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Introduction

The central objects of this thesis are Mori dream spaces as introduced by Y. Hu
and S. Keel [60], i.e., algebraic varieties such that the cone of effective divisors has
a polyhedral Mori chamber decomposition. Well-known examples are toric vari-
eties, spherical varieties or smooth Fano varieties. Hu and Keel have shown that
the Mori dream spaces X are characterized by finite generation of the Cox ring
R(X). There are strong relations between the geometry of X and its Cox ring. In
fact, a Mori dream space X can be retrieved from the spectrum X of R(X) as a
quotient X = X̂//H of an open subset X̂ ⊆ X by a quasitorus H with the class
group Cl(X) as its characters. F. Berchtold and J. Hausen [19, 51] proposed an
explicit description of Mori dream spaces X in terms of bunched rings, i.e., pairs
(R,Φ) consisting of a factorially K-graded ring R given by generators and relations
and a collection (bunch) Φ of overlapping polyhedral cones in K ⊗ Q. Then R
determines X = SpecR, the K-grading gives rise to the H-action on X and the
open subset X̂ ⊆ X is constructed from Φ by geometric invariant theory. Building
on the approach via bunched rings [19, 51, 5, 18, 6], our main focus lies on the de-
velopment, implementation and application of explicit algorithms for general Mori
dream spaces.
We now give a summary of the results of this thesis. A first series of results is a
toolkit for basic computations with (not only projective) Mori dream spaces. We
present algorithms for

• basics on finitely generated abelian groups and algebras graded by them,
• Picard group, local class groups, the cones of effective, movable or semi-

ample divisor classes,
• canonical toric ambient variety, stratification, irrelevant ideal,
• tests for being quasismooth, smooth, (Q-) factorial, complete, (quasi-)

projective, singularities (in terms of strata),
• for complete intersection Cox rings: intersection numbers, graph of ex-

ceptional divisors, anticanonical divisor class, test for (Q-) Gorenstein
and Fano properties, Gorenstein index,

• for varieties with the action of a torus of codimension one: resolution of
singularities, test for being almost-homogeneous, roots of the automor-
phism group.

We have implemented these algorithms in a software package, called MDSpackage,
see [54, 55]. This extends packages for toric varieties, for example [20, 47, 66, 69, 99].
As an application of our algorithms, we study del Pezzo surfaces, i.e., Fano surfaces,
with a non-trivial K∗-action. Recall that V. Alexeev and V. Nikulin [2] classified
the log-terminal del Pezzos surfaces of Picard number one and Gorenstein index at
most two. More is known for del Pezzos surfaces with torus action. A. Kasprzyk,
M. Kreuzer and B. Nill [68] classified the toric del Pezzo surfaces with Gorenstein-
index n ≤ 16 and at most log-terminal singularities. H. Süß [94, Ch. 6] listed
the non-toric, log-terminal del Pezzo K∗-surfaces with n ≤ 3 and Picard number
%(X) ≤ 2 and E. Huggenberger [61, Ch. 5] classified the non-toric, log-terminal cases
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2 INTRODUCTION

with n = 1. Using our algorithms, we classify the (not necessarily log-terminal) non-
toric del Pezzo K∗-surfaces with n ≤ 6, Picard number two and hypersurface Cox
ring that are combinatorially minimal, i.e., those without contractible curves.

Theorem. The following table lists the non-toric, combinatorially minimal del
Pezzo K∗-surfaces of Picard number two with hypersurface Cox ring and Goren-
stein index n ≤ 6.

Cox ring R(X) Cl(X) [Cl(X) : Pic(X)] n degree
K[T1, . . . , T5]/〈T1T2 + T 2

3 T
2
4 + T 2

5 〉 Z2 ⊕ Z/2Z 32 2 2
K[T1, . . . , T5]/〈T1T2 + T 2

3 T
2
4 + T 2

5 〉 Z2 ⊕ Z/4Z 256 4 1
K[T1, . . . , T5]/〈T1T2 + T 2

3 T
2
4 + T 2

5 〉 Z2 ⊕ Z/6Z 864 6 2
3

K[T1, . . . , T5]/〈T1T 2
2 + T3T 2

4 + T 2
5 〉 Z2 ⊕ Z/3Z 108 3 4

3
K[T1, . . . , T5]/〈T1T 3

2 + T3T 3
4 + T 3

5 〉 Z2 9 3 8
3

K[T1, . . . , T5]/〈T1T 3
2 + T3T 3

4 + T 3
5 〉 Z2 ⊕ Z/2Z 72 3 4

3
K[T1, . . . , T5]/〈T1T 2

2 + T3T 2
4 + T 2

5 〉 Z2 ⊕ Z/5Z 500 5 4
5

K[T1, . . . , T5]/〈T1T 5
2 + T3T 5

4 + T 5
5 〉 Z2 25 5 8

5
K[T1, . . . , T5]/〈T1T 5

2 + T3T 5
4 + T 5

5 〉 Z2 ⊕ Z/2Z 200 5 4
5

K[T1, . . . , T5]/〈T1T 3
2 + T3T 3

4 + T 3
5 〉 Z2 ⊕ Z/4Z 576 6 2

3
K[T1, . . . , T5]/〈T1T 4

2 + T3T 4
4 + T 4

5 〉 Z2 ⊕ Z/3Z 432 6 2
3

K[T1, . . . , T5]/〈T 2
1 T2 + T 2

3 T4 + T 2
5 〉 Z2 4 1 4

The explicit Cl(X)-grading of the Cox ring R(X) and further geometric properties
of the surfaces are listed in Theorem 2.5.1.

As a first advanced algorithm we show how to compute the Mori chamber decompo-
sition of a given Mori dream space. More generally, we provide a method to compute
the GIT-fan of torus-actions on affine varieties. The GIT-fan is a polyhedral fan
parameterizing quotients from D. Mumford’s [83] geometric invariant theory (GIT).
For quotients associated to ample bundles the fan structure has been described by
I. Dolgachev, Y. Hu and M. Thaddeus [35, 97]. F. Berchtold and J. Hausen [18]
then provided an explicit construction of the GIT-fan of an affine variety. Building
on the latter, Algorithm 3.2.9 computes the maximal GIT-cones by traversing a
spanning tree of the implicitly given dual graph of the GIT-fan. We have published
our algorithm in [71].
A next series of advanced algorithms concerns the impact of modifications on Cox
rings. More precisely, given a modification X2 → X1 of projective varieties where
one of the Cox rings R(Xi) is known, we present methods to compute the other
Cox ring in terms of generators and relations. The methods and results have been
published jointly with J. Hausen and A. Laface in [57]. The case of a contraction
X2 → X1 of a Mori dream space X2 can be answered purely theoretically, see
Proposition 4.2.3. The case of a blow up X2 → X1 of a Mori dream space X1 is
more delicate; we may even lose finite generation of R(X2). We develop algorithms
to

• verify finite generation of R(X2),
• verify a guess of generators for R(X2),
• produce a guess of generators for R(X2),
• determine the ideal of relations.

Our starting point are toric ambient modifications as developed by J. Hausen in [51].
More precisely, given a Mori dream space X1, there is a canonical embedding
X1 ⊆ Z1 into a toric variety Z1. Each toric modification π : Z2 → Z1 induces
a modification X2 → X1 of the embedded variety where X2 ⊆ Z2 is the proper
transform under π. Hausen has given a list of geometric criteria under which we
can describe the Cox ring of X2. A key step is to reduce these criteria to a series
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of primality tests, see Theorem 4.1.3 and the joint paper [10] with H. Bäker and
J. Hausen. As a first consequence, we obtain algorithms for items two and four,
i.e., to verify a guess of generators and to determine the ideal of relations.
As an application, we explicitly compute the Cox rings of the Gorenstein log-
terminal del Pezzo surfaces of Picard number one without K∗-action. See [2] for a
classification of these surfaces in terms of singularity types. The Cox rings of the
non-toric cases with K∗-action have been determined by J. Hausen and H. Süß [59],
the toric ones are well-known, see, e.g., R. Koelmann [72]. Our result completes
the list. The idea is to present the surfaces X as P2 ← X ′ → X where enough in-
formation on the Cox ring of X ′ is known by the work of B. Hassett, Y. Tschinkel,
U. Derenthal, M. Artebani, A. Garbagnati and A. Laface [49, 33, 4].

Theorem. The following table lists the Cox rings of the Gorenstein log-terminal del
Pezzo surfaces X of Picard number one that do not admit a non-trivial K∗-action.

S(X) ] gen.s of R(X) ] relations Cl(X)
2A4 6 5 Z⊕ Z/5Z
D8 4 1 Z⊕ Z/2Z
D5A3 5 2 Z⊕ Z/4Z
D62A1 5 2 Z⊕ Z/2Z⊕ Z/2Z
E6A2 4 1 Z⊕ Z/3Z
E7A1 4 1 Z⊕ Z/2Z
E8 4 1 Z
A7 4 1 Z⊕ Z/2Z
A8 4 1 Z⊕ Z/3Z
A7A1 5 2 Z⊕ Z/4Z
A5A2A1 7 9 Z⊕ Z/6Z
2A3A1 9 20 Z⊕ Z/2Z⊕ Z/4Z

4A2 10 27 Z⊕ Z/3Z⊕ Z/3Z

Moreover, an explicit description of each Cox ring in terms of generators and rela-
tions is listed in Theorem 4.4.1.

A more elaborate algorithm addresses items one and three in the enumeration on
page 2, i.e., given a blow up X2 → X1 of a Mori dream space X1 our Algo-
rithm 4.5.12 provides a systematic guess for generators of R(X2) and verifies its
result. The idea is to show that R(X2) is isomorphic to a certain saturated Rees al-
gebra. Generators for R(X2) can then be obtained by a traversal of the components
of the Rees algebra. This is a complete answer to the problem as it terminates if
and only if R(X2) is finitely generated. Furthermore, we present an algorithm that
verifies finite generation of R(X2) for the case of infeasible computation.
As an application of our algorithms, we consider certain blow ups of the projective
space P3. A.-M. Castravet and J. Tevelev [24] provided generators of the Cox ring
of blow ups of Pn at points that lie on a rational normal curve. Relations have
been determined by B. Sturmfels and Z. Xu [93]. Moreover, in [92] Sturmfels and
M. Velasco computed for n ≤ 8 the Cox rings of blow ups of Pn at n + 3 points
in general position. Applying a specialized version of our algorithm, we explicitly
determine the Cox rings of blow ups of P3 in six points in edge-special position, i.e.,
four points are general and at least one point lies in two hyperplanes spanned by
the others.

Theorem. Let x1, . . . , x4 ∈ P3 be the standard toric fixed points. The following
table lists the Z7-graded Cox rings of the blow up of P3 in the following typical
edge-special configurations x1, . . . , x6.

x5 x6 ] gen.s of R(X) ] relations
[1, 1, 0, 0] [0, 1, 1, 1] 16 15
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[2, 1, 0, 0] [1, 1, 0, 1] 15 10
[1, 0, 0, 1] [0, 1, 0, 1] 13 5
[1, 0, 0, 1] [0, 1, 1, 0] 12 2
[2, 1, 0, 0] [1, 2, 0, 0] 12 2

Moreover, an explicit description of each Cox ring in terms of generators and rela-
tions is listed in Theorem 4.6.6.

As the major result of this thesis, we determine the Cox rings of the smooth rational
surfaces X with Picard number %(X) ≤ 6; for %(X) = 6, we restrict ourselves to
the non-K∗-cases. The corollary that each smooth rational surface with %(X) ≤ 6
is a Mori dream space was also observed by Testa, Várilly-Alvarado and Velasco
in [95]. So far, Cox rings of smooth rational surfaces have only been determined
systematically for the special class of (weak) del Pezzo surfaces, i.e., blow ups of P2
in points in (almost) general position; see the work of V. Batyrev, U. Derenthal,
O. Popov, M. Stillman, D. Testa and M. Velasco [13, 33, 32, 89].
Our approach makes use of the fact that each smooth rational surface X can be
obtained as a blow up of the projective plane P2 in up to five points or as a blow up of
the a-th Hirzebruch surface Fa in up to four points where a ∈ Z≥0. This enables us
to use our methods for Cox ring computations of blow ups of Mori dream spaces: the
blow ups of P2 can be handled in a purely computational way whereas the blow ups
of Fa require a theoretical treatment. Here, we use our methods in a formal way to
deal with the parameter a ∈ Z≥0. We give a complete classification of all surfaces
X with %(X) ≤ 5 and list the generators and relations of the Cox rings of each
class. For Picard number six we explicitly determine the Cox rings of the surfaces
that do not admit a non-trivial K∗-action; the remaining surfaces are known to be
Mori dream spaces and their Cox rings can be obtained by combinatorial methods,
see [59, 61].

Theorem. Each smooth rational surface X with Picard number %(X) ≤ 6 is a Mori
dream space. Moreover, the following statements hold.

(i) If %(X) ≤ 5 holds, then X is isomorphic to P2 or exactly one of the sur-
faces listed in Propositions 5.2.4, 5.2.5, 5.2.8 or Theorem 5.3.1. There,
the Cox ring R(X) is listed explicitly in terms of generators and relations.

(ii) If %(X) = 6 holds, then X admits a non-trivial K∗-action or is isomorphic
to exactly one of the following surfaces where a ∈ Z≥3.

Cox ring R(X) degree matrix

K[T1, . . . , T10]/I
with I generated by
T2

3 T4 − T1T2 − T6T7T8T10,
T1T

2
2 T3T4T5 − T2

6 T7 − T9T10


1 0 0 1 0 0 2 0 3 −1
0 1 0 1 0 0 3 0 5 −2
0 0 1 −2 0 0 −1 0 −2 1
0 0 0 0 1 0 1 0 2 −1
0 0 0 0 0 1 −2 0 −1 1
0 0 0 0 0 0 0 1 1 −1


K[T1, . . . , T10]/I
with I generated by
T3T5T8 − T2T6 − T9T10,
T1T5 + T7T8 − T2T

2
6 T4T10


1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 −1 1 2 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 3 −2





INTRODUCTION 5

K[T1, . . . , T11]/I
with I generated by
T2

3 T4T
2
5 T8 − T2T7 − T11T10,

T2
2 T4T

2
6 T11 − T5T9 + T8T10,

T1T5 + T7T8 − T2T4T
2
6 T

2
11,

T2
3 T4T5T

2
8 + T1T2 − T9T11,

T2
3 T

2
4 T5T8T2T

2
6 T11 − T7T9

−T1T10


1 0 0 0 1 0 2 0 0 1 1
0 1 0 0 1 0 1 0 1 2 0
0 0 1 0 0 0 1 −1 0 1 0
0 0 0 1 1 0 2 −1 0 2 0
0 0 0 0 2 0 3 −1 −1 2 1
0 0 0 0 0 1 0 0 1 1 −1



K[T1, . . . , T10]/I
with I generated by
T1T5 + T7T8 − T2T4T6T10,
T3T5T7T

2
8 − T

2
2 T4 − T9T10


1 0 0 0 0 0 2 −1 −1 1
0 1 0 0 0 0 −2 2 3 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 −1 1 2 −1
0 0 0 0 1 0 3 −2 −1 1
0 0 0 0 0 1 0 0 1 −1


K[T1, . . . , T13]/I
with I generated by
T1T11 − T4T3T9 − T8T12,
T1T7 − T2T8 + T3T9T13,
T2T6 + T7T10 − T3T5T13,
T1T6 + T8T10 − T3T4T13,

T2T11 − λT5T3T9 − T7T12,
(λ− 1)T1T5 − T10T9 − T12T13,
(λ− 1)T5T8 + T6T9 − T11T13,
T10T11 − (λ− 1)T4T3T5 + T6T12,
(λ− 1)T4T7 + λT6T9 − T11T13,
(λ− 1)T2T4 − λT10T9 − T12T13,

where λ ∈ K∗ \ {1}.
1 0 0 0 −1 0 0 1 0 0 −1 −1 1
0 1 0 0 1 0 0 −1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 1 −1
0 0 0 1 1 0 0 0 1 0 2 2 −1
0 0 0 0 0 1 0 0 −1 1 −1 −1 1
0 0 0 0 0 0 1 1 1 −1 1 0 0


K[T1, . . . , T16]/I
with I generated by
T6T12 + λT7T14 − T8T13,
T5T12 − µT7T15 − T9T13,
T4T13 − λT5T14 − µT6T15,
T4T12 − µT8T15 − λT9T14,
T3T11 + T7T14 − T8T13,
T1T13 − T2T14 − T3T15,
T1T11 − T8T15 − T9T14,
T2T11 − T7T15 − T9T13,

(λ− µ)T3T5 + µT7T10 − T13T16,
(−λ + 1)T5T14 + (−µ + 1)T6T15 + T10T11,
(λ− 1)T5T8 + (−µ + 1)T6T9 − T11T16,
(λ− 1)T4T7 + (λ− µ)T6T9 − T11T16,
(µ− 1)T3T4 − µT8T10 + T14T16,
(−λ + 1)T2T14 + (−µ + 1)T3T15 + T10T12,
(λµ− µ)T2T8 + (−λµ + λ)T3T9 − T12T16,
(λ− µ)T2T6 + λT7T10 − T13T16,
(λ− 1)T2T4 − λT9T10 − T15T16,
(λµ− µ)T1T7 + (λ− µ)T3T9 − T12T16,
(µ− 1)T1T6 − T8T10 + T14T16,
(λ− 1)T1T5 − T9T10 − T15T16
where λ 6= µ ∈ K∗ \ {1}.

1 0 0 0 −1 −1 0 1 1 −1 0 1 −1 0 0 0
0 1 0 0 1 0 0 −1 0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 0 −1 1 0 0 1 1 0 0
0 0 0 1 1 1 0 0 0 1 0 −1 0 0 0 1
0 0 0 0 0 0 1 1 1 −1 0 0 −1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 −1


K[T1, . . . , T11]/I
with I generated by
T6T2T4 + T5T9 − T8T10,
T3T4T8 − T1T6 − T9T11,
T3T4T5 + T6T7 − T11T10,
T1T5 + T7T8 − T2T4T11,
T3T

2
4 T2 − T7T9 − T1T10


1 0 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 0 0 1 1 −1
0 0 1 0 0 0 1 −1 0 1 0
0 0 0 1 0 0 1 −1 1 2 −1
0 0 0 0 1 0 1 0 −1 0 1
0 0 0 0 0 1 −1 1 1 0 0



K[T1, . . . , T10]/I
with I generated by
T3T5T8 − T2T6 − T9T10,
T1T5 + T7T8 − T2T4T10


1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 −1 1 2 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 1 0


K[T1, . . . , T10]/I
with I generated by
T1T5T10 − T2T6 − T7T8,
T2T4T

a−1
7 Ta−2

8 − T3T5
−T9T10


1 0 0 0 0 0 0 0 1 −1
0 1 0 0 0 0 −a + 1 a −1 1
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 −1 1 0 0
0 0 0 0 1 0 1 −1 2 −1
0 0 0 0 0 1 −a + 2 a− 1 −1 1


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K[T1, . . . , T11]/I
with I generated by ††

T7T8 − Ta2 T4T
a−1
6 Ta11 + T3T5,

T9T11 − Ta1 T4T
a
5 T

a−1
8 − κT6T7,

T10T11 − Ta1 T4T
a−1
5 Ta8 + κT3T6,

−κTa2 T4T
a
6 T

a−1
11 + T8T9 − T5T10,

Ta1 T
a
2 T

2
4 T

a−1
5 Ta−1

6 Ta−1
8 Ta−1

11 − T3T9 − T7T10
where κ ∈ K∗.

1 0 0 0 0 0 1 −1 1 0 0
0 1 0 0 0 0 0 0 1 1 −1
0 0 1 0 0 a− 1 0 1 2a− 3 2a− 2 −a + 2
0 0 0 1 0 1 0 0 2 2 −1
0 0 0 0 1 a− 1 1 0 2a− 2 2a− 3 −a + 2
0 0 0 0 0 a −1 1 2a− 2 2a− 1 −a + 1


K[T1, . . . , T10]/I
with I generated by
Ta2 T4 − T3T5T

2
6 T10 − T7T8,

T1T
a−1
2 T4T8 − T3T6 − T9T10


1 0 0 0 0 0 1 −1 0 0
0 1 0 0 0 0 2a− 1 −a + 1 −a a
0 0 1 0 0 0 −1 1 2 −1
0 0 0 1 0 0 2 −1 −1 1
0 0 0 0 1 0 0 0 1 −1
0 0 0 0 0 1 −1 1 3 −2


K[T1, . . . , T10]/I
with I generated by
Ta2 T4 − T3T6T10T5 − T7T8,
T1T

a−1
2 T4T7T

2
8 − T

2
3 T5

−T9T10


1 0 0 0 0 0 1 −1 0 0
0 1 0 0 0 0 3a− 1 −2a + 1 −a a
0 0 1 0 0 0 −2 2 3 −1
0 0 0 1 0 0 3 −2 −1 1
0 0 0 0 1 0 −1 1 2 −1
0 0 0 0 0 1 0 0 1 −1


K[T1, . . . , T9]/I
with I generated by

T1T
2a−1
2 T2

4 − T
2
3 T5

−T1T
a−1
2 T3T4T5T6T7T9

+T7T8T
2
9


1 0 0 0 1 0 0 3 −1
0 1 0 0 2a− 1 0 0 4a− 3 −a + 1
0 0 1 0 −2 0 0 −2 1
0 0 0 1 2 0 0 4 −1
0 0 0 0 0 1 0 2 −1
0 0 0 0 0 0 1 1 −1


K[T1, . . . , T9]/I
with I generated by
Ta2 T4 − T3T5T

2
6

−T7T9T1T
a−1
2 T4T5T6

+T7T
2
9 T8


1 1 0 −a 0 0 0 0 0
−1 0 −1 0 1 0 0 0 0
−1 0 −2 0 0 1 0 0 0
−1 0 1 1 0 0 1 0 0

0 0 1 1 0 0 0 1 0
−1 0 2 2 0 0 0 0 1


In this table, the first 12 classes do not admit a non-trivial K∗-action. In the ††-
case, the listed ring is the Cox ring for a ≤ 15 whereas for a > 15 the Cox ring is
finitely generated and given by the equivariant normalization of K[T1, . . . , T11]/(I :
(T1 · · ·T11)∞).

This thesis is divided into five chapters and an appendix. We now give a brief
overview.
In the first chapter, for the convenience of the reader, we recall the fundamental
theory of Cox rings, GIT, bunched rings and Mori dream spaces. Also, we recapit-
ulate basics on surfaces, of modifications and of complexity-one T -varieties. This
chapter is mainly taken from [5, 32, 61].
In Chapter 2, based on [19, 51, 5], we present an algorithmic toolkit for explicit
computations with Mori dream spaces. We introduce the required data types and
provide basic algorithms for finitely generated abelian groups, algebras that are
graded by a finitely generated abelian group, for general Mori dream spaces as well
as for the special class of complexity-one varieties; see Sections 1, 2, 3 and 4. As
an application, we classify in Section 5 the combinatorially minimal K∗-surfaces of
Picard number two of Gorenstein index at most six whose Cox ring has a single
relation.
Using the construction [19], we develop in Chapter 3 an algorithm to compute the
GIT-fan for affine varieties V (a) ⊆ Kr with torus action. As a first step, we need to
determine the torus orbits of Kr meeting V (a), the so-called a-faces or F-faces of
the positive orthant Qr≥0, see Section 1. We then show how to compute GIT-cones
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and the GIT-fan in Section 2. A special case is the Mori chamber decomposition. In
Section 3 of Chapter 3 we give a direct algorithm to determine the (H, 2)-maximal
subsets [51], certain more general open subsets admitting a good quotient.
Given a modification X2 → X1 of projective varieties where one of the Cox rings
R(Xi) is known, we show in Chapter 4 how to determine the other one. As a first
step, we translate in Sections 1 and 2 the methods of toric ambient modifications
developed in [51] to a computable version. We also present a theoretical solution
to compute the Cox ring of a contraction. In Section 3, we then are in position
to present algorithms to verify a guess of generators and to determine relations.
Based on [2], we apply these algorithms in Section 4 to compute the Cox rings of
the Gorenstein, log-terminal del Pezzo surfaces of Picard number one that do not
admit a non-trivial K∗-action. In Section 5, we develop an algorithm to explicitly
compute the Cox ring R(X2) of a blow up X2 → X1 of a Mori dream space X1
along an irreducible subvariety inside the smooth locus. Moreover, for the case
of infeasible computation, we present an algorithm that verifies finite generation
of R(X2). Specializing to blow ups X2 → Pn of point configurations in a projective
space Pn, in Section 6, we provide an algorithm that verifies thatR(X2) is generated
by transforms of hyperplanes in Pn. We explore some relations to the underlying
combinatorial structures. Using our algorithm, we determine the Cox rings of blow
ups of P3 in point configurations consisting of six distinct points in edge-special
position.
In Chapter 5, we explicitly compute the Cox rings of the smooth rational surfaces
X with Picard number %(X) ≤ 6. Our classification is complete for %(X) ≤ 5 and
contains the non-K∗-cases for %(X) = 6. As X is obtained as a sequence of blow
ups of P2 or the Hirzebruch surface Fa, we can use the techniques developed in
Chapter 4. We first classify the point configurations on P2 and Fa that we need to
consider to obtain X as a blow up, see Section 1. Afterwards, in Sections 2, 3 and 4
we iteratively blow up a point of a surface of lower Picard number %(X) until we
arrive at %(X) = 6. In each step, we remove redundancies.
In Appendix A, we describe an implementation of the algorithms developed through-
out this thesis. It is aimed towards usability and computations of up to medium
examples. The appendix serves as a manual.
Throughout this thesis we made extensive use of the software systems gfan, Macau-
lay2, magma, Maple, polymake and Singular for computer algebra or polyhedral
computations, see [63, 45, 23, 79, 43, 31].





CHAPTER 1

Preliminaries

We recall basic notions from algebraic geometry and thereby fix our notation for
the subsequent chapters. This chapter is a summary of the sources referenced at the
beginning of each section and does not contain results by the author. Our primary
reference is the book by Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen and
Antonio Laface [5].
Basics on geometric invariant theory for affine quasitorus actions can be found in
the first section. In Section 2, we introduce Cox rings and toric varieties. We
recall the theory of bunched rings and the correspondence to Mori dream spaces in
Section 3. Section 4 deals with fundamental surface geometry and modifications,
e.g., blow ups. In the final section, i.e., Section 5, we recall the construction and
basic properties of K∗-surfaces and complexity-one T -varieties.
Throughout this document, we work over an algebraically closed field K of charac-
teristic zero. By a variety, we always mean a separated prevariety over K.

1. GIT and good quotients

We recall basics on good quotients, the correspondence between graded affine alge-
bras and affine varieties with quasitorus action as well as the GIT-fan. This section
is a summary of mainly Sections III.1 and I.2 of [5]; see also [7, 18].
An affine algebraic group is an affine variety G together with a group structure such
that the group operations are morphisms. A variety X with the action G×X → X
of an affine algebraic group G is called a G-variety. Given an affine algebraic group
G, denote its group of characters, i.e., homomorphisms G→ K∗ of algebraic groups,
by X(G).

Definition 1.1.1. A quasitorus is an affine algebraic group H with its algebra of
regular functions Γ(H,O) generated by the characters χ ∈ X(H). A connected
quasitorus is a torus.

Each quasitorus is isomorphic to a product of a torus and a finite abelian group.
The standard torus is the torus Tn := (K∗)n. Homomorphic images of tori are again
tori. Note that homomorphisms of tori correspond to integral matrices.

Remark 1.1.2. There are exact functors between finitely generated abelian groups
and quasitori that are essentially inverse to each other; the assignments are

K 7→ SpecK[K], ψ 7→ SpecK[ψ], X(H) ← [ H, ϕ∗ ← [ ϕ.

We now briefly recall the correspondence between affine varieties with quasitorus
action and affine algebras that are graded by a finitely generated abelian group.
Given such an affine variety X with the action of a quasitorus H, we obtain a
X(H)-graded algebra

Γ(X,O) =
⊕

χ∈X(H)

Γ(X,O)χ, Γ(X,O)χ := {f ∈ Γ(X,O); f(h·x) = χ(h)f(x)}.

9
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Vice versa, consider a finitely generated abelian group K and a K-graded, affine
K-algebra R. Set X := SpecR and choose K-homogeneous generators f1, . . . , fr
for R. We have an embedding

X → Kr, x 7→ (f1(x), . . . , fr(x))
and X ⊆ Kr is invariant under the diagonal action of the quasitorus H := SpecK[K]
on Kr with comorphism

R → K[K] ⊗K R, Rw 3 f 7→ χw ⊗ f.

Moreover, a morphism of affine Hi-varieties X1 and X2 with quasitori Hi is a pair
(ϕ, ϕ̃) consisting of a morphism of varieties ϕ : X1 → X2 and a homomorphism of
algebraic groups ϕ̃ : H1 → H2 such that

ϕ(h · x) = ϕ̃(h) · ϕ(x) for all x ∈ X1, h ∈ H1.

Proposition 1.1.3. We have contravariant, exact functors that are essentially in-
verse to each other between the categories of affine K-algebras that are graded by a
finitely generated abelian group and affine varieties with the action of a quasitorus

R 7→ SpecR, Γ(X,O) ←[ X,(
ψ, ψ̃

)
7→

(
Specψ, SpecK

[
ψ̃
])
, (ϕ∗, ϕ̃∗) ← [ (ϕ, ϕ̃) .

By a reductive algebraic group we mean an affine algebraic group G such that every
rational representation of G splits into irreducible ones. Examples of reductive
groups include SL(n,Z), GL(n,Z), all finite groups and quasitori.
Consider a reductive algebraic group G and a G-variety X. A morphism ϕ : X → Y
is G-invariant if ϕ(x) = ϕ(g · x) for all x ∈ X and g ∈ G. We call ϕ affine if
preimages of open affine subsets are again affine. The ring of invariants is the
algebra

O(X)G := {f ∈ Γ(X,O); f(g · x) = f(x) for each x ∈ X, g ∈ G} .

Definition 1.1.4. A good quotient for the G-action on X is an affine, G-invariant
morphism π : X → Y such that OY → (π∗OX)G is an isomorphism.

The quotient space Y of a good quotient X → Y for the G-action on X is unique
up to isomorphism; we denote it by X//G. Note that good quotients need not exist.
However, for an affine G-variety X with reductive group G, by a theorem of David
Hilbert, the ring of invariants O(X)G is finitely generated. Then the inclusion
O(X)G ⊆ O(X) yields the good quotient

X → X//G = SpecO(X)G.
If X is not affine, good quotients can be obtained by gluing together quotients of
an affine covering.

Example 1.1.5. Define G := K∗ and X := K2 as well as U := K2 \ {0}. The
varieties X and U are G-varieties with the G-action given by t · (x, y) := (tx, ty).
The quotient space X//G is isomorphic to a point and U//G is isomorphic to P1.

//K∗ //K∗

The following proposition subsumes some basic properties of good quotients. A
subset U ⊆ X of a G-variety X is G-invariant if G · U ⊆ U .

Proposition 1.1.6. Let X be a G-variety with a reductive group G and let p : X →
Y be a good quotient for the G-action.
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(i) The image of a closed, G-invariant subset is again closed.
(ii) The images of two closed, G-invariant, disjoint subsets are again disjoint.

(iii) For each point y ∈ Y , the fiber p−1(y) contains a closed G-orbit.

A task of GIT is to construct good G-sets of a G-variety X, i.e., open subsets
U ⊆ X that admit a good quotient U → U//G. We will concentrate on the affine
case, i.e., assume X = SpecR with an affine, K-graded algebra R and the action of
the quasitorus H := SpecK[K]. Let KQ := K ⊗Z Q. The weight cone and the orbit
cone of a point x ∈ X are the convex polyhedral cones

ϑX := cone (w ∈ K; Rw 6= {0}) ⊆ KQ,

ϑx := cone (w ∈ K; f(x) 6= 0 for some f ∈ Rw) ⊆ KQ.

It turns out that there are only finitely many orbit cones. Given a vector w ∈ KQ,
we assign to w a set of semistable points, i.e., the open, H-invariant subset

Xss(w) := {x ∈ X; f(x) 6= 0 with some f ∈ Rnw and n ∈ Z≥1} ⊆ X.

Proposition 1.1.7. In the above setting, Xss(w) 6= ∅ holds if and only if w ∈ ϑX .
In this case, the H-action on Xss(w) admits a good quotient and Xss(w)//H is
projective over X//H. Moreover, given w1, w2 ∈ ϑX with Xss(w1) ⊆ Xss(w2), we
have a commutative diagram

Xss(w1) ⊆

��

Xss(w2)

��
Xss(w1)//H

ϕ
w1
w2

// Xss(w2)//H

with ϕw1
w2

projective and surjective. Furthermore, given a third vector w3 ∈ ϑX with
Xss(w2) ⊆ Xss(w3), we have ϕw1

w3
= ϕw2

w3
◦ ϕw1

w2
.

A quasifan in a rational vector space NQ is a finite collection Σ of polyhedral, convex
cones in NQ such that for each σ ∈ Σ, also all faces τ � σ are elements of Σ and
given σ, σ′ ∈ Σ the cone σ ∩ σ′ is a face in both σ and σ′. A fan is a quasifan
consisting of pointed cones. We write Σ ⊆ NQ if the cones of Σ lie in NQ.

Definition 1.1.8. Given w ∈ ϑX , the corresponding GIT-cone or GIT-chamber is
the nonempty polyhedral cone

λ(w) :=
⋂
x∈X,
w∈ϑx

ϑx ⊆ KQ.

We call the collection Λ(X,H) := {λ(w); w ∈ ϑX} of all GIT-cones the GIT-fan of
the H-action on X.

The term “fan” is justified by the following theorem which also relates GIT-cones
to sets of semistable points. In particular, the number of GIT-cones is finite.

Theorem 1.1.9. In the above setting, the GIT-fan Λ(X,H) is a pure quasifan in
KQ with support ϑX . Furthermore, given w1, w2 ∈ ϑX , we have

λ(w1) ⊆ λ(w2) ⇐⇒ Xss(w1) ⊇ Xss(w2),
λ(w1) = λ(w2) ⇐⇒ Xss(w1) = Xss(w2).

It then makes sense to define Xss(λ) := Xss(w) with any element w in the relative
interior of the given GIT-cone λ. Theorem 1.1.9 tells us that the structure of
Λ(X,H) reflects the variation of GIT-quotients; they form the GIT-system given
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by the quotients Y (λ) := Xss(λ)//H and morphisms ϕλiλj of Proposition 1.1.7.

Y (λi)

~~
ϕ
λi
λi∩λj %%

Y (λj)

ϕ
λi
λj∩λjyy

  · · · Y (λi ∩ λj) · · ·

If X is H-factorial, i.e., it is irreducible, normal and each H-invariant Weil divisor is
the divisor of a rational homogeneous function, the GIT-fan gives a correspondence
to good H-sets. A subset U0 of a good H-set U ⊆ X is H-saturated if U0 =
p−1(p(U0)) with the good quotient p : U → U//H. By a qp-maximal subset of X we
mean a good H-set U ⊆ X with quasiprojective quotient space and U is maximal
with respect to H-saturated inclusion among the good H-sets with quasiprojective
quotient space.

Theorem 1.1.10. In the above setting, assume that X is H-factorial. We have
mutually inverse order-reversing bijections

Λ(X,H) ←→ { qp-maximal subsets of X }
λ 7→ Xss(λ),⋂

x∈U
ϑx ← [ U.

Example 1.1.11. In Example 1.1.5, X and U are good K∗-sets: the GIT-fan
Λ(X,K∗) consists of cone(1) and cone(0). They correspond to the good K∗-sets

X = Xss(0) = {x ∈ X; f(x) 6= 0 for a f ∈ K[T1, T2]0},
U = Xss(1) = {x ∈ X; f(x) 6= 0 for a f ∈ K[T1, T2]n·1, n > 0}.

2. Cox rings

We recall the basic theory of Cox rings and toric varieties. This section summarizes
parts of [5], mainly Chapter I, and [51, 61].
Consider an irreducible variety X that is normal, i.e., every local ring OX,x integral
and integrally closed in its quotient field. A prime divisor on X is an irreducible
hypersurface D ⊆ X. The group generated by the prime divisors is the free abelian
group WDiv(X), its elements are called Weil divisors. Let ordD(f) be the order of
vanishing of a rational function f ∈ K(X)∗ along a prime divisor D. The principal
divisor of f is

div(f) :=
∑

D prime
ordD(f) ·D ∈ WDiv(X).

Note that f 7→ div(f) is a homomorphism K(X)∗ → WDiv(X) with the subgroup
of principal divisors PDiv(X) ≤WDiv(X) as its image. The divisor class group is
the factor group

Cl(X) := WDiv(X) / PDiv(X).

A Weil divisor is a Cartier divisor if it is locally principal; we write CDiv(X) ≤
WDiv(X) for the group of all Cartier divisors. Moreover, a Weil divisor D =
a1D1 + . . . + anDn ∈ WDiv(X) is effective if all ai are non-negative; we then
write D ≥ 0. Given an open subset U ⊆ X, the restriction of a Weil divisor
D ∈ WDiv(X) is the Weil divisor D|U ∈ WDiv(U) where D|U := D ∩ U if D
intersects U non-trivially and D|U := 0 otherwise.
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Construction 1.2.1. To a Weil divisor D ∈WDiv(X) we assign the sheaf OX(D)
of OX -modules where the sections over open subsets U ⊆ X are

Γ (U,OX(D)) :=
{
f ∈ K(X)∗; (div(f) +D)|U ≥ 0

}
∪ {0}.

Note that given f1 ∈ Γ(U,OX(D1)) and f2 ∈ Γ(U,OX(D2)), we have f1f2 ∈
Γ(U,OX(D1 + D2)). To a subgroup K ≤ WDiv(X) we associate the sheaf of
divisorial algebras

S :=
⊕
D∈K

SD, SD := OX(D).

The multiplication in S is defined by multiplying elements in the field of rational
functions K(X).

Construction 1.2.2 (Cox ring). Let X be an irreducible normal variety with
finitely generated class group Cl(X) and K∗ = Γ(X,O∗), e.g., X is complete. Fix
a subgroup K ≤ WDiv(X) such that the homomorphism c : K → Cl(X) mapping
D ∈ K to its class [D] ∈ Cl(X) is surjective. Set K0 := ker(c). Choose a group
homomorphism

χ : K0 → K(X)∗ with div (χ(E)) = E, E ∈ K0.

Let S be the sheaf of divisorial algebras associated to K as in Construction 1.2.1.
Consider the sheaf I of radical ideals that is locally defined by 1 − χ(E) where E
runs through K0. On open subsets U ⊆ X, this means we have an ideal

Γ(U, I) =
{
f ∈ Γ(U,S); locally f =

∑
E∈K0

hE(1− χ(E)) with hE ∈ Γ(U,S)
}

=
〈
1− χ(Ei); 1 ≤ i ≤ s

〉
Γ(U,S)

where E1, . . . , Es is a basis for K0. Note that 1 ∈ Γ(U,S0) whereas E ∈ Γ(U,S−E).
The Cox sheaf is the quotient sheaf R := S/I with the Cl(X)-grading

R =
⊕

[D]∈Cl(X)

R[D], R[D] := π

 ⊕
D′∈c−1([D])

OX(D′)


and the projection π : S → R. It is a quasicoherent sheaf of Cl(X)-graded, reduced
OX -algebras. The Cox ring of X is the ring of global sections of the Cox sheaf

R(X) :=
⊕

[D]∈Cl(X)

Γ
(
X,R[D]

) ∼= Γ(X,S) / Γ(X, I).

One can show that the construction of the Cox ring in 1.2.2 does not depend on
the choices made.

Remark 1.2.3. If in Construction 1.2.2 the class group Cl(X) is free, one can
directly define R[D] := OX(D).

In the situation of Construction 1.2.2, let R := R(X) be the Cox ring of X. A non-
zero homogeneous element f ∈ R \ R∗ is Cl(X)-prime if f | gh with homogeneous
elements g, h implies f | g or f | h. We say that R is Cl(X)-factorial if every
homogeneous non-zero element f ∈ R \R∗ is a product of Cl(X)-primes.

Theorem 1.2.4. In the above setting, the Cox ring R(X) is a Cl(X)-factorial ring.
If Cl(X) is free, then R(X) is a UFD.

We turn to the geometric counterpart of the Cox sheaf. Let X be as before but
assume additionally thatR(X) is finitely generated. Then the Cox sheafR is locally
of finite type.



14 1. PRELIMINARIES

Construction 1.2.5. Let the setting be as above. Taking the relative spectrum
we obtain an irreducible, normal variety X̂ := SpecX R that is contained in X :=
SpecR(X). The affine variety X, called the total coordinate space of X, is invariant
with respect to the action of the characteristic quasitorus HX := SpecK[Cl(X)].
Then the embedding X̂ ⊆ X is HX -equivariant and X can be retrieved as a quotient

SpecX R X̂

//HX

��

⊆ X SpecR(X)

X

of the quasiaffine, good HX -set X̂ ⊆ X by HX . The good quotient p : X̂ → X is
called the characteristic space of X.

In Construction 1.2.5, we call z = (z1, . . . , zr) ∈ X̂ ⊆ Kr Cox coordinates for
the point x := p(z) ∈ X. We write x = [z] or x = [z1, . . . , zr]. Note that Cox
coordinates are not unique, see 5.1.1.

Example 1.2.6. In Construction 1.2.5, X = P2 arises as a K∗-quotient of the
open subset X̂ = K2 \ {0} of X = K3. Cox coordinates are the usual homogeneous
coordinates.

A toric variety is an irreducible, normal variety Z with a basepoint z0 ∈ Z and
the action TZ × Z → Z of the torus TZ such that the map TZ → Z defined by
t 7→ t · z0 is an open embedding. We then speak of the dense torus TZ of Z.
We briefly recall the connection to lattice fans, i.e., pairs (N,Σ) with a lattice N
and a fan Σ ⊆ NQ = N ⊗Z Q. Given a lattice fan (N,Σ) and a cone σ ∈ Σ, let
σ∨ ⊆ N∗Q := N∗ ⊗Z Q be the dual cone. We obtain an affine toric variety

Zσ := SpecK [σ∨ ∩N∗] = Spec
⊕

u∈σ∨∩N∗
K · χu

with dense torus TN := SpecK[N∗]. Gluing together the affine toric varieties
Zσ with σ ∈ Σ produces the toric variety ZΣ. For the other direction, it turns
out that a toric variety Z can be covered by finitely many invariant open, affine
toric subvarieties Z1, . . . , Zs. The cones σZ1 , . . . , σZs of convergent one-parameter
subgroups K∗ → Zi of the Zi then form a lattice fan (ΣZ ,Λ(TZ)) where Λ(TZ) is
the cone of convergent one-parameter subgroups of the dense torus TZ . Moreover,
given a toric variety Z with fan Σ, note that to each cone σ ∈ Σ one can assign a
distinguished point z(σ) ∈ Z such that the orbits TZ · z(σ′) correspond bijectively
to the cones σ′ ∈ Σ.
A morphism of toric varieties Z and Z ′ is a pair (ϕ, ϕ̃) consisting of a morphism of
varieties ϕ : Z → Z ′ and a morphism of tori ϕ̃ : TZ → TZ′ such that ϕ maps the
basepoint of Z to the basepoint of Z ′ and ϕ(t · z) = ϕ̃(t) ·ϕ(z) holds for all t ∈ TZ ,
z ∈ Z. Moreover, a map of lattice fans (Σ, N) and (Ω,M) is a lattice homomorphism
F : N →M such that for each cone σ ∈ Σ there is a cone ω ∈ Ω such that F (σ) ⊆ ω.
To each such F one can assign a toric morphism (ϕF , ϕ̃F ) : ZΣ → ZΩ, see [5, Ch. 2]
or [42, 28] for details.

Proposition 1.2.7. We have covariant functors that are essentially inverse to each
other between the categories of lattice fans and toric varieties given by

(Σ, N) 7→ (ZΣ,TN , z0), (ΣZ ,Λ(TZ)) ←[ (Z,TZ , z0),
F 7→ (ϕF , ϕ̃F ) , ϕ̃∗ ←[ (ϕ, ϕ̃) .

Remark 1.2.8. An irreducible, normal variety is toric if and only if its Cox ring
is isomorphic to a polynomial ring.
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3. Bunched rings and Mori dream spaces

We recall the basic theory of Mori dream spaces and bunched rings developed by
F. Berchtold and J. Hausen in [19, 51]. This section is taken from [5], mainly
Chapter III.
Let R be an integral affine K-algebra that is graded by a finitely generated abelian
group K, i.e.,

R =
⊕
w∈K

Rw.

Similar to Section 2, a homogeneous element f ∈ R\{0} is called K-prime if f 6∈ R∗
and f | gh with homogeneous g, h implies f | g or f | h. We say that R is factorially
K-graded or is K-factorial if each homogeneous element f ∈ R \ {0} with f 6∈ R∗
is a product of K-prime elements.
If R is factorially K-graded, one can choose a system F = (f1, . . . , fr) of K-prime
pairwise non-associated generators. We then encode the K-grading of R in a degree
map, i.e., a homomorphism Q : Zr → K of finitely generated abelian groups map-
ping the canonical basis vector ei ∈ Zr to deg(fi) ∈ K. Denote the positive orthant
by γ := Qr≥0.

Definition 1.3.1. An F-face is a face γ0 � γ such that the product
∏
ei∈γ0

fi is
not an element of the radical of 〈fj ; ej 6∈ γ0〉 ⊆ R.

Remark 1.3.2. The set of orbit cones ΩX of X := SpecR as defined in Section 1
equals the collection of all images Q(γ0) such that γ0 � γ is an F-face.

The F-faces store the algebraic information of R, see Chapter 3 for the computa-
tional aspects. We now turn to combinatorial data in KQ := K ⊗Z Q. The grading
is almost free if Q(γ0 ∩ Zr) generates the abelian group K for every facet γ0 � γ.

Definition 1.3.3. (i) Let Ω be the set of orbit cones, i.e., the set of all
cones Q(γ0) ⊆ KQ such that γ0 is an F-face. An F-bunch is a non-empty
collection Φ ⊆ Ω such that
• each two ϑ1, ϑ2 ∈ Φ overlap, i.e., ϑ◦1 ∩ ϑ◦2 6= ∅.
• given ϑ2 ∈ Ω and ϑ1 ∈ Φ with ϑ◦1 ⊆ ϑ◦2 then also ϑ2 ∈ Φ.

(ii) An F-bunch Φ is true if Q(γ0) ∈ Φ for each facet γ0 � γ.
(iii) An F-bunch Φ is maximal if no further projected F-face Q(γ0) can be

added to Φ.

Example 1.3.4. Denote by ϑ := cone(deg(f1), . . . ,deg(fr)) ⊆ KQ the weight cone
of R. Each vector w ∈ ϑ defines an F-bunch

Φ(w) := {ϑ0 ∈ Ω; w ∈ ϑ◦0} .
w

We call the K-grading of R pointed if R0 = K and the weight cone ϑ is pointed.
The following notion will be of central interest in Chapter 2.

Definition 1.3.5. A bunched ring is a triple (R,F,Φ) where R is an almost freely
factorially K-graded, integral, normal, affine K-algebra with K∗ as its group of
homogeneous units. Moreover, F is a system of pairwise non-associated K-prime
generators for R and Φ is a true F-bunch in KQ.

To each bunched ring (R,F,Φ) we implicitly assign the degree map Q : Zr → K
and the positive orthant γ = Qr≥0. The relevant algebraic data of a bunched ring is
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stored in the collection of relevant F-faces and the covering collection given by

rlv(Φ) := {γ0 � γ; γ0 is an F-face and Q(γ0) ∈ Φ},
cov(Φ) := {γ0 ∈ rlv(Φ); γ0 minimal}.

Recall that a variety X is called an A2-variety if for each two points x, x′ ∈ X there
is an affine, open neighborhood U ⊆ X such that x, x′ ∈ U . A normal variety is
A2 if and only if there is a closed embedding into a toric variety. The following
construction is essential.

Construction 1.3.6. Let (R,F,Φ) be a bunched ring. Write F = (f1, . . . , fr).
Consider the action of the quasitorus H := SpecK[K] on the affine variety X :=
SpecR. We assign to each F-face γ0 � γ the open affine variety

Xγ0 := Xf
u1
1 ···f

ur
r

with u = (u1, . . . , ur) ∈ γ◦0 .

This is independent of the choice of u ∈ γ◦0 . We then obtain an open H-invariant
subset

X̂(R,F,Φ) := X̂ :=
⋃

γ0∈rlv(Φ)

Xγ0 =
⋃

γ0∈cov(Φ)

Xγ0 ⊆ X.

The H-action on X̂ admits a good quotient p. This means we have an irreducible
normal A2-variety X(R,F,Φ) := X := X̂//H with

SpecR X X̂
p //⊇ X

Then X is of dimension dim(R) − dim(KQ). Moreover, the Cox ring of X is iso-
morphic to R, we have Γ(X,O∗) = K∗ and there is an isomorphism

Cl(X) → K, [Di] 7→ deg(fi) where Di := p
(
V (X̂; fi)

)
and the Di ⊆ X are prime divisors. Furthermore, the affine open subsets Xγ0 ⊆ X̂
with γ0 ∈ rlv(Φ) are H-saturated and we have an affine cover

X =
⋃

γ0∈rlv(Φ)

Xγ0 , Xγ0 := p
(
Xγ0

)
⊆ X.

We call an embedding of varieties ι : X → X ′ big if the codimension of X ′ \ ι(X)
is at least two. Moreover, an A2-variety X is called A2-maximal if for each big
open embedding ι : X → X ′ with an A2-variety X ′, we have ι(X) = X ′. Projective
varieties are A2-maximal.

Theorem 1.3.7. Consider an irreducible, normal A2-variety with finitely generated
class group Cl(X) and finitely generated Cox ring R := R(X). Suppose Γ(X,O∗) =
K∗. Fix a system F of pairwise non-associated Cl(X)-prime generators for R(X).

(i) There is a maximal F-bunch Φ and a big open embedding X → X(R,F,Φ).
(ii) If, in (i), X is A2-maximal, then X ∼= X(R,F,Φ).

Definition 1.3.8. A Mori dream space is an irreducible, complete, normal variety
X with finitely generated class group Cl(X) and finitely generated Cox ring R(X).

We will use the term Mori dream space in a slightly more general setting in Chap-
ter 2. An F-bunch Φ of cones in KQ is called projective if Φ = Φ(w) for a vector
w ∈ KQ as in Example 1.3.4. The following corollary states the correspondence to
bunched rings.
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Corollary 1.3.9. For each Mori dream space X there is a bunched ring (R,F,Φ)
such that X ∼= X(R,F,Φ). Moreover, there is a bijection{

projective Mori
dream spaces

}
←→

{
bunched rings with a

projective bunch of cones

}
.

Observe that the GIT-fan presents the possible choices for the ample class w defining
the projective bunch Φ(w). The moving cone of R is the polyhedral cone

Mov(R) :=
r⋂
i=1

cone(fj ; j 6= i) ⊆ KQ.

Remark 1.3.10. Fix a finitely generated abelian group K and a factorially K-
graded, integral, normal, affine K-algebra R with K-prime generators f1, . . . , fr
and K∗ as its homogeneous units. Let H := SpecK[K] act on X := SpecR.
Consider a projective Mori dream space Y with Cox ring R(Y ) ∼= R and class
group Cl(Y ) ∼= K. Then

Y ∼= X(R,F,Φ(w)) for some λ ∈ Λ(X,H), w ∈ λ◦ ⊆ Mov(R)◦.

Let X be an irreducible normal variety and Z a toric variety with dense torus TZ ,
basepoint z0 ∈ Z and invariant prime divisors D1

Z , . . . , D
r
Z . Write Di

Z = TZ · zi
with zi ∈ Z. Let ϕ : X → Z be a morphism. Assume ϕ−1 (Di

Z

)
⊆ X are pairwise

different irreducible hypersurfaces for each 1 ≤ i ≤ r. Define

Z ′ := TZ · z0 ∪ . . . ∪ TZ · zr ⊆ Z.

Then the codimension of X \ ϕ−1(Z ′) in X is at least two and there is a canonical
pullback homomorphism

CDivTZ (Z ′) ϕ∗ // CDiv(ϕ−1(Z ′))

⊇

WDivTZ (Z)

��

//WDiv(X)

��
Cl(Z) // Cl(X)

where WDivTZ (Z ′) and CDivTZ (Z ′) denote the respective TZ-invariant divisors.
Since principal divisors are mapped to principal divisors, ϕ∗ induces the map in the
lower row which we denote again by ϕ∗ : Cl(Z)→ Cl(X).

Definition 1.3.11. Let X be an irreducible, normal variety and Z a toric variety
with dense torus TZ and invariant prime divisors D1

Z , . . . , D
r
Z . A closed embedding

ι : X → Z is a neat embedding if

ι−1 (D1
Z

)
, . . . , ι−1 (Dr

Z) ⊆ X

are pairwise different irreducible hypersurfaces and the homomorphism ι∗ : Cl(Z)→
Cl(X) is an isomorphism.

Construction 1.3.12 (Canonical toric ambient variety). Consider a bunched ring
(R,F,Φ) with degree map Q : Zr → K and positive orthant γ = Qr≥0. Setting
M := ker(Q) we have exact sequences

0 // L // Zr P // N

0 Koo Zr
Qoo M

P∗oo 0oo
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For each face γ0 � γ, let γ∗0 := γ⊥0 ∩ δ be the dual face where δ := γ∨. Consider the
collection of faces Θ and the fans Σ̂ ⊆ Qr and Σ ⊆ NQ := N ⊗Z Q given by

Θ := {γ0 � γ; there is γ1 ∈ rlv(Φ) with γ1 � γ0 and Q(γ1)◦ ⊆ Q(γ0)◦} ,
Σ̂ := {δ0 � δ; there is γ0 ∈ Θ with δ0 � γ∗0} ,
Σ := {P (γ∗0); γ0 ∈ Θ} .

As in Construction 1.3.6, let X̂ := X̂(R,F,Φ) and X := X(R,F,Φ). Consider the
action of the quasitorus H := SpecK[K] on X := SpecR. Let Z := Kr be the toric
variety corresponding to the cone δ. The generators F = (f1, . . . , fr) for R provide
a closed embedding

ι : X → Z, z 7→ (f1(z), . . . , fr(z))

which is H-equivariant if we install the diagonal H-action on Z given by the char-
acters χw1 , . . . , χwr with wi := deg(fi) ∈ K. We have a diagram

X ⊇

ι

''
X̂

ι̂ //

//H

��

Ẑ

//H

��

Z⊆

X
ι // Z

where Ẑ and Z are the toric varieties corresponding to Σ̂ and Σ respectively, ι̂ is
the restriction of ι, the induced map of quotients ι is a neat embedding and the
toric morphism Ẑ → Z, the Cox construction, corresponds to the matrix P .

Definition 1.3.13. In the setting of Construction 1.3.12, we call ι : X → Z the
canonical toric embedding and Z the canonical toric ambient variety of X.

We now give a short survey of the basic geometry of varieties arising from bunched
rings. A first step is the decomposition into strata.

Construction 1.3.14. Let the situation be as in Construction 1.3.6. To an F-face
γ0 � γ we assign the locally closed set

X(γ0) :=
{
z ∈ X; fi(z) 6= 0 ⇔ ei ∈ γ0 for each 1 ≤ i ≤ r

}
⊆ X.

Their union gives a disjoint covering of X. We obtain a disjoint decomposition into
locally closed strata as

X =
⋃

γ0∈rlv(Φ)

X(γ0), X(γ0) := p
(
X(γ0)

)
= Xγ0 \

⋃
γ1∈rlv(Φ),
γ0≺γ1

Xγ1 .

Let X be normal and irreducible. Given x ∈ X, the local class group Cl(X,x) is
the factor group of WDiv(X) by the group of all divisors that are principal in a
neighborhood of x. The Picard group Pic(X) is the group CDiv(X)/PDiv(X) of
Cartier divisors modulo principal divisors. Moreover, a point x ∈ X is factorial if
near x each Weil divisor is principal. Similarly, x ∈ X is Q-factorial if near x, for
each Weil divisor D ∈ WDiv(X), there is n ∈ Z≥1 such that nD is principal. If
each point is Q-factorial, the variety X is Q-factorial.

Proposition 1.3.15. Consider the setting of Construction 1.3.6. and let Q : Zr →
K be the degree matrix. For each γ0 ∈ rlv(Φ) and each point x ∈ X(γ0) we have a
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diagram

Cl(X)
∼= //

��

K

��
Cl(X,x)

∼= // K /Q(lin(γ0) ∩ Zr)

It is independent of the choice of x ∈ X(γ0). The following claims hold.

(i) The point x is factorial if and only if Q(lin(γ0) ∩ Zr) equals K.
(ii) The point x is Q-factorial if and only if Q(γ0) is of full dimension.

(iii) The point x is smooth if and only if it is factorial and there is a smooth
point z ∈ p−1(x) ⊆ X̂.

Moreover, Pic(X) is isomorphic to the Picard group of the canonical toric ambient
variety Z and it is free if Z has a toric fixed point. Within K ∼= Cl(X) it is given
by

Pic(X) =
⋂

γ0∈cov(Φ)

Q (lin(γ0) ∩ Zr) .

The effective cone is the convex polyhedral cone Eff(X) in Cl(X)Q := Cl(X)⊗Z Q
generated by the divisor classes of effective divisors. The stable base locus of a
divisor D ∈WDiv(X) is⋂

n∈Z≥1

⋂
f∈Γ(X,O(nD))

Supp (divnD(f)) .

We call a divisor D ∈ WDiv(X) movable if its stable base locus is of codimension
at least two. The moving cone Mov(X) ⊆ Cl(X)Q is the convex polyhedral cone
consisting of all movable divisor classes. Furthermore, a divisor D ∈WDiv(X) with
empty stable base locus is called semiample. It is ample if there is a covering of X
by affine sets X \Supp(divnD(f)) with n ∈ Z≥1. The convex cones SAmple(X) and
Ample(X) ⊆ Cl(X)Q consist of all semiample or ample divisor classes, respectively.

Proposition 1.3.16. Consider the situation of Construction 1.3.6 with degree map
Q : Zr → K and γ = Qr≥0. Within KQ = Cl(X)Q we have the cones

Eff(X) = Q(γ), SAmple(X) =
⋂
τ∈Φ

τ,

Mov(X) =
⋂
γ0�γ
facet

Q(γ0), Ample(X) =
⋂
τ∈Φ

τ◦.

We now treat the case of a variety X = X(R,F,Φ) arising from a bunched ring
(R,F,Φ) with F = (f1, . . . , fr) and grading group K where R is a complete intersec-
tion, i.e., there are d := r−dim(R) polynomials g1, . . . , gd that are K-homogeneous
and generate the kernel of

K[T1, . . . , Tr] → R, Ti 7→ fi.

We write u1, . . . , ud ∈ K for the degrees of g1, . . . , gd and w1, . . . , wr ∈ K for the
degrees of f1, . . . , fr ∈ K[T1, . . . , Tr]. Recall that a variety X is Gorenstein if its
anticanonical divisor is Cartier. If some positive multiple of its anticanonical divisor
is Cartier, X is called Q-Gorenstein. The variety X is Fano if it is irreducible,
normal, projective and its anticanonical divisor is ample.

Proposition 1.3.17. In the situation of Construction 1.3.6, assume (R,F,Φ) is a
complete intersection bunched ring. Within K = Cl(X), the anticanonical divisor
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class of X is

−wcan
X =

r∑
i=1

wi −
d∑
i=1

ui ∈ K.

Moreover, the following properties hold.

(i) X is Gorenstein if and only if −wcan
X ∈ Pic(X).

(ii) X is Q-Gorenstein if and only if −wcan
X ∈ lin(τ) for each τ ∈ Φ.

(iii) X is Fano if and only if −wcan
X ∈ Ample(X).

In the setting of Proposition 1.3.17, we say that the variety X is n-Gorenstein if
n ∈ Z≥1 is minimal with −nwcan

X ∈ Pic(X).

4. Modifications and surfaces

We recapitulate some basic geometry of surfaces, i.e., two-dimensional irreducible
varieties. Also, the notions of contractions and blow ups of a variety are being
recalled. This section is a summary of [5], mainly Chapter V, the thesis of U. Der-
enthal [33], mostly Chapter 1, and Chapters II.7 and V of R. Hartshorne’s book [48].
Compare also [51, Sec. 6] and Beauville’s book [14, Ch. II].
Consider a smooth, projective surface X and two distinct curves D1, D2 on X, i.e.,
irreducible subvarieties of dimension one. In other words, D1, D2 ∈ WDiv(X) =
CaDiv(X) are prime divisors with coefficient one. Their intersection number D1 ·D2
is the sum over all intersection multiplicities mx, that is

D1 ·D2 :=
∑

x∈D1∩D2

mx, mx := dimK

(
OX,x

/〈
f (1)
x , f (2)

x

〉)
where f (i)

x ∈ OX,x is a germ of a generator for the ideal I(Di) near x. Note that
if D1 and D2 intersect transversally and are smooth, D1 · D2 is the number of
intersection points. Taking intersection numbers extends to a symmetric Z-valued
bilinear form on WDiv(X) that only depends on the classes of the involved divisors.
This means we have an intersection product

Cl(X) × Cl(X) → Z, ([D1], [D2]) 7→ D1 ·D2.

Given D ∈WDiv(X), its self-intersection number is D2 := D ·D. We call a curve
D ⊆ X negative or non-negative if D2 < 0 or D2 ≥ 0, respectively. A (−k)-curve
is an irreducible curve with C2 = −k that is isomorphic to P1.
We turn to modifications, i.e., proper birational morphisms. Let X be a projective
Mori dream space and D ⊆ X a prime divisor. By a contraction of D, we mean a
morphism π : X → X ′ mapping D to a point such that the restriction π : X \D →
X ′ \π(D) is an isomorphism. For surfaces, the contractible divisors are exactly the
negative, rational curves.

Theorem 1.4.1 (Castelnuovo criterion). Let X be a projective, smooth surface
and C an irreducible curve on X. Then C is a (−1)-curve if and only if there is a
contraction π : X → X ′ of C with a smooth, projective surface X ′.

For general Mori dream spaces, we use the following remark. Let R be a K-graded
K-algebra as in Construction 1.3.6 with pairwise non-associated K-prime generators
f1, . . . , fr and weight cone ϑ ⊆ KQ. We say wi := deg(fi) ∈ K is extremal if
ϑ 6= cone(wj ; j 6= i). Note that this definition differs from the one in [5].

Remark 1.4.2. Let X = X(R,F,Φ) be a projective, Q-factorial variety corre-
sponding to a bunched ring as in Construction 1.3.6. Assume Φ = Φ(w) holds
for a full-dimensional GIT-cone λ ∈ Λ(X,H) with w ∈ λ◦. Let DZ ⊆ Z be a
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prime divisor and DX := DZ ∩X the corresponding prime divisor on X. Writing
w′ := [DZ ] = [DX ] ∈ K for their classes, the following are equivalent.

(i) The vector w′ ∈ K is extremal and there is a full-dimensional cone λ′ ∈
Λ(X,H) with w′ ∈ λ′ such that λ′ ∩ λ is of codimension one.

(ii) There is a contraction X → X ′ of DX with a projective Q-factorial vari-
ety X ′.

w′ λ′

λ

(0, 0, 0)

We come to the blow up of a variety in a subvariety. For the case of the blow up of
a surface in a point x, this means replacing x by a curve isomorphic to P1.

Construction 1.4.3 (Blow up). Let ι : C → X be a closed embedding of varieties.
Then the ideal sheaf IC on C, i.e., the kernel of ι∗ : OX → ι∗OC , is coherent and
we have a quasi-coherent sheaf of graded OX -algebras

S :=
⊕
d∈Z≥0

IdC , Γ
(
U, IdC

)
:=

{
Γ(U, IC)d, d > 0,
Γ(U,OX), d = 0.

It is possible to glue together the varieties Proj Γ(U,S) where U ⊆ X is open and
affine. We obtain a variety X ′ := ProjS and a morphism π : X ′ → X such that
π−1(U) ∼= Proj Γ(U,S) for all open, affine subsets U ⊆ X. We call π the blow up of
X along the center C.

Example 1.4.4. In Construction 1.4.3, we blow up X := Kn at the origin, i.e., at
C = V (I) ⊆ X with I = 〈T1, . . . , Tn〉 and S = OX(X)⊕ I ⊕ I2 ⊕ . . .. We have an
epimorphism

ψ : OX(X)[S1, . . . , Sn] → S, Si 7→ Ti ∈ S1 = I.

Taking the Proj, we obtain an embedding of the blow up X ′ of X along C into
ProjOX(X)[S1, . . . , Sn] ∼= Kn×Pn−1. The homogeneous generators TiSj − TjSi of
ker(ψ) then give a description

X ′ ∼= {(x, y) ∈ Kn × Pn−1; xiyj = xjyi for all i 6= j} ⊆ Kn × Pn−1.

Given a morphism ϕ : X → Y of varieties and the ideal sheaf IY on Y , the inverse
image ideal sheaf ϕ−1IY · OX on X is the following: viewing ϕ as a map of topo-
logical spaces, we have the preimage sheaf ϕ−1IY in the sheaf of rings ϕ−1OY on
X. We define ϕ−1IY · OX as the image of ϕ−1IY under ϕ−1OY → OX .

Proposition 1.4.5. Let π : X ′ → X be the blow up of a variety X along a subva-
riety C ⊆ X as in Construction 1.4.3.

(i) The morphism π is birational proper and surjective.
(ii) The restriction π : π−1(U)→ U , where U := X \ C, is an isomorphism.

(iii) If X is projective, then X ′ is projective.

For a morphism ϕ : W → X of varieties, let π′ : W ′ → W be the blow up of W at
the inverse image ideal sheaf ϕ−1IC · OW . Then there is a unique morphism ϕ′

such that

W ′

π′

��

ϕ′ // X ′

π

��
W

ϕ // X
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is commutative. Moreover, if ϕ : W → X is an embedding, also ϕ′ : W ′ → X ′ is an
embedding.

Given a blow up π : X ′ → X along C ⊆ X as in Construction 1.4.3, we frequently
also call the variety X ′ the blow up of X along C.

Definition 1.4.6. In Proposition 1.4.5, assume W ⊆ X. The proper transform of
W ⊆ X under π : X ′ → X is the subvariety W ′ ⊆ X ′. The subvariety E ⊆ X ′

defined by the inverse image ideal sheaf π−1IC · OX′ is the exceptional divisor of
the blow up π : X ′ → X.

Throughout this document we will mainly work with the blow up π : X ′ → X of
a smooth projective surface X at a point x ∈ X. Then the proper transform of
a prime divisor D ∈ WDiv(X) is the closure D′ := π−1(D \ {x}) in X ′ and the
exceptional divisor is the preimage π−1(x) ⊆ X ′; it is isomorphic to P1.

Dx
X ←−

x
D′

E = π−1(x)

X′

Remark 1.4.7 (Toric blow up). Let Z be a toric variety with defining fan Σ. Then
the blow up of Z at a toric fixed point zσ ∈ Z is the toric variety Z ′ with its fan Σ′
obtained by the barycentric subdivision Σ′ → Σ of the cone σ ∈ Σ.

We define the Picard number %(X) ∈ Z≥0 of a surface X as the rank of the Picard
group Pic(X). Note that for Q-factorial X the Picard number equals the rank of
the class group. Moreover, given a point x on a smooth surface X and a principal
divisor D = V (f) ∈ WDiv(X), we write µ(x,D) ∈ Z≥0 for the multiplicity of x in
D; this is the maximal integer r ∈ Z≥0 such that f ∈ mrx with the maximal ideal
mx ⊆ OX,x. If x ∈ D, then µ(x,D) ≥ 1 and equality holds if D is smooth.

Proposition 1.4.8. Let π : X ′ → X be the blow up of a smooth surface X at a
point x ∈ X.

(i) The surface X ′ is smooth. If X is projective, then so is X ′.
(ii) The class group Cl(X ′) is isomorphic to Cl(X)⊕Z and the Picard group

Pic(X ′) is isomorphic to Pic(X) ⊕ Z. In particular, the Picard number
increases by one, i.e., %(X ′) = %(X) + 1.

(iii) The self intersection number of the exceptional divisor E ⊆ X ′ is E2 = −1
and E does not intersect the proper transforms of prime divisors D ∈
WDiv(X) with x 6∈ D.

(iv) Let D ∈ WDiv(X) be a prime divisor. Then the proper transform D′ ∈
WDiv(X ′) of D has self-intersection number (D′)2 = D2 − µ(x,D)2. In
particular, if D is smooth and contains x then (D′)2 = D2 − 1.

Given surfaces X1, . . . , Xn, we call a sequence (x1, . . . , xn) of points xi ∈ Xi infin-
itely near if for all 2 ≤ i ≤ n the surface Xi is the blow up of Xi−1 in xi−1 and
xi ∈ Xi projects to xi−1 under Xi → Xi−1. The union of the proper transforms of
the n exceptional divisors is also called the exceptional divisor over x1.
A resolution (of singularities) of a normal, projective varietyX is a proper morphism
π : X ′ → X with a smooth, projective surface X ′ such that the restriction

π−1(U) → U, U := X \Xsing

is an isomorphism. If X is a surface, there is a unique minimal resolution X ′ → X,
i.e., each other resolution X ′′ → X factors through X ′ → X.
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Construction 1.4.9 (Graph of exceptional curves). Let X be a smooth, projective
surface. Consider the colored, undirected, simple graph GX = (V,E) where V is
the set of negative curves of X and the edges E are defined by

(D1, D2) ∈ E :⇔ D1 · D2 > 0.

The color function V → Z is given by D 7→ D2. We call GX the graph of exceptional
curves or the exceptional graph.

Note that isomorphic surfaces X1, X2 have isomorphic graphs GX1 , GX2 . In partic-
ular, the number of (−k)-curves on X1 and on X2 must coincide for each k ∈ Z>0.
Consider a singular point x on a normal surface X with the exceptional divisor E
over x and the exceptional graph GX′ of the minimal resolution X ′ → X. Assume
the only negative curves are (−1)- and (−2)-curves. If for some n, one of the graphs

· · ·

An, n ≥ 1

· · ·

Dn, n ≥ 4

E6 E7

E8

is isomorphic to the subgraph GX′,−2 ⊆ GX′ of (−2)-curves occurring within E,
then x is called an ADE-singularity of the type indicated below the fitting graph.
The next remark recalls the fact that the Cox ring of a Mori dream surface X
already contains all information about X.

Remark 1.4.10. Let X be a projective Mori dream surface. Then there is exactly
one full-dimensional GIT-cone λ ∈ Λ(X,HX) with λ ⊆ Mov(X)◦. In particular, in
Construction 1.3.6 the bunch Φ can be obtained from R(X), i.e., is redundant.

5. Complexity-one T -varieties and K∗-surfaces

We recall the theory of rational varieties with a torus action of codimension one,
so-called complexity-one varieties. This class of varieties can be handled purely in
terms of matrices. We put special emphasis on the surface case. This section is a
summary of [5], mainly Chapters V.4 and III.4, and E. Huggenberger’s thesis [61].
Compare also [53, 86]. We will work in the notation of [61]; the main difference
to [5] is the ordering of the slopes in Construction 1.5.2.

Definition 1.5.1. A complexity-one (T -) variety is a rational, Q-factorial, com-
plete, normal variety X with an effective action of a torus T with dim(T ) =
dim(X)− 1. A K∗-surface is a complexity-one T -surface.

We will first treat the important special case of K∗-surfaces. Higher dimensional
complexity-one T -varieties will be constructed at the end of this section. The defin-
ing data of a variety of complexity one, i.e., the bunched ring as in Section 3, is
encoded in a P -matrix.

Construction 1.5.2 (P -matrix). Let r ∈ Z≥1 and n0, . . . , nr ∈ Z≥1 be positive
integers. For each 0 ≤ i ≤ r, consider tuples li := (li1, . . . , lini) ∈ Zni≥1 and di :=
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(di1, . . . , dini) ∈ Zni such that

di1
li1

< . . . <
dini
lini

, gcd(lij , dij) = 1 for all i, j.

Set n := n0 + . . . + nr. We have an integral r × n block matrix L and an integral
1× n block matrix d

L :=
[
−l0 l1 · · · 0

...
. . .

...
−l0 0 · · · lr

]
, d := [ d0 · · · dr ] .

We define four types of P -matrices, namely the following integral (r+ 1)× (n+m)
matrices where m ∈ {0, 1, 2} counts the number of additional columns

(ee) P =
[
L
d

]
, (pp) P =

[
L 0 0
d 1 −1

]
,

(pe) P =
[
L 0
d 1

]
, (ep) P =

[
L 0
d −1

]
.

We require the columns of P to be pairwise different and primitive and they must
generate Qr+1 as a cone. We denote by vij , where 0 ≤ i ≤ r and 1 ≤ j ≤ ni,
the first n columns of P and by vk, where 1 ≤ k ≤ m, the last m columns of P .
Accordingly, we write eij , ek for the canonical basis vectors of Qn+m.

Construction 1.5.3. Given r ∈ Z≥1, consider a 2× (r+1) matrix A = [a0, . . . , ar]
over K such that each two columns ai, aj are linearly independent for i 6= j. Let P
be a (r + 1)× (n+m) matrix as in Construction 1.5.2. Define

gI := det
([

T
li
i T

li+1
i+1 T

li+2
i+2

ai ai+1 ai+2

])
, T

lj
j := T

lj1
j1 · · ·T

ljnj
jnj

, I ∈ J

where J is the set of all triples I = (i, i+ 1, i+ 2) with 0 ≤ i ≤ r − 2. We obtain a
K-algebra R(P,A) that is a complete intersection ring

R(P,A) := K [Tij , Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m] / 〈gI ; I ∈ J〉 .

Consider the projection Q : Zn+m → K with K := Zn+m/Im(P ∗). We install a
K-grading on R(P,A) by setting

deg(Tij) := Q(eij), deg(Sk) := Q(ek).

Then the variables Tij , Sk form a system of K-prime generators of R(P,A) and the
grading is K-factorial and almost free.

Theorem 1.5.4. Each ring R(P,A) is the Cox ring of a Q-factorial, projective
K∗-surface X(P,A). The surface X(P,A) is determined by the matrices P and A
up to isomorphism. Furthermore, each rational, normal, complete K∗-surface is
isomorphic to X(P,A) for suitable matrices A and P .

Corollary 1.5.5. Let X be a surface with Cox ring K[T1, . . . , Tn]/〈c1T ν1 +c2T
ν2 +

c3T
ν3〉 where ci ∈ K∗ and νi ∈ Zn≥0 are such that the T νi are pairwise coprime.

Then X admits a non-trivial K∗-action.

Remark 1.5.6. In Construction 1.5.3, the ideal 〈gI ; I ∈ J〉 is prime. In particular,
each ideal I ⊆ K[T1, . . . , Tr] generated by two polynomials

T ν1 + T ν2 + T ν3 , λT ν2 + T ν3 + T ν4 , λ ∈ K∗ \ {1},

with exponent vectors νi ∈ Zr≥0 and pairwise coprime terms is a prime ideal.

We now construct the canonical toric ambient variety of a K∗-surface explicitly,
compare Construction 1.3.12.
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Construction 1.5.7. Let P be a P -matrix as in Construction 1.5.2; write vij for
its first n columns and v1 = (0, . . . , 0, 1) and v2 = (0, . . . , 0,−1) for its m possibly
remaining columns. Define in Zn+m the cones

σ− := cone (v01, . . . , vr1) ,
σ+ := cone (v0n0 , . . . , vrnr ) ,
τij := cone (vij , vij+1) , 0 ≤ i ≤ r, 1 ≤ j ≤ ni − 1,
τ−i := cone (vi1, v2) , 0 ≤ i ≤ r,
τ+
i := cone (vini , v1) , 0 ≤ i ≤ r.

Depending on the type (ee), (pp), (pe) or (ep) of the P -matrix, we have a fan Σ(P )
in Zr+1 with the following maximal cones

e1

e2
−e1 − e2

Σ(P )

(ee): σ+, all τij and σ−,

e1

e2
−e1 − e2

Σ(P )

(pp): all τ+
i , all τ−i , all τij ,

e1

e2
−e1 − e2

Σ(P )

(pe): all τ+
i , all τij and σ−,

e1

e2
−e1 − e2

Σ(P )

(ep): all τ−i , all τij and σ+.

Note that the drawings show the case r = 2. Moreover, Σ(P ) is the fan of the
canonical toric ambient variety Z(P ) of X(P,A) of Construction 1.3.12 independent
of A. The K∗-action on X(P,A) arises from the one-parameter subgroup t 7→
(1, . . . , 1, t) of the dense torus Tr+1 of Z(P ).

Consider a P -matrix P as in Construction 1.5.2 with columns vij and v1, v2 if
needed. A block of P is a (r+ 1)×ni submatrix with columns vi1, . . . , vini for some
0 ≤ i ≤ r or, if present, the submatrix with all m occurring vectors v1, v2 as its
columns. We call U ∈ GL(n + m,Z) admissible if the matrix P · U arises from P
by switching columns within a block or by interchanging whole blocks. Similarly,
S ∈ GL(r + 1,Z) is admissible if the matrix S · P arises from P by a sequence of
the operations

• add ±1-multiples of the upper r rows of P to the last row,
• add ±1-multiples of the first r rows to one of the first r rows in order to

achieve a block matrix shape as in Construction 1.5.2,
• multiply the last row by ±1.

Proposition 1.5.8. Consider K∗-surfaces X1 = X(P1, A1) and X2 = X(P2, A2)
with Pi and Ai as in Construction 1.5.3. Then X1 ∼= X2 if and only if

A2 = B ·A1 ·D and P2 = S · P1 · U
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for a matrix B ∈ GL(2,K), a diagonal matrix D ∈ GL(r + 1,K) and admissible
matrices S ∈ GL(r + 1,Z) and U ∈ GL(n+m,Z).

Note that in Proposition 1.5.8 the condition on S can be directly seen by an inspec-
tion of the gI . The next remark specializes to the case r = 2.

Remark 1.5.9. If in Proposition 1.5.8 for both surfaces Xi we have r = 2, then
the condition on the Ai can be dropped, i.e., X1 is isomorphic to X2 if and only if
P2 = S · P1 · U with admissible matrices S ∈ GL(r + 1,Z) and U ∈ GL(n+m,Z).

We turn to the properties of the K∗-action on a normal, projective K∗-surface
X = X(P,A). Given x ∈ X, the orbit map K∗ → X with (t, x) 7→ t · x can be
extended to a morphism µx : P1 → X. Define the limit points

lim
t→0

t · x := µx(0), lim
t→∞

t · x := µx(∞).

Then, the image of µx is the closure of K∗ · x and the limit points are distinct fixed
points. Each fixed point is either elliptic, i.e., it is isolated and lies in the closure
of infinitely many K∗-orbits, parabolic, i.e., it belongs to a fixed point curve or it is
hyperbolic which means it is isolated and lies in the closure of exactly two K∗-orbits.
We call F− ⊆ X the source and F+ ⊆ X the sink if there is a non-empty, open
subset U ⊆ X such that

lim
t→0

t · x ∈ F−, lim
t→∞

t · x ∈ F+ for all x ∈ U.

There always is exactly one source and sink and they are either single elliptic fixed
points or curves of parabolic fixed points. Any fixed point outside of F+ and F−

is hyperbolic.

Proposition 1.5.10. Let X = X(P,A) be as in Construction 1.5.7. Depending on
the type of X, the following assertions hold.

(ee) Both sink F− and source F+ consist of an elliptic fixed point.
(pp) Both sink F− and source F+ are smooth rational curves consisting of

parabolic fixed points.
(pe) The source F− is a smooth rational curve consisting of parabolic fixed

points whereas the sink F+ consists of an elliptic fixed point.
(ep) The source F− consists of an elliptic fixed point whereas the sink F+ is

a smooth rational curve consisting of parabolic fixed points.

Let Dij ⊆ X and Dk ⊆ X be the toric divisors corresponding to the variables Tij
and Sk of R(P,A). Then Dij and Dk are rational curves. Let Z(P ) be the toric
variety with fan Σ(P ) of Construction 1.5.7.

(i) The toric orbit corresponding to the ray Q≥0 · vij ∈ Σ(P ) cuts out a
non-trivial K∗-orbit Bij ⊆ Dij.

(ii) The toric orbit corresponding to a cone τij ∈ Σ(P ) cuts out a hyperbolic
fixed point xij ∈ X.

(iii) For each 0 ≤ i ≤ r, the divisors Dij form a chain of rational curves
connecting the source F− with the sink F+ in the following sense: picking
points bij ∈ Bij, we have

lim
t→∞

t · bij = xij+1 = lim
t→0

t · bij+1

lim
t→0

t · bi1 ∈ F−, lim
t→∞

t · bini ∈ F+.

(iv) Let x ∈ X with x 6∈ F+ ∪ F− and x 6∈ Dij for all i, j. Then the limit
points for t→ 0 and t→∞ are elements of F− and F+ respectively.
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F+

F−
Di1

Di2

Dini

Σ(P ), case (ee)

We now rephrase Constructions 1.5.2 and 1.5.3 in order to cope with higher-dimen-
sional complexity-one T -varieties.

Construction 1.5.11. Choose r ∈ Z≥1, integers n0, . . . , nr ∈ Z≥1 and m, s ∈ Z≥0
such that 0 < s < n + m − r where n := n0 + . . . + nr. For each 0 ≤ i ≤ r, pick a
tuple li := (li1, . . . , lini) ∈ Zni≥1. Additionally, fix a 2× (r+ 1) matrix A over K with
pairwise linearly independent columns as well as integral s× n and s×m matrices
d and d′ with the following property: in the (r + s)× (n+m) block matrix

P :=
[
L 0
d d′

]
, L :=

[
−l0 l1 · · · 0

...
. . .

...
−l0 0 · · · lr

]
the columns are pairwise different, primitive and the cone generated by them
equals Qr+s.

Construction 1.5.12. Let P and A be as in Construction 1.5.11 and consider the
ring R := R(P,A) obtained from Construction 1.5.3. The system F = (Tij , Sk)
consists of homogeneous K-prime generators for R. Given any true F-bunch Φ in
KQ, we obtain a bunched ring (R,F,Φ). Construction 1.3.6 delivers X(P,A) :=
Spec(R) and

X̂(P,A,Φ) := X̂(R,F,Φ), X(P,A,Φ) := X(R,F,Φ).
Define H0 := SpecK[K0] where K0 := Zn+m/Im(P ∗0 ) and P0 := (L, 0) consists of
the first r rows of P . Then H0 leaves X̂(P,A,Φ) invariant and there is an induced
effective action of the torus T := H0/H = Spec(Zs) on X.

Theorem 1.5.13. In Construction 1.5.12, X(P,A,Φ) is an irreducible normal A2-
variety of dimension s+ 1 with Γ(X,O) = K and the torus T := H0/H acts effec-
tively with maximal orbit dimension dim(X)−1 on X. In turn, each A2-variety with
Γ(X,O) = K and torus action of complexity one arises from Construction 1.5.12.

See, e.g., Example 2.4.7 for a complexity one T -variety X that arises as X =
X(P,A,Φ) as in Theorem 1.5.13.





CHAPTER 2

Basic algorithms for Mori dream spaces

In this chapter, we present basic algorithms and data types needed to compute with
Mori dream spaces. We use the correspondence between Mori dream spaces and
bunched rings explained in Section 3 of Chapter 1.
Section 1 deals with gradings by a finitely generated abelian group, e.g., the Cl(X)-
grading of a Cox ring R(X). To this end, we introduce a data type for finitely
generated abelian groups and their homomorphisms and show how to perform basic
operations thereon. Afterwards, in Section 2, we show how to compute with rings
that come with a grading by a finitely generated abelian group; this will be used to
store the Cox ring of a Mori dream space. Section 3 then represents a Mori dream
space X by its Cl(X)-graded Cox ring and a bunch of cones. Several algorithms are
given to explore the properties and geometry of X. Finally, Section 4 is concerned
with algorithms that work in the more specialized setting of complexity one T -
varieties.
This section uses results of [5, 17, 6], see the explicit references below. All presented
algorithms have been implemented in the MDSpackage [54, 55], see Appendix A.
Throughout this chapter, we will mainly use the following example.

Example 2.0.14. Consider the finitely generated abelian group K := Z3 ⊕ Z/2Z
and the factorially K-graded ring

R := K[T1, . . . , T8]/〈f1〉, f1 := T1T6 + T2T5 + T3T4 + T7T8

where the K-grading is encoded in the degree matrix having deg(T1), . . . ,deg(T8)
as its columns

Q =
[

1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

]
.

Choose in K ⊗Q = Q3 the vector w := (0, 0, 2). This defines a projective F-bunch
Φ = Φ(w) in R, see Example 1.3.4. By Construction 1.3.6, these data determine a
Mori dream space X = X(R,F,Φ).

1. Finitely generated abelian groups and homomorphisms

In this section, we treat basic algorithms for finitely generated abelian groups and
their homomorphisms. We will use them to work with gradings in subsequent
sections. Some of these algorithms have also been implemented in [16] together
with B. Bechtold, R. Birkner, L. Kastner, O. Motsak and A.-L. Winz. We assume
that the reader is familiar with the basic algorithms on lattices as, e.g., used in [20];
compare the textbooks [75, 82]. We present the following algorithms:

• Compare groups: isomorphism test (Algorithm 2.1.4), test for contain-
ment (Algorithm 2.1.6), test for equality (Algorithm 2.1.8).

• Construct new groups: factor groups (Algorithm 2.1.9), product groups
(Algorithm 2.1.10), free part (Algorithm 2.1.11), intersection (Algorithm
2.1.13).

29
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• Image, kernel: image (Algorithm 2.1.17), preimage (Algorithm 2.1.18),
kernel (Algorithm 2.1.19), test for being injective (Algorithm 2.1.20), test
for being surjective (Algorithm 2.1.21), complete an exact sequence (Al-
gorithm 2.1.22).
• Gale duality: compute the degree map Q out of P (Algorithm 2.1.24),

compute P out of Q (Algorithm 2.1.25), compute the projection Q0 onto
the free part out of Q (Algorithm 2.1.26).
• Homomorphisms as degree maps, etc.: gradiator (Algorithm 2.1.29), test

for being homogeneous (Algorithm 2.1.31), test for being almost free (Al-
gorithm 2.1.32), section (Algorithm 2.1.34).

Remark 2.1.1. Let K be a finitely generated abelian group with elementary di-
visors a1, . . . , ak ∈ Z. Recall, e.g., from [76, Sec. I.10], that there is a sublattice
L ≤ Zr such that

K ∼= Zr/L ∼= Zd ⊕
k⊕
i=1

Z/aiZ

with d ∈ Z≥0. Consider now a subgroup H ≤ K. Then there is a sublattice U ≤ Zr
such that

H ∼= U / (U ∩ L) ∼= (U + L) /L ≤ Zr/L.

Definition 2.1.2. Let a finitely generated abelian group H be given with a de-
scription H ∼= (U +L)/L as in Remark 2.1.1. We call the pair (U,L) in this setting
an AG, an abbreviation for abelian group.

We do not differentiate between an AG and the underlying finitely generated abelian
group.

Example 2.1.3. In Example 2.0.14, the grading group K = Z3⊕Z/2Z is given as
an AG K = (Z4, linZ ((0, 0, 0, 2))).

Writing generators into the columns of a matrix, we may consider sublattices of Zr as
integral matrices. Given an integral d×r matrix A, write linZ(A) for the sublattice of
Zr generated by its columns and µA : Zr → Zd for the multiplication map z 7→ A ·z.
Elements of an AG (U,L) are usually given as elements of linZ(U) ≤ Zr. The name
of each algorithm is given in parentheses beside its number.

Algorithm 2.1.4 (AGareisom). Input: AGs G1 = (U1, L1) and G2 = (U2, L2).

• Compute lattice bases for µ−1
Ui

(Li) and write their elements in the columns
of d× ni matrices Mi.

• Compute Smith normal forms Si = (sikl)k,l of Mi. Denote by ri the
number of zero-rows of Si. Return false if r1 6= r2.

• Return false if the two sets {|sijj |; 1 ≤ j ≤ min(ni, d)} are different.
Otherwise, return true.

Output: true if G1 is isomorphic to G2 and false otherwise.

Proof. The abelian groups are isomorphic if their decompositions Zri ⊕
⊕

j Z/aijZ
as Z-modules coincide. To show that the algorithm computes these descriptions,
let prUi : Ui → Ui/Ui ∩ Li be the canonical projection. Then linZ(Mi) is the kernel
of πUi = prUi ◦ µUi where

Zr
πUi

//

%%

Ui/Li ∩ Ui

Zr/linZ(Mi)
∼= // Zr/linZ(Si)

∼=
77

�
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Remark 2.1.5. In Algorithm 2.1.4, the preimage can be computed as follows.
Consider integral matrices A and B of sizes n × r and n × r′. Compute a lattice
basis L for the integral kernel of the concatenated matrix [A,−B]. A lattice basis
of the projection of L onto the first r components delivers a basis for µ−1

A (linZ(B));
see [20].

Algorithm 2.1.6 (AGcontains). Input: an AG (U1, L1) and either an AG (U2, L2)
or a vector w ∈ Zr1 . In the latter case, define U2 := linZ(w) and L2 := L1.

• Return false if L1 6= L2 or U1 + L1 6⊆ U2 + L2. Return true otherwise.

Output: true if (U1, L1) is a subgroup of (U2, L2) or if (U1, L1) contains w + L1,
respectively. Returns false if this is not the case.

Remark 2.1.7. In Algorithm 2.1.6, we can check containment of a vector v ∈ Zr
in a sublattice L ≤ Zr by the following steps. Compute a lattice basis K for the
integral kernel of the enlarged matrix [L, v]. Then v ∈ L if and only if the elements
of the last row of K (considered as a matrix) are coprime; see [20].

Algorithm 2.1.8 (AGareequal). Input: either two AGs G1 = (U1, L1) and G2 =
(U2, L2) or two vectors w, w′ ∈ Zr and an AG G = (U,L).

• Using Algorithm 2.1.6, in the first input case, return true if G1 ⊆ G2 and
G2 ⊆ G1. In the second input case, return true if w−w′ ∈ L. Otherwise,
return false.

Output: depending on the input, true if G1 = G2 or w = w′ as elements of G.
Otherwise, false is returned.

Algorithm 2.1.9 (AGfactgrp). Input: AGs G1 = (U1, L1) and G2 = (U2, L2)
where G2 ≤ G1 is a subgroup.

• Return the AG (U1, U2 + L2).

Output: an AG describing the factor group G1/G2.

Proof. Since G2 ≤ G1 we have L1 = L2 and U2 ⊆ U1. The second isomorphism
theorem yields the claim

G1/G2 = ((U1 + L1)/L1)
/

((U2 + L2)/L2)

∼= (U1 + L2)
/

(U2 + L2)

= (U1 + (U2 + L2))
/

(U2 + L2). �

Algorithm 2.1.10 (AGprodgrp). Input: AGs G1 = (U1, L1) and G2 = (U2, L2).

• Consider Ui, Li as matrices with generators for the respective lattices as
their columns. Return the AG (U,L) where, for zero-matrices of fitting
sizes, U and L are generated by the columns of[

U1 0
0 U2

]
,

[
L1 0
0 L2

]
.

Output: an AG describing the product group G1 ×G2.

Given a finitely generated abelian group K, we denote by Ktor ≤ K the subgroup of
torsion elements, i.e., elements w ∈ K such that kw = 0 for an integer k ∈ Z. The
free part is the factor group K0 := K/Ktor. Moreover, recall that the saturation
of a lattice L ≤ Zr is the sublattice Lsat ≤ Zr consisting of all v ∈ Zr such that
kv ∈ L for a k ∈ Z \ {0}.

Algorithm 2.1.11 (AGfreepart). Input: an AG K = (U,L).
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• Return the AG (U,Lsat).

Output: an AG describing the free part K/Ktor.

Proof. The fact that the AG (U,Lsat) is the free part can be seen by using the
second isomorphism theorem in

K = U/U ∩ L v+U∩L 7→ v+U∩Lsat
//

��

U/U ∩ Lsat

K/Ktor (
U
/
U ∩ L

)/ (
(U ∩ Lsat)

/
U ∩ L

)∼=

OO

�

Example 2.1.12. Consider the AGs G := (Z4, {0Z4}) and H := (L, {0Z4}) with
L := linZ ((0, 0, 0, 2)). By Algorithm 2.1.6, we have H ≤ G. Moreover, by 2.1.9,
the factor group G/H equals the grading group K = (Z4, linZ ((0, 0, 0, 2))) of Ex-
ample 2.1.3. Using 2.1.11, we see that the free part of K is K0 = Z3.

Algorithm 2.1.13 (AGintersect). Input: AGs G1 = (U1, L) and G2 = (U2, L).

• Return the AG ((U1 + L) ∩ (U2 + L), L).

Output: an AG describing the intersection G1 ∩G2.

Proof. The intersection G1∩G2 is determined by intersecting the respective lattices
as summarized by the following diagram; upward arrows stand for inclusion and
downward arrows for projection.

U1 + L

��

U2 + L

��
G1 (U1 + L) ∩ (U2 + L)

��

66hh

G2

G1 ∩G2

hh 66

�

Remark 2.1.14. In Algorithm 2.1.13 the intersection L1 ∩ L2 of two sublattices
L1, L2 ≤ Zr can be computed as follows. Write lattice bases for Li into the columns
of r × ni matrices Ai. Compute a lattice basis K for the kernel of the matrix
[A1,−A2]. Denote by B the projection ofK onto the first n1 coordinates. A Hermite
normal form of A1B then has generators for L1 ∩ L2 as its columns; see [20].

We turn to homomorphisms of finitely generated abelian groups. A typical example
are degree matrices of Cox rings.

Definition 2.1.15. Consider a homomorphism ϕ : G1 → G2 of finitely generated
abelian groups. We encode ϕ in an AGH , i.e., a triple (G1, G2, A) where Gi =
(Ui, Li) are AGs and A is an integral matrix satisfying

µA(U1 + L1) ⊆ U2 + L2, µA(L1) ⊆ L2.
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This means we have a diagram

Zs Zr
µA

oo

Zs

��

U1 + L1

OO

��

µA
oo

(U2 + L2)/L2 (U1 + L1)/L1ϕ
oo

Example 2.1.16. In the situation of Examples 2.0.14 and 2.1.3, consider the degree
map Q : Z8 → K with Q(ei) = deg(Ti) and grading group K = Z3 ⊕ Z/2Z. We
encode Q as an AGH (F,K,A) with AGs F , K and a 4× 8 matrix A given by

F =
(
Z8, {0Z8}

)
, K =

(
Z4,Z·

(
0
0
0
2

))
, A =

[
1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

]
.

Algorithm 2.1.17 (AGHim). Input: an AGH ϕ = (G1, G2, A) with Gi = (Ui, Li)
and an AG H1 = (U ′1, L1) with H1 ≤ G1.

• Compute the lattice M generated by the image µA(U ′1 + L1).
• Return the AG (M,L2).

Output: an AG describing the image ϕ(H1) as a subgroup of G2.

Proof. Let πi : Zri → Zri/Li be the canonical projections. We are in the situation
of the diagram

U2 + L2

π2

��

U1 + L1

π1

��

µAoo U ′1 + L1≥

π1

��
G2 G1ϕ
oo H1≥

The correctness of the algorithm follows from the observation

ϕ(H1) = {ϕ(π1(v)); v ∈ U ′1 + L1} = {π2(µA(v)); v ∈ U ′1 + L1}. �

Algorithm 2.1.18 (AGHpreim). Input: an AGH ϕ = (G1, G2, A) with Gi =
(Ui, Li) and an AG H2 = (U ′2, L2) with H2 ≤ G2.

• Compute the sublattice M := µ−1
A (U ′2 + L2) of Zr1 .

• Determine the sublattice M ′ := M ∩ (U1 + L1) of Zr1 .

Output: the AG (M ′, L1) describing the preimage ϕ−1(H2) as a subgroup of G1.

Proof. Let πi : Zri → Zri/Li be the canonical projections. We are in the situation
of the diagram

U ′2 + L2 ≤

π2

��

U2 + L2

π2

��

U1 + L1

π1

��

µAoo

H2 ≤ G2 G1ϕ
oo

The correctness of the algorithm follows from the observation

ϕ−1(H2) = π1 ({v ∈ U1 + L1; µA(v) ∈ U ′2 + L2})
= π1

(
µ−1
A (U ′2 + L2) ∩ (U1 + L1)

)
�
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Algorithm 2.1.19 (AGHker). Input: an AGH ϕ = (G1, G2, A) with Gi =
(Ui, Li).

• Call Algorithm 2.1.18 with input ϕ and the AG ({0}, L2).

Output: an AG describing ϕ−1(0) as a subgroup of G1.

As a consequence of the previous algorithms, we can test a homomorphism of finitely
generated abelian groups for being injective or surjective.

Algorithm 2.1.20 (AGHisinj). Input: an AGH ϕ = (G1, G2, A).

• Use Algorithm 2.1.19 to compute M := ker(ϕ).
• Return true if M equals the trivial subgroup of G1 and return false oth-

erwise.

Output: true if ϕ is injective and false otherwise.

Algorithm 2.1.21 (AGHissurj). Input: an AGH ϕ = (G1, G2, A).

• Use Algorithm 2.1.17 to compute N := Im(ϕ).
• Return true if, by Algorithm 2.1.8, N = G2. Return false otherwise.

Output: true if ϕ is surjective and false otherwise.

Algorithm 2.1.22 (AGHcompleteseq). Input: a surjective or injective AGH ϕ =
(G,G′, A) where G = (U,L) and G′ = (U ′, L′) with sublattices U , L ≤ Zr and U ′,
L′ ≤ Zr′ .

• If, by Algorithm 2.1.21, ϕ is surjective
– use Algorithm 2.1.19 to compute the AG M := ker(ϕ) ≤ G,
– return the AGH (M,G,Er) where Er is the r × r-unit matrix.

• If, by Algorithm 2.1.20, ϕ is injective
– compute the AG K := G/G′ with Algorithm 2.1.9,
– return the AGH (G′,K,Er′) where Er′ is the r′ × r′-unit matrix.

Output: if ϕ is surjective, an AGH ι = (M,G′, B) is returned such that we have
an exact sequence

0 G′oo G
ϕ
oo M

ι
oo 0oo .

If ϕ is injective, an AGH π = (G′,K,B) is returned such that we have an exact
sequence

0 Koo G′
π
oo G

ϕ
oo 0oo .

Example 2.1.23. We continue Example 2.1.16. Applying Algorithm 2.1.22 to the
surjective AGH π := Q = (Z8,K,A), we obtain an injective AGH ϕ := (G,Z8, E8),
where E8 is the 8× 8 unit matrix and G ≤ Z8 is isomorphic to Z5 with

G = (linZB, {0Z8}) , B :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 2 2 4
1 0 0 4 4
−1 −1 −1 −2 −2
−1 −1 −2 −5 −6

 .
Consider an n×r matrix P of full rank, and a surjective homomorphism Q : Zr → K
of finitely generated abelian groups fitting into the diagram of dual exact sequences
of Z-modules

0 // L // Zr P // Zn

0 Koo Zr
Qoo ZnP∗oo 0oo
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We then call Q and P Gale dual. If K is free, Q is given by an integral matrix
which we call a Gale dual matrix for P . Note that Gale dual homomorphisms or
matrices are not unique.

Algorithm 2.1.24 (AGHP2Q). Input: an integral n× r matrix P of rank n.
• Compute a Smith normal form S = V · P ∗ ·W of the transpose P ∗ with

invertible integral matrices V , W . Write S = (Sij)i,j .
• Let vi1 , . . . , vid be the rows of V with ik > rank(S). Let vj1 , . . . , vjs be

the rows of V with 1 < |Sj1j1 | < . . . < |Sjsjs |. Define B as the matrix
with rows vi1 , . . . , vid , vj1 , . . . , vjs .

• Define the AG K = (Zr−l, S′) where S′ is obtained from S by remov-
ing the l rows i of S with Sii = 1. Then K is isomorphic to Zd ⊕⊕s

i=1 Z/|Sjiji |Z.
Output: the AGH (Zr,K,B). It represents a Gale dual homomorphism Q : Zr →
Zr/Im(P ∗) of P .

Proof. Assume that in S there are l entries of absolute value one. Let pr : Zr → Zr−l
be the projection onto the other coordinates. By the diagram

Zr/Im(µP∗)

∼=

ss

Zr−l Zr
µB

oo

OO

µV∼=
��

Zn
µP∗

oo

Zr−l

π

��

Zrpr
oo

��

Zn
µS

oo

µW ∼=

OO

Zr−l/Im(pr ◦ µS) Zr/Im(µS)∼=
oo

the group K is equal to Zr−l/Im(pr ◦ µS) up to row permutations and, hence,
also to Zr/Im(µP∗). By choice of B, the AGH Q = (Zr,K,B) is surjective and
π ◦ µB ◦ µP∗ = 0 since for each a ∈ Zn we have

π ◦ µB ◦ µP∗(a) = π ◦ pr ◦ µS ◦ µW−1(a) = 0 ∈ K. �

We will see an application of Algorithm 2.1.24 in Example 2.1.30.

Algorithm 2.1.25 (AGHQ2P). Input: a surjective AGH Q = (Zr,K,A).
• Use Algorithm 2.1.19 to compute ker(Q) ≤ Zr as an AG (U, 0).
• Return the transpose U∗.

Output: an integral r × n matrix P that is a Gale dual matrix for Q.

Given a surjective AGH Q = (Zr,K,A) we can compute the free part K0 = K/Ktor,
compare Algorithm 2.1.11. Then there is an integral, surjective matrix Q0 fitting
into the diagram

K

��

Zr
Qoo

Q0
xx

K0 = K/Ktor

Algorithm 2.1.26 (AGHQ2Q0). Input: a surjective AGH Q = (Zr,K,A) where
K = (U,L).

• Compute a matrix B satisfying ker(B) = Lsat; see Remark 2.1.27.
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• Define Q0 := B ·A.

Output: the integral matrix Q0. Considered as a map, we have pr ◦Q = Q0 with
the projection pr : K → K0 = K/Ktor.

Proof. As an AG, we have K0 = (U,Lsat), see Algorithm 2.1.11. Then the canonical
projection Zr → Zr/Lsat is given by µB . The algorithm is correct by the diagram

U + L

��
µB

$$

U + L/L

��

Zr

µA

ii

Qoo

Q0

vv
U + Lsat/Lsat �

Remark 2.1.27. In Algorithm 2.1.26, B can be computed by first computing an
invertible matrix U such that UL is in Hermite normal form. Removing the first
rank(L) rows of U yields a matrix B with ker(B) = Lsat; see [20].

Example 2.1.28. Consider the AGH Q of Example 2.1.16. An application of
Algorithms 2.1.25 and 2.1.26 yields the matrices

P =

 1 0 0 0 0 1 −1 −1
0 1 0 0 1 0 −1 −1
0 0 1 0 2 0 −1 −2
0 0 0 1 2 4 −2 −5
0 0 0 0 4 4 −2 −6

 , Q0 =
[

1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1

]
.

Recall from [5, Con. III.2.4.2] that the gradiator of a list of polynomials f1, . . . , fs ∈
K[T1, . . . , Tr] is a homomorphism Zr → K of finitely generated abelian groups such
that H := SpecK[K] is the maximal quasitorus in Tr leaving V (f1, . . . , fs) ⊆ Kr
invariant.

Algorithm 2.1.29 (AGHgradiator). See [5, Constr. III.2.4.2]. Input: a list of
polynomials f1, . . . , fs ∈ K[T1, . . . , Tr]. Write fi = ai,1T

νi,1 + . . .+ ai,niT
νi,ni with

ai,j ∈ K∗.

• For 1 ≤ i ≤ s let Pi be the (ni− 1)× r matrix with rows νi,k− νi,1 where
2 ≤ k ≤ ni. Let P be the vertical concatenation of P1, . . . , Ps.

• Use Algorithm 2.1.24 to compute an AGH Q : Zr → Zr/Im(P ∗).

Output: the pair (Q,P ) where Q : Zr → Zr/Im(P ∗) is the gradiator and P is a
Gale dual matrix.

Example 2.1.30. We continue Example 2.0.14. Applying Algorithm 2.1.29 to
f1 ∈ K[T1, . . . , T8], we obtain a pair (Q′, P ′) with an AGH Q′ = (Z8,Z5, A′) where

P ′ =
[
−1 1 0 0 1 −1 0 0
−1 0 1 1 0 −1 0 0
−1 0 0 0 0 −1 1 1

]
, A′ =

 0 0 −1 1 0 0 0 0
0 −1 0 0 1 0 0 0
−1 0 0 0 0 1 0 0

0 0 0 1 1 1 1 0
0 0 0 0 0 0 −1 1

 .
Note that, given an AGH Q = (Zr,K,A) with K = (U,L), the degree of a homo-
geneous polynomial f ∈ K[T1, . . . , Tr] with respect to the grading deg(Ti) = Q(ei)
is deg(f) = A · ν + L ∈ K where T ν is any non-zero monomial in f .

Algorithm 2.1.31 (AGHishomog). Input: an AGH Q = (Zr,K,A) and polyno-
mials f1, . . . , fs ∈ K[T1, . . . , Tr].

• For each i = 1, . . . , s do
– if there are two monomials T ν , Tµ of fi such that, by Algorithm 2.1.8,

deg(T ν) 6= deg(Tµ) in K, then return false.
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• Return true.

Output: true if all fi are homogeneous with respect to the K-grading deg(Ti) =
Q(ei). Returns false otherwise.

Algorithm 2.1.32 (AGHisalmostfree). Input: an AGH Q = (Zr,K,A).

• For each facet γ0 � Qr≥0 do
– If, by Algorithm 2.1.8, the subgroup 〈Q(ei); ei ∈ γ0)〉 ≤ K is differ-

ent from K, then return false.
• Return true.

Output: true if the K-grading of K[T1, . . . , Tr] given by deg(Ti) = Q(ei) is almost
free. Returns false otherwise.

Example 2.1.33. In Example 2.0.14 and 2.1.16, applying Algorithms 2.1.21, 2.1.32,
and 2.1.31, we see that Q is surjective, the grading defined by deg(Ti) = Q(ei) is
almost free and f1 ∈ K[T1, . . . , T8] is homogeneous of degree (0, 0, 2, 1) ∈ K. More-
over, Q has the AG G of Example 2.1.23 as its kernel.

Algorithm 2.1.34 (AGHsection). Input: a surjective AGH ϕ = (G1, G2, A) with
AGs Gi = (Ui, Li).

• By a Hermite normal form computation, determine an integral matrix S
such that A · S is the unit matrix.

• Check if ψ = (G2, G1, S) defines an AGH, i.e., use Algorithm 2.1.6 to
check whether µS(U2 + L2) is a subset of U1 + L1 and µS(L2) ⊆ L1.

• Return ψ if the checks were positive. Return false otherwise.

Output: if no section G2 → G1 for ϕ was found, false is returned. Otherwise, an
AGH (G2, G1, S) representing such a section is returned.

2. Graded rings

Using the correspondence 1.3.7, a Mori dream space is determined by its graded
Cox ring and a bunch of cones. In this section, we encode the algebraic data of the
Cox ring in a data type. We present the following algorithms on graded rings.

• Grading: integral points (Algorithm 2.2.2), homogeneous component (Al-
gorithm 2.2.3) and its dimension (Algorithm 2.2.5).

• Tropical algorithms: tropical variety for one equation (Algorithm 2.2.7),
containment in the tropical variety (Algorithm 2.2.8).

• Primality check, modifying polynomials: check a variable for being K-
prime (Algorithm 2.2.10), pullback and pushforward of a Laurent poly-
nomial (Algorithms 2.2.12 and 2.2.13), closure (Algorithm 2.2.14).

Let Q : Zr → K be a surjective AGH. Consider an integral, normal, affine K-
algebra R := K[T1, . . . , Tr]/I with an ideal I ⊆ K[T1, . . . , Tr] that is homogeneous
with respect to the K-grading

deg(T1) := Q(e1), . . . , deg(Tr) := Q(er).

Assume R is factorially K-graded, has K∗ as its homogeneous units and the grading
is almost free. Let G ⊆ K[T1, . . . , Tr] be a set of K-prime generators for I and
consider the matrix Q0 fitting into

K

��

Zr
Qoo

Q0
}}

K0
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with the free part K0 = K/Ktor. Assume F = (T 1, . . . , T r) is a system of pairwise
non-associated K-prime generators for R. Fix a Gale dual matrix P for Q and store
the F-faces in a list FF.

Definition 2.2.1. In the above setting, we encode the graded ring R in the tuple
(G,Q,Q0, P, FF) and speak of a GR.

We do not differentiate between a GR and the underlying ring R. Note that G,
P , Q0, FF are all computable from a presentation R = K[T1, . . . , Tr]/I, see Algo-
rithms 2.1.25, 2.1.26; we will postpone the computational aspects of F-faces until
Chapter 3. We implicitly assign the respective positive orthant γ := Qr≥0 to a GR.
Some of the following algorithms need the list of lattice points B ∩ Zr or interior
points B◦ ∩ Zr of a polytope B ⊆ Qr. The following is an ad-hoc method using a
bounding box; see, e.g., [11, 29] for advanced algorithms.

Algorithm 2.2.2 (intpoints). Input: a polytope B ⊆ Qr.

• Compute for each 1 ≤ i ≤ r bounds bi• and bi• ∈ Zr such that for each
vertex v of B, we have bi• ≤ vi ≤ bi•.
• Set L := ∅.
• For each v ∈ Zr such that bi• ≤ vi ≤ bi• for all i do

– if v ∈ B, then insert v into L.

Output: the collection L of lattice points B ∩ Zr.

e2

e3

e1

For a K-graded ring R =
⊕

w∈K Rw, the K-vector space Rw is called the ho-
mogeneous component or the graded component of R of degree w. Note that, by
the decomposition K = K0 ⊕Ktor, we can decompose each w ∈ K uniquely into
w = w0 + wt with w0 ∈ K0 and wt ∈ Ktor.

Algorithm 2.2.3 (GRgradedcomp). Input: a GR R = (G,Q,Q0, P, FF) and
w ∈ K. Assume that the grading is pointed. Decompose w = w0 + wt with
w0 ∈ K0 and wt ∈ Ktor.

• Let W := ∅.
• For each f ∈ G do

– Let ∆ := w0 − deg(f)0 ∈ K0.
– Use Algorithm 2.2.2 to compute the lattice points M∆ := B∆ ∩ Zr

of the fiber polytope B∆ := (Q0)−1(∆) ∩ γ.
– For each ν ∈M∆, insert the polynomial T ν ·f intoW if deg(T ν ·f) =
w ∈ K.

• Use Algorithm 2.2.2 to compute the lattice points Mw0 := Bw0 ∩ Zr of
the fiber polytope Bw0 := (Q0)−1(w0) ∩ γ. Store the elements ν ∈ Mw0

with deg(T ν) = w ∈ K as ordered list (ν1, . . . , νk).
• Given g ∈ W, let vg ∈ Kk be the image of g under T νi 7→ ei. Let A be

the matrix with the vg as its columns where g runs through W in a fixed
order.
• Compute a Smith normal form S = U · A · V with integral, invertible

matrices U , V . Write s := rank(S).
• Return the list (

∑k
j=1(bi)jT νj ; 1 ≤ i ≤ s) where bi := U−1 · ei.

Output: a basis for 〈G〉w considered as a K-vector space.
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Lemma 2.2.4. Consider a pointed grading
⊕

w∈K K[T1, . . . , Tr]w of the polynomial
ring by a finitely generated abelian group K. Let I ⊆ K[T1, . . . , Tr] be an ideal with
K-homogeneous generators g1, . . . , gs. Then

Iw = linK (T νgi; 1 ≤ i ≤ s, deg(T ν) + deg(gi) = w) for each w ∈ K.

Proof. Given f ∈ Iw, write f = h1g1 + . . . + hsgs with polynomials h1, . . . , hs ∈
K[T1, . . . , Tr]. By the direct sum decomposition, we may write each hi uniquely as
hi =

∑
k hi,k with hi,k ∈ K[T1, . . . , Tr]k. Since f equals its degree-w part fw, we

have

f =
(

s∑
i=1

higi

)
w

=
(

s∑
i=1

(∑
k

hi,k

)
gi

)
w

=
s∑
i=1

hi,w−wigi,

where in the last step, we defined wi := deg(gi). The other inclusion is obvious. �

Proof of Algorithm 2.2.3. Note that since Q0 is pointed, B∆ and Bw0 are poly-
topes. Observe that the vector space K[T1, . . . , Tr]w has the K-basis (T ν1 , . . . , T νk)
and linK(W) = 〈G〉w as a K-vector space by Lemma 2.2.4. We now show that the
remaining steps of the algorithm compute a basis for 〈G〉w. Consider the isomor-
phism of K-vector spaces

ϕ : linK(T ν1 , . . . , T νk) → Kk, T νi 7→ ei.

That is ϕ(g) = vg for each polynomial g ∈ K[T1, . . . , Tr]w. Moreover, by construc-
tion, (b1, . . . , bs) is a basis for ϕ(linK(W)). The last step in the algorithm applies
the inverse map for ϕ, i.e., maps b ∈ Qk to

∑
biT

νi . We summarize the situation
by a diagram where rightward arrows are inclusions and the remaining arrows are
isomorphisms.

〈G〉w

��

&&

linK(W) //

ϕ

��

linK (T ν1 , . . . , T νk)

ϕ

��

K[T ]w

��

ww
linK(b1, . . . , bs) //

µU

��

Kk

µU

��
linK(e1, . . . , es) // Kk �

Algorithm 2.2.5 (GRgradedcompdim). Input: a GR R = (G,Q,Q0, P, FF) and
a vector w ∈ Q0(γ). Assume that the grading is pointed. Decompose w = w0 + wt

with w0 ∈ K0 and wt ∈ Ktor.

• Use Algorithm 2.2.2 to compute the set Mw0 := Bw0 ∩ Zr with the fiber
polytope Bw0 := (Q0)−1(w0) ∩ γ. Denote by n ∈ Z≥0 the number of
elements ν ∈Mw0 with deg(T ν) = w ∈ K.

• Compute a basis B for 〈G〉w with Algorithm 2.2.3. Write d := n− |B|.

Output: the dimension d ∈ Z≥0 of the graded component K[T1, . . . , Tr]w/〈G〉w.

Example 2.2.6. Consider in the setting of Example 2.0.14 the graded ring R =
({f1}, Q,Q0, P, FF) where Q is as in Example 2.1.16 and P and Q0 are as in Ex-
ample 2.1.28. We apply Algorithm 2.2.3 to R and w := (1, 0, 3, 0) ∈ K. We have

K[T1, . . . , T8]w = linQ
(
T1T7T8, T1T3T4, T1T2T5, T

2
1 T6

)
,

where basis elements correspond to a positive combinations of w over the columns
qi of Q0; e.g., for T1T7T8 and T1T2T5, we have:
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q1

q2q3

q4q5

q6 q7

q8

(0, 0, 0)

w

q2

Moreover, Algorithm 2.2.3 returns the basis (T1f1) for 〈f1〉w. As obtained with
Algorithm 2.2.5, we have

dim (K[T1, . . . , T8]w/〈f1〉w)
= dim

(
K[T1, . . . , T8]w/linQ(T 2

1 T6 + T1T2T5 + T1T3T4 + T1T7T8)
)

= 3.

Recall, e.g., from [78, 22], that given an affine variety X := V (I) ⊆ Kr with a
monomial-free ideal I ⊆ K[T1, . . . , Tr], one assigns to I or to X the tropical variety

trop(I) := trop
(
X
)

:=
⋂
f∈I

trop(f) ⊆ Qr,

where trop(f) is the support of the codimension one skeleton of the normal fan over
the Newton polytope of f . There exists a fan Υ ⊆ Qr with support |Υ| = trop(I);
see [22] for its computation. This fan is a projectable fan, see [91, Prop. 2.8], so for
the case of a Mori dream space X = X(R,F,Φ) as in Construction 1.3.6, we may
define trop(X) := P (trop(X)) where X is the total coordinate space of X. For a
single equation, we remark the following.

Algorithm 2.2.7 (GRtrop). Input: a GR R = (G,Q,Q0, P, FF) where P : Zr →
N and G contains a single polynomial f .

• Let Σ be the normal fan over the Newton polytope of f .
• Let Υ̂ be the (dim(Σ)− 1)-skeleton of Σ and Υ := P (Υ̂).

Output: a fan Υ in NQ with the tropical variety trop(〈G〉) as its support.

Containment of a vector in the tropical variety can be done without computing the
whole fan structure. For this, recall from [22, 41] that given a monomial-free ideal
I ⊆ K[T1, . . . , Tr], the Gröbner cone of a vector w ∈ Qr is the convex cone

C(w) := cone (w′ ∈ Qr; inw(I) = inw′(I)) ⊆ Qr

where inw(I) denotes the ideal 〈inw(f); f ∈ I〉 ⊆ K[T1, . . . , Tr]. Here, the initial
form inw(f) consists of all terms αT ν of f that are maximal with respect to ν 7→
〈w, ν〉. Moreover, we have a description of the tropical variety

trop(I) = {w ∈ Qr; inw(I) is monomial-free} ⊆ Qr.
If I is homogeneous, the Gröbner fan is the collection of all Gröbner cones {C(w); w ∈
Qr}. It turns out to be a convex, polyhedral, complete fan in Qr. The tropical vari-
ety trop(I) then is the support of the subfan Υ of the Gröbner fan of I that consists
of all Gröbner cones C(w) such that inw(I) is monomial-free.
Fix a monomial ordering > on K[T1, . . . , Tr]. Recall that for a vector v ∈ Qr≥0, we
obtain another monomial ordering >v on K[T1, . . . , Tr] given by

T ν >v Tµ :⇔ 〈v, ν〉 > 〈v, µ〉 or
[
〈v, ν〉 = 〈v, µ〉 and T ν > Tµ

]
.

Algorithm 2.2.8 (GRtropcontains). Input: a GR R = (G,Q,Q0, P, FF) and a
vector v ∈ N or f ∈ Zr where P : Zr → N . Assume that the cone ω over the
columns q1, . . . , qr of Q0 is pointed and no qi is the zero-vector.

• If v ∈ N was given, then choose f ∈ Zr such that P (f) = v.
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• Choose a linear form u ∈ (ω∨)◦. Let f+ ∈ Zr>0 be the vector with
components (f+)i := u(qi).

• Determine a ∈ Z≥0 such that f ′ := f + af+ is an element of Zr>0 and
compute a Gröbner basis G>f′ for 〈G〉 with respect to the monomial
ordering >f ′ .

• Consider the ideal a := 〈inf ′(g); g ∈ G>f′ 〉 ⊆ K[T1, . . . , Tr].
• Return false if the radical membership test T1 · · ·Tr ∈

√
a succeeds and

return true otherwise.

Output: returns true if f ∈ trop(〈G〉) or v ∈ P (trop(〈G〉)), respectively. Returns
false otherwise.

Proof. In the case of a given vector v ∈ N , since P−1(P (trop(〈G〉))) = trop(〈G〉), it
suffices to choose any f ∈ Zr such that P (f) = v. By the definition of the tropical
variety, we have

f ∈ trop(〈G〉) ⇔ T ν 6∈ inf (〈G〉) for all ν ∈ Zr≥0

⇔ T1 · · ·Tr 6∈
√

inf (〈G〉).

Note that since ω is pointed, u|ω\{0} > 0. Hence, we can coarsify the grading as
claimed, i.e., we find the vector f ′ ∈ Zr>0. By [90, Prop. 1.12] and its proof, for
each g ∈ 〈G〉 we have inf (g) = inf ′(g). Since f ′ is an element of the Gröbner cone
of 〈G〉 with respect to the ordering <f ′ , by [41, Cor. 2.14], we conclude

inf (〈G〉) = inf ′(〈G〉) =
〈

inf ′(g); g ∈ G>f′
〉
. �

Example 2.2.9. Let Q′ and P ′ be as in Example 2.1.30 and compute (Q′)0 with
Algorithm 2.1.26. Consider the GR R′ = ({f1}, Q′, (Q0)′, P ′, FF) where f1 is as in
Example 2.0.14. Algorithm 2.2.7 then returns a two-dimensional pure fan P ′(Υ) in
Q3 with support |P ′(Υ)| = trop(f1).

e1

e2

e3

e1

e2

e3

v

It is given as the codimension one skeleton of the normal fan over the standard-
simplex. Moreover, using Algorithm 2.2.7, we verify that the vector v := (1, 1, 0) ∈
Q3 is contained in trop(f1).

In the definition of bunched rings 1.3.5, we required the variables to define K-
prime elements. We check this using the following direct method which was already
published together with J. Hausen and A. Laface in [57, Alg. 4.2]. See [46, B.7]
and [21, 25] for the computational background on how to compute the prime com-
ponents ci and number fields Q(αi).

Algorithm 2.2.10 (GRisKprime). Input: a GR R = (G,Q,Q0, P, FF) and an
index 1 ≤ k ≤ r where we consider Q : Zr → K as a matrix and assume that the
grading group is of shape K = Zs ⊕ Z/a1Z⊕ . . .⊕ Z/alZ. We further require that
G = {f1, . . . , fs} is contained in Q[T1, . . . , Tr].

• If 〈f1, . . . , fs, Tk〉 is not a radical ideal, return false.
• Compute a decomposition 〈f1, . . . , fs, Tk〉 = c1∩. . .∩cm with prime ideals
ci and number fields Q(αi) such that ci is defined over Q(αi).
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• Denote by q1, . . . , ql the last l rows of Q and by ζai the primitive ai-th
root of unity. Consider for any b ∈ Zl≥0 the map

ϕb : Q(αi)[T1, . . . , Tr] → L[T1, . . . , Tr], Tj 7→ ζb1q1j
a1

· · · ζblqljal Tj ,

where L := Q(α1, . . . , αm, ζa1 , . . . , ζal). If for each two i 6= j there is
b ∈ Zl≥0 such that ϕb(ci) = cj in L, then return true. Return false
otherwise.

Output: true if Tk is K-prime in Q[T1, . . . , Tr]/〈f1, . . . , fs〉 and false otherwise.

Proof. Let I := 〈G〉 ⊆ K[T1, . . . , Tr]. Consider the action of H := SpecK[K] on
Y := V (I) ⊆ Kr. By [51, Prop. 3.2], Tk is K-prime in R = K[T1, . . . , Tr]/I if and
only if the divisor of Tk in Y is H-prime in the sense that it has only coefficients 0
or 1 and the prime divisors with coefficient 1 are transitively permuted by H. �

Example 2.2.11. Consider the following factorially K-graded ring R where K :=
Z⊕Z/4Z; we will encounter R later as the Cox ring of the surface with singularity
type D5A3 in Theorem 4.4.1.

R = K[T1, . . . , T5]/I, I = 〈T1T3 − T 2
4 − T 2

5 , T1T2 − T 2
3 + T4T5〉,

deg(T1) = (1, 2), deg(T2) = (1, 2), deg(T3) = (1, 0),
deg(T4) = (1, 3), deg(T5) = (1, 1).

We show that the variable T1 defines a K-prime element in R albeit it is not prime.
The ideal I + 〈T1〉 ⊆ K[T1, . . . , T5] has the two prime components

c1 = 〈T1, T4 − T5J, T
2
3 − T4T5〉, c2 = 〈T1, T4 + T5J, T

2
3 − T4T5〉

defined in Q(J)[T1, . . . , T5] with the imaginary unit J ∈ C. In the notation of
Algorithm 2.2.10, we have a1 = 4, ζa1 = J and L = Q(J).

Q

L = Q(J)

Q(α1) Q(α2)

Q

For b := 1 ∈ Z≥0, the torsion part of the degrees deg(Ti) defines the map
ϕb : Q(J)[T1, . . . , T5] → L[T1, . . . , T5],

T1 7→ −T1, T2 7→ −T2, T3 7→ T3, T4 7→ −JT4, T5 7→ JT5.

Then, by the reasonsing of Algorithm 2.2.10, T1 is K-prime since ϕb permutes the
ideals ci ⊆ Q(J)[T1, . . . , T5] transitively: their images are

〈T1, −JT4 + T5, T
2
3 − T4T5〉 = c2, 〈T1, −JT4 − T5, T

2
3 − T4T5〉 = c1.

We come to basic modifications of polynomials; compare [57, 44] and Section 3
of Chapter 4. Consider a homomorphism p : Tr → Tn of tori. Given a Laurent
polynomial g ∈ K[S±1

1 , . . . , S±1
n ], its ?-pull back is a polynomial p?g ∈ K[T1, . . . , Tr]

such that p?g and p∗g coincide in K[T±1
1 , . . . , T±1

r ] up to units and the monomials
of p?g are coprime. The ?-pull back always exists and is unique up to constants.
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Algorithm 2.2.12 (pull). Input: a polynomial f ∈ K[S1, . . . , Sn] and an integral
n× r matrix P of full rank.

• Let g′ be the image of f under the homomorphism
K[S1, . . . , Sn] → K[T±1

1 , . . . , T±1
r ], Si 7→ TPi∗ .

• Choose µ ∈ Zr≥0 such that g := Tµg′ is an element of K[T1, . . . , Tr].
• While there is 1 ≤ i ≤ r such that Ti | g, replace g by gT−1

i .

Output: g ∈ K[T1, . . . , Tr] such that g = p?g ∈ K[T1, . . . , Tr] is the star pull back
with the morphism of tori p : Tr → Tn corresponding to P .

Consider a homomorphism p : Tr → Tn of tori with kernel H ⊆ Tr. Given an H-
homogeneous polynomial h ∈ K[T±1

1 , . . . , T±1
r ], its ?-push forward is a polynomial

p?h ∈ K[S1, . . . , Sn] such that p∗p?h and h coincide in K[T±1
1 , . . . , T±1

r ] up to units
and the monomials of p?g are coprime. The ?-push forward always exists and is
unique up to constants.

Algorithm 2.2.13 (push). Input: a polynomial h ∈ K[T1, . . . , Tr] and an integral
n × r matrix P of full rank such that h is H-homogeneous where H ⊆ Tr is the
kernel of the morphism of tori p : Tr → Tn corresponding to P .

• Compute a Smith normal form D = U · P · V with integral invertible
matrices U , V . Let ϕU : Tn → Tn, ϕD : Tr → Tn and ϕV : Tr → Tr be
the corresponding maps of tori.

• Use Algorithm 2.2.12 to compute g := ϕ?V h ∈ K[T1, . . . , Tr].
• Write D = [D′, 0] as a block matrix where D′ is a diagonal matrix with

diagonal entries d1, . . . , dn ∈ Z\{0}. Let g′ ∈ K[S1, . . . , Sn] be the image
of g under the map

K[T d1
1 , . . . , T dnn , Tn+1, . . . , Tr] → K[S±1

1 , . . . , S±1
n ],

T dii 7→ Si for 1 ≤ i ≤ n, Ti 7→ 0 else.

• Use Algorithm 2.2.12 to compute f := ϕ?U g
′ ∈ K[S1, . . . , Sn].

Output: the ?-push forward f = p?h ∈ K[S1, . . . , Sn].

Proof. Note that D is indeed of the claimed form since P is of full rank. As V is
invertible, we have (ϕV −1)?h = ϕ?V h. The same argument holds for U . The claim
follows from the decomposition

p?h = (ϕU−1)? (ϕD)? (ϕV −1)?h

Tr

p

��

ϕV−1

∼=
// Tr

ϕD

��
Tn Tn

ϕU−1

∼=oo

and the fact that the ?-push forward under D is (ϕD)? g = g′ since ϕ?D g
′ = g.

Observe that (the map used to obtain) g′ is well-defined. Since h is Zr/Im(P ∗)-
homogeneous the pull back ϕ?V h is Zr/Im(D∗)-homogeneous. This means that for
each monomial T ν in ϕ?V h we have di | νi for all 1 ≤ i ≤ n. �

Recall that the saturation of an ideal I ⊆ K[T1, . . . , Tr] with respect to a polynomial
f ∈ K[T1, . . . , Tr] is the ideal

I : f∞ :=
{
g ∈ K[T1, . . . , Tr]; fkg ∈ I for some k ∈ Z≥1

}
⊆ K[T1, . . . , Tr].

Algorithm 2.2.14 (closure). Compare [64, pp. 23–24]. Input: a list of generators
f1, . . . , fs for an ideal I ⊆ K[T1, . . . , Tr].

• Compute generators g1, . . . , gn ∈ K[T1, . . . , Tr] for I : (T1 · · ·Tr)∞.



44 2. BASIC ALGORITHMS FOR MORI DREAM SPACES

Output: polynomials g1, . . . , gm ∈ K[T1, . . . , Tr] such that V (Tr; I) ⊆ Kr is given
by V (Kr; g1, . . . , gs).

Proof. The associated primes of J := I : (T1 · · ·Tr)∞ are the vanishing ideals
pi ⊆ K[T1, . . . , Tr] of the irreducible components of X := V (J) ⊆ Kr, see [46,
Thm. 4.1.5]. We have pi = pi : (T1 · · ·Tr)∞ for each i, see [64, Lem. 2.5.8]. In
particular, no component of X is contained in a coordinate hyperplane. This shows
that the closure in Kr is V (J) ∩ Tr = V (J). We now show V (J)∩Tr = V (I)∩Tr.
By construction, V (J) ⊆ V (I). For the reverse containment, consider x ∈ V (I)∩Tr
and f ∈ J . Then (f · (T1 · · ·Tr)n)(x) = 0 for some n ∈ Z≥0, i.e., f(x) = 0. �

3. Mori dream spaces

We provide first algorithms to explore the properties and geometry of a Mori dream
space. This section contains material from [5] as indicated near the respective items
below. Here is an overview of the algorithms of this section:

• Fundamental algorithms: dimension (Algorithm 2.3.4), covering collec-
tion (Algorithm 2.3.6), relevant F-faces (Algorithm 2.3.5), toric ambient
variety and completions (Algorithm 2.3.9), irrelevant ideal (Algorithm
2.3.11).
• Cones of divisor classes: effective cone (Algorithm 2.3.13), moving cone

(Algorithm 2.3.14), semiample cone (Algorithm 2.3.15).
• Groups: class group (Algorithm 2.3.17), local class groups (Algorithm

2.3.18), Picard group (Algorithm 2.3.20), Picard index (Algorithm 2.3.21).
• Singularities, properties: test for being quasismooth and smooth (Algo-

rithms 2.3.23 and 2.3.24), singularities (Algorithm 2.3.25), exceptional
graph (Algorithm 2.3.27), test for being (Q-) factorial (Algorithms 2.3.30
and 2.3.31), test for being complete (Algorithm 2.3.33), test for be-
ing (quasi-) projective (Algorithms 2.3.35 and 2.3.36), strata (Algorithm
2.3.39).
• Complete intersection Cox rings: anticanonical divisor class (Algorithm

2.3.41), test for being (Q-) Gorenstein (Algorithms 2.3.43 and 2.3.44),
Gorenstein index (Algorithm 2.3.45), test for being Fano (Algorithm
2.3.46), intersection numbers (Algorithm 2.3.48).

We work with Mori dream spaces by using the correspondence to bunched rings
(R,F,Φ), compare Construction 1.3.6 and Corollary 1.3.9. To this end, we directly
encode the true F-bunch Φ in a data type BUN and then define the central data
type MDS. Let R = (G,Q,Q0, P, FF) be a GR. As before, we implicitly assign to R
the grading group K, its free part K0 and the positive orthant γ = Qr≥0.

Definition 2.3.1. A BUN in R is a finite set Φ := {ϑ1, . . . , ϑs} of polyhedral cones
ϑi ⊆ K0

Q of the form ϑi = Q0(γi) with an element γi ∈ FF such that

(i) for all i, j, we have ϑ◦i ∩ ϑ◦j 6= ∅,
(ii) if ϑ◦i ⊆ (Q0(γj))◦ with γj ∈ FF, then Q0(γj) belongs to Φ,
(iii) for each facet γ0 � γ, the image Q0(γ0) is an element of Φ.

Definition 2.3.2. Let R be a GR and Φ a BUN in R. We call the pair (R,Φ) a
MDS .

We do not differentiate between a Mori dream space X = X(R,F,Φ) as in Con-
struction 1.3.6 and its description as an MDS. For instance, we also write X for the
total coordinate space of (the underlying Mori dream space of) an MDS X.
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Example 2.3.3. Consider the GR R of Example 2.2.6. Then the Mori dream space
X of Example 2.0.14 is given by the MDS (R,Φ(w)) where w := (0, 0, 2) ∈ K0

Q.

Next, we treat essential algorithms like dimension, relevant F-faces, covering collec-
tion and the canonical toric ambient variety.

Algorithm 2.3.4 (MDSdim). See [5, Thm. III.2.1.4]. Input: an MDS X = (R,Φ)
with R = (G,Q,Q0, P, FF).

• Compute the dimension dG of the ring R.
• Let d := dG − d0 where d0 is the dimension of the rowspace of Q0.

Output: the dimension d = dim(X).

Algorithm 2.3.5 (MDSrlv). See [5, Con. III.2.1.3]. Input: an MDS X = (R,Φ)
with R = (G,Q,Q0, P, FF).

• Compute the set L of all γ0 ∈ FF such that Q0(γ0) ∈ Φ.

Output: the set L = rlv(Φ) of relevant F-faces.

Algorithm 2.3.6 (MDScov). Compare [5, Con. III.2.1.3]. Input: an MDS X =
(R,Φ) with R = (G,Q,Q0, P, FF).

• Compute L := rlv(Φ) with Algorithm 2.3.5.
• Set Lmin := ∅.
• For each γ0 ∈ L do

– insert γ0 into Lmin if there is no γ1 ∈ L such that γ1 ( γ0.

Output: the set Lmin = cov(Φ) of all minimal relevant F-faces.

Example 2.3.7. The MDS X = (R,Φ) of Example 2.3.3 is of dimension dim(R)−
3 = 4. Among the 83 relevant F-faces rlv(Φ) returned by Algorithm 2.3.5, there are
14 minimal ones, i.e.,

cov(Φ) = {{1, 6, 7, 8}, {2, 5, 7, 8}, {3, 4, 7, 8}, {1, 2, 5, 6}, {1, 3, 4, 6}, {2, 3, 4, 5},
{2, 4, 8}, {1, 3, 8}, {1, 2, 8}, {5, 6, 7}, {4, 6, 7}, {3, 5, 7}, {2, 4, 6}, {1, 3, 5}}

where we used Algorithm 2.3.6 and identify a subset J ⊆ {1, . . . , 8} with the face
cone(ei; i ∈ J) � γ = Q8

≥0.

Algorithm 2.3.8 (MDSpointex). Input: an MDS X = (R,Φ) and a vector z ∈ Kr
where R = (G,Q,Q0, P, FF).

• If z 6∈ X = V (G) ⊆ Kr, then return false.
• Compute C := rlv(Φ) with Algorithm 2.3.5.
• For each γ0 ∈ C do

– if zi 6= 0 for all ei ∈ γ0, then return true.
• Return false.

Output: true if [z] ∈ X, i.e., z ∈ X̂ ⊆ Kr, and false otherwise.

Proof. The correctness directly follows from [5, Constr. III.3.1.1] where

X̂ =
⋃

γ0∈rlv(Φ)

X \ V

( ∏
ei∈γ0

Ti

)
�

Given fans Σ1,Σ2 ⊆ Qr, denote by Σ1 u Σ2 their coarsest common refinement,
i.e., the set of cone-wise intersections {σ1 ∩ σ2; σi ∈ Σi}. The Gelfand Kapranov
Zelevinsky decomposition of a matrix Q0 = [q1, . . . , qr] is the coarsest common
refinement

GKZ
(
Q0) :=

l
Λ,
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where Λ runs through all normal fans having their rays among the Q≥0 ·qi and with
support |Λ| = cone(q1, . . . , qr); see Chapter 3 for the computational aspects.
Given an MDS X, the following algorithm computes the canonical toric ambient
variety ZΣ ⊇ X as defined in Construction 1.3.12. Here, by a completion we mean
a toric variety Z ′ with properties (i)-(iii) of [5, Prop. III.2.5.4]. That is, in the
setting of 1.3.12, we have a toric characteristic space pZ′ : Ẑ ′ → Z ′ and a neat,
closed embedding ι : X → Z ′ with X̂ = ι−1(Ẑ ′) such that Xγ0 = ι−1(Z ′P (γ∗0 )) for
each γ0 ∈ rlv(Φ). Moreover

Di
X = ι∗(Di

Z′) where Di
X := pX

(
V (X̂; Ti)

)
, Di

Z′ := pZ′
(
V (Ẑ ′; Ti)

)
.

Algorithm 2.3.9 (MDSambtorvar). See [5, Prop. III.2.5.4, Con. III.2.5.7] and
Construction 1.3.12. Input: an MDS X = (R,Φ) where R = (G,Q,Q0, P, FF),
P : Zr → N and γ = Qr≥0. Option: completions is available if X is projective.

• If completions was asked
– set F := ∅,
– compute λ := SAmple(X) with Algorithm 2.3.15,
– compute the fan GKZ(Q0) in K0

Q. This can be done using Algo-
rithm 3.2.9 with input 〈0〉 and Q0.

– For each η ∈ Λ(Q0) such that η◦ ⊆ λ◦ do
∗ insert the fan Σ(η) ⊆ NQ into F where

Σ(η) =
{
P (γ∗0); γ0 � γ and η◦ ⊆ Q0(γ0)◦

}
.

– Return F .
• Compute C := cov(Φ) with Algorithm 2.3.6.
• Return the fan Σ ⊆ NQ with maximal cones {P (γ∗0 ); γ0 ∈ C}.

Output: the fan Σ ⊆ NQ of the canonical toric ambient variety ZΣ ⊇ X. If
completions was given and X is projective, a list F of complete fans Σ1, . . . ,Σk ⊆
NQ is returned such that ZΣi ⊇ X is a completion of ZΣ.

Example 2.3.10. In Example 2.3.3, by Algorithm 2.3.9, the fan Σ ⊆ Q5 of the
canonical toric ambient variety ZΣ of X has eight five-dimensional and six four-
dimensional maximal cones. Its rays are generated by the columns of the matrix P
of Example 2.1.28. Moreover, the algorithm finds 17 completions since

∣∣{η ∈ GKZ
(
Q0) ; η◦ ⊆ SAmple(X)◦

}∣∣ = 17. SAmple(X)

η ∈ GKZ(Q0)

The irrelevant ideal of an MDS X is the ideal of the closed variety X \ X̂. Let Σ
be a fan in Qn and v1, . . . , vr generators for the rays of Σ. As in [5, Prop. III.1.3.4],
for each maximal cone σ ∈ Σ we define

ν : Σ → {0, 1}r, ν(σ)i :=
{

1, vi 6∈ σ,
0, vi ∈ σ.

Algorithm 2.3.11 (MDSirrel). See [5, Prop. III.1.3.4]. Input: an MDS X =
(R,Φ) where R = (G,Q,Q0, P, FF).

• Use Algorithm 2.3.9 to compute the canonical toric ambient variety ZΣ.
• Compute the ideal J := 〈T ν(σ); σ ∈ Σmax〉+ 〈G〉 ⊆ K[T1, . . . , Tr].

Output: a list of generators for the vanishing ideal J of X \ X̂.
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Example 2.3.12. Consider the MDS X defined in Example 2.3.3. By Algo-
rithm 2.3.11, we have

X \ X̂ = V
(
K8; T3T5T7, T4T6T7, T5T6T7, T1T2T8, T1T3T8, T2T4T8,

T1T3T5, T2T4T6, T1T6T7T8, T3T4T7T8, T2T5T7T8, T2T3T4T5,

T1T3T4T6, T1T2T5T6, T1T6 + T2T5 + T3T4 + T7T8
)
.

We come to algorithms that compute cones of divisor classes, i.e., the cones of
effective, semiample, movable divisor classes.

Algorithm 2.3.13 (MDSeff). See [5, Prop. III.3.2.9] and 1.3.16. Input: an MDS
X = (R,Φ) with R = (G,Q,Q0, P, FF) where Q0 has the columns q1, . . . , qr.

• Compute ω := cone(q1, . . . , qr).

Output: the cone ω = Eff(X) in the vector space KQ.

Algorithm 2.3.14 (MDSmov). See [5, Prop. III.3.2.9] and 1.3.16. Input: an
MDS X = (R,Φ) with R = (G,Q,Q0, P, FF) where Q0 has the columns q1, . . . , qr.

• Compute the cone

τ :=
r⋂
i=1

cone (qj ; j 6= i) ⊆ KQ.

Output: the cone τ = Mov(X) in the vector space KQ.

Algorithm 2.3.15 (MDSsample). See [5, Prop. III.3.2.9] and 1.3.16. Input: an
MDS X = (R,Φ).

• Compute the cone τ :=
⋂
τ∈Φ τ ⊆ KQ.

Output: the semiample cone τ = SAmple(X) in the vector space KQ.

Example 2.3.16. Consider the MDS X of Example 2.3.3. By Algorithms 2.3.13
and 2.3.14, the effective cone of X is Q0(Q8

≥0) and the moving cone of X is
cone(q1, q5, q6, q2), i.e.,

q1
q2q3

q4q5

q6 q7

q8

(0, 0, 0)

q1

q4q5

q6 q7

q8

(0, 0, 0)

Mov(X)

q2q3

Moreover, using Algorithm 2.3.15, we see that the semiample cone of X equals the
GIT cone λ((0, 0, 2)), i.e.

SAmple(X) = cone((2, 1, 3), (1, 1, 2), (−2,−1, 3),
(−1,−1, 2), (−1, 0, 2), (1, 0, 2),
(0,−1, 3), (0, 1, 3)).

q1

q4q5

q6 q7

q8

(0, 0, 0)

q2

q3

SAmple(X)

We turn to groups associated to an MDS. Set γ0 � γ = Qr≥0. Given a canonical
basis vector ei ∈ Zr, set Zχγ0 (ei) := Z if ei ∈ γ0 and {0} otherwise. Define the
subgroup

Hγ0 := linQ(γ0) ∩ Zr =
r⊕
i=1

Zχγ0 (ei) ≤ Zr.(1)
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Algorithm 2.3.17 (MDSclassgrp). See [5, Thm. III.2.1.4] and 1.3.6. Input: an
MDS X = (R,Φ) with degree map Q : Zr → K.

• Return K.

Output: the AG K representing the class group Cl(X).

Algorithm 2.3.18 (MDSlocclassgrp). See [5, Prop. III.3.1.5] and 1.3.15. Input:
an MDS X = (R,Φ) and Cox coordinates z ∈ Kr for a point x ∈ X. Let Q : Zr → K
be the degree map and γ = Qr≥0 the positive orthant.

• Let γ0 := cone(ei; zi 6= 0) � γ. Then γ0 ∈ rlv(Φ) and x ∈ X(γ0).
• Compute Gx := K/Q(Hγ0) using (1) and Algorithms 2.1.9 and 2.1.17.

Output: the AG Gx representing the local class group Cl(X,x).

Example 2.3.19. Consider the MDS X = (R,Φ) of Example 2.3.3. Then γ0 :=
cone(e3, e5, e7) � Q8

≥0 is an element of rlv(Φ), see Algorithm 2.3.5. By Algo-
rithm 2.3.18, each x ∈ X(γ0) has the local class group

Cl(X,x) =
(
Z4, L

)
≤ Cl(X), L := linZ

([
1 0 0 0
0 1 0 0
2 1 4 0
0 1 0 2

])
given as an AG. In particular, the local class group Cl(X,x) is isomorphic to the
finite group Z/2Z⊕ Z/4Z.

Algorithm 2.3.20 (MDSpic). See [5, Cor. III.3.1.6] and 1.3.15. Input: an MDS
X = (R,Φ) with degree map Q : Zr → K.

• Define G := K and compute C := cov(Φ) using Algorithm 2.3.6.
• For each γ0 ∈ C do

– use Algorithms 2.1.13 and 2.1.17 to redefine G as G∩Q(Hγ0) where
Hγ0 ≤ Zr is as in (1).

Output: the Picard group G = Pic(X) as a subgroup of Cl(X).

Algorithm 2.3.21 (MDSpicind). Input: a Q-factorial MDS X = (R,Φ) with
degree map Q : Zr → K.

• Use Algorithms 2.3.20 and 2.1.9 to compute the factor group H :=
K/Pic(X) and its isomorphism type H ∼= Z/a1Z⊕ . . .⊕ Z/asZ.
• Return a1 · · · as.

Output: the index [Cl(X) : Pic(X)] ∈ Z≥1.

Example 2.3.22. Continuing Example 2.3.3, we compute the Picard group of X
with Algorithm 2.3.20 as the AG

Pic(X) =
(

linZ

[
12 0 0 0
0 12 0 0

12 12 24 0
0 0 0 2

]
, linZ

[
0
0
0
2

])
≤ Cl(X).

Note that Pic(X) is isomorphic to Z3. The Picard index is [Cl(X) : Pic(X)] = 6912
by Algorithm 2.3.21.

We come to singularities and algorithms that determine further properties of X.
An MDS X is called quasismooth if the open subset X̂ ⊆ X is smooth. The
following algorithm makes use of the computation of a-faces, i.e., faces γ0 � Qr≥0
such that V (Trγ0

; a) 6= ∅ where Trγ0
⊆ Kr is the collection of all z ∈ Kr such that

zi 6= 0 ⇔ ei ∈ γ0. We will treat a-faces and their computation in Section 1 of
Chapter 3.

Algorithm 2.3.23 (MDSisquasismooth). Input: an MDS X = (R,Φ) with R =
(G,Q,Q0, P, FF). Write G = {f1, . . . , fs} with fi ∈ K[T1, . . . , Tr].
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• Compute the Jacobian matrix, i.e., the s × r matrix J := (∂fi/∂Tj)i,j
over the polynomial ring K[T1, . . . , Tr].

• Let a ⊆ K[T1, . . . , Tr] be the ideal generated by G and all (r−d)× (r−d)
minors of J where d is the dimension of R.

• Compute C := rlv(Φ) with Algorithm 2.3.5.
• For each γ0 ∈ C do

– if, by Algorithm 3.1.2, γ0 is an a-face, then return false.
• Return true.

Output: true if X̂ is smooth and false otherwise.

Proof. Note that V (a) ⊆ X equals the singular locus Xsing. Thus, the algorithm
tests whether Xsing ∩ X̃ 6= ∅ with the constructible set

X̃ :=
⋃

γ0∈rlv(Φ)

X(γ0) =
⋃

γ0∈rlv(Φ)

X ∩ Trγ0
⊆ X̂

from [5, Con. III.3.1.1]. We now show that X̃ ∩ Xsing is empty if and only if
X̂ ∩Xsing is empty. The reverse implication is obvious. For the direct one, suppose
there were a point x1 ∈ X̂∩X

sing. Consider now the good quotient p : X̂ → X by the
characteristic quasitorus H. According to Proposition 1.1.6, the fiber p−1(p(x1))
contains a closed orbit

H · x0 ⊆ X̂ with x0 ∈ p−1(p(x1)).
Observe that (H ·x0)∩ (H · x1) is non-empty. Since the images p(H ·x0) = {p(x1)}
and p(H · x1) are not disjoint, by Proposition 1.1.6, neither are (H ·x0) and H · x1.
Using the H-invariance of X̂sing ⊆ X, we have H · x1 ⊆ X̂sing. Since X̃ equals the
union of all closed H-orbits of X̂ we conclude

∅ 6= (H · x0) ∩
(
H · x1

)
⊆ X̃ ∩ Xsing

. �

Algorithm 2.3.24 (MDSissmooth). See [5, Cor. III.3.1.12]. Input: an MDS X.
• Compute the fan Σ of the canonical toric ambient variety ZΣ ⊇ X with

Algorithm 2.3.9.
• If Σ is not regular or X̂ is not smooth by Algorithm 2.3.23, then return

false. Return true otherwise.
Output: true if X is smooth and false otherwise.

Algorithm 2.3.25 (MDSsing). Input: an MDS X = (R,Φ) where R = (G,Q,Q0,
P, FF) with G = {f1, . . . , fs} ⊆ K[T1, . . . , Tr].

• Compute the s× r Jacobian matrix J := (∂fi/∂Tj)i,j .
• Let a ⊆ K[T1, . . . , Tr] be the ideal generated by f1, . . . , fs and all (r −
d)× (r − d) minors of J where d ∈ Z≥0 is the dimension of R.

• Compute C := rlv(Φ) with Algorithm 2.3.5.
• Store all γ0 ∈ C which, by Algorithm 3.1.2, are a-faces and with Q(γ0 ∩
Zr) = K in a list F .

Output: the pair (a,F). Then a ⊆ K[T1, . . . , Tr] is the vanishing ideal ofXsing ⊆ Kr
and F is the list of all relevant F-faces γ1, . . . , γl � Qr≥0 such that X(γi) is singular.

Example 2.3.26. Consider the MDS X = (R,Φ) of Example 2.3.3. By Algo-
rithm 2.3.24, X is singular and Algorithm 2.3.25 provides us with (a,F) where

X
sing = V

(
K8; a

)
= V

(
K8; T1, . . . , T8

)
= {0}

Moreover, identifying a subset J ⊆ {1, . . . , 8} with the face cone(ei; i ∈ J) � γ =
Q8
≥0, the list F consists of the relevant F-faces γ0 � γ with singular stratum X(γ0).
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It is
F =

(
{3, 5, 7}, {1, 3, 5, 7}, {2, 3, 4, 5, 7}, {4, 6, 7}, {1, 3, 4, 6, 7}, {5, 6, 7}, {3, 5, 6, 7},
{1, 6, 7, 8}, {1, 3, 6, 7, 8}, {1, 4, 6, 7, 8}, {3, 4, 6, 7, 8}, {1, 3, 4, 6, 7, 8}, {3, 4, 7, 8},
{1, 3, 4, 7, 8}, {2, 3, 4, 7, 8}, {2, 5, 7, 8}, {2, 3, 5, 7, 8}, {2, 4, 5, 7, 8}, {3, 4, 5, 7, 8},
{2, 3, 4, 5, 7, 8}, {1, 2, 8}, {1, 3, 8}, {2, 4, 8}, {1, 2, 4, 8}, {2, 3, 4, 5, 8}, {2, 4, 6, 8},

{1, 3, 4, 6, 8}, {1, 3, 5}, {2, 3, 4, 5}, {2, 4, 6}, {1, 3, 4, 6}, {1, 2, 5, 6}
)
.

We come to the graph of exceptional curves constructed in 1.4.9. We will use it
primarily as an invariant. Note that Algorithm 2.3.48 can be used to compute the
self-intersection numbers of its vertices.

Algorithm 2.3.27 (MDSintersgraph). Input: a smooth, projective MDS X =
(R,Φ) of dimension two with R = (G,Q,Q0, P, FF).

• Determine the extremal rays Q≥0 · qi1 , . . . ,Q≥0 · qik of the effective cone
cone(q1, . . . , qr) where q1, . . . , qr are the columns of Q0.

• Initialize V := {Di1 , . . . , Dik} where Dij := V (X; Tij ) and set E := ∅.
• Compute C := rlv(Φ) with Algorithm 2.3.5.
• For each two distinct i, j ∈ {i1, . . . , ik} do

– if cone(ek; k 6∈ {i, j}) ∈ C, then insert (Di, Dj) into E.

Output: the graph of exceptional curves GX = (V,E) of X.

Proof. The negative curves Di1 , . . . , Dik ⊆ X correspond to the extremal rays of
the effective cone Eff(X), see [5, Ex. V.1] or [51, Prop. 6.7]. By basic properties [73,
p. 96] of the good quotient p, we have

Di ∩ Dj 6= ∅ ⇔ p
(
V (X̂; Ti, Tj)

)
6= ∅

⇔ cone(ek; k 6∈ {i, j}) ∈ rlv(Φ). �

Remark 2.3.28. Algorithm 2.3.48 can also be carried out for projective, Q-factorial
Mori dream spaces. It then computes the graph of contractible divisors in the sense
of Remark 1.4.2.

Remark 2.3.29. Algorithm 2.3.48 can be used in conjunction with Algorithm
2.3.27 to compute the ADE-singularity type of the minimal resolution X ′ → X of
a Mori dream surface X.

Algorithm 2.3.30 (MDSisfact). Compare [5, Cor. III.1.4.5] and 1.3.15. Input:
an MDS X = (R,Φ) with degree map Q : Zr → K and orthant γ = Qr≥0. Optional
input: Cox coordinates z ∈ Kr for a point x ∈ X.

• If z ∈ Kr was given, then set C := {γ0} with γ0 := cone(ei; zi 6= 0) � γ.
Otherwise, compute C := rlv(Φ) using Algorithm 2.3.5.

• For each γ0 ∈ C do
– if by Algorithms 2.1.8 and 2.1.17 the image Q(Hγ0) with Hγ0 as

in (1) does not generate K as a group, then return false.
• Return true.

Output: true if X is factorial and false otherwise. For the case of a given point
x ∈ X, true is returned if x is factorial and false otherwise.

Proof. Let γ0 ∈ rlv(Φ). By [5, Cor. III.1.4.5], a point x ∈ X(γ0) is factorial if and
only if Q(linQ(γ0)∩Zr) = Q(Hγ0) generates K as a group. Use X =

⋃
X(γ0) where

the union runs through all relevant F-faces. �

Algorithm 2.3.31 (MDSisQfact). See [5, Cor. 3.1.9] and 1.3.15. Input: an MDS
X = (R,Φ).
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• If there is ϑ ∈ Φ with dim(ϑ) 6= dim(KQ), then return false. Return true
otherwise.

Output: true if X is Q-factorial and false otherwise.

Example 2.3.32. By applications of Algorithms 2.3.30 and 2.3.31, the MDS X =
(R,Φ) of Example 2.3.3 is Q-factorial but not factorial.

We defined an MDS to encode varieties arising from bunched rings and, hence,
needs in general be neither projective nor complete. The following algorithm uses
a result of J. Tevelev [96] to check for completeness.

Algorithm 2.3.33 (MDSiscomplete). Input: a projective MDS X = (R,Φ) with
R = (G,Q,Q0, P, FF) and P : Zr → Zn.

• Compute a fan Υ ⊆ Qn with support |Υ| = trop(X). If |G| = 1, Algo-
rithm 2.2.7 can be used.

• Compute a complete fan Ω in Qn having Υ as a subfan. If G = {g}, one
can define Ω as the normal fan over the Newton polytope of p? g, compare
Algorithm 2.2.13.

• Use Algorithm 2.3.9 to compute the fans Σ and Σ of the canonical ambient
toric variety ZΣ and a completion ZΣ of ZΣ.

• Compute the coarsest common refinements Σ′ := ΣuΩ and Υ′ := ΣuΥ.
• For each maximal cone τ ′ ∈ Υ′ do

– if τ ′ 6⊆ σ′ for each maximal cone σ′ ∈ Σ′, then return false.
• Return true.

Output: true if X is complete and false otherwise.

Proof. First, note that in the case of G = {g}, Υ is the codimension-one skeleton of
Ω and, therefore, Υ is a subfan of Ω. By [96, Prop. 2.3], X is complete if and only
if the support |Σ| contains the tropical variety trop(X) = |Υ|. Note that we have
|Υ′| = trop(X) and |Σ| = |Σ′|. Hence, X is complete if and only if in the following
diagram of fans the dashed arrow is an inclusion.

Σ ⊆ Σ

Σ u Ω ⊆

OO

Σ u Ω

OO

⊆

Σ uΥ

UU

Since Υ is a subfan of Ω, each maximal cone τ ′ of Υ′ = ΥuΣuΩ either is contained
in Σ′ or τ◦ ∩ |Σ′| = ∅. This completes the proof. �

Remark 2.3.34. In Algorithm 2.3.33, the fan Υ with |Υ| = trop(X) can be com-
puted using [63]. See [88, 41] for how to find Ω.

Algorithm 2.3.35 (MDSisquasiproj). Compare [5, Cor. 1.4.5]. Input: an MDS
X = (R,Φ). Write Φ = {ϑ1, . . . , ϑs}.

• Define τ := ϑ1.
• For each i = 2, 3, . . . , s do

– if τ◦ ∩ ϑ◦i = ∅, then return false. Otherwise, redefine τ as τ ∩ ϑi.
• Return true.

Output: true if X is quasiprojective and false otherwise.
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Proof. By [5, Cor. 1.4.5], X is quasiprojective if and only if ϑ◦1 ∩ . . . ∩ ϑ◦s is non-
empty. Clearly, if ϑ◦i ∩ϑ◦j = ∅ for some i, j, then X is not quasiprojective. Otherwise,
by [87], the non-empty intersection ϑ◦1 ∩ . . . ∩ ϑ◦s equals (ϑ1 ∩ . . . ∩ ϑs)◦. �

Algorithm 2.3.36 (MDSisproj). Input: an MDS X = (R,Φ) with R = (G,Q,Q0,
P, FF). Assume that Q0 has no zero-columns.

• Return true if, by Algorithms 2.3.35 and 2.3.13, X is quasiprojective and
Eff(X) is pointed. Return false otherwise.

Output: true if X is projective and false otherwise.

Lemma 2.3.37. Consider a surjective k × r matrix Q without zero-columns and
the positive orthant γ := Qr≥0. Then Q(γ) is pointed if and only if ker(Q)∩γ = {0}.

Proof. If Q(γ0) is pointed, clearly Q(x) = 0 with x ∈ γ implies x = 0. On the other
hand, ifQ(γ) contains linQ(w) with a non-zero w ∈ Q(γ), then there are x, y ∈ γ\{0}
such that Q(x) = w and Q(y) = −w. Thus, 0 6= x+ y ∈ γ ∩ ker(Q). �

Proof of Algorithm 2.3.36. Since X is quasiprojective, there is w ∈ Mov(X)◦
such that X = X

ss(w)//HX , see [5]. By [5, Prop. III.1.2.2] or Proposition 1.1.7,
X is projective over X//HX = SpecR0. Set γ := Qr≥0. We now prove that Q0(γ)
is pointed if and only if R0 = K. Since X is an MDS, the classes of T1, . . . , Tr
are pairwise non-associated K-prime generators for R. By [52, Rem. 1.25], R0 is
generated by the classes of products T ν where ν ∈ Zr≥0 runs through the elements of
a Hilbert basis U for ker(Q0)∩γ. By Lemma 2.3.37, U = {0} is equivalent to Q0(γ)
being pointed. This shows that X is projective if and only if Q0(γ) is pointed. �

Example 2.3.38. By Algorithm 2.3.36, the MDS X of Example 2.3.3 is projective.

As in Section 1 of Chapter 3, given f ∈ K[T1, . . . , Tr] and γ0 � Qr≥0, let fγ0 ∈
K[T1, . . . , Tr] be the polynomial obtained from f by substitution of Ti = 0 for
all ei 6∈ γ0. Define the Tr-orbit Trγ0

as the set of elements z ∈ Kr such that
zi = 0⇔ ei 6∈ γ0.

Algorithm 2.3.39 (MDSstrat). Compare Construction 1.3.14. Input: an MDS
X = (R,Φ) where R = (G,Q,Q0, P, FF).

• Compute the collection Gγ0 := {fγ0
1 , . . . , fγ0

s }.
• Use Algorithm 2.2.13 to compute all hi := p?f

γ0
i ∈ K[S1, . . . , Sn] where

p : Tr → Tn is the homomorphism of tori corresponding to P .

Output: h1, . . . , hs ∈ K[S1, . . . , Sn]. Then the stratum X(γ0) is given by the zero
set V (h1, . . . , hs) ⊆ Tn where the hi are considered as elements of K[S±1

1 , . . . , S±1
n ].

Proof. Using standard properties of good quotients [73, p. 96], by [5, Con. III.3.1.1],
we have

p
(
X(γ0)

)
= p

(
X ∩ Trγ0

)
= p

(
V
(
Trγ0

; fγ0
1 , . . . , fγ0

s

))
= V (Tn; h1, . . . , hs) . �

Example 2.3.40. Let X be as in Example 2.3.3. For the following relevant F-face
γ0 � γ = Q8

≥0 Algorithm 2.3.39 delivers

X(γ0) = V
(
T5; T1T5 + T3T4

)
, γ0 := cone(ei; i ∈ {1, 3, 4, 6, 7}) � γ.

We turn to algorithms on a complete intersection MDS X = (R,Φ), i.e., R is a
complete intersection ring. Recall that this means that the kernel of K[T1, . . . , Tr]→
R with Ti 7→ fi is generated by r − dim(R) polynomials.
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Algorithm 2.3.41 (MDSantican). See [5, Thm. III.3.3.2] and 1.3.17. Input: a
complete intersection MDS X = (R,Φ). Write R = (G,Q,Q0, P, FF) with G =
{g1, . . . , gd}. Let the degree map be given by the AGH Q = (Zr,K,A) with an AG
K = (U,L).

• Define w :=
∑r
i=1A∗i−

∑d
j=1A ·νj ∈ U+L where T νj is a non-vanishing

monomial in gj .

Output: the vector w ∈ U + L. It represents the anticanonical divisor class
−wcan

X ∈ K.

Example 2.3.42. Consider the complete intersection MDS X of Example 2.3.3.
Using Algorithm 2.3.41, we obtain −wcan

X = (0, 0, 6, 1) ∈ K since

r∑
i=1

A∗i −
d∑
j=1

A · νj = (0, 0, 8, 4)− (0, 0, 2, 1)

= (0, 0, 6, 3).

q1
q2q3

q4q5

q6 q7

q8

(0, 0, 0)

−wcan
X

Algorithm 2.3.43 (MDSisQgorenstein). See [5, Cor. III.3.3.3] and 1.3.17. Input:
a complete intersection MDS X = (R,Φ).

• Compute the anticanonical divisor class−wcan
X ∈ K; see Algorithm 2.3.41.

• Determine the cone τ :=
⋂
ϑ∈Φ linQ(ϑ) in KQ.

• Let π : K → K0 be the canonical projection. Return true if π(−wcan
X ) ∈ τ

and false otherwise.

Output: true if X is Q-Gorenstein and false otherwise.

Algorithm 2.3.44 (MDSisgorenstein). See [5, Cor. III.3.3.3] and 1.3.17. Input: a
complete intersection MDS X.

• Compute the anticanonical divisor class−wcan
X ∈ K; see Algorithm 2.3.41.

• Use Algorithm 2.3.20 to compute G := Pic(X) ≤ K.
• Return true if −wcan

X ∈ G and false otherwise.

Output: true if X is Gorenstein and false otherwise.

For a complete intersection Q-Gorenstein MDS X, the Gorenstein index is the
smallest integer n ∈ Z>0 such that n · (−wcan

X ) ∈ Pic(X) where −wcan
X is the class

of the anticanonical divisor of X.

Algorithm 2.3.45 (MDSgorensteinind). Input: a complete intersection MDS X
that is Q-Gorenstein.

• Compute the anticanonical divisor class−wcan
X ∈ K; see Algorithm 2.3.41.

• Determine the Picard group G := Pic(X) ≤ K with Algorithm 2.3.20.
• For n = 1, 2, . . . do

– test with Algorithm 2.1.6, whether n · (−wcan
X ) ∈ G. Return n if this

is the case.

Output: the Gorenstein index n ∈ Z>0 of X.

Algorithm 2.3.46 (MDSisfano). See [5, Cor. III.3.3.3] and 1.3.17. Input: a
complete intersection MDS X = (R,Φ).

• Compute the anticanonical divisor class−wcan
X ∈ K; see Algorithm 2.3.41.

• For each ϑ ∈ Φ do
– return false if −wcan

X 6∈ ϑ◦.
• Return true.
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Output: true if X is Fano and false otherwise.

Example 2.3.47. By Algorithms 2.3.46, 2.3.43 and 2.3.45, the MDS X = (R,Φ)
with Φ = Φ(w) of Example 2.3.3 is a Fano variety that is Q-Gorenstein with Goren-
stein index 4. Note that, by Examples 2.3.16 and 2.3.42, we would have lost the
Fano property had we chosen w ∈ Q3 in a different GIT-cone within Mov(X) (the
blue region).

q1

q4q5

q6
q7

q8

(0, 0, 0)

Mov(X)

w

q2q3

For the surface case, we introduced intersection numbers in Section 4 of Chapter 1.
We shortly recall from [5, Con. II.1.2.8] the construction for an n-dimensional com-
plete toric variety Z with a lattice fan (Σ, N). Assume Σ is simplicial. Consider
pairwise different, invariant prime divisors D1, . . . , Dn on Z that correspond to rays
Q≥0 · v1, . . . ,Q≥0 · vn ∈ Σ with primitive vectors vi ∈ N . Their intersection number
is

D1 · · ·Dn := v1 · · · vn :=
{

[N ∩ linQ(σ) : linZ(v1, . . . , vn)]−1, σ ∈ Σ,
0, σ 6∈ Σ

with σ := cone(v1, . . . , vn). If X = X(R,F,Φ) is a projective Mori dream space
with complete intersection Cox ring R and canonical toric ambient variety Z, it
inherits intersection theory. Given invariant prime divisors D1

X , . . . , D
n
X on X with

Di
X = Di ∩X, by [5, Con. III.3.3.4], their intersection number is the toric intersec-

tion number
D1
X · · ·Dn

X = v1 · · · vn · u1 · · ·ud
where u1, . . . , ud are the degrees of the generators of the kernel of the map Ti 7→ fi
with F = (f1, . . . , fr); see [5, Con. III.3.3.4] for details. We state the next algorithm
for the case of one equation. It is also able to produce self intersection numbers.

Algorithm 2.3.48 (MDSintersno). Compare [5, Con. III.3.3.4]. Input: a
quasiprojective MDS X = (R,Φ(w0)) and elements w, w′ ∈ K where R = ({g}, Q,
Q0, P, FF). Let q1, . . . , qr ∈ K be the degrees of the variables T1, . . . , Tr of R.

• Compute in KQ the full-dimensional GIT-cone λ(w0) =
⋂
ϑ∈Φ ϑ.

• Choose a random w′0 ∈ λ(w0)◦ until the cone η ∈ GKZ(Q0) with w′0 ∈ η◦
is of full dimension. See Algorithm 3.2.8 for how to compute η.
• Let N = (nij)i,j be the r × r zero-matrix.
• For each two distinct 1 ≤ i, j ≤ r do

– choose a non-zero monomial T ν in g such that νi = νj = 0,
– redefine nij :=

∑r
k=1 νk(qi ·qj ·qk) where we use Algorithm 2.1.9 and

the Z-module representation as in Algorithm 2.1.4 to calculate

qi · qj · qk =
{

[K : Kijk]−1
, η ⊆ cone (ql; l 6∈ {i, j, k}) ,

0, else

with the subgroup Ki,j,k := 〈ql; l 6∈ {i, j, k}〉 of K for 1 ≤ k ≤ r.
• For each 1 ≤ i ≤ r do

– compute a point a′ ∈ Q−1
i (qi) ⊆ Qr−1 where Qi is the matrix ob-

tained from Q by removing the i-th column.
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– Adding another 0-entry, we have a := (a′1, . . . , a′i−1, 0, a′i, . . . , a′r−1)
in Qr. Redefine nii as the sum

∑r
j=1 ajnij .

• Compute αi and βj ∈ Q≥0 such that w =
∑
i αiqi and w′ =

∑
j βjqj .

• Return
∑
i,j αiβjnij ∈ Q.

Output: the intersection number D ·D′ ∈ Q of divisors D,D′ on X with [D] = w
and [D′] = w′ ∈ K.

Proof. This implements [5, Con. III.3.3.4]. Note that in line two, we have η◦ ⊆
λ(w0)◦ and in the first line of the first loop, the monomial T ν exists since, otherwise,
the codimension of V (X; Ti, Tj) in X would be one. By construction and bilinearity
of the intersection form, after the second loop, nij = qi · qj ·deg(g) for all i, j. Then

w · w′ · deg(g) =
(∑

i

αiqi

)
·

(∑
j

βjqj

)
· deg(g) =

∑
i,j

αiβj nij .
�

4. Complexity-one T -varieties

This section describes algorithms for the special class of Mori dream spaces of
complexity-one T -varieties; see Section 5 of Chapter 1 for the background.
The algorithms concerning automorphisms have been developed by I. Arzhantsev,
J. Hausen, E. Huggenberger and A. Liendo in [6]. The anticanonical complex
and the related algorithms have been developed by B. Bechtold, J. Hausen and
E. Huggenberger in [17]. See [5, 61] for the resolution of singularities for complexity-
one T -varieties. Our Algorithm 2.4.8 works in a slightly more general setting. Here
is an overview:

• Automorphisms: vertical and horizontal Demazure P -roots (Algorithms
2.4.1 and 2.4.2), roots of Aut(X)0 (Algorithm 2.4.6).

• Singularities: resolution of singularities (Algorithm 2.4.8).
• Anticanonical complex: anticanonical polytope (Algorithm 2.4.13), an-

ticanonical complex (Algorithm 2.4.14), test for being (ε-log-) terminal
(Algorithms 2.4.15 and 2.4.16).

Let X = X(P,A,Φ) be a complexity-one T -variety with matrices P,A and F-bunch
Φ as in Construction 1.5.12. In order to compute the roots of the unit-component
Aut(X)0, we first show how to calculate Demazure P -roots. Let vij , vk ∈ Zr+s be
the columns of P and denote by M the dual lattice of Zr+s. Recall from [6, Def. 5.2]
that a vertical Demazure P -root is a pair (u, k0) ∈M × {1, . . . ,m} such that

〈u, vij〉 ≥ 0 for all i, j, 〈u, vk0〉 = −1,
〈u, vk〉 ≥ 0 for all k 6= k0.

... vk0

u⊥

A horizontal Demazure P -root is a tuple (u, i0, i1, C) in the following sense. We
have u ∈ M , distinct indices i0, i1 ∈ {0, . . . , r} and C = (ci)i ∈

∏r
i=0{1, . . . , ni} is

such that lici = 1 for all i 6∈ {i0, i1}. Moreover, the scalar product 〈u, vk〉 is at least
zero for all k and

〈u, vici〉 =
{

0, i 6∈ {i0, i1},
−1, i = i1,

〈u, vij〉 ≥

 lij , i 6∈ {i0, i1}, j 6= ci,
0, i ∈ {i0, i1}, j 6= ci,
0, i = i0, j = ci.

Given a horizontal or vertical Demazure P -root κ of the form κ = (u, k0) or κ =
(u, i0, i1, C), the last s coordinates of u ∈M give the P -root ακ ∈ Zs.
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Algorithm 2.4.1 (MDSvdemazure). See [6, Remark. 5.4]. Input: an MDS X =
(R,Φ) where X = X(P,A,Φ) is a complexity-one variety with a r× (n+m) matrix
P and a 2× (r + 1) matrix A as in Construction 1.5.11.

• In the sense of 1.5.11, read out the blocks li ∈ Zni≥0 of P where 0 ≤ i ≤ r.
Let v1, . . . , vn+m be the columns of P .
• Initialize V := ∅.
• For each k0 ∈ {1, . . . ,m} do

– define ζ ∈ Zn+m by setting ζn+k0 := −1 and ζi := 0 otherwise.
– Compute in MQ = M ⊗Q the affine subspace and polytope

η(k0) := {u ∈MQ; 〈u, vk0〉 = −1} ,
B(k0) :=

{
u ∈ η(k0); P ∗ · u ≥ ζ

}
.

– Use Algorithm 2.2.2 to compute the set U := B(k0) ∩ Zr of lattice
points. Redefine V as the set V ∪ {(u, k0); u ∈ U}.

Output: the set V of all vertical Demazure P -roots (u, k0) ∈M × {1, . . . ,m}.

Algorithm 2.4.2 (MDShdemazure). See [6, Remark. 5.4]. Input: an MDS X =
(R,Φ) where X = X(P,A,Φ) is a complexity-one variety with a r× (n+m) matrix
P and a 2× (r + 1) matrix A as in Construction 1.5.11.

• In the sense of 1.5.11, read out the blocks li ∈ Zni≥0 of P where 0 ≤ i ≤ r.
Write n′i := n0 + . . .+ ni−1 and let v1, . . . , vn+m be the columns of P .

• Initialize H := ∅.
• For each two distinct 0 ≤ i0, i1 ≤ r do

– for each C = (c0, . . . , cr) ∈
∏r
i=0{1, . . . , ni} such that we have lici =

1 for all i ∈ {0, . . . , r} \ {i0, i1} do
∗ let ζ ∈ Zn+m with ζn+i := 0 for all 1 ≤ i ≤ m. For its

remaining components ζk we write k = n′i + j with 0 ≤ i ≤ r
and 1 ≤ j ≤ ni and define

ζk :=

 −1, i = i1 and j = ci1 ,
lij , i 6∈ {i0, i1} and j 6= ci,
0, otherwise.

∗ Compute in MQ = M⊗Q the affine subspace η(i0, i1, C) which
is given by{
u ∈MQ; 〈u, vn′

i
+ci〉 = 0 for i 6∈ {i0, i1}, 〈u, vni1 +ci1 〉 = −1

}
.

∗ Compute the polytope B(i0, i1, C) ⊆MQ given by
B(i0, i1, C) =

{
u ∈ η(i0, i1, C); P ∗ · u ≥ ζ

}
.

∗ Use Algorithm 2.2.2 to compute the set U := B(i0, i1, C)∩Zr
of lattice points. Redefine H as H ∪ {(u, i0, i1, C); u ∈ U}.

Output: the set H of all horizontal Demazure P -roots (u, i0, i1, C).

Remark 2.4.3. Algorithms 2.4.2 and 2.4.1 depend only on the ring R(P,A).

Remark 2.4.4. Algorithm 2.4.2 can be used to test a normal complete complexity-
one T -variety for being almost homogeneous, i.e., its automorphism group acts with
an open orbit. By [6, Thm. 6.1], this is equivalent to the existence of a horizontal
Demazure P -root.

Example 2.4.5. We computationally verify [6, Ex. 5.3]. Consider the complexity-
one variety X = X(P,A,Φ) where Φ is any F-bunch and

P =
[
−1 −3 3 0
−1 −3 0 2
−1 −2 1 1

]
, A =

[
0 −1 1
1 −1 0

]
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are as in Construction 1.5.2. Since m = 0, Algorithm 2.4.1 returns the empty set.
However, Algorithm 2.4.2 finds the single horizontal Demazure P -root

(u, 1, 2, C), u = (−1,−2, 3) ∈ MQ = Q3, C = (1, 1, 1).

Recall from [62, 6] that for a connected, semisimple linear algebraic group G there
is a root system ΦG ⊆ XR(T ) with respect to a given maximal torus T ⊆ G. Note
that G is determined uniquely up to coverings by its root system. The following
algorithm describes the roots of the unit component Aut(X)0 for a normal, complete
complexity-one MDS X = X(P,A,Φ). By [6], for the semisimple part of Aut(X),
only (sums of) the following root systems may occur

An := {ei − ej ; 1 ≤ i, j ≤ n+ 1, i 6= j} ⊆ Rn+1,

B2 := {±e1,±e2,±(e1 + e2),±(e1 − e2)} ⊆ R2.

Algorithm 2.4.6 (MDSautroots). See [6, Thm. 5.5]. Input: an MDS X = (R,Φ),
where X = X(P,A,Φ) is a complexity-one variety with P , A as in Construc-
tion 1.5.11 of size r × (n+m) and 2× (r + 1).

• Compute the sets V ⊆ Zr+s and H ⊆ Zr+s of vertical and horizontal
Demazure P -roots with Algorithms 2.4.1 and 2.4.2.

• Determine the set A := {π(u); u ∈ V ∪ H} where π : Zr+s → Zs is the
projection onto the Zs-part.

Output: the set A of roots of the unit component Aut(X)0.

Example 2.4.7. Consider the complexity-one T -variety X arising from the data
P , A, Φ = Φ(1) as in Construction 1.5.12 where

P =
[
−2 1 1 0 0
−2 0 0 1 1
−1 0 1 0 0
−1 0 0 1 0

]
, A =

[
1 0 −1
0 1 −1

]
.

Then X is three-dimensional and its Cox ring and degree map Q : Z5 → K :=
Z5/Im(P ∗) = Z are

R = K[T1, . . . , T5]/〈T4T5 + T 2
3 + T1T2〉, Q =

[
1 1 1 1 1

]
.

We compute the roots of Aut(X)0 using Algorithm 2.4.6. As predicted in [6,
Thm. 7.2], we obtain the root system

B2 = {(1,−1), (1, 1), (−1,−1), (−1, 1),
(0,−1), (0, 1), (1, 0), (−1, 0)} ⊆ Z2.

We turn to resolutions of singularities; compare Section 4 of Chapter 1. The fol-
lowing algorithm has been developed for complexity-one T -varieties, see the book
by I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface [5, Thm. III.4.4.9] and
E. Huggenberger’s thesis [61, Ch. 3]. For more general Mori dream spaces our al-
gorithm computes a candidate for a resolution and tries to verify it. The algorithm
uses the weak tropical resolution defined in [10].

Algorithm 2.4.8 (MDSresolvesing). Compare [5, Thm. III.4.4.9] and [61, Ch. 3].
Input: a projective, Q-factorial MDS X = (R,Φ) with R = (G,Q,Q0, P, FF).
Write G = {f1, . . . , fs} and assume P is of size n× r. Options: verify; minimal
if X is a surface.

• Compute the fan Σ of a completion ZΣ of the canonical toric ambient
variety with Algorithm 2.3.9 and a fan Υ ⊆ Qn with support trop(X). If
s = 1, Algorithm 2.2.7 can be used.
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• Compute the coarsest common refinement Σ′ := ΣuΥ and subdivide its
singular cones until the resulting fan (Σ′)reg is regular. Write primitive
generators for its rays into the columns of a n× r′ matrix P ′ = [P,B].
• Let p : Tr → Tn and p′ : Tr′ → Tn be the homomorphisms of tori corre-

sponding to P and P ′. Use Algorithms 2.2.13 and 2.2.12 to compute the
ideal I ⊆ K[T1, . . . , Tr′ ] generated by (p′)?p?f1, . . . , (p′)?p?fs.
• Compute a set G′ of generators for the ideal I : (T1 · · ·Tr′)∞.
• Use Algorithms 2.1.24 and 2.1.26 to compute the AGH Q′ : Zr′ → K ′

where K ′ := Zr′/linZ (P ′)∗ and the matrix (Q′)0 : Zr′ → (K ′)0. Define

Φ′ :=
{

(Q′)0 (δ∗0); δ0 � δ and P ′(δ0) ∈ Σ′
}
, δ := Qr

′

≥0.

• Create the MDS X ′ = (R′,Φ′) with R′ = (G′, Q′, (Q0)′, P ′, F ′) where F ′
is the set of all δ0 � δ such that δ◦0∩τ 6= ∅ for a maximal cone τ ∈ P−1(Υ).
• If verify was requested, then

– use Algorithm 2.2.10 to check whether all variables T1, . . . , Tr′ define
K ′-primes in R′.

– Check if dim(〈G′〉)− dim(〈G′〉+ 〈Ti, Tj〉) ≥ 2 for all i 6= j.
– If s = 1, then check if codim

X
′((X ′)sing) ≥ 2 with Algorithm 2.3.25.

Otherwise, check if R′ is normal.
– Check whether X ′ is smooth with Algorithm 2.3.24.

• If minimal was requested and X is a surface, then redefine X ′ as the
result of Algorithm 2.4.9 with input r and X ′.

Output: X ′ = (R′,Φ′). If all verify-checks were successful or if X is a complexity-
one variety as in Construction 1.5.11 then X ′ is a smooth MDS and X ′ → X a
resolution of singularities. The resolution is minimal if minimal was requested and
X is a surface.

Algorithm 2.4.9 (minimize). Input: r ∈ Z≥0 and a two-dimensional smooth
projective MDS X ′ = (R′,Φ′) that arises from a two-dimensional MDS X as in
Algorithm 2.4.8.

• If R′ is a complete intersection, then
– use Algorithm 2.3.48 to determine the indices i1, . . . , ik such that
V (X ′; Tij ) is a (−1)-curve.

• If R′ is not a complete intersection, then
– Compute ϑ := cone(q1, . . . , qr′) where q1, . . . , qr′ are the columns of

the matrix (Q0)′ representing the free part of the grading of R′.
– Let i1, . . . , ik be such that the qij are exactly the extremal vectors

of ϑ with ij > r in the sense of Remark 1.4.2.
• Return X ′ if k = 0.
• For each i ∈ {i1, . . . , ik} do

– compute the contraction X ′ → Xi of V (X ′; Ti) by an application of
Algorithm 2.4.10.

– If, by Algorithm 2.3.24, Xi is smooth, then return the result of the
recursive call to Algorithm 2.4.9 with input r and Xi.

Output: a smooth MDS X1 such that X1 → X is a minimal resolution.

Proof. By Theorem 1.4.1, exactly the (−1)-curves can be contracted smoothly. Since
X ′ is a surface the contractible divisors correspond to the extremal rays of ϑ =
Eff(X ′), see Remark 1.4.2. As the minimal resolution of a surface is unique, it
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suffices to consider any smooth contraction X ′ → Xij .

X ′

vv }} ## ))
Xj1

((

Xj2

!!

· · · Xjm−1

{{

Xjm

uu
X

By choice of ij > r, Xij → X is a resolution. Hence, the algorithm computes the
minimal resolution in finitely many steps. �

Algorithm 2.4.10 (MDScontract). Input: a projective, Q-factorial, two-dimen-
sional MDS X = (R,Φ) as in Algorithm 2.4.9 and a contractible curve V (X; Tk).
Write R = (G,Q,Q0, P, FF) with G = {f1, . . . , fs}.

• Let P ′ be the matrix obtained by deleting the k-th column of P . Compute
Q′ : Zr → Zr/Im((P ′)∗) and the matrix (Q0)′ using Algorithms 2.1.24
and 2.1.26.

• Set G′ := {f ′1, . . . , f ′s} with the image f ′i of fi under the map

K[T1, . . . , Tr] → K[T1, . . . , Tr−1], Ti 7→


Ti−1, i > k,

1, i = k,

Ti, i < k.

• Compute the list (FF)′ of 〈G′〉-faces with Algorithm 3.1.2 and define
R′ := (G′, Q′, (Q0)′, P ′, (FF)′).

• Choose w ∈ Mov(R′)◦ and define the MDS X ′ = (R′,Φ′(w)), see Algo-
rithm 2.3.14 and Example 1.3.4.

Output: the MDS X ′. Then X → X ′ is the contraction of the divisor V (X; Tk).

Proof. We will prove a similar statement in Algorithm 4.3.7 of Chapter 4. �

Proof of Algorithm 2.4.8. For complexity-one varieties, this is [5, Thm. III.4.4.9],
see also [61, Ch. 3]. Hence, we only need to show that if the verify option was
given and all tests succeed, then X ′ is a smooth MDS. In particular, X ′ → X

then is an equivariant desingularization of X. Consider X ′ = V (G′) ⊆ Kr′ and
H ′ = SpecK[K ′]. In the case of s = 1, we required the open subset U := X

′\(X ′)sing

to be of codimension at least two in X
′. Thus, the ring R′ is normal by Serre’s

criterion [73, 6.2], see Lemma 5.4.3. Moreover, the grading
Q′(e1) = deg(T1), . . . , Q′(ek) = deg(Tk)

is almost free since, by construction, the columns of P ′ generate the whole space
as a cone, are pairwise different and primitive. Furthermore, the codimension test
ensures that the variables are pairwise non-associated. By Theorem 4.2.6, R′ is the
Cox ring of X ′. We conclude that X ′ is a smooth MDS. �

Remark 2.4.11. In Algorithm 2.4.8, for higher-dimensional X, it is not clear how
to obtain a “minimal” resolution. However, one may use [51, Thm. 6.2] which states
that X arises from a combinatorially minimimal MDS X0 by a finite sequence of
small birationial maps and contractions.

In the following example, we apply Algorithm 2.4.8 to resolve the singularities of
a surface X that does not admit a non-trivial K∗-action. We will encounter X in
Theorem 4.4.1 as the surface with singularity type E6A2.
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Example 2.4.12. Consider the Mori dream surface X with class group Cl(X) =
Z⊕ Z/3Z and the following Cox ring and degree matrix

R(X) = K[T1, . . . , T4]/〈−T1T
2
4 + T 3

2 + T2T3T4 + T 3
3 〉, Q =

[
1 1 1 1
1 2 0 1

]
.

By Algorithm 2.3.24, X is singular. Using Algorithm 2.4.8 with options verify
and minimal, we obtain a minimal resolution X ′ → X with a smooth MDS X ′. Its
Cox ring is

R (X ′) = K[T1, . . . , T12] / 〈g〉,
g := −T1T

2
4 T5 + T 3

2 T12T
2
7 T8 + T2T3T11T4T5T6T7T8T10 + T 3

3 T9T
2
11T10.

Note that R(X ′) is as predicted in [33, p. 40, type E6A2]. The class group of X ′ is
Z9 and the degree matrix is

1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 −1 1 0 0 0 0 0 0 0
1 0 0 0 −1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
0 −1 0 0 −1 0 1 0 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 1 0 0
1 0 0 0 0 0 1 −1 0 1 0 0
0 1 0 1 0 0 0 −1 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 1

 .
Since X ′ is a complete intersection we can compute the self intersection numbers of
all Di := V (X ′; Ti) with Algorithm 2.3.48; they are

D2
1 D2

2 D2
3 D2

4 D2
5 D2

6 D2
7 D2

8 D2
9 D2

10 D2
11 D2

12
−1 −1 −1 −1 −2 −2 −2 −2 −2 −2 −2 −2

Observe that no further (−1)-curves Di with i > 4 exist since we provided the
option minimal. Combined with Algorithm 2.3.27, we obtain the exceptional graph
GX′ and the subgraph of (−2)-curves which indeed has E6A2 singularity type:

T1

T6
T9T12

T2

T3

T4

T5 T7
T8

T10

T11

T12 T9

T7 T8 T6 T10 T11

T5

We come to algorithms concerning the so-called anticanonical complex introduced
by B. Bechtold, J. Hausen and E. Huggenberger in [17]. Let X = X(P,A,Φ) be a
complexity-one T -variety as in Construction 1.5.11 with P -matrix P of size n× r.
Its Cox ring is R(P,A) = K[T1, . . . , Tr]/I with an ideal I = 〈f1, . . . , fs〉 and assume
the Cl(X)-grading is pointed; compare Construction 1.5.3. Let Q0 be the degree
matrix of the free part of the grading. In [17], the anticanonical polytope of X was
defined as the polytope

AX := B∨X , BX := (P ∗)−1

(
Bw +

s∑
i=1

∆(fi)− (1, . . . , 1)
)
⊆ Qn,

with the Newton polytopes ∆(fi) ⊆ Qr and the fiber-polytope Bw := (Q0)−1(w) ∩
Qr≥0 of the free part w ∈ K0 of the anticanonical divisor class. Let ZΣ be the
canonical ambient toric variety of X as in Construction 1.5.7 and Υ a fan in Qn
with support trop(X). The anticanonical complex is the polyhedral complex

AX := faces(AX) u Υ u Σ ⊆ Qn,



4. COMPLEXITY-ONE T -VARIETIES 61

where ΥuΣ is the coarsest common refinement and faces(AX)uΥ denotes the cone-
wise intersection with the polytope AX . The computation is a direct consequence
of the definition.

Algorithm 2.4.13 (MDSanticanpoly). See [17]. Input: an MDS X = (R,Φ) of
complexity one. Let R = (G,Q,Q0, P, FF) with G = {f1, . . . , fs} and P : Zr → Zn.

• Compute the free part w := (−wcan
X )0 ∈ K0 of the anticanonical divisor

class with Algorithm 2.3.41. Determine Bw := (Q0)−1(w) ∩Qr≥0.
• Compute the Minkowski sum B := Bw + ∆(f1) + . . . + ∆(fs) ⊆ Qr and

the image BX := (P ∗)−1(B − (1, . . . , 1)) in Qn. Let AX := B∨X be the
dual.

Output: the anticanonical polytope AX ⊆ Qn.

Algorithm 2.4.14 (MDSanticancomp). See [17]. Input: an MDS X = (R,Φ) of
complexity one with R = (G,Q,Q0, P, FF).

• Compute the anticanonical polytope AX ⊆ Qn with Algorithm 2.4.13.
• Compute a fan Υ ⊆ Qn with support trop(X), compare Algorithm 2.2.7.
• Compute the fan Σ ⊆ Qn of the canonical toric ambient variety with

Algorithm 2.3.9 and the coarsest common refinement Σ′ := Υ u Σ.
• Let AX be the polyhedral complex with maximal cells σ′ ∩ AX where
σ′ ∈ Σ′ runs through the maximal cones of Σ′.

Output: the anticanonical complex AX of X.

Consider a normal Q-factorial variety X with Cartier canonical divisor Dcan
X . Let

ϕ : X ′ → X be a resolution of singularities. Recall, e.g., from [61], that X is
terminal if ai > 0 for all i in

Dcan
X′ = ϕ∗ (Dcan

X ) +
∑
i

aiEi

with the exceptional divisors Ei of ϕ. We say that X is log-terminal if ai > 1 for
all i. Similarly, given 0 < ε < 1, we call X ε-log-terminal if we have ai > −1 + ε
for all i.

Algorithm 2.4.15 (MDSisepslogterminal). See [17]. Input: an MDS X = (R,Φ)
of complexity one with R = (G,Q,Q0, P, FF) and a rational number 0 < ε < 1.

• Compute the anticanonical complex AX of X using Algorithm 2.4.14.
• For each maximal cell C ∈ AX do

– Let Cε be the scaled cell ε · C. Return false if Cε is unbounded.
– Compute the set of lattice points U := Cε∩Zr with Algorithm 2.2.2.
– Let V ⊆ Qn consist of the zero-vector, the columns of P and the

vertices of AX . Return false if U \ V 6= ∅.
• Return true.

Output: true if X is ε-log-terminal and false otherwise.

Algorithm 2.4.16 (MDSisterminal). See [17]. Input: an MDS X of complexity
one.

• Perform the same steps as in Algorithm 2.4.15 for ε = 1.

Output: true if X is terminal and false otherwise.

Note that we can also test a K∗-surface for being log-terminal by an inspection of
its P -matrix, see Remark 2.5.6.
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Example 2.4.17. By an application of Algorithm 2.4.16, the complexity-one T -
variety defined in Example 2.4.7 is terminal whereas the K∗-surface of Example 2.4.5
is not. However, the latter is ε-log-terminal by Algorithm 2.4.15 for ε := 1/2.

5. Application: Combinatorially minimal K∗-surfaces

In this section, we classify the non-toric, combinatorially minimal del Pezzo, i.e.,
Fano, K∗-surfaces of Picard number two up to Gorenstein-index six. We apply the
algorithms developed in the previous sections to study the resulting surfaces. This
continues work of E. Huggenberger on the Gorenstein-case, see [61, Sec. 5.3].
We write dX for the self-intersection number of the anticanonical divisor of the
given surface X and denote the Picard index by b := [Cl(X) : Pic(X)]. We say that
X has hypersurface Cox ring if the spectrum X over the Cox ring is a hypersurface.
Moreover, recall from [51, Sec. 6] that a variety X is combinatorially minimal
if Mov(X) = Eff(X). In the sense of Remark 1.4.2, this means that no further
contraction is possible.

Theorem 2.5.1. Up to isomorphism, there are only finitely many non-toric, com-
binatorially minimal del Pezzo K∗-surfaces of Picard number two with hypersurface
Cox ring and with Gorenstein index n ∈ Z>0. The following table is a classification
of all surfaces with n ≤ 6. No two shown surfaces are isomorphic.

Cox ring R(X) degree matrix Cl(X) b n dX

(1) K[T1, . . . , T5]/〈T1T2 + T2
3 T

2
4 + T2

5 〉

[
2 0 0 1 1
0 −2 −1 0 −1
1 1 1 0 0

]
Z2 ⊕ Z/2Z 32 2 2

(2) K[T1, . . . , T5]/〈T1T2 + T2
3 T

2
4 + T2

5 〉

[
2 0 0 1 1
0 −2 −1 0 −1
1 3 2 0 0

]
Z2 ⊕ Z/4Z 256 4 1

(3) K[T1, . . . , T5]/〈T1T2 + T2
3 T

2
4 + T2

5 〉

[
2 0 0 1 1
0 −2 −1 0 −1
1 5 3 0 0

]
Z2 ⊕ Z/6Z 864 6 2

3

(4) K[T1, . . . , T5]/〈T1T
2
2 + T3T

2
4 + T2

5 〉

[
2 0 0 1 1
0 −1 −2 0 −1
1 1 0 0 0

]
Z2 ⊕ Z/3Z 108 3 4

3

(5) K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T3

5 〉
[

3 0 0 1 1
0 −1 −3 0 −1

]
Z2 9 3 8

3

(6) K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T3

5 〉

[
3 0 0 1 1
0 −1 −3 0 −1
1 1 0 0 0

]
Z2 ⊕ Z/2Z 72 3 4

3

(7) K[T1, . . . , T5]/〈T1T
2
2 + T3T

2
4 + T2

5 〉

[
2 0 0 1 1
0 −1 −2 0 −1
3 1 0 0 0

]
Z2 ⊕ Z/5Z 500 5 4

5

(8) K[T1, . . . , T5]/〈T1T
5
2 + T3T

5
4 + T5

5 〉
[

5 0 0 1 1
0 −1 −5 0 −1

]
Z2 25 5 8

5

(9) K[T1, . . . , T5]/〈T1T
5
2 + T3T

5
4 + T5

5 〉

[
5 0 0 1 1
0 −1 −5 0 −1
1 1 0 0 0

]
Z2 ⊕ Z/2Z 200 5 4

5

(10) K[T1, . . . , T5]/〈T1T
3
2 + T3T

3
4 + T3

5 〉

[
3 0 0 1 1
0 −1 −3 0 −1
1 1 0 0 0

]
Z2 ⊕ Z/4Z 576 6 2

3
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(11) K[T1, . . . , T5]/〈T1T
4
2 + T3T

4
4 + T4

5 〉

[
4 0 0 1 1
0 −1 −4 0 −1
2 1 0 0 0

]
Z2 ⊕ Z/3Z 432 6 2

3

(12) K[T1, . . . , T5]/〈T2
1 T2 + T2

3 T4 + T2
5 〉

[
1 0 0 2 1
0 −2 −1 0 −1

]
Z2 4 1 4

All surfaces are singular and exactly the surfaces of cases (5), (8) and (12) are
almost-homogeneous. The log-terminal surfaces are (1), (2), (3), (4), (7) and (12).
Moreover, in each case (i), the following P -matrices can be chosen such that the
respective K∗-surface X satisfies X = X(Pi, A) as in Construction 1.5.2:

P1 =
[
−1 −1 2 2 0
−1 −1 0 0 2
−1 0 −1 1 1

]
, P2 =

[
−1 −1 2 2 0
−1 −1 0 0 2
−1 1 −3 1 1

]
,

P3 =
[
−1 −1 2 2 0
−1 −1 0 0 2
−1 2 −5 1 1

]
, P4 =

[
−1 −2 1 2 0
−1 −2 0 0 2
−1 1 −1 1 1

]
,

P5 =
[
−1 −3 1 3 0
−1 −3 0 0 3
−1 −2 0 1 2

]
, P6 =

[
−1 −3 1 3 0
−1 −3 0 0 3
−1 −1 0 2 1

]
,

P7 =
[
−1 −2 1 2 0
−1 −2 0 0 2
−1 3 −2 1 1

]
, P8 =

[
−1 −5 1 5 0
−1 −5 0 0 5
−1 −4 0 1 4

]
,

P9 =
[
−1 −5 1 5 0
−1 −5 0 0 5
−1 −3 0 2 3

]
, P10 =

[
−1 −3 1 3 0
−1 −3 0 0 3
−1 1 −1 1 2

]
,

P11 =
[
−1 −4 1 4 0
−1 −4 0 0 4
−1 −1 0 3 1

]
, P12 =

[
−2 −1 2 1 0
−2 −1 0 0 2
−1 0 −1 0 1

]
.

Furthermore, for the respective minimal resolution of singularities X ′ → X, the
subgraphs of (−k)-curves, k ∈ Z≥2, of the graphs GX′ of exceptional curves and the
corresponding self-intersection numbers are

−4
−2 −2 −2

−2 −2 −2

(1)

−2

−3 −3

−2 −3 −2

−2 −3 −2

(2)

−2 −2

−3 −2 −3

−2 −4 −2

−2 −4 −2

(3)

−3 −3

−2 −2

−2 −3 −2

−2

(4)

−2 −2 −2 −2 −2

−3

(5)

−2 −2 −2 −2

−3

−3

−2

−2

(6)

−2 −4 −2

−2

−3 −2

−3 −2

−3 −2

(7)

−2 −2 −2 −2 −2 −2 −2 −2 −2

−5

(8)
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−3 −2 −2
−3 −2

−2 −3−2 −2

−2

(9)

−4 −4

−2 −2 −2
−3 −3

−2 −2

−2 −2

(10)

−3

−2 −2

−2 −2

−4
−2 −2 −2 −2

−4

(11)

−2 −2 −2

−2

(12)

Remark 2.5.2. In Theorem 2.5.1, case (12) coincides with the Gorenstein surface
with ADE-singularity type D4 found in [61, Thm. 5.26]. Surfaces (1), (4) and (12)
also appear in [94, Satz 6.13].

Lemma 2.5.3. Let w1, . . . , w4 ∈ Z2 be such that Q≥0 · w1 = Q≥0 · w2, we have
Q≥0 · w3 = Q≥0 · w4 and Q≥0 · w1 6= Q≥0 · w3. If linZ(w1, . . . , w4) = Z2, then there
is S ∈ GL(2,Z) such that

S · [w1, . . . , w4] =
[
a b 0 0
0 0 c d

]
with a, b, c, d ∈ Z.

Proof. After computing a Hermite normal form, we may assume that there are
integers a, b, c, d ∈ Z satisfying

w1 = (a, 0), w2 = (b, 0), w3 = c · v, w4 = d · v

with a vector v = (v1, v2) ∈ Z2. Since the wi generate Z2, we must have v2 = ±1;
we may assume v2 = 1. Adding −v1 times the last row to the first one yields

S ·
[
a b c · v1 d · v1
0 0 c d

]
=
[
a b 0 0
0 0 c d

]
with S ∈ GL(2,Z). �

Lemma 2.5.4. Let X be a combinatorially minimal K∗-surface with hypersurface
Cox ring and rank(Cl(X)) = 2. Then X = X(P,A) with integral matrices

P =
[

−l01 −l02 l11 l12 0
−l01 −l02 0 0 l21

− d12l01
l12

− d21l01
l21

− d11l02
l11

− d21l02
l21

d11 d12 d21

]
, A =

[
−1 1 0
−1 0 1

]
as in Construction 1.5.2, satisfying gcd(liji , diji) = 1 for all 0 ≤ i ≤ 2 and 1 ≤ ji ≤
ni and we have

0 ≤ d12 < l12, 0 ≤ d21 < l21,
d12

l12
>

d11

l11
.

Furthermore, the fan Σ(P ) of the canonical toric ambient variety of X in Construc-
tion 1.5.7 is of type (ee) with exactly two three-dimensional cones

σ+ := cone(v02, v12, v21),
σ− := cone(v01, v11, v21).

e1

−e1 − e2e2

v21
v11

v01

v12

v02
Σ(P )

Moreover, the integral 2× 5 matrix Q0 representing the free part of the degree map
Z5 → Cl(X) is of shape

Q0 =
[

a 0 0 l01a
l12

l01a
l21

0 b
l02b
l11

0 l02b
l21

]
, a, b ∈ Z>0.
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Proof. Since X is a surface and rank(Cl(X)) = 2, we have dim(R(X)) = 4. Together
with the fact that the ideal of relations of R(X) is principal, the parameters in
Construction 1.5.2 are r = 2, n = 5 and m = 0. This means X = X(P,A) arises
from matrices P and A where

P =
[
−l01 −l02 l11 l12 0
−l01 −l02 0 0 l21
d01 d02 d11 d12 d21

]
, A =

[
−1 1 0
−1 0 1

]
.

Let the 2× 5 matrix Q0 = [q01, . . . , q21] represent the projection Z5 → Z2 onto the
free part of Cl(X). Since X is combinatorially minimal, the columns q01, . . . , q21
generate a pointed, two-dimensional cone ϑ ⊆ Q2 where each of the two extremal
rays of ϑ contains exactly two qij and q21 ∈ ϑ◦ by homogenity of the defining
equation T l01

01 T
l02
02 + T l11

11 T
l12
12 + T l21

21 of the Cox ring. Moreover, by Lemma 2.5.3,
there are a, b, c, d, e, f ∈ Z such that

ϑ

q01 q11

q12

q02 q21
Q0 =

[
a 0 0 d e
0 b c 0 f

]
=
[

a 0 0 l01a
l12

l01a
l21

0 b
l02b
l11

0 l02b
l21

]
,

where the last equality and the fact that all fractions are integers was obtained from
P · (Q0)t = 0. Multiplying the rows by ±1, we may assume a, b ∈ Z>0. Using again
P · (Q0)t = 0, we have the additional conditions

ad01 = −ad12l01

l12
− ad21l01

l21
, bd02 = −bd11l02

l11
− bd21l02

l21
.

Division by a or b respectively gives the desired shape of P . The conditions 0 ≤
d12 < l12 and 0 ≤ d21 < l21 come from according row operations in P (before fixing
the d0i). Note that P is in the normal form of Construction 1.5.2 if we fix the
ordering of the slopes of one block:

d02

l02
>

d01

l01
⇔ d12

l12
>

d11

l11
. �

Lemma 2.5.5. Let X = X(P,A) be as in Lemma 2.5.4. Then X is Fano if and
only if the following inequalities hold

1 <
1
l21

+ 1
l12

+ 1
l01
, 1 <

1
l21

+ 1
l11

+ 1
l02
.

Proof. Let Q0 be the 2 × 5 matrix from Lemma 2.5.5 with columns qij . Also by
Lemma 2.5.5 and Construction 1.5.3, the Cox ring of X is

R(X) = K[T01, T02, T11, T12, T21]/〈g〉, g := T l01
01 T

l02
02 + T l11

11 T
l12
12 + T l21

21 .

By Proposition 1.3.17, X is Fano if and only if the free part (−wcan
X )0 ∈ Cl(X)0 = Z2

of the anticanonical divisor class of X is an element of the ample cone, i.e.

(−wcan
X )0 =

(∑
i,j

qij

)
− deg(g)

=

 a
(
l01
l21

+ l01
l12

+ 1− l01

)
b
(
l02
l21

+ l02
l11

+ 1− l02

) 
∈ cone(e1, e2)◦.

This means (−wcan
X )0

i > 0 for both i = 1, 2. Since a, b ∈ Z>0, division by l01 or
l02 ∈ Z>0 respectively, gives the assertion. �

The parameters occurring in the inequalities in Lemma 2.5.5 are platonic triples,
i.e., triples (a, b, c) ∈ Z3

>0 such that a−1 + b−1 + c−1 > 1. Up to permutation, the
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only possible combinations are (compare [61, Ex. 3.20])

(1, x, y), (2, 2, z), (2, 3, 3), (2, 3, 4), (2, 3, 5), x, y ∈ Z≥1, z ∈ Z≥2.

Remark 2.5.6. The platonic triples occurring in Lemma 2.5.5 are similar to the
ones occurring in [61, Prop. 3.19, Ex. 3.20]: X being log-terminal is equivalent to

1 <
1
l02

+ 1
l12

+ 1
l21
, 1 <

1
l01

+ 1
l11

+ 1
l21
.

Lemma 2.5.7. Let X = X(P,A) be as in Lemma 2.5.4 and assume X is Fano.
Then each possible choice of parameters lij must simultaneously satisfy cases Ak,
Bl for some k, l ∈ {1, . . . , 20} where

case l01 l12 l21
A1 1 ≥ 1 ≥ 2
A2 ≥ 2 1 ≥ 2
A3 2 2 ≥ 2
A4 2 ≥ 3 2
A5 ≥ 3 2 2
A6 2 3 3
A7 3 2 3
A8 3 3 2
A9 2 3 4
A10 2 4 3
A11 3 2 4
A12 4 2 3
A13 3 4 2
A14 4 3 2
A15 2 3 5
A16 2 5 3
A17 3 2 5
A18 5 2 3
A19 3 5 2
A20 5 3 2

case l02 l11 l21
B1 1 ≥ 1 ≥ 2
B2 ≥ 2 1 ≥ 2
B3 2 2 ≥ 2
B4 2 ≥ 3 2
B5 ≥ 3 2 2
B6 2 3 3
B7 3 2 3
B8 3 3 2
B9 2 3 4
B10 2 4 3
B11 3 2 4
B12 4 2 3
B13 3 4 2
B14 4 3 2
B15 2 3 5
B16 2 5 3
B17 3 2 5
B18 5 2 3
B19 3 5 2
B20 5 3 2

Proof. This is a direct application of Lemma 2.5.5 and the aforementioned possible
choices for platonic triples. �

Lemma 2.5.8. See [61, Prop. 5.2]. Let X = X(P,A) be as in Lemma 2.5.4. Then
X is n-Gorenstein if and only if n ∈ Z>0 is minimal such that all of the following
divisibility constraints, called (a) to (j), are satisfied

l11l21d01 + l01l21d11 + l01l11d21
∣∣ n (l01l11l21 − l11l21 − l01l21 − l01l11) ,

l12l21d02 + l02l21d12 + l02l12d21
∣∣ n (l02l12l21 − l12l21 − l02l21 − l02l12) ,

l11l21d01 + l01l21d11 + l01l11d21
∣∣ n (l01l21d11 + l21(d01 − d11) + l01(d21 − d11)) ,

l12l21d02 + l02l21d12 + l02l12d21
∣∣ n (l02l21d12 + l21(d02 − d12) + l02(d21 − d12)) ,

l11l21d01 + l01l21d11 + l01l11d21
∣∣ n (l01l11d21 + l11(d01 − d21) + l01(d11 − d21)) ,

l12l21d02 + l02l21d12 + l02l12d21
∣∣ n (l02l12d21 + l12(d02 − d21) + l02(d12 − d21)) ,

l01d02 − l02d01
∣∣ n (d02 − d01) ,

l01d02 − l02d01
∣∣ n (l01 − l02) ,

l11d12 − l12d11
∣∣ n (d12 − d11) ,

l11d12 − l12d11
∣∣ n (l11 − l12) .

Lemma 2.5.9. Let X = X(P,A) be as in Lemma 2.5.4. Set q1 := gcd(l21l12, l01l21)
and q2 := gcd(l21l11, l02l21). If q1 | l12l01 and q2 | l02l11, then Q0 can be chosen as
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the integral matrix

Q0 =
[

l21l12
q1

0 0 l01l21
q1

l12l01
q1

0 l21l11
q2

l02l21
q2

0 l02l11
q2

]
.

Proof. Consider the sublattice L ≤ Z5 spanned by the two vectors u1, u2 ∈ Z5 which
are given by

u1 := (l21l12, 0, 0, l01l21, l12l01) , u2 := (0, l21l11, l02l21, 0, l02l11) .

Since L ≤ ker(P ) and rank(L) = 2 = rank(ker(P )), the saturated lattice Lsat equals
ker(P ). Swapping coordinates, we have

〈S1 · u1, S1 · u2〉 =
〈 l21l12

l01l21
0
0

l12l01

 ,

 0
0

l02l21
l21l11
l02l11

〉 =:
〈(

v
0

l12l01

)
,

(
0
v′

l02l11

)〉
with S1 ∈ GL(5,Z) and v, v′ ∈ Z2. By basic algebra, given a primitive vector
w ∈ Z2 and d ∈ Z, there is S ∈ GL(2,Z) such that S(d · w) = (d, 0). Applying this
to the primitive vectors vq−1

1 and v′q−1
2 , we have S2 · v = (q1, 0) and S′2 · v′ = (q2, 0)

with matrices S2, S
′
2 ∈ GL(2,Z). Then

S · L = 〈Su1, Su2〉 =
〈 q1

0
0
0

l12l01

 ,

 0
0
q2
0

l02l11

〉, S :=
[

S2 0
0 S′2

1

]
· S1

with S ∈ GL(5,Z). Since q1 | l12l01 and q2 | l02l11, we have a sublattice L′ :=
〈q−1

1 Su1, q
−1
2 Su2〉 ≤ Z5. Since L′ = (L′)sat and L′ ⊆ (S · L)sat and both L′ and

S ·L are of rank two, we have L′ = (S ·L)sat. Then the rows of Q0, i.e., generators
for ker(P ), are obtained by

ker(P ) = Lsat = S−1(L′) =
〈
q−1
1 u1, q

−1
2 u2

〉
. �

Lemma 2.5.10 (A1B1). Consider in Lemma 2.5.7 case A1B1, i.e., l01 = 1 = l02,
and l11 ≥ 1, l12 ≥ 1, l21 ≥ 2. If X is n-Gorenstein, then there are only finitely
many possibilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the
following bounds

2 ≤ l21 = l11 = l12 ≤ n, −n < −d11 < 2n.

Proof. Note that by Lemma 2.5.4, we require d01 and d02 to be integers of the
following form

d01 = −d12

l12
− d21

l21
∈ Z, d02 = −d11

l11
− d21

l21
∈ Z.

Since also l12d01 ∈ Z and l11d02 ∈ Z, this means l21 | d21l12 and l21 | d21l11. As
gcd(l21, d21) = 1, we have l21 | l12 and l21 | l11. Lemma 2.5.9 then allows us to
choose the free part Q0 of the grading as

Q0 =
[

l12 0 0 1 l12
l21

0 l11 1 0 l11
l21

]
.

Since the grading must be almost free, each four columns must generate Z2 as a
lattice, i.e., both l11 and l11/l21 as well as l12 and l12/l21 have to be coprime. We
obtain l21 = l11 = l12. Now, condition (i) in Lemma 2.5.8 provides us with l21 | n
and, thus, 2 ≤ l21 = l11 = l12 ≤ n. Moreover, by condition (a) of Lemma 2.5.8,
we have d11 − d12 | 2n. Together with the condition d12 > d11 obtained by the
requirements on the slopes in Lemma 2.5.4, this implies

−n ≤ −l12 < −d12 < −d11 ≤ 2n− d12 < 2n. �
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Lemma 2.5.11 (A1B2). Consider in Lemma 2.5.7 case A1B2, i.e., l01 = 1, l02 ≥
2, l11 = 1, l12 ≥ 1, l21 ≥ 2. If X is n-Gorenstein, then there are only finitely
many possibilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the
following bounds

2 ≤ l21 = l02 = l12 ≤ n, −1 < −d11 <
3n
2 .

Proof. Note that by Lemma 2.5.4, we require d01 and d02 to be integers of the
following form

d01 = −d12

l12
− d21

l21
∈ Z, d02 = −d11l02 −

d21l02

l21
∈ Z.

For d02 ∈ Z, this means l21 | d21l02 and l21 | l02 follows from gcd(d21, l21) = 1. Since
also l12d01 ∈ Z holds, we obtain l21 | d21l12. Using again gcd(d21, l21) = 1, we arrive
at l21 | l12. Lemma 2.5.9 then allows us to choose the free part Q0 of the grading as

Q0 =
[

l12 0 0 1 l12
l21

0 1 l02 0 l02
l21

]
.

Since the grading must be almost free, each four columns must generate Z2 as a
lattice, i.e., both l02 and l02/l21 as well as l12 and l12/l21 have to be coprime. We
obtain l21 = l02 = l12. Now, condition (i) in Lemma 2.5.8 provides us with l21 | n
and, thus, 2 ≤ l21 = l11 = l12 ≤ n. The requirements on the slopes in Lemma 2.5.4
and 0 ≤ d21 < l21 gives us

d11 <
d12

l12
< 1.

Moreover, by condition (a) of Lemma 2.5.8, −d11l21 + d12 divides n(l21 + 1). To-
gether, by division of l21 = l12, we conclude

0 ≤ −d11 + d12

l21
≤ n(l21 + 1)

l21
≤ 3n

2

⇒ −1 < −d12

l12
≤ −d11 ≤

3n
2 −

d12

l12
<

3n
2 . �

Several of the cases of Lemma 2.5.7 can be directly left out by the following obser-
vation.

Lemma 2.5.12. In the situation of Lemma 2.5.7, each case AiBj in which at least
one of the following conditions is satisfied, is not possible.
l21 - l01l12, l12 - l01l21,

l21 - l02l11, l11 - l02l21,

l21 = l01 and l12 - l01, l12 = l01 and l21 - l01,

l21 = l02 and l11 - l02, l11 = l02 and l21 - l02,

l01 ≥ 2 and l12 = l21 and l01 - l21, l02 ≥ 2 and l11 = l21 and l02 - l21.

In particular, this rules out all cases AiBj with i ≥ 4 or j ≥ 4. Furthermore, in the
cases A3Bj and AiB3, we have l21 = 2, in the cases A1Bj, we have l12 ≥ 2 and in
the cases AiB1, we have l11 ≥ 2.

Proof. We enumerate the listed conditions row-wise from left to right and speak of
conditions (i) to (x). In Lemma 2.5.4, we showed that the integers d01 and d02 are

d01 = −d12l01

l12
− d21l01

l21
∈ Z, d02 = −d11l02

l11
− d21l02

l21
∈ Z.

In particular, l12d01 and l21d01 as well as l21d02 and l11d02 are integers. Since
gcd(lij , dij) = 1 for all 0 ≤ i ≤ 2 and 1 ≤ j ≤ ni, this is equivalent to

l21 | l01l12, l12 | l01l21, l21 | l02l11, l11 | l02l21,
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respectively. This proves cases (i) to (iv). In the next four cases, i.e., (v) to (viii),
ordered as in the claim, this becomes

d01 = −d12l21

l12
− d21 ∈ Z, d01 = −d12 −

d21l01

l21
∈ Z,

d02 = −d11l02

l11
− d21 ∈ Z, d02 = −d11 −

d21l02

l21
∈ Z.

Since we require the d0i to be integers, all occurring fractions must be integers, i.e.,
, enumerated from left to right, we have respectively

l12 | d12l21, l21 | d21l01, l11 | d11l02, l21 | d21l02.

Since lij and dij are coprime for all 0 ≤ i ≤ 2 and 1 ≤ j ≤ ni, all dij can be removed
from the above divisibility constraints, i.e., the respective claim follows from

l12 | l21, l21 | l01, l11 | l02, l21 | l02.

In the last two cases, we have respectively

d01 = l01(−d12 − d21)
l21

∈ Z, d02 = l02(−d11 − d21)
l21

∈ Z.

Since d01 and l01 as well as d02 and l02 are coprime, we must have l01 | l21 and
l02 | l21 respectively. This completes the first part of the proof. The remaining
assertions are direct consequences. �

Lemma 2.5.13 (A1B3). Consider in Lemma 2.5.7 case A1B3, i.e., l01 = 1, l02 =
2, l11 = 2, l12 ≥ 1, l21 ≥ 2. If X is n-Gorenstein, then there are only finitely
many possibilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the
following bounds

1 ≤ l12 ≤ 2, l21 = 2, 0 > d11 ≥ −n− 1.

Proof. We have l21 = 2 by Lemma 2.5.12. Since 0 ≤ d21 < l21 and gcd(l21, d21) = 1,
we have d21 = 1. Moreover, using Lemma 2.5.4, the requirement

2d01 = −2d12

l12
− 1 ∈ Z

gives l12 | 2d12 which in turn delivers l12 | 2 since gcd(l12, d12) = 1. In particular
1 ≤ l12 ≤ 2. Condition (h) in Lemma 2.5.8 supplies us with bounds

2d12

l12
+ 1− d11 − 2

∣∣∣ n ⇒ −d11 ≤ n+ 1− 2d12

l12
≤ n+ 1. �

Lemma 2.5.14 (A2B1). Consider in Lemma 2.5.7 case A2B1, i.e., l01 ≥ 2, l02 =
l12 = 1, l21 ≥ 2 and l11 ≥ 1. If X is n-Gorenstein, then there are only finitely
many possibilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the
following bounds

2 ≤ l01 = l11 = l21 < 4, d12 = 0, 0 < −d11 ≤ 4n.

Proof. Note that by Lemma 2.5.4, we have 0 ≤ d12 < l12 = 1, i.e., d12 = 0. we
require d01 and d02 to be integers of the following form

d01 = −d21l01

l21
∈ Z, d02 = −d11

l11
− d21

l21
∈ Z.

For d01 ∈ Z, this means l21 | d21l01 and l21 | l01 follows from gcd(d21, l21) = 1. Since
also l11d01 ∈ Z, we obtain l21 | d21l11. Using again gcd(d21, l21) = 1, we arrive at
l21 | l11. Lemma 2.5.9 then allows us to choose the free part Q0 of the grading as

Q0 =
[

1 0 0 l01
l01
l21

0 l11 1 0 l11
l21

]
.
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Since the grading must be almost free, each four columns must generate Z2 as a
lattice, i.e., both l01 and l01/l21 as well as l11 and l11/l21 have to be coprime. We
obtain l21 = l01 = l11. By the requirements on the slopes in Lemma 2.5.4, we have
d11 < 0. Now, conditions (a) and (b) in Lemma 2.5.8 provide us with

−d11 | n(l21 − 3), −d11 | n(l21 + 1).

Then −d11 also divides the difference of the right hand sides, i.e., −d11 | 4n. In
particular, 0 < −d11 ≤ 4n. Applying condition (j) of Lemma 2.5.8, i.e., −d11 |
nl21 − n, we conclude

0 < −d11 ≤ nl21 − n ⇒ −4n ≤ d11 < −nl21 ≤ d11 − n

⇒ 4 > l21 ≥ −
d11

n
+ 1 > 1. �

Lemma 2.5.15 (A2B2). Consider in Lemma 2.5.7 case A2B2, i.e., l01, l02, l21,≥ 2
and l11 = l12 = 1. If X is n-Gorenstein, then there are only finitely many possi-
bilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the following
bounds

2 ≤ l01 = l02 = l21 ≤ 2n, 0 > d11 ≥ −n.

Proof. Note that by Lemma 2.5.4, we have 0 ≤ d12 < l12 = 1, i.e., d12 = 0, and the
condition on the slopes gives 0 > d11. Also, both l02 and d02 as well as l01 and d01
must be coprime. Using the description of d0i obtained in Lemma 2.5.4, we have

d01 = −d21l01

l21
∈ Z, d02 = l02(−d11)− d21l02

l21
∈ Z.

Since d02 ∈ Z, we must have l21 | d21l02 and the condition gcd(d21, l21) = 1 then
delivers l21 | l02. Similarly, l21 | d21l01 implies l21 | l01. Moreover, assume l02 - l21
or l01 - l21. Then there is a prime number p ∈ Z≥2 or a prime number p′ ∈ Z≥2
such that

p | l02 and p
∣∣∣ d21l02

l21
or p′ | l01 and p′

∣∣∣ d21l01

l21

which means gcd(l02, d02) ≥ p > 1 or gcd(l01, d01) ≥ p′ > 1, a contradiction. We
obtain l02 | l21 | l02 and l01 | l21 | l01 and therefore l01 = l21 = l02. Moreover, since
X is n-Gorenstein, we have

2 ≤ (−d11)l01l21 = (−d11)l201 ≤ n(l21 + l01) = 2nl01

by condition (a) of Lemma 2.5.8. In particular, we obtain l01 = l02 = l21 ≤ 2n
and 0 < −d11 ≤ n. We conclude that all free parameters in Lemma 2.5.4 are
bounded. �

Lemma 2.5.16 (A2B3). Consider in Lemma 2.5.7 case A2B3, i.e., l01 ≥ 2, l02 =
2, l11 = 2, l12 = 1 and l21 ≥ 2. If X is n-Gorenstein, then there are only finitely
many possibilities for the matrix P of Lemma 2.5.4. More precisely, we obtain the
following bounds

l01 = 2, l21 = 2, 0 > d11 ≥ −n, d12 = 0, d21 = 1.

Proof. Note that by Lemma 2.5.4, we have 0 ≤ d12 < l12 = 1, i.e., d12 = 0, and
the condition on the slopes gives 0 > d11. Lemma 2.5.12 provides us with l21 = 2.
Thus, by Lemma 2.5.4, we have d21 = 1. Moreover, using again Lemma 2.5.4, we
have

gcd (l01, d01) = 1, d01 = −d21l01

l21
∈ Z.



5. APPLICATION: COMBINATORIALLY MINIMAL K∗-SURFACES 71

Therefore, 2 = l21 | d21l01 implies 2 | l01. Since l01 ≥ 2, this means 2 = l01.
Moreover, since X is n-Gorenstein, we have 0 < −d11 | n by condition (j) of
Lemma 2.5.8. In particular, 0 > d11 ≥ −n. �

Lemma 2.5.17. In the situation of Lemma 2.5.7, cases A3B1, A3B2 and A3B3
are not possible.

Proof. By Lemma 2.5.12, in all three cases, we have l21 = 2 and, using Lemma 2.5.4,
d01 = −2. This is a contradiction to gcd(d01, l01) = 1. �

Proof of Theorem 2.5.1. By Theorem 1.5.4, each K∗-surface X can be obtained
as X = X(P,A) where the matrices P and A are as in Lemma 2.5.4; compare
Construction 1.5.2. Since X is a del Pezzo surface, Lemma 2.5.7 provides us with
a finite list of cases AiBj where i, j ∈ {1, . . . , 20}. Lemma 2.5.12 then reduces this
list to the cases AiBj with i, j ∈ {1, 2, 3}.
Using the bounds obtained in Lemma 2.5.10 and neglecting matrices not satisfying
the requirements of Lemma 2.5.4, in case A1B1, the only possible P -matrices are

P1 =
[
−1 −1 2 2 0
−1 −1 0 0 2
−1 0 −1 1 1

]
, P2 =

[
−1 −1 2 2 0
−1 −1 0 0 2
−1 1 −3 1 1

]
,

P3 =
[
−1 −1 2 2 0
−1 −1 0 0 2
−1 2 −5 1 1

]
.

In a similar manner, in case A1B2, using the bounds given in Lemma 2.5.11, only
the following P -matrices are possible:

P4 =
[
−1 −2 1 2 0
−1 −2 0 0 2
−1 1 −1 1 1

]
, P5 =

[
−1 −3 1 3 0
−1 −3 0 0 3
−1 −2 0 1 2

]
,

P6 =
[
−1 −3 1 3 0
−1 −3 0 0 3
−1 −1 0 2 1

]
, P7 =

[
−1 −2 1 2 0
−1 −2 0 0 2
−1 3 −2 1 1

]
,

P8 =
[
−1 −5 1 5 0
−1 −5 0 0 5
−1 −4 0 1 4

]
, P9 =

[
−1 −5 1 5 0
−1 −5 0 0 5
−1 −3 0 2 3

]
,

P10 =
[
−1 −3 1 3 0
−1 −3 0 0 3
−1 1 −1 1 2

]
, P11 =

[
−1 −4 1 4 0
−1 −4 0 0 4
−1 −1 0 3 1

]
.

Using again Lemma 2.5.4 in conjunction with Lemma 2.5.13, no valid P -matrix can
be obtained in case A1B3. Moreover, making use of Lemmas 2.5.14 and 2.5.4, case
A2B1 provides us with

P12 =
[
−2 −1 2 1 0
−2 −1 0 0 2
−1 0 −1 0 1

]
, P13 =

[
−2 −1 2 1 0
−2 −1 0 0 2
−1 1 −3 0 1

]
,

P14 =
[
−3 −1 3 1 0
−3 −1 0 0 3
−1 0 −1 0 1

]
, P15 =

[
−3 −1 3 1 0
−3 −1 0 0 3
−2 0 −2 0 2

]
,

P16 =
[
−2 −1 2 1 0
−2 −1 0 0 2
−1 2 −5 0 1

]
, P17 =

[
−3 −1 3 1 0
−3 −1 0 0 3
−1 1 −4 0 1

]
.

Combining Lemma 2.5.4 with Lemma 2.5.15 or 2.5.16, we see that case A2B3 does
not yield valid P -matrices whereas we obtain from case A2B2 the P -matrices

P18 =
[
−2 −2 1 1 0
−2 −2 0 0 2
−1 1 −1 0 1

]
, P19 =

[
−2 −2 1 1 0
−2 −2 0 0 2
−1 3 −2 0 1

]
,

P20 =
[
−2 −2 1 1 0
−2 −2 0 0 2
−1 5 −3 0 1

]
.

By Lemma 2.5.17, the cases A3Bj do not produce any valid P -matrix. We now
remove isomorphic K∗-surfaces. In our case, Proposition 1.5.8 tells us that K∗-
surfaces X1 and X2 with P -matrices P1 and P2 are isomorphic if and only if P2 =
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SP1U with admissible matrices S ∈ GL(3,Z) and U ∈ GL(5,Z). The two invertible
matrices

S :=
[
−1 0 0
−1 1 0

0 1 −1

]
, U :=

 0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1


are admissible for all P -matrices Pi with i > 12. Hence, each K∗-surface X(Pi, A)
with i > 12 is isomorphic to a K∗-surface X(Pj , A) with 1 ≤ j ≤ 12 since

P13 = SP4U, P14 = SP5U, P15 = SP6U,

P16 = SP7U, P17 = SP10U, P18 = SP1U,

P19 = SP2U, P20 = SP3U.

The remaining data shown in the first table of the theorem are applications of
Algorithms 2.1.24, 2.3.21, 2.3.45, 2.3.24, 2.3.48 and 2.3.41. We come to the property
of being almost-homogeneous. An application of Algorithm 2.4.2 shows that only
in cases (5), (8) and (12) there are horizontal Demazure P -roots, namely

((−1,−2, 3), 2, 1, (1, 1, 1))) , ((0,−4, 5), 2, 0, (1, 1, 1))) ,
((0, 1,−2), 2, 0, (2, 2, 1))) .

By [6, Thm. 6.1], the existence of a horizontal Demazure P -root is equivalent to the
surface being almost homogeneous. The statement about the log-terminal property
is Remark 2.5.6. For the graphs of exceptional curves, we used Algorithm 2.4.8 to
determine the minimal resolution X ′ → X of each surface X of the previous table.
Algorithm 2.3.27 then delivers the respective graphs of exceptional curves GX′ ; gray
vertices stand for negative curves, white ones for nonnegative curves V (X ′; Ti).
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T7

T10
T1

T2T3
T4

T5

T6

T8

T9
T11 T12

T13
T14

T15

T16
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T3
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T5

T8
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The subgraph of (−k)-curves, k ∈ Z≥2, then yields the graphs listed in the theorem.
The needed self-intersection numbers are obtained using Algorithm 2.3.48; we write
di := V (X ′; Ti)2.

case d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16
(1) −1 −1 −1 −1 −1 −4 −2 −2 −2 −2 −2 −2
(2) −1 −1 −1 −1 −1 −3 −3 −2 −3 −2 −3 −2 −2 −2
(3) −1 −1 −1 −1 −1 −2 −4 −3 −4 −2 −2 −2 −3 −2 −2 −2
(4) −1 −1 −1 −1 −1 −2 −3 −2 −2 −3 −2 −3 −2
(5) ≥ 0 −1 ≥ 0 −1 ≥ 0 −2 −3 −2 −2 −2 −2
(6) −1 −1 −1 −1 −1 −2 −3 −2 −3 −2 −2 −2 −2
(7) −1 −1 −1 −1 −1 −2 −3 −3 −2 −2 −2 −2 −3 −2 −4
(8) −4 −1 −4 −1 ≥ 0 −2 −2 −5 −2 −2 −2 −2 −2 −2 −2
(9) −1 −1 −1 −1 −1 −2 −2 −2 −2 −3 −2 −2 −3 −3 −2
(10) −1 −1 −1 −1 −1 −3 −3 −2 −4 −2 −2 −2 −4 −2 −2 −2
(11) −1 −1 −1 −1 −1 −3 −2 −4 −2 −2 −2 −2 −2 −2 −4 −2
(12) −1 ≥ 0 −1 ≥ 0 ≥ 0 −2 −2 −2 −2

For case (8), we computed a not necessarily minimal resolution X ′ → X. The graph
GX′ and the self-intersection numbers di := V (X ′; Ti)2 are

T9

T16

T1
T2T3T4

T5
T6

T7

T8

T10

T11
T12

T13 T14 T15
T17

T18

T19

T20

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
-5 -1 -5 -1 -1 -2 -2 -2 -1 -5 -2

d12 d13 d14 d15 d16 d17 d18 d19 d20
-2 -2 -2 -2 -2 -2 -2 -2 -2

We apply the steps of Algorithm 2.4.8 with r = 5 formally to obtain the graph of
exceptional curves of the minimal resolution. Since d9 = −1, we contract V (X ′; T9),
where we write again X ′ for the contracted surface. This means we remove the cor-
responding vertex and edges and increase the self-intersection number of V (X ′; T1),
V (X ′; T3) and V (X ′; T15) by one. Iterating this procedure, we contract V (X ′; Ti)
with i = 9, 15, 14, 7, 17 and obtain the graph and intersection numbers shown above
by shifting the indices of the remaining variables accordingly. �

Remark 2.5.18. Using the same methods, Theorem 2.5.1 can easily be expanded
to higher Gorenstein index.





CHAPTER 3

Computing the Mori chamber decomposition

Given an action of a connected reductive linear algebraic group H on an algebraic
variety X, Mumford [83] constructed good H-sets Xss(L) ⊆ X which depend on
the choice of an ample, H-linearized line bundle L on X. In general, there are
several distinct quotients and this variation of GIT-quotients is described by the
GIT-fan. See the work of Dolgachev, Hu [35] and Thaddeus [97] for ample bundles
on a projective variety and Arzhantsev, Berchtold, Hausen [7, 18] for the affine case.
Based on [18], we provide in this chapter an algorithm to compute the GIT-fan of
torus actions on affine varieties. In Mumford’s sense [83], it describes the possible
linearizations of the trivial bundle. Note that the torus-case is essential as more
general group actions can be reduced to it [7]. An import special case is the Mori
chamber decomposition of a Mori dream space.
The structure of this chapter is as follows. In Section 1, we present algorithms
to compute F-faces, i.e., faces corresponding to torus orbits that meet an affine
variety. Not only is this the basis for the computation of the GIT-fan but it is also
essential for computations with Mori dream spaces, see Chapter 2. Section 2 is
concerned with the computation of GIT-cones, the GIT-fan and the Mori chamber
decomposition. The correspondence of the GIT-fan to qp-maximal good H-sets has
been widened to the class of (H, 2)-maximal subsets in [51, 5]. In Section 3, we
recall the correspondence and present a direct algorithm for their computation.
Most parts of Sections 1 and 2 (as well as part of this introduction) have been
published in the author’s paper Computing the GIT-fan, see [71]. The algorithms
of this chapter have been implemented in Maple/convex [70, 54] and also in joint
work with J. Böhm and Y. Ren in Singular [31].

1. Computing F-faces

Let X be a Mori dream space with Cox ring R(X) = K[T1, . . . , Tr]/a where a ⊆
K[T1, . . . , Tr] is an ideal. Then the F-faces of X in the sense of Section 3 of Chapter 1
are precisely the a-faces to be defined in Definition 3.1.1. In this section, we treat
their computational aspects. Most of this section has appeared in [71, Sec. 2 and 3].

We will work with the following description of the toric orbits of Kr in terms of
faces of the orthant γ := Qr≥0: the standard torus Tr := (K∗)r acts via

Tr ×Kr → Kr, t · x = (t1x1, . . . , trxr).

Given a face γ0 � γ, define the reduction of an r-tuple z of, e.g., numbers along γ0
as

zγ0 := (z′1, . . . , z′r), z′i :=
{
zi, ei ∈ γ0,

0, ei 6∈ γ0,

where e1, . . . , er ∈ Qr denote the canonical basis vectors. Then, one has a bijection

{ faces of γ } ↔ { Tr-orbits } , γ0 7→ Trγ0
:= {tγ0 ; t ∈ Tr} .

75
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Note that in the notation of [42], Trγ0
is the Tr-orbit through the distinguished point

corresponding to the dual face γ∗0 := γ⊥ ∩ γ∨ � γ∨.

Definition 3.1.1. Let a ⊆ K[T1, . . . , Tr] be an ideal. A face γ0 of the positive
orthant γ is an a-face if V (Trγ0

; a) 6= ∅.

Let X ⊆ Kr be the zero set of an ideal a ⊆ K[T1, . . . , Tr]. Determining the torus
orbits of Kr intersecting X means calculating the a-faces γ0 � γ.

T2
cone(e1)

T2
cone(e2)

T2
γ

X

Given a face γ0 � γ and a polynomial f ∈ K[T1, . . . , Tr], we write fγ0 := f(Tγ0) ∈
K[Tγ0 ] where T := (T1, . . . , Tr), i.e., we replace each Ti with zero if ei 6∈ γ0. Set
aγ0 := 〈fγ0 ; f ∈ a〉 ⊆ K[Tγ0 ]. A direct a-face test is the following, based on a radical
membership problem. This leads to a Gröbner based way to decide whether a given
γ0 � γ is an a-face.

Algorithm 3.1.2 (a-face verification I). Input: a face γ0 � γ and an ideal a ⊆
K[T1, . . . , Tr].

• Return false if
∏
ei∈γ0

Ti ∈
√
aγ0 and return true otherwise.

Output: true if γ0 is an a-face and false otherwise.

Remark 3.1.3. The radical membership test in Algorithm 3.1.2 can be replaced
by a saturation: a face γ0 � γ is an a-face if and only if 1 6∈ aγ0 : (T1 · · ·Tr)∞.

The main aim of this section is to speed up this direct approach by dividing out
all possible torus symmetry. This is done in Algorithm 3.1.6. Further possible
improvements are discussed at the end of the section.
First, consider any torus T and a monomial-free ideal c ⊆ O(T). Let H ⊆ T be
the maximal subtorus leaving V (T; c) invariant; compare Algorithm 2.1.29 and [5,
Con. III.2.4.2]. Denote by π : T → T/H the quotient map. Note that T/H is
again a torus. To describe π explicitly, we use the correspondence between integral
matrices and homomorphisms of algebraic tori: every n × k matrix A defines a
homomorphism α : Tk → Tn by sending t ∈ Tk to (tA1∗ , . . . , tAn∗) ∈ Tn where the
Ai∗ are the rows of A.

Remark 3.1.4. Let T = Tk and T/H = Tn. The map π : Tk → Tn is given by any
n× k matrix P of full rank satisfying

ker(P ) =
⋂
g∈c

ker(Pg),

where to g = a0T
ν0 + . . . + amT

νm ∈ c we assign the m × k matrix Pg with rows
ν1 − ν0, . . . , νm − ν0.

Remark 3.1.5. Let T = Tk. Fix a generating set G := (g1, . . . , gl) of the ideal
c ⊆ K[T±1

1 , . . . , T±1
k ]. Let PG be the stack matrix, i.e., the vertical concatenation,

of Pg1 , . . . , Pgl . Compute the Hermite normal form D = U · PG with an invertible
integral matrix U . Choose P as the matrix consisting of the upper non-zero rows
of D. Then P describes π : T→ T/H.
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Proof. Clearly, P is of full rank. Since the exponent vectors of each g ∈ c are linear
combinations of the exponent vectors of g1, . . . , gl, we have

ker(P ) = ker(PG) =
l⋂
i=1

ker(Pgi) =
⋂
g∈c

ker(Pg).
�

A push forward of g ∈ c under π is a h ∈ O(T/H) satisfying π∗h = Tµg for some
monomial Tµ. Suitably scaling push forwards by a monomial, we obtain the ?-push
forward of Algorithm 2.2.13 on page 43. We define

π? c := 〈π? g; g ∈ c〉 ⊆ O(T/H) .

We now specialize to the case of a-face-verification. Given γ0 � γ, let H(γ0) ⊆ Trγ0

be the maximal subgroup leaving V (Trγ0
; aγ0) invariant. Our approach reduces the

dimension of the problem by using

V (Trγ0
; a) 6= ∅ ⇔ V

(
Trγ0

/H(γ0); π? aγ0

)
6= ∅ .

Algorithm 3.1.6 (a-face verification II). Input: an ideal a = 〈f1, . . . , fs〉 in
K[T1, . . . , Tr] and a face γ0 � γ. Set gi := (fi)γ0 and G := (g1, . . . , gs).

• Compute with Remark 3.1.5 a matrix P representing π : Tr → Trγ0
/H(γ0).

• Apply Algorithm 2.2.13 to P to obtain π?G := (π?g1, . . . , π?gs).
• Test whether T1 · · ·Tn ∈

√
〈π?G〉 ⊆ K[T1, . . . , Tn]. Return false if the

test was successful. Return true otherwise.

Output: true if γ0 is an a-face and false otherwise.

Proof. The map π is a good quotient for the H(γ0)-action on Trγ0
. Consequently,

we have

π

(
s⋂
i=1

V
(
Trγ0

; gi
))

=
s⋂
i=1

π
(
V
(
Trγ0

; gi
))

= V (Tn; π?g1, . . . , π?gs)

by standard properties of good quotients [73, p. 96]. This shows that V (Trγ0
; aγ0) 6=

∅ if and only if V (Tn; π?G)) 6= ∅. �

Remark 3.1.7. If the total number of terms occurring among the generators is
small as compared to the number of variables in the sense that P = PG in the first
line of Algorithm 3.1.6, then we might speed up the algorithm using linear algebra
as follows. Each term π?gi is linear by construction. Solve the linear system of
equations π?G = 0. Then γ0 is an a-face if and only if there is a solution in Tn.

Remark 3.1.8. The efficiency of Algorithm 3.1.6 depends on the algorithms used
for both Gröbner bases and Smith normal forms. An implementation using the
respective built in functions of Maple gave the following timings.

Algorithm 3.1.2 Algorithm 3.1.6 with 3.1.9(ii)
a-faces of a2,5 21 s 10 s
a-faces of a2,6 16 min 76 s
a-faces of a2,7 > 3 days 24.8 h
a-faces of a2,3,3 4.03 h 44.1 min

Here, a2,n stands for the respective Plücker ideal and a2,3,3 denotes the defining
ideal of the Cox ring of the space X(2, 3, 3) of complete rank two collineations [58,
Thm. 1].

Let us briefly recall the connection to tropical geometry, compare [22, 78]. As seen
in Section 2 of Chapter 2, we assign to a monomial-free ideal a ⊆ K[T1, . . . , Tr] its
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tropical variety
trop(a) :=

⋂
f∈a

trop(f) ⊆ Qr

where trop(f) is the support of the codimension one skeleton of the normal fan of
the Newton polytope of f . By [96],

γ0 � γ is an a-face ⇔ trop(a) ∩ (γ∗0)◦ 6= ∅ .(2)

Fixing a fan structure on trop(a), this can be turned into a computable criterion.
Note however that trop(a) usually carries more information than needed to deter-
mine the a-faces and is in general harder to compute (see [22] for an algorithm).

Remark 3.1.9. To compute all a-faces, the number of calls to Algorithm 3.1.6 can
be reduced by any of the following ideas.

(i) The tropical prevariety of a generating set (f1, . . . , fs) of a is the coarsest
common refinement

d
i trop(fi). Then each face γ0 � γ whose dual face

γ∗0 does not satisfy equation (2) with respect to
d
i trop(fi) is not an

a-face.
(ii) A face γ0 � γ is not an a-face if and only if there is f ∈ a such that

exactly one vertex of the Newton polytope of f lies in γ0. Choosing any
subset of a, we may identify some faces γ0 � γ that are no a-faces.

(iii) Filter faces using the Veronese embedding: Let γ0 � γ be such that
there are (classically) homogeneous generators g1, . . . , gs of aγ0 of degree
d ∈ Z≥0. The images of the gi under

K[Tγ0 ]→ K[Sµ; µ1 + . . .+ µr = d] , Tµ 7→ Sµ

give a linear system of equations with coefficient matrix A. If a Gauss-
Jordan normal form of A contains a row with exactly one non-zero entry,
γ0 is no a-face. Adding redundant generators to aγ0 refines this procedure.

(iv) Let σ ∈ Sr be a permutation of (the indices of) the variables T1, . . . , Tr
such that for each f ∈ a there is gf ∈ a with f ◦ σ = gf . Then

γ0 � γ a-face ⇔ σ(γ0) := cone(eσ(i); ei ∈ γ0) a-face .

Proof. We prove statements (ii) and (iv). For (ii), we directly generalize the proof
of [19, Prop. 9.3]: Define ν(f, γ0) to be the number of vertices of the Newton
polytope of f that lie in the given face γ0 � γ. Then γ0 is an a-face if and only if
there is x ∈ Kr such that

xi 6= 0 ⇔ ei ∈ γ0 , f(x) = fγ0(x) = 0 for all f ∈ a.

Each polynomial fγ0 is a sum of ν(f, γ0) monomials. Clearly, if there is f ∈ a such
that ν(f, γ0) = 1 no such x can exists, i.e., γ0 is not an a-face. Conversely, assume
γ0 is not an a-face. By definition

∏
ei∈γ0

Tni =
∑
j

(hj)γ0(fj)γ0 =

∑
j

hjfj


γ0

=: fγ0 ∈ aγ0

with a n ∈ Z>0 and polynomials hj ∈ K[T1, . . . , Tr]. Since f ∈ a and ν(f, γ0) = 1
the proof is complete. For (iv), we only prove one direction. Assume γ0 � γ is an
a-face. Then there is x ∈ Kr with fi(x) = 0 for all f ∈ a and xi 6= 0 if and only if
ei ∈ γ0. Choose y := (xσ(1), . . . , xσ(r)) ∈ Kr. Then yi 6= 0 if and only if ei ∈ σ(γ0)
and, by assumption, we have

f(y) = f ◦ σ(x) = gf (x) = 0 for all f ∈ a. �

In the fourth statement of Remark 3.1.9, a special case are permutations σ ∈ Sr
that leave a fixed generating set of a invariant. A naive approach for their detection
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is to test all r! permutations for this property. Instead, we sketch an algorithm that
uses graph theory.

Algorithm 3.1.10 (Generator symmetries). Input: f1, . . . , fs ∈ K[T1, . . . , Tr].
Let ν(i)

1 , . . . , ν
(i)
mi ∈ Zr≥0 and c

(i)
1 , . . . , c

(i)
mi ∈ K∗ be such that the c(i)j T ν

(i)
j are the

non-zero monomials of fi.

• Let G = (V,E) be the simple, directed, finite, bipartite graph with its set
of vertices V and its set of edges E defined by

V := {1, T1, . . . , Tr} ∪
s⋃
i=1

{
ν

(i)
1 , . . . , ν(i)

mi

}
,(

ν
(i)
j , Tk

)
∈ E :⇔

(
ν

(i)
j

)
k
> 0,(

ν
(i)
j , 1

)
∈ E :⇔ ν

(i)
j = (0, . . . , 0),(

ν
(i)
j , ν

(i)
k

)
∈ E for all i 6= j.

• Assign to ν(i)
j ∈ V the color c(i)j ∈ K∗, to edges of type (•, Tk) the k-th

entry of ν(i)
j , to edges of type (•, 1) the color 0 ∈ K and to edges of the

third type, we assign an unused color ci ∈ K∗.
• Compute the automorphism group Aut(G) ≤ Sn with n := |V |, e.g.,

using [67, 81].
• Assume T1, . . . , Tr are the first r vertices in V . Return the set {σ ∈
Sr; (σ, ω) ∈ Aut(G)}.

Output: permutations σ ∈ Sr such that, for all i, we have fi ◦ σ = fτ(i) with a
bijection τ ∈ Sym({1, . . . , s}).

Proof. Note that we have Aut(G) ⊆ Sr × Sn−r where n is the number of vertices.
Each (σ, τ) ∈ Aut(G) respects colors of edges and vertices. By construction, this
means that each permutation σ(T ) of T = (T1, . . . , Tr) respects the coefficients and
monomials of each fi, i.e., induces a permutation of f1, . . . , fs. �

Note that in order to use [67, 81] one first must translate G to an unweighted
colored graph G′ with Aut(G′) ∼= Aut(G) as explained in, e.g., [80]. We sketch the
construction in the following example.

Example 3.1.11. Consider the ideal a ⊆ K[T1, . . . , T5] that is generated by the
two polynomials

f1 := T1T2 − T3T4 + T1T
2
5 , f2 := T1T4 − T2T3 + T1T

2
5

where we order the exponents ν(i)
j from left to right. Applying the first and second

step of Algorithm 3.1.10, we obtain the colored, weighted, bipartite, directed, simple
graph G = (V,E)

ν
(1)
1

ν
(1)
2

ν
(1)
3

T1

T2

T3

T4

T52

1

1
1

1
11

−1

1

ν
(2)
1

ν
(2)
2

ν
(2)
3

2

1

1
1

1

1 1

−1

1
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where we left out the edges of type (ν(i)
j , ν

(i)
k ) and the colors are drawn next to the

vertices and edges (the shaded areas are only for highlighting purposes). We now
transform G into a directed, colored, unweighted graph G′ as explained in [80]. The
removal of the weights (i.e., 1 and 2) of edges is achieved by adding a “layer” of
vertices for each occurring weight.

T1 T2 T3 T4 T5 ν
(1)
1 ν

(1)
2 ν

(1)
3

ν
(2)
3 ν

(2)
2 ν

(2)
1

Edges within the shaded areas and the colors of the vertices are not drawn. Assume
T1, . . . , T5 are the first five vertices. A direct inspection of G′ shows that there is
an automorphism (we show only the relevant part σ)

(σ, τ) :=
[

1 2 3 4 5 . . .
1 4 3 2 5 . . .

]
∈ Aut(G′),

which, interpreted as element of S5, interchanges the variables T2 and T5. Then
f1 ◦ σ = f2. In particular, by Remark 3.1.9, γ0 � Q5

≥0 is an a-face if and only if
σ(γ0) is an a-face.

2. Computing the GIT-fan

In this section, we develop algorithms for the computation of GIT-cones and the
GIT-fan. First, we recall the necessary concepts from [18, 5]. Aspects of efficiency
are discussed at the end of this section. Most of this section has been published
in [71, Sec. 2 and 4].

Remark 3.2.1. Let G be a connected reductive algebraic group and X an irre-
ducible, factorial, affine G-variety. Similar to the case of a quasitorus, one can
define GIT-cones in MQ := X(G)⊗ZQ and the collection of GIT-cones Λ(X,G) is a
fan that is in bijection with the qp-maximal good G-sets of X, see Arzhantsev and
Hausen [7, Sec. 3, Thm. 3.2]. Consider the good quotient

π : X → Y, Y := X//Gs

by the maximal connected semisimple subgroup Gs ⊆ G. Then T := G/Gs is
a torus, we may identify X(G) = X(T ) and Xss(w) = π−1(Y ss(w)) holds for all
w ∈ MQ, see [7, Lem. 3.3]. Moreover, there are methods to treat not necessarily
affine G-varieties using torus actions on an affine variety, compare [7, Sec. 7].

Thus, by Remark 3.2.1, the case of torus actions on affine varieties is of special
interest. Consider an affine variety X ⊆ Kr where we assume that its defining ideal
a ⊆ K[T1, . . . , Tr] is monomial-free and homogeneous with respect to a Zk-grading

qi := deg(Ti) ∈ Zk, 1 ≤ i ≤ r .

Then the corresponding action of the torus H = Tk on Kr leaves the zero set
X = V (Kr; a) ⊆ Kr invariant. Let Q be the k × r matrix with columns q1, . . . , qr.
We assume that the cone Q(γ) ⊆ Qk is of dimension k where γ := Qr≥0. A projected
a-face is a cone Q(γ0) with γ0 � γ an a-face. These are exactly the orbit cones in
the sense of Section 1 in Chapter 1. Write Ωa for the set of all projected a-faces.

Definition 3.2.2. The GIT-chamber of a vector w ∈ Q(γ) = cone(q1, . . . , qr) ⊆ Qk
is the convex, polyhedral cone

λ(w) :=
⋂

ϑ∈Ωa,
w∈ϑ

ϑ ⊆ Qk.
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The GIT-fan of the H-action on X = V (Kr; a) is the set Λ(a, Q) = {λ(w); w ∈
Q(γ)} of all GIT-chambers.

As the name suggests, Λ(a, Q) is indeed a (quasi-)fan in Qk with Q(γ) as its support,
see [5, Thm. III.1.2.8]. However, note that the cones of the GIT-fan need not be
pointed in general, compare [5, Ex. III.1.2.12]. The set of j-dimensional cones of
Λ(a, Q) will be denoted by Λ(a, Q)(j).
We turn to the computation of GIT-chambers. Let Ω := {Q(γ0); γ0 � γ} be the
set of projected faces of γ and let Ω(j) ⊆ Ω be the subset of j-dimensional cones.
Similarly, Ω(j)

a ⊆ Ωa is the subset of j-dimensional projected a-faces. We have

Ω(k)
a ⊆ Ω(k)

0 :=
{
ϑ ∈ Ω(k); all facets of ϑ are in Ω(k−1)

a

}
⊆ Ω(k)

where the first containment is due to the fact that faces of projected a-faces are
again projected a-faces, see [18, Cor. 2.4]. Given a vector w in the relative interior
Q(γ)◦, set Ω(k)(w) for the collection of all ϑ ∈ Ω(k) that contain w. The next
algorithm determines the associated GIT-chamber λ = λ(w).

Remark 3.2.3. (i) The set Ω(j) is computed directly by taking cones over
suitable subsets of {q1, . . . , qr}.

(ii) The computation of Ω(j)(w) can be sped up via point location similar
to [77], i.e., we only consider cones ϑ ∈ Ω(k) with at least one generator
lying on the same side as w of a random hyperplane subdividing Q(γ).

(iii) For an efficient computation of Ω(j)
a , one reduces the amount of a-face

tests as follows. Check for any ϑ ∈ Ω(j) if some γ0 � γ with Q(γ0) = ϑ is
an a-face. As soon as such a face has been found, all other faces projecting
to ϑ may be ignored in subsequent tests.

Algorithm 3.2.4 (GIT-chamber I). Input: a vector w ∈ Q(γ)◦ and Ω(k)(w) as
well as Ω(k−1)

a .

• Let λ := Qk.
• For each ϑ ∈ Ω(k)(w) do

– if ϑ 6⊇ λ and all facets of ϑ are in Ω(k−1)
a then redefine λ as λ ∩ ϑ.

Output: the GIT-chamber λ = λ(w) in Qk.

Example 3.2.5. The semiample cone computed in Example 2.3.16 is the GIT-
chamber λ(w) with w = (0, 0, 1). It can be computed using only four orbit cones:

q1

q2q3

q4q5

q6 q7

q8

Lemma 3.2.6. Let Σ ⊆ Qk be a pure k-dimensional fan with convex support |Σ|
and let τ ∈ Σ be such that τ ∩ |Σ|◦ 6= ∅. Then τ is the intersection over all σ ∈ Σ(k)

satisfying τ � σ.

Proof. Choose σ ∈ Σ(k) such that τ � σ. By [38, Thm. 1.11], we can write τ =
η1 ∩ . . . ∩ ηm with facets ηi � σ. Since τ◦ ⊆ |Σ|◦, also η◦i ⊆ |Σ|◦ for all i. By
convexity of |Σ|, for all i, there are cones σηi , σ′ηi ∈ Σ(k) such that σηi ∩ σ′ηi = ηi.
Note that τ � σηi and τ � σ′ηi . Therefore

τ =
m⋂
i=1

(σηi ∩ σ′ηi) ⊇
⋂

σ∈Σ(k),
τ�σ

σ ⊇ τ.

�
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Lemma 3.2.7. Let λ ∈ Λ(a, Q)(k) and ϑ0 ∈ Ω(k)
0 . If ϑ◦0 ∩ λ◦ 6= ∅ then λ ⊆ ϑ0.

Proof. Suppose λ 6⊆ ϑ0. Choosing any w ∈ λ◦ \ ϑ0 and v ∈ ϑ◦0 ∩ λ◦, the cone
cone(v, w) ∩ (ϑ0 \ ϑ◦0) lies on some facet η0 � ϑ0. By construction, η◦0 ∩ λ◦ 6= ∅.
Since η0 ∈ Ω(k−1)

a holds, λ is not a GIT-chamber; a contradiction. �

Proof of Algorithm 3.2.4. The algorithm terminates with a cone λ ⊆ Qk containing
the given w ∈ Q(γ)◦ and our task is to show that λ = λ(w) holds. For this we
establish

λ =
⋂

w∈ϑ∈Ω(k)
0

ϑ =
⋂

w∈ϑ∈Ω(k)
a

ϑ = λ(w).

The first equality is due to the algorithm. The third one follows from Lemma 3.2.6.
Moreover, in the middle one, the inclusion “⊆” follows from Ω(k)

0 ⊇ Ω(k)
a . Thus we

are left with verifying “⊇” of the middle equality.
First suppose that λ(w) is of full dimension. Then, for any ϑ0 ∈ Ω(k)

0 with w ∈ ϑ0,
we obtain ϑ◦0∩λ(w)◦ 6= ∅, because w ∈ λ(w)◦ holds. Lemma 3.2.7 shows λ(w) ⊆ ϑ0.
Thus, we obtain λ ⊇ λ(w). The case of dim(λ(w)) < k then follows from the
observation that λ(w) is the intersection over all fulldimensional chambers λ(w′)
with w ∈ λ(w′), see Lemma 3.2.6. �

Working with (k − 1)-dimensional projected a-faces in Algorithm 3.2.4 simplifies
the necessary a-face tests compared to the following naive variant of the algorithm
using k-dimensional ones.

Algorithm 3.2.8 (GIT-chamber II). Input: a vector w ∈ Q(γ)◦ and Ω(k)(w).

• Set λ := Qk.
• For each ϑ ∈ Ω(k)(w) do

– if ϑ 6⊇ λ and there is an a-face γ0 � γ with Q(γ0) = ϑ then redefine
λ as λ ∩ ϑ.

Output: the GIT-chamber λ = λ(w) in Qk.

The naive variant 3.2.8, in contrast, involves fewer convex geometric operations
as 3.2.4 and thus can be more efficient if the latter ones are limiting the computation.
See Remark 3.2.15 for a more concrete comparison of complexity aspects.
We turn to the GIT-fan. Given a full-dimensional cone λ ⊆ Qk, we denote by
innerfacets(λ) the set of all facets of λ that intersect the relative interior Q(γ)◦.
Moreover, for two sets A,B, we shortly write A 	 B for (A ∪ B) \ (A ∩ B). The
following algorithm computes the set of maximal cones of the GIT-fan Λ(a, Q).

Algorithm 3.2.9 (GIT-fan). Input: an ideal a ⊆ K[T1, . . . , Tr] and an integral
matrix Q = [q1, . . . , qr] such that a does not contain a monomial and is homogeneous
with respect to the grading qi =: deg(Ti).

• Initialize Λ := {λ0} with a random full-dimensional GIT-chamber λ0
using Algorithm 3.2.4 or 3.2.8.
• F := innerfacets(λ0)
• While there is η ∈ F , do

– use Algorithm 3.2.4 or 3.2.8 to compute the full-dimensional GIT-
chamber λ′ 6∈ Λ with η � λ′.

– Redefine Λ := Λ ∪ {λ′} and F := F 	 innerfacets(λ′).

Output: the collection Λ of maximal cones of the GIT-fan Λ(a, Q).

Remark 3.2.10. (i) In the first line of Algorithm 3.2.9, λ0 can be found
by successively testing whether λ(w0) is of full dimension where w0 =
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a1q1 + . . . + arqr with random ai ∈ Q≥0. Alternatively, if λ(w0) is low-
dimensional, one may iteratively redefine w0 as w0+ε·v where v ∈ λ(w0)⊥
is a normal vector for some supporting hyperplane, ε > 0.

(ii) In the first line in the loop in Algorithm 3.2.9, let λ ∈ Λ be the already
found GIT-chamber with facet η. Then λ′ = λ(w′) can be calculated
with Algorithm 3.2.4 where w′ := w(η) − ε · v for some w(η) ∈ η◦ and
v ∈ λ∨ ∩ η⊥ with a suitably small ε > 0. One possibly must reduce ε
until λ(w′) ∩ λ = η.

Proof of Algorithm 3.2.9. Write |Λ| for the union over all λ ∈ Λ and |F| for
the union over all η ∈ F . Then, in each passage of the loop, a full-dimensional
chamber of Λ(a, Q) is added to Λ and, after adapting, |F| ∩Q(γ)◦ is the boundary
of |Λ| ∩Q(γ)◦ with respect to Q(γ)◦. The set F is empty if and only if |Λ| equals
Q(γ). This shows that the algorithm terminates with the collection of maximal
cones of Λ(a, Q) as output. �

We can directly use Algorithm 3.2.9 to compute the Mori chamber decomposition of
a Mori dream space X, i.e., the GIT-fan of the action of the torus SpecK[Cl(X)0]
on X where Cl(X)0 is the free part of the class group. The following algorithm is
in the notation of Section 2.

Algorithm 3.2.11 (MDSchambers). Input: an MDS X = (R,Φ) with a GR
R = (G,Q,Q0, P, FF).

• Return the output of Algorithm 3.2.9 called with parameters 〈G〉 and Q0.

Output: the Mori chamber decomposition of X.

Example 3.2.12. We continue Example 2.0.14, i.e., we have a variety X with the
Cl(X) = Z3 ⊕ Z/2Z-graded Cox ring

R(X) = K[T1, . . . , Tr]/〈f1〉, f1 := T1T6 + T2T5 + T3T4 + T7T8

where the free parts of the degrees of the generators are given by the columns of
the matrix

Q :=
[

1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1

]
.

Then Algorithm 3.2.11 returns the pure, three-dimensional fan Λ(a, Q) with 37
maximal cones by the following steps:

q1

q2q3

q4q5

q6

q7

q8

q1

q2q3

q4q5

q6

q7

q8

q1

q2q3

q4q5

q6

q7

q8

Λ(a, Q)

Note that Algorithm 3.2.9 traverses a spanning tree of the (implicitly given) dual
graph of Λ(a, Q) with the maximal cones as its vertices; two vertices are connected
by an edge if they share a common facet. Another traversal method for implicitly
given graphs is reverse search by Avis and Fukuda [9]. By the following observation,
it also can be applied to our problem.

Proposition 3.2.13. The GIT-fan Λ(a, Q) is the normal fan of a polyhedron. If
Qk≥0 ⊆ Q(γ) then Λ(a, Q)(k) can be enumerated using reverse search.
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Proof. The first statement is [3, Cor. 10.4]. The second claim follows from the first
one and [41, Sec. 3]. �

If we allow a to contain monomials, the collection Λ(a, Q) is not necessarily a quasi-
fan and even if it is, Proposition 3.2.13 may not be valid any more.

Example 3.2.14. Consider the monomial ideal a := 〈T1T6, T2T4, T3T5〉 in the ring
K[T1, . . . , T6] and the Z3-grading with degree matrix

Q := [q1, . . . , q6] :=
[

2 0 0 3 1 1
0 2 0 1 3 1
0 0 2 1 1 3

]
q1 q2

q3

q4
q5

q6

Though a contains monomials, using Algorithm 3.2.9 with input a and Q returns
the fan drawn on the right. It is not the normal fan of a polyhedron, see [30].

Remark 3.2.15. We compare the usage of Algorithm 3.2.4 (in 3.2.9) to that
of 3.2.8. As a test, we compute the GIT-fans of the maximal torus action on the
(affine cones over the) Grassmannians G(2, 5) and G(2, 6), using our Maple/convex
implementation [70]. The following table lists the total number of a-face tests and
the total number of cones ϑ entering the fourth line of Algorithms 3.2.4 and 3.2.8

Algorithm 3.2.9 with 3.2.4 Algorithm 3.2.9 with 3.2.8
] a-face-tests ] cones ϑ ] a-face-tests ] cones ϑ

G(2, 5) 300 21 469 20
G(2, 6) 6574 50 21012 52

Note that in Algorithm 3.2.4, the a-face tests concern faces of lower dimension than
in Algorithm 3.2.8 and thus are even faster.

Remark 3.2.16. (i) Intermediate storage of occurring cones and their inter-
sections in Algorithms 3.2.4 and 3.2.8 saves time in further computations.

(ii) The traversal of the GIT-fan can take advantage of symmetries: Assume
we know a subgroup G ≤ Sr keeping the ideal a ⊆ K[T1, . . . , Tr] invariant
and each element of G induces a lattice isomorphism of Zk. Then in each
step of Algorithm 3.2.9, we insert instead of λ′ the orbit G ·λ′ into Λ and
adjust F accordingly. See [65, Ch. 3.1] for a more thorough study of the
traversal of symmetric fans.

To finish this section, we consider torus actions on the affine cone over the Grass-
mannian G(2, n) induced by a diagonal action on the Plücker coordinate space Kr,
where r =

(
n
2
)
. Such actions will be encoded by assigning to the variable Ti the i-th

column qi of a matrix Q = [q1, . . . , qr]. Moreover, we write a2,n ⊆ K[T1, . . . , Tr] for
the Plücker ideal.
We compute both, the GIT-fan of the torus action on V (Kr; a2,n) as well as the GIT
fan of the ambient space Kr. The latter coincides with the so-called Gelfand Kapra-
nov Zelevinsky decomposition GKZ(Q), i.e., the coarsest common refinement of all
normal fans having their rays among the cones over the columns of Q and with sup-
port cone(q1, . . . , qr). In general, the Gelfand Kapranov Zelevinsky decomposition
is a refinement of the GIT-fan. See [28] for a toric background.
Below, the drawings show (projections of) the intersections of the respective fans
with the standard simplex.

Example 3.2.17. (i) For n = 4, the ideal a2,4 = 〈T1T6 − T2T5 + T3T4〉 ⊆
K[T1, . . . , T6] is homogeneous with respect to
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Q :=
[

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

]
.

e1 e2

Λ(a2,4, Q)
e1 e2

GKZ(Q)

Using Algorithm 3.2.9, we obtain the four maximal GIT-chambers of
Λ(a2,4, Q). The finer fan GKZ(Q) has twelve maximal cones.

(ii) For n = 5, the ideal a2,5 ⊆ K[T1, . . . , T10] is homogeneous with respect to

Q =
[

1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

]
.

e1
e2

e3

Λ(a2,5, Q)
e1

e2

e3

GKZ(Q)

By Algorithm 3.2.9, there are twelve four-dimensional cones in Λ(a2,5, Q)
whereas GKZ(Q) contains 336 such cones.

(iii) For n = 6, the ideal a2,6 ⊆ K[T1, . . . , T15] is homogeneous with respect to

Q =

 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 .
Using Algorithm 3.2.9, we obtain the 81 five-dimensional cones of the
GIT-fan Λ(a2,6, Q). The fan GKZ(Q) has 61920 such cones.

3. Generalization to (H, 2)-maximal sets

We present a direct algorithm to characterize more general good H-sets defined
in [51, 5]. First, we recall the required notions and correspondences from [51, 5]
and then treat the computational aspects.
Let K be a finitely generated abelian group and consider an affine, irreducible,
normal variety X := SpecA with an integral, normal, K-graded, affine algebra A.
Then the quasitorus H := SpecK[K] acts on X. Write ΩX for the set of orbit cones.
To a collection Φ ⊆ ΩX we assign the a subset U(Φ) ⊆ X and to an H-invariant
subset U ⊆ X we assign a collection of orbit cones Φ(U) ⊆ ΩX where

U(Φ) := {x ∈ X; there is ϑ ∈ Φ with ϑ � ϑx} ⊆ X,

Φ(U) := {ϑx; x ∈ U and H · x closed in U} ⊆ ΩX .

Recall that given a good H-set U ⊆ X and an open subset U ′ ⊆ U , the inclusion
U ′ ⊆ U is H-saturated if p−1(p(U ′)) = U ′ with the good quotient p : U → U//H.

Definition 3.3.1. We call a good H-set U ⊆ X a (H, 2)-maximal subset if the
quotient space U//H is an A2-variety such that U is maximal with respect to H-
saturated inclusion amidst all good H-sets with an A2-variety as quotient space.

Theorem 3.3.2. See [5, Thm. III.1.4.4]. In the above situation, assume that X is
H-factorial. We have mutually inverse, order-reversing bijections{

maximal bunches of
orbit cones in ΩX

}
←→ { (H, 2)-maximal subsets of X }

Φ 7→ U(Φ),
Φ(U) ← [ U.
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Under these maps, the qp-maximal subsets of X correspond to the sets of semistable
points U(Φ(w)) = Xss(w) where w ∈ λ◦ with λ ∈ Λ(X,H).

In particular, if we can compute all maximal bunches of orbit cones in ΩX , we also
obtain (the information stored in) the GIT-fan. We now turn to their computation
in the setting of Chapter 2, i.e., consider an MDS X = (R,Φ) with Φ = {ϑ1, . . . , ϑs}
and GR R = (G,Q,Q0, P, FF). Let Ω be the set of all orbit cones.

Definition 3.3.3. The overlapping graph is the finite, undirected, simple graph
GΩ = (V,E) with vertex set V = Ω and set of edges E ⊆ V × V given by

(ϑ1, ϑ2) ∈ E :⇔ ϑ◦1 ∩ ϑ◦2 6= ∅.

Recall that a clique of a finite, directed, simple graph G = (V,E) is a subset C ⊆ V
such that its induced subgraph is complete. A clique is maximal if it is maximal
with respect to containment.

Algorithm 3.3.4 (GRH2max). Input: a GR R = (G,Q,Q0, P, FF).

• Compute the collection Ω = {ϑ1, . . . , ϑm} of orbit cones, i.e., the set of
all Q0(γ0) where γ0 ∈ FF.
• Calculate the overlapping graph GΩ = (Ω, E) by checking for each two

orbit cones ϑi, ϑj ∈ Ω whether ϑ◦i ∩ ϑ◦j 6= ∅.
• Determine the maximal cliques C1, . . . , Cm of G as subgraphs Ci =

(Φi, Ei). Interpret the Φi ⊆ Ω as BUNs.

For the third step, we use the following algorithm MaxCliques(G,C ′, A′, H ′) from
Kreher and Stinson’s book [74] with input G := GΩ = (V,E) and C ′, A′, H ′ ⊆ V
where we initialize C ′ := A′ := H ′ := ∅. We assume the vertices of V are ordered
with respect to a relation >.

• Set R := ∅, define V+ := {v ∈ V ; v > max(x; x ∈ C ′)} and set

H(C) :=
{
V, C ′ = ∅,
A′ ∩H ′ ∩ V+, C ′ 6= ∅.

• If H(C) = ∅, then C ′ is a maximal clique and we redefine R := {C ′}.
• For each v ∈ H(C) do

– define C := C ′ ∪ {v}. Let Adj(v) ⊆ V be the neighbors of v in G.
– Insert into R the result returned by the recursive call to MaxCliques

with input G, C, Adj(v), and H(C).
• Return R.

Output: the list (Φ1, . . . ,Φm) of all maximal BUNs of orbit cones. They correspond
to the (H, 2)-maximal subsets of SpecR.

Proof. The correspondence to (H, 2)-maximal subsets of X is Theorem 3.3.2. The
correctness of the algorithm MaxCliques is as in [74]: each maximal clique C ⊆ V
is obtained by enlarging a smaller clique C ′ ⊆ C iteratively by an element v ∈⋂
c∈C′ Adj(c). To avoid repeated rediscoveries of the same clique, we may restrict

to elements

v ∈ V+ ∩ Adj(c•) ∩ H(C ′ \ {c•}), c• := max(c; c ∈ C ′).

Thus, in each call, C ′ is a clique that is maximal if and only if H(C) = ∅. Since
in the first step, the algorithm starts with all subsets of V of cardinality one, this
completes the proof. �

Example 3.3.5. In the situation of Algorithm 3.3.4, assume we are given a GR
R = (∅, Q,Q0, P, FF) with AGH Q = (Z4,Z3, Q0) where
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Q0 := [q1, . . . , q4] :=
[

1 0 1 0
0 1 0 1
0 0 1 1

]
.

q1

q2

q3

q4

Then there are precisely fifteen orbit cones Ω = {ϑ1, . . . , ϑ15} which we order by
ϑi > ϑj if i > j. They are

ϑ1 = cone(q1, q2, q3, q4), ϑ2 = cone(q1, q2, q3),
ϑ3 = cone(q4), ϑ4 = cone(q3),
ϑ5 = cone(q1), ϑ6 = cone(q2, q3, q4),
ϑ7 = cone(q3, q4), ϑ8 = cone(q1, q3, q4),
ϑ9 = cone(q1, q4), ϑ10 = cone(q2, q4),
ϑ11 = cone(q2), ϑ12 = cone(q1, q2),
ϑ13 = cone(q1, q3), ϑ14 = cone(q2, q3),
ϑ15 = cone(q1, q2, q3).

The overlapping graph GΩ is the following undirected, simple graph with nine com-
ponents

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ3 ϑ4 ϑ5 ϑ7

ϑ10 ϑ11 ϑ12 ϑ13

Besides the maximal cliques {ϑi} with i ∈ {3, 4, 5, 7, 10, 11, 12, 13}, Algorithm 3.3.4
detects the following nine 3-cliques (highlighted in black; isolated vertices are not
drawn); in particular, there are seventeen (H, 2)-maximal subsets of SpecR.

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

ϑ1
ϑ2

ϑ6

ϑ8

ϑ9
ϑ14

ϑ15

Remark 3.3.6. In the situation of Algorithm 3.3.4, set s := |Ω|. By [74, Sec. 4.3.1],
the asymptotic worst case running time of the subroutine MaxCliques is O(s · n)
where n is the number of (not necessarily maximal) cliques in GΩ. Its average
running time is O(slog2(s)+1).





CHAPTER 4

Modifications of Mori dream spaces

This chapter is about the computation of Cox rings of modified Mori dream spaces.
More precisely, given a modificationX2 → X1 of projective varieties, e.g., a sequence
of blow ups, where one of the Cox rings R(Xi) is known, we provide computational
methods to obtain information about the other Cox ring. To this end, we develop
algorithms concerning the tasks

• verifying finite generation,
• producing a guess of generators,
• verifying a guess of generators,
• computing relations between generators.

Amongst others, we devise a technique to provide and verify a systematic guess for
generators of the Cox ring of a blow up X2 → X1 of a Mori dream space X1; it
terminates if and only if R(X2) is finitely generated.
Section 1 develops the algebraic tools needed to relate the Cox rings R(X1) and
R(X2). In Section 2 we adjust the methods of toric ambient modifications to our
setting. Here, we also treat the contraction problem. We develop and present an
algorithmic framework for modifications of Mori dream spaces in Section 3. This
will enable us to compute explicit examples. As a first application, we compute in
Section 4 the Cox rings of all Gorenstein log del Pezzo surfaces of Picard number
one that do not admit a non-trivial K∗-action. Section 5 concerns the third item
and presents an automated approach to compute the Cox rings of blow ups of Mori
dream spaces along a subvariety in the smooth locus. The last section, Section 6,
treats the special case where the Cox ring is generated by proper transforms of
hyperplanes. As an application, we determine the Cox rings of blow ups of P3 in
certain special point configurations.
The first section has already been published in the paper On Chow quotients of
torus actions [10] jointly with Hendrik Bäker and Jürgen Hausen. The remaining
sections have been published in the paper Computing Cox rings [57] together with
Jürgen Hausen and Antonio Laface. In an ongoing project with U. Derenthal,
J. Hausen, A. Heim and A. Laface we have implemented the algorithms in the
software system Singular [31] and plan to use it to compute Cox rings of cubic
surfaces and smooth Fano threefolds [34].

1. Modifications and H-factoriality

In this section, we provide a general machinery to study the effect of modifications
on the Cox ring. Similar to [51], we use toric embeddings. In contrast to the
geometric criteria given there, our approach here is purely algebraic, based on results
of Bechtold [15]. The crux of the matter is a construction of factorially graded rings
out of given ones. This section has been published in [10, Sec. 3] together with
H. Bäker and J. Hausen.
Let us recall from Sections 2 and 3 of Chapter 1 the necessary algebraic concepts.
Let K be a finitely generated abelian group and R a finitely generated integral
K-graded K-algebra. A homogeneous nonzero nonunit f ∈ R is called K-prime

89
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if f | gh with homogeneous g, h ∈ R always implies f | g or f | h. The algebra
R is called factorially K-graded if every homogeneous nonzero nonunit f ∈ R is a
product of K-primes.
We enter the construction of factorially graded rings. Consider a grading of the
polynomial ring K[T1, . . . , Tr1 ] by a finitely generated abelian group K1 such that
the variables Ti are homogeneous. Then we have a pair of exact sequences

0 // Zk1
Q∗1 // Zr1

P1 // Zn

0 oo K1 oo
Q1

Zr1 oo
P∗1

Zn oo 0

where Q1 : Zr1 → K1 is the degree map sending the i-th canonical basis vector ei
to deg(Ti) ∈ K1. We enlarge P1 to an n × r2 matrix P2 by concatenating further
r2 − r1 columns. This gives a new pair of exact sequences

0 // Zk2
Q∗2 // Zr2

P2 // Zn

0 oo K2 oo
Q2

Zr2 oo
P∗2

Zn oo 0

Construction 4.1.1. Given aK1-homogeneous ideal I1 ⊆ K[T1, . . . , Tr1 ], we trans-
fer it to a K2-homogeneous ideal I2 ⊆ K[T1, . . . , Tr2 ] by taking extensions and
contractions according to the scheme

K[T1, . . . , Tr2 ]

ı2

��

K[T1, . . . , Tr1 ]

ı1

��
K[T±1

1 , . . . , T±1
r2

] oo
π∗2

K[S±1
1 , . . . , S±1

n ]
π∗1

// K[T±1
1 , . . . , T±1

r1
]

where ı1, ı2 are the canonical embeddings and π∗i are the homomorphisms of group
algebras defined by P ∗i : Zn → Zri .

Remark 4.1.2. From a geometric point of view, the passage from the Laurent
polynomial ring to the polynomial ring corresponds to taking the closure. Back on
the algebraic side this means saturating the ideal, see Algorithm 2.2.14.

Now, let I1 ⊆ K[T1, . . . , Tr1 ] be a K1-homogeneous ideal and I2 ⊆ K[T1, . . . , Tr2 ]
the transferred K2-homogeneous ideal. Our result relates factoriality properties of
the algebras R1 := K[T1, . . . , Tr1 ]/I1 and R2 := K[T1, . . . , Tr2 ]/I2 to each other.

Theorem 4.1.3. Assume R1, R2 are integral, T1, . . . , Tr1 define K1-primes in R1
and T1, . . . , Tr2 define K2-primes in R2. Then the following statements are equiva-
lent.

(i) The algebra R1 is factorially K1-graded.
(ii) The algebra R2 is factorially K2-graded.
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Proof. First, observe that the homomorphisms π∗j embed K[S±1
1 , . . . , S±1

n ] as the
degree zero part of the respective Kj-grading and fit into a commutative diagram

I2 ⊆

��

K[T1, . . . , Tr2 ]

ı2

��

K[T1, . . . , Tr1 ]

ı1

��

I1

��

⊇

I ′2 ⊆ K[T±1
1 , . . . , T±1

r2
]

ψ : Ti 7→

{
Ti 1≤i≤r1

1 r1+1≤i≤r2
// K[T±1

1 , . . . , T±1
r1

] I ′1⊇

I ′′2

OOee

K[S±1
1 , . . . , S±1

n ]
π∗2

hh

π∗1

66

I ′′1

OO 99

The factor ring R′1 of the extension I ′1 := 〈ı1(I1)〉 is obtained from R1 by the
localization with respect to K1-primes T1, . . . , Tr1 :

R′1 := K[T±1
1 , . . . , T±1

r1
]/I ′1 ∼= (R1)T1···Tr1

.

The ideal I ′′1 is the degree zero part of I ′1. Thus, its factor algebra is the degree zero
part of R′1:

R′′1 := K[T±1
1 , . . . , T±1

r1
]0/I ′′1 ∼= (R′1)0.

Note that K[T±1
1 , . . . , T±1

r1
] and hence R′1 admit units in every degree. Thus, [15,

Thm. 1.1] yields that R1 is factorially K1-graded if and only if R′′1 is a UFD.
The homomorphism ψ restricts to an isomorphism ψ0 of the respective degree zero
parts. Thus, the shifted ideal I ′′2 := ψ−1

0 (I ′′1 ) defines an algebra R′′2 isomorphic
to R′′1 :

R′′2 := K[T±1
1 , . . . , T±1

r2
]0/I ′′2 ∼= R′′1 .

The ideal I ′2 := 〈π∗2((π∗1)−1(I ′1))〉 has I ′′2 as its degree zero part and K[T±1
1 , . . . , T±1

r2
]

admits units in every degree. The associated K2-graded algebra

R′2 := K[T±1
1 , . . . , T±1

r2
]/I ′2 ∼= (R2)T1···Tr2

is the localization of R2 by the K2-primes T1, . . . , Tr2 . Again by [15, Thm. 1.1] we
obtain that R′′2 ∼= R′′1 is a UFD if and only if R2 is factorially K2-graded. This
proves the assertion. �

The following observation is intended for practical purposes; it reduces, for example,
the number of necessary primality tests.

Proposition 4.1.4. Assume that R1 is integral and the canonical map K2 → K1
admits a section (e.g., K1 is free).

(i) Let T1, . . . , Tr1 define K1-primes in R1 and Tr1+1, . . . , Tr2 define K2-
primes in R2. If no Tj with j ≥ r1 + 1 divides a Ti with i ≤ r1, then also
T1, . . . , Tr1 define K2-primes in R2.

(ii) The ring R2 is integral. Moreover, if R1 is normal and Tr1+1, . . . , Tr2

define primes in R2 (e.g., they are K2-prime and K2 is free), then R2 is
normal.

Proof. The exact sequences involving the grading groups K1 and K2 fit into a
commutative diagram where the upwards sequences are exact and Zr2−r1 → K ′2 is
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an isomorphism:
0 0 0

0 oo K1 oo
Q1

OO

Zr1 oo P∗1

OO

Zn oo

OO

0

0 oo K2 oo
Q2

OO

Zr2 oo
P∗2

OO

Zn oo

OO

0

K ′2

OO

oo Zr2−r1 oo

OO

0

OO

0

OO

0

OO

Moreover, denoting by K ′1 ⊆ K2 the image of the section K1 → K2, there is a
splitting K2 = K ′2 ⊕K ′1. As K ′2 ⊆ K2 is the subgroup generated by the degrees of
Tr1+1, . . . , Tr2 , we obtain a commutative diagram

K[T1, . . . , Tr2 ]

ı2

��
K[T1, . . . , Tr1 , T

±1
r1+1, . . . , T

±1
r2

]

ψ : Ti 7→

{
Ti 1≤i≤r1

1 r1+1≤i≤r2
// K[T1, . . . , Tr1 ]

K[T1, . . . , Tr1 , T
±1
r1+1, . . . , T

±1
r2

]0

µ

OO

∼=

22

where the map µ denotes the embedding of the degree zero part with respect to
the K ′2-grading. By the splitting K2 = K ′2 ⊕ K ′1, the image of µ is precisely the
Veronese subalgebra associated to the subgroup K ′1 ⊆ K2. For the factor rings R2
and R1 by the ideals I2 and I1, the above diagram leads to the following situation

R2

ı2

��
(R2)Tr1+1···Tr2

ψ // R1

(
(R2)Tr1+1···Tr2

)
0

µ

OO

∼=

66

To prove (i), consider a variable Ti with 1 ≤ i ≤ r1. We have to show that Ti defines
a K2-prime element in R2. By the above diagram, Ti defines a K ′1-prime element in
((R2)Tr1+1···Tr2

)0, the Veronese subalgebra of R2 defined by K ′1 ⊆ K2. Since every
K2-homogeneous element of (R2)Tr1+1···Tr2

can be shifted by a homogeneous unit
into ((R2)Tr1+1···Tr2

)0, we see that Ti defines a K2-prime in (R2)Tr1+1···Tr2
, see [5,

Lem. III.4.1.9]. By assumption, Tr1+1, . . . , Tr2 define K2-primes in R2 and are all
coprime to Ti. It follows from [5, Lem. III.4.1.7] that Ti defines a K2-prime in R2.
We turn to assertion (ii). As just observed, the degree zero part ((R2)Tr1+1···Tr2

)0 of
the K ′2-grading is isomorphic to R1 and thus integral (normal if R1 is so). Moreover,
the K ′2-grading is free in the sense that the associated torus SpecK[K ′2] acts freely
on Spec (R2)Tr1+1···Tr2

. It follows that (R2)Tr1+1···Tr2
is integral (normal if R1 is

so). Construction 4.1.1 gives that R2 is integral. Moreover, if Tr1+1, . . . , Tr2 define
primes in R2, we can conclude that R2 is normal, see [5, Lem. IV.1.2.7]. �

Let us apply the results to Cox rings, see Section 2 in Chapter 1 for the basic theory.
In the setting fixed at the beginning of the section, we assume additionally that the
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columns of P2 are pairwise different primitive vectors in Zn and those of P1 generate
Qn as a convex cone. Suppose we have toric Cox constructions πi : Ẑi → Zi where
Ẑi ⊆ Kri are open toric subvarieties and πi are toric morphisms defined by Pi,
see [27]. Then the canonical map Z2 → Z1 is a toric modification. Consider the
ideal I1 as discussed before and the geometric data

X1 := V (I1) ⊆ Kr1 , X̂1 := X1 ∩ Ẑ1, X1 := π1

(
X̂1

)
⊆ Z1.

Assume that R1 is factorially K1-graded and T1, . . . , Tr1 define pairwise non-asso-
ciated K1-prime elements in R1. Then R1 is the Cox ring of X1, see [5]. Our
statement concerns the Cox ring of the proper transform X2 ⊆ Z2 of X1 ⊆ Z1 with
respect to Z2 → Z1.

Corollary 4.1.5. In the above setting, assume that R2 is normal and the variables
T1, . . . , Tr2 define pairwise non-associated K2-prime elements in R2. Then the K2-
graded ring R2 is the Cox ring of X2.

Proof. According to Theorem 4.1.3, the ring R2 is factorially K2-graded. Moreover,
with the toric Cox construction π2 : Ẑ2 → Z2, we obtain that R2 is the algebra of
functions of the closure X̂2 ⊆ Ẑ2 of π−1

2 (X2 ∩ Tr2). Thus, [5] yields that R2 is the
Cox ring of X2. �

Example 4.1.6. We start with the UFD R1 = K[T1, . . . , T8]/I1 where the ideal I1
is defined as

I1 = 〈T1T2 + T3T4 + T5T6 + T7T8〉.

Then I1 is homogeneous with respect to the standard K1 = Z-grading given by Q1 =
[1, . . . , 1]. Then P1 = [e0, e1, . . . , e7] is Gale dual to Q1 where e0 = −e1 − . . . − e7
and the ei ∈ Z7 are the canonical basis vectors. Concatenation of e1 + e3 yields a
matrix P2. Applying Construction 4.1.1, we obtain R2 = K[T1, . . . , T9]/I2 where

I2 = 〈T1T2T9 + T3T4T9 + T5T6 + T7T8〉

together with a K2 = Z2-grading. As predicted by Theorem 4.1.3, R2 is again
a UFD.

2. Toric ambient modifications

Using the tools of Section 1, we upgrade the technique of toric ambient modifications
developed in [51]. It will serve as foundation for the algorithmic framework for
modifications of Mori dream spaces presented in Section 3. This section has been
published together with J. Hausen and A. Laface, in [57, Sec. 2].
Recall from Section 2 in Chapter 1 that a Mori dream space is a normal projective
variety with finitely generated Cox ring R(X) and class group Cl(X). The char-
acteristic quasitorus H := SpecK[Cl(X)] acts on X̂ := SpecXR and the canonical
map, the characteristic space over X, p : X̂ → X is a good quotient for this action.
One has the total coordinate space X := SpecR(X) and a canonical H-equivariant
open embedding X̂ ⊆ X.
For Mori dream spaces X, we obtain canonical embeddings into toric varieties Z
relating the geometry of X to that of its ambient variety. Let F = (f1, . . . , fr) be
a system of pairwise non-associated Cl(X)-prime generators of the Cox ring R(X).
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This gives rise to a commutative diagram

X ⊆ Kr

X̂ ⊆

p

��

OO

Ẑ

p

��

OO

X ⊆ Z

where the embedding X ⊆ Kr of the total coordinate space is concretely given by
x 7→ (f1(x), . . . , fr(x)), we have X̂ = X∩ Ẑ and p : Ẑ → Z is the toric characteristic
space; compare Construction 1.2.5 and [27]. The induced embedding X ⊆ Z of
quotients is as wanted, see [5, Sec. III.2.5] for details.

Definition 4.2.1. In the above setting, we call X ⊆ Z a canonically embedded
Mori dream space (CEMDS).

Remark 4.2.2. For a projective toric variety Z with Cox ring K[T1, . . . , Tr], let
Q : Zr → K := Cl(Z) denote the degree map sending the i-th canonical basis vector
to the degree of the i-th variable Ti and P : Zr → Zn the Gale dual, i.e., P is dual
to the inclusion ker(Q) ⊆ Zr. If w ∈ Cl(Z) is an ample class, then the fans Σ̂ of Ẑ
and Σ of Z are

Σ̂ := {σ̂ � Qr≥0; w ∈ Q(σ̂⊥ ∩Qr≥0)}, Σmax = {P (σ̂); σ̂ ∈ Σ̂max},

where we write � for the face relation of cones and regard Q and P as maps of the
corresponding rational vector spaces. If X ⊆ Z is a CEMDS, then the ample class
w ∈ Cl(Z) = Cl(X) is also an ample class for X. Note that a different choice of the
ample class w′ ∈ Cl(X) may lead to another CEMDS X ⊆ Z ′ according to the fact
that the Mori chamber decomposition of Z refines the one of X.

We now consider modifications π : X2 → X1 of normal projective varieties. A first
general statement describes the Cox ring of X1 in terms of the Cox ring of X2.

Proposition 4.2.3. Let π : X2 → X1 be a proper birational morphism of normal
projective varieties. Let C ⊆ X1 be the center of the modification. Set Ki := Cl(Xi)
and Ri := R(Xi) and identify U := X2\π−1(C) with X1\C. Then we have canonical
surjective push forward maps

π∗ : K2 → K1, [D] 7→ [π∗D],
π∗ : R2 → R1, (R2)[D] 3 f 7→ f|U ∈ (R1)[π∗D].

Now suppose that R(X2) is finitely generated, let E1, . . . , El ⊆ X2 denote the excep-
tional prime divisors and f1, . . . , fl ∈ R(X2) the corresponding canonical sections.
Then we have a commutative diagram

R2
π∗ //

λ ((

R1

R2/〈fi − 1; 1 ≤ i ≤ l〉
ψ

∼=

66

of morphisms of graded algebras where λ is the canonical projection with the pro-
jection K2 → K2/〈deg(fi); 1 ≤ i ≤ l〉 as accompanying homomorphism and the
induced map ψ is an isomorphism.

Lemma 4.2.4. See [57, Lem. 2.3]. Let R be a K2-graded domain, f ∈ Rw with w
of infinite order in K2 and consider the downgrading of R given by K2 → K1 :=
K2/〈w〉. Then f − 1 is K1-prime.
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Proof of Proposition 4.2.3. Let xi ∈ Xi be smooth points with π(x2) = x1 such
that x2 is not contained in any of the exceptional divisors. Consider the divisorial
sheaf Sxi on Xi associated to the subgroup of divisors avoiding the point xi, see [5,
Constr. 4.2.3]. Then we have canonical morphisms of graded rings

Γ (X2,Sx2) → Γ (U2,Sx2) → Γ (X1,Sx1) ,

where U2 ⊆ X2 is the open subset obtained by removing the exceptional divisors
of π : X2 → X1 and the accompanying homomorphisms of the grading groups are
the respective push forwards of Weil divisors. The homomorphisms are compatible
with the relations of the Cox sheaves Rxi , see again [5, Constr. 4.2.3], and thus
induce canonical morphisms of graded rings

Γ (X2,Rx2) → Γ (U2,Rx2) → Γ (X1,Rx1) .

This establishes the surjection π∗ : R2 → R1 with the canonical push forward of di-
visor class groups as accompanying homomorphism. Clearly, the canonical sections
fi of the exceptional divisors are sent to 1 ∈ R1.
We show that the induced map ψ is an isomorphism. As we may proceed by
induction on l, it suffices to treat the case l = 1. Lemma 4.2.4 tells us that f1− 1 is
K1-prime. From [51, Prop. 3.2] we infer that 〈f1− 1〉 is a radical ideal in R2. Since
Spec(ψ) is a closed embedding of varieties of the same dimension and equivariant
with respect to the action of the quasitorus SpecK[K1], the assertion follows. �

As an immediate consequence, we obtain that X1 is a Mori dream space provided
X2 is one; see also [85]. The converse question is in general delicate. The classical
counterexample arises from the projective planeX1 = P2: for suitably general points
x1, . . . , x9 ∈ P2, the blow up X1 at the first eight ones is a Mori dream surface and
the blow up X2 of X1 at x9 is not.
We now upgrade the technique of toric ambient modifications developed in [51]
and Section 1 according to our computational purposes. In the following setting,
X̂i → Xi needs (a priori) not be a characteristic space and Xi not a total coordinate
space.

Setting 4.2.5. Let π : Z2 → Z1 be a toric modification, i.e., Z1, Z2 are complete
toric varieties and π is a proper birational toric morphism. Moreover, let Xi ⊆ Zi be
closed subvarieties, both intersecting the big n-torus Tn ⊆ Zi, such that π(X2) = X1
holds. Then we have a commutative diagram

Kr2 ⊇ Ẑ2 ⊇

p2

��

X̂2

p2

��

X̂1

p1

��

⊆ Ẑ1 ⊆

p1

��

Kr1

Z2 ⊇

π

99X2 // X1 ⊆ Z1

where the downwards maps pi : Ẑi → Zi are toric characteristic spaces and X̂i ⊆ Ẑi
are the closures of the inverse image p−1

i (Xi ∩ Tn). Let Ii ⊆ K[T1, . . . , Tri ] be the
vanishing ideal of the closure Xi ⊆ Kri of X̂i ⊆ Ẑi and set Ri := K[T1, . . . , Tri ]/Ii.
Note that Ri is graded by Ki := Cl(Zi).

Theorem 4.2.6. Consider Setting 4.2.5.

(i) If X1 ⊆ Z1 is a CEMDS, the ring R2 is normal and T1, . . . , Tr2 define
pairwise non-associated K2-primes in R2, then X2 ⊆ Z2 is a CEMDS.
In particular, K2 is the divisor class group of X2 and R2 is the Cox ring
of X2.
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(ii) If X2 ⊆ Z2 is a CEMDS, then X1 ⊆ Z1 is a CEMDS. In particular, K1
is the divisor class group of X1 and R1 is the Cox ring of X1.

Proof. First consider the lattice homomorphisms Pi : Zri → Zn associated to the
toric morphisms pi : Ẑi → Zi. Viewing the Pi as matrices, we may assume that
P2 = [P1, B] with a matrix B of size n× (r2− r1). We have a commutative diagram
of lattice homomorphisms and the corresponding diagram of homomorphisms of
tori:

Zr2
ei 7→ei

ej 7→mjej

||

[Er1 ,A]

""
Zr2

P2=[P1,B]
��

Zr1

P1
��

Zn
En

// Zn

Tr2

µ

||

α

""
Tr2

p2

��

Tr1

p1

��
Tn

id
// Tn

(3)

where in the left diagram, the ei are the first r1, the ej the last r2−r1 canonical basis
vectors of Zr2 , the mj are positive integers and En, Er1 denote the unit matrices of
size n, r1 respectively and A is an integral r1 × (r2 − r1) matrix.
We prove (i). We first show that R2 is integral. By construction, it suffices to show
that p−1

2 (X1 ∩ Tn) is irreducible, compare Lemma 4.3.6. By assumption, X1 ∩ Tr1

is irreducible. Since the Smith normal form of [Er1 , A] is simply [Er1 , 0], under α,
preimages of irreducible subsets are again irreducible. This means α−1(X1∩Tr1) is
irreducible. We conclude that X2∩Tr2 = µ(α−1(X1∩Tr1)) is irreducible. Moreover,
since X2 is complete and the K2-grading of R2 has a pointed weight cone, we obtain
that R2 has only constant units. Thus, Theorem 4.1.3 yields that R2 is factorially
K2-graded. Since the Ti are pairwise non-associated K2-primes and R2 is normal,
we conclude that R2 is the Cox ring of X2 and X2 ⊆ Z2 is a CEMDS.
We turn to (ii). Observe that for every f ∈ I2, the Laurent polynomials µ∗(f) and
α∗(f(t1, . . . , tr1 , 1, . . . , 1)) differ by a monomial factor. We conclude

K
[
T±1

1 , . . . , T±1
r2

]
· I2 = 〈α∗(f(t1, . . . , tr1 , 1, . . . , 1)); f ∈ I2〉

⊆ K
[
T±1

1 , . . . , T±1
r2

]
.

Now, Proposition 4.2.3 tells us that R1 is the Cox ring of X1. Since T1, . . . , Tr1

define also in X1 pairwise different prime divisors, we conclude that X1 ⊆ Z1 is a
CEMDS. �

Remark 4.2.7. The verification of normality as well as the primality tests needed
for Theorem 4.2.6 are computationally involved. Proposition 4.1.4 considerably
reduces the effort in many cases.

As a consequence of Theorem 4.2.6, we obtain that the modifications preserving
finite generation are exactly those arising from toric modifications as discussed.
More precisely, let Z2 → Z1 be a toric modification mapping X2 ⊆ Z2 onto X1 ⊆ Z1.
We call Z2 → Z1 a good toric ambient modification, if it is as in Theorem 4.2.6 (i).

Corollary 4.2.8. Let X2 → X1 be a birational morphism of normal, projective
Q-factorial varieties such that the Cox ring R(X1) is finitely generated. Then the
following statements are equivalent.

(i) The Cox ring R(X2) is finitely generated.
(ii) The morphism X2 → X1 arises from a good toric ambient modification.
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Proof. The implication “(ii)⇒(i)” is Theorem 4.2.6. For the reverse direction, set
Ki := Cl(Xi) and Ri := R(Xi). Let f1, . . . , fr2 be pairwise nonassociated K2-
prime generators for R2. According to Proposition 4.2.3, we may assume, after
suitably numbering, that f1, . . . , fr1 define generators of R1, where r1 ≤ r2. Now
take an ample class w1 ∈ K1. Then the pullback w′2 ∈ K2 of w1 under X2 → X1
is semiample on X2. Choose w2 ∈ K2 such that w2 is ample on X2 and the toric
ambient variety Z2 of X2 defined by w2 has an ample cone containing w′2 in its
closure. Then, with the sets of semistable points Ẑ2, Ẑ

′
2 ⊆ Kr2 defined by w2, w′2

respectively and Ẑ1 ⊆ Kr1 the one defined by w1. By [51, Lem. 6.7], we obtain
morphisms

Z2 = Ẑ2//H2 → Ẑ ′2//H2 ∼= Ẑ1//H2 = Z1,

where Hi := SpecK[Ki] denotes the characteristic quasitorus of Zi; observe that
Ẑ ′2 → Ẑ ′2//H2 is in general not a toric characteristic space. Thus, we arrive at
Setting 4.2.5 and Z2 → Z1 is the desired good toric ambient modification inducing
the morphism X2 → X1. �

For a flexible use of Theorem 4.2.6 we will have to adjust given embeddings of a Mori
dream space, e.g., bring general points of a CEMDS into a more special position, or
remove linear relations from a redundant presentation of the Cox ring. The formal
framework is the following.

Setting 4.2.9. Let Z1 be a projective toric variety with toric characteristic space
p1 : Ẑ1 → Z1 and ample class w ∈ K1 := Cl(Z1). Consider K1-homogeneous
polynomials h1, . . . , hl ∈ K[T1, . . . , Tr1 ] and, with r′1 := r1 + l, the (in general non-
toric) embedding

ı̄ : Kr1 → Kr
′
1 , (z1, . . . , zr1) 7→ (z1, . . . , zr1 , h1(z), . . . , hl(z)).

Note that K[T1, . . . , Tr′1 ] is graded by K ′1 := K1 via attaching to T1, . . . , Tr1 their
former K1-degrees and to Tr1+i the degree of hi. The class w ∈ K ′1 defines a toric
variety Z ′1 and a toric characteristic space p1 : Ẑ ′1 → Z ′1. Any closed subvariety
X1 ⊆ Z1 and its image X ′1 := ı(X1) lead to a commutative diagram

Kr1

ı

))
⊇ Ẑ1 ⊇

p1

��

X̂1

p1

��

X̂ ′1

p′1
��

⊆ Ẑ ′1 ⊆

p′1
��

Kr′1

Z1 ⊇

ı

99X1 // X ′1 ⊆ Z ′1

where X̂1 ⊆ Ẑ1 and X̂ ′1 ⊆ Ẑ ′1 are the closures of the inverse image p−1
1 (X1∩Tn) and

(p′1)−1(X ′1∩Tn
′) . Denote by I1 and I ′1 the respective vanishing ideals of the closures

X1 ⊆ Kr1 of X̂1 ⊆ Ẑ1 and X
′
1 ⊆ Kr′1 of X̂ ′1 ⊆ Ẑ ′1. Set R1 := K[T1, . . . , Tr1 ]/I1 and

define R′1 := K[T1, . . . , Tr′1 ]/I ′1.

Remark 4.2.10. In Setting 4.2.5, the cone over the columns of the degree matrix
Q2 is pointed if the cone over the columns of Q1 was pointed. Similarly, in Set-
ting 4.2.9, the cone over the columns of Q′1 is pointed if the cone over the columns
of Q1 is pointed.

Proposition 4.2.11. Consider Setting 4.2.9.
(i) If X1 ⊆ Z1 is a CEMDS and T1, . . . , Tr1 , h1, . . . , hl define pairwise non-

associated K1-primes in R1 then X ′1 ⊆ Z ′1 is a CEMDS.
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(ii) If R′1 is normal, the localization (R′1)T1···Tr1
is factorially K ′1-graded and

T1, . . . , Tr1 define pairwise non-associated K1-primes in R1 such that K1
is generated by any r1 − 1 of their degrees, then X1 ⊆ Z1 is a CEMDS.

(iii) If X ′1 ⊆ Z ′1 is a CEMDS, then X1 ⊆ Z1 is a CEMDS.

Proof. First, observe that the ideal I ′1 equals I1 + 〈Tr1+1 − h1, . . . , Tr′1 − hl〉. Con-
sequently, we have a canonical graded isomorphism R′1 → R1 sending Tr1+i to hi.
Assertion (i) follows directly.
We prove (ii). Since (R′1)T1···Tr1

is factorially K ′1-graded, we obtain that (R1)T1···Tr1
is factorially K1-graded. As T1, . . . , Tr1 define K1-primes in R1, we can apply [15,
Thm. 1.2] to see that R1 is factorially K1-graded. Since T1, . . . , Tr1 are pairwise
non-associated we conclude that X1 ⊆ Z1 is a CEMDS.
We turn to (iii). Note that by construction, T1, . . . , Tr1 also define K1-primes in R1.
According to (ii), we only have to show that any r1− 1 of the degrees of T1, . . . , Tr1

generate K1. For this, it suffices to show that each deg(Tj) for j = r1+1, . . . , r1+l is
a linear combination of any r1− 1 of the first r1 degrees. Since T1, . . . , Tr1 generate
R1 and Tj is not a multiple of any Ti, we see that for any i = 1, . . . , r1, there is a
monomial in hj not depending on Ti. The assertion follows. �

3. Computing modifications of Mori dream spaces

Based on Section 2, we provide a general algorithmic framework for computations
with modifications of Mori dream spaces. This section has been published together
with J. Hausen and A. Laface in [57, Sec. 3].
In order to encode a canonically embedded Mori dream space Xi ⊆ Zi and its Cox
ring Ri, we use the triple (Pi,Σi, Gi) where Pi and Σi are as in Remark 4.2.2 and
Gi = (g1, . . . , gs) is a system of generators of the defining ideal Ii of the Cox ring
Ri. We call such a triple (Pi,Σi, Gi) as well a CEMDS.

Remark 4.3.1. In the sense of Chapter 2, each CEMDS (P,Σ, G) corresponds
to a MDS (R,Φ) where the GR R = (G,Q,Q0, P, FF) is computed using Algo-
rithms 2.1.24 and 2.1.26. The BUN Φ is obtained from Σ by Gale duality

Φ = {Q(γ0); γ0 � γ F-face, P (γ∗0 ) ∈ Σ} , γ := Qr≥0.

In particular, given a CEMDS (Pi,Σi, Gi), the degree map Qi : Zri → Ki and Xi

as well as pi : X̂i → Xi are directly computable. Then Qi and Pi are Gale dual to
each other, i.e., Qi is surjective and Pi is the dual of the inclusion ker(Qi) ⊆ Zri .
The following two algorithms implement Proposition 4.2.11.

Algorithm 4.3.2 (StretchCEMDS). Input: a CEMDS (P1,Σ1, G1) and a list
(f1, . . . , fl) of polynomials fi ∈ K[T1, . . . , Tr1 ] defining pairwise non-associated K1-
primes in R1.

• Compute the Gale dual Q1 : Zr1 → K1 of P1 with Algorithm 2.1.24.
• Let Q′1 : Zr1+l → K1 be the extension of Q1 by the degrees of f1, . . . , fl.
• Using Algorithm 2.1.25, compute the Gale dual P ′1 : Zr1+l → Zn′ of Q′1

and the fan Σ′ in Zn′ defined by P ′1 and the ample class w ∈ K ′1 = K1
of Z1.

• Set G′1 := (g1, . . . , gs, Tr1+1 − f1, . . . , Tr2 − fl) where G1 = (g1, . . . , gs).

Output: the CEMDS (P ′1,Σ′1, G′1).

The input of the second algorithm is more generally an embedded space X1 ⊆ Z1
that means just a closed normal subvariety intersecting the big torus. In particular,
we do not care for the moment if R1 is the Cox ring of X1. We encode X1 ⊆ Z1 as
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well by a triple (P1,Σ1, G1) and name it for short an ES. For notational reasons we
write (P ′1,Σ′1, G′1) for the input.

Algorithm 4.3.3 (CompressCEMDS). Input: an ES (P ′1,Σ′1, G′1) such that R′1 is
normal, the localization (R′1)T1···Tr1

is factorially K ′1-graded and the last l relations
in G′1 are fake, i.e., of the form fi = Ti − hi with hi not depending on Ti. Option:
verify.

• Successively substitute Ti = hi in G′1. Set G1 := (f1, . . . , fr1) where
G′1 = (f1, . . . , fr′1) and r1 := r′1 − l.
• Set K1 := K ′1 and let Q1 : Zr1 → K1 be the map sending ei to deg(Ti)

for 1 ≤ i ≤ r1.
• Compute a Gale dual P1 : Zr1 → Zn of Q1 with Algorithm 2.1.25 and the

fan Σ1 in Zn defined by P1 and the ample class w ∈ K1 = K ′1 of Z ′1.
• If verify was asked then

– check if any r1 − 1 of the degrees of T1, . . . , Tr1 generate K1; see
Algorithm 2.1.32.

– check if dim(I1)− dim(I1 + 〈Ti, Tj〉) ≥ 2 for all i 6= j,
– check if T1, . . . , Tr1 define K1-primes in R1; see Algorithm 2.2.10.

Output: the ES (P1,Σ1, G1). If (P ′1,Σ′1, G′1) is a CEMDS or all verifications were
positive, then (P1,Σ1, G1) is a CEMDS. In particular, then R1 is the Cox ring of
the corresponding subvariety X1 ⊆ Z1.

Remark 4.3.4. In Algorithm 4.3.3, observe that it is no restriction to assume that
each fake relation Ti − h ∈ 〈G′1〉 already satisfies Ti − h ∈ G′. Write Ti − h =
h1f1 + . . . + hr1fr1 with hj ∈ K[T1, . . . , Tr]. Comparing the degrees of both sides
with respect to a suitable monomial ordering, we obtain Ti − h = fj for some j.

We turn to the algorithmic version of Theorem 4.2.6. We will work with the satura-
tion of an ideal a ⊆ K[T1, . . . , Tr] with respect to an ideal b ⊆ K[T1, . . . , Tr]; recall
that this is the ideal

a : b∞ := {g ∈ K[T1, . . . , Tr]; g bk ⊆ a for some k ∈ Z≥0} ⊆ K[T1, . . . , Tr].

In case of a principal ideal b = 〈f〉, we write a : f∞ instead of a : b∞. We say that
an ideal a ⊆ K[T1, . . . , Tr] is f -saturated if a = a : f∞ holds. We will only consider
saturations with respect to f = T1 · · ·Tr ∈ K[T1, . . . , Tr]; we refer to [90, Chap. 12]
for the computational aspect. Let us recall the basic properties, see also [64].

Lemma 4.3.5. Consider K[T,U±1] with tupels of variables T = (T1, . . . , Tr1) and
U = (U1, . . . , Ur2−r1). For f := U1 · · ·Ur2−r1 ∈ K[U ], one has mutually inverse
bijections{

ideals in K[T,U±1]
}
←→

{
f -saturated ideals in K[T,U ]

}
a 7→ a ∩ K[T,U ]

〈b〉K[T,U±1] ← [ b.

Under these maps, the prime ideals of K[T,U±1] correspond to the f -saturated prime
ideals of K[T,U ].

For transferring polynomials from K[T1, . . . , Tr1 ] to K[T1, . . . , Tr2 ] and vice versa,
recall from Chapter 2 the following operations; compare also [44]. Consider a ho-
momorphism π : Tn → Tm of tori and its kernel H ⊆ Tn.

• By a ?-pull back of g ∈ K[S±1
1 , . . . , S±1

m ] we mean a polynomial π?g ∈
K[T1, . . . , Tn] with coprime monomials such that π∗g and π?g are associ-
ated in K[T±1

1 , . . . , T±1
n ].
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• By a ?-push forward of an H-homogeneous h ∈ K[T±1
1 , . . . , T±1

n ] we mean
a polynomial π?h ∈ K[S1, . . . , Sm] with coprime monomials such that h
and π∗π?h are associated in K[T±1

1 , . . . , T±1
n ].

Note that ?-pull backs and ?-push forwards always exist and are unique up to
constants. The ?-pull back π?g of a Laurent polynomial is its usual pull back π∗g
scaled with a suitable monomial. See Algorithm 2.2.13 on how to compute the
?-push forward.

Lemma 4.3.6. Consider a monomial epimorphism π : Kn1 × Tn2 → Km. Write
T = (T1, . . . , Tn1) and U = (U1, . . . , Un2).

(i) If a ⊆ K[T,U±1] is a prime ideal, then 〈π?a〉 ⊆ K[S±1] is a prime ideal.
(ii) If b ⊆ K[S±1] is a radical ideal, then 〈π?b〉 ⊆ K[T,U±1] is a radical ideal.

Proof. The first statement follows from 〈π?a〉 = (π∗)−1(a). To prove (ii), let f ∈√
〈π?b〉. Since

√
〈π?b〉 = I(π−1(V (b))) is invariant under H := ker(π|Tn1+n2 ),

we may assume that f is H-homogeneous, i.e., f(h · z) = χ(h)f(z) holds with
some character χ ∈ X(H). Choose η ∈ X(Tn1+n2) with χ = η|H . Then η−1f
is H-invariant and thus belongs to π∗(I(V (b)). Hilbert’s Nullstellensatz and the
assumption give π∗(I(V (b)) = π∗(b). We conclude f ∈ 〈π?b〉. �

We are ready for the first algorithm, treating the contraction problem. We enter a
weak CEMDS (P2,Σ2, G2) in the sense that G2 provides generators for the extension
of I2 to K[T±1

1 , . . . , T±1
r2

] and a toric contraction Z2 → Z1, encoded by (P1,Σ1), and
obtain a CEMDS X1 ⊆ Z1.

Algorithm 4.3.7 (ContractCEMDS). Input: a weak CEMDS (P2,Σ2, G2) and a
pair (P1,Σ1) where P2 = [P1, B] and Σ1 is a coarsening of Σ2 removing the rays
through the columns of B.

• For G2 = (g1, . . . , gs), set hi := gi(T1, . . . , Tr1 , 1, . . . , 1) ∈ K[T1, . . . , Tr1 ].
• Compute a system of generators G′1 for I ′1 := 〈h1, . . . , hs〉 : (T1 · · ·Tr1)∞.
• Set (P ′1,Σ′1, G′1) := (P1,Σ1, G

′
1) and reorder the variables such that the

last l relations of G′1 are as in Algorithm 4.3.3.
• Apply Algorithm 4.3.3 to (P ′1,Σ′1, G′1) and write (P1,Σ1, G1) for the out-

put.

Output: (P1,Σ1, G1). This is a CEMDS. In particular, R1 is the Cox ring of the
image X1 ⊆ Z1 of X2 ⊆ Z2 under Z2 → Z1.

Proof. First we claim that in K[T±1
1 , . . . , T±1

r1
], the ideal generated by h1, . . . , hs

coincides with the ideal generated by p?1(p2)?g1, . . . , p
?
1(p2)?gr. To see this, consider

pi : Tri → Tn and let S1, . . . , Sn be the variables on Tn. Then the claim follows
from (P2)ij = (P1)ij for j ≤ r1 and

p∗2(Si) = T
(P2)i1
1 · · ·T (P2)ir2

r2 , p∗1(Si) = T
(P1)i1
1 · · ·T (P1)ir1

r1 .

As a consequence of the claim, we may apply Lemma 4.3.6 and obtain that G′1
defines a radical ideal in K[T±1 , . . . , T±r1

]. Moreover, from Theorem 4.2.6 we infer
that X̂ ′1, defined as in Setting 4.2.5, is irreducible. Since G′1 has X̂ ′1 ∩ Tr1 as
its zero set, it defines a prime ideal in K[T±1 , . . . , T±r1

]. Lemma 4.3.5 then shows
that I ′1 ⊆ K[T1, . . . , Tr1 ] is a prime ideal. Using Theorem 4.2.6 again, we see that
(P ′1,Σ′1, G′1) as defined in the third step of the algorithm is a CEMDS. Thus, we
may enter Algorithm 4.3.3 and end up with a CEMDS. �

We turn to the modification problem. Given a Mori dream space X1 with Cox
ring R1 and a modification X2 → X1, we want to know if X2 is a Mori dream
space, and if so, we ask for the Cox ring R2 of X2. Our algorithm verifies a guess of
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prospective generators for R2 and, if successful, computes the relations. In practice,
the generators are added via Algorithm 4.3.2.

Algorithm 4.3.8 (ModifyCEMDS). Input: a weak CEMDS (P1,Σ1, G1), a pair
(P2,Σ2) with a matrix P2 = [P1, B] and a fan Σ2 having the columns of P2 as its
primitive generators and refining Σ1. Options: verify.

• Compute G′2 := (h1, . . . , hs) with hi = p?2(p1)?(gi) and G1 = (g1, . . . , gs).
• Compute a list of generators G2 for I2 := 〈h1, . . . , hs〉 : (Tr1+1 · · ·Tr2)∞.
• If verify was asked

– compute a Gale dual Q2 : Zr2 → K2 of P2 with Algorithm 2.1.24,
– check if dim(I2)− dim(I2 + 〈Ti, Tj〉) ≥ 2 for all i 6= j,
– check if T1, . . . , Tr2 define K2-primes in R2; see Algorithm 2.2.10.
– check if R2 is normal, e.g., using Proposition 4.1.4.

Output: (P2,Σ2, G2), if the verify-checks were all positive, this is a CEMDS. In
particular, R2 then is the Cox ring of the strict transform X2 ⊆ Z2 of X1 ⊆ Z1
with respect to Z2 → Z1.

Proof. We write shortly K[T,U±1] with the tuples T = (T1, . . . , Tr1) and U =
(U1, . . . , Ur2−r1) of variables. Lemma 4.3.6 ensures that G2 generates a radical
ideal in K[T,U±]. To see that the zero set V (G2) ⊆ Kr1 × Tr2−r1 is irreducible,
consider the situation of equation (3) in the proof of Theorem 4.2.6. There, in the
right hand side diagram, we may lift the homomorphisms of tori to

Kr1 × Tr2−r1

µ

vv

α

&&
Kr1 × Tr2−r1

p2

��

Kr1

p1

��
Tn

id
// Tn

Observe that we have an isomorphism ϕ = α× id given by
Kr1 × Tr2−r1 → Kr1 × Tr2−r1 , (z, z′) 7→

(
z1(z′)A1∗ , . . . , zr1(z′)Ar1∗ , z′

)
.

Since X1 is irreducible, so is ϕ−1(X1 × Tr2−r1) = α−1(X1). Hence, the im-
age µ(α−1(X1)) = X2 ∩ Kr1 × Tr2−r1 = V (G2) is irreducible as well. More-
over, Lemma 4.3.5 implies that G2 generates a prime ideal in K[T,U ]. If the
verify-checks were all positive, then Theorem 4.2.6 tells us that (P2,Σ2, G2) is
a CEMDS. �

Remark 4.3.9. If the canonical map K2 → K1 admits a section, e.g., if K1 is free,
then, in the verification step of Algorithm 4.3.8, it suffices to check the variables
Tr1+1, . . . , Tr2 for being K2-prime in R2, see Proposition 4.1.4.

4. Application: Gorenstein log del Pezzo surfaces

As an application of the algorithms developed in Section 3, mainly Algorithm 4.3.7,
we compute Cox rings of Gorenstein log-terminal del Pezzo surfaces X of Picard
number one that do not admit a non-trivial K∗-action. This section has been
published with J. Hausen and A. Laface in [57, Sec. 4].
Del Pezzo means that the anticanonical divisor −KX is ample and the condition
“Gorenstein log-terminal” implies thatX has at most ADE-singularities. The idea is
to present each such surface X, classified by Alekseev and Nikulin [2], as P2 ← X̃ →
X with smooth X̃ and information about R(X̃) is known from Hasset, Tschinkel,
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Derenthal, Artebani, Garbagnati and Laface [49, 33, 4]. The Cox rings admitting
a non-trivial K∗-action have been computed in [59], the toric ones in, e.g., [72].
In [2, Theorem 8.3], the Gorenstein log-terminal del Pezzo surfaces X of Picard
number one have been classified according to the singularity type, i.e., the configu-
ration S(X) of singularities. Besides P2, there are four toric Gorenstein log-terminal
surfaces del Pezzo surfaces X of Picard number one, namely the singularity types
A1, A1A2, 2A1A3 and 3A2. Moreover, there are thirteen (deformation types of) K∗-
surfaces; they represent the singularity types A4, D5, E6, A12A3, 3A1D4, A1D6,
A2A5, E7, A1E7, A2E6, E8, 2D4 and their Cox rings have been determined in [59,
Theorem 5.6].
We now compute the Cox rings of the remaining ones using Algorithm 4.3.2 and
the knowledge of generators of their resolutions [33, 4]; note that the relations for
Cox rings of the resolutions is still not known in all cases. In the sequel, we will
write a Cox ring as a quotient K[T1, . . . , Tr]/I and specify generators for the ideal
I. As before, the Cl(X)-grading is encoded by a degree matrix, i.e., a matrix with
deg(T1), . . . ,deg(Tr) ∈ Cl(X) as columns.

Theorem 4.4.1. The following table lists the Cox rings of the Gorenstein log-
terminal del Pezzo surfaces X of Picard number one that do not allow a non-trivial
K∗-action.

S(X) Cox ring R(X) Cl(X) and degree matrix

2A4

K[T1, . . . , T6]/I with I generated by
−T2T5+T3T4+T2

6 , −T2T4+T2
3 +T5T6,

T1T6−T3T5+T2
4 , T1T3−T4T6+T2

5 ,

T1T2−T3T6+T4T5

Z⊕ Z/5Z[
1 1 1 1 1 1
2̄ 2̄ 3̄ 4̄ 0̄ 1̄

]

D8
K[T1, . . . , T4]/I with I generated by
T2

1−T
2
4 T2T3+T4

4 +T4
3

Z⊕ Z/2Z[
2 1 1 1
1̄ 1̄ 1̄ 0̄

]

D5A3
K[T1, . . . , T5]/I with I generated by
T1T3−T2

4−T
2
5 , T1T2−T2

3 +T4T5

Z⊕ Z/4Z[
1 1 1 1 1
2̄ 2̄ 0̄ 3̄ 1̄

]

D62A1
K[T1, . . . , T5]/I with I generated by
T5T2−T2

5 +T2
3 +T2

4 , −T
2
2 +T5T2+T2

1−T
2
4

Z⊕ Z/2Z⊕ Z/2Z[
1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄

]

E6A2
K[T1, . . . , T4]/I with I generated by
−T1T

2
4 +T3

2 +T2T3T4+T3
3

Z⊕ Z/3Z[
1 1 1 1
1̄ 2̄ 0̄ 1̄

]

E7A1
K[T1, . . . , T4]/I with I generated by
−T1T

3
3−T

2
2 +T2T3T4+T4

4

Z⊕ Z/2Z[
1 2 1 1
1̄ 1̄ 1̄ 0̄

]

E8
K[T1, . . . , T4]/I with I generated by
T3

1 +T2
1 T

2
4 +T2

2−T3T
5
4

Z[
2 3 1 1

]
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A7
K[T1, . . . , T4]/I with I generated by
T2

1−T4T2T3+T4
4 +T4

3

Z⊕ Z/2Z[
2 2 1 1
1̄ 1̄ 1̄ 0̄

]

A8
K[T1, . . . , T4]/I with I generated by
−T1T2T3+T3

2 +T3
3 +T3

4

Z⊕ Z/3Z[
1 1 1 1
1̄ 2̄ 0̄ 1̄

]

A7A1
K[T1, . . . , T5]/I with I generated by
−T2T3+T2

4−T
2
5 , T

2
1−T

2
3 +T4T5

Z⊕ Z/4Z[
1 1 1 1 1
2̄ 2̄ 0̄ 3̄ 1̄

]

A5A2A1

K[T1, . . . , T7]/I with I generated by
T2

5 +T2
6−T7T1, T4T5+T6T1−T2T6−T2

7 ,

−T3T6−T5T7+T1T4, T
2
3−T6T1+T2

7 ,

T1T5−T2T5−T4T6+T7T3,

T3T4−T2
6 +T7T1−T2T7,

The class group and degree matrix are
Z⊕ Z/6Z

T1T3−T2T3+T6T5−T7T4,

T1T2−T2
2−T

2
4 +T3T5,

T2
1−T

2
2−T

2
4 +2T3T5−T7T6

[
1 1 1 1 1 1 1
2̄ 2̄ 3̄ 5̄ 1̄ 4̄ 0̄

]

2A3A1

K[T1, . . . , T9]/I with I generated by
− 1

2T
2
4 +T2

5 + 1
2T7T9,

− 1
2T3T8− 1

2T4T5+T2
6 ,

− 1
2T3T4+T5T8+ 1

2T6T9,

T2T6−T7T9−4T2
8 ,

T5T2−2T3T7+T8T9,

− 1
4T2T4+ 1

4T3T9+T7T8,

T1T7+T2T7−4T3T4+2T6T9,

T1T6−2T2
4 +T7T9,

1
2T1T6− 1

2T2T6+T2
3−T

2
4 ,

T1T8−2T4T7+T5T9,

The class group and degree matrix are
Z⊕ Z/2Z⊕ Z/4Z

T2
1−16T4T5+8T2

7−T
2
9 ,

T2
2−16T3T8+8T2

7−T
2
9 ,

T2T3−T4T9+4T5T7−8T6T8,

T1T2−8T2
7−T

2
9 ,

T1T5+2T3T7−4T4T6+T8T9,

T1T3−T4T9−4T5T7,

− 1
8T4T1+ 1

8T2T4+T5T6−T7T8,

− 1
16T9T1+ 1

16T2T9−T4T8+T6T7,

− 1
8T9T1+ 1

8T2T9+T3T5−T4T8,
1
4T1T8− 1

4T2T8+T6T3−T4T7,[
1 1 1 1 1 1 1 1 1
1̄ 1̄ 0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄
3̄ 3̄ 2̄ 0̄ 2̄ 1̄ 3̄ 0̄ 1̄

]

4A2

K[T1, . . . , T10]/I with I generated by
3T3T6+3T4T7ζ+(−3ζ−3)T5T8,

(ζ−1)T2T8+3T2
3 +(−ζ−2)T6T9,

3T2T7ζ+3T6T10+(−3ζ−3)T8T9,

(−ζ+1)T2T5+(ζ−1)T4T9+3T6T8,

−ζT1T10+T2T10ζ+3T4T7−3T5T8,

(ζ+1)T1T10−T2T10ζ+3T5T8−T2
9 ,

−T1T9ζ−T2T9+3T3T7+(ζ+1)T2
10,

−T1T9ζ+T2T9ζ+3T3T7−3T8T4,

(−ζ+1)T1T8+(ζ−1)T2T8+3T2
3−3T4T5,

(ζ+2)T1T7+(−ζ−2)T2T7+3T4T3−3T2
5 ,

T2T1+(−ζ−1)T2
2 +3T8T3+T9T10ζ,

−ζT1T2+3T4T6+T9T10ζ,

T2
1 +(−ζ−1)T1T2+3T5T7+T9T10ζ

The class group and degree matrix are
Z⊕ Z/3Z⊕ Z/3Z

(−ζ−1)T1T9+(ζ+1)T2T9−3T8T4+3T5T6,

(−2ζ−1)T1T8+(ζ−1)T2T8+3T2
3 +(ζ−1)T7T10,

−3T1T6+(3ζ+3)T2T6+(−3ζ−3)T7T9+3T8T10,

(−ζ−2)T1T7+(2ζ+1)T2T7+3T2
5 +(−ζ−2)T8T9,

(−ζ−2)T1T6+(2ζ+1)T2T6+3T3T5+(−ζ−2)T7T9,

(2ζ+1)T1T6+(−2ζ−1)T2T6−3T3T5+3T2
4 ,

(−ζ+1)T1T5+(−ζ−2)T2T5+(2ζ+1)T3T10+3T2
7 ,

(−ζ+1)T1T5+(ζ−1)T2T5−3T6T8+3T2
7 ,

−3T1T4+(3ζ+3)T2T4+(−3ζ−3)T3T9+3T5T10,

(−2ζ−1)T1T4+(2ζ+1)T5T10+3T2
6 ,

(ζ+2)T1T4+(−2ζ−1)T2T4+(ζ−1)T3T9+3T7T8,

(−ζ+1)T1T3+(ζ−1)T5T9+3T6T7,

3ζT1T3+3T4T10+(−3ζ−3)T5T9,

(ζ+2)T1T3+(−2ζ−1)T2T3+(ζ−1)T5T9+3T2
8 ,

where ζ is a primitive third root of unity.[
1 1 1 1 1 1 1 1 1 1
2̄ 2̄ 1̄ 0̄ 2̄ 1̄ 2̄ 0̄ 1̄ 0̄
1̄ 1̄ 2̄ 2̄ 2̄ 0̄ 0̄ 0̄ 1̄ 1̄

]
.
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Proof. According to [2, Thm. 8.3], the Gorenstein log del Pezzo surfaces X with
%(X) = 1 have ADE-singularity types

A7, A8, A7A1, A5A2A1, 2A4, D8, D5A3, D62A1, 2A32A1, 4A2,

D43A1, 2A3A1, A4, A5A1, A5A2, D5, D6A1, E6A2, E6, E7A1,

E7, E8, 2D4, A1, A2A1, A32A1, 3A2.(4)

For each singularity type, up to isomorphism, there is exactly one such surface ex-
cept for the cases E6A2, E7A1 and E8 where exactly two isomorphism classes occur,
and case 2D4 where there are infinitely many classes. As noted in the introduction,
the singularity types shown in the last two rows of (4) are toric or are K∗-surfaces;
this includes all 2D4 cases.
Each of the remaining surfaces X, is obtained by contracting curves of a smooth sur-
face X2 arising as a blow up of P2 with generators for the Cox ring known by [33, 4].
A direct application of Algorithms 4.3.8 and 4.3.7 is not always feasible. However,
we have enough information to present the blow ups of P2 as a weak CEMDS. As an
example, we treat the D5A3-case. By [4], with X2 := X141, additional generators
for R(X2) correspond in R(P2) to

f1 := T1 − T2, f2 := T1T2 − T 2
2 + T1T3.

Using Algorithm 4.3.2 with input the CEMDS P2 and (f1, f2), we obtain a CEMDS
X1. Again by [4, Sec. 6], we know the degree matrix Q2 of X2. Write Q2 = [D,C]
with submatrices D and C consisting of the first r1 and the last r2 − r1 columns
respectively. We compute a Gale dual matrix P2 of the form P2 = [P1, B] by
solving CBt = −DP t1 . Let p1 : T5 → T4 and p2 : T14 → T4 be the maps of tori
corresponding to P1 and P2. Instead of using Algorithm 4.3.8, we directly produce
the equations G′2 for X2 on the torus:

p?2(p1)? f1 = T1T6T7T8T14 − T2T10T
2
11 − T3T12T

2
13,

p?2(p1)? f2 = T1T4T
2
14 + T2T3T9T11T13 − T5T

2
6 T7.

Note that by [4], the variables define pairwise non-associated Cl(X2)-prime gen-
erators for R(X2). This makes X2 a weak CEMDS with data (P2,Σ2, G

′
2) where

Σ2 is the stellar subdivision of the fan Σ1 of the CEMDS X1 at the columns of
B. We now use Algorithm 4.3.7 to contract on X2 the curves corresponding to the
variables Ti with i ∈ {2, 3, 5, 7, 8, 9, 10, 12, 14}. The resulting ring is the one listed
in the table of the theorem.
Observe that the given surfaces do not admit a non-trivial K∗-action. As noted
before, we only have to treat cases E6A2, E7A1 and E8. Here, using e.g., Algo-
rithm 2.4.8, one computes the minimal resolution X ′ → X and compares R(X ′)
with the Cox ring given in [33, Sect. 3]. If the rings are isomorphic, again by [33,
Sect. 3], X does not admit a non-trivial K∗-action. See Example 2.4.12 for the
E6A2 case. �

Remark 4.4.2. Note that the resolutions of the surfaces with singularity type
E6A2, E7A1 and E8 listed in Theorem 4.4.1 have a hypersurface as Cox ring; they
have been computed in [33, Sect. 3, Table 9]. Moreover, these surfaces admit small
degenerations into K∗-surfaces. In fact, multiplying the monomials T2T3T4 and
T 2

1 T
2
4 in the respective Cox rings with a parameter α ∈ K gives rise to a flat family

of Cox rings over K. The induced flat family of surfaces over K has a K∗-surface as
zero fiber, compare also the corresponding Cox rings listed in [59, Theorem 5.6].
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5. The lattice ideal method

We consider the blow up X2 of a Mori dream space X1 with known Cox ring and
develop a method for the systematic guess and verification of generators for the
new Cox ring R(X2). A description of R(X2) as saturated Rees algebra is used. As
examples, we compute the Cox ring of Cayley’s cubic surface and the Cox ring of
the blow up of a weighted projective space in its base point. This section has been
published in [57, Sec. 5] together with J. Hausen and A. Laface.
Let X1 be a Mori dream space and π : X2 → X1 the blow up of an irreducible
subvariety C ⊆ X1 contained in the smooth locus of X1. As before, write Ki :=
Cl(Xi) for the divisor class groups and Ri := R(Xi) for the Cox rings. Then we
have the canonical pullback maps

π∗ : K1 → K2, [D] 7→ [π∗D],
π∗ : R1 → R2, (R1)[D] 3 f 7→ π∗f ∈ (R2)[π∗D].

Moreover, identifying U := X2 \ π−1(C) with X1 \ C, we obtain canonical push
forward maps

π∗ : K2 → K1, [D] 7→ [π∗D],
π∗ : R2 → R1, (R2)[D] 3 f 7→ f|U ∈ (R1)[π∗D].

Let J ⊆ R1 be the irrelevant ideal, i.e., the vanishing ideal of X1 \ X̂1, and I ⊆ R1
the vanishing ideal of p−1

1 (C) ⊆ X1 where p1 : X̂1 → X1 is the characteristic space.
We define the saturated Rees algebra to be the subalgebra

R1[I]sat :=
⊕
d∈Z

(
I−d : J∞

)
td ⊆ R1[t±1], where Ik := R1 for k ≤ 0.

Note that this indeed makes R1[I]sat a graded algebra. For all n,m ∈ Z we have
containment of (In : J∞)(Im : J∞) in In+m : J∞.

Remark 4.5.1. The usual Rees algebra R1[I] =
⊕

d∈Z I
−dtd is a subalgebra of

the saturated Rees algebra R1[I]sat. In the above situation, I ⊆ R1 is a K1-prime
ideal. Since K1-prime ideals are saturated with respect to K1-homogeneous ideals,
we have I : J∞ = I. Consequently, R1[I]sat equals R1[I] if and only if R1[I]sat

is generated in the Z-degrees 0 and ±1. In this case, R1[I]sat is finitely generated
because R1[I] is so.

Note that the saturated Rees algebra R1[I]sat is naturally graded by K1 × Z as
R1 is K1-graded and the ideals I, J are homogeneous. Let E = π−1(C) denote
the exceptional divisor. Then we have a splitting K2 = π∗K1 × Z · [E] ∼= K1 × Z;
compare Proposition 1.4.8.

Proposition 4.5.2. See [57, Prop. 5.2]. In the above situation, we have the fol-
lowing mutually inverse isomorphisms of graded algebras

R2 ←→ R1[I]sat,

(R2)[π∗D]+d[E] 3 f 7→ π∗f · td ∈
(
R1[I]sat)

([D],d) ,

(R2)[π∗D]+d[E] 3 π∗f · 1dE ← [ f · td ∈
(
R1[I]sat)

([D],d) .

For the computation of the Cox ring R2, we work in the notation of Setting 4.2.5;
in particular X1 comes as a CEMDS X1 ⊆ Z1. As before, C ⊆ X1 is an irreducible
subvariety contained in the smooth locus of X1 and Ĉ ⊆ X̂1 denotes its inverse
image with respect to p1 : X̂1 → X1. The idea is to stretch the given embedding
X1 ⊆ Z1 by suitable generators of the vanishing ideal I ⊆ R1 of Ĉ ⊆ X1 and then
perform an ambient modification.
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Algorithm 4.5.3 (BlowUpCEMDS). Input: a CEMDS (P1,Σ1, G1), a K1-prime
ideal I = 〈f1, . . . , fl〉 ⊆ R1 with pairwise non-associated K1-primes fi ∈ R1 defining
an irreducible subvariety C ⊆ X1 inside the smooth locus and coprime positive
integers d1, . . . , dl with fi ∈ Idi : J∞.

• Compute the stretched CEMDS (P ′1,Σ′1, G′1) by applying Algorithm 4.3.2
to (P1,Σ1, G1) and (f1, . . . , fl).
• Define a multiplicity vector v ∈ Zr1+l by vi := 0 for 1 ≤ i ≤ r1 and
vi := di−r1 for r1 + 1 ≤ i ≤ r1 + l.
• Determine the stellar subdivision Σ2 → Σ′1 of the fan Σ′1 along the ray

through P ′1 · v. Write P2 := [P ′1, P ′1 · v].
• Compute (P2,Σ2, G2) by applying Algorithm 4.3.8 to (P ′1,Σ′1, G′1) and

the pair (P2,Σ2).
• Let T ν be the product over all Ti with C 6⊆ Di where Di ⊆ X1 is the

divisor corresponding to Ti. Test whether dim(I2 + 〈Tr2〉) > dim(I2 +
〈Tr2 , T

ν〉).
• Set (P ′2,Σ′2, G′2) := (P2,Σ2, G2). Eliminate all fake relations by applying

Algorithm 4.3.3. Call the output (P2,Σ2, G2).

Output: (P2,Σ2, G2). If the verification in the next to last step was positive, then
(P2,Σ2, G2) is a CEMDS describing the blow up X2 of X1 along C. In particular
then the K2-graded algebra R2 is the Cox ring of X2.

Lemma 4.5.4. Let a, b ⊆ K[T1, . . . , Tr] be ideals and f ∈ K[T1, . . . , Tr] a polyno-
mial. Then taking the saturation commutes with taking the localization, i.e.,

af : (bf )∞ = (a : b∞)f ⊆ K[T1, . . . , Tr]f .

Proof. Compare also [8, Cor. 3.15]. Consider g ∈ (a : b∞)f . Then gf−k ∈ a : bs for
some k ∈ Z≥0 and an integer s ≥ 1. This means gbs ⊆ a. Since localizing commutes
with taking products we obtain g(bf )s ⊆ af , see [8, Prop. 3.11].
For the other inclusion, let g ∈ af : (bf )∞. As before, g(bs)f ⊆ af for an s ∈ Z≥1.
In particular, gbs ⊆ af . Write bs = 〈b1, . . . , bl〉. Then there are ai ∈ a and mi ∈ Z
such that gbi = aif

mi ∈ af which means gf−mibi ∈ a. We obtain gfk
′
bs ⊆ a for

suitable k′ ∈ Z. We arrive at g ∈ (a : b∞)f . �

Lemma 4.5.5. In the situation of Algorithm 4.5.3, consider a monomial T ν ∈ J ⊆
R1. Then the localization (R1[I]sat)T ν is isomorphic to (R1[I])T ν .

Proof. Set f := T ν . Since the Ti with 1 ≤ i ≤ r1 are of Z-degree zero, using
Lemma 4.5.4, we obtain

(R1[I]sat)f =
⊕
k<0

(
I−k : J∞

)
f
tk ⊕

⊕
k≥0

(R1)f tk

=
⊕
k<0

((
I−k

)
f

: R1

)
tk ⊕

⊕
k≥0

(R1)f tk

=
⊕
k<0

(
I−k

)
f
tk ⊕

⊕
k≥0

(R1)f tk

= (R1[I])f . �

Lemma 4.5.6. In the situation of Algorithm 4.5.3, let R1[I] ⊆ R2 ⊆ R1[I]sat be
an inclusion of K2 = K1×Z-graded algebras. Let T ν be the product over all Ti such
that C 6⊆ V (X1; Ti). Then R2 = R1[I]sat holds if

dim (I2 + 〈Tr2〉R2) > dim (I2 + 〈Tr2 , T
ν〉R2) .
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Proof. Denote by (R2)d the degree d part of R2 with respect to the natural Z-
grading. Assume that the inclusion R2 ⊆ R1[I]sat is strict and let n ∈ Z≥1 be
minimal such that there is ft−n ∈ R1[I]sat

−n \ (R2)−n. Observe that n > 1 by
assumption. Moreover ft−n+1 ∈ R2 since f ∈ In : J∞ ⊆ In−1 : J∞ and (R2)−n+1 =
(R1[I]sat)−n+1. Therefore

ft−n+1 ∈ 〈t〉R1[I]sat ∩ R2, ft−n+1 /∈ 〈t〉R2

so that the ideal 〈t〉R2 is strictly contained in 〈t〉R1[I]sat ∩ R2. Note that T ν is an
element of the irrelevant ideal J since

T ν ∈ J ⇔
⋂
νi=0

Di 6= ∅ ⇔
⋂

C⊆Di

Di 6= ∅.

Moreover, localizing by T ν , Lemma 4.5.5 delivers(
〈t〉R1[I]sat ∩ R2

)
T ν

= 〈t〉R1[I]sat
Tν
∩ (R2)T ν = 〈t〉R1[I]Tν .

In particular, both ideals are of the same dimension in R2 and 〈t〉R2 equals the K2-
prime ideal 〈t〉R1[I]sat ∩ R2 in (R2)T ν , i.e., t is K2-prime in (R2)T ν . Observe that
t is K2-prime in R2. Given K2-homogeneous elements h1, h2 ∈ R2 with t | h1h2,
considered as elements of (R2)T ν , we have t | h1 or t | h2, i.e.,

h1(T ν)k1 = tα1 or h2(T ν)k2 = tα2, αi ∈ R2, ki ∈ Z≥0.

Since by the dimension requirement we know that t and T ν are coprime in R2, we
obtain t | h1 or t | h2. Therefore, 〈t〉R2 = 〈t〉R1[I]sat ∩R2 in R2, a contradiction. �

Proof of Algorithm 4.5.3. Consider the K2-graded ring R2 = K[T1, . . . , Tr2 ]/I2
associated to the output (P2,Σ2, G2). Assume all verifications were positive. The
first step is to show that R2 is normal; then (P2,Σ2, G2) is a CEMDS and R2 is the
Cox ring of the output variety X2. In a second step we show that X2 equals the
blow up of X1 along C.
Consider the output (P2,Σ2, G2) of the fourth item, i.e., the situation before enter-
ing the last step. The variables Tr1+1, . . . , Tr2−1 correspond to f1, . . . , fl and Tr2

to the exceptional divisor. Observe that we have a canonical K2-graded homomor-
phism R2 → R1[I]sat induced by

K[T1, . . . , Tr2 ] → R1[I]sat, Ti 7→


Ti, 1 ≤ i ≤ r1,

fi−r1t
−vi , r1 < i < r2,

t, i = r2.

Indeed, because C is contained in the smooth locus of X1, the cone generated by
the last l columns of P ′1 is regular and, because in addition d1, . . . , dl are coprime,
the vector P ′1 ·v is primitive. Thus, the ideal I2 of X2 is the saturation with respect
to Tr2 of

I1 + 〈TiT vir2
− fi−r1 ; r1 < i < r2〉 ⊆ K[T1, . . . , Tr2 ].

Consequently, the above assignment induces a homomorphism R2 → R1[I]sat. This
homomorphism yields an isomorphism of the K2-graded localizations

(R2)Tr2
=
⊕
d∈Z

R1T
d
r2
∼=
⊕
d∈Z

R1t
d =

(
R1[I]sat)

t

and hence is in particular injective. As the image ϕ(R2) contains generators
ϕ(Tr2) = t, ϕ

(
Tr1+iT

vi−1
r2

)
= fit

−1, 1 ≤ i ≤ l
for the Rees algebra R1[I], we obtain R1[I] ⊆ ϕ(R2) ⊆ R1[I]sat. In fact, by the
dimension check in the last step and the definition of ϕ we may apply Lemma 4.5.6
which delivers ϕ(R2) = R1[I]sat. By Proposition 4.5.2, R1[I]sat ∼= R2 is the Cox
ring of the blow up X ′2 of X1 at C. In particular, R2 ∼= R′2 is normal and we
may apply Algorithm 4.3.3. Note that there is no need to use the verify option
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as the variables T1, . . . , Tr2 ∈ R2 are K2-prime and the generators surviving the
elimination process are K2-prime as well. As for any Cox ring, the K2-grading is
almost free.

deg(Tr2 ) λ′2 = λ2

λ

(0, 0, 0)

We show that X2 ∼= X ′2 holds. Let λ ⊆ Mov(R2) be the chamber representing X1.
Then λ is of codimension one in Q ⊗ K2 and lies on the boundary of Mov(R2).
Since there are the contraction morphisms X2 → X1 and X ′2 → X1, the chambers
λ2, λ

′
2 corresponding to X2, X ′2 both have λ as a face. We conclude λ2 = λ′2 and

thus X2 ∼= X ′2. �

An important special input case for Algorithm 4.5.9 is the blow up of a smooth point.
The point x1 ∈ X1 can be given in Cox coordinates, i.e., as a point z ∈ X̂1 ⊆ Kr1

with x1 = p1(z).

Definition 4.5.7. Let P be an s×r integer matrix and z ∈ Kr. Let i1, . . . , ik be the
indices with zij 6= 0 and ν1, . . . , νs ∈ Zr a lattice basis for im(P ∗)∩ lin(ei1 , . . . , eik).
Then the associated ideal to P and z is the saturation

I(P, z) :=
〈
z−ν

+
1 T ν

+
1 − z−ν

−
1 T ν

−
1 , . . . , z−ν

+
s T ν

+
s − z−ν

−
s T ν

−
s
〉

: (T1 · · ·Tr)∞

⊆ K[T1, . . . , Tr],

where νi = ν+
i −ν

−
i is the unique decomposition with nonnegative vectors ν+

i , ν
−
i ∈

Zr and we write Tα = Tα1
1 · · ·Tαrr and zα = zα1

1 · · · zαrr for any vector α ∈ Zr.

Note that the ideal I(P1, z1) + 〈Tj ; j 6= i1, . . . , ik〉 describes the closure of the
orbit through z1 of the quasitorus H = Spec(K[K1]) acting on Kr1 via the grading
deg(Ti) = Q1(ei) with the projection Q1 : Zr1 → K1 := Zr1/im(P ∗1 ).

Remark 4.5.8. The ideal I(P, z) is a so called lattice ideal. In particular it is
generated by binomials, see [82].

Algorithm 4.5.9 (BlowUpCEMDSpoint). Input: a CEMDS X1 = (P1,Σ1, G1)
and a smooth point x ∈ X1 given in Cox coordinates z ∈ Kr1 .

• Compute a list (f1, . . . , fl) of pairwise non-associated K1-prime genera-
tors for for I(P1, z) + 〈Tj ; zj = 0〉 ⊆ R1 and choose di ∈ Z≥1 such that
fi ∈ Idi : J∞.
• Call Algorithm 4.5.3 with input X1, (f1, . . . , fl) and (d1, . . . , dl). Denote

the result by (P2,Σ2, G2).

Output: (P2,Σ2, G2). If the verification was positive, then (P2,Σ2, G2) is a CEMDS
describing the blow up X2 of X1 in x. In particular then the K2-graded algebra R2
is the Cox ring of X2.

We will see in Algorithm 4.5.12 how to choose the fi more systematically. In the
following example, we compute the Cox ring of Cayley’s nodal cubic surface. We
have published it in [56].

Example 4.5.10 (Cayley’s cubic). Let X1 be the toric surface of Picard number
two coming with four singularities of type A1. So, X1 arises from the fan Σ1 in Z2

as indicated below
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(1, 1)(−1, 1)

(−1,−1) (1,−1)

We determine the Cox ring of the blow up X2 of X1 at the unit element of the big
torus T2 ⊆ X1. Using Algorithm 4.5.9, all di are 1 and we obtain the Cox ring of
X2 as R2 = K[T1, . . . , T9]/I2 graded by K2 = Z3⊕Z/2Z where generators of I2 and
the degree matrix Q2 are

T2
5 − T

2
7 + T6T8, T2T5 − T3T6 + T4T7,

T2
2 − T

2
4 − T6T9, T3T5 − T1T7 + T2T8,

T4T5 − T1T6 + T2T7, T1T5 − T3T7 + T4T8,
T2T3 − T1T4 − T5T9, T1T2 − T3T4 − T7T9,
T2

1 − T
2
3 − T8T9

[
−1 1 −1 1 0 2 0 −2 0

1 0 1 0 1 0 1 2 0
1 0 1 0 0 −1 0 1 1
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄ 0̄

]

Consider w := (0, 1, 1, 1̄) ∈ K2 which is in fact the anticanonical class in K2 =
Cl(X2). Then the homogeneous component (R2)w is of dimension 4 and it is gen-
erated by the classes

z0 := T6T8T9, z1 := T4T5T6, z2 := T4T7T9, z3 := T5T7T8,

compare Algorithm 2.2.5. The rational map X2 → P3, given in Cox coordinates by
z 7→ (z0, z1, z2, z3), is a closed embedding. We see that the image in P3 is Cayley’s
cubic surface as we have in (R2)3w the relation

z0z1z2 + z0z1z3 + z0z2z3 + z1z2z3 = 0.

We now give an example where the Cox ring computation with Algorithm 4.5.3 fails
depending on the input multiplicities di ∈ Z≥1. We will also see that the weighted
ambient toric blow up induces a blow up of the embedded varieties. This serves
also an example for the proof of the algorithm.

Example 4.5.11 (to the proof of Algorithm 4.5.3). Consider the smooth two-
dimensional CEMDS X1 with Z5-graded Cox ring, degree matrix and irrelevant
ideal

R1 = K[T1, . . . , T8] / 〈f〉,
f := T 3

3 T
2
4 T5 − T 2

1 T2 − T7T8,
Q1 :=

 1 0 0 0 2 0 3 −1
0 1 0 0 1 0 2 −1
0 0 1 0 −3 0 −2 2
0 0 0 1 −2 0 −1 1
0 0 0 0 0 1 1 −1

 ,
J =

〈
T1T2T3T4T7, T1T3T4T5T7, T1T2T5T6T8,
T2T4T5T6T8, T1T3T4T7T8, T2T5T6T7T8,

T1T2T3T6, T3T4T5T6, T3T6T7T8

〉
⊆ R1.

We want to blow up X1 in the point x ∈ X1 having z := (0, 1, 0, 1, 1, 1, 0, 1) ∈ X̂1 ⊆
K8 as Cox coordinates. Set I := 〈T1, T3, T7〉 ⊆ R1. By a computation, we have
prime elements fi ∈ R1 with multiplicities di ∈ Z>0 where

f1 := T1, f2 := T3, f3 := T7 ∈ R1,

d1 = 1, d2 = 1, d3 = 2.

P ′1e1

P ′1e3

P ′1e2

(0, 0, 0)
σ

P ′1v

Assume that we called Algorithm 4.5.3 instead with input X1, I and lists (f1, f2, f3)
(d1, d2, d3) where d1 = d2 = d3 = 1. First, the call to Algorithm 4.3.2 provides the
embedding

ι : K8 → K11, z 7→ (z, f1(z), f2(z), f3(z))

and the stretched CEMDS X ′1. On X ′1, we want to blow up the point ι(x) with Cox
coordinates (z, 0, 0, 0) ∈ K11. The steps of 4.5.3 and its proof then are as follows.
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Applying steps three and four, we obtain a modified ES X2 with a Z6-graded ring

R2 = K[T1, . . . , T12] / I2, I2 =
〈
T9T12 − T1, T10T12 − T3, T11T12 − T7,

T 3
10T

2
12T

2
4 T5 − T 2

9 T2T12 − T8T11

〉
.

Recall from the proof of Algorithm 4.5.3 the monomorphism ϕ : R2 → R1[I]sat

induced by

K[T1, . . . , T12] → R1[I]sat, Ti 7→


Ti, 1 ≤ i ≤ 8,
fi−r1t

−vi , 8 < i < 12,
t, i = 12.

As predicted, observe that we indeed obtain an inclusion R1[I] ⊆ ϕ(R2) ⊆ R1[I]sat

of algebras. By [98, Prop. 7.9, Prop. 7.10], the Rees algebra R1[I] and ϕ(R2) even
coincide:

R1[I] ∼= K[T1, . . . , T8, U1, U2, U3, t] / 〈g, U1t− T1, U2t− T3, U3t− T7〉,
ϕ(R2) ∼= K[T1, . . . , T8, U1, U2, U3, t] / 〈g, U1t− T1, U2t− T3, U3t− T7〉,

g := U3
2T

2
4 T5t

2 − U2
1T2t− U3T8,

Note that the inclusion ϕ(R2) ( R1[I]sat is proper as, by a direct computation, we
have T7 ∈ (I2 : J∞)\ I2. This means T7t

−2 is an element of (R1[I]sat)−2 \ϕ(R2)−2.
Then T7t

−1 is an element of 〈t〉R1[I]sat ∩ϕ(R2) with T7t
−1 6∈ 〈t〉ϕ(R2). As predicted,

the irrelevant ideal J ⊆ R1 contains the product T ν = T2T4T5T6T8 over all Ti with
x 6∈ V (X1; Ti). Passing to localizations, according to Lemma 4.5.5, we have the
equality R1[I]T ν = ϕ(R2)T ν = R1[I]sat

T ν of localized algebras. For instance, we now
have

T7 = T−1
8
(
T 3

3 T
2
4 T5 − T 2

1 T2
)
∈

(
I2 : J∞

)
T ν

=
(
I2)

T ν
.

Then 〈t〉R1[I]sat
Tν
∩ϕ(R2)T ν equals 〈t〉ϕ(R2)Tν which implies that t is a prime element

in ϕ(R2)T ν . Consequently, t and T ν are coprime in R1[I]sat but not in ϕ(R2) as
dim (I2 + 〈T12, T8〉R2) = dim (I2 + 〈T12〉R2) .

Thus, the verification step in Algorithm 4.5.9 with input (f1, f2, f3) and (1, 1, 1)
fails. Had we chosen d3 = 2, we would have obtained U3

2T
2
4 T5t − U2

1T2 − U3T8
instead of g, the codimension test is successful and ϕ(R2) = R1[I]sat. This means
the Cox ring of the blow up is the Z6-graded ring

R(X2) = K[T1, . . . , T9] / 〈T 3
3 T

2
4 T5T9 − T 2

1 T2 − T7T8〉.

Albeit implied by the proof of Algorithm 4.5.9, we now show directly that the
weighted ambient toric blow up induces a blow up of X1 in x. Let P1 = [v1, . . . , v8]
be a Gale dual matrix of Q1. Then Q≥0 · v1, . . . ,Q≥0 · v8 are the rays of the fan Σ1
of the canonical toric ambient variety Z1 of X1. Choose coordinates

S3 := T7

T 3
2 T

2
4 T

4
5 T

6
6 T

5
8
, S2 := T3

T2T5T 2
6 T

2
8
, S1 := T1

T2T4T 2
5 T

3
6 T

3
8

for the affine chart (Z1)σ with the smooth cone σ := cone(v1, v3, v7) ∈ Σ1. Then
O((Z1)σ ∩X1) = K[S1, S2, S3] / 〈h〉, h := (p1)?f = S3

2 − S2
1 − S3.

Since d1 = d2 = 1 and d3 = 2, the blow up of X1 in x is induced by a weighted
blow Z2 → Z1 of the toric ambient variety. By [84, Ex. 2], we have to blow up the
sheaf of ideals J in O((Z1)σ ∩X1) generated by

〈S2
1 , S

2
2 , S3〉 = 〈S2

1 , S
2
2 , S

3
2 − S2

1〉 = 〈S2
1 , S

2
2〉

where we used the special shape of h. Taking the Proj, by Proposition 1.4.5, we
see that this induces the usual blow up of X1 in x, i.e., Proj I = ProjJ where I is
the sheaf of ideals in O((Z1)σ ∩X1) generated by 〈S1, S2〉. Note that we blew up
a bigger orbit in Z1 than anticipated; still, the insertion of the respective ray now
cuts out x ∈ X1.
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The following algorithm produces a systematic guess for the generators and their
multiplicities di ∈ Z≥1 of the Cox ring of a blow up of a Mori dream space.

Algorithm 4.5.12 (BlowUpCEMDS2). Input: a CEMDS (P1,Σ1, G1), a K1-
prime ideal I defining an irreducible subvariety C ⊆ X1 inside the smooth locus.

• Let F and D be empty lists.
• For each k = 1, 2, . . . ∈ Z≥1 do

– compute a set Gk of generators for Ak := Ik : J∞ ⊆ R1. Let
fk1, . . . , fkli be a maximal subset of pairwise non-associated elements
of Gk with

fkj 6∈ A1Ak−1 + . . .+Ab k2 c
Ad k2 e

if k > 1.

– Determine integers dk1, . . . , dkli ∈ Z≥k such that fkj ∈ Adki \Adki+1.
– Add the elements of fk1, . . . , fkli to F that are not associated to any

other element of F . Add the respective integers among dk1, . . . , dkli
to D.

– Run Algorithm 4.5.9 with input (P1,Σ1, G1), F and D.
– If Algorithm 4.5.9 terminated with (P2,Σ2, G2) and positive verifi-

cation, return (P2,Σ2, G2).

Output (if provided): the algorithm terminates if and only if X2 is a Mori dream
space. In this case, the CEMDS (P2,Σ2, G2) describes the blow up X2 of X1 along
C. In particular, then the K2-graded algebra R2 is the Cox ring of X2.

Proof. Note that each fki is a K1-prime element. Otherwise, fki = f1f2 with K1-
homogeneous elements fi ∈ R1. As I is K1-prime, f1 or f2 lies in Ak′ with k′ < k,
i.e., fki ∈ Ak′ . This contradicts the choice of fki.
By Proposition 4.5.2, the Cox ring R2 of the blow up is isomorphic to the saturated
Rees algebra R1[I]sat. After the k-th step, (F, T1, . . . , Tr1 , t) are generators for a
subalgebra Bk ⊆ R1[I]sat such that

K
[
{t} ∪ R1 ∪ A1t

−1 ∪ . . . ∪ Akt−k
]
⊆ Bk ⊆

⊕
k∈Z

Akt
−k = R1[I]sat.

If the algorithm stops, by the correctness of Algorithm 4.5.9, the output then is a
CEMDS describing the blow X2 with Cox ring R2. Vice versa, if X2 has finitely
generated Cox ring, there is k0 ≥ 1 with R1[I]sat = Bk0 . Then Algorithm 4.5.9
is called with K1-prime non-associated generators for R(X2) ∼= R1[I]sat and thus
terminates with positive verification. �

Remark 4.5.13. Steps similar to the ones performed in Algorithm 4.5.12 can be
used to determine generators and relations of each graded algebra A =

⊕
k∈Z≥0

Ak
if all Ak are finitely generated A0-modules.

We now consider an example where an extra generator (found with Algorithm 4.5.12)
with di > 1 is needed. Recall that given a, b, c ∈ Z≥1 with gcd(a, b, c) = 1, the
weighted projective space P(a, b, c) is the complete toric surface with the Cl(X) = Z-
grading of R(P(a, b, c)) = K[T1, . . . , T3] defined by the degree matrix

Q =
[
a b c

]
.

Example 4.5.14 (Blow up of a weighted projective space). We want to compute
the Cox ring of the blow up of X1 := P(3, 4, 5) at the general point with Cox
coordinates z1 := (1, 1, 1) ∈ K3. The lattice ideal of z1 with respect to P1 is

I(P1, z1) = 〈T 2
2 − T1T3, T

2
1 T2 − T 2

3 , T
3
1 − T2T3〉, P1 :=

[
1 −2 1
−2 −1 2

]
.
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An application of Algorithm 4.5.9 with the three generators (f1, f2, f3) of I :=
I(P1, z1) and di := 1 for all i is unsuccessful: the dimension check fails. However,
adding the additional generator

f4 := T 5
1 − 3T 2

1 T2T3 + T1T
3
2 + T 3

3 ∈ I2 : J∞

with d4 := 2 to the input, Algorithm 4.5.9 returns the Cl(X2) = Z2-graded Cox
ring R2 = R(X2) of the blow up X2 of X1 in [z1]. All verifications are positive.
The ring is given as R2 = K[T1, . . . , T8]/I2 with generators for I2 and the degree
matrix being

−T1T7 + T4T5 + T2
6 , T1T

2
4 − T2T7 + T5T6,

−T1T4T6 − T3T7 + T2
5 , −T1T5 + T2T6 + T3T4,

T2
2 − T1T3 − T4T8, T3

1 − T2T3 − T6T8,
T2

1 T4 − T2T5 + T3T6, T2
1 T6 + T1T2T4 − T3T5 − T7T8,

T2
1 T2 − T2

3 − T5T8

[
3 4 5 −1 1 0 −3 9
0 0 0 1 1 1 2 −1

]
.

In Algorithm 4.5.3, the saturation computation may become infeasible. In this case,
the following variant can be used to, at least, obtain finite generation.

Algorithm 4.5.15 (Finite generation). Input: a CEMDS (P1,Σ1, G1), a K1-
prime ideal I = 〈f1, . . . , fl〉 ⊆ R1 with pairwise non-associated K1-primes fi defin-
ing an irreducible subvariety C ⊆ X1 inside the smooth locus and coprime positive
integers d1, . . . , dl with fi ∈ Idi : J∞.

• Compute the stretched CEMDS (P ′1,Σ′1, G′1) by applying Algorithm 4.3.2
to (P1,Σ1, G1) and (f1, . . . , fl).

• Define a multiplicity vector v ∈ Zr1+l by vi := 0 if 1 ≤ i ≤ r1 and
vi := di−r1 for r1 + 1 ≤ i ≤ r1 + l.
• Determine the stellar subdivision Σ2 → Σ′1 of the fan Σ′1 along the ray

through P ′1 · v. Set P2 := [P ′1, P ′1 · v].
• Use Algorithms 2.2.12 and 2.2.13 to compute G′2 := (h1, . . . , hs) where
hi = p?2(p′1)?(gi) and G′1 = (g1, . . . , gs).

• Choose a system of generators G2 of an ideal I2 ⊆ K[T1, . . . , Tr2 ] with
〈G′2〉 : (T1 · · ·Tr2)∞ ⊇ I2 ⊇ 〈G′2〉.

• Check if dim(I2)− dim(I2 + 〈Ti, Tj〉) ≥ 2 for all i 6= j.
• Check if Tr2 is prime in K[T±1

j ; j 6= r2][Tr2 ]/I2.

Output: (P2,Σ2, G2). The ES (P2,Σ2, G2) describes the blow up X2 of X1 along
C. If all verifications in the last steps were positive, the Cox ring R(X2) is finitely
generated and is given by the H2-equivariant normalization of K[T1, . . . , Tr2 ]/I2 :
(T1 · · ·Tr2)∞.

Proof. By the last verification, the exceptional divisor Dr2 ⊆ X2 inherits a local
defining equation from the toric ambient variety Z2. Thus, the ambient modification
is neat in the sense of [51, Def. 5.4]. By [51, Prop. 5.5], X2 ⊆ Z2 is a neat embedding.
In turn, the dimension checks enable us to use [51, Cor. 2.7]. This completes the
proof. �

We will make frequent use of Algorithm 4.5.9 both directly as well as formally in
Chapter 5. To close this section, we now use the Cox ring computation 4.5.9 to
present the Rees algebras associated to certain binomial ideals in terms of generators
and relations; we retrieve [98, Prop. 7.10].

Definition 4.5.16. Consider a binomial ideal I = 〈T ν+
i −T ν

−
i ; i = 1, . . . , s〉 in the

polynomial ring K[T1, . . . , Tr] and let P be the s× r matrix with the rows ν+
i − ν

−
i .

Then K[T1, . . . , Tr] is graded by the associated abelian group KI := Zr/Im(P ∗) via
deg(Tj) := ej + Im(P ∗). We say that I is general, if the following properties hold:

(i) deg(T1), . . . ,deg(Tr) generate a pointed cone in KQ,
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(ii) any r − 1 of the deg(Tj) generate KI as a group,
(iii) the ideal I is KI -prime,
(iv) every Tj defines a KI -prime in K[T1, . . . , Tr]/I.

Corollary 4.5.17. Compare [98, Prop. 7.10]. Let I be a general binomial ideal in
R := K[T1, . . . , Tr] with KI-prime generators f1, . . . , fs and consider the ideal

I ′ := 〈SUi − fi; i = 1, . . . , s〉 : S∞ ⊆ K[S,U1, . . . , Us, T1, . . . , Tr] =: R′.

If S defines a K-prime element in R′/I ′, not associated to any of the Uk, Tj, then
the Rees algebra R[I] is isomorphic to the factor algebra R′/I ′.

Proof. Let X be any projective toric variety having the K-graded polynomial ring
K[T1, . . . , Tr] as its Cox ring. Then, according to Algorithm 4.5.9, the ring R′/I ′ is
the Cox ring of the blow up of X at the base point and thus, by Proposition 4.5.2,
a saturated Rees algebra. Since R′/I ′ is generated in the Rees degrees 0,±1, it is
the usual rees algebra. �

6. Linear generation

In this section, we consider blow ups X2 → Pn of the projective space Pn in k
distinct points where the Cox ring R(X2) is generated by proper transforms of
hyperplanes. Certain relations to the underlying incidence structures are discussed.
As an application, we consider certain blow ups of six special points on P3. Most
of this section has been published in [57, Sec. 7] in joint work with J. Hausen and
A. Laface
We consider the blow up X of a projective space Pn at k distinct points x1, . . . , xk
where k > n + 1. Our focus is on special configurations in the sense that the Cox
ring of X is generated by the exceptional divisors and the proper transforms of
hyperplanes. We assume that x1, . . . , xn+1 are the standard toric fixed points, i.e.,
we have

x1 = [1, 0, . . . , 0], . . . , xn+1 = [0, . . . , 0, 1].
Now, write P := {x1, . . . , xk} and let L denote the set of all hyperplanes ` ⊆ Pn
containing n (or more) points of P. For every ` ∈ L, we fix a linear form f` ∈
K[T1, . . . , Tn+1] with ` = V (f`). Note that the f` are homogeneous elements of
degree one in the Cox ring of Pn.
The idea is now to take all T` where ` ∈ L, as prospective generators of the Cox
ring of the blow up X and then to compute the Cox ring using Algorithms 4.3.2,
4.3.8 and 4.3.3. Here comes the algorithmic formulation.

Algorithm 4.6.1 (LinearBlowUp). Input: a collection x1, . . . , xk ∈ Pn of pairwise
distinct points.

• Set X1 := Pn, let Σ1 be the fan of Pn and P1 the matrix with columns
e0, . . . , en where e0 = −(e1 + . . .+ en).
• Compute the set L of all hyperplanes through any n points of x1, . . . , xk,

let (f`; ` ∈ L′) be the collection of the f` different from all Ti.
• Compute the stretched CEMDS (P ′1,Σ′1, G′1) by applying Algorithm 4.3.2

to (P1,Σ1, G1) and (f`; ` ∈ L′).
• Determine the Cox coordinates z′i ∈ Kr′1 of the points x′i ∈ X ′1 corre-

sponding to xi ∈ X1.
• Let Σ2 be the barycentric subdivision of Σ′1 at the cones σ′i, corresponding

to the toric orbits containing x′i = p′1(z′i). Write primitive generators for
the rays of Σ2 into a matrix P2 = [P1, B].

• Compute (P2,Σ2, G2) by applying Algorithm 4.3.8 to (P ′1,Σ′1, G′1) and
the pair (P2,Σ2)
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• Set (P ′2,Σ′2, G′2) := (P2,Σ2, G2). Eliminate all fake relations by applying
Algorithm 4.3.3 with option verify. Call the ouput (P2,Σ2, G2).

Output: (P2,Σ2, G2). If the verifications in the last step were positive, this is a
CEMDS describing the blow up of Pn at the points x1, . . . , xk. In particular, the
K2-graded algebra R2 is the Cox ring of X2.

Besides for the proof of Algorithm 4.6.1, the following lemma will primarily be used
in Chapter 5; we have published it in [57, Lem. 6.3].

Lemma 4.6.2. Consider Setting 4.2.5. Assume that X1 ⊆ Z1 is a CEMDS, Z2 →
Z1 arises from a barycentric subdivision of a regular cone σ ∈ Σ1 and X2 → X1 has
as center a point x ∈ X1∩Tn ·zσ. Let f be the product over all Ti where P1(ei) 6∈ σ,
and choose z ∈ Kr1 with p1(z) = x. Then X2 → X1 is the blow up at x provided
we have

〈Ti; zi = 0〉f + I(P1, z)f = 〈Ti; ei ∈ σ̂〉f + I(X1)f ⊆ K[T1, . . . , Tr1 ]f .

Proof. Compare also [39, Lem. 14.9]. Let Z1,σ ⊆ Z1 be the affine chart given by σ
and set X1,σ := X1 ∩ Z1,σ. In order to see that the toric blow up Z2 → Z1 induces
a blow up X2 → X1, we have to show

mx = I(Tn · zσ) + I(X1,σ) ⊆ Γ(Z1,σ,O).

Consider the quotient map p1 : Ẑ1 → Z1. Then we have p−1
1 (Z1,σ) = Kr1

f and, since
σ is regular, Γ(p−1

1 (Z1,σ),O) admits units in every K1-degree. This implies

p∗1(mx) = 〈Ti; zi = 0〉f + I(P1, z)f ,
p∗1(I(Tn · zσ)) = 〈Ti; ei ∈ σ̂〉f , p∗1(I(X1,σ)) = I(X1)f .

Consequently, the assumption together with injectivity of the pullback map p∗1 give
the assertion. �

Lemma 4.6.3. In Algorithm 4.6.1, for each xi the barycentric subdivision of σ′i
induces a blow up of X ′1 in x′i.

Proof. Observe that since any point xi can be mapped to a toric fixed point by an
automorphism of Pn, there are n hyperplanes in L with intersection {xi} ⊆ Pn for
all i. Furthermore, note that is suffices to consider L′ instead of L since the Ti are
already present in R(Pn).
In Algorithm 4.6.1, write G′1 = {Tn+1+j − fj ; 1 ≤ j ≤ s}. Since the following left
hand side is H ′1-invariant and contains z′i, we have

X
′
1 ∩ V (Tj ; ej ∈ σ̂′i) ⊇ V (I(P ′1, z′i) + 〈Tj ; (z′i)j = 0〉) = H ′1 · z′i.(5)

Assume that (5) is an equality. Taking ideals, this then implies that I(X ′1) +
〈Tj ; ej ∈ σ̂′i〉 is equal to I(P ′1, z′i) as the ideals are linear and thus radical; the
claim then follows from Lemma 4.6.2 since σ′i is smooth. The remainder of this
proof is concerned with showing that (5) is an equality. It suffices to compare
their dimensions. Write the coefficients of the (linear) generators of bi := I(X ′1) +
〈Tj ; ej ∈ σ̂′i〉 into a matrix Abi . Then

V
(
Kr
′
1 ; bi

)
=
{
x ∈ Kr

′
1 ; Abi · x = 0

}
, dim

(
V
(
Kr
′
1 ; bi

))
= r′1 − rank(Abi).

Changing coordinates, we may assume that xi = [0, . . . , 0, 1] ∈ Pn, i.e., it is cut
out by the n coordinate hyperplanes V (T1), . . . , V (Tn) ⊆ Pn. Starting with the
rows corresponding to these V (Tj) ⊆ Pn followed by the rows corresponding to the
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elements of G′1, the matrix Abi is of shape

Abi =


En

0
...
0

0

• •
• Es


where 0 stands for a zero matrix and • for an arbitrary matrix of fitting size. Then
rank(Abi) = n+s and r′1 = n+1+s shows that V

(
Kr′1 ; bi

)
is one-dimensional. Let

n0 ∈ Z≥0 be the number of vanishing coordinates of z′i. Then B = (e1, . . . , em, e0),
where m := r′1 − n0 − 1 and e0 := (−1, . . . ,−1), is a lattice basis for Im((P ′1)∗) ∩
lin(ej ; (z′i)j 6= 0) as in Definition 4.5.7. Consequently, the lattice ideal I(P ′1, z′i) is
linear and we conclude

dim (V (I(P ′1, z′i) + 〈Tj ; (z′i)j = 0〉)) = r′1 − (m+ n0) = 1. �

Proof of Algorithm 4.6.1. By Lemma 4.6.3, the modification X2 → X ′1 is the
blow up at the points x′1, . . . , x′k. It remains to show that the input ring R′2 of the
last step is normal; this is necessary for Algorithm 4.3.3. We only treat the case
k = 1. Consider the stretched ring R′1 obtained from the third step and the ring
R2 obtained after the sixth step

R′1 = K[T1, . . . , Tr′1 ]/〈G′1〉, R2 = K[T1, . . . , Tr′1 , Tr2 ]/〈G2〉

where Tr2 corresponds to the exceptional divisor. We assume that of the r′1 − r1
new equations Ti − fi in G′1 the last l will result in fake relations in G2. Localizing
and passing to degree zero, we are in the situation

(R1)T1···Tr1
// (R1)T1···Tr1f1···fr′1−l

(R2)T1···Tr′1−l
Tr2

(
(R1)T1···Tr1

)
0

//
(

(R1)T1···Tr1f1···fr′1−l

)
0

OO

(
(R2)T1···Tr′1−l

Tr2

)
0

OO

The upper left ring is K1-factorial by assumption. By [15, Thm. 1.1] the middle
ring in the lower row is a UFD and the ring on the upper right is K2-factorial.
Thus, R2 is K2-factorial. Since K1 is free, also K2 is, so R2 is a UFD. In particular,
R2 is normal and we may apply Algorithm 4.3.3. �

Example 4.6.4. Let X be the blow up of P2 in the seven points

x1 := [1, 0, 0], x2 := [0, 1, 0], x3 := [0, 0, 1],
x4 := [1, 1, 0], x5 := [1, 0,−1], x6 := [0, 1, 1],

x7 := [1, 1, 1].
p1 p2

p3

p4

p5 p6p7

Write Si for the variables corresponding to xi and let T1, . . . , T9 correspond to the
nine lines in L. Algorithm 4.6.1 provides us with the Cox ring of X. It is given as
the factor ring K[T1, . . . , T9, S1, . . . , S7]/I where I is generated by

2T8S4S6 − T5S2 + T9S7, 2T1S3S6 + T5S5 − T6S7,

2T4S1S6 + T6S2 − T9S5, −T1S2S6 + T2S1S5 − T7S4S7,

2T7S3S4 + T6S2 + T9S5, −T2S5S3 + T3S4S2 − T4S7S6,

2T3S1S4 + T5S5 + T6S7, T1S2S3 + T8S4S5 + T4S1S7,

2T2S1S3 + T5S2 + T9S7, T2T6S3 − T3T9S4 − T4T5S6,

T3S1S2 + T8S5S6 − T7S3S7, T3T9S1 − T5T7S3 − T6T8S6,

T2T6S1 − T5T7S4 + T1T9S6, T4T5S1 + T1T9S3 + T6T8S4,

T3T7S
2
4 + T1T4S

2
6 + T2T6S5, T2T7S

2
3 + T4T8S

2
6 + T3T9S2,

T1T2S
2
3 + T3T8S

2
4 − T4T5S7, T1T3S

2
2 + T2T8S

2
5 + T4T7S

2
7 ,

T3T4S
2
1 + T1T7S

2
3 − T6T8S5, T2T4S

2
1 + T7T8S

2
4 − T1T9S2,



116 4. MODIFICATIONS OF MORI DREAM SPACES

T2T3S
2
1 + T1T8S

2
6 + T5T7S7, T4T

2
5 T7 + T2T

2
6 T8 + T1T3T

2
9

and the Z8-grading is given by the degree matrix
0 −1 −1 −1 0 0 0 0 0 1 0 0 0 0 0 0
−1 0 −1 0 −1 −1 0 0 0 0 1 0 0 0 0 0

0 0 −1 0 0 0 1 1 1 1 1 0 0 0 0 0
−1 −1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

0 0 −1 0 0 0 −1 −1 0 0 0 0 1 0 0 0
0 0 0 1 −1 0 1 0 0 0 1 0 0 1 0 0
−1 0 0 −1 0 0 0 −1 0 0 0 0 0 0 1 0

0 1 0 0 0 −1 0 1 0 0 1 0 0 0 0 1

 .
Before eliminating fake relations, the ideal of the intersection ofX2 with the ambient
big torus Tr2 admits the following description in terms of finite geometries. In our
setting, similar to [12], we call the pair L := (P,L) a finite linear space and the finite
sets P and L points and lines, respectively. Note that each two points p, p′ ∈ P
lie on a common line ` ∈ L and, for n ≥ 2, there are three points not lying on a
common line. An element ` ∈ L is an m-line if it contains exactly m points. We
call L an (m-)design if each line is a m-line. Moreover, L is a near-pencil if there
are distinct lines `1, . . . , `n−1 ∈ L such that all points except one are contained in⋂
`i. An m-arc is a subset of P within which no three points lie on a common line.

Proposition 4.6.5. At the end of the fifth step in Algorithm 4.6.1, the Cox ring
of Z2 is the polynomial ring K[T`, Sp] with indices ` ∈ L and p ∈ P. Consider the
homomorphism

β : K[T`; ` ∈ L] → K[T`, Sp; ` ∈ L, p ∈ P], T` 7→ T` ·
∏
p∈`

Sp.

Then the extension of the ideal I2 ⊆ K[T`, Sp] to the Laurent polynomial ring
K[T±` , S±p ] is generated by β(T` − f`) where ` ∈ L′. Moreover, properties of the
linear space L = (P,L) lead to properties of I2 as listed in the following table. The
†-cases require n = 2.

L property of R2 or X2
design I2 is classically homogeneous
near pencil X2 admits a non-trivial K∗-action
contains m-arc † X2 contains at least

(
m
2

)
+ k many (−1)-curves

complete graph † X2 is smooth
contains an m-line † X2 contains a (1−m)-curve

Proof. Denote the elements of L′ by `i. The first statement is directly seen by
providing a weak B-lifting [Er′1 , A] in the sense of [10], i.e., we have a matrix A
fitting into

Zr2
[Er′1

,A]
//

P2=[P1,B]
��

Zr′1

P1

��
Zn id // Zn

A = (aij)ij , aij :=
{

1, xj ∈ `i,
0, else

and the corresponding morphism α : Tr2 → Tr′1 satisfies α∗(g) = p∗2(p1)∗(g) in
K[T±1

1 , . . . , T±1
r2

] for Laurent polynomials g ∈ K[T±1
1 , . . . , T±1

r′1
].

We come to the claims listed in the table. For the first one, note that all β(T`−f`) are
homogeneous and I2, as a saturation, is obtained by a Gröbner basis computation.
Gröbner bases of homogeneous ideals are again homogeneous, see for example [1,
Ex. 1.8.3]. The second statement is due to the fact that, up to monomial factors, the
ideal generated by the β(T`−f`) is already of the shape of Construction 1.5.3. Since
it is prime, it equals its saturation and therefore I2; hence, X2 admits a non-trivial
K∗-action by Theorem 1.5.13.
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For the remaining three claims, as each ` ∈ L has self-intersection number `2 = 1,
blowing up m different points on `, the proper transform ˆ̀ has self-intersection
number ˆ̀2 = 1−m, see Proposition 1.4.8. �

We now treat blow ups of P3 in six distinct points x1, . . . , x6. As before, we assume
that x1, . . . , x4 are the standard toric fixed points. We call the point configuration
edge-special if at least one point of {x5, x6} is contained in two different hyperplanes
spanned by the other points.

Theorem 4.6.6. Let X be the blow up of P3 at distinct points x1, . . . , x6 not con-
tained in a hyperplane. Then X is a Mori dream space. Moreover, for the following
typical edge-special configurations, we obtain:

(i) For x5 := [1, 1, 0, 0], x6 := [0, 1, 1, 1], the Cox ring of X is R(X) =
K[T1, . . . , T16]/I where I is generated by

p5

p6
p1

p2

p3

p4

2T4T13 − 2T5T16 − 2T3T14, T4T12T15 − T2T14 − T6T16,

T5T12T15 − T6T13 + T7T14, T3T12T15 − T2T13 − T7T16,

T5T11T12 − T9T13 + T10T14, T4T11T12 − T8T14 − T9T16,

T3T11T12 − T8T13 − T10T16, T1T12T13 + T7T11 − T10T15,

T1T12T14 + T6T11 − T9T15, T1T12T16 − T2T11 + T8T15,

T5T8 − T3T9 + T4T10, T2T5 − T3T6 + T4T7,

T1T5T
2
12 + T7T9 − T6T10, T1T3T

2
12 + T7T8 − T2T10,

T1T4T
2
12 + T6T8 − T2T9

with the Z7-grading given by the degree matrix
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 −1 0 0 0 1 0 0 0 0 0
−1 0 −1 −1 −1 0 0 0 0 0 0 1 0 0 0 0
−1 −1 0 −1 0 −1 0 −1 −1 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1

 .
(ii) For x5 := [2, 1, 0, 0], x6 := [1, 1, 0, 1], the Cox ring of X is R(X) =

K[T1, . . . , T15]/I where I is generated by

p5

p6
p1

p2

p3

p4 T1T11 + T7T14 + 2T8T15, T2T10 + T7T14 + T8T15,

T4T11T14 − T2T13 − T5T15, T4T10T14 − T1T13 − T6T15,

T4T10T11 + T7T13 − T9T15, T6T11 − 2T8T13 − T9T14,

T5T10 − T8T13 − T9T14, 2T4T8T10 + T6T7 + T1T9,

T4T8T11 + T5T7 + T2T9, T4T8T14 + T1T5 − T2T6

with the Z7-grading given by the degree matrix
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 −1 −1 −1 −1 0 0 0 0 1 0 0 0 0 0
−1 0 −1 −1 0 −1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
−1 −1 −1 0 0 0 −1 −1 0 0 0 0 1 0 0

1 1 0 0 1 1 0 1 0 0 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 1

 .
(iii) For x5 := [1, 0, 0, 1], x6 := [0, 1, 0, 1], the Cox ring of X is R(X) =

K[T1, . . . , T13]/I where I is generated by

p5

p6p1

p2

p3

p4
T2T8T11 − T6T9 + T7T13, T2T11T12 − T4T9 + T5T13,

T1T9T11 − T5T8 + T7T12, T1T11T13 − T4T8 + T6T12,

T1T2T
2
11 − T5T6 + T4T7
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with the Z7-grading given by the degree matrix
1 1 1 1 1 1 1 0 0 0 0 0 0
0 −1 −1 −1 −1 0 0 1 0 0 0 0 0
−1 0 −1 −1 0 −1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0
−1 −1 −1 0 0 0 0 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0 1

.
(iv) For x5 := [1, 0, 0, 1], x6 := [0, 1, 1, 0], the Cox ring of X is R(X) =

K[T1, . . . , T12]/I where I is generated by

p5

p6
p1

p2

p3

p4

T3T8 − T5T12 − T2T9,

T4T7 − T6T11 − T1T10

with the Z7-grading given by the degree matrix
1 1 1 1 1 1 0 0 0 0 0 0
0 −1 −1 −1 −1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0
−1 −1 −1 0 −1 0 0 0 0 1 0 0

0 −1 −1 0 −1 −1 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 1

.
(v) For x5 := [2, 1, 0, 0], x6 := [1, 2, 0, 0], the Cox ring of X is R(X) =

K[T1, . . . , T12]/I where I is generated by

p5 p6

p1

p2

p3

p4

3T2T7 + 2T5T11 + T6T12,

3T1T8 + T5T11 + 2T6T12

with the Z7-grading given by the degree matrix
1 1 1 1 1 1 0 0 0 0 0 0
0 −1 −1 −1 0 0 1 0 0 0 0 0
−1 0 −1 −1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 −1 −1 −1 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 0 0 1

.
Proof. See [57, Thm. 7.5] for the proof of the first statement. The second part of
the theorem is an application of Algorithm 4.6.1. �

Remark 4.6.7. Algorithm 4.6.1 usually is faster than the lattice ideal approach of
Algorithm 4.5.9. For instance, some cases of Theorem 4.6.6 were only feasible using
Algorithm 4.6.1.



CHAPTER 5

Smooth rational surfaces

In this chapter, we prove that each smooth rational surface of Picard number at
most six is a Mori dream space. In terms of Cox rings, we present a complete
classification for the case of Picard number at most five and a classification for the
surfaces that do not admit a non-trivial K∗-action for Picard number six. All Cox
rings are listed explicitly in terms of generators and relations.
Using the fact that each smooth rational surface can be obtained as a blow up of the
projective plane P2 or the Hirzebruch surface Fa, we proceed by the following steps.
In Section 1, we classify the needed point configurations on P2 and Fa. Afterwards,
we use Algorithm 4.5.9 to determine the Cox rings of the (possibly iterated) blow
ups of these configurations. For blow ups of Fa, we apply Algorithm 4.3.8 in a
formal way.
In Sections 2 and 3, we classify the Cox rings of all families of smooth rational
surfaces X of Picard number %(X) ≤ 5. Eliminating isomorphic surfaces, it turns
out that besides M0,5 there are only surfaces with a non-trivial K∗-action. In
Section 4, we obtain the smooth rational surfaces of Picard number six as blow
ups of the surfaces from the previous step. Here, we classify the Cox rings of the
surfaces without a non-trivial K∗-action. The result of Section 4 (and the proof of
one of the cases) has been published in the paper Computing Cox rings together
with J. Hausen and A. Laface [57, Sec. 6].

1. Point configurations on P2 and Fa

In this section we classify the point configurations on the projective plane and the
Hirzebruch surface which we need to blow up in order to obtain the smooth rational
surfaces of Picard number at most six in Sections 2, 3 and 4.
Recall from [5, Rem. III.2.5.5] that we can identify points on a Mori dream space
by their Cox coordinates. This generalizes homogeneous coordinates on Pn.

Notation 5.1.1. Let X be a Q-factorial Mori dream space with characteristic
space p : X̂ → X and characteristic quasitorus H. For any z ∈ X̂ ⊆ Kr we write
[z] := p(z) ∈ X. Note that [z] = [z′] if and only if z′ ∈ H · z. Furthermore, given
an ideal I ⊆ K[T1, . . . , Tr] that is generated by Cl(X)-homogeneous polynomials
f1, . . . , fn, we write

V (X; f1, . . . , fn) := V (X; I) := p
(
V (X̂; I)

)
⊆ X.

To symbolize point configurations, we draw P2 as the big torus (gray) together with
its boundary divisors V (P2; Ti) (the black bordering lines). Points are identified by
their position on the torus or boundary divisors. For instance, the following picture
symbolizes P2 with the points [1, 0, 0], [1, 1, 0] and [0, 1, 0].

V (T2)

V (T3)

V (T1)

119
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Proposition 5.1.2. Each configuration of at most five distinct points on P2 can be
moved by an automorphism of P2 to one of the following configurations. Occurring
parameters are distinct elements of K∗ \ {1}.

configuration points

P2(?) {[1, 0, 0]}

P2(??) {[1, 0, 0], [0, 1, 0]}

P2(??? i) {[1, 0, 0], [0, 1, 0], [0, 0, 1]}

P2(??? ii) {[1, 0, 0], [0, 1, 0], [1, 1, 0]}

P2(???? i) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]}

P2(???? ii) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0]}

P2(???? iii) {[1, 0, 0], [0, 1, 0], [1, 1, 0], [1, λ, 0]}

P2(????? i) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1, λ, µ]}

P2(????? ii) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1, λ, 0]}

P2(????? iii) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]}

P2(????? iv) {[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, λ, 0]}

P2(????? v) {[1, 0, 0], [0, 1, 0], [1, 1, 0], [1, λ, 0], [1, µ, 0]}

Remark 5.1.3. Given triples (p1, p2, p3) and (q1, q2, q3) of non-collinear points in
P2, there is exactly one projective linear transformation mapping the pi to the qi.

Proof of Proposition 5.1.2. Exemplarily, we treat the case of five distinct points
p1, . . . , p5 ∈ P2. Case 1: There is no line in P2 containing three of the points. By
Remark 5.1.3, we can move p1, p2 and p3 to the standard toric fixed points [1, 0, 0],
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[0, 1, 0] and [0, 0, 1] ∈ P2. Applying a suitable torus element, we additionally achieve
that p4 is as claimed in P2(? ? ? ? ? i).
Case 2: There is a line in P2 containing exactly three of the points. Subcase A: No
other line in P2 contains three points. We may assume that the line contains p1, p2
and p4. After a projective transformation, we have
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], p4 = [1, λ, 0], p5 = [1, µ, ν].

Scaling p5 with a torus element, we arrive at the configuration P2(? ? ? ? ? ii).
Subcase B: There is an additional line in P2 containing three of the points. We may
assume that p1, p2 and p4 are elements of one line and p1, p3 and p5 lie on the other
line. After a projective transformation, we have
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], p4 = [1, λ, 0], p5 = [1, 0, µ].

Scaling p4 and p5 with a torus element leads to the configuration P2(? ? ? ? ? iii).
Case 4: There is a line in P2 containing exactly four of the points. We may assume
that the line contains all points except p3. After a projective transformation, we
have
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], p4 = [1, λ, 0], p5 = [1, µ, 0].

Scaling p5 with a torus element, we arrive at the configuration P2(? ? ? ? ? iv).
Case 5: There is a line in P2 containing all points. After a projective transformation,
we have
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [1, λ, 0], p4 = [1, µ, 0], p5 = [1, ν, 0].

Scaling p5 with a torus element, we arrive at the configuration P2(? ? ? ? ? v). �

Recall that, given a ∈ Z≥0, the a-th Hirzebruch surface is the complete toric sur-
face Fa corresponding to the following complete fan with its rays generated by the
columns of P

(−1,−a)

(1, 0)

(0, 1)

(0,−1)

P :=
[
−1 1 0 0
−a 0 1 −1

]
,

Q :=
[

1 1 0 −a
0 0 1 1

]
.

Then R(Fa) = K[T1, . . . , T4] is graded by Cl(Fa) = Z2 via deg(Ti) = Q(ei). Similar
to P2, we draw Fa as the big torus (gray) together with its boundary divisors
V (Fa; Ti) (the black bordering lines). Points are given in Cox coordinates as in 5.1.1
and are drawn according to their position on the torus or boundary divisors. For
instance, the points [0, 1, 0, 1] ∈ Fa and [0, 1, 1, 1] ∈ Fa are drawn as follows.

V (T3)

V (T1)

V (T4)

V (T2)

Note that the self-intersection numbers of the V (Fa; Ti) are a for i = 3, −a for
i = 4 and zero for i ∈ {1, 2}, see [28, Thm. 10.4.4].

Proposition 5.1.4. Let a ≥ 2. Each configuration of at most min(a + 1, 4) dis-
tinct points on Fa can be moved by an automorphism of Fa to one of the following
configurations. Occurring parameters are distinct elements of K∗ \ {1}.

configuration points

Fa(? i) {[0, 1, 0, 1]}
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Fa(? ii) {[1, 0, 0, 1]}

Fa(?? i) {[0, 1, 0, 1], [1, 0, 0, 1]}

Fa(?? ii) {[0, 1, 0, 1], [0, 1, 1, 0]}

Fa(?? iii) {[0, 1, 0, 1], [1, 0, 1, 0]}

Fa(?? iv) {[0, 1, 1, 0], [1, 0, 1, 0]}

Fa(?? v) {[0, 1, 0, 1], [0, 1, 1, 1]}

Fa(??? i) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]}

Fa(??? ii) {[0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0]}

Fa(??? iii) {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1]}

Fa(??? iv) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 1]}

Fa(??? v) {[0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1]}

Fa(??? vi) {[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 1]}

Fa(??? vii) {[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0]}

Fa(??? viii) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0]}

Fa(??? ix) {[0, 1, 0, 1], [0, 1, 1, 1], [0, 1, 1, λ]}

Fa(??? x) {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 1, 0]}

Fa(??? xi) {[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 0, 1]}
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Fa(??? xii) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1]}

Fa(???? i) {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1], [1, λ, 0, 1]}

Fa(???? ii) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, λ, 0, 1]}

Fa(???? iii) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, λ, 1, 0]}

Fa(???? iv) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0], [λ, λ, 1, 0]}

Fa(???? v) {[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0], [1, λ, 1, 0]}

Fa(???? vi) {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1], [0, 1, 1, 1]}

Fa(???? vii) {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 1, 0], [0, 1, 1, 1]}

Fa(???? viii) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0], [0, 1, 1, 1]}

Fa(???? ix) {[0, 1, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1], [0, 1, 1, 1]}

Fa(???? x) {[0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 0, 1]}

Fa(???? xi) {[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 0], [1, 1, 1, 0]}

Fa(???? xii) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0], [1, 1, 0, 1]}

Fa(???? xiii) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0], [1, 1, 1, 0]}

Fa(? ? ? ? xiv)
κ ∈ K∗

{[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 1], [1, 0, 1, κ]}

Fa(???? xv) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 1]}
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Fa(???? xvi) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0]}

Fa(???? xvii) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 1], [0, 1, 1, λ]}

Fa(???? xviii) {[0, 1, 0, 1], [1, 0, 0, 1], [0, 1, 1, 1], [0, 1, 1, 0]}

Fa(???? xix) {[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 1], [0, 1, 1, λ]}

Fa(???? xx) {[0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [0, 1, 1, 1]}

Fa(???? xxi) {[0, 1, 0, 1], [0, 1, 1, 1], [0, 1, 1, λ], [0, 1, 1, µ]}

Fa(???? xxii) {[0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 1, λ]}

Lemma 5.1.5. Let X1, X2 be Mori dream surfaces. Then the following statements
are equivalent.

(i) X1 and X2 are isomorphic.
(ii) R(X1) and R(X2) are isomorphic as Cl(Xi)-graded algebras.
(iii) The affine HXi-varieties X1 and X2 are isomorphic.

In particular, each Hi-equivariant automorphism of Xi is an Hi-equivariant auto-
morphism of X̂i.

Proof. The equivalence between the last two statements is Proposition 1.1.3 or [5,
Thm. I.2.2.4]. We only need to show that (iii) implies (i). Let (ϕ, ϕ̃) be an isomor-
phism between the affine Hi-varieties X1 and X2. Then both X̂2 and ϕ(X̂1) are
open, H2-invariant subsets of X2 such that the complement in X2 is of codimension
at least two, the good quotient by H2 exists and is projective. Since X2 is a surface,
we obtain ϕ(X̂1) = X̂2. �

Lemma 5.1.6. Let H be the characteristic torus of Fa.

(i) Given A ∈ GL(2,K), we have an H-equivariant automorphism of F̂a ⊆
K4 given by

ϕA : F̂a → F̂a, (z1, . . . , z4) 7→ (y1, y2, z3, z4) , y := A · (z1, z2).

(ii) For each t := (ta, ta−1, . . . , t0) ∈ Ka+1, we have an H-equivariant auto-
morphism

ϕt : F̂a → F̂a, z 7→

(
z1, z2, z3 + z4 ·

a∑
k=0

tkz
k
1z
a−k
2 , z4

)
.

Proof. By Lemma 5.1.5, it suffices to show that ϕA and ϕt are H-equivariant
automorphisms of Fa. Both ϕA and ϕt are H-equivariant since ϕ∗A and ϕ∗t are
Cl(Fa)-graded; compare [6, Cor. 2.3]. The inverse map for (i) is given by w 7→
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(x1, x2, w3, w4) with x := A−1(w1, w2). In (ii), given a vector w ∈ F̂a, the in-
verse map assigns w3 − (tawa1 + . . . + t0w

a
2) to w3 and is the identity on the other

entries. �

Proof of Proposition 5.1.4. We treat exemplarily the case of four points and a ≥ 3.
Let p1, . . . , p4 ∈ F̂a be Cox coordinates for the four points on Fa. Consider the 4×4
matrix B := [p1, . . . , p4] where we may assume that rank([p1, p2]) = rank([pi, pj ])
for all i, j. In the case of rank([p1, p2]) = 2 and of rank([p1, p2]) = 1, respectively,
choose A ∈ GL(2,K) such that[

A
E2

]
·B =

[
0 1 • •
1 0 • •
• • • •
• • • •

]
or

[
0 0 • •
1 • • •
• • • •
• • • •

]
,

where E2 is the 2×2 unit matrix and • stands for an element of K. By Lemma 5.1.6,
the map corresponding to the above matrix multiplication is an automorphism.
Write q1, . . . , q4 for the columns of the resulting matrix. It suffices to treat the
case a = 3 and rank([q1, q2]) = 2, i.e., we have q11 = q22 = 0 and q12 = q21 = 1.
We now look for t = (t3, . . . , t0) ∈ K4 such that the automorphism ϕt defined in
Lemma 5.1.6(ii) moves as many qi to V (Fa; T3) as possible. Given z ∈ K4, we have

ϕt(z) ∈ V
(
F̂a; T3

)
⇔ −z3 = t3z

3
1z4 + t2z

2
1z2z4 + t1z1z

2
2z4 + t0z

3
2z4

by definition of ϕt. Thus, in the last equation, substituting qi for z we look for
solutions of the linear system of equations

A · t = b, (A, b) :=
[

0 0 0 q14 −q13
q24 0 0 0 −q23

q34q
3
31 q34q

2
31q32 q34q31q

2
32 q34q

3
32 −q33

q44q
3
41 q44q

2
41q42 q44q41q

2
42 q44q

3
42 −q43

]
.

We say that two points qi and qj lie in a fiber if qi1qj2 = qi2qj1. If all qi4 6= 0,
replacing qi3 by qi3q

−1
i4 , we may assume that qi4 = 1 for all i. Then the rank of A

equals the number of different fibers the points lie in:

rank(A) = 2 + rank
([

q2
31q32 q31q

2
32

q2
41q42 q41q

2
42

])
=


4, exactly 4 fibers with one point,
3, exactly 1 fiber with two points,
2, exactly 2 fibers with two points.

In particular, the system At = b is solvable if there are four different fibers contain-
ing exactly one point and we can move rank(A) many points to V (Fa; T3) by an
automorphism ϕt. To achieve the shown coordinates, one can move general points
in V (Fa; T3) and V (Fa; T4) simultaneously or in all fibers simultaneously either by
the automorphism ϕA of Lemma 5.1.6 or using a K∗-action. We treat exemplarily
configuration Fa(? ? ? ? xiv). Here, we are in the case rank(A) = 2, i.e., after the
aforementioned transformation, the points are

q1 = [0, 1, 0, 1], q2 = [1, 0, 0, 1], q3 = [0, b2, b3, b4], q4 = [c1, 0, c2, c3],

with bi, cj ∈ K∗. Note that there are K∗-actions

K∗ × F̂a → F̂a, (t, z) 7→ (tz1, tz2, z3, t
−az4),

K∗ × F̂a → F̂a, (t, z) 7→ (z1, z2, tz3, tz4).

In particular, we see that q1 = [0, k2, 0, k4] and q2 = [l1, 0, 0, l4] for any ki, lj ∈ K∗.
Thus, scaling the last components of the listed Cox coordinates for q3 and the first
component of the Cox coordinates for q4, we obtain the points {q1, q2, q

′
3, q
′
4} as

shown in the table where

q′3 := [0, 1, 1, 1], q′4 :=
[
1, 0, c3

b3
,
c4
b4

]
= [1, 0, 1, κ] , κ := b3c4

b4c3
∈ K∗.�
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2. Smooth rational surfaces with %(X) ≤ 4

Building on the classification of point configurations in Section 1, we classify the
smooth rational surfaces of Picard number at most four in terms of their Cox rings.
The idea is a stepwise application of Algorithm 4.3.8 in the following formal way.

Remark 5.2.1 (Formal blow up). Consider a smooth, two-dimensional CEMDS
X1 = (G1, P1,Σ1) with free class group K1. Let X2 be the blow up of X1 in a point
x ∈ X1 with Cox coordinates z ∈ Kr1 . We guess and verify a candidate for R(X2)
by the following steps.

• Choose prime elements f1, . . . , fl ∈ I(P1, z) + 〈Tj ; zj = 0〉 in R1.
• Compute the stretched CEMDS X ′1 by the steps of Algorithm 4.3.2 with

input f1, . . . , fl.
• Formally apply Algorithm 4.3.8 with option verify:

– compute the ideal I2 ⊆ K[T1, . . . , Tr2 ] and show that it is saturated
with respect to Tr2 ,

– show that 〈Tr2〉+ I2 ⊆ K[T1, . . . , Tr2 ] is a prime ideal,
– show that the codimension of X2 ∩ V (Tr2 , Ti) is at least two for all
i < r2 and that Ti is not associated to Tj for i 6= j.

• Prove that the performed modification was a blow up.
• Remove redundant generators with Algorithm 4.3.3 if necessary.

For details and correctness of the steps we refer to the proofs of the respective
algorithms in Chapter 4, Theorem 4.2.6 and Proposition 4.1.4. In the following, we
will only cite Theorem 4.2.6 when referring to the correctness of this procedure.

Notation 5.2.2. Denote by the prefix Bl the blow up of a point configuration. For
instance, Bl P2(? ? ? ii) is the blow up of P2 in the configuration P2(? ? ? ii) defined
in Proposition 5.1.2. Iterated blow ups are indicated by exponents and consecutive
numbers; for example Bl P2(?3 ii) stands for (the second occurrence of) a blow up
of P2 in three infinitely near points.

Remark 5.2.3. Each smooth rational surface X can be obtained as a blow up of
P2 or as a blow up of the Hirzebruch surface Fa where a ∈ Z≥0; see [14, Thm. V.10].
Note that F0 = P1 × P1 and F1 = Bl P2(?). Moreover, each blow up of P1 × P1 is
isomorphic to a blow up of F1. In particular, it is a blow up of P2 in two points.
Proposition 5.2.4. Let X be a smooth rational surface with Picard number %(X) =
2. Then X is isomorphic to exactly one of the following.

X Cox ring R(X) degree matrix

Bl P2(?) K[T1, . . . , T4]
[

1 1 1 0
0 −1 −1 1

]

Fa,
a 6= 1

K[T1, . . . , T4]
[

1 1 0 −a
0 0 1 1

]

Proof. By Remark 5.2.3, the surface X can either be obtained as a blow up of P2 in
one point or we have X = Fa with a ∈ Z≥0. By Proposition 5.1.2, P2(?) is the only
configuration we need to consider. Clearly, F1 = Bl P2(?) and Fa is not isomorphic
to the toric variety Bl P2(?) for a 6= 1. �

Proposition 5.2.5. Let X be a smooth rational surface with Picard number %(X) =
3. Then X is isomorphic to exactly one of the following.



2. SMOOTH RATIONAL SURFACES WITH %(X) ≤ 4 127

X Cox ring R(X) degree matrix

Bl P2(?2) K[T1, . . . , T5]
[

1 0 0 1 0
0 1 0 1 −1
0 0 1 −2 1

]

Bl P2(??) K[T1, . . . , T5]
[

1 0 0 1 0
0 1 0 0 1
0 0 1 −1 −1

]

Bl Fa(? i)
a ≥ 3

K[T1, . . . , T5]
[

1 0 0 −1 −1
0 1 0 −a + 1 1
0 0 1 1 0

]

The following lemma helps us to identify Gale dual matrices also for the case of
formal parameters.

Lemma 5.2.6. Let P be an integral n × r matrix with rankP = n and r > n.
Assume Zr/Im(P ∗) is free. Then an integral (r − n) × r matrix Q is a Gale dual
matrix of P if all of the following conditions hold.

(i) We have rank(Q) = r − n.
(ii) Each row of Q is an element of ker(P ).

(iii) For each 1 ≤ k ≤ n, the k × k-minors of Q are coprime.

Proof. By (ii), the lattice L ≤ Zr spanned by the rows of Q is contained in ker(P ).
Due to (i), the saturated lattice satisfies Lsat = ker(P ). The third condition means
that the elementary divisors of L are all equal to one, i.e., Lsat = L. �

Remark 5.2.7. Let X be a smooth rational surface. By [14], each negative curve
C on X is an exceptional divisor and therefore smooth. In particular, the proper
transform of C under the blow up X ′ → X of X in a point x ∈ C is a (C2−1)-curve,
see Proposition 1.4.8.

Proof of Proposition 5.2.5. By Remark 5.2.3, each smooth rational surface X with
Picard number %(X) = 3 can be obtained as a blow up of P2 in two points or as the
blow up of Fa in one point where a ∈ Z≥2. The configurations we need to consider
are listed in Propositions 5.1.2 and 5.1.4.
We now compute the Cox rings of the listed surfaces. The variety Bl P2(?2) is a
blow up of Z ′ := Bl P2(?) in a point in the exceptional divisor. As a toric variety,
Z ′ is given by a fan Σ′ with its rays generated by the columns of

P :=
[
−1 1 0 1
−1 0 1 1

]
,

(−1,−1)

(1, 0)

(0, 1) (1, 1)

The exceptional divisor of Z ′ is V (Z ′; T4) which consists of the toric orbits through
the points

[1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 0] ∈ Z ′.

Note that we can move both the third point and the second point to the first point
by using the respective equivariant automorphisms

z 7→ (z1, z2 − z3, z3, z4), z 7→ (z1, z3, z2, z4)

of Ẑ ′, compare Lemma 5.1.5. Thus, Bl P2(?2) is the toric variety with its fan given
by the stellar subdivision of Σ′ at (2, 1) ∈ Z2.
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The surfaces Bl Fa(? i) and Bl Fa(? ii) are obtained from Fa by stellar subdivision
of the fan of Fa at v ∈ Z2 where v = (−1,−a+ 1) or v = (−1,−a− 1), respectively.
By Lemma 5.2.6, the degree matrices of the Cox rings K[T1, . . . , T5] of Bl Fa(? i)
and Bl Fa(? ii) are Gale dual matrices of

[P, v], P :=
[
−1 1 0 0
−a 0 1 −1

]
.

Note that Bl Fa+1(? i) is isomorphic to Bl Fa(? ii) for each a ≥ 2: as toric varieties
both surfaces share the same fan

(−1,−a)

(1, 0)

(0, 1)

(0,−1)

(−1,−a− 1)

Hence, we may remove Bl Fa(? ii) from the list. Observe that we also may omit
Bl F2(? i). Let Z be the blow up of P2 in the fixed point [0, 0, 1]. Blowing up
the fixed point [0, 1, 1, 0] ∈ Z, we obtain the toric variety Bl F2(? i). Therefore,
Bl F2(? i) is isomorphic to Bl P2(?2).
To show that the remaining listed surfaces X are pairwise non-isomorphic, we com-
pare the self-intersection numbers of negative curves. These come from toric divi-
sors, i.e., are of the form V (X; Ti). See also Remark 5.2.7.

X V (T1)2 V (T2)2 V (T3)2 V (T4)2 V (T5)2

Bl P2(?2) ≥ 0 −1 ≥ 0 −2 −1
Bl P2(??) ≥ 0 ≥ 0 −1 −1 −1
Bl Fa(? i) , a ≥ 3 −1 ≥ 0 ≥ 0 −a −1

�

Proposition 5.2.8. Let X be a smooth rational surface with Picard number
%(X) = 4. Then X is isomorphic to exactly one of the following.

X Cox ring R(X) degree matrix

Bl P2(?3 i) K[T1, . . . , T6]

[
1 0 0 0 2 −1
0 1 0 0 1 −1
0 0 1 0 −3 2
0 0 0 1 −2 1

]

Bl P2(?3 ii)
K[T1, . . . , T7]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7

[
1 0 0 1 0 1 0
0 1 0 1 0 2 −1
0 0 1 −2 0 −1 1
0 0 0 0 1 1 −1

]

Bl P2(?2? i) K[T1, . . . , T6]

[
1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 −2 −1
0 0 0 1 −1 −1

]

Bl P2(?2? ii) K[T1, . . . , T6]

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 1 0 −1
0 0 0 2 1 −1

]

Bl P2(??? i) K[T1, . . . , T6]

[
1 0 0 0 −1 −1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

]
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Bl P2(??? ii)
K[T1, . . . , T7]/I
with I generated by
T2T4 − T1T5 − T6T7

[
1 0 0 0 −1 −1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 −1
0 0 0 1 1 2 −1

]

Bl Fa(? ? i)
a ≥ 3

K[T1, . . . , T6]

[
1 0 0 a− 3 −2 −1
0 1 0 a− 3 −1 −2
0 0 1 1 0 0
0 0 0 a− 2 −1 −1

]

Bl Fa(? ? v)
a ≥ 3

K[T1, . . . , T7]/I
with I generated by
T6T7 − Ta2 T4 + T3T5

[
1 0 0 0 0 1 −1
0 1 0 0 a 2a− 1 −a + 1
0 0 1 0 −1 −1 1
0 0 0 1 1 2 −1

]

Bl Fa(?2 i)
a ≥ 3

K[T1, . . . , T6]

[
1 0 0 0 −2 1
0 1 0 0 −a + 2 a− 1
0 0 1 0 1 −1
0 0 0 1 −1 1

]

Bl Fa(?2 ii)
a ≥ 3

K[T1, . . . , T6]

[
1 0 0 0 1 −1
0 1 0 0 2a− 1 −a + 1
0 0 1 0 −2 1
0 0 0 1 2 −1

]

In particular, the cases Bl P2(?3 ii), Bl P2(? ? ? ii) and Bl Fa(? ? v) are non-toric
K∗-surfaces. The remaining surfaces are toric.

For the proof of Proposition 5.2.8, to avoid redundancies, we must be able to test
surfaces for being isomorphic. We give a solution for toric and non-toric K∗-surfaces.
Afterwards, we provide easy to check conditions on whether an ambient modification
was a blow up and on when a point in the total coordinate space is relevant.

Notation 5.2.9. Let A and B be n × r matrices. We write A : B if A equals B
up to permutation of the columns.

Remark 5.2.10. Let Z and Z ′ be complete toric surfaces. Write primitive gener-
ators for the rays of their fans into the columns of matrices PZ and PZ′ . Then

Z1 ∼= Z2 ⇔ A · PZ : PZ′ for some A ∈ GL(2,Z).

Algorithm 5.2.11 (Toric surface isomorphism test). Input: 2× r matrices PZ =
[p1, . . . , pr] and PZ′ = [p′1, . . . , p′r] as in Remark 5.2.10 such that both the p1, . . . , pr
and p′1, . . . , p

′
r contain a lattice basis for Z2.

• Choose a lattice basis (pi1 , pi2) for Z2.
• If there is an ordered lattice basis (p′j1

, p′j2
) for Z2 such that Aj1j2 · PZ :

PZ′ with the invertible matrix Aj1j2 := [p′j1
, p′j2

] · [pi1 , pi2 ]−1, then return
true. Otherwise, return false.

Output: true if Z is isomorphic to Z ′ and false otherwise.

Proof. Each A ∈ GL(2,Z) maps a lattice basis to a lattice basis, i.e., A · [pi1 , pi2 ] :
[p′j1

, p′j2
] which means A : Aj1,j2 . Thus, the algorithm runs through all possibilities

of Remark 5.2.10. �

Algorithm 5.2.12 (Classify toric blow ups). Input: the fan Σ0 of a complete
toric surface Z0 and an integer s ∈ Z≥1.
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• Initialize lists L0 := (Σ0) and Li := ∅ for i ∈ {1, . . . , s}.
• For each i = 0, 1, . . . , s− 1 do

– for each Σ ∈ Li do
∗ for each maximal cone σ ∈ Σ do

· perform the barycentric subdivision Σ′ → Σ of Σ at σ.
· Use Algorithm 5.2.11 to test whether there is Σ′′ ∈ Li+1

such that the toric variety ZΣ′′ is isomorphic to ZΣ′ . In-
sert Σ′ into Li+1 if this is not the case.

Output: Ls. This is a list of the fans of all complete toric surfaces that can be
obtained from Z0 by s blow up steps. Of these surfaces, no two are isomorphic.

We now turn to methods for testing whether two K∗-surfaces are isomorphic. We
use the fact that, in the sense of Proposition 1.5.8, admissible operations preserve
the shape of the blocks of the P -matrices corresponding to the surfaces; compare
Construction 1.5.2.

Remark 5.2.13. Consider K∗-surfaces X = X(P,A) and X ′ = X(P ′, A′) as in
Construction 1.5.2. Assume that the Cox rings are of shape

R(X) = K[T1, . . . , Tn+m] / 〈g〉, g := c0T
l0 + c1T

l1 + c2T
l2 ,

R(X ′) = K[T1, . . . , Tn+m] / 〈g′〉, g′ := c′0T
l′0 + c′1T

l′1 + c′2T
l′2

with ci, c
′
i ∈ K∗ and integral vectors li ∈ Zni≥0, l′i ∈ Zn

′
i

≥0. By Remark 1.5.9, X and
X ′ are isomorphic if and only if P ′ = S · P · U with admissible matrices S,U . In
particular, up to permutation, the sets of exponent vectors of g and of g′ coincide:

{σ0(l0), σ1(l1), σ2(l2)} = {l′0, l′1, l′2} for some σi ∈ Sym(ni).

Algorithm 5.2.14 (K∗-surface isomorphism test). Input: K∗-surfaces X1, X2 as
in Remark 5.2.13 with Cl(Xi) = Zk for both i. Let Qi be the k × (n + m) degree
matrices of R(Xi)

• Return false if the criterion of Remark 5.2.13 fails.
• As in Algorithm 5.2.11, compute all matrices A ∈ GL(k,Z) such that
A ·Q1 · UA = Q2 with a permutation matrix UA ∈ GL(n+m,Z).

• Return true if one of the matrices UA is admissible and false otherwise.
Output: true if X1 ∼= X2 and false otherwise.

Proof. Let Xi = X(Pi, Ai) be as in Construction 1.5.2. Then Qi is a Gale dual
matrix for Pi. Assume X1 is isomorphic to X2. By Remark 1.5.9, there is an
admissible matrix S ∈ GL(3,Z) and an admissible permutation matrix U ∈ GL(n+
m,Z) such that P2 = S ·P1 ·U . Then Q′2 := Q1(U−1)t = Q1U satisfies P2(Q′2)t = 0.
Hence, both Q2 and Q′2 have a basis for ker(P2) as their rows, i.e.

Q2 = A ·Q′2 = A ·Q1 · U for some A ∈ GL(k,Z).
Similarly, for the reverse implication, assume that Q2 = A′ · Q1 · U ′ with A′ ∈
GL(k,Z) and an admissible permutation matrix U ′ ∈ GL(n + m,Z). Then P ′2 :=
P1 · ((U ′)−1)t satisfies P ′2 ·Qt2 = 0, i.e.

P2 = S′ · P ′2 for some S′ ∈ GL(n+m− k,Z).
Since U ′ is admissible, both P ′2 and P2 = S′ · P ′2 are in block shape as in Construc-
tion 1.5.2. Therefore, the only possible row operations performed by multiplying
S′ from the left is adding multiples of the upper r rows to the lower ones, i.e., S′ is
admissible. �

Lemma 5.2.15. Consider Setting 4.2.5. Assume that X1 ⊆ Z1 is a Mori dream
space embedded in its canonical toric ambient variety, Z2 → Z1 arises from a
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barycentric subdivision of a regular cone σ ∈ Σ1 and X2 → X1 has as center a
point x ∈ X1 ∩ (Tn · z(σ)) with Cox coordinates z ∈ Kr. Then X2 → X1 is the blow
up at x provided the following conditions are fulfilled.

(i) The grading group K1 is free.
(ii) The ideal I(X1) + 〈Ti; zi = 0〉 ⊆ K[T1, . . . , Tr1 ] is prime.

(iii) The torus H1 := SpecK[K1] and X1 ∩ V (Ti; zi = 0) are of the same
dimension.

Proof. Write J1 := I(X1) + 〈Ti; zi = 0〉 and Y := V (Kr; J1). Since z ∈ Y , also the
orbit closure H1 · z is contained in Y . It can be described as

H1 · z = V (Kr; J2), J2 := I(P1, z) + 〈Ti; zi = 0〉.
By conditions (ii) and (iii), Y is irreducible and of the same dimension as V (Kr; J2),
which shows Y = V (Kr; J2). Again by (ii), we conclude J1 =

√
J2. Since the grad-

ing group is free, by [82, Thm. 7.4], I(P1, z) is a prime ideal in the ring K[Tj ; zj 6= 0].
The integral domain K[T1, . . . , Tr]/J2 is isomorphic to K[Tj ; zj 6= 0]/I(P1, z), so we
arrive at J1 = J2. An application of Lemma 4.6.2 concludes the proof. �

Lemma 5.2.16. Consider Setting 4.2.9.
(i) Consider z ∈ X1 ⊆ Kr1 . If zi = 0 for exactly one 1 ≤ i ≤ r1, then

z ∈ X̂1.
(ii) If X1 is a surface, then X̂ ′1 = ι(X̂1).

Proof. Let γ := Qr1
≥0. Given a face γ0 � γ, write Tγ0 ∈ K[T1, . . . , Tr] for the product

of all Ti with ei ∈ γ0. By the construction of bunched rings 1.3.6, each facet γ0 � γ
is a relevant F-face and X̂1 equals the union of all X1 \ V (X1; Tγ0) where γ0 � γ
runs through the relevant F-faces. Choosing γ0 := cone(ei; zi 6= 0) proves the first
assertion. For (ii), consider the diagram

X1

∼=ι

��

⊇ X̂1

��

//H1

// X1

∼=

��
X
′
1 ⊇ X̂ ′1

//H1 // X ′1

with the characteristic quasitorus H1 of X1. Since X1 is a surface, X̂1 ⊆ X1 is
the only open subset with its complement in X1 of codimension at least two that
admits a quasiprojective quotient by H1. Thus, as ι : X1 → X

′
1 is an isomorphism,

so is ι : X1 → X ′1 and we obtain ι(X̂1) = X̂ ′1. �

Lemma 5.2.17. Let f ∈ K[T1, . . . , Tr] be such that Tj - f for all j. Assume there
is a variable Ti dividing exactly one non-zero monomial Tµ of f and T 2

i - Tµ. Then
f is prime.

Proof. By choice of f , each factorization must be of the form f = (g1 +Tig2)h with
gi, h ∈ K[Tj ; j 6= i]. By assumption, h is not a monomial. Since we allow only one
term to depend on Ti we conclude h ∈ K∗, i.e., f is irreducible. �

Proof of Proposition 5.2.8. By Remark 5.2.3, the surface X can be obtained as a
blow up of P2 in three points or as the blow up of Fa in two points where a ∈ Z≥2.
Propositions 5.1.2 and 5.1.4 list the configurations we need to consider. Moreover,
X is a blow up of one of the surfaces classified in Proposition 5.2.5. See Remark 5.2.1
for the steps.
(I) Surfaces of type Bl P2(?3). The varieties of the form Bl P2(?3) are a blow up
of Z1 := Bl P2(?2) in a point in the exceptional divisor of the first or of the second
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blow up. As a toric variety, Z1 is given by a fan Σ1 with its rays generated by the
columns of

P1 :=
[
−1 1 0 1 2
−1 0 1 1 1

]
,

(−1,−1)

(1, 0)

(0, 1)
(1, 1)

(2, 1)

The exceptional divisors of Z1 are V (Z1; T4) and V (Z1; T5). The union V (Z1; T4)∪
V (Z1; T5) consists of the toric orbits through the points

q1 := [1, 0, 1, 1, 0], q2 := [1, 1, 1, 1, 0], q3 := [1, 1, 1, 0, 0],
q4 := [1, 1, 1, 0, 1], q5 := [1, 1, 0, 0, 1] ∈ Z1.

The equivariant automorphism z 7→ (z1, z2, z3 − z2z5, z4, z5) of Ẑ1 maps q4 to q5;
compare Lemma 5.1.5. Thus, if we blow up Z1 in q1, q3 or in one of the points q4,
q5 it is given by insertion of the respective rays

Q≥0 · (3, 1), Q≥0 · (3, 2), Q≥0 · (1, 2)

into Σ1 by means of a stellar subdivision. This covers the cases Bl P2(?3 i),
Bl P2(?3 iii) and Bl P2(?3 iv). We now treat the case Bl P2(?3 ii) which is the blow
up of Z1 in q2. This is done by the steps explained in Remark 5.2.1. Note that the
point exists by Lemma 5.2.16. In the situation of Setting 4.2.9, we have Z1 = X1
and K1 = Z3. Consider the embedding

ι : K5 → K6, x 7→ (x, h1(x)), h1 := T 2
3 T4 − T1T2 ∈ K[T1, . . . , T5].

Then I ′1 = 〈T6 − h1〉 is the vanishing ideal of X ′1. The Z3-grading on K[T1, . . . , T6]
is given by the following degree matrix Q′1. The columns of P ′1, a Gale dual matrix
of Q′1, generate the rays of the fan Σ′1 of the toric ambient variety Z ′1 where

Q′1 =
[

1 0 0 1 0 1
0 1 0 1 −1 1
0 0 1 −2 1 0

]
, P ′1 :=

[
1 0 1 0 −1 −1
0 1 1 1 1 −1
0 0 2 1 0 −1

]
.

We want to blow up ι(q2) = [1, 1, 1, 1, 0, 0] ∈ X ′1. Note that this point exists by
Lemma 5.2.16. Consider now Setting 4.2.5 with the toric modification π : Z2 → Z ′1
given by insertion of the ray through the sum v := (−2, 0,−1) of the fifth and sixth
column of P ′1 into Σ′1. Thus, the fan of the toric variety Z2 has its rays generated
by the columns of P2 = [P ′1, v]. We obtain the ideal I2 = 〈g〉 ⊆ K[T1, . . . , T7] of the
closure of the inverse image X2 by modifying the generator of I1:

g := p?2 (p1)? (T6 − h1) = T6T7 − T 2
3 T4 + T1T2 ∈ K[T1, . . . , T7]

where pi is the morphism of tori corresponding to Pi. Observe that g is already
saturated with respect to T7. All variables Ti define pairwise non-associated prime
elements in R2 = K[T1, . . . , T7]/〈g〉 by Lemma 5.2.17. Moreover, T7 - Ti for all i < 7
as

dim
(
V (K7; T7, Ti, g)

)
= 4 for all i < 7.

Using Theorem 4.2.6(i) with Proposition 4.1.4, R2 is the Cox ring of the performed
modification. Its degree matrix is a Gale dual matrix of P2 as listed in the table.
We now show that the modification was the blow up of ι(q2) ∈ X ′1. In K[T1, . . . , T6],
the ideal 〈T5, T6〉 + I ′1 is prime by Lemma 5.2.17, its zero set is three-dimensional
and the latter contains ι((1, 1, 1, 1, 0)). By Lemma 5.2.15, the modification was the
claimed blow up.
(II) Surfaces of type Bl P2(?2?). The cases Bl P2(?2 ? i) and Bl P2(?2 ? ii) are blow
ups of Z1 := Bl P2(??) in a point in one of the two exceptional divisors. As a toric
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variety, Z1 is given by a fan with its rays generated by the columns of

P1 :=
[
−1 1 0 1 −1
−1 0 1 1 0

]
,

(−1,−1)

(1, 0)

(0, 1)
(1, 1)

(−1, 0)

Of the exceptional divisors V (Z1; T4) and V (Z1; T5) we consider the first one. It
consists of the toric orbits through the points

q1 := [1, 0, 1, 0, 1], q2 := [1, 1, 1, 0, 1], q3 := [1, 1, 0, 0, 1] ∈ Z1.

The automorphism z 7→ (z1, z2 − z3z5, z3, z4, z5) of Ẑ1 maps q2 to q1; compare
Lemma 5.1.5. Thus, any blow up of Z1 in one of the points qi is isomorphic to the
toric blow up obtained by insertion of the ray Q≥0 · (2, 1) or Q≥0 · (1, 2) into the fan
of Z1.
(III) Surfaces of type Bl P2(? ? ?). Surfaces of the form Bl P2(? ? ?) are again blow
ups of Z1 := Bl P2(??). By Proposition 5.1.2, we need to consider the following
configurations.

If X = Bl P2(? ? ? i) we have to perform the toric blow up of the fixed point
[0, 0, 1, 1, 1] ∈ Z1. This is done by the stellar subdivision of the fan of Z1 at (0,−1).
For X = Bl P2(? ? ? ii) we blow up the point q := [1, 1, 0, 1, 1] ∈ Z1. Note that it
exists by Lemma 5.2.16. The following steps are the same as in case Bl P2(?3 ii);
compare Remark 5.2.1. We choose the embedding

ι : K5 → K6, x 7→ (x, h1(x)), h1 := T2T4 − T1T5 ∈ K[T1, . . . , T5]
and obtain a CEMDS X ′1. Its degree matrix Q′1 and the matrix P ′1 of generators
for the rays of the fan of the toric ambient variety Z ′1 of X ′1 are

Q′1 :=
[

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 −1 −1 −1

]
, P ′1 :=

[
1 0 0 0 1 −1
0 1 0 1 0 −1
0 0 1 1 1 −1

]
.

On X ′1, to blow up ι(q) = [1, 1, 0, 1, 1, 0], we perform the stellar subdivision of the
fan of Z ′1 at v := (−1,−1, 0). Set P2 := [P ′1, v]. The ideal I2 ⊆ K[T1, . . . , T7] of X2
is generated by

g := p?2 (p1)? (T6 − h1) = T6T7 − T2T4 + T1T5 ∈ K[T1, . . . , T7].
By the same arguments as in case Bl P2(?3 ii), using the simplifications of Proposi-
tion 4.1.4, we check that the requirements for Theorem 4.2.6(i) are fulfilled. Thus,
R2 = K[T1, . . . , T7]/I2 is the Cox ring of the performed modification with the de-
gree matrix as listed in the table. In K[T1, . . . , T6], the ideal 〈T3, T6, h1〉 is prime
by Lemma 5.2.17, its zero set is three-dimensional and it contains (1, 1, 0, 1, 1, 0).
Thus, Lemma 5.2.15 can be applied.
(IV) Surfaces of type Bl Fa(??). Recall that the fan Σa of the toric variety Fa has
its rays generated by the columns of

P1 :=
[
−1 1 0 0
−a 0 1 −1

]
,

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
.

The first four cases Bl Fa(? ? i) to Bl Fa(? ? iv) are blow ups of Fa in the toric
fixed points listed in Proposition 5.1.4 where a ≥ 2. Each of these toric blow ups
is a stellar subdivision Σ2 → Fa at two vectors v1, v2 ∈ Z2. The fan Σ2 has its
rays generated by the columns of P2 := [P1, v1, v2]. The choices for v1 and v2 are as
follows. The degree matrices of the Cox rings are obtained as Gale dual matrices
of P2, compare Lemma 5.2.6.
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X v1 v2
Bl Fa(? ? i) (−1,−a+ 1) (1, 1)
Bl Fa(? ? ii) (−1,−a+ 1) (−1,−a− 1)
Bl Fa(? ? iii) (−1,−a+ 1) (1,−1)
Bl Fa(? ? iv) (−1,−a− 1) (1,−1)

We come to X = Bl Fa(? ? v). Recall from Proposition 5.2.5 that the toric variety
Z1 := Bl Fa(? i) is the blow up of Fa in the fixed point [0, 1, 0, 1], i.e., the toric
variety with the rays of its fan Σ1 generated by the columns of

P1 :=
[
−1 1 0 0 −1
−a 0 1 −1 −a + 1

]
,

(−1,−a)

(1, 0)

(0, 1)

(0,−1)(−1,−a + 1)
.

Then X is the blow up of Z1 in q := [0, 1, 1, 1, 1]. Note that q exists by Lemma 5.2.16
and projects to [0, 1, 1, 1] ∈ Fa under the first blow up z 7→ (z1z5, z2, z3z5, z4). The
subsequent steps are as in case Bl P2(?3 ii), compare Remark 5.2.1. Using the
embedding

ι : K5 → K6, x 7→ (x, h1(x)), h1 := T a2 T4 − T3T5 ∈ K[T1, . . . , T5],

we obtain a CEMDS X ′1. The degree matrix Q′1 and the matrix P ′1 whose columns
are generators for the rays of the fan Σ′1 of the toric ambient variety Z ′1 of X ′1 are

Q′1 :=
[

1 0 0 −1 −1 −1
0 1 0 −a + 1 1 1
0 0 1 1 0 1

]
, P ′1 :=

[
1 a− 1 0 1 1 −1
0 a 0 1 0 −1
0 0 1 0 1 −1

]
.

On X ′1, for the blow up of the point ι(q) = [0, 1, 1, 1, 1, 0], we perform the stellar
subdivision Σ2 → Σ′1 at v := (0,−1,−1). Write P2 := [P ′1, v]. The vanishing ideal
I2 ⊆ K[T1, . . . , T7] of X2 is generated by

g := p?2 (p1)? (T6 − h1) = T6T7 − T a2 T4 + T3T5 ∈ K[T1, . . . , T7].

By the same methods as before, we verify the requirements for Theorem 4.2.6 and
Proposition 4.1.4. Thus, R2 = K[T1, . . . , T7]/I2 is the Cox ring of the performed
modification with the degree matrix listed in the table. By Lemma 5.2.15, we did
perform a blow up as the ideal 〈T3, T6, h1〉 in K[T1, . . . , T6] is prime by Lemma 5.2.17
and its zero set contains (0, 1, 1, 1, 1, 0) while being three-dimensional.
(V) Surfaces of type Bl Fa(?2). Define Z1 as in the previous case, i.e., Z1 is the
blow up of Fa in the fixed point [0, 1, 0, 1] ∈ Fa. We want to blow up a point in the
exceptional divisor V (Z1; T5). It consists of the toric orbits through the points

q1 := [1, 1, 0, 1, 0], q2 := [1, 1, 1, 1, 0], q3 := [0, 1, 1, 1, 0] ∈ Z1.

The automorphism z 7→ (z1, z2, z3 − z1z
a−1
2 z4, z4, z5) of Ẑ1 maps q2 to q1; compare

Lemma 5.1.5. Thus, the remaining cases are the toric blow ups of Z1 in q1 and q3
and are carried out by insertion of the respective rays

Q≥0 · v, v := (−1,−a+ 2) or v := (−2,−2a+ 1)

into Σ1. The degree matrix of the Cox ring K[T1, . . . , T6] of X is a Gale dual
matrix of the enlarged matrix [P1, v], compare Lemma 5.2.6. This covers the cases
Bl Fa(?2 i) and Bl Fa(?2 ii).
We come to blow ups of the toric variety Bl Fa(? ii) in a point in the exceptional
divisor. Recall that Z1 := Bl Fa(? ii) has the rays of its fan Σ1 generated by the
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columns of

P1 :=
[
−1 1 0 0 −1
−a 0 1 −1 −a− 1

]
,

(−1,−a)

(1, 0)

(0, 1)

(0,−1)

(−1,−a− 1)

.

The exceptional divisor of Z1 is V (Z1; T5) and consists of the toric orbits through
the points

q1 := [0, 1, 1, 1, 0], q2 := [1, 1, 1, 1, 0], q3 := [1, 1, 1, 0, 0] ∈ Z1.

The blow ups of the toric fixed points q1 and q3 are carried out by stellar subdivisions
of Σ1 at the rays

Q≥0 · v, v := (−2,−2a− 1) or v := (−1,−a− 2)
respectively. The degree matrix of the Cox ring K[T1, . . . , T6] of X is a Gale dual
matrix of the enlarged matrix [P1, v], see Lemma 5.2.6. This covers the cases
Bl Fa(?2 iii) and Bl Fa(?2 iv).
For X = Bl Fa(?2 v), we blow up Z1 in q2. Note that q2 exists by Lemma 5.2.16.
The steps are analogous to previous cases, e.g., Bl P2(?3 ii). Choose the embedding
ι : K5 → K6, x 7→ (x, h1(x)), h1 := T a+1

2 T4 − T1T3 ∈ K[T1, . . . , T5].
We obtain a CEMDS X ′1, a new degree matrix Q′1 and a matrix P ′1 whose columns
are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 :=
[

1 0 0 1 −1 1
0 1 0 −a− 1 1 0
0 0 1 1 0 1

]
, P ′1 :=

[
1 0 1 0 0 −1
0 1 1 0 −1 −1
0 0 a + 1 −1 −a− 1 −a

]
.

On X ′1, for the blow up of ι(q2) = [1, 1, 1, 1, 0, 0], we perform the stellar subdivision
of Σ′1 at the vector v := (−1,−2,−2a − 1) in Z3. Set P2 := [P ′1, v]. The vanishing
ideal I2 ⊆ K[T1, . . . , T7] of X2 is generated by

p?2 (p1)? (T6 − h1) = T6T7 − T a+1
2 T4 + T1T3 ∈ K[T1, . . . , T7].

As in previous cases, one directly verifies the requirements for Theorem 4.2.6. Hence,
the Cox ring of the performed modification is R2 = K[T1, . . . , T7]/I2. Its degree
matrix is a Gale dual matrix of P2, i.e.,

Q2 =
[

1 0 0 1 0 2 −1
0 1 0 −a− 1 0 −1 1
0 0 1 1 0 1 0
0 0 0 0 1 1 −1

]
.

By Lemma 5.2.15, the modification was a blow up as the ideal 〈T5, T6, h1〉 in
K[T1, . . . , T6] is prime by Lemma 5.2.17 and its zero set contains (1, 1, 1, 1, 0, 0)
while being three-dimensional.
Isomorphisms: We now show that the surfaces listed in the proposition are pairwise
non-isomorphic. As seen in the proof of Proposition 5.2.5, Bl F2(? i) is isomorphic
to Bl P2(?2). Therefore, we have a ≥ 3 in the cases

Bl Fa(? ? i), Bl Fa(? ? ii), Bl Fa(? ? iii), Bl Fa(? ? v),
Bl Fa(?2 i), Bl Fa(?2 ii).

We first treat the toric and then the non-toric cases. We compare the self-intersection
numbers of negative curves. These curves are of the form V (X; Ti), compare
also 5.2.7.

a X V (T1)2 V (T2)2 V (T3)2 V (T4)2 V (T5)2 V (T6)2

Bl P2(?3 i) ≥ 0 −2 ≥ 0 −2 −2 −1
Bl P2(?3 iii) ≥ 0 −1 ≥ 0 −3 −2 −1
Bl P2(?3 iv) ≥ 0 −1 −1 −3 −1 −1
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Bl P2(?2 ? i) ≥ 0 −1 −1 −2 −1 −1
Bl P2(?2 ? ii) ≥ 0 ≥ 0 −2 −2 −1 −1
Bl P2(? ? ? i) −1 −1 −1 −1 −1 −1

≥ 3 Bl Fa(? ? i) −1 −1 ≥ 0 −a −1 −1
≥ 3 Bl Fa(? ? ii) −2 ≥ 0 ≥ 0 −a− 1 −1 −1
≥ 3 Bl Fa(? ? iii) −1 −1 ≥ 0 −a− 1 −1 −1
≥ 2 Bl Fa(? ? iv) −1 −1 ≥ 0 −a− 2 −1 −1
≥ 3 Bl Fa(?2 i) −1 ≥ 0 ≥ 0 −a −2 −1
≥ 3 Bl Fa(?2 ii) −2 ≥ 0 ≥ 0 −a −2 −1
≥ 2 Bl Fa(?2 iii) −2 ≥ 0 ≥ 0 −a− 1 −2 −1
≥ 2 Bl Fa(?2 iv) −1 ≥ 0 ≥ 0 −a− 2 −2 −1

An inspection of the table shows that the listed surfaces are pairwise non-isomorphic
except for the following. Using Algorithm 5.2.11 and Remark 5.2.10, we give iso-
morphisms

Bl Fa+2(?2 i) → Bl Fa(?2 iv), Bl Fa+1(? ? i) → Bl Fa(? ? iii),
Bl P2(?3 iii) → Bl F3(?2 i), Bl P2(?3 iv) → Bl F3(? ? i),

Bl Fa+1(? ? iii) → Bl Fa(? ? iv), Bl Fa+1(?2 ii) → Bl Fa(?2 iii),
Bl Fa+1(?2 i) → Bl Fa(? ? ii).

For each surface, we write primitive generators for the rays of its corresponding fan
into a matrix as in Remark 5.2.10. In the first and the two last cases, the respective
matrices already are the same up to column permutations. For the second to fifth
isomorphism, in the notation of 5.2.9, the surfaces are isomorphic by Remark 5.2.10
since [

1 0
−1 1

] [
−1 1 0 0 −1 1

−a− 1 0 1 −1 −a 1

]
:
[
−1 1 0 0 −1 1
−a 0 1 −1 −a + 1 −1

]
,[

−1 1
−1 0

] [
−1 1 0 1 2 3
−1 0 1 1 1 2

]
:
[
−1 1 0 0 −1 −1
−3 0 1 −1 −2 −1

]
,[

−1 1
−2 1

] [
−1 1 0 1 2 1
−1 0 1 1 1 2

]
:
[
−1 1 0 0 −1 1
−3 0 1 −1 −2 1

]
,[

−1 0
−a 1

] [
−1 1 0 0 −1 1

−a− 1 0 1 −1 −a −1

]
:
[
−1 1 0 0 −1 1
−a 0 1 −1 −a− 1 −1

]
.

We come to isomorphisms between the K∗-surfaces. This comprises the cases
Bl P2(?3 ii), Bl P2(? ? ? ii), Bl Fa(? ? v) and Bl Fa(?2 v). Note that all these
surfaces are non-toric since their total coordinate spaces have singularities. By Re-
mark 5.2.13, no isomorphisms are possible except between X1 := Bl Fa+1(? ? v)
and X2 := Bl Fa(?2 v). The degree matrices Qi of R(Xi) coincide up to column
permutations after applying the matrix A ∈ GL(4,Z):

A ·Q1 =
[

0 0 0 1
0 1 0 −a− 1
0 0 1 1
1 0 0 0

]
·

[
1 0 0 0 0 1 −1
0 1 0 0 a + 1 2a + 1 −a
0 0 1 0 −1 −1 1
0 0 0 1 1 2 −1

]

=
[

0 0 0 1 1 2 −1
0 1 0 −a− 1 0 −1 1
0 0 1 1 0 1 0
1 0 0 0 0 1 −1

]
= Q2 · U,

where U ∈ GL(7,Z) is the permutation matrix exchanging the first and fifth col-
umn. It is admissible in the sense of Proposition 1.5.8. By Algorithm 5.2.14, X1 is
isomorphic to X2. �

3. Smooth rational surfaces with %(X) = 5

In this section, we classify the smooth rational surfaces of Picard number five up
to isomorphism and present their Cox rings explicitly. Each such surface can be
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obtained as a blow up of one of the smooth rational surfaces of Picard number
four listed in Proposition 5.2.8. Whereas the Cox rings of blow ups of P2 can be
calculated in a purely computational manner with Algorithm 4.5.9, for blow ups of
Fa, we apply the algorithm in a formal way as explained in Remark 5.2.1.

Theorem 5.3.1. Let X be a smooth rational surface with Picard number %(X) = 5.
Then X is isomorphic to exactly one of the following surfaces.

X Cox ring R(X) degree matrix

Bl P2(?4 iv)
λ ∈ K∗ \ {1}

K[T1, . . . , T9]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7,
(λ− 1)T 2

3 T4 − T8T9 − λT6T7

 1 0 0 1 0 0 1 2 −1
0 1 0 1 0 0 1 3 −2
0 0 1 −2 0 0 0 −1 1
0 0 0 0 1 0 0 1 −1
0 0 0 0 0 1 −1 −1 1



Bl P2(?4 v)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7T8

 1 0 0 1 0 0 2 −1
0 1 0 1 0 0 3 −2
0 0 1 −2 0 0 −1 1
0 0 0 0 1 0 1 −1
0 0 0 0 0 1 −2 1



Bl P2(?4 vi)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4 − T1T2 + T6T 2
8 T7

 1 0 0 1 0 0 1 0
0 1 0 1 0 0 3 −1
0 0 1 −2 0 0 −2 1
0 0 0 0 1 0 2 −1
0 0 0 0 0 1 1 −1



Bl P2(?4 ix) K[T1, . . . , T7]

 1 0 0 0 2 −1 0
0 1 0 0 1 −1 0
0 0 1 0 2 −1 −1
0 0 0 1 3 −2 −1
0 0 0 0 5 −3 −1



Bl P2(?4 xiii) K[T1, . . . , T7]

 1 0 0 0 0 −3 2
0 1 0 0 0 −2 1
0 0 1 0 0 5 −3
0 0 0 1 0 3 −2
0 0 0 0 1 1 −1



Bl P2(?4 xiv)
K[T1, . . . , T8]/I
with I generated by
T 3

3 T
2
4 T5 − T 2

1 T2 − T7T8

 1 0 0 0 2 0 3 −1
0 1 0 0 1 0 2 −1
0 0 1 0 −3 0 −2 2
0 0 0 1 −2 0 −1 1
0 0 0 0 0 1 1 −1



Bl P2(?4 xv) K[T1, . . . , T7]

 1 0 0 0 0 3 −2
0 1 0 0 0 1 −1
0 0 1 0 0 −4 3
0 0 0 1 0 −3 2
0 0 0 0 1 −2 1



Bl P2(?2?2

iii)
K[T1, . . . , T7]

 1 0 0 0 1 0 −1
0 1 0 0 1 0 0
0 0 1 0 1 −1 −1
0 0 0 1 2 −1 −1
0 0 0 0 3 −1 −2



Bl P2(?2?2

iv)
K[T1, . . . , T7]

 1 0 0 0 1 1 −1
0 1 0 0 1 0 0
0 0 1 0 1 0 −1
0 0 0 1 2 0 −1
0 0 0 0 3 1 −2


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Bl P2(?2 ?
? i)

K[T1, . . . , T7]

 1 0 0 0 1 1 0
0 1 0 0 1 0 0
0 0 1 0 0 0 1
0 0 0 1 1 0 1
0 0 0 0 2 1 1



Bl P2(?2 ?
? ii)

K[T1, . . . , T8]/I
with I generated by
T2T4T 2

6 − T1T5 − T7T8

 1 0 0 0 1 1 2 0
0 1 0 0 1 0 1 0
0 0 1 0 0 0 1 −1
0 0 0 1 1 0 2 −1
0 0 0 0 2 1 3 −1



Bl P2(?2 ?
? iv)

K[T1, . . . , T8]/I
with I generated by
T2T4T6 − T1T5 − T7T8

 1 0 0 0 0 1 2 −1
0 1 0 0 0 −1 −2 2
0 0 1 0 0 0 1 −1
0 0 0 1 0 −1 −1 1
0 0 0 0 1 1 3 −2



Bl P2(? ?
? ? i)

K[T1, . . . , T10]/I
with I generated by
T4T7 − T5T8 + T6T9 ,
T1T7 − T2T8 + T3T9 ,
T3T5 − T2T6 − T7T10 ,
T3T4 − T1T6 − T8T10 ,
T2T4 − T1T5 − T10T9

 1 0 0 0 −1 −1 0 1 1 −1
0 1 0 0 1 0 0 −1 0 1
0 0 1 0 0 1 0 0 −1 1
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 −1



Bl P2(? ?
? ? ii)

K[T1, . . . , T8]/I
with I generated by
T2T4 − T1T5 − T7T8

 1 0 0 0 −1 0 −1 1
0 1 0 0 1 0 1 0
0 0 1 0 0 0 1 −1
0 0 0 1 1 0 2 −1
0 0 0 0 0 1 −1 1



Bl P2(? ?
? ? iii)
λ ∈ K∗ \ {1}

K[T1, . . . , T9]/I
with I generated by
T2T4 − T1T5 − T6T7,
T8T9 − (λ− 1)T2T4 + λT6T7

 1 0 0 0 −1 0 0 −1 1
0 1 0 0 1 0 1 2 −1
0 0 1 0 0 0 0 1 −1
0 0 0 1 1 0 1 3 −2
0 0 0 0 0 1 −1 −1 1



Bl Fa(? ?
? iii)
a ≥ 3

K[T1, . . . , T8]/I
with I generated by
T7T8 − T1T5 + T2T6

 1 0 0 0 0 1 −a + 2 a− 1
0 1 0 0 0 −1 −1 1
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 −1 1
0 0 0 0 1 1 −a + 3 a− 2



Bl Fa(? ?
? iv) a ≥ 3

K[T1, . . . , T8]/I
with I generated by

T7T8 − Ta2 T4T
a−1
6 + T3T5

 1 0 0 0 0 0 1 −1
0 1 0 0 1 −1 2 −1
0 0 1 0 a− 2 1 2a− 4 −a + 3
0 0 0 1 1 0 2 −1
0 0 0 0 a− 1 1 2a− 3 −a + 2



Bl Fa(? ?
? ix) a ≥ 3
λ ∈ K∗ \ {1}

K[T1, . . . , T9]/I
with I generated by
T6T7 − Ta2 T4 + T3T5,
T8T9 − (λ− 1)Ta2 T4 + λT6T7

 1 0 0 0 0 0 0 1 −1
0 1 0 0 a 0 a 3a− 1 −2a + 1
0 0 1 0 −1 0 0 −1 1
0 0 0 1 1 0 1 3 −2
0 0 0 0 0 1 −1 −1 1



Bl Fa(?2 ?
i) a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 a− 5 −a + 3 −1
0 1 0 0 a− 4 −a + 3 −2
0 0 1 0 1 −1 0
0 0 0 1 a− 4 −a + 3 −1
0 0 0 0 a− 3 −a + 2 −1


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Bl Fa(?2 ?
iv) a ≥ 3

K[T1, . . . , T8]/I
with I generated by
Ta2 T4 − T3T5T 2

6 − T7T8

 1 1 0 −a 0 0 0 0
−1 0 −1 0 1 0 0 0
−1 0 −2 0 0 1 0 0

0 0 1 1 0 0 1 0
−1 0 1 1 0 0 0 1



Bl Fa(?2 ?
v) a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 1 −1 0
0 1 0 0 2 −1 −1
0 0 1 0 2a− 4 −a + 3 1
0 0 0 1 2 −1 0
0 0 0 0 2a− 3 −a + 2 1



Bl Fa(?2 ?
viii) a ≥ 3

K[T1, . . . , T8]/I
with I generated by
Ta2 T4 − T3T5T6 − T7T8

 1 0 0 0 0 0 1 −1
0 1 0 0 0 a 3a− 1 −2a + 1
0 0 1 0 0 −1 −2 2
0 0 0 1 0 1 3 −2
0 0 0 0 1 −1 −1 1



Bl Fa(?3 i)
a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 0 −3 2
0 1 0 0 0 −a + 3 a− 2
0 0 1 0 0 1 −1
0 0 0 1 0 −1 1
0 0 0 0 1 −2 1



Bl Fa(?3 iii)
a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 0 3 −2
0 1 0 0 0 2a− 3 −a + 2
0 0 1 0 0 −2 1
0 0 0 1 0 2 −1
0 0 0 0 1 1 −1



Bl Fa(?3 iv)
a ≥ 3

K[T1, . . . , T8]/I
with I generated by

T1T
a−1
2 T4 − T3T6 − T7T8

 1 0 0 0 0 1 3 −2
0 1 0 0 0 a− 1 2a− 3 −a + 2
0 0 1 0 0 −1 −1 1
0 0 0 1 0 1 2 −1
0 0 0 0 1 0 1 −1



Bl Fa(?3 v)
a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 −2 1 0
0 1 0 0 −a + 2 a− 1 0
0 0 1 0 1 −1 0
0 0 0 1 −1 1 0
−1 0 0 0 −1 0 1



Bl Fa(?3 viii)
a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 0 −2 1
0 1 0 0 0 −3a + 2 2a− 1
0 0 1 0 0 3 −2
0 0 0 1 0 −3 2
0 0 0 0 1 1 −1



Bl Fa(?3 ix)
a ≥ 3

K[T1, . . . , T8]/I
with I generated by

T1T
2a−1
2 T 2

4 − T
2
3 T5 − T7T8

 1 0 0 0 1 0 2 −1
0 1 0 0 2a− 1 0 3a− 2 −a + 1
0 0 1 0 −2 0 −1 1
0 0 0 1 2 0 3 −1
0 0 0 0 0 1 1 −1



Bl Fa(?3 x)
a ≥ 3

K[T1, . . . , T7]

 1 0 0 0 0 1 −1
0 1 0 0 0 3a− 1 −2a + 1
0 0 1 0 0 −3 2
0 0 0 1 0 3 −2
0 0 0 0 1 −2 1



In particular, each smooth rational surface of Picard number five either admits a
non-trivial K∗-action or is isomorphic to M0,5.

Remark 5.3.2. The K∗-surfaces occurring in Theorem 5.3.1 are all embedded
equivariantly into their canonical toric ambient varieties since the relations in the
Cox rings are of trinomial shape as in Construction 1.5.3.
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Lemma 5.3.3. In K[T1, . . . , Tr], consider binomials fi := c+i T
ν+
i − c−i T

ν−
i with

c±i ∈ K∗ where 1 ≤ i ≤ s. Let A be the s× r matrix with rows ν+
i − ν

−
i . Then the

dimension of V (Tr; f1, . . . , fs) is r − rank(A).

Proof. See [50, Satz 2.1.13]. Compute a Smith normal form D = U · A · V with
invertible matrices U, V and denote by ϕA, ϕD, ϕU the corresponding morphisms
of tori. Then there is a finite abelian group Γ such that

V (Tr; f1, . . . , fs) = ϕ−1
A

(
−c
−
1
c+1
, . . . ,−c

−
s

c+s

)
∼= ϕ−1

D

(
ϕU

(
−c
−
1
c+1
, . . . ,−c

−
s

c+s

))
∼= Tr−rankA × Γ. �

When checking a variable for being prime (e.g., with Algorithm 2.2.10) we often
encounter ideals of the form I = I0 + I ′ with a binomial ideal I0. The following
observation may then simplify the computation. We have published a similar version
in [56, Lem. 4.3].

Lemma 5.3.4 (Binomial trick). Consider an ideal I = I0 +I ′ ⊆ K[T1, . . . , Tr] with
a prime binomial ideal

I0 = 〈T ν
+
1 − T ν

−
1 , . . . , T ν

+
n − T ν

−
n 〉 where ν+

i , ν
−
i ∈ Zr≥0.

Let B be the integral n× r matrix with rows ν+
i −ν

−
i and A an integral r× s matrix

the columns of which generate ker(B). We have a homomorphism

ψA : K[T1, . . . , Tr] → K
[
Y ±1

1 , . . . , Y ±1
s

]
, T ν 7→ Y A

t·ν .

Then I ⊆ K[T1, . . . , Tr] is prime if one of the following conditions is fulfilled.

(i) 〈ψA(I ′)〉 is a prime ideal in the Veronese subalgebra R ⊆ K[Y ±1
1 , . . . , Y ±1

s ]
given by the monoid S ⊆ Zs generated by the rows of A.

(ii) ker(B) ∩Qr>0 6= ∅ and 〈ψA(I ′)〉 is a prime ideal in K[Y1, . . . , Ys].

Proof. Since I0 is a prime binomial ideal, we have I0 = ker(ψA). Let s1, . . . , sr be
the rows of A. Then the image of ψA is the subalgebra

R = K[Y s1 , . . . , Y sr ] ⊆ K[Y ±1
1 , . . . , Y ±1

s ].

Thus, the map ψA : K[T1, . . . , Tr] → R is surjective. As I0 = ker(ψA), by basic
algebra, we obtain I = ψ−1

A (〈ψA(I ′)〉). The first assertion follows. For (ii), choose
w ∈ ker(B)∩Qr>0. We may replace each generator w′ of ker(B) that does not lie in
Qr>0 with w′′ := bw+w′ where b ∈ Z is large enough such that w′′ ∈ ker(B)∩Qr>0.
In the above setting, the image R of ψA is contained in K[Y1, . . . , Ys], i.e., 〈ψA(I ′)〉
is prime in R. The claim follows from (i). �

In order to classify blow ups of P2 and Fa, in the proofs of Theorems 5.3.1 and 5.4.1,
we have to choose points for the next blow up step. The possible choices of these
points frequently is reflected in parameters in their Cox coordinates. With regard to
K∗-surfaces, parameters only occur when blowing up points on fixed point curves.

Remark 5.3.5. Let X be a K∗-surface that is embedded equivariantly into its
canonical toric ambient variety. Consider points x, x′ ∈ X belonging to exactly one
of the divisors V (X; Ti). By Proposition 1.5.10, we have

x = λ · x′ with λ ∈ K∗ ⇔ V (X; Ti) is not a fixed point curve.

Remark 5.3.6. Computations involving Gröbner bases, e.g., in Algorithm 4.5.9,
can also be carried out for equations depending on parameters λ1, . . . , λs ∈ K
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by changing the base field to Q(λ1, . . . , λs) and regard the λi as transcendental
elements, see [46, p. 34].

Proof of Theorem 5.3.1. By Remark 5.2.3, the surface X can be obtained as a blow
up of P2 in four points or as the blow up of Fa in three points where a ∈ Z≥2. This
proof is structured as follows. We compute the resulting Cox rings grouped into
originating point configurations; they are listed in Propositions 5.1.2 and 5.1.4. Each
surface of Picard number five arises as a blow up of a surface of Picard number four
as classified in Proposition 5.2.8. If necessary, we prove or disprove the existence of
a K∗-action. Finally, we sort out isomorphic surfaces.
(I) Surfaces of type Bl P2(?4). By Propositions 5.2.8 and 5.1.2, these are blow ups
of the surface Bl P2(?3 i) or Bl P2(?3 ii) in a point in one of the exceptional divisors.

(4)

Recall that (4) stands for a fourfold iterated blow up. We first consider blow ups
of X1 := Bl P2(?3 ii). As seen in the proof of Proposition 5.2.8, the exceptional
divisors are

V (X1; T4), V (X1; T5), V (X1; T7).
The curve V (X1; T5) is a parabolic fixed point curve. Consequently, by Remark 5.3.5,
it suffices to consider the points

q1 := [−1, 1, 0, 0, 1, 1, 1], q2 := [−1, 1, 1, 0, 1, 1, 1],
q3 := [−1, 1, 1, 0, 0, 1, 1], q4 := [1, 1, 1, λ, 0, λ− 1, 1],
q5 := [1, 1, 1, 1, 0, 1, 0], q6 := [1, 1, 1, 1, 1, 1, 0],
q7 := [1, 1, 1, 1, 1, 0, 0], q8 := [1, 0, 1, 1, 0, 1, 1] ∈ X1

where all points exist by Lemma 5.2.16 or by an application of Algorithm 2.3.8.
Observe that we cover all necessary points on V (X1; T5). Pulling back generators
for the irrelevant ideal of X1 we obtain 〈T − 1〉 ⊆ K[T ], compare Algorithm 2.3.11.
Hence, q4 ∈ X̂1 for each λ ∈ K \ {1}. Write p : X̂1 → X1 for the characteristic
space and ι : K \ {1} → V (T5) for the assignment λ 7→ (1, 1, 1, λ, 0, λ− 1, 1). Define
D := V (X1; T5) and ϕ := p ◦ ι. We have a commutative diagram

P1 ⊇

ϕ
""

K \ {1} ι //

ϕ

$$

V (T5) ⊆

p

��

X̂1

p

��
P1 ∼=

// D ⊆ X1

where ϕ and the lifted morphism ϕ are non-constant. This means ϕ is surjective
and the image of ϕ comprises D up to at most two points. Since q5, q8 ∈ D are
distinct points not contained in Im(ϕ) it suffices to consider the listed points qi.
Using Algorithm 4.5.9, we compute the Cox rings of the resulting surfaces which
we call Bl P2(?4 i) to Bl P2(?4 viii). By Remark 5.3.6, the computation could also
be carried out for the case Bl P2(?4 iv). All obtained Cox rings are either listed in
the table of Theorem 5.3.1 or in the following one; we will show at the end of this
proof that the following ones are redundant.

X Cox ring R(X) degree matrix

Bl P2(?4 i)
K[T1, . . . , T8]/I
with I generated by
−T 2

3 T4T 3
8 + T1T2 + T6T7

 1 0 0 1 0 1 0 0
0 1 0 1 0 2 −1 0
0 0 1 1 0 0 0 −1
0 0 0 3 0 1 −1 −1
0 0 0 0 1 1 −1 0


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Bl P2(?4 ii)
K[T1, . . . , T8]/I
with I generated by
T1T2 + T5T6 − T3T 2

7 T
3
8

 1 0 0 1 0 0 1 0
0 1 0 1 0 0 3 −1
0 0 1 −2 0 0 −2 1
0 0 0 0 1 0 2 −1
0 0 0 0 0 1 1 −1



Bl P2(?4 iii)
K[T1, . . . , T8]/I
with I generated by
−T 2

3 T4T8 + T1T2 + T6T7

 1 0 0 0 0 2 −1 1
0 1 0 0 0 3 −2 1
0 0 1 0 0 −3 3 −2
0 0 0 1 0 −1 1 −1
0 0 0 0 1 1 −1 0



Bl P2(?4 vii)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7T 2
8

 1 0 0 1 0 0 −1 1
0 1 0 1 0 0 −3 2
0 0 1 −2 0 0 2 −1
0 0 0 0 1 0 −2 1
0 0 0 0 0 1 1 −1



Bl P2(?4 viii)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4 − T6T7 − T1T2T8

 1 0 0 0 0 −2 2 −1
0 1 0 0 0 −1 1 −1
0 0 1 0 0 5 −3 2
0 0 0 1 0 3 −2 1
0 0 0 0 1 1 −1 0



However, for the surfaces Y1 := Bl P2(?4 ii) and Y ′1 := Bl P2(?4 vi) Algorithm 4.5.9
returned a ring different from the one listed in the table. We now prove that these
rings are isomorphic. For Y1, Algorithm 4.5.9 returns the Cox ring and degree
matrix

R(Y1) = K[T1, . . . , T8]
/ 〈

T1T2 + T5T6 − T8T3T
2
2 T

2
4 T

2
6

+2T3T2T4T6T7T
2
8 − T3T

2
7 T

3
8 ,

〉
,

Q1 =

 1 0 0 0 0 1 2 −1
0 1 0 0 0 1 5 −3
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 3 −2
0 0 0 0 1 −1 −3 2

 .
We claim that Y1 is isomorphic to the K∗-surface Y2 with the same degree matrix
Q2 := Q1 and Cox ring

R(Y2) = K[T1, . . . , T8] / 〈T1T2 + T5T6 − T3T
2
7 T

3
8 〉.

By Lemma 5.1.5, it suffices to show that the Cox rings R(Y2) and R(Y1) are iso-
morphic as graded algebras. We choose the homomorphism ψ : R(Y2) → R(Y1)
induced by the homomorphism K[T1, . . . , T8]→ K[T1, . . . , T8] with

Ti 7→

{
T5 − T 2

2 T3T
2
4 T6T8 + 2T2T3T4T7T

2
8 , i = 5,

Ti, i 6= 5.

One directly verifies that (ψ, id) is an isomorphism of Z5-graded algebras. Hence, Y1
is isomorphic to the K∗-surface Y2. Similarly, for Y ′1 = Bl P2(?4 vi), Algorithm 4.5.9
delivers its Cox ring and degree matrix

R(Y ′1) = K[T1, . . . , T8] / 〈T 2
3 T4 − T1T2 − T6T8T2T3T4T5 + T6T

2
8 T7〉,

Q′1 =

 1 0 0 1 0 0 1 0
0 1 0 1 0 0 3 −1
0 0 1 −2 0 0 −2 1
0 0 0 0 1 0 2 −1
0 0 0 0 0 1 1 −1

 .
We have a Z5-graded isomorphism (ψ′, id) between the Cox ring R(Y ′2) of a K∗-
surface Y ′2 and R(Y ′1) where

R(Y ′2) := K[T1, . . . , T8] / 〈T 2
3 T4 − T1T2 + T6T

2
8 T7〉
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and the degree matrix is again Q′1. The graded homomorphism ψ′ is induced by
the homomorphism K[T1, . . . , T8]→ K[T1, . . . , T8] assigning T1 + T3T4T5T6T8 to T1
and Ti 7→ Ti otherwise. Thus, Y ′1 is isomorphic to Y ′2 .
We come to the blow up of the toric variety Bl P2(?3 i) in a point in the union of
the exceptional divisors. It is given by the toric orbits through the points

q1 := [1, 1, 0, 0, 1, 1], q2 := [1, 1, 1, 0, 1, 1],
q3 := [1, 1, 1, 0, 0, 1], q4 := [1, 1, 1, 1, 0, 1],
q5 := [1, 1, 1, 1, 0, 0], q6 := [1, 1, 1, 1, 1, 0],
q7 := [1, 0, 1, 1, 1, 0].

(−1,−1)

(1, 0)

(0, 1)
(1, 1) (2, 1)

(3, 1)

All points exist by Lemma 5.2.16 or by Algorithm 2.3.8. The fan of Bl P2(?3 i) is
drawn on the right. Observe that the equivariant automorphism

Ẑ1 → Ẑ1, z 7→ (z1, z2, z3 − z2z5z
2
6 , z4, z5, z6)

maps q2 to q1; compare Lemma 5.1.5. Using Algorithm 4.5.9, we compute the
Cox rings of the remaining surfaces. We denote the results by Bl P2(?4 ix) and
Bl P2(?4 xi) to Bl P2(?4 xv). The results can be found in the table of Theorem 5.3.1
or in the following one.

X Cox ring R(X) degree matrix

Bl P2(?4 xi) K[T1, . . . , T7]

 1 0 0 0 2 −1 0
0 1 0 0 1 −1 0
0 0 1 0 0 1 −1
0 0 0 1 1 0 −1
0 0 0 0 3 −1 −1



Bl P2(?4 xii)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4 − T1T2T6 − T7T8

 1 0 0 0 0 −1 −2 2
0 1 0 0 0 −1 −1 1
0 0 1 0 0 2 5 −3
0 0 0 1 0 1 3 −2
0 0 0 0 1 0 1 −1



(II) Blow ups of type Bl P2(?3?). By Propositions 5.2.8 and 5.1.2, the surfaces of
type Bl P2(?3?) are blow ups of Bl P2(?3 ii) or of Bl P2(?3 i) in a point that maps
to [0, 1, 0] ∈ P2 under the first three blow ups.

(3)

We first treat blow ups of X1 := Bl P2(?3 ii). Recall from the proof of Proposi-
tion 5.2.8 the blow up sequence

X1
π3 // Bl P2(?2)′ Bl P2(?2)ι1oo π2 // Bl P2(?) π1 // P2

where, as in Setting 4.2.9, the embedding ι1 : K5 → K6 is given by z 7→ (z, h1(z))
with the polynomial h1 := T 2

3 T4 − T1T2 in K[T1, . . . , T5]. The blow ups are

π3([z]) = [z1, . . . , z4, z5z7, z6z7],
π2([z]) = [z1, z2z5, z3, z4z5], π1([z]) = [z1, z2z4, z3z4].

Using Algorithm 2.3.8, we see that the following point p exists on X1 and its blow
up yields the desired surface:

π1 ◦ π2 ◦ ι−1
1 ◦ π3(p) = [0, 1, 0] ∈ P2, p := [0, 1, 0, 1, 1, 0, 1] ∈ X1.
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In a similar manner, for the toric variety X1 := Bl P2(?3 i) the point [0, 1, 0, 1, 1, 1] ∈
X1 exists and projects to [0, 1, 0] ∈ P2. In each of the two cases we use Algo-
rithm 4.5.9 to blow up X1 in p. We obtain surfaces Bl P2(?3 ? i) and Bl P2(?3 ? ii)
with the following Cox rings.

X Cox ring R(X) degree matrix

Bl P2(?3 ? i)
K[T1, . . . , T8]/I
with I generated by
T 2

3 T4T8 − T1T2 − T6T7

 1 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 1 −1 −2
0 0 0 1 0 1 −1 −1
0 0 0 0 1 1 −1 0



Bl P2(?3 ? ii) K[T1, . . . , T7]

 1 0 0 0 0 1 2
0 1 0 0 0 0 1
0 0 1 0 0 −1 −3
0 0 0 1 0 −1 −2
0 0 0 0 1 −1 −1



(III) Surfaces of type Bl P2(?2?2). These are blow ups of Z1 := Bl P2(?2 ? i) or
Z2 := Bl P2(?2 ? ii) in a point in the second exceptional divisor, i.e.

(2) (2)

The toric varieties Zi have the following fans and ray generators

(−1,−1)

(1, 0)

(0, 1)
(1, 1)

(−1, 0)

(2, 1)

(−1,−1)

(1, 0)

(0, 1) (1, 1)

(−1, 0)

(1, 2) [
−1 1 0 1 −1
−1 0 1 1 0 v

]

with v = (2, 1) or v = (1, 2) respectively. On both Z1 and Z2 the second exceptional
divisor is V (Zi; T5) and consists of the toric orbits through the points

q1 := [0, 1, 1, 1, 0, 1], q2 := [1, 1, 1, 1, 0, 1], q3 := [1, 1, 0, 1, 0, 1].
For both i, the point q2 ∈ Zi is mapped to q1 by the respective equivariant auto-
morphism

Ẑ1 → Ẑ1, z 7→ (z1 − z3z4z6, z2, . . . , z6),

Ẑ2 → Ẑ2, z 7→ (z1 − z3z4z
2
6 , z2, . . . , z6),

compare Lemma 5.1.5. Denote by Bl P2(?2 ?2 i) and Bl P2(?2 ?2 ii) the surfaces
obtained as blow up of Z1 in q1 and q3. The blow ups of Z2 in q1 and q3 are called
Bl P2(?2 ?2 iii) and Bl P2(?2 ?2 iv). The table of the theorem lists the Cox rings
of the latter two whereas the ones of the former two are as follows.

X Cox ring R(X) degree matrix

Bl P2(?2 ?2 i) K[T1, . . . , T7]

 1 0 0 0 1 0 −1
0 1 0 0 1 0 0
0 0 1 0 −2 0 1
0 0 0 1 −1 0 1
0 0 0 0 0 1 1



Bl P2(?2 ?2 ii) K[T1, . . . , T7]

 1 0 0 0 1 1 0
0 1 0 0 1 0 0
0 0 1 0 1 0 −1
0 0 0 1 2 0 −1
0 0 0 0 3 1 −1


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(IV) Surfaces of type Bl P2(?2 ? ?). Let Z1 = Bl P2(?2 ? i) and Z2 = Bl P2(?2 ? ii)
be as in the previous paragraph (III). By Proposition 5.1.2, we have to consider
the configurations

(2) (2)

By Proposition 5.2.8, this means that the surfaces of type Bl P2(?2 ? ? ) are blow
ups of Z1 or Z2 in a point that maps to [0, 0, 1] ∈ P2 or to [1, 1, 0] ∈ P2 under the
maps of the first three blow ups. Recall from the proof of Proposition 5.2.8 that
the blow up sequence of both Zi is

Zi
πi,3 // Bl P2(??) π2 // Bl P2(?) π1 // P2

where the blow ups π1, π2 and πi,3 are

π1,3([z]) = [z1, z2z6, z3, z4z6, z5],
π2([z]) = [z1z5, z2, z3z5, z4],

π2,3([z]) = [z1, z2, z3z6, z4z6, z5],
π1([z]) = [z1, z2z4, z3z4].

In our case, the points p := [0, 0, 1, 1, 1, 1] ∈ Zi and p′ := [1, 1, 0, 1, 1, 1] ∈ Zi are
directly seen to exist and satisfy

π1 ◦ π2 ◦ πi,3(p) = [0, 0, 1] ∈ P2, π1 ◦ π2 ◦ πi,3(p′) = [1, 1, 0] ∈ P2.

The blow ups of Z1 in p and p′ are called Bl P2(?2 ?? i) and Bl P2(?2 ?? ii) whereas
Bl P2(?2 ? ? iii) and Bl P2(?2 ? ? iv) are the blow ups of Z2 in p and p′. The results
are listed in the table except for the Cox ring and degree matrix

R
(
Bl P2(?2 ? ? iii)

)
= K[T1, . . . , T7],

 1 0 0 0 0 1 1
0 1 0 0 0 −1 −2
0 0 1 0 0 0 1
0 0 0 1 0 −1 −1
0 0 0 0 1 1 2

 .
(V) Surfaces of type Bl P2(? ? ??). Proposition 5.1.2 lists the three point configu-
rations we have to consider, i.e.,

The blow ups of the first two configurations can be obtained as a blow up of X1 :=
Bl P2(? ? ? i). As seen in the proof of Proposition 5.2.8, X1 was obtained as blow
up

π3,2,1 : X1 → P2, [z] 7→ [z1z5z6, z2z4z6, z3z4z5].

Under π3,2,1, the points [1, . . . , 1] and [1, 1, 0, 1, 1, 1] ∈ X1 project to [1, 1, 1] ∈ P2
and [1, 1, 0] ∈ P2 respectively. Note that the second point exists by Lemma 5.2.16.
The blow ups of X1 in these points with Algorithm 4.5.9 yield surfaces Bl P2(???? i)
and Bl P2(? ? ? ? ii). Their Cox rings can be found in the table.
For the third configuration, we want to blow up X1 := Bl P2(? ? ? ii) in a point
projecting to [1, λ, 0] ∈ P2, where λ ∈ K∗ \ {1}, under the blow ups

X1
π3 // Bl P2(? ? i)′ Bl P2(? ? i)

π2,1 //ι1oo P2

π3([z]) = [z1, z2, z3z7, z4, z5, z6z7], π2,1([z]) = [z1z5, z2z4, z3z4z5]

and the embedding ι1 is given by [z] 7→ [z, h1(z)] with the polynomial h1 := T2T4−
T1T5 in K[T1, . . . , T5]. We have

π1 ◦ ι−1
1 ◦ π2(q) = [1, λ, 0] q := [1, λ, 0, 1, 1, λ− 1, 1] ∈ X1

and q exists in X1 by Lemma 5.2.16. Using Algorithm 4.5.9 with Remark 5.3.6, we
obtain the listed surface Bl P2(? ? ? ? iii).
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(VI) Surfaces of type Bl Fa(? ? ?). We now treat the blow ups of the Hirzebruch
surface Fa. According to Proposition 5.2.8, each blow up of type Bl Fa(? ? ?) is
obtained by blowing up one of the surfaces

Bl Fa(? ? i), Bl Fa(? ? ii), Bl Fa(? ? v)
in a point that is not contained in the union of the two exceptional divisors. This
rules out the configurations

Fa(? ? ? vii), Fa(? ? ? viii), Fa(? ? ? xi), Fa(? ? ? xii)
found in Proposition 5.1.4. Additionally, observe that we also need not consider
Fa(? ? ? vi). The blow up of this configuration is isomorphic to the blow up
of Bl Fa(? ? iii) in a point projecting to [0, 1, 1, 1]. As seen in the proof of
Proposition 5.2.8, there is an isomorphism ϕ : Z1 → Z2 from the toric variety
Z1 := Bl Fa+1(? ? i) to the toric variety Z2 := Bl Fa(? ? iii). In terms of
fans, ϕ is given by an invertible matrix sending the ray Q≥0 · (−1,−a − 1) corre-
sponding to V (Z1; T1) to the ray Q≥0 · (−1,−a) corresponding to V (Z2; T1). In
particular, Bl Fa(? ? ? vi) is isomorphic to the blow up of Fa(? ? ? i) in [0, 1, 1, 1],
i.e., to Bl Fa(? ? ? iv). The remaining cases are

There are further reductions: as seen in the proof of Proposition 5.2.8, Bl Fa(?? ii)
is isomorphic to the surface Bl Fa+1(?2 ? i). Therefore, the surfaces Bl Fa(? ? ? i),
Bl Fa(? ? ? ii) and Bl Fa(? ? ? v) are redundant and do not appear in the table of
the theorem.
We first consider blow ups of the toric variety X1 := Bl Fa(? ? i). This includes
Bl Fa(? ? ? iii), Bl Fa(? ? ? iv) and Bl Fa(? ? ? x). The rays of the fan Σ1 of X1 are
generated by the columns of

P1 :=
[
−1 1 0 0 −1 1
−a 0 1 −1 −a + 1 1

]
, Σ1 =

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
(−1,−a + 1)

(1, 1)

For Bl Fa(??? iii), we want to blow up X1 at q := [1, 1, 0, 1, 1, 1], a point which exists
by Lemma 5.2.16. The steps are the same as in, e.g., the proof of Proposition 5.2.8
for case Bl P2(?3 ii). In Setting 4.2.9, choose the embedding
ι : K6 → K7, z 7→ (z, h1(z)), h1 := T1T5 − T2T6 ∈ K[T1, . . . , T6].

As in Algorithm 4.3.2 we obtain a new CEMDS X ′1 with degree matrix Q′1 and
a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of the toric
ambient variety Z ′1:

Q′1 =
[

1 0 0 a− 3 −2 −1 −1
0 1 0 a− 3 −1 −2 −1
0 0 1 1 0 0 0
0 0 0 a− 2 −1 −1 −1

]
, P ′1 =

[
1 0 0 0 1 0 −1
0 1 0 0 0 1 −1
0 0 1 −1 1 1 −a

]
.

For the blow up of ι(q) = [1, 1, 0, 1, 1, 1, 0] ∈ X ′1 we work in Setting 4.2.5. We
perform the stellar subdivision Σ2 → Σ′1 of Σ′1 at the sum v := (−1,−1,−a+ 1) of
the third and seventh column of P ′1; this determines the toric modification π : Z2 →
Z ′1. Set P2 := [P ′1, v]. The vanishing ideal I2 of X2 is generated by

g := p?2 (p1)? (T7 − h1) = T7T8 − T1T5 + T2T6 ∈ K[T1, . . . , T8].
By Lemma 5.2.17, g is prime, all variables define prime elements and one directly
verifies that dimV (K8; g, Ti, Tj) = 5 for all i 6= j. Hence, by Theorem 4.2.6, the Cox
ring of the performed modification is R2 = K[T1, . . . , T8]/〈g〉. The degree matrix
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listed in the table is obtained as a Gale dual matrix of P2 using, e.g., Lemma 5.2.6.
The ideal 〈T3, T7, h1〉 of K[T1, . . . , T7] is prime by Lemma 5.2.17, its zero set contains
ι((1, 1, 0, 1, 1, 1)) and it is four-dimensional. Therefore, the modification was the
desired blow up by Lemma 5.2.15.
The case Bl Fa(? ? ? iv) is similar to the previous one. Here, we want to blow
up X1 in q := [0, 1, 1, 1, 1, 1]. By Lemma 5.2.16, q ∈ X1 exists. Choose h1 :=
T a2 T4T

a−1
6 − T3T5 ∈ K[T1, . . . , T6] for the embedding ι : K6 → K7. We have a new

degree matrix Q′1 and a matrix P ′1 whose columns are generators for the rays of the
fan Σ′1 of Z ′1:

Q′1 =
[

1 0 0 a− 3 −2 −1 −2
0 1 0 a− 3 −1 −2 −1
0 0 1 1 0 0 1
0 0 0 a− 2 −1 −1 −1

]
, P ′1 =

[
1 a− 1 0 1 1 a− 2 −1
0 a 0 1 0 a− 1 −1
0 0 1 0 1 0 −1

]
.

For the blow up of X ′1 in ι(q) = [0, 1, 1, 1, 1, 1, 0] we perform the stellar subdivision
of Σ′1 at the sum v := (0,−1,−1) of the first and seventh column of P ′1. Set
P2 := [P ′1, v]. The vanishing ideal I2 ⊆ K[T1, . . . , T8] of X2 is generated by

p?2 (p1)? (T7 − h1) = T7T8 − T a2 T4T
a−1
6 + T3T5 ∈ K[T1, . . . , T8].

Using Lemma 5.2.17, similar to before, the requirements for Theorem 4.2.6 are ful-
filled. Hence, the Cox ring of the performed modification is R2 = K[T1, . . . , T8]/I2.
Its degree matrix is a a Gale dual matrix of P2. By Lemma 5.2.15, we did per-
form a blow up since 〈T1, T7, h1〉 ⊆ K[T1, . . . , T7] is prime by Lemma 5.2.17 and its
vanishing set is of dimension four while containing ι((0, 1, 1, 1, 1, 1)).
We proceed for Bl Fa(? ? ? x) in the same manner. Here, we want to blow up X1
in q := [1, 1, 1, 0, 1, 1] which exists by Lemma 5.2.16. Choose h1 := T1T5 − T2T6 ∈
K[T1, . . . , T6] for the embedding ι : K6 → K7. We have a new degree matrix Q′1 and
a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =
[

1 0 0 a− 3 −2 −1 −1
0 1 0 a− 3 −1 −2 −1
0 0 1 1 0 0 0
0 0 0 a− 2 −1 −1 −1

]
, P ′1 =

[
1 0 0 0 1 0 −1
0 1 0 0 0 1 −1
0 0 1 −1 1 1 −a

]
.

For the blow up of ι(q) = [1, 1, 1, 0, 1, 1, 0] ∈ X ′1, we insert the ray through v :=
(−1,−1,−a−1) into Σ′1 by performing the stellar subdivision at v. Set P2 := [P ′1, v].
The vanishing ideal I2 ⊆ K[T1, . . . , T8] of X2 is generated by

p?2 (p1)? (T7 − h1) = T7T8 − T1T5 + T2T6 ∈ K[T1, . . . , T8].

Using Lemma 5.2.17, the requirements for Theorem 4.2.6 are fulfilled. Hence, the
Cox ring of the performed modification is R2 = K[T1, . . . , T8]/I2. Its degree ma-
trix is as listed in the table. By Lemma 5.2.15, the modification was a blow up
as 〈T4, T7, h1〉 ⊆ K[T1, . . . , T7] is prime by Lemma 5.2.17, its zero set contains
ι((1, 1, 1, 0, 1, 1)) and is four-dimensional.
We now consider blow ups of the variety X1 := Bl Fa(? ? v). The surface Bl Fa(? ?
? ix) is a blow up of X1 in a point q projecting to [0, 1, 1, λ] ∈ Fa under the previous
blow ups where λ ∈ K∗ \ {1}. By the proof of Proposition 5.2.8, the blow up
sequence is

X1
π2 // Bl Fa(? i)′ Bl Fa(? i) π1 //ι1oo Fa

where ι1([z]) := [z, h1(z)] with h1 := T a2 T4 − T3T5 and the blow ups π1 and π2 are
given by

π2([z]) = [z1z7, z2, z3, z4, z5, z6z7], π1([z]) = [z1z5, z2, z3z5, z4].

In our case, the point q := [0, 1, 1, λ, 1, λ − 1, 1] ∈ X1 exists by Lemma 5.2.16
and satisfies π1 ◦ ι−1

1 ◦ π2(q) = [0, 1, 1, λ]. We now perform the same steps as in
the previous cases. In K[T1, . . . , T7], choose h2 := (λ − 1)T a2 T4 − λT6T7 for the
embedding ι : K7 → K8. Let Q1 be the degree matrix of X1. We have a new degree
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matrix Q′1 and a matrix P ′1 whose columns are generators for the rays of the fan Σ′1
of Z ′1:

Q′1 =
[
Q1

0
a
0
1

]
, P ′1 =

[
1 a− 1 0 1 1 0 1 −1
0 a 0 1 0 0 0 −1
0 0 1 0 1 0 0 −1
0 0 0 0 0 1 1 −1

]
.

For the blow up of ι(q) = [0, 1, 1, λ, 1, λ − 1, 1, 0] ∈ X ′1, we consider the toric
morphism corresponding to the stellar subdivision of Σ′1 at the ray through v :=
(0,−1,−1,−1). Set P2 := [P ′1, v]. The vanishing ideal I2 ⊆ K[T1, . . . , T9] of X2 is
generated by the modified equations defining X ′1, i.e.,

p?2 (p1)? (T6T7 − T a2 T4 + T3T5) = T6T7 − T a2 T4 + T3T5,

p?2 (p1)? (T8 − h2) = T8T9 − (λ− 1)T a2 T4 + λT6T7.

After scaling, e.g., T8 by a suitable element of K∗, Remark 1.5.6 applies and, there-
fore, I2 is prime. In particular, I2 = I2 : T∞9 . We now show that the variable T9
defines a prime element in R2 = K[T1, . . . , T9]/I2. Note that, by 1.5.3, for suitable
choices of P and A we have R2 = R(P,A), i.e., R2 is the Cox ring of a K∗-surface
and T9 defines a prime element. Alternatively, we may show that the image of the
ideal I2 + 〈T9〉 under the isomorphism T6 7→ T6(λ− 1)/λ, namely

I := 〈T9, (λ− 1)T6T7 − λT a2 T4 + λT3T5, −T a2 T4 + T6T7〉 ⊆ K[T1, . . . , T9]

is a prime ideal using the binomial trick 5.3.4. This means we consider the ideal
generated by the image ψA(I) under the homomorphism

ψA : K[T1, . . . , T9] → K[Y1, . . . , Y9]

T ν 7→ Y A
t·ν ,

A :=


1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 a 1 0 0
0 0 0 a 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 .
Then 〈ψA(I)〉 ⊆ K[Y1, . . . , Y9] is generated by Y9 and −Y a4 Y a6 Y5Y7 + λY2Y3 and
is a prime ideal by Lemma 5.2.17. In turn, since −T a2 T4 + T6T7 is prime by
Lemma 5.2.17, Lemma 5.3.4 tells us that T9 is a prime element in R2. Further-
more, each two variables Ti, Tj are pairwise non-associated since deg(Ti) 6= deg(Tj)
for i 6= j. Also, T9 - Ti for all i < 9, since each of the following intersections is of
codimension two in X2:

X2 ∩ V (T1, T9) = V (T1, T9, T6T7 − T a2 T4 + T3T5, (λ− 1)T a2 T4 − λT6T7)
= V (T1, T9, T

a
2 T4 − λT3T5, (λ− 1)T a2 T4 − λT6T7),

X2 ∩ V (T2, T9) = V (T2, T9, T3T5, T6T7),
X2 ∩ V (T3, T9) = V (T3, T9, T6T7, T2T4),
X2 ∩ V (T4, T9) = V (T4, T9, T3T5, T6T7),
X2 ∩ V (T5, T9) = V (T5, T9, T6T7, T2T4),
X2 ∩ V (T6, T9) = V (T6, T9, T3T5, T2T4),
X2 ∩ V (T7, T9) = V (T7, T9, T3T5, T2T4),
X2 ∩ V (T8, T9) = V (T8, T9, T6T7 − T a2 T4 + T3T5, (λ− 1)T a2 T4 − λT6T7)

= V (T8, T9, T
a
2 T4 − λT3T5, (λ− 1)T a2 T4 − λT6T7).

This can be seen directly or, for i ∈ {1, 8}, we write the exponent vectors of the
binomial generators into the rows of a matrix as in Lemma 5.3.3 and obtain[

0 a −1 1 −1 0 0 0 0
0 a 0 1 0 −1 −1 0 0

]
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which is of rank two. Hence, by Lemma 5.3.3, the dimension of X2 ∩ V (Ti, T9) is
five on T9 · (0, 1, . . . , 1, 0) or T9 · (1, . . . , 1, 0, 0) for i = 1, 8 respectively. One directly
checks that on the smaller tori the dimension is also at most six. For instance setting
the second component to zero, we obtain the variety V (Ti, T9, T2, T3T5, T6T7) in
K9 of dimension four. By Theorem 4.2.6, R2 = K[T1, . . . , T9]/I2 is the Cox ring of
the performed modification with its degree matrix as listed in the table.
We now show that the modification was the desired blow up. Note that the factor
ring K[T1, . . . , T8]/I ′ with I ′ := 〈T1, T8, g1, g2〉 is isomorphic to the integral domain
K[T1, . . . , T9]/(I + 〈T9〉). Hence, I ′ is prime. Since (0, 1, 1, λ, 1, λ− 1, 1, 0) ∈ V (I ′),
by Lemma 5.2.15, the performed modification was the claimed blow up using

dim
(
V (K8; I ′)

)
= −1 + dim

(
X2 ∩ V

(
K9; T8, T9

))
= 4.

(VII) Surfaces of type Bl Fa(?2?). These are blow ups of a surface of type Bl Fa(?2)
in a point not belonging to one of the two exceptional divisors. By Proposition 5.2.8,
the only such surfaces of Picard number four are Bl Fa(?2 i) and Bl Fa(?2 ii). As
the contraction of the exceptional divisors must lead to a configuration listed in
Proposition 5.1.4, we only have to take the configurations

(2) (2) (2) (2)

into account where (2) stands for an iterated blow up. Let X1 := Bl Fa(?2 i). As a
toric variety, the fan Σ1 of X1 has its rays generated by the columns of

[
−1 1 0 0 −1 −1
−a 0 1 −1 −a + 1 −a + 2

]
, Σ1 =

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
(−1,−a + 1)
(−1,−a + 2)

and, by the proof of Proposition 5.2.8, the blow ups πi are

X1
π2 // Bl Fa(? i) π1 // Fa

π2([z]) = [z1, z2, z3z6, z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].

The surfaces Bl Fa(?2 ? i) to Bl Fa(?2 ? iv) are obtained as blow ups of X1 in
points qi ∈ X1 such that

π1 ◦ π2(q1) = [1, 0, 0, 1], π1 ◦ π2(q2) = [0, 1, 1, 0],
π1 ◦ π2(q3) = [1, 0, 1, 0], π1 ◦ π2(q4) = [0, 1, 1, 1] ∈ Fa.

We may choose the following ones. Note that their existence can be seen by an
inspection of Σ1 or by Lemma 5.2.16

q1 := [1, 0, 0, 1, 1, 1], q2 := [0, 1, 1, 0, 1, 1],
q3 := [1, 0, 1, 0, 1, 1], q4 := [0, 1, 1, 1, 1, 1] ∈ X1.

Therefore, the first three blow ups are toric and hence are performed by the stellar
subdivision Σ2 → Σ1 at v ∈ Z2 where the respective vectors are

v = (1, 1), v = (−1,−a− 1), v = (1,−1).

We come to the blowup Bl Fa(?2 ? iv) of X1 in q4. The steps are as before.
Choose in K[T1, . . . , T6] the polynomial h1 := T a2 T4 − T3T5T

2
6 for the embedding

ι : K6 → K7. We obtain a new CEMDS X ′1 with degree matrix Q′1 and a matrix P ′1
whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =
[

1 0 0 0 −2 1 0
0 1 0 0 −a + 2 a− 1 a
0 0 1 0 1 −1 0
0 0 0 1 −1 1 1

]
, P ′1 =

[
1 a− 1 0 1 1 1 −1
0 a 0 1 0 0 −1
0 0 1 0 1 2 −1

]
.
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For the blow up of X ′1 at ι(q4) = [0, 1, 1, 1, 1, 1, 0], we perform the stellar subdivision
Σ2 → Σ′1 at v := (0,−1,−1). Set P2 := [P ′1, v]. The ideal I2 ⊆ K[T1, . . . , T8] of X2
is generated by

p?2 (p1)? (T7 − h1) = T7T8 − T a2 T4 + T3T5T
2
6 ∈ K[T1, . . . , T8].

As before, one directly checks that the requirements for Theorem 4.2.6 are fulfilled.
Hence, the Cox ring of the performed modification is R2 = K[T1, . . . , T8]/I2. Its
degree matrix is as listed in the table. By Lemma 5.2.15, we did perform the claimed
blow up since 〈T1, T7, h1〉 ⊆ K[T1, . . . , T7] is prime by Lemma 5.2.17 and its zero set
contains ι((0, 1, 1, 1, 1, 1)) while being four-dimensional.
We now treat the blow ups of X1 := Bl Fa(?2 ii). As a toric variety, the fan Σ1 of
X1 has its rays generated by the columns of

[
−1 1 0 0 −1 −2
−a 0 1 −1 −a + 1 −2a + 1

]
, Σ1 =

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
(−1,−a + 1)

(−2,−2a + 1)

and, by the proof of Proposition 5.2.8, the previous blow ups πi are

X1
π2 // Bl Fa(? i) π1 // Fa

π2([z]) = [z1z6, z2, z3, z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].

The surfaces Bl Fa(?2 ? v) to Bl Fa(?2 ? viii) are the blow ups of X1 in the same
points qi ∈ X1 as defined in the previous case, i.e.,

q1 := [1, 0, 0, 1, 1, 1], q2 := [0, 1, 1, 0, 1, 1],
q3 := [1, 0, 1, 0, 1, 1], q4 := [0, 1, 1, 1, 1, 1] ∈ X1.

Again, their existence can be seen by inspecting Σ1 or using Lemma 5.2.16. There-
fore, the first three blow ups are toric and hence are performed by stellar subdivision
of Σ1 at v ∈ Z2 where the respective vectors are

v = (1, 1), v = (−1,−a− 1), v = (1,−1).
We now treat the blow up Bl Fa(?2 ? viii) of X1 in q4. The steps are as in previous
cases. Choose h1 := T a2 T4−T3T5T6 ∈ K[T1, . . . , T6] for the embedding ι : K6 → K7.
We have a new degree matrix Q′1 and a matrix P ′1 whose columns are generators
for the rays of the fan Σ′1 of Z ′1:

Q′1 =
[

1 0 0 0 1 −1 0
0 1 0 0 2a− 1 −a + 1 a
0 0 1 0 −2 1 0
0 0 0 1 2 −1 1

]
, P ′1 =

[
1 a− 1 0 1 1 2 −1
0 a 0 1 0 0 −1
0 0 1 0 1 1 −1

]
.

For the blow up of ι(q4) = [0, 1, 1, 1, 1, 1, 0] ∈ X ′1, we perform the stellar subdivision
of Σ′1 at v := (0,−1,−1) ∈ Z3. Set P2 := [P ′1, v]. The vanishing ideal I2 of X2 is
generated by

p?2 (p1)? (T7 − h1) = T7T8 − T a2 T4 + T3T5T6 ∈ K[T1, . . . , T8].
By a direct check, using, e.g., Lemma 5.2.17, the requirements for Theorem 4.2.6 are
fulfilled. Hence, the Cox ring of the performed modification isR2 = K[T1, . . . , T8]/I2.
Its degree matrix is as listed in the table. The performed modification was a blow
up, for 〈T1, T7, h1〉 ⊆ K[T1, . . . , T7] is prime by Lemma 5.2.17 and its zero set con-
tains ι((0, 1, 1, 1, 1, 1)) while being four-dimensional, see Lemma 5.2.15.
(VIII) Surfaces of type Bl Fa(?3). Each surface Bl Fa(?3) is a blow up of a surface of
type Bl Fa(?2) in a point in the union of the two exceptional divisors. By Proposi-
tion 5.1.4 and Proposition 5.2.8, we need only consider the following configurations
where (3) stands for the threefold iterated blow up.
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(3)

(3)

Thus, we blow up the two surfaces Bl Fa(?2 i) and Bl Fa(?2 ii) listed in Proposi-
tion 5.2.8 in a point in the union of the exceptional divisors. Let X1 := Bl Fa(?2 i).
As a toric variety the fan Σ1 of X1 has its rays generated by the columns of

[
−1 1 0 0 −1 −1
−a 0 1 −1 −a + 1 −a + 2

]
, Σ1 =

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
(−1,−a + 1)
(−1,−a + 2)

The exceptional divisors are V (X1; T5) and V (X1; T6) and their union consists of
the toric orbits through the points

q1 := [1, 1, 0, 1, 1, 0], q2 := [1, 1, 1, 1, 1, 0], q3 := [1, 1, 1, 1, 0, 0],
q4 := [1, 1, 1, 1, 0, 1], q5 := [0, 1, 1, 1, 0, 1] ∈ X1.

Note that all points exist by Lemma 5.2.16 or by an inspection of Σ1. The auto-
morphism z 7→ (z1, z2, z3− z2

1z
a−2
2 z4z5, z4, . . . , z6) of X̂1 ⊆ K6 maps the point q2 to

q1; compare Lemma 5.1.5. The blow ups of X1 in q1 (and thus q2), q3 as well as q5
are toric. They are determined by the stellar subdivision Σ2 → Σ1 at v ∈ Z2 where

v = (−1,−a+ 3), v = (−2,−2a+ 3), v = (−2,−2a+ 1),

respectively. The resulting toric surfaces are called Bl Fa(?3 i), Bl Fa(?3 iii) and
Bl Fa(?3 v); their Cox rings can be found in the table.
We now consider the blow up Bl Fa(?3 iv) of X1 in q4. The steps are as in previous
cases. Choose in K[T1, . . . , T6] the polynomial h1 := T1T

a−1
2 T4 − T3T6 for the

embedding ι : K6 → K7. Let Q1 be the degree matrix of R(X1). We have a new
degree matrix Q′1 and a matrix P ′1 whose columns are generators for the rays of the
fan Σ′1 of Z ′1:

Q′1 =
[
Q1

1
a− 1

0
1

]
, P ′1 =

[
1 a− 1 0 1 0 0 −1
0 a 0 1 −1 −1 −1
0 0 1 0 0 1 −1

]
.

For the blow up of X ′1 in the point ι(q) = [1, 1, 1, 1, 0, 1, 0] we perform the stellar
subdivision Σ2 → Σ′1 at v := (−1,−2,−1). Set P2 := [P ′1, v]. The vanishing ideal
I2 of X2 is generated by

p?2 (p1)? (T7 − h1) = T7T8 − T1T
a−1
2 T4 + T3T6 ∈ K[T1, . . . , T8].

Using Lemma 5.2.17, the requirements for Theorem 4.2.6 are fulfilled. Hence, the
Cox ring of the performed modification is R2 = K[T1, . . . , T8]/I2. Its degree matrix
is as listed in the table. By Lemma 5.2.15, we have performed a blow up since
〈T5, T7, h1〉 ⊆ K[T1, . . . , T7] is prime by Lemma 5.2.17 and its zero set contains
ι((1, 1, 1, 1, 0, 1)) while being four-dimensional.
We now treat the blow ups of X1 := Bl Fa(?2 ii). Its fan Σ1 and generators for its
rays are

[
−1 1 0 0 −1 −2
−a 0 1 −1 −a + 1 −2a + 1

]
, Σ1 =

(−1,−a)

(1, 0)

(0, 1)

(0,−1)
(−1,−a + 1)

(−2,−2a + 1)
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The exceptional divisors are V (X1; T5) and V (X1; T6) and their union consists of
the toric orbits through the points

q1 := [1, 1, 0, 1, 0, 1], q2 := [1, 1, 1, 1, 0, 1], q3 := [1, 1, 1, 1, 0, 0],
q4 := [1, 1, 1, 1, 1, 0], q5 := [0, 1, 1, 1, 1, 0] ∈ X1.

Note that all points exist by Lemma 5.2.16 or by an inspection of Σ1. The auto-
morphism z 7→ (z1, z2, z3 − z1z

a−1
2 z4z6, z4, . . . , z6) of X̂1 ⊆ K6 maps q2 to q1. The

blow ups of X1 in q1 (and hence q2), q3 and q5 are toric. They are determined by
the stellar subdivision of Σ2 → Σ1 at v ∈ Z2 where

v = (−1,−a+ 2), v = (−3,−3a+ 2), v = (−3,−3a+ 1),
respectively. The resulting toric surfaces are called Bl Fa(?3 vi), Bl Fa(?3 viii) and
Bl Fa(?3 x). The latter two can be found in the table; the former will be isomorphic
to another surface and sorted out at the end of this proof.
We now consider the blow up Bl Fa(?3 ix) of X1 in q4. The steps are the same as
in previous cases. Choose in K[T1, . . . , T6] the polynomial h1 := T1T

2a−1
2 T 2

4 −T 2
3 T5

for the embedding ι : K6 → K7. We have a new degree matrix Q′1 and a matrix P ′1
whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =
[
Q1

1
2a− 1

0
2

]
, P ′1 =

[
1 a− 1 1 1 1 1 −1
0 a 1 1 0 −1 −1
0 0 2 0 1 0 −1

]
.

For the blow up of X ′1 in the point ι(q4) = [1, 1, 1, 1, 1, 0, 0] we insert the ray through
v := (0,−2,−1) into Σ′1 by performing the stellar subdivision at v ∈ Z3. Set
P2 := [P ′1, v]. The vanishing ideal I2 of X2 is generated by

p?2 (p1)? (T7 − h1) = T7T8 − T1T
2a−1
2 T 2

4 + T 2
3 T5 ∈ K[T1, . . . , T8].

As before, one directly checks that the requirements for Theorem 4.2.6 are ful-
filled. This leaves us with the Cox ring R2 = K[T1, . . . , T8]/I2 of the performed
modification. Its degree matrix is as listed in the table. The ideal 〈T6, T7, h1〉 ⊆
K[T1, . . . , T7] is prime by Lemma 5.2.17, its zero set contains ι((1, 1, 1, 1, 1, 0)) and
is four-dimensional. By Lemma 5.2.15 the modification was the wanted blow up.
Isomorphisms: We now remove redundancies between the obtained surfaces. More
precisely, we will show that the surfaces not listed in the table of Theorem 5.3.1
are isomorphic to surfaces appearing in the table. Keep in mind that also these
redundant Cox rings have been presented explicitly throughout this proof. We first
treat the toric then the non-toric K∗-surfaces. Note that, in our case, exactly the
surfaces without a relation in their Cox ring are toric as the total coordinate spaces
of the other ones are singular.
Given toric surfaces Z1, Z2, we write primitive generators for the rays of their fans
into the columns of matrices PZ1 , PZ2 . By Remark 5.2.10, we then have

Z1 ∼= Z2 ⇔ A · PZ1 : PZ2 with A ∈ GL(2,Z)
in the notation of 5.2.9. We will reuse the matrices PZi from the proof if possible.
Otherwise, we will use Gale dual matrices computed with Algorithm 2.1.25 from
the respective degree matrices.

Z1 ∼= Z2 APZ1 : PZ2 with A ∈ GL(2,Z)

Bl P2(?4 xi)
∼=

Bl F3(?3 iii)

[
−1 1
−1 0

] [
−1 1 0 1 2 3 3
−1 0 1 1 1 1 2

]
:
[
−1 1 0 0 −1 −1 −2
−3 0 1 −1 −2 −1 −3

]
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Bl P2(?3 ? ii)
∼=

Bl P2(?2 ?2 ii)

[
−1 2

0 1

] [
−1 1 0 1 2 3 −1
−1 0 1 1 1 1 0

]
:
[
−1 1 0 1 −1 2 −1
−1 0 1 1 0 1 1

]

Bl P2(?2 ?2 i)
∼=

Bl P2(?2 ? ? i)

[
0 −1
1 −1

] [
−1 1 0 1 −1 2 −2
−1 0 1 1 0 1 −1

]
:
[

1 0 −1 −1 0 −1 1
0 −1 1 0 1 −1 −1

]

Bl P2(?2 ?2 ii)
∼=

Bl P2(?2 ?2 iii)

[
−1 0
−1 1

] [
−1 1 0 1 −1 2 −1
−1 0 1 1 0 1 1

]
:
[
−1 1 0 1 −1 1 −2
−1 0 1 1 0 2 −1

]

Bl P2(?2 ? ? i)
∼=

Bl P2(?2 ? ? iii)

[
0 1
1 0

] [
−1 1 0 1 −1 2 0
−1 0 1 1 0 1 −1

]
:
[
−1 1 0 1 −1 1 0
−1 0 1 1 0 2 −1

]

Bl Fa(?3 v)
∼=

Bl Fa(?3 vi)

[
−1 1 0 0 −1 −1 −2
−a 0 1 −1 −a + 1 −a + 2 −2a + 1

]
:
[
−1 1 0 0 −1 −2 −1
−a 0 1 −1 −a + 1 −2a + 1 −a + 2

]

Bl Fa(?2 ? i)
∼=

Bl Fa−1(?2 ? iii)

[
1 0
−1 1

] [
−1 1 0 0 −1 −1 1
−a 0 1 −1 −a + 1 −a + 2 1

]
:
[

−1 1 0 0 −1 −1 1
−a + 1 0 1 −1 −a + 2 −a + 3 −1

]

Bl Fa(?3 i)
∼=

Bl Fa−1(?2 ? ii)

[
−1 1 0 0 −1 −1 −1
−a 0 1 −1 −a + 1 −a + 2 −a + 3

]
:
[

−1 1 0 0 −1 −1 −1
−a + 1 0 1 −1 −a + 2 −a + 3 −a

]

Bl Fa(?3 iii)
∼=

Bl Fa−1(?2 ? vi)

[
−1 1 0 0 −1 −1 −2
−a 0 1 −1 −a + 1 −a + 2 −2a + 3

]
:
[

−1 1 0 0 −1 −2 −1
−a + 1 0 1 −1 −a + 2 −2a + 3 −a

]

Bl Fa(?3 vi)
∼=

Bl Fa−2(?3 xiii)

[
−1 1 0 0 −1 −2 −1
−a 0 1 −1 −a + 1 −2a + 1 −a + 2

]
:
[

−1 1 0 0 −1 −1 −2
−a + 2 0 1 −1 −a + 1 −a −2a + 1

]

Bl Fa+1(?2 ? v)
∼=

Bl Fa(?2 ? vii)

[
1 0
−1 1

] [
−1 1 0 0 −1 −2 1

−a− 1 0 1 −1 −a −2a− 1 1

]
:
[
−1 1 0 0 −1 −2 1
−a 0 1 −1 −a + 1 −2a + 1 −1

]

Bl Fa(?3 v)
∼=

Bl Fa(?3 vi)

[
−1 1 0 0 −1 −1 −2
−a 0 1 −1 −a + 1 −a + 2 −2a + 1

]
:
[
−1 1 0 0 −1 −2 −1
−a 0 1 −1 −a + 1 −2a + 1 −a + 2

]
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We show that the listed toric surfaces are pairwise non-isomorphic by comparing
the respective self intersection numbers D2

i where Di := V (X; Ti).

X D2
1 D2

2 D2
3 D2

4 D2
5 D2

6 D2
7

Bl P2(?4 ix) ≥ 0 −2 −1 −3 −2 −1 −1
Bl P2(?4 xiii) ≥ 0 −2 ≥ 0 −2 −3 −2 −1
Bl P2(?4 xv) ≥ 0 −3 ≥ 0 −2 −2 −2 −1
Bl P2(?2 ?2 iii) −1 ≥ 0 −2 −2 −2 −1 −1
Bl P2(?2 ?2 iv) ≥ 0 ≥ 0 −3 −2 −2 −1 −1
Bl P2(?2 ? ? i) −1 −2 −1 −2 −1 −1 −1
Bl Fa(?2 ? i) −1 −1 ≥ 0 −a −2 −1 −1
Bl Fa(?2 ? v) −2 −1 ≥ 0 −a −2 −1 −1
Bl Fa(?3 i) −1 ≥ 0 ≥ 0 −a −2 −2 −1
Bl Fa(?3 iii) −1 ≥ 0 ≥ 0 −a −3 −2 −1
Bl Fa(?3 v) −2 ≥ 0 ≥ 0 −a −3 −1 −1
Bl Fa(?3 viii) −2 ≥ 0 ≥ 0 −a −3 −2 −1
Bl Fa(?3 x) −3 ≥ 0 ≥ 0 −a −2 −2 −1

Counting the number of (−k)-curves we can rule out all isomorphisms except for
the following.

Bl P2(?4 xiii) → Bl P2(?4 xv)
Bl P2(?4 ix) → Bl F3(?2 ? v),
Bl Fa(?3 iii) → Bl Fa(?3 v),

Bl P2(?2 ?2 iv) → Bl F3(?3 i),
Bl Fa(?3 viii) → Bl Fa(?3 x).

The first three ones are not possible by Algorithm 5.2.11. To rule out the other
isomorphisms we compare the intersection behavior of negative curves, i.e., their
exceptional graphs. To this end, consider the fans Σ(?3 iii) and Σ(?3 v) of the
surfaces Bl Fa(?3 iii) and Bl Fa(?3 v) where the self-intersection numbers of the
divisors D% corresponding to rays % are drawn beside the rays.

Σ(?3 iii) =

−1

≥ 0

≥ 0

−a
−3

−2

−1
Σ(?3 v) =

−2

≥ 0

≥ 0

−a
−3

−1

−1

Thus, on Bl Fa(?3 v), a (−2)-curve has non-trivial intersection with a (−1)-curve
and a (−a)-curve which is not the case on Bl Fa(?3 iii). We proceed similarly
for Bl Fa(?3 viii) and Bl Fa(?3 x). Their fans Σ(?3 viii) and Σ(?3 x) and self-
intersection numbers of the D% are

Σ(?3 iii) =
−2

≥ 0

≥ 0

−a
−3

−2
−1

Σ(?3 x) =
−3

≥ 0

≥ 0

−a
−2

−1

−2

On Bl Fa(?3 ? x) there is a (−3)-curve that meets the (−a)-curve. This is not the
case on the surface Bl Fa(?3 ? viii).
We come to isomorphisms between the found non-toric K∗-surfaces. By Algo-
rithm 5.2.14 and Remark 5.2.13, two K∗-surfaces X1, X2 are isomorphic if and
only if the degree matrices Qi of R(Xi) coincide up to multiplication by admissible
matrices, i.e.,

A ·Q1 = Q2 · U with A ∈ GL(5,Z)
admissible and U is a block-invariant, admissible permutation matrix. We use the
notation of 5.2.9 where U is given implicitly.
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X1 ∼= X2 AQ1 : Q2 with A ∈ GL(5,Z)

Bl P2(?4 i)
∼=

Bl P2(?4 ii)

 1 0 2 −1 0
0 1 5 −2 0
0 0 1 0 0
0 0 3 −1 1
0 0 −3 1 0

 1 0 0 1 0 1 0 0
0 1 0 1 0 2 −1 0
0 0 1 1 0 0 0 −1
0 0 0 3 0 1 −1 −1
0 0 0 0 1 1 −1 0


:

 1 0 0 0 0 1 2 −1
0 1 0 0 0 1 5 −3
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 3 −2
0 0 0 0 1 −1 −3 2



Bl P2(?4 v)
∼=

Bl P2(?4 viii)

 −2 2 0 0 1
−1 1 0 0 0

5 −3 1 0 0
3 −2 0 0 0
1 −1 0 1 0

 1 0 0 1 0 0 2 −1
0 1 0 1 0 0 3 −2
0 0 1 −2 0 0 −1 1
0 0 0 0 1 0 1 −1
0 0 0 0 0 1 −2 1


:

 1 0 0 0 0 −2 2 −1
0 1 0 0 0 −1 1 −1
0 0 1 0 0 5 −3 2
0 0 0 1 0 3 −2 1
0 0 0 0 1 1 −1 0



Bl P2(?4 vi)
∼=

Bl P2(?4 vii)

 1 0 0 0 −1
0 1 0 0 −3
0 0 1 0 2
0 0 0 1 −2
0 0 0 0 1

 1 0 0 1 0 0 1 0
0 1 0 1 0 0 3 −1
0 0 1 −2 0 0 −2 1
0 0 0 0 1 0 2 −1
0 0 0 0 0 1 1 −1


:

 1 0 0 1 0 0 −1 1
0 1 0 1 0 0 −3 2
0 0 1 −2 0 0 2 −1
0 0 0 0 1 0 −2 1
0 0 0 0 0 1 1 −1



Bl P2(?4 i)
∼=

Bl F3(? ? ? iv)

 0 0 0 0 1
0 1 −1 0 0
1 1 1 −1 0
0 1 0 0 0
0 2 1 −1 0

 1 0 0 1 0 1 0 0
0 1 0 1 0 2 −1 0
0 0 1 1 0 0 0 −1
0 0 0 3 0 1 −1 −1
0 0 0 0 1 1 −1 0


:

 1 0 0 0 0 0 1 −1
0 1 0 0 1 −1 2 −1
0 0 1 0 1 1 2 0
0 0 0 1 1 0 2 −1
0 0 0 0 2 1 3 −1



Bl P2(?4 iii)
∼=

Bl F3(?3 iv)

 0 1 0 0 0
0 2 1 0 0
1 −1 0 0 0
0 1 0 1 0
0 0 0 0 1

 1 0 0 0 0 2 −1 1
0 1 0 0 0 3 −2 1
0 0 1 0 0 −3 3 −2
0 0 0 1 0 −1 1 −1
0 0 0 0 1 1 −1 0


:

 1 0 0 0 0 1 3 −2
0 1 0 0 0 2 3 −1
0 0 1 0 0 −1 −1 1
0 0 0 1 0 1 2 −1
0 0 0 0 1 0 1 −1



Bl P2(?4 xii)
∼=

Bl P2(?4 v)

 0 2 0 1 0
0 3 0 1 0
0 −1 1 −2 0
0 1 0 0 1
1 −2 0 0 0

 1 0 0 0 0 −1 −2 2
0 1 0 0 0 −1 −1 1
0 0 1 0 0 2 5 −3
0 0 0 1 0 1 3 −2
0 0 0 0 1 0 1 −1


:

 1 0 0 1 0 0 2 −1
0 1 0 1 0 0 3 −2
0 0 1 −2 0 0 −1 1
0 0 0 0 1 0 1 −1
0 0 0 0 0 1 −2 1


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Bl P2(?3 ? i)
∼=

Bl P2(?2 ? ? ii)

 1 1 1 0 0
0 1 0 0 0
0 0 0 0 1
0 1 0 1 0
0 2 1 0 0

 1 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 1 −1 −2
0 0 0 1 0 1 −1 −1
0 0 0 0 1 1 −1 0


:

 1 0 0 0 1 1 2 0
0 1 0 0 1 0 1 0
0 0 1 0 0 0 1 −1
0 0 0 1 1 0 2 −1
0 0 0 0 2 1 3 −1



Bl Fa(? ? ? iii)
∼=

Bl Fa−1(? ? ? x)

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 1 0 0 0 0 1 −a + 2 a− 1
0 1 0 0 0 −1 −1 1
0 0 1 0 0 0 1 −1
0 0 0 1 0 0 −1 1
0 0 0 0 1 1 −a + 3 a− 2


:

 1 0 0 0 0 1 a− 1 −a + 2
0 1 0 0 0 −1 1 −1
0 0 1 0 0 0 −1 1
0 0 0 1 0 0 1 −1
0 0 0 0 1 1 a− 2 −a + 3



By Remark 5.2.13, there are no further isomorphisms between the listed K∗-surfaces
except possibly between Bl P2(? ? ? ? ii) and Bl Fa(? ? ? iii). However, this
cannot be the case as, by the blow up sequence, the self intersection numbers of the
Di := V (X; Ti) are different for each a ≥ 3:

X D2
1 D2

2 D2
3 D2

4 D2
5 D2

6 D2
7 D2

8
Bl P2(? ? ? ? ii) −1 −1 −2 −1 −1 −1 • −1
Bl Fa(? ? ? iii) −1 −1 ≥ 0 −a −1 −1 • −1

�

Remark 5.3.7. In the proof of Theorem 5.3.1, we presented the self-intersection
numbers of all occurring toric surfaces. The self-intersection numbers for the K∗-
surfaces X listed in Theorem 5.3.1 are as follows. Let Di := V (X; Ti). We write •
if we do not know the value from the blow up sequence.

X D2
1 D2

2 D2
3 D2

4 D2
5 D2

6 D2
7 D2

8 D2
9

Bl P2(?4 iv) ≥ 0 −1 ≥ 0 −2 −3 • −1 • −1
Bl P2(?4 v) ≥ 0 −1 ≥ 0 −2 −3 • −2 −1
Bl P2(?4 vi) ≥ 0 −1 ≥ 0 −2 −2 −2 • −1
Bl P2(?4 xiv) ≥ 0 −2 ≥ 0 −2 −2 −2 • −1
Bl P2(?2 ? ? ii) ≥ 0 −1 −2 −2 −1 −1 • −1
Bl P2(?2 ? ? iv) ≥ 0 ≥ 0 −3 −2 −1 −1 • −1
Bl P2(? ? ? ? ii) −1 −1 −2 −1 −1 −1 • −1
Bl P2(???? iii) ≥ 0 ≥ 0 −3 −1 −1 • −1 • −1
Bl Fa(? ? ? iii) −1 −1 ≥ 0 −a −1 −1 • −1
Bl Fa(? ? ? iv) −2 −1 ≥ 0 −a −1 −1 • −1
Bl Fa(? ? ? ix) −3 ≥ 0 ≥ 0 −a −1 • −1 • −1
Bl Fa(?2 ? iv) −2 ≥ 0 ≥ 0 −a −2 −1 • −1
Bl Fa(?2 ? viii) −3 ≥ 0 ≥ 0 −a −2 −1 • −1
Bl Fa(?3 iv) −1 ≥ 0 ≥ 0 −a −3 −1 • −1
Bl Fa(?3 ix) −2 ≥ 0 ≥ 0 −a −2 −2 • −1

4. Smooth rational surfaces with %(X) = 6

In this section, building on Proposition 5.2.8 and Theorem 5.3.1, we present and
prove the central theorem of this chapter, Theorem 5.4.1. We show that each
smooth rational surface of Picard number six is a Mori dream space and classify the
Cox rings of the families without a non-trivial K∗-action. All Cox rings are given
explicitly. Each such surface can be obtained as a blow up of a smooth rational
surface of Picard number five as classified in Theorem 5.3.1. Theorem 5.4.1 (as
well as the proof of one of the cases) has been stated together with J. Hausen and
A. Laface in [57, Sec. 6].
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The Cox rings of blow ups of P2 will be determined computationally using Algo-
rithm 4.5.9 with option verify. For blow ups of Fa we apply the algorithm in a
formal way by the steps explained in Remark 5.2.1.

Theorem 5.4.1. Each smooth rational surface X with Picard number %(X) ≤ 6 is
a Mori dream space. Moreover, the following statements hold.

(i) If %(X) ≤ 5 holds, then either X admits a non-trivial K∗-action or is
isomorphic to M0,5, the blow up of P2 in four general points. The Cox
ring of X is listed in Theorem 5.3.1 or Propositions 5.2.8, 5.2.5, 5.2.4.

(ii) If %(X) = 6 holds, then X admits a non-trivial K∗-action or is isomorphic
to exactly one of the following surfaces where a ∈ Z≥3.

X Cox ring R(X) degree matrix

Bl P2(?5 i)

K[T1, . . . , T10]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7T8T10,
T1T 2

2 T3T4T5 − T 2
6 T7 − T9T10


1 0 0 1 0 0 2 0 3 −1
0 1 0 1 0 0 3 0 5 −2
0 0 1 −2 0 0 −1 0 −2 1
0 0 0 0 1 0 1 0 2 −1
0 0 0 0 0 1 −2 0 −1 1
0 0 0 0 0 0 0 1 1 −1



Bl P2(?3?
? i)

K[T1, . . . , T10]/I
with I generated by
T3T5T8 − T2T6 − T9T10,
T1T5 + T7T8 − T2T 2

6 T4T10


1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 −1 1 2 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 3 −2



Bl P2(?3?
? ii)

K[T1, . . . , T11]/I
with I generated by
T 2

3 T4T 2
5 T8 − T2T7 − T11T10,

T 2
2 T4T 2

6 T11 − T5T9 + T8T10,
T1T5 + T7T8 − T2T4T 2

6 T
2
11,

T 2
3 T4T5T 2

8 + T1T2 − T9T11,
T 2

3 T
2
4 T5T8T2T 2

6 T11 − T7T9
−T1T10


1 0 0 0 1 0 2 0 0 1 1
0 1 0 0 1 0 1 0 1 2 0
0 0 1 0 0 0 1 −1 0 1 0
0 0 0 1 1 0 2 −1 0 2 0
0 0 0 0 2 0 3 −1 −1 2 1
0 0 0 0 0 1 0 0 1 1 −1



Bl P2(?3?
? iii)

K[T1, . . . , T10]/I
with I generated by
T1T5 + T7T8 − T2T4T6T10,
T3T5T7T 2

8 − T
2
2 T4 − T9T10


1 0 0 0 0 0 2 −1 −1 1
0 1 0 0 0 0 −2 2 3 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 −1 1 2 −1
0 0 0 0 1 0 3 −2 −1 1
0 0 0 0 0 1 0 0 1 −1



Bl P2(??
? ? ? i)
λ ∈

K∗ \ {1}

K[T1, . . . , T13]/I
with I generated by
T1T11 − T4T3T9 − T8T12,
T1T7 − T2T8 + T3T9T13,
T2T6 + T7T10 − T3T5T13,
T1T6 + T8T10 − T3T4T13,

T2T11 − λT5T3T9 − T7T12,
(λ− 1)T1T5 − T10T9 − T12T13,
(λ− 1)T5T8 + T6T9 − T11T13,
T10T11 − (λ− 1)T4T3T5 + T6T12,
(λ− 1)T4T7 + λT6T9 − T11T13,
(λ− 1)T2T4 − λT10T9 − T12T13,


1 0 0 0 −1 0 0 1 0 0 −1 −1 1
0 1 0 0 1 0 0 −1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 1 −1
0 0 0 1 1 0 0 0 1 0 2 2 −1
0 0 0 0 0 1 0 0 −1 1 −1 −1 1
0 0 0 0 0 0 1 1 1 −1 1 0 0


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Bl P2(??
??? ii)
λ 6= µ ∈
K∗ \ {1}

K[T1, . . . , T16]/I
with I generated by
T6T12 + λT7T14 − T8T13,
T5T12 − µT7T15 − T9T13,
T4T13 − λT5T14 − µT6T15,
T4T12 − µT8T15 − λT9T14,
T3T11 + T7T14 − T8T13,
T1T13 − T2T14 − T3T15,
T1T11 − T8T15 − T9T14,
T2T11 − T7T15 − T9T13,

(λ− µ)T3T5 + µT7T10 − T13T16,
(−λ+ 1)T5T14 + (−µ+ 1)T6T15 + T10T11,
(λ− 1)T5T8 + (−µ+ 1)T6T9 − T11T16,
(λ− 1)T4T7 + (λ− µ)T6T9 − T11T16,
(µ− 1)T3T4 − µT8T10 + T14T16,
(−λ+ 1)T2T14 + (−µ+ 1)T3T15 + T10T12,
(λµ− µ)T2T8 + (−λµ+ λ)T3T9 − T12T16,
(λ− µ)T2T6 + λT7T10 − T13T16,
(λ− 1)T2T4 − λT9T10 − T15T16,
(λµ− µ)T1T7 + (λ− µ)T3T9 − T12T16,
(µ− 1)T1T6 − T8T10 + T14T16,
(λ− 1)T1T5 − T9T10 − T15T16

1 0 0 0 −1 −1 0 1 1 −1 0 1 −1 0 0 0
0 1 0 0 1 0 0 −1 0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 0 −1 1 0 0 1 1 0 0
0 0 0 1 1 1 0 0 0 1 0 −1 0 0 0 1
0 0 0 0 0 0 1 1 1 −1 0 0 −1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 −1



Bl P2(??
??? iii)

K[T1, . . . , T11]/I
with I generated by
T6T2T4 + T5T9 − T8T10,
T3T4T8 − T1T6 − T9T11,
T3T4T5 + T6T7 − T11T10,
T1T5 + T7T8 − T2T4T11,
T3T 2

4 T2 − T7T9 − T1T10


1 0 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 0 0 1 1 −1
0 0 1 0 0 0 1 −1 0 1 0
0 0 0 1 0 0 1 −1 1 2 −1
0 0 0 0 1 0 1 0 −1 0 1
0 0 0 0 0 1 −1 1 1 0 0



Bl P2(?2?
? ? iv)

K[T1, . . . , T10]/I
with I generated by
T3T5T8 − T2T6 − T9T10,
T1T5 + T7T8 − T2T4T10


1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 −1 1 2 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 1 0



Bl Fa(??
? ? vi)

K[T1, . . . , T10]/I
with I generated by
T1T5T10 − T2T6 − T7T8,

T2T4T
a−1
7 Ta−2

8 − T3T5
−T9T10


1 0 0 0 0 0 0 0 1 −1
0 1 0 0 0 0 −a + 1 a −1 1
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 −1 1 0 0
0 0 0 0 1 0 1 −1 2 −1
0 0 0 0 0 1 −a + 2 a− 1 −1 1



Bl Fa(??
? ? xiv)
κ ∈ K∗

††

K[T1, . . . , T11]/I
with I generated by

T7T8 − Ta2 T4T
a−1
6 Ta11 + T3T5,

T9T11 − Ta1 T4Ta5 T
a−1
8 − κT6T7,

T10T11 − Ta1 T4T
a−1
5 Ta8 + κT3T6,

−κTa2 T4Ta6 T
a−1
11 + T8T9 − T5T10,

Ta1 T
a
2 T

2
4 T

a−1
5 Ta−1

6 Ta−1
8 Ta−1

11 − T3T9 − T7T10


1 0 0 0 0 0 1 −1 1 0 0
0 1 0 0 0 0 0 0 1 1 −1
0 0 1 0 0 a− 1 0 1 2a− 3 2a− 2 −a + 2
0 0 0 1 0 1 0 0 2 2 −1
0 0 0 0 1 a− 1 1 0 2a− 2 2a− 3 −a + 2
0 0 0 0 0 a −1 1 2a− 2 2a− 1 −a + 1



Bl Fa(?3?
i)

K[T1, . . . , T10]/I
with I generated by
Ta2 T4 − T3T5T 2

6 T10 − T7T8,

T1T
a−1
2 T4T8 − T3T6 − T9T10


1 0 0 0 0 0 1 −1 0 0
0 1 0 0 0 0 2a− 1 −a + 1 −a a
0 0 1 0 0 0 −1 1 2 −1
0 0 0 1 0 0 2 −1 −1 1
0 0 0 0 1 0 0 0 1 −1
0 0 0 0 0 1 −1 1 3 −2


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Bl Fa(?3?
ii)

K[T1, . . . , T10]/I
with I generated by
Ta2 T4 − T3T6T10T5 − T7T8,

T1T
a−1
2 T4T7T 2

8 − T
2
3 T5

−T9T10


1 0 0 0 0 0 1 −1 0 0
0 1 0 0 0 0 3a− 1 −2a + 1 −a a
0 0 1 0 0 0 −2 2 3 −1
0 0 0 1 0 0 3 −2 −1 1
0 0 0 0 1 0 −1 1 2 −1
0 0 0 0 0 1 0 0 1 −1



Bl Fa(?4 i)
†

K[T1, . . . , T9]/I
with I generated by

T1T
2a−1
2 T 2

4 − T
2
3 T5

−T1T
a−1
2 T3T4T5T6T7T9

+T7T8T 2
9


1 0 0 0 1 0 0 3 −1
0 1 0 0 2a− 1 0 0 4a− 3 −a + 1
0 0 1 0 −2 0 0 −2 1
0 0 0 1 2 0 0 4 −1
0 0 0 0 0 1 0 2 −1
0 0 0 0 0 0 1 1 −1



Bl Fa(?2?2

i) †

K[T1, . . . , T9]/I
with I generated by
Ta2 T4 − T3T5T 2

6
−T7T9T1T

a−1
2 T4T5T6

+T7T 2
9 T8


1 1 0 −a 0 0 0 0 0
−1 0 −1 0 1 0 0 0 0
−1 0 −2 0 0 1 0 0 0
−1 0 1 1 0 0 1 0 0

0 0 1 1 0 0 0 1 0
−1 0 2 2 0 0 0 0 1



All surfaces except possibly the surfaces marked with a single † do not admit a
non-trivial K∗-action. The surface marked with †† has the listed ring as its Cox
ring for a ≤ 15; for a > 15 it is a Mori dream surface having the H2-equivariant
normalization of K[T1, . . . , T11]/(I : (T1 · · ·T11)∞) as its Cox ring.

For the following remark, recall from [5, Thm. V.2.1.7] that a weak del Pezzo surface
is a surface that is ismorphic to P1 × P1, to F2 or to a blow up

Xr
// Xr−1 // · · · // X1 // X0 = P2

of P2 in 0 ≤ r ≤ 8 points p1, . . . , pr in almost general position, i.e., pi ∈ Xi−1, no
four points are mapped to the same line in P2 and for each i, the total transform of
the exceptional divisor over pi ∈ Xi−1 is a chain of rational curves where the last
one is a (−1)-curve and the remaining ones are (−2)-curves. The degree of a weak
del Pezzo surface is 9− r.

Remark 5.4.2. In Theorem 5.4.1, the weak del Pezzo surfaces of degree four, i.e.,
with r = 5, are

Bl P2(?3 ? ? ii), Bl P2(? ? ? ? ? i),
Bl P2(? ? ? ? ? ii), Bl P2(? ? ? ? ? iii), Bl P2(?2 ? ? ? iv).

Their Cox rings have been predicted in [32, Sec 6.4]. All other surfaces listed in
the table of Theorem 5.4.1 contain (−k)-curves with k ≥ 3. This can be seen
from Remark 5.3.7 and the blow up sequence shown in the proof of Theorem 5.4.1.
Therefore, these surfaces do not appear in [32].

Lemma 5.4.3 (Serre’s criterion). Let f1, . . . , fs ∈ K[T1, . . . , Tr] be homogeneous
polynomials with respect to a pointed grading of K[T1, . . . , Tr] by a lattice Zn. Write
I := 〈f1, . . . , fs〉 and X := V (Kr; I). Then I is prime if there is an open subset
U ⊆ X such that

codimX

(
X \ U

)
≥ 2, rank

(
∂fi
∂Tj

(u)
)
i,j

= s for all u ∈ U.

Proof. We first show that X is connected. Let wi ∈ Zn be the degree of Ti. Write
ϑ := cone(w1, . . . , wr) ⊆ Qn for the weight cone and choose an element u ∈ (ϑ∨)◦.
Since ϑ is pointed, we obtain a Z≥0-grading of the polynomial ring K[T1, . . . , Tr] by
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setting deg(Ti) := ai where ai := u(wi) > 0. Note that I is homogeneous. For each
two points x, x′ ∈ X there are one-parameter subgroups K∗ → Tr given by

t 7→ (ta1x1, . . . , t
arxr) , t 7→ (ta1x′1, . . . , t

arx′r) ,

respectively, that leave X invariant and have limit 0 for t → 0 since ai > 0 for
all i. This shows that X is connected. By Serre’s criterion [73, 6.2], I is radical,
R := K[T1, . . . , Tr]/I a complete intersection and X a normal variety. By [36,
Thm. 18.15], R is a product of integral domains. Since X is connected, R is an
integral domain, i.e.,

√
I = I is prime. �

Lemma 5.4.4. Let I ⊆ K[T1, . . . , Tr] be an ideal such that Tk − f ∈ I for some
1 ≤ k ≤ r and f ∈ K[Ti; i 6= k] =: Rk. Let Ik ⊆ Rk be the ideal generated by the
image of I under

K[T1, . . . , Tr] → Rk, Tk 7→ f, Ti 7→ Ti for i 6= k.

Then I ⊆ K[T1, . . . , Tr] is prime if and only if Ik ⊆ Rk is prime. Moreover, we
have dim(V (Kr; I)) = dim(V (Kr−1; Ik)).

Proof. This statement is due to the observation that K[T1, . . . , Tr]/I is isomorphic
to Rk/Ik. �

Amongst others, the following lemma describes the behavior of the irrelevant ideal
under a toric blow up Z2 → Z1. Let Σi ⊆ Qd be the fan corresponding to Zi.
Assume the rays of Σi are %i1, . . . , %ir. Define

νi : Σi → {0, 1}r, νi(σ)j :=
{

1, %ij 6⊆ σ,

0, %ij ⊆ σ.

Lemma 5.4.5. In Setting 4.2.5, let Z1 be a smooth toric variety with dense torus
TZ1 and fan Σ1 with rays %1, . . . , %r. Assume π : Z2 → Z1 arises from the barycen-
tric subdivision Σ2 → Σ1 of a cone σ ∈ Σ1. Suppose X1 ∩ (TZ1 · z(σ)) = {[p1]}
with p1 ∈ Ẑ1 ⊆ Kr and π induces a blow up of X1 in [p1]. Let V (Z2; Tr+1) be the
exceptional divisor of the blow up π.

(i) The ideal of Z2 \ Ẑ2 in the ring K[T1, . . . , Tr+1] is〈
T ν1(σ′)Tr+1; σ′ ∈ Σmax

1 \ {σ}
〉

+
〈
T ν1(σ)Ti; %i ⊆ σ, 1 ≤ i ≤ r

〉
.

(ii) The set (X̂1 × {1}) ∩X2 is contained in X̂2.
(iii) Let p2 ∈ X2 ⊆ Kr+1. Then p2 is contained in X̂2 if there is 1 ≤ j ≤ r

with

(p2)j 6= 0, (p1)j = 0,
∏

(p1)i 6=0

(p2)i 6= 0.

Proof. First, recall from [5, Prop. II.1.3.3] that the vanishing ideal of Zi \ Ẑi in
K[T1, . . . , Tr] is Ji := 〈T νi(σ′); σ′ ∈ Σmax

i 〉. Let %r+1 ∈ Σ2 be the ray corresponding
to the exceptional divisor V (Z2; Tr+1). For the first statement, each maximal cone
σ′ ∈ Σ2 either is a maximal cone of Σ1 or contains %r+1. In the former case,
ν2(σ′) = (ν1(σ′), 1) whereas in the latter case σ′ ⊆ σ which, by regularity of Σi,
contains exactly one more of the rays %i than σ′ where 1 ≤ i ≤ r. This shows (i).

%1

%2

%3 = %r
%r+1

σ
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For (ii), consider q2 := (q1, 1) ∈ X2 ⊆ Kr+1 with q1 ∈ X̂1. Since q1 6∈ V (J1), we
have T ν1(σ′)(q1) 6= 0 for a maximal cone σ′ ∈ Σ1. If %r+1 6⊆ σ′, then (q1, 1) 6∈ V (J2)
as

T ν2(σ′)(q1, 1) = T ν1(σ′)(q1) 6= 0

by the first statement. On the other hand, if %r+1 ⊆ σ′, we have σ′ = σ. Assume
(T ν1(σ)Ti)(q1, 1) = 0 for all rays %i ⊆ σ with 1 ≤ i ≤ r. Since T ν1(σ)(q1) 6= 0,
we have (q1)i = 0 for all %i ⊆ σ. This means, q1 lies in the toric orbit TZ1 · z(τ)
corresponding to a cone τ ∈ Σ1 with σ � τ . By assumption, we have

{[q1]} ⊆ X1 ∩ (TZ1 · z(τ)) ⊆ X1 ∩ (TZ1 · z(σ))) = {[p1]},

and thus [p1] = [q1] ∈ X1. Because π([q1, 1]) = [q1] = [p1] this implies that [q1, 1] is
an element of the exceptional divisor V (Z2; Tr+1), a contradiction.
We come to (iii). Since σ ∈ Σ1, the monomial T ν1(σ) =

∏
(p1)i 6=0 Ti is an element

of the ideal J1. Since (p1)j = 0, we have %j ⊆ σ. By (i) and the requirements on p2
we conclude

Tj ·
∏

(p1)i 6=0

Ti ∈ J2, p2 ∈ X2 \ V
(
Kr+1; J2 + I2

)
= X̂2.

�

The following proposition will be used to identify non-isomorphic surfaces in the
proof of Theorem 5.4.1. We call the Cox ring R(X) of a Mori dream space X
minimally presented if the Cl(X)-grading is pointed and no generator of R(X) may
be omitted.

Proposition 5.4.6. Consider Mori dream spaces X1, X2 sharing the same class
group Cl(Xi) = Zn. Assume both Cox rings R(Xi) are generated by r ∈ Z>0
elements and are minimally presented. If X1 ∼= X2, then the following assertions
hold.

(i) There is a permutation σ ∈ Sym(r) such that for the corresponding per-
mutation matrix Uσ ∈ GL(r,Z) the n× r degree matrices Qi satisfy

S ·Q1 · Uσ = Q2 for some S ∈ GL(n,Z).

(ii) Let Li be the lists consisting of the sorted absolute values of all n × n
minors of the Qi. Then L1 = L2.

(iii) There is σ ∈ Sym(r) such that the Hermite normal forms of Q1 · Uσ and
of Q2 are equal up to units.

The idea of the proof of Proposition 5.4.6 is to track the permutation of certain
“minimal weight vectors”; this concept is used in an ongoing project together with
J. Hausen. Let K be a finitely generated abelian group. Consider an affine K-
algebra R = K[T1, . . . , Tr]/I with a pointed K-grading R =

⊕
w∈K Rw and a K-

homogeneous ideal I ⊆ K[T1, . . . , Tr]. We order the elements of K by

w ≤ w′ :⇔ w′ = w + w′′

for some w′′ ∈ K.(6)
w′w

w′′

Definition 5.4.7. Let S(R) := {w ∈ K; Rw 6= {0}}. A vector w ∈ S(R) is
originary if it is minimal in S(R) with respect to the relation ≤ defined in (6). We
denote the set of originary vectors by orig(R) ⊆ S(R).

For instance, if w ∈ S(R) and w is an element of a Hilbert basis for the weight cone
ϑ ⊆ KQ of R or w is a primitive generator of a ray % � ϑ, then w is originary.
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Remark 5.4.8. In Definition 5.4.7, the originary vectors are the elements w ∈ S(R)
such that

f 6∈ K

[ ⋃
w0<w

Rw0

]
for some f ∈ Rw.

Let K1, K2 be finitely generated abelian groups and Ri two K-algebras that are
graded by Ki. Recall, e.g., from [5, Sec. I.1.1], that an isomorphism of graded
algebras is a pair (ψ, α) with an isomorphism ψ : R1 → R2 of algebras and an
isomorphism α : K1 → K2 of groups such that

ψ((R1)w) = (R2)α(w) for all w ∈ K.

Moreover, a homomorphism ψ : R1 → R2 of algebras is called graded if there is
a homomorphism α : K1 → K2 of groups such that ψ((R1)w) ⊆ (R2)α(w) for all
w ∈ K.

Lemma 5.4.9. Let K,K ′ be finitely generated abelian groups and R,R′ affine K-
algebras with respective pointed K- and K ′-gradings. Each isomorphism (ψ, α) : R→
R′ satisfies α(orig(R)) = orig(R′).

Proof. As (ψ, α) is an isomorphism, we have α(S(R1)) = S(R2). Note that α is an
isomorphism of posets, i.e., w ≤ w′ in S(R) if and only if α(w) ≤ α(w′) in S(R′).
In particular, the minimal elements of S(R) are mapped to the minimal elements
of S(R′), as claimed. �

Lemma 5.4.10. Consider a Mori dream space X with Cox ring R(X) that is
minimally presented by the generators f1, . . . , fs. Then the set of originary vectors
of R(X) is {deg(f1), . . . ,deg(fs)}.

Proof. We write R := R(X). Assume there were 1 ≤ j ≤ s with deg(fj) not
originary. This means we have

fj ∈ K

 ⋃
w0<deg(fj)

Rw0


In particular, fj can be removed from the presentation of R(X), a contradiction.
For the reverse inclusion, assume w ∈ orig(R) is given such that w 6= deg(fj) for
all 1 ≤ j ≤ s. Since no generator fj is an element of Rw, any 0 6= f ∈ Rw is a
combination f =

∑
hifi with hi ∈ R. In particular, w is not originary. �

Proof of Proposition 5.4.6. If X1 and X2 are isomorphic, there is an isomorphism
(ψ, β) of Zn-graded K-algebrasR(X1)→ R(X2); compare [5, 6]. Note that β : Zn →
Zn is given by a matrix S ∈ GL(n,Z). Since R(Xi) is minimally presented, by
Lemmas 5.4.10 and 5.4.9, generator degrees in Cl(X1) are mapped to generator
degrees in Cl(X2) under β, i.e.,

S ·Q1 · Uσ = Q2 for some σ ∈ Sym(r).
In particular, the Hermite normal forms of Q1 · Uσ and Q2 coincide up to units.
This shows (i) and (iii). Statement (ii) follows from (i) and the fact that up to sign
the maximal minors of a matrix are invariant with respect to multiplication by an
invertible matrix. �

The following observations will be useful in the proof of Theorem 5.4.1, to identify
surfaces that do admit a non-trivial K∗-action. The next lemma uses a result from
P. Orlik and P. Wagreich [86].

Lemma 5.4.11. Compare [86]. Consider a surface X1 admitting a non-trivial K∗-
action. Let X2 be the blow up of a point x ∈ X1 with Cox coordinates z ∈ X̂1 ⊆ Kr.
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If x is a fixed point, then X2 admits a non-trivial K∗-action. In particular, this is
the case if one of the following conditions hold.

(i) X1 is toric and x is not contained in in the big TX1 -orbit of X1.
(ii) X1 is non-toric, embedded equivariantly into its canonical toric ambient

variety and there are i 6= j such that zi = zj = 0.

Proof. If x is a fixed point, X2 admits again a non-trivial K∗-action by [86]. For (ii),
the intersection of the K∗-invariant divisors V (X1; Ti) and V (X1; Tj) is again K∗-
invariant, i.e., is a hyperbolic fixed point, see Proposition 1.5.10.
For the first statement, the dense torus TX1 of X1 can be obtained as TX1 =
SpecK[E] with a lattice E, see Remark 1.1.2. By assumption, x belongs to a torus
orbit T · z(σ) with the distinguished point z(σ) ∈ X1 of a cone {0} 6= σ ⊆ Q ⊗ F
of the fan of X1. Consider the sublattice L := F ∩ linQ(σ) ⊆ F . The inclusion
L → F corresponds to an epimorphism Q : E → K of the dual lattices. By [5,
Prop. II.1.4.2], we have

rank(Kσ) ≥ 1 where Kσ := K /Q(σ⊥ ∩ E).

Hence, the isotropy group Hz(σ) = SpecK[Kσ] is a subgroup of TX1 of dimension
at least one. This means, x lies on a fixed point curve of a K∗-action and X2 is a
K∗-surface. �

Lemma 5.4.12. Let X be a K∗-surface. Consider negative curves D,D′ ⊆ X
that each intersect at least three other negative curves on X non-trivially. Given a
negative curve E ⊆ X, we have

D ∩ E = ∅ or D′ ∩ E = ∅.

Proof. By Proposition 1.5.10, D and D′ must be sink and source of the K∗-action
on X. In particular, they must not meet, i.e., D∩D′ = ∅. If E 6∈ {D,D′}, then the
contraction X → X ′ of E yields again a K∗-surface X ′. In terms of P -matrices as
in 1.5.2 this means deleting a column. Let Z and Z ′ be the canonical toric ambient
varieties of X and X ′ as in 1.5.7. Since the fan of Z ′ is obtained by contraction of
a ray of the fan of Z we have a toric contraction

(ϕ, ϕ̃) : Z → Z ′ where ϕ̃ = id: TZ → TZ′ ,

ϕ is proper and the contraction is equivariant. Thus, on X ′, sink and source have
non-trivial intersection. �

Remark 5.4.13. Let X be a smooth K∗-surface. By Proposition 1.5.10, depending
on the type of fixed points, the graph of exceptional curves GX is of shape

...
...

...
...

· · ·

· · ·

(ee)

F+ F−
...

...
...

· · ·

· · ·

(pp)

F+ ...
...

...
...

· · ·

· · ·

(pe)

F−
...

...
...

· · ·

· · ·

(ep)

where gray and black vertices are negative curves and white vertices form a complete
subgraph of not necessarily negative curves. The graph of case (pp) is called the
Orlik Wagreich graph defined in [86].
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Remark 5.4.14. See [37, Cor. 2.6] and compare [64], [50, Kap. 2.1]. Given a bino-
mial ideal I ⊆ K[T1, . . . , Tr], let Ti1 , . . . , Tis be the variables that are contained in I.
Write the exponents of binomial generators of I into a matrix B as in Lemma 5.3.3.
Then I is prime if and only if the entries of the Smith normal form of B are elements
of {0,±1} and

I = 〈Ti1 , . . . , Tis〉 + (I : f∞) , f :=
∏

i6∈{i1,...,is}

Ti.

Proof of Theorem 5.4.1. Each surface X of Picard number six can be obtained as
blow up of a surface of Picard number five listed in Theorem 5.3.1 such that the
contraction of the exceptional divisors on X leads to one of the configurations of
Propositions 5.1.2 and 5.1.4, see Remark 5.2.3. We compute the resulting surfaces
grouped into originating surface of Picard number five.
Blow ups that lead to (toric or non-toric) K∗-surfaces will be omitted; they are
known to be Mori dream spaces, see, e.g., [5, 61]. Algorithm 4.5.9 will be used
directly for blow ups of P2 and formally for blow ups of Fa. We will prove or
disprove the existence of a non-trivial K∗-action directly when we encounter the
surfaces. In the final step, we present or rule out isomorphisms between the listed
surfaces.
(I) Blow ups of X1 := Bl P2(?4 iv). As seen in the proofs of Proposition 5.2.8 and
Theorem 5.3.1, the point configuration and blow up sequence for X1 are

(4)

X1
π4 // Bl P2(?3 ii)′ Bl P2(?3 ii)

π3 //ι2oo Bl P2(?2)′ Bl P2(?2)
π1◦π2 //ι1oo P2

The embeddings ιi are as in Setting 4.2.9 with

ι1 : K5 → K6, z 7→ (z, h1(z)), h1 := T 2
3 T4 − T1T2,

ι2 : K7 → K8, z 7→ (z, h2(z)), h2 := (λ− 1)T 2
3 T4 − λT6T7

where λ ∈ K∗ \ {1}, h1 ∈ K[T1, . . . , T5] and h2 ∈ K[T1, . . . , T7]. The blow ups are
given by

π4([z]) = [z1, . . . , z4, z5z9, z6, z7, z8z9], π3([z]) = [z1, . . . , z4, z5z7, z6z7],
π2([z]) = [z1, z2z5, z3, z4z5], π1([z]) = [z1, z2z4, z3z4].

The exceptional divisors of the first, second, third and fourth blow up are

V (X1; T4), V (X1; T5), V (X1; T7), V (X1; T9).

By Proposition 5.1.2 and Theorem 5.3.1, we want to blow up X1 in a point q ∈ X1
which, together with the exceptional divisors, projects to one of the configurations

(4) (5)

For the first configuration, we blow up X1 in the point q where

q := [0, 1, 0, 1, 1, 0, 1, 0, 1] ∈ X1, π1 ◦ π2 ◦ ι−1
1 ◦ π3 ◦ ι−1

2 ◦ π4(q) = [0, 1, 0] ∈ P2

and the existence of q can be seen by an application of Algorithm 2.3.8. By an
application of Algorithm 4.5.9 with Remark 5.3.6, the result is again a K∗-surface;
compare Lemma 5.4.11.
We come to the second configuration, i.e., blow ups of X1 of type Bl P2(?5).
Note that the curve V (X1; T5) is a parabolic fixed point curve. Therefore, by
Lemma 5.4.11, blowing up any point q lying in V (X1; T5) or in the intersection of
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two invariant divisors V (X1; Ti) and V (X1; Tj) leads to a surface with at least a
K∗-action and thus will be omitted. By Remark 5.3.5, it suffices to consider

q1 := [−1, 1, 1, 0, 1, 1, 1,−λ, 1],
q2 := [1, 1, 1, 1, 1, 1, 0, λ− 1, 1],
q3 := [1, 1, 1, λ, 1, λ− 1, 1, 1, 0].

T5

T7

T9

T6

T8

By Lemma 5.2.16, all points exist. Using Algorithm 4.5.9 with Remark 5.3.6, we
obtain the following Cox rings.

qi Cox ring R(X) degree matrix

q1

K[T1, . . . , T10]/I
with I generated by
(λ− 1)T1T2 − T5T6 − T7T8,
(λ− 1)T 2

2 T3T 2
4 T

2
6 T

2
8 T10

+(−2λ+ 2)T2T3T4T6T8T9T 2
10

+(λ− 1)T3T 2
9 T

3
10 − λT5T6 − T7T8


1 0 0 0 0 1 0 1 5 −3
0 1 0 0 0 1 0 1 8 −5
0 0 1 0 0 0 0 0 1 −1
0 0 0 1 0 0 0 0 3 −2
0 0 0 0 1 −1 0 0 −3 2
0 0 0 0 0 0 1 −1 −3 2



q2

K[T1, . . . , T10]/I
with I generated by
T 2

3 T4 − T1T2λ+ T7T8,
T6T10T2T3T4T5T8 − T6T 2

10T9
+(−λ+ 1)T1T2 + T7T8


1 0 0 1 0 0 0 1 3 −1
0 1 0 1 0 0 0 1 5 −2
0 0 1 −2 0 0 0 0 −2 1
0 0 0 0 1 0 0 0 2 −1
0 0 0 0 0 1 0 0 1 −1
0 0 0 0 0 0 1 −1 −2 1



q3

K[T1, . . . , T10]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7,
T8T10T2T3T4T5T7 − λT8T9T 2

10
+(−λ2 + λ)T1T2 + λT6T7


1 0 0 1 0 0 1 0 3 −1
0 1 0 1 0 0 1 0 5 −2
0 0 1 −2 0 0 0 0 −2 1
0 0 0 0 1 0 0 0 2 −1
0 0 0 0 0 1 −1 0 −2 1
0 0 0 0 0 0 0 1 1 −1



We now show that all three surfaces are K∗-surfaces since their Cox rings are iso-
morphic to the following Cox rings belonging to K∗-surfaces with the same grading:

K[T1, . . . , T10]
/〈 (λ− 1)T1T2 − T5T6 − T7T8,

(λ− 1)T3T
2
9 T

3
10 − λT5T6 − T7T8

〉
,

K[T1, . . . , T10]
/〈

T 2
3 T4 − T1T2λ+ T7T8,
−T6T

2
10T9 + (−λ+ 1)T1T2 + T7T8

〉
,

K[T1, . . . , T10]
/〈 T 2

3 T4 − T1T2 − T6T7,
−λT8T9T

2
10 + (−λ2 + λ)T1T2 + λT6T7

〉
.

By Lemma 5.1.5, it suffices to provide Z6-graded isomorphisms K[T1, . . . , T10] →
K[T1, . . . , T10] that induce isomorphisms of the respective Cox rings. For q1, q2 and
q3 we respectively choose

Ti 7→


T1 + T2T3T

2
4 T

2
6 T

2
8 T10 − 2T3T4T6T8T9T

2
10, i = 1,

T7 + (λ− 1)T 2
2 T3T

2
4 T

2
6 T8T10 − (2λ− 2)T2T3T4T6T9T

2
10, i = 7,

Ti, else,

Ti 7→


T1 − T6T10T3T4T5T8, i = 1,
T7 − λT6T10T2T3T4T5, i = 7,
Ti, else,
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Ti 7→


T1 + λ−2T8T10T3T4T5T7, i = 1,
T6 − λ−2T8T10T2T3T4T5, i = 6,
Ti, else.

(II) Blow ups of X1 := Bl P2(?4 v). As seen in the proofs of Proposition 5.2.8 and
Theorem 5.3.1, the point configuration and blow up sequence for X1 are

(4)

X1
π4 // Bl P2(?3 ii)

π3 // Bl P2(?2)′ Bl P2(?2)
π1 ◦π2 //ι1oo P2

where the embedding ι1 is as in Setting 4.2.9 with
ι1 : K5 → K6, z 7→ (z, h1(z)), h1 := T 2

3 T4 − T1T2

where h1 ∈ K[T1, . . . , T5] and the blow ups are
π4([z]) = [z1, . . . , z4, z5z8, z6, z7z8], π3([z]) = [z1, . . . , z4, z5z7, z6z7],
π2([z]) = [z1, z2z5, z3, z4z5], π1([z]) = [z1, z2z4, z3z4].

The exceptional divisors of the first, second, third and fourth blow up are
V (X1; T4), V (X1; T5), V (X1; T7), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(4) (5)

For the first configuration, we use Algorithm 4.5.9 to blow up X1 in the following
point q; it exists by Algorithm 2.3.8 and we then obtain a K∗-surface
q := [0, 1, 0, 1, 1, 0, 1, 1] ∈ X1, π1 ◦ π2 ◦ ι−1

1 ◦ π3 ◦ π4(q) = [0, 1, 0] ∈ P2.

We come to the second configuration, i.e., blow ups of X1 of type Bl P2(?5). On
X1, the curve V (X1; T5) is a parabolic fixed point curve. By Lemma 5.4.11, blow
ups of points lying in V (X1; T5) or in the intersection V (X1; Ti) ∩ V (X1; Tj) of
two invariant divisors yield surfaces with a non-trivial K∗-action and thus may be
omitted. By Remark 5.3.5, it suffices to consider the following points.

q1 := [1, 1, 1, 0, 1, 1, 1,−1],
q2 := [1, 1, 1, 1, 1, 1, 1, 0],
q3 := [1, 1, 1, 1, 1, 1, 0, 1].

T5

T8
T6

T7

By Lemma 5.2.16, all points exist. Using Algorithm 4.5.9, we computed the follow-
ing Cox rings.

qi Cox ring R(X) degree matrix

q1

K[T1, . . . , T9]/I
with I generated by
T5T6T7 + T1T2 − T3T9T 2

2 T
2
4 T

2
6 T

4
7

+2T3T 2
9 T2T4T6T 2

7 T8 − T3T 3
9 T

2
8


1 0 0 0 0 0 1 5 −3
0 1 0 0 0 0 1 8 −5
0 0 1 0 0 0 0 1 −1
0 0 0 1 0 0 0 3 −2
0 0 0 0 1 0 −1 −6 4
0 0 0 0 0 1 −1 −3 2



q2

K[T1, . . . , T10]/I
with I generated by
T 2

3 T4 − T1T2 − T6T7T8T10,
T1T 2

2 T3T4T5 − T 2
6 T7 − T9T10


1 0 0 1 0 0 2 0 3 −1
0 1 0 1 0 0 3 0 5 −2
0 0 1 −2 0 0 −1 0 −2 1
0 0 0 0 1 0 1 0 2 −1
0 0 0 0 0 1 −2 0 −1 1
0 0 0 0 0 0 0 1 1 −1


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q3

K[T1, . . . , T9]/I
with I generated by
T 2

3 T4 − T1T2 − T6T 2
7 T9T2T3T4T5

+T6T7T 2
9 T8


1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 3 −1
0 0 1 −2 0 0 0 −2 1
0 0 0 0 1 0 0 2 −1
0 0 0 0 0 1 0 1 −1
0 0 0 0 0 0 1 3 −2



Both the blow up of X1 in q1 and the blow up of X1 in q3 are K∗-surfaces since
their Cox rings are isomorphic to the respective Cox rings

K[T1, . . . , T9] / 〈T5T6T7 + T1T2 − T3T
3
9 T

2
8 〉,

K[T1, . . . , T9] / 〈T 2
3 T4 − T1T2 + T6T7T

2
9 T8〉

of K∗-surfaces with the same degree matrices as listed in the table. By Lemma 5.1.5,
it suffices to consider the isomorphisms induced by the Z6-graded homomorphisms
K[T1, . . . , T9]→ K[T1, . . . , T9] given by

T5 7→ T5 + T3T9T
2
2 T

2
4 T6T

3
7 − 2T3T

2
9 T2T4T7T8, Ti 7→ Ti for i 6= 5,

T1 7→ T1 − T6T
2
7 T9T3T4T5, Ti 7→ Ti for i 6= 1,

respectively. Denote byX2 := Bl P2(?5 i) the blow up ofX1 in q2. By an application
of Algorithm 2.3.27, its graph GX2 of exceptional curves is

T5

T8T2

T4

T7

T10

T1 T3

T6

T9

where gray and black vertices stand for negative curves. Black vertices correspond
to curves intersecting at least three other negative curves. By Lemma 5.4.12, X2 is
not a K∗-surface.
(III) Blow ups of X1 := Bl P2(?4 vi). As seen in the proofs of Proposition 5.2.8
and Theorem 5.3.1, the point configuration and blow up sequence for X1 are

(4)

W ′1

π4

��

W1
ι3oo X1

ϕ

∼=
oo

Bl P2(?3 ii)′ Bl P2(?3 ii)
ι2oo π3 // Bl P2(?2)′ Bl P2(?2)

π1◦π2 //ι1oo P2

Here, the embeddings ιi are as in Setting 4.2.9 with

ι1 : K5 → K6, z 7→ (z, h1(z)), h1 := T 2
3 T4 − T1T2,

ι2 : K7 → K8, z 7→ (z, h2(z)), h2 := T2T3T4T5 − T6,

ι3 : K8 → K9, z 7→ (z1, . . . , z5, z2z3z4z5 − z8z9, z6, z7, z8)

where h1 ∈ K[T1, . . . , T5] and h2 ∈ K[T1, . . . , T6], ι3 eliminates a fake relation as in
Algorithm 4.3.3, the isomorphism ϕ maps z ∈ K8 to (z1 + z3z4z5z6z8, z2, . . . , z8) ∈
K8 and the blow ups are

π4([z]) = [z1, . . . , z4, z5, z6, z7z9, z8z9], π3([z]) = [z1, . . . , z4, z5z7, z6z7],
π2([z]) = [z1, z2z5, z3, z4z5], π1([z]) = [z1, z2z4, z3z4].
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Note that after having eliminated redundant equations with Algorithm 4.3.3 the
exceptional divisors of the first, second, third and fourth blow up are

V (X1; T4), V (X1; T5), V (X1; T6), V (X1; T8).
On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(4) (5)

For the first configuration, Algorithm 4.5.9 returns a K∗-surface where as input we
used q := [0, 1, 0, 1, 1, 1, 0, 1] ∈ X1, a point which exists by Algorithm 2.3.8 and
satisfies

π1 ◦ π2 ◦ ι−1
1 ◦ π3 ◦ ι−1

2 ◦ π4 ◦ ι3 ◦ ϕ(q) = [0, 1, 0] ∈ P2.

We come to the second configuration, i.e., blow ups of X1 of type Bl P2(?5). Note
that the curve V (X1; T5) is a parabolic fixed point curve. This means that blowing
up any point q lying in V (X1; T5) or in the intersection of two invariant divisors
V (X1; Ti)∩V (X1; Tj) leads to a surface with a non-trivial K∗-action and thus will
be left out, see Lemma 5.4.11. By Remark 5.3.5, it suffices to consider the points

q1 := [1, 1, 1, 0, 1, 1, 1, 1],
q2 := [1, 1, 1, 1, 1, 0, 1, 1],
q3 := [1, 1, 1, 1, 1, 1, 1, 0].

T5

T6
T7

T8

All points exist by Lemma 5.2.16. Using Algorithm 4.5.9, we computed the following
Cox rings.

qi Cox ring R(X) degree matrix

q1

K[T1, . . . , T9]/I
with I generated by
T5T6T 2

7 − T1T2 − T3T9T 2
2 T

2
4 T

2
5 T

2
7

+2T3T 2
9 T2T4T5T7T8 − T3T 3

9 T
2
8


1 0 0 0 0 1 0 −1 1
0 1 0 0 0 1 0 2 −1
0 0 1 0 0 0 0 1 −1
0 0 0 1 0 0 0 3 −2
0 0 0 0 1 1 −1 0 0
0 0 0 0 0 2 −1 −3 2



q2

K[T1, . . . , T10]/I
with I generated by
T2T3T4T5 − T7T8 − T9T10,
T 2

3 T4 − T1T2 + T6T7T 2
8 T10


1 0 0 1 0 0 0 1 2 −1
0 1 0 1 0 0 0 2 5 −3
0 0 1 −2 0 0 0 −1 −3 2
0 0 0 0 1 0 0 1 3 −2
0 0 0 0 0 1 0 0 1 −1
0 0 0 0 0 0 1 −1 −1 1



q3

K[T1, . . . , T9]/I
with I generated by
T 2

3 T4 − T1T2 + T 2
6 T

2
7 T

2
9 T

2
2 T4T 2

5
−T6T 2

7 T
3
9 T8


1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 4 −1
0 0 1 −2 0 0 0 −3 1
0 0 0 0 1 0 0 3 −1
0 0 0 0 0 1 0 2 −1
0 0 0 0 0 0 1 1 −1



Both the blow up of X1 in q1 and the blow up of X1 in q3 are K∗-surfaces since
their respective Cox rings are isomorphic to the Cox rings

K[T1, . . . , T9] / 〈T5T6T
2
7 − T1T2 − T3T

3
9 T

2
8 〉,

K[T1, . . . , T9] / 〈T 2
3 T4 − T1T2 − T6T

2
7 T

3
9 T8〉

of K∗-surfaces with the same degree matrices as listed in the table; see Lemma 5.1.5.
The isomorphisms are induced by the graded homomorphisms K[T1, . . . , T9] →
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K[T1, . . . , T9] where

T1 7→ T1 − T2T3T
2
4 T

2
5 T

2
7 T9 + 2T3T4T5T7T8T

2
9 , Ti 7→ Ti for i 6= 1,

T1 7→ T1 + T2T4T
2
5 T

2
6 T

2
7 T

2
9 , Ti 7→ Ti for i 6= 1,

respectively. Denote by X2 := Bl P2(?5 ii) the blow up of X1 in q2. Using Algo-
rithm 2.3.27 its graph of exceptional curves GX2 is

T5

T6T2

T4

T8

T10

T1 T3

T7

T9

where gray and black vertices stand for negative curves. Black vertices stand for
curves intersecting at least three other negative curves. Since both of them have
non-trivial intersection, by Lemma 5.4.12, X2 is not a K∗-surface.
(IV) Blow ups of X1 := Bl P2(?4 xiv). As seen in the proofs of Proposition 5.2.8
and Theorem 5.3.1, the point configuration and blow up sequence for X1 are

(4)

X1
π4 // Bl P2(?3 i)′ Bl P2(?3 i)

π1 ◦π2 ◦π3 //ι1oo P2

Here, the embedding ι1 is as in Setting 4.2.9 with

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T 2
1 T2 − T 3

3 T
2
4 T5

where h1 ∈ K[T1, . . . , T6] and the blow ups are

π4([z]) = [z1, . . . , z4, z5, z6z8, z7z8], π3([z]) = [z1, z2z6, z3, z4, z5z6],
π2([z]) = [z1, z2z5, z3, z4z5], π1([z]) = [z1, z2z4, z3z4].

The exceptional divisors of the first, second, third and fourth blow up are V (X1; Ti)
with i = 4, 5, 6, 8. On X1, we want to blow up a point which, together with the
exceptional divisors, projects to one of the configurations

(4) (5)

For the first configuration, the direct blow up of X1 needs higher multiplicities in
Algorithm 4.5.9, see Example 4.5.11 for this very instance. To keep our description
concise, we instead blow up the toric variety Z1 with fan Σ1 and ray generators

[
−1 1 0 1 2 3 −1
−1 0 1 1 1 1 0

]
, Σ1 =

(−1,−1)

(1, 0)

(0, 1) (1, 1) (2, 1)
(3, 1)

(−1, 0)

in a point q in the exceptional divisor V (Z1; T6). The choice q := [1, 1, 1, 1, 1, 0] ∈ Z1
is viable by Lemma 5.2.16. Algorithm 4.5.9 then delivers the Cox ring of a K∗-
surface.
Next, we treat the second configuration, i.e., blow ups of X1 of type Bl P2(?5). Note
that the curve V (X1; T6) is a parabolic fixed point curve. This means that blowing
up any point q lying in V (X1; T6) or in the intersection of two invariant divisors
V (X1; Ti)∩V (X1; Tj) leads to a surface with a non-trivial K∗-action and thus will
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be left out, see Lemma 5.4.11. By Remark 5.3.5, it suffices to consider the points
q1 := [1, 1, 1, 1, 1, 1, 1, 0], q2 := [1, 1, 1, 1, 0, 1,−1, 1],

q3 := [1, 1, 1, 0, 1, 1,−1, 1] ∈ X1

all of which exist by Lemma 5.2.16. Using Algorithm 4.5.9, we computed the fol-
lowing Cox rings.

qi Cox ring R(X) degree matrix

q1

K[T1, . . . , T9]/I
with I generated by
T 3

3 T
2
4 T5 − T 2

1 T2 + T7T 2
9 T8

−T7T9T1T2T3T4T5T6


1 0 0 0 2 0 0 4 −1
0 1 0 0 1 0 0 3 −1
0 0 1 0 −3 0 0 −4 2
0 0 0 1 −2 0 0 −2 1
0 0 0 0 0 1 0 2 −1
0 0 0 0 0 0 1 1 −1



q2

K[T1, . . . , T10]/I
with I generated by
T1T2T6T8 − T 2

3 T4 − T9T10,
T 2

1 T2 + T7T8 − T 3
3 T

2
4 T5T10


1 0 0 0 0 0 3 −1 −2 2
0 1 0 0 0 0 2 −1 −1 1
0 0 1 0 0 0 −2 2 5 −3
0 0 0 1 0 0 −1 1 3 −2
0 0 0 0 1 0 0 0 1 −1
0 0 0 0 0 1 1 −1 0 0



q3

K[T1, . . . , T9]/I
with I generated by
T 2

1 T2 + T6T7 + T 2
3 T4T 5

9 T
3
8

−T 2
3 T

4
4 T

2
9 T

3
2 T

6
5 T

6
7

+3T 2
3 T

3
4 T

3
9 T

2
2 T

4
5 T

4
7 T8

−3T 2
3 T

2
4 T

4
9 T2T 2

5 T
2
7 T

2
8


1 0 0 0 0 0 2 9 −5
0 1 0 0 0 0 1 7 −4
0 0 1 0 0 0 0 1 −1
0 0 0 1 0 0 0 3 −2
0 0 0 0 1 0 0 5 −3
0 0 0 0 0 1 −1 −5 3



Note that by the blow up sequence the blow up X2 of X1 in q1 is a weak del Pezzo
surface. Using Algorithm 2.3.27 in conjunction with Algorithm 2.3.48, we obtain
the graph of exceptional curves GX2 . The subgraph of (−2)-curves is

T7 T6

T2

T5 T4

In particular, X2 has ADE singularity type D5. By [33, Sec. 5.5], the Cox ring of
X2 is isomorphic to the Cox ring of a K∗-surface

K[T1, . . . , T9] / 〈T 3
3 T

2
4 T5 − T 2

1 T2 + T7T
2
9 T8〉.

Also, the blow up of X1 in q1 is a K∗-surface since its Cox ring is isomorphic to the
Cox ring of a K∗-surface Y2 where

R(Y2) = K[T1, . . . , T9] / 〈T 2
1 T2 + T6T7 + T 2

3 T4T
5
9 T

3
8 〉

with the same Z6-grading as R(X2), see Lemma 5.1.5. The isomorphism is induced
by the Z6-graded isomorphism K[T1, . . . , T9]→ K[T1, . . . , T9] with

Ti 7→


T6 + T 2

3 T
4
4 T

2
9 T

3
2 T

6
5 T

5
7 − 3T 2

3 T
3
4 T

3
9 T

2
2 T

4
5 T

3
7 T8

+3T 2
3 T

2
4 T

4
9 T2T

2
5 T7T

2
8 ,

i = 6,

Ti, i 6= 6.

Redefine X2 := Bl P2(?5 iii) as the blow up of X1 in q2. Using Algorithm 2.3.27 its
graph of exceptional curves GX2 is
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T5

T6T2

T4

T8

T10

T1 T3

T7

T9

As before, gray and black vertices stand for negative curves. If X2 were a K∗-
surface, the black vertices correspond to sink and source. Since they have non-trivial
intersection, by Lemma 5.4.12, X2 is not a K∗-surface.
(V) Blow ups of X1 := Bl P2(?2 ? ? ii). We recall from the proofs of Proposi-
tion 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

(2)

X1
π4 // Bl P2(?2 ? ii)′ Bl P2(?2 ? ii)

π3 //ι1oo Bl P2(?? )
π1 ◦π2 // P2

where the embedding ι1 is as in Setting 4.2.9 with

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T2T4T
2
6 − T1T5

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are

π4([z]) = [z1, z2, z3z8, z4, z5, z6, z7z8], π3([z]) = [z1, z2z6, z3, z4z6, z5],
π2([z]) = [z1z5, z2, z3z5, z4], π1([z]) = [z1, z2z4, z3z4].

The exceptional divisors of the first, second, third and fourth blow up are

V (X1; T4), V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) (2) (2) (2) (3)

Let λ ∈ K∗ \ {1}. For the first and second configuration, we choose in X1 the
following points qi which exist by Algorithm 2.3.8

q1 := [1, λ, 0, 1, 1, 1, λ− 1, 1], π1 ◦ π2 ◦ π3 ◦ ι−1
1 ◦ π4(q1) = [1, λ, 0] ∈ P2,

q2 := [0, 0, 1, 1, 1, 1, 0, 1], π1 ◦ π2 ◦ π3 ◦ ι−1
1 ◦ π4(q2) = [0, 0, 1] ∈ P2.

Since V (X1; T3) is a parabolic fixed point curve, by Lemma 5.4.11, the blow up of
X1 in q1 will be a toric surface or a K∗-surface. Using Algorithm 4.5.9, we see that
the same is true for the blow up in q2.
For the third configuration, we want to blow up a point in the second exceptional
divisor, i.e., V (X1; T5). By Lemma 5.4.11, we need not consider points whose
Cox coordinates have two vanishing entries. By Remark 5.3.5, this leaves us with
q3 := [1, 1, 1, 1, 0, 1, 1, 1]. It exists by Lemma 5.2.16. Algorithm 4.5.9 returns the
ring and degree matrix

R2 := K[T1, . . . , T9] / 〈T1T3T
2
5 − T4T9T2T3T5T7 + T4T

2
9 T8 − T6T7〉, 1 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 2 −1
0 0 1 0 0 0 1 3 −1
0 0 0 1 0 0 0 1 −1
0 0 0 0 1 0 2 4 −1
0 0 0 0 0 1 −1 −2 1

 .
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Observe that the blow up of X1 in q3 is in fact a K∗-surface; by Lemma 5.1.5, the
graded homomorphism T6 7→ T6 − T4T9T2T3T5 induces an isomorphism from the
Cox ring R′2 of a K∗-surface with the same degree matrix to R2 where

R′2 := K[T1, . . . , T9] / 〈T1T3T
2
5 + T4T

2
9 T8 − T6T7〉.

We come to the fourth configuration, i.e., blow ups of X1 of type Bl P2(?3 ? ?).
By Lemma 5.4.11, we need not consider points that lie in the fixed point curve
V (X1; T3) or in the intersection of two invariant curves V (X1; Ti) ∩ V (X1; Tj).
Thus, by Remark 5.3.5, it suffices to consider

q1 := [−1, 1, 1, 0, 1, 1, 1, 1],
q2 := [−1, 1, 1, 1, 1, 0, 1, 1],

T4

T6
T3

T2

By Lemma 5.2.16, all points exist. Using Algorithm 4.5.9, we computed the follow-
ing Cox rings.

qi Cox ring R(X) degree matrix

q1

K[T1, . . . , T10]/I
with I generated by
T3T5T8 − T2T6 − T9T10,
T1T5 + T7T8 − T2T 2

6 T4T10


1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 −1 1 2 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 3 −2



q2

K[T1, . . . , T11]/I
with I generated by
T 2

3 T4T 2
5 T8 − T2T7 − T11T10,

T 2
2 T4T 2

6 T11 − T5T9 + T8T10,
T1T5 + T7T8 − T2T4T 2

6 T
2
11,

T 2
3 T4T5T 2

8 + T1T2 − T9T11,
T 2

3 T
2
4 T5T8T2T 2

6 T11 − T7T9 − T1T10


1 0 0 0 1 0 2 0 0 1 1
0 1 0 0 1 0 1 0 1 2 0
0 0 1 0 0 0 1 −1 0 1 0
0 0 0 1 1 0 2 −1 0 2 0
0 0 0 0 2 0 3 −1 −1 2 1
0 0 0 0 0 1 0 0 1 1 −1



Denote by Bl P2(?3 ? ? i) and Bl P2(?3 ? ? ii) the blow ups of X1 in q2 and q4.
By an application of Algorithm 2.3.27, their respective graphs of exceptional curves
are

T3

T4T2

T5

T6

T8

T9 T10

T1

T7

T3

T6
T2

T4

T5

T8

T11
T1

T7

T9

T10

where gray and black vertices stand for negative curves. Black vertices correspond
to curves that meet at least three other negative curves. By Lemma 5.4.12, neither
Bl P2(?3 ? ? i) nor Bl P2(?3 ? ? ii) is a K∗-surface.
(VI) Blow ups of X1 := Bl P2(?2 ? ? iv). As in the previous case, we recall from
the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow
up sequence

(2)

X1
π4 // Bl P2(?2 ? ii)′ Bl P2(?2 ? ii)

π3 //ι1oo Bl P2(??)
π1 ◦π2 // P2
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where the embedding ι1 is as in Setting 4.2.9 with
ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T2T4T6 − T1T5

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are
π4([z]) = [z1, z2, z3z8, z4, z5, z6, z7z8], π3([z]) = [z1, z2, z3z6, z4z6, z5],
π2([z]) = [z1z5, z2, z3z5, z4], π1([z]) = [z1, z2z4, z3z4].

The exceptional divisors of the first, second, third and fourth blow up are
V (X1; T4), V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) (2) (2) (2) (3)

For the first and second configuration the following points qi ∈ Xi exist by an
application of Algorithm 2.3.8 and satisfy

q1 := [1, λ, 0, 1, 1, 1, λ− 1, 1], π1 ◦ π2 ◦ π3 ◦ ι−1
1 ◦ π4(q1) = [1, λ, 0] ∈ P2,

q2 := [0, 0, 1, 1, 1, 1, 0, 1], π1 ◦ π2 ◦ π3 ◦ ι−1
1 ◦ π4(q2) = [0, 0, 1] ∈ P2.

Since V (X1; T3) is a parabolic fixed point curve, by Lemma 5.4.11, the blow up of
X1 in q1 will be a toric surface or a K∗-surface. Also, the blow up in q2 admits a non-
trivial K∗-action as can be seen by an inspection of the output of Algorithm 4.5.9.
For the third configuration, we want to blow up a point in the second exceptional
divisor, i.e., V (X1; T5). By Lemma 5.4.11 we need not consider points whose Cox
coordinates have two vanishing entries. By Remark 5.3.5, this leaves us with q3 :=
[1, 1, 1, 1, 0, 1, 1, 1] ∈ X1 which exists by Lemma 5.2.16. Algorithm 4.5.9 returns the
ring and degree matrix

R2 := K[T1, . . . , T9] / 〈T1T3T5 − T6T7 + T4T
2
9 T8 − T4T9T2T3T

2
5 T7〉, 1 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 2 −1
0 0 1 0 0 0 1 3 −1
0 0 0 1 0 0 0 1 −1
0 0 0 0 1 0 1 5 −2
0 0 0 0 0 1 −1 −2 1

 .
Observe that the blow up of X1 in q3 is in fact a K∗-surface: the graded homomor-
phism T6 7→ T6 − T4T9T2T3T

2
5 induces an isomorphism from the Cox ring R′2 of a

K∗-surface with the same degree matrix to R2 where
R′2 = K[T1, . . . , T9] / 〈T1T3T5 − T6T7 + T4T

2
9 T8〉,

see Lemma 5.1.5. We come to the fourth configuration, i.e., we consider blow ups
of X1 of type Bl P2(?3 ? ? ). By Lemma 5.4.11 we need not consider points that
lie in the fixed point curve V (X1; T3) or in the intersection of two invariant curves.
Thus, by Remark 5.3.5, it suffices to consider the points

q1 := [−1, 1, 1, 1, 1, 0, 1, 1],
q2 := [−1, 1, 1, 0, 1, 1, 1, 1].

T4

T6
T2

T3

By Lemma 5.2.16, all points exist. Using Algorithm 4.5.9, we computed the follow-
ing Cox rings.

qi Cox ring R(X) degree matrix
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q1

K[T1, . . . , T10]/I
with I generated by
T1T5 + T7T8 − T2T4T6T10,
T3T5T7T 2

8 − T
2
2 T4 − T9T10


1 0 0 0 0 0 2 −1 −1 1
0 1 0 0 0 0 −2 2 3 −1
0 0 1 0 0 0 1 −1 0 0
0 0 0 1 0 0 −1 1 2 −1
0 0 0 0 1 0 3 −2 −1 1
0 0 0 0 0 1 0 0 1 −1



q2

K[T1, . . . , T9]/I
with I generated by
T1T4 + T6T7 + T3T5T 2

9 T8
−T3T 2

5 T9T2T4T7


1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 2 −1
0 0 1 0 0 0 0 1 −1
0 0 0 1 0 0 1 3 −1
0 0 0 0 1 0 0 3 −2
0 0 0 0 0 1 −1 −2 1



The blow up of X1 in q2 is a K∗-surface since its Cox ring is isomorphic to the Cox
ring of a K∗-surface

K[T1, . . . , T9] / 〈T1T4 + T6T7 + T3T5T
2
9 T8〉

with the same degree matrix as listed in the table, see Lemma 5.1.5. The isomor-
phism is induced by the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T1 + T3T

2
5 T9T2T7, i = 1,

Ti, i 6= 1.

Denote by X2 := Bl P2(?3 ? ? iii) the blow up of X1 in q2. Using Algorithm 2.3.27
we obtain the graph GX2 of exceptional curves

T3

T6T4

T5

T8

T10

T1 T2

T7

T9

Gray and black vertices stand for negative curves where the latter correspond to
curves intersecting at least three other negative curves; if X2 were a K∗-surface they
must be sink and source. By Lemma 5.4.12, Bl P2(?3?? iii) cannot be a K∗-surface.
(VII) Blow ups of X1 := Bl P2(? ? ? ? i). Recall from Theorem 5.3.1 that X1 was
obtained from the point configuration

By Proposition 5.1.2 and Theorem 5.3.1, we have to blow up the point configurations

(2)

For the first configuration, by Proposition 5.2.8, instead of blowing up X1 we may
also blow up a general point in Z1 := Bl P2(?2 ? ? i) which we obtained as

Z1
π4 // Bl P2(?2 ? i) π3 // Bl P2(?? ) π2 // Bl P2(?) π1 // P2

with the blow ups πi given by

π4([z]) = [z1z7, z2z7, z3, . . . , z6], π3([z]) = [z1, z2z6, z3, z4z6, z5],
π2([z]) = [z1z5, z2, z3z5, z4], π1([z]) = [z1, z2z4, z3z4].
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Clearly, the point p1 := [1, 1, 1, 1, 1, 1, 1] ∈ Z1 projects to [1, 1, 1] ∈ P2 under the
map π1◦π2◦π3◦π4. Algorithm 4.5.9 then returns the surface X2 := Bl P2(?2??? i)
with Cox ring and degree matrix

K[T1, . . . , T11]
/〈 T4T6T8 + T5T9 − T7T10, T2T6T9 + T1T8 − T3T10,

T3T4T6 − T1T7 − T9T11, T2T6T7 − T3T5 − T8T11,
T2T4T 2

6 − T1T5 − T11T10

〉
, 1 0 0 0 1 1 0 0 0 1 1

0 1 0 0 1 0 0 0 −1 0 1
0 0 1 0 0 0 1 0 0 −1 1
0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 2 1 1 0 −1 0 2
0 0 0 0 0 0 0 1 1 1 −1

 .
Since X2 can be obtained as a blow up of the surface Bl P2(? ? ? ? i) without K∗-
action, X2 cannot be a K∗-surface: equivariant contractions preserve K∗-actions.
Alternatively, this can be seen by an inspection of GX2 and Lemma 5.4.12:

T1

T2
T3

T4

T5

T6

T7
T8

T9

T10

T11

where, in this case, all vertices are negative curves. If the surface were a K∗-surface,
each black vertex had to be sink or source, a contradiction to Lemma 5.4.12.
For the second and the third configuration we recall from the proofs of Theorem 5.3.1
and Proposition 5.2.8 the blow up sequence

X1
π4 // Bl P2(? ? ? i)′ Bl P2(? ? ? i)

π3,2,1 //ι1oo P2

where the embedding ι1 is as in Setting 4.2.9 with

ι1 : K6 → K9, z 7→ (z, h1(z), h2(z), h3(z)),
h1 := T3T5 − T2T6, h2 := T3T4 − T1T6, h3 := T2T4 − T1T5

where hi ∈ K[T1, . . . , T6] and the blow ups are

π4([z]) = [z1, . . . , z6, z7z10, z8z10, z9z10], π3,2,1([z]) = [z1z5z6, z2z4z6, z3z4z5].

For the second configuration, for each λ ∈ K∗ \ {1}, the following point q ∈ X1
exists by Lemma 5.2.16 where

π3,2,1 ◦ ι−1
1 ◦ π4(q) = [1, λ, 0] ∈ P2, q := [1, λ, 0, 1, 1, 1,−λ,−1, λ− 1, 1].

By an application of Algorithm 4.5.9 with Remark 5.3.6 we obtain the surface
X2 := Bl P2(? ? ? ? ? i) as listed in the table. By the same reasoning as before, X2
cannot be a K∗-surface since it is a blow up of X1. Alternatively, this can be seen
by an inspection of GX2 and Lemma 5.4.12:

T1

T2
T3T4

T5

T6

T7

T8
T9 T10

T11

T12

T13

For the third configuration, let λ, µ be distinct elements of K∗ \ {1}. The following
point q ∈ X1 exists and satisfies

π1,2,3 ◦ ι−1 ◦ π4(q) = [1, λ, µ] ∈ P2, q := [1, λ, µ, 1, 1, 1, µ− λ, µ− 1, λ− 1, 1].
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Using Algorithm 4.5.9, we obtain the surfaces X2 := Bl P2(? ? ? ? ? ii) depending
on λ and µ. By the same reasoning as before, X2 cannot be a K∗-surface.
(VIII) Blow ups of X1 := Bl P2(???? ii). Recall from the proofs of Proposition 5.2.8
and Theorem 5.3.1 the point configuration and blow up sequence

X1
π4 // Bl P2(? ? ? i)′ Bl P2(? ? ? i)

π3,2,1 //ι1oo P2

where the embedding ι1 is as in Setting 4.2.9 and the blow ups, in the situation of
Setting 4.2.5, are

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T2T4 − T1T5,

π4([z]) = [z1, z2, z3z8, z4, z5, z6, z7z8], π3,2,1([z]) = [z1z5z6, z2z4z6, z3z4z5]

with h1 ∈ K[T1, . . . , T6]. The exceptional divisors of the first, second, third and
fourth blow up are

V (X1; T4), V (X1; T5), V (X1; T6), V (X1; T8).
On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2)

For the first configuration, the point q1 := [1, 0, 1, 1, 1, 1,−1, 1] ∈ X1 exists by
Lemma 5.2.16 and is mapped to [1, 0, 1] ∈ P2 under π3,2,1 ◦ ι−1

1 ◦ π4. Using Algo-
rithm 4.5.9 we obtain the surface X2 := Bl P2(? ? ? ? ? iii) listed in the table. An
inspection of its graph of exceptional curves GX2 , shows that Lemma 5.4.12 applies,
compare Algorithm 2.3.27. This means that X2 cannot be a K∗-surface as there are
adjacent black vertices, i.e., sink and source would meet.

T1

T2
T3

T5

T6

T7

T8
T9

T10

T11

T4

For the second configuration, we consider the points q2 := [1, λ, 0, 1, 1, 1, λ− 1, 1] in
X1 where for each λ ∈ K∗ \ {1} the point exist by Lemma 5.2.16 and is mapped
to [1, λ, 0] ∈ P2 under π3,2,1 ◦ ι−1

1 ◦ π4. Since V (X1; T3) is a parabolic fixed point
curve, by Lemma 5.4.11, the blow up of X1 in q2 will admit a non-trivial K∗-action.
For the third configuration, we want to blow up a point in the first exceptional
divisor V (X1; T4). By Lemma 5.4.11 we need not consider points whose Cox coor-
dinates have two vanishing entries. By Remark 5.3.5, this leaves us with the point
[1, 1, 1, 0, 1, 1,−1, 1] ∈ X1. It exists by Lemma 5.2.16. Algorithm 4.5.9 delivers the
Cox ring of the surface Bl P2(?2 ? ? ? iv) listed in the table. Arguing as before, by
Lemma 5.4.12, its graph of exceptional curves cannot belong to a K∗-surface:

T1

T3T4

T6

T7

T9

T2 T5

T8

T10
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(IX) Blow ups of X1 := Bl P2(???? iii). Recall from the proofs of Proposition 5.2.8
and Theorem 5.3.1 the point configuration and blow up sequence

Bl P2(? ? ? ii)

π3

��

ι2
// Bl P2(? ? ? ii)′ X1π4

oo

Bl P2(? ? i)′ Bl P2(? ? i)
π2,1 //ι1oo P2

where the embeddings ιi are as in Setting 4.2.9 with

ι1 : K5 → K6, z 7→ (z, h1(z)), h1 := T2T4 − T1T5,

ι2 : K7 → K8, z 7→ (z, h2(z)), h2 := (λ− 1)T2T4 − λT6T7

where h1 ∈ K[T1, . . . , T5] and h2 ∈ K[T1, . . . , T7]. The blow ups πi are

π4([z]) = [z1, z2, z3z9, z4, . . . , z7, z8z9],
π3([z]) = [z1,z2, z3z7, z4, z5, z6z7], π2,1([z]) = [z1z5, z2z4, z3z4z5].

The exceptional divisors of the first, second, third and fourth blow up are

V (X1; T4), V (X1; T5), V (X1; T7), V (X1; T9).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2)

The first configuration has already been dealt with in part (VIII) of this proof. For
the second configuration, let µ ∈ K∗ \ {1, λ}. Then each point

q1 := [1, µ, 0, 1, 1, µ− 1, 1, λ− µ, 1] ∈ X1,

exists by Lemma 5.2.16 and projects to [1, µ, 0] ∈ P2 under the map π2,1 ◦ ι−1
1 ◦π3 ◦

ι−1
2 ◦ π4. Since V (X1; T3) is a parabolic fixed point curve, by Lemma 5.4.11, the

blow up of X1 in q1 will admit a non-trivial K∗-action.
For the third configuration, we want to blow up a point in the first exceptional
divisor V (X1; T4). By Lemma 5.4.11 we need not consider points whose Cox coor-
dinates have two vanishing entries. By Remark 5.3.5, this leaves us with the point
q3 := [1, 1, 1, 0, 1,−1, 1, λ, 1] ∈ X1 which exists by Lemma 5.2.16. Consider the
following Cox rings R1 and R2 sharing the same degree matrix. The first one is
returned by Algorithm 4.5.9 for the blow up X2 of X1 in q3 and the second one is
the Cox ring of a K∗-surface:

R1 := K[T1, . . . , T10]
/〈

T7T8 − (λ− 1)T3T10T2T4T6T8 + (λ− 1)T3T 2
10T9 + λT5T6,

λT1T4 − T7T8 − T3T10T2T4T6T8 + T3T 2
10T9

〉
,

R2 := K[T1, . . . , T10]
/〈

T7T8 + (λ− 1)T3T 2
10T9 + λT5T6,

λT1T4 − T7T8 + T3T 2
10T9

〉
, 1 0 0 0 0 1 0 1 3 −1

0 1 0 0 0 0 0 0 2 −1
0 0 1 0 0 0 0 0 1 −1
0 0 0 1 0 1 0 1 5 −2
0 0 0 0 1 −1 0 0 −2 1
0 0 0 0 0 0 1 −1 −2 1

 .
ThenX2 is a K∗-surface, since R2 is the Cox ring of a K∗-surface. From Lemma 5.1.5
we infer that also X1 admits a non-trivial K∗-action since we have an isomorphism
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between the two rings that is induced by the Z6-graded homomorphism

K[T1, . . . , T10] → K[T1, . . . , T10], Ti 7→


T5 + T2T3T4T8T10, i = 5
T7 − T2T3T4T6T10, i = 7
Ti, else.

(X) Blow ups of X1 := Bl Fa(? ? ? iii). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

X1
π3 // Bl Fa(? ? i)′ Bl Fa(? ? i)

π2,1 //ι1oo Fa

where the embedding ι1 is as in Setting 4.2.9 and the blow ups, in the situation of
Setting 4.2.5, are

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T1T5 − T2T6,

π3([z]) = [z1, z2, z3z8, z4, . . . , z6, z7z8], π2,1([z]) = [z1z5, z2z6, z3z5z6, z4]

with h1 ∈ K[T1, . . . , T6]. The exceptional divisors of the first, second and third blow
up are

V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2)

For the first configuration, we want to blow up a point in the first exceptional
divisor, i.e., V (X1; T5). By Lemma 5.4.11 we need not consider points whose
Cox coordinates have two vanishing entries. By Remark 5.3.5, this leaves us with
q1 := [1, 1, 1, 1, 0,−1, 1, 1] ∈ X1 which exists by Lemma 5.2.16. The Z5-graded
homomorphism

K[T1, . . . , T8] → K[T1, . . . , T8], Ti 7→

{
T3 + (−1)aT1T

a−2
2 T4T

a−3
6 T7, i = 3,

Ti, i 6= 3

induces an automorphism of R(X1). Thus, instead of blowing up q1 we may blow
up the point [1, 1, 0, 1, 0,−1, 1, 1] ∈ X1. By Lemma 5.4.11, the blow up will be a
K∗-surface.
We need not consider the second configuration, since V (X1; T3) is a parabolic fixed
point curve; by Lemma 5.4.11 the blow up will result in a surface with non-trivial
K∗-action. For the third configuration, the point [0, 1, 1, 0, 1, 1,−1, 1] ∈ X1 projects
to [0, 1, 1, 0] ∈ Fa under π2,1◦ι−1

1 ◦π3 and exists by iteratively applying Lemma 5.4.5
and Lemma 5.2.16. By Lemma 5.4.11, the blow up will admit a non-trivial K∗-
action.
For the fourth configuration the steps are as in the proof of Theorem 5.3.1 for, e.g.,
case Bl P2(?3 ii). Here, we want to blow up X1 in q4 where

π2,1 ◦ ι−1
1 ◦ π3(q4) = [0, 1, 1, 1] ∈ Fa, q4 := [0, 1, 1, 1, 1, 1,−1, 1] ∈ X1.

Note that q4 ∈ X1 exists by, e.g., Lemma 5.2.16. Choose in K[T1, . . . , T8] the
polynomial h2 := T2T4T

a−1
7 T a−2

8 − T3T5 for the embedding ι2 : K8 → K9. Let Q1
be the degree matrix of R(X1). We have a new degree matrix Q′1 and a matrix P ′1
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whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
1
0
1

 , P ′1 =
[

1 0 0 0 1 0 −1 −1 0
0 1 0 0 0 1 −1 −1 0
0 0 1 0 1 0 0 0 −1
0 0 0 1 0 −1 a a− 1 −1

]
.

For the blow up of X ′1 in ι(q4) = [0, 1, 1, 1, 1, 1,−1, 1, 0] we consider the stellar
subdivision Σ2 → Σ′1 at v := (1, 0,−1,−1) ∈ Z4. Let P2 := [P ′1, v] be the enlarged
matrix. The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T7T8 − T1T5 + T2T6) = T7T8 − T1T5T10 + T2T6,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T2T4T
a−1
7 T a−2

8 + T3T5.

We show that I2 is saturated with respect to T10 by showing that I2 is prime. The
grading is pointed by Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x5x6 6= 0 or x2x10 6= 0

}
⊆ X2 = V (K10; I2).

Let J := (∂gi/∂Tj)i,j be the Jacobian matrix. Inspecting the submatrices of J with
indices i = 1, 2 and j = 2, 3 as well as i = 1, 2 and j = 6, 9, respectively, we see
that the rank of J(u) is two for all u ∈ U . Furthermore, X2 \U is contained in the
union of the 8-dimensional subspaces

V
(
K10; T5, T2

)
, V

(
K10; T5, T10

)
, V

(
K10; T6, T2

)
, V

(
K10; T6, T10

)
.

We claim that in K10 each of the following intersections is of dimension six.

X2 ∩ V (T5, T2) = V (T5, T2, T7T8, T9T10),
X2 ∩ V (T5, T10) = V (T5, T10, T7T8 + T2T6, T2T4T

a−1
7 T a−2

8 − T3T5),
X2 ∩ V (T6, T2) = V (T6, T2, T7T8 − T1T5T10, T9T10 + T3T5),
X2 ∩ V (T6, T10) = V (T6, T10, T7T8, T3T5),

For all but the second one, this could be done computationally since the equations
are independent of a. For X2 ∩ V (T5, T10), we used Lemma 5.3.3 with the matrix[

0 −1 0 0 0 −1 1 1 0 0
0 1 −1 1 −1 0 a− 1 a− 2 0 0

]
of rank two to see that its dimension is six on the torus T10 · (1, 1, 1, 1, 0, 1, 1, 1, 1, 0).
Also, on the smaller tori, the dimension does not exceed six; for instance, for
T10 · (1, 0, 1, 1, 0, 1, 1, 1, 1, 0) we consider the zero set V (K10; T2, T5, T10, T7T8, T3T5)
which is of dimension five. Therefore, dim(X2\U) ≤ 6 and, since X2 is of dimension
at least eight, the codimension of X2 \ U in X2 is at least two. By Lemma 5.4.3,
the ideal I2 is prime.
We now show that the variable T10 defines a prime element in the ring R2 =
K[T1, . . . , T10]/I2. Removing monomial generators and shifting variable indices,
instead of showing that I2 + 〈T10〉 is prime, we may show that I0 has the same
property where

I2 + 〈T10〉 = 〈T10, T2T6 + T7T8, T2T4T
a−1
7 T a−2

8 − T3T5〉 ⊆ K[T1, . . . , T10],
I0 := 〈T1T5 + T6T7, T1T3T

a−1
6 T a−2

7 − T2T4〉 ⊆ K[T1, . . . , T7].

The extension of I0 to K[T±1
1 , . . . , T±1

7 ] is prime since the matrix with the exponents
of the binomial generators as its rows[

1 0 0 0 1 −1 −1
1 −1 1 −1 0 a− 1 a− 2

]
has a Smith normal form of shape [E2, 0, . . . , 0] where E2 is the 2× 2 unit matrix,
compare [37, Thm. 2.1]. Now, by Remark 5.4.14, I0 is prime if I0 = I0 : (T1 · · ·T7)∞.
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We will prove this by showing that

G := {f1, f2, f3} :=




T1T5 + T6T7,

T1T3T a−1
6 T a−2

7 − T2T4,

T3T a6 T a−1
7 + T2T4T5

 , T1T5 > T6T7,
T1T5 + T6T7,

T a−1
1 T3T6T a−2

5 + (−1)a−1T2T4,

T a1 T3T a−1
5 − (−1)a−1T2T4T7

 , T1T5 < T6T7

is a Gröbner basis for I0 with respect to the degree reverse lexicographical ordering
for any ordering T1 > . . . > Ti−1 > Ti+1 > . . . > T7 > Ti with 1 ≤ i ≤ 7. First,
observe that in the case T1T5 > T6T7 we have I0 = 〈G〉 since f3 = T3T

a−1
6 T a−2

7 f1−
T5f2. In the second case, let g1 and g2 be the generators for I0. Using the relation
T1T5 = −T6T7, we have

f1 = g1,

f2 = T a−2
1 T3T

a−3
5 T6g1 + (−1)ag2,

f3 = T a−1
1 T3T

a−2
5 g1 + (−1)a+1T7g2,

i.e., 〈G〉 ⊆ I0. The first and second equation also show I0 ⊆ 〈G〉. We compute the
S-polynomials. They are

S(f1, f2) =
{
T3T

a
6 T

a−1
7 + T2T4T5, T1T5 > T6T7,

T a1 T3T
a−1
5 − (−1)a−1T2T4T7, T1T5 < T6T7,

S(f1, f3) =
{
T3T

a+1
6 T a7 − T1T2T4T

2
5 , T1T5 > T6T7,

T a+1
1 T3T

a
5 + (−1)a−1T2T4T6T

2
7 , T1T5 < T6T7,

S(f2, f3) =
{
−T1T2T4T5 − T2T4T6T7, T1T5 > T6T7,

(−1)a−1T2T4T6T7 + (−1)a−1T1T2T4T5, T1T5 < T6T7,

Note that this holds for all a ≥ 3. Applied to S(fi, fj) and f1, f2, f3, the division
algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

S(f1, f2) =
{
f3, T1T5 > T6T7,

f3, T1T5 < T6T7,

S(f1, f3) =
{
−T2T4T5f1 + T6T7f3, T1T5 > T6T7,

T2T4T7f1 + T1T5f3, T1T5 < T6T7,

S(f2, f3) =
{
−T2T4f1, T1T5 > T6T7,

(−1)a−1T2T4f1, T1T5 < T6T7.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Gröbner basis for I0
with respect to the chosen ordering. From [90, Lem. 12.1], we infer that{

f

T
ki(f)
i

; f ∈ G
}

= G, ki(f) := max
(
n ∈ Z≥0; Tni | f

)
is a Gröbner basis for I0 : T∞i for each 1 ≤ i ≤ 7. In particular, I0 = I0 : T∞i for
each i. As observed in [90, p. 114], the claim follows from

I0 : (T1 · · ·T7)∞ = ((· · · (I0 : T∞1 ) · · · ) : T∞7 ) = I0.

Moreover, no two variables Ti, Tj are associated since deg(Ti) 6= deg(Tj) for all
i 6= j. We have T10 - Ti for each i < 10 because each of the following intersections
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is six-dimensional:
X2 ∩ V (T1, T10) = V (T10, T1, −T2T6 − T7T8, T2T4T

a−1
7 T a−2

8 − T3T5),
X2 ∩ V (T2, T10) = V (T10, T2, T7T8, T3T5),
X2 ∩ V (T3, T10) = V (T10, T3, −T2T6 − T7T8, T2T4T7T8),
X2 ∩ V (T4, T10) = V (T10, T4, T3T5, −T2T6 − T7T8),
X2 ∩ V (T7, T10) = V (T10, T7, T3T5, T2T6),
X2 ∩ V (T8, T10) = V (T10, T8, T3T5, T2T6),
X2 ∩ V (T9, T10) = V (T10, T9, −T2T6 − T7T8, T2T4T

a−1
7 T a−2

8 − T3T5),

where X2 ∩ V (T5, T10) and X2 ∩ V (T6, T10) have already been treated above. To
compute the dimension of X2 ∩ V (Ti, T10) for i ∈ {1, 9} we use Lemma 5.3.3 with
the matrix [

0 1 0 0 0 1 −1 −1 0 0
0 1 −1 1 −1 0 a− 1 a− 2 0 0

]
of rank two. This shows that on T10 · (0, 1, . . . , 1, 0) or T10 · (1, . . . , 1, 0, 0), respec-
tively, the dimension is six. One directly checks that also on the smaller tori the
dimension is at most six.
By Theorem 4.2.6, R2 is the Cox ring of the performed modification with its degree
matrix as listed in the table. We now show that we performed the desired blow up.
The factor ring K[T1, . . . , T9]/I ′ where

I ′ := 〈T1, T9, h2, T7T8 − T1T5 + T2T6〉 = 〈T1, T9, h2, T2T6 + T7T8〉
is isomorphic to the integral domain K[T1, . . . , T10]/(I2 + 〈T10〉). Thus, I ′ is prime.
Given Cox coordinates z := (0, 1, 1, 1, 1, 1,−1, 1, 0) ∈ K9 for ι(q1) ∈ X ′1 we have
z ∈ V (K9 I ′). By the previous dimension computations

dim
(
V (K9; I ′)

)
= −1 + dim

(
X2 ∩ V (T1, T10)

)
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. The Cox
ring and degree matrix of the resulting surface X2 := Bl Fa(? ? ? ? vi) are listed in
the table. Note that X2 is not a K∗-surface by Lemma 5.4.12 if we can show that
its graph of exceptional curves GX2 is

T1

T4T2

T5

T6

T7

T8 T10

T3

T9

We prove only the part of the graph needed for the argument, i.e., the subgraph
induced by the vertices Ti with i ∈ {1, 2, 4, 5, 7, 10}. Note that this could be done
using the blow up sequence and Remark 5.3.7. Instead, we give a direct argument.
Write wi := deg(Ti) for the degrees of the generators of R(X2) and Q := Q2 =
[w1, . . . , w10] for its degree matrix. First, note that Q≥0 · w3 and Q≥0 · w9 are
non-extremal rays of Q(Q10

≥0):
w3 = (a− 2)w1 + w2 + w4 + (a− 3)w5 + w7 + (a− 2)w10,

w9 = w1 + (a− 2)w2 + w4 + w5 + (a− 1)w6 + w7.

All other rays Q≥0 · wi are extremal since wi can be separated from the other wj
by the following linear forms ui ∈ Hom(Z6,Z) ∼= Z6:
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i ui ∈ Hom(Z6,Z) ui(w1), . . . , ui(w10)
1 (−2, 0, 0, 1, 1, 0) −2, 0, 0, 1, 1, 0, 0, 0, 0, 1
2 (0,−1, 0, 1, 0, 1) 0,−1, 0, 1, 0, 1, 0, 0, 0, 0
4 (1, 1, 0,−a, 0, 0) 1, 1, 0,−a, 0, 0, 1, 0, 0, 0
5 (1, 0, 1, 0,−1, 0) 1, 0, 1, 0,−1, 0, 0, 0, 0, 0
6 (0, 1, 1, 0, 0,−1) 0, 1, 1, 0, 0,−1, 0, 0, 1, 0
7 (0, 0, 0, 1, 0, 0) 0, 0, 0, 1, 0, 0,−1, 1, 0, 0
8 (0, 0, 1, 0, 0, 0) 0, 0, 1, 0, 0, 0, 1,−1, 1, 0
10 (1, 0, 0, 0, 0, 0) 1, 0, 0, 0, 0, 0, 0, 0, 1,−1

We now claim that w := (4, 6a−3, 6, 6, 6, 6a−3) is an element of the relative interior
Mov(Q)◦. It suffices to show that for each 1 ≤ i ≤ 10 with Q≥0 ·wi a ray of Q(Q10

≥0)
we can find an expression

Q≥0 · w = Q≥0 ·
∑

j 6=i, Q≥0·wj
extremal

αjwj , αj ∈ K∗,

because then, by [87, Thm. 6.5], w is an element of

⋂
Q≥0·wi
extremal

cone (wj ; j 6= i)◦ =

 ⋂
Q≥0·wi
extremal

cone (wj ; j 6= i)


◦

= Mov(Q)◦.

Here, for i ∈ {1, 2, 4, . . . , 8, 10}, we found the following combinations.
Q≥0 · w = Q≥0 · (Q · (0, 2, 16, 4, 4, 16, 4a+ 1, 4a+ 3 + 12, 16, 4),
Q≥0 · w = Q≥0 · (Q · (6a+ 1, 0, 8, 6, 6a− 3, 12, 2, 14, 22, 6a+ 11)),
Q≥0 · w = Q≥0 · (Q · (2, 2, 34, 0, 8, 44, 3, 45, 50, 24)),
Q≥0 · w = Q≥0 · (Q · (8, 12a− 3, 4, 24, 0, 12a− 9, 12a− 2, 12a− 8, 8, 4)),
Q≥0 · w = Q≥0 · (Q · (12a+ 6, 6, 6, 24, 12a, 0, 12a− 9, 12a− 15, 6, 12a)),
Q≥0 · w = Q≥0 · (Q · (6a+ 1, 1, 4, 6, 6a− 3, 7, 0, 6, 14, 6a+ 7)),
Q≥0 · w = Q≥0 · (Q · (12a+ 6, 12a− 9, 6, 24, 12a, 12a− 15, 6, 0, 6, 12a)),
Q≥0 · w = Q≥0 · (Q · (8, 12a− 3, 12, 28, 4, 12a− 7, 16a− 1, 16a− 5, 8, 0)).

Now, we show that the edges
(T4, T1), (T4, T2), (T4, T7), (T1, T5), (T1, T10)

exist in GX2 . Let γi,j := cone(ek; k 6∈ {i, j}) � γ with γ := Q10
≥0. By Algo-

rithm 2.3.27, this means we have to show that the faces
γ1,4, γ2,4, γ7,4, γ1,5, γ1,10, γi,j := cone(ek; k 6∈ {i, j}) � γ

are I2-faces in the sense of Chapter 3 and the respective projection Q(γi,j) contains
w in its relative interior. For the former, define as in Section 1 of Chapter 3 the
torus and ideal

T10
γi,j :=

{
tγi,j ; t ∈ T10} , I

γi,j
2 := {fγi,j ; f ∈ I2},

where the k-th entry of zγi,j equals zk if ek ∈ γi,j and zero otherwise. Then γi,j is an
I2-face if and only if V (T10

γi,j ; I
γi,j
2 ) 6= ∅. We directly list elements of the respective

vanishing sets.

i, j V (T10
γi,j

; Iγi,j2 ) contained element

1, 4 V (−T2T6 − T7T8,
−T3T5 − T9T10) (0,−1,−1, 0, 1, 1, 1, 1, 1, 1)

2, 4 V (T1T5T10 − T7T8,
−T3T5 − T9T10) (1, 0,−1, 0, 1, 1, 1, 1, 1, 1)
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7, 4 V (T1T5T10 − T2T6,
−T3T5 − T9T10) (1, 1,−1, 0, 1, 1, 0, 1, 1, 1)

1, 5 V (−T2T6 − T7T8,

T2T4T
a−1
7 Ta−2

8 − T9T10) (0, 1, 1, 1, 0,−1, 1, 1, 1, 1)

1, 10 V (−T2T6 − T7T8,

T2T4T
a−1
7 Ta−2

8 − T3T5) (0, 1, 1, 1, 1,−1, 1, 1, 1, 0)

We now show that for each γi,j the relative interior Q(γi,j)◦ contains the vector
w = (4, 6a− 3, 6, 6, 6, 6a− 3). For this, we present expressions

Q≥0 · w = Q≥0 ·
∑

ek∈γi,j

αkwk, αk ∈ K∗.

For the respective γi,j they are given by
Q≥0 · w = Q≥0 · (Q · (0, 1, 16, 0, 4, 19, 2, 20, 20, 8)),
Q≥0 · w = Q≥0 · (Q · (1, 0, 15, 0, 4, 18, 2, 20, 21, 10)),
Q≥0 · w = Q≥0 · (Q · (1, 2, 15, 0, 4, 20, 0, 18, 21, 10)),
Q≥0 · w = Q≥0 · (Q · (0, 1, 12, 4, 0, 15, 4a+ 2, 4a+ 16, 20, 8)),
Q≥0 · w = Q≥0 · (Q · (0, 4a+ 1, 16, 8, 4, 4a+ 11, 4a+ 2, 4a+ 12, 12, 0)).

(XI) Blow ups of X1 := Bl Fa(? ? ? iv). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

X1
π3 // Bl Fa(? ? i)′ Bl Fa(? ? i)

π2,1 //ι1oo Fa

where the embedding ι1 is as in Setting 4.2.9 with
ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T a2 T4T

a−1
6 − T3T5

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are given by
π3([z]) = [z1z8, z2, z3, z4, . . . , z6, z7z8], π2,1([z]) = [z1z5, z2z6, z3z5z6, z4].

The exceptional divisors of the first, second and third blow up are
V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2)

For the first configuration, we want to blow up a point in the first exceptional
divisor, i.e., V (X1; T5). By Lemma 5.4.11 and Remark 5.3.5 it suffices to consider
the point q := [1, 1, 1, 1, 0, 1, 1, 1] ∈ X1. It exists by Lemma 5.2.16. However, using
Lemma 5.1.5, the existence of the automorphism of X̂1 induced by

K[T1, . . . , T8] → K[T1, . . . , T8], Ti 7→

{
T3 − T1T

a−1
2 T4T

a−2
6 T8, i = 3,

Ti, else

shows that the blow up of X1 in q is isomorphic to the blow up of X1 in the point
[1, 1, 0, 1, 0, 1, 1, 1] which will result in a K∗-surface by Lemma 5.4.11.
The second configuration has already been dealt with in part (X) of this proof. We
now treat the third configuration which leads to the surface Bl Fa(???? vii). Here,
the point q3 := [1, 1, 1, 0, 1, 1,−1, 1] ∈ X1 exists by Lemma 5.2.16 and projects to
[1, 1, 1, 0] ∈ Fa under π2,1 ◦ ι−1

1 ◦ π3. Blowing up X1 in q3 is done by the same
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steps as before. Choose h2 := T1T5T8 − T2T6 ∈ K[T1, . . . , T8] for the embedding
ι2 : K8 → K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix
Q′1 and a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
1
0
1

 , P ′1 =
[

1 0 0 0 1 0 0 1 −1
0 1 0 0 0 1 0 0 −1
0 0 1 0 1 0 −1 −1 0
0 0 0 1 0 −1 −1 −1 a

]
.

For the blow up of X ′1 in ι2(q3) = [1, 1, 1, 0, 1, 1,−1, 1, 0] we perform the stellar
subdivision of Σ′1 at the vector v := (−1,−1, 0, a+ 1) ∈ Z4. Let P2 := [P ′1, v] be the
enlarged matrix. The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T7T8 − T a2 T4T
a−1
6 + T3T5) = T7T8 − T a2 T4T

a−1
6 T10 + T3T5,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T5T8 + T2T6.

We show that I2 is saturated with respect to T10 by showing that I2 is prime. The
grading is pointed by Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x1x5 6= 0 or x3x10 6= 0

}
⊆ X2 = V

(
K10; I2

)
.

Inspecting the indices i = 1, 2 and j = 3, 8 as well as i = 1, 2 and j = 5, 9 we see that
the rank of the Jacobian matrix (∂gi/∂Tj)i,j(u) is two for all u ∈ U . Furthermore,
X2 \ U is contained in the union of the 8-dimensional subspaces

V
(
K10; T1, T3

)
, V

(
K10; T1, T10

)
, V

(
K10; T5, T3

)
, V

(
K10; T5, T10

)
.

Note that each of the following intersections is of dimension six
X2 ∩V (T1, T3) = V (T1, T3, T2T6 + T9T10, T

a
2 T

a−1
6 T10T4 − T7T8),

X2 ∩V (T1, T10) = V (T1, T10, T2T6, T3T5 + T7T8),
X2 ∩V (T5, T3) = V (T5, T3, T2T6 + T9T10, T

a
2 T

a−1
6 T10T4 − T7T8),

X2 ∩V (T5, T10) = V (T5, T10, T2T6, T7T8),
where for the first and third variety we write the binomials into a matrix as in
Lemma 5.3.3 and obtain the matrix[

0 1 0 0 0 1 0 0 −1 −1
0 a 0 1 0 a− 1 −1 −1 0 1

]
of rank two. By Lemma 5.3.3, the dimensions of X2 ∩ T10 · (0, 1, 0, 1, . . . , 1) and of
X2∩T10 · (1, 1, 0, 1, 0, 1, . . . , 1) are six respectively. Also, on the smaller tori, we are
in dimension at most six. Therefore, dim(X2 \U) ≤ 6 and since X2 is of dimension
at least eight codimX2

(X2 \ U) ≥ 2. By Lemma 5.4.3, the ideal I2 is prime. We
now show that the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2.
This is the case since the ideal

I2 + 〈T10〉 = 〈T10, T1T5T8 − T2T6, T3T5 + T7T8〉 ⊆ K[T1, . . . , T10]
is prime by a computation, see Algorithm 2.2.10. Moreover, no two variables Ti,
Tj are associated since deg(Ti) 6= deg(Tj) for all i, j. Also, Ti - T10 for all i < 10
because the intersections

X2 ∩ V (T2, T10) = V (T10, T2, T3T5 + T7T8, −T1T5T8),
X2 ∩ V (T3, T10) = V (T10, T3, T7T8, −T1T5T8 + T2T6),
X2 ∩ V (T4, T10) = V (T10, T4, T3T5 + T7T8, −T1T5T8 + T2T6),
X2 ∩ V (T6, T10) = V (T10, T6, T3T5 + T7T8, −T1T5T8),
X2 ∩ V (T7, T10) = V (T10, T7, T3T5, −T1T5T8 + T2T6),
X2 ∩ V (T8, T10) = V (T10, T8, T3T5, T2T6),
X2 ∩ V (T9, T10) = V (T10, T9, T3T5 + T7T8, −T1T5T8 + T2T6)
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are all of dimension six as can be seen by computations. By Theorem 4.2.6, the
Cox ring and degree matrix of the surface X2 = Bl Fa(? ? ? ? vii) are

R(X2) = K[T1, . . . , T10]
/〈 T1T5T8 − T2T6 − T9T10,

T a2 T
a−1
6 T10T4 − T3T5 − T7T8

〉
,

1 0 0 0 0 0 1 −1 0 0
0 1 0 0 0 0 −1 1 a + 1 −a
0 0 1 0 0 0 1 0 −1 1
0 0 0 1 0 0 0 0 1 −1
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 −1 1 a −a + 1

 .
We now show that we have performed a blow up. Since we have an isomorphism
from

K[T1, . . . , T9] / I ′, I ′ := 〈T4, T9, h2, T7T8 + T3T5〉

to the integral domain K[T1, . . . , T10]/(I2+〈T10〉) the ideal I ′ is prime. Consider Cox
coordinates z := (1, 1, 1, 0, 1, 1,−1, 1, 0) ∈ K9 for ι(q3) ∈ X ′1. Then z ∈ V (K9; I ′)
and dim(V (K9; I ′)) = 5 by a computation. Using Lemma 5.2.15, we see that
the performed modification was the desired blow up. To show that X2 is not a
K∗-surface we claim that the graph of exceptional curves GX2 is as follows. The
assertion then follows from Lemma 5.4.12.

T1

T4T2

T5

T6

T8

T9 T10

T3

T7

It suffices to prove the existence of the subgraph induced by the vertices Ti with
i ∈ {1, 2, 4, 5, 8, 10}. By Remark 5.3.7 and the fact that V (T10) is the exceptional
divisor of the last blow up, we know that the curves corresponding to the vertices
are negative. The existence of the edges, i.e., the fact that the curves meet, is
directly seen from the blow up sequence of X2 as explained above.
We come to the fourth and fifth configurations. Let λ ∈ K∗ \ {1}. For the following
points q4 and q5 ∈ X1 we have

π2,1 ◦ ι−1
1 ◦ π3(q4) = [0, 1, 1, λ] ∈ Fa, q4 := [0, 1, 1, λ, 1, 1, λ− 1, 1],

π2,1 ◦ ι−1
1 ◦ π3(q5) = [0, 1, 1, 0] ∈ Fa, q5 := [0, 1, 1, 0, 1, 1,−1, 1].

The point q4 exists by Lemma 5.2.16 whereas for q5 we iteratively use Lemma 5.4.5
and Lemma 5.2.16. The blow ups of X1 in q4 and of X1 in q5 will admit again
a K∗-action by Lemma 5.4.11; for q4 this is due to the fact that V (X1; T1) is a
parabolic fixed point curve.
For the sixth configuration, let κ ∈ K∗. In X1, the point q6 := [1, 0, 1, κ, 1, 1,−1, 1]
exists by Lemma 5.2.16 and projects to [0, 1, 1, κ] ∈ Fa under π2,1 ◦ ι−1

1 ◦π3. We will
perfom the blow up X1 in q6 by steps similar to before but we will only show finite
generation of the Cox ring for a > 15. This is done by carrying out Algorithm 4.5.15
in a formal way. Consider the embedding

ι2 : K8 → K10, z 7→ (z, h2(z), h3(z)),
h2 := T a1 T4T

a
5 T

a−1
8 + κT6T7, h3 := T a1 T4T

a−1
5 T a8 − κT3T6

with hi ∈ K[T1, . . . , T8]. Let Q1 be the degree matrix of R(X1). We obtain a new
degree matrix Q′1 and a matrix P ′1 whose columns are generators for the rays of the
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fan Σ′1 of Z ′1:

Q′1 =

Q1

1 0
1 −1

2a− 3 2
2 0

2a− 2 1

 , P ′1 =

 1 a− 1 0 1 0 0 −a + 1 1 −1 a− 1
0 a 0 1 0 0 −a −1 0 a− 1
0 0 1 0 0 0 −1 0 −1 1
0 0 0 0 1 0 0 −1 1 −1
0 0 0 0 0 1 1 0 0 −1

 .
For the blow up of X ′1 in ι2(q6) = [1, 0, 1, κ, 1, 1,−1, 1, 0, 0] we consider the stellar
subdivision of Σ′1 at the vector v := (2a − 3, 2a − 1, 0, 0,−1) ∈ Z5. Write P2 for
the enlarged matrix [P ′1, v]. The extension I ′2 ⊆ K[T1, . . . , T10, T

±1
11 ] of the vanishing

ideal of X2 ⊆ K11 is generated by

g1 := p?2 (p1)? (T7T8 − h1) = T7T8 − T a2 T4T
a−1
6 T a11 + T3T5,

g2 := p?2 (p1)? (T9 − h2) = T9T11 − T a1 T4T
a
5 T

a−1
8 − κT6T7,

g3 := p?2 (p1)? (T10 − h3) = T10T11 − T a1 T4T
a−1
5 T a8 + κT3T6.

The next step is to compute the saturated ideal I ′2 : T∞11 ⊆ K[T1, . . . , T11]. We claim
that it is given by

I ′2 : (T1 · · ·T11)∞ = 〈g1, g2, g3,

− κT a2 T4T
a
6 T

a−1
11 + T8T9 − T5T10,

T a1 T
a
2 T

2
4 T

a−1
5 T a−1

6 T a−1
8 T a−1

11 − T3T9 − T7T10〉
=: I2

For 3 ≤ a ≤ 15 we verified algorithmically that this equality holds. Moreover, we
checked that the ideal

I2 + 〈T11〉 = 〈T11, − T a1 T4T
a
5 T

a−1
8 − κT6T7, −T a1 T4T

a−1
5 T a8 + κT3T6,

T7T8 + T3T5, T8T9 − T5T10, T3T9 + T7T10〉

in K[T1, . . . , T10] is saturated with respect to T1 · · ·T10 for a ≤ 15. Since the expo-
nent matrix as in Lemma 5.3.3 0 0 −1 0 −1 0 1 1 0 0 0

a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0
0 0 0 0 −1 0 0 1 1 −1 0
0 0 1 0 0 0 −1 0 1 −1 0


has a Smith normal form of shape [E5, 0] with the 5×5 unit matrix E5 Remark 5.4.14
tells us that T11 is a prime element for 3 ≤ a ≤ 15. We will later compute
dim(V (Ti, Tj) ∩ X2) for all i 6= j. This will show that no two variables divide
one another and are pairwise non-associated. Thus, the Cox ring of the performed
modification is K[T1, . . . , T11]/I2 for 3 ≤ a ≤ 15 with its degree matrix as listed in
the table. We now show that we did perform the desired blow up. The factor ring
K[T1, . . . , T10]/I ′ where

I ′ := 〈T2, T9, T10, h2, h3, T7T8 − h1〉
= 〈T2, T9, T10, T7T8 + T3T5, −T a1 T4T

a
5 T

a−1
8 − κT6T7,

−T a1 T4T
a−1
5 T a8 + κT3T6〉

is isomorphic to the integral domain K[T1, . . . , T11]/(I2 + 〈T11〉). Thus, I ′ is prime.
Given Cox coordinates

z := (1, 0, 1, κ, 1, 1,−1, 1, 0, 0) ∈ K11 for ι2(q6) ∈ X ′1

we have z ∈ V (K10; I ′). By a computation, dimV (K10; I ′) = 5 and an application
of Lemma 5.2.15 shows that the performed modification was the claimed blow up.
We now show that R(X) is finitely generated for any a ≥ 3 using Algorithm 4.5.15
in a formal way. To this end, we first have to show that T11 defines a prime element
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in the ring K[T±1
1 , . . . , T±1

10 , T11]/I2. Consider the ideal

J := 〈−T a1 T4T
a
5 T

a−1
8 − κT6T7, −T a1 T4T

a−1
5 T a8 + κT3T6,

T7T8 + T3T5, T8T9 − T5T10, T3T9 + T7T10〉
⊆ K[T1, . . . , T10]

obtained from I2 + 〈T11〉 ⊆ K[T1, . . . , T11] by removing the monomial generator T11.
Using the fifth and third generator, in the Laurent polynomial ring K[T±1

1 , . . . , T±1
10 ],

we substitute

T10 = −T3T9

T7
, T7 = −T3T5

T8

into the other generators of J and obtain in K[T±1
1 , . . . , T±1

10 ] the ideal

J ′ :=
〈
T5
(
−T a1 T4T

a−1
5 T a8 + κT3T6

)
, −T a1 T4T

a−1
5 T a8 + κT3T6,

T10 + T3T9

T7
, T7 + T3T5

T8

〉
=
〈
−T a1 T4T

a−1
5 T a8 + κT3T6, T10 + T3T9

T7
, T7 + T3T5

T8

〉
.

Then J ′ ⊆ K[T±1
1 , . . . , T±1

10 ] is a prime ideal if f := −T a1 T4T
a−1
5 T a8 + κT3T6 is a

prime element in K[T±1
i ; i 6∈ {7, 10}] since

K
[
T±1

1 , . . . , T±1
10
]
/ J ′ ∼= K

[
T±1
i ; i 6∈ {7, 10}

]
/ 〈f〉.

By Lemma 4.3.5, f ∈ K
[
T±1
i ; i 6∈ {7, 10}

]
, is a prime element because 〈f〉 is sat-

urated with respect to the product over all variables and defines a prime ideal in
K[Ti; i 6∈ {7, 10}] by Lemma 5.2.17. In turn, this shows that T11 defines a prime
element in K[T±1

1 , . . . , T±1
10 , T11]/I2. The next step in Algorithm 4.5.15 is to show

that

dim
(
X2 ∩ V

(
K11; Ti, Tj

))
≤ dim

(
X2
)
− 2 for all i 6= j.

The dimension of V (T11; I ′2) = V (T11; I2) is at least eight as it is defined by three
equations. Therefore, V

(
K11; I2

)
is of at least eight-dimensional and it suffices to

show that the dimension of X2 ∩ V
(
K11; Ti, Tj

)
is at most six for all i < j. For

i = 1 and j = 2, the variety

X2 ∩ V (T1, T2) = V (T1, T2, T3T5 + T7T8, −κT6T7 + T9T11,

− κT3T6 − T11T10, T8T9 − T5T10, T3T9 + T7T10)

in K11 is of dimension six by a computer check. For i = 1 and j = 3, we decompose
the vanishing set

X2 ∩ V (T1, T3) = V (T1, T3, T
a
2 T4T

a
11T

a−1
6 − T7T8, κT6T7 − T9T11,

T11T10, T7T10, −κT a2 T4T
a
6 T

a−1
11 + T8T9 − T5T10)

= V (T1, T3, T7, T11, T8T9 − T5T10) ∪
V (T1, T3, T10, T

a
2 T4T

a
11T

a−1
6 − T7T8,

κT6T7 − T9T11, −κT a2 T4T
a
6 T

a−1
11 + T8T9)

in K11 into two components. The first one clearly is of dimension six. For the
second component, we consider the matrix with the exponent vectors of the three
occurring binomials as its rows[

0 a 0 1 0 a− 1 −1 −1 0 0 a
0 0 0 0 0 1 1 0 −1 0 −1
0 a 0 1 0 a 0 −1 −1 0 a− 1

]
,
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which is of rank two. By Lemma 5.3.3, the component is of dimension six on
T11 · (0, 1, 0, 1, . . . , 1, 0, 1). Note that also on the smaller tori the dimension is at
most six; e.g., for T11 · (0, 0, 0, 1, . . . , 1, 0, 1) we receive the variety

V (T1, T2, T3, T10, T7T8, κT6T7 − T9T11, T8T9) ⊆ K11

of dimension five. The remaining dimension arguments are similar. We restrict
ourselves to listing the vanishing sets and the exponent matrices of Lemma 5.3.3
for components with unclear dimension.

i, j X2 ∩ V (Ti, Tj) dimension argument (some components)

1, 4
V (T1, T4, −T3T5 − T7T8,
κT6T7 − T9T11,
−κT3T6 − T11T10,

T8T9 − T5T10,
−T3T9 − T7T10)
Method: computation.

1, 5
V (T1, T5, κT6T7 − T9T11,

Ta2 T4Ta11T
a−1
6 − T7T8,

−κT3T6 − T11T10,

−κTa2 T4Ta6 T
a−1
11 + T8T9,

−T3T9 − T7T10) 0 a 0 1 0 a− 1 −1 −1 0 0 a
0 0 0 0 0 1 1 0 −1 0 −1
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 0 a 0 −1 −1 0 a− 1
0 0 1 0 0 0 −1 0 1 −1 0



1, 6
V (T1, T6, T9T11, T11T10,
−T3T5 − T7T8,

T8T9 − T5T10,
−T3T9 − T7T10)
Method: computation.

1, 7
V (T1, T7, T9,
−κT3T6 − T11T10,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κTa2 T4Ta6 T
a−1
11 − T5T10)

∪ V (T1, T7, T3, T11,
T8T9 − T5T10)[

0 a −1 1 −1 a− 1 0 0 0 0 a
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1

]

1, 8
V (T1, T8, κT6T7 − T9T11,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κTa2 T4Ta6 T
a−1
11 − T5T10,

−κT3T6 − T11T10,
−T3T9 − T7T10) 0 a −1 1 −1 a− 1 0 0 0 0 a

0 0 0 0 0 1 1 0 −1 0 −1
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1
0 0 1 0 0 0 −1 0 1 −1 0



1, 9
V (T1, T9, T7, −κT3T6 − T11T10,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κTa2 T4Ta6 T
a−1
11 − T5T10)

∪ V (T1, T9, T6, T10,
−T3T5 − T7T8)[

0 a −1 1 −1 a− 1 0 0 0 0 a
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1

]

1, 10
V (T1, T10, T3, κT6T7 − T9T11,

Ta2 T4Ta11T
a−1
6 − T7T8,

−κTa2 T4Ta6 T
a−1
11 + T8T9)

∪ V (T1, T10, T6, T9,
−T3T5 − T7T8)[

0 a 0 1 0 a− 1 −1 −1 0 0 a
0 0 0 0 0 1 1 0 −1 0 −1
0 a 0 1 0 a 0 −1 −1 0 a− 1

]
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1, 11
V (T1, T11, T6T7, T3T6,
T3T5 + T7T8,

T8T9 − T5T10,
T3T9 + T7T10)
Method: computation.

2, 3
V (T2, T3, T7, T8T9 − T5T10,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10)

∪ V (T2, T3, T8, T10,
T9T11 − κT6T7)[

a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 0 0 0 −1 0 0 1 1 −1 0

]

2, 4
V (T2, T4, −T3T5 − T7T8,
κT6T7 − T9T11,
−κT3T6 − T11T10,

T8T9 − T5T10,
−T3T9 − T7T10)
Method: computation.

2, 5
V (T2, T5, T7T8,
κT6T7 − T9T11,
−κT3T6 − T11T10,

T8T9, −T3T9 − T7T10)
Method: computation.

2, 6
V (T2, T6, T8T9 − T5T10,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10,

−T3T5 − T7T8,
−T3T9 − T7T10) 0 0 1 0 1 0 −1 −1 0 0 0

a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 0 0 0 −1 0 0 1 1 −1 0
0 0 1 0 0 0 −1 0 1 −1 0



2, 7
V (T2, T7, T3, T8T9 − T5T10,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10)

∪ V (T2, T7, T5, T9,
−κT3T6 − T11T10)[

a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 0 0 0 −1 0 0 1 1 −1 0

]

2, 8
V (T2, T8, T3T5,
κT6T7 − T9T11,
−κT3T6 − T11T10,

T5T10, −T3T9 − T7T10)
Method: computation.

2, 9
V (T2, T9, T10, −T3T5 − T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − κT3T6)

∪ V (T2, T9, T5, T7,
−κT3T6 − T11T10)[

0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0

]

2, 10
V (T2, T10, T9, −T3T5 − T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − κT3T6)

∪ V (T2, T10, T8, T3,
−κT6T7 − T9T11,

Ta1 T4T
a−1
5 Ta8 )[

0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0

]
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2, 11
V (T2, T11, −T3T5 − T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

T8T9 − T5T10,

Ta1 T4T
a−1
5 Ta8 − κT3T6,

−T3T9 − T7T10) 0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0
0 0 0 0 −1 0 0 1 1 −1 0
0 0 1 0 0 0 −1 0 1 −1 0



3, 4 V (T3, T4, T7T8, T7T10,
T11T10, κT6T7 − T9T11,

T8T9 − T5T10)
Method: computation.

3, 5
V (T3, T5, T10,
κT6T7 − T9T11,

Ta2 T4Ta11T
a−1
6 − T7T8,

−κTa2 T4Ta6 T
a−1
11 + T8T9)

∪ V (T3, T5, T7,
T11, T8T9)[

0 a 0 1 0 a− 1 −1 −1 0 0 a
0 0 0 0 0 1 1 0 −1 0 −1
0 a 0 1 0 a 0 −1 −1 0 a− 1

]

3, 6
V (T3, T6, T7, T8T9 − T5T10,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10)

∪ V (T3, T6, T8, T10, T9T11)[
0 0 0 0 −1 0 0 1 1 −1 0
a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1

]

3, 7 V (T3, T7, T2T4T11T6,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10,

T8T9 − T5T10)[
a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 0 0 0 −1 0 0 1 1 −1 0

]

3, 8 V (T3, T8, T10, T2T4T11T6,
−κT6T7 + T9T11)

∪ V (T3, T8, T7, T11, T5)
Method: computation.

3, 9

V (T9, T3,

Ta2 T4Ta11T
a−1
6 − T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − T11T10,

−κTa2 T4Ta6 T
a−1
11 − T5T10,

Ta1 T
a
2 T

2
4 T

a−1
5 Ta−1

6 Ta−1
8 Ta−1

11
−T7T10) 0 a 0 1 0 a− 1 −1 −1 0 0 a

a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1
a a 0 2 a− 1 a− 1 −1 a− 1 0 −1 a− 1



3, 10 V (T10, T3, T1T4T5T8,
−κT6T7 + T9T11,

Ta2 T4Ta11T
a−1
6 − T7T8,

−κTa2 T4Ta6 T
a−1
11 + T8T9)[

0 0 0 0 0 1 1 0 −1 0 −1
0 a 0 1 0 a− 1 −1 −1 0 0 a
0 a 0 1 0 a 0 −1 −1 0 a− 1

]

3, 11 V (T11, T3, T7, T1T4T5T8,
T8T9 − T5T10)

∪ V (T11, T3, T8, T10, T6)
Method: computation.

4, 5
V (T5, T4, T7T8, T8T9,
−κT6T7 + T9T11,

−κT3T6 − T11T10,
−T3T9 − T7T10)
Method: computation.
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4, 6
V (T6, T4, T9T11, T11T10,
T3T5 + T7T8,

T8T9 − T5T10,
T3T9 − T7T10)
Method: computation.

4, 7
V (T7, T4, T3T5, T9T11,
T3T9, −κT3T6 − T11T10,

T8T9 − T5T10)
Method: computation.

4, 8
V (T8, T4, T3T5,
T5T10, −κT6T7 + T9T11,

−κT3T6 − T11T10,
−T3T9 − T7T10)
Method: computation.

4, 9 V (T9, T4, T6T7, T5T10,
T7T10, T3T5 + T7T8,

−κT3T6 − T11T10)
Method: computation.

4, 10 V (T10, T4, T3T9, T8T9,
T3T6, −T3T5 − T7T8,

κT6T7 − T9T11)
Method: computation.

4, 11
V (T11, T4, T6T7, T3T6,
T3T5 + T7T8,

T8T9 − T5T10,
T3T9 + T7T10)
Method: computation.

5, 6 V (T6, T5, T7T8, T9T11,
T11T10, T8T9,

T3T9 + T7T10)
Method: computation.

5, 7
V (T7, T5, T3T9,
T9T11, T8T9,

T2T4T6T11,
−κT3T6 − T11T10)
Method: computation.

5, 8
V (T8, T5, T2T4T6T11,
−κT6T7 + T9T11,

−κT3T6 − T11T10,
T3T9 + T7T10)
Method: computation.

5, 9
V (T9, T5, T6T7,
T7T10, T7T8,

T2T4T6T11,
−κT3T6 − T11T10)
Method: computation.

5, 10 V (T10, T5, T3T9, T3T6,

Ta2 T4Ta11T
a−1
6 − T7T8,

−κT6T7 + T9T11,

−κTa2 T4Ta6 T
a−1
11 + T8T9)[

0 a 0 1 0 a− 1 −1 −1 0 0 a
0 0 0 0 0 1 1 0 −1 0 −1
0 a 0 1 0 a 0 −1 −1 0 a− 1

]

5, 11 V (T11, T5, T7T8,
T6T7, T3T6, T8T9,

T3T9 − T7T10)
Method: computation.
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6, 7 V (T7, T6, T3T5, T3T9,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − T11T10,

T8T9 − T5T10)[
a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 0 1 a− 1 0 0 a 0 −1 −1
0 0 0 0 −1 0 0 1 1 −1 0

]

6, 8 V (T8, T6, T3T5,
T9T11, T11T10,

T5T10, T3T9 − T7T10)
Method: computation.

6, 9 V (T9, T6, T5T10,
T1T4T5T8, T11T10,

T7T10, T3T5 + T7T8, )
Method: computation.

6, 10 V (T10, T6, T3T5 + T7T8,
T9T11, T1T4T5T8,

T8T9, T3T9)
Method: computation.

6, 11
V (T11, T6, T1T4T5T8,
T3T5 + T7T8,

T8T9 − T5T10,
T3T9 + T7T10)
Method: computation.

7, 8 V (T8, T7, T9T11, T3T9,
−κT3T6 − T11T10,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κTa2 T4Ta6 T
a−1
11 − T5T10)[

0 a −1 1 −1 a− 1 0 0 0 0 a
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1

]

7, 9 V (T9, T7, T1T4T5T8,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κT3T6 − T11T10,

−κTa2 T4Ta6 T
a−1
11 − T5T10)[

0 a −1 1 −1 a− 1 0 0 0 0 a
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1

]

7, 10

V (T10, T7,

Ta2 T4Ta11T
a−1
6 − T3T5,

Ta1 T4Ta5 T
a−1
8 − T9T11,

Ta1 T4T
a−1
5 Ta8 − κT3T6,

−κTa2 T4Ta6 T
a−1
11 + T8T9,

Ta1 T
a
2 T

2
4 T

a−1
5 Ta−1

6 Ta−1
8 Ta−1

11
−T3T9) 0 a −1 1 −1 a− 1 0 0 0 0 a

a 0 0 1 a 0 0 a− 1 −1 0 −1
a 0 −1 1 a− 1 −1 0 a 0 0 0
0 a 0 1 0 a 0 −1 −1 0 a− 1
a a −1 2 a− 1 a− 1 0 a− 1 −1 0 a− 1



7, 11
V (T11, T7, T3T5,
T3T9, T3T6,

T1T4T5T8,
T8T9 − T5T10)
Method: computation.

8, 9 V (T9, T8, T7T10, T6T7,

Ta2 T4Ta11T
a−1
6 − T3T5,

−κT3T6 − T11T10,

−κTa2 T4Ta6 T
a−1
11 − T5T10)[

0 a −1 1 −1 a− 1 0 0 0 0 a
0 0 1 0 0 1 0 0 0 −1 −1
0 a 0 1 −1 a 0 0 0 −1 a− 1

]

8, 10 V (T10, T8, T3T9,
T3T6, T2T4T6T11,

T3T5, −κT6T7 + T9T11)
Method: computation.
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8, 11 V (T11, T8, T3T5, T6T7,
T3T6, T5T10,

T3T9 − T7T10)
Method: computation.

9, 10 V (T10, T9, T2T4T6T11,
T3T5 + T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − κT3T6)[

0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0

]

9, 11 V (T11, T9, T7T10,
T5T10, T3T5 + T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − κT3T6)[

0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0

]

10, 11 V (T11, T10, T3T9,
T8T9, T3T5 + T7T8,

Ta1 T4Ta5 T
a−1
8 + κT6T7,

Ta1 T4T
a−1
5 Ta8 − κT3T6)[

0 0 1 0 1 0 −1 −1 0 0 0
a 0 0 1 a −1 −1 a− 1 0 0 0
a 0 −1 1 a− 1 −1 0 a 0 0 0

]

Thus, by Algorithm 4.5.15, the surfaceX2 is a Mori dream surface and the statement
about its Cox ring holds. The fact that it does not admit a K∗-action can be seen
from its graph GX2 of exceptional curves

T1

T2
T4

T5

T6

T8

T11
T3

T7

T9

T10

where the subgraph induced by the vertices Ti with i ∈ {1, 2, 4, 5, 6, 8, 11} exists
by the blow up sequence, compare Remark 5.3.7. By Lemma 5.4.12, the surface
cannot be a K∗-surface because sink and source, marked black, meet in the common
negative curve V (X2; T4).
(XII) Blow ups of X1 := Bl Fa(? ? ? ix). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

X1
π3 // Bl Fa(? ? v)′ Bl Fa(? ? v)

π2 //ι2oo Bl Fa(? i)′ Bl Fa(? i)
π1 //ι1oo Fa

where the embeddings ιi are as in Setting 4.2.9 with

ι1 : K5 → K6, z 7→ (z, h1(z)), h1 := T a2 T4 − T3T5,

ι2 : K7 → K8, z 7→ (z, h2(z)), h2 := (λ− 1)T a2 T4 − λT6T7

where λ ∈ K∗ \ {1} and the blow ups πi are

π3([z]) = [z1z9, z2, . . . , z7, z8z9],
π2([z]) = [z1z7, z2, . . . , z5, z6z7], π1([z]) = [z1z5, z2, z3z5, z4].

The exceptional divisors of the first, second and third blow up are

V (X1; T5), V (X1; T7), V (X1; T9).
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On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2)

The first configuration has already been dealt with in part (XI) of this proof. For
the second configuration, we choose the point

q2 := [0, 1, 1, µ, 1, µ− 1, 1, λ− µ, 1] ∈ X1, µ ∈ K∗ \ {1, λ}.

It exists by Lemma 5.2.16 and π1 ◦ ι−1
1 ◦ π2 ◦ ι−1

2 ◦ π3(q2) equals [0, 1, 1, µ] ∈ Fa.
Since V (X1; T1) is a parabolic fixed point curve, the blow up of X1 in q2 will admit
a K∗-action, see Lemma 5.4.11. The blow ups of the third and fourth configurations
are blow ups of X1 in the points

q3 := [1, 0, 1, 0, 1,−1, 1, λ, 1], q4 := [0, 1, 1, 0, 1,−1, 1, λ, 1] ∈ X1

which project to the respective points [1, 0, 1, 0] and [0, 1, 1, 0] ∈ Fa under π1 ◦ ι−1
1 ◦

π2 ◦ ι−1
2 ◦ π3. Both points exist by an iterated application of Lemma 5.4.5 and

Lemma 5.2.16. By Lemma 5.4.11, both the blow up of X1 in q3 and the blow up of
X1 in q4 will admit non-trivial K∗-actions.
The last configuration means blowing up X1 in a point in the exceptional divisor
V (X1; T5). Since it can also be obtained as the blow up of Bl Fa(?2 ? iv) or
Bl Fa(?2 ? viii) in the respective divisor V (T1) we will treat this case in parts
(XIII) and (XIV ) of this proof.
(XIII) Blow ups of X1 := Bl Fa(?2 ? iv). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

(2)

X1
π3 // Bl Fa(?2 i)′ Bl Fa(?2 i)

π2 //ι1oo Bl Fa(? i)
π1 // Fa

where the embedding ι1 is as in Setting 4.2.9 with

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T a2 T4 − T3T5T
2
6

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are given by

π3([z]) = [z1z8, z2, . . . , z6, z7z8],
π2([z]) = [z1, z2, z3z6, z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].

The exceptional divisors of the first, second and third blow up are

V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) (2) (2) (2) (3) (2)
(2)

For the first configuration, we choose in X1 the point q1 := [0, 1, 1, λ, 1, 1, λ − 1, 1]
with λ ∈ K∗ \ {1}. It exists by Lemma 5.2.16 and satisfies

π1 ◦ π2 ◦ ι−1
1 ◦ π3(q1) = [0, 1, 1, λ] ∈ Fa.

Since V (X1; T1) is a parabolic fixed point curve the blow up of X1 in q1 will admit
a K∗-action, see Lemma 5.4.11. For the second, third and fourth configurations, we
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blow up the points
q2 := [1, 0, 0, 1, 1, 1, 0, 1], q3 := [1, 0, 1, 0, 1, 1,−1, 1]

q4 := [0, 1, 1, 0, 1, 1,−1, 1] ∈ X1

which project to [1, 0, 0, 1], [1, 0, 1, 0] and [0, 1, 1, 0] ∈ Fa under π1 ◦ π2 ◦ ι−1
1 ◦ π3.

A stepwise application of Lemma 5.4.5 and Lemma 5.2.16 shows that all points
exist. By Lemma 5.4.11, all three surfaces will be K∗-surfaces.
For the fifth configuration, we want to blow up a point in the union of the exceptional
divisors V (X1; T5) and V (X1; T6). By Remark 5.3.5, it suffices to consider the
points

q5 := [1, 1, 1, 1, 0, 1, 1, 1], q′5 := [1, 1, 1, 1, 1, 0, 1, 1] ∈ X1

both of which exist by Lemma 5.2.16. We first blow up X1 in q5. The steps are
as before, compare Remark 5.2.1. Choose in K[T1, . . . , T8] the polynomial h2 :=
T1T

a−1
2 T4T8 − T3T6 for the embedding ι2 : K8 → K9. Let Q1 be the degree matrix

of R(X1). We have a new degree matrix Q′1 and a matrix P ′1 whose columns are
generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
−1
−1

1
1

 , P ′1 =
[

1 a− 1 0 1 0 0 0 1 −1
0 a 0 1 0 0 −1 −1 0
0 0 1 0 0 1 0 0 −1
0 0 0 0 1 1 −1 −1 1

]
.

For the blow up of X ′1 in ι(q5) = [1, 1, 1, 1, 0, 1, 1, 1, 0] we stellarly subdivide Σ′1
at the vector v := (−1, 0,−1, 2). Write P2 := [P ′1, v]. The vanishing ideal I2 ⊆
K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T
2
6 − T7T8) = T a2 T4 − T3T5T

2
6 T10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T8 + T3T6.

We show that I2 is prime. In particular, I2 is saturated with respect to T10. The
grading is pointed by Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x8x9 6= 0 or x7x10 6= 0

}
⊆ X2 = V

(
K10; I2

)
.

Inspecting the indices i = 1, 2 and j = 7, 10 or i = 1, 2 and j = 8, 9 respectively
we see that the rank of the Jacobian matrix (∂gi/∂Tj)i,j(u) is two for all u ∈ U .
Furthermore, X2 \ U is contained in the union of the 8-dimensional subspaces

V
(
K10; T8, T7

)
, V

(
K10; T8, T10

)
, V

(
K10; T9, T7

)
, V

(
K10; T9, T10

)
.

We claim that in K10 each of the following intersections is of dimension six.
X2 ∩ V (T8, T7) = V (T8, T7, T

a
2 T4 − T3T5T

2
6 T10, T9T10 + T3T6),

X2 ∩ V (T8, T10) = V (T8, T10, T2T4, T3T6),
X2 ∩ V (T9, T7) = V (T9, T7, T

a
2 T4 − T3T5T

2
6 T10, T1T

a−1
2 T4T8 − T3T6),

X2 ∩ V (T9, T10) = V (T9, T10, T
a
2 T4 − T7T8, T1T

a−1
2 T4T8 − T3T6).

The second one is clearly of dimension six whereas for the others, as in Lemma 5.3.3,
we consider the exponent matrices[

0 a −1 1 −1 −2 0 0 0 −1
0 0 1 0 0 1 0 0 −1 −1

]
,[

0 a −1 1 −1 −2 0 0 0 −1
1 a− 1 −1 1 0 −1 0 1 0 0

]
,[

0 a 0 1 0 0 −1 −1 0 0
1 a− 1 −1 1 0 −1 0 1 0 0

]
all of which are of rank two. Thus, on the respective tori, the dimension is six by
Lemma 5.3.3. One directly checks that the dimension is at most six on the smaller
tori. Therefore, dim(X2 \ U) ≤ 6 and, since X2 is of dimension at least eight, the
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codimension of X2 \U in X2 is at least two. By Lemma 5.4.3, the ideal I2 is prime.
Consider the ideals

I2 + 〈T10〉 = 〈T10, T
a
2 T4 − T7T8, T1T

a−1
2 T4T8 − T3T6〉 ⊆ K[T1, . . . , T10],

I0 := 〈T a2 T4 − T6T7, T1T
a−1
2 T4T7 − T3T5〉 ⊆ K[T1, . . . , T7].

Then the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2, i.e., I2 +
〈T10〉 is prime, if and only if I0 is a prime ideal in K[T1, . . . , T7]. The matrix
consisting of the exponents of the binomial generators[

0 a 0 1 0 −1 −1
1 a− 1 −1 1 −1 0 1

]
has a Smith normal form of shape [E2, 0, . . . , 0] where E2 is the 2× 2 unit matrix.
Hence, the ideal 〈I0〉 ⊆ K[T±1

1 , . . . , T±1
7 ] is prime, compare [37]. By Remark 5.4.14,

I0 is prime if I0 = I0 : T1 · · ·T∞7 . To this end we first prove that

G := {f1, f2, f3}
:= {T1T6T

2
7 − T2T3T5, T

a
2 T4 − T6T7, T1T

a−1
2 T4T7 − T3T5}

is a Gröbner basis for I0 with respect to any degree reverse lexicographical ordering
with T1 > . . . > Ti−1 > Ti+1 > . . . > T7 > Ti for a 1 ≤ i ≤ 7. First, observe that
we have I0 = 〈G〉 since f2 and f3 are the generators of I0 and f1 = −T1T7f2 +T2f3.
The S-polynomials are

S(f1, f2) = − T a+1
2 T3T4T5 + T1T

2
6 T

3
7 ,

S(f1, f3) = − T a2 T3T4T5 + T3T5T6T7,

S(f2, f3) = − T1T6T
2
7 + T2T3T5.

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

S(f1, f2) = T6T7f1 − T2T3T5f2, S(f1, f3) = −T3T5f2, S(f1, f4) = −f1.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Gröbner basis for I0
with respect to the chosen orderings. By [90, Lem. 12.1], we know that{

f

T
ki(f)
i

; f ∈ G
}

= G, ki(f) := max
(
n ∈ Z≥0; Tni | f

)
is a Gröbner basis for I0 : T∞i . In particular, I0 = I0 : T∞i for each 1 ≤ i ≤ 7. As
in [90, p. 114], the claim follows from

I0 : (T1 · · ·T7)∞ = ((· · · (I0 : T∞1 ) · · · ) : T∞7 ) = I0.

Moreover, no two variables Ti, Tj are associated since deg(Ti) 6= deg(Tj) for all
i 6= j and we have T10 - Ti for all i < 10 since

X2 ∩ V (T1, T10) = V (T10, T1, T3T6, T
a
2 T4 − T7T8),

X2 ∩ V (T2, T10) = V (T10, T2, T7T8, T3T6),
X2 ∩ V (T3, T10) = V (T10, T3, T

a
2 T4 − T7T8, T1T

a−1
2 T4T8),

X2 ∩ V (T4, T10) = V (T10, T4, T7T8, T3T6),
X2 ∩ V (T5, T10) = V (T10, T5, T

a
2 T4 − T7T8, T1T

a−1
2 T4T8 − T3T6),

X2 ∩ V (T6, T10) = V (T10, T6, T
a
2 T4 − T7T8, T1T2T4T8),

X2 ∩ V (T7, T10) = V (T10, T7, T2T4, T3T6)

are all of dimension six; this can be seen as in the dimension computations of
X2 ∩V (T8, T10) and X2 ∩V (T9, T10) above. By Theorem 4.2.6, R2 is the Cox ring
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of the performed modification with its degree matrix as listed in the table. We now
show that we performed the desired blow up. The ideal

I ′ := 〈T5, T9, h2, h1 − T7T8〉
= 〈T5, T9, T

a
2 T4 − T7T8, T1T

a−1
2 T4T8 − T3T6〉 ⊆ K[T1, . . . , T9]

is a prime ideal since the ring K[T1, . . . , T9]/I ′ is isomorphic to the integral domain
K[T1, . . . , T10]/(I2 + 〈T10〉). Given Cox coordinates z := (1, 1, 1, 1, 0, 1, 1, 1, 0) ∈ K9

for the point ι(q5) ∈ X ′1 we have z ∈ V (K9; I ′) and by the previous dimension
arguments

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T5, T10)

)
= 5.

An application of Lemma 5.2.15 shows that the performed modification was the
claimed blow up. The Cox ring and degree matrix of the resulting surface X2 =
Bl Fa(?3 ? i) are listed in the table. We claim that its graph of exceptional curves
GX2 is as follows. By Lemma 5.4.12, X2 then cannot be a K∗-surface.

T1

T5T4

T6

T8

T10

T2 T3

T7

T9

It suffices to prove the existence of the subgraph induced by the vertices Ti with i ∈
{1, 4, 5, 6, 8, 10}. By Remark 5.3.7 and the fact that V (X2; T10) is the exceptional
divisor of the last blow up, we know that the curves V (X2; Ti) are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the
blow up sequence of X2.
We now blow up X1 in q′5 = [1, 1, 1, 1, 1, 0, 1, 1] by the same steps. Choose in
K[T1, . . . , T8] the polynomial h2 := T 2

1 T
a−2
2 T4T5T

2
8 −T3 for the embedding ι2 : K8 →

K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix Q′1 and
a matrix P ′1, whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
−1
−2

1
1

 , P ′1 =
[

1 a− 1 0 1 0 −1 0 1 −1
0 a 0 1 0 0 −1 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 1 2 −1 −1 1

]
.

For the blow up of X ′1 in the point ι(q′5) = [1, 1, 1, 1, 1, 0, 1, 1, 0] we determine the
stellar subdivision of Σ′1 at v := (−2, 0,−1, 3) ∈ Z4 and write P2 := [P ′1, v]. The
vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T
2
6 − T7T8) = T a2 T4 − T3T5T

2
6 T

2
10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T 2
1 T

a−2
2 T4T5T

2
8 + T3.

We show that I2 is saturated with respect to T10 by showing that I2 is prime. By
Lemma 5.4.4, the ideal I2 is prime if the ideal

I ′2 := 〈T a2 T3 − T 2
9 T

2
4 T

2
5 T

2
1 T

a−2
2 T3T

2
7 + T 3

9 T4T
2
5 T8 − T6T7〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T3 = −g2 + T3 in g1 and relabeling all Ti with i > 3
by Ti−1 is prime. The latter follows from Lemma 5.2.17. In similar manner, by
Lemma 5.4.4, the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2
since the ideal

I ′2 + 〈T9〉 = 〈T9, T
a
2 T3 − T6T7〉 ⊆ K[T1, . . . , T9]

is prime by Lemma 5.2.17. Moreover, no two variables Ti, Tj are associated since
deg(Ti) 6= deg(Tj) for all i 6= j. Also, T10 - Ti for all i < 10: the dimension of each
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zero set

X2 ∩ V (T1, T10) = V (T10, T3, T1, T
a
2 T4 − T7T8),

X2 ∩ V (T2, T10) = V (T10, T3, T2, T7T8),
X2 ∩ V (T3, T10) = V (T10, T3, T

a
2 T4 − T7T8, T1T2T4T5T8),

X2 ∩ V (T4, T10) = V (T10, T4, T3, T7T8),
X2 ∩ V (T5, T10) = V (T10, T5, T3, T

a
2 T4 − T7T8),

X2 ∩ V (T6, T10) = V (T10, T6, T
a
2 T4 − T7T8, −T 2

1 T
a−2
2 T4T5T

2
8 + T3),

X2 ∩ V (T7, T10) = V (T10, T7, T2T4, T3),
X2 ∩ V (T8, T10) = V (T10, T8, T3, T2T4),
X2 ∩ V (T9, T10) = V (T10, T9, T

a
2 T4 − T7T8, −T 2

1 T
a−2
2 T4T5T

2
8 + T3)

is six. In the parameter-free cases this can be seen by computations whereas other-
wise, Lemma 5.3.3 is used. By Theorem 4.2.6, R2 is the Cox ring of the performed
modification with a Gale dual matrix of P2 as degree matrix. We now show that
we have performed the desired blow up. The ideal

I ′ := 〈T6, T9, h2, h1 − T7T8〉
= 〈T6, T9, T

a
2 T4 − T7T8, −T 2

1 T
a−2
2 T4T5T

2
8 + T3〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 0, 1, 1, 1, 0) ∈ K9 be Cox
coordinates for ι(q′5) ∈ X ′1. Then z ∈ V (K9; I ′) and by the previous computations

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T6, T10)

)
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. As all
requirements for Algorithm 4.3.3 are fulfilled we may eliminate the equation T3 =
g2 +T3 from I2. We obtain the Cox ring R′2 := K[T1, . . . , T9]/I ′2 describing the blow
up of X ′1 in ι(q′5) with the degree matrix Q′2 given by

Q′2 =

 1 1 −a 0 0 0 0 0 0
1 0 0 −2 1 0 0 0 0
−1 0 1 1 0 1 0 0 0
−2 0 1 1 0 0 1 0 0

1 0 0 −1 0 0 0 1 0
2 0 0 −3 0 0 0 0 1

 .
Observe that the surface X2 is a K∗-surface. Its Cox ring R(X2) = R′2 is isomorphic
to the Cox ring of a K∗-surface Y given by

R(Y ) = K[T1, . . . , T9] / 〈T a2 T3 + T 3
9 T4T

2
5 T8 − T6T7〉

with the same degree matrix Q′2. Using Lemma 5.1.5, the isomorphism R(Y ) →
R(X2) is induced by the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T6 + T 2

9 T
2
4 T

2
5 T

2
1 T

a−2
2 T3T7, i = 6,

Ti, else.

We come to the blow up of the last configuration. This is the blow up of X1 in a
point in the last exceptional divisor, i.e., V (X1; T8). By Remark 5.3.5, it suffices to
consider the point q6 := [1, 1, 1, 1, 1, 1, 1, 0] ∈ X1. As before, choose in K[T1, . . . , T8]
the polynomial h2 := T1T

a−1
2 T4T5T6 − T7 for the embedding ι2 : K8 → K9. Let Q1

be the degree matrix of R(X1). We have a new degree matrix Q′1 and a matrix P ′1
whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
0
1
0

 , P ′1 =
[

1 a− 1 0 1 1 1 0 0 −1
0 a 0 1 0 0 0 −1 −1
0 0 1 0 1 2 0 −1 −1
0 0 0 0 0 0 1 0 −1

]
.
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For the blow up of ι2(q6) = [1, 1, 1, 1, 1, 1, 1, 0, 0] ∈ X ′1, we determine the stellar
subdivision of Σ′1 at the vector v := (−1,−2,−2,−1) ∈ Z4 and write P2 := [P ′1, v].
The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T
2
6 − T7T8) = T a2 T4 − T3T5T

2
6 − T7T8T10,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T5T6 + T7.

We show that I2 is prime. In particular, I2 then is saturated with respect to T10.
By Lemma 5.4.4, the ideal I2 is prime if the ideal

I ′2 := 〈T a2 T4 − T3T5T
2
6 − T7T9T1T

a−1
2 T4T5T6 + T7T

2
9 T8〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T7 = −g2 + T7 in g1 and relabeling all Ti with i > 7
by Ti−1 is prime. The latter follows from Lemma 5.2.17. By the same reasoning,
making again use of Lemma 5.4.4, the variable T10 defines a prime element in
R2 = K[T1, . . . , T10]/I2 since

I ′2 + 〈T9〉 = 〈T9, T
a
2 T4 − T3T5T

2
6 〉 ⊆ K[T1, . . . , T9].

is prime by Lemma 5.2.17. Moreover, no two variables Ti, Tj are associated because
their degrees deg(Ti), deg(Tj) are different for all i 6= j. Also, T10 - Ti for all i < 10:
the dimensions of all intersections

X2 ∩ V (T1, T10) = V (T10, T7, T1, T
a
2 T4 − T3T5T

2
6 ),

X2 ∩ V (T2, T10) = V (T10, T7, T2, T3T5T6),
X2 ∩ V (T3, T10) = V (T10, T3, T2T4, T7),
X2 ∩ V (T4, T10) = V (T10, T7, T4, T3T5T6),
X2 ∩ V (T5, T10) = V (T10, T7, T5, T2T4),
X2 ∩ V (T6, T10) = V (T10, T7, T6, T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T

a
2 T4 − T3T5T

2
6 , T1T2T4T5T6),

X2 ∩ V (T8, T10) = V (T10, T8, T
a
2 T4 − T3T5T

2
6 , −T1T

a−1
2 T4T5T6 + T7),

X2 ∩ V (T9, T10) = V (T10, T9, T
a
2 T4 − T3T5T

2
6 , −T1T

a−1
2 T4T5T6 + T7)

are six. This is done by computations or with Lemmas 5.3.3 and 5.4.4 By The-
orem 4.2.6, R2 = K[T1, . . . , T10]/I2 is the Cox ring of the performed modification
with a Gale dual matrix of P2 as degree matrix. We now show that we performed
the desired blow up. The ideal

I ′ := 〈T8, T9, h2, h1 − T7T8〉
= 〈T8, T9, T

a
2 T4 − T3T5T

2
6 , T1T

a−1
2 T4T5T6 − T7〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 1, 1, 1, 0, 0) ∈ K9 be Cox
coordinates for ι(q6) ∈ X ′1. Then z ∈ V (K9; I ′) and, as g2 is a fake relation, we
have

dim
(
V
(
K9; I ′

))
= −1 + dim

(
V
(
K9; T8, T9, T

a
2 T4 − T3T5T

2
6
))

= 5.
By Lemma 5.2.15, the performed modification was the claimed blow up. By Algo-
rithm 4.3.3 we are allowed to remove the redundant equation T7 = −g2 +T7. Hence,
the Cox ring of the blow up X2 of X1 in q6 is R(X2) = K[T1, . . . , T9]/I ′2. Its degree
matrix is given by removing the seventh column of a Gale dual matrix of P2. Note
that at the moment we are uncertain whether X2 is a K∗-surface or not.
(XIV) Blow ups of X1 := Bl Fa(?2 ? viii). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

(2)
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X1
π3 // Bl Fa(?2 ii)′ Bl Fa(?2 ii)

π2 //ι1oo Bl Fa(? i)
π1 // Fa

where the embedding ι1 is as in Setting 4.2.9 with
ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T a2 T4 − T3T5T6

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are given by
π3([z]) = [z1z8, z2, . . . , z6, z7z8],

π2([z]) = [z1z6, z2, . . . , z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].
The exceptional divisors of the first, second and third blow up are

V (X1; T5), V (X1; T6), V (X1; T8).
On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) (2) (2) (2) (3) (2)
(2)

For the first configuration, we choose the point q1 := [0, 1, 1, λ, 1, 1, λ − 1, 1] in X1
where λ ∈ K∗ \ {1}. It exists by Lemma 5.2.16 and satisfies

π1 ◦ π2 ◦ ι−1
1 ◦ π3(q1) = [0, 1, 1, λ] ∈ Fa.

Since V (X1; T1) is a parabolic fixed point curve the blow up of X1 in q1 will admit
a K∗-action, see Lemma 5.4.11. For the configurations two, three and four we want
to blow up the points

[1, 0, 0, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1,−1, 1], [0, 1, 1, 0, 1, 1,−1, 1] ∈ X1,

which project to [1, 0, 0, 1], [1, 0, 1, 0] and [0, 1, 1, 0] ∈ Fa under π1 ◦ π2 ◦ ι−1
1 ◦ π3

respectively. By an iterative application of Lemma 5.4.5 and Lemma 5.2.16, we see
that all points exist. By Lemma 5.4.11, all three surfaces will be K∗-surfaces.
For the fifth configuration, we want to blow up a point in the union of the exceptional
divisors V (X1; T5) and V (X1; T6). By Remark 5.3.5 it suffices to consider the points

q5 := [1, 1, 1, 1, 0, 1, 1, 1], q′5 := [1, 1, 1, 1, 1, 0, 1, 1] ∈ X1

both of which exist by Lemma 5.2.16. We first blow up X1 in q5. Choose the
polynomial h2 := T1T

a−1
2 T4T6T8 − T3 ∈ K[T1, . . . , T8] for the embedding ι2 : K8 →

K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix Q′1 and
a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
1
0
0

 , P ′1 =
[

1 a− 1 0 1 0 1 0 1 −1
0 a 0 1 0 0 −1 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 1 1 −1 −1 1

]
.

For the blow up of ι(q5) = [1, 1, 1, 1, 0, 1, 1, 1, 0] ∈ X ′1 we determine the stellar
subdivision Σ2 → Σ′1 at v := (−1, 0,−1, 2) ∈ Z4 and write P2 := [P ′1, v]. The
vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T6 − T7T8) = T a2 T4 − T3T5T6T10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T6T8 + T3.

We show that I2 is prime. In particular, I2 is saturated with respect to T10. By
Lemma 5.4.4, the ideal I2 is prime if the ideal

I ′2 := 〈T a2 T3 − T9T4T
2
5 T1T

a−1
2 T3T7 + T 2

9 T4T5T8 − T6T7〉 ⊆ K[T1, . . . , T9]
obtained by substitution of T3 = −g2 + T3 in g1 and replacing all Ti with Ti−1 if
i > 3 is prime. The latter follows from Lemma 5.2.17. By the same reasoning,
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using Lemmas 5.4.4 and 5.2.17, the variable T10 defines a prime element in R2 =
K[T1, . . . , T10]/I2 since we have a prime ideal

I ′2 + 〈T9〉 = 〈T9, T
a
2 T3 − T6T7〉 ⊆ K[T1, . . . , T9].

Moreover, no two variables Ti, Tj are associated since their degrees deg(Ti), deg(Tj)
are different for all i 6= j. Also, T10 - Ti for all i < 10: each of the intersections

X2 ∩ V (T1, T10) = V (T10, T1, T3, T
a
2 T4 − T7T8),

X2 ∩ V (T2, T10) = V (T10, T2, T3, T7T8),
X2 ∩ V (T3, T10) = V (T10, T3, T

a
2 T4 − T7T8, T1T2T4T6T8),

X2 ∩ V (T4, T10) = V (T10, T4, T3, T7T8),
X2 ∩ V (T5, T10) = V (T10, T5, T

a
2 T4 − T7T8, −T1T

a−1
2 T4T6T8 + T3),

X2 ∩ V (T6, T10) = V (T10, T6, T3, T
a
2 T4 − T7T8),

X2 ∩ V (T7, T10) = V (T10, T7, T2T4, −T1T
a−1
2 T4T6T8 + T3),

X2 ∩ V (T8, T10) = V (T10, T8, T3, T2T4),
X2 ∩ V (T9, T10) = V (T10, T9, T

a
2 T4 − T7T8, −T1T

a−1
2 T4T6T8 + T3)

is six-dimensional. This can be seen directly or with Lemma 5.4.4. By Theo-
rem 4.2.6, R2 is the Cox ring of the performed modification with a Gale dual matrix
of P2 as degree matrix. We now show that we have performed the desired blow up.
The ideal

I ′ := 〈T5, T9, h2, h1 − T7T8〉
= 〈T5, T9, T

a
2 T4 − T7T8, T1T

a−1
2 T4T6T8 − T3〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 0, 1, 1, 1, 0) ∈ K9 be Cox
coordinates for ι(q5) ∈ X ′1. Then z ∈ V (K9; I ′) and, as above, we have

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T5, T10)

)
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. Using
Algorithm 4.3.3, we eliminate the equation T3 = −g2 + T3 and obtain the Cox ring
R′2 := K[T1, . . . , T9]/I ′2 of the blow up of X1 in q5. Its degree matrix Q′2 is given by
removing the third column of a Gale dual matrix of P2, i.e.,

Q′2 =

 1 0 0 0 0 1 −1 0 0
0 1 0 0 0 2a− 1 −a + 1 −a a
0 0 0 0 0 −1 1 2 −1
0 0 1 0 0 2 −1 −1 1
0 0 0 1 0 0 0 1 −1
0 0 0 0 1 1 −1 1 −1

 .
Observe that the blow up X2 is isomorphic to a K∗-surface Y since its Cox ring
R(X2) = R′2 is isomorphic to

R(Y ) := K[T1, . . . , T9] / 〈T a2 T3 + T 2
9 T4T5T8 − T6T7〉

with the same degree matrix Q′2, compare Lemma 5.1.5. The isomorphism R(Y )→
R(X2) is induced by the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T6 + T9T4T

2
5 T1T

a−1
2 T3, i = 6,

Ti, else.

We now blow up X1 in q′5 by similar steps. Choose in K[T1, . . . , T8] the polynomial
h2 := T1T

a−1
2 T4T7T

2
8 −T 2

3 T5 for the embedding ι2 : K8 → K9. Let Q1 be the degree
matrix of R(X1). We have a new degree matrix Q′1 and a matrix P ′1 whose columns
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are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
2
0
1

 , P ′1 =
[

1 a− 1 0 1 0 0 1 2 −1
0 a 0 1 0 0 −1 −1 0
0 0 1 0 0 −1 1 1 −1
0 0 0 0 1 2 −2 −2 1

]
.

For the blow up of X ′1 in ι(q′5) = [1, 1, 1, 1, 1, 0, 1, 1, 0] we determine the stellar
subdivision of Σ′1 at v := (−1, 0,−2, 3) ∈ Z4 and write P2 := [P ′1, v]. The vanishing
ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T6 − T7T8) = T a2 T4 − T3T5T6T10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T7T

2
8 + T 2

3 T5.

We show that I2 = I2 : T∞10 by showing that I2 is prime. The grading is pointed by
Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x2x4x7x8 6= 0 or x3x5x10 6= 0

}
⊆ X2 = V

(
K10; I2

)
.

Inspecting the entries with indices i = 1, 2 and j = 1, 7 as well as i = 1, 2 and
j = 6, 9, we see that the rank of the Jacobian matrix (∂gi/∂Tj)i,j(u) is two for
all u ∈ U . Furthermore, X2 \ U is contained in the union of the 8-dimensional
subspaces

V
(
K10; T2, T3

)
, V

(
K10; T2, T5

)
, V

(
K10; T2, T10

)
, V

(
K10; T4, T3

)
,

V
(
K10; T4, T5

)
, V

(
K10; T4, T10

)
, V

(
K10; T7, T3

)
, V

(
K10; T7, T5

)
,

V
(
K10; T7, T10

)
, V

(
K10; T8, T3

)
, V

(
K10; T8, T5

)
, V

(
K10; T8, T10

)
.

We directly see that each of the following intersections is of dimension six.

X2 ∩ V (T2, T3) = V (T3, T2, T9T10, T7T8),
X2 ∩ V (T2, T5) = V (T5, T2, T9T10, T7T8),
X2 ∩ V (T2, T10) = V (T10, T2, T7T8, T3T5),
X2 ∩ V (T4, T3) = V (T4, T3, T9T10, T7T8),
X2 ∩ V (T4, T5) = V (T5, T4, T9T10, T7T8),
X2 ∩ V (T4, T10) = V (T10, T4, T7T8, T3T5),
X2 ∩ V (T7, T3) = V (T7, T3, T9T10, T2T4),
X2 ∩ V (T7, T5) = V (T7, T5, T9T10, T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T3T5, T2T4),
X2 ∩ V (T8, T3) = V (T8, T3, T9T10, T2T4),
X2 ∩ V (T8, T5) = V (T8, T5, T9T10, T2T4),
X2 ∩ V (T8, T10) = V (T10, T8, T3T5, T2T4).

Therefore, dim(X2 \ U) ≤ 6 and, since X2 is of dimension at least eight, the
codimension of X2 \U in X2 is at least two. By Lemma 5.4.3, the ideal I2 is prime.
We now show that the variable T10 defines a prime element inR2 = K[T1, . . . , T10]/I2
by showing that the ideal

I2 + 〈T10〉 = 〈T10, T
a
2 T4 − T7T8, T1T

a−1
2 T4T7T

2
8 − T 2

3 T5〉 ⊆ K[T1, . . . , T10]

is a prime ideal. Since K[T1, . . . , T10]/(I2 + 〈T10〉) is isomorphic to K[T1, . . . , T7]/I0
this is equivalent to

I0 := 〈T a2 T4 − T6T7, T1T
a−1
2 T4T6T

2
7 − T 2

3 T5〉 ⊆ K[T1, . . . , T7]

being prime. By a computation, we verified the cases 3 ≤ a ≤ 4. Let a ≥ 5. The
ideal 〈I0〉 ⊆ K[T±1

1 , . . . , T±1
7 ] is prime since the matrix consisting of the exponents
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of the binomial generators[
0 a 0 1 0 −1 −1
1 a− 1 −2 1 −1 1 2

]
has a Smith normal form of shape [E2, 0, . . . , 0] where E2 is the 2× 2 unit matrix,
compare [37]. By Remark 5.4.14, I0 is prime if I0 = I0 : (T1 · · ·T7)∞. To this end,
we first show that

G := {f1, f2, f3}
:=

{
T1T

2
6 T

3
7 − T2T5T

2
3 , T

a
2 T4 − T6T7, T1T

a−1
2 T4T6T

2
7 − T5T

2
3
}

is a Gröbner basis for I0 with respect to any degree reverse lexicographical ordering
with T1 > . . . > Ti−1 > Ti+1 > . . . > T7 > Ti for a 1 ≤ i ≤ 7. Since f2, f3 are the
generators of I0 and f1 = −T1T6T

2
7 f2 +T2f3, we have 〈G〉 = I0. The S-polynomials

are

S(f1, f2) = −T a+1
2 T 2

3 T4T5 + T1T
3
6 T

4
7 ,

S(f1, f3) = −T a2 T 2
3 T4T5 + T 2

3 T5T6T7,

S(f2, f3) = −T1T
2
6 T

3
7 + T2T5T

2
3 .

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

S(f1, f2) = T6T7f1 − T2T
2
3 T5f2, S(f1, f3) = −T 2

3 T5f2, S(f2, f3) = −f1.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Gröbner basis for I0
with respect to each of the chosen orderings. From [90, Lem. 12.1], we infer that{

f

T
ki(f)
i

; f ∈ G
}

= G, ki(f) := max
(
n ∈ Z≥0; Tni | f

)
is a Gröbner basis for I0 : T∞i for each 1 ≤ i ≤ 7, i.e., we have I0 = I0 : T∞i for
each i. As in [90, p. 114], the claim follows from

I0 : T1 · · ·T∞7 = ((· · · (I0 : T∞1 ) · · · ) : T∞7 ) = I0.

Furthermore, no two variables Ti, Tj are associated since deg(Ti) 6= deg(Tj) for all
i 6= j and T10 - Ti for all i < 10: each of the intersections

X2 ∩ V (T1, T10) = V (T10, T1, T3T5, T
a
2 T4 − T7T8),

X2 ∩ V (T3, T10) = V (T10, T3, T
a
2 T4 − T7T8, T1T2T4T7T8),

X2 ∩ V (T5, T10) = V (T10, T5, T
a
2 T4 − T7T8, T1T2T4T7T8),

X2 ∩ V (T6, T10) = V (T10, T6, T
a
2 T4 − T7T8, T1T

a−1
2 T4T7T

2
8 − T 2

3 T5),
X2 ∩ V (T9, T10) = V (T10, T9, T

a
2 T4 − T7T8, T1T

a−1
2 T4T7T

2
8 − T 2

3 T5)

is six-dimensional; here, one uses Lemma 5.3.3. The missing cases have been treated
before. By Theorem 4.2.6, R2 is the Cox ring of the performed modification with
its degree matrix as listed in the table. Observe that we performed the desired blow
up. The factor ring K[T1, . . . , T9]/I ′ where

I ′ := 〈T6, T9, h2, h1 − T7T8〉
= 〈T6, T9, T

a
2 T4 − T7T8, T1T

a−1
2 T4T7T

2
8 − T 2

3 T5〉 ⊆ K[T1, . . . , T9]

is isomorphic to the integral domain K[T1, . . . , T10]/(I2 + 〈T10〉). Hence, the ideal
I ′ is prime. Let z := (1, 1, 1, 1, 1, 0, 1, 1, 0) ∈ K9 be Cox coordinates for ι(q′5) ∈ X ′1.
Then z ∈ V (K9; I ′) and by the previous dimension computations

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T6, T10)

)
= 5.

The performed modification then was the claimed blow up, see Lemma 5.2.15. The
Cox ring and degree matrix of the resulting surface X2 = Bl Fa(?3 ? ii) are listed
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in the table of Theorem 5.4.1. We claim that the graph of exceptional curves GX2

is

T1

T6T4

T5

T8

T10

T2 T3

T7

T9

By Lemma 5.4.12, X2 then cannot be a K∗-surface. It suffices to prove the ex-
istence of the subgraph induced by the vertices Ti with i ∈ {1, 4, 5, 6, 8, 10}. By
Remark 5.3.7 and the fact that V (X2; T10) is the exceptional divisor of the last
blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges is directly seen from the blow up sequence.
We come to the last configuration. Here, we want to blow up a point in the last
exceptional divisor V (X1; T8). By Remark 5.3.5, it suffices to consider the point
q6 := [1, 1, 1, 1, 1, 1, 1, 0] ∈ X1. Similar to before, we choose in K[T1, . . . , T8] the
polynomial h2 := T1T

a−1
2 T4T5T

2
6 − T7 for the embedding ι2 : K8 → K9. Let Q1 be

the degree matrix of R(X1). We have a new degree matrix Q′1 and a matrix P ′1
whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

1
3a− 1
−2

3
−1

 , P ′1 =
[

1 a− 1 0 1 1 2 0 0 −1
0 a 0 1 0 0 0 −1 −1
0 0 1 0 1 1 0 −1 −1
0 0 0 0 0 0 1 0 −1

]
.

For the blow up of X ′1 in ι(q6) = [1, 1, 1, 1, 1, 1, 1, 0, 0] we determine the stellar
subdivision of Σ′1 at v := (−1,−2,−2,−1) ∈ Z4 and write P2 := [P ′1, v]. The
vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T a2 T4 − T3T5T6 − T7T8) = T a2 T4 − T3T5T6 − T7T8T10,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T5T

2
6 + T7.

We show that I2 is saturated with respect to T10 by proving that I2 is prime. By
Lemma 5.4.4, the latter is the case if the ideal

I ′2 := 〈T a2 T4 − T3T5T6 − T7T9T1T
a−1
2 T4T5T

2
6 + T7T

2
9 T8〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T7 = −g2 + T7 in g1 and replacing all Ti with i > 7
by Ti−1 is prime. By Lemma 5.2.17, this is the case. In a similar manner, using
Lemma 5.4.4, the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2
since

I ′2 + 〈T9〉 = 〈T9, T
a
2 T4 − T3T5T6〉 ⊆ K[T1, . . . , T9]

is prime by Lemma 5.2.17. Moreover, as the degrees deg(Ti) are pairwise different,
no two variables Ti, Tj are associated for i 6= j. Also, T10 - Ti for all i < 10: each
of the intersections

X2 ∩ V (T1, T10) = V (T10, T1, T7, T
a
2 T4 − T3T5T6),

X2 ∩ V (T2, T10) = V (T10, T2, T7, T3T5T6),
X2 ∩ V (T3, T10) = V (T10, T3, T2T4, T7),
X2 ∩ V (T4, T10) = V (T10, T4, T7, T3T5T6),
X2 ∩ V (T5, T10) = V (T10, T5, T7, T2T4),
X2 ∩ V (T6, T10) = V (T10, T6, T7, T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T

a
2 T4 − T3T5T6, T1T2T4T5T6),

X2 ∩ V (T8, T10) = V (T10, T8, T
a
2 T4 − T3T5T6, −T1T

a−1
2 T4T5T

2
6 + T7),
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X2 ∩ V (T9, T10) = V (T10, T9, T
a
2 T4 − T3T5T6, −T1T

a−1
2 T4T5T

2
6 + T7)

is of dimension six; here, Lemma 5.4.4 can be used. By Theorem 4.2.6, R2 is the
Cox ring of the performed modification. Its degree matrix is a Gale dual matrix of
P2. Observe that we performed the desired blow up. The ideal

I ′ := 〈T8, T9, h2, h1 − T7T8〉
= 〈T8, T9, T

a
2 T4 − T3T5T6,−T1T

a−1
2 T4T5T

2
6 + T7〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 1, 1, 1, 0, 0) ∈ K9 be Cox
coordinates for ι(q6) ∈ X ′1. Then z ∈ V (K9; I ′). Moreover, since T7 is linear in g2
we have

dim
(
V
(
K9; I ′

))
= −1 + dim

(
V
(
K9; T8, T9, T

a
2 T4 − T3T5T6

))
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. Using
Algorithm 4.3.3, we substitute the equation T7 = −g2 + T7 into g1. We obtain the
Cox ring R(X2) = K[T1, . . . , T9]/I ′2 of the blow up X2 of X1 in q6. Its degree matrix
Q′2 is given by removing the seventh column of a Gale dual matrix of P2, i.e.,

Q′2 =

 1 0 0 0 0 0 0 2 −1
0 1 0 0 0 a 0 5a− 2 −2a + 1
0 0 1 0 0 −1 0 −4 2
0 0 0 1 0 1 0 5 −2
0 0 0 0 1 −1 0 −2 1
0 0 0 0 0 0 1 1 −1

 .
Observe that X2 is isomorphic to a K∗-surface Y . By Lemma 5.1.5 it suffices to
show that R(X2) is isomorphic to

R(Y ) := K[T1, . . . , T9] / 〈T a2 T4 − T3T5T6 + T7T
2
9 T8〉

where the degree matrix of R(Y ) is again Q′2. The isomorphism R(Y )→ R(X2) is
induced by the graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T3 + T7T9T1T

a−1
2 T4T6, i = 3,

Ti, else.

(XV) Blow ups of X1 := Bl Fa(?3 iv). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

(3)

X1
π3 // Bl Fa(?2 i)′ Bl Fa(?2 i)

π2 //ι1oo Bl Fa(? i)
π1 // Fa

where the embedding ι1 is as in Setting 4.2.9 with

ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T1T
a−1
2 T4 − T3T6

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are given by

π3([z]) = [z1, . . . , z4, z5z8, z6, z7z8],
π2([z]) = [z1, z2, z3z6, z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].

The exceptional divisors of the first, second and third blow up are

V (X1; T5), V (X1; T6), V (X1; T8).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(3) (3) (3) (3) (4)
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The blow ups of the first three configurations are the blow ups of X1 in the points
[1, 0, 0, 1, 1, 1, 0, 1], [0, 1, 1, 0, 1, 1,−1, 1], [1, 0, 1, 0, 1, 1,−1, 1] ∈ X1

which project under π1 ◦ π2 ◦ ι−1
1 ◦ π3 to [1, 0, 0, 1], [0, 1, 1, 0] and [1, 0, 1, 0] ∈ Fa

respectively. Note that all points exist by a stepwise application of Lemmas 5.4.5
and 5.2.16. By Lemma 5.4.11, all three surfaces will be K∗-surfaces.
We come to the fourth configuration. The main steps are as in previous cases. We
want to blow up of X1 in the point
q4 := [0, 1, 1, 1, 1, 1,−1, 1] ∈ X1, π1 ◦ π2 ◦ ι−1

1 ◦ π3(q4) = [0, 1, 1, 1] ∈ Fa.

Note that q4 exists by Lemma 5.2.16. Choose in K[T1, . . . , T8] the polynomial
h2 := T a2 T4 + T5T6T7T

2
8 for the embedding ι2 : K8 → K9. Let Q1 be the degree

matrix of R(X1). We have a new degree matrix Q′1 and a matrix P ′1 whose columns
are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
a
0
1
0

 , P ′1 =
[

1 a− 1 0 1 0 0 −1 −1 0
0 a 0 1 0 0 0 0 −1
0 0 1 0 0 1 −1 −1 0
0 0 0 0 1 1 1 2 −1

]
.

For the blow up of X ′1 in ι(q4) = [0, 1, 1, 1, 1, 1,−1, 1, 0], we determine the stellar
subdivision Σ2 → Σ′1 at v := (1,−1, 0,−1) ∈ Z4. Write P2 := [P ′1, v]. The vanishing
ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T1T
a−1
2 T4 − T3T6 − T7T8) = T1T

a−1
2 T4T10 − T3T6 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T a2 T4 − T5T6T7T
2
8 .

We show that I2 is prime. In particular, I2 is saturated with respect to T10. The
grading is pointed by Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x6x9 6= 0 or x7x10 6= 0

}
⊆ X2 = V

(
K10; I2

)
.

Inspecting the indices i = 1, 2 and j = 3, 10 as well as i = 1, 2 and j = 8, 9
we see that the rank of the Jacobian matrix (∂gi/∂Tj)i,j(u) is two for all u ∈ U .
Furthermore, X2 \ U is contained in the union of the 8-dimensional subspaces

V
(
K10; T6, T7

)
, V

(
K10; T6, T10

)
, V

(
K10; T9, T7

)
, V

(
K10; T9, T10

)
.

Furthermore, each of the following intersections is of dimension six.
X2 ∩ V (T6, T7) = V (T7, T6, T

a
2 T4 − T9T10, T1T2T4T10),

X2 ∩ V (T6, T10) = V (T10, T6, T7T8, T2T4),
X2 ∩ V (T9, T7) = V (T9, T7, T2T4, T3T6),
X2 ∩ V (T9, T10) = V (T10, T9, T3T6 − T7T8, T

a
2 T4 + T5T6T7T

2
8 ).

For X2 ∩ V (T9, T10), we used Lemma 5.3.3 with the exponent matrix[
0 0 1 0 0 1 −1 −1 0 0
0 a 0 1 −1 −1 −1 −2 0 0

]
to see that the dimension is six on T10 · (1, . . . , 1, 0, 0). One directly verifies that the
dimension is at most six on all smaller tori. Therefore, dim(X2 \U) ≤ 6 and, since
X2 is of dimension at least eight, the codimension of X2 \ U in X2 is at least two.
By Lemma 5.4.3, the ideal I2 is prime. We now show that the variable T10 defines
a prime element in R2 = K[T1, . . . , T10]/I2 by proving that

I2 + 〈T10〉 = 〈T10, T3T6 + T7T8, T
a
2 T4 + T5T6T7T

2
8 〉 ⊆ K[T1, . . . , T10]

is a prime ideal. Since K[T1, . . . , T10]/(I2 + 〈T10〉) is isomorphic to K[T1, . . . , T7]/I0
this is equivalent to

I0 := 〈T2T5 + T6T7, T
a
1 T3 + T4T5T6T

2
7 〉 ⊆ K[T1, . . . , T7]
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being prime. By a computation, we verified the cases 3 ≤ a ≤ 4. Assume a ≥ 5. The
ideal 〈I0〉 ⊆ K[T±1

1 , . . . , T±1
7 ] is prime since the matrix consisting of the exponents

of the binomial generators [
0 1 0 0 1 −1 −1
a 0 1 −1 −1 −1 −2

]
has a Smith normal form of shape [E2, 0, . . . , 0] where E2 is the 2× 2 unit matrix,
compare [37]. By Remark 5.4.14, I0 is prime if I0 = I0 : (T1 · · ·T7)∞. To show this,
we first prove that

G := {f1, f2} :=


{
T2T5 + T6T7, T

a
1 T3 + T4T5T6T

2
7

}
, T2T5 > T6T7,{

T6T7 + T5T2, T
a
1 T3 − T4T

2
5 T7T2

}
, T2T5 < T6T7

is a Gröbner basis for I0 with respect to any degree reverse lexicographical ordering
with T1 > . . . > Ti−1 > Ti+1 > . . . > T7 > Ti for any 1 ≤ i ≤ 7. Let g′i be
the generators of I0. In the case T2T5 < T6T7 we have f2 = −T4T5T7g

′
1 + g′2. In

particular, we have 〈G〉 = I0 in both cases. The single S-polynomial is

S(f1, f2) =
{
T a1 T3T6T7 − T2T4T

2
5 T6T

2
7 , T2T5 > T6T7,

T a1 T3T5T2 + T2T4T
2
5 T6T

2
7 , T2T5 < T6T7.

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

S(f1, f2) =
{
−T4T5T6T

2
7 f1 + T6T7f2, T2T5 > T6T7,

T4T
2
5 T7T2f1 + T5T2f2, T2T5 < T6T7.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Gröbner basis for I0
with respect to each of the chosen orderings. By [90, Lem. 12.1], we know that{

f

T
ki(f)
i

; f ∈ G
}

= G, ki(f) := max
(
n ∈ Z≥0; Tni | f

)
is a Gröbner basis for I0 : T∞i for each 1 ≤ i ≤ 7. In particular, I0 = I0 : T∞i for
each i. As in [90, p. 114], the claim follows from

I0 : (T1 · · ·T7)∞ = ((· · · (I0 : T∞1 ) · · · ) : T∞7 ) = I0.

Moreover, no two variables Ti, Tj are associated since deg(Ti) 6= deg(Tj) for all
i 6= j. Also, T10 - Ti for all i < 10 since each of the intersections

X2 ∩ V (T1, T10) = V (T10, T1, T3T6 + T7T8, T
a
2 T4 + T5T6T7T

2
8 ),

X2 ∩ V (T2, T10) = V (T10, T2, T3T6 + T7T8, T5T6T7T8),
X2 ∩ V (T3, T10) = V (T10, T3, T7T8, T2T4),
X2 ∩ V (T4, T10) = V (T10, T4, T3T6 + T7T8, T5T6T7T8),
X2 ∩ V (T5, T10) = V (T10, T5, T3T6 + T7T8, T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T3T6, T2T4),
X2 ∩ V (T8, T10) = V (T10, T8, T3T6, T2T4)

is of dimension six. As in previous cases, this is done by a computer check or using
Lemma 5.3.3. The missing cases have been treated before. By Theorem 4.2.6, R2 is
the Cox ring of the performed modification with a Gale dual matrix of P2 as degree
matrix. Observe that we performed the desired blow up. The ideal

I ′ := 〈T1, T9, h2, h1 − T7T8〉
= 〈T1, T9, T3T6 + T7T8, T

a
2 T4 + T5T6T7T

2
8 〉 ⊆ K[T1, . . . , T9]
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is prime since K[T1, . . . , T9]/I ′ is isomorphic to K[T1, . . . , T10]/(I2 + 〈T10〉) which is
an integral domain. Let z := (0, 1, 1, 1, 1, 1,−1, 1, 0) ∈ K9 be Cox coordinates for
ι(q4) ∈ X ′1. Then z ∈ V (K9; I ′) and

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T1, T10)

)
= 5

by the previous dimension arguments. By Lemma 5.2.15, the performed modifica-
tion was the claimed blow up. The Cox ring and degree matrix of the resulting
surface X2 = Bl Fa(?3 ? iii) are

R(X2) = K[T1, . . . , T10]
/〈

T1T
a−1
2 T4T10 − T3T6 − T7T8,

T a2 T4 + T5T6T7T
2
8 − T9T10

〉
, 1 0 0 0 0 0 0 0 1 −1

0 1 0 0 0 0 −a a 2a− 1 −a + 1
0 0 1 0 0 0 2 −1 −1 1
0 0 0 1 0 0 −1 1 2 −1
0 0 0 0 1 0 1 −1 0 0
0 0 0 0 0 1 3 −2 −1 1

 .
Observe that X2 is not a K∗-surface. To this end, we claim that the graph of
exceptional curves GX2 is as follows. However, note that it suffices to prove the
existence of the subgraph induced by the vertices Ti with i ∈ {1, 4, 5, 6, 8, 10}.

T1

T5T4

T6

T8

T10

T2 T3

T7

T9

By Remark 5.3.7 and the fact that V (X2; T10) is the exceptional divisor of the last
blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the
blow up sequence. By Lemma 5.4.12, X2 cannot be a K∗-surface.
For the fifth configuration, we treat blow ups of X1 in a point in the union of the
exceptional divisors

V (X1; T5) ∪ V (X1; T6) ∪ V (X1; T8).
Note that we do not have to blow up a point in the parabolic fixed point curve
V (X1; T5) by Lemma 5.4.11. By Remark 5.3.5, it suffices to consider the points

q5 := [1, 1, 1, 1, 1, 0, 1, 1], q′5 := [1, 1, 1, 1, 1, 1, 1, 0] ∈ X1.

Lemma 5.2.16 ensures their existence. We first blow up X1 in q5. Choose in
K[T1, . . . , T8] the polynomial h2 := T 2

1 T
a−2
2 T4T5T8−T3 for the embedding ι2 : K8 →

K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix Q′1 and
a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
1
0
0

 , P ′1 =
[

1 a− 1 0 1 0 0 −1 −1 0
0 a 0 1 −1 0 −2 −3 1
0 0 1 0 0 0 0 0 −1
0 0 0 0 0 1 −1 −1 1

]
.

For the blow up of X ′1 in ι(q5) = [1, 1, 1, 1, 1, 0, 1, 1, 0], we determine the stellar
subdivision of Σ′1 at v := (0, 1,−1, 2) ∈ Z4. Write P2 = [P ′1, v]. The vanishing ideal
I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T1T
a−1
2 T4 − T3T6 − T7T8) = T1T

a−1
2 T4 − T3T6T10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T 2
1 T

a−2
2 T4T5T8 + T3.

We show that I2 is saturated with respect to T10 by showing that I2 is prime.
Consider the ideal

I ′2 := 〈T1T
a−1
2 T3 − T9T5T

2
1 T

a−2
2 T3T4T7 + T 2

9 T5T8 − T6T7〉 ⊆ K[T1, . . . , T9]
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obtained by substitution of T3 = −g2 + T3 in g1 and replacing all Ti with Ti−1 if
i > 3. By Lemma 5.2.17, I0 is prime. This implies primality of I2, see Lemma 5.4.4.
Similarly, by Lemma 5.4.4, the variable T10 defines a prime element in R2 =
K[T1, . . . , T10]/I2 since the ideal

I ′2 + 〈T9〉 = 〈T9, T1T
a−1
2 T3 − T6T7〉 ⊆ K[T1, . . . , T9]

is prime by Lemma 5.2.17. Moreover, no two variables Ti, Tj are associated since
deg(Ti) 6= deg(Tj) for all i 6= j. Also, we have T10 - Ti for each i < 10: all
intersections

X2 ∩ V (T1, T10) = V (T10, T1, T3, T7T8),
X2 ∩ V (T2, T10) = V (T10, T2, T3, T7T8),
X2 ∩ V (T3, T10) = V (T10, T3, T1T

a−1
2 T4 − T7T8, T1T2T4T5T8),

X2 ∩ V (T4, T10) = V (T10, T4, T3, T7T8),
X2 ∩ V (T5, T10) = V (T10, T5, T3, T1T

a−1
2 T4 − T7T8),

X2 ∩ V (T6, T10) = V (T10, T6, T1T
a−1
2 T4 − T7T8, −T 2

1 T
a−2
2 T4T5T8 + T3),

X2 ∩ V (T7, T10) = V (T10, T7, T1T2T4, T3),
X2 ∩ V (T8, T10) = V (T10, T8, T3, T1T2T4),
X2 ∩ V (T9, T10) = V (T10, T9, T1T

a−1
2 T4 − T7T8, −T 2

1 T
a−2
2 T4T5T8 + T3)

are six-dimensional; this can be seen using Lemmas 5.4.4 and Lemma 5.3.3. The-
orem 4.2.6 shows that R2 = K[T1, . . . , T10]/I2 is the Cox ring of the performed
modification with a Gale dual matrix of P2 as degree matrix. We now show that
we performed the desired blow up. The ideal

I ′ := 〈T6, T9, h2, h1 − T7T8〉
= 〈T6, T9, T1T

a−1
2 T4 − T7T8, T

2
1 T

a−2
2 T4T5T8 − T3〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 1, 0, 1, 1, 0) ∈ K9 be Cox
coordinates for ι(q5) ∈ X ′1. Then z ∈ V (K9; I ′) and

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T6, T10)

)
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. Using
Algorithm 4.3.3, we eliminate the equation T3 = −g2 + T3 and obtain the graded
ring R′2 := K[T1, . . . , T9]/I ′2 as Cox ring of the blow up X2 of X1 in q5. Its degree
matrix Q′2 is obtained by removing the third column of a Gale dual matrix of P2,
i.e.,

Q′2 =

 1 0 0 0 0 3 −2 −1 1
0 1 0 0 0 2a− 3 −a + 2 −a + 1 a− 1
0 0 0 0 0 −1 1 2 −1
0 0 1 0 0 2 −1 −1 1
0 0 0 1 0 1 −1 0 0
0 0 0 0 1 0 0 1 −1

 .
Note that X2 is isomorphic to a K∗-surface Y . By Lemma 5.1.5 it suffices to show
that R(X2) is isomorphic to

R(Y ) := K[T1, . . . , T9]/〈T1T
a−1
2 T3 + T 2

9 T5T8 − T6T7〉

with the same degree matrix Q′2. The isomorphism R(Y ) → R(X2) is induced by
the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T6 + T9T5T

2
1 T

a−2
2 T3T4, i = 6,

Ti, else.

For the blow up of X1 in q′5 we choose in K[T1, . . . , T8] the polynomial h2 :=
T 2

1 T
a−2
2 T4T5T6 − T7 for the embedding ι2 : K8 → K9. Let Q1 be the degree matrix
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of R(X1). We have a new degree matrix Q′1 and a matrix P ′1 whose columns are
generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

3
2a− 3
−1

2
1

 , P ′1 =
[

1 a− 1 0 1 0 0 0 −1 −1
0 a 0 1 −1 −1 0 −2 −1
0 0 1 0 0 1 0 −1 −1
0 0 0 0 0 0 1 0 −1

]
.

For the blow up of X ′1 in ι(q′5) = [1, 1, 1, 1, 1, 1, 1, 0, 0] we determine the stellar
subdivision Σ2 → Σ′1 at the sum v := (−2,−3,−2,−1) ∈ Z4 of the last two columns
of P ′1. Define P2 := [P ′1, v]. The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is
generated by

g1 := p?2 (p1)? (T1T
a−1
2 T4 − T3T6 − T7T8) = T1T

a−1
2 T4 − T3T6 − T7T8T10,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T 2
1 T

a−2
2 T4T5T6 + T7.

We show that I2 is prime. Note that this implies that I2 is saturated with respect
to T10. Consider the ideal

I ′2 := 〈T1T
a−1
2 T4 − T3T6 − T7T9T

2
1 T

a−2
2 T4T5T6 + T7T

2
9 T8〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T7 = −g2 + T7 in g1 and replacing all Ti with Ti−1 if
i > 7. By Lemma 5.4.4, the ideal I2 is prime if the ideal I ′2 is. The latter follows
from Lemma 5.2.17. Using again Lemma 5.4.4, the variable T10 defines a prime
element in R2 = K[T1, . . . , T10]/I2 since the ideal

I ′2 + 〈T9〉 = 〈T9, T1T
a−1
2 T4 − T3T6〉 ⊆ K[T1, . . . , T9].

is prime, see Lemma 5.2.17. Furthermore, as the degrees deg(Ti) are pairwise
distinct, no two variables Ti, Tj are associated for i 6= j. Also, Ti - T10 for all
i < 10: the vanishing sets

X2 ∩ V (T1, T10) = V (T10, T1, T7, T3T6),
X2 ∩ V (T2, T10) = V (T10, T2, T7, T3T6),
X2 ∩ V (T3, T10) = V (T10, T3, T1T2T4, T7),
X2 ∩ V (T4, T10) = V (T10, T4, T7, T3T6),
X2 ∩ V (T5, T10) = V (T10, T5, T7, T1T

a−1
2 T4 − T3T6),

X2 ∩ V (T6, T10) = V (T10, T6, T7, T1T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T1T

a−1
2 T4 − T3T6, T1T2T4T5T6),

X2 ∩ V (T8, T10) = V (T10, T8, T1T
a−1
2 T4 − T3T6, −T 2

1 T
a−2
2 T4T5T6 + T7),

X2 ∩ V (T9, T10) = V (T10, T9, T1T
a−1
2 T4 − T3T6, −T 2

1 T
a−2
2 T4T5T6 + T7)

are all six-dimensional; this can be seen using Lemmas 5.4.4 and 5.3.3. By The-
orem 4.2.6, R2 = K[T1, . . . , T10]/I2 is the Cox ring of the performed modification
with a Gale dual matrix of P2 as its degree matrix. We now show that we performed
the desired blow up. The ideal

I ′ := 〈T8, T9, h2, h1 − T7T8〉
= 〈T8, T9, T1T

a−1
2 T4 − T3T6, −T 2

1 T
a−2
2 T4T5T6 + T7〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 1, 1, 1, 0, 0) ∈ K9 be Cox
coordinates for ι(q′5) ∈ X ′1. Then z ∈ V (K9; I ′) and

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T9, T10)

)
= 5

where we used the previous dimension computations. By Lemma 5.2.15, the per-
formed modification was the claimed blow up. Using Algorithm 4.3.3, we eliminate
the equation T7 = −g2+T7 and obtain the Z6-graded ring R′2 := K[T1, . . . , T9]/I ′2 as
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Cox ring of the blow up X2 of X1 in q′5. Its degree matrix Q′2 is given by removing
the seventh column of a Gale dual matrix of P2, i.e.,

Q′2 =

 1 0 0 0 0 1 0 5 −2
0 1 0 0 0 a− 1 0 3a− 5 −a + 2
0 0 1 0 0 −1 0 −2 1
0 0 0 1 0 1 0 3 −1
0 0 0 0 1 0 0 2 −1
0 0 0 0 0 0 1 1 −1

 .
We show that X2 is isomorphic to a K∗-surface Y . By Lemma 5.1.5 it suffices to
given an isomorphism between R(X2) and

R(Y ) := K[T1, . . . , T9] / 〈T1T
a−1
2 T4 − T3T6 + T7T

2
9 T8〉

where the degree matrix of R(Y ) is again Q′2. The isomorphism R(Y )→ R(X2) is
induced by the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9], Ti 7→

{
T3 + T7T9T

2
1 T

a−2
2 T4T5, i = 3,

Ti, else.

(XVI) Blow ups of X1 := Bl Fa(?3 ix). Let a ≥ 3. Recall from the proofs of
Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

(3)

X1
π3 // Bl Fa(?2 ii)′ Bl Fa(?2 ii)

π2 //ι1oo Bl Fa(? i)
π1 // Fa

where the embedding ι1 is as in Setting 4.2.9 with
ι1 : K6 → K7, z 7→ (z, h1(z)), h1 := T1T

2a−1
2 T 2

4 − T 2
3 T5

where h1 ∈ K[T1, . . . , T6] and the blow ups πi are
π3([z]) = [z1, . . . , z5, z6z8, z7z8],

π2([z]) = [z1z6, z2, z3, z4, z5z6], π1([z]) = [z1z5, z2, z3z5, z4].
The exceptional divisors of the first, second and third blow up are

V (X1; T5), V (X1; T6), V (X1; T8).
On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(3) (3) (3) (3) (4)

For the first three configurations we blow up X1 in the points
[1, 0, 0, 1, 1, 1, 0, 1], [0, 1, 1, 0, 1, 1,−1, 1], [1, 0, 1, 0, 1, 1,−1, 1] ∈ X1,

which project under π1 ◦ π2 ◦ ι−1
1 ◦ π3 to [1, 0, 0, 1], [0, 1, 1, 0] and [1, 0, 1, 0] ∈ Fa

respectively. By a stepwise application of Lemma 5.4.5 and Lemma 5.2.16, all points
exist. By Lemma 5.4.11, all three surfaces will be K∗-surfaces.
The blow up of the fourth configuration is the blow up of X1 in the point
q4 := [0, 1, 1, 1, 1, 1,−1, 1] ∈ X1, π1 ◦ π2 ◦ ι−1

1 ◦ π3(q4) = [0, 1, 1, 1] ∈ Fa.
Note that q4 exists by Lemma 5.2.16. The main steps are as in previous cases.
Choose in K[T1, . . . , T8] the polynomial h2 := T a2 T4 − T3T5T6T8 for the embedding
ι2 : K8 → K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix
Q′1 and a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
a
0
1
0

 , P ′1 =
[

1 a− 1 0 1 0 0 −1 −1 1
0 a 0 1 0 0 0 0 −1
0 0 1 0 0 −1 −1 −2 1
0 0 0 0 1 2 1 3 −2

]
.
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For the blow up of X ′1 in the point ι(q4) = [0, 1, 1, 1, 1, 1,−1, 1, 0] we determine the
stellar subdivision of Σ′1 at v := (2,−1, 1,−2) ∈ Z4. Define the enlarged matrix
P2 := [P ′1, v]. The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)?
(
T1T

2a−1
2 T 2

4 − T 2
3 T5 − T7T8

)
= T1T

2a−1
2 T 2

4 T10 − T 2
3 T5 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T a2 T4 + T3T5T6T8.

We show that I2 = I2 : T∞10 by proving that I2 is a prime ideal. The grading is
pointed by Remark 4.2.10. Consider the open subset

U :=
{
x ∈ X2; x8x9 6= 0 or x7x10 6= 0

}
⊆ X2 = V

(
K10; I2

)
.

Inspecting the indices i = 1, 2 and j = 7, 10 as well as i = 1, 2 and j = 8, 9 we
see that the rank of the Jacobian matrix (∂gi/∂Tj)i,j(u) is two for all u ∈ U . The
complement X2 \ U is contained in the union of the 8-dimensional subspaces

V
(
K10; T8, T7

)
, V

(
K10; T8, T10

)
, V

(
K10; T9, T7

)
, V

(
K10; T9, T10

)
.

Each of the following intersections is of dimension six

X2 ∩ V (T8, T7) = V (T8, T7, T1T
2a−1
2 T 2

4 T10 − T 2
3 T5, T9T10 − T a2 T4),

X2 ∩ V (T8, T10) = V (T8, T10, T3T5, T2T4),
X2 ∩ V (T9, T7) = V (T9, T7, T1T

2a−1
2 T 2

4 T10 − T 2
3 T5, −T a2 T4 + T3T5T6T8),

X2 ∩ V (T9, T10) = V (T9, T10, −T 2
3 T5 − T7T8, −T a2 T4 + T3T5T6T8).

Note that for the first, third and fourth variety we used Lemma 5.3.3 with the
respective exponent matrices[

1 2a− 1 −2 2 −1 0 0 0 0 1
0 −a 0 −1 0 0 0 0 1 1

]
,[

1 2a− 1 −2 2 −1 0 0 0 0 1
0 a −1 1 −1 −1 0 −1 0 0

]
,[

0 0 2 0 1 0 −1 −1 0 0
0 a −1 1 −1 −1 0 −1 0 0

]
to see that the dimension is six on the respective tori

T10 · (1, . . . , 1, 0, 0, 1, 1), T10 · (1, . . . , 1, 0, 1, 0), T10 · (1, . . . , 1, 0, 0)

and then directly checks that the dimension is at most six on all smaller tori.
Therefore, dim(X2\U) ≤ 6. Since X2 is of dimension at least eight, the codimension
of X2 \ U in X2 is at least two. By Lemma 5.4.3, this shows that I2 is prime. We
now prove that the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2.
Consider the ideals

I2 + 〈T10〉 = 〈T10, −T 2
3 T5 − T7T8, −T a2 T4 + T3T5T6T8〉 ⊆ K[T1, . . . , T10],

I0 := 〈T 2
2 T4 + T6T7, T

a
1 T3 − T2T4T5T7〉 ⊆ K[T1, . . . , T7].

Since K[T1, . . . , T10]/(I2 +〈T10〉) is isomorphic to K[T1, . . . , T7]/I0 it suffices to show
that I0 is prime. The ideal 〈I0〉 ⊆ K[T±1

1 , . . . , T±1
7 ] is prime since the matrix

consisting of the exponents of the binomial generators[
0 2 0 1 0 −1 −1
a −1 1 −1 −1 0 −1

]
has a Smith normal form of shape [E2, 0, . . . , 0] where E2 is the 2× 2 unit matrix,
compare [37]. By Remark 5.4.14, I0 is prime if I0 = I0 : (T1 · · ·T7)∞. In a first step
we show that the set of generators

G := {f1, f2} := {T 2
2 T4 + T6T7, T

a
1 T3 − T2T4T5T7}

already is a Gröbner basis for I0 with respect to the degree reverse lexicographical
ordering for any ordering of the variables of the kind T1 > . . . > Ti−1 > Ti+1 >
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. . . > T7 > Ti with 1 ≤ i ≤ 7. We verified the case 3 ≤ a ≤ 4 by a computer check,
so assume a ≥ 5. The single S-polynomial is

S(f1, f2) = T a1 T3T6T7 + T 3
2 T

2
4 T5T7.

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combination
S(f1, f2) = T2T4T5T7f1 + T6T7f2.

Using the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Gröbner basis for I0
with respect to each of the specified orderings. By [90, Lem. 12.1], we know that{

f

T
ki(f)
i

; f ∈ G
}

= G, ki(f) := max
(
n ∈ Z≥0; Tni | f

)
is a Gröbner basis for I0 : T∞i for each 1 ≤ i ≤ 7. In particular I0 = I0 : T∞i for
each i. As in [90, p. 114], the claim follows from

I0 : T1 · · ·T∞7 = ((· · · (I0 : T∞1 ) · · · ) : T∞7 ) = I0.

We have shown that T10 is prime. Moreover, no two variables Ti, Tj are associated
since deg(Ti) 6= deg(Tj) for i 6= j. Also, observe that T10 - Ti for all i < 10. The
intersections

X2 ∩ V (T1, T10) = V (T10, T1, −T 2
3 T5 − T7T8, −T a2 T4 + T3T5T6T8),

X2 ∩ V (T2, T10) = V (T10, T2, −T 2
3 T5 − T7T8, T3T5T6T8),

X2 ∩ V (T3, T10) = V (T10, T3, T7T8, T2T4),
X2 ∩ V (T4, T10) = V (T10, T4, −T 2

3 T5 − T7T8, T3T5T6T8),
X2 ∩ V (T5, T10) = V (T10, T5, T7T8, T2T4),
X2 ∩ V (T6, T10) = V (T10, T6, −T 2

3 T5 − T7T8, T2T4),
X2 ∩ V (T7, T10) = V (T10, T7, T3T5, T2T4)

are all six-dimensional; as in previous cases, this can be seen by computer checks or
using Lemma 5.3.3. The missing cases have been treated before. By Theorem 4.2.6,
R2 = K[T1, . . . , T10]/I2 is the Cox ring of the performed modification. Its degree
matrix is listed below. We now show that we performed the desired blow up. The
ideal

I ′ := 〈T1, T9, h2, h1 − T7T8〉
= 〈T1, T9, T

2
3 T5 + T7T8, T

a
2 T4 − T3T5T6T8〉 ⊆ K[T1, . . . , T9]

is prime since K[T1, . . . , T9]/I ′ is isomorphic to K[T1, . . . , T10]/(I2 + 〈T10〉) which is
an integral domain. Let z := (0, 1, 1, 1, 1, 1,−1, 1, 0) ∈ K9 be Cox coordinates for
ι(q4) ∈ X ′1. Then z ∈ V (K9; I ′) and

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T1, T10)

)
= 5

by the previous dimension computations. By Lemma 5.2.15, the performed modi-
fication was the claimed blow up. The Cox ring and degree matrix of the resulting
surface X2 = Bl Fa(?3 ? iv) are

R(X2) = K[T1, . . . , T10]
/〈

T1T
2a−1
2 T 2

4 T10 − T 2
3 T5 − T7T8,

T9T10 − T a2 T4 + T3T5T6T8

〉
, 1 0 0 0 0 0 0 0 1 −1

0 1 0 0 0 0 −a a 3a− 1 −2a + 1
0 0 1 0 0 0 3 −1 −2 2
0 0 0 1 0 0 −1 1 3 −2
0 0 0 0 1 0 2 −1 −1 1
0 0 0 0 0 1 1 −1 0 0

 .
We claim that its graph GX2 of exceptional curves is as follows. Note that it
suffices to prove the existence of the subgraph induced by the vertices Ti with
i ∈ {1, 4, 5, 6, 8, 10}.
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T1

T6T4

T5

T8

T10

T2 T3

T7

T9

By Remark 5.3.7 and the fact that V (X2; T10) is the exceptional divisor of the last
blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the
blow up sequence. By Lemma 5.4.12, X2 then cannot be a K∗-surface.
For the fifth configuration we want to blow up a point in the union of the exceptional
divisors

V (X1; T5) ∪ V (X1; T6) ∪ V (X1; T8).

Note that we need not treat blow ups of points on the parabolic fixed point curve
V (X1; T6), see Lemma 5.4.11. Hence, by Remark 5.3.5, it suffices to consider

q5 := [1, 1, 1, 1, 0, 1, 1, 1], q′5 := [1, 1, 1, 1, 1, 1, 1, 0] ∈ X1.

Both points exist by Lemma 5.2.16. We first blow up X1 in q5. Choose in
K[T1, . . . , T8] the polynomial h2 := T1T

a−1
2 T4T6T8−T3 for the embedding ι2 : K8 →

K9. Let Q1 be the degree matrix of R(X1). We have a new degree matrix Q′1 and
a matrix P ′1 whose columns are generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

0
0
1
0
0

 , P ′1 =
[

1 a− 1 0 1 0 1 0 1 −1
0 a 0 1 0 −1 −1 −2 1
0 0 1 0 0 0 0 0 −1
0 0 0 0 1 0 −1 −1 2

]
.

For the blow up of X ′1 in ι(q5) = [1, 1, 1, 1, 0, 1, 1, 1, 0] we perform the stellar subdi-
vision of Σ′1 at v := (−1, 1,−1, 3) ∈ Z4. Define the enlarged matrix P2 := [P ′1, v].
The vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by

g1 := p?2 (p1)? (T1T
2a−1
2 T 2

4 − T 2
3 T5 − T7T8) = T1T

2a−1
2 T 2

4 − T 2
3 T5T10 − T7T8,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T4T6T8 + T3.

We show that I2 is prime. In particular, I2 is saturated with respect to T10. By
Lemma 5.4.4, the ideal I2 is prime if the ideal

I ′2 := 〈T1T
2a−1
2 T 2

3 − T9T4T
2
1 T

2a−2
2 T 2

3 T
2
5 T

2
7

+ 2T 2
9 T4T1T

a−1
2 T3T5T7T8 − T 3

9 T4T
2
8 − T6T7〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T3 = −g2+T3 in g1 and replacing all Ti with Ti−1 if i > 3
is prime. This follows from Lemma 5.2.17. In a similar manner, by Lemma 5.4.4,
the variable T10 defines a prime element in R2 = K[T1, . . . , T10]/I2 since the ideal

I ′2 + 〈T9〉 = 〈T9, T1T
2a−1
2 T 2

3 − T6T7〉 ⊆ K[T1, . . . , T9].

is prime, see Lemma 5.2.17. Moreover, no two variables are associated because the
degrees deg(Ti) ∈ Z6 are pairwise different. Also, Ti - T10 for all i < 10 since the



4. SMOOTH RATIONAL SURFACES WITH %(X) = 6 215

dimension of each of the intersections

X2 ∩ V (T1, T10) = V (T10, T1, T3, T7T8),
X2 ∩ V (T2, T10) = V (T10, T2, T3, T7T8),
X2 ∩ V (T3, T10) = V (T10, T3, T1T

2a−1
2 T 2

4 − T7T8, T1T2T4T6T8),
X2 ∩ V (T4, T10) = V (T10, T4, T3, T7T8),
X2 ∩ V (T5, T10) = V (T10, T5, T1T

a−1
2 T4T6T8 − T3, T1T

2a−1
2 T 2

4 − T7T8),
X2 ∩ V (T6, T10) = V (T10, T6, T3, T1T

2a−1
2 T 2

4 − T7T8),
X2 ∩ V (T7, T10) = V (T10, T7, T3, T1T2T4),
X2 ∩ V (T8, T10) = V (T10, T8, T3, T1T2T4),
X2 ∩ V (T9, T10) = V (T10, T9, T1T

a−1
2 T4T6T8 − T3, T1T

2a−1
2 T 2

4 − T7T8)

is six. This can be seen using Lemma 5.4.4. By Theorem 4.2.6, R2 = K[T1, . . . , T10]/I2
is the Cox ring of the performed modification with a Gale dual matrix of P2 as degree
matrix. We now show that we performed the desired blow up. The ideal

I ′ := 〈T5, T9, h2, h1 − T7T8〉
= 〈T5, T9, T1T

2a−1
2 T 2

4 − T7T8, T1T
a−1
2 T4T6T8 − T3〉 ⊆ K[T1, . . . , T9]

is prime by Lemmas 5.4.4 and 5.2.17. Let z := (1, 1, 1, 1, 0, 1, 1, 1, 0) ∈ K9 be
Cox coordinates for ι(q5) ∈ X ′1. Then z ∈ V (K9; I ′). By the previous dimension
arguments

dim
(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T5, T10)

)
= 5.

Thus, the performed modification was the claimed blow up, see Lemma 5.2.15.
Using Algorithm 4.3.3, we substitute the equation T3 = −g2 + T3 and obtain the
graded ring R′2 := K[T1, . . . , T9]/I ′2 as the Cox ring of the blow up X2 of X1 in q5.
Its degree matrix Q′2 is given by removing the third column of a Gale dual matrix
of P2, i.e.,

Q′2 =

 1 0 0 0 0 2 −1 −1 1
0 1 0 0 0 3a− 2 −a + 1 −2a + 1 2a− 1
0 0 0 0 0 −1 1 3 −2
0 0 1 0 0 3 −1 −2 2
0 0 0 1 0 0 0 1 −1
0 0 0 0 1 1 −1 0 0

 .
Note that the blow up of X1 in q5 is isomorphic to a K∗-surface Y . By Lemma 5.1.5
it suffices to show that R′2 = R(X2) is isomorphic to

R(Y ) := K[T1, . . . , T9] / 〈T1T
2a−1
2 T 2

3 − T 3
9 T4T

2
8 − T6T7〉

with the same degree matrix Q′2. The isomorphism R(Y ) → R(X2) is induced by
the Z6-graded homomorphism

K[T1, . . . , T9] → K[T1, . . . , T9],

Ti 7→

{
T6 + T9T4T

2
1 T

2a−2
2 T 2

3 T
2
5 T7 − 2T 2

9 T4T1T
a−1
2 T3T5T8, i = 6,

Ti, else.

For the blow up X1 in q′5 we choose the polynomial h2 := T1T
a−1
2 T3T4T5T6 − T7

in K[T1, . . . , T8] for the embedding ι2 : K8 → K9. Let Q1 be the degree matrix
of R(X1). We have a new degree matrix Q′1 and a matrix P ′1 whose columns are
generators for the rays of the fan Σ′1 of Z ′1:

Q′1 =

Q1

2
3a− 2
−1

3
1

 , P ′1 =
[

1 a− 1 1 1 1 1 0 0 −1
0 a 1 1 0 −1 0 −2 −1
0 0 2 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1

]
.
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For the blow up of X ′1 in ι(q′5) = [1, 1, 1, 1, 1, 1, 1, 0, 0], we determine the stellar
subdivision Σ2 → Σ′1 at v := (−1,−3,−2,−1) ∈ Z4. Write P2 := [P ′1, v]. The
vanishing ideal I2 ⊆ K[T1, . . . , T10] of X2 is generated by
g1 := p?2 (p1)? (T1T

2a−1
2 T 2

4 − T 2
3 T5 − T7T8) = T1T

2a−1
2 T 2

4 − T 2
3 T5 − T7T8T10,

g2 := p?2 (p1)? (T9 − h2) = T9T10 − T1T
a−1
2 T3T4T5T6 + T7.

We show that I2 is saturated with respect to T10 by showing that I2 is prime.
Consider the ideal
I ′2 := 〈T1T

2a−1
2 T 2

4 − T 2
3 T5 − T1T

a−1
2 T3T4T5T6T7T9 + T7T8T

2
9 〉 ⊆ K[T1, . . . , T9]

obtained by substitution of T7 = −g2 + T7 in g1 and replacing all Ti with Ti−1 for
i > 7. By Lemma 5.4.4, the ideal I2 is prime if I ′2 is prime. The latter follows from
Lemma 5.2.17. In a similar manner, by Lemma 5.4.4, the variable T10 defines a
prime element in R2 = K[T1, . . . , T10]/I2, since the ideal

I ′2 + 〈T9〉 = 〈T9, T1T
2a−1
2 T 2

4 − T 2
3 T5〉 ⊆ K[T1, . . . , T9].

is prime by Lemma 5.2.17. Moreover, no two variables Ti, Tj are associated since
deg(Ti) 6= deg(Tj) for all i 6= j. Also, T10 - Ti for all i < 10 since each of the
intersections
X2 ∩ V (T1, T10) = V (T10, T1, T7, T3T5),
X2 ∩ V (T2, T10) = V (T10, T2, T7, T3T5),
X2 ∩ V (T3, T10) = V (T10, T3, T7, T1T2T4),
X2 ∩ V (T4, T10) = V (T10, T4, T7, T3T5),
X2 ∩ V (T5, T10) = V (T10, T5, T7, T1T2T4),
X2 ∩ V (T6, T10) = V (T10, T6, T7, T1T

2a−1
2 T 2

4 − T 2
3 T5),

X2 ∩ V (T7, T10) = V (T10, T7, T1T
2a−1
2 T 2

4 − T 2
3 T5, T1T2T3T4T5T6),

X2 ∩ V (T8, T10) = V (T10, T8, T1T
2a−1
2 T 2

4 − T 2
3 T5, T1T

a−1
2 T3T4T5T6 − T7),

X2 ∩ V (T9, T10) = V (T10, T9, T1T
2a−1
2 T 2

4 − T 2
3 T5, T1T

a−1
2 T3T4T5T6 − T7)

is six-dimensional; here, Lemma 5.4.4 can be used. By Theorem 4.2.6, R2 =
K[T1, . . . , T10]/I2 is the Cox ring of the performed modification with a Gale dual
matrix of P2 as degree matrix. We now show that we performed the desired blow
up. The ideal

I ′ := 〈T8, T9, h2, h1 − T7T8〉
= 〈T8, T9, T1T

2a−1
2 T 2

4 − T 2
3 T5, −T1T

a−1
2 T3T4T5T6 + T7〉

⊆ K[T1, . . . , T9]
is prime by Lemma 5.4.4 and Lemma 5.2.17. Let z := (1, 1, 1, 1, 1, 1, 1, 0, 0) ∈ K9

be Cox coordinates for ι(q′5) ∈ X ′1. Then z ∈ V (K9; I ′) and
dim

(
V
(
K9; I ′

))
= −1 + dim

(
X2 ∩ V (T9, T10)

)
= 5.

By Lemma 5.2.15, the performed modification was the claimed blow up. Using
Algorithm 4.3.3, we eliminate the equation T7 = −g2 + T7 and obtain the graded
ring R′2 := K[T1, . . . , T9]/I ′2. The Cox ring of the blow up X2 of X1 in q′5 then is
R(X2) = R′2. Its degree matrix is given by removing the seventh column of a Gale
dual matrix of P2. Note that it is not obvious whether X2 is a K∗-surface or not.
Isomorphisms: We now remove redundancies between the found surfaces without
a non-trivial K∗-action. Note that the Cox rings of all surfaces are either listed in
the table of Theorem 5.4.1 or directly when encountered in this proof. To rule out
isomorphisms, we will first apply Proposition 5.4.6 formally to compare the lists Li
of the absolute values of the maximal minors of the respective degree matrices. Note
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that for blow ups of Fa, the Li also could be computed with symbolic parameter
a ∈ Z≥3. For a concise presentation, given integers k, n ∈ Z, we shortly write kn
for the sequence k, . . . , k of n copies of k.

X list of 6× 6 minors
Bl P2(?5 i) 047, 170, 251, 317, 411, 57, 63, 71, 81, 101, 111

Bl P2(?5 ii) 049, 197, 244, 313, 44, 51, 61, 71

Bl P2(?5 iii) 047, 170, 251, 317, 411, 57, 63, 71, 81, 101, 111

Bl P2(?3 ? ? i) 054, 1127, 220, 38, 51

Bl P2(?3 ? ? ii) 0128, 1202, 2100, 328, 44

Bl P2(?3 ? ? iii) 049, 197, 244, 313, 44, 51, 61, 71

Bl P2(?2 ? ? ? i) 0168, 1266, 228

Bl P2(? ? ? ? ? i) 0756, 1920, 240

Bl P2(? ? ? ? ? ii) 03960, 14032, 216

Bl P2(? ? ? ? ? iii) 0168, 1266, 228

Bl P2(?2 ? ? ? iv) 062, 1135, 212, 31

Bl Fa(? ? ? ? vi) 052, 1116, 26, |a− 2|10, | − 3 + a|2, |2a− 1|1, | − 5 + 2a|1, | − 3 + 2a|2,
|a− 1|14, |a|6

Bl Fa(? ? ? ? vii) 052, 1116, 26, |a+ 1|6, |a− 2|2, |a− 1|10, |2a− 1|2, |a|14,

|1 + 2a|1, | − 3 + 2a|1

Bl Fa(? ? ? ? xiii),
††

0124, 1166, 228, |a|64, |2a− 2|8, | − 2 + a|4, |a− 1|32, |2a− 3|4,
| − 4 + 4a|4, |2a− 1|28

Bl Fa(?3 ? i) 047, 189, 217, 37, 51, 3|a|1, 2|a|2, | − 3 + 2a|1, |2a− 1|6, | − 2 + 3a|2,
| − 3 + 5a|1, |a− 2|2, |a|27, |a− 1|7

Bl Fa(?3 ? ii)
047, 168, 230, 311, 42, 51, 61, 71, | − 3 + 7a|1, |2a− 1|6, 3|a|1, | − 3 + 4a|1,
| − 2 + 6a|1, | − 2 + 4a|1, |a− 1|2, 2|a|8, |a|21, | − 2 + 5a|1, |3a− 1|5,
| − 2 + 3a|1

Bl Fa(?3 ? iii) 047, 189, 217, 37, 51, |a|27, |2a− 1|6, | − 3 + 5a|1, 2|a|2, |a− 2|2,
| − 3 + 2a|1, | − 2 + 3a|2, |a− 1|7, 3|a|1

Bl Fa(?3 ? iv)
047, 168, 230, 311, 42, 51, 61, 71, |a− 1|2, | − 2 + 4a|1, |a|21, | − 3 + 7a|1,
3|a|1, |3a− 1|5, |2a− 1|6, | − 2 + 6a|1, | − 2 + 5a|1, 2|a|8, | − 3 + 4a|1,
| − 2 + 3a|1

Bl Fa(?4 i), † 010, 124, 221, 33, 47, |a− 1|1, | − 4 + 4a|1, |4a− 3|2, 2|a|2, |2a− 1|7,
| − 2 + 3a|1, | − 2 + 4a|2, |a|3

Bl Fa(?2 ?2 i), † 010, 135, 215, 32, 42, | − 4 + 4a|1, | − 2 + 3a|2, |2a− 1|1, |a|10,

|a− 1|2, |a− 2|2, 2|a|2

By the second statement of Proposition 5.4.6, only the following isomorphisms are
possible. In fact, all of them turn out to be isomorphisms.

Bl P2(?5 i) → Bl P2(?5 iii), Bl P2(?5 ii) → Bl P2(?3 ? ? iii)
Bl P2(?2 ? ? ? i) → Bl P2(? ? ? ? ? iii), Bl Fa+1(? ? ? ? vi) → Bl Fa(? ? ? ? vii),

Bl Fa(?3 ? i) → Bl Fa(?3 ? iii), Bl Fa(?3 ? ii) → Bl Fa(?3 ? iv).

For the first isomorphism, write X1 := Bl P2(?5 i) and X2 := Bl P2(?5 iii). Recall
from the beginning of this proof the Cox rings R(Xi) and their degree matrices Qi.

Y Cox ring R(Y ) degree matrix

X1

K[T1, . . . , T10]/I1
with I1 generated by
T 2

3 T4 − T1T2 − T6T7T8T10,
T1T 2

2 T3T4T5 − T 2
6 T7 − T9T10


1 0 0 1 0 0 2 0 3 −1
0 1 0 1 0 0 3 0 5 −2
0 0 1 −2 0 0 −1 0 −2 1
0 0 0 0 1 0 1 0 2 −1
0 0 0 0 0 1 −2 0 −1 1
0 0 0 0 0 0 0 1 1 −1


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X2

K[T1, . . . , T10]/I2
with I2 generated by
T1T2T6T8 − T 2

3 T4 − T9T10,
T 2

1 T2 + T7T8 − T 3
3 T

2
4 T5T10


1 0 0 0 0 0 3 −1 −2 2
0 1 0 0 0 0 2 −1 −1 1
0 0 1 0 0 0 −2 2 5 −3
0 0 0 1 0 0 −1 1 3 −2
0 0 0 0 1 0 0 0 1 −1
0 0 0 0 0 1 1 −1 0 0



Write Ii ⊆ K[T1, . . . , T10] for the ideal of relations of R(Xi). Substituting T 2
3 T4 =

T1T2T6T8 − T9T10 into I2 does not change the ideal, i.e.,

I2 = 〈T1T2T6T8 − T 2
3 T4 − T9T10,

T 2
1 T2 + T7T8 − T1T2T3T4T5T6T8T10 + T3T4T5T9T

2
10〉.

The Z6-graded homomorphism

K[T1, . . . , T10] → K[T1, . . . , T10], Ti 7→

{
T7 − T1T2T3T4T5T6T10, i = 7,
Ti, else

induces an isomorphism R′2 → R(X2) of Z6-graded algebras where R′2 also has Q2
as degree matrix and is given by

R′2 := K[T1, . . . , T10] / I ′2, I ′2 :=
〈

T1T2T6T8 − T 2
3 T4 − T9T10,

T 2
1 T2 + T7T8 + T3T4T5T9T

2
10

〉
.

By Lemma 5.1.5, the surfaces X1 and X2 are isomorphic if R′2 is isomorphic to
R(X1) as Z6-graded algebra. Consider the homomorphism of algebras ψ : R′2 →
R(X1) induced by

K[T1, . . . , T10] → K[T1, . . . , T10],
T1 7→ T6, T2 7→ T7, T3 7→ T3, T4 7→ T4,

T5 7→ T5, T6 7→ T8, T7 7→ T9, T8 7→ T10,

T9 7→ −T1, T10 7→ T2.

Then 〈ψ(I ′2)〉 = I1 and the homomorphism ψ is a well-defined isomorphism of K-
algebras. To see that ψ is also an isomorphism of Z6-graded algebras we consider
the homomorphism of abelian groups

α : Z6 → Z6, ei 7→ A · ei, A :=

 0 2 0 1 0 0
0 3 0 1 0 0
0 −1 1 −2 0 0
0 1 0 0 1 0
1 −2 0 0 0 0
0 0 0 0 0 1

 ∈ GL(6,Z).

This turns the pair (ψ, α) into an isomorphism R(X1)→ R(X2) of Z6-graded alge-
bras: for all w ∈ Z6 the image ψ((R′2)w) is contained in the component R(X1)α(w)
because

A ·Q2 =

 0 2 0 1 0 0 3 −1 1 0
0 3 0 1 0 0 5 −2 0 1
0 −1 1 −2 0 0 −2 1 0 0
0 1 0 0 1 0 2 −1 0 0
1 −2 0 0 0 0 −1 1 0 0
0 0 0 0 0 1 1 −1 0 0

 : Q1.

For the second isomorphism, let X1 := Bl P2(?5 ii) and X2 := Bl P2(?3 ? ? iii). We
claim that we have an isomorphism given by

ϕ : X2 → X1, (z1, . . . , z10) 7→ (−z9, z10, z2, z4, z6, z3,−z7, z8, z1, z5).
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For this, by Lemma 5.1.5, it suffices to show that the comorphism ψ := ϕ∗ : R(X1) →
R(X2) is a Z6-graded isomorphism that is induced by

K[T1, . . . , T10] → K[T1, . . . , T10],
T1 7→ −T9, T2 7→ T10, T3 7→ T2, T4 7→ T4,

T5 7→ T6, T6 7→ T3, T7 7→ −T7, T8 7→ −T8,

T9 7→ T1, T10 7→ T5.

Write Ii ⊆ K[T1, . . . , T10] for the ideal of relations of R(Xi). Then 〈ψ(I1)〉 = I2 and
the homomorphism ψ is a well-defined isomorphism of K-algebras. Observe that
ψ is also an isomorphism of Z6-graded algebras. Consider the homomorphism of
abelian groups

α : Z6 → Z6, ei 7→ A · ei, A :=

 −1 1 0 0 0 2
3 −1 1 0 0 −2
0 0 0 0 1 1
2 −1 0 0 0 −1
−1 1 0 0 0 3

1 −1 0 1 0 0

 ∈ GL(6,Z).

This turns the pair (ψ, α) into an isomorphism R(X1) → R(X2) of Z6-graded
algebras: for all w ∈ Z6 the image ψ(R(X1)w) is contained in the component
R(X2)α(w) because

A ·Q1 =

 −1 1 0 0 0 0 2 −1 1 0
3 −1 1 0 0 0 −2 2 0 0
0 0 0 0 0 1 1 −1 0 0
2 −1 0 1 0 0 −1 1 0 0
−1 1 0 0 0 0 3 −2 0 1

1 −1 0 0 1 0 0 0 0 0

 : Q2.

For the third isomorphism define X1 := Bl P2(?2 ? ? ? i) and X2 := P2(? ? ? ? ? iii).
As seen by the blow up sequences of the respective surfaces the curves V (X1; T6)
and V (X2; T4) are (−1)-curves. Their respective contractions lead to surfaces X ′i
fitting into the diagram

X1

��

X2

��
X
′
1 X

′
2∼=

ϕoo

where ϕ will be specified below. The Cox rings R(X ′i) and their degree matrices Q′i
are listed in the following table.

Y R(Y ) degree matrix

X′1

K[T1, . . . , T5, T7, . . . , T11] / I′1
with I generated by
T4T8 + T5T9 − T7T10,
T2T9 + T1T8 − T3T10,
T3T4 − T1T7 − T9T11,
T2T7 − T3T5 − T8T11,
T2T4 − T1T5 − T11T10

 1 0 0 0 −1 −1 0 1 1 −1
0 1 0 0 1 0 0 −1 0 1
0 0 1 0 0 1 0 0 −1 1
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 −1



X′2

K[T1, . . . , T3, T5, . . . , T11] / I′2
with I generated by
T6T2 + T5T9 − T8T10,
T3T8 − T1T6 − T9T11,
T3T5 + T6T7 − T11T10,
T1T5 + T7T8 − T2T11,
T3T2 − T7T9 − T1T10

 1 0 0 0 0 0 1 0 −1 1
0 1 0 0 0 0 0 1 1 −1
0 0 1 0 0 1 −1 0 1 0
0 0 0 1 0 1 0 −1 0 1
0 0 0 0 1 −1 1 1 0 0


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Note that X ′1 is a subset of
⊕

i 6=6 K·ei ∼= K10 whereas X ′2 is a subset of
⊕

i6=4 K·ei ∼=
K10. We claim that the isomorphism ϕ : X ′2 → X

′
1 of the total coordinate spaces of

the contracted surfaces and its inverse ϕ−1 are given by

X
′
1 ←→ X

′
2

(z1, z8, z2, z3, z6, z10, z5, z7, z11, z9) ←[ (z1, z2, z3, z5, . . . , z11),
(z1, . . . , z5, z7, . . . , z11) 7→ (z1, z3, z4, z8, z5, z9, z2, z11, z7, z10)

To this end, it suffices to show that the comorphism ψ := ϕ∗ : R(X ′1) → R(X ′2) is
a Z5-graded isomorphism induced by

K[T1, . . . , T5, T7, . . . , T11] → K[T1, . . . , T3, T5, . . . , T11],

Ti 7→ Tσ(i), σ :=
[

1 2 3 4 5 7 8 9 10 11
1 8 2 3 6 10 5 7 11 9

]
where σ stands for the bijective function {1, . . . , 11} \ {6} → {1, . . . , 11} \ {4}
mapping the i-th element of the first row to the i-th element in the second row;
see Lemma 5.1.5. Note that 〈ψ(I ′1)〉 = I ′2 and ψ is a well-defined isomorphism of
K-algebras. Observe that ψ is also an isomorphism of Z5-graded algebras. For this
purpose, consider the homomorphism of abelian groups

α : Z5 → Z5, ei 7→ A · ei, A :=

 1 1 0 0 0
0 0 1 0 0
0 −1 0 1 0
0 0 0 0 1
0 1 0 0 0

 ∈ GL(5,Z).

This turns the pair (ψ, α) into an isomorphism R(X ′1) → R(X ′2) of Z5-graded
algebras: for all w ∈ Z5, the image ψ(R(X ′1)w) is contained in the component
R(X ′2)α(w) as

A ·Q′1 =

 1 1 0 0 0 −1 0 0 1 0
0 0 1 0 0 1 0 0 −1 1
0 −1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 1 1 −1
0 1 0 0 1 0 0 −1 0 1

 : Q′2.

Switching back to the original surfaces Xi, X1 can be obtained as the blow up of
X ′1 in the point p1 and X2 as the blow up of X ′2 in p2 where

p1 := [1, 0, 1, 0, 1, 1, 1, 1, 1,−1] ∈ X ′1,

p2 := [−1, 0, 0, 1, 1, 1, 1, 1, 1, 1] ∈ X ′2.

Both points exist by an application of Algorithm 2.3.8. We claim that we have an
automorphism

η : X ′2 → X
′
2

(z1, z2, z3, z5, . . . , z11) 7→ (z9, z8, z3, z5, z7, z6, z2, z1, z11, z10) .

Then, by definition of ϕ−1 and η, we have

η ◦ ϕ−1(p1) = [η((1, 1, 0, 1, 1, 1, 0,−1, 1, 1))] = p2 ∈ X ′2.

Since ϕ−1 is an isomorphism and η an automorphism, using uniqueness of the blow
up we then may conclude that X1 is isomorphic to X2, see Proposition 1.4.5 or [48].
By Lemma 5.1.5, it remains to show that the comorphism κ := η∗ : R(X ′2)→ R(X ′2)
is an isomorphism of Z5-graded algebras induced by

K[T1, . . . , T3, T5, . . . , T11] → K[T1, . . . , T3, T5, . . . , T11],

Ti 7→ Tσ′(i), σ′ :=
[

1 2 3 5 6 7 8 9 10 11
9 8 3 5 7 6 2 1 11 10

]
where σ′ stands for the bijective function {1, . . . , 11} \ {4} → {1, . . . , 11} \ {4}
mapping the i-th element of the first row to the i-th element of the second row.
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Note that κ is well-defined since 〈κ(I ′2)〉 = I ′2. Consider the homomorphism of
abelian groups

β : Z5 → Z5, ei 7→ B · ei, B :=

 0 1 0 0 0
1 0 0 0 0
0 −1 1 0 1
−1 0 0 1 1

1 1 0 0 −1

 ∈ GL(5,Z).

Similar to before, (κ, β) is an isomorphism R(X ′2)→ R(X ′2) of Z5-graded algebras
since we have κ(R(X ′2)w) ⊆ R(X ′2)β(w) for all w ∈ Z5:

B ·Q′2 =

 0 1 0 0 0 0 0 1 1 −1
1 0 0 0 0 0 1 0 −1 1
0 −1 1 0 1 0 0 0 0 1
−1 0 0 1 1 0 0 0 1 0

1 1 0 0 −1 1 0 0 0 0

 : Q′2.

We come to the fourth isomorphism. Let a ≥ 3. Redefine X1 := Bl Fa+1(? ? ? ? vi)
and X2 := Bl Fa(? ? ? ? vii). We have an isomorphism of K-algebras ψ : R(X1) →
R(X2) induced by

K[T1, . . . , T10] → K[T1, . . . , T10],
T7 7→ T10, T8 7→ T9, T9 7→ T7, T10 7→ T8, Ti 7→ Ti else.

Comparing the degree matrices of R(Xi) we see that (ψ, id) is an isomorphism
R(X1) → R(X2) of Z6-graded algebras. By Lemma 5.1.5, this shows that X1 and
X2 are isomorphic.
For the fifth isomorphism, write X1 := Bl Fa(?3 ? i) and X2 := Bl Fa(?3 ? iii).
Denote by Qi the degree matrices of their Cox rings. We claim that we have an
isomorphism ϕ : X1 → X2 with its comorphism ψ := ϕ∗ : R(X1) → R(X2) induced
by

K[T1, . . . , T10] → K[T1, . . . , T10],

Ti 7→ Tσ(i), σ :=
[

1 2 3 4 5 6 7 8 9 10
1 2 7 4 5 8 9 10 3 6

]
∈ Sym(10).

Note that the ideals of relations of R(Xi) are mapped to each other. Then ψ is an
isomorphism of K-algebras. To see that ψ is Z6-graded consider the homomorphism
of abelian groups

γ : Z6 → Z6, ei 7→ C · ei, C :=

 1 0 0 0 0 0
0 1 −a 0 0 a
0 0 2 0 0 −1
0 0 −1 1 0 1
0 0 1 0 1 −1
0 0 3 0 0 −2

 ∈ GL(6,Z).

Thus, (ψ, γ) is an isomorphism R(X1) → R(X2) of Z6-graded algebras since ψ
maps the component R(X1)w into the component R(X2)γ(w) for all w ∈ Z6:

C ·Q1 =

 1 0 0 0 0 0 1 −1 0 0
0 1 −a 0 0 a 2a− 1 −a + 1 0 0
0 0 2 0 0 −1 −1 1 1 0
0 0 −1 1 0 1 2 −1 0 0
0 0 1 0 1 −1 0 0 0 0
0 0 3 0 0 −2 −1 1 0 1

 : Q2.

Therefore, again by Lemma 5.1.5, we conclude that the surfaces X1 and X2 are
isomorphic.
For the sixth isomorphism, let X1 := Bl Fa(?3 ? ii) and X2 := Bl Fa(?3 ? iv).
As seen by the blow up sequences of the respective surfaces, the curves V (X1; T10)
and V (X2; T8) are (−1)-curves. Their contraction leads to surfaces X ′1 and X ′2. We
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have a diagram

X1

��

X2

��
X
′
1 X

′
2

K8 ⊇ X
′′
1

ι1

OO

X
′′
2

∼=
ϕ

oo

ι2

OO

K8⊆

where we consider X ′1 as a subset of
⊕9

i=1 K ·ei and X ′2 as a subset of
⊕

i 6=8 K ·ei ∼=
K9. Moreover, the embeddings ιi are as in Setting 4.2.9 and satisfy

ι1 : K8 → K9, (x1, . . . , x8) 7→ (x1, . . . , x8, h1(x)),
ι2 : K8 → K9, (x1, . . . , x6, x9, x10) 7→ (x1, . . . , x6, h2(x), x9, x10),

h1 := T1T
a−1
2 T4T7T

2
8 − T 2

3 T5 ∈ K[T1, . . . , T8],
h2 := T1T

2a−1
2 T 2

4 T10 − T 2
3 T5 ∈ K[T1, . . . , T8].

The Cox rings and degree matrices Q′i and Q′′i of the surfaces X ′i and X ′′i are as
follows.
Y R(Y ) degree matrix

X′1

K[T1, . . . , T9] / I
with I generated by
Ta2 T4 − T3T5T6 − T7T8, T9 − h1

 1 0 0 0 0 0 1 −1 0
0 1 0 0 0 a 3a− 1 −2a + 1 0
0 0 1 0 0 −1 −2 2 2
0 0 0 1 0 1 3 −2 0
0 0 0 0 1 −1 −1 1 1



X′2

K[T1, . . . , T7, T9, T10] / I
with I generated by
Ta2 T4 − T3T5T6 − T9T10, T7 − h2

 1 0 0 0 0 0 0 1 −1
0 1 0 0 0 a 0 3a− 1 −2a + 1
0 0 1 0 0 −1 2 −2 2
0 0 0 1 0 1 0 3 −2
0 0 0 0 1 −1 1 −1 1



X′′1

K[T1, . . . , T8] / I
with I generated by
Ta2 T4 − T3T5T6 − T7T8

 1 0 0 0 0 0 1 −1
0 1 0 0 0 a 3a− 1 −2a + 1
0 0 1 0 0 −1 −2 2
0 0 0 1 0 1 3 −2
0 0 0 0 1 −1 −1 1



X′′2

K[T1, . . . , T6, T9, T10] / I
with I generated by
Ta2 T4 − T3T5T6 − T9T10

 1 0 0 0 0 0 1 −1
0 1 0 0 0 a 3a− 1 −2a + 1
0 0 1 0 0 −1 −2 2
0 0 0 1 0 1 3 −2
0 0 0 0 1 −1 −1 1



Inspecting the degree matrices Q′′i and the ideals of R(X ′′i ), we see that we have an
isomorphism R(X ′′1 )→ R(X ′′2 ) of Z5-graded algebras that arises from

K[T1, . . . , T8] → K[T1, . . . , T6, T9, T10], Ti 7→


T9, i = 7,
T10, i = 8,
Ti, i 6= 7, 8.

This yields an isomorphism ϕ : X ′′2 → X
′′
1 . The surface X1 is obtained as the blow

up of X ′1 at the point [ι1(q1)] ∈ X ′1 where

q1 := (1, 1, 1, 1, 1, 0, 1, 1) ∈ X̂ ′′1 , ι1(q1) ∈ X̂ ′1,
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compare Lemmas 5.1.5 and 5.2.16. Then ϕ−1(q1) = (1, 1, 1, 1, 1, 0, 1, 1) ∈ X̂ ′′2 and
the blow up of X ′2 at the point [ι2(ϕ−1(q1))] delivers X2. We conclude X2 ∼= X1.
Further note that no isomorphisms between cases with fixed discrete parameter
a ∈ Z≥3 but different continuous parameters are possible. For the blow ups of P2,
this is due to the fact that the respective originating point configurations are not
isomorphic. For blow ups of Fa we only need to show that the point configuration
Fa(? ? ? ? xiv) of Proposition 5.1.4 with fixed a ∈ Z≥3 and fixed κ ∈ K∗ cannot be
moved to the same configuration with continuous parameter κ′ ∈ K∗ \ {κ} by an
automorphism. To this end, let

v1 := (−1,−a), v2 := (1, 0), v3 := (0, 1), v4 := (0,−1) ∈ Z2

be primitive generators of the rays of the fan Σa of Fa. Recall from [27] that a root
of Σa is an element u ∈ Z2 such that there is 1 ≤ i(u) ≤ 4 with

〈u, vi(u)〉 = 1, 〈u, vj〉 ≤ 0 for i(u) 6= j.

By [27, Cor. 4.7] the group of equivariant automorphisms of F̂a is generated by
the maximal torus, (certain) permutations of coordinates and automorphisms cor-
responding to one-parameter subgroups

yu(λ) : R(Fa) → R(Fa), Tj 7→

{
Tj + λ

∏
k 6=j T

〈−u,vk〉
k , j = i(u),

Tj , j 6= i(u),
λ ∈ K

of graded automorphisms of R(Fa) = K[T1, . . . , T4] where u ∈ Z2 runs through all
roots. Since the roots of Fa are

(−1, 0), (1, 0), (−b, 1) where 0 ≤ b ≤ a,
these automorphisms are as in Lemma 5.1.6. In particular, two configurations of
type Fa(? ? ? ? xiv) with same a ∈ Z≥3 but different continuous parameter cannot
be mapped to each other by an automorphism. �

Remark 5.4.15. To compute the Cox ring of the †† case Bl Fa(? ? ? ? xiv) for
a > 15 one may proceed by the following steps.

• Prove that the ideal I2 shown in the table is saturated with respect to T11.
As in other cases, this can be done by providing a Gröbner basis depend-
ing on the parameter a > 15.

• Show that the binomial ideal I2 + 〈T11〉 is prime. Again, this can be
done by providing a Gröbner basis and using Remark 5.4.14; see also
Lemma 5.3.4.

However, note that in experiments with fixed a > 15, a Gröbner basis for the first
step contained more than 800 elements.





APPENDIX A

Procedures of the MDSpackage

We describe an implementation of the algorithms that we have developed through-
out this thesis. The MDSpackage is currently available for the computer algebra
system Maple in joint work with J. Hausen [54, 55]. We make use of the convex-
package [40] by M. Franz. Some of the algorithms have already been implemented
in [20, 70] and [16]. This appendix mainly serves as a manual.
The structure of this chapter will be similar to Chapter 2. Section 1 describes proce-
dures on AGs and AGHs whereas Section 2 introduces functions on GRs. Section 3,
4 and 5 present procedures on MDSs, complexity-one T -varieties and miscellaneous
functions. We first shortly recall the involved data types from Chapter 2. Corol-
lary 1.3.9 and the description of Construction 1.3.6 serve as a theoretical foundation.

Data types A.0.16. We store a Mori dream space X in a MDS , i.e., a pair (R,Φ)
where R is a graded ring, GR for short, and Φ a collection of overlapping cones
in Cl(X) ⊗ Q, called a BUN . The GR R = (G,Q,Q0, P, FF) encodes the Cox ring
R(X) in K[T1, . . . , Tr]/〈G〉 with a list of polynomials G ⊆ K[T1, . . . , Tr] and the
grading of R by K := Cl(X) in the form of a degree map, i.e., a homomorphism of
finitely generated abelian groups

Q : Zr → K, ei 7→ deg(Ti).

We encode Q in a data type AGH and K in a data type AG for finitely generated
abelian groups. It is useful to also store the projection Q0 : Zr → K0 = K/Ktor onto
the free part as a matrix as well as a Gale dual matrix P of the homomorphism Q.

AG
• U : matrix
• L: matrix

AGH
• F : AG
• K: AG
• A: matrix

GR
• G: polynomials
• TT : list of variables Ti
• [Q,Q0]: AGH, matrix
• P : matrix
• FF: list of sets: F-faces

BUN
•C: list of CONEs

MDS
• R: GR
• Φ: BUN

1. Procedures on finitely generated abelian groups

In this section, we describe procedures on finitely generated abelian groups (AGs)
and their homomorphisms (AGHs). This describes an implementation of the algo-
rithms of Section 1 of Chapter 2. Here is an overview:

• Creation and stored data: create an AG (Procedure A.1.1), return the
stored data of an AG (Procedure A.1.2), create an AGH (Procedure
A.1.3), return the stored data of an AGH (Procedure A.1.4).

225
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• Compare AGs: test for isomorphy (Procedure A.1.5), test for containment
(Procedure A.1.6), test for equality (Procedure A.1.7).
• Construct new AGs: factor groups (Procedure A.1.8), product groups

(Procedure A.1.9), free part (Procedure A.1.10), intersection (Procedure
A.1.11).
• Image and kernel of AGHs: image (Procedure A.1.12), preimage (Proce-

dure A.1.13), kernel (Procedure A.1.14), test for being injective (Proce-
dure A.1.15), test for being surjective (Procedure A.1.16), complete an
exact sequence (Procedure A.1.17).
• AGHs as degree maps, etc.: gradiator (Procedure A.1.18), K-degree (Pro-

cedure A.1.19), test for being homogeneous (Procedure A.1.20), test for
being almost free (Procedure A.1.21), section (Procedure A.1.22).
• Gale duality: compute the degree map Q out of P (Procedure A.1.23),

compute P out of Q (Procedure A.1.24), compute the projection Q0 onto
the free part out of Q (Procedure A.1.25).

Recall that given an integral r × n matrix A we write linZ(A) for the sublattice of
Zr spanned by the n columns of A. In the following procedures one should use the
option ’nocheck’ if possible to speed up the computations.

Procedure A.1.1 (createAG). Constructor for the data type AG.
Input: there are four input types:

• An integer r. This will create the AG Zr.
• An integer r and a list [a1, . . . , ak] with ai ∈ Z. This will create the AG
Zr ⊕

⊕
i Z/aiZ.

• An integral r×smatrix L. This will create an AG representing Zr/linZ(L).
• An integral r × n matrix U and an integral r × s matrix L. This will

create an AG representing (linZ(U) + linZ(L))/linZ(L).
Output: an AG. Also prints an integer r and a list of integers [a1, . . . , ak] such that
the returned group is isomorphic to Zr ⊕

⊕
i Z/aiZ as a Z-module.

Example: > createAG(2, [3]); # creates Z2 ⊕ Z/3Z
AG(2, [3])

> L := linalg[matrix]([[0],[3]]):
> createAG(L); # creates Z2/linZ(L)

AG(1, [3])

> U := linalg[matrix]([[3,0],[0,3]]):
> createAG(U, L); # creates (linZ(U) + linZ(L))/linZ(L).

AG(1, [])

Procedure A.1.2 (AGdata). Returns the stored information of the given AG G,
i.e., a list [U,L, r, [a1, . . . , as]] with integral matrices U , L and r, ai ∈ Z≥0 such that

G ∼= (linZ(U) + linZ(L))/linZ(L) ∼= Zr ⊕
s⊕
i=1

Z/aiZ.

Input: an AG G = (U,L).
Output: a list [U,L, r, [a1, . . . , as]] with matrices U and L an integer r and inte-
gers ai ∈ Z>0 as explained above.
Example: > U1 := linalg[matrix]([[2,0],[0,3]]):
> L1 := linalg[matrix]([[0],[3]]):
> H1 := createAG(U1, L1);

H1 := AG(1, [])
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> AGdata(H1); [[
2 0
0 3

]
,

[
0
3

]
, 1, []

]
Procedure A.1.3 (createAGH). Constructor for the data type AGH. Represents
a homomorphism Q : G1 → G2 of AGs G1 and G2.
Input: an AG G1 = (U1, L1), an AG G2 = (U2, L2) and an integral matrix A.
Throws an error if A · linZ(L1) 6⊆ linZ(L2) or if A · (linZ(U1) + linZ(L1)) is not
contained in linZ(U2) + linZ(L2).
Output: the AGH (G1, G2, A). Also prints integers ri and lists [ai1, . . . , aiki ] of
integers such that the Gi are isomorphic to Zri ⊕

⊕
j Z/aijZ as Z-modules.

Example: > G1 := createAG(3,[3]);
G1 := AG(3, [3])

> G2 := createAG(2,[2]);
G2 := AG(2, [2])

> A := linalg[matrix]([[1,1,0,0],[0,1,0,0],[0,0,1,2]]);

A :=

[
1 1 0 0
0 1 0 0
0 0 1 2

]
> Q := createAGH(G1, G2, A);

Q := AGH([3, [3]], [2, [2]])

Procedure A.1.4 (AGHdata). Returns the stored data of the given AGH ϕ =
(G1, G2, A), i.e., returns a list [G1, G2, A] with Gi AGs and A an integral matrix.
Input: an AGH ϕ.
Output: a list [G1, G2, A] with AGs G1, G2 and a matrix A as explained above.
Example: let Q be as in Procedure A.1.3.
> AGHdata(Q); [

AG(3, [3]), AG(2, [2]),

[
1 1 0 0
0 1 0 0
0 0 1 2

]]

Procedure A.1.5 (AGareisom). Implements Algorithm 2.1.4.
Input: an AG G1 and an AG G2.
Output: true if G1 is isomorphic to G2 and false otherwise.
Example: > U1 := linalg[matrix]([[2,0],[0,3]]):
> L1 := linalg[matrix]([[0],[3]]):
> H1 := createAG(U1, L1);

H1 := AG(1, [])

> H2 := createAG(1);
H2 := AG(1, [])

> AGareisom(H1, H2);
true

Procedure A.1.6 (AGcontains). Implements Algorithm 2.1.6.
Input: there are two input possibilities:

• An AG G1 and an AG G2.
• An AG G and a vector w.
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Output: true if G1 contains G2 or, for the second input type, if w ∈ G. Returns
false otherwise.
Example: > L := linalg[matrix]([[0],[3]]);

L :=
[

0
3

]
> U1 := linalg[matrix]([[2,0],[0,1]]);

U1 :=
[

2 0
0 1

]
> H1 := createAG(U1, L);

H1 := AG(1, [3])

> U2 := linalg[matrix]([[2,0],[0,3]]);

U2 :=
[

2 0
0 3

]
> H2 := createAG(U2, L);

H2 := AG(1, [])

> AGcontains(H2, H1); AGcontains(H1, H2);
true

false

> AGcontains(H2, [2,0]);
true

Procedure A.1.7 (AGareequal). Implements Algorithm 2.1.8.
Input: there are two input types:

• An AG G1 and an AG G2.
• Vectors w, w′ ∈ Zr and an AG G = (U,L) such that w + linZ(L) and
w′ + linZ(L) are elements of G.

Output: true if G1 = G2 or, for the second input type, if w = w′ ∈ G. Returns
false otherwise.
Options: ’nocheck’: do not check whether w, w′ ∈ G.
Example: let H1 and H2 be as in Procedure A.1.6.
> AGareequal(H1, H1); AGareequal(H1, H2);

true

false

> AGareequal([2,4],[2,7], H1);
true

Procedure A.1.8 (AGfactgrp). Implements Algorithm 2.1.9.
Input: an AG G and an AG H such that H ≤ G.
Output: an AG representing the factor group G/H.
Options: ’nocheck’: do not check whether H ≤ G.
Example: > U1 := linalg[matrix]([[2,0],[0,3]]);

U1 :=
[

2 0
0 3

]
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> U2 := linalg[matrix]([[4,0],[0,3]]);

U2 :=
[

4 0
0 3

]
> L := linalg[matrix]([[0],[3]]);

L :=
[

0
3

]
> G := createAG(U1, L);

G := AG(1, [])

> H := createAG(U2, L);
H := AG(1, [])

> GH := AGfactgrp(G, H); AGdata(GH);
GH := AG(0, [2])[[

2 0
0 3

]
,

[
4 0
0 3

]
, 0, [2]

]
Procedure A.1.9 (AGprodgrp). Implements Algorithm 2.1.10.
Input: an AG G1 and an AG G2.
Output: an AG representing the product G1 ×G2.
Example: > U1 := linalg[matrix]([[2,0],[0,2]]);

U1 :=
[

2 0
0 2

]
> L1 := linalg[matrix]([[0],[3]]);

L1 :=
[

0
3

]
> G1 := createAG(U1, L1);

G1 := AG(1, [3])

> U2 := linalg[matrix]([[3,0],[0,2]]);

U2 :=
[

3 0
0 2

]
> L2 := linalg[matrix]([[0],[3]]);

L2 :=
[

0
3

]
> G2 := createAG(U2, L2);

G2 := AG(1, [3])

> G12 := AGprodgrp(G1, G2); AGdata(G12);
G12 := AG(2, [3, 3])

2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

 ,
0 0

3 0
0 0
0 3

 , 2, [3, 3]


Procedure A.1.10 (AGfreered). Implements Algorithm 2.1.11.
Input: an AG G.
Output: an AG representing the free part of G, i.e., the lattice G/Gtor.
Example: > U := linalg[matrix]([[2,0],[0,2]]);

U :=
[

2 0
0 2

]
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> L := linalg[matrix]([[0],[3]]);

L :=
[

0
3

]
> G := createAG(U, L);

G := AG(1, [3])

> G0 := AGfreered(G); AGdata(G0);
G0 := AG(1, [])[[
2 0
0 2

]
,

[
0
1

]
, 1, []

]
Procedure A.1.11 (AGintersect). Implements Algorithm 2.1.13.
Input: an AG G1 and an AG G2.
Output: an AG G representing the intersection G1 ∩G2.
Options: ’nocheck’ prevents checks for the groups to have the same torsion part.
Example: consider the AGs G1 and G2 defined in the example of Procedure A.1.9.
> G12 := AGintersect(G1, G2); AGdata(G12);

G12 := AG(1, [3])[[
6 0
0 1

]
,

[
0
3

]
, 1, [3]

]
Procedure A.1.12 (AGHim). Implements Algorithm 2.1.17.
Input: an AGH Q = (G1, G2, A) and an AG H1 ≤ G1. If the subgroup H1 is left
out, H1 = G1 will be used.
Output: an AG representing Q(H1) ≤ G2.
Example: > G1 := createAG(2);

G1 := AG(2, [])

> G2 := createAG(1,[4]);
G2 := AG(1, [4])

> A := linalg[matrix]([[2,0],[0,2]]);

A :=
[

2 0
0 2

]
> Q := createAGH(G1, G2, A);

Q := AGH([2, []], [1, [4]])

> H1 := AGHim(Q); AGdata(H1); # the image is 2Z⊕ 2Z/4Z
H1 := AG(1, [2]);[[
2 0
0 2

]
,

[
0
4

]
, 1, [2]

]
Procedure A.1.13 (AGHpreim). Implements Algorithm 2.1.18.
Input: an AGH Q = (G1, G2, A) and an AG H2 ≤ G2.
Output: an AG representing the preimage Q−1(H2) ≤ G1.
Options: ’nocheck’: do not check whether H2 ≤ G2.
Example: > G1 := createAG(2); G2 := createAG(1,[4]);

G1 := AG(2, [])
G2 := AG(1, [4])
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> A := linalg[matrix]([[1,0],[0,1]]);

A :=
[

1 0
0 1

]
> Q := createAGH(G1, G2, A);

Q := AGH([2, []], [1, [4]])

> U := linalg[matrix]([[2,0],[0,3]]);

U :=
[

2 0
0 3

]
> L := linalg[matrix]([[0],[4]]);

L :=
[

0
4

]
> H2 := createAG(U, L);

H2 := AG(1, [4]);

> H1 := AGHpreim(Q, H2); AGdata(H1);
H1 := AG(2, [])[[
2 0
0 1

]
,

[
0
0

]
, 2, []

]
Procedure A.1.14 (AGHker). Implements Algorithm 2.1.19.
Input: an AGH Q = (G1, G2, A).
Output: returns an AG representing ker(Q) ≤ G1.
Example: define the AGH Q as in A.1.13.
> H1 := AGHker(Q); AGdata(H1);

H1 := AG(1, [])[[
0
4

]
,

[
0
0

]
, 1, []

]
Procedure A.1.15 (AGHisinj). Implements Algorithm 2.1.20.
Input: an AGH Q.
Output: returns true if Q is injective and false otherwise.
Example: > G1 := createAG(1, [2]); G2 := createAG(1, [4]);

G1 := AG(1, [2])
G2 := AG(1, [4])

> A1 := linalg[matrix]([[1,0], [0,2]]);

A1 :=
[

1 0
0 2

]
> phi1 := createAGH(G1, G2, A1);

phi1 := AGH([1, [2]], [1, [4]])

> AGHisinj(phi1);
true

> A2 := linalg[matrix]([[1,0], [0,4]]);

A2 :=
[

1 0
0 4

]
> phi2 := createAGH(G1, G2, A2);

phi2 := AGH([1, [2]], [1, [4]])
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> AGHisinj(phi2);
false

Procedure A.1.16 (AGHissurj). Implements Algorithm 2.1.21.
Input: an AGH Q.
Output: returns true if Q is surjective and false otherwise.
Example: let phi1 and G1 be as in A.1.15.
> AGHissurj(phi1);

false

> G3 := createAG(0, [2,2]);
G3 := AG(0, [2, 2])

> A2 := linalg[matrix]([[1,0], [0,1]]);

A2 :=
[

1 0
0 1

]
> phi2 := createAGH(G1, G3, A2);

phi2 := AGH([1, [2]], [0, [2, 2]])

> AGHissurj(phi2);
true

Procedure A.1.17 (AGHcompleteseq). Implements Algorithm 2.1.22.
Input: an AGH ϕ = (G1, G2, A) that is either injective or surjective.
Output: an AGH ψ completing the respective exact sequence

0 G2oo G1ϕ
oo G

ψ
oo 0oo

0 Goo G2
ψoo G1

ϕoo 0oo

Options: ’inj’ or ’surj’ assumes ϕ is injective or surjective without further
tests.
Example: > U1 := linalg[matrix]([[0],[2]]);

U1 :=
[

0
2

]
> L1 := linalg[matrix]([[0],[4]]);

L1 :=
[

0
4

]
> G1 := createAG(U1, L1); # represents {0} ⊕ 2Z/4Z

G1 := AG(0, [2])

> G2 := createAG(1,[4]); # represents Z⊕ Z/4Z
G2 := AG(1, [4])

> U3 := linalg[matrix]([[1,0],[0,2]]);

U3 :=
[

1 0
0 2

]
> L3 := linalg[matrix]([[0],[4]]);

L3 :=
[

0
4

]
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> G3 := createAG(U3, L3); # represents Z⊕ 2Z/4Z
G3 := AG(1, [2])

> A := linalg[matrix]([[1,0],[0,2]]);

A :=
[

1 0
0 2

]
> phi := createAGH(G2, G3, A);

phi := AGH([1, [4]], [1, [2]])

> iota := AGHcompleteseq(phi, ’surj’); AGHdata(iota);
iota := AGH([0, [2]], [1, [4]])[
AG(0, [2]), AG(1, [4]),

[
1 0
0 1

]]
> pi := AGHcompleteseq(iota, ’inj’); AGHdata(pi);

pi := AGH([1, [4]], [1, [2]])

Procedure A.1.18 (AGHgradiator). Implements Algorithm 2.1.29.
Input: a list of polynomials [f1, . . . , fs] and a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr].
Output: a list [Q,P ] with an AGH Q : Zr → K representing the gradiator , i.e., the
maximal quasi-torus action keeping V (f1, . . . , fs) invariant. The second element is
a Gale dual matrix P of Q.
Example: > RL := [T[1]*T[2] + T[3]*T[4] + T[5]*T[6],
T[1]*T[2] + T[3]ˆ2 + T[5]ˆ2];

RL :=
[
T [1]T [2] + T [3]T [4] + T [5]T [6], T [1]T [2] + T [3]2 + T [5]2

]
> TT := vars(6);

TT := [T [1], T [2], T [3], T [4], T [5], T [6]]

> L := AGHgradiator(RL, TT);

L :=

AGH([6, []], [2, [2]]),

 −1 −1 1 1 0 0
−1 −1 0 0 1 1
−1 −1 2 0 0 0
−1 −1 0 0 2 0




> AGHdata(L[1]);[
AG(6, []), AG(2, [2]),

[
−1 1 0 0 0 0

2 0 1 1 1 1
0 0 1 1 0 0

]]

Procedure A.1.19 (AGHdeg). Computes the K-degrees of a list of polynomials.
Input: an AGH Q = (Zr,K,A) with K = (U,L), a list of polynomials [f1, . . . , fs],
a list of variables [T1, . . . , Tr] such that fi ∈ K[T1, . . . , Tr].
Output: a list of vectors [w1, . . . , ws] with wi ∈ Zr representing the degree deg(fi) =
wi + linZ(L) ∈ K.
Example: > G1 := createAG(4);

G1 := AG(4, [])

> K := createAG(1,[3]);
K := AG(1, [3])

> A := linalg[matrix]([[1,1,0,0],[1,1,1,1]]);

A :=
[

1 1 0 0
1 1 1 1

]
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> Q := createAGH(G1, K, A);
Q := AGH([4, []], [1, [3]])

> TT := vars(4);
TT := [T [1], T [2], T [3], T [4]]

> RL := [T[1]*T[3] + T[2]*T[4], T[1]ˆ3 + T[2]ˆ3];
RL :=

[
T [1]T [3] + T [2]T [4], T [1]3 + T [2]3

]
> AGHdeg(Q, RL, TT); # interpreted as (1, 2) and (3, 3) ∈ K:

[[1, 2], [3, 3]]

Procedure A.1.20 (AGHishomog). Implements Algorithm 2.1.31.
Input: an AGH or matrix Q, a list of polynomials [f1, . . . , fs] and a list of variables
[T1, . . . , Tr] such that fi ∈ K[T1, . . . , Tr].
Output: true if all fi are homogeneous with respect to the grading deg(Ti) = Q(ei).
Returns false otherwise.
Example: > E := createAG(4); K := createAG(1, [3]);

E := AG(4, [])
K := AG(1, [3])

> B := linalg[matrix]([[1,0,-1,2],[1,2,2,2]]);

B :=
[

1 0 −1 2
1 2 2 2

]
> Q := createAGH(E, K, B);

Q := AGH([4, []], [1, [3]])

> RL := [T[1]*T[3] + T[2]ˆ3, T[3]*T[4] + T[1]];
RL := [T [1]T [3] + T [2]3, T [3]T [4] + T [1]];

> TT := [T[1], T[2], T[3], T[4]];
TT := [T [1], T [2], T [3], T [4]]

> AGHishomog(Q, RL, TT);
true

Procedure A.1.21 (AGHisalmostfree). Implements Algorithm 2.1.32.
Input: an AGH or a matrix Q.
Output: true if the grading of K[T1, . . . , Tr] given by deg(Ti) = Q(ei) is almost
free and false otherwise.
Example: > B := linalg[matrix]([[1,0,1],[0,2,2]]);

B :=
[

1 0 1
0 2 2

]
> AGHisalmostfree(B); # B is not surjective

false

> E := createAG(3); K := createAG(1, [3]); # K = Z⊕ Z/3Z
E := AG(3, [])
K := AG(1, [3])

> Q := createAGH(E, K, B);
Q := AGH([3, []], [1, [3]])

> AGHisalmostfree(Q);
true
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Procedure A.1.22 (AGHsection). Implements Algorithm 2.1.34.
Input: a surjective AGH Q = (G1, G2, A) or a surjective matrix.
Output: a pair [b, ψ]. If the algorithm found a section, then b is true and ψ a
section. Otherwise, b is false and ϕ = []. In the first case, ψ is given as AGH
ψ : G2 → G1.
Example: > Q := createAGH(createAG(1), createAG(0,[2]),
linalg[matrix]([[1]]));

Q := AGH([1, []], [0, [2]])

> AGHsection(Q);# no homomorphism Z/2Z→ Z exists:
[false, []]

> P := linalg[matrix]([[1,0,1],[0,2,1]]);

P :=
[

1 0 1
0 2 1

]
> S := AGHsection(P); AGHdata(S[2]);

S := [true,AGH([2, []], [3, []])][
AG(2, []), AG(3, []),

[
1 −1
0 0
0 1

]]

Procedure A.1.23 (AGHP2Q). Implements Algorithm 2.1.24.
Input: an integral n× r matrix P .
Output: an AGH Q = (Zr,K,A) such that K ∼= Zr/Im(P ∗).
Options: ’nocheck’: skip the test of Q being surjective.
Example: > P := linalg[matrix]([[1,0,2],[0,2,2]]);

P :=
[

1 0 2
0 2 2

]
> Q := AGHP2Q(P);

Q := AGH([3, []], [1, [2]])

> AGHdata(Q); [
AG(3, []), AG(1, [2]),

[
−2 −1 1

0 1 0

]]
Procedure A.1.24 (AGHQ2P). Implements Algorithm 2.1.25.
Input: a surjective AGH Q = (Zr,K,A).
Output: a Gale dual matrix P for Q, i.e., P is dual to the inclusion ker(Q)→ Zr.
Example: > E := createAG(4); K := createAG(2, [2]);

E := AG(4, [])
K := AG(2, [2])

> B := linalg[matrix]([[1,0,1,0],[0,1,0,1],[1,1,0,0]]);

B :=

[
1 0 1 0
0 1 0 1
1 1 0 0

]
> Q := createAGH(E, K, B);

Q := AGH([4, []], [2, [2]])

> P := AGHQ2P(Q);

P :=
[

1 1 −1 −1
0 2 0 −2

]



236 A. PROCEDURES OF THE MDSPACKAGE

Procedure A.1.25 (AGHQ2Q0). Implements Algorithm 2.1.26.
Input: a surjective AGH Q = (Zr,K,A).
Output: a matrix Q0 representing the projection Zr → K/Ktor.
Example: > E := createAG(4); K := createAG(2, [2]);

E := AG(4, [])
K := AG(2, [2])

> B := linalg[matrix]([[1,0,1,0],[0,1,0,1],[1,1,0,0]]);

B :=

[
1 0 1 0
0 1 0 1
1 1 0 0

]
> Q := createAGH(E, K, B);

Q := AGH([4, []], [2, [2]])

> Q0 := AGHQ2Q0(Q);

Q0 :=
[

1 0 1 0
0 1 0 1

]

2. Procedures on graded rings

In this section, we describe the implementation of algorithms that work on rings
that are graded by a finitely generated abelian group (GRs). See mainly Section 2
of Chapter 2. Here is an overview:

• Creation on stored data: create a BUN (Procedure A.2.1), return the
stored data of a BUN (Procedure A.2.2), create a GR (Procedure A.2.3),
return the stored data of a GR (Procedure A.2.4).
• Grading: homogeneous components (Procedure A.2.5), dimension of a

homogeneous component (Procedure A.2.6).
• GIT: GIT-fan (Procedure A.2.7), (H, 2)-maximal sets (Procedure A.2.8).
• Tropical algorithms: tropical variety for one equation (Procedure A.2.9),

containment in the tropical variety (Procedure A.2.10).

Procedure A.2.1 (createBUN). Constructor for the data type BUN. Represents
a true F-bunch Φ in KQ.
Input: there are five types of input:

• A vector w ∈ Mov(Q0)◦ ⊆ KQ and a GR R = (G,Q,Q0, P, FF).
• A vector w ∈ Mov(Q0)◦ ⊆ KQ, a list of polynomials G ⊆ K[T1, . . . , Tr], a

list of variables [T1, . . . , Tr] and an integral matrix Q0.
• A list of cones [ϑ1, . . . , ϑs] in KQ, a GR R = (G,Q,Q0, P, FF).
• A list of cones [ϑ1, . . . , ϑs] in KQ, a list of polynomials G ⊆ K[T1, . . . , Tr],

a list of variables [T1, . . . , Tr] and an integral matrix Q0.
• A list of cones [ϑ1, . . . , ϑs] in KQ.

Output: a BUN Φ in KQ. The printed information is the number of stored cones.
Depending on the input type, Φ is given by

Φ =


{
Q0(γ0); γ0 F-face, w ∈

(
Q0(γ0)

)◦}
, in case one or two,{

Q0(γ0); γ0 F-face, ϑ◦i ⊆
(
Q0(γ0)

)◦ for some i
}
, in case three or four,

{ϑ1, . . . , ϑs}, in case five.

Options: ’nocheck’: in cases four and five, do not check whether the cones satisfy
ϑ◦i ∩ ϑ◦j 6= ∅; in cases one and two, do not check whether w ∈ Mov(Q0)◦.
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Example: In the following example B1 to B4 all define the same BUN. Its cones are
the elements of CL3; compare Procedure A.2.2.
> RL := [T[1]*T[2] + T[3]*T[4] + T[5]ˆ2];

RL := [T [1]T [2] + T [3]T [4] + T [5]2]

> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
> w := [-1,2];

w := [−1, 2]

> R := createGR(RL, TT, [Q0]);
R := GR(5, 1, [2, []])

> B1 := createBUN(w, R);
B1 := BUN(5)

> B2 := createBUN(w, RL, TT, Q0);
B2 := BUN(5)

> CL3 := [poshull([-2,1],[1,1]), poshull([-2,1],[2,1]),
poshull([2,1],[-1,1]), poshull([-1,1],[1,1]), poshull([-2,1],[1,1])];

CL3 := [CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2),
CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2)]

> B3 := createBUN(CL3);
B3 := BUN(5)

> CL4 := [poshull([-1,1],[1,1])];
CL4 := [CONE(2, 2, 0, 2, 2)]

> B4 := createBUN(CL4, RL, TT, Q0);
B4 := BUN(5)

Procedure A.2.2 (BUNdata). Returns the data stored in a given BUN Φ.
Input: a BUN
Output: a list with its only entry a list of CONEs in KQ.
Example: Let B4 be the BUN defined in the example of Procedure A.2.1.
> L4 := BUNdata(B4);

L4 := [[CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2),
CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2)]]

> map(b -> rays(b), L4[1]);
[[[−2, 1], [1, 1]], [[2, 1], [−1, 1]], [[−2, 1], [1, 1]],

[[−1, 1], [1, 1]], [[−2, 1], [2, 1]]]

Procedure A.2.3 (createGR). Constructor for the data type GR.
Input: there are multiple ways to use this function:

• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a pair [Q,Q0] with an AGH Q = (Zr,K,A) and a
matrix Q0, a matrix P .
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• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a list [Q] with an AGH Q = (Zr,K,A), a matrix P .
Here, Q0 will be computed from Q using Algorithm 2.1.26.
• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a list [Q0] with a matrix Q0, a matrix P . The AGH
Q := Q0 : Zr → Zn will be used.

• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a list [Q] with an AGH Q = (Zr,K,A). Both Q0 and
P will be computed from Q using Algorithms 2.1.25 and 2.1.26.

• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a list [Q0] with a matrix Q0. Here, Q := Q0 : Zr → Zn
will be used and P will be computed from Q using Algorithm 2.1.25.

• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a list [Q] with an AGH Q : Zr → K. Here, both Q0

and P will be computed from Q using Algorithms 2.1.25 and 2.1.26.
• a list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr], a matrix P . Both Q and Q0 will be computed from P
using Algorithms 2.1.24 and 2.1.26.

• An integral matrices P and A as in Construction 1.5.11. The procedure
then returns the graded ring R(P,A), see 1.5.3.

In each case, we require Q to be surjective, P to be of full rank, the grading of
K[T1, . . . , Tr] given by deg(Ti) = Q(ei) to be almost free and all fi must be K-
homogeneous. Moreover, all variables must be K-prime, P (Q0)t = 0 and K ∼=
Zr/Im(P ∗).
Output: a GR R = ({f1, . . . , fs}, Q,Q0, P, FF). Then R represents the ring
K[T1, . . . , Tr]/I with the ideal I = 〈f1, . . . , fs〉 and degree map Q : Zr → K. It
fixes matrices P , Q0 such that K ∼= Zr/Im(P ∗) and the matrix Q0 represents the
projection Zr → K/Ktor. See Chapter 2 for details.
Internally, the list of all F-faces is stored unless the option ’noffaces’ was given.
The printed information is the number of variables, the number s of generators for
the ideal of relations and information about the AG K.
Options:

• ’nocheck’: skips tests for the parameters.
• ’noffaces’: postpones the computation and storage of F-faces.
• ’Singular’: use the software Singular for the computations of F-faces;

this only possible on UNIX-based machines where Singular is available
on the command line. Writes temporary files to the current directory.

Example: > RL := [T[1]*T[6] + T[2]*T[5] + T[3]*T[4] + T[7]*T[8]];
RL := [T [1]T [6] + T [2]T [5] + T [3]T [4] + T [7]T [8]]

> TT := vars(8);
TT := [T [1], T [2], T [3], T [4], T [5], T [6], T [7], T [8]]

> A := linalg[matrix]([[1,1,0,0,-1,-1,2,-2], [0,1,1,-1,-1,0,1,-1],
[1,1,1,1,1,1,1,1], [1,0,1,0,1,0,1,0]]);

A :=

 1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0


> F := createAG(8); K := createAG(3, [2]);

F := AG(8, [])
K := AG(3, [2])
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> Q := createAGH(F, K, A);

Q := AGH([8, []], [3, [2]])

> Q0 := linalg[delrows](A, 4..4);

Q0 :=

[
1 1 0 0 −1 −1 2 −2
0 1 1 −1 −1 0 1 −1
1 1 1 1 1 1 1 1

]
> P := AGHQ2P(Q);

P :=


1 0 0 0 0 1 −1 −1
0 1 0 0 1 0 −1 −1
0 0 1 0 2 0 −1 −2
0 0 0 1 2 4 −2 −5
0 0 0 0 4 4 −2 −6


> R1 := createGR(RL, TT, [Q, Q0], P);

R1 := GR(8, 1, [3, [2]])

The printed information means that R1 represents K[T1, . . . , T8]/I with I generated
by a single polynomial and the grading group K is isomorphic to Z3 ⊕ Z/2Z. The
function GRdata in Procedure A.2.4 shows all stored information. We enter another
example with a free grading group:
> RL := [T[1]ˆ2 + T[2]ˆ2 - T[3]*T[4]];

RL := [T [1]2 + T [2]2 − T [3]T [4]]

> TT := vars(4);

TT := [T [1], T [2], T [3], T [4]]

> Q0 := linalg[matrix]([[0,0,-1, 1], [1,1, 1, 1]]);

Q0 :=
[

0 0 −1 1
1 1 1 1

]
> R2 := createGR(RL, TT, [Q0], ’Singular’);

R2 := GR(4, 1, [2, []])

In the next example, we enter a toric variety:
> RL := []; TT := vars(4);

RL := []
TT := [T [1], T [2], T [3], T [4]]

> P := linalg[matrix]([[-1,1,0,1], [-1,0,1,1]]);

P :=
[
−1 1 0 1
−1 0 1 1

]
> R3 := createGR(RL, TT, P);

R3 := GR(4, 0, [2, []])

We now enter a K∗-surface with Z4-graded Cox ring K[T1, . . . , T6]/〈T1T2 + T3T4 +
T5T6〉 by providing its P -matrix and a list A of integers:
> P := matrix([[-1,-1,1,1,0,0], [-1,-1,0,0,1,1]]);

P :=
[
−1 −1 1 1 0 0
−1 −1 0 0 1 1

]
> A := [[1,0],[1,1],[0,1]];

A := [[1, 0], [1, 1], [0, 1]]

> R := createGR(P, A);

R := GR(6, 1, [4, []])
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Procedure A.2.4 (GRdata). Returns the stored information on the given GR R.
Input: a GR R = (G,Q,Q0, P, FF) with AGH Q = (Zr,K,A).
Output: a list [G, [T1, . . . , Tr], [Q,Q0], P, F ] with a list G of K-homogeneous poly-
nomials in K[T1, . . . , Tr], integral matrices Q0 and P as well as a list of all F-faces
F such that

R = K[T1, . . . , Tr] / 〈f1, . . . , fs〉,
the matrix P is dual to the inclusion ker(Q) → Zr and Q0 is a matrix describing
the projection Zr → K/Ktor. Moreover, Q is surjective and the grading given by
deg(Ti) = Q(ei) is almost free.
Example: we enter the GR R2 of the example of Procedure A.2.3.
> GRdata(R2); [[

T [1]2 + T [2]2 − T [3]T [4]
]
, [T [1], T [2], T [3], T [4]],[

AGH([4, []], [2, []]),
[

0 0 −1 1
1 1 1 1

]]
,

[
1 −1 0 0
0 −2 1 1

]
{{}, {1, 2, 3}, {3}, {1, 3, 4}, {4}, {1, 2, 4}, {1, 2}, {1, 2, 3, 4}, {2, 3, 4}}

]

Procedure A.2.5 (GRgradedcomp). Implements Algorithm 2.2.3.
Input: there are two possible input types:

• A graded ring R = (G,Q,Q0, P, FF) and a vector w ∈ Q0(Qr≥0).
• A list [f1, . . . , fs] of polynomials fi ∈ K[T1, . . . , Tr], a list of variables

[T1, . . . , Tr], a r× k matrix Q0 and w ∈ Q0(Qr≥0) where the fi are homo-
geneous with respect to the grading deg(Ti) = Q0(ei).

In both cases, the cone over the columns of Q0 must be pointed and Q0 must not
contain zero-columns.
Output: a basis for the vector space 〈G〉w as a list of polynomials.
Example: > RL := [T[1]*T[2] + T[3]*T[4] + T[5]ˆ2];

RL := [T [1]T [2] + T [3]T [4] + T [5]2]

> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
> w := [-1,2];

w := [−1, 2]

> R := createGR(RL, TT, [Q0]);
R := GR(5, 1, [2, []])

> w := [-1,3];
w := [−1, 3]

> C := GRgradedcomp(R, w);
C :=

[
T [1]T [2]T [3] + T [3]2T [4] + T [3]T [5]2

]
Procedure A.2.6 (GRgradedcompdim). Implements Algorithm 2.2.5.
Input: there are two possible input types:

• A graded ring R = (G,Q,Q0, P, FF) and a vector w ∈ Q0(Qr≥0).
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• A list [f1, . . . , fs] of polynomials fi ∈ K[T1, . . . , Tr], a list of variables
[T1, . . . , Tr], a r× k matrix Q0 and w ∈ Q0(Qr≥0) where the fi are homo-
geneous with respect to the grading deg(Ti) = Q0(ei).

In both cases, the cone over the columns of Q0 must be pointed and Q0 must not
contain zero-columns.
Output: the dimension of the vector space K[T1, . . . , Tr]w/〈G〉w.
Example: enter the GR R from the example of Procedure A.2.5.
> w := [-1,3];

w := [−1, 3]

> C := GRgradedcompdim(R, w);
3

Procedure A.2.7 (GRgitfan). Uses Algorithm 3.2.9 to compute the GIT-fan of
the action of the torus H0 := SpecK[K0] on X := SpecR. This procedure is as
in [70].
Input: a GR R = (G,Q,Q0, P, FF).
Output: the GIT-fan Λ(X,H0) given as a list of maximal CONEs.
Options: ’FAN’: return a FAN instead of a list of its maximal CONEs.
Example: Consider the GR R1 as in the example of Procedure A.2.3:
> GRgitfan(R1, ’FAN’);

FAN(3, 0, [0, 0, 37])

Procedure A.2.8 (GRH2max). Implements Algorithm 3.3.4.
Input: a GR R or a MDS X.
Output: a list of BUNs. They correspond to the (H, 2)-maximal sets of X.
Example: > Q0 := linalg[matrix]([[1,0,1,0], [0,1,0,1], [0,0,1,1]]);

Q0 :=

[
1 0 1 0
0 1 0 1
0 0 1 1

]
> R := createGR([], vars(4), [Q0]);

R := GR(4, 0, [3, []])

> GRH2max(R);
[BUN(1), BUN(1), BUN(1), BUN(1), BUN(1), BUN(1), BUN(1),
BUN(1), BUN(3), BUN(3), BUN(3), BUN(3), BUN(3), BUN(3),

BUN(3), BUN(3), BUN(3)]

Procedure A.2.9 (GRtrop). Implements Algorithm 2.2.7. Also works for arbi-
trary ideals if gfan [63] is available.
Input: There are three input possibilities:

• A GR R = (G,Q,Q0, P, FF).
• A MDS X = (R,Φ) with a GR R = (G,Q,Q0, P, FF).
• A list of polynomials G = [f1, . . . , fs] and a list of variables [T1, . . . , Tr]

such that fi ∈ K[T1, . . . , Tr].
In the first two cases, let P be the integral n×r matrix dual to the degree matrix Q.
Output: a FAN in Qn with support P (trop(〈G〉)) or a FAN in Qr with support
trop(〈G〉) if the option ’F’ was specified or the third input type was used.
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Options:
• ’F’: return a FAN in Qr with support trop(〈G〉).
• ’CONEs’: return a list of CONEs instead of a FAN. These represent the

maximal cones of the fan.
• ’gfan’: if the software gfan is installed on a UNIX-based machine, then

arbitrary ideals may be entered. Writes temporary files in the current
directory.

Example: > RL := [T[1]*T[2] + T[3]*T[4] + T[5]ˆ2];
RL := [T [1]T [2] + T [3]T [4] + T [5]2]

> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
> R := createGR(RL, TT, [Q0]);

R := GR(5, 1, [2, []])

> GRtrop(R); # after projection under P : Z5 → Z3.
FAN(3, 1, [0, 3, 0])

> GRtrop(R, ’F’, ’CONEs’); # in Q5.
[CONE(5, 4, 3, 1, 1), CONE(5, 4, 3, 1, 1), CONE(5, 4, 3, 1, 1)]

> RL := [T[2]ˆ3 -3*T[1]ˆ2*T[2]ˆ3 + 1, T[2]+T[1]+T[1]*T[2]ˆ2 -1];
RL :=

[
T [2]3 − 3T [1]2T [2]3 + 1, T [2] + T [1] + T [1]T [2]2 − 1

]
> TT := vars(2);

TT := [T [1], T [2]]

> F := GRtrop(RL, TT, ’gfan’);
F := FAN(2, 1, [1, 0])

Procedure A.2.10 (GRtropcontains). Implements Algorithm 2.2.8.
Input: there are two input types:

• A GR R = (G,Q,Q0, P, FF) or a MDS X = (R,Φ) with P of size n × r
and a vector f ∈ Zr.

• A GR R = (G,Q,Q0, P, FF) or a MDS X = (R,Φ) with P of size n × r
and a vector v ∈ Zn.

Output: true if Q≥0 · v ⊆ P (trop(〈G〉)) or if Q≥0 · f ⊆ trop(〈G〉) respectively.
Returns false otherwise.
Example: enter the GR R from the example of Procedure A.2.9.
> f := [0,0,0,-2,-1];

f := [0, 0, 0,−2,−1]

> GRtropcontains(R, f); # Q≥0 · f is contained in trop(〈G〉).
true

> v := [0, -2, -1];
v := [0,−2,−1]

> GRtropcontains(R, v); # Q≥0 · v is contained in P (trop(〈G〉)).
true
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3. Procedures on Mori dream spaces

In this section, we describe an implementation of our algorithms that work on
Mori dream spaces (MDS). The algorithms have been stated mainly in Section 3
of Chapter 2. The special case of complexity-one T -varieties will be treated in the
next section. Here is an overview:

• Creation and stored data: create an MDS (Procedure A.3.1), return the
stored data of an MDS (Procedure A.3.2).

• Orbit data: relevant F-faces (Procedure A.3.3), covering collection (Pro-
cedure A.3.4), toric ambient variety and completions (Procedure A.3.5).

• Miscellanea: Mori chamber decomposition (Procedure A.3.6), dimension
(Procedure A.3.7), existence of points (Procedure A.3.8), irrelevant ideal
(Procedure A.3.9), stratum (Procedure A.3.10), degree matrix (Proce-
dure A.3.11), graph of exceptional curves (Procedure A.3.12).

• Cones of divisor classes: semiample cone (Procedure A.3.13), effective
cone (Procedure A.3.14), moving cone (Procedure A.3.15).

• Groups: divisor class group (Procedure A.3.16), local divisor class groups
(Procedure A.3.17), Picard group (Procedure A.3.18), Picard index (Pro-
cedure A.3.19).

• Complete intersection Cox rings: anticanonical divisor class (Procedure
A.3.20), test for being (Q)-Gorenstein (Procedures A.3.21 and A.3.22),
Gorenstein index (Procedure A.3.23), test for being Fano (Procedure
A.3.24), intersection numbers (Procedure A.3.25).

• Singularities, further properties: test for being (Q-)factorial (Procedures
A.3.26 and A.3.27), test for being quasismooth (Procedure A.3.28), test
for being smooth (Procedure A.3.29), singularities (Procedure A.3.30),
test for being (quasi-)projective (Procedure A.3.31 and A.3.32), test for
being complete (Procedure A.3.33).

Procedure A.3.1 (createMDS). Constructor for the data type MDS. Represents
Mori dream spaces in terms of bunched rings.
Input: there are two types of input:

• A GR R = (G,Q,Q0, P, FF) and a vector w ∈ KQ. This input will return
the result of createMDS with parameters R and the BUN

Φ(w) =
{
Q0(γ0); γ0 is an F-face and w ∈

(
Q0(γ0)

)◦}
.

• a GR R = (G,Q,Q0, P, FF) and a BUN Φ in KQ.
Output: ’nocheck’: do not perform checks. Use this option if you know that the
input is valid.
Options: the MDS X = (R,Φ). The printed information of an MDS is the
number of variables, the number of relations, its dimension and information about
the grading group.
Example: We reenter the GR R, the BUN B1 and the vector w as in the example
of Procedure A.2.1. Then X and Y describe the same Mori dream surface:
> RL := [T[1]*T[2] + T[3]*T[4] + T[5]ˆ2];

RL := [T [1]T [2] + T [3]T [4] + T [5]2]

> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
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> w := [-1,2];
w := [−1, 2]

> R := createGR(RL, TT, [Q0]);
R := GR(5, 1, [2, []])

> B := createBUN(w, R);
B := BUN(5)

> X := createMDS(R, B);
X := MDS(5, 1, 2, [2, []])

> Y := createMDS(R, w);
Y := MDS(5, 1, 2, [2, []])

Procedure A.3.2 (MDSdata). Returns the stored data of the given MDS.
Input: an MDS X = (R,Φ).
Output: a list [R,Φ] with a GR R and a BUN Φ.
Example: consider the MDS X as in the example of Procedure A.3.1:
> MDSdata(X);

[GR(5, 1, [2, []]), BUN(5)]

Procedure A.3.3 (MDSrlv). Implements Algorithm 2.3.5.
Input: there are three types of input:

• An MDS X = (R,Φ).
• A BUN Φ, a matrix Q0, a list F of F-faces.
• A BUN Φ, a matrix Q0, a list of polynomials [f1, . . . , fs], a list of variables

[T1, . . . , Tr].
Output: in the first case, the list rlv(X) of all relevant F-faces is returned. In the
second case, all γ0 ∈ F such that Q0(γ0) ∈ Φ is returned. In the third case, all
〈f1, . . . , fs〉-faces γ0 � Qr≥0 such that Q0(γ0) ∈ Φ are returned.
Example: consider the MDS X, the matrix Q0 and the BUN B as in Procedure A.3.1.
Then the lists FFr1 to FFr3 coincide:
> FFr1 := MDSrlv(X);

FFr1 := [{1, 2, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 3, 4, 5},
{1, 2, 4, 5}, {1, 2, 5}, {1, 2, 3, 5}, {2, 3}, {1, 4}]

> FFr2 := MDSrlv(B, Q0, RL, TT);
FFr2 := [{1, 2, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 3, 4, 5},

{1, 2, 4, 5}, {1, 2, 5}, {1, 2, 3, 5}, {2, 3}, {1, 4}]

> FFr3 := MDSrlv(B, Q0, ffaces(RL, TT));
FFr3 := [{1, 2, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 3, 4, 5},

{1, 2, 4, 5}, {1, 2, 5}, {1, 2, 3, 5}, {2, 3}, {1, 4}]

Procedure A.3.4 (MDScov). Implements Algorithm 2.3.6.
Input: there are three types of input:

• An MDS X = (R,Φ).
• A BUN Φ, a matrix Q0, a list of F-faces F .
• A BUN Φ, a matrix Q0, a list of polynomials [f1, . . . , fs], a list of variables

[T1, . . . , Tr] such that fi ∈ K[T1, . . . , Tr].
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Output: in the first, second, third input case, the algorithm returns

• the list cov(X) of all minimal relevant F-faces.
• all γ0 ∈ F such that Q0(γ0) ∈ Φ and γ0 is minimal with this property.
• all 〈f1, . . . , fs〉-faces γ0 � Qr≥0 such that Q0(γ0) ∈ Φ and γ0 is minimal

with this property.

Example: consider the MDS X, the matrix Q0 and the BUN B as in Procedure A.3.1.
Compare also Procedure A.3.3.
> C1 := MDScov(X);

C1 := [{1, 2, 5}, {3, 4, 5}, {1, 4}, {2, 3}]

> C2 := MDScov(B, Q0, RL, TT);

C2 := [{1, 2, 5}, {3, 4, 5}, {1, 4}, {2, 3}]

> C3 := MDScov(B, Q0, ffaces(RL, TT));

C3 := [{1, 2, 5}, {3, 4, 5}, {1, 4}, {2, 3}]

Procedure A.3.5 (MDSambtorvar). Implements Algorithm 2.3.9.
Input: an MDS X.
Output: a FAN or a list of FANs if ’completions’ was given.
Options:

• ’completions’: return a list of FANs representing all possible comple-
tions for projective X as in Algorithm 2.3.9.
• ’nocheck’: do not test whether X is projective.
• ’CONEs’: return lists of maximal cones, i.e., lists of CONEs, instead of

FANs.

Example: consider the MDS X as in the example of Procedure A.3.1:
> Z := MDSambtorvar(X);

Z := FAN(3, 0, [0, 2, 2])

> ZL := MDSambtorvar(X, ’completions’);

ZL := [FAN(3, 0, [0, 0, 6]), FAN(3, 0, [0, 0, 5]), FAN(3, 0, [0, 0, 6])]

> map(iscomplete, ZL); ZL[1] &>= Z; ZL[2] &>= Z; ZL[3] &>= Z;

[true, true, true]
true

true

true

Procedure A.3.6 (MDSchambers). Implements Algorithm 3.2.11 to compute the
Mori chamber decomposition; compare also [70].
Input: an MDS X = (R,Φ) with R = (G,Q,Q0, P, FF).
Output: the Mori chamber decomposition as a list of maximal CONEs or a FAN
if the option ’FAN’ was used.
Options: ’FAN’: return a FAN instead of a list of its maximal CONEs.
Example: consider the MDS X as in Procedure A.3.1:
> MDSchambers(X, ’FAN’);

FAN(3, 0, [0, 0, 37])
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Procedure A.3.7 (MDSdim). Implements Algorithm 2.3.4.
Input: an MDS X = (R,Φ).
Output: an integer d ∈ Z≥0 such that dim(X) = d.
Example: consider the MDS X as in the example of Procedure A.3.1:
> MDSdim(X);

2

Procedure A.3.8 (MDSpointex). Implements Algorithm 2.3.8.
Input: an MDS X and a vector z ∈ Kr.
Output: true if z ∈ X̂ and false otherwise. This means [z] ∈ X.
Example: consider the MDS X as in the example of Procedure A.3.1:
> z := [1,1,-1,1,0];

z := [1, 1,−1, 1, 0]

> MDSpointex(X, z);
true

Procedure A.3.9 (MDSirrel). Implements Algorithm 2.3.11.
Input: an MDS X = (R,Φ).
Output: a list of generators g1, . . . , gn ∈ K[T1, . . . , Tr] for the vanishing ideal of
X \ X̂ in Kr.
Example: consider the MDS X as in Procedure A.3.1:
> MDSirrel(X);[

T [2]T [3], T [1]T [4], T [3]T [4]T [5], T [1]T [2]T [5], T [1]T [2] + T [3]T [4] + T [5]2
]

Procedure A.3.10 (MDSstrat). Implements Algorithm 2.3.39.
Input: an MDS X = (R,Φ). Optional: a relevant F-face γ0 � Qr≥0.
Output: Depending on the input type:

• If a second parameter γ0 was given: computes a list of generators Gγ0 ⊆
K[T1, . . . , Tr] for the ideal Iγ0 ⊆ K[T±1

1 , . . . , T±1
n ] of the stratum X(γ0) ⊆

X. Returns the pair [Gγ0 , [T1, . . . , Tn]].
• If no second parameter was given: generators Gγ0 ⊆ K[T1, . . . , Tr] for the

ideals Iγ0 ⊆ K[T±1
1 , . . . , T±1

n ] of all strata X(γ0) are returned as a pair
[L, [T1, . . . , Tn]] where the list L consists of all pairs [γ0, Gγ0 ]] with γ0
running through rlv(X).

Example: consider the MDS X as in the example of Procedure A.3.1:
> gam0 := {2, 3, 4, 5};

gam0 := {2, 3, 4, 5}

> MDSstrat(X, gam0); [
[T [2] + T [3]2], [T [1], T [2], T [3]]

]
> MDSstrat(X);[[

[3, 4, 5, [T [2] + T [3]2]], [1, 3, 4, 5, [T [2] + T [3]2]], [1, 2, 4, 5, [T [1] + T [3]2]],

[1, 2, 5, [T [1] + T [3]2]], [1, 2, 3, 5, [T [1] + T [3]2]], [1, 2, 3, 4, 5, [T [1] + T [2] + T [3]2]],

[2, 3, 4, 5, [T [2] + T [3]2]], [2, 3, []], [1, 4, []], [1, 2, 3, 4, [T [1] + T [2]]]
]
, [T [1], T [2], T [3]]

]
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Procedure A.3.11 (MDSdegmat). This is a special version of Procedure A.1.23.
First, A.1.23 will be applied to the P -matrix of the given MDS X to obtain an AGH
Q′ = (Zr,K ′, A) where

Q′ : Zr → K ′, K ′ := Zd ⊕
k⊕
i=1

Z/aiZ

and the columns of A represent the degrees deg(Ti) ∈ K ′. Afterwards, A is returned
together with the integers a1, . . . , ak.
Input: an MDS X = (R,Φ) or a GR R where R = (G,Q,Q0, P, FF).
Output: a pair [A, [a1, . . . , ak]] with an integral matrix A and ai ∈ Z. The entries
of the last k rows of A must be interpreted as elements of Z/aiZ; for this, Algo-
rithm 2.1.24 is used.
Example: > A := linalg[matrix]([[ 1, 0, 1],[ 1, 1, 0]]);

A :=
[

1 0 1
1 1 0

]
> Q := createAGH(createAG(3), createAG(1, [3]), A);

Q := AGH([3, []], [1, [3]])

> R := createGR([], vars(3), [Q]);
R := GR(3, 0, [1, [3]])

> X := createMDS(R, [1]);
X := MDS(3, 0, 2, [1, [3]])

> MDSdegmat(X); # the last row must be interpreted as elements of Z/3Z.[[
1 0 1
1 1 0

]
, [3]
]

Procedure A.3.12 (MDSintersgraph). Implements Algorithm 2.3.27.
Input: an MDS X = (R,Φ) of dimension two.
Output: the graph of exceptional curves GX (without intersection numbers).
Options: ’latex’: prints LATEX code to draw GX . Gray vertices stand for negative
curves and black vertices for negative curves which are incident with at least three
other curves. Also, the non-negative curves among the V (X; Ti) are drawn in white.
Example: consider the MDS X as in Procedure A.3.1:
> G := MDSintersgraph(X); # also draws a representation of the graph.

G := G

> networks[vertices](G); # shows the names of all vertices of G.
{”T1”, ”T2”}

> networks[edges]("T1", "T2", G); # there is an edge between the vertices
representing V (T1) and V (T2)

{e1}

> MDSintersgraph(X, ’latex’); # prints code for GX
T1

T2

T3

T4

T5
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Procedure A.3.13 (MDSsample). Implements Algorithm 2.3.15.
Input: an MDS X.
Output: the CONE SAmple(X) in the vector space KQ.
Example: consider the MDS X defined in Procedure A.3.1:
> c := MDSsample(X); rays(c);

c := CONE(2, 2, 0, 2, 2)
[[1, 1], [−1, 1]]

Procedure A.3.14 (MDSeff). Implements Algorithm 2.3.13.
Input: an MDS X = (R,Φ).
Output: the CONE Eff(X) in the vector space KQ.
Example: consider the MDS X as in Procedure A.3.1:
> c := MDSeff(X); rays(c);

CONE(2, 2, 0, 2, 2)
[[−2, 1], [2, 1]]

Procedure A.3.15 (MDSmov). Implements Algorithm 2.3.14.
Input: there are three input possibilities:

• An MDS X = (R,Φ).
• A GR R where the matrix Q0 has columns q1, . . . , qr ∈ KQ.
• An integral matrix with columns q1, . . . , qr.

Output: the CONE Mov(X) ⊆ KQ or, for the other input types, the CONE
r⋂
i=1

cone (qj ; j 6= i) ⊆ KQ.

Example: consider the MDS X and the matrixQ0 in the example of Procedure A.3.1:
> c1 := MDSmov(X); rays(c1);

c1 := CONE(2, 2, 0, 2, 2)
[[−1, 1], [1, 1]]

> c2 := MDSmov(Q0); c1 &= c2;
c2 := CONE(2, 2, 0, 2, 2)

true

Procedure A.3.16 (MDSclassgrp). Returns the divisor class group.
Input: an MDS X.
Output: an AG representing the class group Cl(X).
Example: consider the MDS X defined in Procedure A.3.1:
> MDSclassgrp(X);

AG(2, [])

Procedure A.3.17 (MDSlocclassgrp). Implements Algorithm 2.3.18.
Input: an MDS X = (R,Φ) and a point x ∈ X which is given either in Cox
coordinates z ∈ Kr or as a relevant F-face γ0 � Qr≥0 such that x ∈ X(γ0).
Output: an AG representing the local class group Cl(X,x).
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Example: we computationally verify part of [5, Ex. III.3.3.5]:
> RL := [T[1]*T[2] + T[3]ˆ2 + T[4]*T[5]];

RL := [T [1]T [2] + T [3]2 + T [4]T [5]]

> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> Q0 := linalg[matrix]([[1, -1, 0, -1, 1], [1, 1, 1, 0, 2]]);

Q0 :=
[

1 −1 0 −1 1
1 1 1 0 2

]
> R := createGR(RL, TT, [Q0]);

R := GR(5, 1, [2, []])

> w := [0,3];
w := [0, 3]

> Y := createMDS(R, w);
Y := MDS(5, 1, 2, [2, []])

> x0 := [0,1,0,0,1]; # Cox coordinates for a point in X(cone(e2, e5)).
x0 := [0, 1, 0, 0, 1]

> MDSlocclassgrp(Y, x0); # will be Z/3Z.
AG(0, [3])

> gam123 := {1,2,3};
gam123 := {1, 2, 3}

> MDSlocclassgrp(Y, gam123); # will be the trivial group:
AG(0, [])

Procedure A.3.18 (MDSpic). Implements Algorithm 2.3.20.
Input: an MDS X.
Output: the AG Pic(X) as a subgroup of Cl(X).
Example: consider the MDS X as in Procedure A.3.1:
> Pic := MDSpic(X); AGdata(Pic);

Pic := AG(2, [])[[
6 0
0 3

]
,

[
0
0

]
, 2, []

]
Procedure A.3.19 (MDSpicind). Implements Algorithm 2.3.21.
Input: an MDS X.
Output: the Picard index [Cl(X) : Pic(X)].
Example: consider the MDS X as in Procedure A.3.1:
> MDSpicind(X);

18

Procedure A.3.20 (MDSantican). Implements Algorithm 2.3.41.
Input: an MDS X = (R,Φ) such that R is a complete intersection.
Output: a vector w ∈ Zr. If K = (U,L) is the grading group then the anticanonical
divisor class −wcan

X ∈ K satisfies −wcan
X = w + linZ(L).

Example: consider the MDS X as in Procedure A.3.1:



250 A. PROCEDURES OF THE MDSPACKAGE

> MDSantican(X); # represents an element of K = Z2:
[0, 3]

Procedure A.3.21 (MDSisgorenstein). Implements Algorithm 2.3.44.
Input: an MDS X = (R,Φ) such that R is a complete intersection.
Output: true if X is Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17. We computationally
verify part of [5, Ex. III.3.3.5]:
> MDSisgorenstein(Y);

true

Procedure A.3.22 (MDSisQgorenstein). Implements Algorithm 2.3.43.
Input: an MDS X = (R,Φ) such that R is a complete intersection.
Output: true if X is Q-Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17. We computationally
verify part of [5, Ex. III.3.3.5]:
> MDSisQgorenstein(Y); # since (0, 5)− (0, 2) ∈ Q(cone(e2, e5)):

true

Procedure A.3.23 (MDSgorensteinind). Implements Algorithm 2.3.45.
Input: an MDS X = (R,Φ) such that R is a complete intersection.
Output: true if X is Q-Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17. We computationally
verify part of [5, Ex. III.3.3.5].
> MDSgorensteinind(Y); # Y is Gorenstein:

1

Procedure A.3.24 (MDSisfano). Implements Algorithm 2.3.46.
Input: an MDS X = (R,Φ) such that R is a complete intersection.
Output: true if X is Fano and false otherwise.
Example: let Y be as in the example of Procedure A.3.17. We computationally
verify part of [5, Ex. III.3.3.5]:
> MDSisfano(Y); # since (0, 5)− (0, 2) ∈ ϑ◦ for each ϑ ∈ Φ:

true

Procedure A.3.25 (MDSintersno). Implements Algorithm 2.3.48.
Input: a quasiprojective MDS X = (R,Φ) with R having a principal ideal of
relations and two elements w,w′ ∈ K.
Output: the intersection number D ·D′ ∈ Q where D,D′ are divisors on X with
classes [D] = w and [D′] = w′.
Options: ’allself’: return the list of all V (X; Ti)2.
Example: let Y be as in the example of Procedure A.3.17. We computationally
verify [5, Ex. III.3.3.5]:
> w := -MDSantican(Y);

w := [0,−3]
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> n := MDSintersno(Y, w, w); # the self-intersection number (wcan
Y )2

n := 6

Procedure A.3.26 (MDSisfact). Implements Algorithm 2.3.30.
Input: an MDS X = (R,Φ). Optional second parameter: a point x ∈ X given in
Cox coordinates z ∈ Kr or as a relevant F-face γ0 � Qr≥0 such that x ∈ X(γ0).
Output: if only X was given: true if X is factorial and false otherwise. If a point
x ∈ X was given: true if x ∈ X is factorial and false otherwise.
Example: consider the MDS X as in the example of Procedure A.3.1:
> MDSisfact(X); # since Q(linZ(cone(e1, e2, e5) ∩ Z8)) 6= Z2:

false

> gam0 := {1,2,5};
gam0 := {1, 2, 5}

> MDSisfact(X, gam0); # no point x ∈ X(γ0) is factorial:
false

> MDSisfact(X, [-1,1,0,0,1]); # the point [−1, 1, 0, 0, 1] ∈ X is not factorial:
false

Procedure A.3.27 (MDSisQfact). Implements Algorithm 2.3.31.
Input: an MDS X = (R,Φ).
Output: true if X is Q-factorial and false otherwise.
Example: consider the MDS X as defined in Procedure A.3.1:
> MDSisQfact(X); # all cones of Φ are full-dimensional.

true

Procedure A.3.28 (MDSisquasismooth). Implements Algorithm 2.3.23.
Input: an MDS X = (R,Φ). Optional second parameter: a point x ∈ X given in
Cox coordinates z ∈ Kr or as a relevant F-face γ0 � Qr≥0 such that x ∈ X(γ0).

Output: if only X was given: true if X̂ is smooth and false otherwise. If also a
point x ∈ X was given, true if x ∈ X̂reg and false otherwise.
Example: consider the MDS X as in the example of Procedure A.3.1:

> MDSisquasismooth(X); # X̂ is smooth since Xsing = {0} in K5:
true

> MDSisquasismooth(X, {2,3}); # this means X(cone(e2, e3)) ∩ X̂ is smooth.
true

> MDSisquasismooth(X, [-2,1,1,1,1]); # (−2, 1, 1, 1, 1) ∈ X̂ is smooth.
true

Procedure A.3.29 (MDSissmooth). Implements Algorithm 2.3.24.
Input: an MDS X = (R,Φ). Optional second parameter: a point x ∈ X given in
Cox coordinates z ∈ Kr or as a relevant F-face γ0 � Qr≥0 such that x ∈ X(γ0).
Output: if only X was given: true if X is smooth and false otherwise. If a point
x ∈ X was given, true if x ∈ X is smooth and false otherwise.
Example: consider the MDS X as in the example of Procedure A.3.1:
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> MDSissmooth(X); # X̂ is smooth, the toric ambient variety is singular:
false

> MDSissmooth(X, {2,3}); # the stratum X(cone(e2, e3)) is singular:
false

> MDSissmooth(X, [-2,1,1,1,1]); # the point [−2, 1, 1, 1, 1] ∈ X is smooth:
true

Procedure A.3.30 (MDSsing). Implements Algorithm 2.3.25.
Input: an MDS X.
Output: a list of lists [[J, [T1, . . . , Tr]], F ] where

• J is a list of polynomials in K[T1, . . . , Tr] such that the vanishing set
V (J) ⊆ Kr equals Xsing,
• F is a list of all relevant F-faces such that X(γ0) is singular.

Example: > RL := [2*T[1]ˆ3*T[2]ˆ2 + T[3]ˆ3*T[4]ˆ2 + T[5]ˆ3*T[6]ˆ2];
RL :=

[
2T [1]3T [2]2 + T [3]3T [4]2 + T [5]3T [6]2

]
> TT := vars(6);

TT := [T [1], T [2], T [3], T [4], T [5], T [6]]

> Q0 := linalg[matrix]([[ 0, 1, 0, 1, 0, 1 ],[ 1, 0, 1, 0, 1, 0 ]]);

Q0 :=
[

0 1 0 1 0 1
1 0 1 0 1 0

]
> R := createGR(RL, TT, [Q0]);

R := GR(6, 1, [2, []])

> Y := createMDS(R, [2,3]);
Y := MDS(6, 1, 3, [2, []])

> MDSsing(Y); # both X and X̂ are singular[[
[6T [1]2T [2]2, 4T [1]3T [2], 3T [3]2T [4]2, 2T [3]3T [4], 3T [5]2T [6]2, 2T [5]3T [6],

2T [1]3T [2]2 + T [3]3T [4]2 + T [5]3T [6]2], [T [1], T [2], T [3], T [4], T [5], T [6]]
]
,

[{1, 6}, {3, 6}, {1, 3, 6}, {2, 3, 6}, {1, 4, 6}, {2, 5},

{2, 3, 5}, {4, 5}, {1, 4, 5}, {2, 4, 5}, {2, 3}, {1, 4}]
]

Procedure A.3.31 (MDSisquasiproj). Implements Algorithm 2.3.35.
Input: an MDS X = (R,Φ).
Output: true if X is quasiprojective and false otherwise.
Example: consider the MDS X as in Procedure A.3.1:
> MDSisquasiproj(X); # Φ was defined by a vector w ∈ KQ:

true

Procedure A.3.32 (MDSisproj). Implements Algorithm 2.3.36.
Input: an MDS X.
Output: true if X is projective and false otherwise.
Example: consider the MDS X as in the example of Procedure A.3.1:
> MDSisproj(X); # X is quasiprojective and the grading is pointed

true
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Procedure A.3.33 (MDSiscomplete). Implements Algorithm 2.3.33.
Input: an MDS X = (R,Φ) where the ideal of relations of R is principal.
Output: true if X is complete and false otherwise.
Example: consider the MDS X as in Procedure A.3.1:
> MDSiscomplete(X); # |Σ| ⊇ trop(f) where ZΣ is as in Construction 1.3.12.

true

4. Procedures on complexity-one T -varieties

In this section, we describe our implementation of algorithms for complexity-one
T -varieties. See Section 4 of Chapter 2 for the algorithms. Here is an overview:

• Automorphisms: horizontal and vertical Demazure P -roots (Procedure
A.4.1 and A.4.2), roots of Aut(X)0 (Procedure A.4.3).

• Singularities: resolution of singularities (Procedure A.4.4).
• Anticanonical complex: anticanonical polytope (Procedure A.4.5), an-

ticanonical complex (Procedure A.4.6), test for being (ε-log-) terminal
(Procedures A.4.7 and A.4.8).

In this section, we call an MDS X = (R,Φ) or also its GR R of complexity one if X
is a complexity-one T -variety with Cox ring R = R(P,A) as in Construction 1.5.3.
This means the GR R was obtained by a call to Procedure A.2.3 with input P
and A.

Procedure A.4.1 (MDShdemazure). Implements Algorithm 2.4.2.
Input: there are three input types:

• An MDS X = (R,Φ) of complexity one.
• A GR R of complexity one.
• Integral matrices P and A as in Construction 1.5.2. If instead of A the

number of blocks of P is given, the procedure chooses A.
In the first two cases, we require that R = (G,Q,Q0, P, FF) has been entered as
createGR(P,A).
Output: a list of all horizontal Demazure P -roots of R = R(P,A).
Example: we computationally verify [6, Ex. 5.3]:
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,1]]);

P :=
[
−1 −3 3 0
−1 −3 0 2
−1 −2 1 1

]
> A := [[0,1],[-1,-1],[1,0]];

A := [[0, 1], [−1,−1], [1, 0]];

> R := createGR(P, A);
R := GR(4, 1, [1, []])

> HDEM := MDShdemazure(R);
HDEM := [[[[−1,−2, 3]], 2, 3, [1, 1, 1]]]

Let us consider another example and input type:
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[2,0,1],[0,1,1],
[0,0,1],[0,0,-1]]);

P :=

[
−1 −3 2 0 0 0
−1 −3 0 1 0 0
−1 −2 1 1 1 −1

]
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> HDEM := MDShdemazure(P, 3); # there are three blocks in P ; no horizontal
Demazure P -root exists:

HDEM := [[[], 1, 2, [1, 1, 1]], [[], 1, 2, [2, 1, 1]], [[], 2, 3, [1, 1, 1]]]

Procedure A.4.2 (MDSvdemazure). Implements Algorithm 2.4.1.
Input: there are three input types:

• An MDS X = (R,Φ) of complexity one.
• A GR R of complexity one.
• Integral matrices P and A as in Construction 1.5.2. If instead of A the

number of blocks of P is given, the procedure chooses A.
In the first two cases, we require that R = (G,Q,Q0, P, FF) has been entered as
createGR(P,A).
Output: a list of all vertical Demazure P -roots of R = R(P,A).
Example: as in Procedure A.4.1, we continue the verification [6, Ex. 5.3]:
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,1]]);

P :=
[
−1 −3 3 0
−1 −3 0 2
−1 −2 1 1

]
> A := [[0,1],[-1,-1],[1,0]];

A := [[0, 1], [−1,−1], [1, 0]];

> R := createGR(P, A);
R := GR(4, 1, [1, []])

> VDEM := MDSvdemazure(R); # There are no vertical P -roots:
V DEM := [[[], 0]]

In the next example there are vertical P -roots. Note that we use another input
type:
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[2,0,1],[0,1,1],
[0,0,1],[0,0,-1]]);

P :=

[
−1 −3 2 0 0 0
−1 −3 0 1 0 0
−1 −2 1 1 1 −1

]
> VDEM := MDSvdemazure(P, 3); # there are three blocks in P ; (v, 2) with v =

(0,−1, 1) is the only vertical Demazure P -root:
V DEM :=

[
[[], 1], [[[0,−1, 1]], 2]

]
Procedure A.4.3 (MDSautroots). Implements Algorithm 2.4.6.
Input: there are two input types:

• An MDS X = (R,Φ) of complexity one.
• A GR R of complexity one.

In both cases, the GR R = (G,Q,Q0, P, FF) must have been obtained from Proce-
dure A.2.3 as createGR(P,A).
Output: the roots of the unit component Aut(X)0 as a set of integral vectors.
These are the P -roots of X.
Example: we verify Example 2.4.7:
> P := cols2matrix([[-2,-2,-1,-1], [1,0,0,0], [1,0,1,0], [0,1,0,1],
[0,1,0,0]]);

P :=

[
−2 1 1 0 0
−2 0 0 1 1
−1 0 1 0 0
−1 0 0 1 0

]



4. PROCEDURES ON COMPLEXITY-ONE T -VARIETIES 255

> A := [[1,0],[0,1],[-1,-1]];
A := [[1, 0], [0, 1], [−1,−1]]

> R := createGR(P, A);
R := GR(5, 1, [1, []])

> Roots := autroots(R); # root system B2:
Roots := {[1,−1], [1, 1], [−1,−1], [−1, 1], [0,−1], [0, 1], [1, 0], [−1, 0]}

Procedure A.4.4 (MDSresolvesing). Implements Algorithm 2.4.8.
Input: there are two input types:

• An MDS X = (R,Φ) of complexity one, i.e., R = R(P,A) has been
entered as createGR(P,A).

• An MDS X = (R,Φ) where the ideal of relations of R is principal.

Output: a pair Y = (R′,Φ′). If X is of complexity one or if in the second case the
’verify’-tests succeeded, Y is a smooth MDS such that Y → X is a resolution of
singularities.
Options:

• ’verify’: tries to verify that Y is a smooth MDS; this is not needed if
X is of complexity one.

• ’minimal’: compute a minimal resolution if X is a surface.
• ’noffaces’: skip the computation of F-faces.
• ’noMDS’: do not return a data type MDS but only a list of generators for

the defining ideal, a list of variables and the new matrix P ′; this usually
is much quicker.

Example: we algorithmically verify [5, Ex. III.4.4.10]:
> A := [[0,1],[-1,-1],[1,0]];

A := [[0, 1], [−1,−1], [1, 0]];

> P := linalg[matrix]([[-3,-1,3,0],[-3,-1,0,2],[-2,-1,1,1]]);

P :=

[
−3 −1 3 0
−3 −1 0 2
−3 −1 1 1

]
> R := createGR(P, A); GRdata(R);

R := GR(4, 1, [1, []])[[
T [4]2 + T [3]3 + T [1]T [2]

]
, [T [1], T [2], T [3], T [4]], [AGH([4, []], [1, []]),

[
1 3 2 3

]
,[

−3 −1 3 0
−3 −1 0 2
−3 −1 1 1

]
, [{}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3}, {1}, {2}, {3, 4}, {1, 2, 3, 4}, {2, 3, 4}]

]
> w := relint(MDSmov(R));

w := [1]

> X := createMDS(R, w);
X := MDS(4, 1, 2, [1, []])

> Y := MDSresolvesing(X, ’noffaces’);
Y := MDS(13, 1, 2, [10, []])

> GRdata(MDSdata(Y)[1])[1]; # print the defining equation:[
T [5]T [8]3T [10]T [11]2 + T [2]T [4]2T [6]T [9]3 + T [7]T [12]2T [13]

]
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Procedure A.4.5 (MDSanticanpoly). Implements Algorithm 2.4.13.
Input: an MDS X = (R,Φ) of complexity one, i.e., R = R(P,A) has been entered
as createGR(P,A).
Output: the anticanonical polytope AX .
Example: we enter the E6-singular cubic, see [61, Ex. 7.3]:
> P := cols2matrix([[-3,-3,-2],[-1,-1,-1],[2,0,1],[0,3,1]]);

P :=

[
−3 −1 2 0
−3 −1 0 3
−2 −1 1 1

]
> A := [[-1,-1],[1,0],[0,1]]

A := [[−1,−1], [1, 0], [0, 1]]

> R := createGR(P, A);
R := GR(4, 1, [1, []])

> X := createMDS(R, relint(MDSmov(R)));
X := MDS(4, 1, 2, [1, []])

> AX := MDSanticanpoly(X);
AX := POLY TOPE(3, 3, 6, 8)

> vertices(AX);
[[−3,−3,−2], [−1,−1,−1], [2, 0, 1], [0, 3, 1], [0, 0,−1/5], [0, 0, 1]]

Procedure A.4.6 (MDSanticancomp). Implements Algorithm 2.4.14.
Input: an MDS X = (R,Φ) of complexity one, i.e., R = R(P,A) has been entered
as createGR(P,A).
Output: the anticanonical complex AX of X.
Example: enter the example of Procedure A.4.5. Then:
> AXC := MDSanticancomp(X);

AXC := PCOMPLEX(3, [0, 0, 7, 0])

> vertices(AXC);
{[0, 0,−1/5], [0, 0, 0], [−3,−3,−2], [−1,−1,−1], [2, 0, 1], [0, 3, 1], [0, 0, 1]}

Procedure A.4.7 (MDSisterminal). Implements Algorithm 2.4.16.
Input: an MDS X = (R,Φ) of complexity one, i.e., R = R(P,A) has been entered
as createGR(P,A).
Output: true if X is terminal and false otherwise.
Example: enter the example of Procedure A.4.5. Then:
> MDSisterminal(X);

false

Procedure A.4.8 (MDSisepslogterminal). Implements Algorithm 2.4.15.
Input: an MDS X = (R,Φ) of complexity one, i.e., R = R(P,A) has been entered
as createGR(P,A) and a rational number 0 < ε ≤ 1.
Output: true if X is ε-log-terminal (for ε < 1) and false otherwise.
Example: we continue the example of Procedure A.4.5:
> MDSisepslogterminal(X, 1/2);

true
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5. Miscellanea

This section contains information on several procedures that do not fit into one of
the previous categories. Most of them have been described throughout Chapter 2.
Here is an overview:

• Algebraic operations: closure computation (Procedure A.5.1), primality
test (Procedure A.5.2), prime variables (Procedure A.5.3).

• Polyhedral operations: dualize fans or bunches of cones (Procedures A.5.5
and A.5.4), fiber polyhedron (Procedure A.5.6), lattice points or interior
points of a polytope (Procedure A.5.7).

• Modifying equations, etc.: ?-pullback (Procedure A.5.8), ?-pushforward
(Procedure A.5.9), variables (Procedure A.5.10).

Procedure A.5.1 (closure). Implements Algorithm 2.2.14.
Input: a list of polynomials [f1, . . . , fs] and a list of variables [T1, . . . , Tr] such that
fi ∈ K[T1, . . . , Tr].
Output: a list [[g1, . . . , gm], [T1, . . . , Tr]] such that gi ∈ K[T1, . . . , Tr] and the clo-
sure V (Tr; f1, . . . , fs) in Kr is given by V (Kr; g1, . . . , gs).
Example: > RL := [T[1]*T[10]-T[3]*T[7]+T[4]*T[6], T[1]*T[8]-T[2]*T[6]
+T[3]*T[5], T[1]*T[9]-T[2]*T[7]+T[4]*T[5]];

RL := [T1T10 − T3T7 + T4T6, T1T8 − T2T6 + T3T5, T1T9 − T2T7 + T4T5]

> TT := vars(10);
TT := [T [1], T [2], T [3], T [4], T [5], T [6], T [7], T [8], T [9], T [10]]

> closure(RL, TT); # the affine cone over G(2, 5).[
[T7T8 − T6T9 + T5T10, T4T8 − T3T9 + T2T10, T1T10 − T3T7 + T4T6,

T1T9 − T2T7 + T4T5, T1T8 − T2T6 + T3T5],

[T [1], T [2], T [3], T [4], T [5], T [6], T [7], T [8], T [9], T [10]]
]

Procedure A.5.2 (isprimeideal). Implements Algorithm 2.2.10 for the case of
a free class group.
Input: a list [f1, . . . , fs] of polynomials and a list of variables [T1, . . . , Tr] such that
fi ∈ Q[T1, . . . , Tr].
Output: true if the ideal 〈f1, . . . , fs〉 ⊆ Q[T1, . . . , Tr] is prime and false otherwise.
Example: > RL := [T[1]ˆ2 +1]; [

T [1]2 + 1
]

> isprimeideal(RL, vars(1)); # the ideal 〈T 2
1 + 1〉 ⊆ Q[T1] is not prime:

false

Procedure A.5.3 (primevars). Successively applies Procedure A.5.2 to test
whether Ti defines a prime element in R = K[T1, . . . , Tr]/〈f1, . . . , fs〉.
Input: a list [f1, . . . , fs] of polynomials and a list of variables [T1, . . . , Tr] such that
fi ∈ Q[T1, . . . , Tr].
Output: the set of all indices 1 ≤ i ≤ r such that Ti defines a prime element in R.
Example: > RL := [T[1]*T[2] + T[2]*T[3]+T[4]*T[5]];

RL := [T [1]T [2] + T [2]T [3] + T [4]T [5]]

> primevars(RL, vars(5)); # In K[T1, . . . , T5]/〈T1T2 + T2T3 + T4T5〉 only T1
and T3 define prime elements:

{1, 3}
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Procedure A.5.4 (w2fan). Consider a surjective integral k × r matrix Q0 and
a Gale dual matrix P of size n× r. Let either a vector w ∈ cone(Q0) or a BUN Φ
in Qk for the ring K[T1, . . . , Tr] with grading deg(Ti) := Q(ei) be given. In Qn we
have fans

Σ(w) =
{
P (γ∗0); γ0 � Qr≥0 and w ∈

(
Q0(γ0)

)◦}
,

Σ(Φ) =
{
P (γ∗0 ); γ0 � Qr≥0 and Q0(γ0) ∈ Φ

}
.

Input: in the above notation, there are three input types:
• A vector w ∈ Qk, a matrix Q0, a matrix P .
• A CONE λ ⊆ Qk, a matrix Q0, a matrix P . Then w ∈ λ◦ will be chosen.
• A BUN Φ in Qk, a matrix Q0, a matrix P .

Output: a FAN Σ ⊆ Qn. For the first two input cases, we have Σ = Σ(w) whereas
Σ = Σ(Φ) holds for the third input case.
Options: ’CONEs’: return a list of maximal CONEs instead of a FAN.
Example: in the following example, the fans Sigw, Siglam and SigB coincide.
> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0], [1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
> P := linalg[matrix]([[3, 1, -4, 0, 0], [2, 0, -3, 1, 0],

[1, 0, -2, 0, 1]]);

P :=

[
3 1 −4 0 0
2 0 −3 1 0
1 0 −2 0 1

]
> w := [-1,2];

w := [−1, 2]

> Sigw := w2fan(w, Q0, P);
Sigw := FAN(3, 0, [0, 0, 6])

> lam := poshull([-1,1],[0,1]);
lam := CONE(2, 2, 0, 2, 2)

> Siglam := w2fan(lam, Q0, P);
Siglam := FAN(3, 0, [0, 0, 6])

> B := createBUN(w, [], vars(5), Q0);
B := BUN(8)

> SigB := w2fan(B, Q0, P);
SigB := FAN(3, 0, [0, 0, 6])

Procedure A.5.5 (fan2w). Let Σ ⊆ Qn be a fan and P an integral n× r matrix
such that the columns of P are pairwise different primitive generators for the rays of
Σ and the columns of P generate Qn as a cone. Let Q0 be a matrix that describes
the map Zr → K0 that is dual to the inclusion ker(P ) → Zr. In K0

Q, we have
a BUN Φ(Σ) in the ring K[T1, . . . , Tr] that is graded by deg(Ti) := Q(ei) where

Φ(Σ) =
{
Q(δ∗0); δ0 � Qr≥0 and P (δ0) ∈ Σ

}
.

Input: a FAN Σ ⊆ Qn as well as integral matrices P and Q0 as explained above.
Output: the BUN Φ(Σ) in K0

Q.

Options: ’w’: instead of a BUN return a vector w ∈ (
⋂
ϑ ϑ)◦ where ϑ ranges over
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the elements of Φ(Σ).
Example: consider the setting of the example of Procedure A.5.4.
> w := fan2w(Sigw, P, Q0, ’w’);

w := [−1, 2]

> B := fan2w(Sigw, P, Q0);
B := BUN(8)

Procedure A.5.6 (fiberpoly). Consider an integral surjective k× r matrix Q0

and a vector w inside the cone over the columns of Q0. The fiber polyhedron is

Bw :=
(
Q0)−1 (w) ∩ Qr≥0 ⊆ Qr.

Input: there are two input types:
• A matrix Q0 and a vector w ∈ Qk.
• A matrix Q0 and a CONE λ ⊆ Qk. Here, w ∈ λ◦ will be chosen.

In both cases, a Gale dual matrix P of Q0 may be given as a third parameter.
Output: the POLYHEDRON Bw ⊆ Qr. If a third parameter P was given then
(P ∗)−1(Bw) ⊆ Qn will be returned.
Example: > Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],
[1, 1, 1, 1, 1]]);

Q0 :=
[
−2 2 −1 1 0

1 1 1 1 1

]
> P := linalg[matrix]([[3, 1, -4, 0, 0], [2, 0, -3, 1, 0],

[1, 0, -2, 0, 1]]);

P :=

[
3 1 −4 0 0
2 0 −3 1 0
1 0 −2 0 1

]
> w := [-1,2];

w := [−1, 2]

> Bw := fiberpoly(Q0, w);
Bw := POLY TOPE(5, 3, 6, 5)

> MBw := fiberpoly(Q0, w, P);
MBw := POLY TOPE(3, 3, 6, 5)

Procedure A.5.7 (intpoints). Implements Algorithm 2.2.2.
Input: a POLYTOPE B ⊆ Qr.
Output: ’relint’: return the list of elements of B◦ ∩ Zr instead of B ∩ Zr.
Options: a list of the elements of B ∩ Zr.
Example: > B := cube(3);

B := POLY TOPE(3, 3, 8, 6)

> intpoints(B);
[[−1,−1,−1], [−1,−1, 0], [−1,−1, 1], [−1, 0,−1], [−1, 0, 0], [−1, 0, 1], [−1, 1,−1],

[−1, 1, 0], [−1, 1, 1], [0,−1,−1], [0,−1, 0], [0,−1, 1], [0, 0,−1], [0, 0, 0], [0, 0, 1],
[0, 1,−1], [0, 1, 0], [0, 1, 1], [1,−1,−1], [1,−1, 0], [1,−1, 1], [1, 0,−1], [1, 0, 0], [1, 0, 1],

[1, 1,−1], [1, 1, 0], [1, 1, 1]]

> intpoints(B, ’relint’);
[[0, 0, 0]]
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T2

T3

T1

Procedure A.5.8 (pull). Implements Algorithm 2.2.12.
Input: there are two input types:

• A list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tn] with fi ∈
K[T1, . . . , Tn], an integral n× r matrix P .
• A polynomial f1, a list of variables [T1, . . . , Tn] with f1 ∈ K[T1, . . . , Tn],

an integral n× r matrix P .

Output: a list [G, [T1, . . . , Tr]] where

• for the first input type, G = [p?f1, . . . , p
?fs] with p?fi ∈ K[T1, . . . , Tr],

• for the second input type, G = p?f1 ∈ K[T1, . . . , Tr].

Example: > f := T[1]*T[2] + 3*T[3]ˆ2;
f := T [1]T [2] + 3T [3]2

> TT := vars(3);
TT := [T [1], T [2], T [3]]

> P := linalg[matrix]([[1, 0, 3, 0], [0, 1, 0, 4], [1, 1, 1, 1]]);

P :=

[
1 0 3 0
0 1 0 4
1 1 1 1

]
> pull(f, TT, P);[

T1T
3
3 T2T

4
4 + 3T 2

1 T
2
2 T

2
3 T

2
4 , [T [1], T [2], T [3], T [4]]

]
> pull([T[1] + T[2], T[2] + T[3]], TT, P);[

[T1T
3
3 + T2T

4
4 , T2T

4
4 − 3T1T2T3T4], [T [1], T [2], T [3], T [4]]

]
Procedure A.5.9 (push). Implements Algorithm 2.2.13.
Input: there are two input types:

• A list of polynomials [f1, . . . , fs], a list of variables [T1, . . . , Tr] with fi ∈
K[T1, . . . , Tr], an integral n× r matrix P of rank n.
• A polynomial f1, a list of variables [T1, . . . , Tr] with f1 ∈ K[T1, . . . , Tr],

an integral n× r matrix P of rank n.

We require the polynomials fi to be K-homogeneous with respect to the K :=
Zr/Im(P ∗)-grading deg(Ti) = Q(ei) where Q : Zr → K is as in Algorithm 2.1.24.
Output: a list [G, [T1, . . . , Tn]] where

• for the first input case, G = [p?f1, . . . , p?fs] with p?fi ∈ K[T1, . . . , Tn],
• for the second input case, G = p?f1 ∈ K[T1, . . . , Tn].

Example: > f1 := T[1]*T[2] + T[3]*T[5];
f1 := T [1]T [2] + T [3]T [5]

> f2 := T[1]ˆ2 + T[2]ˆ2 + T[3]*T[4]*T[5]ˆ2;
f2 := T [1]2 + T [2]2 + T [3]T [4]T [5]2
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> TT := vars(5);
TT := [T [1], T [2], T [3], T [4], T [5]]

> P := linalg[matrix]([[-1,1,0,0,0],[2,0,-1,1,0],[-2,0,1,0,1]]);

P :=

[
−1 1 0 0 0

2 0 −1 1 0
−2 0 1 0 1

]
> push(f1, TT, P);[

T [1] + T [3], 1 + T [1]2 + T [2]T [3]2, [T [1], T [2], T [3]]
]

> push([f1, f2], TT, P);[
[T [1] + T [3], 1 + T [1]2 + T [2]T [3]2], [T [1], T [2], T [3]]

]
Procedure A.5.10 (vars). Returns a list of variables.
Input: an integer r ∈ Z≥1 or a list of polynomials [f1, . . . , fs].
Output: the list [T1, . . . , Tr] if an integer r was given; assumes that T has not yet
been assigned. If a list of polynomials was given, then a list of all found variables
is returned.
Example: > TT := vars(3);

TT := [T [1], T [2], T [3]]

> TTf := vars([T[1]*Y[3]ˆ2 + 7*S[2] + 1, -2*S[1] - 9]);
TTf := [S[1], T [1], S[2], Y [3]]
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möglich gemacht haben: dem Promotionsverbund der Universität Tübingen sowie
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Index

(H, 2)-maximal subset, 85, 86
A2

-maximal, 16
-variety, 16

G

-invariant, 10
-variety, 9

H

-factorial, 12, 89
-saturated, 12, 85

K

-factorial, 13, see factorially K-graded
-prime, 13, 15

K0, 35
P

-matrix, 24
-root, 55

Q0, 35
X(R,F,Φ), 16
Bl , 126
Fa, see Hirzebruch surface
K∗-surface, 23

combinatorially minimal, 62
Q

-Gorenstein, 53
-factorial point, 18
-factorial variety, 18, 50

a-face, 48, 76
γ∗0 , 18
F

-bunch, 15, 44
maximal, 15
projective, 16
true, 15

-face, 15, 76
covering collection, 45
projected, 80
relevant, 16, 45
verification, 76, 77

:, 129
ε-log-terminal, 61, 256
%(X), see Picard number
m-line, 116

ADE-singularity, 23, 50, 101
admissible, 25, 130
AG, 30
AGareequal, 31, 228
AGareisom, 30, 227
AGcontains, 31, 227

AGdata, 226
AGfactgrp, 31, 228
AGfreepart, 31
AGfreered, 229
AGH, 32
AGHcompleteseq, 34, 232
AGHdata, 227
AGHdeg, 233
AGHgradiator, 36, 233
AGHim, 33, 230
AGHisalmostfree, 37, 234
AGHishomog, 36, 234
AGHisinj, 34, 231
AGHissurj, 34, 232
AGHker, 34, 231
AGHP2Q, 35, 235
AGHpreim, 33, 230
AGHQ2P, 35, 235
AGHQ2Q0, 35, 236
AGHsection, 37, 235
AGintersect, 32, 230
AGprodgrp, 31, 229
algebraic group

affine linear, 9
reductive, 10

almost free grading, 37
almost general position, 159
almost homogeneous, 56
ambient

canonical toric ambient variety, 18
ample cone, 19
anticanonical

complex, 60, 61, 256
divisor class, 52
polytope, 60, 61, 256

associated
abelian group, 112
ideal, 108

automorphism group
roots, 57

binomial trick, 140
block, 25
blow up, 21

along a subvariety, 21, 105
center, 21
Cox ring of, 95
linear, 113
of P3, 117
of a point, 108
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BlowUpCEMDS, 105
BlowUpCEMDSpoint, 108
BUN, 44
bunch

F-, 15, 44
bunched ring, 15, 37, 225
BUNdata, 237

canonical
ambient toric variety, 46
toric ambient variety, 18
toric embedding, 18

canonically embedded Mori dream space,
see CEMDS

Cayley’s nodal cubic surface, 108
CEMDS, 94, 98

weak, 100
character, 9
characteristic

quasitorus, 14
space, 14

class group, see divisor class group
local, see local class group

closure, 43, 257
coarsest common refinement, 45, 84
combinatorially minimal, 59, 62
complete, 51
complete intersection, 19, 52
complexity-one T -variety, 23, 55, 253
compress, 98
CompressCEMDS, see compress
ContractCEMDS, 100
contraction, 20, 96, 100

Cox ring of, 95
covering collection, 16
Cox

construction, 18
coordinates, 14
ring, 13

hypersurface-, 62
sheaf, 13

createAG, 226
createAGH, 227
createBUN, 236
createGR, 237
createMDS, 243
curve, 20

(−k)-, 20
negative, 20
non-negative, 20

degree map, 15
degree matrix, 29
del Pezzo surface, 62, 101

weak, 159
Demazure P -root

horizontal, 55
vertical, 55

diagonal action, 10
dimension

of a Mori dream space, 45
divisor

Cartier, 12
class group, 12
effective, 47

movable, 47
prime, 12
restriction, 12
semiample, 47
Weil, 12

divisor class group, 48
local, 48

effective cone, 19, 47
embedded space, 98
embedding

big, 16
compress, 97
neat, see neat embedding
stretch, 97, 98

ES, see embedded space
exceptional divisor, 22

over a point, 22
exceptional graph, 60
extremal, 20

face
a, see a-face
F, 15, 75

factorial
K-grading, 89, 90
point, 18

factorial variety, 50
factorially K-graded, 15
fake relation, 99
fan

coarsest common refinement, see coarsest
common refinement

GIT-, 82
GKZ, 84
lattice-, 14
normal, 83
quasi-, 11

fan2w, 258
Fano, 19, 53
fiberpoly, 259
fiberpolyhedron, 259
fiberpolytope, see fiberpolyhedron
finite geometry, 116
m-arc, 116
complete graph, 116
design, 116
near pencil, 116

finite linear space, 116
finitely generated abelian group

containment, 31
equality, 31
factor group, 31
free part, 31, 35
free resolution, 31
homomorphism of, 32
intersection, 32
isomorphic, 30
product group, 31

fixed point
elliptic, 26
hyperbolic, 26
parabolic, 26

Gale duality, 30, 35, 226
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Gelfand Kapranov Zelevinsky
decomposition, 45, 84

general ideal, 112
GIT

-chamber, 80–82
-cone, 11, 81
-fan, 11, 81, 82

GKZ-fan, 45, see Gelfand Kapranov
Zelevinsky decomposition

good
G-set, 11
quotient, 10

Gorenstein, 19, 53, 101
Q-, 19
n-, 20
index, 53

GR, 38
Gröbner

cone, 40
fan, 40

graded component, 38
graded ring, 38

graded component, see graded
component
dimension, 39

homogeneous component, see graded
component

gradiator, 36, 233
grading

almost free, 15
pointed, 15

graph
automorphism group, 79
clique, 86

maximal, 86
of a fan, 83
of exceptional curves, 23
Orlik Wagreich-, 164
overlapping, see overlapping graph

GRdata, 240
GRgitfan, 241
GRgradedcomp, 38, 240
GRgradedcompdim, 39, 240
GRH2max, 86, 241
GRtrop, 40, 241
GRtropcontains, 40, 242

Hirzebruch surface, 121
homogeneous, 36

classically, 116
homogeneous component, see graded

component
homomorphism of finitely generated abelian

groups
almost free, 37
dual, 35
exact sequence, 34
free part of grading, 35
gradiator, 36
image, 33
injective, 34
kernel, 34
preimage, 33
section, 37

surjective, 34

ideal
irrelevant, see irrelevant ideal
saturation, 43

infinitely near, 22
interior points

of a polytope, 38, 259
intersection

number, self-, 54
form, 54
graph, 50, 247
multiplicity, 20
number, 20, 54, 250
number, self-, see self intersection number
product, 20

intpoints, 259
invariants

ring of, 10
irrelevant ideal, 46
isaface, 76, 77
isomorphism

of graded algebras, 162
isprimeideal, 257

lattice ideal, 108
lattice points

of a polytope, 38
LinearBlowup, 113
local class group, 18
log-terminal, 61

MDS, 44, 98
MDSambtorvar, 46, 245
MDSantican, 52, 249
MDSanticancomp, 61, 256
MDSanticanpoly, 61, 256
MDSautroots, 57, 254
MDSchambers, 83, 245
MDSclassgrp, 48, 248
MDScov, 45, 244
MDSdata, 244
MDSdegmat, 247
MDSdim, 45, 246
MDSeff, 47, 248
MDSgorensteinind, 53, 250
MDShdemazure, 56, 253
MDSintersgraph, 50, 247
MDSintersno, 54, 250
MDSirrel, 46, 246
MDSiscomplete, 51, 253
MDSisepslogterminal, 61, 256
MDSisfact, 50, 251
MDSisfano, 53, 250
MDSisgorenstein, 53, 250
MDSisproj, 52, 252
MDSisQfact, 50, 251
MDSisQgorenstein, 53, 250
MDSisquasiproj, 51, 252
MDSisquasismooth, 48, 251
MDSissmooth, 49, 251
MDSisterminal, 61, 256
MDSlocclassgrp, 48, 248
MDSmov, 47, 248
MDSpackage, 29
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MDSpic, 48, 249
MDSpicind, 48, 249
MDSpointex, 45, 246
MDSresolvesing, 57, 255
MDSrlv, 45, 244
MDSsample, 47, 248
MDSsing, 49, 252
MDSstrat, 52, 246
MDSvdemazure, 56, 254
minimal

combinatorially, 62
minimally presented, 161
modification, 20, 89

of a CEMDS, 100
of Mori dream spaces, 98
toric, 95
toric ambient, 93

ModifyCEMDS, 100
Mori chamber decomposition, 83
Mori dream space, 16, 44
moving cone, 17, 19, 47
multiplicity, 22

neat embedding, 17

orbit cone, 11, 15, 80
originary, 161
Orlik Wagreich graph, 164
overlapping graph, 86

parameter, 140
Picard group, 18, 48
Picard index, 48, 249
Picard number, 22, 101
platonic triple, 65
point configuration

edge special, 116
point location, 81
polytope

interior points, 259
primevars, 257
projective, 52
proper transform, 22
pull, 43, 260
pull back
?-, 42, 99

push, 43, 260
push forward, 77
?-, 43, 99

qp-maximal subset, 12
quasiprojective, 51
quasismooth, 48
quasitorus, 9

reduction along γ0, 75
Rees algebra, 105

of a binomial ideal, 112
saturated, 105

resolution of singularities, 22
minimal, 22

reverse search, 83
root system, 57

saturated, 99
saturation

of a lattice, 31
of an ideal, 99

self intersection number, 20
semiample cone, 19, 47
semiample divisor, 19
semistable points, 11
Serre’s criterion, 159
sheaf of divisorial algebras, 13
singularity, 48, 49

resolution, see resolution of singularities
sink, 26
smooth, 49

rational surface, 119
source, 26
stratum, 18, 52
StretchCEMDS, 98
surface, 20

combinatorially minimal K∗-, 62
del Pezzo, see del Pezzo surface
exceptional graph, 50
smooth rational-, 119

symmetries, 78, 79

terminal, 61, 256
toric ambient modification

good, 96
toric ambient modifications, 93
toric variety, 14

canonical ambient, 94
torus, 9

quasi-, 9
standard, 9

total coordinate space, 14
tropical

prevariety, 78
variety, 78
weak tropical resolution, 57

tropical variety, 40, 51
containment, 40

variation of GIT-quotients, 75
variety, 9

with complexity-one torus action, 23
vars, 261
Veronese embedding, 78

w2fan, 258
weak tropical resolution, 57
weight cone, 11, 15
weighted projective space, 111

blow up of, 111
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43–74. Birkhäuser, 2000.

[44] A. Gibney and D. Maclagan. Equations for Chow and Hilbert quotients. Algebra Number
Theory, 4(7):855–885, 2010.

[45] D. Grayson and M. Stillman. Macaulay2 – a software system for research in algebraic geom-
etry. Available at http://www.math.uiuc.edu/Macaulay2/.

[46] G.-M. Greuel and G. Pfister. A Singular introduction to commutative algebra. Springer,
Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen
and Hans Schönemann.

[47] S. Gutsche. GAP package ToricVarieties. Available at http://www.gap-system.org/
Packages/toricvarieties.html.

[48] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
[49] B. Hassett and Y. Tschinkel. Universal torsors and Cox rings. In Arithmetic of higher-

dimensional algebraic varieties (Palo Alto, CA, 2002), volume 226 of Progr. Math., pages
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