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Abstract
Small unmanned and lightweight aircrafts, known as Micro Aerial Vehicles (MAVs),
have gained much attention in recent years. In this thesis we approach the problem of
enabling such MAVs to fly autonomously without the need for human intervention. The
sensor technology that is chosen for this task is stereo vision. As research platform for
this work serves a small quadrotor MAV that has been equipped with four cameras in
two stereo configurations. We study a broad range of problems that need to be solved for
the construction of a stereo vision based autonomous MAV.

The first problem that we examine is stereo matching. We introduce a new sparse
stereo matching algorithm that achieves very high processing rates while also deliver-
ing accurate results. A key component of this algorithm is a combined consistency and
uniqueness check that evaluates a dense disparity range. This new stereo algorithm is
used for processing the imagery of both stereo camera pairs that are available on the
used MAV platform. For the first camera pair that is facing forward, we process the stereo
matching results with a simplified Simultaneous Localization and Mapping (SLAM) al-
gorithm, which tracks the cameras’ pose (i.e. position and orientation).

A different method is applied to the second stereo camera pair that is facing down-
wards. Here, the stereo matching results are used for detecting the dominant ground
plane. From this plane and a method based on frame-to-frame tracking, we are able
to derive another estimate of the MAV’s pose. Both pose estimates are then fused and
used for controlling the MAV’s flight. The ability of this MAV to fly autonomously
is demonstrated in several flight experiments and evaluations. We successfully demon-
strate autonomous take-off, landing, hovering, 360◦ yaw rotation, shape flight and error
recovery.

Finally, we examine the problem of sensing free and occupied space, which would be
needed to facilitate autonomous path planning for our MAV. For this purpose, we extend
an existing volumetric occupancy mapping method, such that it provides more robust
results when used in conjunction with stereo vision. The performance improvement is
mainly achieved by introducing a more complex update mechanism for voxels in this
map, which considers the probability that a voxel is currently visible. Furthermore, the
expected depth error is modeled and considered during map updates, and the overall
run-time performance of the method is improved. The resulting method is fast enough to
perform occupancy mapping in real-time, including the necessary dense stereo matching.
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Kurzfassung
Kleine, unbemannte und leichte Flugzeuge, bekannt als Micro Aerial Vehicles (MAVs),
haben in jüngerer Vergangenheit viel Aufmerksamkeit erfahren. In dieser Dissertation
befassen wir uns mit dem autonomen Flug von MAVs, bei welchem diese agieren, oh-
ne dass ein menschliches Eingreifen notwendig ist. Die hierfür in dieser Dissertation
gewählte Sensor-Technologie sind Stereo-Kameras. Als Forschungsplattform dient ein
Quadrocopter-MAV, welches mit vier Kameras ausgestattet wurde, die zu zwei Stereo-
Paaren angeordnet sind. Wir befassen uns mit einer breiten Sammlung von Problemen,
die es zur Konstruktion eines stereobasierten autonomen MAVs zu lösen gilt.

Das erste dieser Probleme, das wir untersuchen, ist Stereo-Matching. Wir stellen einen
neuartigen Sparse-Stereo-Algorithmus vor, welcher sehr hohe Verabeitungsgeschwin-
digkeiten erreicht und dennoch akkurate Ergebnisse liefert. Die Schlüsselkomponente
dieses Algorithmus ist ein kombinierter Konsistenz- und Einzigartigkeitstest, welcher
den gültigen Disparitätsbereich lückenlos prüft. Dieser neuartige Stereo-Algorithmus
wird für die Verarbeitung der Bilddaten beider Stereo-Kamerapaare eingesetzt. Die Er-
gebnisse für das nach vorne schauende Kamerapaar werden dann mit einem vereinfach-
ten SLAM-Algorithmus (Simultaneous Localization and Mapping) verarbeitet, welcher
Änderungen der Kamerapose (d.h. Position und Ausrichtung) verfolgt.

Eine andere Methode wird für die Auswertung des zweiten, nach unten gerichteten,
Kamerapaares verwendet. In diesem Fall werden die Ergebnisse des Stereo-Matchings
für die Detektion der Bodenebene genützt. Mittels dieser Ebene und einem zweiten, auf
Bildverfolgung basierten Verfahrens, lässt sich eine weitere Schätzung für die Pose des
MAVs ermitteln. Beide Schätzungen werden anschließend fusioniert und zur Steuerung
des MAVs verwendet. Die autonomen Flugfähigkeiten werden mittels verschiedener
Flugtests und Untersuchungen demonstriert. Gezeigt werden autonomer Start, Landung,
Schwebeflug, 360◦ Drehung, Figurenflug, sowie die selbstständige Fehlerkompensation.

Zum Abschluss untersuchen wir das Problem der Wahrnehmung von Freiräumen und
Hindernissen, das zur autonomen Pfadplanung notwendig ist. Hierfür erweitern wir ein
existierendes volumetrisches Verfahren für Occupancy Mapping. Das Verfahren wird
modifiziert, sodass es robustere Ergebnisse bei der Verarbeitung von Stereodaten liefert.
Den Hauptbeitrag leistet hierbei eine neue Methode zu Aktualisierung der Belegtwahr-
scheinlichkeit eines in der Karte gespeicherten Voxels. Diese Methode berücksichtigt
die Wahrscheinlichkeit, dass ein Voxel gerade sichtbar ist. Des Weiteren modellieren
wir den zu erwartenden Tiefenfehler und berücksichtigen diesen bei der Kartenaktuali-
sierung. Außerdem verbessern wir die Verarbeitungsgeschwindigkeit dieses Verfahrens,
wodurch eine Echtzeitverarbeitung inklusive Stereo-Matching möglich wird.
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Chapter 1

Introduction

1.1 Motivation

Small unmanned aircrafts, known as Micro Aerial Vehicles (MAVs), have received much
research and industry attention in recent years. The probably most evident application of
MAVs is military reconnaissance, where MAVs such as the Honeywell RQ-16 T-Hawk
(see Honeywell International, Inc., 2014) are already used today. There exists, however,
an increasing number of civilian applications. For example, after the 2011 disaster at
the Fukushima nuclear power plant in Japan, a military MAV was used to examine the
damages of the reactor buildings. This was done while the radiation levels where too
high to allow any human workers to enter the disaster area.

Another civilian application of MAVs is the visual inspection of structures that are
otherwise hard to access. Examples are bridges, dams, chimneys, or wind turbines.
While the manual inspection of such structures is usually difficult and time-consuming,
such tasks can be performed faster and cheaper with an MAV that has been equipped
with a high-resolution camera. Such an inspection service is e.g. offered by the company
Fly & Check by Drone (see Fly & Check by Drone, 2014).

What these applications have in common is that they require an operator who controls
the MAV. Amazon, however, recently announced the use of autonomous MAVs for the
fast delivery of online orders (see Amazon.com, Inc., 2013). This service has been called
Amazon Prime Air and is claimed to facilitate delivery within 30 minutes from the time
of order. For this being feasible, the delivery address needs to be within a range of
10 miles from an Amazon warehouse. Amazon has claimed that this service might be
available as early as 2015.

Following Amazon’s announcement of Prime Air, logistics companies such as UPS,
FedEx and DHL quickly announced similar plans (see Popper, 2013; Lang, 2013). Un-
fortunately, no details are known about any of these MAV projects. It is, however, very
likely that the current prototypes of these MAVs primarily rely on GPS for navigating
themselves to the designated delivery address. This conjecture is supported by the fact
that pictures of Amazon’s MAV do not show any apparent sensors.

Unfortunately, GPS is not yet accurate enough to allow MAVs to fly autonomously in
urban environments. The position estimate provided by GPS can be several meters off
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Chapter 1 Introduction

from the true location. In a densely populated area, this means that an MAV delivering a
parcel might drop this parcel at the wrong house or at an inaccessible or dangerous loca-
tion such as a rooftop or on the street. Furthermore, when flying in urban environments,
buildings pose a significant problem for GPS receptions. Buildings might shadow satel-
lite signals or reflect the signals, which then travel to the receiver on a path that is longer
than the expected line of sight. Thus, in urban environments GPS position estimates
might be far off from the true location, or GPS localization might fail altogether.

The reception of erroneous location information, or the lack of it for a considerable
time span, can result in fatal consequences for an autonomous MAV. Thus, for an MAV
to reach its destination safely and reliably, it cannot depend on GPS alone. Instead,
additional sensors are required to allow navigation even in cases when GPS location
information is unavailable. Furthermore, an autonomous MAV should be able to sense its
environment, such that it can avoid obstacles in situations where it deviates too far from
the planned trajectory. But even if the MAV remains close to the intended trajectory,
it should be able to sense unexpected obstacles that were not known during trajectory
planning. Only if an MAV is able to actively avoid collisions, it can be considered safe
for use in densely populated urban environments.

The choice of additional sensors with which an MAV can be equipped is limited by the
maximum payload and power consumption constraints imposed by the MAV platform.
For wheeled robots, laser scanners are a popular sensor choice, as they offer an accu-
rate 3D perception of the robot’s environment, and can be used for robust and accurate
localization. However, laser scanners have a considerable weight and power consump-
tion, which makes it critical to employ them on MAVs. This is particularly true for laser
scanners that use several beams to obtain measurements from more than one sensing
plane.

An alternative to laser scanners are vision-based methods. Compared to laser scan-
ners, cameras are generally much lighter and have a lower power consumption. A single
camera can be used for 3D localization, as has e.g. been shown by Klein and Murray
(2007). While in this case, the current camera position can only be observed with respect
to an unknown scaling factor, it is possible to track the true metric position when using
stereo vision (i.e. two cameras). In case of stereo vision, we also gain information on the
3D position of objects within the field of view. This information can be used to facilitate
obstacle avoidance or interaction with known objects in the MAV’s environment. An-
other advantage of cameras over laser scanners is that cameras can be produced at much
lower costs. This allows them to be employed even on low-cost MAVs that are intended
for the consumer market.

In this thesis we1 thus focus on stereo-vision based methods that facilitate the con-
struction of autonomous MAVs. In particular, we aim at achieving the following two

1Following common practices as formulated by Knuth et al. (1989), I use “we” rather than “I” in this
thesis for inviting the reader to be part of my presentation. However, I confirm that I, Konstantin
Schauwecker, was the sole author of this thesis.
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1.2 Contributions

tasks using stereo vision: enabling an MAV to track its current pose and enabling the
MAV to map obstacles and other non-traversable space. Solving these two problems
would allow us to enhance today’s GPS-controlled MAVs. A vision-based pose estimate
could be used to bridge periods where GPS is temporally unavailable. Vision-based envi-
ronment mapping, on the other hand, could allow the MAV to detect and avoid obstacles
that appear on the intended flying trajectory.

An autonomous MAV that can fly using only vision-based information could facilitate
a range of new applications. For example, due to the dependency on a radio link, the
remote controlled MAV that was used for inspecting the Fukushima disaster site was
not able to enter the reactor buildings. If an autonomous vision-based MAV would have
been available at the time, it could have been used for entering the damaged reactor
buildings and provide detailed information on the occurred damage. Similarly, such an
MAV could be employed for search and rescue missions in other damaged buildings that
are not safe to be entered by humans. But also more commonplace tasks could be solved
with the help of vision-based autonomous MAVs. An MAV capable of safe autonomous
indoor flight could be used to transport items between different parts of a building. As
an example, such MAVs could be employed in hospitals to transport drugs to the places
where they are currently needed.

As we can see, there exists a large variety of tasks that could one day be performed
by autonomous MAVs. Before this vision comes true, however, much research needs to
be done on the technology behind autonomous flights. This thesis hopefully provides a
contribution towards this goal.

1.2 Contributions
An autonomous MAV that relies on stereo vision has to employ a range of different
vision-based methods and techniques. Hence, this thesis makes contributions to several
fields that are all part of the computer vision domain. The first contribution is a new
algorithm for detecting image features, which is based on the popular FAST detector
from Rosten and Drummond (2006). The features detected by this method are more
evenly distributed over the input images than the features provided by a standard FAST
algorithm. This new feature detector has proven to be particularly well suited for sparse
stereo matching.

The next contribution is a new sparse stereo matching algorithm. While this algo-
rithm has shown to be very efficient, it also provides robust and accurate stereo matching
results. This is due to the fact that the algorithm employs a ‘dense consistency and
uniqueness check’, which is an efficient post-processing method for filtering erroneous
matches. Furthermore, the proposed algorithm includes an efficient method for process-
ing input images that have not previously been rectified to compensate lens distortions
and camera alignment errors. This new stereo matching algorithm has been published
alongside the mentioned feature detector at the 2012 IEEE/RSJ International Conference

3



Chapter 1 Introduction

on Intelligent Robots and Systems (IROS) in Vilamoura, Portugal (Schauwecker et al.,
2012a).

Using the mentioned feature detector and sparse stereo matching algorithms, it was
possible to construct an autonomous MAV that only relies on stereo vision and iner-
tial measurements. The first prototype of this MAV, which was presented at the 2012
Autonomous Mobile Systems Conference (AMS) in Stuttgart, Germany (Schauwecker
et al., 2012b), featured a forward facing camera pair. The MAV uses the matched features
from our stereo matching algorithm as input for a simplified Simultaneous Localization
and Mapping (SLAM) algorithm based on the method proposed by Scherer et al. (2012).
This SLAM system provides the MAV with its current pose, which enables it to achieve
controlled and stable flight. To the author’s knowledge, this was the first demonstration
of an MAV that performs stereo matching on-board, and is able to use the gained stereo
matching results for visual navigation.

In another revision, this first prototype was extended to include an additional downward-
facing camera pair. This MAV was presented at the 2013 International Conference on
Unmanned Aircraft Systems (ICUAS) in Atlanta, USA and in the Journal of Intelligent
and Robotic Systems (JINT) (Schauwecker and Zell, 2013, 2014a). Features detected
in the imagery from this camera pair are again used for stereo matching. The MAV is
able to obtain an additional estimate of its current pose, by detecting and tracking the
ground plane using the stereo matching results and the camera imagery. This additional
pose estimate is then fused with the estimates gained from the forward facing cameras.
The resulting MAV has been thoroughly evaluated in several flight experiments, where
it demonstrated its autonomous flying capabilities. Compared to the first prototype, this
MAV is able to achieve a more precise and robust autonomous flight. To the author’s
knowledge, this was the first demonstration of an MAV that is able to perform stereo
matching on-board and in real-time for two camera pairs.

Finally, the last contribution of this thesis is in the field of occupancy mapping. The
knowledge of free and occupied space is necessary for an autonomous MAV in order
to facilitate autonomous path planning. In this thesis, the popular OctoMap method for
volumetric occupancy mapping (Wurm et al., 2010; Hornung et al., 2013) is extended,
in order to improve processing results for noisy measurements as obtained from stereo
matching. This is made possible by considering whether or not a given voxel in the map
should be visible from the current camera location. Furthermore, we model the expected
depth error of the stereo matching results, and respect this error when performing map
updates. By applying a code-level optimization, the resulting occupancy mapping system
is able to run in real-time on a commodity PC. Although the MAV used in this thesis
does not yet provide sufficient processing resources to perform occupancy mapping on-
board, a map can be created off-board after the MAV finished an autonomous flight. This
method was first presented on the 2014 IEEE International Conference on Robotics and
Automation (ICRA) in Hong Kong, China (Schauwecker and Zell, 2014b).
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1.3 Outline

1.3 Outline
The remaining parts of this thesis are structured as follows: Chapter 2 provides an in-
troduction to basic concepts and current technologies that are relevant for this thesis. In
particular, this chapter looks at the current state of MAV technology and provides an in-
troduction to stereo vision. Chapter 3 presents the new feature detector and sparse stereo
matching algorithm that are proposed in this thesis. Both methods are evaluated in sev-
eral experiments on different evaluation datasets. Chapter 4 presents two autonomous
MAVs that are based on our new feature detector and stereo matching algorithm. The
first MAV uses only a forward facing camera pair and serves as a prototype for demon-
strating the feasibility of a stereo vision based autonomous MAV. This prototype is then
extended with another camera pair that is facing downwards. While only a brief evalu-
ation is performed for the first prototype, a detailed evaluation of the extended revision
of this MAV is provided, which includes several flight and offline-processing experi-
ments. Chapter 5 presents the new volumetric occupancy mapping method proposed in
this thesis. This method is evaluated on a publicly available dataset and on data recorded
by our autonomous MAV. Finally, the work presented in this thesis is summarized and
concluded in Chapter 6.
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Chapter 2

Background

This chapter is dedicated to fundamentals that might be necessary for the understanding
of this thesis. It provides an overview on MAV technology, including the hardware plat-
form that has been used for implementing the methods presented in this thesis. Given
that our MAV should achieve autonomous flight using stereo cameras, we also discuss
the basic principles and techniques of stereo vision.

2.1 Micro Aerial Vehicles

Micro Aerial Vehicle (MAV), or Micro Air Vehicle, is a general term that refers to small
and light unmanned aircraft systems. Unfortunately, there exists no general agreement
up to which size an aircraft should be considered to be an MAV. As a general guideline,
the International Micro Air Vehicles Conference (see IMAV, 2013) imposed a weight
limit of 2 kg and a maximum size of 1 m for all aircrafts participating in its 2013 flight
competition. The size of an aircraft was defined as either the aircraft’s wingspan or the
largest horizontal rotor-to-rotor distance.

There exist, hover, MAVs with dimensions that are far below this size limit. One
extreme example is the robotic fly developed by Wood (2008). This small biologically
inspired MAV weights only 60 mg and its two wings have a length of only 1.5 cm. While
this MAV is externally powered and only able to fly along two guiding wires, it is an
impressive demonstration of today’s design and manufacturing capabilities.

The transition between MAVs and larger scale Unmanned Aerial Vehicles (UAVs) is
gradual. On the larger end of the size scale are military drones that can reach the size of
an average jet plane, such as the Global Hawk that is built by Northrop Grumman (see
Northrop Grumman Corp., 2014). Due to the lack of an exact definition for MAVs, it is
not always possible to find an objective category for a given aircraft. The aircrafts that
we are focusing on in this thesis, however, have a size that is well below the IMAV size
restrictions, which should allow us to distinctly label them as MAVs.
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Chapter 2 Background

(a) (b)

(c) (d)

Figure 2.1: Illustration of (a) fixed wing, (b) rotary wing, (c) flapping wing and
(d) lighter-than-air MAV.

2.1.1 Types of MAVs and Principal Axes

MAVs can usually be divided into four distinct categories. An example for each has
been illustrated in Figures 2.1a–2.1d. The first category are fixed wing MAVs, which
are model-sized airplanes that usually require a runway for take-off and landing. These
MAVs can achieve high air speeds, which allow them to cover long distances. Com-
monly, such MAVs receive their propulsion from a propeller, but alternative methods
such as small-scale turbine engines also exist.

The next category are rotary wing MAVs that are characterized by one or more rotors,
which each consists of several rotor blades. Typically, these MAVs have an even number
of rotors, such that they can easily compensate each other’s torque. For example, even
though a traditional helicopter design only has one main rotor, the main rotor’s torque is
compensated by the much smaller tail rotor. Common numbers of rotors used for rotary
wing MAVs are two, four, six and eight, but other numbers are also possible. Rotary
wing MAVs are usually unable to achieve speeds that are comparable to those of fixed-
wing MAVs. However, rotary wing MAVs have the advantage that they can take-off and
land vertically and move at low speeds, including hovering. In the next section, we have
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pitch axis

yaw axis

roll axis

Ψ

Φ

Θ

Figure 2.2: Aircraft principal axes and angles of rotation.

a close look at rotary wing MAVs with four rotors, which are known as quadrotors.
Flapping wing MAVs achieve propulsion by moving their wings similar to the move-

ments of birds or insects. While the robotic fly of Wood is an extremely small member of
this category, flapping wing MAVs can also be of larger scale. One example is the Festo
SmartBird (Festo AG & Co. KG, 2011), which has a wingspan of 2 m. Just like rotary
wing MAV’s, some flapping wing MAVs such as the robotic hummingbird developed by
Keennon et al. (2012), are able to take-off and land vertically and hover in one place.

Finally, our last MAV category are lighter-than-air MAVs or blimps. These MAVs
receive their vertical thrust form a body that is filled with a lighter-than-air gas. While
these MAVs are very energy efficient, they also tend to be large and are only capable of
slow movements. Just like fixed-wing MAVs, these MAVs are commonly equipped with
propellers to facilitate their propulsion.

With the exception of blimps, all MAV types can rotate in three dimensions. To de-
scribe the orientation of an MAV, we use the three principal axes that are shown in Fig-
ure 2.2. These axes are called roll axis, pitch axis and yaw axis. Accordingly, the rotation
angles around these axes are named pitch angle Θ, roll angle Φ, and yaw angle Ψ. In
order to achieve a stable flight, it is particularly important to control the MAV’s pitch and
roll angles Θ and Φ.

2.1.2 Quadrotors

A quadrotor is a rotary wing aircraft that is equipped with four rotors with vertically
directed airflow. The first quadrotor in history was built by Étienne Œhmichen in 1922
(see Seddon and Newman, 2011). While this aircraft was only able to fly for a distance of
a few hundred meters, it set a new flight record for rotary wing aircrafts at its time. More
capable quadrotor aircrafts were constructed at later dates, such as the transport aircraft
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Curtiss-Wright X-19 from 1963, which however never made it past the experimental
stage (see Ranson, 2002).

Compared to a helicopter, a quadrotor can be built with much simpler rotor mechanics.
While a helicopter has to be able to change the angles of its rotor blades in order to
achieve a controlled flight, this is not necessary for quadrotors. Instead, fixed rotor blades
can be used for all four rotors, which greatly simplifies the rotor construction. Each rotor
contributes an individual thrust and torque. Hence, a quadrotor can influence its roll,
pitch, yaw and thrust, by adjusting the rotational speed of its four rotors. This, however,
requires precise control of the rotational speed of each rotor, which is simple for an
electrically powered quadrotor with an electric motor for each rotor. For a quadrotor
with a conventionally powered central engine, this is not easily feasible. In this case,
adjustable rotor blades can again be employed, which however annihilates the advantage
of a simplified rotor design.

The fact that quadrotors can be constructed with fixed rotor blades makes this design
particularly interesting for electrically powered MAVs. In this case, the only required
actuators are the electric engines for powering each rotor. This circumstance and the fact
that quadrotors do not require wings, allow for the construction of quadrotors at very
small scales. The probably smallest example is the externally powered Mesicopter built
by Kroo and Prinz (2001), which has a rotor diameter of only 1.5 cm. Flight tests of this
prototype were, however, limited to a test bed with a constraining arm.

Quadrotors are usually constructed in either a plus- or an X-configuration, as shown in
Figure 2.3a and 2.3b. These two configurations differ in the assumed forward direction,
which has an influence on the rotor control. The control of a quadrotor with plus configu-
ration is simpler, as only the rotational speed of one rotor pair has to be adjusted in order
to influence the quadrotor’s roll, pitch or yaw. For a quadrotor with X-configuration, on
the other hand, we are required to always control the rotational speed of all four rotors.
The advantage of an X-configuration is, however, that no rotor is blocking the field of
view when carrying a forward-facing camera.

For simplicity, we focus on the plus-configuration in this chapter. In both configura-
tions, however, a rotor always rotates in the same direction as the rotor opposite to it, and
in the opposite direction of the two rotors next to it. This way, the torque of the rotors
rotating clockwise is neutralized by the torque of the rotors rotating counter-clockwise,
which allows the quadrotor to hover without spinning.

The pitch of a quadrotor with plus configuration can be influenced by adjusting the
rotational speed of the left and right rotors in relation to the rotational speed of the front
and back rotors. Because of the unequal rotational speed of the clockwise and counter-
clockwise rotors in this case, the overall torque is no longer zero. Thus, the quadrotor
experiences a torque around its pitch axis, which allows us to control the quadrotor’s
pitch angle. Similarly, we can influence roll by adjusting the rotational speed of the front
and back rotors in relation to the left and right rotors. For influencing the quadrotor’s
yaw, we lower the rotational speed of either the left or the right rotor, while increasing
the rotational speed of the opposite rotor. A detailed description and analysis of rotor
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(a) (b)

Figure 2.3: Schematics of Quadrotor MAV in (a) plus and (b) X configuration.

control methods for quadrotors has been published by Bouabdallah (2007).
Today, readily built quadrotors are commercially available in various sizes. For exam-

ple, the Hubsan X4 (see Husban, 2013) has a size of only 6×6 cm, while the md4-1000
from Microdrones (see Microdrones GmbH, 2013) has a rotor-to-rotor distance of about
1 m. The smaller models are particularly well suited for indoor flight. This is not only
due to their small dimensions, but also due to the fact that like other rotary wing aircrafts,
quadrotors are able to take-off and land vertically and move at low speeds. Furthermore,
quadrotors can achieve a high flight stability, which enables their usage within small
confined spaces. Thus, it is a logical choice to select a quadrotor MAV as the research
platform for this thesis.

2.1.3 Research Platform

A front- and bottom-view of the quadrotor MAV, which was used for the research con-
ducted in this thesis, is shown in Figure 2.4. The design of this MAV is based on the PIX-
HAWK Cheetah that was developed at the ETH Zürich (see Meier et al., 2011, 2012).
The PIXHAWK Cheetah includes a custom-designed microprocessor board that serves
as Inertial Measurement Unit (IMU) and low-level flight controller. Furthermore, it in-
cludes a custom-made carrier board for a COM-Express single board computer. The
hardware designs of both circuit boards, as well as the low-level flight control software,
have been made available as open source and can be obtained from the PIXHAWK web-
site (see Meier et al., 2013).

Apart of the two custom circuit boards, the quadrotor used in this thesis consists
mainly of standard components that can be purchased from shops for radio controlled
model aircrafts. One exception, however, is the quadrotor frame that was custom cut
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Figure 2.4: The quadrotor MAV that has been used for the research presented in this
thesis, as seen from front and bottom.
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from a lightweight carbon sandwich material and resembles the frame of the original
PIXHAWK Cheetah design. This frame has a rotor-to-rotor distance of 40 cm. The
MAV is powered by four brushless electric engines with a maximum mechanical power
of 110 W each. As rotor blades, the MAV uses propellers with a diameter of 10 inch,
which is the recommended size for the used motor type.

The quadrotor has been equipped with the powerful COMe-cPC2 single board com-
puter from Kontron (see Kontron AG, 2013). This computer follows the COM-Express
Compact form factor, which means that it has a size of only 9.5×9.5 cm. This makes it
ideal for the employment on a weight-constrained MAV. Despite these small dimensions,
the on-board computer features an Intel Core 2 Duo CPU with 1.8 GHz, which provides
sufficient computing resources for on-board image processing. In the used configuration,
the computer is fitted with 2 GB main memory and a 64 GB solid state disk, which should
facilitate the recording of our extensive sensor data.

On the sensory part, the quadrotor has been equipped with four USB Firefly MV cam-
eras from Point Grey (see Point Grey Research, Inc., 2013). The cameras are arranged in
two stereo configurations by using a custom-made camera holder, which was constructed
of the same lightweight carbon sandwich material as the quadrotor frame. Two cameras
are facing forward with a baseline distance of 11 cm, while the other camera pair faces
downwards with a baseline distance of 5 cm. To ensure that the downward-facing cam-
eras have a large field of view even during ground proximity flight, they have been fitted
with ultra wide angle lenses with a focal length of only 3 mm. For the forward-facing
cameras, lenses with a focal length of 4 mm are used.

Each camera has a gray-scale image sensor and is operated at a resolution of 640×480
pixels. The cameras have an additional GPIO port, through which they can send or re-
ceive trigger signals. The left forward-facing camera has been defined as master camera,
and all other cameras are connected to its GPIO port. By letting the master camera gen-
erate trigger signals, we can ensure that all four cameras trigger simultaneously. This is
a property that is particularly important for stereo vision systems.

The cameras are connected through USB to the on-board computer, which is dedi-
cated to all image processing and high-level processing tasks. The computer runs Linux
and the Robot Operating System (ROS), which was initially introduced by Quigley et al.
(2009). ROS is a set of software libraries and tools that assist in the development of
robotics applications. In particular, it comprises libraries for message passing of sensor
and processing data, and tools for recording and visualizing this message communica-
tion. All software discussed in this thesis has been implemented by making extensive
use of ROS, which simplified the development process and makes software components
interchangeable.

In addition to the main on-board computer, the MAV features the already mentioned
microprocessor board from the original PIXHAWK design. This microprocessor board
is connected through a serial link with the on-board computer. In addition, it is connected
through an I2C bus with the motor controllers. The available on-board software includes
a nested PID controller that consists of separate attitude and position controllers, which
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is similar to the method proposed by Mellinger et al. (2012). With this software it is
possible to control the MAV if its current pose is known. While the MAV’s position can
be provided from the on-board computer using the available serial link, the attitude is
estimated using the inertial sensors that are available on the microprocessor board. For
steering the MAV, the on-board computer can transmit a desired target position to the
control software, which then attempts to approach it. It is thus possible to implement
autonomous flight options for this MAV by letting the on-board computer generate a
series of desired target positions.

2.2 Stereo Vision
Another main focus of this thesis is stereo vision. Hence, in this place we provide a brief
introduction to the geometric principles of stereo vision and the inherent challenges.
Algorithms for stereo matching are not considered in this place, but are covered in Sec-
tion 3.2 on page 22.

2.2.1 Stereo Geometry
With stereo vision we refer to all cases where the same scene is observed by two cameras
at different viewing positions. Hence, each camera observes a different projection of
the scene, which allows us to perform inference on the scene’s geometry. The obvious
example for this mechanism is the human visual system. Our eyes are laterally displaced,
which is why we observe a slightly different view of the current scene with each. This
allows our brain to infer the depth of the scene in view, which is commonly referred to
as stereopsis. Although it has for long been believed that we are only able to sense the
scene depth for distances up to few meters, Palmisano et al. (2010) recently showed that
stereo vision can support our depth perception abilities even for larger distances.

Using two cameras and methods from computer vision, it is possible to mimic the
human ability of depth perception through stereo vision. An introduction to this field has
e.g. been provided by Klette (2014). Depth perception is possible for arbitrary camera
configurations, if the cameras share a sufficiently large common field of view. We assume
that we have two idealized pinhole-type cameras C1 and C2 with projection centers O1
and O2, as depicted in Figure 2.51. The distance between both projection centers is
the baseline distance b. Both cameras observe the same point p, which is projected as
p1 in the image plane belonging to camera C1. We are now interested in finding the
point p2, which is the projection of the same point p on the image plane of camera C2.
In literature, this task is known as the stereo correspondence problem, and its solution
through matching p1 to possible points in the image plane of C2 is called stereo matching.

1For simplicity the image planes have been drawn in front of the projection center, rather than in the
physically correct position behind the projection center. The projections observed at both positions
are, however, identical.
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Figure 2.5: Example for epipolar geometry.

We consider a plane that passes through the projection centers O1 and O2, and point
p1. This epipolar plane intersects with both image planes at the epipolar lines. Irre-
spective of the position of p, the epipolar line for a given camera always passes through
the projection of the respective other camera’s projection center, the so-called epipole.
Furthermore, the point p2 on the image plane of camera C2 is located on the epipolar
line of C2. This means that we can constrain the search for p2 to this line, which renders
stereo-matching a 1D search problem.

Depth inference can be further simplified if the cameras are aligned in the standard
epipolar geometry, which is shown in Figure 2.6. In this setting, the optical axes of
the left and right cameras CL and CR are parallel, and the image planes are coplanar.
Furthermore, both cameras must have an identical focal length f . Please note that this
geometry does not entirely match the human visual system. Although the optical axes
of our eyes are aligned in parallel when observing distant objects, we tend to verge their
optical axes when observing near objects.

In the standard stereo geometry, all epipolar lines are aligned horizontally. Further-
more, the epipolar lines corresponding to the same scene point have the same vertical
offset v. Thus, in this case stereo matching only requires the comparison of image lo-
cations from equal image rows. Due to the high level of ambiguity, however, it is not
possible to match two corresponding points by solely looking at individual pixels on the
considered epipolar lines. Rather, we need to rely on further image information for this
decision. Many algorithms have been proposed for this task, and we discuss some of
these methods in the next chapter.

Once we have identified two matching image locations pL and pR from camera CL
and CR, we can infer the location of the corresponding scene point p = (x,y,z). In our
case of idealized pinhole-type cameras, the projection of p to the image location pL =
(uL,vL) is described through central projection. If we assume that the scene coordinate
system matches the coordinate system of camera CL, then the image location pL can be
determined as follows:
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Figure 2.6: Example for standard epipolar geometry.
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Similarly, we can determine the image location pR = (uR,vR) of the projection of p on
the image plane of camera CR: (
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)
. (2.2)

Due to the standard epipolar geometry, the vertical coordinates vL and vR of the left
and right image locations pL and pR are identical. Thus, the two image locations only
differ by a horizontal displacement of magnitude uL− uR, which is commonly referred
to as disparity d ≥ 0. Small disparities correspond to a large depth z of the observed
scene point, with d = 0 being at infinity. Similarly, large disparities correspond to a
small depth of the given scene point. This allows us to further constrain the search space,
by introducing a minimum depth limit zmin. If dmax is the disparity corresponding to this
minimum depth, we can limit our search for corresponding points to d ∈ [0,dmax].

If we have a valid estimate for the disparity d of image point pL, we are able to recon-
struct the location of the corresponding scene point p approximately. For this task, we
consider Equations 2.1 and 2.2 as an equation system, and solve it for the scene coordi-
nates of p. Thus, we are able to reconstruct the location of p if we know the baseline
distance b and focal length f of the stereo setup:x

y
z

=
b
d

uL
vL
f

 . (2.3)
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(a) (b)

Figure 2.7: (a) Undistorted image and (b) image after radial distortion.

2.2.2 Image Rectification

The definition of standard stereo geometry uses idealized pinhole cameras. Real cameras,
however, are not ideal and use lenses, which lead to various distortions. One of the major
distortion types found in today’s cameras is radial distortion. This is caused by the fact
that an ideal lens should have a parabolic shape. Due to the difficulty of manufacturing
a parabolic lens, however, most commercially available lenses have in fact a spherical
shape.

The radial distortion that results from the deviation from the parabolic shape is shown
for one example in Figure 2.7. Image regions close to the optical center receive only
little distortion, while the image periphery is significantly warped. In the given example,
straight lines are bent outwards from the optical center, which is known as barrel distor-
tion. Radial distortion can, however, also cause straight lines to be bent inwards towards
the optical center, which is known as pincushion distortion

Another common optical distortion is tangential distortion, which is caused by the
image sensor not being aligned exactly perpendicular to the optical axis. An example
for this distortion type is shown in Figure 2.8. Here, the image sensor is slightly rotated
around its vertical axis, with the left edge of the sensor being closer to the scene than the
right edge. Thus, the scene visible in the left image half appears larger than the scene
visible in the right image half.

Both, radial and tangential distortion break the standard epipolar geometry. Should
such distortions occur, then the epipolar lines are no longer exactly horizontal and collinear.
Thus, the common approach to stereo vision includes a preliminary image rectifica-
tion step, during which distortions are corrected. The resulting image after rectification
should match the image received from an ideal pinhole camera. To be able to perform
such a correction, we first require an accurate model of the image distortions. The dis-
tortion model that is most frequently used for this task today, is the one introduced by
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(a) (b)

Figure 2.8: (a) Undistorted image and (b) image after tangential distortion.

Brown (1966). Using Brown’s distortion model, we are able to calculate the undistorted
image location (ũ, ṽ) that corresponds to the image location (u,v) in the distorted image:

ũ =(u−uc)(1+K1r2 +K2r4 + · · ·)+(P1(r2 +2(u−uc)
2)+

2P2(u−uc)(v− vc))(1+P3r2 +P4r4 + · · ·),
(2.4)

ṽ =(v− vc)(1+K1r2 +K2r4 + · · ·)+(P2(r2 +2(v− vc)
2)+

2P2(u−uc)(v− vc))(1+P3r2 +P4r4 + · · ·).
(2.5)

Here, (uc,vc) is the image location of the projection center, K1,K2, . . . ,Kn are radial
distortion coefficients and P1,P2, . . . ,Pm are the coefficients for the tangential distortion.
The quantity r was introduced for simplification and can be computed as follows:

r =
√
(u−uc)2 +(v− vc)2. (2.6)

The infinite sum in this distortion model is approximated by limiting the number of
distortion coefficients. This is done by setting all higher elements in the infinite series
of radial and tangential distortion coefficients to 0. Hence, the infinite sum in Equa-
tion 2.5 is reduced to a computable finite sum. Common numbers of coefficients are two
tangential distortion coefficients, and between two and six radial distortion coefficients.

The challenge at hand is now to identify the radial and tangential distortion coeffi-
cients, which happens by camera calibration. This is commonly done by recording sev-
eral images of one or more known geometric objects. A flat board with a visible checker
pattern is frequently used for this task, but other calibration objects such as the circle and
ring patterns used by Datta et al. (2009) are also possible. Once these images have been
recorded, known features of the calibration objects are extracted. For a checker pattern,
these are the corners of the individual checker tiles, while the circle and ring centers are
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(a) (b)

Figure 2.9: Example for (a) unrectified and (b) rectified camera image.

used for the patterns from Datta et al..

Because the geometries of the calibration objects are known, we also know the ex-
pected relative scene locations of the extracted features. Thus, we are able to use the fea-
ture locations for estimating the distortion coefficients. The method proposed by Zhang
(2000) is widely used for this task in case of planar calibration patterns. This method
employs a closed from solution of the calibration problem, which is improved through a
non-linear refinement based on the maximum likelihood criterion.

Further efforts have to be made in case of a stereo camera pair. We want the epipolar
lines of both cameras to have an exact horizontal alignment. Furthermore, corresponding
epipolar lines from both cameras should have an identical vertical coordinate. Hence,
we are required to determine a rotation matrix R for the relative rotation between both
cameras and their relative translation vector t. This allows us to correct the alignment
of the two image sensors. We can determine both R and t by estimating the poses PL
and PR of the calibration object as observed by the left and right camera. We are able
to determine these poses due to the known geometry of the calibration object. Because
there is a geometric relation between the object poses determined for each camera, we
are able to infer R and t.

Existing implementations of the discussed algorithms can be found in the OpenCV
library (Itseez, 2013) or the Matlab camera calibration toolbox (Bouguet, 2013). An
example for an unrectified camera image with strong radial distortion is shown in Fig-
ure 2.9a, and the corresponding rectified image is given in Figure 2.9b. Please note that
due to the strong deformation of the input image, the rectified image now includes re-
gions that have not been observed by the camera. No image information is available
for these regions, which is why they have been shaded black. These regions need to be
ignored when processing the rectified camera image.
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2.2.3 Challenges
Stereo rectification leads to a precise alignment of the epipolar lines in the left and right
camera image. Hence, the rectified imagery appears to originate from an ideal standard
epipolar geometry. This means that during stereo matching, we are only required to com-
pare image locations that have the same vertical coordinate v in both images. The task
of matching corresponding points in the left and right image might thus appear simple
at first, but it is actually very challenging. There exists a high ambiguity when matching
corresponding image locations. Furthermore, matching is aggravated by several disrup-
tive effects, to which we refer to as ‘noise’.

Noise can be caused by a range of different sources. For example, like all signal mea-
surements, the intensity of an individual pixel is subject to signal noise. Further noise is
added by the fact that the camera performs a quantization of all intensity measurements.
These effects are well known from signal processing. Noise in stereo vision can, how-
ever, also originate from geometric sources. The left and right camera might observe a
slightly different perspective distortion for an object in view, due to their different view-
ing positions. Another example for geometric noise is occlusion. A background object
occluded by a foreground object in one camera might be visible in the other camera.

Another source of noise are surface properties. It is common in stereo vision to as-
sume that all visible surfaces are perfect Lambertian scatterers. This means that they
reflect light equally in all possible directions. This assumption is, however, violated if
we encounter glossy, reflective or semi-translucent objects. In this case, the same surface
point on one such surface might have a very different intensity when observed by the left
or right camera.

Finally, the cameras themselves contribute noise as well. The cameras might use
slightly different exposure times and the image sensors might have slightly different
sensitivities. Furthermore, there are many problems introduced by the camera lenses.
We have already discussed lens distortion, which we attempt to correct through image
rectification. However, a small residual distortion is likely to remain. Lenses also have a
limited depth of field and they might not be focused exactly equally. Furthermore, lenses
can be subject to lens flares when encountering bright light sources such as the sun.

Having so many sources of noise makes stereo matching challenging. When matching
image locations from the left and right input image based on their pixel intensities, it is
likely that the two best matching image locations do not correspond to the same scene
point. If the object in view does not exhibit sufficient texture, finding a correct match
might not even be possible in case of noise-free observations. It is thus not sufficient to
evaluate individual pixels for their stereo correspondence. In order to perform reliable
stereo matching, we require robust methods that can operate within the presence of noise
and matching ambiguities. We present and evaluate one such method in the next chapter.
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Sparse Stereo Vision

3.1 Introduction

As we have seen in the previous chapter, stereo matching is essentially a 1D search
problem. After selecting a reference image (usually the left image), its pixels are matched
to pixels from the equivalent epipolar line in the match image. The result is a labeling
that links pixels from the reference image to their best matching counterparts in the match
image. Due to the many sources of noise and ambiguities, it is hardly sufficient to look
at individual pixels for this task. Rather, we need to consider a pixel neighborhood, or
even better the entire input images, when choosing the label assignment for a single pixel
from the reference image. This greatly increases the computational load, which is why
stereo matching generally is computationally a very expensive process.

Our chosen MAV platform unfortunately has firm computational constraints. Further-
more, stereo matching is only one amongst several computationally expensive processes
that are required to run on-board the MAV in real-time. Hence, stereo matching is only
allowed to consume a fraction of the available on-board processing power. In addition, a
quadrotor MAV is an inherently unstable system that requires fast responding controllers
in order to maintain stable flight. This means that if we rely on stereo vision for control-
ling our MAV, then stereo matching has to run at a relatively high processing rate. Our
aim is to achieve a rate of at least 30 frames per second with images of size 640× 480
pixels that are delivered by our on-board cameras. All these requirements make it imper-
ative that the chosen stereo matching method is computationally very efficient.

One way to greatly speed-up stereo matching is to not process all pixel locations of
the input images. While the commonly used dense approaches find a disparity label
for almost all pixels in the reference image, sparse methods only process a small set of
salient image features. An example for the results received with a sparse compared to a
dense stereo matching method can be found in Figures 3.1a and 3.1b.

The shown sparse example was received with the method that we present in this chap-
ter, which only finds disparity labels for a set of selected corner features. The color
that is displayed for these features corresponds to the magnitude of the found disparity,
with blue hues representing small and red hues representing large disparity values. The
method used for the dense example is the gradient-based belief propagation algorithm
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(a) (b)

Figure 3.1: (a) Sparse stereo matching results received with the presented method and
(b) dense results received from a belief propagation based algorithm. The color scale
corresponds to the disparity in pixels.

that was employed by Schauwecker and Klette (2010) and Schauwecker et al. (2011).
The results of this algorithm are dense disparity maps that assign a disparity label to all
pixels in the left input image.

Although sparse methods provide much less information than common dense ap-
proaches, this information can be sufficient for a set of applications. In particular, many
methods for camera pose tracking map a sparse set of salient image features. Hence, a
sparse stereo matching method would integrate well into such systems. For our MAV,
this means that a sparse stereo matching method can be used for enabling the MAV to
track its current pose, which is an important prerequisite for autonomous flight. In this
chapter, we hence focus on designing an accurate and efficient sparse stereo matching
algorithm that can be used for this task.

The method described in this chapter was first published in 2012 at the IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS) (Schauwecker et al.,
2012a). This chapter includes important details that are beyond the scope of this pre-
vious publication. Most importantly, the processing of unrectified input images that is
discussed in Section 3.4.3 on page 39 has not been covered in details before.

3.2 Related Work

Work relevant to the methods discussed in this chapter includes both work on stereo
matching and feature detection algorithms. Hence, we have a separate look at the relevant
literature in each field. For stereo matching, we also provide an overview of existing
dense methods, as they represent the current state of the art in stereo vision research.
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3.2.1 Feature Detection

In computer vision, a feature detector is an algorithm that selects a set of image points
from a given input image. These points are chosen according to detector-specific saliency
criteria. A good feature detector is expected to always select the same points when
presented with images from the same scene. This should also be the case if the viewing
position is changed, the camera is rotated or the illumination conditions are varied. How
well a feature detector is able to redetect the same points is measured as repeatability,
for which different definitions have been proposed (e.g. see Schmid et al., 2000; Gauglitz
et al., 2011).

Feature detectors are often used in conjunction with feature descriptors. These meth-
ods aim at providing a robust identification of the detected image features, which fa-
cilitates their recognition in case that they are re-observed. In our case, we are mainly
interested in feature detection and less in feature description. A discussion of many exist-
ing methods in both fields can be found in the extensive survey published by Tuytelaars
and Mikolajczyk (2008). Furthermore, a thorough evaluation of several of these methods
was published by Gauglitz et al. (2011).

Various existing feature detectors extract image corners. Corners serve well as image
features as they can be easily identified and their position can generally be located with
good accuracy. Furthermore, image corners can still be identified as such if the image is
rotated, or the scale or scene illumination are changed. Hence, a reliable corner detector
can provide features with high repeatability.

One less recent but still popular method for corner detection is the Harris detector
(Harris and Stephens, 1988). An example for the performance of this method can be
seen in Figure 3.2b. This method is based on the second momentum or auto-correlation
matrix, which describes the gradient distribution in the local neighborhood of a given
image point. The eigenvalues of this matrix correspond to the intensity change along
two orthogonal axes. Hence, image corners are located at points where both eigenvalues
of this matrix are large.

A computationally less expensive method for detecting image corners is the Smallest
Univalue Segment Assimilating Nucleus (SUSAN) detector that was proposed by Smith
and Brady (1997). Because this method does not rely on local image gradients, it is
claimed to be less sensitive to image noise. To evaluate whether a given image point p is
at a corner location, this method examines the pixels in a disc-shaped neighborhood with
p at its center (the nucleus). The pixels in this neighborhood are then classified as pixels
with ‘similar’ and ‘significantly different’ intensity values compared to p. Corners are
located where the number of ‘similar’ pixels is minimal.

A more efficient method that is similar to the SUSAN detector is Features from Ac-
celerated Segment Test (FAST), for which an example is shown in Figure 3.2c. Instead
of evaluating all pixels on a circular disc, this method only considers the 16 pixels on a
Bresenham circle of radius 3, which can be seen in Figure 3.3. The circle pixels are again
compared to the central point p and classified as pixels with ‘similar’ and ‘significantly
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(a)

(b)

(c)

(d)

Figure 3.2: (a) Input image and features form (b) Harris detector, (c) FAST and (d) SURF.
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Figure 3.3: Pixels used by FAST for detecting image corners.

different’ intensity values, by using a threshold t. If a contiguous arc of length l ≥ n is
formed by pixels with ‘significantly different’ intensities, then p is classified as being a
corner location. This method was first published under the name FAST by Rosten and
Drummond (2005) for n = 12. In this case, a fast corner evaluation can easily be im-
plemented by means of nested conditional branches, which each compare the intensities
of two pixels. However, it was shown by Rosten and Drummond (2006) and Mair et al.
(2010) that better results can be achieved if n = 9.

Rosten and Drummond thus extended their method to allow for arbitrary values of
n and to reduce the total number of comparison operations (Rosten and Drummond,
2006). This algorithm was again named FAST and is the algorithm that is commonly
referred to under this name today. The method uses a machine learning algorithm to
find a decision tree that allows for the quick rejection of non-corners. The result of
this machine learning step is used to generate code that consists of a large number of
nested conditional branches. The authors reported that in an evaluation, their method
compared each pixel to only 2.26 other pixels on average. An extension of this method
that considers a larger pixel neighborhood was published under the name FAST-ER by
Rosten et al. (2010). This method, however, requires more processing time than the
original FAST algorithm, which has impeded its widespread adoption.

FAST is usually combined with non-maxima suppression, in order to receive only one
feature per image corner. Because the segment test does not produce a corner score, one
has to be computed separately for each identified corner pixels. The method proposed by
Rosten and Drummond (2006) is based on brightness differences between the detected
arc and the central pixel. The current version of the available source code for FAST,
however, applies a binary search to find the highest value of t, for which a pixel is still
detected as a corner. This method matches the approach applied by Rosten et al. (2010).

An improved adaptation of FAST, coined Adaptive and Generic Accelerated Segment
Test (AGAST), was published by Mair et al. (2010). The authors simplified the decision
tree to not always evaluate a pixel for higher and lower intensity, but to only evaluate
“one single question per time”. Furthermore, the authors avoided the training step that
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is required for FAST, by generating two specialized decision trees for homogeneous and
structured regions. The algorithm then switches between the two decision trees depend-
ing on the previously observed pixel configuration. In a performance evaluation, the
authors observed a speed-up of 13% for n = 9, when compared to the original FAST
algorithm. However, more recent implementations of the FAST detector, such as the
ones available in recent versions of OpenCV (see Itseez, 2013) and libCVD (see Ros-
ten, 2013), are no longer based on decision trees. Rather, these methods employ SIMD
instructions that are available on current CPUs, to perform a parallel comparison and
evaluation of several pixels. Hence, the speed-up achieved by AGAST seems insignifi-
cant when compared to current implementations of FAST.

FAST is also at the core of the more recently published Oriented FAST and Rotated
BRIEF (ORB) feature detector and descriptor (Rublee et al., 2011). This method applies
the FAST detector with a lower-than-necessary threshold. For the found features, the
response of the Harris detector is then computed, and only the features with the high-
est Harris response are kept. A rotation component is then determined for the detected
features, which is used to obtain a rotation invariant version of the Binary Robust Inde-
pendent Elementary Features (BRIEF) descriptor (Calonder et al., 2010). Because of its
low computation costs and high quality features, this method has already been adopted
in numerous research projects.

An alternative to corner detectors are the so-called blob detectors. These methods
attempt to find image regions that in some property differ significantly from their sur-
rounding area. One of the most influential methods in this category is the Scale Invariant
Feature Transform (SIFT) by Lowe (1999). For this method, two Gaussian convolutions
with different values for σ are computed for the input image. The difference between
both convolutions, called Difference of Gaussians (DoG), is then used for detecting the
feature locations. Features are located at points where the DoG reaches a local maximum
or minimum. Lowe further proposed a robust rotation-invariant feature descriptor, which
is based on an examination of gradient orientations in a local neighborhood.

A more time-efficient blob detector that was inspired by SIFT, is Speeded-Up Robust
Features (SURF) by Bay et al. (2006), for which an example is shown in Figure 3.2d.
Instead of using a DoG for detecting feature locations, Bay et al. rely on the determinant
of the Hessian matrix, which is known from the Hessian-Laplace detector (Mikolajczyk
and Schmid, 2001). The Hessian matrix is based on convolutions of the input image with
second order Gaussian derivatives. Bay et al. perform a rough but very fast approxima-
tion of these convolutions by using box filters with integral images, as known from Crow
(1984) and Viola and Jones (2002). SURF further comprises a robust feature descriptor
that is based on the response of Haar wavelets, which are again efficiently computed
using integral images.

Both SIFT and SURF exhibit a very high repeatability, as has e.g. been shown by
Gauglitz et al. (2011). However, what Gauglitz et al. also have shown is that both meth-
ods require significant computation time. Given our high performance requirements,
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Figure 3.4: Example for ambiguous image regions. Both magnified sections have an
almost identical appearance.

these methods are unfortunately not suitable for employment on our MAV. Hence, we
instead focus on corner detectors, of which FAST is one of the most efficient methods.

3.2.2 Dense Stereo Methods

Dense methods receive the most interest in today’s stereo vision research. Scharstein
and Szeliski (2002) categorized dense stereo methods into local and global methods.
For matching a left image location pL against a right image location pR, a local method
examines the local pixel neighborhoods of pL and pR. Hence, only pixels within this
local neighborhood can have an impact on the obtained matching cost. The problem
with such methods is that the set of pixels within the local neighborhood are not always
sufficient for computing a reliable matching cost. An example for this circumstance
is shown in Figure 3.4, where two magnified subsections of an image have an almost
identical appearance.

An alternative to local methods that overcomes this limitation are global methods.
When using a global method, all pixels in both images can have an influence on the
computed matching costs. Consequently, global methods generally require substantially
more processing time than their local counterparts. In effect, these methods also tend to
provide significantly more accurate and more robust results.

Both local and global stereo methods generally assume a local smoothness of the scene
depth. Scenes observed in the real world usually provide a relatively smooth depth vari-
ation with few depth discontinuities. Hence, stereo matching results with strong depth
variations generally result from matching errors. By using a smoothness constraint, we
can penalize such solutions and increase the robustness of a stereo method. For local
methods, this constraint is often implicit, by assuming that all pixels within the current
local neighborhood are at the same depth. Global methods on the other hand, generally
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employ an explicit smoothness term that increases the matching cost for correspondences
that cause high depth variations.

One of the simplest and fastest local algorithmic approaches to stereo matching is
Block Matching (BM). Here, rectangular windows are matched that are centered at the
evaluated image locations in the left and right image. Using this method, an image
location in the left image is matched against image locations in the right image that are
on the same epipolar line and within a preset disparity range. The pair with the lowest
matching cost is then chosen as the most likely stereo correspondence.

One example for a very efficient stereo matching implementation that is based on BM
has been provided by Humenberger et al. (2010). The authors proposed both an effi-
cient CPU- and GPU-based implementation of their method. The CPU implementation
achieved a processing rate of 63 frames per second, with test data of resolution 320×240
and only 15 disparity levels. This processing rate is significantly above the rates reported
for most of the software stereo methods that were considered by Humenberger et al. in
their performance evaluation.

Current global stereo methods provide results that are far more accurate than those that
can be achieved with BM. These methods usually work by minimizing an explicit cost
function that provides a cost for all possible solutions of the stereo correspondence prob-
lem (i.e. all possible disparity maps). Such a cost function generally consists of a data
term and the already mentioned smoothness term. While the smoothness term assigns
low costs to solutions with smooth depth variations and high costs to solutions with an
abruptly varying depth, the data term determines a similarity cost for the possible stereo
correspondences. Small costs are assigned to solutions where the found correspondences
have a very similar appearance, and high costs are assigned to solutions with very dis-
similar correspondences. A global stereo matching algorithm attempts to find a disparity
map that minimizes this cost function.

Different methods exist for performing this minimization process. One example are
the two Graph Cuts (GC) based stereo matching algorithms proposed by Boykov et al.
(2001). The algorithms start with an arbitrary disparity labeling, and then change a set
of labels in each of their iterations. This happens by either changing a group of pixels
that were previously labeled with α to a new label β (called α-β -swap) or by changing
a group of pixels with an arbitrary previous label to a new label α (called α-expansion).
In each iteration, the algorithms try to find the best α-β -swap or α-expansion, which
can be determined using graph cut techniques known from combinatorial optimization.
It was shown by Szeliski et al. (2007) that α-expansion based algorithms generally per-
form better than their α-β -swap based counterparts. Unfortunately, however, GC-based
algorithms are exceedingly slow on today’s hardware, which limits their practical appli-
cations.

For the Belief Propagation (BP) based stereo algorithm (Sun et al., 2003), the mini-
mization problem is modeled as a Markov Random Field (MRF). Each node in this MRF
corresponds to one pixel in the sought after disparity map. Edges exist between the nodes
for adjacent pixels, which allows for the modeling of a smoothness constraint. By itera-
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tively passing messages along these edges, the algorithm is able to effectively minimize
its cost function. In the evaluation performed by Szeliski et al. (2007), this method was
able to find solutions that had a lower cost than the available ground truth.

Unfortunately, many iterations are required until the algorithm converges at an accu-
rate solution, and the messages passed between the nodes require much memory. Various
methods have thus been published for improving the performance of BP. The hierarchi-
cal algorithm published by Felzenszwalb and Huttenlocher (2006) reduces the number
of required iterations by introducing a coarse to fine processing scheme that gradually
increases the MRF resolution. This approach was extended further by Yang et al. (2006),
who reduced the number of passed messages by only updating nodes that have not yet
converged. The authors further parallelized their algorithm to leverage the performance
of a GPU. Another extension of the hierarchical BP algorithm was published by Yang
et al. (2010), which gradually increases the number of disparity labels. In this case, the
authors reported a processing time of 1.5 s for images with resolution of 800×600 pixels
and 300 disparity levels.

One algorithm that has become very popular in recent years, and which cannot easily
be classified as either local or global, is Semi-Global Matching (SGM) (Hirschmüller,
2005). This method can be seen as an extension of the Dynamic Programming (DP)
stereo algorithm that was initially published by Baker and Binford (1981). DP indi-
vidually optimizes the disparity labeling for each epipolar line, using the dynamic pro-
gramming paradigm. Because of this independent optimization, errors tend to propagate
along the epipolar lines, which results in disparity maps with obvious streaks. SGM
solves this problem by performing the optimization using eight scan lines that propagate
in different directions. Hence, for each pixel and possible disparity label, the costs from
eight different paths are aggregated, which enables this method to find a robust disparity
assignment.

One particularly fast implementation of SGM was published by Gehrig and Rabe
(2010). This implementation achieved processing rates of 14 frames per second, on
test data with an image resolution of 640× 320 pixels. Faster processing rates can
be achieved by implementing SGM on a GPU or FPGA, as has been demonstrated
by Haller and Nedevschi (2010) and Gehrig et al. (2009). However, powerful GPUs
generally consume much energy, which makes them unsuitable for deployment on an
energy-constrained MAV. FPGAs on the other hand, generally require custom designed
hardware, which is not easily available. Hence, in our case we limit ourselves to software
stereo algorithms.

3.2.3 Sparse Stereo Methods
As we have seen, there exist efficient stereo matching implementations for e.g. BM or
SGM. For our needs, however, these methods are still too slow, which is why we are
interested in sparse stereo methods. In general, the first step of a sparse stereo match-
ing system is the extraction of salient image features. Once the features have been ex-
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tracted, similar features from the left and right input image can be matched. Throughout
the 1980s, such sparse algorithms have been an active field of research. With the im-
proved performance of dense methods, however, interest in sparse methods decreased
and nowadays they only receive very little attention. Much of this early work on sparse
stereo matching has been summarized by Dhond and Aggarwal (1989). Many of these
methods apply an edge detector to extract edge pixels, which then serve as features for
stereo matching.

One method from this era is the edge based stereo method that was published by
Medioni and Nevatia (1985). As features serve edge segments, which are groups of
collinear connected edge points that are extracted with the method proposed by Nevatia
and Babu (1980). For the correlation of an edge segment in one image, a parallelogram-
shaped local window in the other image is defined in which the candidate segments have
to be located. Preference is given to segments that have a similar disparity to their neigh-
bors. This is enforced by a cost function that is applied in multiple matching iterations.

Another example for an early sparse stereo method is the approach published by Eric
and Grimson (1985), which was inspired by the human visual system. This method
employs a coarse to fine process, by first computing different convolutions of the input
image with the Laplacian of Gaussian (LoG) and varying values of σ . The points where
these convolutions exhibit a zero-crossing serve as features, and form a set of contour
lines. Starting at the convolution with the highest σ , these contours are matched using
the direction of the zero-crossing as matching criterion. Matching then continues at the
finer levels, while ensuring a consistency with the results from the previous iteration.

One method from this early era that is still popular today is the algorithm proposed by
Lucas and Kanade (1981). While today, the Lucas-Kanade algorithm is usually used for
optical flow estimation, an application to stereo vision was proposed in its initial pub-
lication. The method assumes that the apparent image movement, which in the case of
stereo vision is caused by the camera displacement, is constant in a local neighborhood.
Furthermore, it is expected that this movement is small or that a sufficiently accurate
initial estimate is already known. Lucas and Kanade assume that the so-called optical
flow equation holds for all pixels within this neighborhood. A least squared error method
is then used to find a robust estimate for the solution of the resulting equation system.
In the proposed stereo vision application, Lucas and Kanade presented an interactive
system that requires a user to select points in an input image. After providing an ini-
tial depth estimate, the Lucas-Kanade algorithm is used for receiving an accurate depth
measurement.

In more recent times, Vincent and Laganiere (2001) have published an evaluation
of sparse stereo matching strategies. In their work, corner features are detected in the
left and right input images, and matched using different correlation methods. Stereo
matching is not restricted to epipolar lines, as the camera arrangement is unknown. The
authors evaluated the impact of different matching constraints on the achieved results.
Correspondences that do not satisfy those constraints are rejected as mismatches. The
evaluated constraints include methods that ensure uniqueness and symmetry of the found
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matches, compare the appearance of the corner features, or ensure a consistency of the
found labeling. Many of these constraints have been found to reduce the number of
erroneous matches.

One of the very few recently published sparse stereo methods is the BP-based algo-
rithm that was introduced by Sarkis and Diepold (2008). This method, however, does
not resemble a classical sparse algorithm. The points used as features are non-uniformly
distributed samples that are drawn from the left input image. The algorithm then matches
these features to the full disparity range in the right image. Despite a performance im-
provement when compared to classical BP, this algorithm still exhibits high processing
costs. In the evaluation performed by the authors, their implementation required up to
2.1 s for processing an input image with a resolution of 450×375 pixels.

Another recent sparse stereo algorithm was proposed by Witt and Weltin (2012). This
method works by extracting edge pixels in both input images. Pixels on those edge
segments are then matched with a winner-takes-all strategy. In a next step, the results
for each edge segment are refined independently by using a method based on dynamic
programming. The authors reported processing times of 60–85 ms for images of size
450×375 pixels or smaller. While this method seems very efficient, we are interested in
even faster methods for deployment on our MAV.

Much progress has been achieved in the computer vision community since the inter-
est in sparse stereo matching declined. In particular, new feature detectors have since
been published, which can be used for the construction of new sparse stereo methods.
Given our need for highly efficient stereo matching, it seems logical to choose a sparse
stereo method. The lack of current sparse stereo algorithms that fulfill our performance
requirements, while also delivering accurate matching results, is our motivation to design
a novel sparse stereo matching system.

3.3 Feature Detection

Before focusing on stereo matching, it is necessary that we select an adequate feature
detection algorithm. As our aim is to design a very high-performance stereo matching
system, we chose the previously discussed FAST corner detector. This method was the
fastest feature detector in the evaluation performed by Gauglitz et al. (2011), and hence
appears to be the natural choice for our purposes. However, the results provided by this
algorithm are not ideal for a stereo vision system. Hence, we extend this method to
deliver features that are more suitable for our needs.

3.3.1 Adaptive Threshold

FAST tends to detect many features in areas with high local image contrast, while detect-
ing only a few features in image areas with low local contrast. This can lead to situations
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(a) (b) (c)

Figure 3.5: Examples for feature detection results with (a) FAST, (b) first detection stage
of proposed method and (c) full proposed method.

where many features are clustered in a relatively small area of the input image. An ex-
ample for this behavior can be seen in Figure 3.5a. Here, only a few of the detected
features are located in the sky or in the lower quarter of the input image. Such a behavior
is undesirable for most computer vision based applications. If the detected features are
used for obstacle detection, then this can cause obstacles to be missed if they do not pro-
vide sufficient contrast. For visual localization, such a clustered feature distribution can
degrade the received localization results due to higher numeric errors, when compared to
a more even feature distribution.

To make this effect less severe, we propose to extend the FAST algorithm with an
adaptive threshold that depends on the local image contrast. This way, a lower detection
threshold can be used in image regions with low local contrast, while a higher thresh-
old can be used for areas with high local contrast. Hence, this approach is expected to
counteract the clustered feature distribution.

The main advantage of the FAST detector over other methods is its high detection
speed. Consequently, an extension of this method has to ensure that the performance of
the original algorithm is not drastically changed. This task is not trivial, since FAST only
requires few pixel comparisons to decide whether or not a given image location should
be classified as a feature. Applying a local contrast filter to the entire input image before
running the FAST algorithm can easily change the feature detection performance by an
order of magnitude or more.

To solve this problem, we employ a two-stage process. First, an unmodified FAST de-
tector is run without non-maxima suppression and a low constant threshold tc. This leads
to the detection of a high number of features, as shown for one example in Figure 3.5b
with tc = 10. For each detected feature i, we then calculate an adaptive threshold ti and re-
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Algorithm 3.1: Two-stage feature detection with adaptive threshold.
/* Detect features with low constant threshold tc. */
FA := detectFeatures(tc);
FB := /0;
foreach (u,v) ∈ FA do

/* Determine adaptive threshold. */
ti := getLocalThreshold(u, v);
/* Test if still a feature with adaptive threshold. */
if testFeature(u, v, ti) then

/* Add to feature set FB */
FB.append((u,v));

end
end
/* Perform non-maxima suppression (optional). */
suppressNonMaxima(FB);

run feature detection. Only if an image point passes both detection steps, it is considered
to be a valid feature. If necessary, non-maxima suppression can then be applied to the
features remaining after the second detection step. This approach is formally described
in Algorithm 3.1.

As previously mentioned, the adaptive threshold ti should depend on the local image
contrast. Hence, we calculate a contrast measure for each feature location, by using
a local pixel neighborhood. One of the most common contrast measures is the Root
Mean Square (RMS) contrast, which was first put forward by Peli (1990). This measure
is defined as the standard deviation of the pixel intensities, which in our case can be
expressed as:

σi =

√
1
|Ni| ∑

p∈Ni

(Ip− Ī)2, (3.1)

where p is a pixel from the local neighborhood Ni of feature i, Ip is the intensity at p, and
Ī is the average intensity of all pixels in Ni.

Given our high performance requirements, we would like to avoid the computation
of the square root that is necessary for this contrast measure. We hence perform a sim-
plification of the original formula, by replacing the sum of squared differences with a
sum of absolute differences. In this case, the computation of the square root is no longer
necessary, which reduces the formula to:

τi =
1
|Ni| ∑

p∈Ni

|Ip− Ī|. (3.2)

As local neighborhood we choose the same 16 pixels on the circle of radius 3 that
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are used by FAST for feature detection. Since we compute our contrast measure for
influencing the feature detection results, using this pixel neighborhood seems to be a
consequential choice. Finally, we define our adaptive threshold ti for feature i to be the
product of our local contrast measure τi and a parameterizable adaptivity factor a > 0:

ti = a · τi. (3.3)

3.3.2 Averaged Center

For the original FAST detector, the pixel with the highest impact on the detection result is
the central pixel that is compared to all pixels on the evaluated circle. Noise in this pixel’s
intensity can easily impede the detection of obvious features, or cause the detection of
false or insignificant features. To reduce the effect of image noise on our detector, we
perform a noise reduction for the intensity of the central pixel.

One simple way to reduce image noise is to apply a blurring filter. Such a blurring
filter can be implemented as a convolution with a filter kernel (e.g. a Gaussian kernel).
In its simplest form, a box filter can be used that averages the pixels within a rectangular
window. In case of the box filter, this operator can be performed in constant time if we
rely on the already mentioned integral images as used by Crow (1984) and Viola and
Jones (2002). The computation of an integral image, however, has linear complexity.

Given the high computational efficiency of the original FAST detector, applying a
blurring filter to the entire input image can cause a significant increase of the overall
processing time. This is even the case if we use simple box filters. Hence, instead of
applying a blurring operation to the entire input image, we only filter the pixel locations
where a feature has been detected in the first detection stage. For our blurring filter, we
select the five pixels in the center of the circle evaluated by FAST, which are highlighted
in Figure 3.6. We then use the average intensity of those central pixels for feature detec-
tion, which replaces the intensity value of the single central pixel that is otherwise used
by FAST.

We combine the use of this averaged center with the previously discussed adaptive
thresholding. Throughout this thesis, we refer to the resulting algorithm as extended
FAST or exFAST. An example for the performance of this method can be found in Fig-
ure 3.5c. As we can see, the detected features are more evenly distributed over the input
image when compared to ordinary FAST. This matches the behavior that we intended to
achieve with the proposed modifications and addresses the observed shortcomings of the
FAST detector. Hence, this new feature detector forms the basis for the proposed sparse
stereo matching system.
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Figure 3.6: Pixels used for feature detection. Hatched pixels in the middle are averaged
and compared to the circumcircle.

3.4 Stereo Matching
With the described feature detection method we detect features in the left and right cam-
era image. Unlike for the left image, however, we omit the non-maxima suppression
for features detected in the right image. This increases the number of possible matching
candidates in the right image, to which features from the left image can be matched.
Features in both images are considered to be possible matching candidates if they lie ap-
proximately on the same epipolar line (a deviation of 1 pixel is allowed), and if they are
within a predefined disparity range. Similar to the previously introduced BM algorithm,
features are matched by correlating two rectangular matching windows that are centered
at the given feature locations. In the implementation targeted for our MAV platform, the
matching windows have a size of 5× 5 pixels. For correlating two matching windows,
we require an appropriate correlation method.

3.4.1 Correlation
Different methods have been proposed in literature for pixel correlation, like the Sum
of Absolute Differences (SAD), Sum of Squared Differences (SSD), Zero-Mean Sum
of Absolute / Squared Differences (ZMSAD / ZMSSD), Normalized Cross Correlation
(NCC), and so forth. We choose a method that is based on the census transformation,
which is a non-parametric image transformation that was initially proposed by Zabih and
Woodfill (1994). For each pixel location in an input image, the census transformation
considers a rectangular census window (not to be confused with the matching window).
The intensity Ii of the central pixel is then compared to the intensity I j of each remaining
pixel, by using the following comparison function:

ξ (Ii, I j) =

{
0 if Ii ≤ I j

1 if Ii > I j
. (3.4)
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Figure 3.7: Illustration of the census transformation for a window of size 3×3.

The binary comparison results of ξ (Ii, I j) are then concatenated to form a bit-string.
This process is illustrated in Figure 3.7 for a census window of size 3× 3 pixels. After
processing an input image with the census transformation, we hence receive a new ‘im-
age’ in which every pixel is represented by one binary bit-string. For our stereo matching
system, we again use a window size of 5× 5 pixels for the census window. Hence, we
require 24 bits to store the comparison results for each pixel location of the original im-
age. To receive a more efficient memory alignment, each bit-string is kept in a 32-bit
variable.

The bit strings bL and bR for two considered left and right image locations can be
correlated by counting the number of unequal bits, which is known as the bitwise Ham-
ming distance ∆h(bL,bR). For our stereo matching system, we are required to correlate
all pixel locations in the left and right matching window. Hence, for each bit-string in
the left matching window, we compute the Hamming distance against the bit-string with
corresponding coordinates in the right matching window. The aggregated Hamming dis-
tance is then our resulting matching cost c:

c = ∑
(u,v)∈Nc

∆h(Luv,Ruv), (3.5)

where L and R are the left and right bit-string ‘images’ and Nc is the set of image locations
within the census window.

Compared to simpler methods such as SAD or SSD, a census transformation based
correlation method can provide a significantly higher matching robustness, as has e.g.
been shown by Hirschmüller and Scharstein (2008) or Hermann et al. (2011). This,
however, comes at the price of higher computational requirements. To reduce the perfor-
mance impact of the census transformation, an optimized version has been implemented
that makes use of the SSE instruction set that is provided by current x86 CPUs. This al-
lows for an efficient parallelization of the algorithm and enables us to achieve significant
speed-ups when compared to a naïve implementation.

The required bitwise Hamming distance can be implemented by applying the XOR-
operator to the two evaluated bit-strings. The population count of the result, which is
the number of set bits, is then equal to the bitwise Hamming distance. For performing
this operation efficiently on our MAV platform, we precompute the population count for
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Algorithm 3.2: Hamming distance calculation for a and b using lookup tables.
/* Perform XOR operation to get non-equal bits. */
bits:= a XOR b;
/* Divide 32-bit string into two 16-bit strings. */
bits1 := bitwiseAnd(bits, FFFFhex);
bits2 := bitShiftRight(bits, 16);
/* Look-up population counts. */
pop1 := populationCountTable[bits1];
pop2 := populationCountTable[bits2];
/* Final result is the sum of both population counts. */
hammingDistance := pop1 +pop2;

all possible 16-bit permutations, and store the result in a 64 KB lookup table. We then
divide our 32-bit strings into two 16-bit strings, and determine the population count for
each separately. This process is shown in Algorithm 3.2 for the two bit-strings a and b.

For other platforms, we use an alternative implementation that is based on the POPCNT
CPU instruction, which was introduced by Intel with the SSE4 instruction set. This
instruction provides an efficient way for computing the population count1. In particular,
we use the 64-bit version of this instruction, which allows us to simultaneously process
two census bit-strings. Unfortunately, this forces us to use a matching window with an
even width. Hence, for other platforms than our MAV, we use a matching window of size
6×5 pixels.

3.4.2 Dense Consistency and Uniqueness Check
We retain the feature pair that received the lowest matching cost during the previous
correlation process. As with most local stereo matching methods, these results contain
a significant portion of false matches, which can be seen in Figure 3.8a. In this fig-
ure, several features that correspond to the distant background have been assigned an
erroneous high disparity. For dense algorithms, the matches are often filtered using a
left / right consistency check, as first introduced by Chang et al. (1991). This process
works by repeating stereo matching in the opposite matching direction, and only retain-
ing matches for which the results are consistent. We, however, perform sparse stereo
matching, where a feature from the left image is matched to only few candidates in the
right image. Those few matching operations are not sufficient to make the consistency
check work effectively.

We thus apply a dense consistency check, despite the fact that our stereo matching
method is inherently sparse. Hence, after the sparse matches have been established, we
perform a dense matching step from the matched features in the right image to the valid

1The POPCNT instruction is also available on the Core2-Duo CPU of our MAV platform, but it is slower
than the proposed lookup-table based method.
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(a) (b)

Figure 3.8: Stereo matching results (a) without and (b) with consistency and uniqueness
check. The color scale corresponds to the disparity in pixels.

disparity range in the left image. This means that we evaluate all pixel positions in the
left image that are on the epipolar line and within the valid disparity range. Thus, our
method differs from an ordinary sparse algorithm in that we examine the entire disparity
range when deciding for a valid match.

Furthermore, we discard features with high matching uncertainty by imposing a unique-
ness constraint. For a stereo match to be considered unique, the minimum matching cost
cmin must be smaller than the cost for the next best match times a uniqueness factor
q ∈ (0,1]. This relation can be expressed in the following formula, where C is the set of
matching costs for all feature pairs and c∗ = cmin is the cost for the best match:

c∗ < q ·min{C \{cmin}} . (3.6)

The uniqueness constraint can be combined with our dense consistency check: Rather
than verifying during the consistency check that there is no other match with a cost
c < cmin, we instead require c to be not smaller than q · cmin. This means that we can
ensure dense uniqueness at hardly any additional computation cost. However, in this
case the uniqueness is ensured in the right-to-left matching direction, and not the left-to-
right direction that we use for establishing the initial stereo matches. This however, is
only a minor nuisance that should not reduce the quality of our results. How effective
the resulting method is in removing erroneous matches can be seen in Figure 3.8b.

To speed-up this combined consistency / uniqueness check, we apply one further mod-
ification: Instead of evaluating each pixel location on the examined section of the epipo-
lar line, we instead traverse the epipolar line with a step width w ≥ 1. This means that
we do not evaluate all pixels, but only consider a reduced subset. For example, if we
set w = 2, then the total number of matching operations reduces to almost half of the
original count. Later we show that increasing w only slowly reduces the matching ac-
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Figure 3.9: (a) Rectified camera image and (b) unrectified camera image with highlighted
epipolar lines / curves.

curacy. Hence w provides a trade-off between matching robustness and computational
efficiency. The method proposed so far is formally described in Algorithm 3.3 for the
case of rectified input images.

3.4.3 Processing of Unrectified Stereo Images

As discussed in Section 2.2.2 on page 17, the first processing step in a stereo matching
system is usually image rectification. Compared to common dense stereo matching al-
gorithms, this operation can be performed relatively fast. However, since our MAV is
a very computationally constrained platform and we opt for sparse stereo matching, we
would like to avoid a preliminary rectification step. For sparse stereo matching, this can
easily be done by just rectifying the locations of the matched image features. While this
can save much time during the correlation process, this strategy cannot be applied to the
previously introduced dense consistency / uniqueness check.

During the consistency / uniqueness check, we are required to traverse the epipolar
lines in the left image. Hence, rather than rectifying the left image such that epipolar
lines are horizontal, we can instead compute the epipolar lines in the unrectified cam-
era image. Because of the persisting lens distortion, the epipolar lines are depicted as
epipolar curves, as can be seen for one example in Figure 3.9a and 3.9b. We intend to
precompute these epipolar curves in order to allow for a fast traversal when performing
the dense consistency check.

To implement this process efficiently, we need to precompute three distinct lookup
tables that are each arranged in a two-dimensional matrix with the size of an input im-
age. For the first table Euv, we consider an unrectified left image location (ueL,veL) and
determine its rectified counterpart (ũeL, ṽeL). A table entry for Euv is then determined by
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Algorithm 3.3: Sparse stereo matching algorithm.
/* Detect features */
leftFeatures := detectLeftFeatures();
rightFeatures := detectRightFeatures();
bestMatches := /0;
/* Only perform non-maxima suppression for left image features. */
suppressNonMaxima(leftFeatures);

/* First match left and right features. */
foreach (uL,vL) ∈ leftFeatures do

minCost := ∞;
minRightFeature := /0;
/* Determine right feature matching candidates. */
cadidates := {(uR,vR) ∈ rightFeatures | (vR− vL)

2 ≤ 1∧ (uR−uL)≤ dmax};
foreach (uR, vR) ∈ candidates do

/* Perform correlation using census transformation. */
cost := correlate((uL,vL), (uR,vR));
/* Test whether we found a new best match */
if cost < minCost then

minCost := cost;
minRightFeature := (uR,vR);

end
end
if minRightFeature 6= /0 then

bestMatches.append({(uL,vL),(uR,vR),minCost});
end

end

/* Perform consistency / uniqueness check. */
foreach match ∈ bestMatches do
{(uL,vL),(uR,vR),minCost} := match;
/* Match densely in opposite direction. */
u := uR;
while u < uR +dmax do

cost := correlate((u,vL), (uR,vR));
if cost < minCost / q then

/* Match is non-unique or non-consistent. Remove it. */
bestMatches.remove(match);
break;

end
/* Increment u by step width w. */
u := u+w;

end
end
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using the following equation:

Euv = veL, where u = ueL and v = ṽeL. (3.7)

Thus, this table contains the vertical coordinates of the epipolar curves in the left camera
image. Next we compute the table Iuv:

Iuv = ṽeL, where u = ueL and v = veL. (3.8)

We use this table together with Euv to quickly select the best matching epipolar curve for
an unrectified left image location.

Finally, we require one more lookup table Zuv. Given a rectified horizontal right image
coordinate ũzR and an unrectified vertical left image coordinate vzL, we attempt to find
the point zL = (uzL,vzL) that meets the following conditions:

• There exists a point z̃R in the rectified right image with horizontal coordinate ũzR.

• z̃R lies on the epipolar line corresponding to zL.

• The stereo disparity between z̃R and the rectified image location of zL is 0.

The coordinate uzL is then stored in Zuv as follows:

Zuv = uzL, where u = ũzR and v = vzL. (3.9)

While the computation of the other tables is straightforward, we need to employ an
iterative computation scheme for calculating Zuv. The method that we use for this task
is shown in Algorithm 3.4. In this approach, we use ũzR as initial approximation for uzL.
We then rectify our estimate for zL and determine the stereo disparity d towards z̃R. As
we want to achieve a disparity of d = 0, we refine our estimate for uzL by subtracting d.
This process is repeated until either the maximum number of iterations has been reached,
or the disparity is smaller than ε > 0.

Once we have computed the three lookup tables, we can perform the dense consis-
tency / uniqueness check as follows: Given the unrectified left and right image locations
of a matching feature pair pL = (upL,vpL) and pR = (upR,vpR), and the lookup tables Euv
and Iuv, we obtain the epipolar curve eL(u) in the left image that is closest to pL:

eL(u) = Euv, where v = IupLvpL . (3.10)

Next, we obtain the coordinates (uzL,vzL) for point zL that matches the conditions we
pointed out above:

uzL = Zuv, where u = ũpR and v = vpL, (3.11)
vzL = eL(uzL), (3.12)
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Algorithm 3.4: Iterative computation scheme for uzL.
/* Initial estimate for uzL is ũzR */
uzL := ũzR;
d := ∞;
/* Refine estimate iteratively. */
for i := 1 to maxIterations do

if |d|< ε then
/* Approximation is sufficiently accurate. */
break;

end
/* Get vzL using the current estimate for uzL. */
ṽiL := Iuv, where u = uzL and v = vzL;
vzL := Euv, where u = uzL and v = ṽiL;
/* Rectify current estimate. */
(ũzL, ṽzL) := rectifyLeftPoint(uzL, vzL);
/* Determine how far we are away from 0-disparity. */
d := ũzL− ũzR;
/* Refine estimate for uzL by subtracting difference from

0-disparity. */
uzL := uzL−d;

end

where ũpR is the rectified horizontal coordinate of pR. The point zL is our starting point
for the dense consistency check. We then traverse the epipolar curve eL(u) in the range
of

uzL−dmax < u < uzL. (3.13)

Because this method only requires a few table lookups, and we only process image
locations for which we previously found a stereo correspondence, this method is much
faster than performing a full rectification of both input images. A quantitative evaluation
of the achieved performance gain is provided in Section 3.5.4 on page 50.

3.5 Evaluation

So far we have introduced the new exFAST feature detector and a novel sparse stereo
matching algorithm. In this section, we present a thorough evaluation of both methods.
We start with an independent examination of the exFAST detector, and then continue
with an evaluation of the combination of exFAST with our stereo matching method.
Furthermore, we perform a comparison to other sparse stereo algorithms and different
adaptations of our own stereo method that make use of other feature detectors.
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3.5.1 Feature Detector Performance

The main contribution of the proposed exFAST detector is an adaptive threshold that is
aimed at detecting more points in low-contrast image regions. At the same time, fewer
points should be detected in high-contrast image regions, where an unmodified FAST
detector tends to detect many features within short distance to one another. Thus, the
detected features should be more evenly distributed over the input image.

To evaluate the effect of our adaptive threshold, we hence require a quantitative metric
for the distribution of the detected features. We attempt to measure the ‘clusteredness’ of
a feature distribution, for which we divide the input image into a regular grid of 10×10
rectangular cells. For each cell, we determine the fractional amount of points that are
within the cell’s boundaries. We then use the standard deviation of those fractions as our
clusteredness measure s:

s =

√
1

n−1

n

∑
i=1

(
Ci

|C|
− 1

n

)
, (3.14)

where n is the total number of grid cells, C is the set of grid cells and Ci is the set of
features within grid cell i. If the features are uniformly distributed, each cell roughly
contains the same fraction of features, which causes s to reach a small value. On the
other hand, if the features are highly clustered, then few cells contain the bulk of all
features and s will be large.

With this metric, a comparison of exFAST against an unmodified FAST detector and
the Harris detector was performed. This comparison included another FAST-based al-
gorithm, which only uses the adaptive threshold that was introduced in Section 3.3.1 on
page 31. Likewise, a FAST algorithm with only the averaged center from Section 3.3.2
on page 34 was also included. This allows us to individually judge the contributions of
each of these two extensions.

The five chosen algorithms were evaluated using the unconstrained motion pattern se-
quences of the feature detection evaluation data set published by Gauglitz et al. (2011).
In these sequences, various flat reference pictures are filmed while performing random
camera movements. An example frame from one of these sequences is shown in Fig-
ure 3.10a. The dataset was repeatedly processed with each algorithm, while varying the
parameterizations of the algorithms. This was done in order to receive solutions with
different feature counts. For the Harris detector, FAST and FAST with averaged cen-
ter, the detection threshold t was varied, while the adaptivity factor a was varied for
exFAST and FAST with adaptive threshold. For the latter two, the constant threshold
tc = 10 was chosen, which appears to provide a good trade-off between detection speed
and clusteredness.

In Figure 3.11a, the average of our clusteredness metric is plotted against the average
feature count for each examined algorithm. These results show that compared to the
Harris detector and ordinary FAST, exFAST provides significantly less clustered feature
distributions in most cases. However, with decreasing adaptivity factor a and an increas-
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(a) (b)

Figure 3.10: (a) Frame of evaluation data set with features detected by exFAST and (b)
generated top-view of reference picture with selected features.

ing feature count, the difference between exFAST and FAST reduces and eventually
becomes 0. The reason for this behavior is that we employ an ordinary FAST detector
with threshold tc as the first detection stage. Hence, when reducing a, the results of ex-
FAST become more and more similar to those of FAST with threshold tc. When a = 0,
both detectors provide identical results. Figure 3.11a further shows that the reduced
clusteredness can be credited to the adaptive threshold, as FAST with adaptive threshold
performs almost identical to exFAST. Although FAST with averaged center also provides
a reduction in clusteredness, this effect seems insignificant for the combined approach.

Furthermore, the repeatability of the examined feature detectors has been evaluated.
Accurate ground truth information is available for the camera movements in the used
evaluation sequences. Hence, we are able to warp the projection of the recorded reference
picture into a top-down view, as shown in Figure 3.10b for the previous example frame.
This top-down view serves as reference view for our repeatability analysis. By projecting
two features from different frames into this reference view, we can determine if those
features correspond to the same point in the reference picture. For this task, we only
consider features within a defined Region Of Interest (ROI), which has been highlighted
in blue in the given example.

With the projected feature coordinates, we are able to calculate a repeatability metric
ρ for two feature sets that originate from different frames. We use the method proposed
by Gauglitz et al. (2011), which, in simplified notation, can be expressed as follows:

ρ =
|{(pa ∈ Si, pb ∈ S j) |∆r(pa, pb)< ε}|

|Si|
, (3.15)

where Si and S j are the sets of features that were detected in frames i and j. The function
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Figure 3.11: (a) Feature clusteredness and (b) repeatability evaluation.

∆r provides the distance between two points when projected into the reference view. The
threshold ε > 0 determines the maximum distance in the reference image up to which
two features are considered to correspond to the same point. In accordance to Gauglitz
et al. (2011), we set ε to 2 pixels.

This repeatability metric has been computed for each pair of consecutive frames from
the used evaluation dataset. The average repeatability for all such frame pairs and all se-
quences are shown in Figure 3.11b for the five considered feature detectors with varying
parameterizations. This diagram reveals that the adaptive threshold causes a significant
repeatability reduction. The averaged center, on the other hand, yields a slight repeata-
bility increase when used individually or in conjunction with the averaged center, which
matches our assumption from Section 3.3.2 on page 34. In fact, FAST with averaged
center ensures a higher repeatability than the Harris detector for large thresholds.

The lower repeatability of exFAST when compared to plain FAST or the Harris detec-
tor suggests that exFAST is the ‘worst performing’ feature detector. However, we in our
case are interested in stereo matching, which is a task that differs significantly from the
common use of feature detection algorithms. We will see in the following section that
despite the lower repeatability, exFAST provides a better performance for this task.

3.5.2 Combined Feature Detection and Stereo Matching

For evaluating the stereo matching performance, we use the 2006 Middlebury College
dataset (Scharstein and Pal, 2007). The 2001 and 2003 datasets from the same institution
are frequently used for evaluating dense stereo algorithms. However, compared to these
earlier datasets, the 2006 dataset is more challenging. This dataset contains more stereo
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(a) (b)

Figure 3.12: (a) Left input image with highlighted stereo matches and (b) right input
image of used evaluation dataset

pairs, encompasses a larger disparity range and features stereo pairs with untextured
or repetitively textured image regions. As a comparison to previous results of dense
algorithms is dispensable, we chose the 2006 dataset for our evaluation.

We use the semi-resolution version of this dataset, which has image resolutions that
are closer to the VGA resolution of the cameras on-board our MAV. For processing the
comprised stereo pairs, the maximum disparity dmax is set to 115 pixels. An example for
the performance of our stereo matching system on a stereo pair from this dataset is given
in Figure 3.12.

As criterion for evaluating the stereo matching accuracy, the Bad Matches Percentage
(BMP) ψ is determined, which we define as follows:

ψ =

∣∣{p ∈M |(Dp−Gp)
2 ≤ ε}

∣∣
|M|

, (3.16)

where M is the set of successfully matched features, and the sets D and G represent
the obtained and ground truth stereo disparities. The threshold ε is set to 1, which is
in accordance with the threshold commonly used for evaluating dense algorithms (see
Scharstein and Szeliski, 2002; Szeliski et al., 2007). However, the resolution of the
ground truth for the used dataset is at only 0.5 pixels, which means that the BMP we
determine might be overestimated.

We use the optimized stereo matching implementation with matching windows of size
6× 5 pixels in combination with three different feature detectors. The chosen methods
are our exFAST detector, a plain FAST detector and the Harris detector. For each feature
detector, three different parameterizations were selected, such that all algorithms detect
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Table 3.1: Parameter sets for the examined feature detectors during stereo matching.

Method Parameters
exFAST adaptivity (a) 0.5 1.0 1.5
FAST threshold (t) 12 15 20
Harris threshold 2 ·10−6 5 ·10−6 1.5 ·10−5
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Figure 3.13: (a) Stereo matching accuracy and (b) clusteredness of stereo matching re-
sults for different feature detectors and parameterizations.

similar numbers of features. The chosen parameters are listed in Table 3.1.
Our stereo matching system was run with each feature detector while varying the

uniqueness factor q. For each test run, the average BMP of all stereo pairs in the evalua-
tion data set was determined. In Figure 3.13a, the average BMP for each feature detector
is plotted against the number of received matches. These results show that our proposed
stereo matching method provides a significantly higher accuracy when used in conjunc-
tion with exFAST, as opposed to FAST or the Harris detector.

With increasing the feature count, the results received for the examined feature de-
tectors converge. The likely explanation for this behavior is that the feature detector
becomes unimportant for situations with high feature counts. In this case, we are close
to dense stereo matching. Hence, the result is mostly influenced by the used matching
strategy, and less by the choice of features. In the parameter range that was examined
for our evaluation, however, the BMP received with exFAST remained notably below the
BMP for FAST or the Harris detector.

For the features that were successfully matched during stereo matching, the feature
distribution was also examined. The resulting clusteredness s for all feature detectors
and parameterizations are shown in Figure 3.13b. This figure has been plotted against
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the average number of features, while varying the uniqueness factor q. According to this
figure, exFAST causes the least clustered distribution of successfully matched feature
pairs, while the results for the Harris detector show the highest clustering. The low
clusteredness of the features that were detected by exFAST matches our findings from
the previous section. Furthermore, Figure 3.13a and 3.13b reveal that the uniqueness
factor q provides a trade-off between the number of successfully matched features, BMP
and clusteredness.

Even though the proposed exFAST detector was shown to have a lower repeatability
when compared to standard FAST or the Harris detector, the received stereo matching
results are of a significantly higher quality. This observation appears to be contradictory.
A possible explanation for this behavior might be as follows: If the feature distribution
tends to be clustered, we receive regions with high feature-detection probability. Since
the feature distribution depends on local intensity variations in the input image, we can
expect that images of the same scene exhibit similar feature distributions. Hence, when
performing a repeatability analysis for two frames by mapping all features into a common
reference view, there is a high probability that a feature from a dense feature area in
one frame will have a close neighbor from the other frame. We thus conclude that the
repeatability measure is biased towards clustered feature distributions.

For stereo matching, however, we expect to see the opposite effect. From an area with
high feature density, we receive many features that originate from the same image region.
Hence, their local pixel neighborhood is also likely to exhibit a similar appearance. For
accurate stereo matching, however, we prefer features with a unique appearance, which
we are more likely to receive if the features originate from different sections of an in-
put image. Thus, we expect stereo matching to be biased towards unclustered feature
distributions.

As mentioned in Section 3.4 on page 35, it is possible to perform the combined consis-
tency and uniqueness check with larger step-widths w. As a large step width significantly
reduces the number of required matching operations, we receive a higher run-time per-
formance in this case. The effect of a varying step-width w on the received BMP is
shown in Figure 3.14. For this experiment, exFAST was used as feature detector, with
different values for the adaptivity factor a. Furthermore, the uniqueness factor q = 0.5
was chosen, which provides good results on the evaluation dataset. As expected, the
BMP increases gradually with increasing w. It is thus possible to adjust w in order to
receive a trade-off between matching accuracy and the achieved run-time performance.

3.5.3 Comparison with Other Stereo Matching Methods
In Figure 3.15a, the BMP obtained with our algorithm is compared to the results for
three alternative methods. Our algorithm has been labeled Dense Consistency in this
figure. The three alternative methods include a plain sparse stereo algorithm (Sparse),
which simply matches features found in the left input image to the features in the right
image that are close to the same epipolar line. Furthermore, the algorithm Dense Right
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Figure 3.14: Consistency check step width vs. accuracy.

is included that densely matches all features from the left image to the valid disparity
range in the right image. Finally, the last method is a dense block matching algorithm
(Block Matching). For this method, we only evaluate the pixel locations where a feature
has been detected.

As feature detector for all stereo matching algorithms we use our exFAST detector
with adaptivity factor a = 1.0, which is the parameterization that we use for the rest of
this thesis. Furthermore, all algorithms use the same correlation method that we pre-
sented in Section 3.4.1 on page 35. All algorithms apply our consistency and uniqueness
check with varying q. Except for our proposed method Dense Consistency, only the cost
values calculated during stereo matching are considered for this step.

The given results show that Dense Consistency and Block Matching greatly outperform
Sparse and Dense Right. For Block Matching, the received BMP is lower than for Dense
Consistency. However, for lower feature counts, which are caused by a lower uniqueness
factor q, this difference becomes marginal.

The algorithm Sparse shows the worst performance, which was expected as this algo-
rithm performs the least matching operations. As a surprise, Dense Right also shows a
rather poor performance despite the fact that this method generally requires more match-
ing operations than Dense Consistency. The key difference between both algorithms is
that Dense Consistency examines the entire disparity range relevant for the combined
consistency and uniqueness check. Dense Right, on the other hand, only considers the
image locations for which a cost has previously been calculated during the left-to-right
stereo matching. Hence, we can conclude that a dense processing is more relevant during
the consistency and uniqueness check, rather than for the initial matching stage.

For judging the achievable run-time performance of each algorithm, we compare the
average number of matching operations that each method requires for processing the
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Figure 3.15: (a) Accuracy of different stereo-analysis methods and (b) matching opera-
tions by stereo-analysis method.

stereo pairs in the evaluation dataset. The results are displayed in Figure 3.15b for the
algorithms Dense Consistency with step-widths w = 1 and w = 2, and for Sparse and
Dense Right. The results for Block Matching have been omitted in this diagram, as
this method requires 3.8 ·107 matching operations, which is far more than for any other
algorithm.

For Dense Consistency, the number of matching operations depends on the uniqueness
factor q, as low values for q allow for an early rejection of wrong matches. For the other
algorithms, the number of matching operations remains constant. Our results show that
increasing the step-width w to 2 almost halves the number of matching operations that
are required by our proposed Dense Consistency algorithm. Hence, by increasing w, we
can significantly reduce processing time for stereo matching.

3.5.4 Real World Performance Evaluation

To judge the performance of our stereo vision system in real-world situations, one fur-
ther evaluation was performed on an unrectified stereo sequence. This time, our stereo
matching implementation that is targeted for our MAV platform, which has a matching
window size of 5× 5 pixels, was also considered. For this evaluation, the Queen Street
sequence from the EISATS dataset number 9 was used, which has been published by Her-
mann, S. and Morales, S. and Klette, R. (2011). This sequence was recorded outdoors
with a car-mounted stereo camera with a resolution of 640× 480 pixels. An example
for the performance of our method with one stereo frame from this stereo sequence was
previously shown in Figure 3.1a on page 22.
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Table 3.2: Processing rates for images of size 640× 480 pixels, on different hardware
platforms.

Architecture One Core Two Cores
Regular PC (Intel i5 dual core, 3.3 GHz) 175 fps 214 fps
MAV (Intel Core 2 Duo, 1.8 GHz) 71 fps 89 fps

The parameters used for processing this sequence are: adaptivity a = 1.0, uniqueness
factor q = 0.7, consistency check step width w = 2, and maximum disparity dmax = 70.
Compared to the previously used dataset, which was recorded in a controlled lighting
environment, this real-world sequence is considerably more challenging. This is why
a higher value for the uniqueness factor q was chosen, which should lead to a better
suppression of erroneous matches.

The sequence comprises a total of 400 stereo pairs and our stereo method was able to
successfully match an average number of 633 features with the standard and 605 features
with the embedded implementation for our MAV platform. The standard implementation
was run on a computer with an Intel i5 dual core CPU with 3.3 GHz, and the embedded
version was run on the actual MAV hardware. Two versions of each implementation have
been examined: one sequential version and a parallel version that utilizes two CPU cores
by means of parallel programming techniques.

Table 3.2 shows the results that were obtained on both platforms. When using both
cores on the regular PC, we achieve an average processing rate of 214 frames per sec-
ond. But even when run on just one core of our MAV platform, the average processing
rate is still far above the desired processing rate of 30 Hz. This should leave sufficient
processing resources for high-level vision tasks that we are required to run on-board our
MAV in addition to stereo matching.

The single threaded test run on the regular PC was repeated with a varying adaptivity
factor a. The received processing times are shown in Figure 3.16, where the point for
a = 1.0 has been highlighted. This figure also includes the processing times of a version
that performed full image rectification. For rectification, the method contained in the
OpenCV library (see Itseez, 2013) has been used. This method is particularly efficient,
as it precomputes a rectification transformation and stores it in a rectification map. With
this map, OpenCV then performs a fast transformation of the input image, by making
use of the SSE instruction set.

In the provided figure we can see that our implementation, which does not perform full
image rectification, has significantly lower processing times. For the examined param-
eter range, the achieved performance improvement varies between 2.9 ms and 3.1 ms.
Given the low total processing time of our stereo matching method, which according to
Figure 3.16 can be as low as 3.4 ms, the time required for image rectification can have a
high impact on the overall processing rate.
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Figure 3.16: Stereo matching performance evaluation.

3.6 Summary and Discussion

In this chapter we introduced an efficient sparse stereo matching system, which we
specifically developed for application on-board our MAV. Since the on-board processing
resources that are available on our MAV platform are particularly scarce, the most impor-
tant design criterion for our stereo matching system was high computational efficiency.
Most current work on stereo vision is primarily focused on dense stereo methods, which
usually only achieve low processing rates when run on a CPU. This is why we opted for
a substantially faster sparse stereo matching approach.

Our aim is to utilize stereo matching to achieve accurate vision-based navigation for
our MAV. Given that many visual navigation methods only process a sparse set of salient
image features, performing sparse instead of dense stereo matching does not seem to be
a limitation in our case. Rather, a high processing rate is important, which is why slow
dense stereo matching algorithms are not suitable for our MAV.

Thus, we have aimed at creating a sparse stereo matching method that provides accu-
rate results, but still remains computationally efficient. We achieved this goal by using
several techniques. First, we presented a new feature detector based on the FAST al-
gorithm. As shown in our evaluation, features detected with this new method exhibit
an evidently less clustered distribution, when compared to ordinary FAST or the Har-
ris detector. Although our algorithm performs worse than FAST or the Harris detector
for common repeatability measures, its performance was clearly superior in a combined
feature detection and stereo matching system.

The performance of our algorithm might also be superior for other feature-based vision
tasks. What our evaluation shows is that repeatability is not necessarily a sufficient mea-
sure for quantifying the performance of a feature detector. Rather, the uniqueness of the
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detected features should also be taken into consideration, and a detector’s performance
for specific applications should be examined.

The second contribution of this chapter is a new stereo matching algorithm. Even
though this algorithm performs sparse stereo matching, we apply a dense consistency
and uniqueness check, which successfully eliminates most erroneous matches. We are
able to perform this dense consistency and uniqueness check without prior image rec-
tification. We achieve this by using a method based on lookup tables, which traverses
the epipolar curves in an unrectified input image. In a performance evaluation, we have
shown that this approach saves valuable computation time when compared to full image
rectification.

We further evaluated the matching accuracy of the resulting stereo matching system
and have shown that it produces accurate results with only few erroneous matches. Com-
pared to several other algorithms that also provide a sparse set of stereo correspondences,
our method produces significantly fewer false matches, and it can compete in accuracy
with a dense block matching algorithm. Furthermore, we have shown that our stereo
matching system is fast enough for real-time stereo matching on a CPU, while leaving
sufficient processing resources for higher-level vision tasks. This is even the case when
stereo matching is run on our MAV platform. This highly efficient stereo matching sys-
tem is the first step in the construction of our autonomous MAV.
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Chapter 4

Stereo-Based Visual Navigation

4.1 Introduction

To enable our MAV to perform autonomous flight maneuvers, we need to equip it with
a method for autonomous navigation. We define autonomous navigation as the ability of
an MAV to fly from one location to another, without the need for human intervention.
For this to be possible, the MAV has to be aware of its current pose throughout the
flight. If the MAV is able to track its pose, it can sense its positional and rotational
movements. This allows us to use a control algorithm to stabilize the MAV’s flight,
which is particularly important for an inherently unstable quadrotor. With the current
MAV pose, we can then determine the MAV’s relative position towards the dedicated
target location. We are hence able to steer the MAV towards this target location and thus
achieve autonomous navigation.

If we do not rely on an external system for pose inference, the MAV has to ensure pose
estimates by solely using its on-board sensors. This task is usually much simplified if the
environment of the MAV is known in advance, in which case the MAV can be equipped
with an appropriate map before taking off. It can then use this map and its on-board
sensors for the identification of known landmarks. Using the observed relative position
of these landmarks towards the MAV, it is possible to infer the current MAV pose.

If we want to operate our MAV in unknown environments, this task is more diffi-
cult. Specific solutions for the pose inference problem have been proposed in literature
for a range of sensor types, such as laser scanners, monocular cameras or RGBD cam-
eras. Since our MAV is equipped with four cameras in two stereo configurations, we are
mainly interested in methods that rely on stereo vision. We can use the efficient stereo
vision system that we presented in the previous chapter to develop a stereo vision based
pose estimation method for our MAV.

In this chapter, we present two complete MAV systems that are able to navigate au-
tonomously. The first system, which was initially presented at the 2012 Autonomous
Mobile Systems Conference (AMS), uses only the forward-facing camera pair of our
MAV platform (Schauwecker et al., 2012b). The imagery of these cameras is used for
running a stereo SLAM system that has been simplified for meeting the necessary per-
formance requirements. To the author’s knowledge, this was the first demonstration of
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an MAV that relies on stereo vision for autonomous navigation, and does not depend on
visual markers or an otherwise known environment.

The second system that we present in this chapter extends the former one by also
employing the downward-facing camera pair. The stereo matching results received from
this camera pair are used for detecting and tracking the visible ground, for which a planar
model is assumed. This allows us to determine a redundant pose estimate, which in this
case is relative to the assumed ground plane. This method was initially published at the
2013 International Conference on Unmanned Aircraft Systems (ICUAS) (Schauwecker
and Zell, 2013), while an extended version of this work was published in the Journal of
Intelligent & Robotic Systems (JINT) (Schauwecker and Zell, 2014a). To the author’s
knowledge, this was the first demonstration of an MAV that is able to perform stereo
matching for two stereo camera pairs on-board and in real-time.

4.2 Related Work

As already mentioned, the key challenge in autonomous navigation is the estimation of
the current MAV pose. Hence, in this section we have a close look at existing methods
for pose inference. Since our MAV is equipped with two camera pairs for stereo vision,
we are particularly interested in stereo vision based methods. Furthermore, we have a
look at existing autonomous MAVs that rely on stereo vision or other sensor types for
environment perception.

4.2.1 Visual Odometry

A simple approach for estimating the pose of a moving camera is Visual Odometry (VO).
In the case of VO, the current camera pose is incrementally tracked from one camera
frame to another. A two-part introduction to VO, with a survey of existing methods
and techniques in this field, has recently been published by Scaramuzza and Fraundorfer
(Scaramuzza and Fraundorfer, 2011; Fraundorfer and Scaramuzza, 2012).

There exist both monocular and stereo vision based approaches for VO. In fact, one of
the first VO methods, which was published by Moravec (1980), already relied on stereo
vision. In this work, Moravec implemented a VO system for the navigation of a mobile
robot, which was equipped with a linearly translatable camera. While the robot is stand-
ing still, the camera records several images at different camera translations. The robot
then moves a short distance and records another set of images. VO is then applied to
obtain an estimate for the traveled distance and direction. Feature points from different
camera translations at one robot position are used for sparse stereo matching. The result-
ing sets of 3D points from both robot positions are then aligned using a weighted least
squares method. As a result, an alignment transformation is received, which provides the
pose update from the first to the second robot position.
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It is no coincidence that the early VO system from Moravec uses stereo vision rather
than monocular vision. As previously mentioned, a monocular camera allows us to fully
observe camera rotations, but camera translations are only observable with respect to an
unknown scaling factor. Only if an estimate for this scaling factor can be obtained by
other means, it is possible to recover the camera translation. This circumstance makes the
design of monocular VO systems challenging. Nevertheless, several robust monocular
VO implementations have been proposed in more recent times. Popular examples are
the VO systems published by Corke et al. (2004), Nistér et al. (2006) or Scaramuzza
and Siegwart (2008). Given our focus on stereo vision based methods, we omit a more
detailed discussion of these approaches.

Despite the early groundbreaking work by Moravec and others, the term Visual Odom-
etry was coined much later by Nistér et al. (2004), who according to Scaramuzza and
Fraundorfer (2011) presented the first real-time and long-run VO system. In fact, Nistér
et al. proposed two VO implementations, of which one is based on monocular and one on
stereo vision. The stereo method first detects corner features in the left and right camera
images, which are then correlated using a robust NCC-based matching scheme. With the
same matching method, features are tracked independently over several camera frames.
Using a robust estimator that is based on RANdom SAmple Consensus (RANSAC) (Fis-
chler and Bolles, 1981) and the three-point algorithm proposed by Haralick et al. (1994),
an estimate for the camera movements is obtained. Different optimizations and refine-
ment strategies are then applied in subsequent steps.

A more recent stereo vision based VO system has been proposed by Kitt et al. (2010).
The first step in this method is again the extraction of corner features, which are used
for stereo matching. The subsequent motion estimation is based on the trifocal tensor
(Hartley and Zisserman, 2003), which are three 3×3 matrices that encapsulate the pro-
jective geometric relationships among three camera views. Using the trifocal tensor, a
RANSAC based estimator is applied to extract a robust motion estimate from two con-
secutive stereo frames. In a final step, a temporal integration of the extracted motion
information is performed.

Another recent stereo vision based VO method, which has gained much popularity,
was published by Konolige et al. (2011). Unlike in the previously discussed work,
this method does not rely on corner features, but uses a more stable feature detector
by Agrawal et al. (2008). Features are only extracted from the left input image, and then
densely matched to the right image. The corresponding feature-pairs are used to obtain
a motion estimate from two consecutive stereo frames, by using a robust estimator based
on RANSAC and the three-point algorithm. The system preserves the most recent pose
estimates and tracked features, which are then optimized using Bundle Adjustment (BA)
(Triggs et al., 1999; Engels et al., 2006). This optimization step leads to a significant
improvement in pose estimation accuracy.
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4.2.2 Visual Simultaneous Localization and Mapping

The key problem of VO is that camera motions are only tracked from one frame to
another. Not only does this favor error accumulation, but it also limits the tracking ro-
bustness. If tracking ever fails for one camera frame, all subsequent pose estimates will
be erroneous. Hence, nowadays VO has mostly been superseded by more accurate and
more robust map-based methods.

If we possess a map that contains the 3D-locations of salient scene features, then the
camera movements can be tracked by identifying those features in the current camera
image. Such a map can be created on the fly, by populating it with features that the
camera currently observes. However, for adding new features to the map, we already
require knowledge of the current camera pose. Hence, the problem of creating the map
and finding the camera pose are strongly interconnected.

The solution is to simultaneously create the map and determine the camera pose, which
was coined Simultaneous Localization and Mapping (SLAM) by Durrant-Whyte et al.
(1996). In this case, an initial map is created by using features from an initial camera
frame and by assuming a default camera pose. When the camera is moved, localization is
performed against this map and the resulting pose is used to expand the map with newly
observed features.

An introduction to SLAM with a review of many less-recent methods and techniques
can be found in the two-parts tutorial published by Durrant-Whyte and Bailey (Durrant-
Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006). Unlike for VO, the reliance
on stereo vision was less common in early SLAM systems. For a considerate time span,
filter based methods used to be the state of the art in SLAM research. These methods are
based on statistical filters such as Extended Kalman Filters (EKF) (see Ribeiro, 2004) or
Particle Filters (PF) (Gordon et al., 1993).

An example for a successful EKF-based SLAM method is the approach published by
Davison (2003), which was intended for use in small indoor spaces. In this method, the
EKF has a state vector that comprises the current camera pose and all mapped feature
locations. The state prediction step that is required by the EKF is performed using a
motion model for camera movements. Image corners serve as features that are extracted
with the algorithm proposed by Shi and Tomasi (1994), and matched using normalized
SSD correlation. Because the 3D location of a feature point cannot be inferred from a
single camera image, features have to be observed from two different positions before
they can be added to the map. The metric scale of the map is initialized with a known
object that has to be visible to the camera.

Compared to EKF-based methods, methods based on PF are generally more robust
against measurement errors. An example for a method that relies on PF and stereo vision
was published by Sim et al. (2005). In particular, Sim et al. employ a Rao-Blackwellized
Particle Filter (Doucet et al., 2000), which provides improved performance in handling
large state vectors. Like in the previous EKF approach, the filter state consists of the
camera pose and the 3D locations of existing map features. Features are detected and
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Figure 4.1: Visualization of keyframe based visual SLAM.

identified using the SIFT feature detector and descriptor, which we discussed in Sec-
tion 3.2.1 on page 23. For motion prediction, a VO algorithm is used that again relies on
SIFT descriptors.

Most modern SLAM systems no longer employ statistical filters. Rather, the previ-
ously mentioned BA is the predominant optimization technique today. It has been shown
by Strasdat et al. (2010) that apart from some exceptional cases, methods based on BA
generally provide “the most accuracy per unit of computation time". One of the most
influential methods in this area is Parallel Tracking and Mapping (PTAM), as proposed
by Klein and Murray (2007). The innovation of this monocular SLAM system was a
parallelization of the SLAM problem. PTAM uses a tracking thread for localizing the
current camera pose, while a mapping thread performs map expansion. Because map
expansion does not have to be performed at video frame rate, it is possible to apply an
expensive map optimization based on BA.

The map created by PTAM comprises keyframes and 3D feature locations, as illus-
trated in Figure 4.1. For each key frame, an image pyramid is generated and FAST
corner features (see Section 3.2.1) are extracted. Whenever the tracking thread decides
that the map has to be expanded, a new keyframe is passed to the mapping thread. The
3D location of an observed image feature is then obtained through triangulation with a
previous keyframe from a different viewing position. A horizontal displacement of the
camera is required to initialize the map with an initial set of 3D features. The magnitude
of this initial displacement also serves for initializing the map scale.

PTAM has gained much popularity in the research community due to its high effi-
ciency and its robust pose estimation results. In fact, the authors even managed to run
an optimized version of PTAM on a camera phone (Klein and Murray, 2009). A large
part of PTAM’s popularity can also be credited to the fact that the authors have made
the source code of their implementation available online (see Klein and Murray, 2010).
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This allows this method to be easily adapted by others, as has e.g. been done by Scherer
et al. (2012). In this extension, additional depth information is used to obtain a map with
a correct metric scale. The depth information originates from an RGB-D camera, but
could in theory also be obtained through stereo vision. A depth estimate is extracted for
each detected feature and considered in the BA-based map optimization.

An example for a method that is inherently based on stereo vision is the SLAM system
developed by Mei et al. (2009). Using the SSD gradient descent algorithm proposed
by Mei et al. (2008), the system computes an initial estimate for the pose update, by
matching the current against the previous camera frame. With this initial pose estimate,
potentially visible map features are projected into the current camera image and matched
against extracted FAST corner features. A RANSAC estimator that is based on the three-
point algorithm is then applied to compute a pose update. Stereo matching is performed
only for new features that are added to the map, which saves much computation time.

Unlike PTAM, the system form Mei et al. uses a relative map representation. This
means that the position of a map feature is stored relative to a corresponding keyframe,
and the pose of a keyframe is stored relative to a neighboring keyframe, forming a pose
graph. Such a relative representation is advantageous if the system detects that it has
re-visited a previously mapped location, which is known as loop closure. In this case,
an optimization of the existing map can be performed that compensates accumulated
drift errors. In a relative map, this can be achieved by simply adding a new edge to
the pose graph, while an absolute map would require an update of all keyframes and
corresponding map features on the detected loop.

Another stereo vision based SLAM method, which also performs loop closure and
uses a relative map representation, has been published by Strasdat et al. (2011). This
method applies a dense stereo algorithm to the captured camera imagery. Feature points
are extracted using the FAST detector and matched using BRIEF descriptors. The nov-
elty of this method is that it uses two active windows for map optimization. The inner
window consists of a set of recently mapped camera poses and map points, which are
optimized using BA. A larger outer window only contains camera poses and is used for
pose graph optimization. The smaller window for BA was chosen because the com-
plexity of BA grows cubically with the number of poses. Hence, performing only pose
graph optimization in the larger window keeps the computational requirements within a
feasible range.

4.2.3 Autonomous Navigation for MAVs
Despite the generally large weight and high power consumption of laser scanners, there
exists a significant amount of previous work on using small single-beam laser scanners
for autonomous MAVs. Shen et al. (2011) presented one such MAV, which is able to
navigate autonomously in indoor environments with multiple floors. This was made
possible by using a laser SLAM method that is based on pose graph optimization. Using
a monocular camera, the MAV is also able to perform loop closure detection. This MAV

60



4.2 Related Work

was later extended to also perform autonomous path planning, which facilitates the fully
autonomous exploration of unknown indoor environments (Shen et al., 2012).

Another outstanding autonomous MAV that relies on laser scanners, is the fixed wing
aircraft presented by Bry et al. (2012). This MAV is able to perform aggressive au-
tonomous flight maneuvers at high speeds. Using an on-board laser scanner, the MAV is
able to localize itself within a preexisting map. Bry et al. demonstrated that their MAV
is able to fly in a large indoor environment while avoiding previously mapped obstacles.

Compared to laser scanners, cameras have the advantage that they can be built very
lightweight and power efficient, which makes visual motion estimation a compelling
alternative. As we have already discussed, however, the MAV position can only be ob-
served with respect to an unknown scaling factor, if a single camera is used as only source
of information. This is why many MAVs featuring monocular vision are only operable
in specific environments.

One such example is the quadrotor MAV presented by Tournier et al. (2006), which
relies on visual markers. As markers serve several large Moiré patterns as proposed by
Feron and Paduano (2004). Using a downward-facing camera, the MAV is able to hover
autonomously above an arrangement of four such patterns. Like in most earlier work on
autonomous MAVs, however, image processing is not performed on-board. Instead, a
ground computer is used that remotely controls the MAV.

An approach that only relies on on-board processing was published by Wenzel and Zell
(2009). This MAV employs a downward-facing infrared camera that was extracted from
a Wii remote controller. The camera contains an integrated circuit for tracking several
infrared blobs, which allows the usage of infrared LEDs as markers. This enables the
MAV to hover in a defined pose above an infrared LED pattern.

An example for an MAV with more advanced on-board image processing has been
provided by Yang et al. (2012, 2013a). The authors presented a quadrotor MAV that
is able to track a landing pad with a downward-facing on-board camera. Because the
geometry of this pad is known, it is possible to infer the MAV’s relative pose from the
observed perspective projection. With this information, Yang et al. were able to demon-
strate autonomous take-off, hovering and landing.

Instead of avoiding the scaling factor problem by only flying in known environments,
one can alternatively derive an estimate for this factor. Such an approach has been pre-
sented by Yang et al. (2013b, 2014), which is based on the mentioned landing pad track-
ing method. In this approach, the known landing pad is required only during take-off, to
initialize a PTAM-based monocular SLAM system with the correct metric scale. Once
the initialization is complete, the MAV can fly a predefined trajectory and search for a
specific landing site.

An approach with a continuous estimation of the scaling factor has been published
by Engel et al. (2012). Here, the scale for a PTAM-based monocular SLAM system
with a forward-facing camera is estimated by using additional measurements from an
ultrasound altimeter. For this task, the authors introduced a new closed-form maximum
likelihood method for integrating the measurements from both sensors. The resulting
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MAV, however, does not perform any on-board processing but relies on a ground com-
puter.

Another popular method for scale estimation is by means of measurements from an
IMU (i.e. accelerometer and gyroscope) or an air pressure sensor, which are commonly
available on many MAV platforms. Achtelik et al. (2011) presented one such MAV
with a downward-facing camera, which performs a continuous scale estimation from
accelerometer and pressure sensor readings. This is achieved by using a specifically
designed EKF, which provides scale estimates that are used for a PTAM based visual
SLAM method. The MAV demonstrated its ability to hover autonomously in indoor and
outdoor environments. Similar systems that also rely on PTAM have been developed by
Weiss et al. (2011) and Scaramuzza et al. (2013). Here, the authors use readings from an
IMU, which are again processed by an EKF to receive a metric scale estimate. In both
cases, the MAVs are able to follow a predefined trajectory.

If stereo vision is used instead of monocular vision, then the dependency on an un-
known scaling factor vanishes, as we receive a full 3D-position for all matched points.
Unfortunately however, stereo matching is generally very computationally demanding.
Most less-recent work has thus focused on off-board stereo processing. For example,
ground mounted stereo cameras that are focused on an MAV were used by Achtelik
et al. (2009) and Pebrianti et al. (2010). A more advanced system with a forward-facing
on-board stereo camera was demonstrated by Carrillo et al. (2012). Here, the camera im-
ages are transmitted wirelessly to a ground computer at a relatively low frame rate. The
computer runs a stereo VO system and uses the obtained motion information for remote
controlling the MAV.

Only very recently it has been possible to equip MAVs with sufficient processing re-
sources to perform stereo matching on-board. The MAV presented by Heng et al. (2011)
features a forward-facing stereo camera and runs a dense block matching algorithm with
a resolution of 320× 240 pixels. This MAV was later extended by Meier et al. (2012)
to use a larger image resolution of 640× 480 pixels. In both cases, however, the stereo
matching results are only used for obstacle avoidance, by creating a 3D occupancy map.
For navigation, the MAV still depends on visual markers. This limitation was resolved by
Fraundorfer et al. (2012), who equipping the MAV with the integrated optical flow cam-
era and ultrasound altimeter developed by Honegger et al. (2013). This allows the MAV
to perform autonomous exploration tasks in indoor and outdoor environments. However,
according to the numbers given for the final revision of this MAV, stereo processing only
runs at a relatively low frame rate of just 5 Hz.

An example for an MAV with a downward-facing stereo camera and on-board stereo
processing is the MAV developed by Tomic et al. (2012). The authors use a dense cor-
relation based stereo algorithm which runs at a very low frame rate of just 3 Hz. The
MAV’s pose is tracked with VO and the resulting data is fused with further odometry
data gained from an on-board laser scanner and readings from an IMU. Drift errors are
compensated by recognizing known landmarks.

Another interesting MAV is the lighter-than-air MAV presented by Harmat et al.
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(2012), which is equipped with three fisheye cameras of which two are arranged in a
stereo configuration. However, no stereo matching is performed, but rather the imagery
of each camera is tracked independently using PTAM. After tracking, the data from all
cameras is fused using a pose alignment step. For this MAV, all processing is performed
off-board and no autonomous control has been demonstrated.

There are two further MAVs that show similarity with the methods presented in this
chapter, but have been published at a later date. The first one is the quadrotor MAV from
Shen et al. (2013) that is equipped with a forward-facing stereo camera pair, of which
one camera is fitted with a fisheye lens. The fisheye camera is used for a simplified
monocular SLAM system that is limited to a local map and which operates at 25 Hz. The
second camera is operated at a rate of only 1 Hz, and is used for a sparse stereo matching
algorithm. By inserting the 3D points received from stereo matching into the SLAM
map, the system is able to operate at a correct metric scale.

The second MAV was presented by Nieuwenhuisen et al. (2013), and is equipped with
two stereo camera pairs with fisheye lenses. Both camera pairs are inclined towards
the ground, with one pair facing forward and one pair facing backwards. In addition, the
MAV is equipped with a rotating laser scanner, several ultrasound sensors, an optical flow
camera with an integrated altimeter, a GPS receiver and an air pressure sensor. Features
from the stereo cameras are used for a VO method, which is unfortunately not described
by the authors. Furthermore, no detailed description is given on how the measurements
from VO are fused with measurements from the other sensors. Apart from simulated
flight results, the authors demonstrated successful obstacle avoidance.

Most of the discussed stereo vision based autonomous MAVs that perform on-board
image processing employ dense stereo methods. Because of the computational demands
of dense stereo algorithms, however, this means that those MAVs are only able to process
their stereo recordings at a very low frame rate. Even the sparse stereo based MAV by
Shen et al. (2013) only provides stereo processing results at a rate of just 1 Hz. Hence,
these MAVs require further means for pose inference in order to meet the timing require-
ments for autonomous control. We on the other hand intend to use stereo vision as the
primary source for pose inference. This requires a very fast stereo matching system,
which we already discussed in the previous chapter.

4.3 Approach Using One Camera Pair
Before looking into ways of exploiting all four cameras on-board of our MAV, we in-
vestigate a solution that makes use of only one camera pair. We extend this solution
later to incorporate all available on-board cameras. For this simplified approach we se-
lect the forward-facing camera pair, with which we are able to observe a wide section
of the scene ahead. Compared to the downward-facing camera pair, the forward-facing
cameras are advantageous during take-off and landing. In this case, the close ground
proximity would prevent the imagery of the downward-facing cameras to be used for
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Figure 4.2: System design of the processing method for single-stereo solution.

stereo matching.
The system design of the proposed single-stereo solution is shown in Figure 4.2. The

necessary processing steps have been categorized into low-level and high-level processes.
In our case, low-level process refers to all operations that primarily process image data
and have no knowledge about the three-dimensional environment structure or the MAV
location. High-level processes, on the other hand, primarily operate on three-dimensional
environment features or process the six-dimensional MAV pose. All relevant processing
steps are described in detail in the following sections.

4.3.1 Feature Detection and Stereo Matching
Our stereo matching system is based on the efficient feature detector and stereo matching
method that we discussed in Chapter 3. As previously suggested, we use a step-width
of w = 2 for the combined consistency and uniqueness check, which yields a significant
processing speed-up. The fact that this stereo method only provides a sparse set of stereo
matches is not a limitation in our case, as we use the results for a feature-based local-
ization method that is based on PTAM. For this method, however, we need to perform
feature detection for a scale space image pyramid.

As processing time is extremely crucial for our MAV, we create this scale space pyra-
mid without re-running feature detection on each pyramid level. Instead, in each pyramid
level we only evaluate those pixel locations for which a feature was detected on the pre-
ceding level, as illustrated in Figure 4.3 and described in Algorithm 4.1. This strategy
might result in the merging of close-by features from a preceding pyramid level into a
single feature on the subsequent pyramid levels.

A feature detected on any pyramid level can be traced back to at least one feature
from the primary level. Hence, we only store features from the primary pyramid level
and retain the maximum pyramid level l up to which the feature has been detected. This
method also has the advantage that the feature locations at higher pyramid levels are still
measured with the full image resolution.

The number of features that are detected is crucial for the system performance. In case
of too many features, it is impossible to meet our performance requirements. If, on the
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pyramid level 1

pyramid level 2

pyramid level 3

Figure 4.3: Illustration of feature detection in multiple levels of a scale space image
pyramid.

Algorithm 4.1: Feature detection using a scale space image pyramid.
/* Declare variable for storing detected features. */
F := array[pyramidLevels];
/* Detect features for pyramid level 1. */
I := inputImage;
F [1] := detectFeatures(I);

/* Detect features in remaining pyramid levels. */
for i:=2 to pyramidLevels do

/* Scale down image for next pyramid level. */
I := scaleDown(I);

/* Repeat detection for each feature of previous level. */
foreach (uprev,vprev) ∈ F [i−1] do

/* Get feature location in current pyramid level. */
ucurr := round(pyramidScalingFactor ·uprev);
vcurr := round(pyramidScalingFactor · vprev);

if testFeature(ucurr,vcurr) ∧(ucurr,vcurr) 6∈ F [i] then
/* A new feature was found that does not yet exist in the

current pyramid level. */
F [i].append( (ucurr,vcurr) );

end
end

end
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other hand, too few features are detected, then the system will only achieve a degraded
accuracy. Although the adaptive threshold of our feature detector reduces this problem,
we still receive large numbers of features when encountering highly textured scenes.
We solve this predicament by carefully choosing the feature detector adaptivity factor a,
and by applying an additional feature reduction step if too many features are detected.
The feature reduction only reduces features that originate from the left camera image.
Otherwise, different features might be eliminated in both input images, which would
degrade the stereo matching performance. We aim at keeping the number of detected left
image features below nmax = 1000.

The primary advantage of our feature detector over other methods is its less clustered
feature distribution. Hence, we want to preserve this property when performing the fea-
ture reduction. We thus aim at reducing the feature count such that the original feature
distribution is retained. For this task, we first determine the feature percentage p that we
want to preserve:

p =
nmax

n
, (4.1)

where n is the total number of detected features.
We then divide the input image into a regular grid of 5×4 rectangular cells. For each

cell i, we determine the set Si of features within the cell’s boundaries. We then reduce
the number of features in this cell to:

mi = bm̂ic, with m̂i = p · |Ci|+ ri−1. (4.2)

Here, C is the set of grid cells and ri is the residual of the rounding operation that is
involved in the calculation of mi. This residual can be determined as follows:

ri = m̂i−mi, with r0 = 0. (4.3)

By carrying over the residual ri−1 from the previous cell i−1, we ensure that rounding
errors do not lead to too many or too few eliminated features.

When reducing the features of a given cell i, we give preference to features with a large
maximum pyramid level l. In case of identical l, preference is given to features with
higher feature detection scores. We prefer the pyramid level l over the feature score, as
features that are detected on multiple pyramid levels are advantageous for the subsequent
processing steps. The final feature reduction algorithm is described in Algorithm 4.2.

4.3.2 Local SLAM

For visual pose estimation, we employ the previously mentioned extension of PTAM
that was published by Scherer et al. (2012). Whenever PTAM adds a new feature to
its map, it requires an initial estimate for the feature’s depth. In the original version
of PTAM, this depth estimate is obtained by triangulation with the feature’s location in
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Algorithm 4.2: Grid-based feature reduction.
/* Sort features by grid cells. */
cells := array[numVerticalCells][numHorizontalCells];
foreach f ∈ inputFeatures do

cells[ceil(v/cellHeight)][ceil(u/cellWidth)].append( f );
end

/* Determine percentage of features p to keep. See Eq. 4.1. */
p := nmax/ |inputFeatures|;
r := 0;
outputFeatures := /0;

foreach c ∈ cells do
/* Get number of features to keep in c. See Eq. 4.2 – 4.3. */
m̂ := p · |c|+ r;
m := bm̂c;
r := m̂−m;

/* Sort features by preference and copy the first m features. */
sortFeaturesByLevelAndScore(c);
for i := 1 to m do

outputFeatures.append(c[i]);
end

end

another keyframe from a different viewing position. Scherer et al. use an RGB-D camera
for their SLAM system, which already provides means for accurate depth perception.
Hence, in their system, depth measurements from the RGB-D camera are used as initial
depth estimate when adding new features to the map.

Unfortunately, the used RGB-D camera has a limited range and problems with direct
or indirect sunlight, depth discontinuities and reflective or highly absorptive surfaces.
This means that depth measurements are generally not available for the full camera im-
age. Hence, Scherer et al. continue to use the triangulation-based approach for features
for which a depth measurement is not available. Furthermore, Scherer et al. extended
the BA-based map optimization of PTAM, by minimizing the 3D instead of the 2D re-
projection error.

We use the approach from Scherer et al. for processing the left camera image from our
forward-facing camera pair. We bypass PTAM’s own feature detection and instead pro-
cess the successfully matched features, which we receive from stereo matching. Features
that have not been matched successfully are not processed any further. This is motivated
by the fact that our stereo vision system does not suffer from the same coverage problem
as the RGB-D camera, and mismatched features from stereo matching are likely to be
of poor quality. Hence, unlike in the approach from Scherer et al., we possess depth
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Figure 4.4: Illustration of (a) local and global BA performed by PTAM and (c) local-only
BA of our local SLAM method.

measurements for all processed image features.
A general limitation of PTAM is that this method only works well for cases where

the camera motion remains within a small volume. Initially, PTAM was proposed for
augmented reality applications where the camera is constrained to a small workspace.
In the case of large camera movements, PTAM maps a high number of keyframes and
features, which quickly degrades the overall run-time performance. Particularly crucial
for the performance of PTAM is the BA-based map optimization, which scales poorly
with the map size.

As shown in Figure 4.4a, PTAM performs a fast local BA optimization of the most
recent n keyframe positions and corresponding feature locations. A more time consum-
ing global optimization for the entire map is performed at less frequent intervals. If the
map grows too large, this global optimization quickly becomes the major performance
bottleneck. Due to the missing loop closure detection, an excessive map growth might
even happen without large camera displacements. Accumulated errors within the esti-
mated camera pose can prevent the re-detection of previously mapped features. In this
case, PTAM keeps creating new keyframes, despite the camera remaining within a con-
strained volume.

This is a severe limitation, as a quadrotor MAV is capable to quickly cover long dis-
tances. At the same time, an autonomous MAV requires frequent and fast updates of
its pose estimate, in order to maintain stable flight. To overcome this predicament, we
simplify PTAM by avoiding the global BA-based map optimization, as illustrated in Fig-
ure 4.4b. Instead, we solely retain PTAM’s local optimization, which only requires the
most recently mapped n keyframes. At the same time, we erase all keyframes and their
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corresponding features that are no longer considered for local map optimization. We thus
arrive at a map with a constant size. We prefer the constant run-time performance of this
method in favor of a globally optimized map and pose.

As a drawback, the resulting method no longer performs full SLAM, as no global map
is preserved. Rather, our approach can be seen as a compromise between SLAM and
VO. If the camera movements are constrained to a relatively small volume, our method
provides results that are identical to a SLAM system. This is due to the fact that no new
keyframes have to be added for as long as the camera remains within the proximity of the
previously mapped keyframe locations. If the camera is gradually moved towards one
direction, however, the system behavior is similar to VO. In this case, new keyframes are
continuously added to the map while old keyframes are dropped. Localization then only
happens with respect to a small set of just mapped keyframes. To avoid confusion, we
call this method local SLAM for the rest of this thesis.

Finally, we perform one further modification of PTAM, which is the replacement of the
employed camera model. In its original version, PTAM uses the arctangent-based camera
model that was published by Devernay and Faugeras (2001). We replace this model with
the more widely used Brown’s distortion model, which we discussed in Section 2.2.2 on
page 17. This is the same model that we use for calibrating our stereo system, which
simplifies the camera calibration process. For the BA-based map optimization, however,
PTAM requires the camera model’s inverse. Unfortunately, Browns’s distortion model
is not invertible. We solve this problem by numerically pre-computing a transformation
table for the inverse camera model. This transformation table is populated by sampling
the original camera model at subpixel accuracy.

4.3.3 Sensor Fusion and Motion Feedback
We fuse the pose estimate from local SLAM with measurements received from the IMU,
for which we employ an EKF. A suitable EKF implementation has been published by
Klose (2011). This filter uses the measurement data from the IMU to perform the Kalman
prediction step. To every pose estimate delivered by our local SLAM system, the filter
then applies the Kalman correction. Similar methods have long been used for fusing GPS
location data with inertial measurements (see Gross et al., 2012).

The fused pose is passed on to the microprocessor board, which runs the low-level
control software that we previously discussed in Section 2.1.3 on page 11. As shown
in Figure 4.2 on page 64, the filtered pose is also fed-back to our local SLAM method.
This feedback was introduced in order to improve PTAM’s motion prediction, which is
necessary in order to obtain an estimate for the expected position of map features in the
next camera frame. Because the search for matching image features is constrained to a
local neighborhood of the estimated feature locations, an accurate motion prediction is
important.

By default, PTAM uses a motion model that assumes a linear motion along the cam-
era’s optical axis with a decaying velocity. At the same time, the motion model predicts
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(a) (b)

Figure 4.5: (a) Prototype MAV used for flight experiments and (b) example for on-board
stereo matching results during autonomous flight.

the camera rotation by aligning a small sub-sampled version of the current camera frame
to the previous frame. This happens by applying the Efficient Second order Minimiza-
tion (ESM) algorithm that was proposed by Benhimane and Malis (2004). In this case,
the ESM algorithm approximates the in-plane rotation and translation that are necessary
for aligning both camera frames. These 2D transformations are then converted into a
corresponding 3D camera rotation using an iterative algorithm.

We keep this image alignment based rotation estimation for our new motion model,
as this method has proven to deliver robust results. However, we alter the linear motion
estimation to rely on the more accurate pose estimate that is fed-back from the EKF.
Hence, instead of predicting the camera movement from PTAM’s two previous pose
estimates, we instead use the two previous estimates received from our EKF.

4.3.4 Evaluation

With the presented system, a preliminary experiment was performed in which the MAV
was programmed to hover at a low altitude in an indoor environment. Hovering was
achieved by feeding a constant position to the position control algorithm, which runs
on the low-level microprocessor board. In this experiment, take-off and landing was
performed manually using a remote control. The MAV that was used for this experi-
ment was an early prototype of the MAV platform that we presented in Section 2.1.3 on
page 11, which is displayed in Figure 4.5a.

Several autonomous hovering flights were performed successfully, of which we exam-
ine one flight in this section. For all evaluations, we only consider the time span where
the MAV was hovering autonomously. The total time between take-off and landing in
the considered test run was 45.7 s. We neglect the first 8.6 s and last 3.1 s for take-off and
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Table 4.1: CPU usage during autonomous hovering flight.

Process CPU Usage
Stereo Matching 37.4%
Local SLAM 32.5%
Image Acquisition 6.7%
Data Recording 5.8%
Sensor Fusion 1.1%
Other 2.5%
Total 85.6%

landing, which leaves us a flight time of 33.9 s to analyze.
For evaluation purposes, all sensor data and the outcome of the on-board pose esti-

mation were recorded during the test flight. An example for the recordings of the left
on-board camera with overlaid stereo matching results can be seen in Figure 4.5b. Fur-
thermore, ground truth motion information was recorded using an Optitrack tracking
system, which relies on a set of highly reflective markers that are attached to the MAV.
To make the ground truth and our on-board pose estimates comparable, the trajectories
for both have been aligned. For this task, an iterative error minimization was performed
for each position coordinate and the yaw rotation, for the first 2 s after the start of au-
tonomous hovering. By aligning only the beginning of both trajectories, we ensure that
drift errors are not ignored in our evaluation. The aligned trajectories are shown in Fig-
ure 4.6a in a perspective view, and in Figure 4.6b in a top-down view.

In total, the cameras recorded 1019 frames each and our processing pipeline was able
to generate 29.3 pose estimates per second on average. This is very close to the camera
frame rate of 30 Hz, which indicates that only very few frames have been dropped. The
average number of detected features in the left camera image was 999.5, of which 64%
were successfully matched by our stereo matching method. Furthermore, CPU load
statistics were recorded, which are listed in Table 4.1. The table reveals that if data
recording had been omitted, then the CPU load would have been below 80%.

To analyze the performance of our autonomous MAV, we examine how well it can keep
its location during autonomous hovering. As reference hovering position, we consider
the average position of the MAV during the evaluated time span. We compare each
position sample of the recorded ground truth against this reference position and calculate
the position error. The average position error that we receive with this method is 0.26 m,
and the Root Mean Square Error (RMSE) is 0.32 m. Although these error margins leave
room for improvements, the autonomous flight should already be accurate enough for a
set of indoor applications that do not require very precise position control.

We can expect that the used PID position controller is responsible for a fair share of
the observed position error. Hence, the more interesting question at hand is the accuracy
of the on-board pose estimation. We can measure this error by calculating the Euclidean
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Figure 4.6: (a) Perspective and (b) top-view of the ground truth motion information and
on-board motion estimates. The scale of both diagrams is in meters.

72



4.4 Approach Using Two Camera Pairs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35

E
rr

or
/m

Time / s

Position Error Average Error

Figure 4.7: Deviation of on-board position estimate from ground truth trajectory.

distance between the on-board position estimates and the aligned ground truth trajectory,
which was done for Figure 4.7. This figure reveals that even though we have elimi-
nated the global optimization that used to be present in PTAM, the error stays bounded
throughout the hovering experiment. In fact, the average error is only 2.89 cm, and the
RMSE has a value of 3.31 cm, which is an order of magnitude less than the previously
observed position error.

The discussed experiment provides a first impression on the performance of our MAV
system. Although these results seem promising, more work needs to be done for im-
proving the accuracy of the autonomous flight. In addition, more advanced autonomous
flight maneuvers need to be implemented, including autonomous take-off and landing.
In the following sections, the presented MAV design is developed further to address
these demands. A more thorough evaluation of our autonomous MAV is provided in
Section 4.4.7 on page 85, after our final system design is introduced.

4.4 Approach Using Two Camera Pairs
Having a forward-facing camera pair ensures a large field of view during low-altitude
flights. Furthermore, it can facilitate the detection of obstacles that lie ahead in flying
direction. Unfortunately, however, forward-facing cameras do not perform well when
encountering fast yaw rotations. In this case, the cameras register fast image move-
ments and might be subject to motion blur, which both impede current visual navigation
methods. An alternative are downward-facing cameras, which in the case of stereo vi-
sion also allow an observation of the ground distance and the relative orientation of the
MAV towards the dominant ground plane. While a downward-facing camera is better at
observing fast yaw rotations, it exhibits similar problems when performing ground prox-
imity flights. Furthermore, in case of a downward-facing stereo camera, stereo matching
is only possible once the MAV has reached a minimum altitude.

Those dissimilar strengths of downward- and forward-facing cameras lead us to be-
lieve that they complement each other when used in a combined setting. Hence, in this

73



Chapter 4 Stereo-Based Visual Navigation

Figure 4.8: System design of the processing method for both stereo camera pairs.

section we present a solution for simultaneously processing the imagery of all four cam-
eras on-board of our MAV platform. However, as we have just seen, the CPU load of
our MAV is already at a critical level when just using the forward-facing camera pair for
autonomous navigation. Hence, it is not possible to run a second instance of our local
SLAM system in parallel for processing the imagery of the downward-facing cameras.

We achieve our goal by first optimizing the run-time performance of our already dis-
cussed single-stereo solution, and by introducing a new efficient processing method for
the downward-facing camera pair. This method allows us to analyze the imagery of all
four cameras on-board our MAV in real-time. The system design of this double-stereo
solution is shown in Figure 4.8. Again, we have categorized the necessary processing
steps into low-level and high-level tasks. In the following, we discuss the details of this
system design and the motivations that have lead to the important design decisions.

4.4.1 Problems of Single-Stereo Solution
One key issue with the previously discussed single-stereo solution is the potential drift
of the estimated position and orientation. If the orientation estimated by local SLAM is
used for controlling the quadrotor MAV, any errors in the estimated pitch and roll angles
will have a disrupting impact on the flight stability. In the previous experiments, the
MAV was controlled with the original PIXHAWK flight controller, which only relies
on IMU measurements for determining the current attitude. It would be preferable to
instead use the more accurate vision estimated orientation for this task. However, this
would make the handling of orientation errors even more important.

Not only orientation drift can be problematic, but also drift errors for the estimated
position are an issue. If the MAV is programmed to fly on a preset trajectory, a position
deviation would cause the MAV to leave the desired track, which could lead to potentially
dangerous situations. But even if the MAV performs on-board path planning in consider-
ation of the perceived environment, position drift can still cause troubles. For example,
the MAV presented by Fraundorfer et al. (2012) performs autonomous on-board path
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planning, but this happens only in two dimensions at a fixed flying altitude. If such an
MAV would not have other means for perceiving the current altitude, it would not be
able to react on position drifts in the vertical direction.

Our local SLAM method has further difficulties with yaw rotations. This was more
severe for the original PTAM version, which just processes imagery of a monocular
camera. Because no triangulation can be performed for the features that are observed
for a rotation-only movement, PTAM is not able to obtain reliable depth measurements
in this case. Our local SLAM method obtains its depth information from stereo vision,
which should make yaw rotations less problematic. However, fast yaw rotations still
lead to large image movements. This can cause the majority of the visible map features
to quickly move out of sight, which will result in tracking failure.

Finally, if tracking ever fails, recovery can only occur if the camera still depicts a scene
that has been well observed by at least one existing keyframe. Since the MAV is likely to
be on an onward flying trajectory, we cannot expect that this is the case. But even if the
camera hasn’t moved much since the previous keyframe, recovery might still fail, which
can lead to a random new position. Thus, recovery needs to be improved if we want to
achieve robust autonomous flight.

The problems we have described so far can be solved or at least be reduced, if we
employ the downward-facing camera pair in addition to the already used forward-facing
cameras. How exactly this can be achieved is discussed in the following sections.

4.4.2 Performance Improvements
We keep our local SLAM system for processing the imagery of the forward-facing cam-
eras. To be able to process the data of all four cameras in real time, we hence need to
improve the run-time performance of this method. The simplest way to improve the pro-
cessing performance is to employ a less demanding parameterization. We therefore set
the maximum number of allowed features to nmax = 800, which is less than the previous
limit of 1000. However, this only provides us with a marginal speed-up.

To receive higher speed-ups, several code-level optimizations have been performed.
Most importantly, a performance problem was identified in PTAM’s original BA-based
map optimization. This problem occurs if the map optimization finishes before a new
key frame has been added. In this case, the map optimization is re-run on the already
optimized map, which causes the mapping thread to always have a high CPU load. For
the original PTAM system this is only a minor problem, as the global map optimization
quickly becomes the major performance bottleneck when the map grows sufficiently
large. Furthermore, PTAM only has two computationally expensive threads, and is rec-
ommended to be run on a computer with at least two CPU cores. Hence, if the mapping
thread causes a high CPU load in one core, the tracking thread that is run on the other
CPU core should not be affected.

We, on the other hand, only perform local map optimization, which reduces the per-
formance impact of the map optimization task. Furthermore, we are running more than
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Figure 4.9: Camera synchronization using different frame rates for the forward- and
downward-facing camera pairs.

two computationally expensive threads on a dual core CPU, which makes it important
that every thread only consumes as much CPU time as absolutely necessary. Hence, by
enforcing that the map optimization is not executed more frequently than new keyframes
are added, we can greatly improve the processing performance.

Further optimizations were performed in order to improve the overall run-time per-
formance. In particular, image acquisition, stereo matching and local SLAM have been
integrated into a single process, by using the Nodelet concept that is offered by ROS.
This allows us to pass image data between these system components without the need
for memory copying or message serialization. Further smaller code-level optimizations
were performed in the various system components.

4.4.3 Processing Method for the Downward-Facing Cameras
The processing method for the data recorded by the downward-facing cameras differs
fundamentally from the method that we use for the forward-facing ones. At the begin-
ning, however, there is again stereo matching, for which we employ our efficient sparse
stereo matching method. This time however, we set the maximum feature count to 300,
as we require fewer features in this case. Furthermore, the downward-facing cameras are
operated at only 15 Hz, which is half of the frame rate that we use for the forward-facing
cameras. This means that special care has to be taken for camera synchronization.

In our case, the downward-facing cameras are synchronized to every other frame of
the forward-facing ones, as shown in Figure 4.9. Hence, every other frame we receive
an image from all four cameras, while only imagery from the forward-facing cameras
is received for the frames in between. Operating the downward-facing cameras at half
the frame rate significantly reduces the computation costs that we require for image pro-
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cessing. We are able to use this lower frame rate, as our processing method for the
downward-facing cameras is less sensitive to the image rate than our local SLAM sys-
tem.

Dominant Ground Plane Detection

We can design an optimized processing method for the downward-facing cameras, if we
assume that the ground is flat and level. This is usually a valid assumption for man-made
indoor environments with even floors. Unfortunately, this assumption does not hold for
natural outdoor environments. Unless our MAV encounters very rough or steep terrain,
however, a flat and level ground assumption can be a sufficiently accurate approximation.

According to this assumption, all 3D points received from stereo matching are ex-
pected to lie in the same geometric plane. If we know the equation for this ground plane
in the form of

ax+by+ cz+d = 0, (4.4)

then we can extract the height h, pitch angle Θ and roll angle Φ with the following
equations1:

h =
−d
b

, (4.5)

Θ = tan−1
(
−c
b

)
, (4.6)

Φ = tan−1
(a

b

)
. (4.7)

Unlike the pose estimates of our local SLAM system, these measurements are absolute.
Hence, they are not prone to drift or erroneous offsets, which is why we expect those
measurements to increase the overall accuracy in a combined system.

We obtain an estimate for the equation of the dominant ground plane by using a
RANSAC-based plane estimator, for which we use the implementation provided in the
Point Cloud Library (PCL) (see Rusu and Cousins, 2011). Before running this RANSAC
algorithm, however, we need to decide for an outlier threshold to. This threshold indi-
cates the maximum distance towards the plane model that is allowed for a point, which
is still classified as being an inlier. Since the depth measurement error of a stereo vision
system increases quadratically with the measured depth (see Point Grey Research, Inc.,
2012), a constant threshold does not seem to be a viable solution.

Instead, the parameterization of to should depend on the actual camera height h. Thus,
we precompute a robust initial height estimate ĥ, before performing the actual RANSAC
plane fitting. As estimator we use the median depth of the 3D points obtained from stereo

1These equations differ from the initial publication of the presented autonomous MAV (Schauwecker and
Zell, 2013, 2014a). This is due to the fact that the downward-facing cameras used to be rotated by 90◦

in a previous camera mount.
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matching. Using this initial estimate, we determine the outlier threshold as follows:

to = ĥ2 · tr, (4.8)

where tr is a configurable threshold that is relative to the square of the estimated camera
height ĥ2.

Next, we need to estimate the variances for our measurements of h, Θ and Φ, for which
we use a sampling-based approach. For the height variance σ2

h , we calculate the distance
between the plane model and each point that was selected as inlier by the RANSAC
method. The variance of the sample mean is then our estimate for σ2

h :

σ
2
h =

1
|Si| · (|Si|−1) ∑

p∈Si

(
∆g(p)−∆g

)2 , (4.9)

where Si is the set of selected inlier points, ∆g(p) is a function that provides the distance
between a point p and the ground plane model, and ∆g is the average ground plane
distance of all inlier points.

For the angular variances σ2
Θ

and σ2
Φ

, we first group the inlier points into sets of three.
These triplets are chosen stochastically such that their points have a large distance to one
another. With those triplets we then calculate samples for Θ and Φ, and use the variance
of the sample mean as our estimate for σ2

Θ
and σ2

Φ
:

σ
2
Θ =

1
|St | · (|St |−1) ∑

(p,q,r)∈St

(
αΘ(p,q,r)−Θ

)2 , (4.10)

σ
2
Φ =

1
|St | · (|St |−1) ∑

(p,q,r)∈St

(
αΦ(p,q,r)−Φ

)2 , (4.11)

where St is the set of point triplets, and the functions αΘ(p,q,r) and αΦ(p,q,r) determine
the pitch and roll angles of the plane that passes through the points p, q and r (analogous
to Equations 4.6 and 4.7). The variables Θ and Φ represent the mean pitch and roll angles
of the sample set.

Finally, we apply a simple outlier rejection that is based on the previously detected
plane model. A plane is classified as outlier if its height, roll or pitch differ from the
previous plane model by more than a preset threshold. An example for the performance
of the final method on-board of our MAV can be seen in Figure 4.10. Here, the plane has
been projected back into the unrectified camera image, which leads to the visible radial
distortion. The red points in this figure indicate features that were selected as inliers by
the RANSAC plane estimator, while yellow points were classified as outliers.
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Figure 4.10: Example for a detected ground plane that is projected into the unrectified
camera image.

Frame-to-Frame Tracking

While the detected ground plane provides us with measurements for height, roll and
pitch, we do not gain information on horizontal translation and yaw rotation. For mea-
suring these quantities, we need to employ a different method. In our case, we use an
approach based on frame-to-frame tracking. Because we assume a flat ground, hori-
zontal displacements and yaw rotations should result in an affine image transformation,
which consists of a 2d-translation and an in-plane rotation. We hence attempt to find the
transformation that aligns a previously captured frame to the current camera frame.

For this task we chose the previously mentioned ESM-algorithm from Benhimane and
Malis (2004), which uses a homography (see Hartley and Zisserman, 2003) for image
alignment. This happens by iteratively applying transformations to an initial homogra-
phy, until the algorithm converges at a steady solution. In our case, we limit ourselves
to a homography that only consists of translations and in-plane rotations, which means
that we neglect perspective effects. Even though ESM is an efficient method, finding
the transformation between two full-resolution camera frames is very time consuming.
Hence, we perform this step with two very low-resolution sub-sampled frames. In fact,
we use a resolution of just 80×60 pixels. This number might seem to be small, but be-
cause ESM works well at the sub-pixel level, we still receive sufficiently accurate results.

As mentioned in Section 2.1.3 on page 11, we use lenses with relatively small focal
lengths for the downward-facing cameras. This provides us with a large field of view, but
also causes strong radial distortions that disrupt the frame-to-frame tracking. Hence, we
first perform image rectification, which can be combined with the required sub-sampling
into one single image transformation. This transformation is much faster than an indi-
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Figure 4.11: Illustration of image processing steps for frame-to-frame tracking.

vidual rectification at full image resolution with subsequent image sub-sampling, and it
also avoids unnecessary blur.

The effect of the combined rectification and sub-sampling transformation can be seen
in the second column of Figure 4.11. In the third column of this figure we see the result
of the ESM-based image alignment. Here, the rectified lower image has been aligned to
the rectified upper image. Between both images, the camera performed an upward-right
movement. The image alignment thus caused a bottom-left shift of the second input
image, which introduced a border with unknown pixel intensities at the upper and right
edge.

We can extract our desired measurements from the homography found by ESM. The
fourth column of the homography matrix represents the translation vector in homoge-
neous coordinates

(
∆u ∆v w

)T . Using the height h that we received from the detected
ground plane and the camera’s known focal length f , we can convert the translation
vector from pixel to world coordinates:(

∆x
∆y

)
=

h
w f

(
∆u
∆v

)
. (4.12)

The yaw rotation ∆Ψ cannot be extracted as easily without applying a homography
decomposition. Thus, we apply the simple approach of transforming a distant point
(up,vp) with the found homography H. We then measure the angle towards the point’s
initial location:
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Figure 4.12: Schematics of sensor fusion with forward- and downward-facing cameras.

∆Ψ = atan2
(

vq

wq
,

uq

wq

)
, with

uq
vq
wq

= H ·

up
vp
1

 , (4.13)

where atan2(u,v) is the two-argument version of the arctangent function that respects the
quadrant of the computed angle. This function is commonly found in many programming
languages.

The variances of ∆x, ∆y and ∆Ψ are assumed to be constant and configured manually.
With the measurements for translation and yaw rotation and the measurements extracted
from the ground plane equation, we obtain a full six Degrees of Freedom (DoF) estimate
for the current MAV pose.

4.4.4 Sensor Fusion and Control

With our local SLAM method and the described plane detection and frame-to-frame
tracking, we receive two independent estimates for the current MAV pose. These two
estimates need to be unified into one single pose estimate, which happens during sensor
fusion. For this task, we can complement the sensor fusion that we previously discussed
in Section 4.3.3 on page 69. The schematics of our extended sensor fusion are shown in
Figure 4.12. This figure is a breakdown of the ‘Sensor Fusion’ block that was shown in
Figure 4.8 on page 74. For now, we ignore the block labeled ‘Angular Drift Correction’,
which is discussed in detail later on.

Due to camera synchronization, pose measurements are from exactly the same point of
time, if received for both camera pairs. We use the pose of the forward-facing cameras as
reference pose for sensor fusion. Hence, we transform the pose of the downward-facing
cameras, such that it matches the expected pose of the forward-facing cameras for the
assumed MAV position and orientation. We do this by applying a static transformation
that we determine manually. Because we do not attempt to track the same features in both
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camera pairs, a very accurate calibration of this static transformation is not necessary.
We fuse the pose estimates from both camera pairs before applying the EKF. This

happens by independently calculating the weighted mean for each element of the pose
vector, while using the inverse variance as weights. For the x coordinate, the weighted
mean x and new variance σ

2
x can be computed as follows:

x =

x1

σ2
x1
+

x2

σ2
x2

1
σ2

x1
+

1
σ2

x1

, (4.14)

σ
2
x =

1
1

σ2
x1
+

1
σ2

x1

, (4.15)

where x1 and x2 are the coordinates from the forward- and downward-facing camera
pair, and σ2

x1 and σ2
x2 are the corresponding variances. If the measurement error for both

pose estimates is normally distributed, then the weighted mean should provide us with a
maximum-likelihood estimate for the current pose (see Hartung et al., 2011).

The reason why we fuse both poses before applying the EKF is that we want to avoid
giving preference to either of them. If both pose estimates would be processed individ-
ually by our EKF, then that pose which is processed last would have a more significant
influence on the filter outcome. This is usually the pose obtained with the forward-facing
cameras, as it requires more time to be computed.

If only one pose is available due to the bottom cameras skipping one frame, or because
one method fails to deliver a reliable pose estimate, then the weighted mean is avoided
and the single pose estimate is processed by the EKF as is. In any case, the fused pose
is passed on to the low-level flight controller. Unlike in the single-stereo solution from
Section 4.3, the flight controller has been modified in order to use the roll and pitch angle
from our pose estimate as an estimate for the MAV’s attitude.

The original PIXHAWK flight controller derives its attitude estimates solely from IMU
measurements. Hence, whenever the MAV experiences significant accelerations, this
estimate becomes inaccurate. Our vision-based attitude estimation provides a higher
accuracy, but unfortunately also has a higher latency. We overcome the latency problem
by still deriving the roll and pitch rate from low-latency IMU measurements. Hence, the
MAV is still able to promptly sense attitude changes and react appropriately.

4.4.5 Drift Correction
Preliminary experiments with the method presented so far have shown that there are still
problems with flight stability. This can mostly be credited to accumulated errors that lead
to unwanted drift. Two such error sources have been identified and can be compensated
by using additional processing steps.
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Map Drift

One major source of error is the map generated by our local SLAM system. Once a
keyframe has been added to the map, its position is only altered by the BA-based map
optimization, which generally only performs small corrective changes. This means that
if a keyframe has been created with an incorrect or inaccurate pose, this error might not
be corrected before the keyframe is discarded. Hence, all pose estimates that are obtained
by matching against this keyframe will also be inaccurate. Consequently, this also affects
the pose of the subsequently added keyframes. Errors hence tend to propagate in the local
SLAM map, which is why the map is subject to drift.

The downward-facing cameras deliver us absolute measurements for height, roll and
pitch. With those absolute measurements, we should be able to perform at least a partial
correction of the local SLAM map. The fused position, which contains contributions
from those absolute measurements, is already fed back to the local SLAM system (see
Figure 4.8 on page 74). However, so far the fused pose is only used for motion prediction,
which does not have an influence on the existing map.

It is thus necessary to correct the pose of existing keyframes. We perform this correc-
tion by applying a global transformation to the entire map. This transformation is chosen
such that it compensates the difference between the last pose estimated by the local
SLAM system and the final pose estimate after sensor fusion. If Ts is the transformation
matrix for the pose estimated by our local SLAM system, and T f is the transformation
matrix after sensor fusion, then the matrix product T f

−1 ·Ts represents the transforma-
tion that we required to map Ts to T f . We hence define our corrective transformation Tc
as follows:

Tc = λ (T f
−1 ·Ts). (4.16)

Here, the transformation is scaled with the weighting factor λ . This weight is set
to be a small value (we use a value of 0.05), such that only small corrective changes
are performed. Drift errors should thus be gradually compensated over several frames.
Furthermore, we force the horizontal displacement of the corrective transformation to
be 0. Because there is no sensor that delivers absolute measurements of the horizontal
position, we prefer to keep the position estimated by local SLAM instead.

Angular Drift

Although the previously described drift correction works well for correcting the height
of a keyframe, its performance is generally poor for roll and pitch errors. This can be
explained if we have a look at the variances that are used during sensor fusion. While
the height measurements received from the downward-facing cameras are more accurate
than the measurements received from local SLAM, the variances for the measured roll
and pitch angles are several orders of magnitude larger. This means that roll and pitch
measurements from the downward-facing cameras are mostly ignored during sensor fu-
sion.
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Unlike local SLAM, however, the downward-facing cameras provide an absolute mea-
surement, which is why we do not want do disregard this information. We solve this
problem by introducing an additional processing step during sensor fusion, which was
labeled ‘Angular Drift Correction’ in Figure 4.12. In this step, we try to estimate the an-
gular drift of the local SLAM pose and correct it before sensor fusion starts. Because the
angular measurements from the downward-facing cameras are considerably noisy, we
employ an additional Kalman filter for this task. This Kalman filter tracks the difference
between the orientation estimate gained from local SLAM and the estimate from our
downward-facing cameras. We represent the orientation as quaternions, which matches
the representation used in the entire sensor fusion pipeline.

If we are able to correct the angular drift, then the pose received after sensor fusion
should contain the correct orientation. We know that the fused pose is fed back to local
SLAM, where it is used to correct the map drift with respect to the weight λ . Hence,
we can expect that the angular drift is reduced in the next frame. This knowledge can
be incorporated into the model of our Kalman filter. We assume that the arithmetic
difference between the two orientation quaternions ∆q reduces to ∆q · (1−λ ) from one
frame to another. If we ignore all other influences on the orientation drift, then we arrive
at the following state transition matrix for our Kalman filter:

Fk =


1−λ 0 0 0

0 1−λ 0 0
0 0 1−λ 0
0 0 0 1−λ

 . (4.17)

The filtered quaternion difference is then added to the orientation quaternion from
local SLAM, which effectively removes orientation drift. However, we further adapt the
final pose estimate by restoring the yaw rotation to its uncorrected value, as there are no
absolute measurements for the yaw angle.

4.4.6 Recovery

The last remaining problem that needs to be solved is recovery of the local SLAM system
in case of tracking failure. As mentioned previously, the recovery approach employed
by PTAM does not work well for our application. Hence, we use a different technique
that makes use of the redundant information available from both camera pairs. Even
when the local SLAM method fails, we still receive a full 6-DoF pose estimate from
the downward-facing cameras. Thus, the pose of the MAV is still known but with a
degraded accuracy. Nevertheless, we should be able to maintain control of the MAV
until local SLAM has recovered.

In case of tracking failures, we thus force the local SLAM system’s current pose to
match our final pose estimate after sensor fusion. In this case, the fused pose is only
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Figure 4.13: Autonomous flight using all four on-board cameras.

obtained through measurements of the downward-facing cameras and the IMU. This
pose is unlikely to match the current map of the local SLAM system, which prevents the
system from recovering by itself. Hence, we discard the entire map and begin mapping
from scratch. We start by mapping the current frame at the currently available fused
pose. Thus, the system should quickly recover once the cause for the tracking failure
has disappeared. Usually, tracking failures result from quick camera movements. Hence,
once the MAV has stabilized itself by using the less error prone pose estimates from the
downward-facing cameras, local SLAM should continue functioning up to expectations.

4.4.7 Evaluation

Several experiments were conducted to evaluate the quality of the proposed MAV design.
All flying experiments took place in the same indoor lab environment that we previously
used in Section 4.3.4 on page 70 to evaluate the single-stereo solution. This time, how-
ever, the floor has been covered with a texture rich carpet in order to provide sufficient
features for the downward-facing cameras. An example for the scene that is observed by
the downward-facing cameras was previously shown in Figure 4.10 on page 79. A pic-
ture of our MAV during an autonomous flight, while using all four on-board cameras, can
be seen in Figure 4.13. Accurate ground truth motion information was again recorded for
all test flights using an optical tracking system. Furthermore, the sensor data (i.e. camera
imagery and IMU measurements) were recorded for all test-flights, which allows us to
re-process all test-runs offline.
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Table 4.2: Position estimation errors for hovering flight.

Method Average Error RMSE
On-Board Estimate 1.60 cm 1.76 cm
Local SLAM Only 2.23 cm 2.30 cm
Ground Plane Only 24.4 cm 32.7 cm

Hovering

In the first flight experiment, the MAV’s ability to hover at a preset location has been ex-
amined. The MAV was programmed to hover at a height of about 0.5 m for one minute,
and then ascend to a height of 1.0 m, where it hovers for one further minute. Unlike in
the previous single-stereo experiment from Section 4.3.4, take-off and landing were per-
formed fully autonomously. A perspective view of the recorded ground truth position and
the position estimate obtained by the on-board software are shown in Figure 4.14a, while
a top-down view can be seen in Figure 4.14b. Both figures contain two more curves,
which are the position estimates received when offline re-processing the recorded sensor
data with only the local SLAM system or only our ground-plane-based pose estimation.
By plotting these offline results, we can compare how the MAV would have behaved, if
it had been equipped with only two cameras. All plotted tracks have been aligned such
that their position and orientation closely match for the first two seconds after take-off.

The slow take-off and landing in this experiment, as well as the stable hovering po-
sition, are also an easy challenge for the local-SLAM-only test run. Hence, the corre-
sponding curve and the curve for our on-board pose estimates both closely match the
recorded ground truth. The ground-plane-only based pose estimate, however, shows ac-
curate height but exhibits high horizontal drift. While in this case the absolute height can
be measured, the horizontal position is only obtained through frame-to-frame tracking,
which is particularly prone to error accumulation.

Like for the previous single-stereo system, we can quantify the deviation from the
ground truth. This happens through examination of the Euclidean distances between
the estimated and ground truth positions, which is plotted in Figure 4.15. Furthermore,
the average error and RMSE were computed for all position estimates received for this
test flight, and are listed in Table 4.2. In both cases, we see that the errors received
with our combined method are lower than for the local-SLAM-only system. Most of
this improvement can be credited to the more accurate height that we obtain with the
combined approach. As one can already anticipate from Figure 4.14, the errors received
with the ground-plane-only based method are much higher than for the other two test
runs. The corresponding curve has thus been truncated in Figure 4.15.

The more interesting question at hand, however, is how accurately the MAV is able to
keep its hovering location. Just like for the single-stereo system, we measure the devia-
tion of the MAV’s position from the average position during the hovering periods. If we
examine both hovering periods this way, then we receive the errors listed in Table 4.3.
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Figure 4.14: Ground truth and estimated position during hovering flight in (a) perspective
view and (b) top-down view. Scale is in meters.
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Figure 4.15: Position error during hovering flight.

Table 4.3: Position errors during autonomous hovering.

Height Average Error RMSE
0.5 m 10.2 cm 11.4 cm
1.0 m 12.5 cm 14.1 cm

The table reveals that in this test run the MAV was able to keep its position more accu-
rately when hovering at 0.5 m, than when hovering at a height of 1.0 m. Nevertheless,
the errors for both altitudes are comparable and should be small enough for safe indoor
flight.

The position errors are less than half as large as the ones that we previously received
for the single-stereo system in Section 4.3.4. Hence, by using our double-stereo system,
our MAV is able to keep its hovering location more precisely. In fact, the reduction of
the hovering error is much larger than the error reduction that we observe for the pose
estimation. We can hence conclude that the improved hovering ability can in large parts
be credited to our modified flight controller, and other system fine tunings that have
happened since the construction of the single-stereo prototype.

Runtime Performance Evaluation

Unlike in our previous single-stereo system, most software components are now inte-
grated into a single process. This reduces unnecessary performance overheads, but pre-
vents us from measuring the CPU load that is caused by each component. Hence, for
the double-stereo system, we instead measure the total processing time and per-frame
average processing time of each processing step. The measurements gained by offline
re-processing the data of a previously recorded hovering flight on our MAV hardware,
are shown in Table 4.4. In total, this dataset comprised 3796 stereo pairs and 8360 IMU
measurements. On average, our system provided 517 successful stereo matches for the
forward-facing cameras (63% of the detected features), and 230 successful matches for
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Table 4.4: Processing times for individual processing steps.

Proccesing Step Per-Frame Average Total Time
Forward-facing cameras
feature detection and 17.5 ms 40.4 s
stereo matching
Downward-facing cameras
feature detection and 18.8 ms 21.5 s
stereo matching
Local SLAM tracking 5.4 ms 12.2 s
Local SLAM mapping – 2.6 s
Plane detection and
tracking 5.0 ms 5.6 s
Sensor fusion – 0.7 s

the downward-facing cameras (64% of the detected features).
Please note that our MAV is equipped with a dual core CPU. This means that the total

processing time for one frame is less than the sum of the individual processing steps, as
the CPU can execute two threads in parallel. Furthermore, the given times are the actual
time that elapsed until a processing result was available, which does not reflect the actual
CPU time that a thread was executed. For sensor fusion and local SLAM mapping, the
table does not include an average per-frame processing time. This is due to the fact that
the execution of these threads is not synchronized to the video frame rate.

According to the table, performing feature detection and stereo matching for the forward-
facing cameras required the most time in total. This is not surprising since those cameras
are operated at a higher frame rate than the downward-facing ones. The per-frame pro-
cessing time, however, was slightly higher for the downward-facing cameras. This is
not what one would expect, since our MAV detected more features in the imagery from
the forward-facing cameras. The reason for this behavior is that the texture rich scene
observed by the downward-facing cameras caused much more features to pass the initial
feature detection stage than for the forward-facing cameras.

Since our local SLAM method employs two threads, one for tracking and one for
mapping, it is also listed twice in Table 4.4. Because the MAV was hovering in the
considered evaluation sequence, the mapping thread only caused a small CPU load, as
only few key frames had to be created. Nevertheless, compared to the plane detection
and tracking method used for the downward-facing cameras, local SLAM required about
2.6 times as much processing time. Sensor fusion on the other hand, only caused a small
computational load with a total processing time of just 0.7 s.

In another experiment, the MAV performed a similar hovering flight while measur-
ing the CPU load on-board. For this flight, all data recording was disabled in order to
prevent an influence on the CPU measurements. The average CPU load throughout this
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Figure 4.16: Recovery of height estimates after forceful disturbance.

flight was at only 58.9%. This is significantly less than the 85.6% that we received in
Section 4.3.4 for our single-stereo system. The performance improvement can be cred-
ited to the optimizations discussed in Section 4.4.2 on page 75.

Drift Compensation

The next interesting characteristic of our double-stereo system is its ability to correct
drift errors. Unfortunately it is difficult to evaluate the drift correction in a flying experi-
ment. Hence, we instead simulate a flight with significant drift errors. For this purpose,
we offline re-process the sensor data that was recorded during an autonomous hovering
flight. While the MAV is hovering, an erroneous orientation and height are then forced
into the system. This happens by disturbing the output of the sensor fusion for a short
period of time. During this time, we keep on applying an erroneous rotation and vertical
translation to the fused pose, which is fed back to local SLAM. The disturbance forces
local SLAM into recovery, which means that mapping starts again from scratch with the
erroneous pose.

The height that was recorded in this experiment is plotted in Figure 4.16. The dis-
turbance was applied during the highlighted section, and lasted for a duration of 1.8 s.
For comparison, the undisturbed height that was estimated on-board during autonomous
hovering is also included in this figure. We can see that the height from both record-
ings diverge once the disturbance is applied. Once the disturbance period ends, however,
the height measurements quickly converge again to the undisturbed on-board estimates.
Similarly, the disturbed and undisturbed roll and pitch angles are shown in Figure 4.17.
Again, the angular measurements converge to the undisturbed estimates after the dis-
turbance period has ended. This successfully demonstrates the functioning of our drift
correction methods according to expectations.
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Figure 4.17: Recovery of roll- and pitch-angle after forceful disturbance.

Table 4.5: Average error and RMSE for on-board position estimates during different
shape flights.

Shape Average Error RMSE
Square 2.20 cm 2.10 cm
Triangle 2.01 cm 2.39 cm
Circle 4.13 cm 4.56 cm

Shape Flight

The previous hovering flights are a particularly easy challenge for the local SLAM
method, as the MAV remains mostly stationary and is thus not required to map many
keyframes. In further flight experiments, we hence let the MAV fly different horizontal
trajectories, while facing in a fixed direction. The flown trajectories resemble different
horizontal shapes, which are a square with edge-length 1 m, an equilateral triangle with
edge length 1.5 m, and a circle with a diameter of 1.5 m. For the square and triangle,
the MAV approached each corner twice before landing autonomously. At each corner
it hovered for about 5 s before continuing its flight to the next corner. For the circular
shape, the MAV flew two full rotations before landing.

A top view of the recorded ground truth and on-board position estimates for each shape
are given in Figures 4.18a – 4.18c. For clarity, the trajectories during the autonomous
take-off and landing period have been omitted. It can be seen that our on-board pose
estimates closely match the recorded ground truth for all shape flights. The average error
and RMSE for the on-board position estimates are listed in Table 4.5. The square and
triangle flight produced similar error magnitudes, while there are larger errors for the
circle flight. These errors are considerably larger than the errors we previously analyzed
for the hovering experiment. Nevertheless, the errors are still within the low centimeter
range, which should be sufficient for safe indoor navigation.

A more detailed evaluation was performed for the square flight, by offline re-processing
the recorded sensor data with our local-SLAM-only and ground-plane-only methods.
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Figure 4.18: Flight of horizontal (a) square, (b) triangle and (c) circle shape. One can
see that while MAV’s controller can certainly be improved, the on-board pose estimates
from our double-stereo system accurately match the recorded ground truth.
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Figure 4.19: Square flight trajectory including offline processing results.

The trajectory estimates obtained with each approach are shown in Figure 4.19. These
results show the same tendency that we previously observed in the hovering experi-
ment: while our on-board estimates and the local-SLAM-only test run provide results
that closely match the recorded ground truth, the ground-plane-only version exhibits sig-
nificant drift.

This observation is also confirmed if we examine the deviation of the position esti-
mates from the recorded ground truth, as shown in Figure 4.20. Like for the previous
hovering experiment, the error curve that corresponds to our ground-plane-only version
has been truncated, due to its large error magnitudes. Compared to our on-board esti-
mates, the local-SLAM-only test run again produced higher position errors. The average
error and RMSE for all tested methods are listed in Table 4.6.

Despite the relatively small dimensions of the flown shape trajectories, the movements
performed by the MAV are large enough to force our local SLAM method into contin-
uously adding new keyframes. Hence, even though this experiment was performed in
a small confined space, the received performance results should resemble the MAV’s
performance on a long-range flight.
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Table 4.6: Average error and RMSE for different pose estimation methods, when pro-
cessing the recorded square flight.

Method Average Error RMSE
On-Board Estimate 2.20 cm 2.39 cm
Local SLAM Only 4.39 cm 4.53 cm
Ground Plane Only 29.35 cm 33.71 cm
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Figure 4.20: Position error during square flight.

Yaw Rotations

While the previous flight experiments are also feasible with only two cameras and our
local SLAM system, the situation is different if we encounter yaw rotations. As we have
discussed earlier, observing fast yaw rotations with the forward-facing cameras is par-
ticularly challenging. Thus, we expect that our MAV benefits much from our additional
downward-facing cameras in this case. This assumption has been put to a test, by letting
our MAV perform a 360◦ yaw rotation. This rotation was divided into four separate 90◦

turns, for which our MAV required an average time of 2.3 s each. After each turn, the
MAV waited for itself to stabilize and then hovered for 5 seconds before continuing with
the next turn. An example for the scene observed by the forward-facing cameras after
each turn is shown in Figure 4.21.

Figure 4.22 contains the recorded ground truth and on-board position estimates for
a typical test run of this experiment. Again, the recorded camera imagery and IMU
measurements were re-processed offline with a local-SLAM-only and ground-plane-only
version of our software system. These additional results are once more included in Fig-
ure 4.22. We can see that despite the yaw rotations, the MAV is able to maintain an
accurate estimate of its current position. The ground-plane-only test run again shows the
already observed behavior of accurate height estimates but strong horizontal drift.

The position estimated by the local-SLAM-only version, on the other hand, shoots
off in a random direction after the first 90◦ turn. Please note that the diagram has been
truncated and that the position estimation continues to show the same erroneous behavior
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(a) 0◦ (b) 90◦

(c) 180◦ (d) 270◦

Figure 4.21: Scene observed by the forward-facing cameras during 360◦ yaw rotation.
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Figure 4.22: Ground truth and estimated position during yaw rotation. Scale is in meters.
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Figure 4.23: Yaw angles measured during 360◦ yaw rotation.

for each of the four turns. In fact, it has not been possible to obtain a valid position
estimate beyond the first turn, for any test-run with the local-SLAM-only system. If the
MAV had used this erroneous position estimate for navigation, this would have inevitably
led to a crash.

The recorded and estimated yaw rotations are depicted in Figure 4.23. In this diagram
we can see that the yaw rotation estimated with our on-board method closely follows
the ground truth, while the ground-plane-only version follows the ground truth less ac-
curately. The local-SLAM-only version starts deviating significantly after the first turn,
which matches our previous observations from Figure 4.22.

The good performance of our method can in large parts be credited to our new recovery
strategy. In fact, recovery of the local SLAM method was performed once during each
turn. Because the more rotation-robust pose from the downward-facing cameras is used
during recovery, our MAV was able to keep an accurate pose estimate throughout the
experiment.

4.5 Summary and Discussion

The key problem in autonomous MAV navigation is enabling the MAV to estimate its
current pose. Only if the MAV is aware of its position and orientation, it is able to steer it-
self towards a desired target location. While GPS and IMU measurements are frequently
used for autonomous outdoor-flight, different methods are required for autonomous flight
in GPS-denied spaces. In this chapter, we have discussed two such approaches that both
rely on stereo vision. Furthermore, both methods have been implemented on our MAV
platform and we have proven their autonomous flight capabilities in several experiments.

We first discussed the single-stereo system, which only uses the two forward-facing
cameras that are present on our MAV research platform. This method relies on an adapted
version of the PTAM visual SLAM system, which has been extended by Scherer et al.
(2012) to incorporate depth information. We simplified this visual SLAM method such
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that it only retains a small local map, which is achieved by continuously dropping old
keyframes. The resulting SLAM system has been called local SLAM in this thesis. The
obtained pose estimates are fused with inertial measurements that are received from the
IMU. The fused pose is then passed on to the MAV’s position controller and also fed
back to local SLAM for motion prediction.

The second method that we discussed in this chapter is the double-stereo system that
uses both the forward-facing and the downward-facing camera pairs. Particularly in
the case of fast yaw rotations, the imagery of the downward-facing cameras is more
suitable for visual motion estimation. For ground proximity flights, on the other hand, the
forward-facing cameras are more viable. Hence, the initial motivation for simultaneously
using a forward-facing and a downward-facing camera pair was the expectation that both
camera pairs would complement one another.

Because the computer on-board our MAV does not provide sufficient computing re-
sources for simultaneously running two instances of our local SLAM software, a more
efficient technique has been designed for processing the imagery from the downward-
facing cameras. This method expects a flat ground and fits a plane to the 3D points
obtained through stereo matching. This allows the MAV to measure its relative height
towards the ground plane. By assuming that the ground is level, the MAV can further es-
timate its roll and pitch angles. For observing horizontal translations and yaw rotations,
a method based on image tracking has been used. Hence, a full 6-DoF pose estimate is
obtained from the downward-facing cameras, which provides an alternative to the pose
from local SLAM. Both pose estimates and measurements from an IMU are then fused,
while also compensating drift errors for height, roll and pitch.

The single-stereo and double-stereo systems have both been evaluated in flight exper-
iments. While initially only a brief proof-of-concept evaluation was performed for the
single-stereo method, a thorough evaluation has been provided for the double-stereo sys-
tem. For the latter one, we also re-processed the sensor data recorded during several test
flights with only the local SLAM method, which matches our single-stereo system. This
allowed us to judge the performance improvement gained by the additional downward-
facing camera pair. As expected, the highest improvement is achieved when performing
fast yaw rotations. In this case, the single-stereo method loses track and fails to provide
a reliable pose estimate, while our method continues to deliver accurate pose estimation
results.

The two presented visual navigation systems make our MAV truly autonomous, which
means that it does not depend on external devices such as ground computers or tracking
systems. Our MAV successfully demonstrated autonomous take-off, landing, hovering,
shape flight and 360◦ yaw rotations. However, if we want our MAV to perform mean-
ingful tasks, visual navigation alone is not sufficient. Rather, instead of just following
pre-programmed flight maneuvers, the MAV should be able to react on its environment.
This requires a method for environment perception, which is the focus of the next chap-
ter.
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Chapter 5

Stereo-Based Obstacle and
Environment Perception

5.1 Introduction
In the previous chapter we have discussed methods for enabling our MAV to perceive its
current pose. This allows the MAV to navigate autonomously, which facilitates the flight
of different pre-programmed trajectories. Unfortunately, however, our MAV flies ‘blind’,
which means that it does not attempt to perceive its environment. Our stereo matching
method only matches a sparse set of features, of which a subset is added to the map
of our local SLAM system. Only considering this small set of features is unfortunately
not sufficient for the reliable detection or identification of obstacles and traversable free
space. Hence, should an obstacle appear on the MAV’s pre-programmed flying trajectory,
then the MAV will not attempt to alter its trajectory but remain on a collision course.
To facilitate intelligent behavior such as obstacle evasion, the MAV requires means to
perceive its environment. In particular, it is required to detect space that is blocked by
obstacles, and free space that is traversable for the MAV.

Even if the MAV is pre-programmed with a collision-free flying trajectory, the percep-
tion of its environment is still important. If the MAV is expected to operate in the close
vicinity of obstacles, then drift errors in the MAV’s pose estimate could cause the MAV
to deviate from the intended trajectory and lead to potentially dangerous situations. If
the MAV is expected to perform long-range flights, then the accumulation of drift errors
can even render objects with a significant distance to the desired trajectory as a potential
threat to the MAV.

Environment perception can further facilitate new and intelligent behavior and appli-
cations. If the MAV is aware of traversable and non-traversable space, it can perform
fully autonomous path planning. Particularly in a dynamic environment, such on-board
path planning is necessary for an MAV to reach its dedicated destination. An application
for MAVs that are capable of autonomous path planning is the exploration of unknown
environments. For this task, an MAV could autonomously map its environment or search
for and locate known objects.

The mapping of free space and space that is occupied by obstacles is a problem that
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has been well studied for ground-based robots, and is generally referred to as occupancy
mapping. Because a ground-based robot can only move in two dimensions, most existing
occupancy mapping methods are based on 2D grids. Typical sensors that are used for
creating such 2D occupancy grid maps are 2D laser scanners and sonar sensors. Our
MAV, however, is able to move in three dimensions, which is why we also need a 3D
mapping method. Fortunately, the stereo cameras on-board our MAV allow a three-
dimensional perception of the MAV’s environment, and can be used for populating a 3D
occupancy map.

When extending the common 2D grid representation to 3D, we arrive at a volumetric
occupancy map. If implemented naïvely, such maps can consume excessive amounts of
memory. However, an efficient method has recently been proposed by Wurm et al. (2010)
and Hornung et al. (2013), which uses compressed octrees. The authors have made their
implementation, which they named OctoMap, publicly available (see Hornung et al.,
2014) and it has since been used in numerous research projects.

In the initial publication of OctoMap, data from an accurate 3D laser scanner was used
for evaluating the mapping performance. Compared to laser scanners, the data received
from a stereo vision system is unfortunately much noisier. In particular, the stereo vision
noise increases quadratically with the measured depth (see Point Grey Research, Inc.,
2012), and it is often spatially and temporally correlated.

Stereo matching algorithms usually employ an explicit or implicit smoothness con-
straint that penalizes solutions with abruptly varying depth. Consequently, if a stereo
matching result is wrong for one image location, all neighboring image locations are
likely to exhibit a similar error. Furthermore, because stereo matches are determined
by image similarity, similarly textured regions are likely to be repeatedly mismatched in
subsequent frames. Thus, we cannot assume that on average measurement errors cancel
out each other.

The dissimilar nature of the noise found in laser and stereo range measurements means
that methods designed for processing laser range data do not necessarily perform well
when applied to stereo vision. In terms of OctoMap, the correlated noise inherent in
stereo measurements leads to many falsely mapped artifacts, as we will see in Section 5.4
on page 115. To ensure more accurate maps for our MAV, we hence require a more robust
method.

In this chapter, one such method is presented, which is a modification of the original
OctoMap approach. As shown by evaluation, this new method is more accurate when
used in conjunction with stereo vision, while also exhibiting a smaller memory foot-
print. At the same time, this method achieves shorter processing times than the original
OctoMap implementation for most of the test runs performed in this chapter. The pre-
sented work was first published at the IEEE International Conference on Robotics and
Automation (ICRA) in 2014 (Schauwecker and Zell, 2014b).
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5.2 Related Work
As mentioned above, occupancy maps can be created in two or three dimensions. Earlier
work typically focused on 2D maps due to their low memory consumption and computa-
tional requirements. A compromise between 2D and 3D maps are 2.5D elevation maps,
which however cannot be used to represent all 3D environments. We have a separate look
at each of those map types and the relevant mapping methods for creating them. Further-
more, we have a look at existing work on creating occupancy maps with autonomous
MAVs.

5.2.1 2D Occupancy Maps
The idea of using a regular 2D grid for mapping the occupancy of a robot’s environment
was first published by Moravec and Elfes (1985). The authors used a robot equipped
with a wide-angle sonar sensor to measure the distance to close-by obstacles. For this
method, the probabilities of a grid cell being occupied P(O) or free P(¬O) are tracked
independently. If, for a given cell, P(O) is greater than P(¬O), then the cell is considered
occupied. A sensor model is used that assigns occupancy and free probabilities to any
point within the sonar beam. After several pre-processing steps, those probabilities are
integrated into the occupancy map by using a probabilistic addition formula. An evalua-
tion of the method from Moravec and Elfes among other popular 2D occupancy mapping
approaches was published by Collins et al. (2007).

The probability integration scheme used by most of today’s occupancy mapping meth-
ods follows the approach applied by Matthies and Elfes (1988) and Elfes (1989). Here,
only the occupancy probability P(O) is integrated for each cell, as a cell’s probability of
being free is complementary, and can thus be inferred from P(O). Integration happens
through recursive Bayesian estimation. Thus, this method again requires a probabilistic
sensor model for obtaining the posterior occupancy probability, given the current sensor
observation.

Without affecting the results, the performance of the recursive Bayesian estimation
can be improved if the map stores the logarithm of the odds ratio, which is known as
log-odds (see Thrun et al., 2005), for the occupancy probability L(O). In this case,
the update equation can be reduced to a simple log-odds summation. Such a log-odds
based map has e.g. been used by Konolige (1997). This method also includes extensions
to improve robustness against specular reflections and redundant readings, which are
common problems for sonar sensors.

Although stereo cameras are 3D sensors, they can also be used for creating 2D occu-
pancy maps. This requires the stereo matching results to be reduced to 2D measurements,
which usually happens through a column-by-column projection of the disparity map. A
robot that uses such a method to obtain a 2D occupancy map was shown by Murray and
Little (2000). This robot is equipped with a trinocular stereo camera, whose imagery
is processed with a multi-baseline stereo matching algorithm based on the method from
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Okutomi and Kanade (1993). The mapping method selects the maximum disparity value
of each disparity map column during the column-by-column projection. To account for
the loss of depth resolution for distant points, each projected column results in an update
of a trapezoid shaped section of the occupancy grid map.

Another stereo vision based method for 2D occupancy mapping, which is focused on
vehicular applications, has been proposed by Perrollaz et al. (2012). In this approach,
the y axis of the occupancy map is always aligned to the reference camera’s optical axis.
Furthermore, coordinates along this axis are measured in stereo disparity. Due to the axis
alignment, this method does not allow for changes in the camera’s viewing direction.
Rather, the authors focus on the creation of ‘instantaneous’ occupancy maps that assume
a static camera rotation.

For this method, the disparity map is first segmented into road surface and an obstacle
maps, for which the technique developed by Perrollaz et al. (2010) is used. A column-
by-column projection is then only performed for the obstacle disparity map, by counting
the frequency of disparity values in each image column. The resulting representation
was called u-disparity, due to its similarity with the popular v-disparity representation
(Labayrade et al., 2002). The observations from the u-disparity representation are inte-
grated into the occupancy map by using a probabilistic approach. The integration scheme
considers the visibility of a cell, which is modeled as the ratio of pixels with smaller dis-
parity in the corresponding column of the disparity map, and the number of possible
measurement points. For cells that are not visible, no update of the occupancy probabil-
ity is performed.

5.2.2 2.5D Elevation Maps

Planar grid-based maps only provide a reduced view of the 3D world in which the robot
operates. A more informative way for environment representation are 2.5D elevation
maps, where the surface elevation is stored for each grid cell. Such methods have long
been used in the robotics community to perform terrain mapping. As an example, Kweon
and Kanade (1990) developed one such method alongside a 3D vision system, which
were intended for a planetary exploration robot. While the grid-based representation
of elevation maps allows for an efficient processing, other map representations are also
possible. For example, Hadsell et al. (2009) model the elevation map with an elevation
function over a 2D domain, which is found using a kernel-based method.

Independent of the used map representation, elevation maps have a significant limita-
tion in the types of environments that they can represent. Using a single elevation map, it
is not possible to model overhanging structures, which makes these methods particularly
unsuitable for mapping indoor environments. This constraint can be weakened by allow-
ing multiple surface levels as e.g. done by Triebel et al. (2006). Here, the authors store
a list of ‘surface patches’ for each cell of a grid-based map. This method also supports
vertical structures, which e.g. facilitates the mapping of vertical building walls.
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(a) (b)

Figure 5.1: (a) Recursive volumetric subdivision and (b) tree based data structure used
by octrees.

5.2.3 3D Occupancy Maps
A more general representation of 3D environments are volumetric occupancy maps.
Examples for such methods are the systems developed by Ryde and Hu (2010) and
Dryanovski et al. (2010). Both approaches employ map representations that are again
based on 2D grids. Ryde and Hu store a list of occupied and free volumes for each grid
cell. These volumes are allowed to have vertical non-integer extents, while restrictions
apply for minimum height and vertical distance. Triebel et al., on the other hand, only
store occupied volumes. This time, the stored volumes are cube-shaped voxels that are
kept in hash maps. In both cases, data recorded with 3D laser scanners was used for
evaluating the mapping performance.

In this chapter, we focus on volumetric occupancy maps that are based on octrees.
Octrees are efficient tree-based data structures that can be used for storing 3D points,
and were initially pioneered by Meagher (1980). For this method, the available 3D space
is represented as a cube. If a point within this 3D space shall be stored in the octree,
the space is recursively divided into smaller and smaller sub-cubes. For this process,
each cube is divided into eight child-cubes that are stored in a tree-based data structure.
Figures 5.1a and 5.1b illustrate this recursive subdivision and tree representation. The
advantage of using octrees for storing volumetric data is that memory is only allocated as
needed, since empty cubes do not occupy memory. Otherwise, even a small volumetric
map could consume large amounts of memory, as the size grows cubically with the map
resolution.

A stereo vision based mapping method that uses a data structure similar to octrees
was published by Bajracharya et al. (2012). Here, the authors use an N-tree that di-
vides a cube into N child-cubes, which is used to store a set of occupied voxels. This
data structure was chosen in order to allow for an efficient neighbor lookup, which is
done excessively by the proposed method. A voxel is marked as occupied if part of the
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obtained range measurements from stereo vision fall within the voxel’s boundaries. Dif-
ferent filtering methods are then applied to this volumetric occupancy map. In a temporal
filter, voxels are ‘aged’ if no corresponding observations are made despite the voxels be-
ing within current field of view. Once a voxel reaches a certain age, it is removed from
the map. Similarly, a spatial filter is applied that is based on a weighted sum, which is
computed on a local voxel neighborhood.

Another octree-based method for volumetric occupancy mapping is the already men-
tioned OctoMap (Wurm et al., 2010; Hornung et al., 2013). The authors have made
their implementation publicly available (see Hornung et al., 2014), which has led to its
adoption in numerous research projects. Although OctoMap is mostly used for process-
ing range measurements from laser scanners, there exist several examples where it has
been applied to process data from stereo vision, like the autonomous exploration system
developed by Shade and Newman (2011).

The map generated by OctoMap consists of voxels that store the log-odds of the oc-
cupancy probability L(O). A voxel is considered occupied if the occupancy probability
P(O) is greater than 0.5, which is equivalent to the occupancy log-odds L(O)> 0. For in-
tegrating new range measurements, OctoMap uses a ray casting scheme, which is based
on the 3D extension of the Bresenham algorithm that was proposed by Amanatides and
Woo (1987). A ray is cast from the sensor origin to each received measurement end
point. A hit-measurement (i.e. an occupied observation) is then generated for the voxel
containing the measurement end point, while miss-measurements (i.e. free observations)
are generated for all remaining voxels on the ray. The occupancy log-odds L(O) of all
affected voxels are then updated through recursive Bayesian estimation.

In order to keep the memory consumption low, OctoMap performs a continuous com-
pression of the generated octree. This happens by introducing a maximum and minimum
probability threshold pmax and pmin, to which the occupancy probabilities (or rather the
corresponding log-odds) are clamped. If for a given node in the octree, all child-nodes
reach the maximum or minimum probability, then the child-nodes can be pruned from the
tree. In this case, it is sufficient to only keep one single copy of the occupancy log-odds
in the parent-node.

The minimum and maximum probabilities also serve one further purpose: If a voxel’s
occupancy probability would reach a very high or very low value, then many observations
would be required for changing the voxel’s occupancy status. Hence, by introducing an
upper and lower probability bound, the updatability of all voxels is assured.

5.2.4 Occupancy Mapping with Autonomous MAVs
Several autonomous MAVs have been presented in literature that are able to map their
environments. Some of these MAVs were previously mentioned in Section 4.2.3 on
page 60, when we discussed autonomous navigation. One such MAV is the autonomous
quadrotor that was developed by Shen et al. (2011). This MAV is equipped with a 2D
laser scanner that performs range measurements within a horizontal plane. Measure-
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ments from the laser scanner are used to construct a 2D occupancy grid map, while only
using on-board processing resources. Despite this map being only two-dimensional, the
MAV is able to map indoor environments with multiple floors. This happens by auto-
matically creating a new map layer when the MAV transitions from one floor to another.

Huang et al. (2011) presented a quadrotor MAV that is able to construct 3D maps.
Although their MAV performs on-board motion estimation using a VO-based method,
the 3D map is computed off-board. As range sensor serves a stripped-down Microsoft
Kinect RGB-D camera. The map is created with the method developed by Henry et al.
(2010), which is based on surface elements or surfels. Surfels, which are a concept that
is known from computer graphics, (Pfister et al., 2000) are small surface patches that
have a size, location, surface orientation and color. In addition, Henry et al. also store a
confidence measure for each surfel in the map. This confidence measure increases if the
surfel is seen from multiple angles, while it decreases if the camera can ‘see through’ it.
Surfels with a low confidence are then removed from the map.

One example for an MAV that performs occupancy mapping using stereo vision is the
previously discussed PIXHAWK quadrotor, which was developed by Heng et al. (2011).
Unlike the just mentioned MAV, this quadrotor is able to perform all computations on-
board, and does not depend on external systems. At first, a dense stereo matching algo-
rithm is run whose results serve as range measurements. These measurements are then
processed with OctoMap to provide a 3D volumetric occupancy map. This MAV was ex-
tended by Meier et al. (2012) to allow for larger image resolutions, and by Fraundorfer
et al. (2012) to facilitate path planning for autonomous exploration tasks.

Another MAV that uses OctoMap for creating volumetric occupancy maps was pre-
sented by Fossel et al. (2013). The range sensor that is used by this MAV is a planar
2D laser scanner. Using an estimate for the MAV’s current pose, the 2D laser range
measurements can be transformed to a set of 3D measurement end points, which are
then processed by OctoMap. While the MAV’s altitude and roll and pitch angles are
determined using measurements from an ultrasound altimeter and IMU, the horizontal
position and yaw rotation are inferred with a SLAM algorithm that relies on the gener-
ated occupancy map. The accuracy of this SLAM algorithm, however, is limited by the
voxel size. This method was not run on-board of an MAV, but only applied offline to
recorded or simulated sensor data.

5.3 Method
As mentioned previously, the correlated noise inherent in range measurements from
stereo vision can promote the mapping of many erroneous artifacts. An example for this
behavior can be seen in Figure 5.2, where two intersecting corridors have been mapped
with OctoMap. For this example, range measurements were obtained by using a stereo
camera and the Efficient LArge-scale Stereo (ELAS) algorithm, which was developed by
Geiger et al. (2011). The erroneous artifacts occur in map regions that are occluded and
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Figure 5.2: Example for artifacts occurring when using OctoMap with data from stereo
vision.

thus not visible to the sensor. In the given example, these are the areas behind the walls
of the mapped corridors.

The formation of these artifacts can be explained as follows: Because the occluded
map regions are not visible to the sensor, no correct sensor measurement is ever received
for the corresponding voxels. Instead, all measurements for these regions originate from
errors in the stereo matching results. For the visible map region, such occasional errors
do not pose a significant problem, as we receive a sufficient number of correct mea-
surements for the voxels within the current field of view. For the occluded map area,
however, no correct measurements are ever received, which means that these errors can
accumulate. In fact, the error accumulation is much accelerated by the correlated na-
ture of the stereo matching errors. This means that for an occluded voxel, we might
quickly receive several similar erroneous measurements, which triggers the mapping of
an erroneous artifact.

In the work from Bajracharya et al. (2012), this problem is resolved by using the
mentioned spatial and temporal filtering. We, however, aim at finding a method that
solves this problem inherently. This can be achieved by considering the visibility of a
voxel when updating its occupancy probability. If we know that a given map voxel is
currently not visible, then all measurements received for this voxel must be erroneous,
which means that the voxel’s occupancy probability should not be altered. The update
behavior for voxels that are known to be visible, on the other hand, should remain un-
changed.

Before updating the occupancy probability of a map voxel, we hence need to estimate
the probability that this voxel is currently visible. In this sense, the presented method is
similar to the one proposed by Perrollaz et al. (2012). However, since Perrollaz et al.
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Figure 5.3: Observing an obstacle at a flat angle.

use a 2D method, the visibility is measured for a column of the disparity map only. The
measure they chose is the fraction of pixels with a disparity less than a voxel’s reference
disparity. Hence, the visibility measure depends only on the current measurement, and
does not incorporate knowledge from the created map.

The visibility measure that we propose in this chapter differs significantly from the
aforementioned. First, our measure is not limited to 2D space, but can instead estimate
the visibility of voxels in a 3D map. Second, the measure is derived from the created oc-
cupancy map, and not from the current range measurement. A map created by integrat-
ing multiple sensor measurements is generally more accurate than a single measurement
alone. In the following, we discuss this visibility measure, the probability integration
scheme and further enhancements that have been made to the original OctoMap imple-
mentation.

5.3.1 Visibility Estimation
Given a ray from the sensor origin that passes through a voxel v, the naïve model for
the visibility of v would be the probability that all voxels that are on the ray and closer
to the sensor origin are free (i.e. not occupied). Should a single voxel on the ray be
occupied and closer to the sensor origin, then one could assume that this voxel would
occlude v. This simple and intuitive model for the visibility of v unfortunately has a poor
performance when observing an obstacle at a flat angle, as shown for the solid red ray in
Figure 5.3. The elongated obstacle that is depicted in this example encompasses a row
of voxels below the sensor origin. The measurement ray passes through several of these
voxels before reaching the measurement end point pe. Hence, the voxel containing pe
would be determined as not visible, despite the fact that the measurement end point is
clearly observable.

We thus use a different method for modeling voxel visibility, which is based on local
occlusion. We consider a voxel v as locally occluded if it is occluded by its direct neigh-
bors for all possible rays that pass through the sensor origin and v. In the example in
Figure 5.3, the voxel containing pe is not occluded by its direct neighbors for the dashed
blue ray.

A voxel v usually has three faces that are visible to the sensor. We consider a set Nv
of three voxels that border these visible faces, as illustrated in Figure 5.4. We define v
as locally occluded if all voxels in Nv are occupied, which we indicate with the event
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Figure 5.4: Visible faces of a voxel with neighboring voxels.

Cv. Unfortunately, there exists a strong conditional dependency among the occupancy
probabilities of the three voxels in Nv, which complicates the calculation of the local
occlusion probability P(Cv). Hence, we use a simple estimate for P(Cv), which is the
smallest occupancy probability of the voxels in Nv. If P(Ov) denotes the probability that
voxel v is occupied, then we can approximate P(Cv) as follows:

P(Cv)≈min{P(Oa),P(Ob),P(Oc)} , with {a,b,c} ∈ Nv. (5.1)

Now, we consider a ray R with a set of voxels vi ∈ R. For a voxel vi, we assume that its
visibility depends on the event Cvi that this voxel is locally occluded and the event Vvi−1
that the previous voxel on the ray, which is closer to the sensor origin, is visible. Given
the law of total probability, we can compute the probability P(Vvi) that voxel vi is visible
as follows:

P(Vvi) = P(Vvi|Cvi ,Vvi−1)P(Cvi)P(Vvi−1)

+P(Vvi|¬Cvi ,Vvi−1)P(¬Cvi)P(Vvi−1)

+P(Vvi|Cvi ,¬Vvi−1)P(Cvi)P(¬Vvi−1)

+P(Vvi|¬Cvi ,¬Vvi−1)P(¬Cvi)P(¬Vvi−1).

(5.2)

We define the probability of voxel vi being visible to be 0, if the previous voxel on
the ray vi−1 was not visible. This means that the probability P(Vvi) will never be greater
than P(Vvi−1). Hence, the visibility can only decrease when traversing the ray from the
sensor origin to the measurement end point. With this additional restriction, we can
simplify Equation 5.2 and receive our final visibility estimation formula:

P(Vvi) =P(Vvi−1)[P(Vvi |Cvi ,Vvi−1)P(Cvi)

+P(Vvi |¬Cvi ,Vvi−1)P(¬Cvi)].
(5.3)

This simplified equation contains only two remaining conditional probabilities, which
are P(Vvi|Cvi,Vvi−1) and P(Vvi|¬Cvi ,Vvi−1). We assume that both of these conditional
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Figure 5.5: Visualization of the equation used for estimating the voxel visibility proba-
bility P(Vvi).

probabilities are constant, and configure them according to the sensor properties. The
probability P(Vvi|Cvi,Vvi−1) controls how quickly the visibility reduces when encoun-
tering occupied voxels. P(Vvi|¬Cvi,Vvi−1) on the other hand controls how quickly the
visibility reduces when encountering free voxels. For a stereo camera, this parameter
should be set to 1, as there exist no range limitations for stereo vision. When using
sensors with significant range limits, however, one might want to select smaller values.

In Figure 5.5, the received visibility probability P(Vvi) has been plotted in relation
to the local occlusion probability P(Cvi) and the probability P(Vvi−1) that the previous
voxel on the ray was visible. The parameters that have been used for this figure are
P(Vvi|Cvi,Vvi−1) = 0.2 and P(Vvi|¬Cvi,Vvi−1) = 1. This matches the paramerization
that is used later for our performance evaluation.

OctoMap performs a clamping of occupancy probabilities to the interval [pmin, pmax].
In our case, the upper threshold pmax can cause a slight underestimation of voxel occu-
pancy probabilities, which leads to a slightly higher visibility probability P(Vv). While
this does not seem to be a significant problem, the effects of the lower threshold pmin
appear more serious, which can cause an underestimation of a voxel’s visibility. Since
visibility only decreases along a measurement ray, a continuous underestimation can ac-
cumulate to a significant visibility drop, which limits the range of our mapping method.

We hence introduce a new threshold qmax ≤ pmax, and clamp all visibility probabili-
ties P(Vv) ≥ qmax to 1. This means that the visibility is over- instead of underestimated.
Hence, qmax can also be used to influence the mapping range. We further introduce a
lower threshold for the occupancy probability qmin > 0, and stop the processing of a
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Figure 5.6: Bayesian network of new probability integration scheme.

ray once the visibility probability drops below qmin. This allows us to save comput-
ing resources that would have otherwise been wasted on computing updates for almost
invisible voxels.

5.3.2 Occupancy Probability Integration
To respect voxel visibility during map updates, we need a new probability integration
scheme that incorporates the probability P(Vv) of a voxel v being visible. The method
that has been chosen for this task can be expressed as a Bayesian network, as shown in
Figure 5.6. This network contains three random variables for the events that a voxel v is
visible, that the received measurement was a hit (i.e. an occupied measurement), and that
the voxel is actually occupied.

Let us have a closer look at the probability table for measuring a hit, as indicated by
event H. For the case of voxel v not being visible, the probabilities of receiving a hit
P(H|¬Vv) or a miss P(¬H|¬Vv) do not depend on the voxel’s occupancy. Instead, in the
case of v not being visible, the hit and miss probabilities are solely determined by the a
priori probabilities for measuring a hit or a miss for non-visible voxels. Hence, no matter
what measurements we receive for non-visible voxels, we will gain no information on
their occupancy status.

For cases where a voxel is visible, on the other hand, the hit probability depends
on the voxel’s occupancy. If a voxel is occupied and visible, the probability of a hit is
P(H|Ov,Vv). Similarly, the probability of a hit is set to P(H|¬Ov,Vv) if the voxel is visible
but not occupied. Both, P(H|Ov,Vv) and P(H|¬Ov,Vv), are assumed to be constant and
configured according to the sensor properties. The probabilities of measuring a miss are
complementary, and hence do not need to be configured.

We can solve the Bayesian network from Figure 5.6 for the occupancy probability.
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Figure 5.7: Visualization of new update equation for (a) hit- and (b) miss-measurements.

For this task, we use the previous occupancy probability P(Ov) as prior, and calculate the
posterior probability P(Ov|M). Here, M is the current measurement, which is either a hit
H or a miss ¬H. The new occupancy probability can be determined by applying Bayes
Theorem:

P(Ov|M) =
P(M|Ov)P(Ov)

P(M)
. (5.4)

The probabilities P(M|Ov) and P(M) that appear in the above equation can be deter-
mined by using the law of total probability. This leads to the following solutions:

P(M|Ov) =P(M|¬Vv)P(¬Vv)+P(M|Ov,Vv)P(Vv), (5.5)

P(M) =P(M|¬Vv)P(¬Vv)+P(M|Ov,Vv)P(Ov)P(Vv)

+P(M|¬Ov,Vv)P(¬Ov)P(Vv).
(5.6)

We insert Equations 5.5 and 5.6 into Equation 5.4, and arrive at our final update for-
mula:

P(Ov|M) =
P(Ov) [P(M|¬Vv)P(¬Vv)+P(M|Ov,Vv)P(Vv)]

P(M|¬Vv)P(¬Vv)+P(M|Ov,Vv)P(Ov)P(Vv)
+P(M|¬Ov,Vv)P(¬Ov)P(Vv)

. (5.7)

The solution of this new update equation in relation to the visibility probability P(Vv)
and the previous occupancy probability P(Ov) is plotted in Figure 5.7a for a hit, and in
Figure 5.7b for a miss measurement. For both figures, the following parameters have
been used:
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P(H|Ov,Vv) = 0.9; P(H|¬Ov,Vv) = 0.1; P(H|Vv) = 0.5. (5.8)

Please note that these parameters have been chosen for visualizing the shape of the prob-
ability distribution, and that more conservative parameters are used during our perfor-
mance evaluation.

Our new update equation is considerably more complex than the simple recursive
Bayes filter that is applied by OctoMap. Furthermore, while OctoMap’s update equation
can be expressed using log-odds, which allows the equation to be simplified to a simple
summation, this is not possible for Equation 5.7. This makes our approach significantly
more computationally expensive. Fortunately however, the probability integration is not
particularly performance critical, as we see later in this chapter.

5.3.3 Sensor Depth Error Modeling
For a stereo camera, the range measurement error increases quadratically with the mea-
sured depth, which is also the case for other camera based depth sensors such as the
original Microsoft Kinect. Hence, only integrating a hit for the single voxel containing
the measurement end point pe is particularly incorrect for distant points. Therefore, we
attempt to respect the expected measurement error during our probability update.

This means that we first need an estimate for the average depth error, which we assume
to be normally distributed. Given the depth measurement z, the standard deviation of the
depth measurement σz can be computed as follows:

σz = κ · z2, with κ =
σd

b · f
. (5.9)

Here, κ is a constant factor that depends on the sensor properties. For a stereo camera,
it can be computed from the disparity standard deviation σd , baseline distance b and
focal length f . When using sensors with a non-quadratically increasing depth error,
Equation 5.9 can be replaced by a different equation that models the expected sensor
behavior.

With σz, we know the accuracy of the current range measurement at depth z. We can
hence use σz to determine the probability that a voxel v on the current measurement ray
is entirely or partly inside the obstacle that corresponds to the measurement end point
pe. The event of voxel v being inside this obstacle is denoted as Iv, and its probability
is P(Iv). For determining P(Iv), we require the distribution function fz(zt) for depth
measurements at depth z. Since we assume a normally distributed depth error, fz(zt) is a
normal distribution function with expectation z and standard deviation σz. We can hence
approximate P(Iv) with the help of the cumulative distribution function Fz(zt) of fz(zt)
(see Andrews, 1992):

Fz(zt) =
1
2

(
1+ erf

(
zt− z
σz
√

2

))
, (5.10)
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where erf(x) is the Gauss error function (see Andrews, 1992).
For a depth zt , the cumulative distribution function Fz(zt) provides the probability that

the true depth of the detected obstacle is smaller than zt . To determine the probability
P(Iv) that voxel v is fully or partially inside this obstacle, we hence reduce v to a point
pv = (xv,yv,zv), which is located at the voxel’s center. We can then approximate P(Iv) as
follows:

P(Iv)≈ Fz(zv). (5.11)

The knowledge of how likely v is located inside the detected obstacle can be incor-
porated into our map update scheme. If P(Iv) 6∈ {0,1}, then the update that should be
performed on the occupancy probability of v is an intermediate between the update for a
miss P(Ov|¬H) and the update for a hit P(Ov|H). In our case, we use a linear interpo-
lation between the results of both update types as approximation for the new occupancy
probability P(Ov|M). As interpolation factor we chose λ = P(Iv), and hence arrive at the
following formula:

P(Ov|M)≈ λ P(Ov|H)+(1−λ )P(Ov|¬H), with λ = P(Iv). (5.12)

For this method to work effectively, we need to extend OctoMap’s original ray casting
scheme. We continue to traverse voxels in ray direction, even after we have already
reached the measurement end point pe. Ray casting is stopped once P(Iv) is close to 1.
However, to make sure that at least one full hit is integrated, we continue ray casting for
one further voxel with P(Ov|M) = P(Ov|H).

5.3.4 Performance Considerations and Optimizations

Although our method is considerably more complex than OctoMap, the performance
impact remains limited. One reason for this circumstance is that probability integration
only makes up for a small fraction of the total processing time spent by OctoMap. This is
due to the fact that no matter how many observations are received for a voxel v, OctoMap
only performs one update of v’s occupancy probability. For this purpose, OctoMap em-
ploys an update reduction step after ray casting, in which preference is given to hit- rather
than miss-updates

We can hence delay the computation of our visibility estimate and our new update
formula, until the updates have been reduced to one update per voxel. We are, however,
required to extend OctoMap’s update reduction scheme. With the introduced depth error
consideration, we no longer receive hit- and miss-updates only, but instead our updates
are an interpolation between those two extremes. Thus, instead of giving preference to
hit-updates, we modify the update reduction to give preference to updates with a large
interpolation factor λ .

Furthermore, we perform an optimization of the update reduction method. OctoMap
employs a hash table for this task, in which it inserts the updates that are generated by
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Figure 5.8: Voxels traversed by two rays for neighboring end points.

ray casting. For each new update, a look-up in the hash table is performed, to determine
whether an update for this voxel already exists. If this is the case, preference is given
to hit-updates, or in our case updates with large λ . For dense measurements, such as
received from dense stereo matching, a high number of rays have to be processed. Hence,
despite the constant time complexity of the used hash table, the time required for a single
voxel look-up has a critical performance impact.

We can speed-up the voxel look-up by exploiting the fact that the rays generated from
stereo matching are sorted. Neighboring rays, which originate from neighboring pixels
in the disparity map, usually progress within close proximity to one another. This means
that two neighboring rays traverse mostly the same voxels, as shown for one example in
Figure 5.8. In this figure, the voxels traversed by both rays are identical except for the
two voxels with index 5.

In such cases, we can perform voxel look-ups against the previous ray. For each voxel,
we thus compare whether it matches the voxel from the previous ray with the same index.
Only if this comparison is not true, then we perform a more expensive look-up that uses
OctoMap’s hash table. This update reduction strategy is described in Algorithm 5.1 for
the simplified case without giving preference to large λ . In the case of dense measure-
ments such as received from stereo vision, this method allows us to perform most voxel
look-ups without accessing the hash table.

Finally, we can speed-up the computation of the linear-interpolation factor λ , which
matches the probability P(Iv) that v is inside the detected obstacle. Since P(Iv) needs to
be determined for each processed voxel, its calculation can result in a severe increase
of the overall processing time. However, for cases where the considered voxel v is far
from the measurement end point pe, the probability P(Iv) is close to 0. This means that
we can neglect the effects of depth uncertainty, and instead keep the original update
strategy from Equation 5.7 with M = ¬H. Only for voxels close to the measurement
end point pe, we have to compute P(Iv) and perform the linear update interpolation from
Equation 5.12.

We can further accelerate the calculation of P(Iv) through pre-computation. The value
of P(Iv) depends on the currently processed depth measurement z and the Euclidean dis-
tance ∆v = ‖pe− pv‖ between the centroid of the current voxel pv and the measurement
end point pe. Hence, we precompute P(Iv) for a discretized set of z and ∆v, and store
the results in a two-dimensional look-up table. Thus, we require only a single memory-
lookup operation to determine the value for P(Iv).
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Algorithm 5.1: Simplified voxel look-up algorithm that exploits ray proximity.
previousRay := /0;
foreach currentRay ∈ allRays do

/* Look-up against previous ray. */
for i := 1 to min(length(currentRay), length(previousRay)) do

if currentRay[i] 6= previousRay[i] then
/* Voxel not found in previous ray. */
if hashMap.find(currentRay[i]) = /0 then

/* Voxel not found in hash map. */
scheduleUpdate(currentRay[i]);

end
end

end

/* Look-up remaining voxels against hash map. */
if length(currentRay) > length(previousRay) then

for i := length(previousRay) + 1 to length(currentRay) do
if hashMap.find(currentRay[i]) = /0 then

/* Voxel not found in hash map. */
scheduleUpdate(currentRay[i]);

end
end

end

/* Swap buffers for previous and current ray. */
swap(currentRay, previousRay);

end

5.4 Evaluation

For evaluating our new occupancy mapping method, we use a dataset from the rawseeds
project (Bonarini et al., 2006; Ceriani et al., 2009). In particular, we use the dataset
Bicocca_2009-02-25b, which is publicly available online (see Raw Seeds Project, 2009).
This dataset comprises a 29 min indoor recording, which was performed with a mobile
robot that traversed a trajectory of about 774 m. The robot was equipped with various
sensors, including laser scanners and a trinocular stereo system. The cameras of this
stereo system had a resolution of 640× 480 pixels, and each camera recorded approxi-
mately 26.000 fames. An example for a left camera frame from this dataset is shown in
Figure 5.9a.

For stereo matching, we use the previously mentioned ELAS algorithm by Geiger
et al. (2011), which is applied to the left and right camera image of the trinocular stereo
system. For this stereo method, the authors have made their implementation available
online (see Geiger et al., 2013), which is used in this evaluation. This method was
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Figure 5.9: (a) Left input image and (b) corresponding disparity map created by ELAS.
The color scale corresponds to the disparity in pixels.

selected for its fast processing rate and accurate matching results. An example for the
disparity map created for a scene from the evaluation dataset is shown in Figure 5.9b. In
this figure, red and blue hues represent large and small disparities, while black represents
regions with no disparity estimate.

For time critical applications, ELAS can produce disparity maps with only half the
size of an input image. Despite the smaller dimensions of the disparity map in this mode,
the disparity range is still processed at full resolution. Hence, while the lateral resolution
is reduced in this case, the resolution of the depth measurements is preserved. This
approach was extended for this thesis, in order to produce quarter resolution disparity
maps at an even faster processing rate. All three resolution options are included in this
evaluation.

In addition to range sensing, we further require a method for localizing the current
robot pose, in order to evaluate our mapping method. Several estimates have been pub-
lished for the robot poses in the considered dataset. We use the solution provided by
Ruhnke (2009), which has been obtained using the graph-based laser SLAM methods
from Grisetti et al. (2007, 2008). To overcome the low update rate of the provided pose
estimates, we perform a cubic spline interpolation of the robot poses.

5.4.1 Map Quality Analysis

ELAS was run with the standard parameter set that is provided for robotics applications,
except for the maximum disparity dmax, which was set to 96 pixels. For the disparity
standard deviation σd , a value of 0.3 pixels was assumed. With the stereo matching
results delivered by ELAS and the selected pose estimates, we are able to create a volu-
metric occupancy map of the environment that the robot traversed during the recording
of the test dataset.
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Table 5.1: Parameters selected for the proposed method and OctoMap.

Proposed Method OctoMap
P(H|Vv,¬Ov) = 0.43 P(Ov|¬H) = 0.45
P(H|Vv,Ov) = 0.55 P(Ov|H) = 0.55
P(H|¬Vv) = 0.05
P(Vvi|Cvi,Vvi−1) = 0.20
P(Vvi|¬Cvi,Vvi−1) = 1.00
{qmin,qmax} = {0.1,0.7}

Two such maps were created, of which one was obtained with OctoMap 1.6.0, and one
with the mapping method proposed in this chapter. Since both methods use a different
probability integration scheme, each method requires its own set of parameters. The
parameters that have been selected for each method are shown in Table 5.1. Having a
different parameterization for each method unfortunately limits the comparability of both
approaches, as the obtained results are only valid for one particular parameter selection.
However, for each method the parameters have been adjusted in order to achieve accurate
mapping results. Hence, we expect that the received results are representative for the
general performance of each method.

Figure 5.10a and 5.10b show the maps that result when using the half-resolution ver-
sion of ELAS with OctoMap and with our mapping method respectively. In both figures,
red hues indicate high occupancy probabilities, while dark blue indicates probabilities
just above 0.5. For the creation of both maps, a voxel size of 0.2 m has been used. Fur-
thermore, all voxels below and above a minimum and maximum height have been cut-off,
which effectively removes the floor and ceiling of the mapped indoor environment.

One can clearly see that the map created by OctoMap contains a high number of erro-
neous artifacts, which are not visible in the map obtained with our approach. A close-up
view on the maps for a corridor in this dataset is shown in Figure 5.11a and 5.11b. These
maps have been created with OctoMap and our method, and the full resolution version
ELAS. Even though the erroneous artifacts are mostly removed in our results, the wall
is still densely mapped. Particularly when mapping neighboring rooms or intersecting
corridors, the produced artifacts can lead to a disruption of previously correct map areas.
For comparison, Figure 5.11c and 5.11d contain the maps for the same corridor with half
and quarter resolution ELAS and our mapping approach. For both cases, the corridor is
still densely mapped despite the smaller image resolutions.

The mapping behavior of our method differs significantly from OctoMap. When fac-
ing in a direction that has previously not been observed, OctoMap immediately expands
its map to the maximum visible distance. Our method, however, gradually increases
the mapped distance after each sensor update. This behavior has been analyzed for the
parameters from Table 5.1 and different voxel sizes. The received results are shown in
Figure 5.12.
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(a)

(b)

Figure 5.10: Full map of evaluation dataset, created with (a) OctoMap and (b) our method
for half resolution ELAS.
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(a) (b)

(c) (d)

Figure 5.11: Corridor mapped with (a-b) full, (c) half and (d) quarter resolution ELAS
and (a) OctoMap and (b-d) our method.

For this analysis, one stereo pair of the evaluation sequence was repeatedly processed,
in which the cameras are facing a long corridor. After each processing iteration, the
distance to the farthest voxel with an occupancy probability P(Ov)> 0.5 was measured.
With a voxel size of 0.2 m, 65 updates were required to reach a distance of approxi-
mately 10 m. For our test dataset with a frame rate of 15 Hz, 65 updates is equivalent
to a time span of 4.3 s. This time span strongly depends on the voxel size, qmax and
P(Vvi|Vvi−1,C). Hence, by adjusting these parameters, one can chose a compromise
between the speed of map expansion and map quality.

5.4.2 Run-Time Performance Evaluation

In addition to the map quality assessment, the run-time performance has been analyzed
on a commodity PC with a 3.3 GHz Intel i5 dual core CPU. On this computer, a one-
minute section of the evaluation dataset was processed with varying voxel sizes and the
three different resolutions of ELAS. Figure 5.13a shows the average processing times that
have been observed in this experiment, when using our mapping method and OctoMap.
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Figure 5.12: Growth of mapped distance for different voxel sizes.

Please note that this diagram uses a logarithmic scale for the processing time, and that
the time for stereo matching has not been measured.

The diagram reveals that except for small voxel sizes and the quarter resolution ver-
sion of ELAS, our method provides significantly lower processing times. The largest
performance difference was observed for full-resolution ELAS with 0.2 m voxel size,
where our method required only 66% of the average computation time that was spent
by OctoMap. This result might be surprising, given that our method is more complex,
but it can be explained with the optimizations performed in Section 5.3.4 on page 113.
Our optimized voxel look-up works particularly well if neighboring rays traverse almost
the same voxels, which is the case for high sensor resolutions and / or large voxel sizes.
Hence, we observe high speed-ups in these cases.

For our mapping method, a processing time of 48 ms was received when using half-
resolution ELAS and a voxel size of 0.2 m. This should be fast enough to facilitate
real-time processing of the used test dataset, i.e. 15 frames per second. However, we
also need to account for the processing time that is required for stereo matching. For
the full, half and quarter resolution versions of ELAS, we require an average processing
time of 122 ms, 48 ms and 24 ms respectively. Hence, for half- and quarter-resolution
ELAS, real-time processing of the evaluation dataset is possible, if stereo matching and
occupancy mapping are run in parallel on both CPU cores.

Since OctoMap tends to map many erroneous artifacts with our stereo matching re-
sults, it also requires more memory. The memory consumptions that were measured for
the previously examined one minute test run are shown Figure 5.13b, which was again
plotted using a logarithmic scale. On average over all test runs, our method required
only 37% of the memory consumed by OctoMap. The largest difference was observed

120



5.4 Evaluation

10

20

40

80

160

320

640

0.1 0.15 0.2 0.25 0.3 0.35

P
ro

ce
ss

in
gp

T
im

ep
/pm

s

Voxel Size / m

640x480
320x240
160x120
OctoMap

OurpMethod

(a)

0.2

0.4

0.8

1.6

3.2

6.4

0.1 0.15 0.2 0.25 0.3 0.35

M
em

or
yp

U
sa

ge
p/p

M
B

Voxel Size / m

640x480
320x240
160x120
OctoMap

OurpMethod

(b)

Figure 5.13: (a) Processing times and (b) memory consumption that have been measured
for our method and OctoMap.

for quarter-resolution ELAS with 0.1 m voxel size. In this case, the map generated by
our method required 6.0 MB of memory, which is only 32% of the 19.1 MB required by
OctoMap. For a map of the full dataset that has been created with half-resolution ELAS,
our method required 24.3 MB of memory, which is only 37% of the 65.7 MB consumed
by OctoMap. Figure 5.13b also reveals that the resolution of ELAS only has a marginal
impact on the memory consumption.

The reason for the poor performance of OctoMap in this experiment is the unstructured
appearance of the mapped artifacts. In this case, OctoMap’s octree compression cannot
be applied effectively. Hence, the memory overhead caused by the artifacts exceeds the
memory required for the actual map.

5.4.3 Mapping of MAV Environment
We have shown that our occupancy mapping system is fast enough for real-time process-
ing, when run on the considered PC with an Intel i5 dual core CPU. Our MAV platform,
however, is equipped with an Intel Core 2 Duo CPU, which is significantly less powerful.
Furthermore, we require estimates of the current camera pose for running our occupancy
mapping method. While we presented a system for on-board pose estimation with our
MAV in Chapter 4, this software system already consumes a large part of the available
processing resources.

Thus, it is not possible to run our mapping method in real-time on-board of our MAV.
We can, however, use our MAV for sequence recording, and then process these stereo
sequences offline. Hence, once the MAV has landed after an autonomous flight, we
can either run our mapping method on the MAV’s on-board computer, or transfer the
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(a)

(b)

Figure 5.14: Maps created off-board from imagery recorded with our MAV and (a) Oc-
toMap and (b) our method.
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recorded imagery to a ground computer for off-board processing.
To test the performance of our mapping method when applied to data recorded with

our MAV, it was used to process the imagery recorded during the autonomous 360◦ yaw
rotation flight from Section 4.4.7 on page 94. This flight was performed in an indoor
environment that contained many visible objects, such as tables, chairs, shelves, cabinets,
computers, or other robots. This cluttered environment poses a significant challenge for
any vision-based mapping system. What makes this flight even more challenging for
occupancy mapping is the fact that the MAV remained mostly at the same hovering
location. This means that many of the visible objects are only ever observed from one
angle at a large distance.

The sequence was processed with OctoMap and our method and half-resolution ELAS,
while using the parameters of our previous experiments from Table 5.1 on page 117. As
pose estimates served the estimates that were computed on-board during the autonomous
flight, which have been recorded by the MAV. The maps that were created with each
mapping method are shown in Figure 5.14a and 5.14b.

Similar to our previous experiments, the map received with OctoMap shows a high
number of erroneous artifacts in all directions. While most artifacts have disappeared
in the map from our mapping system, two streak-like artifacts remain in the left section
of the map. These artifacts are caused by a cabinet in the indoor environment, whose
glass doors reflect the scene behind the MAV. Hence, stereo matching tends to match the
reflections, and thus registers large depth values at this place. Such systematic errors can,
unfortunately, not be corrected by a mapping method alone. For most other parts of this
environment, however, our method provides a clearer map with much less artifacts.

5.5 Summary and Discussion
In this chapter we have introduced a new method for volumetric occupancy mapping.
Unlike most existing methods in this area, our method has been specifically designed for
use with stereo vision. Compared to laser scanners, which are commonly used for oc-
cupancy mapping, the data received from a stereo vision system contains a significantly
higher measurement noise. Furthermore, this noise tends to be spatially and temporally
correlated, which makes the processing of this data even more challenging. We have
shown in our evaluation that this circumstance can lead to the mapping of many erro-
neous artifacts, when using a common occupancy mapping method designed for laser
range measurements.

Hence, a new method has been designed that is based on the well-known OctoMap sys-
tem. OctoMap was extended with a new probability integration scheme, which respects
the probability that a voxel is currently visible. If we are certain that a given voxel is not
visible, then all measurements received for this voxel must be erroneous and should be
ignored. If we are certain that the voxel is visible, on the other hand, then the probability
integration should match the one from an unmodified OctoMap. Usually, however, we
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do not have absolute certainty on a voxel’s visibility. Hence, the general behavior will be
in between those two extremes.

For estimating the visibility probability of a voxel, we traverse the corresponding mea-
surement ray. For each voxel on the ray, we determine the probability that this voxel is
locally occluded by its direct neighbors. The visibility probability is then computed de-
pending on the local occlusion probability, and the probability that the previous voxel on
the ray that is closer to the sensor origin is visible.

Furthermore, we model the sensor depth error and consider it when updating the oc-
cupancy probabilities. The expected depth error for measurements from stereo vision
increases quadratically with the measured depth. Hence, it is important that we con-
sider the expected measurement error when updating the occupancy map. This is done
by a gradual transition from the updates for miss-measurements to the updates for hit-
measurements. Thus, not only one voxel receives a hit-update, but rather a group of
voxels within the uncertainty range.

In our evaluation it was shown that this new occupancy mapping method effectively
removes the artifacts caused by the noisy stereo vision data. At the same time, the map
remains dense for the correctly observed regions. Due to the removal of the map arti-
facts, our method also requires less memory. In fact, our method consumed as little as
32% of the memory allocated by OctoMap. Furthermore, our method achieved lower
processing times than OctoMap for most of the performed test runs, despite the fact
that our method is significantly more complex. This can mainly be credited to an opti-
mization of OctoMap’s update reduction. In principle, this optimization could also be
ported to OctoMap, however, a performance benefit should only be observable for dense
measurements such as provided by a dense stereo algorithm.

Our resulting system is fast enough to enable real-time mapping and stereo matching,
when using both cores of a commodity PC with an Intel i5 dual-core CPU. The Intel
Core 2 Duo CPU available on our quadrotor MAV is unfortunately not powerful enough
for this task. However, we are able to create a map offline, after the MAV has finished
its autonomous flight. The next generation of MAVs might already provide sufficient
computing resources for on-board occupancy mapping. At the time of writing, power-
ful embedded computers in the COM-Express Compact from factor (95× 95 mm) are
already available, which feature an Intel i7 quad-core CPU (e.g. see American Portwell
Technology, Inc., 2013). With such hardware, it should be possible to simultaneously
run dense stereo matching, our occupancy mapping method and our visual navigation
system from Chapter 4 on-board our MAV in real-time.

Finally, even though the method presented in this chapter was specifically designed
for use with stereo vision, it can also be applied to other range sensors. In cases where
the range measurements exhibit a high measurement noise, our method should deliver
more robust results. Hence the presented method might also be useful for improving the
maps created with laser scanners, sonars or RGB-D cameras.
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Summary and Conclusions

In this thesis we have investigated the challenges involved in designing an autonomous
MAV that uses stereo vision as its primary sensor technology. Compared to laser scan-
ners, which are commonly deployed on wheeled robots, cameras offer the advantage of
lower weight and power consumption. In particular laser scanners with multiple beams
that obtain measurements from several sensing-planes are expensive, heavy and require
much energy. It is thus tempting to rely on cameras for a payload and energy constrained
MAV.

Compared to a monocular camera, a stereo camera pair offers the advantage of depth
perception. This allows us to reconstruct the metric 3D position for a point that is ob-
served by both cameras. Hence, a stereo camera is a rich sensor, which in principle offers
an extensive three-dimensional perception of the surrounding environment.

The construction of an autonomous MAV that primarily relies on stereo vision requires
us to find solutions for several problems. The first problem is of course stereo matching,
which allows us to reconstruct the 3D position of points that are observed by both cam-
eras. Next, the MAV has to be able to determine its current pose, i.e. its 3D position and
orientation. Finally, the MAV has to be able to map its environment, in order to deter-
mine which space is traversable and which one is not. In this thesis, we have examined
solutions to all of these three problems.

In Chapter 3, we introduced a new and efficient stereo matching method. Unlike most
current research on stereo vision this method is sparse, which means that it only delivers
matching results for a small set of salient image features. This enables the method to
achieve very high processing rates, which is crucial if we want to use the stereo matching
results to facilitate fast and responsive control of our MAV. The accuracy of the stereo
method is improved by a new feature detector, which was specifically designed for stereo
matching.

Despite our new stereo matching method being sparse, it densely examines the valid
disparity range in the opposite matching direction for each found stereo correspondence.
This allows us to identify features that received non-consistent matching results, or
whose matching results are not sufficiently unique. Once these features have been re-
moved, the remaining features show a high matching accuracy. We further proposed a
fast method for performing this dense consistency and uniqueness check on real camera
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images, without the need for prior image rectification.
This fast and accurate stereo matching method was used in Chapter 4 for tracking the

pose of our MAV. The first method proposed in this chapter is based on a visual SLAM
algorithm that processes both image and depth information. Because this SLAM method
relies on a sparse set of image features, it integrates well with our sparse stereo matching
system. To meet the performance requirements for our MAV, the SLAM method was
simplified such that it only retains a small local map. Using this local SLAM method,
an autonomous MAV was constructed that relies on a forward-facing stereo camera pair
and an IMU as only sensors. The MAV demonstrated its control capabilities in an au-
tonomous flight experiment.

The second method that was proposed in Chapter 4 relies on a downward-facing stereo
camera pair. For this approach it was assumed that the ground is flat and level, which
is a valid assumption when flying in man-made indoor environments. The ground plane
is detected by fitting a plane to the 3D points received from stereo matching. From this
plane, it is then possible to extract the MAV’s current height, and its roll and pitch angles.
Horizontal translations and yaw rotations are observed by using another method, which
is based on frame-to-frame tracking.

With this method we hence receive a full 6DoF pose estimate that can be used as an
alternative to the estimate obtained by local SLAM. Both pose estimation methods were
integrated on one MAV that has been equipped with two stereo camera pairs. The two
redundant pose estimates are fused using an EKF. The resulting MAV was successfully
evaluated in several flight and offline-processing experiments. Compared to the first
autonomous MAV prototype, this MAV exhibits a more robust and more precise pose
estimation, which improves the quality of the autonomous flight.

The problem of environment perception was approached in Chapter 5, where we in-
troduced a new method for volumetric occupancy mapping. This method is based on the
popular OctoMap approach, which creates voxel-based maps that are stored in octrees.
For each voxel, the map stores the probability that this voxel is occupied by an obstacle.
While OctoMap has shown to provide good results when used with measurements from
laser scanners, we have demonstrated that this is not the case for dense measurements
from a stereo vision system.

We thus introduced an extension of OctoMap, which considers the visibility of a voxel
when updating the voxel’s occupancy probability. Furthermore, the depth error of a
stereo vision system is modeled and considered during the map update procedure. De-
spite the higher complexity of this method, it achieved shorter processing times in most
of the conducted performance measurements. This result can be credited to an optimiza-
tion of OctoMap’s original ray casting scheme.

The occupancy mapping method is the only presented technique in this thesis that
cannot be run in real-time on-board of our MAV. However, the method is already fast
enough for real-time processing on a commodity PC, including dense stereo matching.
We expect that the next generation of MAVs will feature sufficient processing resources
for running both, our volumetric occupancy mapping method and the pose estimation
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from Chapter 4, on-board and in real time. Until then, this method can be used for
generating occupancy maps offline, once the MAV has finished an autonomous flight.

In this thesis we have covered a broad set of problems that appear when designing
a stereo vision based autonomous MAV. Nevertheless, further problems remain to be
solved before we will see the first practical applications of such MAVs outside of a lab-
oratory environment. One important topic that we have not covered is autonomous path
planning. The map created with our occupancy mapping method will have to be used by
the MAV to plan a collision-free and safe trajectory to its designated target location. The
MAV should further be able to make autonomous decisions, which however, strongly
depend on the intended application. Furthermore, to guarantee safe and fail-proof oper-
ation, more redundancies are required for pose estimation and environment mapping.

We can conclude that there still remains much work to be done before we can expect
to see autonomous MAVs in everyday life. However, I hope that this thesis has made a
contribution towards this goal.
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