cell survival but promotes axonal regeneration in surviving

retinal ganglion cells, suggesting that histone deacetylases inhib-

ition and p300 activate two independent pathways. Axonal regen-

eration is not always linked to neuronal survival, as in the case of

deletion of the transcription factor KLF4 (Moore et al., 2009),

which results in a significant increase in axonal regeneration

Figure 7 Infection of AVp300 enhances promoter occupancy of p300 and histone acetylation on specific proregenerative genes along

with an increase of their gene expression level. (A) Chromatin immunoprecipitation (ChIP) assay from dissected retina shows increased

occupancy of the GAP-43, coronin 1 b and Sprr1a promoters by p300 following 24 h of optic nerve crush plus AVp300 injection versus

AVGFP. Fold change was calculated as a ratio of promoter occupancy between AVp300 treated versus AVGFP in three independent

animals in triplicate samples. Asterisks = unpaired two-tailed t-test, *P-value50.05, **P-value50.01. Error bars represent SD. (B) Bar

graph shows an increase of histone H3 acetylation on Sprr1a, coronin 1 b and GAP-43 promoter 24 h after optic nerve crush with AVp300

compared with AVGFP infection. Fold change was calculated as a ratio of promoter occupancy between AVp300 treated versus AVGFP in

three independent animals in triplicate samples. Asterisks = unpaired two-tailed t-test, *P-value50.05, **P-value50.01. Error bars

represent SD. (C and D) Bar graphs show real-time reverse transcriptase polymerase chain reaction (PCR) messenger RNA (mRNA)

expression data for p300 and a number of regeneration-associated genes including Sprr1a, GAP-43 and coronin 1 b (C) or for �-tubulin1a,

SCG10, Chl1, L1CAM and Lgals1 (D). Optic nerve crush with AVp300 induces an increase of several of these genes compared with optic

nerve crush with AVGFP in three independent animals. Asterisks = unpaired two-tailed t-test, *P-value50.05, **P-value5 0.01.

Error bars represent SD.
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from surviving retinal ganglion cells but not in increased retinal

ganglion cell survival. Here, neuronal survival was assessed by

b-III tubulin staining, which although it cannot discern among

specific cell death mechanisms, is widely used to count retinal

neurons. If lack of enhanced p300-dependent retinal ganglion

cell survival is disappointing, it highlights the efficacy and specifi-

city of p300 in promoting the axonal regeneration programme.

We have in fact shown, for the first time, that a selective modi-

fication of the transcriptional environment is capable of promoting

axonal regeneration in the CNS by enhancing the intrinsic prore-

generative programme. Moreover, the enhanced axonal regener-

ation achieved by the overexpression of p300, along with lens

injury, suggests that p300 may further stimulate the intrinsic

gene expression programme known to be activated by lens

injury. Therefore, future combinatory experiments with molecules

such as oncomodulin, deletion of PTEN or delivery of ciliary neuro-

trophic factor are also expected to enhance the level of

p300-dependent axonal regeneration by boosting the intrinsic ret-

inal ganglion cell regeneration potential.
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Supplementary Figures 

Supplementary Figure 1. 

Representative immunofluorescence of the retina performed with Ab against  III tubulin and 

counterstained with DAPI. Shown in a higher magnification on the right are  III-tubulin 

positive retinal ganglion cells (retinal ganglion cell) in the ganglion cell layer (GCL). Scale 

bar: 50 µm. 

 

Supplementary Figure 2. 

Representative double immunofluorescence of the retina performed with Ab anti- III tubulin 

and anti-p300, anti-CBP, or anti-H3AcK18 in sham as well as after optic nerve crush (72 

hours). As shown in the merged images, almost all p300, CBP or H3AcK18 positive cells are 

also ß-III tubulin positive (retinal ganglion cells). Scale bar: 10 µm. 

 

Supplementary Figure 3. 

Bar graphs show quantification of III tubulin/green fluorescent protein double positive 

retinal ganglion cells on whole flat retina (n: 3) that reveals no difference in retinal ganglion 

cells survival (as compared to sham) 14 days after optic nerve crush with AVgreen 

fluorescent protein or AVp300.  

 

 



Supplementary Figure 4. 

Confocal microscopy images of immunohistochemistry in the retina for tubulin24h 

after intravitreal injection of AVgreen fluorescent protein and optic nerve crush. Shown is 

infection of retinal ganglion cells in the ganglion cell layer (GCL) in several double positive 

green fluorescent protein and tubulininfected cells (arrows). Scale bar: 20 µm 
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Axonal regenerative failure is a major cause of neurological impairment following central

nervous system (CNS) but not peripheral nervous system (PNS) injury. Notably, PNS injury

triggers a coordinated regenerative gene expression programme. However, the molecular link

between retrograde signalling and the regulation of this gene expression programme that

leads to the differential regenerative capacity remains elusive. Here we show through

systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor

(PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key

regeneration-associated genes following a peripheral but not a central axonal injury.

Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde

signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is

necessary for conditioning-dependent axonal regeneration and also singularly promotes

regeneration after spinal cord injury. Thus, we find a specific epigenetic mechanism that

regulates axonal regeneration of CNS axons, suggesting novel targets for clinical application.
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T
he regenerative response initiated following axonal injury
in the peripheral nervous system (PNS) versus the central
nervous system (CNS) leads to differential growth

capacities and repair. In fact, the lack of pro-neuroneal growth
gene expression and glial inhibitory signals leads to regenerative
failure following CNS but not PNS injury1–4. Immediately after a
peripheral nerve injury, rapid ion fluxes increase, followed by a
rise in cAMP levels, axonal translation occurs, phosphorylation
retrograde cascades activate transcription factors, gene expression
is induced and finally regeneration occurs5,6. However, the final
link between axonal injury-induced retrograde signalling and the
regulation of essential regenerative gene expression remains
elusive. The dorsal root ganglia (DRG) sensory neurone system
has a central as well as a peripheral axonal branch departing
from a single cell body. This allows for bimodal injury inputs
with differing regenerative capacities into one central
transcriptional hub. Interestingly, the lack of regeneration of
injured ascending sensory fibres in the spinal cord can be partially
enhanced by an injury to the peripheral branch (conditioning
lesion) of DRG neurones7. In search of key regulatory
mechanisms that may clarify the molecular nature of this
regenerative gene expression programme, we hypothesized that
as an ‘orchestrator of gene regulation’ epigenetic changes would
direct expression of genes crucial for regeneration only in the
presence of pro-regenerative signalling following peripheral but
not central damage.

Identification of a specific regulatory mechanism shared by
several essential genes may lead to novel molecular strategies
recapitulating the conditioning effect, thus non-surgically enhan-
cing axonal regeneration in the CNS. To this end, we employed the
first systematic approach to understand the epigenetic environ-
ment in DRG neurones. We examined both DNA methylation and
various key histone modifications with regards to gene regulation
following axonal injury. We found that p300/CBP-associated factor
(PCAF)-dependent acetylation of histone 3 lysine 9 (H3K9ac),
paralleled by a reduction in methylation of H3K9 (H3K9me2),
occurred at the promoters of select genes only after PNS axonal
injury. In addition, we observed that extracellular signal-regulated
kinase (ERK) axonal retrograde signalling is required for PCAF-
dependent acetylation at these promoters and for their enhance-
ment in gene expression. Finally, we established that PCAF is
required for regeneration following a conditioning lesion and
PCAF overexpression promotes axonal regeneration similar to that
of a conditioning lesion after CNS injury in spinal ascending
sensory fibres. Our results show the first evidence of immediate
retrograde signalling leading to long-term epigenetic reprogram-
ming of gene expression of select genes whose modulation leads to
axonal regeneration in the hostile spinal environment.

Results
Histone codes are shaped by a peripheral not by a central
lesion. Given that epigenetic changes are a rapid and dynamic
way to translate external stimuli into targeted and long-lasting
gene regulation, such has been observed in learning and memory,
seizures, stroke and neuroneal differentiation8–11, we
hypothesized that retrograde signals following axonal injury
could lead to an epigenetic environmental shift facilitating the
expression of genes critical to regeneration. We believed that a
positive retrograde signal initiated by PNS injury could relax the
chromatin environment surrounding specific promoters and
allow for gene expression; however, a negative signal following
CNS injury may restrict promoter accessibility and inhibit gene
expression. Following equidistant CNS (dorsal column axotomy,
DCA) or PNS (sciatic nerve axotomy, SNA) axotomies, from
L4-L6 DRG we assessed both high-throughput promoter

and CGI DNA methylation (DNA methylation microarrays)
and histone modifications (quantitative chromatin immuno-
precipitation (ChIP) assays) at the proximal promoters of genes
previously established to be critical to regeneration such as
growth-associated protein 43 (GAP-43)12, Galanin13 and brain-
derived neurotropic factor (BDNF)14,15 (Fig. 1a).

DNA methylation arrays showed a modest number of genes
differentially methylated between injuries (Supplementary
Fig. 1a–e); however, none of the genes associated with regenera-
tion displayed significant levels of methylation nor were they
differentially methylated between SNA and DCA (Supplementary
Fig. 2a). More importantly, and as opposed to a recent study
investigating folate and its DNA methylation after sciatic and
spinal injury16, quantitative RT–PCR analysis of the differentially
methylated genes, and DNA methyltransferases did not show a
consistent correlation between DNA methylation levels and gene
expression (Supplementary Figs 2b–e and 3). Therefore, promoter
and CGI DNA methylation does not appear to be a key factor in
the differential regenerative response between CNS and PNS
injuries in the DRG system.

Next, we investigated whether key histone modifications
would be specifically enriched on established critical genes for
the regenerative programme in DRG neurones. Of all histone
modifications that correlate with active gene transcription
(H3K9ac, H3K18ac, H3K4me2)17 or gene repression (H3K9me2
and H3K27me3)17 that were screened, H3K9ac, H3K9me2 and
H3K27me3 were enriched compared with IgG on most
promoters; however, only H3K9ac and H3K9me2 were found
to be differentially enriched at GAP-43, Galanin and BDNF
promoters, consistently correlating with early and sustained
increased expression following SNA (1–7 days; Figs 1b,c and 2a–d;
Tables 1 and 2). Additionally, these three genes presented
common promoter motifs in CpG content as well as
transcription-binding sites that together with increased H3K9ac
at their promoters suggest common transcriptional regulation
(Fig. 1b,c). H3K9ac and the H3K9ac-specific acetyltransferase,
PCAF, are typically found in the proximity of transcriptional start
sites of actively transcribing genes17, and accordingly PCAF was
also enriched at these promoters (Fig. 1c). Interestingly,
H3K9me2, which is associated with gene silencing17, was found
to be decreased at these promoters and inversely correlated to
gene expression following SNA (Fig. 1c). In contrast, SCG-10,
whose gene expression is unaltered after 24 h and only modestly
increased following 3- and 7-day SNA (Fig. 1b), did not show an
enhancement of H3K9ac or PCAF at its promoter (Fig. 1c). Given
that a preconditioning lesion (SNA preceding DCA) activates the
regenerative capacity of the CNS7, we questioned whether a PNS
epigenetic signal overrides a CNS signal. We observed an increase
in the gene expression of these genes following preconditioned
DCA versus DCA alone, which correlated with an increase in
PCAF at these promoters (Fig. 1d,e). Furthermore, a broader
picture of post-axotomy gene expression profiles and H3K9ac
promoter enrichment is depicted by regeneration-associated
(Chl1, L1cam, SPRR1a)18, axonal growth (ATF3 and Bcl-xL)19,20

housekeeping (ribosomal unit 18S) genes and axonal structure
(NF-L) genes21 (Fig. 2a,b). Importantly, these experiments show
that H3K9ac, a marker of actively transcribing genes, is selectively
enriched on the promoters of GAP-43, Galanin and BDNF, but not
on the promoters of other SNA-induced genes such as SPRR1a,
ATF3 and HSP27 (Fig. 2a–d; Table 1), suggesting that their
common regulation maybe linked to their importance in
regeneration.

NGF-MEK-ERK signalling regulates PCAF and H3K9ac. Next,
we turned our attention to understanding whether retrograde
signalling following SNA plays a role in this positive chromatin
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remodelling. Immediately following peripheral injury, pERK
levels rise in the injured axon and ERK signalling modules are
retrogradely transported to the DRG cell body22,23, where we
show that global PCAF and H3K9ac levels rise (Fig. 3a–c). In
adult primary DRG neuroneal cultures, nerve growth factor
(NGF), an activator of ERK signalling and neurite outgrowth24,
increased the expression of PCAF and H3K9ac, while the ERK
kinase (MEK) inhibitor, PD98059 (PD), prevented PCAF and
H3K9ac induction25 (Fig. 4a,b). NGF induces PCAF expression,
nuclear localization and activation of acetyltransferase activity
specifically by threonine phosphorylation at its histone
acetyltransferase domain26. In L4-L6 DRG, SNA induced the
expression of nuclear PCAF and PCAF threonine but not serine

phosphorylation (Fig. 4c,d). This correlated with an increase in
pERK in DRG, as well as nuclear PCAF translocation and
acetylation of H3K9, all of which are dependent on ERK
activation following SNA (Fig. 4e–i). As predicted, inhibition of
ERK activation following SNA decreased gene expression as well
as PCAF and H3K9ac at the promoters of GAP-43, Galanin and
BDNF (Fig. 4j–l). However, in conjunction with our theory of
specificity of regulation, H3K9ac did not correlate with gene
expression at other promoters following inhibition of ERK
activation (Supplementary Fig. 4a,b). Remarkably, cAMP
signalling in adult DRG neuroneal cultures did not induce
nuclear PCAF translocation (Supplementary Fig. 5), suggesting
that cAMP-mediated mechanisms only partially supporting
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conditioning-dependent axonal regeneration27 operate inde-
pendently from pERK-induced epigenetic PCAF-mediated
long-term mechanisms. These data present the first link
between retrogradely transported PNS-injury-related signals and
epigenetic modifications at the promoters of specific established
regenerative genes.

PCAF supports axonal regeneration mimicking a conditioning
lesion. As a preconditioning lesion is able to induce neurite
outgrowth in primary adult DRG neurones cultured on permis-
sive (laminin) or non-permissive (myelin) substrates28, we tested
whether increased PCAF expression by adeno-associated virus

Table 1 | Correlation between gene expression and H3K9ac ChIP data.

H3K9ac at promoters

Increase No change Decrease

Gene expression Increase BDNF, Galanin, GAP-43 ATF3, HSP27 Sprr1a
No change CAP-23 SCG-10, Chl1, L1cam, 18S, Lgals
Decrease NF-L Bcl-xL

BDNF, brain-derived neurotropic factor; ChIP, chromatin immunoprecipitation; H3K9ac, acetylation of histone 3 lysine 9.
A table displaying our gene expression data for genes associated with regeneration or known data for control genes and our H3K9ac ChIP data at their promoters, showing a clear correlation between
increased gene expression and H3K9ac at the promoters of the genes BDNF, Galanin and GAP-43.
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Table 2 | Enrichment of histone modifications over IgG.

Histone modifications Enrichment compared with IgG

H3K9ac Yes
H3K18ac No
H3K4me2 No
H3K9me2 Yes
H3K27me3 Yes

Of the histone modifications examined, those shown in the table in white are inducers and those
in grey are repressors of gene expression. Two of the histone modifications screened for this
study, H3K18ac and H3K4me2, did not show enrichment compared with IgG for any of the genes
examined.
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(AAV, Supplementary Fig. 6a–c) could also drive neurite
outgrowth. Indeed, neurite outgrowth increased on laminin and
myelin by PCAF overexpression in DRG (Fig. 5a,b) as well as
another CNS primary culture, cerebellar granule neurones (CGN,
Supplementary Fig. 7a). In CGN (employed for its ease of culture
and greater cell number for use in immunobloting, ChIP and
transfections for luciferase assays) there was a significant decrease
in H3K9ac when plated on myelin (Supplementary Fig. 7b,c) and
a reduction of H3K9ac at select promoters, which was reverted to
permissive levels with overexpression of PCAF (Supplementary
Fig. 7d). Likewise, PCAF overexpression reversed myelin
repression of select genes in DRGs (Fig. 5c). Furthermore, the
drug Garcinol (5 mM), which inhibits PCAF acetyltransferase
activity29, reduced neurite outgrowth in DRG (Fig. 5d,e)
and CGN (Supplementary Fig. 7e,f), decreased the luciferase
expression of a GAP-43 promoter luciferase construct in CGN
(Supplementary Fig. 7g) and decreased select gene expression
in DRG (Fig. 5f). In ex vivo experiments, the inhibition of
PCAF activity by Garcinol was able to significantly limit neurite
outgrowth on both laminin and myelin as well as repress H3K9ac
induced by SNA (Fig. 5g–i). Correspondingly, PCAF� /� mice
provided full abolishment of neurite outgrowth induced by SNA
in ex vivo cultured DRG neurones (Fig. 5j,k). Additionally,
SNA-dependent neurite outgrowth in ex vivo cultured DRG
neurones was blocked by ERK inhibition via delivery of PD at the
nerve stump (Fig. 6a–c), phenocopying PCAF loss of function
experiments.

Thus far our data suggest that PCAF is integral to the signalling
involved following PNS injury leading to regeneration by altering
the epigenetic landscape and stimulating intrinsic competence
through crucial gene expression. To validate these observations
in vivo, we studied regeneration of ascending sensory fibres
following a preconditioning lesion (SNA 7 days before DCA) in
the absence of PCAF and found that PCAF is required for

regeneration induced by a conditioning lesion and for the
expression of GAP-43, Galanin and BDNF in DRG (Fig. 7a–g).
Importantly, axonal tracing in SCI experiments in a cohort of
PCAF-/- mice and strain-matched controls showed that PCAF-/-
mice did not display any abnormalities or overt phenotype in
axonal tracing or regarding the lesion site (Fig. 7a).

Next, we wondered whether PCAF overexpression alone would
mimic regeneration induced by a conditioning lesion and
enhance regeneration of ascending sensory fibres in the spinal
cord following dorsal column lesion. Indeed, similar to that
previously reported for a preconditioning lesion7,30, PCAF
overexpression (Supplementary Fig. 8) significantly increased
the number of regenerating fibres across the lesion and up to a
distance of 1 mm rostral of the lesion site (Fig. 8a–c and
Supplementary Fig. 9). Important to note, the depth of the lesion
(Supplementary Fig. 10) and lack of tracing rostral to the lesion
site (Supplementary Fig. 11) allowed excluding the presence
of spared fibres. Furthermore, the introduction of the AAV
directly into the sciatic nerve is in and of itself a PNS injury
that does induce minimal sprouting towards the lesion in the
GFP control.

Discussion
Our work demonstrates that PCAF is required for conditioning-
dependent spinal regeneration and that PCAF overexpression
alone is able to promote regeneration of sensory fibres across the
injured spinal cord and beyond similarly to previously established
conditioning paradigms. Furthermore, PCAF-induced regenera-
tion correlated with a significant increase in the expression of
H3K9ac, GAP-43, Galanin and BDNF in the L4-L6 DRG. The
definition of regeneration-associated genes (RAGs) is genes
differentially induced between the regenerating PNS and non-
regenerating CNS systems; however, this does not validate the
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entire class of genes as essential for immediate and sustained
axonal regeneration. In support of this, our data show that PCAF-
dependent regulation of GAP-43, Galanin and BDNF is at the
essential core of the regenerative programme.

An immediate response to the external stimulus of a peripheral
axonal injury is to seal the wound. This is followed by electrical
impulses and calcium fluxes that are the first messages relayed
from the lesion site to the cell body requesting assistance. Next, is
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a rise in cAMP levels and phosphorylation signalling by multiple
players involved in transmitting further information to the cell
body5,6. Recently, it has been shown that calcium influx ejects
histone deacetylase 5 (HDAC5) from the DRG nucleus correlating
to increased global H3ac and gene expression31. It has been
hypothesized that merely shifting the balance from a deacetylated
to a globally acetylated chromatin environment by inhibition of
HDACs could recapitulate the conditioning lesion and could lead
to regeneration. However, recent experimental evidence32 and our
own work using HDAC class I and HDAC class I and II
inhibitors33 has proven this to be insufficient in producing post-
lesion regeneration of sensory fibres following a spinal or optic
nerve injury and therefore unlikely the key to unlocking the
molecular mechanisms of regeneration. While our work here
describes that specific epigenetic codes are induced endogenously
following a conditioning lesion that leads to CNS regeneration, it
is also consistent with previous findings from our laboratory that
showed the presence of a transcriptional complex formed by p53,
p300 and PCAF in the proximity of several RAGs including GAP-
43, Coronin 1b and Rab13 in primary neurones as well as facial
motor neurones in a PNS facial nerve axotomy model34–36.
Additionally, we found that the histone acetyltransferase p300
(which may form a complex with PCAF) is developmentally
regulated in retinal ganglion cells and whose overexpression drives
axonal regeneration of the injured optic nerve33.

While it is known that signals are sent via retrograde transport
machinery23,37–39, how they are decoded into the gene expression
of key axonal regeneration players for growth towards re-
innervation of the lost target has not been known until now. Here,
we have shown the first systematic study of various epigenetic
modifications revealing specifically that increased H3K9ac
and PCAF as well as decreased H3K9me2 at the promoters of
GAP-43, Galanin and BDNF are due to retrogradely induced
pERK activation of PCAF leading to essential gene activation,
which is sufficient to mimic the regenerative response assembled
by a conditioning lesion, thus driving regeneration in the CNS.

The fundamentals of decoding the regenerative retrograde
signal by understanding the specific epigenetic changes that occur
to chromatin surrounding essential genes is paramount in our
ability to recapitulate this mechanism when the signal is lacking,
such as after spinal cord injury (SCI). Here we take the first steps
in this understanding that may lead to the design of epigenetic-
related regenerative therapies for SCI patients.

Methods
Reagents. PD 98059 (Calbiochem), Garcinol (Sigma-Aldrich), NGF (BD
Biosciences) and dbcAMP (Enzo Life Sciences) were purchased from respective
companies. The following antibodies were purchased and utilized, rabbit anti-
PCAF (ab12188, Abcam), mouse anti-PCAF (E8, sc-13124, Santa Cruz Bio-
technology), rabbit anti-AcH3K9 (no. 9671, Cell Signalling), rabbit anti-H3K9me2
(no. 9753, Cell Signalling), mouse anti-H3K27me3 (ab6002, Abcam), mouse
anti-H3K4me2 (no. 9726, Cell Signalling), rabbit anti-H3K18ac (ab15823, Abcam),
mouse anti-NeuN (MAB 377, Millipore), rabbit anti-phospho-Erk 1/2 (no. 9101,
Cell Signalling), mouse anti-�III tubulin (no. G712A, Promega), mouse b-actin
(A2228, Sigma), rabbit anti-Phospho-Threonine (no. 600-403-263, Rockland),
rabbit anti-Phospho-Serine (no. ADI-KAP-ST2103-E, Enzo Life Sciences), rabbit
anti-MAP2 (sc20172, Santa Cruz Biotechnology), rat anti-Glial fibrillary acidic
protein (GFAP) (no. 13-0300, Invitrogen), rabbit anti-BDNF (sc-546, Santa Cruz
Biotechnology), rabbit anti-Galanin (T-4334, Bachem Peninsula Laboratories) and
sheep anti-GAP-43 (no. NBP1-41123, Novus Biologicals).

Mice. All mice used for this work were treated according to the Animal Welfare
Act and to the ethics committee guidelines of the University of Tübingen. Equally
distributed male and female C57Bl6/J (bred from Charles River Laboratories), CD1
or CD1 PCAF� /� (generated in Dr Boutillieŕs laboratory) mice ranging from
6 to 8 weeks of age were used for all experiments. C57Bl6/J were used for all studies
except those specifying PCAF null mice. For surgeries, mice were anesthetized with
ketamine (100 mg kg� 1 body weight) and xylazine (10 mg kg� 1 body weight).
For all experiments, we employed a target for the appropriate expected power
calculation linked to an ad hoc statistical test.

Dorsal column axotomy. Surgeries were performed as previously reported40.
Briefly, mice were anesthetized and a T10 laminectomy was performed (B20 mm
from the L4-L6 DRGs), the dura mater was removed, taking care of not damaging
the spinal cord. A dorsal hemisection until the central canal was performed with a
microknife (FST). For the control laminectomy surgery, the dura mater was
removed but the dorsal hemisection was not performed.

Sciatic nerve axotomy. Mice were anesthetized. At B20 mm far from L4-L6
DRG, a 10-mm incision was performed on the gluteal region and muscles were
displaced to expose the sciatic nerve for a complete transection with spring
micro-scissors. For the PD study 30 s before transection, 2.5 ml of 100% DMSO
or 2.0 ml of PD 98059 were slowly pipetted on the nerve. Finally, skin was closed
with two suture clips. The nerve fibre was left uninjured in sham surgery.

Methylated DNA immunoprecipitation from DRG ex vivo. For each of the three
time points (1, 3 and 7 days post SNA or DCA and naive), L4-L6 DRG were
collected from two mice per time point and condition in triplicate for injury
samples and naive, and in duplicate for shams. Frozen tissue was ground and
digested with 0.2 mg ml� 1 Proteinase K. The lysate was then sonicated to average
size of 700 bp and cleared of remaining tissue by centrifugation. Genomic DNA
was extracted from the lysate via standard phenol–chloroform extraction and
DNA precipitation protocols. MeDIP was then performed according to the
manufacturer’s protocol for the ChIP Kit from Upstate/Millipore. A total of 10 mg
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of genomic DNA and 5 mg of a 5-methyl-Cytosine antibody (Eurogentec, BI-
MECY-0100) were added to immunoprecipitate methylated DNA fragments. The
Whole Genome Amplification Kit (Sigma-Aldrich) was applied to amplify 20 ng of
genomic samples to a maximum yield of 3–7 mg, followed by subsequent column
purification using the GenElute PCR Clean-Up Kit (Sigma). MeDIP efficiency was
tested with previously published primers for methylated H19 ICR41.

DNA methylation microarray. Whole-genome amplified, high-quality42 samples
(input genomic DNA, immunoprecipitated methylated DNA or no-antibody
control) were sent to Roche/NimbleGen for DNA methylation microarray analysis.
NimbleGen processed the samples as described in its ‘NimbleChip Arrays User’s
Guide for DNA Methylation Analysis’. A ‘2007-02-27 MM8 CpG Island Promoter
(385K RefSeq)’ tiling microarray, covering proximal promoter regions and CGIs by
close-set oligonucleotide probes. Fluorescence intensity raw data were obtained
from scanned images of the tiling arrays using the NimbleScan extraction software.
For each spot on the array, Cy5/Cy3 ratios were normalized and calculated to
obtain log2 values. Then, the bi-weight mean of log2 ratios of a certain region was
subtracted from each data point; this procedure is similar to mean normalization of
each channel.

Promoter CGI analysis. Several known RAGs and of differentially methylated
genes that emerged from the DNA methylation microarray analysis within this
study were analyzed for CpG islands (CGIs). The complete genomic region,
together with the promoter region (5,000 bp upstream of the transcription start site
(TSS)), was analysed with the EMBOSS CpGPlot online tool from EMBL-EBI.
Characteristic parameters of reported CGIs were used.

Gene-regulatory region bioinformatics analysis. We performed a Matinspector
(Genomatix) and UCSD genome browser-based bioinformatics analysis of the
regulatory regions of RAG genes (GAP-43, Galanin, BDNF, SCG-10, Sprr1a, Chl1,
Lgals, L1cam and CAP-23) spanning 1,000 bp upstream and 1,500 bp downstream
of the TSS. These regions overlap and further extend what we studied for DNA
methylation (500 bp upstream and 1,500 bp downstream of the TSS). Significant
transcription-binding sites displayed at least two of the three classically required
criteria: a P-value o0.05, matrix similarity 40.8 and core similarity 40.8.
Additionally, CGI and DNA methylation were examined in these regions for all of
the RAGs investigated with the EMBO DNA methylation analysis online software.
Results of the combined analysis suggested that GAP-43, Galanin and BDNF had
common gene regulatory regions with low levels of DNA methylation and absence
of typical CpG islands, presented transcriptional-binding sites for transcription
factors that are typically acetylated and active in the proximity of acetylated
histones, including, Klf, NFkB, SRF, p53, YY1, CREB and c-jun.

Quantitative real-time RT–PCR analysis. RNA was extracted using PeqGOLD
TriFast reagent (peqlab), cDNA was synthesized from 1 mg of total RNA using both
oligodT and random hexamers from the SuperScript II Reverse Transcriptase kit
(Invitrogen) and a real time RT–PCR was performed using Absolute QPCR SYBR
low ROX master mix (Thermo Scientific). Quantities and fold changes were
calculated following the manufacturer’s instructions (ABI 7,500) and as previously
reported35,43. Primer sequences are shown in Supplementary Table 1. RPL13A,
GAPDH or b-actin were used for normalization.

Quantitative chromatin immunoprecipitation. The SimpleCHIP Enzymatic
Chromatin IP Kit with magnetic beads (Cell Signalling) was used according to
previously published methods44. Antibodies used were H3K9ac, PCAF (rabbit),
H3K9me2, H3K27me3, H3K4me3 and H3K18ac. Real-time Q-PCR was run using
Absolute QPCR SYBR low ROX master mix (Thermo Scientific). Quantities and
fold changes were calculated following the manufacturer’s instructions (ABI 7,500)
and as previously reported35,43. Primers were designed in proximity (within 500 bp
upstream) of the TSS. Primer sequences are shown in Supplementary Table 2.

Immunohistochemistry. DRG were fixed in 4% paraformaldehyde (PFA)
and transferred to 30% sucrose. The tissue was embeded in OCT compound
(Tissue-Tek), frozen at � 80 �C and sectioned at 10-mm thickness. DRG sections
underwent antigen retrieval with 0.1 M citrate buffer (pH 6.2) at 98 �C and were
incubated with 120 mg ml� 1 goat anti-mouse IgG (Jackson Immunoresearch).
They were blocked for 1 h with 8% BSA, 1% PBS-TX100 or 0.3% PBS-TX100,
respectively, and then incubated with NeuN (1:100), PCAF (mouse, 1:500) and
AcH3K9 (1:500) antibodies or phospho-Erk 1/2 (1:500) and �III tubulin (1:1,000)
antibodies O/N. This was followed by incubation with Alexa Fluor 568-conjugated
goat anti-mouse and Alexa Fluor 488-conjugated goat anti-rabbit or Alexa Fluor
568-conjugated goat anti-rabbit and Alexa Fluor 488-conjugated goat anti-mouse
(1:1,000, Invitrogen), respectively. Slides were counterstained with DAPI (1:5,000,
Molecular Probes). Photomicrographs were taken with an Axio Imager.Z1/
Apotome (Zeiss) microscope as 0.800 mm Z-stacks at � 40 magnification and
processed with the software AxioVision (Zeiss). In order to determine the nuclear
intensity density (ID) of pixels, Image J (Fiji) was used. Each neuroneal nuclear

area was selected in the DAPI channel (about 25 nuclei/picture). The same
selection was then used to delineate the nuclei in the other channels. The threshold
of the nuclear area was set for each different channels, and based on that the pixel
ID of the nucleus was determined and divided by its nuclear area. Triplicates of
each treatment were analysed.

Immunoblotting and immunoprecipitation. For whole-cell extract immuno-
blotting, DRG or CGN were collected, lysed on ice in RIPA lysis buffer containing
protease inhibitors (Complete Mini; Roche Diagnostics), sonicated briefly,
centrifuged and the supernatant collected. The NE-PER Nuclear and Cytoplasmic
Extraction Reagents (Thermo Scientific) was used according to the manufacturer’s
instructions for nuclear enriched fractions. H3K9ac (1:1,000), PCAF (rabbit,1:500),
b-actin (1:1,000) and bIII Tubulin (1:1,000) were employed as primary antibodies.
Quantitation of protein expression was performed by densitometry (Image J) of
the representative bands of the immunoblots and normalized to the respective
levels of loading controls.

For immunoprecipitation, the nuclear enriched fractions were bound to rabbit
PCAF antibody (8mg), pulled down with Protein G magnetic beads, washed with
low and high salt buffers (ChIP kit, Cell Signalling) and was eluted with loading
buffer (Thermo Scientific). The IP was stained with PCAF (rabbit, 1:500),
Phospho-Threonine (1:1,000) or Phospho-Serine (1:1,000).

DRG culture. Adult DRG were dissected and collected in Hank’s balanced
salt solution on ice. DRGs were transferred to a digestion solution (5 mg ml� 1

Dispase II (Sigma), 2.5 mg ml� 1 Collagenase Type II (Worthington) in DMEM
(Invitrogen)) and incubated at 37 �C for 35 min with occasional mixing. Following
which DRGs were transferred to media containing 10% heat-inactivated fetal
bovine serum (Invitrogen), 1� B27 (Invitrogen) in DMEM:F12 (Invitrogen) mix
and were briefly triturated with a Sigma-cote (Sigma) fire-polished pipette to
manually dissociate the remaining clumps of DRG. After which the single cells
were spun down, resuspended in media containing 1� B27 and Penicillin/
Streptomycin in DMEM:F12 mix and plated at 4,000–5,000 per coverslip. The
culture was maintained in a humidified atmosphere of 5% CO2 in air at 37 �C.
Neurones were infected with either AAV-GFP or AAV-PCAF (1� 10e12 ml� 1) a
few hours post-plating and fixed with 4% PFA 48 h later. For the Garcinol study,
cells were exposed to Vehicle (5% EtOH) or Garcinol (5 mM per well, Sigma-
Aldrich) for 24 h and fixed. For the ERK/PD study, the day following plating DRG
were exposed for 1 h to PD 98059 (50 mM per well), then to NGF (100 ng ml� 1) for
3 h and fixed.

CGN culture. CGNs were prepared from the cerebellum of 7-day-old C57Bl6/J
mice following standard procedures45. These disassociated CGNs were plated on
either PDL (with or without 5 mM Garcinol) or myelin for 24 h in a humidified
atmosphere of 5% CO2 in air at 37 �C. Neurones were infected at the time of
plating with a CMV promoter AV-GFP or AV-PCAF (1� 10e10 ml� 1).

Immunocytochemistry. Glass coverslips were coated with 0.1 mg ml� 1 PDL,
washed and coated with mouse Laminin (2 mg ml� 1; Millipore). For myelin
experiments, they were additionally coated with 4 mg cm� 2 rat myelin. Cells were
plated on coated coverslips for 24 or 48 h, at which time they were fixed with 4%
PFA/4% sucrose. Immunocytochemistry was performed as previously reported45

using bIII Tubulin (1:1,000), MAP2 (1:100), PCAF (mouse, 1:400), AcH3K9
(1:1,000) or pErk1/2 (1:500). This was followed by incubation with Alexa Fluor
568-conjugated goat anti-mouse and Alexa Fluor 488-conjugated goat anti-rabbit
(1:1,000, Invitrogen). To visualize the nucleus, we stained the cells with DAPI
(1:5,000, Molecular Probes).

Image analysis for immunocytochemistry. DRG pictures were taken at � 20
magnification with an Axioplan 2 (Zeiss) microscope and processed with the
software AxioVision (Zeiss). Using Image J, a threshold was set. On the basis of the
threshold, for each picture the ID of pixels was calculated in each channel and then
divided by its respective number of cells (about 225 cells per picture). This was
carried out in triplicate.

Neurite length analysis. Immunofluorescence was detected using an Axiovert 200
microscope (Zeiss) and pictures were taken as a mosaic at � 10 magnification
using a CDD camera (Axiocam MRm, Zeiss). Neurite analysis and measurements
were performed using the Neurolucida software (MicroBrightField) in triplicate
with 50 cells per triplicate.

Luciferase assays. Experiments were performed in CGN using electroporation
with the rat neurone nucleofactor kit (Amaxa Biosystems) according to the
provided protocol. Briefly, five million neurones were used for each cuvette, with
2–4 mg of total DNA (GAP-43-Luc reporter46 and 25 ng of pRL-TK-Renilla-
luciferase (Promega)). Neurones were plated in 24-well plates at a density of
0.4 million cells per well with or without 5 mM Garcinol and incubated for a total
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of 24 h. Cells were harvested and lysed with 100 ml of passive lysis buffer, and
luciferase activities were determined using the Dual-Luciferase kit (Promega).

Ex vivo DRG culture. Intrathecal (i.t.) injection was performed using the Wilcox
technique47. Mice were briefly anaesthesized with isofluorane (2%), and a lumbar
cutaneous incision (1 cm) was made. I.t. injections were performed with 30-gauge
15-mm needles mated to a 5-ml luer tip syringe (Hamilton, Reno, NV, USA). The
needle was inserted into the tissue between the L5 and L6 spinous processes and
inserted B0.5 cm with an angle of 20�. Vehicle (10% DMSO in 0.9% NaCl) or
Garcinol (80 mM) was slowly injected in a final volume of 5 ml. Directly after i.t.
injection of Vehicle or Garcinol, mice underwent Sham or SNA surgeries. Twenty-
four hours after surgery, mice were killed and L4–L6 DRG were collected and
cultured for 24 h, and were then fixed and stained. We used three animals per
group and plated in triplicate. L4–L6 DRG were also collected for total protein
extraction for western blot analysis of H3K9ac.

For PCAF null ex vivo study, WT or PCAF� /� mice (generated in Dr
Boutillier’s laboratory) underwent Sham or SNA surgeries. Twenty-four hours after
surgery, mice were killed and L4–L6 DRG were collected and cultured for 18 h, and
were then fixed and stained. We used three animals per group and the DRG were
plated in triplicate.

SCI study

AAV-GFP/PCAF injection. All experimental procedures were performed in
accordance with protocols approved by the Univeristy of Tübingen. PCAF
expression plasmid was obtained from Addgene (Plasmid 8941). AAVs were
prepared as described previously48. Mice were anaesthetized and the left sciatic
nerve was injected with 1.5–2ml of either AAV-GFP or AAV-PCAF
(1� 10e12 ml� 1) using a glass-pulled micropipette. Standardized randomization
and blinding strategies were adopted. Randomization of samples was performed by
random assignment and labelling of control and test groups while between one to
three experimenters were blind to the groups for each experiment performed.

Spinal cord injury. Two weeks after AAV injection, a T9–10 laminectomy was
performed and the dorsal half of the spinal cord was crushed with no. 5 forceps
(Dumont, Fine Science Tools) for 2 s (ref. 49). The forceps were deliberately
positioned to severe the dorsal column axons completely. Four weeks after the
spinal cord lesion, dorsal column axons were traced by injecting 2 ml of Microruby
tracer (3,000 molecular weight, 10%, Invitrogen) into the left sciatic nerve50. Mice
were kept for an additional 2 weeks before termination. CD1 WT and PCAF� /�
mice underwent the same spinal cord surgery as above. Additionally, they received
a conditioning sciatic nerve lesion 1 week before the spinal surgery. One week after
the spinal cord lesion, dorsal column axons were traced by injecting 2 ml of
Microruby tracer (3,000 molecular weight, 10%, Invitrogen) into the left sciatic
nerve50. These mice were kept for an additional 2 weeks before termination.
Animals were deeply anaesthetized and were perfused transcardially. Spinal cords
were dissected and post-fixed in 4% PFA in phosphate-buffered saline (PBS) at 4 �C
for 2 h and 30% sucrose O/N. Then the tissue was embedded in Tissue-Tek OCT
compound, frozen at � 80 �C and cut in 18-mm-sagittal and coronal sections
(3 mm caudal and 5 mm rostral to the lesion were taken to confirm the
completeness of the lesion and to quantify tracing efficiency among experimental
groups). Brain stem from each cord was also dissected, and sections of the nuclei
gracilis and cuneatus were generated to monitor tracing from spared fibres. Mice
with incomplete lesions were excluded. Staining for GFAP (1:2,000) was performed
following the standard protocols40. Confocal laser scanning microscopy was
performed using a Zeiss LSM700. Semi-automatic skeletonization of regenerating
axons was performed on confocal scans using the three-dimensional (3D) imaging
software Amira (FEI Visualization Sciences Group). An isosurface was applied to
the GFAP signal.

Quantification of axonal regeneration. For each spinal cord after dorsal column
crush, the number of fibres caudal to the lesion and their distance from the lesion
epicentre were analysed in four to six sections per animal with a fluorescence
Axioplan 2 (Zeiss) microscope and with the software StereoInvestigator 7 (MBF
bioscience). The lesion epicentre (GFAP) was identified in each section at a � 40
magnification. The sum total number of labelled axons rostral to the lesion site was
normalized to the total number of labelled axons caudal to the lesion site counted
in all the analysed sections for each animal, obtaining an inter-animal comparable
ratio considering the individual tracing variability. Sprouts and regrowing fibres
were defined following the anatomical criteria reported by Steward et al.51 Samples
falling short of standard quality for each specific experiment or altered by clear
experimental flaw were excluded from the analysis.

DAB immunostaining. Peroxidase activity was blocked in 0.3% H2O2, followed by
incubation in 8% bovine serum albumin (BSA) and 0.3% TBS-TX-100. BDNF
(1:500), Galanin (1:2,000) or GAP-43 (1:500) antibodies in 2% BSA and 0.2%
TBS-TX100 were used. Labelled cells were visualized using the ABC system

(Vectastain Elite; Vector Laboratories) with DAB as chromogen. The sections then
were counterstained with haematoxylin (Vector Laboratories).

Statistical analysis. Data are plotted as the mean±s.e. All experiments were
performed in triplicate. Asterisks indicate a significant difference analysed using
analysis of variance with Bonferroni post hoc tests, Student’s t-test, Welch’s t-test or
two-way analysis of variance as indicated (*Po0.05; **Po0.01; ***Po0.001).
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Supplementary Information 

 
 

Supplementary Figure 1 Promoter and CpG island DNA methylation arrays   

a, Schematic diagram summarizing the experimental design of promoter and CpG island 

DNA methylation arrays from L4-L6 DRGs after SNA and DCA. b, Pie chart summarizing 

the overall number of methylated genes irrespective of injury, showing only a minority of 

methylated genes. c, Pie charts showing the number of fully hypermethylated or 

hypomethylated genes (3/3) after either SNA or DCA in comparison with Shams. e, Pie 

charts showing the limited number and respective functional classes of differentially 

methylated genes (comparison to Shams) after SNA and DCA. 
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Supplementary Figure 2 Methylation of genes and correlation with expression 

a, Table shows a selection of differentially methylated genes belonging to chromatin 

remodelling and retrograde signalling functional classes and the lack of methylation of RAGs 

after axonal injury. Relative mRNA expression fold changes upon SNA or DCA for a subset 

of differentially methylated genes do correlate with methylation status, but not as a general 

rule. b-e, For each differentially methylated gene, mRNA levels were detected for the 

relevant time point for SNA and DCA samples (injury and sham). Most differentially 

hypermethylated genes upon SNA exhibit decreased mRNA expression levels (injury/sham 

fold change, in orange), while levels upon DCA varied (blue). In contrast to the hypothesis, 

most differentially hypomethylated genes upon SNA are downregulated, except for Rbpjl (b). 

Upon DCA, some differentially hypomethylated genes are upregulated while differentially 

hypermethylated genes were marginally upregulated as well (c). To investigate the 

correlation between gene expression and DNA methylation, the SNA/DCA FC ratio was 

calculated, showing lack of correlation between promoter and CpG island methylation and 

gene expression (d, e). Error bars, s.e.m. 
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Supplementary Figure 3 DNMT 1 and 3a gene expression after SNA and DCA 

Quantitative RT-PCR shows a modest change in gene expression for DNMT1 and DNMT3a 

after SNA and DCA. All values are fold changes to Shams, N = 3, triplicate experiments. 

Error bars, s.d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

 
 

 

Supplementary Figure 4  Inhibition of ERK on gene expression and promoters  a, One 

day following SNA with PD treatment showed a decrease in gene expression of most genes 

tested compared to SNA with DMSO (Quantitative RT-PCR, N = 3 per group). b, No 

correlation with H3K9ac at the promoters of these genes was found except for Lgals (ChIPs). 

N = 6 per group, performed in triplicate. Error bars, s.e.m. (a,b) Student’s t-test, *P<0.05, 

**P<0.001 and ***P<0.001. 
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Supplementary Figure 5  dbcAMP does not alter PCAF in cultured DRG neurons  

a, dbcAMP (1 mM) delivered at the time of plating enhances pCREB  expression as expected 

(24 h), but does not alter expression level nor localization of PCAF. N = 3. Arrow head 

shows selected cell and nuclear localization.  (Scale bar: 10 μm) 
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Supplementary Figure 6 AAV overexpression leads to enhanced PCAF levels   

a, HEK cells infected with AAV-GFP or AAV-PCAF for 48 h. Scale bar, 100 μm. b, 

Cultured DRG neurons from adult mice were infected with AAV-GFP or AAV-PCAF for 48 

h. Scale bar, 100 μm. c, High magnification of numbered PCAF positive cells in (b) showing 

nuclear accumulation after PCAF overexpression. Scale bar, 25 μm. 
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Supplementary Figure 7 PCAF overexpression in CGN  

a, CGN electroporated with PCAF for 24 h showed an increase in neurite length on PDL and 

myelin. b, c, Immunoblot (b) shows decreased H3K9ac expression in CGN following 24 h of 

plating on myelin, intensity analysis (c). d, Myelin significantly decreases H3K9ac at the 

promoters of RAGs, which is restored by AV-PCAF overexpression (24 h) in CGN. e, f, 

CGN plated for 24 h and treated with 5 µM of the PCAF inhibitor Garcinol showed a 

decrease in neurite outgrowth on PDL, ICC (e) and neurite length analysis (f). Scale bars, 50 

µm. g, GAP-43 proximal promoter luciferase construct shows decreased expression after 24h 

treatment with 5 µM Garcinol. Error bars, s.e.m., (a, d) P<0.0001, ANOVA, Bonferroni post-

hoc tests, *P<0.05, **P<0.001 and ***P<0.001 (c, f, g) Student’s t-test, *P<0.05, **P<0.001 

and ***P<0.001, N = 3-6, performed in triplicate. Original immunoblot images are shown in 

Supplementary Figure 15. 
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Supplementary Figure 8 Infection efficiency of AAV in DRGs from SCI study  

a, AAV injected in the sciatic nerve specifically targets DRG neurons (8 weeks post-

infection) as seen by the overlap in GFP expression and NeuN staining. Scale bars, 250 and 

100 µm respectively. b, Sciatic nerve injected AAV-GFP and AAV-PCAF shows infection 

and expression of PCAF protein levels in the L4-L6 DRGs (8 weeks post-infection). Scale 

bar, 250 µm. 
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Supplementary Figure 9 3D visualization of regenerating axons 

Amira 3D reconstruction of regenerating dorsal column axons and glial scar in a sagittal 

projection (~25 µm) of the spinal cord after PCAF overexpression. * Lesion site. cc: central 

canal. Scale bars, 200 µm (top panel), 100 µm (1), 50 µm (2) and 10µm (3). 



 10 

 
 

 

Supplementary Figure 10 Lesion sites after SCI  

Micrographs show spinal cord lesion sites from individual mice (#1,2, etc...) after SCI as 

indicated in Figure 8. Asterisk indicates the lesion site. Scale bar, 250 µm. 40X Scale bar: 

250 μm 
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Supplementary Figure 11 Tracer in the dorsal columns after SCI  

Micrographs show tracing in representative coronal sections of the dorsal columns after SCI 

cord. The dotted line indicates dorsal columns. Tracer is visible 3 mm caudal to the lesion 

site (right panel), but not 5 mm rostral to it (left panel). Scale bar, 150 µm.  
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Supplementary Figure 12 

 

 

Supplementary Figure 12 Full scan images of western blot data in Figure 4 
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Supplementary Figure 13 

 
 

Supplementary Figure 13 Full scan images of western blot data in Figure 5i 
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Supplementary Figure 14 

 

 

 

Supplementary Figure 14 Full scan images of western blot data in Figure 6c 
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Supplementary Figure 15 

 

 

 

Supplementary Figure 15 Full scan images of western blot data in Supplemental Figure 

7 
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Supplementary Table 1 

Quantitative-RT-PCR Primers 

Gene  Forward Primer Reverse Primer 

GAP-43 5’-CTTCTTTACCCTCATCCTGTCG-3’ 5’- CAGGAAAGATCCCAAGTCCA-3’ 

Galanin 5’- GTGACCCTGTCAGCCACTCT -3’ 5’- GGTCTCCTTTCCTCCACCTC-3’ 

BDNF 5’- AGTCTCCAGGACAGCAAAGC-3’ 5’- TCGTCAGACCTCTCGAACCT -3’ 

SCG-10 5’- GCAATGGCCTACAAGGAAAA -3’ 5’- GGTGGCTTCAAGATCAGCTC-3’ 

L1cam 5'-GGGTGAGTGGAATCTGGCTA-3' 5'- TGGCTCTAGCACATGGTGTC-3' 

Sprr1a 5'-CCCCTCAACTGTCACTCCAT-3' 5'-CAGGAGCCCTTGAAGATGAG-3' 

CAP-23 5'-GGGAGAGAGAGAGCCTTTGC-3' 5'-CTTCGGCCTTCTTGTCTTTG-3' 

Lgals 5'-TCAAACCTGGGGAATGTCTC-3' 5’-ATGCACACCTCTGTGATGCT-3' 

Chl1 5'-ATTGCGGCTAACAATTCAGG-3' 5'-GAGGGTTGCAGGGTAAGACA-3' 

Bcl-xL 5'- CTGGTGGTTGACTTTCTCTCC-3' 5'- CAAGGCTCTAGGTGGTCATTC-3' 

18S 5'-CGGCTACCACATCCAAGGAA-3' 5'-GCTGGAATTACCGCGGCT-3' 

Dnmt1 5’- GTGGTGTCTGTGAGGTCTGTC-3’ 5’- AAGTTAGGACACCTCCTCTTGAG-3’ 

Dnmt3a 5’- AGGGAGGCTGAGAAGAAAGC-3’ 5’- GGCTGCTTTGGTAGCATTCT-3’ 

Dnmt3b 5’- AGTTTCCGGCTACCAGGTCT-3’ 5’- TGTGCTGTCTCCATCTCTGC -3’ 

RPL13A 5’-CCCTCCACCCTATGACAAGA-3’ 5’-CCTTTTCCTTCCGTTTCTCC-3’ 

GAPDH 5'-ACCCTGTTGCTGTAGCCGTATCA-3' 5'- TCAACAGCAACTCCCACTCTCCA-3' 

β-actin 5’-GAACGGAACATTGCACACAC-3’ 5’-ACAGCTTCACCACCACAGCTGA-3’ 
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Supplementary Table 2 

ChIP Primers 

Gene Forward Primer Reverse Primer 

GAP-43 5’- CTGCGCGTAAAATCTAATGG-3’ 5’- TGGAGAGATTGGATGGAACA-3’ 

Galanin 5’- TACACCTCCGGTCCTGAGAC-3’ 5’- GGTAGGGAAGCTGCAGTCAC-3’ 

BDNF 5’- GGAGACTAGCGCCGATCTTC-3’ 5’- CGAGCCACTAGTTGCCCACA-3’ 

SCG-10 5’- AAGGAGGCTTCCAGGCTAAG-3’ 5’- GCTCAAGCAGATTGGCTCTC-3’ 

CAP-23 5'-GTCCCCCAACTTCTCTCCAC-3' 5'-GGGCGTGTAAGGAGGGAATA-3' 

Sprr1a 5'-TCCCCTAGTTCACCCTCTGA-3' 5'-AGGACCACTTCAACCCTCCT-3' 

Lgals 5'-CTGACTGGTCACCTCTGCTC-3' 5'-CAGTCAGAAGACTCCACCCGA-3' 

Chl1 5'-TGTCCCCTTTCGCGGTTTTC-3' 5'-TGAAGGCTCGATGCCCAAGT-3' 

L1cam 5'-GCTGCACCATCCACTCTCTT-3' 5'-TCACGACCATCTTGCTGTCAG-3' 

Bcl-xL 5'- CGACATCGAAAGGAAAAAGC -3' 5'-ATCGAGACATGGGAGAGCAG-3' 

NF-L 5'-CAGGGAAGTTATGGGGGTCT -3' 5'-TTATACGCCGGGACTCTGAC-3' 

HSP27 5'-TTGCTCCCCAGGAGATACAC-3' 5'-GATTCCCACTGTCGGGTTTA-3' 

ATF3 5'-GCTGGTCAAAGAAGGCACAT-3' 5'-ATCTCTCCCTCCGCTAGGTT-3' 

18S 5'-GGCCGAACCGGAAGTTATAG-3' 5'-AAGAGAGAGCGGAAGTGACG-3' 
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