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Introduction

The central objects of this thesis are Mori dream spaces as introduced by Y. Hu
and S. Keel [60], i.e., algebraic varieties such that the cone of effective divisors has
a polyhedral Mori chamber decomposition. Well-known examples are toric vari-
eties, spherical varieties or smooth Fano varieties. Hu and Keel have shown that
the Mori dream spaces X are characterized by finite generation of the Cox ring
R(X). There are strong relations between the geometry of X and its Cox ring. In
fact, a Mori dream space X can be retrieved from the spectrum X of R(X) as a
quotient X = X JH of an open subset X C X by a quasitorus H with the class
group Cl(X) as its characters. F. Berchtold and J. Hausen [19; 51] proposed an
explicit description of Mori dream spaces X in terms of bunched rings, i.e., pairs
(R, ®) consisting of a factorially K-graded ring R given by generators and relations
and a collection (bunch) ® of overlapping polyhedral cones in K ® Q. Then R
determines X = Spec R, the K-grading gives rise to the H-action on X and the
open subset X C X is constructed from ® by geometric invariant theory. Building
on the approach via bunched rings [19, 51, 5, 18, 6], our main focus lies on the de-
velopment, implementation and application of explicit algorithms for general Mori
dream spaces.

We now give a summary of the results of this thesis. A first series of results is a
toolkit for basic computations with (not only projective) Mori dream spaces. We
present algorithms for

e basics on finitely generated abelian groups and algebras graded by them,

e Picard group, local class groups, the cones of effective, movable or semi-
ample divisor classes,

e canonical toric ambient variety, stratification, irrelevant ideal,

e tests for being quasismooth, smooth, (Q-) factorial, complete, (quasi-)
projective, singularities (in terms of strata),

e for complete intersection Cox rings: intersection numbers, graph of ex-
ceptional divisors, anticanonical divisor class, test for (Q-) Gorenstein
and Fano properties, Gorenstein index,

e for varieties with the action of a torus of codimension one: resolution of
singularities, test for being almost-homogeneous, roots of the automor-
phism group.

We have implemented these algorithms in a software package, called MDSpackage,
see [54, 55]. This extends packages for toric varieties, for example [20, 47, 66,-69, 99].

As an application of our algorithms, we study del Pezzo surfaces, i.e., Fano surfaces,
with a non-trivial K*-action. Recall that V. Alexeev and V. Nikulin [2] classified
the log-terminal del Pezzos surfaces of Picard number one and Gorenstein index at
most two. More is known for del Pezzos surfaces with torus action. A. Kasprzyk,
M. Kreuzer and B. Nill [68] classified the toric del Pezzo surfaces with Gorenstein-
index n < 16 and at most log-terminal singularities. H. Sifi [94, Ch. 6] listed
the non-toric, log-terminal del Pezzo K*-surfaces with n < 3 and Picard number
o(X) < 2 and E. Huggenberger [61, Ch. 5] classified the non-toric, log-terminal cases
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2 INTRODUCTION

with n = 1. Using our algorithms, we classify the (not necessarily log-terminal) non-
toric del Pezzo K*-surfaces with n < 6, Picard number two and hypersurface Cox
ring that are combinatorially minimal, i.e., those without contractible curves.

Theorem. The following table lists the non-toric, combinatorially minimal del
Pezzo K*-surfaces of Picard number two with hypersurface Cox ring and Goren-
stein index n < 6.

Coz ring R(X) CLl(X) [CI(X) : Pic(X)] n degree
K[T1,...,T5] /(W Te + T2T2 + T2) 72 & Z/2Z 32 2 2
K[T1,...,T5] /(" To + T2T? + T2) 72 & Z/AZ 256 4 1
K[T1,...,T5] /(0T + T2T2 + T2) 722 @ Z/6Z 864 6 2
K[T1,..., Ts)/(TWT3 + T3T% + T2) 72 & Z/3L 108 3 2
K[T1,...,T5]/(ThT3 + T3T3 + T3) 72 9 3 g
KTy, ..., T5]/(I\T5 + T5T3 + T3) 72 @ Z/2Z 72 3 3
K[Ty,..., Ts)/(ThT% + 1517 + T2) Z*&Z/5Z 500 5 £
K[T1,..., T5]/(TWT5 + 15T + T9) 72 25 5 g
K[Ty,..., Ts)/(ThTy + T3T5 + T9) Z* & Z/2Z 200 5 £
K[T1,...,T5] /(W TS + T5T3 + T3) 72 @ Z/AZ 576 6 2
K[Ty,..., Ts) /(T Ty + 1314 + T4) 226 Z/3Z 432 6 2
K[T1,...,T5]/(T2Ts + T2T4 + T2) z? 4 1 4

The explicit C1(X)-grading of the Cox ring R(X) and further geometric properties

As a first advanced algorithm we show how to compute the Mori chamber decompo-
sition of a given Mori dream space. More generally, we provide a method to compute
the GIT-fan of torus-actions on affine varieties. The GIT-fan is a polyhedral fan
parameterizing quotients from D. Mumford’s [83] geometric invariant theory (GIT).
For quotients associated to ample bundles the fan structure has been described by
I. Dolgachev, Y. Hu and M. Thaddeus [35, 97]. F. Berchtold and J. Hausen [18§]
then provided an explicit construction of the GIT-fan of an affine variety. Building
on the latter, Algorithm :3.2.9 computes the maximal GIT-cones by traversing a

spanning tree of the implicitly given dual graph of the GIT-fan. We have published
our algorithm in [71].

A next series of advanced algorithms concerns the impact of modifications on Cox
rings. More precisely, given a modification Xo — X7 of projective varieties where
one of the Cox rings R(X;) is known, we present methods to compute the other
Cox ring in terms of generators and relations. The methods and results have been
published jointly with J. Hausen and A. Laface in [57]. The case of a contraction
X5 — X; of a Mori dream space X5 can be answered purely theoretically, see
Proposition 4.2.3. The case of a blow up X — X; of a Mori dream space X; is

more delicate; we may even lose finite generation of R(X5). We develop algorithms
to

verify finite generation of R(X3),

verify a guess of generators for R(X32),
produce a guess of generators for R(Xs),
determine the ideal of relations.

Our starting point are toric ambient modifications as developed by J. Hausen in [51].
More precisely, given a Mori dream space X;, there is a canonical embedding
X, C Z; into a toric variety Z;. Each toric modification 7: Z; — Z; induces
a modification Xo — X; of the embedded variety where Xo C Z5 is the proper
transform under m. Hausen has given a list of geometric criteria under which we
can describe the Cox ring of Xs. A key step is to reduce these criteria to a series
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J. Hausen. As a first consequence, we obtain algorithms for items two and four,
i.e., to verify a guess of generators and to determine the ideal of relations.

As an application, we explicitly compute the Cox rings of the Gorenstein log-
terminal del Pezzo surfaces of Picard number one without K*-action. See [2] for a
classification of these surfaces in terms of singularity types. The Cox rings of the
non-toric cases with K*-action have been determined by J. Hausen and H. Siif} [59],
the toric ones are well-known, see, e.g., R. Koelmann [72]. Our result completes
the list. The idea is to present the surfaces X as Py < X' — X where enough in-
formation on the Cox ring of X’ is known by the work of B. Hassett, Y. Tschinkel,
U. Derenthal, M. Artebani, A. Garbagnati and A. Laface [49, 33, 4].

Theorem. The following table lists the Cox rings of the Gorenstein log-terminal del
Pezzo surfaces X of Picard number one that do not admit a non-trivial K*-action.

S(X)  # gen.s of R(X) { relations CI(X)
244 6 5 Z® L[5
Ds 4 1 7o L2
DsAs 5 2 ZoL/AL
Dg2Aq 5 2 LOL/2L O LJ2L
Eg Az 4 1 VAYARY/
Er Ay 4 1 7&1)27
Eg 4 1 Z
Az 4 1 Z & L]2Z
Ag 4 1 7 & L/3L
A7 Ay 5 2 7 LJAL
A5 Az AL 7 9 7.® 7.]6Z
24344 9 20 LOL/2L D LJAL
44, 10 27 ZOL/3L®LJ3L

Moreover, an explicit description of each Cox ring in terms of generators and rela-

A more elaborate algorithm addresses items one and three in the enumeration on

page 2, ie., given a blow up Xo — X; of a Mori dream space X; our Algo-

result. The idea is to show that R(X3) is isomorphic to a certain saturated Rees al-
gebra. Generators for R(X3) can then be obtained by a traversal of the components
of the Rees algebra. This is a complete answer to the problem as it terminates if
and only if R(X3) is finitely generated. Furthermore, we present an algorithm that
verifies finite generation of R(X32) for the case of infeasible computation.

As an application of our algorithms, we consider certain blow ups of the projective
space P3. A.-M. Castravet and J. Tevelev [24] provided generators of the Cox ring
of blow ups of P, at points that lie on a rational normal curve. Relations have
been determined by B. Sturmfels and Z. Xu [93]. Moreover, in [92] Sturmfels and
M. Velasco computed for n < 8 the Cox rings of blow ups of P, at n + 3 points
in general position. Applying a specialized version of our algorithm, we explicitly
determine the Cox rings of blow ups of P3 in six points in edge-special position, i.e.,
four points are general and at least one point lies in two hyperplanes spanned by
the others.

Theorem. Let x1,...,x4 € Pg be the standard toric fized points. The following
table lists the Z"-graded Cox rings of the blow up of Py in the following typical
edge-special configurations x1,...,xg.

Ts5 Z6 f gen.s of R(X) { relations
[1,1,0,0] [0,1,1,1] 16 15
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2,1,0,0] [L,1,0,1 15 10
1,0,0,1] [0,1,0,1 13 5
1,0,0,1] [0,1,1,0 12 2
2,1,0,0] [L,2,0,0 12 2

Moreover, an explicit description of each Cox ring in terms of generators and rela-

As the major result of this thesis, we determine the Cox rings of the smooth rational
surfaces X with Picard number o(X) < 6; for o(X) = 6, we restrict ourselves to
the non-K*-cases. The corollary that each smooth rational surface with o(X) < 6
is a Mori dream space was also observed by Testa, Varilly-Alvarado and Velasco
in [95]. So far, Cox rings of smooth rational surfaces have only been determined
systematically for the special class of (weak) del Pezzo surfaces, i.e., blow ups of Py
in points in (almost) general position; see the work of V. Batyrev, U. Derenthal,
0. Popov, M. Stillman, D. Testa and M. Velasco [13; 33, 32, 89].

Our approach makes use of the fact that each smooth rational surface X can be
obtained as a blow up of the projective plane P in up to five points or as a blow up of
the a-th Hirzebruch surface F, in up to four points where a € Z>(. This enables us
to use our methods for Cox ring computations of blow ups of Mori dream spaces: the
blow ups of Py can be handled in a purely computational way whereas the blow ups
of F, require a theoretical treatment. Here, we use our methods in a formal way to
deal with the parameter a € Z>o. We give a complete classification of all surfaces
X with o(X) < 5 and list the generators and relations of the Cox rings of each
class. For Picard number six we explicitly determine the Cox rings of the surfaces
that do not admit a non-trivial K*-action; the remaining surfaces are known to be
Mori dream spaces and their Cox rings can be obtained by combinatorial methods,
see [59, 61].

Theorem. FEach smooth rational surface X with Picard number o(X) < 6 is a Mori
dream space. Moreover, the following statements hold.

(i) If o(X) < 5 holds, then X is isomorphic to Py or exactly one of the sur-

the Cozx ring R(X) is listed explicitly in terms of generators and relations.
(ii) If o(X) = 6 holds, then X admits a non-trivial K*-action or is isomorphic
to exactly one of the following surfaces where a € Z>3.

Coz ring R(X) degree matriz
K[T1, ..., T10l/1 r1 o o 1 0 0 2 0 3 -1 ]
with I generated by 0 1 0 10 0 3.0 5 -2
2 0 O 1 -2 0 0 -1 0 —2 1
TgTy — 1Tz = TeTrTsTho, o0 0 o0 1 0 1 0 2 -1
TWT5T3TyTs — TgT7 — ToTho 0O 0 0 o 0 1 -2 0 -1 1
L O 0 0 0 0 0 0 1 1 -1 ]
K[T1,...,Ti0l/1 rf1 o 0 0 0 O 1 0o -1 17
with I generated by 8 (1) (1) 8 8 8 71 1 g 7(1)
TsTsTs — T2Ts — Ty Tro, o0 0 1 0 0 ©0 o0 1 -1
T1Ts + T7Tg — T2TgTaTio 0O 0 0 0 1 0 2 -1 -1 1
Lo o o o o 1 -1 13 —2 |




K[T1,...,Tn]/1
with I generated by
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TETTETs —TeTr —TuTion | o Y o o 1 0 1 o0 1 2 o
T3 TyTg Ty — T5To + TsTho, o 0 1. 0 0 0 1 -1 0 1 0
T\T5 + T7Ts — T2TuT T, 00 0 1 1 0 2 -1 0o 2 0
T§T4T5T82 + T Ty — ToT11, 00 0 0 2 0 3 -1 -1 2 1
TETTsTsT2TaTi1 — T7 Ty 00 0 0 0 1 0 0 11 -1
—T1Tio
K[T1,...,Tiol/1 f1 o o o 0 O 2 -1 -1 1
with I generated by 6 1 0 0 0 0 =2 2 3 -1
0 o0 1 0O 0 o0 1 -1 0 0
T1Ts5 + T7Tg — T2T4TeTho, o 0 0 1 0 0 -1 1 2 1
TsT5T7T§ — T3 Ta — ToTio 00 0 0 1 0 3 —2 -1 1
L O 0 0 0 0 1 0 0 1 —1
K[T1, ..., Ti3]/T ToTh1 — AT5T3Ty — T7T12,
ih I ved b (A =1)T1T5 — T10T9 — T12T3,
with generate Y (A _ 1)T5T8 + T6T9 _ TllTlS,
T1T11 — TuT3To — TsT12, T10T11 — (N = 1)TyT3T5 + TgTh2,
T1T7 — ToTg + T3T9 T3, (AN = 1)TyT7 + X\TeTy — T11T13,
T2Te + T7T10 — T3T5T13, (A= 1)T2Ty — AT10T9 — T12T13,
T1Te + TgT1o — T3T4T13, where A € K* \ {1}.
1 0 0 0 —1 0 0 1 0 0 —1 —1 1
0 1 0 0 1 0 0 —1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 1 —1
0 0 0 1 1 0 0 0 1 0 2 2 —1
0 0 0 0 0 1 0 0 —1 1 —1 —1 1
0 0 0 0 0 0 1 1 1 —1 1 0 0
(N = m)T3Ts + pTrT10 — T13T16,
K[T1,...,Tigl/T (=A+ DT5T14 + (—p + )TeTi5 + T10T11,
; (A =1)T5Tg + (—p + 1)TeTg — T11T16,
with I generated by (A — D)T4T7 + (A — p)T6To — T11T16,
TeTh2 + AT7T14 — TgT13, (b= 1)T3Ty — pTsTro + T14T16,
T5T12 — pT7Ty5 — ToThs, (=A+1)T2T14 + (—p + 1)T3T15 + T10T12,
TyT13 — AT5T14 — pTeTi5,  (Ap — p)T2T8 + (—Ap + N\)T3Ty — T12T16,
TyT12 — pTeT1s — AToT1a, (N — u)T2Te + ANT7T10 — T13T16,
T3T11 + T7T1a — T8T13, (A= 1)T2Ty — NT9T10 — T15T16,
T1T13 — ToT14 — T3Ty5, (A — p)T1T7 + (X — p)T3Ty — T12T16,
T1T11 — T8T5 — ToT1a, (n—1)T1Te — T8T10 + T14Th6,
T2T11 — T7Tis — ToThs, (A =1)T1T5 — ToT10 — T15T16
where X # p € K* \ {1}.
1 0 0 0 -1 -1 0 1 1 -1 0 1 -1 0 0 0
0 1 0 0 1 0 0 -1 0 10 0 1 0 1 0
0 0 1 0 0 10 0 -1 10 0 1 1 0 0
0 0 0 1 1 10 0 0 10 -1 0 0 0 1
00 0 0 0 0o 1 1 1 -1 0 0 -1 -1 -1 1
00 0 o0 0 0o o0 0 0 0o 1 1 1 1 1 -1
K[T1,...,T11]/1
with I generated by r1 0 0 0O 0 o0 0 1 0 1 1
TeT2Ts + TsTo — TsTho, 01 0 0 0 O 0 0 1 1 -1
T3TyTs — ThTs — ToT11, 00 1 0 0 O 1 -1 0 1 0
TyTyTs + TeTr — T11Tho, 00 0 1 0 0 1 -1 1 2 -1
T1T5 + T7Ts — ToTyT11, 0 o0 0 0 1 0 1 0 —1 0 1
T3T2Ty — T7To — Ty T1o Lo o 0o 0o 0 1 -1 1 1 0 0
K[Ty, ..., Tiol]/1 f1 o o o 0 O 1 0o -1 1
with I generated by 0 1 0 0 0 0 —1 1 2 -1
0 o0 1 0O 0 O 1 —1 0 0
T3T5Tg — T2Te — ToTho, 0O 0 0 1 0 O 0 0 1 -1
TTs + TrTg — ToTyTro 00 0 0 1 0 2 -1 -1 1
Lo o 0 0 0 1 -1 1 1 0
K[T1,...,Tol/I r1 o 0o 0 0 O 0 0 1 -1
with I generated by 0 1 0 0 0 o0 —a+1 a 1 1
Ty TsTio — ToTs — T7Ts, 0 0 1 0 0 0 1 -1 1 0
T2T4T;71T§172 — T3Ts 0O 0 O 1 0 O —1 1 0 0
ToTih 00 0 0 1 0 1 -1 2 -1
Lo o0 0 0 0 1 —a+42 a—-1 -1 1




6 INTRODUCTION

TioTi1 — T T4 T~ T + wT5Ts,
—RTGT4TETE ™ + TsTo — T5Tho,
TETSTITS ' Te T¢I — T3To — TrTao

where k € K*.

K[T1,...,T11]/1

with I generated by t71

T;Ts — T§T4Tg ™' Ty + TsTs,
ToTyy — TET4TETS ™ — wTeTr,

1 0 0 0 O 0 1 -1 1 0 0
0 1 0 0 0 0 0 0 1 1 -1
0 0 1 0 0 a—1 0 1 2a — 3 2a — 2 —a + 2
0 0 0 1 0 1 0 0 2 2 -1
00 0 0 1 a-1 1 0 22a—2 22—-3 —a+2
0 0 0 0 0 a —1 1 2a — 2 2a — 1 —a+1
K[T1,...,Tiol/1 rf1 o 0o 0o 0 O 1 -1 0 0
with I generated by 0O 1 0 0O 0O 0 2a-1 —a+1 —a a
0 0 1 0 0 O -1 1 2 -1
a 2
Ty'Ts — T5T5Tg Tho — TrTs, 0 0 0 1 0 O 2 -1 -1 1
1T, "TyTg —T3Te — ToT10 0O 0 0 0 1 o© 0 0 1 -1
Lo o 0o o o 1 -1 1 3 -2
K[T1,...,Tiol/I _
7y ol/ 1 0 0 0 0 0 1 -1 0 o0
with I generated by 0 1 0 0 0 o0 3q — 1 —2a+1 —a a
T$Ty — T3TeT10Ts — TrTs, 0 0 1 0 0 O —2 2 3 -1
T1T;_1T4T7T§ _ T§T5 o 0 0 1 0 O 3 -2 -1 1
e 00 0 0 1 0 -1 1 2 -1
9410
0 0 0 0 0 1 0 0 1 -1
K, Tol /T 1 0 0 0 1 0 0 3 1
with I generated by 0 1 0 0 2a — 1 0 0 da — 3 —at1
T T2 T2 — T2Ts 0 0 1 0 -2 0 0 -2 1
—T1TY ™ ' T3 Ty Ts T T7 To 0 0 0 1 2 0 0 4 -1
LToToT2 0 0 0 O 0 1 o0 2 -1
7879 Lo o o o 0 0 1 1 —1
KITy, ..., Tol/T ro1 1 0 0 0 0 0 0
.. —a
with I generated by _1 0 1 0 1 0 0 0 0
T$Ty — T3TsTE -1 0 -2 0 0 1 0 0 O
TH TN T T T T T o0 1 100 0 1 0
2
T Ty Ts L -1 0o 2 2 0 0 0 0 1

In this table, the first 12 classes do not admit a non-trivial K*-action. In the {7-
case, the listed ring is the Cox ring for a < 15 whereas for a > 15 the Cox ring is

finitely generated and given by the equivariant normalization of K[T, ..., Ti1]/(I :
(Ty -~ T11)™).

This thesis is divided into five chapters and an appendix. We now give a brief
overview.

In the first chapter, for the convenience of the reader, we recall the fundamental
theory of Cox rings, GIT, bunched rings and Mori dream spaces. Also, we recapit-
ulate basics on surfaces, of modifications and of complexity-one T-varieties. This
chapter is mainly taken from [5, 32, 61].

In Chapter 2, based on [19, 51, 5], we present an algorithmic toolkit for explicit
computations with Mori dream spaces. We introduce the required data types and
provide basic algorithms for finitely generated abelian groups, algebras that are
graded by a finitely generated abelian group, for general Mori dream spaces as well
as for the special class of complexity-one varieties; see Sections 1,2, 3 and 4. As
an application, we classify in Section 5. the combinatorially minimal K*-surfaces of
Picard number two of Gorenstein index at most six whose Cox ring has a single
relation.

Using the construction [19], we develop in Chapter 3 an algorithm to compute the
GIT-fan for affine varieties V(a) C K" with torus action. As a first step, we need to
determine the torus orbits of K" meeting V' (a), the so-called a-faces or §-faces of
the positive orthant QZ, see Section 1. We then show how to compute GIT-cones
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and the GIT-fan in Section:2. A special case is the Mori chamber decomposition. In
Section 3. of Chapter 3 we give a direct algorithm to determine the (H, 2)-mazimal
subsets [51} certain more general open subsets admitting a good quotient.

Given a modification Xy — X3 of projective varieties where one of the Cox rings
R(X;) is known, we show in Chapter 4 how to determine the other one. As a first
step, we translate in Sections 1'and 2 the methods of toric ambient modifications
developed in [51] to a computable version. We also present a theoretical solution
to compute the Cox ring of a contraction. In Section :3, we then are in position
to present algorithms to verify a guess of generators and to determine relations.
Based on [2], we apply these algorithms in Section L4‘ to compute the Cox rings of
the Gorenstein, log-terminal del Pezzo surfaces of Picard number one that do not
admit a non-trivial K*-action. In Section 5, we develop an algorithm to explicitly
compute the Cox ring R(X3) of a blow up Xo — X; of a Mori dream space X;
along an irreducible subvariety inside the smooth locus. Moreover, for the case
of infeasible computation, we present an algorithm that verifies finite generation
of R(X2). Specializing to blow ups Xy — P, of point configurations in a projective
space P,,, in Section 67 we provide an algorithm that verifies that R(X3) is generated
by transforms of hyperplanes in IP,,. We explore some relations to the underlying
combinatorial structures. Using our algorithm, we determine the Cox rings of blow
ups of P35 in point configurations consisting of six distinct points in edge-special
position.

In Chapter 5, we explicitly compute the Cox rings of the smooth rational surfaces
X with Picard number o(X) < 6. Our classification is complete for o(X) < 5 and
contains the non-K*-cases for o(X) = 6. As X is obtained as a sequence of blow
ups of Py or the Hirzebruch surface F,, we can use the techniques developed in
Chapter 4. We first classify the point configurations on P, and F, that we need to
consider to obtain X as a blow up, see Section 1. Afterwards, in Sections 2, 3 and 4
we iteratively blow up a point of a surface of lower Picard number o(X) until we
arrive at o(X) = 6. In each step, we remove redundancies.

In Appendix:A; we describe an implementation of the algorithms developed through-
out this thesis. It is aimed towards usability and computations of up to medium
examples. The appendix serves as a manual.

Throughout this thesis we made extensive use of the software systems gfan, Macau-
lay2, magma, Maple, polymake and Singular for computer algebra or polyhedral
computations, see [63, 45, 23, 79, 43, 31].






CHAPTER 1
Preliminaries

We recall basic notions from algebraic geometry and thereby fix our notation for
the subsequent chapters. This chapter is a summary of the sources referenced at the
beginning of each section and does not contain results by the author. Our primary
reference is the book by Ivan Arzhantsev, Ulrich Derenthal, Jiirgen Hausen and
Antonio Laface [5].

Basics on geometric invariant theory for affine quasitorus actions can be found in
the first section. In Section 2, we introduce Cox rings and toric varieties. We
recall the theory of bunched rings and the correspondence to Mori dream spaces in
Section ;3. Section 4 deals with fundamental surface geometry and modifications,
e.g., blow ups. In the final section, i.e., Section 5, we recall the construction and
basic properties of K*-surfaces and complexity-one T-varieties.

Throughout this document, we work over an algebraically closed field K of charac-
teristic zero. By a wariety, we always mean a separated prevariety over K.

1. GIT and good quotients

We recall basics on good quotients, the correspondence between graded affine alge-
bras and affine varieties with quasitorus action as well as the GIT-fan. This section
is a summary of mainly Sections III.1 and 1.2 of [5]; see also [7, 18].

An affine algebraic group is an affine variety G together with a group structure such
that the group operations are morphisms. A variety X with the action G x X — X
of an affine algebraic group G is called a G-variety. Given an affine algebraic group
G, denote its group of characters, i.e., homomorphisms G — K* of algebraic groups,
by X(G).

Definition 1.1.1. A quasitorus is an affine algebraic group H with its algebra of
regular functions T'(H, Q) generated by the characters x € X(H). A connected
quasitorus is a torus.

Each quasitorus is isomorphic to a product of a torus and a finite abelian group.
The standard torus is the torus T™ := (K*)™. Homomorphic images of tori are again
tori. Note that homomorphisms of tori correspond to integral matrices.

Remark 1.1.2. There are exact functors between finitely generated abelian groups
and quasitori that are essentially inverse to each other; the assignments are

K +— SpecK[K], ¥ — SpecK[y], X(H) « H, * o~ .

We now briefly recall the correspondence between affine varieties with quasitorus
action and affine algebras that are graded by a finitely generated abelian group.
Given such an affine variety X with the action of a quasitorus H, we obtain a
X(H)-graded algebra

N(X,0)= P I'(X,0), TI(X0):={fecl(X,0); f(ha)=yx(h)f(z)}

x€X(H)
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Vice versa, consider a finitely generated abelian group K and a K-graded, affine
K-algebra R. Set X := Spec R and choose K-homogeneous generators fi,..., f,
for R. We have an embedding

X =K, 2= (i), .. fi(2)

and X C K" is invariant under the diagonal action of the quasitorus H := Spec K[K]
on K" with comorphism

R = K[K]® R, Ru>f— x"®f

Moreover, a morphism of affine H;-varieties X; and X, with quasitori H; is a pair
(¢, ) consisting of a morphism of varieties ¢: X; — X5 and a homomorphism of
algebraic groups ¢: H; — Hj such that

olh-2) = @(h) - p(x) forall z € Xy, h € H;.
Proposition 1.1.3. We have contravariant, exact functors that are essentially in-

verse to each other between the categories of affine K-algebras that are graded by a
finitely generated abelian group and affine varieties with the action of a quasitorus

R +— SpecR, NXx,0) « X,
(v.0) = (Spects, Speck[d]), @8« (09

By a reductive algebraic group we mean an affine algebraic group G such that every
rational representation of G splits into irreducible ones. Examples of reductive
groups include SL(n,Z), GL(n,Z), all finite groups and quasitori.

Consider a reductive algebraic group G and a G-variety X. A morphism ¢: X - Y
is G-invariant if p(z) = p(g-x) for all x € X and g € G. We call ¢ affine if
preimages of open affine subsets are again affine. The ring of invariants is the
algebra

O(X)¢ = {feD(X,0); flg-x) = f(x) foreach x € X, g € G}.

Definition 1.1.4. A good quotient for the G-action on X is an affine, G-invariant
morphism 7: X — Y such that Oy — (7.0x)¢ is an isomorphism.

The quotient space Y of a good quotient X — Y for the G-action on X is unique
up to isomorphism; we denote it by X /G. Note that good quotients need not exist.
However, for an affine G-variety X with reductive group G, by a theorem of David
Hilbert, the ring of invariants O(X)Y is finitely generated. Then the inclusion
O(X)%¢ C O(X) yields the good quotient

X — X/G = SpecO(X)°.

If X is not affine, good quotients can be obtained by gluing together quotients of
an affine covering.

Example 1.1.5. Define G := K* and X := K? as well as U := K2\ {0}. The
varieties X and U are G-varieties with the G-action given by t - (x,y) := (tz, ty).
The quotient space X //G is isomorphic to a point and U//G is isomorphic to P;.

s M e
IR

The following proposition subsumes some basic properties of good quotients. A
subset U C X of a G-variety X is G-invariant if G-U C U.

O

Proposition 1.1.6. Let X be a G-variety with a reductive group G and let p: X —
Y be a good quotient for the G-action.
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(i) The image of a closed, G-invariant subset is again closed.
(ii) The images of two closed, G-invariant, disjoint subsets are again disjoint.
(iii) For each point y € Y, the fiber p~1(y) contains a closed G-orbit.

A task of GIT is to construct good G-sets of a G-variety X, i.e., open subsets
U C X that admit a good quotient U — U//G. We will concentrate on the affine
case, i.e., assume X = Spec R with an affine, K-graded algebra R and the action of
the quasitorus H := SpecK[K]. Let Kg := K ®z Q. The weight cone and the orbit
cone of a point x € X are the convex polyhedral cones

dx = cone(we€ K; R, #{0}) C Ko,
¥y = cone(w € K; f(z)#0 for some f € R,) C Kpg.

It turns out that there are only finitely many orbit cones. Given a vector w € Kg,
we assign to w a set of semistable points, i.e., the open, H-invariant subset

X*®(w) = {reX; f(zx)# 0 with some f € Ry, and n € Z>1} C X.

Proposition 1.1.7. In the above setting, X (w) # 0 holds if and only if w € Vx.
In this case, the H-action on X*(w) admits a good quotient and X*(w)/H is
projective over X JJH. Moreover, given wy,wy € ¥x with X% (w;) C X*(ws), we
have a commutative diagram

XSS(wl) g XSS(w2)

l l

X(wy)JH — X*(we) JH

wi
w2

with ! projective and surjective. Furthermore, given a third vector wz € ¥x with

X (wa) © X*(ws), we have i = @2 0 P

w3

A quasifan in a rational vector space Ng is a finite collection X of polyhedral, convex
cones in Ng such that for each o € 3, also all faces 7 < o are elements of ¥ and
given g,0’ € ¥ the cone o N ¢’ is a face in both ¢ and ¢’. A fan is a quasifan
consisting of pointed cones. We write ¥ C Ny if the cones of ¥ lie in Ng.

Definition 1.1.8. Given w € ¥x, the corresponding GIT-cone or GIT-chamber is
the nonempty polyhedral cone

AMw) = ﬂ Y, C Ky.
zeX,
wWED,

We call the collection A(X, H) := {\(w); w € Ix} of all GIT-cones the GIT-fan of
the H-action on X.

The term “fan” is justified by the following theorem which also relates GIT-cones
to sets of semistable points. In particular, the number of GIT-cones is finite.

Theorem 1.1.9. In the above setting, the GIT-fan A(X, H) is a pure quasifan in
Kq with support 9x. Furthermore, given wi,ws € Vx, we have

C Mwa) = X*®(wy) 2 X¥(wa),
)\(wl) = /\(’LUQ) < Xss(wl) = XSS(UJQ).

It then makes sense to define X™(\) := X (w) with any element w in the relative
interior of the given GIT-cone A. Theorem 1.1.9: tells us that the structure of

A(X, H) reflects the variation of GIT-quotients; they form the GIT-system given
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by the quotients Y'(\) := X*()\)/H and morphisms cpi; of Proposition 117

Y(\) vog
Y (N A)

If X is H-factorial, i.e., it is irreducible, normal and each H-invariant Weil divisor is
the divisor of a rational homogeneous function, the GIT-fan gives a correspondence
to good H-sets. A subset Uy of a good H-set U C X is H-saturated if Uy =
p~1(p(Up)) with the good quotient p: U — U/ H. By a qp-maximal subset of X we
mean a good H-set U C X with quasiprojective quotient space and U is maximal
with respect to H-saturated inclusion among the good H-sets with quasiprojective
quotient space.

Theorem 1.1.10. In the above setting, assume that X is H-factorial. We have
mutually inverse order-reversing bijections

AX,H) +— {gp-mazimal subsets of X }
A s XP(),

ﬂﬂgﬂ ~— U

zcU
Example 1.1.11. In Example ‘1.1.5; X and U are good K*-sets: the GIT-fan

A(X,K*) consists of cone(1) and cone(0). They correspond to the good K*-sets

X = X*(0) = {reX; f(r) £0 fora f € K[T1, Tolo},
U= X%Q1) = {zeX; f(z) #0 for a f € K[T1,T2]n1, n > 0}.

2. Cox rings

We recall the basic theory of Cox rings and toric varieties. This section summarizes
parts of [5], mainly Chapter I, and [51; 61].

Consider an irreducible variety X that is normal, i.e., every local ring Ox , integral
and integrally closed in its quotient field. A prime divisor on X is an irreducible
hypersurface D C X. The group generated by the prime divisors is the free abelian
group WDiv(X), its elements are called Weil divisors. Let ordp(f) be the order of
vanishing of a rational function f € K(X)* along a prime divisor D. The principal
divisor of f is

div(f) == > ordp(f)-D € WDiv(X).

D prime

Note that f +— div(f) is a homomorphism K(X)* — WDiv(X) with the subgroup
of principal divisors PDiv(X) < WDiv(X) as its image. The divisor class group is
the factor group

Cl(X) := WDiv(X)/ PDiv(X).

A Weil divisor is a Cartier divisor if it is locally principal; we write CDiv(X) <
WDiv(X) for the group of all Cartier divisors. Moreover, a Weil divisor D =
a1Dy + ...+ a,D, € WDiv(X) is effective if all a; are non-negative; we then
write D > 0. Given an open subset U C X, the restriction of a Weil divisor
D € WDiv(X) is the Weil divisor Dy € WDiv(U) where Dy := D NU if D
intersects U non-trivially and D)y := 0 otherwise.
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Construction 1.2.1. To a Weil divisor D € WDiv(X) we assign the sheaf Ox (D)
of Ox-modules where the sections over open subsets U C X are

I(U,0x(D)) = {f €K(X); (div(f) + D)y 20} U {0},

Note that given f; € T'(U,Ox(D;)) and fo € T'(U,Ox(D2)), we have fifs €
I(U,0x (D1 + D3)). To a subgroup K < WDiv(X) we associate the sheaf of
divisorial algebras

S = P Sp. Sp = Ox(D).
DeK

The multiplication in S is defined by multiplying elements in the field of rational
functions K(X).

Construction 1.2.2 (Cox ring). Let X be an irreducible normal variety with
finitely generated class group Cl(X) and K* = T'(X, 0*), e.g., X is complete. Fix
a subgroup K < WDiv(X) such that the homomorphism ¢: K — CI(X) mapping
D € K to its class [D] € Cl(X) is surjective. Set K° := ker(c). Choose a group
homomorphism

x: K° = K(X)* with div(x(E)) = E, EeK°

Let S be the sheaf of divisorial algebras associated to K as in Construction :1.2.1.

Consider the sheaf 7 of radical ideals that is locally defined by 1 — x(F) where E
runs through K°. On open subsets U C X, this means we have an ideal

I'(U,T)

{f eT(U,S); locally f = > hp(l — x(E)) with hp € T(U, 3)}

EeK©

(1-x(Ei); 1<i < 5>F(U,5)

where Ej, ..., E, is a basis for K°. Note that 1 € T'(U,Sy) whereas E € T'(U,S_g).
The Coz sheaf is the quotient sheaf R := §/Z with the Cl(X)-grading

R = @ R[D], R[D] =T @ Ox(D/)
[D]eCI(X) D’ec([D])

and the projection 7: S — R. It is a quasicoherent sheaf of Cl(X)-graded, reduced
Ox-algebras. The Coz ring of X is the ring of global sections of the Cox sheaf

R(X) = @ T(XRp) = I'X,S)/I(X,I).
[D]eCl(X)

One can show that the construction of the Cox ring in 1.2.2' does not depend on
the choices made.

zero homogeneous element f € R\ R* is C1(X)-prime if f | gh with homogeneous
elements g, h implies f | g or f | h. We say that R is Cl(X)-factorial if every
homogeneous non-zero element f € R\ R* is a product of C1(X)-primes.

Theorem 1.2.4. In the above setting, the Cox ring R(X) is a Cl(X)-factorial ring.
If CI(X) is free, then R(X) is a UFD.

We turn to the geometric counterpart of the Cox sheaf. Let X be as before but
assume additionally that R(X) is finitely generated. Then the Cox sheaf R is locally
of finite type.
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Construction 1.2.5. Let the setting be as above. Taking the relative spectrum
we obtain an irreducible, normal variety X = Specy R that is contained in X :=
Spec R(X). The affine variety X, called the total coordinate space of X, is invariant
with respect to the action of the characteristic quasitorus Hx = Spec K[Cl(X)].
Then the embedding X C X is Hx-equivariant and X can be retrieved as a quotient

SpecXR:)? C X = SpecR(X)
/Hx
X

of the quasiaffine, good H x-set X C X by Hx. The good quotient p: X = X is
called the characteristic space of X.

the point x := p(z) € X. We write x = [z] or © = [z1,...,2:]. Note that Cox
coordinates are not unique, see'5.1.1.

coordinates.

A toric variety is an irreducible, normal variety Z with a basepoint zy € Z and
the action Tz x Z — Z of the torus Tz such that the map T; — Z defined by
t — t- 29 is an open embedding. We then speak of the dense torus Tz of Z.
We briefly recall the connection to lattice fans, i.e., pairs (N, X) with a lattice N
and a fan ¥ C Ng = N ®z Q. Given a lattice fan (N, X) and a cone o € X, let
oV C N@ = N* ®z Q be the dual cone. We obtain an affine toric variety

Z, := SpecK[oV N N*] = Spec @ K- x*

u€oVNN*

with dense torus Ty := SpecK[N*]. Gluing together the affine toric varieties
Z, with ¢ € ¥ produces the toric variety Zy. For the other direction, it turns
out that a toric variety Z can be covered by finitely many invariant open, affine
toric subvarieties Z1,...,Zs. The cones oz,,...,0z, of convergent one-parameter
subgroups K* — Z; of the Z; then form a lattice fan (X, A(Tz)) where A(Ty) is
the cone of convergent one-parameter subgroups of the dense torus Tz. Moreover,
given a toric variety Z with fan 3, note that to each cone o € ¥ one can assign a
distinguished point z(o) € Z such that the orbits Tz - z(¢’) correspond bijectively
to the cones o’ € X.

A morphism of toric varieties Z and Z’ is a pair (¢, @) consisting of a morphism of
varieties ¢: Z — Z' and a morphism of tori $: Tz — Ty such that ¢ maps the
basepoint of Z to the basepoint of Z’ and (¢ - 2) = $(t) - ¢(z) holds for all t € Ty,
z € Z. Moreover, a map of lattice fans (X, N) and (2, M) is a lattice homomorphism
F: N — M such that for each cone o € ¥ there is a cone w € Q such that F(c) C w.
To each such F one can assign a toric morphism (pp, oF): Zs — Zq, see [5, Ch. 2]
or [42, 28] for details.

Proposition 1.2.7. We have covariant functors that are essentially inverse to each
other between the categories of lattice fans and toric varieties given by

(X,N) = (Zs,Tn,20), (X2,A(Tz)) < (Z,Tz,20),
F = (¢r,¢r), @x <~ (0,9).

Remark 1.2.8. An irreducible, normal variety is toric if and only if its Cox ring
is isomorphic to a polynomial ring.
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3. Bunched rings and Mori dream spaces

We recall the basic theory of Mori dream spaces and bunched rings developed by
F. Berchtold and J. Hausen in [19, 51]. This section is taken from [5], mainly
Chapter III.

Let R be an integral affine K-algebra that is graded by a finitely generated abelian

group K, i.e.,
R = P R
weK

Similar to Section 2, a homogeneous element f € R\{0} is called K -prime if f ¢ R*
and f | gh with homogeneous g, h implies f | g or f | h. We say that R is factorially
K-graded or is K-factorial if each homogeneous element f € R\ {0} with f ¢ R*
is a product of K-prime elements.

If R is factorially K-graded, one can choose a system § = (f1,..., fr) of K-prime
pairwise non-associated generators. We then encode the K-grading of R in a degree
map, i.e., a homomorphism @: Z" — K of finitely generated abelian groups map-
ping the canonical basis vector e; € Z" to deg(f;) € K. Denote the positive orthant
by 7= Q%

Definition 1.3.1. An F-face is a face 79 =< ~ such that the product Heiewo fiis
not an element of the radical of (f;; e; & 7o) C R.

Remark 1.3.2. The set of orbit cones Q5 of X := Spec R as defined in Section 1
equals the collection of all images @ (7o) such that vy < v is an §-face. '

The §-faces store the algebraic information of R, see Chapter 3 for the computa-
tional aspects. We now turn to combinatorial data in Kg := K ®z Q. The grading
is almost free if Q(yo NZ") generates the abelian group K for every facet vg =< 7.

Definition 1.3.3. (i) Let © be the set of orbit comes, i.e., the set of all
cones Q(v0) C Kg such that 7 is an F-face. An F-bunch is a non-empty
collection ® C 2 such that

e cach two ¥1,92 € ® overlap, i.e., ¥ NI # 0.
o given Jo € Q and ¥, € & with 97 C 95 then also Y2 € P.
(ii) An §-bunch @ is true if Q(yo) € ® for each facet vo < 7.
(iii) An F-bunch ® is mazimal if no further projected F-face Q(7yo) can be
added to ®.

Example 1.3.4. Denote by ¥ := cone(deg(f1),...,deg(f,)) C Kg the weight cone
of R. Each vector w € 9 defines an §-bunch

O(w) == {Y € Q; w € Yg}.

w

We call the K-grading of R pointed if Ry = K and the weight cone 9 is pointed.
The following notion will be of central interest in Chapter 2.

Definition 1.3.5. A bunched ring is a triple (R, §, ®) where R is an almost freely
factorially K-graded, integral, normal, affine K-algebra with K* as its group of
homogeneous units. Moreover, § is a system of pairwise non-associated K-prime
generators for R and @ is a true §-bunch in Kjy.

To each bunched ring (R,§,®) we implicitly assign the degree map Q: Z" — K
and the positive orthant v = QTZO. The relevant algebraic data of a bunched ring is
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stored in the collection of relevant §-faces and the covering collection given by

rlv(®)
cov(®P)

{70 = 7; 70 is an F-face and Q(vo) € @},
{70 € rlv(®); o minimal}.

Recall that a variety X is called an As-variety if for each two points z, 2z’ € X there
is an affine, open neighborhood U C X such that x,2’ € U. A normal variety is
As if and only if there is a closed embedding into a toric variety. The following
construction is essential.

Construction 1.3.6. Let (R,§,®) be a bunched ring. Write § = (f1,..., fr).
Consider the action of the quasitorus H := Spec K[K] on the affine variety X :=
Spec R. We assign to each §-face 79 < v the open affine variety

X, = qul_,.f;w with v = (u1,...,u.) € 5.

This is independent of the choice of u € ~§. We then obtain an open H-invariant
subset

X(R§®) =X = |J X,= |J X, X
YoErlv(P) Yo Ecov(P)

The H-action on X admits a good quotient p. This means we have an irreducible
normal As-variety X(R,§, ®) := X := X J/H with

SpecR——X 2> X—" X

Then X is of dimension dim(R) — dim(Kg). Moreover, the Cox ring of X is iso-
morphic to R, we have I'(X, O*) = K* and there is an isomorphism

CUX) — K, [D;] w deg(f;)  where D; := p(V()?; £)

N—

and the D; C X are prime divisors. Furthermore, the affine open subsets on C X
with vy € rlv(®) are H-saturated and we have an affine cover

x= U x X, = p(X,) C X.
Yo€Erlv(®)

We call an embedding of varieties ¢: X — X’ big if the codimension of X'\ ¢(X)
is at least two. Moreover, an As-variety X is called As-mazimal if for each big
open embedding ¢: X — X’ with an As-variety X', we have (X) = X'. Projective
varieties are As-maximal.

Theorem 1.3.7. Consider an irreducible, normal As-variety with finitely generated
class group CI(X) and finitely generated Cox ring R := R(X). Suppose T'(X, 0*) =
K*. Fiz a system § of pairwise non-associated Cl(X)-prime generators for R(X).

(i) There is a mazimal F-bunch ® and a big open embedding X — X (R, §, D).
(ii) If, in (i), X is Ag-mazimal, then X =2 X(R,§,®).

Definition 1.3.8. A Mori dream space is an irreducible, complete, normal variety
X with finitely generated class group Cl(X) and finitely generated Cox ring R(X).

We will use the term Mori dream space in a slightly more general setting in Chap-
ter 2. An §-bunch @ of cones in Kq is called projective if ® = ®(w) for a vector

w e K@ as in Example 1.3.4. The following corollary states the correspondence to
bunched rings.
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Corollary 1.3.9. For each Mori dream space X there is a bunched ring (R,§, ®)
such that X = X (R,§,®). Moreover, there is a bijection

projective Mori bunched rings with a
dream spaces projective bunch of cones

Observe that the GIT-fan presents the possible choices for the ample class w defining
the projective bunch ®(w). The moving cone of R is the polyhedral cone

Mov(R) := ﬁ cone(fj; j # i) C Kp.
i=1

Remark 1.3.10. Fix a finitely generated abelian group K and a factorially K-
graded, integral, normal, affine K-algebra R with K-prime generators fi,..., f,
and K* as its homogeneous units. Let H := SpecK[K] act on X := SpecR.
Consider a projective Mori dream space Y with Cox ring R(Y) = R and class
group C1(Y) = K. Then

Y =2 X(R,§,2(w)) for some A€ AX,H), w e X C Mov(R).

Let X be an irreducible normal variety and Z a toric variety with dense torus T,
basepoint zg € Z and invariant prime divisors D},...,D%. Write D}, = Ty - z;
with z; € Z. Let ¢: X — Z be a morphism. Assume ¢~! (D) C X are pairwise
different irreducible hypersurfaces for each 1 < ¢ < r. Define

Z = Ty 20U ... UTgz -2, C Z.

Then the codimension of X \ ¢~!(Z’) in X is at least two and there is a canonical
pullback homomorphism

CDiv™2(2') — "~ CDiv(p~1(2"))

ol

WDiv'#(Z) ——— WDiv(X)

| |

(Z) —— CI(X)

where WDiv'2#(Z') and CDiv'4(Z') denote the respective Ty-invariant divisors.
Since principal divisors are mapped to principal divisors, ¢* induces the map in the
lower row which we denote again by ¢*: Cl(Z) — Cl(X).

Definition 1.3.11. Let X be an irreducible, normal variety and Z a toric variety

with dense torus Tz and invariant prime divisors D, ..., D%. A closed embedding
t: X — Z is a neat embedding if
M (Dg), ceey (D) < X

are pairwise different irreducible hypersurfaces and the homomorphism ¢*: Cl(Z) —
Cl(X) is an isomorphism.

Construction 1.3.12 (Canonical toric ambient variety). Consider a bunched ring
(R,§,®) with degree map Q: Z" — K and positive orthant v = QY. Setting
M := ker(Q) we have exact sequences

P

0 L z" N
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For each face 79 < 7, let 73 := 75~ N4 be the dual face where § := V. Consider the
collection of faces © and the fans ¥ C Q" and X C Ng := N ®z Q given by

© = {y =2 thereis v € rlv(®) with 11 <70 and Q(71)° € Q(10)°},
S o= {60 < §; there is vy € © with §y <5},
% = {P(0); 1 € 6}.

action of the quasitorus H := Spec K[K] on X := Spec R. Let Z := K" be the toric
variety corresponding to the cone é. The generators § = (f1,..., f) for R provide
a closed embedding

X — 7, z = (f1(2)7,fr(2’))

which is H-equivariant if we install the diagonal H-action on Z given by the char-
acters x*!,...,x" with w; := deg(f;) € K. We have a diagram

U>
o |
)

T)

NTN
T

N

N

X

>~
T
-

L
—_—

b

where Z and Z are the toric varieties corresponding to S and ¥ respectively, [ is
the restriction of 7, the induced map of quotients ¢ is a neat embedding and the
toric morphism Z — Z, the Cox construction, corresponds to the matrix P.

canonical toric embedding and Z the canonical toric ambient variety of X.

We now give a short survey of the basic geometry of varieties arising from bunched
rings. A first step is the decomposition into strata.

Construction 1.3.14. Let the situation be as in Construction 1.3.6. To an F-face
Yo = v we assign the locally closed set

X(y0) = {z€X; fi(2) #0 & e; ey foreach 1 <i<r} C X.

Their union gives a disjoint covering of X. We obtain a disjoint decomposition into
locally closed strata as

X = U X, X)) =0rEMH) =X\ U X
roErv(®) ierv(@),
Yo=<71

Let X be normal and irreducible. Given x € X, the local class group C1(X,x) is
the factor group of WDiv(X) by the group of all divisors that are principal in a
neighborhood of z. The Picard group Pic(X) is the group CDiv(X)/PDiv(X) of
Cartier divisors modulo principal divisors. Moreover, a point z € X is factorial if
near x each Weil divisor is principal. Similarly, z € X is Q-factorial if near x, for
each Weil divisor D € WDiv(X), there is n € Z>y such that nD is principal. If
each point is Q-factorial, the variety X is Q-factorial.

K be the degree matriz. For each vy € rlv(®) and each poiﬁt x € X(v) we have a



3. BUNCHED RINGS AND MORI DREAM SPACES 19

diagram
ClI(X)
CUX, #) — K / Q(lin(7) N Z")
1t is independent of the choice of x € X (v9). The following claims hold.

(i) The point x is factorial if and only if Q(lin(vo) NZ") equals K.
(ii) The point x is Q-factorial if and only if Q(vo) is of full dimension.
(iii) The point z is smooth if and only if it is factorial and there is a smooth
point z € p~1(z) C X.

Moreover, Pic(X) is isomorphic to the Picard group of the canonical toric ambient
variety Z and it is free if Z has a toric fized point. Within K = Cl(X) it is given
by

Pic(X) = () Q(lin(y) N 2Z").

Yo Ecov(P)

The effective cone is the convex polyhedral cone Eff(X) in Cl(X)g := Cl(X) ®z Q
generated by the divisor classes of effective divisors. The stable base locus of a
divisor D € WDiv(X) is

N () Supp(divan(f))-

n€Zs1 fEr(X,0(nD))

We call a divisor D € WDiv(X) mowable if its stable base locus is of codimension
at least two. The moving cone Mov(X) C Cl(X)q is the convex polyhedral cone
consisting of all movable divisor classes. Furthermore, a divisor D € WDiv(X) with
empty stable base locus is called semiample. It is ample if there is a covering of X
by affine sets X \ Supp(div,p(f)) with n € Z>;. The convex cones SAmple(X) and
Ample(X) C Cl(X)g consist of all semiample or ample divisor classes, respectively.

Q:Z" — K and v = QL. Within Kq = Cl(X)q we have the cones

Eff(X) = Q(v), SAmple(X) = (),
TEP

Mov(X) = [ Q1) Ample(X) = [ r°.
'}gcjez TeD

We now treat the case of a variety X = X(R,§,®) arising from a bunched ring
(R,§,®) with § = (f1,..., fr) and grading group K where R is a complete intersec-
tion, i.e., there are d := r —dim(R) polynomials g, . . ., g4 that are K-homogeneous
and generate the kernel of

K[Tl,...7Tr] — R, E — fz

We write uy,...,uq € K for the degrees of ¢1,...,94 and wq,...,w, € K for the
degrees of fi,...,fr € K[T1,...,T;]. Recall that a variety X is Gorenstein if its
anticanonical divisor is Cartier. If some positive multiple of its anticanonical divisor
is Cartier, X is called Q-Gorenstein. The variety X is Fano if it is irreducible,
normal, projective and its anticanonical divisor is ample.

complete intersection bunched ring. Within K = Cl(X), the anticanonical divisor
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class of X is

r d
—w§t = Zwi — Zuz c K.
i=1 i=1
Moreover, the following properties hold.

(i) X s Gorenstein if and only if —w™ € Pic(X).
(ii) X is Q-Gorenstein if and only if —wP@" € lin(7) for each T € ®.
(ili) X is Fano if and only if —w™ € Ample(X).

n € Z>1 is minimal with —nw@" € Pic(X).

4. Modifications and surfaces

We recapitulate some basic geometry of surfaces, i.e., two-dimensional irreducible
varieties. Also, the notions of contractions and blow ups of a variety are being
recalled. This section is a summary of [5], mainly Chapter V, the thesis of U. Der-
enthal [33], mostly Chapter 1, and Chapters I1.7 and V of R. Hartshorne’s book [48].
Compare also [51, Sec. 6] and Beauville’s book [14;, Ch. II].

Consider a smooth, projective surface X and two distinct curves D1, Dy on X, i.e.,
irreducible subvarieties of dimension one. In other words, Dy, Ds € WDiv(X) =
CaDiv(X) are prime divisors with coefficient one. Their intersection number Dy -Dy
is the sum over all intersection multiplicities m,, that is

Dy Dy = Z My, m, = dimg (OX,x/<fa(c1)7fa(:2)>)

xe€D1ND>

where fﬁ” € Ox, is a germ of a generator for the ideal I(D;) near z. Note that
if D; and Dy intersect transversally and are smooth, D; - Ds is the number of
intersection points. Taking intersection numbers extends to a symmetric Z-valued
bilinear form on WDiv(X) that only depends on the classes of the involved divisors.
This means we have an intersection product

CI(X) x CUX) — Z,  ([Di],[Ds]) = Dy Do.

Given D € WDiv(X), its self-intersection number is D* := D - D. We call a curve
D C X negative or non-negative if D?> < 0 or D? > 0, respectively. A (—k)-curve
is an irreducible curve with C? = —k that is isomorphic to P;.

We turn to modifications, i.e., proper birational morphisms. Let X be a projective
Mori dream space and D C X a prime divisor. By a contraction of D, we mean a
morphism 7: X — X’ mapping D to a point such that the restriction 7: X \ D —
X'\ 7(D) is an isomorphism. For surfaces, the contractible divisors are exactly the
negative, rational curves.

Theorem 1.4.1 (Castelnuovo criterion). Let X be a projective, smooth surface
and C' an irreducible curve on X. Then C is a (—1)-curve if and only if there is a
contraction m: X — X' of C with a smooth, projective surface X'.

For general Mori dream spaces, we use the following remark. Let R be a K-graded
K-algebra as in Construction 1.3.6:with pairwise non-associated K-prime generators

fi,..., fr and weight cone 9 C Kg. We say w; := deg(f;) € K is extremal if
¥ # cone(wj; j # i). Note that this definition differs from the one in [5].

Remark 1.4.2. Let X = X(R,§,®) be a projective, Q-factorial variety corre-

for a full-dimensional GIT-cone A € A(X,H) with w € X\°. Let Dy C Z be a
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prime divisor and Dx := Dz N X the corresponding prime divisor on X. Writing
w' = [Dgz] = [Dx] € K for their classes, the following are equivalent.

(i) The vector w’ € K is extremal and there is a full-dimensional cone A €
A(X, H) with w’" € X such that A’ N A is of codimension one.

(ii) There is a contraction X — X’ of Dx with a projective Q-factorial vari-
ety X'.

(0,0,0)

We come to the blow up of a variety in a subvariety. For the case of the blow up of
a surface in a point x, this means replacing x by a curve isomorphic to P;.

Construction 1.4.3 (Blow up). Let t: C'— X be a closed embedding of varieties.
Then the ideal sheaf Zz on C, i.e., the kernel of t*: Ox — 1,O¢, is coherent and
we have a quasi-coherent sheaf of graded Ox-algebras

LU, Zc)%, d>0
S = 7, I (U,74) = ’ ’ ’
dgzio © (v.72) {F(U, Ox), d=0.

It is possible to glue together the varieties ProjI'(U,S) where U C X is open and
affine. We obtain a variety X’ := ProjS and a morphism 7: X’ — X such that
7~ Y(U) = ProjT'(U, S) for all open, affine subsets U C X. We call 7 the blow up of
X along the center C.

Example 1.4.4. In Construction 1.4.3; we blow up X := K" at the origin, i.e., at

C=V({I)C X withl=(T1,...,T,) and S = Ox(X)® I & [*® .... We have an
epimorphism

’(/):OX(X)[Sl,...,Sn] — S, S; — T, € & = 1.

Taking the Proj, we obtain an embedding of the blow up X’ of X along C into
Proj Ox(X)[S1,...,Sn] 2 K" x P,,_;. The homogeneous generators T;S; — T};.5; of
ker(¢) then give a description

X" 2 {(z,y) e K" xPy_1; 2;y; = zjy; foralli #j} C K" x Pp,_y.

Given a morphism ¢: X — Y of varieties and the ideal sheaf Zy on Y, the inverse
image ideal sheaf ¢ 'Ty - Ox on X is the following: viewing ¢ as a map of topo-
logical spaces, we have the preimage sheaf ¢~ 'Zy in the sheaf of rings ¢~ 'Oy on
X. We define ¢~ 'Ty - Ox as the image of ¢~ 'Zy under o~ 'Oy — Oy.

Proposition 1.4.5. Let 7: X’ — X be the blow up of a variety X along a subva-

(i) The morphism w is birational proper and surjective.
(i) The restriction w: 7= (U) — U, where U := X \ C, is an isomorphism.
(i) If X is projective, then X' is projective.
For a morphism ¢: W — X of varieties, let 7': W' — W be the blow up of W at

the inverse image ideal sheaf ¢~ 'Ic - Ow. Then there is a unique morphism ¢
such that
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is commutative. Moreover, if ¢o: W — X is an embedding, also ¢': W' — X' is an
embedding.

Given a blow up 7: X’ — X along C C X as in Construction 1.4.3, we frequently
also call the variety X’ the blow up of X along C.

Definition 1.4.6. In Proposition 1.4.5, assume W C X. The proper transform of
W C X under w: X’ — X is the subvariety W/ C X’. The subvariety £ C X'
defined by the inverse image ideal sheaf 77 'Zs - Ox/ is the exceptional divisor of

the blow up 7: X’ — X.

Throughout this document we will mainly work with the blow up 7: X’ — X of
a smooth projective surface X at a point x € X. Then the proper transform of
a prime divisor D € WDiv(X) is the closure D’ := 7=1(D\ {z}) in X’ and the
exceptional divisor is the preimage 7~ !(z) C X’; it is isomorphic to P;.

E=7"1(2)
X ?\ D « X/ :l\D’

Remark 1.4.7 (Toric blow up). Let Z be a toric variety with defining fan 3. Then
the blow up of Z at a toric fixed point z, € Z is the toric variety Z’ with its fan ¥’
obtained by the barycentric subdivision ¥’ — X of the cone o € X.

We define the Picard number o(X) € Z> of a surface X as the rank of the Picard
group Pic(X). Note that for Q-factorial X the Picard number equals the rank of
the class group. Moreover, given a point x on a smooth surface X and a principal
divisor D = V(f) € WDiv(X), we write pu(z, D) € Z>o for the multiplicity of x in
D; this is the maximal integer r € Z>¢ such that f € m] with the maximal ideal
my; C Ox . If x € D, then p(x, D) > 1 and equality holds if D is smooth.

Proposition 1.4.8. Let m: X' — X be the blow up of a smooth surface X at a
point x € X.

(i) The surface X' is smooth. If X is projective, then so is X' .

(ii) The class group Cl(X') is isomorphic to C1(X) & Z and the Picard group
Pic(X') is isomorphic to Pic(X) ® Z. In particular, the Picard number
increases by one, i.e., o(X') = o(X) + 1.

(iii) The self intersection number of the exceptional divisor E C X' is E?> = —1
and E does not intersect the proper transforms of prime divisors D &€
WDiv(X) with x € D.

(iv) Let D € WDiv(X) be a prime divisor. Then the proper transform D' €
WDiv(X') of D has self-intersection number (D')? = D? — p(x, D)%. In
particular, if D is smooth and contains x then (D')? = D? — 1.

Given surfaces X7, ..., X, we call a sequence (x1,...,2,) of points x; € X; infin-
itely near if for all 2 < 4 < n the surface X; is the blow up of X;_1 in x;_; and
x; € X; projects to x;—; under X; — X;_1. The union of the proper transforms of
the n exceptional divisors is also called the exceptional divisor over xy.

A resolution (of singularities) of a normal, projective variety X is a proper morphism
m: X' — X with a smooth, projective surface X’ such that the restriction

U) - U, U= X\X"®

is an isomorphism. If X is a surface, there is a unique minimal resolution X’ — X,
i.e., each other resolution X" — X factors through X’ — X.
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Construction 1.4.9 (Graph of exceptional curves). Let X be a smooth, projective
surface. Consider the colored, undirected, simple graph Gx = (V, E) where V is
the set of negative curves of X and the edges E are defined by

(Dl,DQ) e FE = D1 - Dy > 0.

The color function V — Z is given by D — D?. We call G'x the graph of exceptional
curves or the exceptional graph.

Note that isomorphic surfaces X, X5 have isomorphic graphs Gx,, Gx,. In partic-
ular, the number of (—k)-curves on X; and on Xy must coincide for each k € Zo.
Consider a singular point z on a normal surface X with the exceptional divisor E
over z and the exceptional graph G'x+ of the minimal resolution X’ — X. Assume
the only negative curves are (—1)- and (—2)-curves. If for some n, one of the graphs

/\

Ap,n>1

is isomorphic to the subgraph Gx/ _o C Gx/ of (—2)-curves occurring within E,
then x is called an ADE-singularity of the type indicated below the fitting graph.

The next remark recalls the fact that the Cox ring of a Mori dream surface X
already contains all information about X.

Remark 1.4.10. Let X be a projective Mori dream surface. Then there is exactly
one full-dimensional GIT-cone A € A(X, Hy) with A € Mov(X)°. In particular, in

5. Complexity-one T-varieties and K*-surfaces

We recall the theory of rational varieties with a torus action of codimension one,
so-called complexity-one varieties. This class of varieties can be handled purely in
terms of matrices. We put special emphasis on the surface case. This section is a
summary of [5], mainly Chapters V.4 and II1.4, and E. Huggenberger’s thesis [61].
Compare also [53, 86]. We will work in the notation of [61]; the main difference

Definition 1.5.1. A complexity-one (T-) variety is a rational, Q-factorial, com-
plete, normal variety X with an effective action of a torus 7" with dim(7) =
dim(X) — 1. A K*-surface is a complexity-one T-surface.

We will first treat the important special case of K*-surfaces. Higher dimensional
complexity-one T-varieties will be constructed at the end of this section. The defin-
ing data of a variety of complexity one, i.e., the bunched ring as in Section '3, is
encoded in a P-matriz.

Construction 1.5.2 (P-matrix). Let r € Z>1 and ng,...,n, € Z>1 be positive
integers. For each 0 < ¢ < r, consider tuples I; := (L;1,...,Ly,) € Z%| and d; :=
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(di1y- .-, din,) € Z™ such that

&
=
S

L L1 ged(lij,dij) = 1 for all 4, .
lin lin,

Set n :=mng + ...+ n,. We have an integral r» x n block matrix L and an integral
1 x n block matrix d

B P PR 0
L:[ : :], d:=1]d - d].
,l(; 0 .- l;

We define four types of P-matrices, namely the following integral (r + 1) x (n+m)
matrices where m € {0, 1,2} counts the number of additional columns

(ee) P:[fi}, (pp)PZ{
p) P =[5 0], ) P =1[4 9]

We require the columns of P to be pairwise different and primitive and they must
generate Q1! as a cone. We denote by v, where 0 < ¢ < rand 1 < j < ny,
the first n columns of P and by v, where 1 < k < m, the last m columns of P.
Accordingly, we write e;;, e;, for the canonical basis vectors of Q"+™.

Q™
= o
|

= o
[E—

Construction 1.5.3. Given r € Z>1, consider a 2 x (r+1) matrix A = [ao, . . ., ar]
over K such that each two columns a;, a; are linearly independent for ¢ # j. Let P

. TZIL Tz.l”l Til”? P Lin, N
gr = det ({ . ai++11 a;z D , Ty = Ty 1,7, I'ey
where J is the set of all triples I = (¢,¢ + 1,4+ 2) with 0 < ¢ < r — 2. We obtain a
K-algebra R(P, A) that is a complete intersection ring

R(P,A) == K[T};, Sp; 0<i<r, 1<j<n;, 1<k<m]/ (915 [ €7).

Consider the projection Q: Z"t™ — K with K := Z"™™/Im(P*). We install a
K-grading on R(P, A) by setting

deg(Ti;) = Qes;),  deg(Sk) = Qex).

Then the variables T;;, Sy form a system of K-prime generators of R(P, A) and the

grading is K-factorial and almost free.

Theorem 1.5.4. Fach ring R(P, A) is the Cox ring of a Q-factorial, projective
K*-surface X (P, A). The surface X (P, A) is determined by the matrices P and A
up to isomorphism. Furthermore, each rational, normal, complete K*-surface is
isomorphic to X (P, A) for suitable matrices A and P.

Corollary 1.5.5. Let X be a surface with Cox ring K[T1,...,T,]/{c1T"* + 2T +
csTV3) where ¢; € K* and v; € Zgo are such that the T are pairwise coprime.
Then X admits a non-trivial K*-action.

Remark 1.5.6. In Construction LI.523; the ideal {gr; I € J) is prime. In particular,

each ideal I C K[T1,...,T,] generated by two polynomials
T +TY2 + T3, ATV2 + TV + T A e K"\ {1},
with exponent vectors v; € Z%, and pairwise coprime terms is a prime ideal.

We now construct the canonical toric ambient variety of a K*-surface explicitly,
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its first n columns and v, = (0,...,0,1) and vy = (0,...,0, —1)L for its m possibly
remaining columns. Define in Z™*™ the cones

o~ = cone (Vo1,-..,0r1),
+
o = cone (Vong,---sUrn,.) s
Tij = cone (Vij, Vijy1) 0<i<r, 1<j<n;—1,
T, = cone (vi1,v2), 0<i<m,
Ti+ := cone (Vin,, V1), 0<i<r

Depending on the type (ee), (pp), (pe) or (ep) of the P-matrix, we have a fan X(P)
in Z™t! with the following maximal cones

- >< - %
! !
! !

e e2
—61—62—< —51—52‘—<
el €1

AR
- ==

(ee): oF, all 7 and 0, (pp): all 7,7, all 7,7, all 73,
=(P) >< =(P) >’<
| |
1 . 1 .
| v ! R4
3 | ¥ |
ez €2
—e] — eg ¥ —e1 — eg ¥
el el
(pe): all Ti+, all 735 and 0~ (ep): all 7,7, all 7;; and ot.

Note that the drawings show the case r = 2. Moreover, ¥(P) is the fan of the

of A. The K*-action on X (P, A) arises from the one-parameter subgroup t —
(1,...,1,t) of the dense torus T"*1 of Z(P).

needed. A block of Pisa (r+1)xn; submatrix with columns Vil, . . ., Vin, fOr some
0 < i < r or, if present, the submatrix with all m occurring vectors vy, v as its
columns. We call U € GL(n + m,Z) admissible if the matrix P - U arises from P
by switching columns within a block or by interchanging whole blocks. Similarly,
S € GL(r 4+ 1,Z) is admissible if the matrix S - P arises from P by a sequence of
the operations

e add +1-multiples of the upper r rows of P to the last row,

e add £1-multiples of the first r rows to one of the first r rows in order to
achieve a block matrix shape as in Construction 1.5.2,

e multiply the last row by +1.

Proposition 1.5.8. Consider K*-surfaces X1 = X(P1, A1) and Xy = X (P, As)

AQZB'Al'D and P2:5P1U
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for a matriz B € GL(2,K), a diagonal matriz D € GL(r + 1,K) and admissible
matrices S € GL(r + 1,Z) and U € GL(n +m,Z).

Note that in Proposition 1.5.8:the condition on S can be directly seen by an inspec-

tion of the g;. The next remark specializes to the case r = 2.

Remark 1.5.9. If in Proposition 1.5.8 for both surfaces X; we have r = 2, then

the condition on the A; can be dropped, i.e., X is isomorphic to X5 if and only if
P, =S - P, - U with admissible matrices S € GL(r +1,Z) and U € GL(n + m,Z).

We turn to the properties of the K*-action on a normal, projective K*-surface
X = X(P,A). Given z € X, the orbit map K* — X with (¢,2) — ¢ - can be
extended to a morphism 7, : Py — X. Define the limit points
}5[(1) t-xz = 1,(0), tlirglot cx = T, (00).

Then, the image of 1z, is the closure of K* - and the limit points are distinct fixed
points. Each fixed point is either elliptic, i.e., it is isolated and lies in the closure
of infinitely many K*-orbits, parabolic, i.e., it belongs to a fixed point curve or it is
hyperbolic which means it is isolated and lies in the closure of exactly two K*-orbits.
We call F~ C X the source and F* C X the sink if there is a non-empty, open
subset U C X such that

lim t-x € F~, limt-z € FT for all x € U.
t—0 t—o00

There always is exactly one source and sink and they are either single elliptic fixed
points or curves of parabolic fixed points. Any fixed point outside of F'* and F~
is hyperbolic.

the type of X, the following assertions hold.

(ee) Both sink F~ and source F'™ consist of an elliptic fized point.

(pp) Both sink F~ and source F* are smooth rational curves consisting of
parabolic fized points.

(pe) The source F~ is a smooth rational curve consisting of parabolic fixed
points whereas the sink FT consists of an elliptic fived point.

(ep) The source F~ consists of an elliptic fized point whereas the sink FT is
a smooth rational curve consisting of parabolic fixed points.

Let D;; € X and Dy, C X be the toric divisors corresponding to the variables T;;
and Sy of R(P,A). Then D;j and Dy, are rational curves. Let Z(P) be the toric

(i) The toric orbit corresponding to the ray Qo - vi; € X(P) cuts out a
non-trivial K*-orbit B;; C D;;.
(if) The toric orbit corresponding to a cone 1;; € L(P) cuts out a hyperbolic
fized point x;; € X.
(iii) For each 0 < i < r, the divisors D;; form a chain of rational curves
connecting the source F~ with the sink Ft in the following sense: picking
points b;; € B;j, we have

Bm #-bs = 201 = limt- bis
A by = wun = figt-bun
limt-b; € F, lim tbzn1 e FT.
t—0 t—o00

(iv) Let v € X with x ¢ FY UF~ and x ¢ D;j for all i,j. Then the limit
points fort — 0 and t — oo are elements of F~ and F'T respectively.
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3(P), case (ee)

sional complexity-one T-varieties.

Construction 1.5.11. Choose r € Z>1, integers ng,...,n, € Z>1 and m, s € Zx>
such that 0 < s <n+m — r where n :=ng + ...+ n,. For each 0 < i < r, pick a
tuple l; := (li1, ..., lin,) € Z%,. Additionally, fix a 2 x (r+1) matrix A over K with
pairwise linearly independent columns as well as integral s x n and s x m matrices
d and d’ with the following property: in the (r 4+ s) x (n + m) block matrix

—lop I L. 0
P::[ng]’ L::[ ; 1
—lp o - Ly
the columns are pairwise different, primitive and the cone generated by them
equals Q" F5.
Spec(R) and
X(P,A,®) = X(R,3,®), X(P,A®) = X(R,3, o).
Define Hy := Spec K[Ky] where Ky := Z"t™ /Im(Pg) and Py := (L,0) consists of
the first 7 rows of P. Then Hj leaves X (P, A, ®) invariant and there is an induced
effective action of the torus T := Hy/H = Spec(Z®) on X.

variety of dimension s + 1 with T'(X,0) = K and the torus T := Hy/H acts effec-
tively with mazimal orbit dimension dim(X)—1 on X. In turn, each Ay-variety with






CHAPTER 2
Basic algorithms for Mori dream spaces

In this chapter, we present basic algorithms and data types needed to compute with
Mori dream spaces. We use the correspondence between Mori dream spaces and
bunched rings explained in Section 3 of Chapter 1.

Section Lildeals with gradings by a finitely generated abelian group, e.g., the C1(X)-
grading of a Cox ring R(X). To this end, we introduce a data type for finitely
generated abelian groups and their homomorphisms and show how to perform basic
operations thereon. Afterwards, in Section 2, we show how to compute with rings
that come with a grading by a finitely generated abelian group; this will be used to
store the Cox ring of a Mori dream space. Section:3 then represents a Mori dream
space X by its C1(X)-graded Cox ring and a bunch of cones. Several algorithms are
given to explore the properties and geometry of X. Finally, Section 4'is concerned
with algorithms that work in the more specialized setting of complexity one T-
varieties.

This section uses results of [5,17, 6], see the explicit references below. All presented
algorithms have been implemented in the MDSpackage [54, 55], see Appendix A.
Throughout this chapter, we will mainly use the following example.

Example 2.0.14. Consider the finitely generated abelian group K := Z3 & Z/27
and the factorially K-graded ring

R = K[T1,...,T5]/{f1), f1 = T1Te + ToTs + 13Ty + Tr Ty

where the K-grading is encoded in the degree matriz having deg(Ty),...,deg(Tg)
as its columns

-1 -1 2 -2
Q — — —1 0o 1 —1
1 1 1

0o 1

1

= O =
Ol = =
= =Oo
(=l ]

1 0

Choose in K ® Q = Q3 the vector w := (0,0,2). This defines a projective F-bunch

Mori dream space X = X (R, §, ®).

1. Finitely generated abelian groups and homomorphisms

In this section, we treat basic algorithms for finitely generated abelian groups and
their homomorphisms. We will use them to work with gradings in subsequent
sections. Some of these algorithms have also been implemented in [16] together
with B. Bechtold, R. Birkner, L. Kastner, O. Motsak and A.-L. Winz. We assume
that the reader is familiar with the basic algorithms on lattices as, e.g., used in [20];
compare the textbooks [75, 82]. We present the following algorithms:

29
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Remark 2.1.1. Let K be a finitely generated abelian group with elementary di-
visors aq,...,ar € Z. Recall, e.g., from [76, Sec. 1.10], that there is a sublattice
L < 7Z" such that

k
K = 7'/l = 2°e P z/al
i=1

with d € Z>(. Consider now a subgroup H < K. Then there is a sublattice U < Z"
such that

H 2 U/UnL) =& U+L)/L < Z"/L.
Definition 2.1.2. Let a finitely generated abelian group H be given with a de-

an AG, an abbreviation for abelian group.

We do not differentiate between an AG and the underlying finitely generated abelian
group.

an AG K = (Z*,1inz ((0,0,0,2))).

Writing generators into the columns of a matrix, we may consider sublattices of Z" as
integral matrices. Given an integral dxr matrix A, write linz(A) for the sublattice of
Z" generated by its columns and ju4: Z" — Z? for the multiplication map z +—+ A- 2.
Elements of an AG (U, L) are usually given as elements of linz(U) < Z". The name
of each algorithm is given in parentheses beside its number.

Algorithm 2.1.4 (AGareisom). Input: AGs Gy = (Uy, L1) and Gy = (U, La).

e Compute lattice bases for ,u[jil (L;) and write their elements in the columns
of d x n; matrices M;.

e Compute Smith normal forms S; = (Sﬁl)k,l of M;. Denote by r; the
number of zero-rows of S;. Return false if 1 # rs.

e Return false if the two sets {[s%;[; 1 < j < min(n;,d)} are different.
Otherwise, return true.

Output: true if GGy is isomorphic to G5 and false otherwise.

Proof. The abelian groups are isomorphic if their decompositions Z" @ ; Z/a;;Z
as Z-modules coincide. To show that the algorithm computes these descriptions,
let pry;, : U — U;/U; N L; be the canonical projection. Then ling(M;) is the kernel
of my, = pry, o py, where

A Uz/Lz NU;

\ U

7" /ling (M;) — 7" /lin(S;) O

1R
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Remark 2.1.5. In Algorithm :2.1.4, the preimage can be computed as follows.

Consider integral matrices A and B of sizes n x r and n x r’. Compute a lattice
basis L for the integral kernel of the concatenated matrix [A, —B]. A lattice basis
of the projection of L onto the first r components delivers a basis for " (linz(B));
see [20].

Algorithm 2.1.6 (AGcontains). Input: an AG (Uy, L1) and either an AG (Us, L)
or a vector w € Z™. In the latter case, define Us := ling(w) and Ls := L.

e Return false if Ly # Lo or Uy + L1 € Us + L. Return true otherwise.

Output:  true if (Uy, L) is a subgroup of (Us, L) or if (Uy, L1) contains w + L,
respectively. Returns false if this is not the case.

Remark 2.1.7. In Algorithm 2.1.6, we can check containment of a vector v € Z"

in a sublattice L < Z" by the following steps. Compute a lattice basis K for the
integral kernel of the enlarged matrix [L,v]. Then v € L if and only if the elements
of the last row of K (considered as a matrix) are coprime; see [20].

Algorithm 2.1.8 (AGareequal). Input: either two AGs Gy = (U1, L) and G4 =
(Ua, L2) or two vectors w, w' € Z" and an AG G = (U, L).

e Using Algorithm 2.1.6, in the first input case, return true if Gy C G5 and

G5 C G1. In the second input case, return true if w—w’ € L. Otherwise,
return false.

Output: depending on the input, true if G; = G5 or w = w’ as elements of G.
Otherwise, false is returned.

Algorithm 2.1.9 (AGfactgrp). Input: AGs Gy = (Uy,L1) and Go = (Us, Lo)
where G4 < (31 is a subgroup.

e Return the AG (U, Uz + Lo).
Output: an AG describing the factor group G1/Ga.

Proof. Since G2 < G we have Ly = Lo and Uy C U;. The second isomorphism
theorem yields the claim

G1/G2 = ((Ui+L)/Ly) [ ((Uz+ L2)/L2)
= (U1 +L2) /(Us + La)

(U + (Us + LQ))/(UQ + Lo). 0

Algorithm 2.1.10 (AGprodgrp). Input: AGs Gy = (U, L) and Gy = (Uz, Lo).

e Consider U;, L; as matrices with generators for the respective lattices as
their columns. Return the AG (U, L) where, for zero-matrices of fitting
sizes, U and L are generated by the columns of

5 n) (5 2]
0 Uz ? 0 Lo :
Output: an AG describing the product group G; x Ga.

Given a finitely generated abelian group K, we denote by K" < K the subgroup of
torsion elements, i.e., elements w € K such that kw = 0 for an integer k € Z. The
free part is the factor group K° := K/K*®%*. Moreover, recall that the saturation
of a lattice L < Z" is the sublattice L% < Z" consisting of all v € Z" such that
kv e L for a k € Z\ {0}.

Algorithm 2.1.11 (AGfreepart). Input: an AG K = (U, L).
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e Return the AG (U, L%*").

Output: an AG describing the free part K/K"r.

Proof. The fact that the AG (U, L%3) is the free part can be seen by using the
second isomorphism theorem in

v+UNL — v+UNLS*

K=U/UNL UJU A L
K/K" —————— (U/UnL) [ (UNL=)/UNL) -

Example 2.1.12. Consider the AGs G := (Z*,{0z:}) and H := (L,{0z:}) with

L :=ling ((0,0,0,2)). By Algorithm 2.1.6, we have H < G. Moreover, by 2.1.9,

Algorithm 2.1.13 (AGintersect). Input: AGs Gy = (Uy, L) and Gy = (Us, L).
e Return the AG (U1 + L)N (U2 + L), L).

Output: an AG describing the intersection G; N Ga.

Proof. The intersection G1 NG5 is determined by intersecting the respective lattices
as summarized by the following diagram; upward arrows stand for inclusion and
downward arrows for projection.

Ui+ L Us+ L

s

U1+L U2+L

G1 N Gs d

Ly, Ly <Z" can be computed as follows. Write lattice bases for L; into the columns
of r x n; matrices A;. Compute a lattice basis K for the kernel of the matrix
[A1, —Asz]. Denote by B the projection of K onto the first ny coordinates. A Hermite
normal form of A; B then has generators for L1 N Ly as its columns; see [20].

We turn to homomorphisms of finitely generated abelian groups. A typical example
are degree matrices of Cox rings.

Definition 2.1.15. Consider a homomorphism ¢: G; — G4 of finitely generated
abelian groups. We encode ¢ in an AGH, i.e., a triple (G1,G2, A) where G; =
(Ui, L;) are AGs and A is an integral matrix satisfying

pa(Ui + L) C Us+ Lo, pa(Li) C Lo.



1. FINITELY GENERATED ABELIAN GROUPS AND HOMOMORPHISMS 33

This means we have a diagram

75 /s

T

Z\[ HA Ul _\L—Ll
(U2 + La)/ Ly <——F—— (U1 + L1) /s

map Q: Z® — K with Q(e;) = deg(T;) and grading group K = Z3 & Z/27Z. We
encode @ as an AGH (F, K, A) with AGs F, K and a 4 x 8 matrix A given by

0 1 1 0 0 -1 -1 2 -2
Fe@dop)). K=(zhz(g)) A= e
2 1 0 1 0 1 0 1 0

Algorithm 2.1.17 (AGHim). Input: an AGH ¢ = (G1, G2, A) with G; = (U;, L;)
and an AG H1 = (U{,Ll) with H1 < Gl.

e Compute the lattice M generated by the image pa(U{ + L1).
e Return the AG (M, Ly).

Output: an AG describing the image ¢(H;) as a subgroup of Gs.

Proof. Let 7;: Z" — Z"i /L; be the canonical projections. We are in the situation
of the diagram

HA

U+ Lo Ui+L, > U{—‘rLl

N

Gy o Gy > H,

The correctness of the algorithm follows from the observation
p(H1) = {p(m(v));v €U+ L1} = {m(pa(v)); v € Ui+ L1 }. O

Algorithm 2.1.18 (AGHpreim). Input: an AGH ¢ = (G1,G2,A) with G; =
(U“Lz) and an AG H2 = (Ué,LQ) with H2 S GQ.

e Compute the sublattice M := ;' (Uj + Ly) of Z".
e Determine the sublattice M’ := M N (Uy + Ly) of Z™.

Output: the AG (M’, L1) describing the preimage o~ !(H>) as a subgroup of G.

Proof. Let m;: Z" — 7" /L; be the canonical projections. We are in the situation
of the diagram

Uy+Ly < Up4+Li<~—"2 U +1,

ST

Ho < G2 G1

©
The correctness of the algorithm follows from the observation

o NHy) = m({veU +Li; palv) € U+ Ly})
= m (u3"(Uj+ Ly) N (Ur + L1)) 0
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Algorithm 2.1.19 (AGHker). Input: an AGH ¢ = (G1,G2,A) with G; =
(Ui, L;).

Output: an AG describing ¢ ~1(0) as a subgroup of G1.

As a consequence of the previous algorithms, we can test a homomorphism of finitely
generated abelian groups for being injective or surjective.

Algorithm 2.1.20 (AGHisinj). Input: an AGH ¢ = (G1,Gs, A).

e Return true if M equals the trivial subgroup of G; and return false oth-
erwise.

Output: true if ¢ is injective and false otherwise.

Algorithm 2.1.21 (AGHissurj). Input: an AGH ¢ = (G1,G2, A).

Output: true if ¢ is surjective and false otherwise.

Algorithm 2.1.22 (AGHcompleteseq). Input: a surjective or injective AGH ¢ =
(G,G, A) where G = (U, L) and G’ = (U’, L’) with sublattices U, L < Z" and U’,
<z’

— return the AGH (G', K, E,+) where E, is the 7' X r’-unit matrix.

Output: if ¢ is surjective, an AGH ¢ = (M, G’, B) is returned such that we have
an exact sequence

0 G’ G M 0.

) L
If o is injective, an AGH m = (G’, K, B) is returned such that we have an exact
sequence
0 K G G 0.

™ ®

surjective AGH 7 := Q = (Z8, K, A), we obtain an injective AGH ¢ := (G, Z8, Ey),
where Eg is the 8 x 8 unit matrix and G < Z®& is isomorphic to Z® with

G = (hHZ .B7 {028}), B =

HEEFOOOOM
mFROROOKRO
N=ONO~OO
UGN ENFOOO
ONBRROOOO

Consider an n x r matrix P of full rank, and a surjective homomorphism @Q: Z" — K
of finitely generated abelian groups fitting into the diagram of dual exact sequences

of Z-modules

P

0 L z" "
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We then call @ and P Gale dual. If K is free, ) is given by an integral matrix
which we call a Gale dual matriz for P. Note that Gale dual homomorphisms or
matrices are not unique.

Algorithm 2.1.24 (AGHP2Q). Input: an integral n x r matrix P of rank n.

e Compute a Smith normal form S =V - P* - W of the transpose P* with
invertible integral matrices V, W. Write S = (S;;) ;.
e Let v;,,...,v;, be the rows of V with 4 > rank(S5). Let vj,,...,v;, be
the rows of V with 1 < [S),;,] < ... < [Sj.;.|. Define B as the matrix
with rows v, ..., V5, V5, ..., U,
e Define the AG K = (Z"~!,S") where S’ is obtained from S by remov-
ing the [ rows i of S with S;; = 1. Then K is isomorphic to Z? @
@?:1 Z/|S]m |Z
Output: the AGH (Z", K, B). It represents a Gale dual homomorphism @Q: Z" —
Z" /Tm(P*) of P.

Proof. Assume that in S there are [ entries of absolute value one. Let pr: Z" — Z" !
be the projection onto the other coordinates. By the diagram

Z" /I (pp-)

Zr—l 7
KUB Hp*
> | pv uwT
erl = 7T

Z" [Tm(pr o pg) <—— 7" /Tm(ps)

the group K is equal to Z"~!/Im(pr o ug) up to row permutations and, hence,
also to Z" /Im(up~). By choice of B, the AGH Q = (Z", K, B) is surjective and
mo up o up+ = 0 since for each a € Z™ we have

mopugoup-(a) = mopropgopuy-i1(a) = 0 € K. O

e Return the transpose U*.

Output: an integral r x n matrix P that is a Gale dual matrix for Q.

Given a surjective AGH Q = (Z", K, A) we can compute the free part K° = K /K",

into the diagram
Q

K<~—7"

e

KO — K/Ktor

Algorithm 2.1.26 (AGHQ2Q0). Input: a surjective AGH Q = (Z", K, A) where
K = (U, L).
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e Define Q° := B - A.

Output: the integral matrix Q°. Considered as a map, we have pro Q = Q¥ with
the projection pr: K — K° = K/K*®",

projection Z" — Z" /L% is given by upg. The algorithm is correct by the diagram
U+ L

| e

we| U4L/L<—"  =7r

i /
U + Lsat/Lsat 0

invertible matrix U such that UL is in Hermite normal form. Removing the first
rank(L) rows of U yields a matrix B with ker(B) = L%*; see [20].

10 0 0 0 1 -1 -1
o1 0 0 1 0 -1 -1 0 1 1 0 0 -1 -1 2 -2

P=]o0o 0o 1 0 2 0o -1 -2 |, Q=0 1 1 -1 -1 0o 1 -1
0 0 0 1 2 4 -2 -5 111 1 1 101 1
0 0 0 0 4 4 -2 -6

Recall from [5, Con. I11.2.4.2] that the gradiator of a list of polynomials fi,..., fs €
K[Ty,...,T;] is a homomorphism Z" — K of finitely generated abelian groups such
that H := SpecK[K] is the maximal quasitorus in T" leaving V(f1,..., fs) C K"
invariant.

Algorithm 2.1.29 (AGHgradiator). See [5, Constr. I11.2.4.2]. Input: a list of
polynomials f1,..., fs € K[T1,...,T,]. Write f; = a; 1 T"* + ... + a; »,, " with
aij € K*.

e For 1 <i < slet P; be the (n; — 1) x r matrix with rows v;  — v;,1 where
2 < k < n;. Let P be the vertical concatenation of Py, ..., P;.

Output: the pair (Q, P) where Q: Z" — Z" /Im(P*) is the gradiator and P is a
Gale dual matrix.

f1 € K[Ty,...,Tg], we obtain a pair (Q', P') with an AGH Q' = (Z8,Z°, A’) where

0 0 -1 1 0 0 0 0

, -1 1 0 0 1 -1 0 O , 0o -1 0 0 1 0 0 O
PP=|-1 0110 -1 0 of, A=|2 o 0 0 0 1 0 o0
-1 0 0 0 0 -1 1 1 o 0o 0 1 1 1 1 0

o o o0 0 0 0 -1 1

Note that, given an AGH Q = (Z", K, A) with K = (U, L), the degree of a homo-
geneous polynomial f € K[T1,...,T,] with respect to the grading deg(T;) = Q(e;)
is deg(f) = A-v+ L € K where T" is any non-zero monomial in f.
Algorithm 2.1.31 (AGHishomog). Input: an AGH Q = (Z", K, A) and polyno-
mials f17 cey fs S K[Tl, R 77_'7]

e Foreachi=1,...,sdo

— if there are two monomials 7%, T* of f; such that, by Algorithm:2.1.8;
deg(T") # deg(T*) in K, then return false.
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e Return true.

Output: true if all f; are homogeneous with respect to the K-grading deg(T;) =
Q(e;i). Returns false otherwise.

Algorithm 2.1.32 (AGHisalmostfree). Input: an AGH Q = (Z", K, A).

e For each facet vy < (@TZO do
— If, by Algorithm 2.1.8; the subgroup (Q(e;); ; € 7)) < K is differ-

ent from K, then return false.
e Return true.

Output: true if the K-grading of K[T, ..., T,] given by deg(T;) = Q(e;) is almost
free. Returns false otherwise.

Algorithm 2.1.34 (AGHsection). Input: a surjective AGH ¢ = (G1, G2, A) with

e By a Hermite normal form computation, determine an integral matrix .S
such that A - S is the unit matrix.

check whether pg(Us + Ls) is a subset of Uy 4+ Ly and ps(Ls2) C L.
e Return v if the checks were positive. Return false otherwise.

Output: if no section Gy — G for ¢ was found, false is returned. Otherwise, an
AGH (Gs, Gy, S) representing such a section is returned.

2. Graded rings

Using the correspondence 1.3.7, a Mori dream space is determined by its graded

Cox ring and a bunch of cones. In this section, we encode the algebraic data of the
Cox ring in a data type. We present the following algorithms on graded rings.

Let Q: Z" — K be a surjective AGH. Consider an integral, normal, affine K-
algebra R := K[T1,...,T;]/I with an ideal I C K[T},...,T,] that is homogeneous
with respect to the K-grading

deg(Tl) = Q(61>7 ) deg(Tr> = Q(er)'

Assume R is factorially K-graded, has K* as its homogeneous units and the grading
is almost free. Let G C K[T1,...,T;] be a set of K-prime generators for I and
consider the matrix Q° fitting into

Q

K<~——7"

|

KO
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with the free part K = K/K*". Assume § = (T4,...,T,) is a system of pairwise
non-associated K-prime generators for R. Fix a Gale dual matrix P for ) and store
the §-faces in a list Fy.

Definition 2.2.1. In the above setting, we encode the graded ring R in the tuple
(G,Q,Q° P, F5) and speak of a GR.

We do not differentiate between a GR and the underlying ring R. Note that G,
P, Q°, F5 are all computable from a presentation R = K[T,...,T}]/I, see Algo-

Chapter 3. We implicitly assign the respective positive orthant v := Lo to a GR.

Some of the following algorithms need the list of lattice points B N Z" or interior
points B® NZ" of a polytope B C Q". The following is an ad-hoc method using a

Algorithm 2.2.2 (intpoints). Input: a polytope B C Q".

e Compute for each 1 < i < r bounds b;* and b;, € Z" such that for each
vertex v of B, we have b;q < v; < b;°.
o Set £ :=0.
e For each v € Z" such that b;y < v; < b;* for all 7 do
— if v € B, then insert v into L.

Output: the collection L of lattice points BNZ".

1

For a K-graded ring R = @, cx Ruw, the K-vector space R, is called the ho-
mogeneous component or the graded component of R of degree w. Note that, by
the decomposition K = K% @ K" we can decompose each w € K uniquely into
w = w? + w' with w® € KY and w' € K*t°r.

Algorithm 2.2.3 (GRgradedcomp). Input: a GR R = (G,Q,Q", P, F5) and
w € K. Assume that the grading is pointed. Decompose w = w° + w'® with
w? € K% and wt € K*r,

o Let W:=10.
e For each f € G do
— Let A :=w® — deg(f)° € K°.
— Use Algorithm 2.2.2: to compute the lattice points Ma := Ba NZ"
of the fiber polytope Ba = (Q°)~1(A) N 4.
— For each v € Ma, insert the polynomial T%- f into W if deg(T" - f) =
we K.

e Use Algorithm 2.2.2: to compute the lattice points Mo := B0 NZ" of
the fiber polytope Bo := (Q%)~1(w®) N~. Store the elements v € Mo
with deg(T") = w € K as ordered list (v1,...,v).

e Given g € W, let v, € K* be the image of g under T" + ¢;. Let A be
the matrix with the v, as its columns where g runs through W in a fixed
order.

e Compute a Smith normal form S = U - A -V with integral, invertible
matrices U, V. Write s := rank(S).

e Return the list (Z?:l(bi)jTVj; 1 <i<s)whereb; :=U""1"¢.

Output: a basis for (G),, considered as a K-vector space.
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Lemma 2.2.4. Consider a pointed grading @, ¢ K[T1,. .., Tr]w of the polynomial
ring by a finitely generated abelian group K. Let I C K[Ty,...,T,] be an ideal with
K-homogeneous generators gi,...,gs. Then

I, = ling (T"g;; 1 <i<s,deg(T") + deg(g;) = w) for each w € K.

Proof. Given f € I, write f = hi1g1 + ... + hsgs with polynomials hq,... ks €
K[Ty,...,T,]. By the direct sum decomposition, we may write each h; uniquely as
hi =>4 hix with h;, € K[T1,...,T;]k. Since f equals its degree-w part f,,, we
have

= <thgi> = (Z (Zhi,k> gi) = Piw—w, i
i=1 w k w =1

i=1

where in the last step, we defined w; := deg(g;). The other inclusion is obvious. [

remaining steps of the algorithm compute a basis for (G),,. Consider the isomor-
phism of K-vector spaces

@: ling (T, ..., T") — KF*, T — e.

That is ¢(g) = vy for each polynomial g € K[T1,...,T,],. Moreover, by construc-
tion, (by,...,bs) is a basis for ¢(ling(W)). The last step in the algorithm applies
the inverse map for ¢, i.e., maps b € QF to > b;T". We summarize the situation
by a diagram where rightward arrows are inclusions and the remaining arrows are
isomorphisms.

(G = ling (W) —— ling (T™1, ..., T") == K[T},,
\ l“’ g /
ling (b, ..., bs) ——> Kk
B .|
ling (e, ..., es) ——————>K* O

Algorithm 2.2.5 (GRgradedcompdim). Input: a GR R = (G,Q,Q°, P, F3) and
a vector w € QY(v). Assume that the grading is pointed. Decompose w = w? + w*
with w® € K° and w' € K*'r.

e Use Algorithm 2.2.2: to compute the set M0 := By,o NZ" with the fiber

polytope By,o = (Q°)!(w®) N~. Denote by n € Z>( the number of
elements v € M0 with deg(T") =w € K.

Output: the dimension d € Z>¢ of the graded component K[T1,...,T,],/{(G)w-

K[Ty,...,Tslw = ling(TWTxTs, TiT3Ty, TV T2 Ts, T1Ts),

where basis elements correspond to a positive combinations of w over the columns
q; of Q°; e.g., for T1T+Tx and Ty TyT5, we have:
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(0,0,0)

Moreover, Algorithm 2.2.3: returns the basis (7% f1) for (f1),. As obtained with

dim (K[Th N >T8]w/<f1>w)
= dim (K[Tl, ceey Tg]w/lan<T12T6 + T1T2T5 + T1T3T4 + T1T7T8))

3.

Recall, e.g., from [78, 22], that given an affine variety X = V(I) C K" with a
monomial-free ideal I C K[T7,...,T;], one assigns to I or to X the tropical variety
trop(I) := trop (X) := m trop(f) € Q,

fer

where trop(f) is the support of the codimension one skeleton of the normal fan over
the Newton polytope of f. There exists a fan T C Q" with support |Y| = trop(/);
see [22] for its computation. This fan is a projectable fan, see [91, Prop. 2.8], so for

define trop(X) := P(trop(X)) where X is the total coordinate space of X. For a
single equation, we remark the following.

Algorithm 2.2.7 (GRtrop). Input: a GR R = (G, Q,Q°, P, F5) where P: Z" —
N and G contains a single polynomial f.

e Let X be the normal fan over the Newton polytope of f.
e Let Y be the (dim(X) — 1)-skeleton of ¥ and T := P(T).

Output: a fan T in Ng with the tropical variety trop((G)) as its support.

Containment of a vector in the tropical variety can be done without computing the
whole fan structure. For this, recall from [22, 41] that given a monomial-free ideal
I CK[Ty,...,T,], the Grobner cone of a vector w € Q" is the convex cone

C(w) = cone(w' € Q"; in,(I) = in,(I)) € Q"
where in,, () denotes the ideal (in,,(f); f € I) C K[T1,...,T;]. Here, the initial
form in,, (f) consists of all terms oT” of f that are maximal with respect to v +—
(w, V). Moreover, we have a description of the tropical variety
trop(I) = {w € Q"; in,(I) is monomial-free} C Q.

If I is homogeneous, the Grébner fan is the collection of all Grébner cones {C(w); w €
Q"}. Tt turns out to be a convex, polyhedral, complete fan in Q”. The tropical vari-
ety trop(I) then is the support of the subfan T of the Grobner fan of I that consists
of all Grébner cones C(w) such that in,,(I) is monomial-free.

Fix a monomial ordering > on K[T7,...,T,]. Recall that for a vector v € Q%, we
obtain another monomial ordering >, on K[T1,...,T,] given by -

TV >, T" & (v,v)>(v,p) or [(v,v) = (v,u) and T" >T*"].
Algorithm 2.2.8 (GRtropcontains). Input: a GR R = (G,Q,Q°, P, F3) and a

vector v € N or f € Z" where P: Z" — N. Assume that the cone w over the
columns q1, . . ., ¢, of Q° is pointed and no ¢; is the zero-vector.

e If v € N was given, then choose f € Z" such that P(f) = v.
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e Choose a linear form u € (w¥)°. Let f* € ZZ, be the vector with
components (f1); := u(g;).

e Determine a € Zx( such that f' := f + af* is an element of Z_ and
compute a Grébner basis G-, for (G) with respect to the monomial
ordering > .

e Consider the ideal a := (ing/(9); g € G5 ,) CK[T1,..., T, ].

e Return false if the radical membership test 17 - - -1} € y/a succeeds and
return true otherwise.

Output: returns true if f € trop({(G)) or v € P(trop({G))), respectively. Returns
false otherwise.

Proof. In the case of a given vector v € N, since P~1(P(trop({G)))) = trop({G)), it
suffices to choose any f € Z" such that P(f) = v. By the definition of the tropical
variety, we have

fetrop((G)) & T" ¢ ing((G)) forallveZ,
& Ti---T, & /ing((G)).

Note that since w is pointed, uj,\ oy > 0. Hence, we can coarsify the grading as
claimed, i.e., we find the vector f' € ZZL,. By [90, Prop. 1.12] and its proof, for
each g € (G) we have iny(g) = iny(g). Since f’ is an element of the Grébner cone
of (G) with respect to the ordering <, by [41, Cor. 2.14], we conclude

ing((6)) = inp((G) = (ip(9)hgebs,). 0

€3

€2

€1

Q3 is contained in trop(fi).

In the definition of bunched rings 1.3.5, we required the variables to define K-
prime elements. We check this using the following direct method which was already
published together with J. Hausen and A. Laface in [57, Alg. 4.2]. See [46, B.7]
and [21, 25] for the computational background on how to compute the prime com-

ponents ¢; and number fields Q(«;).

Algorithm 2.2.10 (GRisKprime). Input: a GR R = (G,Q,Q° P, F3) and an
index 1 < k£ < r where we consider Q: Z" — K as a matrix and assume that the
grading group is of shape K =Z°* ®Z/a1Z & ... ® Z/a;Z. We further require that
G ={f1,...,fs} is contained in Q[T1,...,T,].

o If (f1,..., fs,Tk) is not a radical ideal, return false.
e Compute a decomposition {f1, ..., fs,Tk) = c1N...Nc,, with prime ideals
¢; and number fields Q(a;) such that ¢; is defined over Q(«;).
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e Denote by qi,...,q the last | rows of @) and by (,, the primitive a;-th
root of unity. Consider for any b € Zl>0 the map

op: Qa)[Ty,.. . T = LT, T, Ty e (o (™,

where L := Q(a1, ..., @m,Cayy---,Cq). If for each two i # j there is
b e leo such that ¢p(c;) = ¢; in L, then return true. Return false

otherwise.

Output:  true if Ty is K-prime in Q[Ty,...,T:]/{f1,..., fs) and false otherwise.

Proof. Let I := (G) C K[T1,...,T;]. Consider the action of H := SpecK[K] on
Y :=V(I) CK". By [51, Prop. 3.2], T}, is K-prime in R = K[T1,...,T;]/I if and
only if the divisor of T} in Y is H-prime in the sense that it has only coefficients 0
or 1 and the prime divisors with coefficient 1 are transitively permuted by H. 0O

Example 2.2.11. Consider the following factorially K-graded ring R where K :=
7 @ Z/AZ; we will encounter R later as the Cox ring of the surface with singularity
type DsAs in Theorem 4.4.1.

R = K[Ty,...,Ts]/I, I=(T\T3 —T? -T2, T\Ty — T2 + TyTs),
deg(Ty) = (1,2), deg(T>) = (1,2), deg(T3) = (1,0),
deg(T4) = (lag)v deg(T5) = (LT)

We show that the variable 77 defines a K-prime element in R albeit it is not prime.
The ideal I + (Th) C K[T1,...,Ts] has the two prime components

¢ = (Th, Ty —TsJ, T? — TyTs), ¢ = (Ty, Ty + TsJ, T2 — TyTs)
defined in Q(J)[T1,...,T5] with the imaginary unit J € C. In the notation of

|
L=Q

NG

Q(ar) Q(az)

~.,

Q
For b :=1 € Z>, the torsion part of the degrees deg(T;) defines the map

©b: Q(J)[Tl,,Tg,] — L[Tl,...,Ts],
Tl — 7T1, T2 — 7T27 T3 — Tg, T4 — 7JT4, T5 — JT5

ideals ¢; C Q(J)[T1, ..., Ts] transitively: their images are

(Ty, —JTy+Ts, Ty — TuTs) = o, (Ty, —JTy—Ts, T3 — TyTs) = ci.

We come to basic modifications of polynomials; compare [57, 44] and Section L3I
of Chapter 4. Consider a homomorphism p: T" — T" of tori. Given a Laurent
polynomial g € K[Si!, ..., SF1, its x-pull back is a polynomial p*g € K[T1, ..., T}]
such that p*g and p*g coincide in K[T:!, ..., TF!] up to units and the monomials
of p*g are coprime. The x-pull back always exists and is unique up to constants.
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Algorithm 2.2.12 (pull). Input: a polynomial f € K[Sy,...,S,] and an integral
n X r matrix P of full rank.

e Let ¢’ be the image of f under the homomorphism
K[S1,...,Sn] — K[TEL ... TH), 8 w— TP
e Choose p € Z%, such that g := T*"¢’ is an element of K[T7,...,T}].

e While there is 1 <4 < r such that T; | g, replace g by gT[l.

Output: g € K[T1,...,T;] such that g = p*g € K[Ty,...,T,] is the star pull back
with the morphism of tori p: T" — T" corresponding to P.

Consider a homomorphism p: T" — T™ of tori with kernel H C T". Given an H-
homogeneous polynomial h € K[Tlil, ..., TH], its x-push forward is a polynomial
peh € K[S), ..., Sy] such that p*p,h and h coincide in K[T:1, ... TF!] up to units
and the monomials of p,g are coprime. The x-push forward always exists and is
unique up to constants.

Algorithm 2.2.13 (push). Input: a polynomial h € K[T1,...,7,] and an integral
n X r matrix P of full rank such that h is H-homogeneous where H C T" is the
kernel of the morphism of tori p: T" — T” corresponding to P.

e Compute a Smith normal form D = U - P - V with integral invertible
matrices U, V. Let poy: T — T", pp: T" — T™ and ¢y : T" — T" be
the corresponding maps of tori.

e Use Algorithm 2.2.12:to compute g := oj-h € K[T1,...,T,].
e Write D = [D’,0] as a block matrix where D’ is a diagonal matrix with
diagonal entries dy,...,d, € Z\{0}. Let ¢’ € K[S1,...,Sn] be the image

of g under the map
K[Tldl7 Tdn' Tn+17"'7TT] — K[Slila---7s,r:::1]7

ytn

Td"»—>SZ- for 1 <i<n, T, — 0 else.

7

o Use Algorithm 2.2.12:to compute f := ¢f; ¢’ € K[S1,...,Sn].

Output: the *-push forward f = p.h € K[S,...,S.].

Proof. Note that D is indeed of the claimed form since P is of full rank. As V is
invertible, we have (py-1).h = ¢}, h. The same argument holds for U. The claim
follows from the decomposition

T vt e

peh = (pu-1)u (9D)e (Py-1)ah l i

T™"<—+——T"
U—

IR

and the fact that the *-push forward under D is (¢p).g = ¢’ since ¢ = g.
Observe that (the map used to obtain) ¢’ is well-defined. Since h is Z"/Im(P*)-
homogeneous the pull back ¢}, h is Z" /Im(D*)-homogeneous. This means that for
each monomial T in ¢}, h we have d; | v; for all 1 <i <mn. O

Recall that the saturation of an ideal I C K[T,...,T,] with respect to a polynomial
f eK[T,...,T,] is the ideal

I:f* = {geK[,...,T;]; ffg €I for some k € Z>1} C K[T1,...,T,].

Algorithm 2.2.14 (closure). Compare [64, pp. 23-24]. Input: a list of generators
fiy--., fs for an ideal I C K[T1,...,T,].

e Compute generators ¢1,...,9, € K[T1,...,T] for I : (Ty---T,)°.
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Output: polynomials g1, ..., gm € K[T1,...,T,] such that V (T7; I) C K" is given
by V(Kra gi,--- 7gs)~

Proof. The associated primes of J := I : (Ty---T,)* are the vanishing ideals
p; C K[T1,...,T;] of the irreducible components of X := V(J) C K", see [46,
Thm. 4.1.5]. We have p; = p; : (T} ---T;.)*> for each 4, see [64, Lem. 2.5.8]. In
particular, no component of X is contained in a coordinate hyperplane. This shows
that the closure in K" is V/(J) N'T™ = V(J). We now show V(J)NT" =V (I)NT".
By construction, V(J) C V(I). For the reverse containment, consider z € V(I)NT"
and f € J. Then (f - (Th---T)")(z) = 0 for some n € Zx>g, i.e., f(z) =0. O

3. Mori dream spaces

We provide first algorithms to explore the properties and geometry of a Mori dream
space. This section contains material from [5] as indicated near the respective items
below. Here is an overview of the algorithms of this section:

encode the true §-bunch @ in a data type BUN and then define the central data
type MDS. Let R = (G, Q, Q°, P, F5) be a GR. As before, we implicitly assign to R
the grading group K, its free part K° and the positive orthant v = QTZO.

Definition 2.3.1. A BUN in R is a finite set ® := {¢1, ..., ¥} of polyhedral cones
9; C K(% of the form ¥; = Q°(y;) with an element ; € Fy such that

(i) for all ¢, j, we have ¥$ N V] # 0,
(ii) if 99 C (Q°(v;))° with ; € F5, then Q°(v;) belongs to @,
(iii) for each facet o < 7, the image Q°(vp) is an element of ®.

Definition 2.3.2. Let R be a GR and ® a BUN in R. We call the pair (R, ®) a
MDS.

We do not differentiate between a Mori dream space X = X(R,§, ®) as in Con-

total coordinate space of (the underlying Mori dream space of) an MDS X.
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Example 2.3.3. Consider the GR R of Example'2.2.6. Then the Mori dream space

Next, we treat essential algorithms like dimension, relevant §-faces, covering collec-
tion and the canonical toric ambient variety.

Algorithm 2.3.4 (MDSdim). See [5, Thm. IT1.2.1.4]. Input: an MDS X = (R, ®)
with R = (G, Q,Q°, P, Fy).

e Compute the dimension dg of the ring R.
o Let d := dg — d° where d° is the dimension of the rowspace of Q°.

Output: the dimension d = dim(X).

Algorithm 2.3.5 (MDSrlv). See [5, Con. I11.2.1.3]. Input: an MDS X = (R, ®)
with R = (G, Q,Q°, P, Fy).

e Compute the set L of all 49 € F5 such that Q°(v) € ®.
Output: the set L = rlv(®) of relevant F-faces.

Algorithm 2.3.6 (MDScov). Compare [5, Con. II1.2.1.3]. Input: an MDS X =
(R, ®) with R = (G, Q,Q°, P, Fy).

e Set L™in .=
e For each 79 € L do
— insert o into L™™ if there is no v1 € L such that v C 7o.

Output: the set L™ = cov(®) of all minimal relevant F-faces.

Example 2.3.7. The MDS X = (R, ®) of Example 2.3.3 is of dimension dim(R) —

14 minimal ones, i.e.,
COV(@) = {{1’677’8}7{275’ 778}7{374’ 778}’{1’275’6}7{173’476}7{273)475}7
{2,4,8},{1,3,8},{1,2,8},{5,6,7},{4,6,7},{3,5,7}.{2,4,6},{1,3,5}}

cone(e;; i€ J) <Xy = ngo,', o

Algorithm 2.3.8 (MDSpointex). Input: an MDS X = (R, ®) and a vector z € K"
where R = (G,Q,Q°, P, F3).

If ¢ X = V(G) CK", then return false.

.
Q
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For each vy € C do
— if z; # 0 for all e; € 7, then return true.
Return false.

Output: trueif [z] € X, ie., z € X C K", and false otherwise.

Proof. The correctness directly follows from [5, Constr. II1.3.1.1] where

X = U(@)X\V(H Ti>

Yyo€Erlv ;€7

O

Given fans 31,5 C Q", denote by X1 M Xy their coarsest common refinement,
i.e., the set of cone-wise intersections {01 No9; 0; € ¥;}. The Gelfand Kapranov
Zelevinsky decomposition of a matrix Q° = [q1,...,q,] is the coarsest common
refinement

GKZ (Q°) = []A,
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where A runs through all normal fans having their rays among the Q>0 - ¢; and with
support |A| = cone(qi, ..., qr); see Chapter 3 for the computational aspects.

Given an MDS X, the following algorithm computes the canonical toric ambient

777777 .y) for
()
each vy € rlv(®). Moreover

D% = *(D%) where DY% := px (V()A(; E)), DYy, = py (V(/Z\/; T2)>

Algorithm 2.3.9 (MDSambtorvar). See [5, Prop. I111.2.5.4, Con. II1.2.5.7] and

Construction '1.3.12. Input: an MDS X = (R, ®) where R = (G,Q,Q°, P, F3),

P:7Z" — N and v = Q%,. Option: completions is available if X is projective.

o If completions was asked
-set Fe=0,
— compute A := SAmple(X) with Algorithm 2.3.15,

— compute the fan GKZ(Q") in Kg. This can be done using Algo-

— For each nn € A(Q) such that n° C \° do
* insert the fan ¥ (n) C Ng into F where

(n) = {P(); v = vand 1° € Q%0)°} .

Return F.

e Return the fan ¥ C Ng with maximal cones {P(3); 70 € C}.

Output:  the fan ¥ C Ng of the canonical toric ambient variety Zy O X. If
completions was given and X is projective, a list F of complete fans 3q,...,%; C
Ny is returned such that Zs, O X is a completion of Zs,.

canonical toric ambient variety Zs, of X has eight five-dimensional and six four-
dimensional maximal cones. Its rays are generated by the columns of the matrix P

1 € GKZ(Q")
|{77 € GKZ (QO) ;n° C SAmple(X)O}‘ = 17. SAmple(X)

The idrrelevant ideal of an MDS X is the ideal of the closed variety X \ X. Let ©
be a fan in Q™ and vy, ..., v, generators for the rays of ¥. As in [5, Prop. I111.1.3.4],
for each maximal cone o € ¥ we define

17 U gg,
0, wv; €o.

v:¥ — {0,1}", v(o); == {

Algorithm 2.3.11 (MDSirrel). See [5, Prop. II1.1.3.4]. Input: an MDS X =
(R, ®) where R = (G,Q,Q°, P, F3).

e Use Algorithm 2.3.9:to compute the canonical toric ambient variety Zs.

e Compute the ideal J := (T%(?); ¢ € ¥™%) + (G) C K[T1,...,T,].

Output: a list of generators for the vanishing ideal J of X \ X.
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Example 2.3.12. Consider the MDS X defined in Example 2.3.3. By Algo-

X\X = V(K®; T3T5Ty, TyT6Ty, TsTeTy, TiToTs, ThT5Ts, ToTyTs,
NT3Ts5, ToTyTs, ThT6T7Ts, T3TyT7 Ty, ToT5T7Ts, ToT5TyTs,
TTsTyTs, TYToT5Ts, T Ts + ToTs + TsTy 4 T7T).

We come to algorithms that compute cones of divisor classes, i.e., the cones of
effective, semiample, movable divisor classes.

X = (R, ®) with R = (G,Q,Q", P, F5) where Q° has the columns ¢y, ..., .
e Compute w := cone(qi, ..., qr)-

Output: the cone w = Eff(X) in the vector space Kg.

Algorithm 2.3.14 (MDSmov). See [5, Prop. I111.3.2.9] and ‘1.3.16. Input: an

MDS X = (R, ®) with R = (G,Q,Q°, P, F5) where Q° has the columns qi,. .., q,.

e Compute the cone
,
T = ﬂ cone (¢;; j #1) C Kg.
i=1

Output: the cone 7 = Mov(X) in the vector space Kg.

Algorithm 2.3.15 (MDSsample). See [5, Prop. 111.3.2.9] and '1.3.16. Input: an
MDS X = (R, ®).

e Compute the cone 7:= ) .7 C Kp.

Output: the semiample cone 7 = SAmple(X) in the vector space Kg.

Mov(X)
qs q4 qs q4
qs ° tq qs Q1
a6 N qr a5 = qr
(0,0,0) (0,0,0)

GIT cone A((0,0,2)), i.e.

SAmple(X)
g5 94
SAmple(X) = cone((2,1,3),(1,1,2),(-2,-1,3), " " @
(_17_172)5(_170’2)7(17()’2); d6 2 a7
a3
(0,-1,3),(0,1,3)).
(0,0,0)
We turn to groups associated to an MDS. Set 79 = v = Q%. Given a canonical

basis vector e; € Z, set ZXw (%) .= 7 if e; € o and {0} otherwise. Define the
subgroup

(1) H,, := ling(y) NZ" = P 2wl < 7.
i=1
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Algorithm 2.3.17 (MDSclassgrp). See [5, Thm. I11.2.1.4] and 136 Input: an
MDS X = (R, ®) with degree map @Q: Z" — K.

e Return K.
Output: the AG K representing the class group C1(X).

an MDS X = (R, ®) and Cox coordinates z € K" forapoint € X. Let Q: Z" — K
be the degree map and v = QTZO the positive orthant.

e Let g := cone(e;; z; # 0) = 7. Then 7 € rlv(®) and = € X (7).

[

)

given as an AG. In particular, the local class group Cl(X,x) is isomorphic to the
finite group Z/27Z @® 7Z./47.

Algorithm 2.3.20 (MDSpic). See [5, Cor. II1.3.1.6] and '1.3.15. Input: an MDS

oONO -
ok OO
N O OO

e ForeachyyeCdo
— use Algorithms 2.1.13'and 2.1.17. to redefine G as G N Q(H,,) where
H, <Zisasin (1).

Output: the Picard group G = Pic(X) as a subgroup of C1(X).

Algorithm 2.3.21 (MDSpicind). Input: a Q-factorial MDS X = (R, ®) with
degree map Q: Z" — K.

e Use Algorithms :2.3.20. and 2.1.9' to compute the factor group H :=

K/ Pic(X) and its isomorphism type H = Z/a1Z & ... & L] a,Z.
e Return aq - - - as.

Output: the index [Cl(X) : Pic(X)] € Z>;.
Example 2.3.22. Continuing Example 2.3.3, we compute the Picard group of X

2 0 0 0
oo . o, ling < CI(X).
0 0 o0 2

Note that Pic(X) is isomorphic to Z®. The Picard index is [C1(X) : Pic(X)] = 6912

PiC(X) = (linZ

NO OO

We come to singularities and algorithms that determine further properties of X.
An MDS X is called quasismooth if the open subset X C X is smooth. The
following algorithm makes use of the computation of a-faces, i.e., faces v =< Q%
such that V(T ; a) # 0 where T/, C K" is the collection of all z € K" such that
z; # 0 & e; € 79. We will treat a-faces and their computation in Section 1 of
Chapter :3.

Algorithm 2.3.23 (MDSisquasismooth). Input: an MDS X = (R, ®) with R =
(G,Q,Q°, P, Fy). Write G = {f1,..., f,} with f; € K[Ty,...,T].
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e Compute the Jacobian matrix, i.e., the s x r matrix J := (9f;/9T}): ;
over the polynomial ring K[T, ..., T,].

e Let a CK[Ty,...,T,] be the ideal generated by G and all (r —d) x (r —d)
minors of J where d is the dimension of R.

e For each 9 € C' do
— if, by Algorithm 3.1.2; 7 is an a-face, then return false.
e Return true.

Output:  true if X is smooth and false otherwise.

Proof. Note that V(a) C X equals the singular locus xXe Thus, the algorithm

tests whether X% N X # () with the constructible set
X = U X(v0) = U YQTZD c X
Yo Erlv(P) Yo Erlv(P)
from [5, Con. I11.3.1.1]. We now show that XNnX" s empty if and only if

XnX"" s empty. The reverse implication is obvious. For the direct one, suppose
there were a point x; € XNX"" Consider now the good quotient p: X — X by the

contains a closed orbit

~

H-zy C X with o € p (p(x1)).
Observe that (H -zo)N (H x1) is non- empty Since the images p(H Zo) = {p(xl)}

Using the H-invariance of XSlng C X, we have H r1 C Xsing, Since X equals the
union of all closed H-orbits of X we conclude

0 # (H o) N (H-z) € XNX

smg

]

Algorithm 2.3.24 (MDSissmooth). See [5, Cor. I11.3.1.12]. Input: an MDS X.

e Compute the fan ¥ of the canonical toric ambient variety Zy, O X with
Algorlthm 2.3.9.

false. Return true otherwise.
Output: true if X is smooth and false otherwise.

Algorithm 2.3.25 (MDSsing). Input: an MDS X = (R, ®) where R = (G, Q, Q°,
P,Fg:) with G = {fl,...,fs} Q K[Tl,...7Tr].

e Compute the s x r Jacobian matrix J := (0f;/0T}); ;
e Let a C K[Ty,...,T;] be the ideal generated by fi,...,fs and all (r —
d) x (r — d) minors of J where d € Zx( is the dimension of R.

Z") =K in a list F.

Output: the pair (a, F). Then a C K[T1,...,T,] is the vanishing ideal of X718 CK"
and F is the list of all relevant §-faces v1,...,7 < Q% such that X (7;) is singular.

Example 2.3.26. Consider the MDS X = (R, ®) of Example 2.3.3. By Algo-

—sing

X = V(K%a) = V(K% T1,...,T5) = {0}

Moreover, identifying a subset J C {1,...,8} with the face cone(e;; i € J) < v =
(@820, the list F consists of the relevant §-faces 7o < v with singular stratum X ().
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It is
F = ({3,5,7}, {1,3,5,7}, {2,3,4,5,7}, {4,6,7}, {1,3,4,6,7}, {5,6,7}, {3,5,6,7},
{1,6,7,8}, {1,3,6,7,8}, {1,4,6,7,8}, {3,4,6,7,8}, {1,3,4,6,7,8}, {3,4,7,8},
{1,3,4,7,8}, {2,3,4,7,8}, {2,5,7,8}, {2,3,5,7,8}, {2,4,5,7,8}, {3,4,5,7,8},
{2,3,4,5,7,8}, {1,2,8}, {1,3,8}, {2,4,8}, {1,2,4,8}, {2,3,4,5,8}, {2,4,6,8},
{1,3,4,6,8}, {1,3,5}, {2,3,4,5}, {2,4,6}, {1,3,4,6}, {1,2,5,6}),

We come to the graph of exceptional curves constructed in 1.4.9. We will use it

self-intersection numbers of its vertices.

Algorithm 2.3.27 (MDSintersgraph). Input: a smooth, projective MDS X =
(R, ®) of dimension two with R = (G, Q,Q°, P, F5).

o Determine the extremal rays Q>¢ - ¢, ..., Q>0 - g;,, of the effective cone
cone(qi, ..., qr) where q1,...,q. are the columns of Q°.

e Initialize V := {D;,,..., D;, } where D;, := V(X; T;) and set E := (.

e Compute C := rlv(®) with Algorithm 2.3.5.

e For each two distinct ¢, € {i1,...,9x} do
— if cone(ex; k & {i,7}) € C, then insert (D;, D;) into E.

Output: the graph of exceptional curves Gx = (V, E) of X.

Proof. The negative curves D;,,...,D;, C X correspond to the extremal rays of
the effective cone Eff (X)), see [5, Ex. V.1] or [51, Prop. 6.7]. By basic properties [73,
p. 96] of the good quotient p, we have

DiND; #0 p(V(f(; :Q,Tj)) £0
< cone(eg; k & {i,j}) € rlv(®). O

an MDS X = (R, ®) with degree map Q: Z" — K and orthant v = Q%,. Optional
input: Cox coordinates z € K" for a point = € X.

e If z € K" was given, then set C := {~p} with 79 := cone(e;; z; # 0) < 7.

e Return true.

Output:  true if X is factorial and false otherwise. For the case of a given point
x € X, true is returned if x is factorial and false otherwise.

Proof. Let 7o € rlv(®). By [5, Cor. I11.1.4.5], a point x € X (vo) is factorial if and
only if Q(ling(vo)NZ") = Q(H,,) generates K as a group. Use X = |J X (o) where
the union runs through all relevant §-faces. O

X = (R, ®).
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o If there is ¥ € ® with dim(¥) # dim(Kg), then return false. Return true
otherwise.

Output: true if X is Q-factorial and false otherwise.

We defined an MDS to encode varieties arising from bunched rings and, hence,
needs in general be neither projective nor complete. The following algorithm uses
a result of J. Tevelev [96] to check for completeness.

Algorithm 2.3.33 (MDSiscomplete). Input: a projective MDS X = (R, ®) with
R=(G,Q,Q° P F;) and P: Z" — Z".

e Compute a fan T C Q™ with support | Y| = trop(X). If |G| = 1, Algo-

e Compute a complete fan Q in Q™ having T as a subfan. If G = {g}, one
can define 2 as the normal fan over the Newton polytope of p, g, compare

toric variety Zy, and a completion Zs of Zs.
e Compute the coarsest common refinements ¥’ := £MQ and Y/ := XM 7.
e For each maximal cone 7/ € T/ do
— if 7/ € ¢’ for each maximal cone ¢’ € ¥/, then return false.
e Return true.

Output: true if X is complete and false otherwise.

Proof. First, note that in the case of G = {g}, Y is the codimension-one skeleton of
Q and, therefore, T is a subfan of Q. By [96, Prop. 2.3], X is complete if and only
if the support |X| contains the tropical variety trop(X) = |T|. Note that we have
|T'| = trop(X) and |X| = |¥’|. Hence, X is complete if and only if in the following
diagram of fans the dashed arrow is an inclusion.

> C )
YN0 ¢ NN
N
\ ul
AN
SNy

Since Y is a subfan of §, each maximal cone 7/ of Y/ = YL M either is contained
in ¥ or 7° N |¥’| = (). This completes the proof. O

puted using [63]. See [88, 41] for how to find .

Algorithm 2.3.35 (MDSisquasiproj). Compare [5, Cor. 1.4.5]. Input: an MDS
X = (R, ®). Write ® = {¢1,...,9}.

e Define 7 := ¢4.
e Foreachi=2,3,...,sdo

— if 7° N Yy =, then return false. Otherwise, redefine 7 as 7N 9;.
e Return true.

Output: true if X is quasiprojective and false otherwise.
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Proof. By [5, Cor. 1.4.5], X is quasiprojective if and only if ¥ N ... N ¥Y< is non-
empty. Clearly, if 97NJ5 = () for some %, j, then X is not quasiprojective. Otherwise,
by [87], the non-empty intersection ¥ N...N Y2 equals (Y1 N ... NJ,)°. O

Algorithm 2.3.36 (MDSisproj). Input: an MDS X = (R, ®) with R = (G, Q, Q°,
P, F). Assume that Q° has no zero-columns.

Eff(X) is pointed. Return false otherwise.
Output: true if X is projective and false otherwise.

Lemma 2.3.37. Consider a surjective k X r matriz (Q without zero-columns and
the positive orthant v := QL. Then Q(v) is pointed if and only if ker(Q) N~ = {0}.

Proof. If Q(70) is pointed, clearly Q(x) = 0 with « € v implies = 0. On the other
hand, if Q(y) contains ling (w) with a non-zero w € Q(7), then there are z,y € v\{0}
such that Q(z) = w and Q(y) = —w. Thus, 0 # z +y € vy Nker(Q). O

Proof of Algorithm 2.3.56.  Since X is quasiprojective, there is w € Mov(X)°

such that X = X (w)/Hx, see [5]. By [5, Prop. 111.1.2.2] or Proposition 1.1.7,
X is projective over X /Hx = Spec Ry. Set v := QL,. We now prove that Q°(y)
is pointed if and only if Ry = K. Since X is an MDS, the classes of Ty,...,T),
are pairwise non-associated K-prime generators for R. By [52; Rem. 1.25], Ry is

generated by the classes of products 7" where v € Z% ; runs through the elements of

As in Section ‘1. of Chapter 3, given f € K[T1,...,T,] and 79 < Q%L,, let f° €
K[Ty,...,T] be the polynomial obtained from f by substitution of T; = 0 for
all e; ¢ 70. Define the T"-orbit T7, as the set of elements z € K" such that
zi=0&¢; ¢ Yo-

Algorithm 2.3.39 (MDSstrat). Compare Construction 1.3.14. Input: an MDS
X = (R, ®) where R = (G,Q,Q", P, F3).
e Compute the collection G, := {f{°,..., f2°}.

e Use Algorithm 2.2.13 to compute all h; := p, f;° € K[S1,...,S,] where

p: T" — T™ is the homomorphism of tori corresponding to P.

Output: hy,...,hs € K[S1,...,Sn]. Then the stratum X (v) is given by the zero
set V(hi,...,hs) C T™ where the h; are considered as elements of K[ST!, ..., SF1].

Proof. Using standard properties of good quotients [73; p. 96], by [5, Con. IT1.3.1.1],
we have

p(X()) = p(fﬂ']l‘;(]) =p(V (%05 f1°, -, f°)) = V(T hy,...,he). O

Example 2.3.40. Let X be as in Example:2.3.3. For the following relevant §-face

X(nw) =V (T5; Ty + T3T4) , vo := cone(e;; i € {1,3,4,6,7}) =< 7.

We turn to algorithms on a complete intersection MDS X = (R, ®), i.e., R is a
complete intersection ring. Recall that this means that the kernel of K[T7,...,T,] —
R with T; — f; is generated by r — dim(R) polynomials.
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Algorithm 2.3.41 (MDSantican). See [5, Thm. II1.3.3.2] and '1.3.17. Input: a
complete intersection MDS X = (R, ®). Write R = (G,Q,Q° P, F3) with G =
{91, .., 94} Let the degree map be given by the AGH Q = (Z", K, A) with an AG

K = (U, L).

e Definew:=5%,_ | A — 2?21 A-v; € U+ L where T" is a non-vanishing
monomial in g;.

Output:  the vector w € U + L. It represents the anticanonical divisor class
—w§" € K.

Example 2.3.42. Consider the complete intersection MDS X of Example 2.3.3.

Using Algorithm 12.3.41, we obtain —w@" = (0,0,6,1) € K since

__,pcan
’ll)X

r d
S A=Y A = (00,840,021
i=1 j=1

= (0,0,6,3).

e Determine the cone 7 := [ .4 ling(?) in Kgq.
e Let m: K — K° be the canonical projection. Return true if 7(—w@") € 7
and false otherwise.

Output: true if X is Q-Gorenstein and false otherwise.

complete intersection MDS X.

e Compute the anticanonical divisor class —w@" € K; see Algorithm 2.3.41.

e Return true if —w@® € G and false otherwise.

Output: true if X is Gorenstein and false otherwise.

For a complete intersection Q-Gorenstein MDS X, the Gorenstein index is the
smallest integer n € Zs¢ such that n - (—w@") € Pic(X) where —w" is the class

of the anticanonical divisor of X.

Algorithm 2.3.45 (MDSgorensteinind). Input: a complete intersection MDS X
that is Q-Gorenstein.

e Compute the anticanonical divisor class —w$™ € K; see Algorithm 2.3.41.

is the case.

Output: the Gorenstein index n € Z~q of X.

Algorithm 2.3.46 (MDSisfano). See [5, Cor. I11.3.3.3] and '1.3.17. Input: a

e For each ¥ € ® do
— return false if —w$" & ¥°.
e Return true.
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Output: true if X is Fano and false otherwise.

Fano property had we chosen w € Q? in a different GIT-cone within Mov(X) (the
blue region).

(0,0,0)

For the surface case, we introduced intersection numbers in Section 4 of Chapter 1.
We shortly recall from [5, Con. I1.1.2.8] the construction for an n-dimensional com-
plete toric variety Z with a lattice fan (X, N). Assume ¥ is simplicial. Consider

pairwise different, invariant prime divisors Dy, ..., D, on Z that correspond to rays
Q>0-v1,...,Q>0 v, € ¥ with primitive vectors v; € N. Their intersection number
is

Dy---D, = v v, = [N Nling(o) : ling(vq, . .. ’Un)]—l’ oey,

with o := cone(vy,...,v,). If X = X(R,§,®) is a projective Mori dream space
with complete intersection Cox ring R and canonical toric ambient variety Z, it
inherits intersection theory. Given invariant prime divisors DY, ..., D% on X with
D% = D;N X, by [5, Con. I11.3.3.4], their intersection number is the toric intersec-
tion number

D}(---D} = Uy Up UL Ug

where uq,...,uq are the degrees of the generators of the kernel of the map T; — f;
with § = (f1,..., fr); see [5, Con. I11.3.3.4] for details. We state the next algorithm
for the case of one equation. It is also able to produce self intersection numbers.

Algorithm 2.3.48 (MDSintersno). Compare [5; Con. II1.3.3.4]. Input:  a
quasiprojective MDS X = (R, ®(wy)) and elements w, w’ € K where R = ({g}, Q,
Q°, P,F3). Let qi,...,q, € K be the degrees of the variables Ty,..., T, of R.

e Compute in Kq the full-dimensional GIT-cone A(wp) = Nycq V-

e Choose a random wj, € A\(wg)® until the cone n € GKZ(QP) with wj, € n°
is of full dimension. See Algorithm '3.2.8 for how to compute 7.

o Let N = (n;j);; be the r x r zero-matrix.

e For each two distinct 1 <,j <r do

— choose a non-zero monomial 7% in g such that v; = v; =0,

Gd g = (K : Kije] ™, 0 C cone (qi; L ¢ i, k})
LY 0, else

with the subgroup K; ;= (q;; | & {i,j,k}) of K for 1 <k <.
e Foreach 1 <i<rdo
— compute a point o’ € Q; '(¢;) € Q"' where Q; is the matrix ob-
tained from @) by removing the i-th column.
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— Adding another 0O-entry, we have a := (af,...,a,_1,0,a},...,a._,)
in Q". Redefine n;; as the sum Z;Zl ajnij.
e Compute a; and f; € Qx¢ such that w =, a;¢; and w' = Zj Biq;-
e Return Z” a;Bin;; € Q.

Output: the intersection number D - D’ € Q of divisors D, D’ on X with [D] = w
and [D'] =w' € K.

Proof. This implements [5;, Con. II1.3.3.4]. Note that in line two, we have 7° C
A(wp)® and in the first line of the first loop, the monomial T" exists since, otherwise,
the codimension of V' (X; T;,T;) in X would be one. By construction and bilinearity
of the intersection form, after the second loop, n;; = ¢; - ¢; - deg(g) for all 4, j. Then

w-w' - deg(g) = (Zm%)-(Z&%)deg(g) = Z@iﬁj Nij-

4. Complexity-one T-varieties

This section describes algorithms for the special class of Mori dream spaces of
complexity-one T-varieties; see Section 5. of Chapter 1 for the background.

The algorithms concerning automorphisms have been developed by I. Arzhantsev,
J. Hausen, E. Huggenberger and A. Liendo in [6]. The anticanonical complex
and the related algorithms have been developed by B. Bechtold, J. Hausen and
E. Huggenberger in [17]. See [5, 61] for the resolution of singularities for complexity-
one T-varieties. Our Algorithm 2.4.8 works in a slightly more general setting. Here
is an overview:

o Automorphisms: vertical and horizontal Demazure P-roots (Algorithms

Aut(X)°, we first show how to calculate Demazure P-roots. Let v;;,v, € Z"™ be
the columns of P and denote by M the dual lattice of Z"+*. Recall from [6, Def. 5.2]
that a vertical Demazure P-root is a pair (u, ko) € M x {1,...,m} such that

|uL

(u,v55) > 0 for all 4, j, (u,v,) = —1, N
(u,vgy > 0 for all k # k. 4

Vko

A horizontal Demazure P-root is a tuple (u,ip,i1,C) in the following sense. We
have u € M, distinct indices ig,i1 € {0,...,r} and C = (¢;); € [[;_o{1,...,ni} is
such that l;., = 1 for all ¢ & {ig,i1}. Moreover, the scalar product {u,vg) is at least
zero for all k£ and

- o lij, 1 ¢ {io,in}, J # ¢
O7 i i, i1}, ig>© 05 115 i iy
(U, Vie,) = { 1 igo 1} (u,vi5) > 0, i€ {io,i1}, J # ci,
’ b 0, i = i, ji=c.

Given a horizontal or vertical Demazure P-root x of the form xk = (u, ko) or kK =
(u,ip,11,C), the last s coordinates of u € M give the P-root o, € Z°.
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Algorithm 2.4.1 (MDSvdemazure). See [6, Remark. 5.4]. Input: an MDS X =
(R, ®) where X = X (P, A, ®) is a complexity-one variety with a r x (n+m) matrix

Let vy, ..., Vn4m be the columns of P.
o Initialize V := 0.
e For each kg € {1,...,m} do

— define ¢ € Z™™™ by setting (n1k, := —1 and (; := 0 otherwise.
— Compute in Mg = M ® Q the affine subspace and polytope
n(ko) = {ue€ My; (u,vg,) =—1},
B(ko) := {u e n(ko); P*-u > C}.

points. Redefine V as the set V U {(u, ko); u € U}.
Output: the set V of all vertical Demazure P-roots (u, ko) € M x {1,...,m}.

Algorithm 2.4.2 (MDShdemazure). See [6, Remark. 5.4]. Input: an MDS X =
(R, ®) where X = X (P, A, ®) is a complexity-one variety with a r x (n+m) matrix

e Initialize H := 0.
e For each two distinct 0 < ig,4; < r do
— for each C = (co,...,¢r) € [Ti_o{1,...,n;} such that we have l;c, =
1 forallie{0,...,r}\ {0, i1} do
* let ¢ € Z"™™ with (nay = 0 for all 1 < ¢ < m. For its
remaining components ( we write k = n}, + j with 0 <7 <r
and 1 < j < n; and define

-1, 1=1 and j = ¢y,
Ce = lij, i¢{io,i1} andj# ¢,
0, otherwise.

* Compute in Mg = M ®Q the affine subspace 7(ig, i1, C) which
is given by

{u € My; (u, vani) =0 for i & {io, i1}, (U,Vn; 4c;,) = 71}.
« Compute the polytope B(ig,i1,C) C Mg given by
Blio,i1,C) = {uenlip,i1,C); P*-u > (}.
* Use Algorithm 2.2.2:to compute the set U := B(ig, 41, C) N Z"

of lattice points. Redefine H as H U {(u,i9,1,C); u € U}.
Output: the set H of all horizontal Demazure P-roots (u,ig,41,C).

one T-variety for being almost homogeneous, i.e., its automorphism group acts with
an open orbit. By [6, Thm. 6.1], this is equivalent to the existence of a horizontal
Demazure P-root.

Example 2.4.5. We computationally verify [6, Ex. 5.3]. Consider the complexity-
one variety X = X (P, A, ®) where ® is any §-bunch and

-1 -3 3 o0
P={1302], Az[?_}é}

-1 —2 1 1
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are as in Construction 1.5.2. Since m = 0, Algorithm :2.4.1 returns the empty set.

(u,1,2,C), u = (-1,-2,3) € Mg = Q3, C = (1,1,1).

Recall from [62, 6] that for a connected, semisimple linear algebraic group G there
is a root system ®¢ C Xg(T) with respect to a given maximal torus T' C G. Note
that G is determined uniquely up to coverings by its root system. The following
algorithm describes the roots of the unit component Aut(X)? for a normal, complete
complexity-one MDS X = X (P, A, ®). By [6], for the semisimple part of Aut(X),
only (sums of) the following root systems may occur

A, = f{ei—ej; 1<ij<n+1,i#j} C R,
By = {*e1,Lez, £(e1+e2),£(e1 —e2)} C R?.

Algorithm 2.4.6 (MDSautroots). See [6, Thm. 5.5]. Input: an MDS X = (R, ®),
where X = X (P, A,®) is a complexity-one variety with P, A as in Construc-

e Compute the sets ¥V C Z""% and H C Z"™* of vertical and horizontal
Demazure P-roots with Algorithms 2.4.1 and 2.4.2.

e Determine the set A := {mw(u); u € VU H} where m: Z't® — Z° is the
projection onto the Z?*-part.

Output: the set A of roots of the unit component Aut(X)°.

Example 2.4.7. Consider the complexity-one T-variety X arising from the data

(=N =N

coa=]5 e

|
—
coor

Then X is three-dimensional and its Cox ring and degree map Q: Z° — K :=
75 /Im(P*) = Z are

R = K[T\,...,Ts)/(TyTs + T + T1 T5), Q=1 111 1].

We compute the roots of Aut(X)" using Algorithm 2.4.6. As predicted in [6,
Thm. 7.2], we obtain the root system

B2 = {(1771)7(171)a(717*1)7(*131)7
(0,-1),(0,1),(1,0),(-1,0)} < Z°.

We turn to resolutions of singularities; compare Section 4. of Chapter 1. The fol-
lowing algorithm has been developed for complexity-one T-varieties, see the book
by I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface [5, Thm. I11.4.4.9] and
E. Huggenberger’s thesis [61, Ch. 3]. For more general Mori dream spaces our al-
gorithm computes a candidate for a resolution and tries to verify it. The algorithm
uses the weak tropical resolution defined in [10].

Algorithm 2.4.8 (MDSresolvesing). Compare [5, Thm. I11.4.4.9] and [61; Ch. 3].
Input:  a projective, Q-factorial MDS X = (R,®) with R = (G,Q,Q", P, F3).
Write G = {f1,..., fs} and assume P is of size n x r. Options: verify; minimal
if X is a surface.

e Compute the fan ¥ of a completion Zs of the canonical toric ambient
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e Compute the coarsest common refinement ¥’ := £ MY and subdivide its
singular cones until the resulting fan (X’)*°® is regular. Write primitive
generators for its rays into the columns of a n x v/ matrix P’ = [P, B].

e Let p: T" — T™ and p’: T" — T" be the homomorphisms of tori corre-

e Use Algorithms 2.1.24' and 2.1.26 to compute the AGH Q': Z" — K’

o = {(@) (%) foZ6and P'(3) €X'}, 6 = QL

e Create the MDS X' = (R, ®') with R’ = (G',Q’, (Q°)’, P', F') where F’
is the set of all §y < d such that §SN7 # () for a maximal cone 7 € P~1(Y).
o If verify was requested, then

— use Algorithm:2.2.10:to check whether all variables 71, ..., T, define

K'-primes in R’.
— Check if dim((G")) — dim((G") + (T}, T;)) > 2 for all i # j.

e If minimal was requested and X is a surface, then redefine X " as the
result of Algorithm 2.4.9 with input r and X'.

resolution of singularities. The resolution is minimal if minimal was requested and
X is a surface.

Algorithm 2.4.9 (minimize). Input: r € Z>o and a two-dimensional smooth
projective MDS X’ = (R/, ®’) that arises from a two-dimensional MDS X as in
Algorithm :2.4.8.

— use Algorithm :2.3.48 to determine the indices 41,...,%; such that
V(X' Ti,) is a (—1)-curve.
e If R’ is not a complete intersection, then
— Compute ¢ := cone(qy, . .., q) where ¢1,...,q- are the columns of
the matrix (Q°)’ representing the free part of the grading of R'.

— Let 41,...,7 be such that the ¢;;, are exactly the extremal vectors

e Return X' if k = 0.
e For each i € {iy,...,ix} do
— compute the contraction X’ — X, of V(X’; T;) by an application of

Output: a smooth MDS X; such that X; — X is a minimal resolution.
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suffices to consider any smooth contraction X' — X .

Xl
Xh & : y ij
X
By choice of i; > r, X;, — X is a resolution. Hence, the algorithm computes the
minimal resolution in finitely many steps. O

Algorithm 2.4.10 (MDScontract). Input: a projective, Q-factorial, two-dimen-

e Let P’ be the matrix obtained by deleting the k-th column of P. Compute

and 2.1.26.
o Set G':={f{,..., fi} with the image f/ of f; under the map
T, i>k,
K[Tl,...,TT} — K[Tl,...,Tr_ﬂ, E — 1, Z:k7
T; 1< k.

R = (G, Q' (Q°), P', (F5)").
e Choose w € Mov(R')° and define the MDS X' = (R, ®'(w)), see Algo-

see also [61, Ch. 3]. Hence, we only need to show that if the verify option was
given and all tests succeed, then X’ is a smooth MDS. In particular, X’ — X
then is an equivariant desingularization of X. Consider X = V(G') € K and
H' = SpecK[K’]. In the case of s = 1, we required the open subset U := yl\(yl)smg
to be of codimension at least two in X . Thus, the ring R’ is normal by Serre’s

Q'(e1) = deg(Th), e Q'(ex) = deg(Ty)

is almost free since, by construction, the columns of P’ generate the whole space
as a cone, are pairwise different and primitive. Furthermore, the codimension test

Cox ring of X’. We conclude that X’ is a smooth MDS. O

Remark 2.4.11. In Algorithm 2.4.8; for higher-dimensional X, it is not clear how
to obtain a “minimal” resolution. However, one may use [51, Thm. 6.2] which states
that X arises from a combinatorially minimimal MDS Xy by a finite sequence of

small birationial maps and contractions.

In the following example, we apply Algorithm :2.4.8. to resolve the singularities of

a surface X that does not admit a non-trivial K*-action. We will encounter X in
Theorem 4.4.1: as the surface with singularity type EgAs.
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Example 2.4.12. Consider the Mori dream surface X with class group Cl(X) =
7 ® 7/37 and the following Cox ring and degree matrix
R(X) = K[T,.. T/(-TiT} + T + DI+ T5),  Q=[1 1 4 4]

1 2 0 1

and minimal, we obtain a minimal resolution X’ — X with a smooth MDS X". Its
Cox ring is

R (X/) = K[Tlv e ’T12] / <g>a
g = —TTiTs + ToT1oT3Ts + ToT3 Ty TyTs TsTr Ty Tho + T3 To T Tho-

Note that R(X") is as predicted in [33, p. 40, type EgAs]. The class group of X' is
Z° and the degree matrix is

QOO ROOROO

o~rroOrROOO
|
—oorRRROOO

CORrROORRRKR
|
OHOOHOOOHR
[=NeNoNoNeNoNoNoN
O OQOOOCOKRF
|
HOOORORRO
OO~ OROOOO
OO0O~=MHOOOOO
=R NeNoleNoNeNeNa}
HFOOOOOOOO

Since X'’ is a complete intersection we can compute the self intersection numbers of

Df D3 D3 Dy Df Di D Dy D; Diy, Dy Dj,
1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2

Observe that no further (—1)-curves D; with ¢ > 4 exist since we provided the

Tia Ts
T: T
3 g Tio— 1Ty
T3 Ti
L Ty — Ty — T —T1o—T
7 Two 7 3 |6 10 11
Ts T~ T3 T,

We come to algorithms concerning the so-called anticanonical complex introduced
by B. Bechtold, J. Hausen and E. Huggenberger in [17]. Let X = X (P, A, ®) be a

matrix of the free part of the grading. In [17], the anticanonical polytope of X was
defined as the polytope

Ax = BY, By = (P*)"! <Bu, + 3 A(f) - (1,...,1)) c qQn,
i=1
with the Newton polytopes A(f;) € Q" and the fiber-polytope By, := (Q")~*(w) N

QL of the free part w € K° of the anticanonical divisor class. Let Zx be the
canonical ambient toric variety of X as in Construction.1.5.7 and Y a fan in Q"

Ax = faces(Ax) 1T MY C Q" . ‘
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where TMX is the coarsest common refinement and faces(Ax)M7Y denotes the cone-
wise intersection with the polytope Ax. The computation is a direct consequence
of the definition.

Algorithm 2.4.13 (MDSanticanpoly). See [17]. Input: an MDS X = (R, ®) of
complexity one. Let R = (G, Q,Q°, P, F3) with G = {f1,..., fs} and P: Z" — Z".

e Compute the free part w := (—w$")? € K° of the anticanonical divisor

the image Bx = (P*)"}(B — (1,...,1)) in Q™. Let Ax := BY be the
dual.

Output: the anticanonical polytope Ax C Q™.

Algorithm 2.4.14 (MDSanticancomp). See [17]. Input: an MDS X = (R, ®) of
complexity one with R = (G, Q,Q°, P, F5).

o Let Ax be the polyhedral complex with maximal cells ¢’ N Ax where
o’ € ¥/ runs through the maximal cones of ¥'.

Output: the anticanonical complex Ax of X.

Consider a normal Q-factorial variety X with Cartier canonical divisor D¢". Let
p: X' = X be a resolution of singularities. Recall, e.g., from [61], that X is
terminal if a; > 0 for all 7 in

D$r = " (DS™) + Y B

with the exceptional divisors F; of . We say that X is log-terminal if a; > 1 for
all 4. Similarly, given 0 < e < 1, we call X e-log-terminal if we have a; > —1+¢
for all 4.

Algorithm 2.4.15 (MDSisepslogterminal). See [17]. Input: an MDS X = (R, ®)
of complexity one with R = (G, Q,Q°, P, F5) and a rational number 0 < ¢ < 1.

e For each maximal cell C' € Ax do
— Let C. be the scaled cell € - C. Return false if C. is unbounded.
— Compute the set of lattice points U := C. NZ" with Algorithm 2.2.2.
— Let V' C Q™ consist of the zero-vector, the columns of P and the
vertices of Ax. Return false if U\ V # 0.

e Return true.

Output: true if X is e-log-terminal and false otherwise.

Algorithm 2.4.16 (MDSisterminal). See [17]. Input: an MDS X of complexity
one.

Output: true if X is terminal and false otherwise.

Note that we can also test a K*-surface for being log-terminal by an inspection of
its P-matrix, see Remark 2.5.6.
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5. Application: Combinatorially minimal K*-surfaces

In this section, we classify the non-toric, combinatorially minimal del Pezzo, i.e.,
Fano, K*-surfaces of Picard number two up to Gorenstein-index six. We apply the
algorithms developed in the previous sections to study the resulting surfaces. This
continues work of E. Huggenberger on the Gorenstein-case, see [61, Sec. 5.3].

We write dx for the self-intersection number of the anticanonical divisor of the
given surface X and denote the Picard index by b := [C1(X) : Pic(X)]. We say that
X has hypersurface Cox ring if the spectrum X over the Cox ring is a hypersurface.
Moreover, recall from [51, Sec. 6] that a variety X is combinatorially minimal

if Mov(X) = Eff(X). In the sense of Remark 1.4.2, this means that no further
contraction is possible.

Theorem 2.5.1. Up to isomorphism, there are only finitely many non-toric, com-
binatorially minimal del Pezzo K*-surfaces of Picard number two with hypersurface
Coz ring and with Gorenstein index n € Z~q. The following table is a classification
of all surfaces with n < 6. No two shown surfaces are isomorphic.

Coz ring R(X) degree matriz CI(X) b n  dx
[ 2 0 0o 1 1]
(1) K[Ty,..., Ts5]/(T1 T2 + T2TZ + T2) 0 -2 -1 0 -1 ?@ez/22 32 2 2
1 1 1 0 0
[ 2 0 0o 1 1]
(2) K[T1,...,Ts]/{T1T2 + T3TZ +T2) 0 -2 -1 0 -1 72 ¢z/42 256 4 1
1 3 2 0 0
[ 2 0 0o 1 1]
(8) K[T1,...,T5]/{T1T2 + TZTZ + T2) 0o -2 -1 0 -1 7 ®L/6L 864 6 2
1 5 3 0 0
[ 2 0 0o 1 1]
(4) K[T1,...,Ts5]/{T1T% + T3T7 + T2) 0 -1 -2 0 -1 7?®7/3Z 108 3 %
1 1 0 0 0
3 3 3 3 0 0o 1 1 2 8
(5) K[Ty,...,Ts]/(T1T5 + TsT; + T3) {O 1 -3 o _1} Z 9 3 8
3 0 0o 1 1
(6) K[T1,...,T5]/{T1T5 + T3T5 + T3) 0 -1 -3 0 -1 ?ez/2 72 3 %
1 1 0 0 0
2 0 0o 1 1
(7)  K[T1,...,T5)/(T1T3 + TsT7 + TZ) 0o -1 -2 0 -1 7> ®17/5Z2 500 5 %
3 1 0 0 0
5 0 0o 1 1
(8) K[Ty,...,Ts)/(TaT3 + TsT] + T5) {O 1 5 o _1} z? 25 5 8
5 0 0o 1 1
(9) K[T1,...,Ts]/(T1TS$ + TsTJ + T2) 0 -1 -5 0 -1 z2®z/22 200 5 %
1 1 0 0 0
3 0 0o 1 1
(10) K[T1,...,Ts5]/{T1T5 + T3T5 + T3) [ 7% g 7% 72 ® 7/AZ 576 6 z
1 1
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4 0 0 1 1

(11) K[Ty,...,T5]/{T1Ty + T3T§ + T2) 0 -1 -4 0 -1 7 ® /3L 432 6 2
2 1 0 0 0
1 0 0 2 1

(12) K[T1,...,Ts]/(T{Te + T3Ty + T3) [ 0 -2 -1 0 -1 } 72 4 1 4

All surfaces are singular and exactly the surfaces of cases (5), (8) and (12) are
almost-homogeneous. The log-terminal surfaces are (1), (2), (3), (4), (7) and (12).
Moreover, in each case (i), the following P-matrices can be chosen such that the

-1 -1 2 2 0 -1 -1 2 2 0

P =|-1 -1 0o o 2], P, =1 -1 -1 0o o 2|,
| -1 0 -1 1 1 | -1 1 -3 1 1
-1 -1 2 2 o0 -1 -2 1 2 0

Ps = | -1 -1 0o o 2|, P, =] -1 =2 0o o 2|,
| -1 2 -5 1 1 | -1 1 -1 1 1
-1 -3 1 3 0 -1 -3 1 3 0

P =| -1 -3 0 o 3|, Ps = | -1 -3 0 0o 3|,
| -1 -2 0 1 2 | -1 -1 0 2 1
-1 -2 1 2 o0 -1 -5 1 5 0

P =] -1 -2 0o 0o 2|, Ps = | -1 -5 0o o 5 |,
| -1 3 -2 1 1 | -1 -4 0 1 4
-1 -5 1 5 0 -1 -3 1 3 0

Ph =\ -1 =5 0o 0o 5|, Po=| -1 -3 0o o 3|,
| -1 -3 0o 2 3 | -1 1 -1 1 2
-1 -4 1 4 o0 -2 -1 2 1 0
P = -1 -4 0 0 4 |, Po=| -2 -1 0 0o 2
| -1 -1 0 3 1 | -1 0 -1 o0 1

Furthermore, for the respective minimal resolution of singularities X' — X, the
subgraphs of (—k)-curves, k € Z>a, of the graphs Gx: of exceptional curves and the
corresponding self-intersection numbers are

—2——2—-2 —0) 23— -2
—4
—2——2—-2 -3—-3 —2—-3—-2
1) 2)
—2—-2 —2—4—=2 -3 -3 —2—-3—-2
I
3——2—-3 —2——4—=2 —2—-2 —0)
3) 4
&3
22— —2——2—2 &) |
| —2——2——2—-2
—3) —) |
-3
(5)
(6)
—3—=2
—2——4— 2 2—2—2—2—2——2—2—"2—"2
S5—22 | |
—2 =5
—3—-2
(8)
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—5) —3——2 4 4 —2—2
—3——2—-2 -3—-3
S & S—E3 —2—-2—-2 D)
) (10)
3
=i —2——2——2
—2—_2 >72—72—72—72 |
—4 -2
—2—2
(12)

(11)

with ADE-singularity type D4 found in [61, Thm. 5.26]. Surfaces (1), (4) and (12)
also appear in [94, Satz 6.13].

Lemma 2.5.3. Let wy,...,ws € Z? be such that Q>0 - w1 = Q>0 - w2, we have
Q>0 w3 = Q¢ - wq and Q>¢ - w1 # Q>0 - ws. If ling(w,...,wy) =Z?, then there
is S € GL(2,Z) such that

S (wy, ..., wy] = [g oo g} with a,b,c,d € Z.

Proof. After computing a Hermite normal form, we may assume that there are
integers a, b, ¢, d € Z satisfying

wy = (a,0), wy = (b,0), w3 = c- v, wy = d-v
with a vector v = (v1,v7) € Z?. Since the w; generate Z?, we must have vy = +1;
we may assume v = 1. Adding —v; times the last row to the first one yields

s-lo et =[e s 0y] wihsecaen. 0

0 o0 c 0 0 ¢ d

Lemma 2.5.4. Let X be a combinatorially minimal K*-surface with hypersurface
Cozx ring and rank(Cl(X)) = 2. Then X = X (P, A) with integral matrices

P = —lo1 —lo2 0 0 21
_dizlo1 _ d21lo1 _di1lo2 _ d21lo2 diy
l21

l12 l21 l11

CAa= ]

—lo1 —lo2 lir h2 0
diz  d21

n; and we have

d d
0 < di2 < lig, 0 < do1 < log, 225
lio I

Furthermore, the fan (P) of the canonical toric ambient variety of X in Construc-

o := cone(vpz, V12, Va1),

o~ := cone(vo1, V11, Va1).

Moreover, the integral 2 x 5 matriz Q° representing the free part of the degree map
75 — CI(X) is of shape
a 0 0 loie lo1a

0o _ 1 J
Q" = loab 12 G | a,b € Zo.
21
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Proof. Since X is a surface and rank(Cl(X)) = 2, we have dim(R (X)) = 4. Together
with the fact that the ideal of relations of R(X) is principal, the parameters in
Construction 1.5.2'are 7 = 2, n = 5 and m = 0. This means X = X (P, A) arises

from matrices P and A where

—1 —1 l l 0
R e R ] R EEEIE
do1 doz di1 di2  d21
Let the 2 x 5 matrix Q° = [qo1, . - ., g21] represent the projection Z° — Z?2 onto the
free part of C1(X). Since X is combinatorially minimal, the columns go1, ..., ¢21

generate a pointed, two-dimensional cone ¥ C Q2 where each of the two extremal
rays of 1 contains exactly two ¢;; and g21 € ¥° by homogenity of the defining

there are a,b,c,d, e, f € Z such that

9
q02 loi1a lo1a
©qg21 QO — a 0 0 d e _ a 0 0 115 151
a2 0 b ¢ 0 f 0 b llozb 0 llozb ’
q01 911 11 21

where the last equality and the fact that all fractions are integers was obtained from
P-(Q")* = 0. Multiplying the rows by +1, we may assume a,b € Z~o. Using again
P-(Q")" =0, we have the additional conditions

adizlor  adailos bdiiloz  bdailo:

adpy = — , bdos = —

l12 l21 lll 121

Division by a or b respectively gives the desired shape of P. The conditions 0 <
d12 < l12 and 0 < doy < I come from according row operations in P (before fixing

ordering of the slopes of one block:
d, d,
dop  don . 2 dn
ZOQ l01 112 lll

only if the following inequalities hold
< by oy ot
lor iz lon’ lor T o2

R(X) = K[Toy, Toz, Th1, Tha, To1]/{g), g = T T + TinThe T,

By Proposition:1.3.17, X is Fano if and only if the free part (wa?“)O € Cl(X)0 = 72

of the anticanonical divisor class of X is an element of the ample cone, i.e.

(—w@™)? = (Z%‘j>_deg<g)

a8+ 2 41—l

l21 l12

b2+ 2 +1—lp

l21 l11

€ cone(ey,ez)’.

This means (—w$")? > 0 for both i = 1,2. Since a,b € Zxo, division by lg; or
loa € Z~( respectively, gives the assertion. ([

The parameters occurring in the inequalities in Lemma 2.5.5. are platonic triples,

i.e., triples (a,b,c) € Z2 such that a=' +b~! 4+ ¢~! > 1. Up to permutation, the
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only possible combinations are (compare [61; Ex. 3.20])

(1,$7y), (27272)7 (27373)7 (27374)7 (21375)7 z,y S ZZL z e ZZ2~

Remark 2.5.6. The platonic triples occurring in Lemma :2.5.5. are similar to the

ones occurring in [61, Prop. 3.19, Ex. 3.20]: X being log-terminal is equivalent to

1 < ! + ! + ! 1< ! + ! !
log  ha lon I 121 .

Then each possible choice of parameters l;; must simultaneously satisfy cases Ay,
By for some k,l € {1,...,20} where

case lo1 l1o lo1 case lo2 11 lo1
Aq 1 >1 >2 B 1 >1 >2
Asg >2 1 >2 Ba >2 1 >2
As 2 2 >2 B3 2 2 >2
Ay 2 >3 2 By 2 >3 2
As >3 2 2 Bs >3 2 2
Ag 2 3 3 Be 2 3 3
Ar 3 2 3 Bz 3 2 3
Asg 3 3 2 Bsg 3 3 2
Ag 2 3 4 By 2 3 4
Ato 2 4 3 Bio 2 4 3
A1l 3 2 4 Bii 3 2 4
Aja 4 2 3 Bia 4 2 3
Az 3 4 2 Bis 3 4 2
A1q 4 3 2 Bia 4 3 2
Ajs 2 3 5 Bis 2 3 5
Aig 2 5 3 Big 2 5 3
Ai7 3 2 5 Bi7 3 2 5
Ajsg 5 2 3 Bis 5 2 3
Ajg 3 5 2 Big 3 5 2
Asg 5 3 2 Bao 5 3 2

X is n-Gorenstein if and only if n € Z~qg is minimal such that all of the following
divisibility constraints, called (a) to (j), are satisfied

hilordor + lorla1dan + lorli1dan
lial21do2 + lo2lardia + lo2l12d21
lirl21dor + lo1lardin + lo1li1d21
lial21do2 + loalardia + lo2l12d21
lirl21dor + lorlardin + lo1li1dar
ligl21do2 + lo2lardia + lo2l12d21

lo1do2 — lo2do1

n (loiliilor — linlor — lorla1 — lorlin),
n (lolialar — lizl2r — lo2la1 — lo2li2)
n (loil21dir + la1(dor — di1) + lo1 (d21 — di1)
n (logl21di2 + 121 (doz — di2) + lo2(da1 — di2)
n (loili1dar + l11(do1 — da1) + lo1(d11 — da1)
n (loali2dar + l12(doz — da1) + lo2( )
n
lordoz2 — lo2do1 n (lo1 — 502)
li1dy2 — l12d11 n(
lirdiz — liad1y

n (lll — l12) .

and qo = ged(loyli, lozler). If g1 | lizlor and g2 | loaliy, then Q° can be chosen as
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the integral matrixz

0 l21l12 0 o loilx Li2lon
Q" = a1 q1 q
o leihin lo2l21 o lo2lnn
a2 a2 a2

Proof. Consider the sublattice L < Z® spanned by the two vectors u1,us € Z° which
are given by

up = (la1lya, 0, 0, loala1, lialo1), ug = (0, la1liy, loala1, 0, lo2l11) -

Since L < ker(P) and rank(L) = 2 = rank(ker(P)), the saturated lattice L' equals
ker(P). Swapping coordinates, we have

l21l12 0
lo1l21 0 v 0
<S1 s U, Sl . 'U;2> = 0 5 lo2l21 =: 0 5 v’
0 l21l11 li2lo1 lo2l11

li2lo1 lo2l11

with S; € GL(5,Z) and v,v' € Z?. By basic algebra, given a primitive vector
w € Z% and d € Z, there is S € GL(2,Z) such that S(d - w) = (d,0). Applying this
to the primitive vectors vg; ! and v’g; *, we have Sy -v = (q1,0) and Sy -v’ = (go,0)
with matrices So, 55 € GL(2,Z). Then

q1 0
s-L=<Su1,Su2>=< o | 0 > S::{Sﬁ s, }-Sl
0 0 1
l12l01 lo2l11

with S € GL(5,Z). Since q1 | l12lp1 and g2 | lo2l11, we have a sublattice L' :=
(g7 'Sy, g3 ' Sug) < ZP°. Since L' = (L')*" and L' C (S - L)** and both L’ and
S - L are of rank two, we have L' = (S - L)%, Then the rows of Q°, i.e., generators
for ker(P), are obtained by

ker(P) = L¥ = S~ }L) = <q1_1u1,q2_1u2>. O

following bounds

2 <y = l11 = lig < n, —-n < —d;; < 2n.

following form

d d d d
dyg = — -2 -2 ¢ 7. dpg = —- 22 22 7
l12 l21 lll l21

Since also l12dg1 € Z and l11dgs € 7, this means [s; ‘ d21'l1727 and o1 | do1li1. As

ged(lar,dor) = 1, we have lp; | 112 and lp; | I3, Lemma 2.5.9 then allows us to
choose the free part Q° of the grading as
- 1o

ke
21
Since the grading must be almost free, each four columns must generate Z? as a
lattice, i.e., both l11 and l11/l21 as well as l15 and l12/l3; have to be coprime. We

we have dj; — di2 | 2n. Together with the condition di2 > di; obtained by the
requirements on the slopes in Lemma 2.5.4; this implies

—n < —lig < —dig < —di1 < 2n—dio < 2n. O
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following bounds

3
2 <oy = log = b <y —1<—d11<7n-
Proof. Note that by Lemma 2.5.4, we require do; and do2 to be integers of the

following foorm

d d doql
dyg = ——2-2L ¢ 7, dop = —dnlgg — —=2
lig  n 21
For dgps € Z, this means la; | da1lpe and la; | lpe follows from ged(day,l21) = 1. Since

also l12dg1 € Z holds, we obtain ls; | da1l12. Using again ged(day,lay) = 1, we arrive

€ Z.

Q° = hz 0 0 1 g2
- Loz
21
Since the grading must be almost free, each four columns must generate Z? as a

lattice, i.e., both lpo and lp2/l21 as well as I35 and llz/lgl have to be coprime. We

and 0 < dy; < l91 gives us

d
di; < 2z < 1.
l12

0 < —d — < —
et log — lo1 -2
di2 3n di2 3n
= -1 < —— < —dyyp < — - =2 <
lig — = 2 l12 2 U

Several of the cases of Lemma 2.5.7. can be directly left out by the following obser-
vation.

one of the following conditions is satisfied, is not possible.

lo1 { lorlha, l1a 1 lolat,

lo1 1 lo2li1, l11 1 loz2lar,

loy = lo1 and lia 1 lo1, lio =lo1 and Iz 1oy,

l21 = lo2 and 11 J(loz, l11 =lo2 and 21 J( loz,

logr > 2 and lig =191 and lpy 1 loy, log>2 and Iy =lo1 and lps 1 log.

In particular, this rules out all cases A;B; withi > 4 or j > 4. Furthermore, in the
cases AsB; and A; B3, we have loy = 2, in the cases A1B;, we have l12 > 2 and in
the cases A; By, we have l11 > 2.

Proof. We enumerate the listed conditions row-wise from left to right and speak of

dol darl dyql darl
—1201—210162, d02:_1102_2102€Z.
li2 l21 i1 l21
In particular, l19dp; and ls1dp; as well as la1dge and ly1dge are integers. Since

ged(lij,dij) =1forall 0 < ¢ <2and 1 < j < ny, this is equivalent to

dor =

121 | 1011127 l12 ‘ lOll21; 121 | l02111a lll | 1021217
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respectively. This proves cases (i) to (iv). In the next four cases, i.e., (v) to (viii),
ordered as in the claim, this becomes

dysl doql

dn = ——2—dy € Z, dy = —dp—-—— € Z,
112 121
dqql doql

dOQ = U —do € Z, d02 = —dy1 — 21702 € Z.
l11 l21

Since we require the dy; to be integers, all occurring fractions must be integers, i.e.,
, enumerated from left to right, we have respectively

Lig | di2lan, lo1 | dailon, lin | diloz, lo1 | da1loa.

Since I;; and d;; are coprime for all 0 <7 <2 and 1 < j < n;, all d;; can be removed
from the above divisibility constraints, i.e., the respective claim follows from

iz | la1, l21 | lo1, l1 | loz, la1 | loa-
In the last two cases, we have respectively

lo1(—dyip — d loo(—dyy — d
doy = 01(—di2 21) c 7 doy = 02(—d11 21) c 7
l21 l21
Since dp; and lp; as well as dogo and lgpe are coprime, we must have lp; | l21 and
lo2 | l21 respectively. This completes the first part of the proof. The remaining

assertions are direct consequences. ([l

following bounds

1 < lip €2 loy = 2, 0>dy > —n—1

2d
2y = ——2-1¢€ Z

l12
gives l12 | 2d12 which in turn delivers l12 | 2 since ged(li2,d12) = 1. In particular

2d 2d
J-|—1—dll—2 n = —d11§n+1——12§n+1 0
l12 l12

following bounds

2 < 101 =111 = lg1 < 4, dig = 0, 0 < —dy; < 4n.

Proof. Note that by Lemma 2.5.4, we have 0 < dig < l12 = 1, ie., dig = 0. we

dal
d01:—ﬂeZ, dogz————eZ.
21 lll 121
For d01 S Z, this means l21 ‘ dgllol and 121 | lOl follows from ng(d21, l21) = 1. Since

also l11dog1 € Z, we obtain la; | doi1li1. Using again ged(dar,le1) = 1, we arrive at

lo1
1 L
QO _ 0 0 o1 g5
11

121
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Since the grading must be almost free, each four columns must generate Z? as a
lattice, i.e., both lp1 and lo1/lo1 as well as {17 and l11/l21 have to be coprime. We
obtain ly; = lp; = ;1. By the requirements on the slopes in Lemma 2.5.4, we have

_dll | n(lgl — 3), —d11 | TL(ZQl + ].)
Then —d;; also divides the difference of the right hand sides, i.e., —dy; | 4n. In

nla; — n, we conclude
0 < —di1 < nlsg—nmn = —4n < di1 < —nlyg < di1—n
d
=>4>121Z—£+1>1. 0
n

bounds
2 < lpp = lp2 = lar < 2n, 0 > dyn > —n.

Proof. Note that by Lemma 2.5.4, we have 0 < di3 < l12 = 1, i.e., di2 = 0, and the

condition on the slopes gives 0 > dy1. Also, both lgs and dgo as well as lg; and do;
must be coprime. Using the description of dy; obtained in Lemma 2.5.4, we have

_d21101 d21102

dor = € Z, do2 = loo(—d11) —

l21 21
Since dpe € Z, we must have la; | d21lp2 and the condition ged(dar,le1) = 1 then
delivers loq | lo2. Similarly, lo1 | da1lor implies lo1 | lp1. Moreover, assume los 1 l21
or lp1  l21. Then there is a prime number p € Z>o or a prime number p’ € Z>o
such that

d21102 / dQll(Jl

p|loz and or p |l and

l21 lo1

which means ged(lge,dg2) > p > 1 or ged(lpy,do1) > p' > 1, a contradiction. We
obtain lpa | l21 | lo2 and loy | 21 | lp1 and therefore lg; = la1 = lp2. Moreover, since
X is n-Gorenstein, we have

2 < (=di)lnlar = (—d11)l(2)1 < n(lor +lo1) = 2nln

following bounds
lor = 2, logr = 2, 0> di > —n, dig = 0, do1 = 1.

Proof. Note that by Lemma 2.5.4, we have 0 < dig < l1o = 1, i.e., dio = 0, and

have

daql
ged (lon, dor) = 1, doy = ——2 € Z.

lo1



5. APPLICATION: COMBINATORIALLY MINIMAL K*-SURFACES 71

Therefore, 2 = o1 | d21lpr implies 2 | lo;. Since lp; > 2, this means 2 = lp;.
Moreover, since X is n-Gorenstein, we have 0 < —dy; | n by condition (j) of
Lemma 2.5.8. In particular, 0 > dy; > —n. O

-1 -1 2 2 0 -1 -1 2 2 o0
P = -1 -1 o0 o 2 |, P, = -1 -1 o0 o 2 |,
-1 0 -1 1 1 -1 1 -3 1 1
-1 -1 2 2 o0
P; = -1 -1 o0 o0 2 |.
-1 2 -5 1 1

In a similar manner, in case A;Bs, using the bounds given in Lemma 2.5.11; only
the following P-matrices are possible:

(-1 2 1 2 o (-1 -3 1 3 o
P, =] -1 -2 0o 0o 2|, Ps =] -1 -3 0 o 3|,
| -1 1 -1 1 1 | -1 -2 0 1 2
-1 -3 1 3 o0 -1 -2 1 2 o0
Ps =] -1 =3 0o o 3], P =| -1 -2 o0 o0 2|,
| -1 -1 0 2 1 | -1 3 -2 1 1
[ -1 =5 1 5 o0 [ -1 =5 1 5 o0
PR =] -1 =5 0 0o 5|, Ph=| -1 -5 0 o 5 |,
| -1 -4 0 1 4 | -1 -3 0 2 3
[ -1 =3 1 3 o [ -1 4 1 4 o
Py = -1 -3 0 0 3 |, P = -1 -4 0 0 4 |.
| -1 1 -1 1 2 | -1 -1 0 3 1

A By provides us with

2 -1 2 1 o0 —2 -1 2 1 o0
Po=]| -2 -1 0o 0o 2|, Ps=| -2 -1 0o o 2|,
| -1 0o -1 o 1 | | -1 1 -3 0 1 |
-3 -1 3 1 0 -3 -1 3 1 0
Py = -3 -1 o o 3 |, P5 = -3 -1 o o 3 |,
| -1 0o -1 o0 1 | | -2 0o -2 o0 2 |
—2 -1 2 1 0 -3 -1 3 1 0
Pg=| -2 -1 0o o 2|, Pr;=1] -3 -1 0o o 3
-1 2 -5 0 1 | -1 1 -4 o0 1 |

-2 -2 1 1 0 —2 -2 1 1 o0
Pig = -2 -2 0 o0 2 |, Py = -2 -2 0 o0 2 |,
-1 1 -1 o0 1 -1 3 -2 o0 1

surfaces X7 and Xy with P-matrices P; and P, are isomorphic if and only if P, =
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SP,U with admissible matrices S € GL(3,Z) and U € GL(5,Z). The two invertible
matrices

00 0 1 0

-1 0 0 00 1 0 0

S =1-1 1 o], U = 01 0 0 0
0o 1 -1 1 0 0 0 0

0 0 0 o0 1

are admissible for all P-matrices P; with ¢ > 12. Hence, each K*-surface X (P;, A)
with ¢ > 12 is isomorphic to a K*-surface X (P}, A) with 1 < j <12 since

Pz = SRU, Py = SHU, Pi5 = SFU,
P = SPU, P; = SPU, Py = SPU,
Py = SBU, Py = SPU.

The remaining data shown in the first table of the theorem are applications of

in cases (5), (8) and (12) there are horizontal Demazure P-roots, namely

((-1,-2,3),2,1,(1,1,1))), ((0,-4,5),2,0,(1,1,1))),
((0,1,-2),2,0,(2,2,1))) .

By [6;, Thm. 6.1], the existence of a horizontal Demazure P-root is equivalent to the
surface being almost homogeneous. The statement about the log-terminal property
is Remark :2.5.6. For the graphs of exceptional curves, we used Algorithm :2.4.8 to

3)

Tl g
17

Ty

Ts

Ts




5. APPLICATION: COMBINATORIALLY MINIMAL K*-SURFACES 73

D om,
Ty Tio

Ts T
Ts 1"16
Ts T1s

Ty Ty
Ty, Ths

(10) (11)

(12)

The subgraph of (—k)-curves, k € Z>q, then yields the graphs listed in the theorem.

d; ==V (X', T)2

case dj da ds dg ds de¢ d7y dg d9 dip di1 di2 dizg  dia  dis  dig
(1) —1 —1 —1 —1 —1 —4 —2 -2 -2 -2 -2 -2

(2) -1 -1 -1 -1 -1 -3 -3 —2 -3 -2 -3 —2 —2 -2

(3) -1 -1 -1 -1 -1 -2 —4 -3 —4 -2 —2 —2 -3 —2 -2 -2
(4) -1 -1 -1 -1 -1 —2 -3 —2 —2 -3 -2 -3 —2

5) >0 -1 >0 -1 >0 -2 -3 -2 -2 -2 -2

(6) —1 —1 —1 —1 —1 —2 -3 —2 -3 -2 -2 —2 —2

(7) —1 —1 —1 —1 —1 -2 -3 —3 —2 -2 -2 —2 —3 —2 —4

(8) —4 —1 —4 —1 >0 -2 —2 —5 —2 -2 -2 —2 —2 —2 —2

9) —1 —1 —1 —1 —1 -2 —2 —2 -2 -3 -2 —2 —3 -3 —2

(10) -1 —1 —1 —1 —1 -3 -3 -2 —4 -2 -2 -2 —4 -2 -2 -2
(11) —1 -1 -1 -1 -1 -3 —2 —4 -2 -2 -2 —2 —2 —2 —4 -2
(i2) -1 >0 —1 >0 >0 -2 -2 —2 —2

For case (8), we computed a not necessarily minimal resolution X’ — X. The graph
Gx+ and the self-intersection numbers d; := V(X'; T;)? are

T,-Ts T
4 2.T

T Ty di dp d3 d4 ds d¢ d7 dg dg9 dio  di1
5 -1 5 -1 -1 -2 -2 -2 -1 -5 -2
Ts Ty
Tio Tig dizg  diz  diga  dis  die  dir  dig  dig dzo
-2 -2 -2 -2 -2 -2 -2 -2 -2

Tz
T3y, Ths

We apply the steps of Algorithm 2.4.8 with r = 5 formally to obtain the graph of

exceptional curves of the minimal resolution. Since dg = —1, we contract V(X'; Tp),
where we write again X’ for the contracted surface. This means we remove the cor-
responding vertex and edges and increase the self-intersection number of V(X'; T}),
V(X'; T5) and V(X'; T15) by one. Iterating this procedure, we contract V(X'; T;)
with ¢ = 9,15,14,7,17 and obtain the graph and intersection numbers shown above
by shifting the indices of the remaining variables accordingly. |

Remark 2.5.18. Using the same methods, Theorem 2.5.1: can easily be expanded

to higher Gorenstein index.






CHAPTER 3
Computing the Mori chamber decomposition

Given an action of a connected reductive linear algebraic group H on an algebraic
variety X, Mumford [83] constructed good H-sets X**(L£) C X which depend on
the choice of an ample, H-linearized line bundle £ on X. In general, there are
several distinct quotients and this variation of GIT-quotients is described by the
GIT-fan. See the work of Dolgachev, Hu [35] and Thaddeus [97] for ample bundles
on a projective variety and Arzhantsev, Berchtold, Hausen [7, 18] for the affine case.
Based on [18], we provide in this chapter an algorithm to compute the GIT-fan of
torus actions on affine varieties. In Mumford’s sense [83], it describes the possible
linearizations of the trivial bundle. Note that the torus-case is essential as more
general group actions can be reduced to it [7]. An import special case is the Mori
chamber decomposition of a Mori dream space.

The structure of this chapter is as follows. In Section 1, we present algorithms
to compute §-faces, i.e., faces corresponding to torus orbits that meet an affine
variety. Not only is this the basis for the computation of the GIT-fan but it is also
essential for computations with Mori dream spaces, see Chapter 2. Section 2 is
concerned with the computation of GIT-cones, the GIT-fan and the Mori chamber
decomposition. The correspondence of the GIT-fan to gp-maximal good H-sets has
been widened to the class of (H,2)-mazimal subsets in [51, 5]. In Section L3‘, we
recall the correspondence and present a direct algorithm for their computation.

Most parts of Sections 1 and 2! (as well as part of this introduction) have been
published in the author’s paper Computing the GIT-fan, see [71]. The algorithms
of this chapter have been implemented in Maple/convex [70, 54] and also in joint
work with J. B6hm and Y. Ren in Singular [31].

1. Computing F-faces

Let X be a Mori dream space with Cox ring R(X) = K[T1,...,T;]/a where a C
K[T1,...,T;] is an ideal. Then the §-faces of X in the sense of Section 3 of Chapter1.
are precisely the a-faces to be defined in Definition :3.1.1. In this section, we treat

their computational aspects. Most of this section has appeared in [71, Sec. 2 and 3].

We will work with the following description of the toric orbits of K" in terms of

faces of the orthant v := Q%: the standard torus T" := (K*)" acts via

T" x K" — K", t-x = (t11,...,trz,).
Given a face yg < ~, define the reduction of an r-tuple z of, e.g., numbers along g
as

R / . )%, € €0,

Zyy = (21,-..,2), z; = {0’ ¢ & o,

where eq,...,e, € Q" denote the canonical basis vectors. Then, one has a bijection
{ faces of v } « { T"-orbits }, Yo = To = {ty; t€T}.

75
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Note that in the notation of [42], T7, is the T"-orbit through the distinguished point
corresponding to the dual face 7§ =yt NyY <4V,

Definition 3.1.1. Let a C K[T},...,T,] be an ideal. A face 7y of the positive
orthant v is an a-face if V(T ; a) # 0.

Let X C K" be the zero set of an ideal a C K[T1,...,T,]. Determining the torus
orbits of K" intersecting X means calculating the a-faces vo =< 7.

2
cone(er)

X

Given a face 79 = 7 and a polynomial f € K[T1,...,T;], we write f,, := f(T,,) €
K[T,,] where T := (T3, ...,T),), i.e., we replace each T; with zero if e; & 7o. Set
Ay, = (fr; [ € a) CK[T,,]. A direct a-face test is the following, based on a radical
membership problem. This leads to a Grébner based way to decide whether a given
Yo = 7 is an a-face.

Algorithm 3.1.2 (a-face verification I). Input: a face vy < v and an ideal a C
K[Ty,...,T].

e Return false if [[,. .. Ti € /8y, and return true otherwise.

Output: true if g is an a-face and false otherwise.

Remark 3.1.3. The radical membership test in Algorithm '3.1.2! can be replaced

by a saturation: a face vy = is an a-face if and only if 1 & a, : (T ---T;)™

The main aim of this section is to speed up this direct approach by dividing out
all possible torus symmetry. This is done in Algorithm :3.1.6. Further possible
improvements are discussed at the end of the section.

First, consider any torus T and a monomial-free ideal ¢ C O(T). Let H C T be

Con. III1.2.4.2]. Denote by n: T — T/H the quotient map. Note that T/H is
again a torus. To describe 7 explicitly, we use the correspondence between integral
matrices and homomorphisms of algebraic tori: every n X k matrix A defines a
homomorphism a: T* — T™ by sending ¢t € T to (¢t41+,...,t4%) € T™ where the
A;,. are the rows of A.

Remark 3.1.4. Let T = T* and T/H = T". The map 7: T* — T" is given by any
n x k matrix P of full rank satisfying

ker(P) = ﬂ ker(P,),

where to g = agT"° + ... + anT"™ € ¢ we assign the m x k matrix P, with rows
VT —Voy...yUm — 1.

Remark 3.1.5. Let T = T*. Fix a generating set G := (g1,...,9;) of the ideal
¢ C K[Tfﬂ7 ... ,T,;tl]. Let P be the stack matrix, i.e., the vertical concatenation,
of Py,,...,P,. Compute the Hermite normal form D = U - P; with an invertible
integral matrix U. Choose P as the matrix consisting of the upper non-zero rows

of D. Then P describes 7: T — T/H.
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Proof. Clearly, P is of full rank. Since the exponent vectors of each g € ¢ are linear
combinations of the exponent vectors of g1, ..., g;, we have

l
ker(P) = ker(Pg) = ﬂ ker(P,,) = ﬂ ker(Py). -
=1 gec

A push forward of g € ¢ under 7 is a h € O(T/H) satisfying 7*h = T*g for some
monomial T#. Suitably scaling push forwards by a monomial, we obtain the *-push

e = (meg; g€c¢) € O(T/H).

We now specialize to the case of a-face-verification. Given 7o < v, let H(yp) C T7
be the maximal subgroup leaving V(T;O; a,,) invariant. Our approach reduces the
dimension of the problem by using

V(TS sa) # 0 &V (T5,/H(v); meay,) # 0.

Algorithm 3.1.6 (a-face verification II). Input: an ideal a = (f1,...,fs) in
K[T3,...,T;] and a face v9 = . Set g; := (fi)y, and G := (g1,...,9s).

e Apply Algorithm 2.2.13/to P to obtain m,G := (g1, ..., Tugs)-

o Test whether Ty ---T,, € y/(m.G) C K[T1,...,T,]. Return false if the
test was successful. Return true otherwise.

Output: true if g is an a-face and false otherwise.

Proof. The map 7 is a good quotient for the H(vp)-action on T7,. Consequently,
we have

S

W(ﬂV(TQO; gi)> = 7 (V(T%; 9)) = V(T" megn, .., 7ugs)
i=1 i=1

by standard properties of good quotients [73; p. 96]. This shows that V(T7, ; a,,) #

0 if and only if V(T"; m.G)) # 0. O

Remark 3.1.7. If the total number of terms occurring among the generators is
small as compared to the number of variables in the sense that P = Pg in the first
line of Algorithm 3.1.6, then we might speed up the algorithm using linear algebra

as follows. Each term m,g; is linear by construction. Solve the linear system of
equations m,G = 0. Then ~q is an a-face if and only if there is a solution in T".

Remark 3.1.8. The efficiency of Algorithm:3.1.6:depends on the algorithms used

for both Grébner bases and Smith normal forms. An implementation using the
respective built in functions of Maple gave the following timings.

Algorithm :3.1.2°  Algorithm 3.1.6' with -3.1.9(ii)

a-faces of ag 5 21s 10s
a-faces of az ¢ 16 min 76s
a-faces of az 7 > 3 days 24.8h
a-faces of a2 3 3 4.03h 44.1 min

Here, ay, stands for the respective Pliicker ideal and as 33 denotes the defining
ideal of the Cox ring of the space X (2,3,3) of complete rank two collineations [58,
Thm. 1].

Let us briefly recall the connection to tropical geometry, compare [22, 78]. As seen
in Section 2. of Chapter 2, we assign to a monomial-free ideal a C K[T1,...,T,] its
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tropical variety
trop(a) = [ trop(f) € Q'
f€a
where trop(f) is the support of the codimension one skeleton of the normal fan of
the Newton polytope of f. By [96],

(2) Y0 = 7 is an a-face & trop(a) N (75)° # 0.

Fixing a fan structure on trop(a), this can be turned into a computable criterion.
Note however that trop(a) usually carries more information than needed to deter-
mine the a-faces and is in general harder to compute (see [22] for an algorithm).

Remark 3.1.9. To compute all a-faces, the number of calls to Algorithm3.1.6.can
be reduced by any of the following ideas.

(i) The tropical prevariety of a generating set (f1,..., fs) of a is the coarsest
common refinement [, trop(f;). Then each face vy < v whose dual face
74 does not satisfy equation (2) with respect to [, trop(f;) is not an
a-face. -

(ii) A face 9 = < is not an a-face if and only if there is f € a such that
exactly one vertex of the Newton polytope of f lies in . Choosing any
subset of a, we may identify some faces 7y < = that are no a-faces.

(iii) Filter faces using the Veronese embedding: Let 79 =< < be such that

there are (classically) homogeneous generators g1, ..., gs of a,, of degree
d € Z>o. The images of the g; under
KTy = K[Sy; 1+ ... +pr=d], T — S,

give a linear system of equations with coefficient matrix A. If a Gauss-
Jordan normal form of A contains a row with exactly one non-zero entry,
7o is no a-face. Adding redundant generators to a., refines this procedure.

(iv) Let o € S, be a permutation of (the indices of) the variables T3,...,T,
such that for each f € a there is g5 € a with foo = gy. Then

Y9 =X v a-face & o(y0) := cone(eq(;y; €; € 7o) a-face .

Proof. We prove statements (ii) and (iv). For (ii), we directly generalize the proof
of [19, Prop. 9.3]: Define v(f,vy) to be the number of vertices of the Newton
polytope of f that lie in the given face 7y < . Then 7 is an a-face if and only if
there is € K" such that

z, #0 & e € v, f(x) = fy(x) =0 forall fea.

Each polynomial f,, is a sum of v(f,~vy) monomials. Clearly, if there is f € a such
that v(f,70) = 1 no such x can exists, i.e., 7o is not an a-face. Conversely, assume
7o is not an a-face. By definition

€; €% J

H Tin = Z(hj)’yo(fj)’yo = Zhjfj = fWo € Oy
J

Yo
with a n € Z~o and polynomials h; € K[T,...,T,]. Since f € a and v(f,v) =1
the proof is complete. For (iv), we only prove one direction. Assume vy =< 7 is an
a-face. Then there is z € K" with f;(x) = 0 for all f € a and x; # 0 if and only if
e; € 70. Choose y := (T (1), .-+, To(ry) € K'. Then y; # 0 if and only if e; € o(v0)
and, by assumption, we have

fly) = foo(z) = gf(x) = 0 forall fea. O

In the fourth statement of Remark 3.1.9; a special case are permutations o € S,

that leave a fixed generating set of a invariant. A naive approach for their detection
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is to test all r! permutations for this property. Instead, we sketch an algorithm that
uses graph theory.

Algorithm 3 1 10 (Generator symmetries). Input:  fi,...,fs € K[Tl, T

Let I/{i) le € Z%, and cg), .. c,(fl) € K* be such that the c( )T” are the
Non-zero monomlals of fi.

e Let G = (V, E) be the simple, directed, finite, bipartite graph with its set
of vertices V' and its set of edges FE defined by

Vo= {1,Ty,....,T}} U U {VP,...,V,(,Q},

=1
( (@) Tk> €EE & ( j(l))k >0,
(V(Z)7 1) EE & vy @ = =(0,...,0),

((” )eE for all § # j.

Y € V the color c ) e K*, to edges of type (e,T}) the k-th

entry of V( , to edges of type (o7 1) the color 0 € K and to edges of the
third type7 we assign an unused color ¢; € K*.

e Compute the automorphism group Aut(G) < S, with n := |V|, e.g,
using [67, 81].

e Assume Ti,...,T, are the first r vertices in V. Return the set {o €

Sr; (o,w) € Aut(G)}.

e Assign to ](
i)

Output: permutations o € S, such that, for all i, we have f; oo = f;(;) with a
bijection 7 € Sym({1,...,s}).

Proof. Note that we have Aut(G) C S, x S,,—, where n is the number of vertices.
Each (o,7) € Aut(G) respects colors of edges and vertices. By construction, this
means that each permutation o(T") of T' = (11, ..., T,) respects the coefficients and
monomials of each f;, i.e., induces a permutation of f1,..., fs. O

Note that in order to use [67, 81] one first must translate G to an unweighted
colored graph G’ with Aut(G’) = Aut(G) as explained in, e.g., [80]. We sketch the
construction in the following example.

Example 3.1.11. Consider the ideal a C K[T1,...,T5] that is generated by the
two polynomials

fi = N =TTy +ThTE,  fo = T1Ty—ToTs + Ty T3

where we order the exponents 1/]@ from left to right. Applying the first and second

graph G = (V, E)

yo)
Ne

Ne
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where we left out the edges of type (V](Z), I/IEZ)) and the colors are drawn next to the
vertices and edges (the shaded areas are only for highlighting purposes). We now
transform G into a directed, colored, unweighted graph G’ as explained in [80]. The
removal of the weights (i.e., 1 and 2) of edges is achieved by adding a “layer” of
vertices for each occurring weight.

s, M) (D

Edges within the shaded areas and the colors of the vertices are not drawn. Assume
T,...,Ts are the first five vertices. A direct inspection of G’ shows that there is
an automorphism (we show only the relevant part o)

(o,7) = [ DA } € Aut(G’),

1 4 3 2 5

which, interpreted as element of S5, interchanges the variables T, and 75. Then

o(70) is an a-face.

2. Computing the GIT-fan

In this section, we develop algorithms for the computation of GIT-cones and the
GIT-fan. First, we recall the necessary concepts from [18; 5]. Aspects of efficiency
are discussed at the end of this section. Most of this section has been published
in [71, Sec. 2 and 4].

Remark 3.2.1. Let G be a connected reductive algebraic group and X an irre-
ducible, factorial, affine G-variety. Similar to the case of a quasitorus, one can
define GIT-cones in Mg := X(G) ®z Q and the collection of GIT-cones A(X, G) is a
fan that is in bijection with the gp-maximal good G-sets of X, see Arzhantsev and
Hausen [7, Sec. 3, Thm. 3.2]. Consider the good quotient

X =Y, Y = X)G°
by the maximal connected semisimple subgroup G* C G. Then T := G/G* is
a torus, we may identify X(G) = X(T') and X*(w) = 7~ 1(Y*(w)) holds for all
w € Mg, see [7, Lem. 3.3]. Moreover, there are methods to treat not necessarily
affine G-varieties using torus actions on an affine variety, compare [7, Sec. 7].

Thus, by Remark :3.2.1; the case of torus actions on affine varieties is of special

interest. Consider an affine variety X C K" where we assume that its defining ideal
a C K[T1,...,T,] is monomial-free and homogeneous with respect to a Z*-grading

q; = deg(T;) € ZF, 1< <r.

Then the corresponding action of the torus H = T* on K" leaves the zero set
X =V(K"; a) C K" invariant. Let @ be the k x r matrix with columns ¢y, ..., ¢..
We assume that the cone Q(y) C Q* is of dimension k where v := QL. A projected
a-face is a cone Q(v) with 79 < v an a-face. These are exactly the orbit cones in
the sense of Section 1'in Chapter 1. Write Q4 for the set of all projected a-faces.

Definition 3.2.2. The GIT-chamber of a vector w € Q(vy) = cone(qy, . . ., q,) C Q"
is the convex, polyhedral cone

Aw) == () ¢ € Q"
Y EQq,
w €Y
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The GIT-fan of the H-action on X = V(K"; a) is the set A(a,Q) = {Aw); w €
Q(7)} of all GIT-chambers.

As the name suggests, A(a, Q) is indeed a (quasi-)fan in Q¥ with Q(v) as its support,
see [5, Thm. II1.1.2.8]. However, note that the cones of the GIT-fan need not be
pointed in general, compare [5, Ex. II1.1.2.12]. The set of j-dimensional cones of
A(a, Q) will be denoted by A(a,Q)\).

We turn to the computation of GIT-chambers. Let Q := {Q(70); 70 = 7} be the
set of projected faces of v and let QU) C Q be the subset of j-dimensional cones.
Similarly, ng ) C Qg is the subset of j-dimensional projected a-faces. We have

ng) - Q(()k) = {19 e Q(k); all facets of ¥ are in ngil)} C QF)

where the first containment is due to the fact that faces of projected a-faces are
again projected a-faces, see [18, Cor. 2.4]. Given a vector w in the relative interior
Q(7)°, set Q¥ (w) for the collection of all ¥ € Q®) that contain w. The next
algorithm determines the associated GIT-chamber A = A(w).

Remark 3.2.3. (i) The set Q) is computed directly by taking cones over
suitable subsets of {q1,...,qr}.

(ii) The computation of Q) (w) can be sped up via point location similar
to [77], i.e., we only consider cones ¥ € Q%) with at least one generator
lying on the same side as w of a random hyperplane subdividing Q(~).

(iii) For an efficient computation of ng ), one reduces the amount of a-face
tests as follows. Check for any ¢ € QU if some o < v with Q(p) = ¥ is
an a-face. As soon as such a face has been found, all other faces projecting
to ¥ may be ignored in subsequent tests.

Algorithm 3.2.4 (GIT-chamber I). Input: a vector w € Q()° and Q) (w) as
well as ng_l).
e Let \:=QF.
e For each ¥ € Q) (w) do
— if ¥ 2 A and all facets of ¥ are in Q,(lkfl) then redefine A as AN 4.

Output: the GIT-chamber A = A(w) in QF.

chamber A\(w) with w = (0,0, 1). It can be computed using only four orbit cones:

g8 g5 q4
q1

d6 qr

qs a2

Lemma 3.2.6. Let . C QF be a pure k-dimensional fan with convex support |%|
and let T € ¥ be such that TN |S|° # 0. Then 7 is the intersection over all ¢ € ¥(*)
satisfying T < o.

Proof. Choose o € ¥*) such that 7 < ¢. By [38, Thm. 1.11], we can write 7 =
m N ...N Ny, with facets n; < . Since 7° C |X|°, also nf C |X|° for all i. By
convexity of |¥|, for all i, there are cones 0,0, € () such that oy, N o = i
Note that 7 < ¢, and 7 < or;7 . Therefore

i

3
|
s

(og, Noy,) 2 ﬂ o 2 T

1 (k)
oe X\
70 0

K2
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Lemma 3.2.7. Let A € A(a, Q)™ and ¥, € Q(()k), If 9§ N A° # 0 then X C .

Proof. Suppose A € ¥y. Choosing any w € A° \ Jp and v € 9¥§ N A°, the cone
cone(v,w) N (Yo \ 97) lies on some facet 79 < Jg. By construction, ng N A° # (.
Since g € ng_l) holds, A is not a GIT-chamber; a contradiction. O

the given w € Q(v)° and our task is to show that A = A(w) holds. For this we

establish
A= () 9= (] Y= Aw).
weveQl® weven®

The first equality is due to the algorithm. The third one follows from Lemma 3.2.6.
Moreover, in the middle one, the inclusion “C” follows from Qék) D Q((lk). Thus we

are left with verifying “2” of the middle equality.
First suppose that A\(w) is of full dimension. Then, for any ¥g € Q(()k) with w € 9y,

Thus, we obtain A D A(w). The case of dim(A(w)) < k then follows from the
observation that A(w) is the intersection over all fulldimensional chambers A(w’)

with w € A(w'), see Lemma 3.2.6. O

the necessary a-face tests compared to the following naive variant of the algorithm
using k-dimensional ones.

Algorithm 3.2.8 (GIT-chamber II). Input: a vector w € Q(v)° and Q*) (w).

e Set X\ := QF.
e For each ¥ € Q%) (w) do
— if ¥ 2 X and there is an a-face 9 < v with Q(vp) = 9 then redefine
Aas AN4d.

Output: the GIT-chamber A = \(w) in QF.

The naive variant :3.2.8, in contrast, involves fewer convex geometric operations

We turn to the GIT-fan. Given a full-dimensional cone A C QF, we denote by
innerfacets(A) the set of all facets of A that intersect the relative interior Q(~)°.
Moreover, for two sets A, B, we shortly write A© B for (AU B) \ (AN B). The
following algorithm computes the set of maximal cones of the GIT-fan A(a, Q).

Algorithm 3.2.9 (GIT-fan). Input: an ideal a C K[T},...,T,] and an integral
matrix @ = [q1, . - ., ¢] such that a does not contain a monomial and is homogeneous
with respect to the grading ¢; =: deg(T5;).

e Initialize A := {Ap} with a random full-dimensional GIT-chamber Aq
using Algorithm '3.2.4 or :3.2.8.

e F := innerfacets(Ag)
o While there is n € F, do
— use Algorithm '3.2.4 or :3.2.8  to compute the full-dimensional GIT-

chamber N & A with n < ).
— Redefine A := AU {XN'} and F := F © innerfacets(\’).

Output: the collection A of maximal cones of the GIT-fan A(a, Q).

Remark 3.2.10. (i) In the first line of Algorithm 3.2.9; Ay can be found

by successively testing whether A(wp) is of full dimension where wy =
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a1q1 + ...+ arg, with random a; € Q>¢. Alternatively, if A(wy) is low-
dimensional, one may iteratively redefine wg as wo+¢c-v where v € A(wg)*
is a normal vector for some supporting hyperplane, € > 0.

(ii) In the first line in the loop in Algorithm 3.2.9; let A € A be the already

v € A\Y Nt with a suitably small € > 0. One possibly must reduce
until A(w’) N A =n.

Proof of Algorithm 3.2.9.  Write |A| for the union over all A € A and |F| for
the union over all € F. Then, in each passage of the loop, a full-dimensional
chamber of A(a, Q) is added to A and, after adapting, |F| N Q(y)° is the boundary
of |A| N Q(~)° with respect to Q()°. The set F is empty if and only if |A| equals
Q(7). This shows that the algorithm terminates with the collection of maximal

cones of A(a, Q) as output. O

We can directly use Algorithm:3.2.9.to compute the Mori chamber decomposition of
a Mori dream space X, i.e., the GIT-fan of the action of the torus Spec K[C1(X)?]
on X where CI(X)? is the free part of the class group. The following algorithm is

in the notation of Section 2.

Algorithm 3.2.11 (MDSchambers). Input: an MDS X = (R, ®) with a GR
R = (GaQ,QO,P7FS)'

Output: the Mori chamber decomposition of X.

Cl(X) = Z3 @ Z/2Z-graded Cox ring
R(X) = K[Ty,...,T.]/(f1), fi = 1T+ ToT5 + T3Ty + 1713

where the free parts of the degrees of the generators are given by the columns of
the matrix

maximal cones by the following steps:
a8 9 94 qs a5 a4
q6 q1 g6

a7

q1

g3 %@

graph of A(a, Q) with the maximal cones as its vertices; two vertices are connected
by an edge if they share a common facet. Another traversal method for implicitly
given graphs is reverse search by Avis and Fukuda [9]. By the following observation,
it also can be applied to our problem.

Proposition 3.2.13. The GIT-fan A(a, Q) is the normal fan of a polyhedron. If
go C Q(v) then A(a,Q)™) can be enumerated using reverse search.
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Proof. The first statement is [3, Cor. 10.4]. The second claim follows from the first
one and [41; Sec. 3]. O

If we allow a to contain monomials, the collection A(a, Q) is not necessarily a quasi-

Example 3.2.14. Consider the monomial ideal a := (T1Tg, T2Ty, T5T5) in the ring
K[Ty,...,Ts] and the Z3-grading with degree matrix

SSCEN RN

(affine cones over the) Grassmannians G(2,5) and G(2,6), using our Maple/convex
implementation [70]. The following table lists the total number of a-face tests and
the total number of cones ¥ entering the fourth line of Algorithms'3.2.4: and 3.2.8!

Algorithm 3.2.9' with 3.2.4:  Algorithm 3.2.9 with .3.2.8

# a-face-tests ~ f cones ¥  f a-face-tests  f# cones ¥
,5) 300 21 469 20
(2,6) 6574 50 21012 52

QR

Note that in Algorithm'3.2.4; the a-face tests concern faces of lower dimension than

Remark 3.2.16. (i) Intermediate storage of occurring cones and their inter-
sections in Algorithms'3.2.4 and 3.2.8 saves time in further computations.

(ii) The traversal of the GIT-fan can take advantage of symmetries: Assume

we know a subgroup G < S, keeping the ideal a C K[T1, ..., T,] invariant

and each element of G induces a lattice isomorphism of Z*. Then in each

step of Algorithm3.2.9, we insert instead of A" the orbit G- X into A and

adjust F accordingly. See [65, Ch. 3.1] for a more thorough study of the
traversal of symmetric fans.

To finish this section, we consider torus actions on the affine cone over the Grass-
mannian G(2,n) induced by a diagonal action on the Plicker coordinate space K",
where r = (g) Such actions will be encoded by assigning to the variable T; the i-th
column ¢; of a matrix Q = [¢1, ..., ¢-]. Moreover, we write as,, C K[T1,...,T;] for
the Pliicker ideal.

We compute both, the GIT-fan of the torus action on V(K"; as ,,) as well as the GIT
fan of the ambient space K". The latter coincides with the so-called Gelfand Kapra-
nov Zelevinsky decomposition GKZ(Q), i.e., the coarsest common refinement of all
normal fans having their rays among the cones over the columns of ) and with sup-
port cone(qi, . ..,q.). In general, the Gelfand Kapranov Zelevinsky decomposition
is a refinement of the GIT-fan. See [28] for a toric background.

Below, the drawings show (projections of) the intersections of the respective fans
with the standard simplex.

Example 3.2.17. (i) For n = 4, the ideal ag 4 = (ThT6 — ToT5 + T3T4) C
K[Ty,...,Ts] is homogeneous with respect to
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1 0 0 1 1 0
Q = 1]0o 1 0 1 0 1].
1 e1 €2 €1 €2

Aaz,4,Q) GKZ(Q)
Using Algorithm :3.2.9, we obtain the four maximal GIT-chambers of

A(az,4, Q). The finer fan GKZ(Q) has twelve maximal cones.
(ii) For n =5, the ideal az 5 C K[T1,...,T1o] is homogeneous with respect to

] |

|

€3

coor
coro
o~oo
—mooo
corr
oROR
—oor
orRrO
—mHOO

whereas GKZ(Q) contains 336 such cones.

(iii) For n = 6, the ideal ag ¢ C K[T71,...,T15] is homogeneous with respect to
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
Q@Q=1]0o 0 1 0 0 o0 1 0 0 1 0 0 1 1 0
o 0 0 1. 00 0 1 0 0 1 0 1 0 1
o 0 0 0 1. 00 0 1 0 0 1 0 1 1

Using Algorithm :3.2.9, we obtain the 81 five-dimensional cones of the

GIT-fan A(age, Q). The fan GKZ(Q) has 61920 such cones.

3. Generalization to (H,2)-maximal sets

We present a direct algorithm to characterize more general good H-sets defined
in [51; 5]. First, we recall the required notions and correspondences from [51, 5]
and then treat the computational aspects.

Let K be a finitely generated abelian group and consider an affine, irreducible,
normal variety X := Spec A with an integral, normal, K-graded, affine algebra A.
Then the quasitorus H := Spec K[K] acts on X. Write {2x for the set of orbit cones.
To a collection ® C Qx we assign the a subset U(®) C X and to an H-invariant
subset U C X we assign a collection of orbit cones ®(U) C Qx where

U(®) := {z € X; thereis ¥ € & with d <9,} C X,

O(U) := {Vz; x €U and H-x closedin U} C Qx.
Recall that given a good H-set U C X and an open subset U’ C U, the inclusion
U’ C U is H-saturated if p~1(p(U’)) = U’ with the good quotient p: U — U/ H.

Definition 3.3.1. We call a good H-set U C X a (H,2)-maximal subset if the
quotient space U/ H is an As-variety such that U is maximal with respect to H-
saturated inclusion amidst all good H-sets with an As-variety as quotient space.

Theorem 3.3.2. See [5, Thm. I11.1.4.4]. In the above situation, assume that X is
H-factorial. We have mutually inverse, order-reversing bijections

mazximal bunches of
orbit cones in Qx

} +— {(H,2)-mazimal subsets of X }

d = U@),
dU) « U
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Under these maps, the qgp-mazimal subsets of X correspond to the sets of semistable
points U(P(w)) = X% (w) where w € A° with A € A(X, H).

In particular, if we can compute all maximal bunches of orbit cones in Qx, we also
obtain (the information stored in) the GIT-fan. We now turn to their computation
in the setting of Chapter L2", i.e., consider an MDS X = (R, ®) with ® = {¥1,...,9,}
and GR R = (G, Q,Q°, P, F5). Let Q be the set of all orbit cones.

Definition 3.3.3. The overlapping graph is the finite, undirected, simple graph
Gq = (V, E) with vertex set V = and set of edges E C V x V given by

(191,’(92) c F = 19? n 19; 7é 0.

Recall that a clique of a finite, directed, simple graph G = (V, E) is a subset C C V
such that its induced subgraph is complete. A clique is mazimal if it is maximal
with respect to containment.

Algorithm 3.3.4 (GRH2max). Input: a GR R = (G,Q,Q°, P, F3).

e Compute the collection Q = {,...,9,,} of orbit cones, i.e., the set of
all Q%(vyo) where vy € F;.

e Calculate the overlapping graph Gq = (2, E) by checking for each two
orbit cones ¥;, ¥; € Q whether 95 N3 # 0.

e Determine the maximal cliques C1,...,C), of G as subgraphs C; =
(®;, E;). Interpret the ®; C 2 as BUNSs.

For the third step, we use the following algorithm MaxCliques(G,C’, A’, H'") from
Kreher and Stinson’s book [74] with input G := Gq = (V,E) and C', A", H C V
where we initialize C’ := A’ := H’ := (). We assume the vertices of V are ordered
with respect to a relation >.

e Set R:=0, define V; := {v € V; v > max(z; x € C’')} and set

V, C' =0,

H(C) = {A’ﬂH’ﬁV+, o' £ 0.

e If H(C) =0, then C’ is a maximal clique and we redefine R := {C’}.
e For each v € H(C) do
— define C' := C" U {v}. Let Adj(v) C V be the neighbors of v in G.
— Insert into R the result returned by the recursive call to MazCliques
with input G, C, Adj(v), and H(C).
e Return R.

Output: thelist (P4, ..., P,,) of all maximal BUNs of orbit cones. They correspond
to the (H,2)-maximal subsets of Spec R.

correctness of the algorithm MaxCliques is as in [74]: each maximal clique C C V
is obtained by enlarging a smaller clique C’ C C iteratively by an element v €
Necor Adj(c). To avoid repeated rediscoveries of the same clique, we may restrict
to elements

v € Vi N Adj(c®) n H(C"\ {c*}), ¢® := max(c; ce ().

Thus, in each call, C’ is a clique that is maximal if and only if H(C) = @. Since
in the first step, the algorithm starts with all subsets of V' of cardinality one, this
completes the proof. O

Example 3.3.5. In the situation of Algorithm 3.3.4, assume we are given a GR

R=(0,Q,Q% P, F5) with AGH Q = (Z*,7Z3, Q") where
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q4

g3
Q= [q1,...,q4] = {(1) 1o (1)]
1

q1

Then there are precisely fifteen orbit cones 2 = {1,...,915} which we order by
¥; > v; if ¢ > j. They are

91 = cone(q1, g2, G3, q4), V2 = cone(qi, gz, q3),
¥3 = cone(qy), ¥4 = cone(qs),

J5 = cone(qy), Js = cone(qz, g3, q4),
97 = cone(qs, 1), g = cone(qi, g3, qa),
Y9 = cone(qi, qa), Y10 = cone(qz, q4),
Y11 = cone(gz), Y12 = cone(qi, q2),
Y13 = cone(qi, g3), U14 = cone(q, g3),

V15 = cone(qi, G2, q3)-

The overlapping graph G, is the following undirected, simple graph with nine com-
ponents

192\191
96 \ 93 94 95 7
Y15
Jg / Y10 Y11 P12 J13
e =P

detects the following nine 3-cliques (highlighted in black; isolated vertices are not
drawn); in particular, there are seventeen (H,2)-maximal subsets of Spec R.

96 96 Y6
915 15 ‘
/ s / 2
e _—=Ya P14 9q =Y
9 P V2
915 Y15
/ 98 / Js
e _—=1a 914 9 =1
2 2 92
9 96 Y6
Y15 ‘ Y15 ‘
g 8
99 o

Remark 3.3.6. In the situation of Algorithm:3.3.4; set s := |Q|. By [74, Sec. 4.3.1],
the asymptotic worst case running time of the subroutine MaxCliques is O(s - n)
where n is the number of (not necessarily maximal) cliques in Gg. Its average

running time is O(s'82(s)+1),






CHAPTER 4
Modifications of Mori dream spaces

This chapter is about the computation of Cox rings of modified Mori dream spaces.
More precisely, given a modification Xo — X; of projective varieties, e.g., a sequence
of blow ups, where one of the Cox rings R(X;) is known, we provide computational
methods to obtain information about the other Cox ring. To this end, we develop
algorithms concerning the tasks

e verifying finite generation,

e producing a guess of generators,

e verifying a guess of generators,

e computing relations between generators.

Amongst others, we devise a technique to provide and verify a systematic guess for
generators of the Cox ring of a blow up Xs — X; of a Mori dream space X7; it
terminates if and only if R(X3) is finitely generated.

Section Lil develops the algebraic tools needed to relate the Cox rings R(X;) and
R(X3). In Section 2 we adjust the methods of toric ambient modifications to our
setting. Here, we also treat the contraction problem. We develop and present an
algorithmic framework for modifications of Mori dream spaces in Section 3. This
will enable us to compute explicit examples. As a first application, we compute in
Section 4 the Cox rings of all Gorenstein log del Pezzo surfaces of Picard number
one that do not admit a non-trivial K*-action. Section 5 concerns the third item
and presents an automated approach to compute the Cox rings of blow ups of Mori
dream spaces along a subvariety in the smooth locus. The last section, Section 6,
treats the special case where the Cox ring is generated by proper transforms of
hyperplanes. As an application, we determine the Cox rings of blow ups of P3 in
certain special point configurations.

The first section has already been published in the paper On Chow quotients of
torus actions [10] jointly with Hendrik Béker and Jiirgen Hausen. The remaining
sections have been published in the paper Computing Cox rings [57] together with
Jiirgen Hausen and Antonio Laface. In an ongoing project with U. Derenthal,
J. Hausen, A. Heim and A. Laface we have implemented the algorithms in the
software system Singular [31] and plan to use it to compute Cox rings of cubic
surfaces and smooth Fano threefolds [34].

1. Modifications and H-factoriality

In this section, we provide a general machinery to study the effect of modifications
on the Cox ring. Similar to [51], we use toric embeddings. In contrast to the
geometric criteria given there, our approach here is purely algebraic, based on results
of Bechtold [15]. The crux of the matter is a construction of factorially graded rings
out of given ones. This section has been published in [10, Sec. 3] together with
H. Béiker and J. Hausen.

Let us recall from Sections 2 and 3 of Chapter 1' the necessary algebraic concepts.
Let K be a finitely generated abelian group and R a finitely generated integral
K-graded K-algebra. A homogeneous nonzero nonunit f € R is called K-prime

89



90 4. MODIFICATIONS OF MORI DREAM SPACES

if f | gh with homogeneous g,h € R always implies f | g or f | h. The algebra
R is called factorially K-graded if every homogeneous nonzero nonunit f € R is a
product of K-primes.

We enter the construction of factorially graded rings. Consider a grading of the
polynomial ring K[T1,...,T,,] by a finitely generated abelian group K; such that
the variables T; are homogeneous. Then we have a pair of exact sequences

0—=zk Loz D

Z’I’L

0 K AR — 7" 0
Q1 Py

where @Q1: Z™ — K; is the degree map sending the i-th canonical basis vector e;
to deg(T;) € Ky. We enlarge P, to an n X ry matrix P, by concatenating further
ro — r1 columns. This gives a new pair of exact sequences

Q3 P,

0 7k2 VAR "
T2 n
0 Ky % Z P Z 0
Construction 4.1.1. Given a K;-homogeneous ideal I C K[T7,...,T},], we trans-
fer it to a Ks-homogeneous ideal I C K[Ty,...,T,,] by taking extensions and

contractions according to the scheme

K[Ty,...,T},) K[Ty,..., T ]

K[Tlila'“vTrj;l] ‘?K[Siﬂ,,sgl} ?K[Tftl,n.,Trill]

where 17,15 are the canonical embeddings and 7} are the homomorphisms of group
algebras defined by P": Z" — Z".

Remark 4.1.2. From a geometric point of view, the passage from the Laurent
polynomial ring to the polynomial ring corresponds to taking the closure. Back on

Now, let I; C K[T1,...,T,,] be a K;-homogeneous ideal and Iy C K[T1,...,T,,]
the transferred Ks-homogeneous ideal. Our result relates factoriality properties of
the algebras Ry := K[T1,...,T;,|/I1 and Ry :=K[Ty,...,T,,]/I> to each other.

Theorem 4.1.3. Assume Ry, Ro are integral, T4, ..., T, define Ky-primes in Ry
and Ty, ..., T,, define Ka-primes in Ry. Then the following statements are equiva-
lent.

(i) The algebra Ry is factorially K1-graded.
(ii) The algebra Ry is factorially Ko-graded.
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Proof. First, observe that the homomorphisms 7 embed K[Sfﬂ, ..., 8F! as the
degree zero part of the respective K;-grading and fit into a commutative diagram

L, < K[,...,T,,] K[Ty,....T] 2 L

l lzl P Ty i 1sisn lzl l
1 r1+1<i<rs

Iy < K[TF,..., T KT, T 2

\T SS/T/

"
Il

The factor ring R} of the extension I] := (11([1)) is obtained from R; by the

localization with respect to Ki-primes 17,...,7;,:

R| = K[I7,.... T2/} = (Ry)rp,..1,, -

The ideal I7 is the degree zero part of Ij. Thus, its factor algebra is the degree zero
part of Rj:

R = KT, . T /I = (RY),.

Note that K[T:?,. .. ,TE' and hence R} admit units in every degree. Thus, [15,
Thm. 1.1] yields that Ry is factorially Kj-graded if and only if R} is a UFD.

The homomorphism 1 restricts to an isomorphism 1y of the respective degree zero
parts. Thus, the shifted ideal Ij := vy '(I}') defines an algebra R} isomorphic
to RY:

Ry = K[T{, ..., T/} = RY.

The ideal I := (m3((73) "' (I}))) has I} as its degree zero part and K[T:F, . .. , TE
admits units in every degree. The associated K»-graded algebra

R, == K[T5,... . T2/} = (Ry)r,..1,,

is the localization of Ry by the Ky-primes T7,...,T,,. Again by [15; Thm. 1.1] we
obtain that Ry = RY is a UFD if and only if R2 is factorially Ks-graded. This
proves the assertion. O

The following observation is intended for practical purposes; it reduces, for example,
the number of necessary primality tests.

Proposition 4.1.4. Assume that Ry is integral and the canonical map Ko — K
admits a section (e.g., Ky is free).

(i) Let Ty,...,Ty, define Ky-primes in Ry and Ty 11,...,T,, define Ko-
primes in Ry. If no T with j > r1 41 divides a T; with i < ry, then also
Ti,...,T,, define Ko-primes in Ray.

(ii) The ring Ra is integral. Moreover, if Ry is normal and Ty 41,...,T},
define primes in Ry (e.g., they are Ko-prime and Ky is free), then Ro is
normal.

Proof. The exact sequences involving the grading groups K; and K, fit into a
commutative diagram where the upwards sequences are exact and Z™~" — K is
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an isomorphism:

T

0 K< gn T gn 0
i ! |

0 K, <~ 7n 0

Ky<— 127" <0

T T

0 0

Moreover, denoting by K; C K, the image of the section K; — Ko, there is a
splitting Ko = K) @ K. As K} C K> is the subgroup generated by the degrees of

T +1,--.,1r,, we obtain a commutative diagram
K[Ty,...,T},]
'Lgl T: 1<i<r
’lL': Tq‘,'_>
4 N 1 r1+1<i<ra
1
K[Ty,...., T, Tr 0, T K[Ty,..., T ]

|

+
K[Ty,..., Ty, Tk, TEY,

1R

where the map p denotes the embedding of the degree zero part with respect to
the Kl-grading. By the splitting Ko = K} & K, the image of p is precisely the
Veronese subalgebra associated to the subgroup K} C K. For the factor rings Ry
and R; by the ideals I and I7, the above diagram leads to the following situation

Ry

ZZ\L
(4

(RQ)Trl-H'“TrQ 151

|

((RZ)TT1+1“'TT2 )0

IR

To prove (i), consider a variable T; with 1 < ¢ < ;. We have to show that T; defines
a Ko-prime element in Ry. By the above diagram, T; defines a K|-prime element in
((R2)r,, 4,--T,, )0, the Veronese subalgebra of Ry defined by Kj C Kj. Since every
K>-homogeneous element of (R2)r, ,..T,, can be shifted by a homogeneous unit
into ((Ra2)t,,,,--T,,)0, We see that T; defines a Ky-prime in (Rg)r, ,,..T,,, See [5;
Lem. 111.4.1.9]. By assumption, T}, 41, ..., T, define Ko-primes in Ry and are all
coprime to T;. It follows from [5, Lem. I11.4.1.7] that T; defines a Ka-prime in Rs.

We turn to assertion (ii). As just observed, the degree zero part ((R2)r,, ,...T,,)o of
the K}-grading is isomorphic to Ry and thus integral (normal if Ry is so). Moreover,
the K)-grading is free in the sense that the associated torus Spec K[K}] acts freely
on Spec (R2)r,, .1, It follows that (Rs)r,, ,,...T,, i integral (normal if Ry is
so). Construction 4.1.1. gives that Rs is integral. Moreover, if T, 41,..., T, define

primes in Ry, we can conclude that Ry is normal, see [5;, Lem. IV.1.2.7]. O

Let us apply the results to Cox rings, see Section 2'in Chapter 1 for the basic theory.
In the setting fixed at the beginning of the section, we assume additionally that the
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columns of Py are pairwise different primitive vectors in Z™ and those of P; generate
Q™ as a convex cone. Suppose we have toric Cox constructions m; : Z — Z; where
Z C K" are open toric subvarieties and 7; are toric morphisms defined by P;,
see [27]. Then the canonical map Z — Z; is a toric modification. Consider the
ideal I; as discussed before and the geometric data

~

Yl = V(II)QK“, Xl = Ylﬂfl, X1 = m ()/51) g Zl-

Assume that R, is factorially K;-graded and 77, ...,T,, define pairwise non-asso-
ciated Ki-prime elements in R;. Then R; is the Cox ring of Xi, see [5]. Our
statement concerns the Cox ring of the proper transform Xy C Zs of X; C Z; with
respect to Zy — 7.

Corollary 4.1.5. In the above setting, assume that Ry is normal and the variables
T1,...,T,, define pairwise non-associated Kao-prime elements in Ry. Then the Ko-
graded ring Ro is the Cox ring of Xs.

Proof. According to Theorem 4.1.3, the ring R, is factorially Ky-graded. Moreover,

~

with the toric Cox construction mo: Zy — Zs, we obtain that Ry is the algebra of
functions of the closure Xy C Z5 of 7r2_1(X2 N 'T"2). Thus, [5] yields that Ry is the
Cox ring of Xo. O

Example 4.1.6. We start with the UFD Ry = K[T,...,Tg]/I; where the ideal I;
is defined as

I = <T1T2 + 15Ty + 1576 + T7Tg>.

Then I is homogeneous with respect to the standard K; = Z-grading given by Q1 =
[1,...,1]. Then P; = [eg,€1,...,e7] is Gale dual to @ where eg = —e; — ... —e7
and the e; € Z7 are the canonical basis vectors. Concatenation of e; + es yields a

matrix P». Applying Construction 4.1.1, we obtain Ry = K[T1,...,Ty]/I> where

together with a Ky = Z2?-grading. As predicted by Theorem 4.1.3, Ry is again
a UFD.

2. Toric ambient modifications

Using the tools of Section 1, we upgrade the technique of toric ambient modifications
developed in [51]. It will serve as foundation for the algorithmic framework for
modifications of Mori dream spaces presented in Section 3. This section has been
published together with J. Hausen and A. Laface, in [57, Sec. 2].

Recall from Section 2 in Chapter 1:that a Mori dream space is a normal projective
variety with finitely generated Cox ring R(X) and class group C1(X). The char-
acteristic quasitorus H := Spec K[C1(X)] acts on X := Specy R and the canonical
map, the characteristic space over X, p: X > Xisa good quotient for this action.
One has the total coordinate space X := Spec R(X) and a canonical H-equivariant
open embedding X CX.

For Mori dream spaces X, we obtain canonical embeddings into toric varieties Z
relating the geometry of X to that of its ambient variety. Let § = (f1,..., f») be
a system of pairwise non-associated Cl1(X)-prime generators of the Cox ring R(X).
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This gives rise to a commutative diagram

X ¢ K"
X ¢ 7
X < Z

where the embedding X C K" of the total coordinate space is concretely given by
T (f1(T),..., [r(T)), we have X = XNZ and p: Z — Z is the toric characteristic

quotients is as wanted, see [5; Sec. II1.2.5] for details.

Definition 4.2.1. In the above setting, we call X C Z a canonically embedded
Mori dream space (CEMDS).

Remark 4.2.2. For a projective toric variety Z with Cox ring K[T1,...,T;], let
Q:7Z" — K := Cl(Z) denote the degree map sending the i-th canonical basis vector
to the degree of the i-th variable T; and P: Z" — Z" the Gale dual, i.e., P is dual
to the inclusion ker(Q) C Z". If w € C1(Z) is an ample class, then the fans & of Z
and ¥ of Z are

S = {6 QL weQET NQL)}, omax = (P(5); 5 € S,

where we write < for the face relation of cones and regard @@ and P as maps of the
corresponding rational vector spaces. If X C Z is a CEMDS, then the ample class
w € Cl(Z) = CI(X) is also an ample class for X. Note that a different choice of the
ample class w’ € Cl(X) may lead to another CEMDS X C Z’ according to the fact
that the Mori chamber decomposition of Z refines the one of X.

We now consider modifications 7: Xo — X7 of normal projective varieties. A first
general statement describes the Cox ring of X7 in terms of the Cox ring of Xs.

Proposition 4.2.3. Let m: Xo — X7 be a proper birational morphism of normal
projective varieties. Let C C Xy be the center of the modification. Set K; :== Cl(X;)
and R; := R(X;) and identify U := Xo\m~1(C) with X1\C. Then we have canonical
surjective push forward maps
e Ko — Ky, [D] — [m.D],
Tyt Ry — Ry, (R2)ipp 2 f = fiv € (R
Now suppose that R(X3) is finitely generated, let Ey, ..., E; C Xy denote the excep-

tional prime divisors and f1,...,fi € R(Xz) the corresponding canonical sections.
Then we have a commutative diagram

T

\ -

Ro/(fi—1;1<i<1)

R2 Rl

of morphisms of graded algebras where X is the canonical projection with the pro-
jection Ky — Ko/{(deg(fi); 1 < i < I) as accompanying homomorphism and the
induced map 1 is an isomorphism.

Lemma 4.2.4. See [57, Lem. 2.3]. Let R be a Ks-graded domain, f € R,, with w
of infinite order in Ko and consider the downgrading of R given by Ko — Ky :=
Ky /{w). Then f —1 is Ki-prime.
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that zo is not contained in any of the exceptional divisors. Consider the divisorial
sheaf 8§ on X; associated to the subgroup of divisors avoiding the point x;, see [5,
Constr. 4.2.3]. Then we have canonical morphisms of graded rings

F(Xz,SIz) — F(UQ,SEQ) — F(Xl,Szl),

where Us C X5 is the open subset obtained by removing the exceptional divisors
of m: Xo — X7 and the accompanying homomorphisms of the grading groups are
the respective push forwards of Weil divisors. The homomorphisms are compatible
with the relations of the Cox sheaves R*:, see again [5, Constr. 4.2.3], and thus
induce canonical morphisms of graded rings

F(Xg,Rzz) — F(UQ,RQEQ) — F(Xl,le).

This establishes the surjection m,: Ry — R; with the canonical push forward of di-
visor class groups as accompanying homomorphism. Clearly, the canonical sections
fi of the exceptional divisors are sent to 1 € R;.

We show that the induced map 1 is an isomorphism. As we may proceed by
induction on [, it suffices to treat the case | = 1. Lemma 4.2.4 tells us that f; — 1 is
K;-prime. From [51, Prop. 3.2] we infer that (f; — 1) is a radical ideal in Rs. Since
Spec(¢)) is a closed embedding of varieties of the same dimension and equivariant

with respect to the action of the quasitorus Spec K[K7], the assertion follows. [

As an immediate consequence, we obtain that X7 is a Mori dream space provided
X5 is one; see also [85]. The converse question is in general delicate. The classical
counterexample arises from the projective plane X; = Py: for suitably general points
T1,...,T9 € Py, the blow up X; at the first eight ones is a Mori dream surface and
the blow up X3 of X; at xg is not.

We now upgrade the technique of toric ambient modifications developed in [51]
and Section 1 according to our computational purposes. In the following setting,
X; — X; needs (a priori) not be a characteristic space and X; not a total coordinate
space.

Setting 4.2.5. Let w: Zo — Z; be a toric modification, i.e., Z1, Zs are complete
toric varieties and 7 is a proper birational toric morphism. Moreover, let X; C Z; be
closed subvarieties, both intersecting the big n-torus T™ C Z;, such that 7(Xs) = X3
holds. Then we have a commutative diagram

K™= 2 22 2 5(\2 5(\'1 c 21 c Kmn

Zy 2 Xo——=X1 C 7

where the downwards maps p; : Z — Z; are toric characteristic spaces and )?1 - Z
are the closures of the inverse image p; '(X; N'T"). Let I; C K[T1,...,T,] be the
vanishing ideal of the closure X; C K™ of sz - Z and set R; :=K[T1,...,T.]/I;.
Note that R; is graded by K; := Cl(Z;).

(i) If X1 C Zy is a CEMDS, the ring Rs is normal and Ty, ..., T, define
pairwise non-associated Ko-primes in Ro, then Xo C Zs is a CEMDS.

In particular, Ky is the divisor class group of Xo and Ry is the Cox ring
Of XQ .
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(ii) If X9 C Zy is a CEMDS, then X1 C Z;y is a CEMDS. In particular, K;
is the divisor class group of X1 and Ry is the Cox ring of X;.

Proof. First consider the lattice homomorphisms P;: Z™ — Z"™ associated to the
toric morphisms p;: Z — Z;. Viewing the P; as matrices, we may assume that
P, = [Py, B] with a matrix B of size n x (ro —r1). We have a commutative diagram
of lattice homomorphisms and the corresponding diagram of homomorphisms of
tori:

(3) . 7" T2
ejimy \E: A / \
AL AR T T
P2_[P1,B]\L J/Pl pzi lpl
7" ———— 1" T —T"
E., i

where in the left diagram, the e; are the first 71, the e; the last ro —r1 canonical basis
vectors of Z"2, the m; are positive integers and F,,, E,, denote the unit matrices of
size n,r; respectively and A is an integral r; X (rg — r1) matrix.

is irreducible. Since the Smith normal form of [E,,, A] is simply [E,,,0], under a,
preimages of irreducible subsets are again irreducible. This means a=!(X;NT") is
irreducible. We conclude that XoNT"™ = pu(a~1(X;NT")) is irreducible. Moreover,
since X5 is complete and the Ks-grading of Ry has a pointed weight cone, we obtain
that Ry has only constant units. Thus, Theorem 4.1.3 yields that Rs is factorially

Ks-graded. Since the T; are pairwise non-associated Ks-primes and Ry is normal,
we conclude that Rs is the Cox ring of X5 and X5 C Z5 is a CEMDS.

We turn to (ii). Observe that for every f € I, the Laurent polynomials p*(f) and
a*(f(t1, ... tr,1,...,1)) differ by a monomial factor. We conclude

K([TF, ... .TE L = (a*(f(t1,.. oty 1,00, 1)); f € D)
K [T, ..., TE.

N

Now, Proposition 4.2.3: tells us that R; is the Cox ring of X;. Since Ti,...,T},

define also in X3 f)airwise different prime divisors, we conclude that X; C Z; is a
CEMDS. 0

Remark 4.2.7. The verification of normality as well as the primality tests needed
for Theorem '4.2.6. are computationally involved. Proposition ‘4.1.4. considerably

reduces the effort in many cases.

As a consequence of Theorem 4.2.6, we obtain that the modifications preserving

finite generation are exactly those arising from toric modifications as discussed.
More precisely, let Zo — Z; be a toric modification mapping Xo C Z5 onto X; C Z;.

Corollary 4.2.8. Let X9 — X3 be a birational morphism of normal, projective
Q-factorial varieties such that the Cox ring R(X1) is finitely generated. Then the
following statements are equivalent.

(i) The Coz ring R(X2) is finitely generated.
(ii) The morphism Xo — X1 arises from a good toric ambient modification.
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K; .= ClI(X;) and R; := R(X;). Let fi1,...,fr, be pairwise nonassociated K-
prime generators for Ry. According to Proposition 4.2.3; we may assume, after
suitably numbering, that fi,..., f,, define generators of Ry, where r; < ro. Now
take an ample class wy; € Kj. Then the pullback w) € Ky of wy under Xy — X3
is semiample on X5. Choose ws € K5 such that wsy is ample on X5 and the toric
ambient variety Zs of X, defined by wy has an ample cone containing w} in its
closure. Then, with the sets of semistable points 22, Z\é C K" defined by we, w}
respectively and Z; C K™ the one defined by w;. By [61, Lem. 6.7], we obtain
morphisms
oy = Z2//H2 — Zé//Hg = Zl//HQ = Zl,

where H; := SpecK[K;] denotes the characteristic quasitorus of Z;; observe that
Z2 — Z2 //H2 is in general not a toric characteristic space. Thus, we arrive at
Setting 4.2.5.and Zy — Z; is the desired good toric ambient modification inducing

the morphism X, — X;. O

For a flexible use of Theorem 4.2.6:we will have to adjust given embeddings of a Mori
dream space, e.g., bring general points of a CEMDS into a more special position, or
remove linear relations from a redundant presentation of the Cox ring. The formal

framework is the following.

Setting 4.2.9. Let Z; be a projective toric variety with toric characteristic space
p1: 21 — Z; and ample class w € K; := Cl(Z;). Consider K;-homogeneous
polynomials hy,...,h € K[Ty,...,T, | and, with r{ := ry 4+, the (in general non-
toric) embedding

K o KN, (21, 20) = (21, s 20, hi(2), ... i (2)).

Note that K[T1,...,T,] is graded by K] := K via attaching to T1,..., T}, their
former Ki-degrees and to T, ; the degree of h;. The class w € K/ defines a toric
variety Z] and a toric characteristic space pj : 2{ — Z}. Any closed subvariety
X1 C 7 and its image X7 :=1(X;) lead to a commutative diagram

where X; C 21 and X! C Z| are the closures of the inverse image p;H(X;NT") and
()1 (X nT ) Denote by I 1 and I] the e respective vanishing ideals of the closures
X, CK™ of X1 C Z1 and X1 C K" of X’ C Z1 Set Ry :=K[T1,...,T-]/]; and
define Ry :=KI[T1,..., T /1.

Remark 4.2.10. In Setting 4.2.5, the cone over the columns of the degree matrix

Q2 is pointed if the cone over the columns of ()1 was pointed. Similarly, in Set-
ting L4.2.9‘, the cone over the columns of @)} is pointed if the cone over the columns

(i) If X1 C Zy is a CEMDS and Ty, ..., Ty, h1, ..., h define pairwise non-
associated K1-primes in Ry then X1 Q Z1 is a CEMDS.
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(ii) If Ry is normal, the localization (RY)r,...T, s factorially Ki-graded and
Ti,...,T,, define pairwise non-associated Kq-primes in Ry such that K,
1s generated by any r1 — 1 of their degrees, then X1 C Z1 is a CEMDS.

(iii) If X| C Z| is a CEMDS, then X, C Z, is a CEMDS.

Proof. First, observe that the ideal I] equals Iy + (T}, 11 — h1,..., T,y — hy). Con-
sequently, we have a canonical graded isomorphism R} — R; sending T, 1; to h;.
Assertion (i) follows directly.

We prove (ii). Since (R})r,...1,, is factorially Kj-graded, we obtain that (R1)r,..1,,
is factorially Ki-graded. As Ty,...,T,, define K;-primes in Ry, we can apply [15,
Thm. 1.2] to see that R; is factorially Kj-graded. Since Ti,...,T,, are pairwise
non-associated we conclude that X; C Z; is a CEMDS.

We turn to (iii). Note that by construction, 77, ..., T}, also define K;-primes in R;.
According to (ii), we only have to show that any r; — 1 of the degrees of T1, ..., T},
generate K. For this, it suffices to show that each deg(7}) for j = ri+1,...,r1+lis

a linear combination of any 71 — 1 of the first r; degrees. Since 11, ...,T,, generate
Ry and T is not a multiple of any T;, we see that for any ¢ = 1,...,71, there is a
monomial in i; not depending on 7;. The assertion follows. ]

3. Computing modifications of Mori dream spaces

Based on Section 2, we provide a general algorithmic framework for computations
with modifications of Mori dream spaces. This section has been published together
with J. Hausen and A. Laface in [57, Sec. 3].

In order to encode a canonically embedded Mori dream space X; C Z; and its Cox

G; = (g1,---,9s) is a system of generators of the defining ideal I; of the Cox ring
R;. We call such a triple (P;,%;, G;) as well a CEMDS.

Remark 4.3.1. In the sense of Chapter LZ‘, each CEMDS (P, %, G) corresponds
to a MDS (R,®) where the GR R = (G,Q,Q°, P, F5) is computed using Algo-

® = {Q(); 1w Xy Jface, Plyg) €x}, v = Q5.

In particular, given a CEMDS (P;,%;, G;), the degree map Q;: Z" — K; and X;
as well as p;: X; — X; are directly computable. Then @Q; and P; are Gale dual to
each other, i.e., Q; is surjective and P; is the dual of the inclusion ker(Q;) C Z":.

Algorithm 4.3.2 (StretchCEMDS). Input: a CEMDS (P;,3;,G1) and a list
(f1,..., f1) of polynomials f; € K[T1,...,T,,] defining pairwise non-associated K-
primes in R;.

e Compute the Gale dual Q;: Z™ — K; of P; with Algorithm 2.1.24.
o Let Q1: 2"t — K, be the extension of ()1 by the degrees of f1,..., fi.
e Using Algorithm '2.1.25, compute the Gale dual P}: Z"t! — Z" of Q)

of Zl.
Set Gy :=(91,---,9ss Tryv1 — f1,- -+, Tpy — f1) where G1 = (g1, .., 9s)-

Output: the CEMDS (P/, X}, GY).

The input of the second algorithm is more generally an embedded space X1 C Z3
that means just a closed normal subvariety intersecting the big torus. In particular,
we do not care for the moment if R; is the Cox ring of X;. We encode X; C Z; as
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well by a triple (P;, X1, G1) and name it for short an ES. For notational reasons we
write (Pj, X}, GY) for the input.

Algorithm 4.3.3 (CompressCEMDS). Input: an ES (Pj,%],G}) such that R} is
normal, the localization (R})r,..,, is factorially Kj-graded and the last [ relations

in G} are fake, i.e., of the form f; = T; — h; with h; not depending on T;. Option:
verify.

e Successively substitute 7; = h; in G}. Set Gy := (f1,..., fr,) where
Gy =(f1,..., fr) and 1y =11 = L.

e Set K; := K{ and let Q1: Z"™ — K; be the map sending e; to deg(7T3)
for1<i<r.

fan ¥q in Z"™ defined by P; and the ample class w € K7 = K7 of Z.
o If verify was asked then
— check if any r; — 1 of the degrees of T1,...,T,, generate Ki; see

Output: the ES (P,%q,Gyq). If (P}, X, GY) is a CEMDS or all verifications were
positive, then (P,%;,G1) is a CEMDS. In particular, then R; is the Cox ring of
the corresponding subvariety X; C 7.

Remark 4.3.4. In Algorithm 4.3.3; observe that it is no restriction to assume that
each fake relation T; — h € (G}) already satisfies T, — h € G'. Write T; — h =
hifi + ...+ hy fr, with h; € K[T1,...,T;]. Comparing the degrees of both sides

with respect to a suitable monomial ordering, we obtain T; — h = f; for some j.

We turn to the algorithmic version of Theorem4.2.6. We will work with the satura-

tion of an ideal a C K[T1,...,T,] with respect to an ideal b C K[T1,...,T},]; recall
that this is the ideal

a:b>® := {geK[T,...,T,]; gb® Cafor some k € Z>o} C K[T},...,T].

In case of a principal ideal b = (f), we write a : f°° instead of a: b>°. We say that
an ideal a C K[T1,...,T;] is f-saturated if a = a: f* holds. We will only consider
saturations with respect to f =Ty --- T, € K[T1,...,T,]; we refer to [90, Chap. 12]
for the computational aspect. Let us recall the basic properties, see also [64].

Lemma 4.3.5. Consider K[T, U] with tupels of variables T = (T4, ..., Ty,) and
U= U,...,U,_y). For f:=U---Up_r, € K[U], one has mutually inverse
bijections

{ ideals in K[T,U*'] }  «+— { f-saturated ideals in K[T,U] }
a — anK[T,U]
<b>]K[T,Ui1] < b.

Under these maps, the prime ideals of K[T, U] correspond to the f-saturated prime
ideals of K[T,U].

For transferring polynomials from K[T1,...,T},]| to K[T1,...,T,,] and vice versa,
recall from Chapter 2 the following operations; compare also [44]. Consider a ho-
momorphism 7: T™ — T™ of tori and its kernel H C T™.

e By a x-pull back of g € K[SE',..., SE!] we mean a polynomial 7*g €
K[Ty,...,T,] with coprime monomials such that 7*¢ and 7*¢g are associ-
ated in K[T!, ... T

) n
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e By a %x-push forward of an H-homogeneous h € K[Tlil, ..., TF] we mean
a polynomial m,h € K[S1,...,S,,] with coprime monomials such that h
and m*7, h are associated in K[T:F!, ... TF!].

Note that *-pull backs and *-push forwards always exist and are unique up to
constants. The x-pull back 7*¢g of a Laurent polynomial is its usual pull back 7*g

scaled with a suitable monomial. See Algorithm :2.2.13 on how to compute the
*-push forward.

Lemma 4.3.6. Consider a monomial epimorphism m: K™ x T"? — K"™. Write
T=(T,....,Tn,) and U = (Uy,...,Up,).

(i) If a CK[T,U*] is a prime ideal, then (m,a) C K[ST1] is a prime ideal.
(ii) If b C K[S*!] is a radical ideal, then (7*b) C K[T,U*'] is a radical ideal.

Proof. The first statement follows from (m,a) = (7*)~!(a). To prove (ii), let f €
V/(m*b). Since \/(m*b) = I(7~1(V(b))) is invariant under H := ker(m|pni+ns),
we may assume that f is H-homogeneous, i.e., f(h-z) = x(h)f(z) holds with
some character x € X(H). Choose n € X(T™*"2) with x = 5. Then n~'f
is H-invariant and thus belongs to 7*(I(V(b)). Hilbert’s Nullstellensatz and the
assumption give 7*(I(V (b)) = 7*(b). We conclude f € (7*b). O

We are ready for the first algorithm, treating the contraction problem. We enter a
weak CEMDS (Ps, Y2, G2) in the sense that Gy provides generators for the extension
of I to K[Tlil, . ,Tél} and a toric contraction Zs — Z7, encoded by (P, %), and
obtain a CEMDS X; C Z;.

Algorithm 4.3.7 (ContractCEMDS). Input: a weak CEMDS (P, 33, G3) and a
pair (Py,X;) where P» = [Py, B] and ¥ is a coarsening of X5 removing the rays
through the columns of B.

e For Go = (g1,...,9s), set h; :=g;(Th,...,Tr,1,...,1) e K[T1,...,T,]
e Compute a system of generators G for I} := (hy,..., hs) : (Th - Tp, )™
e Set (P{,X},G)) := (P1,%1,GY) and reorder the variables such that the

put.

Output: (Py,%1,G1). This is a CEMDS. In particular, Ry is the Cox ring of the
image X1 C Z; of Xo C Z5 under Zy — Z;.

Proof. First we claim that in K[T:5, ... , TEY, the ideal generated by hi, ..., hs
coincides with the ideal generated by p}(p2)s+g1, - - ., pi(p2)«gr. To see this, consider
pi: T — T™ and let Si,...,S, be the variables on T”. Then the claim follows
from (Py);; = (P1);; for j <r; and

p;(Sz) = Tl(Pz)il o T7E2132)i7'2’ pT(S’L) _ Tl(Pl)il L T’rglljl)irl )

that I] C K[T1,...,T,,] is a prime ideal. Using Theorem 4.2.6. again, we see that

(P{,X},G)) as defined in the third step of the algorithm is a CEMDS. Thus, we
may enter Algorithm 4.3.3 and end up with a CEMDS. O

We turn to the modification problem. Given a Mori dream space X; with Cox
ring R; and a modification Xo — X3, we want to know if X5 is a Mori dream
space, and if so, we ask for the Cox ring Rs of Xo. Our algorithm verifies a guess of
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prospective generators for R and, if successful, computes the relations. In practice,
the generators are added via Algorithm '4.3.2.

Algorithm 4.3.8 (ModifyCEMDS). Input: a weak CEMDS (P;,%1,G1), a pair
(P2, Y5) with a matrix P, = [Py, B] and a fan Y5 having the columns of P, as its
primitive generators and refining ;. Options: verify.

o Compute G4 := (h1,...,hs) with h; = p5(p1)«(9:) and G1 = (g1, ..., gs)-
e Compute a list of generators Gy for I := (hy,...,hs) : (Try41-Try)™®
o If verify was asked

I
e
=
@
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=
=
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—
o
I
=
2
fou
_|_
o
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=
Vv
[N}
g
=
2
.
N
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— check if T, ..., T, define Ko-primes in Ry; see Algorithm 2210
— check if Ry is normal, e.g., using Proposition 4.1.4.

Output: (Pa, X2, G2), if the verify-checks were all positive, this is a CEMDS. In
particular, Rs then is the Cox ring of the strict transform X, C Zs of X; C 7
with respect to Zo — Z;.

Proof. We write shortly K[T,U*!] with the tuples T = (Ty,...,Ty,) and U =

(Uy,...,Upy—r,) of variables. Lemma 4.3.6 ensures that G2 generates a radical

right hand side diagram, we may lift the homomorphisms of tori to

K x Tr2="
/ \
K™ x Tr2=" K"
I)zi lpl
T - ™
id

Observe that we have an isomorphism ¢ = « X id given by
K™ x T~ — K™ x T, (2,2)) = (2 ()M, 2 () A, Y

Since X is irreducible, so is p~1(X; x T"27") = a~}(X;). Hence, the im-

age p(a (X)) = XoNK™ x T2~ = V(Gy) is irreducible as well. More-

over, Lemma 4.3.5 implies that G5 generates a prime ideal in K[T,U]. If the

a CEMDS. 0

Remark 4.3.9. If the canonical map Ko — K; admits a section, e.g., if K is free,
then, in the verification step of Algorithm 4.3.8; it suffices to check the variables

Ty +1,---, Iy, for being Ko-prime in Ra, see Proposition 4.1.4.

4. Application: Gorenstein log del Pezzo surfaces

As an application of the algorithms developed in Section 3, mainly Algorithm4.3.7,
we compute Cox rings of Gorenstein log-terminal del Pezzo surfaces X of Picard
number one that do not admit a non-trivial K*-action. This section has been

published with J. Hausen and A. Laface in [57, Sec. 4].

Del Pezzo means that the anticanonical divisor —Kx is ample and the condition
“Gorenstein log-terminal” implies that X has at most ADE-singularities. The idea is
to present each such surface X, classified by Alekseev and Nikulin [2], as Py X -
X with smooth X and information about R(X) is known from Hasset, Tschinkel,
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Derenthal, Artebani, Garbagnati and Laface [49; 33, 4]. The Cox rings admitting
a non-trivial K*-action have been computed in [59], the toric ones in, e.g., [72].

In [2, Theorem 8.3], the Gorenstein log-terminal del Pezzo surfaces X of Picard
number one have been classified according to the singularity type, i.e., the configu-
ration S(X) of singularities. Besides Po, there are four toric Gorenstein log-terminal
surfaces del Pezzo surfaces X of Picard number one, namely the singularity types
Ay, A1As, 2A1 A5 and 3As. Moreover, there are thirteen (deformation types of) K*-
surfaces; they represent the singularity types A4, Ds, Eg, A12A3, 3A1Dy4, Ay Dg,
AsAs, By, A1E7, A3FEg, Es, 2D, and their Cox rings have been determined in [59,
Theorem 5.6].

We now compute the Cox rings of the remaining ones using Algorithm 4.3.2  and
the knowledge of generators of their resolutions [33; 4]; note that the relations for
Cox rings of the resolutions is still not known in all cases. In the sequel, we will
write a Cox ring as a quotient K[T1,...,T,]/I and specify generators for the ideal
I. As before, the C1(X)-grading is encoded by a degree matrix, i.e., a matrix with

deg(Ty),...,deg(T},) € Cl(X) as columns.

Theorem 4.4.1. The following table lists the Cox rings of the Gorenstein log-
terminal del Pezzo surfaces X of Picard number one that do not allow a non-trivial
K*-action.

S(X) Coz ring R(X) Cl(X) and degree matriz
K[T1,...,Ts]/I with I generated b
[Th 6]/ g Y zez/2
244 ~ToTs+T3Ty+TE, —ToTs+T3+T5Tg, L1111
T\ Te—T3Ts5+T7, T1T3*T4T6+T527 [ 5 3 3 1 0 1 :|
T1T2—T3Te+TaTs
Z®7Z/27

K[T1,...,Ta]/I with I generated by

Ds
2 1 1
TE—TZToT3+T3+T5 [ -

I
=
-
Ol =
[E—

K[T4,...,Ts]/I with I generated by Z_ ®Z/AZ
DsAs 5 o 5 111 11
TWT3—T;—T5, ThT2—T5+T4T5 3 3 0 3 1
Z&L/2L & L)L
K[T4,...,Ts]/I with I generated by - i
De2A1 11 1 1 1
T Ty =T +T5+T3, —T3+Ts To+ TP —T7 1.0 0 1 0
o0 1 0 1 1
B K[T4,...,T4])/I with I generated by ZOL/3L
5 Ao
0 —T1 T2+ T3+ Ty T3 Ty +T5 [ % % % % ]
Z®Z/2L

oA K[T4,...,T4])/I with I generated by
7A1
—TT§~T2+ToT3Ty+T5 [ % 2 1

=
=i
ol
[E—

K[Th,...,T4]/I with I generated by  Z

TP +TETI+T2-T5T7 [2 3 1 1]
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K[Th,...,T4])/I with I generated by ZOZL/2L
A7 2 4. oa 2 2 1 1
T{ —TyT2T3+T, +T3 i i i 0
K[T1,...,Ta]/I with I generated by Z®Z/3L
As 3 3 3 11 1 1
—T1T2T3+Ty+T35+Ty i 32 0 1
K[T4,...,Ts]/I with I generated by ZO®L/AL
A7 Ay 5 2 o 2 11 1 1 1
—ToT3+T;—T2, T —T3+T4Ts 5 3 5 3 1
K[T4,...,T7]/I with I generated by
T1T3—T2T3+T6¢T5—T7Ta,
TEATE=Tr Ty, TaTs+T6Ti—ToTe—T7,  pyTy T2 -T2 4TsTs,
2 2
—T3Te—T5T7+T1Ta, T3 —TeT1+T7, T127T227T42+2T3T57T7T6
AsAg Ay T1Ts—ToT5—TyTe+T7T3,
T3Ty—TE+T7 Ty T2 T,
The class group and degree matrixare | 1 1 1 1 1 1 1
2 2 3 5 1 4 0
Z®L/6Z
K[T4,...,To]/I with I generated by T2 16T, Ts+8T2 T2,
— 1724721 17Ty, T2 -16T3Ts+8T2 -T2,
— 173 Ts— 1Ty T5+TE, T2T3—TyTo+4T5T7 —8Te TR,
2 2
— I T3 Ty+T5Ts+ 3 TsTo, T1T2—-8T7 — Ty,
ToTe—T7To—ATE, T1T5+2T3T7 —4T4Te+T8To,
T5To—2T3T7+TsTo, T1T3—TyTo—4T5T7,
1 1
24341 —3TeTa+3T3To+T7Ts, _§T4T1+§T2T4+T5T6_T7T8’
Ty T7+ToT7 —4T3Ty+2T6To, — g5 ToT1+ 75 T2To—TsTs+T6T7,
Ty Te—2T2+T5 Ty, — 3Ty T1+ L ToTo+T3T5 —Ty T,
1 1
1T Te— LT Te+T3 T3, 1T1Ts— 3 T2 Ts+TeT3—TyT7,
T Tg—2T4T7+T5Ty,
The class group and degree matriz are | 1 1 1 1 1 1 1 1 1
i 10 1 1 1 0 0 0
7.®L)27 & /AL 3 3 2 0 2 1 3 0 1
KIT, Tol/T with I db (=¢—1)T1To+(¢+1)T2Ty—3TsT4+3T5Ts,
[T, Taol /T with I generated by (_y¢_ 1)1y 1 4.(¢~1)Ta T +3T2+ (¢~ 1)Tr Tao,
3T3Te+3T4T7(+(—3¢—3)T5Ts, —3T1Te+(3¢+3)T2Te+(—3¢(—3)T7To+3TsT10,
(C—1)T2Ts+3T5+(—(—2)Te Ty, (—C=2)T1 Tr+(2¢+1) T T +3T2 +(—¢—2) Ts Ty,
3T2T7¢+3T6T10+(—3¢—3)TsTy, (=¢=2)T1 Te+(2¢+1)T2T6+3T3T5+(—¢—2)T7 Ty,
(=¢+D)T2T5+(¢—1)TuTo+3T6 T, (2¢+1)Ty Te+(—2¢—1) T2 T6—3T3T5+3T7,
—CT1T1r0+T2T10¢+3T4T7 —3T5Ts, (—C+1)T1 Ts5+(—C¢—2) T2 T5+(2¢+1) T T10+3T7,
(C+DT1T10—T2T10¢+3T5Ts =T, (=CHDTIT5+(C—1) T T5 —3T6 Ts+3T7,
1A —T1To¢—ToTo+3TsTr+((+1) T, —3T1T4+(3¢+3)T2Ts+(—3¢—3)T3T9+3T5T10,
2

—TWToC+T2Ty9C+3T3T7—318T4,

(—C+1)T1 Tg+(¢—1)ToTs+3T5 —3T4 Ts,
(C+2)Ty Tr+(—C—2)To T +3T4 T3 —3TZ,

ToT1+(—C—1)T3+3T5T3+ToT10C,
—(T1 T2+3T4Te+ToT10¢,
TZ+(—C¢—=1)T1 T2+3T5Tr+ToT10¢

The class group and degree matriz are

Z®L/3L & L/3L

(—2¢-1)T1 T4+ (2¢+1)T5T10+3T5,

(CH+2)T1 Ty +(—2¢—1)T2Ta+(¢—1)T3T9+3T7Ts,
(=C¢+)T1 T3+(¢—1)T5T9+3T6T7,
3¢T1T3+3T4T10+(—3¢(—3)T5To,

(C+2)T1 T3+(—2¢—1)To T3+ (¢ —1)T5 To+3TF,

where ¢ is a primitive third root of unity.

1Nl
1Nl
[N
NI OI =
[N
(=l
(SIS
oloI =
=R
=l
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Proof. According to [2, Thm. 8.3], the Gorenstein log del Pezzo surfaces X with
0(X) = 1 have ADE-singularity types

A7, Ag, A7Ay, AsAAy, 2A4, D, DsAs, Dg2A;, 24324, 4A,,
Dy3Ay, 2A4A3A1, Ay, AsAy, AsAy, Ds, DAy, FEsA, FEs, IE7A,
(4) E;, Eg, 2D4, A, A)A,, A32A:, 3A,.

For each singularity type, up to isomorphism, there is exactly one such surface ex-
cept for the cases Fg Az, F7 A1 and Eg where exactly two isomorphism classes occur,
and case 2D, where there are infinitely many classes. As noted in the introduction,
the singularity types shown in the last two rows of (4) are toric or are K*-surfaces;
this includes all 2D, cases.

Each of the remaining surfaces X, is obtained by contracting curves of a smooth sur-
face X5 arising as a blow up of Py with generators for the Cox ring known by [33; 4].
A direct application of Algorithms 4.3.8 and 4.3.7.is not always feasible. However,
we have enough information to present the blow ups of P; as a weak CEMDS. As an
example, we treat the DsAs-case. By [4], with Xo := X141, additional generators

for R(X3) correspond in R(P2) to

fi =Ty -1, fo = TiTy — Ty + T T5.

X1. Again by [4, Sec. 6], we know the degree matrix Q2 of X5. Write Q2 = [D, C]
with submatrices D and C consisting of the first r; and the last ro — r; columns
respectively. We compute a Gale dual matrix P, of the form P, = [Py, B] by
solving CB! = —DP}. Let p;: T° — T* and py: T* — T be the maps of tori
corresponding to Py and P,. Instead of using Algorithm 4.3.8; we directly produce
the equations G4 for X5 on the torus:

ps(p1)s i = TTeTHTsTis — ToTioTH — T3T12T5,
p3(p1)s fo = TVIWTY + ToT3To T Ths — Ts T3 T

Note that by [4], the variables define pairwise non-associated Cl(X3)-prime gen-
erators for R(Xs). This makes Xo a weak CEMDS with data (P2, X2, G5) where
Y5 is the stellar subdivision of the fan >; of the CEMDS X; at the columns of
B. We now use Algorithm 4.3.7 to contract on X, the curves corresponding to the
variables T; with ¢ € {2,3,5,7,8,9,10,12,14}. The resulting ring is the one listed
in the table of the theorem.

Observe that the given surfaces do not admit a non-trivial K*-action. As noted
before, we only have to treat cases FgAs, E7A; and Eg. Here, using e.g., Algo-

FEgAs case. O

Remark 4.4.2. Note that the resolutions of the surfaces with singularity type
EgAs, E7 Ay and Eg listed in Theorem 4.4.1: have a hypersurface as Cox ring; they
have been computed in [33, Sect. 3, Table 9]. Moreover, these surfaces admit small
degenerations into K*-surfaces. In fact, multiplying the monomials 15757, and
T2T? in the respective Cox rings with a parameter a € K gives rise to a flat family
of Cox rings over K. The induced flat family of surfaces over K has a K*-surface as

zero fiber, compare also the corresponding Cox rings listed in [59, Theorem 5.6].
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5. The lattice ideal method

We consider the blow up Xs of a Mori dream space X; with known Cox ring and
develop a method for the systematic guess and verification of generators for the
new Cox ring R(X32). A description of R(X3) as saturated Rees algebra is used. As
examples, we compute the Cox ring of Cayley’s cubic surface and the Cox ring of
the blow up of a weighted projective space in its base point. This section has been
published in [57, Sec. 5] together with J. Hausen and A. Laface.

Let X; be a Mori dream space and 7: Xo — X; the blow up of an irreducible
subvariety C' C X7 contained in the smooth locus of X;. As before, write K; :=
Cl(X;) for the divisor class groups and R; := R(X;) for the Cox rings. Then we
have the canonical pullback maps

™ K1 = Ko, [D] — [r*D],
7 R — Ry, (Ri)ipy 2 f = 7°f € (R2)xD)-

Moreover, identifying U := X, \ 77!(C) with X; \ C, we obtain canonical push
forward maps

my: Ko — Ky, [D] — [m.D],
Tt Ry — Ry, (Ro)ip) 2 f+ fiu € (Ri)ir. D)

Let J C Ry be the irrelevant ideal, i.e., the vanishing ideal of X; \ X1, and I C Ry
the vanishing ideal of pl_l(C) C X, where p1: X; — X, is the characteristic space.
We define the saturated Rees algebra to be the subalgebra

Ri[I]™ = @ (I~ J=)tt © Ry[t*], where I* := R, for k < 0.
dez

Note that this indeed makes R;[I]%*" a graded algebra. For all n,m € Z we have
containment of (1™ : J°)(I™ : J*°) in I™"T™ : J°°.

Remark 4.5.1. The usual Rees algebra Ri[I] = @ , I~ %" is a subalgebra of
the saturated Rees algebra Ri[I]***. In the above situation, I C R is a K;-prime
ideal. Since Ki-prime ideals are saturated with respect to K;-homogeneous ideals,
we have I : J> = I. Consequently, Ry[I]**" equals R;[I] if and only if Ry[[]5**
is generated in the Z-degrees 0 and +1. In this case, R;[I]**' is finitely generated
because R;[I] is so.

Note that the saturated Rees algebra R;[I]**' is naturally graded by K; x Z as
Ry is Kj-graded and the ideals I, J are homogeneous. Let E = 7~ 1(C) denote
the exceptional divisor. Then we have a splitting Ko = 7*K; X Z - [E] & K; X Z;
compare Proposition 1.4.8.

Proposition 4.5.2. See [57, Prop. 5.2]. In the above situation, we have the fol-
lowing mutually inverse isomorphisms of graded algebras

Ry <+— Ry[IP™,
(Ro)prpjaip) 2 f — mf-th € (Ba[11™*) (1py.a »
(Ro)pmepjaip) 2 ©°f 1% <« [t € (Rl[I]sat)([D],d)'

For the computation of the Cox ring Ry, we work in the notation of Setting 4.2.5;
in particular X7 comes as a CEMDS X; C Z;. As before, C C X; is an irreducible
subvariety contained in the smooth locus of X; and C - )/(\'1 denotes its inverse
image with respect to p;: )A(l — Xj1. The idea is to stretch the given embedding
X, C Z; by suitable generators of the vanishing ideal I C R; of C C X, and then

perform an ambient modification.
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Algorithm 4.5.3 (BlowUpCEMDS). Input: a CEMDS (Py,%,G1), a Kj-prime
ideal I = (f1,..., fi) € Ry with pairwise non-associated Ki-primes f; € Ry defining
an irreducible subvariety C' C X; inside the smooth locus and coprime positive
integers dy, ..., d; with f; € I% : J>.

e Compute the stretched CEMDS (Py, ¥}, G}) by applying Algorithm4.3.2.
to (Pl, 21, Gl) and (fl; ey fl)

e Define a multiplicity vector v € Z™ %! by v; := 0 for 1 < i < r; and
v i=dj_y, forr +1 <0 <ry +1.

e Determine the stellar subdivision X3 — ¥/ of the fan ¥} along the ray
through Pj -v. Write Py := [P}, P| - v].

the pair (P, X9).

e Let T be the product over all T; with C' € D; where D; C X is the
divisor corresponding to T;. Test whether dim(Iy + (T}.,)) > dim(l2 +
(T, T")).

e Set (P5,35,Gh) := (Pa,X9,G2). Eliminate all fake relations by applying

Output: (Py,32,G3). If the verification in the next to last step was positive, then
(P2,35,G5) is a CEMDS describing the blow up X» of X; along C. In particular
then the Ks-graded algebra Rs is the Cox ring of Xs.

Lemma 4.5.4. Let a,b C K[T1,...,T;] be ideals and f € K[T4,...,T,] a polyno-
mial. Then taking the saturation commutes with taking the localization, i.e.,

ag:(by)> = (a:0%), C K[I1,....,T;];.

Proof. Compare also [8, Cor. 3.15]. Consider g € (a:b6>);. Then gf~* € a: b* for
some k € Z>o and an integer s > 1. This means gb® C a. Since localizing commutes
with taking products we obtain g(bs)* C ay, see [8, Prop. 3.11].

For the other inclusion, let g € ay : (by)*°. As before, g(b%); C ay for an s € Z>;.
In particular, gb® C ay. Write b° = (by,...,b;). Then there are a; € a and m; € Z
such that gb; = a; f™ € ay which means gf~™b; € a. We obtain gf¥ b5 C a for
suitable k" € Z. We arrive at g € (a: b™)y. O

Ry. Then the localization (Ry[I]**") v is isomorphic to (Ry[I])rv.

Proof. Set f := T". Since the T; with 1 < ¢ < 71 are of Z-degree zero, using
Lemma 4.5.4, we obtain

(RilI™)y = QU :T%), 8" & PRt

k<0 k>0
_ Q((z—’“)f:}zl)tk ® kQ?O(Rl)ft’“
- @(r’“)ftk @& PRt
k<0 k>0
= (Rall])y- O

an inclusion of Ko = Ky X Z-graded algebras. Let T" be the product over all T; such
that C € V(X1; T;). Then Ry = Ry[I*** holds if

dim (IQ + <Tr2>R2) >  dim (IQ + <Tr27 TV>R2) .
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Proof. Denote by (Rg)q the degree d part of Ry with respect to the natural Z-
grading. Assume that the inclusion Ry C Ry[I]**' is strict and let n € Z>1 be
minimal such that there is ft=" € Ry[I]**' \ (R2)_,. Observe that n > 1 by
assumption. Moreover ft~" ! € Ry since f € I": J*®° C 1" ': J* and (Ra)—_pt1 =
(R [I]**) _ 1. Therefore

T e (g N Ra,  ftTMT 2 ()R,
so that the ideal (t)r, is strictly contained in (t) g, s+ N R2. Note that T is an
element of the irrelevant ideal J since
TV € J & (N D:i #0 VN () Di # 0.
v; =0 CCD;

Moreover, localizing by T, Lemma 4.5.5. delivers

() pyprpe O R2)p, = () Ry nee N (R2)rv = () Ry [1)70 -

In particular, both ideals are of the same dimension in Ry and (t) g, equals the Ko-
prime ideal (), [fjsat N Ro in (R2)7v, i.e., t is Ky-prime in (Rz)7». Observe that
t is Ky-prime in Ry. Given Kj-homogeneous elements hy, hs € Ry with ¢ | hiho,
considered as elements of (Rz)rv, we have t | hy or ¢ | he, i.e.,

hl(TV)kl =ty or h2(T”)k2 = tao, a; € Ry, k; € Zzo.

Since by the dimension requirement we know that ¢t and T" are coprime in Rs, we
obtain t | hy or t | hy. Therefore, (t)r, = (t) g, 7]+ N R2 in Ry, a contradiction. [

Proof of Algorithm 4.5.3. Consider the Kj-graded ring Ry = K[T1,...,T;,]/I>
associated to the output (Ps, Yo, G3). Assume all verifications were positive. The
first step is to show that Ry is normal; then (Ps, Xo, G3) is a CEMDS and Ry is the
Cox ring of the output variety X5. In a second step we show that X5 equals the

blow up of X; along C.

Consider the output (Pa, X2, G2) of the fourth item, i.e., the situation before enter-
ing the last step. The variables T, 41,...,Ty,—1 correspond to fi,..., fi and T},
to the exceptional divisor. Observe that we have a canonical Ks-graded homomor-
phism Ry — R1[I]%** induced by

T; 1<i<r,
K[T\,...,T,,] — Ri[I]**, T; = S fimt ¥, 11 <i<rg,
t, ’i:7”2.

Indeed, because C is contained in the smooth locus of X;, the cone generated by
the last | columns of P is regular and, because in addition di, ..., d; are coprime,
the vector Py -v is primitive. Thus, the ideal Iy of X5 is the saturation with respect
to T, of

I + <T1TTU; — fi—n; r <1< ’1“2> - K[Tl,. .. ,Trz]-

Consequently, the above assignment induces a homomorphism Ry — Rq[[]5**. This
homomorphism yields an isomorphism of the Ks-graded localizations

(R2)TT2 = @RlTﬁz = @thd — (Rl[I]sat)t

d€eZ deZ

and hence is in particular injective. As the image ¢(R2) contains generators
o(T,) =t o(TnuTy™) = fit™!,  1<i<l

for the Rees algebra R;[I], we obtain R;i[I] C ¢(R2) C Ryi[I]***. In fact, by the
dimension check in the last step and the definition of ¢ we may apply Lemma '4.5.6.

which delivers p(Ry) = Ry[I]***. By Proposition 4.5.2, Ry[I]** = R, is the Cox

~

ring of the blow up X} of X; at C. In particular, Ry = R} is normal and we
may apply Algorithm 4.3.3. Note that there is no need to use the verify option
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as the variables T1,...,T,., € Ry are Ky-prime and the generators surviving the
elimination process are Ks-prime as well. As for any Cox ring, the Ks-grading is
almost free.

deg(Ty,) X, = Ao

v

(0,0,0)

We show that Xo = X holds. Let A € Mov(R2) be the chamber representing X;.
Then A is of codimension one in Q ® K5 and lies on the boundary of Mov(Rz).
Since there are the contraction morphisms Xs — X; and X} — X, the chambers
A2, A, corresponding to X3, X) both have A as a face. We conclude Ay = A, and
thus Xy = XJ. |
An important special input case for Algorithm4.5.9'is the blow up of a smooth point.
The point 1 € X3 can be given in Cox coordinates, i.e., as a point z € )A(l CKm
with z1 = p1(2).

Definition 4.5.7. Let P be an s xr integer matrix and z € K". Let i1, ..., be the
indices with z;; # 0 and vy,...,vs € Z" a lattice basis for im(P*) Nlin(e;,, ..., e4,).
Then the associated ideal to P and z is the saturation

I(Pz) = (27T —2 T 2T — T ) (T T)™
c K[,...,T,],

where v; = v — v, is the unique decomposition with nonnegative vectors v;", v, €

Z" and we write T* = T{" -+ - T2 and z® = 2{* - - - 2% for any vector o € Z".

Note that the ideal I(Pi,z1) + (Tj; j # 41,...,1k) describes the closure of the
orbit through z; of the quasitorus H = Spec(K[K]) acting on K™ via the grading
deg(T;) = Q1(e;) with the projection Qq: Z"™ — K; := Z" /im(Py).

Remark 4.5.8. The ideal I(P,z) is a so called lattice ideal. In particular it is

generated by binomials, see [82].

Algorithm 4.5.9 (BlowUpCEMDSpoint). Input: a CEMDS X; = (P;,X1,G1)
and a smooth point x € X; given in Cox coordinates z € K.

e Compute a list (fy,..., fi) of pairwise non-associated K;-prime genera-
tors for for I(P1,z) + (T}; z; = 0) € Ry and choose d; € Z>q such that
fi € I g,

e Call Algorithm 4.5.3 with input Xy, (f1,...,f1) and (di,...,d;). Denote

the result by (Ps, X2, Ga).

Output: (Py,X9,G3). If the verification was positive, then (P, Xo, G2) is a CEMDS
describing the blow up X5 of X; in z. In particular then the Ks-graded algebra Ro
is the Cox ring of Xa.

following example, we compute the Cox ring of Cayley’s nodal cubic surface. We
have published it in [56].

Example 4.5.10 (Cayley’s cubic). Let X; be the toric surface of Picard number
two coming with four singularities of type A;. So, X, arises from the fan ¥; in Z2
as indicated below
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(=1, 1) (1,1)

(=1,-1) 1, -1

We determine the Cox ring of the blow up X5 of X; at the unit element of the big

Xy as Ry = K[T1, ..., To]/I> graded by Ko = Z3 ®7Z/27 where generators of Iy and
the degree matrix Qo are

T2 — T? + TeTs, ToTs — T3Ts + TuTr,

-1 1 -1 1 0 2 0 -2 0
Tg — Ty —TeTy, T3Ts — T1T7 + T2Tg, 1 0 1 0 1 0o 1 2 0
TyTs — ThTe + ToT7, T1T5 — T3T7 + Ty Ty, 1 0 1 0 0 -1 o0 11
T22T3 —2T1T4 —T5Ty, T1 T2 — T3Ty — T7 Ty, i 1 5 0 1 o 0 o 0
T? — T2 — TsTy
Consider w := (0,1,1,1) € K> which is in fact the anticanonical class in Ky =

Cl(X3). Then the homogeneous component (Rz),, is of dimension 4 and it is gen-
erated by the classes

2o = TgTgTy, z1 = TyT5T, zg = T4T7Ty, z3 = T5THTg,

compare Algorithm:2.2.5. The rational map Xo — P, given in Cox coordinates by

z > (20,21, 22, 23), is a closed embedding. We see that the image in P3 is Cayley’s
cubic surface as we have in (Rg)s,, the relation

202122 + 202123 + 202223 + 212223 = 0.

We now give an example where the Cox ring computation with Algorithm4.5.3 fails
depending on the input multiplicities d; € Z>1. We will also see that the weighted
ambient toric blow up induces a blow up of the embedded varieties. This serves

also an example for the proof of the algorithm.

dimensional CEMDS X; with Z5-graded Cox ring, degree matrix and irrelevant
ideal

1 0 0 0 2 0 3 -1

Ry = K[T1,...,Ts]/ {f), o1 0 0 1 0 2 -1
- ) Q1= |0 0o 1 0 -3 0 -2 2|,

e AR R

ToTyT5TeTs, ThI3TyT7Ts, ToT5T6T7 T3,

T TT3Ty T, ThT3TaT5T7, ThI2T5T6Ts,
J pr—
T ToT3Te, T3TyT5T6, T3T6T7Ts

We want to blow up X; in the point € X; having z := (0,1,0,1,1,1,0,1) € X, C
K® as Cox coordinates. Set I := (Ty,T3,T7) C R;. By a computation, we have
prime elements f; € R; with multiplicities d; € Z~q where

Ples

i =Ty, fo:=1Ts [f3:=1T7 € Ry, Pley
dy =1, dy = 1, ds = 2.

embedding
L ]KS - Klla z = (Z, fl(z)7 f2(z)7 f3(z))
and the stretched CEMDS X]. On X{, we want to blow up the point ¢(z) with Cox



110 4. MODIFICATIONS OF MORI DREAM SPACES

Applying steps three and four, we obtain a modified ES X, with a ZS-graded ring

ToTio — T1, TioTi2 — T3, TiiTiz — T
R, = K[Ty.....T I o = < 9412 1, £10£12 3, 411412 7 >
2 T4, Th2l ) L, 2 T3 TELT2Ts — T2ToTia — T T

induced by

T; 1<:<8,
K[Tl, . ,T12] — Rl[ﬂsat, E — fi—rlt_ma 8<i< 12,
¢, i=12.

As predicted, observe that we indeed obtain an inclusion R;[I] C p(Rg) C Ry [
of algebras. By [98, Prop. 7.9, Prop. 7.10], the Rees algebra R;[I] and ¢(R2) even
coincide:

Ry[I]

¢(R2)

K[T1, ..., Ty, U1, Uz, Us, t] [ (g, Uit —T1, Uat — T3, Ust — 1),
K[Ty, ..., Ty, Uy, Uy, Us, t] [ (g, Urt — Ty, Uat — T3, Ust — T7),
g = USTPTst? — UiTut — UsTy,

Note that the inclusion p(Rg) € R1[I]** is proper as, by a direct computation, we
have Ty € (I : J>°)\ I?. This means 75t~ 2 is an element of (Ri[I]***)_5\ ¢(R2)_a.
Then Tt~ is an element of (¢) g, (7=« N @(R2) with T7t™ & (t)(r,)- As predicted,
the irrelevant ideal J C Ry contains the product T = ToT,T5TsTy over all T; with

x & V(Xy; T;). Passing to localizations, according to Lemma 4.5.5;, we have the

equality Ry[I]7v = ¢(Ra)rv = Ri[I)53¢ of localized algebras. For instance, we now
have

12

12

T, = T (T3TPTs — TET) € (17:0%),, = (I°),.-
Then (¢) g, (s N @(R2)rv equals (t)y(r,),. which implies that ¢ is a prime element
in ¢(Ry)7v. Consequently, ¢ and T are coprime in R;[/]5** but not in ¢(Rs) as
dim (Iz + (Th2, Ts)r,) = dim Iz + (Ti2)r,)-

fails. Had we chosen d3 = 2, we would have obtained U5’T42T5t — U12T2 — UsTg
instead of g, the codimension test is successful and p(Ry) = R;[I]***. This means
the Cox ring of the blow up is the Z°-graded ring

R(Xs) = K[Th,...,To) [ (T3TT5To — T{ Ty — TrTy).

Albeit implied by the proof of Algorithm 4.5.9, we now show directly that the
weighted ambient toric blow up induces a blow up of X; in z. Let P, = [vy,. .., vs]
be a Gale dual matrix of Q1. Then Q> - v1,...,Q>¢ - vg are the rays of the fan ¥;

of the canonical toric ambient variety Z; of X;. Choose coordinates
S3 = __ T Sy = _I S1 = N —
TST2TATOTS LTS TETE LT T2T3TE

for the affine chart (Z7), with the smooth cone o := cone(vy, vs,v7) € ¥1. Then

O((Z1)e N X1) = K[S1, 52,83/ (h), hoi= (p1).f = S5 — 57— 5.

Since d; = dy = 1 and d3 = 2, the blow up of X; in z is induced by a weighted
blow Zs — Z; of the toric ambient variety. By [84, Ex. 2], we have to blow up the
sheaf of ideals J in O((Z1), N X1) generated by

where we used the special shape of h. Taking the Proj, by Proposition :1.4.5, we

see that this induces the usual blow up of X; in z, i.e., Proj Z = Proj J where 7 is
the sheaf of ideals in O((Z1), N X7) generated by (S7,S2). Note that we blew up
a bigger orbit in Z; than anticipated; still, the insertion of the respective ray now

cuts out = € X;.
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The following algorithm produces a systematic guess for the generators and their
multiplicities d; € Z>; of the Cox ring of a blow up of a Mori dream space.

Algorithm 4.5.12 (BlowUpCEMDS2). Input: a CEMDS (P1,%1,G1), a K-
prime ideal I defining an irreducible subvariety C' C X inside the smooth locus.

e Let F and D be empty lists.
e For each k =1,2,... € Z>; do
— compute a set Gy of generators for Ay := IF : J>* C R;. Let
fr1, .., fr, be a maximal subset of pairwise non-associated elements
of Gk with

— Determine integers dg1, . .., dii, € Z>y such that fi; € Aqg,, \ Adp+1-

— Add the elements of fi1,..., fr, to F' that are not associated to any
other element of F'. Add the respective integers among dg1, .. ., dki,
to D.

cation, return (P, X9, Ga).

Output (if provided): the algorithm terminates if and only if X, is a Mori dream
space. In this case, the CEMDS (P2, X5, G3) describes the blow up X5 of X; along
C. In particular, then the Ks-graded algebra Ry is the Cox ring of Xos.

Proof. Note that each fi; is a K;-prime element. Otherwise, fr; = f1fo with K-
homogeneous elements f; € Ry. As I is Ki-prime, fi or f5 lies in Ay with &/ < k,
i.e., fr; € Ap. This contradicts the choice of f;.

By Proposition 4.5.2, the Cox ring Ry of the blow up is isomorphic to the saturated

Rees algebra R;[I]%**. After the k-th step, (F,Ti,...,T),,t) are generators for a
subalgebra By, C Ry [I]**" such that

K [{t} U R U Alt_l U...U Akt—k] C Bp C @Akt_k _ Rl[I]Sat.
keZ

If the algorithm stops, by the correctness of Algorithm 4.5.9, the output then is a

is called with K;-prime non-associated generators for R(Xz) = R;[[]%*" and thus
terminates with positive verification. O

used to determine generators and relations of each graded algebra A = @, eZoo Ak
if all Ay are finitely generated Ag-modules. N

with d; > 1 is needed. Recall that given a,b,¢ € Z>; with ged(a,b,c¢) = 1, the
weighted projective space P(a, b, c) is the complete toric surface with the C1(X) = Z-
grading of R(P(a,b,c)) = K[T1,...,T5] defined by the degree matrix

Q = [ a b c ] .
Example 4.5.14 (Blow up of a weighted projective space). We want to compute

the Cox ring of the blow up of X; := P(3,4,5) at the general point with Cox
coordinates z; := (1,1,1) € K3. The lattice ideal of z; with respect to P; is

I(Py,z1) = (T3 —TWTy, T?Ty — T3, TY —TT3),  Pi= [ 2 12 }
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I(Py,z1) and d; := 1 for all ¢ is unsuccessful: the dimension check fails. However,
adding the additional generator

fi o= TP =3T3 +TWT3 +Ty € I*:J%®

ring Ry = R(X32) of the blow up Xs of X in [z1]. All verifications are positive.
The ring is given as Ry = K[T1,...,Tg]/I> with generators for Iy and the degree
matrix being

—T1T7 + T4Ts + T¢, ) T1T7 — TaTr + T5Te,

—ThTyTe — T3T7 + T35, —ThWT5+ T2Te + T3T4,

T3 — T1T3 — TyTs, T]Z’*T2T3*T6T87 [ g 3 (5) _} 1 ? _g ? } .
T]2T4 — T2T5 + 13T, T{Te + T1T2Ty — T3T5 — T7Ts,

TETy — T — TsTy

In Algorithm'4.5.3; the saturation computation may become infeasible. In this case,

the following variant can be used to, at least, obtain finite generation.

Algorithm 4.5.15 (Finite generation). Input: a CEMDS (Pi,%1,G1), a Ki-
prime ideal I = (f1,..., fi) € Ry with pairwise non-associated K;-primes f; defin-
ing an irreducible subvariety C' C X; inside the smooth locus and coprime positive
integers dy,...,d; with f; € I% : J>.

e Compute the stretched CEMDS (P;, X7, G") by applying Algorithm4.3.2.
to (Pl, 21, Gl) and (fl; ey fl)

e Define a multiplicity vector v € Z"* by v; := 0if 1 < i < r; and
Vi =dj_y, forrm +1<i<r 4+ 1L

e Determine the stellar subdivision X5 — X of the fan X} along the ray
through Pj - v. Set Py := [P{, P] - v].

e Use Algorithms 2.2.12: and 2.2.13: to compute G% := (hy, ..., hs) where

hi = p3(p1)«(9i) and G1 = (g1,.-.,9s)-

e Choose a system of generators Go of an ideal I C K[T1,...,T,,] with
(Gy) : (Th -+ 10y )™ 2 I 2 (GY).

e Check if dim([y) — dim(lz + (T3, T;)) > 2 for all ¢ # j.

e Check if T}, is prime in K[Tjil; J # ro][Tr,]/ 1.

Output: (Py,¥92,G2). The ES (Ps, Yo, G2) describes the blow up X5 of X; along
C'. If all verifications in the last steps were positive, the Cox ring R(X3) is finitely
generated and is given by the Hs-equivariant normalization of K[T1,...,Ty,]/I> :
(Tl .. -ﬂ-2)°°.

Proof. By the last verification, the exceptional divisor D,, C X5 inherits a local
defining equation from the toric ambient variety Z5. Thus, the ambient modification
is neat in the sense of [51, Def. 5.4]. By [51, Prop. 5.5], X3 C Z5 is a neat embedding.
In turn, the dimension checks enable us to use [51, Cor. 2.7]. This completes the
proof. O

We will make frequent use of Algorithm 4.5.9: both directly as well as formally in

Chapter 5. To close this section, we now use the Cox ring computation 4.5.9. to

present the Rees algebras associated to certain binomial ideals in terms of generators
and relations; we retrieve [98, Prop. 7.10].

Definition 4.5.16. Consider a binomial ideal I = (Tl’z'+ —T% ;i=1,...,8) in the

polynomial ring K[T1, ..., 7T,] and let P be the s x r matrix with the rows v;t — v, .

Then K[T1,...,T,] is graded by the associated abelian group Ky := Z" /Tm(P*) via
deg(T};) := e; + Im(P*). We say that I is general, if the following properties hold:

(i) deg(Ty),...,deg(T;) generate a pointed cone in Kg,
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(ii) any 7 — 1 of the deg(T;) generate K as a group,
(iii) the ideal I is K-prime,
(iv) every T} defines a Ky-prime in K[T7,...,T;]/I.

Corollary 4.5.17. Compare [98, Prop. 7.10]. Let I be a general binomial ideal in
R:=K[Ty,...,T,] with Kr-prime generators f1,...,fs and consider the ideal

I' .= (SU;, — fi;i=1,...,8): 8 C K[S,Un,...,Us,T1,...,T,] = R

If S defines a K-prime element in R'/I', not associated to any of the Uy, T;, then
the Rees algebra R[I] is isomorphic to the factor algebra R'/I'.

Proof. Let X be any projective toric variety having the K-graded polynomial ring

K[T1,...,T}] as its Cox ring. Then, according to Algorithm 4.5.9; the ring R'/I’ is

a saturated Rees algebra. Since R’/I’ is generated in the Rees degrees 0, £1, it is
the usual rees algebra. a

6. Linear generation

In this section, we consider blow ups Xo — P, of the projective space P, in k
distinct points where the Cox ring R(X32) is generated by proper transforms of
hyperplanes. Certain relations to the underlying incidence structures are discussed.
As an application, we consider certain blow ups of six special points on P3. Most
of this section has been published in [57, Sec. 7] in joint work with J. Hausen and
A. Laface

We consider the blow up X of a projective space P, at k distinct points x1, ..., xk
where k£ > n + 1. Our focus is on special configurations in the sense that the Cox
ring of X is generated by the exceptional divisors and the proper transforms of
hyperplanes. We assume that x1,...,2,1 are the standard toric fixed points, i.e.,
we have
rp = [1707...70], ey Tn4+1 — [0,,0,1]

Now, write P := {x1,...,2x} and let £ denote the set of all hyperplanes £ C P,
containing n (or more) points of P. For every ¢ € L, we fix a linear form f; €
K[Ty,...,Tht1] with £ = V(f;). Note that the f, are homogeneous elements of
degree one in the Cox ring of P,.

The idea is now to take all T, where ¢ € L, as prospective generators of the Cox
ring of the blow up X and then to compute the Cox ring using Algorithms 4.3.2,
4.3.8 and '4.3.3. Here comes the algorithmic formulation.

Algorithm 4.6.1 (LinearBlowUp). Input: a collection z1, ...,z € P, of pairwise
distinct points.

e Set X; := P, let X1 be the fan of P, and P; the matrix with columns
€0, ---,€n Where eg = —(e1 + ...+ ¢ep).

e Compute the set £ of all hyperplanes through any n points of z1, ..., z,
let (f¢; € € L) be the collection of the f, different from all T;.

to (Pl,Zl,Gl) and (fg; { e £I)

e Determine the Cox coordinates z, € K" of the points z;, € X/ corre-
sponding to x; € Xj.

e Let 33 be the barycentric subdivision of 3] at the cones o}, corresponding
to the toric orbits containing z = p}(z}). Write primitive generators for
the rays of ¥ into a matrix P, = [Py, B].

the pair (PQ, 22)
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o Set (P3,35,Gh) := (Pa,X9,G2). Eliminate all fake relations by applying

Output: (P2, YXa,G2). If the verifications in the last step were positive, this is a
CEMDS describing the blow up of P, at the points z1,...,z;. In particular, the
Ks-graded algebra R is the Cox ring of Xs.

Besides for the proof of Algorithm:4.6.1; the following lemma will primarily be used

Zy arises from a barycentric subdivision of a reqular cone o € ¥1 and Xo — X1 has
as center a point x € X1NT"-z,. Let f be the product over all T; where Py(e;) & o,
and choose z € K™ with p1(z) = x. Then Xy — X1 is the blow up at x provided
we have

<Ti; 21:0>f+I(P1,Z)f = <Tu 6168>f+I(X1)f - K[T17~~~;Tr1]f~

Proof. Compare also [39, Lem. 14.9]. Let Z; , C Z; be the affine chart given by o
and set X , := X1 N Z1,. In order to see that the toric blow up Z; — Z; induces
a blow up X5 — X7, we have to show

my, = I(T" 2,) +1(X1,,) € I'(Z1,6,0).

Consider the quotient map ps : 71 — Z1. Then we have pl_l(ZLg) = K}l and, since
o is regular, T'(p; ' (Z1 5), ©) admits units in every Kj-degree. This implies

pi(my) = (T35 2 = 0)5 + I(P1,2)y,
PiI(T" - z5)) = (Ti; ei €0)y, PI(X10)) = I(X1)s.

Consequently, the assumption together with injectivity of the pullback map p; give
the assertion. O

induces a blow up of X1 in x}.

Proof. Observe that since any point x; can be mapped to a toric fixed point by an
automorphism of P,,, there are n hyperplanes in £ with intersection {z;} C PP, for
all 4. Furthermore, note that is suffices to consider £’ instead of L since the T; are
already present in R(PP,,).

hand side is H{-invariant and contains 2/, we have
1 7

5) Xy NV(Tje;€5)) 2 V(P 2)+(Tj; (2); =0) = H] .
Assume that (5) is an equality. Taking ideals, this then implies that I (Yll) +

(Ty; e; € o7) is equal to I(P[,2]) as the ideals are linear and thus radical; the

proof is concerned with showing that (5) is an equality. It suffices to compare
their dimensions. Write the coefficients of the (linear) generators of b; := I(X]) +
(T}; e; € 0;) into a matrix Ap,. Then

V(K5 b)) = {o €K Ay x =0}, dim (VK b)) = 7 — rank(4y,).
Changing coordinates, we may assume that z; = [0,...,0,1] € P,, i.e., it is cut

out by the n coordinate hyperplanes V(T}),...,V(T,) C P,. Starting with the
rows corresponding to these V(T};) C P, followed by the rows corresponding to the
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elements of G/, the matrix Ap, is of shape

0
E, : 0

Abi = 0
° °
° By

where 0 stands for a zero matrix and e for an arbitrary matrix of fitting size. Then
rank(Ap,) = n+s and 7} = n+ 1+ s shows that V(Kﬁ; b;) is one-dimensional. Let
ng € Z>o be the number of vanishing coordinates of z;. Then B = (eq, ..., €m,€o),
where m := 1] —ng — 1 and ey := (—1,...,—1), is a lattice basis for Im((P;)*) N

linear and we conclude

dim (V (I(P{, 2) + (Tj; (2); =0))) = 1 = (m+mng) = L 0

blow up at the points zi,...,z}. It remains to show that the input ring R5 of the
last step is normal; this is necessary for Algorithm 4.3.3. We only treat the case

k = 1. Cousider the stretched ring R} obtained from the third step and the ring
R5 obtained after the sixth step

/1 - K[T173TT1]/<G/1>7 Ry = K[Th--'aTr’lvTTz]/<G2>

where T, corresponds to the exceptional divisor. We assume that of the r] — ry
new equations T; — f; in G the last [ will result in fake relations in G3. Localizing
and passing to degree zero, we are in the situation

(Ri)1y.1,,

(R)Ty Ty froefrr (R)ry1, T,
1 1

! !

(B)r,1,)y — (B, sy ) = ((Bo)rier,y r,)

The upper left ring is Kj-factorial by assumption. By [15, Thm. 1.1] the middle
ring in the lower row is a UFD and the ring on the upper right is Ks-factorial.
Thus, Rs is Ko-factorial. Since K is free, also K5 is, so Rs is a UFD. In particular,
R is normal and we may apply Algorithm 4.3.3. O

0

Example 4.6.4. Let X be the blow up of Py in the seven points

p3

x1:=[1,0,0], z2:=10,1,0], z3:=10,0,1],
xg:=[1,1,0], w5:=[1,0,-1], z6:=1[0,1,1], 9 %

p1 p2

zr = [1,1,1]. 7

Write S; for the variables corresponding to x; and let 11, ..., Ty correspond to the
nine lines in £. Algorithm 4.6.1 provides us with the Cox ring of X. It is given as

the factor ring K[T7, ..., Ty, S1,...,57]/I where I is generated by

2785456 — T5S2 + T9S7, 271 S3S6 + 1555 — T6S7,
2T4S1Se + TeS2 — To S5, —T1S286 + T2S1S5 — T7S457,
2T7S354 + TeS2 + T9 S5, —T25553 + 135452 — T4 5756,
2735184 + T5S5 + TeS7, T1 5283 + T8S4S5 + T4 S157,
2738153 + T5S2 + To S7, TrTeS3 — T3T9 Sy — T4T5Se,

T3S152 + TgS556 — 175357, T3T9S1 — T5T7S3 — TeTsSe,
T2T6S1 — T5T7S4 + T1T9Se, TaTs5S1 + T1T9S3 + TeTsS4,
T3T7S; + T1TaS; + TaTeSs, ToTrS3 + TuTsS§ + TsTo Sz,
T\ T2S5 + T3TsS; — TaTsS7, T1T3S3 + ToTsSs + TuT7 52,

T3TuS; + T1T7S5 — TeTsSs, ToTaS; + T7TsS; — T1ToSa,
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ToT357 + T1TsSa + TsTrS7, TaTEZTr + ToTETs + T1T3Ty

and the Z3-grading is given by the degree matrix

0 -1 -1 —1 0 0 0 o 0 1 o O O O 0 O
-1 0 -1 0o -1 -1 0 o o o 1 0o O 0 o0 o
0 0 -1 0 0 0 1 1 1 1 1 0 0O O 0 o0
-1 -1 0 0 0 0o -1 o o o o 1 0o 0 o0 o
0 0 -1 0 0 0o -1 -1 0 0 0 O 1 0 0 O
0 0 0 1 —1 0 1 o o o 1 o O 1 o0 o
-1 0 0o -1 0 0 0o -1 0 O O O O O 1 o0
0 1 0 0 0 -1 0 1 0 o 1 o0 O O 0 1

Before eliminating fake relations, the ideal of the intersection of X5 with the ambient
big torus T2 admits the following description in terms of finite geometries. In our
setting, similar to [12], we call the pair £ := (P, L) a finite linear space and the finite
sets P and L points and lines, respectively. Note that each two points p,p’ € P
lie on a common line ¢ € £ and, for n > 2, there are three points not lying on a
common line. An element ¢ € £ is an m-line if it contains exactly m points. We
call £ an (m-)design if each line is a m-line. Moreover, £ is a near-pencil if there
are distinct lines #1,...,¢,_1 € L such that all points except one are contained in
(4. An m-arc is a subset of P within which no three points lie on a common line.

of Zy is the polynomial ring K[Ty, S,] with indices £ € L and p € P. Consider the
homomorphism

B: KTy LeL] — K[Ty,Sp e L,pePl, Ty = To-[[ S
pel
Then the extension of the ideal I C K[Ty,Sp] to the Laurent polynomial ring
K[Tziﬁ'pi] is generated by B(Ty — f¢) where £ € L. Moreover, properties of the

linear space £ = (P, L) lead to properties of Is as listed in the following table. The
t-cases require n = 2.

£ property of Ra or Xo

design I> is classically homogeneous

near pencil X2 admits a non-trivial K*-action

contains m-arc t X2 contains at least (ZL) + k many (—1)-curves
complete graph T X2 ts smooth

contains an m-line 1  Xo contains a (1 — m)-curve

Proof. Denote the elements of £’ by £;. The first statement is directly seen by
providing a weak B-lifting [E,,, A] in the sense of [10], i.e., we have a matrix A
fitting into
[Er’ 7A] ,
72 L 77
Pz[PnB]l ipl A = (aij)ij, G5 2= {

gn 4 on

1, T Egi,
0, else

and the corresponding morphism «: T — T™ satisfies a*(g) = p5(p1)«(g) in
K[TEL, ... , T for Laurent polynomials g € K[TE, ..., Trj,ﬂ].
1

We come to the claims listed in the table. For the first one, note that all 5(T;,— f¢) are
homogeneous and I, as a saturation, is obtained by a Grobner basis computation.
Grobner bases of homogeneous ideals are again homogeneous, see for example [1,
Ex. 1.8.3]. The second statement is due to the fact that, up to monomial factors, the
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For the remaining three claims, as each £ € £ has self-intersection number ¢? = 1,

number 2 =1 — m, see Proposition1.4.8. O
We now treat blow ups of P3 in six distinct points 1, ..., xg. As before, we assume
that x1,..., x4 are the standard toric fixed points. We call the point configuration

edge-special if at least one point of {z5, 26} is contained in two different hyperplanes
spanned by the other points.

Theorem 4.6.6. Let X be the blow up of P3 at distinct points x1,...,xe not con-
tained in a hyperplane. Then X is a Mori dream space. Moreover, for the following
typical edge-special configurations, we obtain:

(i) For x5 := [1,1,0,0], z¢ := [0,1,1,1], the Cox ring of X is R(X) =
K[Ty,...,Tie]/I where I is generated by

2T4Th3 — 2T5T16 — 2T3T14, TuT12T15 — T2Th14 — TeThe,
TsT12T15 — TeT13 + T7Thia, T3T12T15 — T2Ti3 — T7T1e,
D4 TsT11 T2 — ToT13 + Th0T14, T4T11Ti2 — TeT14 — ToThe,
T3T11T12 — T8T13 — TroThe, T1T12T13 + T7T11 — T10T1s,

3
6p P T1T12Tha + TeT11 — ToThs, Ti1T12T16 — T2Th11 + T8Ths,
p1
TsTg — T3Ty + T4Tho, ToTs — T3Te + TaTy,
Ps 2 2
D2 TW 15T, + T7T9 — TeT10, TWT3Ti5 + T7Ts — T2T10,

T\ TuTE, 4+ TeTs — ToTo

with the Z7-grading given by the degree matriz

1 1 1 1 1 1 1 1 1 1 0 0 O O 0 O
0 —1 —1 -1 -1 -1 -1 0 o o 1 0 0O O o0 o
-1 0o -1 —1 -1 0 0 0 o o o 1 0 o0 o0 o
—1 -1 0o -1 0 -1 0o -1 -1 0 0 O 1 0O 0 O
0 0 0 1 1 1 0 0 i1 0 o O O 1 0 O
1 1 0 0 0 1 1 0 o o o o o o 1 o
0 1 1 1 0 0 0 1 o o o o o o0 o 1

(ii) For x5 := [2,1,0,0], ¢ := [1,1,0,1], the Cox ring of X is R(X) =
K[Ty,...,Ti5]/I where I is generated by

D4 T1Th1 + T7Tha + 2T8Ths, To2Tho + T7Tha + TsT1s,
TyT11Tha — T2T13 — T5Ths, TaT10Tha — T1T13 — TeThs,
p3 TyTioT11 + T7Ti3 — ToTrs, TeTh1 — 218T13 — ToTha4,
P T5Tio — T8T13 — ToTha4, 2T4TsT10 + TeT7 + T1 Ty,
Ps » TyTgTh1 + TsT7 + 12Ty, TyT8T14 + T Ts — T2 Ts
2

with the Z7-grading given by the degree matriz

1 1 1 1 1 1 1 1 1 0 0O O O 0 O
0o -1 -1 -1 -1 0 0 0o 0 1 o O O 0 O
-1 o -1 -1 0o -1 0 o o0 o0 1 o0 0 0 O
0 0 1 0 0 0 0 o o0 o0 o 1 0 0 O
-1 -1 -1 0 0 o -1 -1 0 O O O 1 0 O
1 1 0 0 1 1 0 i1 0 0 0O O O 1 O
1 1 0 1 0 0 1 0o o0 o o o o o0 1

(iif) For x5 := [1,0,0,1], =g := [0,1,0,1], the Cox ring of X is R(X) =
K[Ty,...,T13]/I where I is generated by
2
T2TgT11 — TeTy + T7T13, T2T11T12 — TyT9 + T5T13,
b3 T1ToT11 — TsTg + T7T12, T1T11T13 — T4T8 + TeT12,

2! T1ToTE, — TsTe + T4Tr

P2
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with the Z7-grading given by the degree matriz

1 1 1 1 1 1 1 0 0 O O 0 O
o -1 -1 -1 -1 o o0 1 o o 0 0 O
-1 0o -1 -1 o -1 0 O 1 0 0 0 O
0 0 1 0 0 o 0 o0 o 1 0 0 O
-1 -1 -1 0 0 o 0 O o o0 1 0 O
1 0 0 1 1 o o0 o o o o 1 o0
0 1 0 1 0 i1 0 0 0O O O 0 1

(iv) For x5 := [1,0,0,1], ¢ := [0,1,1,0], the Coz ring of X is R(X) =
K[T1,...,Ti2]/I where I is generated by
D4

T3Tg — T5T12 — T2 Ty,
T4T7 — TeT11 — T1T10

P2
with the Z7-grading given by the degree matriz

1 1 1 1 1 1 0 o0 O O o0 o0
0 —1 -1 -1 —1 o 1 0 0O O o0 o
0 1 0 0 1 o o 1 0o 0 o0 o
0 0 1 0 1 o 0 ©O 1 0 0 O
—1 —1 -1 0o -1 o o o o 1 o0 o
0 -1 -1 0o -1 -1 0 0 0 0 1 ©O
0 1 1 0 0 o o o o o0 o0 1

(v) For x5 = [2,1,0,0], ¢ := [1,2,0,0], the Cozx ring of X is R(X) =
K[Ty,...,Ti2]/I where I is generated by

4

3ToT7 +2T5T11 + TeT12,
3T1Ts + TsTh1 + 2T6T12

with the Z"-grading given by the degree matriz

1 1 1 1 1 1 0 0 0O 0O 0 O
0 -1 -1 -1 o o 1 o 0 o0 o0 o
-1 0o -1 -1 o o o 1 0o o0 o0 o
0 0 1 0 0O 0 0 O 1 0 0 O
0 0 0 1 o o o o o 1 o0 o
0 0o -1 -1 -1 0 0 O O O 1 o0
1 1 0 0 1 0 o0 O O o o0 1

Proof. See [57, Thm. 7.5] for the proof of the first statement. The second part of
the theorem is an application of Algorithm 4.6.1. O



CHAPTER 5
Smooth rational surfaces

In this chapter, we prove that each smooth rational surface of Picard number at
most six is a Mori dream space. In terms of Cox rings, we present a complete
classification for the case of Picard number at most five and a classification for the
surfaces that do not admit a non-trivial K*-action for Picard number six. All Cox
rings are listed explicitly in terms of generators and relations.

Using the fact that each smooth rational surface can be obtained as a blow up of the
projective plane Py or the Hirzebruch surface F,, we proceed by the following steps.
In Section 1, we classify the needed point configurations on P, and F,. Afterwards,

ups of these configurations. For blow ups of F,, we apply Algorithm 4.3.8 in a
formal way.

In Sections 2" and '3, we classify the Cox rings of all families of smooth rational
surfaces X of Picard number o(X) < 5. Eliminating isomorphic surfaces, it turns
out that besides ng there are only surfaces with a non-trivial K*-action. In
Section 4, we obtain the smooth rational surfaces of Picard number six as blow
ups of the surfaces from the previous step. Here, we classify the Cox rings of the
surfaces without a non-trivial K*-action. The result of Section 4. (and the proof of
one of the cases) has been published in the paper Computing Cox rings together
with J. Hausen and A. Laface [57, Sec. 6].

1. Point configurations on P; and F,,

In this section we classify the point configurations on the projective plane and the
Hirzebruch surface which we need to blow up in order to obtain the smooth rational
surfaces of Picard number at most six in Sections 2,3 and 4.

Recall from [5, Rem. II1.2.5.5] that we can identify points on a Mori dream space
by their Cox coordinates. This generalizes homogeneous coordinates on P,,.

Notatlon 5.1.1. Let X be a Q-factorial Mori dream space Wlth characteristic
space p: X — X and characteristic quasitorus H. For any z € X C K" we write
[2] == p(z) € X. Note that [z] = [¢/] if and only if 2/ € H - z. Furthermore, given
an ideal I C K[T1,...,T,] that is generated by Cl(X)-homogeneous polynomials
f1s- -y [n, we write

VXi fryei fu) = VX5 D) = p(V(F5 D) € X,

To symbolize point configurations, we draw Py as the big torus (gray) together with
its boundary divisors V (IPy; T;) (the black bordering lines). Points are identified by
their position on the torus or boundary divisors. For instance, the following picture
symbolizes Py with the points [1,0,0], [1,1,0] and [0, 1,0].

V(TZ,)AV(T”

V(T3)

119
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Proposition 5.1.2. FEach configuration of at most five distinct points on Py can be
moved by an automorphism of Py to one of the following configurations. Occurring
parameters are distinct elements of K* \ {1}.

configuration points

Pa(s) {11,0,0)) A\
]P’Q(**) {[170,0},[0,170]} A
]P’Q(*** l) {[170,0},[0,170], [0,0,1]} A
]P’Q(*** 1,7,) {[1,0,0},[0,1,0], [1,1,0]} A
]P’Q(**** 7,) {[1,0,0},[0,1,0],[0,0,1],[1,1,1}} A
Po (kxk* %) {[1,0,0],[0,1,0],[0,0,1],[1,1,0]} A
[P2(**** ZZZ) {[1,0,0},[0,1,0],[1,1,0],[1,)\,0}} A
]P2(***** ’L) {[1,0,0},[0,1,0], [0,0,1]7 [1,1,1],[1,)\, /J]} A
]P’Q(***** ”LZ) {[1,0,0},[0,1,0], [0,0,1], [1,1,1],[1,)\, 0]} A
Pa (xkkxx ’L’L’L) {[1,0,0},[0,1,0]7 [0,0,1]7 [1,1,0],[1,0, 1}} A
Po (kxk*x 10) {[1,0,0],]0,1,0],]0,0,1],[1,1,0],[1, A, 0]} A
Po (kxk*x v) {[1,0,0],[0,1,0],[1,1,0],[1, A, 0],[1, &, O] } A

Remark 5.1.3. Given triples (p1,p2, ps) and (q1, g2,93) of non-collinear points in
Py, there is exactly one projective linear transformation mapping the p; to the g;.
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[0,1,0] and [0,0,1] € Po. Applying a suitable torus element, we additionally achieve
that py is as claimed in Po(x % * % % 7).

Case 2: There is a line in Py containing exactly three of the points. Subcase A: No
other line in Py contains three points. We may assume that the line contains p;, ps
and ps. After a projective transformation, we have

p1 = [17030]7 b2 = [0,1,0], b3 = [anal]a P4 = [I,A,OL Ps = [17H7V]'
Scaling ps with a torus element, we arrive at the configuration Po(* % % % % 7).
Subcase B: There is an additional line in Py containing three of the points. We may
assume that p1, ps and p4 are elements of one line and p;, p3 and ps lie on the other
line. After a projective transformation, we have

b1 = [LOaO]a b2 = [0,1,0], p3 = [anv 1]a by = [17>‘30]7 Ps = [1703/1']'
Scaling ps and ps with a torus element leads to the configuration Pg (% x x % % iii).
Case 4: There is a line in Py containing exactly four of the points. We may assume
that the line contains all points except p3. After a projective transformation, we
have

p1 = [1,0,0], p2 =[0,1,0], ps =1[0,0,1], ps = [1,A0], ps = [1,u,0].
Scaling ps with a torus element, we arrive at the configuration Pa (% * x % * v).
Case 5: There is a line in Py containing all points. After a projective transformation,
we have

p1 = [1,0,0], p2 =1[0,1,0], ps = [1,\0], ps=[1,1,0], ps = [1,1,0].

Scaling ps with a torus element, we arrive at the configuration Py(* x x x x v). O

Recall that, given a € Z>¢, the a-th Hirzebruch surface is the complete toric sur-
face F, corresponding to the following complete fan with its rays generated by the
columns of P

(0,1)

P = |: -1 1 0 0 :|
. 1 1 0 -—a
(-1.-a) © = [ 0 0 1 1 }

Then R(F,) = K[T,...,Ty] is graded by CI(F,) = Z? via deg(T;) = Q(e;). Similar
to Py, we draw F, as the big torus (gray) together with its boundary divisors

(1,0)
0,-1)

and are drawn according to their position on the torus or boundary divisors. For
instance, the points [0,1,0,1] € F, and [0,1,1,1] € F, are drawn as follows.
V(T5)
vy v
V(Ty)

Note that the self-intersection numbers of the V(F,; T;) are a for i = 3, —a for
i =4 and zero for ¢ € {1,2}, see [28, Thm. 10.4.4].

Proposition 5.1.4. Let a > 2. Each configuration of at most min(a + 1,4) dis-
tinct points on F, can be moved by an automorphism of F, to one of the following
configurations. Occurring parameters are distinct elements of K* \ {1}.

configuration points

Fo ( 4) {10,1,0,1]} E




5. SMOOTH RATIONAL SURFACES

Fo(x ii) {[1,0,0,1]}

Fo(*x i) {[0,1,0,1],[1,0,0,1]}

Fo (%% ii) {[0,1,0,1],[0,1,1,0]}

Fa (e id) {[0,1,0,1],[1,0,1,0]}

Fo(x% iv) {[0,1,1,0],[1,0,1,0]}

Fo(x% v) {[0,1,0,1],[0,1,1,1]}

Fo (x4 7) {[0,1,0,1],[1,0,0,1],[0,1,1,0]}
Fo (x4 i) {[0,1,0,1],[0,1,1,0],[1,0,1,0]}

Fo (%K% 1i7)

{l0,1,0,1],[1,0,0,1],[1,1,0,1]}

Fo (kx* 1v)

{[0,1,0,1],[1,0,0,1],[0,1,1,1]}

Fo(kx* v)

{l0,1,0,1],[0,1,1,0],[0,1,1, 1]}

Fo (k%% v1)

{l0,1,0,1],[1,0,1,0],[0,1,1,1]}

Fo (%% vit)

{l0,1,1,0],[1,0,1,0],[1,1,1,0]}

Fo (xk* vii4)

{l0,1,0,1],[1,0,1,0],[1,1,1,0]}

Fo(xkx 1)

{[0,1,0,1],[0,1,1,1],[0,1,1, A]}

Fo(kx* x)

{[o0,1,0,1],[1,0,0,1],[1,1,1,0]}

Fo(xkx xi)

{[o0,1,1,0],[1,0,1,0],[1,1,0,1]}

EEEEEEEEENESRNENEEHE
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Fq (%% i) {[0,1,0,1],[1,0,1,0],[1,1,0, 1]}
Fo (kkxk i) {[0,1,0,1],[1,0,0,1],[1,1,0,1], [1, A, 0, 1]}
Fo (xk i) {[0,1,0,1],[1,0,1,0],[1,1,0,1], [1, A,0, 1]}

| {[0,1,0,1],[1,0,1,0],[1,1,0,1],[L, A, 1,0]}

Fa(**** ZU) {[07170’ 1}1[17071’0}1[17171’0L[>‘7)‘7170]}
Fa,(**** U) {[07171a0}1[17071’0}1[17171’0L[17)‘71’0}}
Fo (kkxk i) {[0,1,0,1],[1,0,0,1],[1,1,0,1],[0,1,1,1]}

Fo (k%% vii)  {[0,1,0,1],[1,0,0,1],[1,1,1,0],[0,1,1,1]}

Fo(**x* viii)  {[0,1,0,1],[1,0,1,0],[1,1,1,0],[0,1,1,1]}

Fo (xkkx iz) {[0,1,0,1],[1,0,1,0],[L,1,0,1],[0,1,1,1]}

Fo(k%x% ) {[0,1,0,1],[0,1,1,0],1,0,1,0],[1,1,0, 1]}

Fo (kxxk x4) {[0,1,0,1],[1,0,1,0],[0,1,1,0],[1,1,1,0]}

Fa(**** xzz) {[07 17 0’ 1}’ [17 07 0’ 1}’ [07 17 1’ O}’ [17 17 0’ 1}}

Fo(**x* miii)  {[0,1,0,1],[1,0,0,1],[0,1,1,0],[L,1,1,0]}

Fo.(x*xx* xziv) {[0,1,0,1],[1,0,0,1],[0,1,1,1],[1,0,1, ]}
r € K*

IEEEEEEAOEEREERERER

Fa(**** $’U) {[07 17 Oa 1}’ [17 07 Oa 1}’ [07 17 1’ OL [17 07 1’ 1}}
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Fo(xkxx zvi)  {[0,1,0,1],[1,0,0,1],[0,1,1,0],1,0,1,0]}

Fo(sxx zvii)  {[0,1,0,1],[1,0,0,1],[0,1,1,1],[0,1,1, A]}

Fo (k%% zviii)  {[0,1,0,1],[1,0,0,1],[0,1,1,1],[0,1,1,0]}

Fo(sokix ziz)  {[0,1,0,1],]1,0,1,0],[0,1,1,1],[0,1,1, \]}

Fo(k*xx zz)  {[0,1,0,1],[0,1,1,0],[1,0,1,0],[0,1,1,1]}

Fo(ksxk zxi)  {[0,1,0,1],0,1,1,1],[0,1,1,A],[0,1,1, ]}

Fo(kxxk zxid)  {[0,1,0,1],[0,1,1,0],[0,1,1,1],[0,1,1,A]}

0EEEEH

Lemma 5.1.5. Let X1, X5 be Mori dream surfaces. Then the following statements
are equivalent.

(i) X1 and X5 are isomorphic.
(ii) R(X1) and R(X3) are isomorphic as Cl(X;)-graded algebras.
(iii) The affine Hx,-varieties X1 and Xy are isomorphic.

In particular, each H;-equivariant automorphism of X; s an H;-equivariant auto-
morphism of X;.

Thm. 1.2.2.4]. We only need to show that (iii) implies (i). Let (¢, ®) be an isomor-
phism between the affine H;-varieties X; and Xo. Then both )/(\'2 and <p()/(: 1) are
open, Ho-invariant subsets of X such that the complement in X is of codimension
at least two, the good quotient by Hs exists and is projective. Since X5 is a surface,
we obtain ¢(X;) = Xo. O

Lemma 5.1.6. Let H be the characteristic torus of F,.

(i) Given A € GL(2,K), we have an H-equivariant automorphism of EL -
K* given by

~

PA: Fa — ﬁ(La (Zla"'vz4) = (y17y25Z37Z4)3 Yy = A'(Zlsz)'

(i) For each t := (ta,ta—1,...,t0) € KT we have an H-equivariant auto-
morphism

a
i Fq — Fo, z = (zl, 29, 23+ 24 Ztszzgfk, z4> .

k=0
Proof. By Lemma 5.1.5, it suffices to show that ¢4 and ¢, are H-equivariant

automorphisms of F,. Both ¢ and ¢; are H-equivariant since (% and ¢} are
Cl(F,)-graded; compare [6, Cor. 2.3]. The inverse map for (i) is given by w —
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(1,72, w3, wy) with @ := A7 (w1, ws). In (ii), given a vector w € F,, the in-
verse map assigns ws — (t,w§ + ... + towg) to ws and is the identity on the other
entries. 0

Let p1,...,ps € F, be Cox coordinates for the four points on F,. Consider the 4 x 4
matrix B := [p1,...,ps] where we may assume that rank([pi, p2]) = rank([p;, p;])
for all 4, j. In the case of rank([p1, p2]) = 2 and of rank([p;, p2]) = 1, respectively,
choose A € GL(2,K) such that

)= [TEEE] W [1EEE]

where Es is the 2 x 2 unit matrix and « stands for an element of K. By Lemma 5.1.6,
the map corresponding to the above matrix multiplication is an automorphism.
Write q1,...,q4 for the columns of the resulting matrix. It suffices to treat the
case a = 3 and rank([q1,g2]) = 2, i.e., we have 11 = ¢g22 = 0 and ¢q12 = go1 = 1.

We now look for t = (t3,...,ty) € K* such that the automorphism ¢; defined in

vi(z) e V (@a; Tg) & —z3 = t32524 +tozirozy + 1212524 + tozs 2

by definition of ;. Thus, in the last equation, substituting ¢; for z we look for
solutions of the linear system of equations

0 0 0 q14 | —q13
_ e q24 0 0 0| —q23
At =0, (A,b) = 3 2 2 3| _ .
d34d31 434931932 43443193y 934952 433
4493y 9444931942 444941935 9449y | —443

We say that two points ¢; and g; lie in a fiber if ¢;1qj2 = qiagj1. If all ¢4 # 0,
replacing g¢;3 by qigq;l17 we may assume that ¢;4 = 1 for all 7. Then the rank of A
equals the number of different fibers the points lie in:

4, exactly 4 fibers with one point,
rank(A) = 2 + rank ([ Z%l‘m 95103 D = ¢ 3, exactly 1 fiber with two points,

11942 941915

2, exactly 2 fibers with two points.

In particular, the system At = b is solvable if there are four different fibers contain-
ing exactly one point and we can move rank(A) many points to V(F,; T3) by an
automorphism ;. To achieve the shown coordinates, one can move general points
in V(Fg; T5) and V(Fg; T4) simultaneously or in all fibers simultaneously either by
the automorphism ¢4 of Lemma 5.1.6 or using a K*-action. We treat exemplarily

configuration F,(* x x x xiv). Here, we are in the case rank(A4) = 2, i.e., after the
aforementioned transformation, the points are

a1 = [0,1,0,1], g2 = [1,0,0,1], qz = [0, b2, b3, by], qa = [e1,0, 2, c3],
with b;, c; € K*. Note that there are K*-actions
K* x @a —

K*XIAFG —

@a, (t,2) — (tz1,tze, 23,1 %24),

@m (t,z) — (z1,292,tz3,t24).

In particular, we see that ¢; = [0, k2,0, k4] and g2 = [11,0,0, 4] for any k;,[; € K*.
Thus, scaling the last components of the listed Cox coordinates for g3 and the first
component of the Cox coordinates for g4, we obtain the points {q1,q2,q5,q}} as
shown in the table where

C3 C4
?b3? b4

b
} = [1,0,1,K], H:ZS—QEK*.D

5= 10,1,1,1 1= 11,0
QS [7 9 L ]7 Q4 |:7 b403
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2. Smooth rational surfaces with o(X) <4

Building on the classification of point configurations in Section 1, we classify the
smooth rational surfaces of Picard number at most four in terms of their Cox rings.
The idea is a stepwise application of Algorithm 4.3.8 in the following formal way.

Remark 5.2.1 (Formal blow up). Consider a smooth, two-dimensional CEMDS
X1 = (G1, P1, %) with free class group K. Let X5 be the blow up of X3 in a point
x € X1 with Cox coordinates z € K™. We guess and verify a candidate for R(X32)
by the following steps.

Choose prime elements fi,..., f; € I(Pi, z) + (T;; z; = 0) in Ry.

[ ]
Q
Q
=)
T
==
I
@
—
=
@
w
=3
=
@
=
o
=
@
o
Q
=
-,
w2
»—A>S
lon
<
=
=
@
wn
=
D
kel
7}
o
=
2=
05
Q
=
+
=
=
=~
w
[\
£
=
=

input f1,..., fi.
e Formally apply Algorithm 4.3.8 with option verify:
— compute the ideal Iy C K[T},...,T,,] and show that it is saturated
with respect to T5.,,
— show that (T.,) + I CK[T},...,T},] is a prime ideal,
— show that the codimension of Xo N V(T,,,T;) is at least two for all
i < 7o and that T is not associated to T for i # j.
Prove that the performed modification was a blow up.

e Remove redundant generators with Algorithm 4.3.3:if necessary.

For details and correctness of the steps we refer to the proofs of the respective
algorlthms in Chapter 4‘ Theorem 4.2.6. and Proposition 4.1.4. In the followmg7 we

Notation 5.2.2. Denote by the prefix Bl the blow up of a point configuration. For
instance, Bl Po(x* % #4) is the blow up of P in the configuration Py (* % i¢) defined
in Proposition 5.1.2. Iterated blow ups are indicated by exponents and consecutive

numbers; for example Bl Py(x® ii) stands for (the second occurrence of) a blow up
of Py in three infinitely near points.

Remark 5.2.3. Each smooth rational surface X can be obtained as a blow up of
PP, or as a blow up of the Hirzebruch surface F, where a € Z>¢; see [14, Thm. V.10].
Note that Fy = P; x P; and F; = Bl Py(%). Moreover, each blow up of P; x Py is
isomorphic to a blow up of F;. In particular, it is a blow up of Py in two points.

Proposition 5.2.4. Let X be a smooth rational surface with Picard number o(X) =
2. Then X is isomorphic to exactly one of the following.

X Coz ring R(X) degree matriz
BIPs(x)  K[T1,...,Tu] [é o4 (f}
Fa, K[T1,...,Ty] [3 o 4 “;}
a#1

Proof. By Remark'5.2.3; the surface X can either be obtained as a blow up of Py in

configuration we need to consider. Clearfy, F, = Bl Py(%) and F, is not isomorphic
to the toric variety Bl Po(x) for a # 1. |

Proposition 5.2.5. Let X be a smooth rational surface with Picard number o(X) =
3. Then X is isomorphic to exactly one of the following.
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X Coz ring R(X) degree matriz
[1 0 o 1 0
Bl P2(x2) K[T4,...,Ts] 0o 1 o0 1 -1
0 0 1 -2 1
1 0 0 1 0
BlPa(xx) K[T1,...,Ts] 0 1 o0 0 1
0o 0 1 -1 -1
1 0 0 -1 -1
BlF.(x4i) K[T4,...,Ts] 0 1 0 —a+1 1
>3 0 0 1 1 0
a 2z

The following lemma helps us to identify Gale dual matrices also for the case of
formal parameters.

Lemma 5.2.6. Let P be an integral n x r matriz with rank P = n and r > n.
Assume Z7 /Tm(P*) is free. Then an integral (r —n) X r matriz Q is a Gale dual
matriz of P if all of the following conditions hold.

(i) We have rank(Q) =1 —n.
(ii) Fach row of Q is an element of ker(P).
(iii) For each 1 < k < n, the k x k-minors of Q are coprime.

Proof. By (ii), the lattice L < Z" spanned by the rows of @ is contained in ker(P).
Due to (i), the saturated lattice satisfies L5** = ker(P). The third condition means
that the elementary divisors of L are all equal to one, i.e., L3 = L. (Il

Remark 5.2.7. Let X be a smooth rational surface. By [14], each negative curve
C on X is an exceptional divisor and therefore smooth. In particular, the proper
transform of C under the blow up X’ — X of X in a point x € C'is a (C% —1)-curve,
see Proposition 1.4.8.

Picard number o(X) = 3 can be obtained as a blow up of Py in two points or as the
blow up of F, in one point where a € Z>5. The configurations we need to consider
are listed in Propositions'5.1.2 and :5.1.4.

We now compute the Cox rings of the listed surfaces. The variety Bl Py(%?) is a
blow up of Z’ := Bl Py(%) in a point in the exceptional divisor. As a toric variety,

7' is given by a fan ¥’ with its rays generated by the columns of

(0,1) 1, 1)
po=[ b 0] K o
(=1, -1)

The exceptional divisor of Z’ is V(Z'; Ty) which consists of the toric orbits through
the points

[1,0,1,0,  [1,1,0,0], [1,1,1,0] € Z.

Note that we can move both the third point and the second point to the first point
by using the respective equivariant automorphisms

z = (21, 22 — 23, 23, 24), Z = (Zl, Z3, 22, 24)

by the stellar subdivision of ¥’ at (2,1) € Z2.
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The surfaces Bl F, (% i) and Bl F, (% ii) are obtained from F, by stellar subdivision
of the fan of F, at v € Z* where v = (=1, —a+1) or v = (=1, —a — 1), respectively.
By Lemma 5.2.6, the degree matrices of the Cox rings K[T1,...,T5] of Bl F,(x 7)

and Bl F,(x i) are Gale dual matrices of

[P, v], P::[‘1 1o O}.

—a O 1 -1
Note that Bl F, 41 (% ¢) is isomorphic to Bl F, (x i) for each a > 2: as toric varieties
both surfaces share the same fan
(0,1)
(1,0)
(0,-1)

(=1, —a)
(=1,—a—1)

Hence, we may remove Bl F,(x i) from the list. Observe that we also may omit
Bl Fa(* ¢). Let Z be the blow up of Py in the fixed point [0,0,1]. Blowing up
the fixed point [0,1,1,0] € Z, we obtain the toric variety Bl Fo(x 7). Therefore,
Bl Fy(* i) is isomorphic to Bl Py(%2).

To show that the remaining listed surfaces X are pairwise non-isomorphic, we com-

X V(T1)? V(T2)? V(T3)? V(Tu)? V(Ts)?
Bl P2 (%2) >0 —1 >0 -2 -1
BI P2 (%) >0 >0 -1 -1 -1
BlF,(x4),a>3 -1 >0 >0 —a -1

Proposition 5.2.8. Let X be a smooth rational surface with Picard number
o(X) =4. Then X is isomorphic to exactly one of the following.

X Coz ring R(X) degree matriz
[1 0 o o 2 -1
Bl Py (x? ) K[T1,...,Ts] O
L0 0 0o 1 -2 1
KTy, ..., T7]/T 1 0 0 1 0 1 o0
Bl P2 (3 44) with I generated by 8 é (1) _; 8 _f _1
T32T4 _ T1T2 _ T6T7 L 0 O 0 0 1 1 -1

Bl P (%% i) K[T1,...,Ts]

1
oo
coroO
or oo
—HOoOOoO

|
IS

|
—o -
|

Bl P2(x2% i4)  K[T4,...,Ts]

1

oo or

coroO

or oo

D= O

—OomOo
|

-~ oo

1

Bl PQ(*** Z) K[TL ey TG}

1
coor
co~o
or~oo
—~ooo
ho ML
O
| I
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K[Ty,...,T7]/T 1 0 o o -1 -1 1
Bl Po (%% %) with I generated by 8 é (1) 8 (1) } _?
ToTy — ThTs — TeTw L 0O 0 0 1 1 2 -1
1 0 0 a-3 -2 -1
Bl Fo(x+ i) K[T1,...,Te) PO S
a>3 [0 0 0 a-2 -1 -1
K[Ty,...,T7]/1 1 0 o o o 1 —1
Bl Fo(xx v)  with I generated by 8 é (1) 8 1 2a ii 7‘”’1
a>3 TsTy — TSTy + TsTs L0 o o0 1 1 2 -1
1 o o o —2
Bl Fo(x? 4) K[Ti,...,Te) oYy ety e
a>3 0o 0o o0 1 —1 1
[1 0o o o 1 -1
Bl Fo(x2 i) K[T1,...,Te) o a0y el et
a>3 L0 o o0 1 2 -1

In particular, the cases Bl Py(x® i), Bl Py(% % % ii) and Bl Fo(x* v) are non-toric
K*-surfaces. The remaining surfaces are toric.

For the proof of Proposition 5.2.8; to avoid redundancies, we must be able to test
surfaces for being isomorphic. We give a solution for toric and non-toric K*-surfaces.
Afterwards, we provide easy to check conditions on whether an ambient modification

was a blow up and on when a point in the total coordinate space is relevant.

Notation 5.2.9. Let A and B be n x r matrices. We write A = B if A equals B
up to permutation of the columns.

Remark 5.2.10. Let Z and Z’ be complete toric surfaces. Write primitive gener-
ators for the rays of their fans into the columns of matrices Pz and Pyz/. Then

71 = 7y & A-Py; = Py for some A € GL(2,7).

Algorithm 5.2.11 (Toric surface isomorphismv te,s,t,)', Input: 2 x r matrices Py =

[p1,...,pr) and Pz = [p},...,p;] as in Remark 5.2.10:such that both the py,...,p,
and p/,...,pl. contain a lattice basis for Z2.

e Choose a lattice basis (p;,,pi,) for Z2.
e If there is an ordered lattice basis (pj,,p/,) for Z* such that Aj,;, - Pz =
Pz with the invertible matrix Aj, ;, := [p’; ,p],]- [pi, > i,] 1, then return

true. Otherwise, return false.

Output: true if Z is isomorphic to Z’ and false otherwise.

Proof. Each A € GL(2,Z) maps a lattice basis to a lattice basis, i.e., A - [pi,, Pi,] =
[P}, , P},] which means A = Aj, ;,. Thus, the algorithm runs through all possibilities

of Remark5.2.10. O

Algorithm 5.2.12 (Classify toric blow ups). Input: the fan g of a complete
toric surface Zy and an integer s € Z>;.



130 5. SMOOTH RATIONAL SURFACES

e Initialize lists Ly := (Xg) and L; := 0 for i € {1,...,s}.
e Foreachi=0,1,...,s—1do
— for each X € L; do
x for each maximal cone o € ¥ do
- perform the barycentric subdivision ¥/ — ¥ of ¥ at o.

such that the toric variety Zx» is isomorphic to Zy/. In-
sert ¥ into L, if this is not the case.

Output: L. This is a list of the fans of all complete toric surfaces that can be
obtained from Zy by s blow up steps. Of these surfaces, no two are isomorphic.

We now turn to methods for testing whether two K*-surfaces are isomorphic. We
use the fact that, in the sense of Proposition :1.5.8, admissible operations preserve

Remark 5.2.13. Consider K*-surfaces X = X(P,A) and X' = X(P’',A’) as in
Construction 1.5.2. Assume that the Cox rings are of shape

R(X) = K[Tla cee 7Tn+m} / <g>7 g = COTl0 + ClTl1 + CQTl27
R(X') = K[Th,....Torml /(d), ¢ = hT' + T + T

with ¢;, ¢; € K* and integral vectors [; € ZZj, I} € ZZ;O. By Remark 1.5.9, X and

K2

X’ are isomorphic if and only if P’ = S - P - U with admissible matrices S,U. In
particular, up to permutation, the sets of exponent vectors of g and of ¢’ coincide:

{o0(lo), o1(l1), oa(l2)} = {I5, 1}, 15} for some o; € Sym(n;).
Algorithm 5.2.14 (K*-surface isomorphism test). Input: K*-surfaces X7, X as

A-Qq Uy = Q2 with a permutation matrix Uy € GL(n + m,Z).
e Return true if one of the matrices U4 is admissible and false otherwise.

Output: true if X; = Xo and false otherwise.

admissible matrix S € GL(3,Z) and an admissible permutation matrix U € GL(n+
m, Z) such that P, = S-P;-U. Then Q% := Q1(U1)! = Q.U satisfies P2(Q%)! = 0.
Hence, both Q2 and QY have a basis for ker(P) as their rows, i.e.

Qy=A-Qy=A-Q,-U for some A € GL(k,Z).
Similarly, for the reverse implication, assume that Qy = A’ - Q1 - U’ with A’ €
GL(k,Z) and an admissible permutation matrix U’ € GL(n + m,Z). Then P; :=
Py - ((U')~1)! satisfies Py - Q4 =0, i.e.
P, =5-P), forsome S €GL(n+m-—kZ).

Since U’ is admissible, both Pj and P, = S’ - P} are in block shape as in Construc-
tion 1.5.2. Therefore, the only possible row operations performed by multiplying

S’ from the left is adding multiples of the upper r rows to the lower ones, i.e., S’ is
admissible. O

space embedded in its canonical toric ambient variety, Zo — Zy arises from a
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barycentric subdivision of a reqular cone o € ¥1 and Xo — Xy has as center a
point x € X1 N (T™ - z(0)) with Cox coordinates z € K". Then Xo — X is the blow
up at x provided the following conditions are fulfilled.

(i) The grading group K is free.
(ii) The ideal I(X1) + (Ti; 2z = 0) C K[T1,...,T,,] is prime.
(iii) The torus Hy := SpecK[Ki] and X1 N V(T;; z; = 0) are of the same

dimension.

Proof. Write Jy := I(X1) + (T}; z; = 0) and Y := V(K"; Jy). Since z € Y, also the
orbit closure H; - z is contained in Y. It can be described as

H1~Z = V(Kr; Jz), JQ = I(P172)+<T2,2’1:0>
By conditions (ii) and (iii), Y is irreducible and of the same dimension as V(K"; .J3),
which shows Y = V(K"; J5). Again by (ii), we conclude J; = v/J5. Since the grad-
ing group is free, by [82, Thm. 7.4], I(Pi, z) is a prime ideal in the ring K[T}; z; # 0].
The integral domain K[T,...,T,]/J> is isomorphic to K[Tj; z; # 0]/I(Pi, z), so we
arrive at J; = Jy. An application of Lemma 4.6.2: concludes the proof. O

(i) Consider = € X1 C K™. If z; = 0 for evactly one 1 < i < ry, then
S Xl. . .
(ii) If X1 is a surface, then X| =1(X1).

Proof. Let v := QY. Given a face vy = =, write T,, € K[T1, ..., T,] for the product
of all T; with e; € v9. By the construction of bunched rings'1.3.6, each facet vy <
is a relevant §-face and )Aﬁ equals the union of all X \ V(Yl; T,,) where yo = v
runs through the relevant F-faces. Choosing ~o := cone(e;; z; # 0) proves the first
assertion. For (ii), consider the diagram

Yl 2 )?1 — X

= lg

— S / H1

X, 2 X X1
with the characteristic quasitorus H; of Xj. jince X is a surface, )?1 C X, is
the only open subset with its complement in X; of codimension at least two that
admits a quasiprojective quotient by H;. Thus, as 7: X1 — Yll is an isomorphism,
so is ¢: X1 — X| and we obtain 7(X;) = Xj. O

Lemma 5.2.17. Let f € K[Th,...,T;] be such that T; t f for all j. Assume there
is a variable T; dividing exactly one non-zero monomial T of f and T? 4 T*. Then
f is prime.

Proof. By choice of f, each factorization must be of the form f = (g1 + T;g2)h with
gi, h € K[Tj; j # i]. By assumption, h is not a monomial. Since we allow only one
term to depend on T; we conclude h € K*, i.e., f is irreducible. ]

blow up of P, in three points or as the blow up of F, in two points where a € Z>.
Propositions :5.1.2'and '5.1.4 list the configurations we need to consider. Moreover,

for the steps.

(I) Surfaces of type Bl Py(x®). The varieties of the form Bl Py(x®) are a blow up
of Z1 := Bl Py(%?) in a point in the exceptional divisor of the first or of the second
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blow up. As a toric variety, Z; is given by a fan X with its rays generated by the
columns of

(1,1)
-1 1 0 1 2 ©1) 21
Pl::[710111}’ %0)
(=1,-1)

The exceptional divisors of Z; are V(Z1; Ty) and V(Zy; Ts). The union V (Zy; Ty)U
V(Z1; Ts) consists of the toric orbits through the points

¢ = [1,0,1,1,0], g2 = [1,1,1,1,0], g3 = [1,1,1,0,0],
qq4 = [171717()’1]7 q5 = [1717070?1] € Zl'

The equivariant automorphism z — (21, 29, 23 — 2225, 24, 25) of 21 maps q4 to gs;
compare Lemma 5.1.5. Thus, if we blow up Z; in ¢1, g3 or in one of the points ¢y,

qs it is given by insertion of the respective rays

Q20 : (3a 1)) QZO . (37 2)7 @20 : (L 2)

into X7 by means of a stellar subdivision. This covers the cases Bl Py(x® i),
Bl Py (%2 iii) and Bl Po(%? iv). We now treat the case Bl Py(x? i) which is the blow
up of Z; in qo. This is done by the steps explained in Remark '5.2.1. Note that the

and K; = Z3. Consider the embedding
K> - K°, oz (z,hi(z), k=TT —TT» € K[Ty,...,Ts).

Then I] = (Tg — hy) is the vanishing ideal of Yll The Z3-grading on K[T1, ..., Tg)
is given by the following degree matrix @)}. The columns of P;, a Gale dual matrix
of @}, generate the rays of the fan ¥} of the toric ambient variety Z; where

, 1 0 0 1 o0 1 , 1 0 1 0o -1 -1
QR = o1 0 1 -1 1 |, P = o1 1 1 1 -1
000 1 -2 1 0 000 2 1 o0 -1

given by insertion of the ray through the sum v := (—2,0,—1) of the fifth and sixth
column of P] into . Thus, the fan of the toric variety Z> has its rays generated
by the columns of P, = [P}, v]. We obtain the ideal Ir = (¢) C K[T4,...,T7] of the
closure of the inverse image X, by modifying the generator of I;:

g = ps(p)« Ts—h1) = TeTr —T3Ty+Th'T» € K[T4,..., Ty

where p; is the morphism of tori corresponding to P;. Observe that g is already
saturated with respect to 77. All variables T; define pairwise non-associated prime

elements in Ry = K[T7,...,T7]/(g) by Lemma5.2.17. Moreover, T7 { T; for all i < 7
as

modification. Its degree matrix is a Gale dual matrix of P as listed in the table.
We now show that the modification was the blow up of ¢(¢2) € X7. In K[T1,..., Ts],

claimed blow up.

(II) Surfaces of type Bl Py(x?%). The cases Bl Py(x%x i) and Bl Py(x% x ii) are blow
ups of Z; := Bl Py(x«) in a point in one of the two exceptional divisors. As a toric
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variety, Z; is given by a fan with its rays generated by the columns of

(1,1)
-1 1 0 1 -1 ©1
Py = [71 0o 1 1 o0 }’ (71,0>7‘4(1,0)
(=1,-1)

Of the exceptional divisors V(Zy; Ty) and V(Z;; Ts) we consider the first one. It
consists of the toric orbits through the points

q1 = [1a0a1a071]7 q2 = [1a1a17071]7 q3 = [1a1707071] € Zl-

The automorphism z — (21,22 — 2325, 23, 24, 25) of 7 maps ¢» to gi; compare
Lemma 5.1.5. Thus, any blow up of Z; in one of the points g¢; is isomorphic to the

toric blow up obtained by insertion of the ray Q>¢-(2,1) or Q>¢ - (1,2) into the fan
of Zl .

(II1) Surfaces of type Bl Py(* x x). Surfaces of the form Bl Py(x % ) are again blow

A A\

If X = Bl Py(x x x i) we have to perform the toric blow up of the fixed point
[0,0,1,1,1] € Z;. This is done by the stellar subdivision of the fan of Z; at (0, —1).
For X = Bl Py(* x % i) we blow up the point ¢ := [1,1,0,1,1] € Z;. Note that it

configurations.

K = K°, oz (2,h(z), b= DTi—TTs € K[Ty,...,Ts

and obtain a CEMDS X{. Its degree matrix @} and the matrix P; of generators
for the rays of the fan of the toric ambient variety Z] of X7 are

, 1 00 1 0 1 , 1 0 0 0 1 -1
Q7 = o1 0 0o 1 1 |, P = 01 0 1 0 -1
000 1 -1 -1 -1 000 1 1 1 -1

On X1, to blow up ¢(q) = [1,1,0,1,1,0], we perform the stellar subdivision of the
fan of Z] at v:= (—1,—1,0). Set Py := [P{,v]. The ideal I C K[T},...,T7] of X5
is generated by

g = p; <p1>* (T6 — hl) = T6T7 — T2T4 + T1T5 S K[Tl, A 7’I"y].
By the same arguments as in case Bl P (x3 i4), using the simplifications of Proposi-

Ry = K[T1,...,T7]/I5 is the Cox ring of the performed modification with the de-
gree matrix as listed in the table. In K[T1,...,Tg], the ideal (T3, Tg, hy) is prime

(IV) Surfaces of type Bl F,(>*). Recall that the fan X, of the toric variety F, has
its rays generated by the columns of

(0,1)

P, = [ -1 1 0 0 L0y
(0,—1)

(=1, -a)

The first four cases Bl Fo(x * i) to Bl Fo(x x iv) are blow ups of F, in the toric
fixed points listed in Proposition :5.1.4. where a > 2. Each of these toric blow ups
rays generated by the columns of Py := [Py, v1,v2]. The choices for v; and vq are as
follows. The degree matrices of the Cox rings are obtained as Gale dual matrices
of P, compare Lemma .5.2.6.
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X V1 V2
BlFq(x % ) (=1,—a+1) (
BlFo(x% ) (=1,—a+1) (
BlFq(x % 4ii) (—=1,—a+1) (
BlFa(x% w) (=1,—a—1) (

Zy := Bl Fu(* 4) is the blow up of F, in the fixed point [0, 1,0, 1], i.e., the toric
variety with the rays of its fan 3; generated by the columns of

(0, 1)

P o= -1 1 0 0 -1 }’ 1,0)
(=1, —a+1) (0,-1)
(=1, -a)

embedding
K> — K5, x = (z,hi(x)), hy = TyTy — T3T5 € K[T1,...,Ts),

we obtain a CEMDS X|. The degree matrix @} and the matrix P; whose columns
are generators for the rays of the fan X of the toric ambient variety Z] of X are

;o 1 0 o0 -1 -1 -1 . 1 a=1 0 1 1 -1
Q) = 0 1 0 —a+1 1 1 |, P o= 0 a 0 1 0 -1
0o 0 1 10 1 0 001 0 1 -1

On X{, for the blow up of the point ¢(¢) = [0,1,1,1,1,0], we perform the stellar
subdivision ¥ — X7 at v := (0, -1, -1). Write P := [P/,v]. The vanishing ideal
I, CK[Ty,...,T7] of X5 is generated by

g = pg (pl)* (Tg*hl) = T6T77T2(1T4+T3T5 € K[Tl,...,Tﬂ.

By the same methods as before, we verify the requirements for Theorem 4.2.6. and

perform a blow up as the ideal (T3, Tg, hy) in K[T1, ..., Tg] is prime by Lemma 5.2.17.
and its zero set contains (0,1, 1,1, 1,0) while being three-dimensional.

(V) Surfaces of type Bl F,(x?). Define Z; as in the previous case, i.e., Z; is the
blow up of F,, in the fixed point [0, 1,0, 1] € F,. We want to blow up a point in the
exceptional divisor V(Z7; T5). It consists of the toric orbits through the points

q1 = [1a1a05170]7 q2 = [1a1a17170]5 q3 = [Oa1a17170] S Zl'

The automorphism z — (21, 22, 23 — 212‘2171247 z4,25) of 21 maps g2 to q1; compare
Lemma 5.1.5. Thus, the remaining cases are the toric blow ups of Z; in ¢; and g3

and are carried out by insertion of the respective rays
Q>0 - v, v = (=1,—a+2) or v o= (—=2,—-2a+1)
into 3. The degree matrix of the Cox ring K[T1,...,Tg] of X is a Gale dual

Bl F,(x?4) and Bl Fo(x%4d).
We come to blow ups of the toric variety Bl F,(* i7) in a point in the exceptional
divisor. Recall that Z; := Bl F,(x i7) has the rays of its fan X; generated by the
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columns of

(0,1)

(1,0)
P, = [ -1 1 0 o0 -1 V1)
(=1, —a)
(-1,—a—1)
The exceptional divisor of Z; is V(Zy; T5) and consists of the toric orbits through
the points
¢ = [0,1,1,1,0], ¢ = [1,1,1,1,0], g5 = [1,1,1,0,0] € Z;.
The blow ups of the toric fixed points ¢; and g3 are carried out by stellar subdivisions
of 31 at the rays
Q>0 - v, v = (=2,-2a—1) or v = (=1,—a—2)
respectively. The degree matrix of the Cox ring K[T7,...,Ts] of X is a Gale dual

The steps are analogous to previous cases, e.g., Bl Py(x® ii). Choose the embedding
K> — K5, x — (x,h(x)), hy = T¢Ty — T\ T3 € K[Ty,...,Ts).

We obtain a CEMDS X/, a new degree matrix @} and a matrix P; whose columns
are generators for the rays of the fan X} of Z1:

, 1 0 0 1o-1 1 , 1 0 1 0 0o -1
Q) = 01 0 —a-1 1 o0 |, P = 0o 1 10 -1 -1
0o 0 1 10 1 0 0 at+1 -1 -a—1 -—a

On X7, for the blow up of ¢(¢2) = [1,1,1,1,0,0], we perform the stellar subdivision
of 33} at the vector v := (=1, -2, —2a — 1) in Z*. Set Py := [P{,v]. The vanishing
ideal Iy C K[T1,...,T7] of X5 is generated by

Py (p1)s (To — h1) = TeTr — T Ty + T3 € K[Ty, ..., Tx).

As in previous cases, one directly verifies the requirements for Theorem4.2.6. Hence,

the Cox ring of the performed modification is Ry = K[T1,...,T7]/I>. Its degree
matrix is a Gale dual matrix of P, i.e.,

1 0 0 1 0 2 -1

Qs = 01 0 —-a-1 0 -1 1
2 0 0 1 1 0 1 0

0 0 0 0 1 1 -1

K[T1,...,Tg] is prime by Lemma 5.2.17 and its zero set contains (1,1,1,1,0,0
while being three-dimensional.

Isomorphisms: We now show that the surfaces listed in the proposition are pairwise

to Bl Py(x?). Therefore, we have a > 3 in the cases
BlF,(x* i), BlF,(xx i), BlF,(x% iii), BlIF,(x* v),
Bl F, (%% 4), Bl F, (%2 ii).

We first treat the toric and then the non-toric cases. We compare the self-intersection
numbers of negative curves. These curves are of the form V(X; T;), compare

a X V(T1)? V(Tx)? V(T3)? V(Tyw)? V(T5)? V(Ts)?
Bl Py (%3 1) >0 —2 >0 —2 -2 -1
Bl Py (%3 1) >0 -1 >0 -3 —2 -1

Bl P2 (%3 iv) >0 —1 -1 -3 -1 —1
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Bl P2 (%2 x 1) >0 -1 -1 -2 -1 —1

Bl Py (%2 x i) >0 >0 —2 -2 -1 -1

Bl Pa (% % % 1) -1 —1 -1 —1 -1 -1
>3 BIFu(x* 1) -1 -1 >0 —a -1 -1
>3 BlIFg(x* ii) -2 >0 >0 —a-—1 -1 -1
>3 BIF, (%% iii) —1 -1 >0 —a-—1 -1 -1
>2 BIF, (%% iv) -1 -1 >0 —a-—2 -1 -1
>3 BIF.(x%1) -1 >0 >0 —a —2 -1
>3 BIFg (%2 i) -2 >0 >0 —a -2 -1
>2 BIF, (%2 i) -2 >0 >0 —-a-—1 -2 -1
>2 BIF,(x2 ) -1 >0 >0 —-a-—2 —2 -1

An inspection of the table shows that the listed surfaces are pairwise non-isomorphic

morphisms

BlF,2(x*i) — BIF,(x%iv), BlFoi1(x* i) —  BlIF,(x* iii),
Bl Py (%3 iii) —  BlIF3(x% 1), BIPy(x% iv) —  BlFz(x* 1),
Bl Fop1(xx dii) —  BlFg(xx iv), Bl F,y1(x¥%di) —  BlF,(x?dii),

BlF, (3% i) — BIF,(x* ii).

For each surface, we write primitive generators for the rays of its corresponding fan

1 0 —1 1 0 0 —1 1 — -1 1 0 0 —1 1
—1 1 —a—1 0 1 —1 —a 1 —a 0 1 —1 —a+1 —1 )
—1 1 —1 1 0 1 2 3 — -1 1 0 0 -1 -1
-1 0 -1 0 1 1 1 2 . -3 0 1 —1 -2 —1 )
—1 1 —1 1 0 1 2 1 - —1 1 0 0 —1 1
-2 1 —1 0 1 1 1 2 - -3 0 1 —1 -2 1 ’
-1 0 —1 1 0 0 -1 1 — —1 1 0 0 -1 1
—a 1 —a—-—1 0 1 -1 —a -1 : —a 0 1 -1 —a-—1 -1 :

We come to isomorphisms between the K*-surfaces. This comprises the cases
Bl Po(%3 i), Bl Po(x % x ii), Bl F,(x* v) and Bl F,(x*> v). Note that all these
surfaces are non-toric since their total coordinate spaces have singularities. By Re-

and X, := Bl F,(x? v). The degree matrices Q; of R(X;) coincide up to column
permutations after applying the matrix A € GL(4,Z):

0 0 o0 1 1 0 0 0 0 1 -1
A-Q = 0 1 0 -a-—1 0 1 0 0 a+1 2a+1 -—a
1 0 0 1 1 0 0 1 0 —1 -1 1
1 0 0 0 0 0 0 1 1 2 -1
0 0 o0 101 2 -1
_ 001 0 -a—-1 0 -1 1
0 0 1 10 1 0
1 0 0 0o o 1 -1
:QQ'Ua

where U € GL(7,Z) is the permutation matrix exchanging the first and fifth col-

isomorphic to Xs. O

3. Smooth rational surfaces with o(X) =75

In this section, we classify the smooth rational surfaces of Picard number five up
to isomorphism and present their Cox rings explicitly. Each such surface can be
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obtained as a blow up of one of the smooth rational surfaces of Picard number
four listed in Proposition :5.2.8. Whereas the Cox rings of blow ups of Py can be

Theorem 5.3.1. Let X be a smooth rational surface with Picard number o(X) = 5.
Then X is isomorphic to exactly one of the following surfaces.

X Coz ring R(X) degree matric
KTy, ..., Tol/T f+ o o 1 0 0o 1 2 -1
; o1 0o 1 0 0 1 3 =2
Bl Py (x* v) w;th I generated by 00 1 -2 0 0 0 -1 1
. T2Ty — Ty Ty — T T oo 0o o0 1 0 0 1 -1
AERTA{L) gra s 2T e oo 0o o0 0 1 -1 -1 1
A — I)T3 Ty —TsTyg — NTeT7 “
K[T1,...,T8]/I 1 0o o 1 0 0 2 -1
o1 0 1 0 0 3 =2
Bl P2(x* v)  with I generated by 0o 0 1 -2 0 0 -1 1
) o0 0 o0 1 0 1 -1
T3 Ty —T1 T —TgT7Tg L O 0 o0 0o 0 1 -2 1]
K[T4,...,T8]/I 1 o o 1 0 0 1 0 ]
o1 0 1 0 0 3 -1
Bl P2 (x* vi) with I generated by 0 0 1 -2 0 0 -2 1
5 5 00 0 0 1 0 2 -1
T3T4—T1T2+T6T8T7 Lo 0o o 0o 0 1 1 -1
1 o o o 2 -1 0 ]
01 0 0 1 -1 0
Bl Py(x* iz) K[T1,...,T¥] o0 1 0 2 -1 -1
00 0 1 3 -2 -1
Lo o o o 5 -3 -1 |
[1 o o o 0o -3 2 ]
01 0 0 0 -2 1
Bl Py (x* wiii) K[T1,...,T7] 00 1 0 0 5 -3
00 0 1 0 3 -2
Lo o o o 1 1 -1 |
K[T1,...,T8]/I 1 0o o o 2 0 3 -1
o1 0 0 1 0 2 -1
Bl Py(x* ziv) with I generated by 00 1 0 -3 0 -2 2
- ) 00 0 1 -2 0 -1 1
T3T4T5 —T1T2 —T7Tg LO 0 0 o 0o 1 1 -1
1 0o o o0 o 3 =2 7
01 0 0 0 1 -1
Bl Py(x* zv) K[T1,...,T7] o0 1 0 0 -4 3
00 0 1 0 -3 2
Lo o o o 1 -2 1 |
[1 0o o o0 1 0 -1
01 0 0 1 0 0
Bl Py(x242  K[TY,...,T¥] 00 1 0 1 -1 -1
ZZZ) 0 0 0 1 2 -1 -1
Lo o o o 3 -1 -2 |
fr+ o o o 1 1 -1
01 0 0 1 0 O
Bl Py(x24%2  KI[TY,...,T¥] o000 1 0 1 0 -1
i) 000 0 1 2 0 -1
Lo o o 0o 3 1 -2
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s+ o o o 1 1 0
01 0 0 1 0 O
Bl Pa(x?x  K[T4,...,T7] 00 1 0 0 0 1
* ) 00 0 1 1 0 1
Lo o o o 2 1 1
K[T4,...,Ts]/I s+ o o o 1 1 2 0
01 0 0 1 0 1 0
Bl Pa(x? % with I generated by oo 1 0 0 0 1 -1
* ’L’L) 2 0 0 0 1 1 0 2 -1
T2T4T6 — T1T5 — T7Tg L 0 0 0 0 2 1 3 —1
K[Ty,...,Ts]/1 1 o o o o 1 2 -1
01 0 0 0 -1 =2 2
Bl Pa(x? % with I generated by 0 0 1 0 0 0 1 -1
* iv) 0o 0 0 1 0 -1 -1 1
ToTyTe —ThT5 — T7T3 Lo o o 0o 1 1 3 -2
K[T1,...,Ti0]/I
with I generated by
1 0 0 0 -1 -1 0 1 1 -1
TyT7 — T5Ts + TeTy , 0 1 0 o0 1 0 0 -1 0
Bl Po(x * T\Tr — ToTs + T To 0 0 1 o0 0 1 0 0 -1 1
*% 0 0 0 0 1 1 1 0 0 0 1
T5T5 — To'Te — T7Tho, 0 0 0 0 o o0 1 1 1 -1
13Ty —ThTe — T8Tho,
12Ty —ThT5 — TioTy
K[Ty,...,Ts]/I 1 o o o -1 0 -1 1
0 1 0 0 1 0 1 0
Bl Po(x * with I generated by 0 0 1 0 0o o 1 -1
*% i) 0 0 0 1 1 0 2 -1
2Ty —ThTs — T7Ts Lo o o o 0o 1 -1 1
KT, ..., Tol/1 [1 0o 0o 0 -1 o 0 -1 1
ith T 0 1 0 0 1 0 1 2 -1
Bl Po(* * with I generated by 0 0 1 o0 0 o0 0 1 -1
* % 41%) 12Ty — ThT5 — TeTx, 8 8 g (1) (1) (1) } i’ *f
rer {1y T8To — (A= 1)ToTs + \T6T7 -
K[T1,...,T8]/I 1 o o o o 1 —a+2 a-1
01 0 0 0 -1 —1 1
Bl Fqo(x with I generated by 0 0 1 0 0 0 1 -1
* iid) 00 0 1 0 0 -1 1
T7Ts — ThT5 + T>2Ts o 0 0 0 1 1 —a+3 a-—2
a>3 -
K[Ty,...,Ts]/I 1 0 o o 0o 0 1 -1
0 1 0 0 1 -1 2 -1
Bl Fqo(x * with I generated by 0 0 1 0 a-—2 1 2a—4 —a+3
% V) a >3 . o 0 0 0 1 1 0 2 -1
T7Ts — T3Tu Ty + T3T5 0 0 0 0 a-—1 1 2a—-3 —a+2
KTy, ..., Tol/1 [1 0 0 o 0 o0 0 -1
y I 0 1 0 0 a 0 a 3a-—1 —2a +1
Bl Fo(x with I generated by 0 0o 1 0 -1 o0 0 -1 1
; TeT> — TOTy + TaT: 0 0 0 1 1 0 1 3 —2
*4x) a >3 617 5 4+a3 5, o o o o o 1 1 1 1
rex*\ {13y 18T — (A=1)T§Ty + XTsT7 -
1 0 0 0 a—5 —a+3 -1
01 0 0 a—4 —a+3 -2
BlFo(x2x  K[Ti,...,T%] 0 0 1 0 1 -1 0
. 00 0 1 a—-4 —a+3 -1
i) ez3 0 0 0 0 a—-3 —-a+2 -1
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K[T1,...,T8]/I r 1 1 0 -a 0 0 0 O©
-1 0 -1 0 1 0 0 0
BIF,(x? %  with I generated by -1 0 -2 0 0 1 0 0
) a>3 . ) 0 o0 1 1 0 0 1 0
= T3Ty — T3T5Ty — Ty -1 0 1 1 0 0 0 1
1 0o o0 o 1 -1 0
0 1 0 o 2 -1 -1
BlFo(x* %  K[T4,...,T7] 0 0 1 0 2a—-4 —a+3 1
0 0 0 1 2 -1 0
v) a2 Lo 0 0 0 2a-3 -—a+2 1
K[T1,...,T8]/I 1 o o o o 0 1 -1
01 0 0 0 a B3a—-1 —2a+1
Bl Fo(x2 % with I generated by o0 1 0 0 -1 —2 2
0 0 0 1 0 1 3 —2
viii) a >3 TgTy — T3T5Ts — TrT3 0o 0 0 0 1 -1 —1 1
1 0o o o0 o -3 2
01 0 0 0 —a+3 a-—2
BIF,(x%4) K[Ty,...,T¥] 00 1 0 0 1 -1
>3 00 0 1 0 —1 1
= Lo o 0o o 1 —2 1
1 0o o o o 3 -2
0 1 0 0 0 2—3 —a+2
Bl Fq (%3 ii1) K[T1,...,T%] 00 1 0 O —2 1
>3 00 0 1 0 2 -1
= Lo o 0o o 1 1 -1
K[T4,...,Ts]/1 1 o o o o 1 3 —2
0 1 0 0 0 a—1 2a — 3 —a + 2
Bl Fq (%3 iv) with I generated by 00 1 0 O -1 -1 1
>3 I 0 0 0 1 0 1 2 -1
= T1T2 Ty —T3Tg — T7Ty o 0 0 0 1 0 1 -1
[ 1 0o o o -2 10
0 1 0 O —a+2 a-—-—1 0
BIF,(¥3v) K[T1,...,T¥] 00 1 0 1 1o
>3 0 0 0 1 -1 10
= L -1 0o o0 o -1 0o 1
1 0o o o0 o -2 1
0 1 0 0 0 —3a+42 2a—1
Bl Fo (%3 viii) K[T4, ..., T7] 00 1 0 0 3 —2
>3 00 0 1 0 -3 2
= Lo o 0 o 1 1 -1
K[T1,...,T8]/I 1 o o o 10 2 —1
0 1 0 0 2a—-1 0 3a—2 —a+1
Bl Fo (% ix) with I generated by 0 0 1 0 -2 0 —1 1
a>3 201,12 ) 0 0 0 1 2 0 3 -1
T, T; —T3Ts —T7T3 0 0 0 © 0o 1 1 -1
1 o o o o 1 -1
0 1 0 0 0 3a—1 —2a+1
BIF,(x® z) K[TY,...,T¥] 00 1 0 0 -3 2
>3 00 0 1 0 3 —2
= Lo o 0o o 1 -2 1

In particular, each smooth rational surface of Picard number five either admits a
non-trivial K*-action or is isomorphic to My 5.

Remark 5.3.2. The K*-surfaces occurring in Theorem '5.3.1 are all embedded

equivariantly into their canonical toric ambient varieties since the relations in the
Cox rings are of trinomial shape as in Construction 1.5.3.
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Lemma 5.3.3. In K[T1,...,T,], consider binomials f; = ch”z‘Jr - c;T”i_ with
¢t € K* where 1 < i < s. Let A be the s x r matriz with rows v;” — v, . Then the
dimension of V(T"; f1,..., fs) is v — rank(A).

Proof. See [50, Satz 2.1.13]. Compute a Smith normal form D = U - A -V with
invertible matrices U,V and denote by ¢4, ¢p, ¢y the corresponding morphisms
of tori. Then there is a finite abelian group I' such that

_ c cy
V(TT7 fla"'vfs) = SOAl <_C}|_7"~a_+)

1 Cs

1 A S
SOD (@U( CY’“.’ Ci))

~ Tr—rankA % T. 0

Il

encounter ideals of the form I = Iy + I’ with a binomial ideal Iy. The following
observation may then simplify the computation. We have published a similar version
in [56, Lem. 4.3].

Lemma 5.3.4 (Binomial trick). Consider an ideal I = Iy+1' C K[T4,...,T,] with
a prime binomial ideal

Iy = (T”T—T”f,...,T”I—T”ﬂ where v, v;

K2

€ ZLy.

Let B be the integral n x r matriz with rows v;" —v; and A an integral v x s matriz

the columns of which generate ker(B). We have a homomorphism
a: KTy, T — K7, V], 17 YA
Then I CK[Ty,...,T;] is prime if one of the following conditions is fulfilled.

(1) (a(I')) is a prime ideal in the Veronese subalgebra R C K[V, ... Y
given by the monoid S C Z° generated by the rows of A.

ii) ker N an A 18 a prime ideal in 1yeee, Ygl.
ker(B)NQ%Ly # 0 and (a(I’ deal in K[Y; Y,

Proof. Since Iy is a prime binomial ideal, we have Iy = ker(¢4). Let s1,...,s, be
the rows of A. Then the image of ¥ 4 is the subalgebra

R = K[Y*,...,Y*] C K[Y,..., Y.

Thus, the map ¥4: K[Ty,...,T.] — R is surjective. As Iy = ker(i4), by basic
algebra, we obtain I = ¢ ({(¢a(I'))). The first assertion follows. For (ii), choose
w € ker(B)NQL,. We may replace each generator w’ of ker(B) that does not lie in

Lo with w” := bw +w" where b € Z is large enough such that w” € ker(B) N QL.
In the above setting, the image R of 14 is contained in K[Y7,..., Y], i.e., (¢a(I'))
is prime in R. The claim follows from (i). O

In order to classify blow ups of P, and F,, in the proofs of Theorems5.3.1:and 5.4.1;
we have to choose points for the next blow up step. The possible choices of these
points frequently is reflected in parameters in their Cox coordinates. With regard to

K*-surfaces, parameters only occur when blowing up points on fixed point curves.

Remark 5.3.5. Let X be a K*-surface that is embedded equivariantly into its
canonical toric ambient variety. Consider points z,z’ € X belonging to exactly one

r = A2 with A €e K & V(X;T;) isnot a fixed point curve.
Remark 5.3.6. Computations involving Grobner bases, e.g., in Algorithm 4.5.9;

can also be carried out for equations depending on parameters Aj,..., A € K
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by changing the base field to Q(A1,...,As) and regard the A; as transcendental
elements, see [46, p. 34].

up of P in four points or as the blow up of I, in three points where a € Z>5. This
proof is structured as follows. We compute the resulting Cox rings grouped into
originating point configurations; they are listed in Propositions.5.1.2:and'5.1.4. Each

surface of Picard number five arises as a blow up of a surface of Picard number four
as classified in Proposition 5.2.8. If necessary, we prove or disprove the existence of

(I) Surfaces of type Bl Po(x*). By Propositions 5.2.8 and 5.1.2, these are blow ups

of the surface Bl P (x3 i) or Bl Po(*3 ii) in a point in one of the exceptional divisors.

AN

Recall that (4) stands for a fourfold iterated blow up. We first consider blow ups

V(Xy; Ty), V(Xy; Ts), V(Xy; T7).

it suffices to consider the points

@ = [-1,1,0,0,1,1,1], ¢ = [-1,1,1,0, 1,1,1]

¢ = [-1,1,1,0,0,1,1], q = [1,1,1,X,0,A—1,1],
¢ = [1,1,1,1,0,1,0], % = [1,1,1,17171’0]

g7 = [1 1,1,1,1,0, 0] gs = [1, 0,1,170 L1 € Xl

for the irrelevant ideal of X7 we obtain (T'— 1) C K[ ], compare Algorithm 2.3.11.
Hence, g4 € X1 for each A € K\ {1}. Write p: X1 — X, for the characteristic
space and ¢: K\ {1} — V(T5) for the assignment A — (1,1,1,A,0, A — 1,1). Define

D :=V(Xy; T5) and ¢ := po . We have a commutative diagram

P, > K\{1}—4—=V(T3) < X,

RN O

< Xi

where ¢ and the lifted morphism % are non-constant. This means @ is surjective
and the image of ¢ comprises D up to at most two points. Since ¢5,qs € D are
distinct points not contained in Im(y) it suffices to consider the listed points g;.

Using Algorithm 4.5.9; we compute the Cox rings of the resulting surfaces which

be carried out for the case Bl Po(x* iv). All obtained Cox rings are either listed in
the table of Theorem :5.3.1: or in the following one; we will show at the end of this

proof that the following ones are redundant.

X Cox ring R(X) degree matrix
K[Ty,...,Ts]/I 1 0 0 1 0 1 0 0
01 0 1 0 2 -1 0
Bl Py (x* 4) with I generated by 00 1 1 0 0 0o -1
) 3 00 0 3 0 1 -1 -1
—T5TyTg +Th T + TeT7 o 0o 0 0 1 1 -1
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K[T1,...,T8]/I 1 0 0 1 0 0 1 0
0 1 o 1 0 0 3 -1
Bl P (%% i4) with I generated by o0 1 -2 0 0 -2 1
o0 0o o0 1 0 2 -1
T\ Ts + T5Ts — TsT2T3 o0 0 0 0 1 1 -1
K[T4,...,Ts]/I 1 0 0 0 O 2 -1 1
01 0 0 0 3 -2 1
Bl Py(x% 444)  with I generated by 0 0 1 0 0 -3 3 -2
5 o 0o 0 1 0 -1 1 -1
=T5Ty Ty + Th' Tz + T6T7 Lo 0o 0 o0 1 1 -1 0 |
K[Ty,...,Ts]/1 1 0 0 10 0 -1 1
0 1 0 10 0 -3 2
Bl P2(x* vii)  with I generated by 0 0 1 -2 0 0 2 -1
00 0o 0 1 0 -2 1
T2Ty — ThTo — TeTH T2 Lo o o o 0o 1 1 -1 |
K[Ty,...,Ts]/I 1 0 0 0 0 -2 2 -1
01 0 0 0 -1 1 -1
Bl Py (% viii) with I generated by 0 0 1 0 0 5 -3 2
o o0 0o 1 0 3 -2 1
T5Ty — TeTr — Th 12Ty Lo o o o 1 1 -1 0 |

returned a ring different from the one listed in the table. We now prove that these
rings are isomorphic. For Y;, Algorithm 4.5.9 returns the Cox ring and degree
matrix

_ Ty + TsTs — TyI3TTETE
R(Yl) - K[Th ce ,TS] / < —|—2T3T2T4T6T7T82 _ T3T72T83’ )

—1

Q1 =

cocoocor
cooro
corooO
o~ooo
—oooo
—oo kR~
W W RGN

|

—

We claim that Y7 is isomorphic to the K*-surface Y5 with the same degree matrix
@2 := @1 and Cox ring

R(Yz) = K[Ty,...,T5]) / (ThTs + TsTs — T3T2T).

morphic as graded algebras. We choose the homomorphism #: R(Y2) — R(Y7)
induced by the homomorphism K[T, ..., Ts] — K[T1,...,Tg] with

7o 4T TITsTTe Ty + 2T T3 Ty T T, =75,
! T; i #5.

One directly verifies that (1, id) is an isomorphism of Z*-graded algebras. Hence, Y;

delivers its Cox ring and degree matrix

R(Y!) = K[Tv,...,T8) J{TiTy — T\ Ty — TeTsToTsTyTs + TsTETy),

1 00 1 0 0 1 0
, 001 0 1 0 0 3 -1
Qi = | o 0o 1 -2 0 0 -2 1
000 0 0 1 0 2 -1

000 0 0 0 1 1 -1

We have a Z5-graded isomorphism (¢’,id) between the Cox ring R(Yy) of a K*-
surface Yy and R(Y{) where

R(Yy) = K[Ty,...,Ts] [ (T2Ty — T\Ty + TsT2Tx)
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and the degree matrix is again Q). The graded homomorphism 1’ is induced by
the homomorphism K[T7, ..., Ts] = K[T1,. .., Tg] assigning Ty + T3TyT5TsTs to Ty
and T; — T; otherwise. Thus, Y/ is isomorphic to V3.

We come to the blow up of the toric variety Bl Py(x® ) in a point in the union of
the exceptional divisors. It is given by the toric orbits through the points

Q1 = [171707071a1]7 q2 = [171717071a1]7 (1,1) (2,1)
(0,1) (3,1)

qs = [1717170a07 1]a qqa = [1517171a07 1]a %

q5 = [1717171a050]a q6 = [1517171a1’0]7 (—1,-1)

g7 = [1,0,1,1,1,0].

drawn on the right. Observe that the equivariant automorphism

~ ~ 9
Zy — 2y, z = (21, 22, 23 — 22252, %4, 25, 26)

maps ¢ to ¢i; compare Lemma 5.1.5. Using Algorithm 4.5.9, we compute the

or in the following one.

X Cox ring R(X) degree matrix
1 0o o 0o 2 -1 0
01 0 0 1 -1 0
Bl Py(x* zi)  K[T1,...,T%] 000 1 0 0 1 -1
00 0 1 1 0 -1
Lo o 0o 0 3 -1 -1
K[Ty,...,Ts]/I 1 o o o 0o -1 -2 2
01 0 0 0 -1 -1 1
Bl Po(x* x4i)  with I generated by 0 0 1 0 © 2 5 -3
) o0 0 1 0 1 3 -2
T5Ty — ThToTe — T7 Ty Lo o o o 1 0 -1

type Bl Py(x*x) are blow ups of Bl Py(x3 ii) or of Bl Po(%3 i) in a point that maps
to [0, 1,0] € Py under the first three blow ups.

(3) A

We first treat blow ups of X; := Bl Py (*3 7). Recall from the proof of Proposi-
tion '5.2.8 the blow up sequence

X1 2> Bl Py(#2) <2 Bl Py(#2) —2> Bl Py(x) —— P,

with the polynomial hy := T2Ty — TyTy in K[T1, ..., Ts]. The blow ups are
m3([2]) = [e1,..., 24, 2527, 2627],
ma([2]) = [21, 2225, 23, 2425], m1([2]) = [z1, 2224, 2324].

Using Algorithm :2.3.8, we see that the following point p exists on X7 and its blow

up yields the desired surface:

om0t toms(p) = [0,1,0] € Py, p = [0,1,0,1,1,0,1] € X;.
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In a similar manner, for the toric variety X; := Bl Py(x® i) the point [0,1,0,1,1,1] €

rithm 4.5.9:to blow up X in p. We obtain surfaces Bl Py (x® x i) and Bl Py (x3 % ii)
with the following Cox rings.

X Cox ring R(X) degree matrix

K[T4,...,Ts]/I 1 o o o o0 o0 1 1
01 0 0 0 1 o0 1
Bl P2 (%3 i) with I generated by 000 1 0 0 1 -1 =2
) 000 0 1 0 1 -1 -1
T3 TyTg — T1To — TgTr o 0o 0 o0 1 1 -1 0

1 0 o o0 o 1 2

) 01 0 0 0 0 1

Bl Pa(x3 % i) K[T1, ..., T7] o0 1 0 0 -1 -3

000 0 1 0 -1 -2

Lo o 0o 0o 1 -1 -1

(IIT) Surfaces of type Bl Py(x?x?). These are blow ups of Z; := Bl Po(%? x i) or
Zy = Bl Py(x% * ii) in a point in the second exceptional divisor, i.e.

(2) A‘ (2)

The toric varieties Z; have the following fans and ray generators
(1,1) (1,2)
(0,1) (2,1 (0,1) (1,1)
o G o WMy [
(=1,-1) (—1,-1)
with v = (2,1) or v = (1, 2) respectively. On both Z; and Z5 the second exceptional
divisor is V(Z;; T5) and consists of the toric orbits through the points
q1 ‘= [Ov]-v]-alaov 1]3 q2 ‘= [17131a1,07 1]7 qs ‘= []-alao,]-vov ”
For both ¢, the point g2 € Z; is mapped to ¢; by the respective equivariant auto-
morphism
Z\l — 21, Z (Zl — 232476, 22y -y 26),

~ ~ 9
Ly — Zg, Z (2’1 — R324%g, 22y -+ - ZG),

Bl Py(x? %2 iii) and Bl Py(x% x? iv). The table of the theorem lists the Cox rings
of the latter two whereas the ones of the former two are as follows.

X Cox ring R(X) degree matrix
1 0 o0 o0 1 0 -1
01 0 0 1 0 0
Bl Py(x2 2 )  K[T1,...,T7] 00 1 0 -2 0 1
00 0 1 -1 0 1
Lo o o 0o 0o 1 1
1 0o o o0 1 1 0
001 0 0 1 0 0
BlPy(x242 i)  K[T1,...,T7] 00 1 0 1 0 -1
00 0 1 2 0 -1
Lo 0o 0o 0 3 1 -1
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(IV) Surfaces of type Bl Py(x? xx). Let Z; = Bl Py(x% % i) and Zy = Bl Py(%? % 1)

ups of Z7 or Zs in a point that maps to [0,0,1] € Py or to [1,1,0] € Py under the
maps of the first three blow ups. Recall from the proof of Proposition 5.2.8 that
the blow up sequence of both Z; is

Z; —25 Bl Py (sx) —2> Bl Py (x) —> P,
where the blow ups 7, m2 and 7; 3 are

m3([z]) = [21, 2226 23, 2226, 25], m23([2]) = [21,22, 2326, 2426, 25,
mo([2]) = [z1%s, 22,2325, 24), m([z]) = [z1,2224,2324])-
In our case, the points p := [0,0,1,1,1,1] € Z; and p’ := [1,1,0,1,1,1] € Z; are
directly seen to exist and satisfy
T O7T207Ti’3(p) = [0707 ].] € IP)27 7'('1071'207('7;"3(}7/) = [17170} e Ps.

The blow ups of Z; in p and p’ are called Bl Py (%2 %% i) and Bl Py (x2 % * ii) whereas
Bl Py (%? x % iii) and Bl Py(%? x % iv) are the blow ups of Z5 in p and p’. The results
are listed in the table except for the Cox ring and degree matrix

1 0 0 0 0 1 1
o1 0 0 0 -1 -2

R (BLPy(x* x x i) = K[T1,...,T¢], o0 1 0 0 0 1
o0 0 1 0 -1 -1

o0 0 0 1 1 2

rations we have to consider, i.e.,

A A A

The blow ups of the first two configurations can be obtained as a blow up of X; :=

w
T3,2,1° X1 — PQ, [Z] — [2125267 292426, 2:32:42’5].
Under 7391, the points [1,...,1] and [1,1,0,1,1,1] € X; project to [1,1, 1] € Py

and Bl Py(* x x % 7). Their Cox rings can be found in the table.

For the third configuration, we want to blow up X; := Bl Py(* x x 4i) in a point
projecting to [1, A, 0] € Py, where A € K* \ {1}, under the blow ups
X; 2 BIPy(k* i) <2 BIPy(x* i) ——> P,
m3([2]) = [21,20, 2327, 20, 25, 2627),  m21([2]) = [21%5, 2224, 232425]

and the embedding ¢; is given by [z] — [z, h1(2)] with the polynomial hy := ToTy —
T1T5 in K[Tl, ce ,T5]. We have

m ot omlq) = [1,),0] q == [1LA0,1,1,A~1,1] € X

obtain the listed surface Bl Po(* x x x 4i1).
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(VI) Surfaces of type Bl Fq(x * %). We now treat the blow ups of the Hirzebruch

obtained by blowing up one of the surfaces
BLTF,(x* i), Bl F,(x* ii), BlF,(x% v)

in a point that is not contained in the union of the two exceptional divisors. This
rules out the configurations

Fo(xxxvii), Fo(kxxviii), Fo(xxxzi), Folxxxxii)

found in Proposition 5.1.4. Additionally, observe that we also need not consider
F.(x x x vi). The blow up of this configuration is isomorphic to the blow up
of Bl F,(x x i) in a point projecting to [0,1,1,1]. As seen in the proof of
Proposition '5.2.8; there is an isomorphism ¢: Z; — Z, from the toric variety
Z1 := Bl Fap1(x x i) to the toric variety Zs := Bl F,(x x ). In terms of
fans, ¢ is given by an invertible matrix sending the ray Q>¢ - (=1, —a — 1) corre-
sponding to V(Z1; T1) to the ray Q¢ - (—1, —a) corresponding to V(Zs; T1). In
particular, Bl F, (% * x vi) is isomorphic to the blow up of F,(* x * 4) in [0,1,1,1],
i.e., to Bl Fy (% * % iv). The remaining cases are

| B B &/
] B

There are further reductions: as seen in the proof of Proposition 5.2.8, Bl Fy, (x* i7)
is isomorphic to the surface Bl F,,1(x% x ). Therefore, the surfaces Bl F,(x x * 1),
Bl F,(* % * i7) and Bl F,(x % x v) are redundant and do not appear in the table of

the theorem.

We first consider blow ups of the toric variety Xy := Bl F,(x * 4). This includes
BIF, (x** iii), Bl F, (% ** iv) and Bl F,(xx % x). The rays of the fan 3; of X; are
generated by the columns of

(0, 1)

(1,1
N -1 1 0 0 -1 1 _ (1,0)
P '_|:—a0 1 -1 —a+41 1}’ Y = 0, -1)
(-1, —a+1) ’
(=1, —a)

For Bl F,, (** #i7), we want to blow up X3 at ¢ := [1,1,0,1, 1, 1], a point which exists

a matrix P whose columns are generators for the rays of the fan X} of the toric
ambient variety Z7:

1 0 0 a-3 -2 -1 -1
Q/ _ 0O 1 0 a-—-3 -1 -2 -1 Pl _ 1.0 0 o 1 0 -1
1= s 1= 0 1 0 0o 0 1 -1
0 0 1 1 0 0 0 o 0 1 -1 1 1 -
0 0 0 a—-2 -1 -1 -1 @

For the blow up of «(¢q) = [1,1,0,1,1,1,0] € X we work in Setting 4.2.5. We

perform the stellar subdivision ¥y — ¥} of ¥} at the sum v := (=1, -1, —a + 1) of
the third and seventh column of P{; this determines the toric modification 7: Z5 —

7. Set Py := [P/, v]. The vanishing ideal I5 of X5 is generated by
g = p3(p1) (Tr — 1) = Ti'Ts - TW'Ts + ToTs € K[I1,...,Ts).

ring of the performed modification is Ry = K[T1,...,T5]/(g9). The degree matrix
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listed in the table is obtained as a Gale dual matrix of P, using, e.g., Lemma 5.2.6.

The ideal (T3, T7, hq) of K[T1, ..., T%] is prime by Lemma 5.2.17, its zero set contains

T$TTy ! —T3T5 € K[T1,...,Ts] for the embedding 7: K¢ — K. We have a new
degree matrix @} and a matrix P whose columns are generators for the rays of the
fan ¥} of Z1:

1 0 0 a-3 -2 -1 -2
Q! — o 1 o oZs 1 o 44 pr_ 1 a=1 0 1 1 a-2 -1
1= , P = 0 a 0 1 0 a—-1 -1
0 0 1 10 0 1 0 01 o0 1 0o 1

0 0 0 a—2 -1 -1 -1

For the blow up of X] in ¢(q) = [0,1,1,1,1,1,0] we perform the stellar subdivision
of ¥} at the sum v := (0,—1,—1) of the first and seventh column of Pj. Set
P, := [P],v]. The vanishing ideal I C K[T1,...,Tg] of X5 is generated by

Py (p1)x (Tr — hy) = TyTy — T9Tu T + TsTs € K[Ty,...,Tx).

vanishing set is of dimension four while containing 7((0,1,1,1,1,1)).

We proceed for Bl F,(* x * x) in the same manner. Here, we want to blow up X;

K[T1,...,Ts] for the embedding 7: Kb — K. We have a new degree matrix Q] and
a matrix P{ whose columns are generators for the rays of the fan X} of Z1:

1 0 0 a—-3 -2 -1 -1
Q/ _ 0O 1 0 a-3 -1 -2 -1 P/ _ L0 0 o 1 0 -1
1 = s 1 = 0 1 o0 0o 0 1 -1
0 0 1 ! 0 0 0 0 0 1 -1 1 1 =-—a

0 0 0 a—2 -1 -1 -1

For the blow up of ¢(¢) = [1,1,1,0,1,1,0] € X{, we insert the ray through v :=
(=1,—1,—a—1) into ¥} by performing the stellar subdivision at v. Set P := [P], ].
The vanishing ideal Ir C K[T7,...,Ts] of X5 is generated by

D5 (p1) (T7 — h1) = TyTy —ThT5 + TTs € K[Ty,...,Tg].

as (Ty,T7,h1) C K[T1,...,T7] is prime by Lemma 5.2.17, its zero set contains
7((1,1,1,0,1,1)) and is four-dimensional.

We now consider blow ups of the variety X := Bl F,(xx v). The surface Bl F,, (* %
* ix) is a blow up of X in a point ¢ projecting to [0,1, 1, \] € F, under the previous

sequence is
X1 —> BlF,(x i) <= Bl F,(x i) ——=TF,

where ¢1([2]) := [z, h1(2)] with hy := T5§Ty — T5T5 and the blow ups m; and 7y are
given by

71—2([2:]) = [2127,2’2,23,24,225,2627], 71—1([2:]) = [2125,2’2,232’5,24].

and satisfies m, 0 (]! o ma(q) = [0,1,1,A]. We now perform the same steps as in
the previous cases. In K[T1,...,T%], choose hy = (A — 1)T§Ty — NTgT%7 for the
embedding 7: K" — K8. Let Q; be the degree matrix of X;. We have a new degree
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matrix @} and a matrix P] whose columns are generators for the rays of the fan 3}
of Z1:

o= OO
O = O =

0o 1
0o o0
0o o0
1 1

= OoOR O
OO~

-1
-1

@ - fo

1

/ 0 a

) Pl_ 0 0
0

For the blow up of ¢(¢) = [0,1,1,A\,1,A — 1,1,0] € X}, we consider the toric
morphism corresponding to the stellar subdivision of 3} at the ray through LU=
(0,—1,—1,—1). Set P, := [Py,v]. The vanishing ideal Iy C K[T7,...,Ty] of X is
generated by the modified equations defining 71, ie.,
Ps (P1)« (T6T7 — 13Ty + T3T5) = TeTr — 13Ty + T3T5,
P3 (P1)s (Ts — h2) = TgTo — (A — D)T3Ty + NT6T7.

After scaling, e.g., Ty by a suitable element of K*, Remark:1.5.6.applies and, there-

fore, I is prime. In particular, I = Iy : T§°. We now show that the variable Ty

defines a prime element in Ry = K[T1,...,Ty]/I>. Note that, by:1.5.3, for suitable
choices of P and A we have Ry = R(P, A), i.e., Ry is the Cox ring of a K*-surface
and Ty defines a prime element. Alternatively, we may show that the image of the

ideal I + (Ty) under the isomorphism T4 — Ts(A — 1)/A, namely
I = (Ty, (\— 1)TsT> — NTSTy + NT3Ts, —TSTy + TeTh) C K[, ..., Ty

is a prime ideal using the binomial trick 5.3.4. This means we consider the ideal

generated by the image 14 (]) under the homomorphism

’l,Z)AZ K[Tl,...,Tg] — K[Yl,,Yb]

v Aty
T — Y&

A =

[eNoleNeNeNoNeNel g
[=NeleNolNeNol pioNe]
[eNoNeNolNoNoNoNo]
[Nl NeNeNeNeN =]
OoOHOOFROOO
o0 O0CO~O
QOO ORHOOO
[=R NeNoloNoNoNeNo)
[l =leNoleNoNeNoNe]

Then (a(I)) C K[Y3,...,Yy] is generated by Yy and —Y2Y#Y5Y7 + AY2Ys and

is a prime ideal by Lemma :5.2.17. In turn, since =157y + TgT7 is prime by

more, each two variables T;, T; are pairwise non-associated since deg(T;) # deg(T})
for i # j. Also, Ty JLTl for all 7 < 9, since each of the following intersections is of
codimension two in Xs:

Xo NV(Th,Ty) = V(Th, Ty, TeTr — Ty Ty + T3Ts, (A — 1)T5Ty — NTxT)

(11,
— V(Ty, Ty, TSTy — NTyTs, (A — D)TSTy — NT6T5),
Xy NV (T2, To) = V(Ta, To, TsTs, TsTr),
Xo NV (T3, Ty) = V(Ts, Ty, T6T7, ToTy),
Xy NV (Ty,To) = V(Ty, To, TsTs, TsTr),
Xo NV(T5,Ty) = V(Ts, Ty, TsTr, ToTy),
Xo N V(T5,Ty) = V(Ts, Ty, T5T5, ToTn),
Xo NV (T7,To) = V(Tx, To, T3Ts, ToTy),
Xo N V(Ts,To) = V(Ts, To, TsTy — T8Ts + TsTs, (A — 1)TSTy — NT6T)
— V(Ty, Ty, TSTy — NT3Ts, (A — DTSTy — NTsTy).

This can be seen directly or, for ¢ € {1,8}, we write the exponent vectors of the
binomial generators into the rows of a matrix as in Lemma 5.3.3. and obtain
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five on TY-(0,1,...,1,0) or T (1,...,1,0,0) for i = 1,8 respectively. One directly
checks that on the smaller tori the dimension is also at most six. For instance setting
the second component to zero, we obtain the variety V(T;, Ty, Ta, 1375, TsT7) in

K? of dimension four. By Theorem 4.2.6, Ry = K[T1,...,Ty]/I2 is the Cox ring of

the performed modification with its degree matrix as listed in the table.

We now show that the modification was the desired blow up. Note that the factor
ring K[T1,...,Tg]/I’ with I' := (T1, Tg, g1, g2) is isomorphic to the integral domain
K[Ty,...,To]/(I + (To)). Hence, I’ is prime. Since (0,1,1,\,1,A—1,1,0) € V(I'),

dim (V(K% I')) = -1 4+ dim (XonV (K Ts, Tp)) = 4.

(VII) Surfaces of type Bl Fy(x*x). These are blow ups of a surface of type Bl F,(x?)
in a point not belonging to one of the two exceptional divisors. By Proposition:5.2.8,
the only such surfaces of Picard number four are Bl F, (%2 i) and Bl F,(x? ii). As
the contraction of the exceptional divisors must lead to a configuration listed in

Proposition 5.1.4; we only have to take the configurations

‘lm "Il "l Y
into account where (2) stands for an iterated blow up. Let X7 := Bl F,(x? 7). As a
toric variety, the fan ¥; of X; has its rays generated by the columns of

(0,1)
-1 1 0 0 -1 -1 _ (1,0)
|:—a 0 1 -1 —-a+1 —-a+2 |° Y = (-1, —a+2) 0, —1)

(=1, —a+1) ’

(-1, —a)
and, by the proof of Proposition 5.2.8, the blow ups m; are
™2 . ™1
X1 - BIF,(x i) >,

mao([2]) = [21, 22, 2326, 24, 25 26) s m1([2]) = [212s5, 22, 2325, 24].

The surfaces Bl F,(x? x i) to Bl F (%% % iv) are obtained as blow ups of X; in
points g; € X7 such that

7T10’/T2(ql) = [1,0,07
1,0,1

1] T 07'('2((]2) = [071,1,0],
771°7T2(CI3):[7770 0,1,1,1

]7 7T107T2((]4) = [7 5 Ly ] S ]Fa~

We may choose the following ones. Note that their existence can be seen by an

inspection of ¥; or by Lemma '5.2.16.

q1 = [LO,Oalalal]a q2 = [03171,07171]7
g3 = [1,0,1,0,1,1], q = [0,1,1,1,1,1] € Xj.

Therefore, the first three blow ups are toric and hence are performed by the stellar
subdivision ¥y — ¥; at v € Z? where the respective vectors are

v = (1,1), v = (-1,—a—1), v = (1,-1).

We come to the blowup Bl F,(x? x iv) of X; in ¢4. The steps are as before.
Choose in K[T1,...,Ts] the polynomial hy := TgTy — T3T5T3 for the embedding
7: K¢ — K”. We obtain a new CEMDS X/ with degree matrix @} and a matrix P|
whose columns are generators for the rays of the fan ¥} of Z1:

—a + 2 a
1
—1

Q/lz ) Pll:

0 a 0 1 0o 0 -1
0 0 1 0 1 2 —1

o =00
= OOoOo

|: 1 a—1 0 1 1 1 -1

1 0
-1 a
—1 0

1 1

oo+
oo m=O
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For the blow up of X at ¢(q4) = [0,1,1,1,1,1,0], we perform the stellar subdivision
Yo — ¥ at v :=(0,-1,—-1). Set P, := [P{,v]. The ideal Iy C K[T1,...,Ts] of X3
is generated by

p5 (p1)« (Tr — h1) = ToTy — TsTy + T5T5T5 € K[T1,...,Tx].
As before, one directly checks that the requirements for Theorem '4.2.6. are fulfilled.

blow up since (11,77, h1) € K[T1,...,T7] is prime by Lemma 5.2.17 and its zero set
contains 7((0,1,1,1,1, 1)) while being four-dimensional.

We now treat the blow ups of X; := Bl F,(x? ii). As a toric variety, the fan ¥; of
X, has its rays generated by the columns of

(0,1)

-1 1 0 o0 —1 —2 no—
—a 0 1 -1 —a+1 —2a+1 | 1 (=1, —a+1)

(=2, —2a+1)

and, by the proof of Proposition 5.2.8, the previous blow ups ; are

X; —2>BIF,(x i) ——=TF,
Wz([z]) = [2126722»23724,2526]7 7Tl([Z]) = [2125,22»2325724}-

The surfaces Bl F,(x? x v) to Bl F,(x? x viii) are the blow ups of X; in the same
points g; € X5 as defined in the previous case, i.e.,

¢ = [1,0,0,1,1,1], ¢ = [0,1,1,0,1,1
g3 = [1,0,1,0,1,1], g = [0,1,1,1,1,1] € X;.

fore, the first three blow ups are toric and hence are performed by stellar subdivision
of ¥1 at v € Z? where the respective vectors are

v = (1,1), v =(-1,—a-1), v = (1,-1).
We now treat the blow up Bl F, (%% x viii) of X7 in q4. The steps are as in previous
cases. Choose hy := T¢T, —T3TsTs € K[T1, ..., Tg] for the embedding 7: K& — K.
We have a new degree matrix @} and a matrix P; whose columns are generators
for the rays of the fan 3} of Z1:

1 0 0 0 1 -1 0
1 a—1 0 1 1 2 —1
e N R R
0 0 0 1 > -1 1 o o0 1 0 1 1 -1
For the blow up of ¢(¢4) =[0,1,1,1,1,1,0] € X7, we perform the stellar subdivision

of ¥} at v:= (0,—1,—1) € Z3. Set P, := [P],v]. The vanishing ideal I, of X is
generated by

5 (p1)s (Tr — hy) = Tolg — 19Ty + 13151 € K[11,...,Tg].

fulfilled. Hence, the Cox ring of the performed modification is Ry = K[T1, ..., T3]/ .
Its degree matrix is as listed in the table. The performed modification was a blow

up, for (T1,T7, h1) C K[T1,...,T7] is prime by Lemma5.2.17. and its zero set con-

(VIII) Surfaces of type Bl Fy(x3). Each surface Bl F,(x%) is a blow up of a surface of
type Bl F,(x?) in a point in the union of the two exceptional divisors. By Proposi-
tion'5.1.4 and Proposition 5.2.8, we need only consider the following configurations

where (3) stands for the threefold iterated blow up.
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3)
‘m

Thus, we blow up the two surfaces Bl F,(x? i) and Bl F,(%? 4i) listed in Proposi-

As a toric variety the fan 3 of X; has its rays generated by the columns of
(0,1)

[ S0 1 . r2 L1 = (c1,-a+2) (© 111})0)
(=1, —a+1) ’
(-1, —a)

The exceptional divisors are V(X7; T5) and V(X5; Tg) and their union consists of
the toric orbits through the points

q1 = [1,1,0,1,1,0, ¢ := [1,1,1,1,1,0], g3 := [1,1,1,1,0,0],
qs = [171,1,1,0,1], qs = [071a1717071] € Xi.

are toric. They are determined by the stellar subdivision X5 — X1 at v € Z2 where
v=(—1,—-a+3), v=(-2,—2a+3), v=(-2,—2a+1),

respectively. The resulting toric surfaces are called Bl F,(x® i), Bl F,(x* 4ii) and
Bl F,(*® v); their Cox rings can be found in the table.

We now consider the blow up Bl F, (%3 iv) of X; in ¢4. The steps are as in previous
cases. Choose in K[T1,...,Tg] the polynomial hy := T1T271T4 — TsTs for the
embedding 7: K¢ — K7. Let Q; be the degree matrix of R(X;). We have a new
degree matrix Q] and a matrix P whose columns are generators for the rays of the
fan ¥} of Z{:

Q) = lQl
0 0 0 0 1 -1

1
1 a=1 0 1 0 0 -1
— /
LA P = 0 a 0 1 -1 -1 -1
o 1

For the blow up of X in the point ¢(q) = [1,1,1,1,0,1,0] we perform the stellar
subdivision Yo — ¥} at v := (=1,-2,—1). Set P; := [P{,v]. The vanishing ideal
I, of X5 is generated by

(I5,T7,h1) C K[T1,...,T7] is prime by Lemma 5.2.17 and its zero set contains
7((1,1,1,1,0,1)) while being four-dimensional.

We now treat the blow ups of X; := Bl F, (2 i7). Its fan ¥; and generators for its
rays are

(-2,—2a+1)
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The exceptional divisors are V(X7; T5) and V(X5; Tg) and their union consists of
the toric orbits through the points

q = [17170313071]3 q2 = [17131517071]7 q3 = [131ﬂ1717070}7
qs = [17171713170]a q5 = [07171317170] € Xl'

blow ups of X7 in ¢; (and hence g2), g3 and g5 are toric. They are determined by
the stellar subdivision of 39 — ¥1 at v € Z2 where

v = (-1,—a+2), v = (=3,-3a+2), v = (=3,-3a+1),

respectively. The resulting toric surfaces are called Bl F,(x® vi), Bl F,(x® viii) and
Bl F,(*® 2). The latter two can be found in the table; the former will be isomorphic
to another surface and sorted out at the end of this proof.

We now consider the blow up Bl F, (% iz) of X; in g4. The steps are the same as
in previous cases. Choose in K[T1,. .., Ts] the polynomial hy := T\ T3* ' TZ — T3 T
for the embedding 7: K¢ — K”. We have a new degree matrix Q} and a matrix P|
whose columns are generators for the rays of the fan ¥} of Z1:

1
1 a—1 1 1 1 1 -1
/ — /
Q1 Q1] 2 o 1> P = 0 e 1 1 0 -1 -1
5 0 002 0o 1 0 -1

For the blow up of X7 in the point ¢(q4) = [1,1,1,1, 1,0, 0] we insert the ray through
v := (0,-2,—1) into i by performing the stellar subdivision at v € Z*. Set
P, := [P],v]. The vanishing ideal I of X5 is generated by

Py (p1)s (Tr — h1) = ToTg — TVT2°'T? + TiTs € K[Ty,...,Ts).

As before, one directly checks that the requirements for Theorem 4.2.6. are ful-

filled. This leaves us with the Cox ring Ry = K[T1,...,T3]/I> of the performed
modification. Its degree matrix is as listed in the table. The ideal (T5,T7,h1) C

K[Ty,...,T7] is prime by Lemma 5.2.17, its zero set contains 7((1,1,1,1,1,0)) and

Isomorphisms: We now remove redundancies between the obtained surfaces. More
precisely, we will show that the surfaces not listed in the table of Theorem '5.3.1:
are isomorphic to surfaces appearing in the table. Keep in mind that also these
redundant Cox rings have been presented explicitly throughout this proof. We first
treat the toric then the non-toric K*-surfaces. Note that, in our case, exactly the
surfaces without a relation in their Cox ring are toric as the total coordinate spaces

of the other ones are singular.

Given toric surfaces Z;, Z5, we write primitive generators for the rays of their fans

VARV = A'PZ1 = PZ2 with AEGL(2,Z)

in the notation of 5.2.9. We will reuse the matrices Pz, from the proof if possible.

the respective degree matrices.

AR 141321 = P22 with A € GL(Q,Z)

. -1 1 -1 1 0 1 2 3 3
BlIPz(N* ED) -1 0 -1 0 1 1 1 1 2
R I [ B e B e
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Bl Po(x2 % i)
o

Bl Py (%2 %2 i)

[=}

[

|

-
=N =

|

-
[E—"

Bl Py (%2 %2 i)

Bl Py (%2 % * i)

-1 1 0 1 -1 2 -2
-1 0 1 1 0 1 -1
1 0 -1 -1 0 —1 1
0 -1 1 0 1 -1 -1

Bl Py (x2 2 ii)

Bl Py (%2 %2 iid)

Bl Py (%2 % * i)

Bl Py (%2 % iii)

-1
—1

R -1 1 0 0 -1 -1 -2
Bl Fq (%° v) —a 0 1 -1 —a+1 —-a+2 —2a+1
o~
Bl Fy (3 vi) _ -1 1 0 0 -1 -2 -1
: —a 0 1 -1 —a+1 —2a + 1 —a + 2
5 1 0 -1 1 0 0 -1 -1 1
Bl Fq (** * 1) -1 1 —a 0 1 -1 —a+1 —-a+2 1
Bl Fo_q(x2 % 4ii) — -1 1 0 0 -1 -1 1
: —a+1 0 1 -1 —-a+4+2 —-a+3 -1
3 -1 1 0 0 -1 -1 —1
Bl Fq(x° 1) -4 0 1 -1 —-a+4+1 —-a+2 —-a+3
BlIF,_1(+2 * i) = -1 10 0 -1 -
: —a+1 0 1 —1 —a + 2 —a+ 3 —a
5 -1 1 0 0 -1 -1 —2
Bl Fq (x° 414) —a 0 1 -1 —a+1 —-a+2 —2a+3
=
BIF,_1(x2 % vi) = -1 1 0 0 -1 -2 -1
: —a+1 0 1 —1 —a + 2 —2a + 3 —a
5 -1 1 0 0 -1 —2 -1
Bl Fq (x° vi) —a 0 1 -1 —a+1 —2a+4+1 —a+2
B Fy_ (3 wiii) = -1 000 -t —2
. —a + 2 0 1 —1 —a+1 —a —2a + 1
R 1 0 -1 1 0 0o -1 -2 1
BlFq41(** x v) -1 1 —a—1 0 1 -1 —a —2a—1 1
Bl Fo (%2 % vii) _ -1 1 0 0 -1 -2 1
: —a 0 1 —1 —a+1 —2a +1 -1
3 -1 1 0 0 -1 -1 —2
Bl Fq (x° v) —a 0 1 -1 —a+1 —-a+2 —2a+1
BIF, (+3 vi) _ -1 1 0 0 -1 -2 -1
: —a 0 1 —1 —a+1 —2a +1 —a + 2
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We show that the listed toric surfaces are pairwise non-isomorphic by comparing
the respective self intersection numbers D? where D; := V(X; T;).

X D? D: D3 Di D: D2 D2
Bl P (x* ix) >0 -2 -1 -3 -2 -1 -1
Bl Pa (x* ziii) >0 -2 >0 -2 -3 -2 -1
Bl P2 (%% zv) >0 -3 >0 -2 -2 -2 -1
BlPy(x? %2 i53) -1 >0 -2 -2 -2 -1 -1
BIPy(x2 %% ww) >0 >0 -3 -2 -2 -1 -1

BlPy(x?xxi) -1 -2 -1 -2 -1 -1 -1
Bl Fqo(x? % 1) -1 -1 >0 —-a -2 -1 -1
BIFq(x?  v) -2 -1 >0 —-a -2 -1 -1
Bl Fq (%3 1) -1 >0 >0 —-a -2 -2 -1
Bl F (%3 i44) -1 >0 >0 —a -3 -2 -1
Bl Fq (%3 v) -2 >0 >0 —-a -3 -1 -1
Bl Fo (%3 viii) -2 >0 >0 —-a -3 -2 -1
Bl Fo (%3 ) -3 >0 >0 —a -2 -2 -1

Counting the number of (—k)-curves we can rule out all isomorphisms except for
the following.

Bl Py(x* ziii) — Bl Py(x* 2v)

Bl P, (*4 ZI) — Bl Fg(*Q * U), Bl P, (*2 *2 Z’U) — Bl Fg(*3 Z),
BIF,(« iii) — BLF,(x*0), Bl F, (3 viii) — BLF,(x*z).

isomorphisms we compare the intersection behavior of negative curves, i.e., their
exceptional graphs. To this end, consider the fans X(x® iii) and X(x* v) of the
surfaces Bl F,(x3 iii) and Bl F,(x® v) where the self-intersection numbers of the
divisors D, corresponding to rays g are drawn beside the rays.

Thus, on Bl F, (% v), a (—2)-curve has non-trivial intersection with a (—1)-curve
and a (—a)-curve which is not the case on Bl F,(x* iii). We proceed similarly
for Bl F,(x® viii) and Bl Fy(x* x). Their fans Y (x* viii) and 3(x® x) and self-
intersection numbers of the D, are

On Bl F,(** x ) there is a (—3)-curve that meets the (—a)-curve. This is not the
case on the surface Bl F,(x® x viii).

We come to isomorphisms between the found non-toric K*-surfaces. By Algo-

only if the degree matrices Q; of R(X;) coincide up to multiplication by admissible
matrices, i.e.,

admissible and U is a block-invariant, admissible permutation matrix. We use the
notation of 5.2.9.where U is given implicitly.
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AQ; = Q with A € GL(5,2)
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1 1 1 0 0 1 0 0 0 0 0O 1 1
01 0 0 O 01 0 0 0 1 0 1
00 0 0 1 00 1 0 0 1 -1 =2
3. 01 0 1 0 000 0 1 0 1 -1 -1
BLP2 (% + 1) 0 02 1 0 o0 000 0 0 1 1 -1 0
oy 1 0 0 0 1 1 2 0
Bl]l”z(*z**u) o 1 0 0o 1 0 1 0
= 000 1 0 0 0 1 -1
000 0 1 1 0 2 -1
o0 0 0 2 1 3 -1
1 0 0 0 0O 1 0 0 0 0 1 —a+2 a-1
01 0 0 O 01 0 0 0 -1 -1 1
00 1 0 O 00 1 0 0 0 1 —1
00 0 1 0 00 0 1 0 0 -1 1
Bl Fo (x x + 411) 0 0 0 0 1 0o 0 0 0 1 1 —a+3 a-2
” 1 0 0 0 0 1 a-1 -—a+2
BlFa—1(xxx @) 01 00 o -1 "1
= 00 1 0 0 0 -1 1
00 0 1 0 0 1 -1
00 0 0 1 1 a—-2 —a+3

except possibly between Bl Po(x x x x i) and Bl F,(x x x ii). However, this
cannot be the case as, by the blow up sequence, the self intersection numbers of the
D, :=V(X; T;) are different for each a > 3:

X D? Ds D3 Di D: D:i D2 Di
BlPo(**x*%d) —-1 -1 -2 -1 -1 -1 e —1
BlFo(xxxiii) —1 —1 >0 —a —1 -1 e -1

]

Remark 5.3.7. In the proof of Theorem :5.3.1, we presented the self-intersection

if we do not know the value from the blow up sequence.

X D? Ds D3 Di D: DZ D2 Di Dj
Bl Py (x* i) >0 -1 >0 -2 -3 e -1 e -1
Bl Po(x* v >0 -1 >0 -2 -3 e —2 -1
Bl P2 (x* vi) >0 -1 >0 -2 -2 =2 e —1
Bl P2 (x* ziv) >0 -2 >0 -2 -2 -2 o —1
BIPy(x2x%ii) >0 -1 -2 -2 —1 -1 o« 1
BlIPy(x2x%iv) >0 >0 -3 -2 —1 ~—1 e -—1
BlPop(**x*%4) —-1 -1 -2 -1 -1 -1 e -—1
Bl Pa(**xxx t3i) >0 >0 -3 -1 -1 e -1 e —1
Bl Fo (% % % 14i) -1 -1 >0 —a -1 -1 o —1
BlFo(x*%iwv) -2 —1 >0 —a -1 -1 o« -1
Bl Fq (% % * ix) -3 >0 >0 —a -1 o —1 o —1
Bl Fq (%% % iv) -2 >0 >0 —a -2 -1 e —1
BIF,(x?% visi) -3 >0 >0 —-a -2 -1 e -1
Bl Fg (%3 iv) -1 >0 >0 —a -3 -1 o —1
Bl Fo (% ix) -2 >0 >0 —a -2 -2 e —1

4. Smooth rational surfaces with o(X) =6

In this section, building on Proposition :5.2.8 and Theorem :5.3.1, we present and

prove the central theorem of this chapter, Theorem 5.4.1. We show that each

smooth rational surface of Picard number six is a Mori dream space and classify the
Cox rings of the families without a non-trivial K*-action. All Cox rings are given
explicitly. Each such surface can be obtained as a blow up of a smooth rational

well as the proof of one of the cases) has been stated together with J. Hausen and
A. Laface in [57, Sec. 6].



The Cox rings of blow ups of Py will be determined computationally using Algo-
rithm '4.5.9 with option verify. For blow ups of F, we apply the algorithm in a

Theorem 5.4.1. Each smooth rational surface X with Picard number o(X) < 6 is

4. SMOOTH RATIONAL SURFACES WITH o(X) =6

a Mori dream space. Moreover, the following statements hold.

(i) If o(X) < 5 holds, then either X admits a non-trivial K*-action or is
isomorphic to My 5, the blow up of Py in four general points. The Cox

(if) If o(X) = 6 holds, then X admits a non-trivial K*-action or is isomorphic

to exactly one of the following surfaces where a € Z>3.

X Coz ring R(X)

degree matrix

K[T4,...,Tio]/I

T tod b 1 0 0 1 0 0 2 0 3 -1
N W generate: Yy 0 1 0 1 0 0 3 0 5 —2
Bl Py (%5 1) ) o0 1 -2 0 0 -1 0 -2 1
T5Ty — Th'To — TeT7T5Tho, 0 0 0 0 1 o 1 0 2 -1
Ty T2T2TuTs — T2T> — ToT: 0 0 0 0o 0 1 -2 0 -1 1
1o 8fais = 2627 = 200101 o o o 0 0 0 o0 1 1 -1
K[T4,...,Tio]/I
T tod b 1 0 0 0 0 O 1 0 -1 1
3 we generatea oy o 1 0o o0 o0 0 -1 1 2 -1
Bl Pa(x"x o0 1 0 0 0 1 -1 0 0
x 4) T3T5Ts — T2Ts — ToTho, o0 0 1 0 o0 ©0 0 1 -1
TTs + T7Ts — T2T62T4T10 0 0 0 0 1 0 2 -1 -1 1
00 0 0 0 1 -1 1 3 -2
K[T1,...,Ti1]/I
with I generated by
TTyT2Ts — ToT7 — Ti1Tho, 1 0 0 0 1 0 2 0 0o 1 1
; 2 2 01 0 0 1 0 1 0 12 0
Bl Po(x3x T5TyTgTi —T5To + 38721107 6 0 1 0 0 0 1 -1 o 1 o
* 1) T +T7Ts — ToTyTgTT, o0 0 1 1 0 2 -1 0 2 0
T32T4T5T82 + T To — ToT11, o 0 0 0 2 0 3 —-1 —1 2 1
TRT2Ty VT2 2Ty — T5To 00 0 001 0 0 101 -1
—T1T1o
K[Ty, ..., Tiol/I
T tod b 10 0 0 0 0 2 -1 -1 1
3 w1 generate Yy 0 1 0 0 0 0 -2 2 3 —1
Bl P2 (xx o0 1 0 0 0 1 -1 0 0
* 17) ThTs + T718 — ToTyTeTho, o0 0 1 0 0 -1 1 2 -1
ToTeToT2 — T2Ty — To T, 0 0 0 0 1 0 3 -2 -1 1
3454708 2747 9010 0 0 0 00 1 0 0 1 -1
K[le cee ’Tl3]/1 ToT11 — NT5T3T9 — T7T12,
with I generated by (A=1)T1T5 — T10To — T12T13,
X — D)T5Ts + TsTo — T11T1s,
Bl Py(xx T1T11 — TyT3Ty — TgT12, ( JT5Ts o e
A T T T T10T11 — (/\ — 1)T4T3T5 + T6T127
* % * 1) 1T — ToTs + T3ToThs,
(A= 1)TyT7 + XT6To — T11T13,
A€ ToTs + T7T10 — T3T5T13, (A = 1)ToT4 — AT10T — TroT's
g\ {1y 1176 + TsTi0 — T3T4T13, '
1 0 0 0 -1 0 0 1 0o 0 -1 -1 1
0 1 0 0 10 0 -1 0 1 0 1 0
00 1. 0 0 0 0 0 0 0 1 1 -1
0 0 0 1 1 0 0 0 10 2 2 1
o0 0 0 0 1 0 0 -1 1 -1 -1 1
00 0 0 0 0 1 1 1 -1 1 )
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K[T4,...,Ts]/I
with I generated by

TeTi2 + NT7T14 — T3,
T5T12 — pT%Ths — ToThs,

(A = w)T3T5 + pTrTio — T13T16,

(=2 4+ 1)Ts5Tia + (—p+ V)TsThs + Tr0Th1,
A =DT5Ts + (—p + 1)T6Ty — T11T16,

(AN =1)TuT7r + (N — u)TsTo — Th1T16,

(v = V)T5Ty — pT8T10 + T14T16,

(=2 +1)ToTia + (—p+ V)T3Ths + Ti0Th2,

Bl Py(kx  TuT13 — AT5T14 — pT6T1s,
sk i) TuTie — pTsTis — AToTha, M = ) T2Ts + (= A+ NT5To = Ti2The,
r#pe 13T +T7Tiy — TeTas, (A = W) T5Ts + AT7Tio = T13The,
. T\ Tys — ToTha — T5T A =1)ToTa — XToTro — T15T46,
K<\ {1} T1T13 —ToT1a — T3Tys, 5
T1T11 — 18115 — ToTha, (A= wTi Ty + (A = @) T5To — Ti2Ths,
ToTi1 — TeThs — ToThs, (n—1)T1Ts — T8T10 + T14T16,
(A=1)T1T5 — ToT10 — T15T16
1 0 0 0 -1 -1 0 1 1 -1 0 1 -1 o0 0 0
0 1 0 0 10 0 -1 0 1 0 0 1 0 1 0
00 1 0 o0 1 0 0 -1 1 0 0 1 1 )
0 0 0 1 1 10 0 0 10 -1 0 0 0 1
00 0 0 0 0 1 1 1 -1 0 0 -1 1 -1 1
o0 00 0 0 0 0 0 0 1 1 1 1 1 -1
K[T1,...,Tu)/I
with I generated by
10 0 0 0 0 o0 1 0 -1 1
BIP T6T2Ty + Ts5Ty — TsTho0, 01 0 0 0 0 0 0 1 1 -1
.2.(.;* T3TyTg — T1Te — ToT11, c o 1 0 0 0 1 -1 0 1 0
Sk 14 00 0 1 0 0 1 -1 1 2 -1
T5TyTs + TeT7 — T11Tho, 00 0 0 1 o 1 0 -1 0 1
ThT5 + T7Ts — T2TyTha, 00 0 0 0 1 -1 1 1 0 0
T3T7Ts — TrTy — T1Tho
K[T1,...,Twol/T
T ted by 1 0 0 0 0 O 1 0 -1 1
5 wi genera 01 0 0 0 0 -1 1 2 -1
Bl Py (x*% 0 0 1 0 0 0 1 -1 0 0
* % v) T3T5Ts — ToTe — ToTho, o0 0 1 0 0 o0 0 1 -1
TTs 4 ToTa — ToTu T 00 0 0 1 0 2 -1 -1 1
1fs + Irls — 1214110 00 0 0 0 1 -1 1 10
K[T1,...,Tio)/I
with I generated by 1 0 0 0 0 O 0 0 1 -1
0 1 0 0 0 0 —a+1 a -1 1
Bl Fa()** ThT5Thvo — ToTs — ThTs, 0O 0 1 0 0 O 1 -1 1 0
* % vi a—1a—2 00 0 1 0 0 -1 1 0o o
LT Ty " — 15T 0 0 0 0 1 0 1 -1 2 -1
—T9T1o 0 0 0 0 0 1 —a+2 a—-1 -1 1
K[T1,...,Tu)/I L
__ma - a
with I generated by TioTu — Ty 7;4}115 1§ + wI5Ts,
Bl Fq (%% . —kTSTYTETY " + TsTo — T5Tho,
wwaiv)  Trls =Ty TuTg™ TH +T5Ts,  raqer2re—tTa=tTa=1T8 1 _ 3Ty — T5Tho
wexs  ToTy —TPTATeTS ™' — kT6Ty,
Tt
10 0 0 0 0 1 -1 1 0 0
01 0 0 0 o 0 0 1 1 -1
0 0 1 0 0 a—-1 0 1 2 -3 2a-2 —a+2
00 0 1 0 10 o0 2 2 -1
00 0 0 1 a-—1 1 0 2a—-2 2a-3 —a+2
0 0 0 0 0 a —1 1 2a — 2 2a — 1 —a+1
K[T4,...,Tol]/I
) 1 0 0 0 0 0O 1 —1 0o o
BLF. (3 with I generated by 01 0 0 0 0 2—-1 —-a+1 -a a
a(*7% . 5 0 0 1 0 0 0 —1 1 2 -1
i) 13Ty ) T3T5TgTho — T7Ts, 00 0 1 0 O 2 1 -1 1
T T T, Ta — _ 00 0 0 1 0 0 0 1 -1
152 aTs = T5T6 — ToTho 00 0 0 0 1 -1 1 3 —2
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K[T1,...,Tiwo)/I

with I generated by 1 0 0 0 0 O 1 -1 0 0
BIF (*3* 0 1 0 0 0 0 3a — 1 —2a + 1 —a a
) a T2O‘T4 —T3T6T10T5 — T7 T3, 0O 0 1 0 0 O -2 2 3 -1
i a—1 2 2 00 0 1 0 O 3 —2 -1 1
Ty TyT7Ty —T3Ts 0 0 0 0 1 0 -1 1 2 -1
—ToTro 0 0 0 0 0 1 0 0 1 -1
K[Ty,..., To]/T
with I generated by 1 0 0 0 1 0 0 3 -1
4 01 0 0 2a—1 0 0 4a—-3 —a+1
Bl Fa(x 7) T1T22“*1T42 — T2T; 0o 0 1 0 2 0 0 —2 1
-1 0 0 0 1 2 0 o0 4 -1
_Tsza T3TaT5TeT7To 0 0 0 0 0 1 0 2 -1
+T7TsTE 0 0 0 0 0 0 1 1 —1
K[T1,...,Tol/1
with I generated by 11 0 —a 0 0 O 0 O
BIF. (x242 -1 0 -1 01 0 0 0 O
) GT(* *TETy — TsT5TE -1 0 -2 0o 0 1 0 0 0
i a—1 -1 0 1 1 0 0 1 0 0
—Tr Iy I, TuTsTs 0 0 1 1 0 0 0 1 0
+T7T2T -1 0 2 2 0 0 0 0 1

All surfaces except possibly the surfaces marked with a single 1 do not admit a
non-trivial K*-action. The surface marked with 11 has the listed ring as its Cox
ring for a < 15; for a > 15 it is a Mori dream surface having the Hs-equivariant
normalization of K[Ty,...,Ti1)/(I : (Ty---T11)*°) as its Cox ring.

For the following remark, recall from [5, Thm. V.2.1.7] that a weak del Pezzo surface
is a surface that is ismorphic to P; x Py, to Fs or to a blow up

X X1 X1 Xo =P,

of Py in 0 < 7 < 8 points p1,...,p, in almost general position, i.e., p; € X;_1, no
four points are mapped to the same line in P, and for each 4, the total transform of
the exceptional divisor over p; € X;_; is a chain of rational curves where the last
one is a (—1)-curve and the remaining ones are (—2)-curves. The degree of a weak
del Pezzo surface is 9 — r.

Remark 5.4.2. In Theorem 5.4.1; the weak del Pezzo surfaces of degree four, i.e.,
with r = 5, are

Bl Py (%? % % i), Bl Po (% % % % * 1),
Bl Py (% % % * % ii), Bl Py (% % % * % 4ii), Bl Py (%% % % * iv).

Their Cox rings have been predicted in [32, Sec 6.4]. All other surfaces listed in

Therefore, these surfaces do not appear in [32].

Lemma 5.4.3 (Serre’s criterion). Let fi,..., fs € K[T1,...,T;] be homogeneous
polynomials with respect to a pointed grading of K[T4,...,T,] by a lattice Z™. Write
I:={(f1,....fs) and X := V(K"; I). Then I is prime if there is an open subset
U C X such that

2]

— af;
codimyg (X \U) > 2, rank (5‘1{’ (u)) = s forallu € U.
J
Proof. We first show that X is connected. Let w; € Z™ be the degree of T;. Write

9 := cone(wy, ..., w,) C Q" for the weight cone and choose an element v € (9Y)°.
Since ¥ is pointed, we obtain a Z>¢-grading of the polynomial ring K[T7, ..., T,] by
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setting deg(T;) := a; where a; := u(w;) > 0. Note that I is homogeneous. For each
two points x, 2’ € X there are one-parameter subgroups K* — T" given by

t— (t"zy,... %2, to— ("2, %),

respectively, that leave X invariant and have limit 0 for ¢ — 0 since a; > 0 for
all 5. This shows that X is connected. By Serre’s criterion [73, 6.2], I is radical,
R = K[T},...,T;]/I a complete intersection and X a normal variety. By [36,
Thm. 18.15], R is a product of integral domains. Since X is connected, R is an
integral domain, i.e., v/I = I is prime. O

Lemma 5.4.4. Let I C K[Ty,...,T;] be an ideal such that Ty, — f € I for some
1<k<randfeK[T;i+#k| = Rg. Let I, C Ry be the ideal generated by the
image of I under

K[Ty,...,T.] — Ry, T, — f, T, — T; for i#k.

Then I C K[T4,...,T,] is prime if and only if I, C Ry is prime. Moreover, we
have dim(V (K"; 1)) = dim(V (K"~1; I.)).

Proof. This statement is due to the observation that K[T4,...,T,]/I is isomorphic
to Rk/Ik O

Amongst others, the following lemma describes the behavior of the irrelevant ideal
under a toric blow up Zo — Z;. Let ¥; € Q% be the fan corresponding to Z;.
Assume the rays of X; are o, ..., 0. Define

1, o
S 01Y, ule); = {0’ nE”
’ Jj = .

Tz, and fan X1 with rays o1, ..., 0r. Assume w: Zy — Z1 arises from the barycen-
tric subdivision ¥o — X1 of a cone o € 1. Suppose X1 N (Tz, - z(0)) = {[;m]}
with p1 € 21 C K" and 7 induces a blow up of X1 in [p1]. Let V(Za; Try1) be the
exceptional divisor of the blow up w.

(i) The ideal of Zo \ 22 in the ring K[Ty,...,Tr41] is
<T"1<"’>Tr+1; o' € TP\ {o}> + <T”1<U>n; 0iCo, 1<i< r>.

(ii) The set (X1 x {1}) N X4 is contained in Xs.
(iii) Let po € Xo C K", Then py is contained in Xo if there is 1 < j <r
with

(p2)j # 0, (pl)j = 0, H (p2); # 0.
(p1):7#0

Proof. First, recall from [5, Prop. 11.1.3.3] that the vanishing ideal of Z; \ Z; in
K[Ty,...,T,] is J; := (T¥(); ¢/ € £1) Let g,11 € ¥y be the ray corresponding
to the exceptional divisor V(Zy; T,41). For the first statement, each maximal cone
o’ € Yo either is a maximal cone of ¥; or contains g,41. In the former case,
va(0’) = (v1(0’),1) whereas in the latter case ¢/ C o which, by regularity of X;,
contains exactly one more of the rays g; than ¢’ where 1 < ¢ < r. This shows (i).

Or+1
@3 = ©Or .

’
’ o

02
o1
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For (ii), consider ¢o := (q1,1) € X2 C K" with ¢; € X,. Since @1 € V(J1), we
have T1(?))(¢;) # 0 for a maximal cone o’ € ¥1. If .1 Z o/, then (q1,1) & V(.J5)
as

Tug(g’)(ql’l) _ Tul(g/)(ql) 7& 0

by the first statement. On the other hand, if g,11 C ¢/, we have ¢/ = 0. Assume
(T”l(")Ti)(ql,l) = 0 for all rays go; C o with 1 < ¢ < r. Since T”l(g)(ql) # 0,
we have (¢1); = 0 for all g, C 0. This means, ¢; lies in the toric orbit Tz, - z(7)
corresponding to a cone 7 € ¥; with ¢ < 7. By assumption, we have

{la]} € X1 0 (Tz -2(7)) € X1 N (Tz -2(0)) = {[ml},

and thus [p1] = [¢1] € X1. Because 7([q1,1]) = [¢1] = [p1] this implies that [¢1, 1] is
an element of the exceptional divisor V(Zs; T41), a contradiction.

We come to (iii). Since o € ¥, the monomial T"1(?) = [1(,):20 Ti is an element
of the ideal J;. Since (p;); = 0, we have p; C ¢. By (i) and the requirements on p,
we conclude

~

Tj' H T, € Jo, p2 € YQ\V(KT-H; J2+Ig) = Xo.
(p1)i#0 (]

The following proposition will be used to identify non-isomorphic surfaces in the

minimally presented if the Cl(X)-grading is pointed and no generator of R(X) may
be omitted.

Proposition 5.4.6. Consider Mori dream spaces X1, Xo sharing the same class
group Cl(X;) = Z". Assume both Cox rings R(X;) are generated by r € Zsq
elements and are minimally presented. If X1 = Xo, then the following assertions
hold.

(i) There is a permutation o € Sym(r) such that for the corresponding per-
mutation matriz U, € GL(r,Z) the n X r degree matrices Q; satisfy

S-Q1-U, = Qo for some S € GL(n,Z).

(ii) Let L; be the lists consisting of the sorted absolute values of all n x n
minors of the Q;. Then Ly = Ls.

(iil) There is o € Sym(r) such that the Hermite normal forms of Q1 - U, and
of Q2 are equal up to units.

The idea of the proof of Proposition 5.4.6.is to track the permutation of certain
“minimal weight vectors”; this concept is used in an ongoing project together with
J. Hausen. Let K be a finitely generated abelian group. Consider an affine K-
algebra R = K[T1,...,T,]/I with a pointed K-grading R = @, cx R and a K-

homogeneous ideal I C K[T7,...,T;]. We order the elements of K by

w<w e ow = wtw” “’i,,ow’
(6) o’

for some w” € K. =

Definition 5.4.7. Let S(R) := {w € K; R, # {0}}. A vector w € S(R) is
originary if it is minimal in S(R) with respect to the relation < defined in (6). We
denote the set of originary vectors by orig(R) C S(R).

For instance, if w € S(R) and w is an element of a Hilbert basis for the weight cone
¥ C Kg of R or w is a primitive generator of a ray o < 9, then w is originary.



162 5. SMOOTH RATIONAL SURFACES

ng[U Ry,

wo <w

such that

for some f € Ry.

Let K;, K> be finitely generated abelian groups and R; two K-algebras that are
graded by K;. Recall, e.g., from [5, Sec. I.1.1], that an isomorphism of graded
algebras is a pair (¢, «) with an isomorphism v¢: Ry — Ry of algebras and an
isomorphism «: K71 — K of groups such that

1/1((31)11;) = (R2)a(w) for all w € K.

Moreover, a homomorphism : Ry — Ry of algebras is called graded if there is
a homomorphism a: K; — Ky of groups such that ¥((R1)w) € (R2)a(w) for all
we K.

Lemma 5.4.9. Let K, K' be finitely generated abelian groups and R, R’ affine K-
algebras with respective pointed K - and K'-gradings. Each isomorphism (¢, a): R —
R’ satisfies a(orig(R)) = orig(R’).

Proof. As (¢, @) is an isomorphism, we have a(S(R1)) = S(Rz2). Note that « is an
isomorphism of posets, i.e., w < w’ in S(R) if and only if a(w) < a(w’) in S(R).
In particular, the minimal elements of S(R) are mapped to the minimal elements
of S(R'), as claimed. O

Lemma 5.4.10. Consider a Mori dream space X with Cox ring R(X) that is
minimally presented by the generators f1,..., fs. Then the set of originary vectors

Of R(X) is {deg(fl)v cet dEg(fs)}'

Proof. We write R := R(X). Assume there were 1 < j < s with deg(f;) not
originary. This means we have

fi e K| |J Bu

wo <deg(f;)

In particular, f; can be removed from the presentation of R(X), a contradiction.
For the reverse inclusion, assume w € orig(R) is given such that w # deg(f;) for
all 1 < j < s. Since no generator f; is an element of Ry, any 0 # f € Ry, is a
combination f =Y h;f; with h; € R. In particular, w is not originary. ]

(1, B) of Z"-graded K-algebras R(X;) — R(X3); compare [5, 6]. Note that 8: Z™ —
Z™ is given by a matrix S € GL(n,Z). Since R(X;) is minimally presented, by

degrees in Cl(X3) under g, i.e.,
S-Q1-U, = Q2 for some o € Sym(r).

In particular, the Hermite normal forms of Q1 - U, and @ coincide up to units.
This shows (i) and (iii). Statement (ii) follows from (i) and the fact that up to sign
the maximal minors of a matrix are invariant with respect to multiplication by an
invertible matrix. (]

The following observations will be useful in the proof of Theorem :5.4.1; to identify

surfaces that do admit a non-trivial K*-action. The next lemma uses a result from
P. Orlik and P. Wagreich [86].

Lemma 5.4.11. Compare [86]. Consider a surface X1 admitting a non-trivial K*-
action. Let Xo be the blow up of a point x € X, with Cox coordinates z € X1 C K.
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If x is a fized point, then Xo admits a non-trivial K*-action. In particular, this is
the case if one of the following conditions hold.

(i) Xy s toric and x is not contained in in the big Tx, -orbit of X;.
(ii) X1 is non-toric, embedded equivariantly into its canonical toric ambient
variety and there are © # j such that z; = z; = 0.

Proof. If z is a fixed point, X admits again a non-trivial K*-action by [86]. For (ii),
the intersection of the K*-invariant divisors V(Xy; T;) and V(Xy; Tj) is again K*-

invariant, i.e., is a hyperbolic fixed point, see Proposition:1.5.10.

orbit T - z(o) with the distinguished point z(c) € X; of a cone {0} # 0 CQ® F
of the fan of X;. Consider the sublattice L := F Nling(c) € F. The inclusion
L — F corresponds to an epimorphism @Q: E — K of the dual lattices. By [5,
Prop. I1.1.4.2], we have

rank(K,) > 1 where K, = K/Q(c-NE).

Hence, the isotropy group H.(,) = SpecK[K,] is a subgroup of Tx, of dimension
at least one. This means, x lies on a fixed point curve of a K*-action and X5 is a
K*-surface. O

Lemma 5.4.12. Let X be a K*-surface. Consider negative curves D,D’ C X
that each intersect at least three other negative curves on X non-trivially. Given a
negative curve E C X, we have

DNE =10 or D'NnE = (.

on X. In particular, they must not meet, i.e., DND’' = 0. If E ¢ {D, D'}, then the
contraction X — X' of E yields again a K*-surface X’. In terms of P-matrices as
in‘1.5.2this means deleting a column. Let Z and Z’ be the canonical toric ambient

a ray of the fan of Z we have a toric contraction
(0, 9): Z — VA where ¢ =id: Ty — Ty,

¢ is proper and the contraction is equivariant. Thus, on X', sink and source have
non-trivial intersection. (]

on the type of fixed points, the graph of exceptional curves Gx is of shape

B <>
<D 4>

where gray and black vertices are negative curves and white vertices form a complete
subgraph of not necessarily negative curves. The graph of case (pp) is called the
Orlik Wagreich graph defined in [86].
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Remark 5.4.14. See [37, Cor. 2.6] and compare [64], [50, Kap. 2.1]. Given a bino-
mial ideal I C K[T7,...,T;], let T;,, ..., T;. be the variables that are contained in I.
Write the exponents of binomial generators of I into a matrix B as in Lemma5.3.3.

Then [ is prime if and only if the entries of the Smith normal form of B are elements
of {0,£1} and

I =(T,...Ti)+IT:f), f= ][] =
i1€{i1,...,is}

contraction of the exceptional divisors on X leads to one of the configurations of
Propositions 5.1.2'and '5.1.4; see Remark '5.2.3. We compute the resulting surfaces

grouped into originating surface of Picard number five.

Blow ups that lead to (toric or non-toric) K*-surfaces will be omitted; they are

directly for blow ups of Py and formally for blow ups of F,. We will prove or
disprove the existence of a non-trivial K*-action directly when we encounter the
surfaces. In the final step, we present or rule out isomorphisms between the listed
surfaces.

BN

X1 — 25 BIPy(+3 i) =—2— Bl Py (+3 ii) —=— Bl Py(x2)) <—— Bl Py(x?) "%

P2

The embeddings ¢; are as in Setting 4.2.9  with

i1 K — Kﬁ, z = (z,hl(z)), hy = T§T4—T1T2,
To: K" — K&, 2 (2,ha(2)), hy = (A= DTETy — \T Ty

where A € K*\ {1}, hy € K[T1,...,T5] and hy € K[T1,...,T7]. The blow ups are
given by

ma([2]) = [z1,. .., 24, 2529, 26, 27, 28%9) s m3([2]) = [e1,..., 24, 2527, 2627,
7T2([Z]) = [2172225,2372425], 7T1([Z]) = [2172224,2’324]-

The exceptional divisors of the first, second, third and fourth blow up are
V(X1; Ty), V(X1; Ts), V(Xy; T7), V(X1; To).

By Proposition 5.1.2: and Theorem '5.3.1, we want to blow up X; in a point ¢ € X,

which, together with the exceptional divisors, projects to one of the configurations

(4) A (5) A

For the first configuration, we blow up X3 in the point ¢ where
q:=100,1,0,1,1,0,1,0,1] € X3, mom ot tomgoiyt om(q) =[0,1,0] € Py
and the existence of ¢ can be seen by an application of Algorithm 2.3.8. By an

We come to the second configuration, i.e., blow ups of X; of type Bl Py(x°).
Note that the curve V(Xy; T5) is a parabolic fixed point curve. Therefore, by
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two invariant divisors V(X1; T;) and V(Xy; Tj) leads to a surface with at least a
K*-action and thus will be omitted. By Remark 5.3.5, it suffices to consider

Ty Ty

q1 = [—1,1,1,071, 1 )\’1]’ 7747‘7
¢ = [1,1,1,1,1,1,0,A — 1,1],

q3 = [17171,)\71,)\ 1a 3170] 7ﬁTg

Te

obtain the followmg Cox rings.

¢ Cox ring R(X) degree matrix

K[T1, ..., Twl/I
with I generated by

1 0 0 0 O 1 0 1 5 -3
0 1 0 0 0 1 0 1 8 -5
a (-1 T12T2 _2T52T62_ TrTs, o0 1.0 0 0 0 0 1 -1
A= DISTTTE T To 00 0 1 0 0 0 0 3 -2
+(—2)\ + 2)T2T3T4T6T8T9T120 60 o0 0 1 -1 0 0 -3 2
FA = )TTR2TS) — ATsT —T5Tg = 0 ° 0 0 0 0 b =t =8 2
]K[Tl7 - ,Tlo]/l
with I generated by 1 0 0 1 0 0 O 1 3 -1
0 1 0 1 0 0 0 1 5 -2
2 72Ty — TyTo + T4 15, 000 1 -2 0 0 0 0 -2 1
0 0 o 0 1 0 0 0 2 -1
TeT10T2T3TyTs5Ts — T@T Tg o o0 o o 0 1 o 0 PR
+(=A+ )T T2 + T7Ts 0 0 o0 00 0 1 -1 =2 1
K[T1,...,Tio)/I
with I generated by 10 0 1 0 0 1 0 3 -1
0 1 0 1 0 0 1 0 5 -2
43 12Ty — T'Tp — T6 T, 0o 0 1 -2 0 0 0 0 -2 1
TTi0To T3 TuT5Tr — TR To T2, P S R
H(=A2 + N1 Ta + \TsTx 0 0 o 0 0 o 0 1 1 -1

We now show that all three surfaces are K*-surfaces since their Cox rings are iso-
morphic to the following Cox rings belonging to K*-surfaces with the same grading:

N=1TN1T, — TsTs — T7Ts,
K[Tl, e ,Tlo]/ < ()\ _ 1)T3T§T130 _ )\T5T6 _ T7T8 )

K[T T ]/ T32T4 —ThTol+ 17Ty,
1,---5410 ~TeTETy + (A + V)W + 5Ty /°
K[Tl, N 7T10]/ < _>\T8T9T120 + (_AQ + )\)TlTQ + )\TGT’? .

By Lemma 5.1.5; it suffices to provide ZS-graded isomorphisms K[T7,...,Tio] —

K[Ty,...,Tio] that induce isomorphisms of the respective Cox rings. For ¢1, g2 and
q3 we respectively choose

Ty + ToT3T2TETET o — 2T Ty Te Ty T TR, i=1,
Ty Tr+ (A= D)TETT2TETTio — () — 2) o T3 Ty TeTo TS, i=17,
T;, else,

T = TeThoT3Ty 5Ty, i=1,
T; — T — /\T6T10T2T3T4T5, 1=1,
T3, else,
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Ty + A 2TT oI5 Ty TsT7, i =1,
Ti— T — A72T8T10T2T3T4T5, i =06,
T; else.

VN

X1 . Bl P (%3 ii)LBIPﬂ*z)/éBIIPQ(*z) ™1 0

Po

where the embedding ¢ is as in Setting 4.2.9 with

11: KS — KG, Z (Z7h1(2')), hi1 = T32T4 —T1Ts
where hy € K[T7,...,T5] and the blow ups are

7T4([Z]) = [Zla - -3 %45Z528, %6, 272:8]7 773([2]) = [21, ...y, R4,2527, ,262:7]7
772([2]) = [21, 2225, %35 2425}7 771([2]) = [21, 2224, 2324}-
The exceptional divisors of the first, second, third and fourth blow up are
V(X1 Ty), V(X1; Ts), V(Xy; Tr), V(X1; Tg).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

WA A

For the first configuration, we use Algorithm 4.5.9:to blow up X in the following

g == [0,1,0,1,1,0,1,1] € X;, momou omom(qg) = [0,1,0] € Py.

We come to the second configuration, i.e., blow ups of X; of type Bl Py(x°). On

ups of points lying in V(Xy; T5) or in the intersection V(X1; T;) NV (Xy; Tj) of
two invariant divisors yield surfaces with a non-trivial K*-action and thus may be
omitted. By Remark '5.3.5; it suffices to consider the following points.

q1 = 1517170a1a1717_1}7 T

[ T
qz [151717171517170]5 > Ts
g3 = [1,1,1,1,1,1,0,1]. T

gi Cox ring R(X) degree matrix
K[T1,...,Tol/1
1 0 0 0 0 O 1 5 -3
q with I generated by 0O 1 0 0 0 O 1 s _5
1 0 0 1 0 0 O 0 1 -1
TsTeTr + TaTo — TSToT2TITETY | 0 0 o 1 0o o o 3 -2
2T T2 T Ty Te T2 Ts — TRTSTE 00 0 0 1 0 -1 -6 4
o 0o 0 0 0 1 -1 -3 2
K[T4,...,Tio]/I
1 0 0 1 0 0 2 o0 3 -1
with I generated by 0 1 o0 1 0 0 3 0 5 —2
a2 5 00 1 -2 0 0 -1 0 -2 1
T5Ty — Th'Te — TeT7TsTho, 0 0 o0 0 1 0 1 0 2 -1
TT2T3TyTs — T2T7 — ToT} 0 0 0 0 0 1 -2 0 -1 1
152532455 67 9-10 0 0 o 0 0 o0 0 1 1 -1
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KTy, ..., Tol/1

1 0 o0 1 0 0 0 1 0

with I generated by 0 1 o0 1 0 0 O 3 -1

a3 5 9 00 1 -2 0 0 0 -2 1
T3Ty — ThTo — TeT; ToToT3TyTs o0 0o o0 1 0 0 2 -1
+TeT7T2Ts 0 0 0 0 0 1 0 1 -1

0 0 0 0 0 0 1 3 -2

Both the blow up of X; in ¢; and the blow up of X; in ¢3 are K*-surfaces since
their Cox rings are isomorphic to the respective Cox rings

K[Ty, ..., To] [ (TsTeTr + ThTa — Ts T3 T3),
K[Ty,...,To] / {T3Ty — ThTo + TsT- T2 Ts)

of K*-surfaces with the same degree matrices as listed in the table. By Lemma5.1.5,

it suffices to consider the isomorphisms induced by the Z%-graded homomorphisms
K[Tl, . ,Tg] — K[Tl, . ,Tg] given by

Ts — Ts+ TsToToTiTeT: — 23T T Ty T: Ty, Ti +~ T; fori#5,
Ty — T, — TeT2TyT3TyTs, T, — T; fori##1,

respectively. Denote by X5 := Bl Py(x” 4) the blow up of X in g. By an application

BN

X1

W/ 2 Wi

|

Bl Py (+? 1)’ <—2— Bl Py(x3 1) —=—> Bl Py (x2)’ <1 Bl Py(x2)

L3RS

T10TQ

Pa

Here, the embeddings ¢; are as in Setting 4.2.9. with

11 K5 — KG, Z > (Z,hl(z))v hl = T32T47T1T2,
7o: K7 — K&, z = (z,h2(2)), he = TyT3T,Ts — T,
73: K® - K2, Z2 > (21,. .., 25, 22232425 — 2829, 26, 47, 28)

where hy € K[TY,...,Ts] and hy € K[T1,...,Tg], 73 eliminates a fake relation as in

Algorithm :4.3.3; the isomorphism ¢ maps z € K2 to (21 + 2324252628, 22, - - -, 28) €

K® and the blow ups are

m4([z]) = [#1,-.-, 24, 25, 26, 2729, 2820, m3([z]) = [#1,..., 24, 2527, 2627],
ma([2]) = [21, 2225, 23, 2a25), m([z]) = [21, 2224, 2324]).
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Note that after having eliminated redundant equations with Algorithm '4.3.3. the
exceptional divisors of the first, second, third and fourth blow up are

V(Xy; Ty), V(Xy; Ts), V(Xy; Ts), V(Xy; Ty).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(4) A (5) A

For the first configuration, Algorithm 4.5.9: returns a K*-surface where as input we

satisfies
T 07720L1_107730L2_107T4OL3o<p(q) = [0,1,0] € Ps.

We come to the second configuration, i.e., blow ups of X; of type Bl Po(x%). Note
that the curve V(X71; T5) is a parabolic fixed point curve. This means that blowing
up any point ¢ lying in V(Xy; T5) or in the intersection of two invariant divisors
V(X1; T;) NV (Xq; Tj) leads to a surface with a non-trivial K*-action and thus will

q = [17 sy Ly Yy 517171]7 Ty

1,1,0,1 T
q2 ‘= [1717171a1507171]7 ° T
q3 ‘= [1,]—717131;1,]—70]' Ts

All points exist by Lemma'5.2.16. Using Algorithm:4.5.9; we computed the following
Cox rings.

¢i  Cox ring R(X) degree matrix

K[Ty,. .., To)/I

. 1 0 0 0 0 1 0o -1 1
q with I generated by 01 0 0 0 1 0 2 -1
1 00 1 0 0 O 0 1 -1
TsTeT? — TiTo — TsToT3TET2T? | 0 0 0o 1 0 0o o 3 -2
H2TBTE Ty TyTsTr Ty — TsTSTE 0o 0 0 1 1 -1 0 0
o 0o 0 0 0 2 -1 -3 2
K[T1,...,Tio]/T
. 1 0 0 1 0 0 o0 1 2 -1
q with I generated by 0 1 0 1 0 0 O 2 5 -3
2 o0 1 -2 0 0 0 -1 -3 2
ToT3TyTs — T7Ts — ToTho, 00 0 0 1 0 0 1 3 -2
T32T4 -1 + T6T7T82T10 0 0 o0 0 0 1 o0 0 1 -1
0 0 o0 o 0o 0 1 -1 -1 1
K[T1,...,To]/I
. 1 0 0 1 0 0 O 1 0
q with I generated by 0 1 0 1 0 0 O 4 -1
3 00 1 -2 0 0 0 -3 1
T2Ty — T\Tp + TET2T2T2T4T2 oo 0 0 1 0 0 3 -1
—TeTng’Tg 0 0 0 0 0 1 0 2 -1
0 0 o0 0o 0 o0 1 1 -1

Both the blow up of X; in ¢; and the blow up of X7 in ¢3 are K*-surfaces since
their respective Cox rings are isomorphic to the Cox rings

K[T17 s aTQ] / <T5T6T72 -1 - T3T!§)T82>7
K[Ty,...,To] | (T3Ty — ThTy — TeTZT3TR)

of K*-surfaces with the same degree matrices as listed in the table; see Lemma 5.1.5.

The isomorphisms are induced by the graded homomorphisms K[T1,...,Ty] —
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K[Ty,...,To] where

Ty — Ty — ToTiT2TE Ty + 23Ty TsTo 1Ty, Ti ~ T; fori#1,
T — T+ Tl TETET2TE, T, — T; fori#1,

respectively. Denote by X, := Bl Po(%° ii) the blow up of X; in go. Using Algo-

where gray and black vertices stand for negative curves. Black vertices stand for
curves intersecting at least three other negative curves. Since both of them have

BN

X; — 25 BIPy(x3 i) =<2 BI Py (+3 i)

T1 0T 0Ty

P2

Here, the embedding ¢; is as in Setting 4.2.9: with

1K = K, oz e (2,h(2), b= T - TSTTs
where hy € K[T1,...,Ts] and the blow ups are
7T4([ZD = [217‘"7247’25726'2872728]7 7T3([Z]) = [217222672372472526]7
ma([2]) = [21, 2225, 23, 2425], m1([z]) = [21, 2224, 2324].

The exceptional divisors of the first, second, third and fourth blow up are V(Xy; T;)
with 7 = 4,5,6,8. On X7, we want to blow up a point which, together with the
exceptional divisors, projects to one of the configurations

(4) A (5) A

For the first configuration, the direct blow up of X; needs higher multiplicities in

concise, we instead blow up the toric variety Z; with fan ¥; and ray generators
0,1 (1,1 (2,1)
(3,
—1 1 0 1 2 3 -1 —
[71 O 0}, Y1 = (=10 (1,0)

(=1,-1)

1)

in a point ¢ in the exceptional divisor V(Z;; Tg). The choice ¢ :=[1,1,1,1,1,0] € Z;

surface.

Next, we treat the second configuration, i.e., blow ups of X; of type Bl Py(x”). Note
that the curve V(X7; Tg) is a parabolic fixed point curve. This means that blowing
up any point ¢ lying in V(X;; Tg) or in the intersection of two invariant divisors
V(X1; T;) NV (Xq; T}) leads to a surface with a non-trivial K*-action and thus will
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q1 = [LLLLLLLOL q2 = [1’17171’0’17_171}7
q3 = [171713();17177131] € Xy

lowing Cox rings.

¢i Cox ring R(X) degree matrix

K[Ty,. .., To)/I

. 1 0 0 0 2 0 0 4 -1
q with I generated by 0 1 0 0 1 0 0 3 -1
1 . 00 1 0 -3 0 0 -4 2
T3T2Ts — T2T + TrT2T% 0 0 0 1 -2 0 0 -2 1
T ToT ToTs Ty T T 0 0 0 0 0 1 0 2 -1
0 0 0 0 0 0 1 1 -1
K[Tl, . 7Tl()]/I
. 1 0 0 0 0 O 3 -1 -2 2
q with I generated by 01 0 0 0 0 2 -1 -1 1
2 00 1 0 0 0 -2 2 5 -3
T TaTeTs — T2Ty — ToTho, o 0o 0 1 0 0 -1 1 3 -2
T2Ty + ToTx — T3T2T:T 0 0 0 0 1 o0 0 0 1 -1
112+ 1716 37455210 00 0 0 0 1 1 -1 )
K[T1,...,To]/1
with I generated by 1 0o 0 0 o o 9 9 _s
2 2 5713 01 0 0 0 0 1 7 -4
g3 i 7;2 l_ Tng _ZT%T4T9 T o 0o 1.0 0 0 0 1 -1
—T3T, TgTSTTy o0 0 1 0 0 0 3 -2
+3T32T5’T§’T22T§T;‘Tg 0 0 0 0 1 o0 0 5 -3
00 0 0 0 1 —1 =5 3

224 222
—3T2T2TA Ty T2 TET]

Note that by the blow up sequence the blow up X5 of X7 in ¢; is a weak del Pezzo

the graph of exceptional curves Gx,. The subgraph of (—2)-curves is

Tr —Tg—T5 — 1Ty

Ty

In particular, X5 has ADE singularity type Ds. By [33, Sec. 5.5], the Cox ring of
X5 is isomorphic to the Cox ring of a K*-surface

KTy, ..., To] / (TSTETs — TETy + To Ty Ty).

Also, the blow up of X; in ¢ is a K*-surface since its Cox ring is isomorphic to the
Cox ring of a K*-surface Y5 where

R(Yz) = K[Ty,...,To] / (T?Ty + TsTr + TiTuToT3)

by the Z°-graded isomorphism K[T1, ..., Ty] — K[T1,. .., Ty] with
Ty + T2TATRTSTOTS — 3T2TS TS T2 TATS T
T, F3TRTRTAT, T2 T T2,
T;, i # 6.

i =6,

graph of exceptional curves Gy, is
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As before, gray and black vertices stand for negative curves. If X, were a K*-
surface, the black vertices correspond to sink and source. Since they have non-trivial

(V) Blow ups of X1 := Bl Py(x?> x % ii). We recall from the proofs of Proposi-
tion5.2.8'and Theorem :5.3.1 the point configuration and blow up sequence

BN

T 0o

X1 —2 > BIPy(#2 * i) <2 Bl Py(+2 % 1) — 2> Bl Py (k) Py
where the embedding ¢ is as in Setting 4.2.9 with
71: K8 — K7, z = (z,h1(2)), hy = T2T4T62 —T\Ts
where hy € K[T1,...,Ts] and the blow ups 7; are
ma([z]) = [21, 22, 2328, 24, 25, 26, 2728), 73([2]) = [#1, 2226, 23, 2426, 25),

ma([2]) = [212s5, 22, 2325, 24], mi([2]) = (21,2224, 2324]-
The exceptional divisors of the first, second, third and fourth blow up are
V(X1; Ty), V(X1; T5), V(X1; Ts), V(X1 Tg).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) A (2) A (2) A (2) 3) A

Let A € K*\ {1}. For the first and second configuration, we choose in X; the
following points ¢; which exist by Algorithm :2.3.8.

@ = [LA0,1,1,1,A—1,1], momomsoi tom(q) = [1,)\0] € Py,
¢ = [0,0,1,1,1,1,0,1], momyomzoly tomgy) = [0,0,1] € Py.

the same is true for the blow up in gs.

For the third configuration, we want to blow up a point in the second exceptional

divisor, i.e., V(X1; T5). By Lemma '5.4.11, we need not consider points whose

ring and degree matrix

Ry = K[T1,...,To) / (TVI3T2 — TyToTo T3 TsTr + Ty Ty Ty — TsT+),

0

[=NeNeNoRalH
oo oo+O
cooroO
coroo
[=R NeNoleNa]
—mooo0ooo
MO RO
N WN -

|

-



172 5. SMOOTH RATIONAL SURFACES

Observe that the blow up of X; in ¢z is in fact a K*-surface; by Lemma '5.1.5; the

graded homomorphism Ty +— Ty — TyT9T5T5T5 induces an isomorphism from the
Cox ring R), of a K*-surface with the same degree matrix to Ry where

Ry = K[T1,...,To] | (TN T3TZ + TyT§Ts — TeT).

We come to the fourth configuration, i.e., blow ups of X; of type Bl Py(x® % x).

V(X1; T3) or in the intersection of two invariant curves V(Xi; T;) N V(Xy; Tj).
Thus, by Remark 5.3.5, it suffices to consider

T,
¢ = [-1,1,1,0,1,1,1,1] t T
~1,1,1.1 1

q2 = [ 5 71a 7170717 ]7 Ttiz Ts

¢  Cox ring R(X) degree matrix

K[Ty, ..., Tiol/I

. 1 0 0 0 0 O 1 0o -1 1
@ with I generated by o 1 0 0 0 0 -1 1 2 -1
00 1 0 0 O 1 -1 0 0
T5T5Ts — T2 Ts — ToTho, 00 0 1 0 0 0 0 1 -1
T Ts + T7Ts — T2T62T4T10 0O 0 0 0 1 o0 2 -1 -1 1
o0 0 0 0 1 -1 1 3 -2
K[T,...,Ti]/I
with I generated by
2 9 1 0 0 0 1 0 2 0 0o 1 1
T3TyT5Tg — 1217 — T11Tho, 01 0 0 1 0 1 0 1 2 0
92 T22T4T62T11 — T5Ty + TsTho, o o0 1 o O 0 1 =1 0o 1 0
e % S I O O B
T2T4TSTE + ThTo — ToT11, 00 0 0 0 1 0 0 11 -1

TT{TsTsToTgTin — TrTo — T1Tho

Denote by Bl Py(x® xx i) and Bl Po(%* x x i) the blow ups of X; in gz and ¢4.

are

Bl Py (%3 % % i) nor Bl Py (x3 x x ii) is a K*-surface.

(VI) Blow ups of X1 := Bl Py(x?> xx iv). As in the previous case, we recall from
the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow
up sequence

T 0T

X1 —2 5 BIPy(#2 * i) <~ Bl Py(+2 % i) ———> Bl Py (+*) Py
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where the embedding ¢ is as in Setting 4.2.9. with

11: KG — K7, Z = (Z, hl(Z)), hl = T2T4T6 —T1T5
where hy € K[T1,...,Ts] and the blow ups ; are

7T4([Z]) = [2172212328724725a2672728]» 7r3([z]) = [217327232672426725]7
m2([z]) = [2125, 22, 2325, 24], mi([z]) = [21, 2224, 2324].
The exceptional divisors of the first, second, third and fourth blow up are
V(X3 Tw), V(X T5), V(X Ts), V(Xy; Ts).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(2) A (2) A (2) A (2) (3) A

For the first and second configuration the following points ¢; € X; exist by an
application of Algorithm :2.3.8 and satisfy

¢ = [1,2,0,1,1,1,A—-1,1], m O7TQO7T3OL1_107T4(Q1) = [1,A,0] € Po,
g2 = [0,0,1,1,1,1,0,1], m O7T207T3OL1_107T4((]2) = [0,0,1] € Pa.

X1 in ¢; will be a toric surface or a K*-surface. Also, the blow up in ¢» admits a non-
trivial K*-action as can be seen by an inspection of the output of Algorithm '4.5.9.

ring and degree matrix

Ry := K[T},...,To] | (TWTsT5 — TeTr + TyToTs — TyToToTsT2T),

0

ocococoor
[=NeNeNoh o)
[=NeNeh oo
ocorOOO
(=N NeNelo]

—FOO0OOO0OO
R OROR

Observe that the blow up of X; in g3 is in fact a K*-surface: the graded homomor-
phism Ty +— T — TyToToT3T? induces an isomorphism from the Cox ring R} of a
K*-surface with the same degree matrix to Ry where

R, = K[Ty,...,To) J (ThTsTs — TsTr + Ty T3 T3),

see Lemma '5.1.5. We come to the fourth configuration, i.e., we consider blow ups

lie in the fixed point curve V(X7; T3) or in the intersection of two invariant curves.
Thus, by Remark 5.3.5; it suffices to consider the points

T,
1,1,1,1,0,1,1], D
1,1,0,1,1,1,1], S

q = [_17
g2 = [_17

qi Cox ring R(X) degree matrix
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K[T1,. .., Tio)/I

. 1 o o o o0 o 2 -1 -1 1
with I generated by 0 1 0 0 0 0 —2 2 3 1
q1 00 1 0 0 0 1 -1 0 0
ThTs5 + T7Ts — ToTyTeTho, o0 0 1 0 0 -1 1 2 -1
TsTs T T2 — T2Ty — ToTh 0 0 0 0 1 0 3 -2 -1 1
3554708 2 910 Lo o o o 0 1 o0 0 1 -1
K[Ty,...,To]/1 _
) 1 0 0 0 0 O 1 1 0
with I generated by 0O 1 0 0 0 0 0 2 1
a2 00 1 0 0 0 0 1 -1
TiTy + TeTr + T3Ts T3 Ty 0 0 0 1 0 0 1 3 -1
—T3T52T9T2T4T7 0o 0 0 0 1 o0 0 3 -2
Lo o 0o 0o 0 1 -1 =2 1

The blow up of X; in g5 is a K*-surface since its Cox ring is isomorphic to the Cox
ring of a K*-surface

K[Ty,...,To] J (ThTy + T Ty + TsT5 Ty Ty)
with the same degree matrix as listed in the table, see Lemma 5.1.5. The isomor-
phism is induced by the Z%-graded homomorphism
Ty + 2Ty Ty, i=1,
T, P41

K[Tl,...,Tg] — ]K[]E,...,T‘g}7 n — {

Gray and black vertices stand for negative curves where the latter correspond to
curves intersecting at least three other negative curves; if Xy were a K*-surface they

obtained from the point configuration

A

By Proposition'5.1.2:and Theorem'5.3.1, we have to blow up the point configurations

also blow up a general point in Z; := Bl Py(%? x x i) which we obtained as

Zy —25> Bl Py(+2 % i) —=> Bl Py (sk ) ——> Bl Py (%) —— P,

with the blow ups m; given by

m4([z]) = [z127,2227,23,...,26), w3([z]) = [21,22%6, 23, 2426, 25],
7T2([Z]) = [2125722,232’5»24], 7T1([Z]) [21,2’22472324].
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Clearly, the point p; := [1,1,1,1,1,1,1] € Z; projects to [1,1,1] € Py under the

with Cox ring and degree matrix

TyTsTs + 15Ty — T7Tho, ToTeTy + T1Ts — T3T10,

K[T1, ..., ] / T3TyTs — Ti Ty — ToTuy, ToTeTr — T5Ts — TsTu1, ),
ToTyTE — TiTs — Ti1To

1

cocococor
coocoro
cooroO
corocoo
ONRO R R
orooo

orr~rrROO
[ S

Since X5 can be obtained as a blow up of the surface Bl Py (% x * x i) without K*-
action, X5 cannot be a K*-surface: equivariant contractions preserve K*-actions.

X —=BIPy(x % x i) =<—— Bl Py(x % 1) 2 o p,

where the embedding ¢1 is as in Setting 4.2.9: with

7: K8 — KO, z = (z,h1(2), ha(2), ha(2)),
hl = T3T5 —T‘gT‘G7 h2 = T3T4 —TlTﬁ, h3 = T2T4 —T1T5

where h; € K[T1,...,Ts] and the blow ups are
m4([2]) = [21, - - -, 26, 27210, 28210, 20210],  W3,2,1([2]) = [2125%6, 222426, 2324 25).

For the second configuration, for each A € K* \ {1}, the following point ¢ € X;

T301 007 b om(q) = [1,A,0] € Py, q = [1,A,0,1,1,1, -\, —1,A—1,1].

By an application of Algorithm 4.5.9' with Remark '5.3.6. we obtain the surface

Xo := Bl Py(* *x x % x 7) as listed in the table. By the same reasoning as before, Xo
cannot be a K*-surface since it is a blow up of X;. Alternatively, this can be seen

For the third configuration, let A, 1 be distinct elements of K*\ {1}. The following
point ¢ € X; exists and satisfies

masol tom(q) = [L,A\u] € P, g = LAl LLp=—Ap—1,A-11]
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73,2,1

X1 —2 > BIPy (s xx4) =<2 Bl Py(skxi) — > Py

where the embedding ¢; is as in Setting 4.2.9and the blow ups, in the situation of
Setting 4.2.5, are
11: Kﬁ — K7, Z (z,hl(z)), h1 = T2T4 —T1T5,
ma([z]) = [21,22, 2328, 24, 25, 26, 2728), 7T3,2,1([Z]) = [212526, 222426, 232425]
with hy € K[T1,...,Ts]. The exceptional divisors of the first, second, third and
fourth blow up are

V(Xy; Ty), V(Xy; Ts), V(Xy; Ts), V(Xy; Ty).

On X1, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

A A A

For the first configuration, the point ¢; := [1,0,1,1,1,1,—1,1] € X; exists by
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Bl P2 (% * % i1) —F Bl Po (% * % i)’ X

J(WS
2,1

BIPy(xx i) <2 BIPy(x% i) — > P

where the embeddings ¢; are as in Setting 4.2.9 with

11: K5 — KG, Z = (z,hl(z)), h,l = T2T4 —T1T5,
To: K7 — K&, 2 = (2,ha(2)), hy == (A= 1)ToTy — NTsTy
where hy € K[T1,...,T5] and he € K[T1,...,T%]. The blow ups 7; are

7T4([Z]) = [Zla 22y 2329, B4y -+ 5 2T, 2829]7
m3([z]) = [21,22, 2327, 24, 25, 26 27), m21([2]) = (2125, 2224, 232425].
The exceptional divisors of the first, second, third and fourth blow up are
V(X1; Ty), V(X1; T5), V(X1; Tr), V(X1; To).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

A A A

The first configuration has already been dealt with in part (VIII) of this proof. For
the second configuration, let x4 € K*\ {1, A}. Then each point

q1 = [1,%0’171;#_1,1,)\_% 1} € X17

blow up of X; in ¢; will admit a non-trivial K*-action.

For the third configuration, we want to blow up a point in the first exceptional

following Cox rings R; and R, sharing the same degree matrix. The first one is
returned by Algorithm 4.5.9. for the blow up X, of X; in ¢3 and the second one is

the Cox ring of a K*-surface:

L T7Tg — (}\ — 1)T3T10T2T4T6T8 + ()\ — 1)T3T120T9 =+ )\T5T6,
Ry =K[T,... 7Tw]/ < N Ty — TrTs — TsT1oToTuTeTs + T5T2 Ty ’

T7Ts + (A — 1)T3T2 To + M\T5Ts
R = K[Th,...,T / 7T o )
2 (11, Thol A1 Ty — TrTs + T5T2) Ty )

Scococoor
coooro
cocoroo0O
oo OOO
o~oooo
O FOOR
—~ooooo

Then X, is a K*-surface, since Rj is the Cox ring of a K*-surface. From Lemma 5.1.5

we infer that also X; admits a non-trivial K*-action since we have an isomorphism
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between the two rings that is induced by the Z%-graded homomorphism

Ts + ToT3TyT8T10, ©=5
K[Tl, .. ,Tlo] — K[Tl, . ,Tl()], Ti — T7 — T2T3T4T6T10, 1=17
T else.

(X) Blow ups of X1 := Bl Fo(* * % iii). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

2,1

X1 —2 > BlF,(x% i) =< BlFa(x% i) ————>TF,

where the embedding ¢; is as in Setting 4.2.9and the blow ups, in the situation of
Setting 4.2.5, are

71: Kb - K7, z = (2,h1(2)), hy = ThvTy — ToTs,
m3([2]) = [21, 22,2328, 24, - - -, 26, 2728), m21([2]) = [2125, 2226, 232526, 24]
with hy € K[T,...,Ts]. The exceptional divisors of the first, second and third blow
up are
V(Xy; T5), V(X1 To), V(X1 Ts).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

5 Y 1 N 0 [

For the first configuration, we want to blow up a point in the first exceptional

divisor, i.e., V(X1; T5). By Lemma 5.4.11: we need not consider points whose

homomorphism

Ts + (—1)*T T 2Ty T¢ 3Ty, i =3,
T;, i#3

induces an automorphism of R(X1). Thus, instead of blowing up ¢; we may blow

K[Tl,...,Tg]—>K[T1,...,T8], T, — {

K*-surface.

We need not consider the second configuration, since V(X7; T3) is a parabolic fixed

action.

For the fourth configuration the steps are as in the proof of Theorem 5.3.1 for, e.g.,
case Bl Py (%3 i7). Here, we want to blow up X; in g4 where

Ta10u; oms(qs) = [0,1,1,1] € Fo, @ = [0,1,1,1,1,1,—1,1] € X;.

Note that ¢4 € X; exists by, e.g., Lemma '5.2.16. Choose in K[T7,...,Ts] the

be the degree matrix of R(X;). We have a new degree matrix @} and a matrix P;
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whose columns are generators for the rays of the fan ¥} of Z:

8 1 0 0 0 1 0 -1 -1 0

I ro_ 01 0 0 0 1 -1 -1 0
Q= | (1) ) P = o0 1 0 1 0 0 0 -1
? 00 0 1 0 -1 a a—-1 -1

For the blow up of X7 in ¢(¢q4) = [0,1,1,1,1,1,—1,1,0] we consider the stellar
subdivision ¥y — ¥ at v := (1,0,—-1,-1) € Z*. Let Py := [P{,v] be the enlarged
matrix. The vanishing ideal Iy C K[T1,...,T1o] of X is generated by
g1 = py (p1)« (T7Ts — ThT5 + ToTs) = TrTg — Ty T5Tho + 1276,
g2 = P (p1)s (To — h) = ToTio — ToTyT8 T % + T5Ts.

We show that I5 is saturated with respect to T1¢ by showing that I5 is prime. The

U = {x € Xy; x5w6 # 0 Or Tox10 # 0} C Xq = V(Klo; Io).

Let J := (0g;/0T}); ; be the Jacobian matrix. Inspecting the submatrices of J with
indices ¢+ = 1,2 and j = 2,3 as well as ¢ = 1,2 and j = 6,9, respectively, we see
that the rank of J(u) is two for all u € U. Furthermore, X \ U is contained in the
union of the 8-dimensional subspaces

V(K'Y T5,T2), V(K™ T5,Tw), V(K" TT), V(K'Y T T).
We claim that in K!© each of the following intersections is of dimension six.
XoNV(Ts,Ty) = V(Ts, Ta, Ty, ToTho),
XoNV(Ts,To) = V(Ts, Tio, ToTs + ToTs, ToTyTE T2 — T3T5),
XoNV(T5,Ta) = V(Ts, To, TrTs — Ty T5Tho, ToTro + T5T5),
Xo NV (Ts, Tho) = V(Ts, Tro, TrTs, T3Ts),

For all but the second one, this could be done computationally since the equations

|:0 -1 0 0 0o -1 1 1 0 0j|

of rank two to see that its dimension is six on the torus T'°-(1,1,1,1,0,1,1,1,1,0).
Also, on the smaller tori, the dimension does not exceed six; for instance, for
Tlo . (1, O, 1, 1, O, 1, 1, 1, 1, O) we consider the zero set V(KIO; T2, T5, 71107 T7Tg, T3T5)

the ideal I5 is prime.

We now show that the variable Tjg defines a prime element in the ring Ry =
K[Ty,...,T10]/Is. Removing monomial generators and shifting variable indices,
instead of showing that Iy 4+ (Ty¢) is prime, we may show that I has the same
property where

I+ (Tyo) = (T, ToTe + TrTs, oLy T T8 2 — T3Ts) C K[Th,. .., Tiol,
Iy = (I\Ts + T6Ty, IT3TE T2 — ToTy) C K[Ty,...,Ty].

The extension of Iy to K[Tlil, . 7T7jﬂ] is prime since the matrix with the exponents
of the binomial generators as its rows

1 0 O 0o 1 —1 —1
1 -1 1 -1 0 a—-1 a-—2

has a Smith normal form of shape [F»,0,...,0] where E is the 2 x 2 unit matrix,
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We will prove this by showing that

TWTs + TeT7,

TTsTE ' Te™2 — ToTy, p T\Ts > TeTx,
TT¢TE ™ 4+ ToTuTs

1115 + TeT7,

TP LT Te 2 + (1) ' Ty, o, ThTs < TeTr
TETTe ' — (=) "I Ty Ty

g = {f17f27f3} =

is a Grobner basis for Iy with respect to the degree reverse lexicographical ordering
for any ordering 77 > ... > T;—1 > Tj41 > ... > T7 > T; with 1 <4 < 7. First,
observe that in the case T1T5 > TsT7 we have Iy = (G) since f5 = Tng_1T$_2f1 —
Ts fo. In the second case, let g; and go be the generators for Iy. Using the relation
TWTs = —T§T7, we have

fl = 01,
fo = TP TsTSTogy + (—1)" g2,
fz = TP MTE 29, + (—1)" M Ty go,

i.e., (G) C Iy. The first and second equation also show Iy C (G). We compute the
S-polynomials. They are

S(flv f2) = {TgTélT?_i * T2T4TE’ T1T5 ~ T6T77
ToTsTe ™ — (1) "I, T Tr, TyTs < TeTr,

S f) = {Tng“T; ~ VTR THTZ, T\Ts > TsTr,
TIHTTS + (1) T2, TTs < ToTr,

ﬂhﬁﬁ{—ﬂﬂﬂﬂ—ﬂﬂ%ﬂ, T\Ts > TTs,
(D) "I TTy + (1) "N TuTs, ThTs < TeTr,

Note that this holds for all @ > 3. Applied to S(f;, f;) and fi1, fo, f3, the division
algorithm, see [26, Ch. 2, Thm. 3|, returns the combinations

S(f .f ) — f3; TWIs > T6T7,
A f3; T1T5 < T6T7,
S(f f ) _ —T2T4T5f1 + T6T7f37 T1T5 > T6T77
v TITsfi + TiTsfs,  TiTs < ToTs,
S(f f ) _ _T2T4f17 T1T5 > T6T7,
o (71)a71T2T4f1, T1T5 < T6T7.

By the Buchberger criterion, see [26; Ch. 2, Thm. 6], G is a Grobuner basis for Iy
with respect to the chosen ordering. From [90, Lem. 12.1], we infer that

. . .
{Tkm’ feg, =g, ki(f) = max(neZZO,Ti |f)
K2

is a Grobner basis for Iy : T;° for each 1 < i < 7. In particular, Iy = Iy : T for
each i. As observed in [90, p. 114], the claim follows from

Iol(T1'~'T7)Oo = (((Iono))Tr?o) = Io.

Moreover, no two variables T;, T; are associated since deg(T;) # deg(T;) for all
1 # j. We have Tyo 1 T; for each i < 10 because each of the following intersections
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is six-dimensional:

Xo N V(Ty, Tio) = V(Tio, Ty, —ToTs — TrTys, ToTyTE T2 — T5T5),
Xy NV (T, Tho) = V(Tio, Ta, TrTs, T5Ts),

Xy N V(Ts, Tho) = V(Tio, Ts, —ToTs — TrTx, ToTyT5Ty),

Xy N V(Ty, Tho) = V(Two, Ty, T3Ts, —ToTs — T 1),

Xy NV (T, Tho) = V(Tio, Tr, TsTs, ToTs),

Xo NV (T, Tho) = V(Tho, Ts, T3T5, T5T5),

Xo N V(Ty, Tro) = V(Tho, Ty, —ToTs — TrTs, ToTyTE T2 — T5T5),

where Xo NV (Ts, Tho) and X, NV (Tg, Tig) have already been treated above. To

the matrix

0 1 0o o0 0 1 -1 -1 0
0 1 -1 1 -1 0 a—-1 a—-2 0

of rank two. This shows that on T'° . (0,1,...,1,0) or T*°- (1,...,1,0,0), respec-
tively, the dimension is six. One directly checks that also on the smaller tori the
dimension is at most six.

0
0

By Theorem 4.2.6, Ry is the Cox ring of the performed modification with its degree

matrix as listed in the table. We now show that we performed the desired blow up.
The factor ring K[T7, ..., Ty]/I’ where

I' == (T, Ty, he, T7Ts — T'T5 + ToTs) = (Th, Ty, ho, ToTs + T7T%)

is isomorphic to the integral domain K[TY,...,Tig]/(I2 + (Tho)). Thus, I’ is prime.
Given Cox coordinates z := (0,1,1,1,1,1,—1,1,0) € K° for «(q1) € X] we have
z € V(K® I'). By the previous dimension computations

dim (V(K% I')) = —1 + dim (X2 N V(T1, Tio)) = 5.

We prove only the part of the graph needed for the argument, i.e., the subgraph
induced by the vertices T; with ¢ € {1,2,4,5,7,10}. Note that this could be done
using the blow up sequence and Remark '5.3.7. Instead, we give a direct argument.
Write w; := deg(T;) for the degrees of the generators of R(X3) and @ = Q2 =
[wi,...,wio] for its degree matrix. First, note that Q>o - wz and Qg - wy are

non-extremal rays of Q(leoo)
ws = (a—2)wy +ws +wy + (@ — 3)ws + wy + (a — 2)wio,
wg = wi + (a — 2)ws + wg + w5 + (@ — )wg + wr.

All other rays Q>¢ - w; are extremal since w; can be separated from the other w;
by the following linear forms u; € Hom(Z°, Z) = Z°:
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i u; € Hom(Z5,7Z) ui(wi), ..., u;(wio)

1 (=2,0,0,1,1,0) ~2,0,0,1,1,0,0,0,0, 1
2 (0,-1,0,1,0,1) 0,-1,0,1,0,1,0,0,0,0
4 (1,1,0,-a,0,0) 1,1,0,—a,0,0,1,0,0,0
5 (1,0,1,0,-1,0) 1,0,1,0,—1,0,0,0,0,0
6  (0,1,1,0,0,-1) 0,1,1,0,0,—1,0,0,1,0
7 (0,0,0,1,0,0) 0,0,0,1,0,0,-1,1,0,0
8 (0,0,1,0,0,0) 0,0,1,0,0,0,1,-1,1,0
10 (1,0,0,0,0,0) 1,0,0,0,0,0,0,0,1, -1

We now claim that w := (4,6a—3,6,6,6,6a—3) is an element of the relative interior
Mov(Q)°. It suffices to show that for each 1 <14 < 10 with Q>¢ - w; a ray of Q( 1200)
we can find an expression

Q>0-w = Q>p- Z a;wj, aj € K,

J#1, Qo wj
extremal

because then, by [87, Thm. 6.5], w is an element of

o

ﬂ cone (wj; j#1)° = ﬂ cone (w;; j # 1) = Mov(Q)°.
Q>0 w; Q>0 w;
extremal extremal

Here, for i € {1,2,4,...,8,10}, we found the following combinations.

Qs0-w = Qs0-(Q-(0,2,16,4,4,16,4a + 1,4a + 3+ 12,16,4),

Qs0-w = Qs0-(Q-(6a+1,0,8,6,6a —3,12,2,14,22, 6a + 11)),
Qs0-w = Qs0-(Q-(2,2,34,0,8,44,3,45,50,24)),

Qs0-w = Qs0-(Q-(8,12a — 3,4,24,0,12a — 9,12a — 2,12a — 8,8, 4)),
Qs0-w = Qs0-(Q-(12a+6,6,6,24,12a,0,12a — 9,12a — 15,6, 12a)),
Qs0-w = Qs0-(Q-(6a+1,1,4,6,6a—3,7,0,6,14,6a + 7)),

Qs0-w = Qs0-(Q-(12a+6,12a — 9,6,24,12a,12a — 15,6,0,6,12a)),
Qs0-w = Qs0-(Q-(8,12a — 3,12,28,4,12a — 7,16a — 1,16a — 5,8, 0)).

Now, we show that the edges
(Ty,Tv), (Ty,T2), (T4,T7), (T1,T5), (T1,T10)
exist in Gx,. Let ~;; = cone(ex; k & {i,j}) = v with v := 1200. By Algo-

V1,45 Y2,4> V7,45 V1,55 V1,105 vi,j = cone(ey; k & {i,j}) = v
are Is-faces in the sense of ChapterfSl and the respective projection Q(v;, ;) contains

w in its relative interior. For the former, define as in Section :1: of Chapter :3: the
torus and ideal

T o= {t,,,;t€TC}, IV = {f,,; f €L},

Vi

where the k-th entry of z,, ; equals 2y, if e € 7; ; and zero otherwise. Then +; ; is an
Ir-face if and only if V(T}/?j; I)%7) # (). We directly list elements of the respective
vanishing sets.

i, J V('Jl‘%?‘j; [;ivj) contained element
V(-T»Ts — T7 T3,
—T3T5 — ToT1o0)
V(TWT5T1o — T7Ts,
—T3T5 — ToT1o)

1,4 (0,—-1,-1,0,1,1,1,1,1,1)

2’4 (17077170’17171’17171)
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V(T T5Tio — T Ts,

7,4 1,1,-1,0,1,1,0,1,1,1

—T3T5 — ToT1o) ( )
V(-ToTs — T7Tg,

1 1,1,1,0,—-1,1,1,1,1

75 T2T4T7(1—1T80,—2_T9T10) (07 Pt 707 4y Ly 4y )

1,10 V(-T5Ts — TrTs, (0,1,1,1,1,-1,1,1,1,0)

DTy T8 T8 2 — T5T5)

We now show that for each ~; ; the relative interior Q(v; ;)° contains the vector
w = (4,6a — 3,6,6,6,6a — 3). For this, we present expressions

Q0w = Qxp- Z R, ap € K.
erE€Yi,j
For the respective v; ; they are given by
on W= Q>0 : (Q ) (05 17 167 07 47 197 2a 2Oa 20’ 8))7

Qs0-w = Qx0-(Q-(1,0,15,0,4,18,2,20,21,10)),

Qs0-w = Q>0 (Q-(1,2,15,0,4,20,0,18,21,10)),

Qso-w = Qs0-(Q(0,1,12,4,0,15,4a + 2, 4a + 16,20, 8)),

Qs0-w = Qx0-(Q-(0,4a+1,16,8,4,4a + 11,4a + 2,4a + 12,12,0)).

(XI) Blow ups of X1 := Bl Fo(x*x* iv). Let a > 3. Recall from the proofs of
Proposition '5.2.8' and Theorem :5.3.1: the point configuration and blow up sequence

2,1

X1 2 > BlF,(x i) <2 BlFa(x% i) — =T,

where the embedding ¢ is as in Setting 4.2.9 with
71: K — K7, 2 = (2,h1(2)), hy = TeTWT8 ' — TsTy
where h; € K[T1,...,Ts] and the blow ups m; are given by
m3([z]) = [2128, 22, 23, 24, - - -, 26, 2728), mo.1([z]) = [z125, 2226, 232526, 24]-
The exceptional divisors of the first, second and third blow up are
V(Xy1; T5), V(Xy; Tg), V(Xy; T3).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

St 0 R S R O O S R

For the first configuration, we want to blow up a point in the first exceptional

T3 — T\Ty ' TyT8 2Ty, i=3,

K[T,....Ts] — K[T1,...,Tz], T; —
T; else

shows that the blow up of X in ¢ is isomorphic to the blow up of X; in the point

The second configuration has already been dealt with in part (X) of this proof. We
now treat the third configuration which leads to the surface Bl F, (xxx% vii). Here,

[1,1,1,0] € F, under mo; o Ll_l o m3. Blowing up X; in ¢3 is done by the same
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steps as before. Choose he := T'T5Ts — ToTs € K[T1,...,Ts] for the embedding
7: K& — K. Let Q; be the degree matrix of R(X;). We have a new degree matrix
Q) and a matrix P; whose columns are generators for the rays of the fan X} of Zj:

8 1 0 0 0 1 0 0 1 -1

o /o 01 0 0 0 1 0 0 -1
@ = | (1) ) Py = 0 0 1 0 1 0 -1 -1 0
! oo 0 1 0 -1 -1 -1 a

For the blow up of X] in ¢2(g3) = [1,1,1,0,1,1,—1,1,0] we perform the stellar
subdivision of 3} at the vector v := (=1,-1,0,a+1) € Z*. Let P; := [P{,v] be the
enlarged matrix. The vanishing ideal Ir C K[T1, ..., Ty of X is generated by
g1 = 05 (p1)x (ToTs — T9TyTe ™ + TyTs) = ToTy — TSTyTE *Tho + T3Ts,
g2 = p5(p1)x (To — h2) = ToTio — ThT5Ts + ToTs.
We show that I5 is saturated with respect to T1¢ by showing that I5 is prime. The

U = {.’E € YQ; 15 7é 0 or x3x19 7é 0} - YQ =V (Klo; .[2) .

Inspecting the indices i = 1,2 and j = 3,8 as well as i = 1,2 and j = 5,9 we see that
the rank of the Jacobian matrix (0g;/9T}); ;(u) is two for all u € U. Furthermore,
X2 \ U is contained in the union of the 8-dimensional subspaces

V(K'Y Ty, Ts), V(K'Y Ty T), V(K'Y T, T3), V(K'Y Ts, Tho) -
Note that each of the following intersections is of dimension six
XonV(Ty, Ts) = V(Tu, Ts, ToTe + ToTho, ToT¢  ThoTy — T Ty),
XoNV(Th, Tyy) = V(T4, T, ToTs, TsTs + TrT3),
XonNV(Ts, Ts) = V(Ts, T3, ToTs + ToTro, TsTE ' TioTy — TrTy),
XoNV(Ts, Tyy) = V(Ts, Tio, ToTs, TrTy),

where for the first and third variety we write the binomials into a matrix as in

0 1 0 0 0 1 0 0 —1 —1

0 a 0 1 0 a—1 —1 —1 0 1
of rank two. By Lemma 5337 the dimensions of X5 NT . (0,1,0,1,...,1) and of
XoNT0.(1,1,0,1,0,1,...,1) are six respectively. Also, on the smaller tori, we are

in dimension at most six. Therefore, dim(X2\U) < 6 and since X is of dimension
at least eight codims, (X5 \U) > 2. By Lemma 5.4.3; the ideal I is prime. We

now show that the variable Tyo defines a prime element in Ry = K[T7, ..., Tio]/I2.
This is the case since the ideal

I+ (Tw) = (Tvo, ThT5Ts — ToTs, T5T5 + T7Ts) C K[T1,...,Tio)

T; are associated since deg(T;) # deg(T}) for all ¢, j. Also, T; { Ty for all 4 < 10
because the intersections

Xo N V(Ty, Tho) = V(Tho, To, T5T5 + T7Ts, —T1T5T3),

Xo N V(T3, To) = V(Tho, Ts, TrTs, —T1T5Ts + T2 T5),
Xo N V(Ty, Tio V(Thvo, Ty, T3T5 4+ TrTg, —T1 15T + T2T5),
X, N V(T 1%

<

Tho, T, T3T5, —Th T5Ts + T515),
=V Tl()7 TS; T3T57 T2T6)7
= V(Tho, Ty, T3T5 + T7 Ty, =T T5Ts + 1> T5)

Xo N V(Tg,

)
)
) =
0) =
)
)
X5 N V(Ty, Tho)

(
( (
( (
(Ts, Th (Tho, Ts, T3T5 + 17T, —T1T5T3),
X2 NV (T7, Tho (
(Ts, Ty (
( (
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are all of dimension six as can be seen by computations. By Theorem 4.2.6, the
Cox ring and degree matrix of the surface Xo = Bl F, (x % x x vii) are

B ThT5Ts — 10T — TyTho,
R(X2) = KI[T3,..., Thol / < T¢Ta Ty Ty — TsTs — Ty Ty /°

1 0 0o O 0 O 1 -1 0 0
0 1 0 o 0 O -1 1 a+1 —a
0O 0 1 0 0 O 1 0 —1 1
o 0 0O 1 0 o0 0 0 1 —1
0O 0 0O o0 1 o0 2 -1 —1 1
0o 0 0O o o0 1 -1 1 a —a+1

We now show that we have performed a blow up. Since we have an isomorphism
from

K[T,..., Tyl / T, I' := (Ty, Ty, hy, TrTs + T5T5)

to the integral domain K[T7, ..., Tio]/(I2+(T1o)) the ideal I" is prime. Consider Cox
coordinates z := (1,1,1,0,1,1,—1,1,0) € K for «(g3) € X;. Then z € V(K?; I')

the performed modification was the desired blow up. To show that X5 is not a
K*-surface we claim that the graph of exceptional curves Gx, is as follows. The

Ty (1)
—
<2

It suffices to prove the existence of the subgraph induced by the vertices T; with
i € {1,2,4,5,8,10}. By Remark 5.3.7 and the fact that V(7o) is the exceptional
divisor of the last blow up, we know that the curves corresponding to the vertices
are negative. The existence of the edges, i.e., the fact that the curves meet, is

directly seen from the blow up sequence of X5 as explained above.

We come to the fourth and fifth configurations. Let A € K*\ {1}. For the following
points ¢4 and g5 € X7 we have

7T2,10L;10W3(Q4) = [0717]-7)\] S ]Fav q4 = [071717>\71717>\_171]7
772,1OL;10W3<Q5) = [0,1,1,0] € Fo, q5 ‘= [0,1,1,0,1,1,—1,1]~

in a formal way. Consider the embedding
7p: K& — K, z = (z,ha(2), h3(2)),
hy = TPTTETE ™ 4 KT6Tr, hy = T{TyTe ' T — kT5Te

with h; € K[T1,...,Tg]. Let Q1 be the degree matrix of R(X;). We obtain a new
degree matrix @] and a matrix P; whose columns are generators for the rays of the
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fan ¥ of Z{:

10 1 a-1 0 1 0 0 —a+41 1 -1 a-1
1 -1 0 a 0 1 0 0 —a -1 0 a-1

! /
Q1= |Q1]2a-3 2 , Pl = 0 01 0 0 0 -1 o0 -1 1
2 0 0 00 0 1 0 0o -1 1 -1
2a—2 1 0 0 0 0 0 1 1 0 o 1

For the blow up of X} in t2(gs) = [1,0,1,%,1,1,—1,1,0,0] we consider the stellar
subdivision of ¥} at the vector v := (2a — 3,2a — 1,0,0,—1) € Z®. Write P, for
the enlarged matrix [P}, v]. The extension I} C K[T1, ..., Tio, T:5'] of the vanishing
ideal of X5 C K!! is generated by

g1 = 5 (p1)s (s — ) = Ty — T3TWTg ™ Ty + T T,

g2 = p5(p1)s (To — h) = ToTyy — TYTyTETy ™" — KT6Tr,

ps (p1)sx (Tho — hs) = TwoTi — TPTUTE TS + kT3 Ts.

g3 -
The next step is to compute the saturated ideal I} : TP C K[T71, ..., T11]. We claim
that it is given by
Ié : (Tl t 'Tll)oo = <gl7 g2, g3,
— KT TyTETE " + TsTy — TsTho,
TeTSTITE M TE I TE I T — TsTy — ToTho)
=: 12

For 3 < a < 15 we verified algorithmically that this equality holds. Moreover, we
checked that the ideal

I+ (Ty) = (Th1, — TETWTETS ™ — kT Ty, —T{TWTE TS + wT3Ts,
T7Ts + T3T5, TsTy — T5Tho, T5Ty + T7Tho)

in K[T1,...,Tyo] is saturated with respect to Ty - - - Tig for a < 15. Since the expo-

0o o0 -1 0 -1 0 1 1 0 0 0
a O 0 1 a -1 -1 a—-1 0 0 0
a 0 -1 1 a-1 -1 0 a O 0O 0
0 0 0O 0 1 0 0 1 1 -1 0
0 0 1 0 0 0o -1 0 1 -1 0

tells us that 77, is a prime element for 3 < a < 15. We will later compute
dim(V (T}, Tj) N X2) for all @ # j. This will show that no two variables divide
one another and are pairwise non-associated. Thus, the Cox ring of the performed
modification is K[T1,...,T11]/I> for 3 < a < 15 with its degree matrix as listed in
the table. We now show that we did perform the desired blow up. The factor ring
K[Tl, . ,Tlo]/I/ where

I' := (Ty, Ty, Tho, ha, hs, TrTs — hq)
= (T, Ty, Tho, TxTs + T3Ts, —TPTyTETS ™ — kT6 T,
~TETTE TS + KT Ts)

is isomorphic to the integral domain K[T4,...,T11]/(I2 + (T11)). Thus, I’ is prime.
Given Cox coordinates

z = (1,0,1,5,1,1,-1,1,0,0) € K"  for  13(gs) € X|
we have z € V(K!°; I). By a computation, dim V (K'°; I’) = 5 and an application

in a formal way. To this end, we first have to show that T7; defines a prime element
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in the ring K[Tlil, e ,lef)l, T11]/I5. Counsider the ideal
J = (~TPTTETE ™ — wT6Ty, —TPTWTE TS 4 wT3 T,
T7Ts + T3T5, TsTy — TsTio, 13T + T7T10)
C K[Ti,...,T]
obtained from Is+ (T11) C K[T1, ..., T11] by removing the monomial generator 71 .

Using the fifth and third generator, in the Laurent polynomial ring K[Tlil, ey legl],
we substitute

13Ty YA
Tio = — T = —
10 T’ ! Ty
into the other generators of J and obtain in K[T5:!, ... T:5] the ideal

J = <T5 (-TPTUTe ' TS + kT5T6) , —T{TaTe ' TS + k15T,

13Ty T3T5
T — = T
10 + T 7+ Ts
T5T 13T
= ( ~TPTTE T + 6T3Ts, Tho + —2, Tr+ 2 ).
17 Ty

Then J' C KT, ..., TS is a prime ideal if f := —TPTyTE TS + k1375 is a
prime element in K[T'; i ¢ {7,10}] since
K[, T /7 = K[ i g {7,108] /{f).

that
dim (X, NV (K'S T3, 7)) < dim (X3) =2 forall  i#j.
The dimension of V(T!!; I}) = V(T!; I,) is at least eight as it is defined by three
equations. Therefore, V' (K“; Ig) is of at least eight-dimensional and it suffices to
show that the dimension of X NV (KH; T;, Tj) is at most six for all ¢ < j. For
i =1and j = 2, the variety
Xo NV(Ty, To) = V(Th, To, TsTs + TrTs, —kT6Tr 4+ ToThy,
— KkT3Ts — T11Tho, TsTy — T5Tho, T3To + T7T10)

in K!! is of dimension six by a computer check. For i = 1 and j = 3, we decompose
the vanishing set

Xy NV(Ty, T3) = V(Th, Ty, TSTYTETE ™Y — To Ty, kT6Ty — ToThy,
Ti1Tho, TrTho, —kTgTATET ™ + TsTy — T5Tho)
= V(Ty, Ts, Tz, Thy, TeTo — T5Tyo) U
V(Ty, T3, Tro, TS TUTHTE ™ — To T,
KTsTy — ToTh1, —KTSTyTETY " + T Ty)
in K'' into two components. The first one clearly is of dimension six. For the

second component, we consider the matrix with the exponent vectors of the three
occurring binomials as its rows

0O a O 1 0 a-1 -1 -1 0o o0 a
o 0 o0 o0 o 1 1 0o -1 0 —1 5
0O a O 1 O a 0 —1 -1 0 a-1
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which is of rank two. By Lemma :5.3.3; the component is of dimension six on

T . (0,1,0,1,...,1,0,1). Note that also on the smaller tori the dimension is at
most six; e.g., for T - (0,0,0,1,...,1,0,1) we receive the variety

V(Th, Ty, Ts, Tro, T5Ts, T6T7 — ToTh1, TsTy) < K'

of dimension five. The remaining dimension arguments are similar. We restrict
ourselves to listing the vanishing sets and the exponent matrices of Lemma '5.3.3.
for components with unclear dimension.

i,j  XoNV(Ti, Ty) dimension argument (some components)
V(Th, Tu, =T5T5 — T7Ts, TsTy — T5T1o,

1, 4 HT6T7 — T9T11, —T3Ty — T7T10)
—kT3Ts — T11Tho, Method: computation.

V(T1, Ts, kT6T7 — ToT11,
1,5  TgTyTY TS — T Ts,
—kT3Ts — T11Tho,

—KTgTyTETE Y + TxTo,
—T3Ty — T7Tho)

00 a 0 1 0 a-1 -1 -1 0 0 a
0 0 0 0 O 11 0 -1 o0 -1
00 1 0 O 10 0 0 -1 -1
0 a 0 1 0O a 0 -1 -1 0 a-1
00 1 0 0 o -1 0o 1 -1 0
V (T, Ts, ToT11, T11T10, TTo — T5T10,
1,6 —T3Ts — T7Ts, —T5Ty — T7Tho)
Method: computation.
V (T, Ty, Ty, —KTgTyTETH " — TsTho)
L7 —wT3T6 — Ti1Tho, U V(Tv, Tz, T3, Ti1,
-1
T3TuTH T~ — TsT5, TTo — T5T1o)
0 a —1 1 —1 a—1 0 0 0 0 a
00 1 0 0 1 0 0 0 -1 -1
0 a 0 1 -1 a 0 0 0 —1 a—1
V (T, Ts, kTsT7 — ToT11, TN Te — T T
1,8 Ty T TS — T3Ts, T; 6 T ; )107
-1 —T3Ty — T7Tio
SRTSTYTETE " — Ty Tho,
0 a -1 1 -1 a-1 0 0 0 0 a
00 0 0 0 1 1 0 -1 o0 —1
00 1 0 0 1 0 0o 0 -1 -1
0 a 0 1 -1 a 0 0 0 -1 a-—1
00 1 0 0 0o -1 0 1 -1 0

V (T, To, T7, —xT3T6 — T11T10,

1,9 TOTY T, O~ — T4 Ts, U V(T1, Ty, Ts, Tio,

- —T3Ts — T4 T}
—RTSTATETE ™ — TsTho) sTs = Tr'Ty)
0 a —1 1 —1 a—1 0 o0 0 0 a
0 0 1 0 0 1 0 o0 0 —1 -1
0 a 0 1 -1 a 0 O 0 —1 a—1

V (T, Tro, T3, kT6T7 — ToT11,
1,10  TgTyTH TS — T T,
—KT$TATETE ™ + TsTo)
0 a 0 1 0 a—1 -1 -1 0 0 a:|

U V(Tu, Tho, Ts, To,
—TyT5 — T T%)

o o0 o0 o0 o 1 1 0 -1 0 -1
0O a O 1 O a 0o -1 -1 0 a-1
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V(T1, Th1, TeTr, 137,

TsTy — T5Tho,

1,11 1375 + T Tk, T5Ty + T7Tho)
Method: computation.
V(Ts, T3, Ty, 18Ty — T5T1o0,
(T, Ts, Ty, TsTo ~ T5Tro U V(Tz, Ts, Ts, Tho,
2,3 T1 T4T5 T% —ToT11, ToTr — W TaT )
TaTyTEITe — T11Tho) oTHL TR
a 0 0 1 a 0 0 a—1 -1 0 -1
a 0 0 1 a—1 0 0 a 0 -1 -1
0 0 0 o0 1 0 o0 1 1 -1 o0
V(Te, Ty, —=T3T5 — T7Ts, TTy — TsTho,
2,4 KTeTr — ToTh1, —T5Ty — T7T1o)
—kT3Ts — Th1Tho, Method: computation.
V(Te, Ts, T7Ts, TsTo, —TsTo — Ty Tho)
2,5 kTeT7 — ToT11, Method: ,
—kT3Ts — T11To, ethod: computation.
V(Ty, Ts, TsTy — T5Tho,
8 _TyTy — T Ts,
2,6 TfT4T;T§ b Ty, _T3T5 - T7T8 )
TeTy T 1T — Ty1Tho, 310 ATh10
0 0 1 o 10 -1 1 0o 0o o
a 0 0 1 a 0 0 a—1 —1 0 —1
a 0 0 1 a—1 0 0 a 0 —1 —1
0 0 0 o0 -1 0 o 1 1 -1 o0
0o 0o 1 0 0 0 -1 o 1 -1 o0
V(Ts, T7, T3, 18Ty — T5T10,
(T, Ty, T, TsTo ~ T5Tro U V(Ty, Tz, Ts, T,
2,7 T1 T4T5 T% —ToT11, TN Te — Ton T )
TOT, T VTS — Ty Tho) 3T6 — T11T10
a 0 0 1 a 0 0 a—1 -1 0 -1
a 0 0 1 a—1 0 0 a 0 -1 -1
0 0 0 o0 1 0 0 11 -1 o0
V(T%, Ts, TsTs, T5T10, —T3T9 — T7T10)
2,8  wIeT7 —ToTn, Method: .
—KT3Ts — T11Tho, ethod: computation.
V(Ts, Ty, Tr0, —T3T5 — T7Tg,
5 ara—1 U V(Tz, Ty, Ts, T,
2,9 T1 T4T5 T% + kTeT7, TN Te — Tor T )
TeTy T 1T — KT5Ts) 376 7 Ao
o0 1 0 1 0 -1 -1 0 0 0
a 0 0 1 a -1 -1 a—-1 0 0 0
a 0 -1 1 a-1 -1 0 a 0 0 0
V(Ty, To, Ty, —T3Ts — T7Ts, U V(Tz, Tho, Ts, T3,
2,10  TPTUTETS ' + k6T, —kT6Tr — ToTi1,

TeTTE TS — KT3T)

0 0 1 0 1
a 0 0 1 a
a 0 -1 1 a—1

TeTyTE™ 1 TE)

0o -1 -1 0 0 O
—1 -1 a—-1 0 0 O
-1 0 a 0 0 O

189
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V(Tz, Th1, —T3T5 — T Ts,

TeTyTE ™' T — kT3 T,

2,11  TeTyToTe ! + kT6Ty
) 1 578 ) T _
TsTy — T5Tho, TsTo — TrTwo)
0 0 10 1 0o -1 -1 0 0 0
a 0 0 1 a -1 —1 a—1 0 0 0
a 0 —1 1 a—1 1 0 a 0 0 0
00 0 0 -1 0o o 1 1 -1 0
0 0 10 0 0o -1 0 1 -1 o0
34 V(I3 Ty, TrTs, TrTho, TsTy — T5T10)
’ Ti1Tio, kT6T7 — ToTh1, Method: computation.
V(Ts, Ts, Tho, —KT$TYTETY " + TsT)
3,5  KIgT7 —ToTi1, U V(Ts, Ts, T,
T¢Iy TH TS — ThTs, T11, TsT)
00 a 0 1 0 a—-1 -1 -1 0 o0 a
0 0 0 0 0 1 1 0 -1 o0 —1
0 a 0 1 0 a 0 -1 -1 0 a-—1
V (T3, Ts, T7, T3To — T5T1o,
3,6 TfT4T5aT§_1 — ToTi1, U V(TIs, Ts, T8, T10, ToT11)
Tl“T4T5‘17 g — T11Tho)
0 0 0 0 -1 0 0 1 1 -1 0
a 0 0 1 a 0 0 a—1 —1 0 —1
a 0 0 1 a—1 0 0 a 0 —1 —1
g7 V(I Tr, Ty Ts, TeTyTE ™ T — ThaTho,
’ TeTyTETE ™! — ToTh1, T8Th — T5Tho)
a 0 0 1 a 0 0 a—-1 -1 0 -1
a 0 0 1 a—1 0 0 a 0 -1 -1
0 0 0 0 -1 0 0 1 1 -1 0
33 V (T3, Ts, Tho, T2T4T11Ts, U V(T5, Ts, T7, T11, T5)
’ —kT6T7 + ToTi1) Method: computation.
V(T97 T3, a arpa—1
bo  TSTTHTIT Ty, i otk Nl B
’ TfT4T5“T§_1 + KkT6 T, L2 4) 5 ‘6 ‘8 ‘1
Ty TE T — Th1Tho, Tho
0 a 0 1 0 a—1 -1 -1 0 o0 a
a 0 0 1 a -1 -1 a-1 0 0 0
a 0 0 1 a-—1 0o o a 0 -1 —1
0 a 0 1 -1 a 0 0 0 -1 a-1
a a 0 2 a—1 a—1 —1 a—1 0 —1 a—1
310 V(Tio, T3, ThT4T5T3, T§T4T1a1Tg_1 _1T7T87
’ —kT6Tr + ToTh, —RTETyTETE " + TeTo)
0 0 0 0 0 1 1 0 -1 0 -1
00 a 0 1 0 a—-1 -1 -1 0 o0 a
0 a 0 1 0 a 0 -1 -1 0 a-—1
V (T, Ts, T7, Th T4 T5 T, U V(Tn, T, Ts, Tio, To)
3,11 _
TsTy — T5T1o) Method: computation.
V(Ts, Ty, T7Ts, TsTy, —kT3Ts — T11T10,
4,5 —kTsTr 4+ ToTh1, —T3T9 — T7T10)

Method: computation.
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V(Ts, Ta, ToT11, T11T10, TTo — T5T10,
4,6 T3Ts + T Ty, T3Ty — T7T1o)
Method: computation.
T7, Ty, T3Ty, ToT:
V(T7, Ta, T3Ts, ToT11, T8 Ty — TsTho)
4,7 13Ty, —kT3Te — T11Tho, )
Method: computation.
V(Ts, Ta, T5T5, —kT3Ts — T11T10,
4,8 T5Tho, —KT6T7 + ToTh1, —T3Ty — T7T1o)
Method: computation.
4.9 V(To, Ty, TsTr, TsTho, —kT3T — T11T10)
’ T7Tho,T3T5 + 1713, Method: computation.
4.10 V(Tlo, Ty, T3Ty, 13Ty, kTeT7 — ToT11)
’ T3Ts, —T3T5 — 17713, Method: computation.
V (T, Tu, TsTr, T5Ts, TsTy — T5Tho,
4,11 T3T5 + TA1Tg, T3Ty + T7T1o)
Method: computation.
56 V(T T, TrTs, ToTu, T3To + T7Tio)
’ T11Tho, 18Ty, Method: computation.
V(T7, Ts, T3To, ToTyTeThu,
5,7 ToT11, T8To, —kT3Ts — T11T10)
Method: computation.
V(Ts, Ts, ToTyTsT11, —wT3Ts — T11T10,
5,8  —kTsT7 + ToT1a, T3To + T7Tio)
Method: computation.
V(Ty, Ts, TeTr, ToTyTeT11,
5,9 T7Tho, T7Ts, —£T3Ts — T11T10)
Method: computation.
5.0 V(T Ts, TsTo, T5Ts, —kTTr + ToT11,
’ TeTWTH TS — ThTs, —KTTyTETE ! + TsTo)
0 a 0 1 0 a-1 -1 -1 0 0 a
00 0 0 O 1 10 -1 0 -1
00 a 0 1 0 a 0 -1 -1 0 a-—1
511 V (T, Ts, T7Ts, T53Ty — T7Tio)

Te'T7, T3Ts, 18Ty,

Method: computation.
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V (T, Ts, T5Ts, T3To,

TeTyTE™ T — Ty Tho,

6,7 TeTWTETS ™ — ToTh, TsTo — T5Tho)
a 0 0 1 a 0 0 a—-1 -1 0 -1
a 0 0 1 a—1 0 0 a 0 -1 -1
0 0 0 0 -1 0 0 11 -1 o0
6.8 V(Ts, Ts, T5T5, T5Tio, 13Ty — T7T10)
’ ToTh1, Ti1Tho, Method: computation.
6.9 V(Tg, Te, TsTho, TrT1o, T3T5 + T T3, )
’ T\ TuT5Ts, ThaTho, Method: computation.
6.10 V(Tvo, Ts, T3T5 + T7 T3, T8Ty, T5Ty)
’ ToT11, T1 TuT5Ts, Method: computation.
V (T, Ts, TV T4T5Ts, 15Ty — T5T1o0,
6,11  T3T5 + Ty Tk, T3Ty + T7T1o)
Method: computation.
78 V(Ts, T, ToT11, T5Ty, T§T4T1a1Tg_1 — 1375,
’ ~kT3Ts — T11T0, —KT$TYTETY " — TsT1o)
0 a -1 1 -1 a-1 0 0 0 0 a
00 1 0 0 10 0 0 -1 -1
0 a 0 1 -1 a 0 0 0 -1 a-1
79 V(To, T7, T1 Ty T5Ts, —kT3Ts — Ti1Tho,
’ TgTWTH TS — T5Ts, —KTTyTETE ™ — TsTho)
0 a -1 1 -1 a—=1 0 0 0 0 a
00 1 0 0 10 0 0 -1 -1
0 a 0 1 -1 a 0 0 0 -1 a-—1
V(T107 17, a arpa—1
70 BTTHTE - TsTs, ;::figéggT%3“j§§T%7T“*1
’ TfT4T5“T§—1 — ToTh1, iyt )4 5 16 1s In
TeTATE TS — wT3Ts, 359
0 a -1 1 -1 a-1 0 o 0 o a
a 0 0 1 a 0 0 a—1 —1 0 —1
a 0 -1 1 a-1 -1 0 a 0 0 0
0 a 0 1 0 a 0 -1 -1 0 a-—1
a a —1 2 a—1 a—1 0 a—1 —1 0 a 1
V (T, Tr, T35, T1T4T5 T3,
7,11 T3Ty, T3Ts, TsTy — T5T10)
Method: computation.
8.9 V(Ty, Ts, T7Tho, TsTr, —kT3Ts — T11Tho,
’ TeTyTH TS — T5T5, —KT§TyTETY " — TsT1o)
0 a —1 1 -1 a—1 0 o0 0 0 a
00 1 0 0 10 0 0 -1 -1
0 a 0 1 —1 a 0 0 0 —1 a—1
810 V(Tho, Ts, T3T0, T3Ts, —kTeT7 + ToT11)

T5Ts, ToTyT6T11,

Method: computation.
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V (T, Ts, T3Ts, TeTr, T3Ty — TrTho)
8,11 .
T3Ts, T5T10, Method: computation.
9.10 V(Tro, To, ToTyTeT11, TfT4T§T§a_1 + kTsTr,
’ T3Ts + T7 Ty, TETyTE  TE — kT3T6)
0 0 1 0 1 0 -1 -1 0 0 0
a 0 0 1 a —1 —1 a—1 0 0 0
a 0 —1 1 a—1 —1 0 a 0 0 0
.11 V(Tu, Ty, TrTho, TfT4T5“T§“’1 + KT6Ty,
’ T5Th0, 1515 + T7 T3, TPTyTy ' T§ — kT3T6)
0 0 1 0 1 0 —1 —1 0 0 0
a 0 0 1 a —1 —1 a—1 0 0 0
a 0 —1 1 a—1 —1 0 a 0 0 0
1011 V(T Tio, T3Ty, TeTUTSTY ™! + KT T,
T IsTe, T3Ts + Tr s, TeTyTE ™ T — kT3T6)
0 0 1 0 1 0 —1 —1 0 0 0
a 0 0 1 a —1 —1 a—1 0 0 0
a 0 —1 1 a—1 —1 0 a 0 0 0

about its Cox ring holds. The fact that it does not admit a K*-action can be seen
from its graph Gx, of exceptional curves

cannot be a K*-surface because sink and source, marked black, meet in the common
negative curve V(Xy; Ty).

(XII) Blow ups of X1 := Bl Fy(xx * ix). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

********** i

X] 2 > BlF,(x* v) <2 BlF, (% * v) —2> Bl F, (x i)’ <——— Bl Fo (% i) ——F,

where the embeddings ¢; are as in Setting 4.2.9 with
7: K5 — KO, z = (z,h1(2)), hy = T9Ty — T5T5,
To: KT — K% 20 (2,h2(2)), hy = (A= 1)T5Ty — \TeTx
where A € K*\ {1} and the blow ups w; are
m3([z]) = [2120, 29, ..., 27, 2829],
ma([z]) = [z127,29,..., 25, 2627, m1([z]) = [#125, 22, 2325, 24].

The exceptional divisors of the first, second and third blow up are

V(Xy; Ts), V(Xy; Tr), V(Xy; To).
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On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

I I 3 3 "D

The first configuration has already been dealt with in part (XI) of this proof. For
the second configuration, we choose the point

g2 = [07171?M717M_1717)\_M71] € X17 1% € K*\{l’A}

are blow ups of X; in the points
gs = [1,0,1,0,1,—1,1, A, 1], qs = [0,1,1,0,1,-1,1,A\,1] € X3

which project to the respective points [1,0,1,0] and [0,1,1,0] € F, under 7 04 ' o

X1 in g4 will admit non-trivial K*-actions.

The last configuration means blowing up X7 in a point in the exceptional divisor
V(X1; Ts). Since it can also be obtained as the blow up of Bl F,(x? x iv) or
Bl F,(x?  wviii) in the respective divisor V(T7) we will treat this case in parts
(XIII) and (XIV) of this proof.

(XIIT) Blow ups of X1 := Bl F,(x*> x iv). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

********** I

X1 —2> Bl F (2 i)/ <—— Bl Fy (2 i) ——=> Bl Fq (% i) ——> Fq
where the embedding ¢1 is as in Setting 4.2.9: with
71: K8 — K7, 2 = (2,h1(2)), hy = T9Ty — T3TsTE
where h; € K[T1,...,Ts] and the blow ups m; are given by
m3([z]) = [z12s,22,---, 26, 2728),
ma([z]) = [#1, 22, 2326, 24, 2576), m([z]) = [z125, 22, 2325, 24]-
The exceptional divisors of the first, second and third blow up are

V(Xy; Ts), V(Xy; Ts), V(Xy; Ty).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

2) D (2) D (2) D (2) :l (3) u g; u

For the first configuration, we choose in X; the point ¢; := [0,1,1, A, 1,1, A\ — 1,1]

wlowQOLfloW3(q1) = [0,1,1,A\] € F,.

Since V(Xy; T1) is a parabolic fixed point curve the blow up of X; in ¢; will admit
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blow up the points
q2 = [170707171117071]7 q3 = [170717071317_171]
qs = [0,1,1,0,1,1,-1,1] € X3

which project to [1,0,0,1], [1,0,1,0] and [0,1,1,0] € F, under 71 o 75 0 Lfl o 3.

points
g = [1,1,1,1,0,1,1,1], ¢ = [1,1,1,1,1,0,1,1] € X,

of R(X1). We have a new degree matrix @} and a matrix P; whose columns are
generators for the rays of the fan 3} of Z1:

H 1 a-1 0 1 0 O 0 1 -1

A B /o 0 a 0 1 0 0 -1 -1 0
Q= | _1 ) P = 0 01 0 0 1 0 0 -1
0 oo 0 1 1 -1 -1 1

1

For the blow up of X7 in ¢(¢5) = [1,1,1,1,0,1,1,1,0] we stellarly subdivide ¥
at the vector v := (—1,0,—1,2). Write P» := [P[,v]. The vanishing ideal Iy C
KI[Ty,...,Tio] of X5 is generated by

g1 = 05 (p1)w (T9Ty — TsTsTg — ToTx) = ToTy — T3TsTaTho — T Tk,
g2 = 5 (p1)x (To — hg) = ToTio — ThTy *TyTs + T5T.

We show that Iy is prime. In particular, I is saturated with respect to T79. The

U = {.’E € Yg; g9 7& 0 or x7x10 7é 0} - YQ =V (Klo; .[2) .

Inspecting the indices ¢ = 1,2 and j = 7,10 or 4 = 1,2 and j = 8,9 respectively
we see that the rank of the Jacobian matrix (9g;/9T}); ;(u) is two for all u € U.
Furthermore, Xo \ U is contained in the union of the 8-dimensional subspaces

V(K'Y Ts, T7), V(K'Y Ty, To), V(K% Ty, Tr), V(K'Y Ty, Tho) .
We claim that in K each of the following intersections is of dimension six.
Xo N V(Ts, Tr) = V(Ts, Tr, T$Ty — TsT5Tg Tho, ToTho + TsTs),
Xo N V(Tg, Tro) = V(Tz, Tio, ToTy, TsTp),
Xo N V(Ty, Ty) = V(To, Tr, T§Ty — TTsTETho, TVTy  TyTs — T5Ts),
Xo NV (Ty, Tho) = V(Ty, Tio, TSTy — Ty Ty, VT TyTs — T5Ts).

The second one is clearly of dimension six whereas for the others, as in Lemma5.3.3,
we consider the exponent matrices

0 0 1 0 0 1 0 -1 —1
0 a -1 1 -1 -2 0 0 0 -1
1 a-1 -1 1 0 -1 0 1 0 0 ?

all of which are of rank two. Thus, on the respective tori, the dimension is six by
Lemma5.3.3. One directly checks that the dimension is at most six on the smaller

tori. Therefore, dim(Xo \ U) < 6 and, since X3 is of dimension at least eight, the
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Consider the ideals
I+ (Two) = (T, T&Ty — TxTs, TyTy ' TyTs — T3Ts) C KT, ..., Tol,
Iy = (TSTy — TsTy, TITS 4Ty — TyTs) C KT, ..., T].

Then the variable Ty defines a prime element in Ry = K[T1,...,Tio]/I2, i.e., Is +
(Tyo) is prime, if and only if Iy is a prime ideal in K[77,...,T7]. The matrix
consisting of the exponents of the binomial generators

0 a 0 1 0 —1 —1
1 a—1 —1 1 —1 0 1
has a Smith normal form of shape [E»,0,...,0] where E5 is the 2 X 2 unit matrix.

Iy is prime if Io = Iy : T3 - - - T5°. To this end we first prove that
g = {fla f27 f3}
= {TVTT? — ToT3Ts, T9Ty — TsTr, TiTS Ty Ty — T3Ts}
is a Grobner basis for Iy with respect to any degree reverse lexicographical ordering
with Ty > ... >T;-9 > Ty > ... > Ty > T; foral <i<7. First, observe that

we have Iy = (G) since f, and f3 are the generators of Iy and f; = =T\ T7 fo +Ta f3.
The S-polynomials are

S(f1, fa) = —TsHTTUTs + TVTG TS,
S(f1, f3) = — TYT3TyTs + T3T5T6 T,
S(fa, f3) = — TWTeT? + ToT3Ts.
The division algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

S(f1, f2) = TeTef1 —ToT3Tsfo,  S(f1, f3) = —T3T5f2, S(f1,f1) = —fi.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Grobuner basis for Iy
with respect to the chosen orderings. By [90, Lem. 12.1], we know that

! . .
{T’_ki(f)’ f S g = g, kl(f) = max(n € ZZO, Tz | f)
is a Grobner basis for Iy : T7°. In particular, Iy = Iy : T7° for each 1 < i < 7. As
in [90; p. 114], the claim follows from
Ioi(T1-~-T7)oo :(((Iono>)T$O):IO

Moreover, no two variables T;, T; are associated since deg(T;) # deg(T;) for all
1 # j and we have Ty t T; for all ¢ < 10 since

Xo N V(Th, T) = V(Tw, Ty, TsTs, TsTy — TrTR),

Xo NV (Ty, Tyo) = V(T To, TrTys, T3Ts),

Xy N V(T3, Tho) = V(Tho, T3, TeTy — Ty Ty, TiTs ' TyTy),

Xo NV (Ty, Tro) = V(Tho, Tu, Ty, T5Ts),

Xo NV (Ts, Tho) = V(Tio, Ts, T9Ty — TrTy, VT3 Ty T — T3 T),
Xy N V(Ts, Tho) = V(Tho, Ts, TSTy — TiTs, Ty ToTyT),

Xo N V(T7, Tho) = V(Th, Tr, ToTy, T5T)
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of the performed modification with its degree matrix as listed in the table. We now
show that we performed the desired blow up. The ideal

I' = (TIy, Ty, hy, hy — T7Ty)
= (T, To, T§Ty — T5Ts, TT5 ' TuTs — T5Ts) C K[T1,...,To]

is a prime ideal since the ring K[T1,...,Ty]/I’ is isomorphic to the integral domain
K[Ty, ..., To)/(I2 + (T1o)). Given Cox coordinates z := (1,1,1,1,0,1,1,1,0) € K°
for the point t(g5) € X| we have z € V(K?; I') and by the previous dimension
arguments

dim (V (K% I')) = —1+dim (X2 N V(T5, Tio)) = 5.

claimed blow up. The Cox ring and degree matrix of the resulting surface X, =
Bl F,(x® % i) are listed in the table. We claim that its graph of exceptional curves

divisor of the last blow up, we know that the curves V(Xa; T;) are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the
blow up sequence of Xs.

We now blow up X; in ¢ = [1,1,1,1,1,0,1,1] by the same steps. Choose in
K[T1y,...,Ts] the polynomial hy := TfT;72T4T5T82 —T for the embedding 7o: K& —
K. Let @i be the degree matrix of R(X7). We have a new degree matrix @} and
a matrix Pj, whose columns are generators for the rays of the fan ¥ of Z1:

H 1 a—-1 0 1 0 -1 0 1 -1
A B /o 0 a 0 1 0 0o -1 -1 0
Q= | *f ) P = 0 0 1 0 0 0 0 0 -1
0 0 0 0 1 2 -1 -1 1

1

For the blow up of X7 in the point ¢(¢f) = [1,1,1,1,1,0,1,1,0] we determine the
stellar subdivision of ¥} at v := (=2,0,—1,3) € Z* and write P, := [P{,v]. The
vanishing ideal I, C K[T1, ..., Ti] of X5 is generated by

g1 = p3 (p)e (T3Th = TBTETE = ToTy) = T3y — Ty T Ty, — Tr Ty,
g2 = P (1)« (Ty — ho) = ToTuo — T T3 *TyTTE + T.

We show that I is saturated with respect to T1¢ by showing that I3 is prime. By
Lemma 5.4.4, the ideal I is prime if the ideal

I o= (T9Ty — TETFTETITS > T3T2 + ToTyT2 Ty — TeTy) € K[T,...,Ty]
obtained by substitution of T3 = —go + T3 in g; and relabeling all T; with i > 3

since the ideal

I£+<Tg> = <T9, TZU’TS—T()’T7> - K[Tl,...,Tg]

is prime by Lemma 5.2.17. Moreover, no two variables T;, T} are associated since

deg(T;) # deg(T}) for all ¢ # j. Also, Tho 1 T; for all ¢ < 10: the dimension of each
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zero set
Xo N V(Ty, Tyy) = V(Tho, T3, Ty, T5Ty — TxTy),
Xy N V(Ty, Tro) = V(Tw, T3, To, T7Tx),
Xo N V(Ts, Tro) = V(Tho, Ts, TSTy — TrTs, Ti ToTyT5Ty),
Xy N V(Ty, Tro) = V(Tw, Ts, T3, T7Tx),
Xo N V(Ts, Tyy) = V(Tho, Ts, Ty, T5Ty — TrTy),
Xo N V(Ts, Tro) = V(Tho, Te, T9Ty — TrTs, —T2TS > TyTsT2 + T3),
Xo N V(Ty, Tro) = V(Tio, Ty, ToTy, T3),
X, N V(Ts, Tho) = V(Tw, Tx, T3, ToTy),

Xy NV (Ty, Tho) = V(Tho, To, T9Ty — TrTs, —TETS *TyTsT2 + T)

is six. In the parameter-free cases this can be seen by computations whereas other-
wise, Lemma 5.3.3'is used. By Theorem 4.2.6, R is the Cox ring of the performed

modification with a Gale dual matrix of P, as degree matrix. We now show that
we have performed the desired blow up. The ideal

I' = (Ty, Ty, ho, hy — T7Ty)
= (Ts, To, T¢Ty — TyTy, —TITS*TyTsT2 + T3) C K[Th,..., Ty

coordinates for t(¢}) € X|. Then z € V(K?; I’) and by the previous computations
dim (V (K% I')) = —1 + dim (X2 NV(Ts, Tho)) = 5.

g2+ T3 from I. We obtain the Cox ring R} := K[T1, ..., Ty]/I} describing the blow
up of X7 in ¢(q¢f) with the degree matrix Q% given by

1 1 -—a 0 0 0 0 0 O
1 0 0 -2 1 0 0 0 0

Ql _ -1 0 1 1 0 1 0 0 O
2 -2 0 1 1 0 0 1 0 O

1 0 0 -1 0 0 0 1 0

2 0 0 -3 0 0 0 0 1

Observe that the surface X is a K*-surface. Its Cox ring R(X2) = R} is isomorphic
to the Cox ring of a K*-surface Y given by

R(Y) = K[TY,...,To] / (TSTs + TSTyTET — TsTr)

R(X>) is induced by the ZS-graded homomorphism

Te + T2T2T2T2TS 25Ty, i =
K[T1,...,To] — K[T1,..., Ty, T; {Tﬁ 9fdts ity A30T ’1 6,
7 else.

We come to the blow up of the last configuration. This is the blow up of X7 in a

consider the point gg := [1,1,1,1,1,1,1,0] € X;. As before, choose in K[T1, ..., Ts]
the polynomial hy := T1T2a_1T4T5T6 — T for the embedding 7o: K® — K. Let Q1
be the degree matrix of R(X1). We have a new degree matrix @} and a matrix P;
whose columns are generators for the rays of the fan ¥} of Z1:

g 1 a-1 0 1 1 1 0 0 -1

I o 0 a 0 1 0 0 0 -1 -1
Q= | ? ) Py = 0 01 0 1 2 o0 1 -1
o 0 00 0 0 0 1 0o -1
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For the blow up of 12(gs) = [1,1,1,1,1,1,1,0,0] € X7, we determine the stellar
subdivision of ¥} at the vector v := (—1,-2, -2, —1) € Z* and write P, := [P}, v].
The vanishing ideal Io C K[T1,...,T1o] of X5 is generated by

g1 = P () (T3Ts = TTTE — TrTs) = T3y — TyT5T¢ — T TsTho,
g2 = 03 (1)« (To — ha) = TyTao — VT3~ TyT5T5 + T

We show that I is prime. In particular, I then is saturated with respect to Tig.
By Lemma 5.4.4; the ideal I is prime if the ideal

I o= (T9Ty — T3TsTE — Ty ToTh Ty TyTsTs + ToTeTs) € K[Th, ..., T
obtained by substitution of T7 = —gs + T7 in g; and relabeling all T; with ¢ > 7

RQ = K[Tb o ,Tlo]/.[g since
I+ (Ty) = (To, TSTy — TsT5T2) C K[Th,..., Tyl

their degrees deg(7;), deg(T;) are different for all ¢ # j. Also, Tho 1 T; for all i < 10:
the dimensions of all intersections

Xo N V(Ty, Tho) = V(Tho, T, Th, T9Ty — TsT5T3),

Xy N V(Ty, Tho) = V(Tw, Tr, Tz, T3T5T),

Xy NV (T3, Tro) = V(Tho, Ts, ToTy, Tr),

X5 N V(Ty, Tho) V(Tho, T7, Ty, T5T5T5),

Xo N V(Ts, Tro) = V(Tw, Ty, Ts, ToTy),

Xy N V(Ts, Tho) = V(Two, Tr, Ts, ToTy),

Xo N V(Ty, Tro) = V(Tho, Ty, T&Ty — TsTsT2, Ty ToTyTsTs),

Xo NV (Tg, Tho) = V(Tio, Ty, TsTy — TsTsTE, —~ThT5 ' TyTsTs + Tr),
Xo N V(Ty, Tro) = V(Tho, To, TSTy — TsTsT2, —T1 T8 Ty T5Te + T)

are six. This is done by computations or with Lemmas 5.3.3' and 5.4.4: By The-

orem 4.2.6, Ry = K[T1,...,T1g]/I7 is the Cox ring of the performed modification

with a Gale dual matrix of P, as degree matrix. We now show that we performed
the desired blow up. The ideal

I' = (Iy, Ty, hy, hy — T7T5)
= (Ts, Ty, T¢Ty — T3T5T3, TiTs ' TuTsTs — T7) C K[Ty, ..., Ty

coordinates for ¢(gs) € X;. Then z € V(K% I’) and, as g is a fake relation, we
have

dim (V (K% I')) = —1+dim (V (K% Ty, Ty, T5Ty — T5T515)) = 5.

the Cox Vrrihg of the blow up X5 of X in ¢g is R(X2) = K[T4, ..., To]/I}. Tts degree
matrix is given by removing the seventh column of a Gale dual matrix of P,. Note
that at the moment we are uncertain whether X5 is a K*-surface or not.

(XIV) Blow ups of X1 := Bl F,(x* % wiii). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

"
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X1 —2> Bl Fy (#2 i) <—2— Bl Fy (2 ii) —=— Bl Fy (x i) ——> Fq
where the embedding ¢ is as in Setting 4.2.9 with
71: K8 = K7, z = (z,h1(2)), hi = T9Ty — T5T5T5
where h; € K[T1,...,Ts] and the blow ups m; are given by
m3([z]) = [2128,29,. .., 26, 2728),
ma([z]) = [z126,22,. .., 24, 2526), m1([z]) = [#z125, 22, 2325, 24].
The exceptional divisors of the first, second and third blow up are

V(Xy; Ts), V(X1 Ts), V(Xy; Ts).

On X3, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

2) El (2) D (2) E (2) :l (3) u 8; u

For the first configuration, we choose the point ¢; := [0,1,1,\,1,1,A — 1,1] in X,

M1 O Mg O Lfl oms(q1) = [0,1,1,A] € F,.
Since V' (X7; T1) is a parabolic fixed point curve the blow up of X7 in ¢; will admit

to blow up the points
[1,0,0,1,171,07 1], [1,0,1,0,171,—1,1], [071,1,071,1,—1,1] e Xy,
which project to [1,0,0,1], [1,0,1,0] and [0,1,1,0] € F, under 7; o 73 o Lfl o T3

g5 = [1,1,1,1,0,1,1,1], qé = [1,1,1,1,1,0,1,1] € X,
both of which exist by Lemma 5.2.16. We first blow up X; in ¢5. Choose the
polynomial ho := TlT;_1T4T6T8 — Ty € K[Ty, ..., Tg] for the embedding 75: K& —
K°. Let Qi be the degree matrix of R(X;). We have a new degree matrix Q} and

a matrix P{ whose columns are generators for the rays of the fan ¥} of Z:

8 1 a-1 0 1 0 1 0 1 -1

’o_ /o 0 a 0 1 0 0 -1 -1 0
Q@ = | (1) , bPo= 0 01 0 0 0 0 0o -1
0 0 o 0o 0o 1 1 -1 -1 1

For the blow up of t(¢5) = [1,1,1,1,0,1,1,1,0] € X; we determine the stellar
subdivision X3 — X} at v := (=1,0,-1,2) € Z* and write P, := [P],v]. The
vanishing ideal Iy C K[T1,...,T10] of X5 is generated by
g1 = 5 (p1)x (T5Ty = T3T5Ts — TrTR) = 13Ty — T3T5T6Tio — Tr 15,
g2 = P (p1)s (To — ha) = ToTio — TVT5 Ty TsTs + Ts.
We show that I, is prime. In particular, I is saturated with respect to T1g. By
Lemma 5.4.4, the ideal I, is prime if the ideal
I, o= (T9Ty — ToTyTETh TS 5Ty + Ty T Ty — TeT7) € K[Th, ..., To)

obtained by substitution of T35 = —go + T3 in g1 and replacing all T; with T;_; if



4. SMOOTH RATIONAL SURFACES WITH o(X) =6 201

K[Ty,...,Tio]/I2 since we have a prime ideal
Ié + <T9> = <Tg, 1575 — T6T7> - K[Tl, . 7Tg].

Moreover, no two variables T}, T} are associated since their degrees deg(T;), deg(T})
are different for all ¢ # j. Also, Ty 1 T; for all i < 10: each of the intersections

Xo N V(Ty, To) = V (T, Th, T3, Ts Ty — T7T3),

X, N V(Ty, Tyo) = V(Tio, Ta, T3, TrT3),

Xo N V (T3, Tho) V(Tho, T3, T9Ty — T7Ts, Th ToTyTT3),

Xo N V(Ty, Tho) V(Tho, Ty, T3, T7T3),

X, N V(Ts, Tio) = V(Tho, Ts, T9Ty — T7Ts, —T1T§_1T4T6Tg +T3),
Xo NV (Ts, Tho) V(Tho, Te, T3, T3Ty — T7Tg),

Xo N V(Ty, Tho) = V(Tho, Tr, ToTy, ~ThTy " TyTsTs + T3),

Xo N V(Tg, Tho) V (T, Ts, T3, ToTy),

X2 N V(To, Tho) = V(Tho, Ty, TSTy — TyTs, —~TyT8 Ty T T + T)

is six-dimensional. This can be seen directly or with Lemma '5.4.4. By Theo-

of P, as degree matrix. We now show that we have performed the desired blow up.
The ideal

I' = (Ts, Ty, hg, hy — T7T5)
= (T5, Ty, T$Ty — TrTs, VT3 ' Ty T6Ts — Ts) € K[T4, ..., Ty

coordinates for t(gs) € X{. Then z € V(K?; I’) and, as above, we have

dim (V (K% I')) = —1 + dim (X2 N V(T5, Th)) = 5.

L= K[}, ..., T]/I} of the blow up of X; in ¢5. Its degree matrix QY is given by
removing the third column of a Gale dual matrix of P, i.e.,

1 0 0 0 O 1 -1 0 0

0 1 0 0 0 2a — 1 —a+1 —a a

Q/ — 0 0 0 0 0 -1 1 2 -1
2 0 0 1 0 0 2 -1 -1 1
0 0 0 1 0 0 0 1 -1

0 0 0 0 1 1 -1 1 -1

Observe that the blow up X5 is isomorphic to a K*-surface Y since its Cox ring
R(X3) = Rj is isomorphic to

RY) == K[Tv,...,To) / (T$Ts + TETyTsTs — TsTr)

R(X>) is induced by the ZS-graded homomorphism

To + ToTh 2T Ty ' T5, =6
KTy, T = KTy, T, Ty 400 0040002 e 120
T; else.
We now blow up X7 in ¢} by similar steps. Choose in K[T1,...,Tg] the polynomial
hy := ThT3 *TyTyTE — T#Ts for the embedding 7o: K& — K°. Let Q; be the degree
matrix of R(X1). We have a new degree matrix @} and a matrix P; whose columns
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are generators for the rays of the fan 3} of Z1:

g 1 a—-1 0 1 0 0 1 2 -1

I o 0 a 0 1 0 0 -1 -1 0
Q1 = Q1 g > Pl - 0 0 1 0 0 -1 1 1 -1
1 0 o 0 o0 1 2 -2 -2 1

For the blow up of X7 in «(¢5) = [1,1,1,1,1,0,1,1,0] we determine the stellar
subdivision of 37 at v := (=1,0,-2,3) € Z* and write P, := [P],v]. The vanishing
ideal Iy C K[T7y,...,Ti0] of X5 is generated by
g1 = 5 (P1)x (T3 Ty — T3T5T6 — TrTs) = 15Ty — T3T5T6T10 — 17T,
g2 = s (p1)x (To — ha) = ToTio — TWT5 "TWT; TS + T3 T.
We show that Iy = I : T§§ by showing that I is prime. The grading is pointed by

U = {x € Xo; xoxywras # 0 Or T3T5210 # O} C Xy =V (Kw; Ig) .

Inspecting the entries with indices ¢ = 1,2 and j = 1,7 as well as ¢ = 1,2 and
j = 6,9, we see that the rank of the Jacobian matrix (0¢;/0T}); ;(u) is two for
all w € U. Furthermore, X, \ U is contained in the union of the 8-dimensional
subspaces

V(KT T), V(K'Y T, T, V(K'Y T, Ty), V(K'Y Ty, T3),

V(K'Y Ty, Ts), V(K'Y Ty, To), V(K T, T3), V(K'Y T, ),

\%4 (Klo; 17, TlO) , vV (Klo; Ty, TB) , vV (Km; Ts, T5) vV (KI(); Ts, Tlo) :
We directly see that each of the following intersections is of dimension six.

XoNV(Ty, T3) = V(Ts, To, ToTho, T7T5),

X5 N V(Ty, Ts) = V(Ts, Tz, ToTho, T7Ts),
Xo NV (Ty, Tio) = V(Tho, Tn, TrTz, T5T5),
X5 N V(Ty, T3) = V(Ty, Tz, ToTho, T7T3),
Xo N V(Ty, Ts) = V(Ts, Ty, ToTho, T-T3),
Xo NV(Ty, Tvo) = V(Tho, Tu, TrTs, T5T5),
X5 N V(T7, T3) = V(Ty, Tz, ToTho, ToTy),
Xo N V(Ty, Ts) = V(Ty, Ts, ToTio, ToTy),
Xo NV(Tr, Tyo) = V(Th, Tz, TsTs, ToTy),
X5 N V(Ts, T3) = V(Ts, Tz, ToTho, ToTy),
Xo N V(Ts, Ts) = V(Ix, Ts, ToTro, ToTy),

)

Xo NV (T, Tio) = V(Tho, Ty, T5T5, ToTy).

We now show that the variable T defines a prime element in Ry = K[T7, ..., Ti0]/I2
by showing that the ideal

I 4+ (Tyo) = (Tvo, TSTy — Tx Ty, TATs ' TyT5TE — T3Ts) C K[T4,. .., Tio)

is a prime ideal. Since K[T7,...,Tio]/(I2 + (Tho)) is isomorphic to K[T1,...,T%]/Iy
this is equivalent to

Iy = (T9Ty — TeTy, VTS ' TyT6T? — T3Ts) € K[TY,..., Ty

being prime. By a computation, we verified the cases 3 < a < 4. Let a > 5. The
ideal (Ip) C K[Ti, ..., T+ is prime since the matrix consisting of the exponents
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of the binomial generators

0 a 0 1 0 —1 —1
1 a—1 -2 1 —1 1 2
has a Smith normal form of shape [Eg, O ,O] where EQ is the 2 x 2 unit matnx

we first show that

G = {h, fo f3}
= {MTETE — TT5T3, TSTy — TeTy, ThTy ' ThT6T7 — T5T5 }
is a Grobner basis for I with respect to any degree reverse lexicographical ordering
with Ty > ...>T; 1 >Tip1 > ...>T7; > T, foral <i<7. Since fo, f5 are the
generators of Iy and f1 = —T1TeT? fo + T f3, we have (G) = Iy. The S-polynomials
are

S(fr, f2) = —T3IETLTs + TVTG T,
S(f17 f&) = —T§T§T4T5+T§T5T6T77
S(f2, f3) = —TWTETE + ToT5T5.

The division algorithm, see [26, Ch. 2, Thm. 3|, returns the combinations

S(fi, f2) = TeTofr — ToT5Tsfo,  S(f1,f3) = —T5T5f2, S(forf3) = —fi.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Grobuner basis for Iy
with respect to each of the chosen orderings. From [90, Lem. 12.1], we infer that

is a Grobner basis for Iy : T7° for each 1 < i < 7, i.e., we have Iy = Iy : T7° for
each i. As in [90, p. 114], the claim follows from
Io: Ty T7° = (- (Lo T7°) -+ ) : T7°) = Io.

Furthermore, no two variables T;, T, are associated since deg(T;) # deg(T}) for all
1 # j and Ty 1 T; for all i < 10: each of the intersections

Xo N V(Ty, Tyy) = V(Ti, T, TsTs, TSTy — T-TR),

Xy N V(Ts, Tyo) = V(Th, Ts, T9Ty — TrTs, TiToTyT5Ty),

Xo N V(Ts, Tro) = V(Tho, Ts, TETy — TrTs, Ti ToTyT5Ty),

Xy N V(Ts, Tho) = V(Tho, T, T9Ty — TrTs, TiTS ' TyTr T2 — T3Ts),
Xy N V(Ty, Tho) = V(Tho, To, TSTy — TrTs, TVTs *TyT5TE — T2Ts)

is six-dimensional; here, one uses Lemma_5.3.3. The missing cases have been treated

its degree matrix as listed in the table. Observe that we performed the desired blow
up. The factor ring K[71,...,Ty]/I’ where
I' = (Ts, Ty, ha, by — T7Ty)
= (Te, Ty, T§Ty — TxTs, Ty '"TuTxT3 — T3T5) C K[T1,...,Ty)
is isomorphic to the integral domain K[T7,...,T1o]/(I2 + (T1o)). Hence, the ideal
I' is prime. Let z := (1,1,1,1,1,0,1,1,0) € K° be Cox coordinates for +(¢}) € X].
Then z € V(K% I') and by the previous dimension computations
dim (V (K% I')) = —1 + dim (X2 NV (Ts, T1o)) = 5.

Cox ring and degree matrix of the resulting surface Xo = Bl Fy (%3 % u) are listed
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1S

blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges is directly seen from the blow up sequence.

We come to the last configuration. Here, we want to blow up a point in the last

g6 == [1,1,1,1,1,1,1,0] € X;. Similar to before, we choose in K[T1,...,Ts] the
polynomial hy := Ty T *TyTsT¢ — Ty for the embedding 7o: K® — K. Let Q; be
the degree matrix of R(X;). We have a new degree matrix )} and a matrix Pj
whose columns are generators for the rays of the fan ¥} of Z1:

1

301 1 a—-1 0 1 1 2 0 0o -1
I - /o 0 a 0 1 0 0 0 -1 -1
Q@ = | _g ) Py = 0 o1 0 1 1 0 -1 -1

0 00 0 0 0 1 0o -1

—1

For the blow up of X7 in t(¢s) = [1,1,1,1,1,1,1,0,0] we determine the stellar
subdivision of X} at v := (-1,-2,-2,-1) € Z* and write Py := [P{,v]. The
vanishing ideal I C K[T1,...,Tio] of X3 is generated by

g1 = D5 (p1)x (T5Ty — T3T5Ts — T7Ts) = TyTy — TsT5Ts — T7T5Tho,
g2 = 5 (p1)x (To — hg) = ToTio — VT *TyT5TZ + Tr.

We show that I is saturated with respect to T1¢ by proving that I is prime. By
Lemma 5.4.4, the latter is the case if the ideal

I o= (T9Ty — TsTsTs — ToToTh T8 Ty TsTg + ToT2Ts) € K[Th, ..., T
obtained by substitution of 77 = —gs + T7 in g7 and replacing all 7; with ¢ > 7

I+ (To) = (To, TyTy — T3T5T) € K[Tn,..., Ty

no two variables T;, T; are associated for i # j. Also, Ty 1 T; for all i < 10: each
of the intersections

Xy N V(Ty, Th) = V(Tw, Th, Tr, T9Ty — T3TsTs),

Xo N V(Ty, Tyo) = V(Tho, To, Ty, T3T5Ts),

Xo NV (Ty, Tio) = V(Th, T3, ToTy, Tr),

Xy N V(Ty, Tro) = V(Tho, Ty, Tr, TsT5T5),

Xy NV (Ts, Tro) = V(Tw, Ts, Ty, ToTy),

Xo NV (Tg, Tro) = V(Tho, Ts, T, ToTy),

Xo N V(Ty, Tro) = V(Tho, Tr, TSTy — T3Ts5Ts, Ty ToTyTsT),

Xo NV (T, Tro) = V(Tho, Ty, TSTy — T3Ts5Ts, Ty T3 ' TyTsTE + Ty),
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Xo NV (Ty, Tro) = V(Tho, To, TSTy — TsTsTs, Ty Ty ' TyTsTE + T)

is of dimension six; here, Lemma 5.4.4 can be used. By Theorem 4.2.6, R, is the

Cox ring of the performed modification. Its degree matrix is a Gale dual matrix of
P5. Observe that we performed the desired blow up. The ideal

I' = (Iy, Ty, ha, hy — TxTy)
= (T, To, T¢Ty — TsTsTs, Ty T3 " TyTsT2 + T7) C K[T1,..., T

coordinates for +(gs) € X;. Then z € V(K?; I’). Moreover, since Ty is linear in go
we have

dim (V (K% I')) = -1 4 dim (V (K% Ty, Ty, T5'Ty — T3T5T5)) = 5.

Cox ring R(X3) = K[T1, . .., To]/ I} of the blow up Xy of X; in gg. Its degree matrix
%, is given by removing the seventh column of a Gale dual matrix of Ps, i.e.,

1 0 0 0 O 0 o0 2 -1

0 1 0 0 0 a 0 Ba—2 —2a+1

Q' — 00 1 0 0 -1 0 —4 2
2 0 0 0 1 0 1 0 5 —2
00 0 0 1 -1 0 —2 1

0 0 0 0 O 1 1 -1

Observe that X, is isomorphic to a K*-surface Y. By Lemma 5.1.5! it suffices to
show that R(X2) is isomorphic to

RY) = K[Tu,...,To) / (T§Ty — TsTsTs + T TETR)

where the degree matrix of R(Y) is again Q5. The isomorphism R(Y) — R(X3) is
induced by the graded homomorphism

T3 + Ty ToTh Ty ' TyTs, i=3,

K[Ty,...,Ty] — K[Ty,..., Ty, T — {
T; else.

(XV) Blow ups of X1 := Bl Fo(x* iv). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

‘I

X1 —2 > BIF,(x2 i) =<2 Bl Fo(x2 i) —2—> Bl Fqo (% i) ——> g
where the embedding ¢ is as in Setting4.2.9. with
71: K8 — K7, z = (z,hi(2)), hy = TTS Ty — Ty T
where hy € K[T1,...,Ts] and the blow ups m; are given by
m3([z]) = [21,--.,24, 2528, 26, 2728),
ma([z]) = [z1, 22, 2326, 24, 25%6), m1([z]) = [z2125, 22, 2325, 24].
The exceptional divisors of the first, second and third blow up are

V(X1; Ts), V(Xy; Ts), V(X1; Tg).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

(3) D (3) :l (3) D (3) El 4) El
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The blow ups of the first three configurations are the blow ups of X; in the points
[1,0,0,1,1,1,0,1], [0,1,1,0,1,1,—-1,1], [1,0,1,0,1,1,—-1,1] € X,

which project under 7 o mp 0 7! o w3 to [1,0,0,1], [0,1,1,0] and [1,0,1,0] € F,
respectively. Note that all points exist by a stepwise application of Lemmas '5.4.5

We come to the fourth configuration. The main steps are as in previous cases. We
want to blow up of X; in the point

q = [0,1,1,1,1,1,—1,1] € X1, momot toms(qs) = [0,1,1,1] € F,.

Note that g4 exists by Lemma '5.2.16. Choose in K[T1,...,Ts] the polynomial
hy = TgTy + TsTeT7 T2 for the embedding 7o: K® — K% Let Q1 be the degree
matrix of R(X1). We have a new degree matrix @} and a matrix P; whose columns

are generators for the rays of the fan 3} of Z1:

2 1 a—1 0 1 0 0 -1 -1 0

I o 0 a 0 1 0 0 0 0 -1
@ = | (1) ) P = 0 o1 0 0 1 -1 -1 0
o 0 00 0 1 1 1 2 -1

For the blow up of X7 in ¢(qs) = [0,1,1,1,1,1,—1,1,0], we determine the stellar
subdivision ¥5 — ¥} at v := (1,—1,0,—1) € Z*. Write P, := [P/, v]. The vanishing
ideal Iy C K[T%,...,T1o] of X5 is generated by
g1 = ps (p1)« (T3 Ty = TsTs — TrTy) = TyT5 ' TuTio — TsTs — Tr Tk,
g2 = ps(p1)s (To — ha) = ToTiog — T5Ty — TsT6T7T5.

We show that Iy is prime. In particular, I is saturated with respect to T19. The

= {:E € Xo; xerg # 0 or 27110 # ()} C Xo =V (Klo; 12) .
Inspecting the indices + = 1,2 and 7 = 3,10 as well as ¢+ = 1,2 and 7 = §8,9
we see that the rank of the Jacobian matrix (0g;/90Tj); j(u) is two for all u € U.
Furthermore, X5 \ U is contained in the union of the 8-dimensional subspaces
V(K" Te, ), V(K" Tg, Tho), V (K'% 1o, Tr), V(K'Y Ty, Tho) -

Furthermore, each of the following intersections is of dimension six.

Xo NV (Tg, Tr) = V(Ty, Ts, TsTy — ToTro, Ty ToTyTho),

Xo N V(Ts, Tro) = V(Tho, Ts, TrTs, TuTy),

Xo N V(Ty, T7) = V(Ty, Ty, ToTy, T3Tp),

Xy N V(Ty, Tho) = V(Tho, To, T3Ts — Tr Ty, T9Ty + TsTeTxT2).

[001001717100}

0 a 0 1 —1 —1 —1 -2 0 0

to see that the dimension is six on T (1,...,1,0,0). One directly verifies that the
dimension is at most six on all smaller tori. Therefore, dim(X \ U) < 6 and, since
X5 is of dimension at least eight, the codimension of X5 \ U in X, is at least two.
By Lemma 5.4.3; the ideal I is prime. We now show that the variable T}y defines

a prime element in Ry = K[T1,...,T10]/I2 by proving that
L+ (Tvo) = (T, TsTs + TrTs, ToTy + T5TTxTs) C K[T4,. .., Tio

is a prime ideal. Since K[T1,...,T1]/(I2 + (T10)) is isomorphic to K[T7,...,T7]/ Iy
this is equivalent to

Iy = (TyTs + TsTy, T{Ts + TyTsTeT2) C K[T,...,Tv]
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being prime. By a computation, we verified the cases 3 < a < 4. Assume a > 5. The
ideal (Iy) C K[Tlil, R T7i1] is prime since the matrix consisting of the exponents
of the binomial generators

0O 1 0 0 1 -1 -1
a 0 1 -1 -1 -1 -2

has a Smith normal form of shape [Es,0,...,0] where E is the 2 X 2 unit matrix,

we first prove that

ToT5 + TeTr, TPTs + TyTsTeT? ¢, ToT5 > TeTr,

G = {fl» f2} = o
TeTr + T5T5, Tf’Tg — T4T5 T:Ts , 1Ty < TTr

is a Grobner basis for I with respect to any degree reverse lexicographical ordering
with Th > ... > Ty > Tip1 > ... > Ty > T, forany 1 < i < 7. Let g} be
the generators of Iy. In the case ToTs < TsT7 we have fo = —TyT5T7g] + g5 In
particular, we have (G) = Ij in both cases. The single S-polynomial is

TOTyTTy — ToTyTETs T2, ToTs > TeTr,

S(f1, =
(f1, f2) {TfT3T5T2 4 T2T4T52T6T72, ToTs < TgTx.

The division algorithm, see [26; Ch. 2, Thm. 3|, returns the combinations

~TyTsTeT2 f1 + TeTr fo, ToTs > TsT,

S(fi1, =
(f1, f2) {T4T52T7T2f1 + T5Ts fo, ToTs < TTr.

By the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Grobuner basis for Iy
with respect to each of the chosen orderings. By [90;, Lem. 12.1], we know that

{kam feg} =G, ki(f) = max(n € Zxo; T}" | f)

is a Grobner basis for Iy : T;° for each 1 < i < 7. In particular, Iy = Iy : T for
each i. As in [90, p. 114], the claim follows from
I() : (T1T7)OO = (((IoTloo>)T7oo) = Io.

Moreover, no two variables T;, T; are associated since deg(T;) # deg(T;) for all
1 # j. Also, T1g 1 T; for all i < 10 since each of the intersections

Xo NV(Ty, Tho) = V(Tio, Th, TsTs + T Ty, TSTy + TsTeTxT3),
Xo N V(Ty, Tro) = V(Tio, To, TsTs + ToTx, TsTsToTy),

Xo N V(Ts, To) = V(Th, T3, TrTs, ToTy),

X2 NV (Ty, Tio) V (T, Ty, T3Ts + T Ty, TsTsTrTy),

Xy N V(Ts, Tho) = V(Tho, Ts, T3Ts + TrTs, ToTy),

Xo NV (Ty, Tyo) = V(Tho, Tr, TsTs, TuTy),

Xo N V(Tg, Tho) = V(Tho, Ty, T3Ts, ToT})

is of dimension six. As in previous cases, this is done by a computer check or using
Lemma5.3.3. The missing cases have been treated before. By Theorem 4.2.6, Ry is

the Cox ring of the performed modification with a Gale dual matrix of Py as degree
matrix. Observe that we performed the desired blow up. The ideal

I' = (T, Ty, hy, hy — T7Ty)
= (Th, Ty, TsTs + TrTs, T9Ty + TsTeTrT2) C K[Ti,...,To)
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is prime since K[71,...,Ty]/I’ is isomorphic to K[T7,...,Ti0]/(I2 + (T10)) which is
an integral domain. Let z := (0,1,1,1,1,1,—1,1,0) € K be Cox coordinates for
t(qa) € X{. Then z € V(K% I') and

dim (V (K% I')) = -1 + dim (Xo N V(T1, Tho)) = 5

tion was the claimed blow up. The Cox ring and degree matrix of the resulting
surface Xo = Bl F,(x3 x iii) are
T\Ty " TyTio — T3Te — Tr T
R(X :KT...,T/ 149 4110 316 718, :
(%2) = KT Tl < 3Ty + T THTE — TyTho

1 0 0O O 0 o0 0 0 1 -1
0 1 0 0O 0 O —a a 2a-—1 —a+1
0 O 1 0 0 O 2 -1 —1 1
0O o0 o0 1 0 O -1 1 2 —1
0O 0 o o 1 O 1 -1 0 0
0O 0 o0 o o0 1 3 =2 -1 1

Observe that X, is not a K*-surface. To this end, we claim that the graph of
exceptional curves Gx, is as follows. However, note that it suffices to prove the
existence of the subgraph induced by the vertices T; with ¢ € {1,4,5,6,8,10}.

blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the

For the fifth configuration, we treat blow ups of X; in a point in the union of the
exceptional divisors
V(X1; T5) U V(X5 Ts) U VI(Xy; Ty).
Note that we do not have to blow up a point in the parabolic fixed point curve
¢ = [1,1,1,1,1,0,1,1], q’5 = [1,1,1,1,1,1,1,0] € X;.

Lemma :5.2.16. ensures their existence. We first blow up X; in ¢s. Choose in
K[T1y, ..., Tg] the polynomial hy := T12T§72T4T5T8 — T3 for the embedding 75: K& —
K. Let @i be the degree matrix of R(X;). We have a new degree matrix @} and

a matrix P; whose columns are generators for the rays of the fan 3} of Z1:

8 1 a—1 0 1 0 0 -1 -1 0

ro_ r_ 0 a 0 1 -1 0 -2 -3 1
Q= | (1) ) Py = 0 0 1 o0 0 0 0 0o -1
0 0 o0 0 o0 1 -1 -1 1

For the blow up of X] in «(¢5) = [1,1,1,1,1,0,1,1,0], we determine the stellar
subdivision of 3} at v :=(0,1,-1,2) € Z*. Write Py = [P/, v]. The vanishing ideal
I, CK[Ty,...,Tho] of X5 is generated by

g1 = ps(p1)u (VTy Ty — T3Ts — TxTs) = ThTy 'Ty — T3T6Tio — T T,
g2 == 5 (p1)x (To — ho) = ToTio — TPTs *TyT5Ts + Ts.

We show that I, is saturated with respect to Ty by showing that Is is prime.
Consider the ideal

I o= (T3 Ty — ToTsTETY 2 T3 TyTr + TeTs Ty — TeTr) C K[Th, ..., Ty
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obtained by substitution of 75 = —go + T3 in g; and replacing all T; with T;_; if

K[TL ce aTlO]/I2 since the ideal
I+ (Ty) = (Ty, W3~ 'Ts — TsTy) C K[Th,..., Ty

is prime by Lemma ‘5.2.17. Moreover, no two variables T}, T are associated since

deg(T;) # deg(T;) for all ¢ # j. Also, we have Ty { T; for each i < 10: all

intersections

Xo N V(Ty, To) = V(Th, Ty, T3, TrTy),

Xo N V(Ty, Tyo) = V(Tho, Ta, T3, T Tg),

Xo NV (T3, Tro) = V(Tho, T, TiT8 Ty — T Ty, TiToTyTsT3),

Xy N V(Ty, Tho) = V(Tw, Ty, T3, T7T3),

Xy N V(Ts, Tro) = V(Tho, Ts, T3, TiT5 Ty — TrTy),

Xo N V(Ts, Tro) = V(Tho, Te, ThT8 Ty — ToTy, —TETS *TyTsTx + T),
Xo N V(Ty, Tyy) = V(Ti, Tr, TVToTy, T5),

Xy NV (T, Tho) = V(Tho, Ts, T3, TVToTy),

X2 NV (Ty, Tro) = V(Two, To, VT3 ' Ty — T5Ts, —TETy *TuTsTs + T5)

are six-dimensional; this can be seen using Lemmas 5.4.4 and Lemma 5.3.3. The-

orem 4.2.6; shows that Ry = K[T1,...,T10]/I2 is the Cox ring of the performed

modification with a Gale dual matrix of P, as degree matrix. We now show that
we performed the desired blow up. The ideal

I' = (Ts, Ty, ho, hy — TrTy)
= (T, To, TVTy Ty — ToTy, TPTS *TyTsTs — T3) C KTy, ..., To)

coordinates for t(g5) € X}. Then z € V(K?; I') and
dim (V (K% I')) = —1 + dim (X2 N V(Ts, T1o)) = 5.

Algorithm 4.3.3, we eliminate the equation T3 = —go + T3 and obtain the graded

ring R} := K[T},...,To]/I5 as Cox ring of the blow up Xy of X; in gs. Its degree
matrix Q5 is obtained by removing the third column of a Gale dual matrix of Pa,
ie.,

1 0 0 0 0 3 -2 -1 1
0 1 0 0 0 2a — 3 —a + 2 —a+1 a—1
Q, = 0 0 0 0 0 -1 1 2 -1
2 0 0 1 0 0 2 -1 -1 1
0 0 0 1 0 1 -1 0 0
0 0 0 0 1 0 0 1 —1
Note that X5 is isomorphic to a K*-surface Y. By Lemma 5.1.5.it suffices to show

that R(X2) is isomorphic to
R(Y) := K[T1,... ,Tg]/<T1T§_1T3 + T92T5T8 —T6T7)
with the same degree matrix Q5. The isomorphism R(Y) — R(X3) is induced by
the Z%-graded homomorphism
T + ToTsTPTS *T3Ty, i =6,

K[Th...,Tg] — K[Th...,Tg], T’,L —
T, else.

For the blow up of X7 in ¢} we choose in K[T1,...,Tg] the polynomial hy :=
T2Ty 2Ty TsTs — Ty for the embedding 7p: K® — K. Let Q; be the degree matrix
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of R(X1). We have a new degree matrix @)} and a matrix P; whose columns are
generators for the rays of the fan 3} of Z:

3

20— 3 1 a—-1 0 1 0 0 0 -1 -1
Q/ = |Q _ P = 0 a 0 1 -1 -1 0 -2 -1
1 1 2 ) 1 0 0 1 0 0 1 0 -1 -1

0 0 0 0 0 0o 1 0o -1

1

For the blow up of X7 in «(¢5) = [1,1,1,1,1,1,1,0,0] we determine the stellar
subdivision ¥5 — ¥} at the sum v := (=2, -3, -2, —1) € Z* of the last two columns
of P|. Define P, := [P],v]. The vanishing ideal I, C K[T1,...,T1o] of X is
generated by

g1 = ps (p)« (T3 Ty = TsTs — TrTy) = TyT5 ™' Ty — TsTs — T T5Tho,
g2 = p5 (p1)« (To — ha) = ToTro — TP Ts *TyTsTs + T

We show that I, is prime. Note that this implies that I is saturated with respect
to T1g. Consider the ideal

I, = (T3 Ty — TsTs — ToToT2TS > TyTsTs + ToTeTs) € K[Th, ..., Ty
obtained by substitution of 77 = —go + 77 in g1 and replacing all T; with T;_; if

element in Ry = K[T1,...,T1o]/I2 since the ideal
I+ (Ty) = (T, VT3 Ty — T3Ts) C K[Ty,..., Ty

distinct, no two variables T;, T are associated for ¢ # j. Also, T; t Tio for all
i < 10: the vanishing sets

Xo NV (Ty, Tho) = V(Tw, Th, Ty, T3Ts),

X5 N V(Ty, Ty) = V (T, To, Tr, T5T5),

Xy NV (T3, Tyo) = V(Th, Ts, TiToTy, Tr),

Xy NV (Ty, Tro) = V(Tw, Ty, Tr, T5Tg),

Xo N V(Ts, Tho) = V(Tho, Ts, T, TiT5 Ty — T5Tp),

Xy NV (Ts, Tho) = V(Tio, Ts, Tr, ThTTy),

Xo N V(Ty, Tro) = V(Tho, Tr, T8 Ty — T3Te, Ty ToTuT5Ts),

Xy NV (Tg, Tho) = V(Tio, Ts, VTS Ty — TsTs, —TT5 *TyTsTs + Tv),

Xy N V(Ty, Tro) = V(Tho, To, ThTS Ty — T3Ts, —TETS *TyT5Ts + Tr)

orem 4.2.6, Ry = K[T,...,Tio]/I> is the Cox ring of the performed modification

with a Gale dual matrix of P, as its degree matrix. We now show that we performed
the desired blow up. The ideal

I' = (TIy, Ty, ha, hy — T7T5)
= (Ty, To, VTS Ty — TsTs, —T2TS *TyTsTs + Tr) C K[T4,...,To)

coordinates for +(g5) € X;. Then z € V(K% I') and
dim (V (K% I')) = —1 + dim (X2 NV (Tp, To)) = 5

the equation T = —go+T% and obtain the Z5-graded ring R} := K[T1, ..., To]/I} as
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Cox ring of the blow up X5 of X in ¢f. Its degree matrix QY is given by removing
the seventh column of a Gale dual matrix of P, i.e.,

1 0 0 0 O 1 0 5 —2
0 1 0 0 0 a—1 0 3a—5 —a+2

Q/ _ 0 0 1 0 0 -1 0 —2 1
2 0O 0 0 1 0 1 0 3 -1

0o 0 0 0 1 0 0 2 -1

0 0 0 0 0 0o 1 1 -1

given an isomorphism between R(X3) and
R(Y) = K[Th,...,To] /(TN TS Ty — T3Ts + Tx T3 Tx)

where the degree matrix of R(Y) is again Q4. The isomorphism R(Y) — R(X3) is
induced by the Z%-graded homomorphism

Ts + Ty ToTETS 2Ty Ts, i=3,

K[Th...,Tg] — K[Th...,Tg], T —
T; else.

(XVI) Blow ups of X1 := Bl F,(x* iz). Let a > 3. Recall from the proofs of
Proposition :5.2.8 and Theorem :5.3.1: the point configuration and blow up sequence

"I

X1 —2> Bl Fy (42 i) <—2— Bl Fy (+2 ii) ——> Bl Fy (x i) ——>Fq

where the embedding ¢ is as in Setting 4.2.9 with

71: K8 - K7, z = (2,hi(2)), hy = T2 ' — T2Ty
where hy € K[T1,...,Ts] and the blow ups m; are

m3([z]) = [#1,.-.,25, 2628, 2728],

ma([z]) = [z126, 22, 23, 24, 2526], m([z]) = [z125, 22, 2325, 24]-

The exceptional divisors of the first, second and third blow up are
V(Xy; Ts), V(Xy; Ts), V(Xy; Ts).

On X;, we want to blow up a point which, together with the exceptional divisors,
projects to one of the configurations

‘lm "I "l I
For the first three configurations we blow up X; in the points

[1,0,0,1,1,1,0,1], [0,1,1,0,1,1,-1,1], [1,0,1,0,1,1,—-1,1] € Xj,

which project under m o 7 o Lfl oms to [1,0,0,1], [0,1,1,0] and [1,0,1,0] € F,

The blow up of the fourth configuration is the blow up of X; in the point
@ = [0,1,1,1,1,1,-1,1] € X, momot toms(qs) = [0,1,1,1] € F,.

Choose in K[T7, ..., Tg] the polynomial hy := T§Ty — T3T5TTs for the embedding
72: K® = K. Let Q; be the degree matrix of R(X1). We have a new degree matrix
@} and a matrix P| whose columns are generators for the rays of the fan 3} of Z:

2 1 a-1 0 1 0 0 -1 -1 1

I ro_ 0 a 0 1 0 0 0 0 -1
Q1 = | (1) ) Py = 0 01 0 0 -1 -1 -2 1
0 0 0 0 0 1 2 1 3 -2
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For the blow up of X7 in the point ¢(¢4) = [0,1,1,1,1,1,—1,1,0] we determine the
stellar subdivision of ¥} at v := (2,—1,1,—-2) € Z*. Define the enlarged matrix
Py := [P}, v]. The vanishing ideal I, C K[T}, ..., Ti] of X5 is generated by
g1 = p5(p1)s (T3 'TF — T3Ts — Ty Ts) = T3 'TiTho — T5Ts — T+ T,
g2 = p5(p1)x (To — ha) = ToTro — T3 Ty + T3T5T6T5.
We show that Iy = Iy : T by proving that I is a prime ideal. The grading is

U = {xEYQ; xgxg # 0 or x7m107é0} C X, = V(Klog 12)~

Inspecting the indices ¢ = 1,2 and j = 7,10 as well as ¢ = 1,2 and j = 8,9 we
see that the rank of the Jacobian matrix (0g;/0T;); ;(u) is two for all w € U. The
complement X5 \ U is contained in the union of the 8-dimensional subspaces

V(K'Y Ty, ), V(K'Y Ts, Tho), V(K'Y Tp, T),  V (K'9; Ty, Tho) -
Each of the following intersections is of dimension six

XoNV(Tx, Ty) = V(Tx, Ty, LT3 ' TiT1o — T3Ts, ToTio — TeTy),

Xo N V(Tg, Tyo) = V(Tg, Tho, TsTs, ToTy),

Xo N V(Ty, Tr) = V(Ty, Ty, TIT2* ' T3Tyo — T3Ts, —TSTy + T3TsTsTx),

Xo N V(Ty, Tro) = V(To, Tio, —T3Ts — Ty Ty, —T9Ty + T3TsTsTR).

Note that for the first, third and fourth variety we used Lemma 5.3.3 with the
respective exponent matrices

1 2a-1 —2 2 -1 0 0 O 0 1

0 —a 0o -1 o o0 o0 o0 1 1 ?
1 2a-—1 -2 2 -1 0O 0 o o0 1

0 a -1 1 -1 -1 0 -1 0 O !

0o o0 2 0 1 0o -1 -1 0 0
0 a -1 1 -1 -1 o -1 0 O

to see that the dimension is six on the respective tori
T (1,...,1,0,0,1,1), T (1,...,1,0,1,0), T (1,...,1,0,0)

and then direct&/ checks that the; dimension is at most six on all smaller tori.
Therefore, dim(X\U) < 6. Since X5 is of dimension at least eight, the codimension

now prove that the variable Ty defines a prime element in Ry = K[T7, ..., Tio]/I2.
Consider the ideals

I+ (Tho) = (Tho, —T5Ts — TxTs, —T5Ty + T3T5T6Ts) C K[T1,...,To),
Iy = <T22T4 + TsT7, TlaTg) — T2T4T5T7> - K[Tl, R 7T‘7].

Since K[T1, ..., T10]/(I2+ (T10)) is isomorphic to K[T7, ..., T7]/Iy it suffices to show
that Iy is prime. The ideal (Iy) C K[TF!, ..., TF'] is prime since the matrix
consisting of the exponents of the binomial generators

0 2 0 1 0o -1 -1
a —1 1 -1 -1 0o -1

has a Smith normal form of shape [E»,0,...,0] where E is the 2 X 2 unit matrix,

we show that the set of generators
Q = {f17 fg} = {T22T4 —|— T6T77 TlaT3 — T2T4T5T7}

already is a Grobner basis for Iy with respect to the degree reverse lexicographical
ordering for any ordering of the variables of the kind Ty > ... > T,y > T;41 >
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oo > Tr > T; with 1 <4 < 7. We verified the case 3 < a < 4 by a computer check,
so assume a > 5. The single S-polynomial is

S(f1, f2) = TPTTeTr + T3TiT5Ty.
The division algorithm, see [26, Ch. 2, Thm. 3], returns the combination

S(fr, f2) = TLIST: fi + TeTr f.

Using the Buchberger criterion, see [26, Ch. 2, Thm. 6], G is a Grobner basis for I
with respect to each of the specified orderings. By [90, Lem. 12.1], we know that

{kam feg} =0, ki(f) = max(n € Zs; T/" | f)

is a Grobner basis for Iy : T° for each 1 <4 < 7. In particular Iy = Iy : T7° for

each i. As in [90, p. 114], the claim follows from
Ip:Ty - T7° = ((+- (Lo :I7°) ) : T¥°) = 1.

We have shown that T is prime. Moreover, no two variables T}, T} are associated
since deg(T;) # deg(T;) for i # j. Also, observe that Tho t T; for all ¢ < 10. The
intersections

Xo N V(Ty, Tho) = V(Th, Th, —T§T5 —T7Ts, —T5Ty + T5T5T6Ty),
X5 N V (T3, T1o) V (T, T, ,T§T5 —TrTg, T3T5T6Ts),

X5 N V (T3, Tio) V (T, T3, T7Tg, ToTy),

X, N V(Ty, Tio) = V(Tio, Ty, —T§T5 — T;Tg, T3T5TsTg),

Xo N V(T5, Tho) = V(Tw, Ts, TrT, T2Ty),

Xo N V(Tg, Tro) = V(Tho, Ts, —T5T5 — Ty T, ToTy),

Xo NV (T7, Tho) = V(Tho, Tr, T3T5s, ToTy)

are all six-dimensional; as in previous cases, this can be seen by computer checks or
using Lemma 5.3.3. The missing cases have been treated before. By Theorem 4.2.6,
Ry = K[T1,...,Tio]/I2 is the Cox ring of the performed modification. Its degree
matrix is listed below. We now show that we performed the desired blow up. The

ideal
I' = (Th, Ty, ha, by — T7Ty)
= Ty, To, T3Ts + T5Ts, T9Ty — T3 T5T6Ts) C K[T1,..., Ty
is prime since K[T7,...,Ty]/I’ is isomorphic to K[T1, ..., T1o]/(I2 + (T10)) which is
an integral domain. Let z := (0,1,1,1,1,1,—1,1,0) € K be Cox coordinates for
t(qs) € X{. Then z € V(K% I') and
dim (V (K% I')) = —1 + dim (X2 NV(Ty, Tho)) = 5

fication was the claimed blow up. The Cox ring and degree matrix of the resulting
surface Xy = BIF,(*® x iv) are
Ty T2 T2 — T2Ts — T5 Ty
R(Xs) = K[Th,...,T / 2 4 8 Y
(X2) 7y w}<7wh—wn+nnnn

1 0o 0 O 0 O 0 0 1 —1
0 1 0 0 0 0 —a a 3a—1 —2a +1
o 0 1 0 0 O 3 -1 —2 2
0O 0 O 1 0 O -1 1 3 —2
o 0 O O 1 0 2 -1 —1 1
o 0 o0 o0 o0 1 1 —1 0 0

We claim that its graph Gx, of exceptional curves is as follows. Note that it
suffices to prove the existence of the subgraph induced by the vertices T; with
1€{1,4,5,6,8,10}.
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blow up, we know that the curves corresponding to the vertices are negative. The
existence of the edges, i.e., the fact that the curves meet, is directly seen from the

For the fifth configuration we want to blow up a point in the union of the exceptional
divisors

V(X1;T5) U V(X1 Ts) U V(X3 Tw).

Note that we need not treat blow ups of points on the parabolic fixed point curve

¢ = [1,1,1,1,0,1,1,1], ¢ = [1,1,1,1,1,1,1,0] € X;.

Both points exist by Lemma :5.2.16. We first blow up X; in ¢5. Choose in
K[T1y,...,Ts] the polynomial hy := T} T2“_1T4T6Tg — Ty for the embedding 75: K& —
K. Let @i be the degree matrix of R(X1). We have a new degree matrix @} and

a matrix P] whose columns are generators for the rays of the fan ¥} of Z:

0 1 a—=1 0 1 0 1 0 1 -1

o r— | o a 0 1 0 -1 -1 -2 1
Qr = | ol Pr= 13 001 0 0 0 0 0 -1
o 0 000 0 1 0 -1 -1 2

For the blow up of X7 in ¢(¢g5) =[1,1,1,1,0,1,1,1,0] we perform the stellar subdi-
vision of ¥ at v := (—1,1,-1,3) € Z*. Define the enlarged matrix P, := [P}, v].
The vanishing ideal Ir C K[T7,...,Tio] of X5 is generated by

g1 = ps(p)w (MTZ7'TF = T3Ts — T7T5) = VT3 "I — T5TsTho — Tr Ty,
g2 = 03 (1)« (To — ha) = TyTao — VT3~ TyToTs + T,

We show that Iy is prime. In particular, I is saturated with respect to T1g5. By
Lemma '5.4.4, the ideal I, is prime if the ideal

I = (T3 T2 — TyTyTET > TET2T?
+ 2T Ty T T T Ts T Ty — ToTWT2 — TeT7) C K[T1, ..., To)

obtained by substitution of T35 = —go+75 in g1 and replacing all T; with T;_; if i > 3

the variable Ty defines a prime element in Ry = K[T7,...,T1o]/I2 since the ideal

I+ (Ty) = (Ty, WT3* 'T? — TsTy) C K[Ty,..., Tyl

degrees deg(T;) € Z° are pairwise different. Also, T; t Tyg for all i < 10 since the
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dimension of each of the intersections

Xy N V(Ty, Tho) = V(Tw, Th, T3, T 1),

Xy N V(Ty, Tro) = V(Tho, To, T3, TrTy),

Xy N V(Ts, Tho) = V(Th, T, VT3 TE — TrTy, TiToTyT6Ty),

Xo N V(Ty, Tyy) = V(Tho, Ty, T3, T Tg),

Xo N V(Ts, Tho) = V(Tho, Ts, TiTS " Ty T Ty — Ty, Ti T2 ' TE — ThTy),
Xy N V(Ts, Tho) = V(Tho, Ts, T, TyTE* M7 — TrTy),

Xo N V(Ty, Tyy) = V(Th, Tr, T, TiToTy),

Xo N V(Tg, Tyo) = V(Th, Ts, T3, TiToTy),

Xy N V(Ty, Tro) = V(Tho, To, TiTS " TyTs Ty — Ty, TyT2 71 TE — T4 Ty)

is six. This can be seen using Lemma 5.4.4. By Theorem4.2.6, Ry = K[T1,...,T10]/I2

is the Cox ring of the performed modification with a Gale dual matrix of P as degree
matrix. We now show that we performed the desired blow up. The ideal

Il = <T57 T97 h2a hl - T7T8>
= (Ts, Ty, VT3 M2 — Ty Ty, VT3 ' TyTsTs — T3) C K[T1,...,To)

Cox coordinates for ¢(qs) € X|. Then z € V(K?; I'). By the previous dimension
arguments

dim (V (K% I')) = —1 + dim (X2 N V(T5, Tho)) = 5.

graded ring R} := KT, ..., Ty|/I} as the Cox ring of the blow up X3 of X, in gs.
Its degree matrix Q% is given by removing the third column of a Gale dual matrix
of Py, i.e.,

1 0 0 0 O 2 -1 -1 1
01 0 0 0 3a-2 —-a+1 —-2a+1 2a-1

Q/ — 0 0 0 0 O -1 1 3 -2
2 0 0 1 0 0 3 -1 -2 2
0 0 0 1 0 0 0 1 -1

0 0 0 0 1 1 -1 0 0

Note that the blow up of X7 in g5 is isomorphic to a K*-surface Y. By Lemma 5.1.5.
it suffices to show that R = R(X3) is isomorphic to
R(Y) = K[Th,...,To] [ (TYT2* T3 — TST4TZ — T T)
with the same degree matrix Q5. The isomorphism R(Y) — R(X3) is induced by
the Z%-graded homomorphism
K[Tl, - 7719] — K[Tl, . ,Tg],

T o {TG + ToTy RT3 2 T3T2Ty — 213 Ty T TS " T3T5Ts, i =6,
T; else.
For the blow up X; in ¢4 we choose the polynomial hy := T1 T "T3TyTsTs — Ty
in K[Ty,...,Tg] for the embedding 75: K® — K°. Let Q; be the degree matrix
of R(X1). We have a new degree matrix @)} and a matrix P; whose columns are
generators for the rays of the fan 3} of Z1:

2

30 2 1 a—-1 1 1 1 1 0 0 -1
Q, = |0 ] P = 0 a 1 1 0 -1 0 -2 -1
1 1 3 ) 1 0 0o 2 0 1 0 0 -1 -1
0 o0 0 0 o0 1 0o -1

1
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For the blow up of X{ in «(¢f) = [1,1,1,1,1,1,1,0,0], we determine the stellar
subdivision ¥y — ¥ at v := (=1,-3,-2,-1) € Z*. Write P, := [P],v]. The
vanishing ideal Iy C K[T1,...,T10] of X5 is generated by

g1 = 05 (p)e (MIZT'TE = T3Ts — TT5) = TVI3* T} — T35 — T TxTho,

g2 = 05 (p1)x (To — ha) = ToTio — TVT5 * TsTyTsTe + T

We show that I is saturated with respect to 71y by showing that I is prime.
Consider the ideal

I = (T M7 — TiTs — Ty TS T3 TyTs T Tr To + T T Te) € K[Th, ..., To)
obtained by substitution of 77 = —gs + 17 in g1 and replacing all T; with T;_; for

prime element in Ry = K[T7,...,T10]/I2, since the ideal
I+ (Ty) = (Ty, VT3 'T? — T3Ts) C K[T4,...,To).

is prime by Lemma 5.2.17. Moreover, no two variables T;, T are associated since

deg(T;) # deg(T}) for all ¢ # j. Also, Tip 1 T; for all ¢ < 10 since each of the
intersections

XNV = V(Ty, Ty, Ty, T5T5),

X T, Ty, T7, T5T5),

Tho, T3, Tr, ThT5Ty),

Tho, Ty, Tr, TsT5),

Tho, Ts, Tr, T T2Ty),

Tvo, Ts, Ty, VT3 TS — T3 Ts),

Tho, Ty, VT3 TE — TiTs, Ty To T3 Ty T Ts),

= V(Tyo, T, VT3 ' T7 — T3Ts, VT ' T3 TyT5Ts — Tr),

= V(Tvo, To, VT3 M2 — T2Ty, VTS T TyTsTs — Tr)

|
= S S

I
< =

(
(
(
(
(
(
(
(

SERER
o
<

K[Ty,...,Ti0]/I2 is the Cox ring of the performed modification with a Gale dual
matrix of P, as degree matrix. We now show that we performed the desired blow
up. The ideal

I' = (Iy, Ty, ho, hh — T7T5)
= (Ty, To, T2\ TE — T3Ts, —T\ TS " T3TyTs T + Tx)
C K,...,T]

be Cox coordinates for ¢(¢g5) € X. Then z € V(K% I') and
dim (V (K% I')) = —1 + dim (X2 NV (Ty, T1o)) = 5.

ring Ry := K[T,...,To]/I5. The Cox ring of the blow up X, of X; in ¢} then is
R(X2) = Rj. Its degree matrix is given by removing the seventh column of a Gale
dual matrix of P,. Note that it is not obvious whether X5 is a K*-surface or not.

Isomorphisms: We now remove redundancies between the found surfaces without
a non-trivial K*-action. Note that the Cox rings of all surfaces are either listed in
the table of Theorem 5.4.1 or directly when encountered in this proof. To rule out

of the absolute values of the maximal minors of the respective degree matrices. Note
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that for blow ups of F,, the L; also could be computed with symbolic parameter
a € Z>3. For a concise presentation, given integers k, n € Z, we shortly write k"

for the sequence k, ...,k of n copies of k.

X

list of 6 X 6 minors

Bl P2 (%° 4)

047y 1707 2517 3177 4117 577 637 71’ 817 101’ 111

Bl Py (%5 i4)

049 197 244 313 44 51 61 71

Bl Py (%5 4ii)

04:77 1707 251’ 3177 4117 577 63, 717 81, 1017 111

Bl Pa (%2 % * i)

054’ 1127’ 220’387 51

Bl Pa (%3  * i)

0128’ 12027 21007 328, 44

Bl Pa (%3 % * iid)

049’ 1977 2447 3137 44’ 517 617 71

Bl P (%2 % x % 1)

168 1266 928
0168 1266 9

Bl Po(k % % * 1)

756 1920 940
0756,1920 2

Bl Pa (% * % x % 44)

3960 14032 16
0396014032 o

Bl Pa (% * % * % 441)

168 1266 928
0168 1266 2

Bl Pa(x? x x % iv)

2 135 12 1
062, 1135 212 3

Bl Fq(x % x % vi)

052711167261 |a - 2|107| -3 +a‘27 |2a - 1|17| -5+ 2a|17 | -3 +2a|21
jo — 14, af®

Bl Fq (% ** % vii)

052y11167267 |a+ 1|67 Ia - 2|27 Ia - 1|107 |2a - 1|27 |a‘147
1+ 2a|t,| — 3+ 2al'

Bl Fo(* % x % xiii),

T

0124,1166,228,1a|0% 120 — 2[%,| — 2+ a|*, |a — 1%, |2a — 3|*,
| — 4+ 4al*,|2a — 1|28

Bl Fq(x3 % 1)

047y189721773775173“1'172“1'27 I - 3+2a|17 IQa - 1|67 ‘ -2+ 30"27
| -3+ 5a|17 |a — 2‘27 |a|277 Ia‘ — 1|7

047,168 230 311 42 51 61 71| — 3 4 7a|',|2a — 1|9, 3|a|', | — 3 + 4a|',

Bl Fg (%3 % i) | —2+6all,| —2+4a|', |a — 1|2,2al, |a|?t, | — 2+ 5al',|3a — 17,
| — 2+ 3a|!
Bl ]Fa(*3 . ”Z) 0477189’217737’51’ |a‘27, ‘20, _ 1‘67| — 34+ 5a|1,2|a|2, |a _ 2‘27
| —342al',| —2+3al?, |a— 1|7, 3|a|
047,168,230,311,42751,61,71, |a _ 1‘27| ) +4a|17 |a‘217 ‘ — 3+ 7(1‘17
Bl Fqo (%3 % iv) 3lal,|3a — 1/5,]2a — 1|5, — 2+ 6al,| — 2 + 5a|', 2|al®, | — 3 + 4a|?,

| — 24 3alt

Bl F,(x* i), T

010,124 221 33 47 |a — 1|1,| — 4 + 4a|', [4a — 3|2, 2|al?,|2a — 1|7,
| -2 +3CL|1,| -2 +4a|2a |CL‘3

Bl Fq(x? %2 i), t

010y13572157327427| - 4+4a|17 I - 2+3a|27 ‘20’ - 1‘17 ‘a’|107
|a — 1‘27 |a — 2‘272|a‘2

By the second statement of Proposition 5.4.6;, only the following isomorphisms are

possible. In fact, all of them turn out to be isomorphisms.

BIPy(x° 4) — BlPy(x” iii),
Bl Py(x% x % x i) — Bl Py(k % % % * 4ii),
BIF, (%3 % i) — BlIF,(x** iii),

Bl Py(+° i) — Bl Py(x> *  iid)
Bl Fo1(kx*x%x vi) = BlF,(x %% * vii),
BIF, (%3 % i) — BIF,(x3* iv).

For the first isomorphism, write X; := Bl Pa(x° i) and X3 := Bl Po(%° iii). Recall
from the beginning of this proof the Cox rings R(X;) and their degree matrices Q;.

Y  Cox ring R(Y) degree matrix

K[T17 v 7T10}/Il
1 0 0 1 0 0 2 0 3 -1
with I1 generated by 0o 1 0 1 0 0 3 0 5 -2
Xi o o0 1 -2 0 0 -1 0 -2 1
T5Ty — ThT> — TeT7 1810, 00 0 0 1 0 10 2 -1
TiT2TTuTs — T2T- — ToT: 0 0 0 0 0 1 -2 0 -1 1
2304l =86 T T A0M0 | g g 0 0 0 0 o0 1 10—
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K[T1,...,T10]/I2
3 -1 -2 2

. 1 0 0 0 0 O
e with I generated by 0 1 0 0 0 0 2 -1 -1 1
2 00 1 0 0 0 -2 2 5 -3
2
T ToTeTs — T5Ty — ToTho, 00 0 1 0 0 -1 1 3 -2
T12T2 + Ty Ty — Tg’T42T5T10 0 0 0 0 1 o0 0 0 1 -1
00 0 0 0 1 1 -1 0 0

Write I; C K[T1,...,Tio] for the ideal of relations of R(X;). Substituting 757y =
Ty ToTeTs — ToTg into I does not change the ideal, i.e.,
L = (M\TyTeTs — 15Ty — ToTho,
T2Ty + ToTy — ThTo T3 Ty Ts T Ty Tho + T3 Ty Ts ToTh).

The Z°%-graded homomorphism

Tr — TWYLT3T,T5TTh, 1=17,

K[Tl,...,Tlo] — K[T17~--7T10]7 Tz —>
T; else

induces an isomorphism R — R(X>) of Z5-graded algebras where R} also has Qs
as degree matrix and is given by

;o / ;o T Ty TTs — TTy — ToTho,
Rz = K[Th A ,T10] /127 Ig = < T12T2 +T7Tg +T3T4T5T9T120 .

R(X;) as ZS-graded algebra. Consider the homomorphism of algebras 1: Ry —
R(X1) induced by
K[Tl,...,Tlo] — K[T17~-~7T10]7
T1 — T67 TQ — T‘77 T3 — T3, T4 — T4,
15 — Ts, Ts — Ts, T7 = To, Ty + Tho,
Tg — 7T17 TlO — T2.
Then (¥(1})) = I; and the homomorphism ¢ is a well-defined isomorphism of K-

algebras. To see that 1 is also an isomorphism of Z6-graded algebras we consider
the homomorphism of abelian groups

0 2 0 1 0 O

0 3 0 1 0 O
a2 = 78 e Ave, A= |0 "1 1 =20 01 ¢ GL(6,Z).

1 -2 0 o 0 O

0 0 0 o 0 1

This turns the pair (1, ) into an isomorphism R(X1) — R(Xz) of Z°-graded alge-
bras: for all w € Z°® the image ¥((R}).) is contained in the component R(X1)q(u)
because

0 2 0 1 0 0 3 -1 1 0
0 3 0 1 0 0 5 -2 0 1
A-Qy = 0 -1 1 -2 0 0 -2 1 0 0 = Q.
06 1 0 0 1 0 2 -1 0 0 ;
1 -2 0 0 0 0 -1 1 0 0
0o 0 0 0 0 1 1 -1 0 O

For the second isomorphism, let X := Bl Po(%° ii) and Xy := Bl Py (x® % x iii). We
claim that we have an isomorphism given by

p: X9 = Xy, (21,---,210) V> (=29, 210, 22, 24, 26, 23, —27, 28, %1, %5)-
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R(X>) is a Z5-graded isomorphism that is induced by
K[Tl,...,Tlo] — K[T17--~7T10]7
Ty — Ty, Ty — T, T3 — T, Ty = Ty,
T5 — Te,, TG — Tg, T7 — —T7, Tg — —Tg,
Tg — Tl, T10 — T5.
Write I; C K[T7,...,Tio] for the ideal of relations of R(X;). Then (¢(I;)) = I and
the homomorphism ¢ is a well-defined isomorphism of K-algebras. Observe that

1 is also an isomorphism of Z°-graded algebras. Consider the homomorphism of
abelian groups

-1 1 0 0 0o 2
3 -1 1 0 0 -2

a: 78 - 75, e A-e, A= s Y0 0 s 1| € GL(6,Z).
-1 1 0 0 0 3
1 -1 0 1 0 0

This turns the pair (¢, ) into an isomorphism R(X;) — R(X3) of ZS-graded
algebras: for all w € Z5 the image 1(R(X1)w) is contained in the component
R(X2)a(w) because

-1 1.0 0 0 0 2 -1 1 0
3 -1 1 0 0 0 -2 2 0 0

A-Q = 06 0 0 0 0 1 1 -1 0 0 = Q
2 -1 0 1 0 0 -1 1 0 0 : :
-1 1 0 0 0 0 3 -2 0 1
1 -1 0 0 1 0 0 0 0 O

For the third isomorphism define X; := Bl Po(x? % x % i) and Xy 1= Py (% % x % 4ii).
As seen by the blow up sequences of the respective surfaces the curves V(Xy; Tg)
and V(Xa; Ty) are (—1)-curves. Their respective contractions lead to surfaces X/
fitting into the diagram

where ¢ will be specified below. The Cox rings R(X/) and their degree matrices Q)
are listed in the following table.

Y RY) degree matrix

K[T1,...,T5,T7,...,T11] / I}
with I generated by

10 0 0 -1 -1 0 1 1 -1
X! TaTs + 1579 — T7TH0, 0o 1 0 O 1 o o0 -1 0 1
A A
13Ty — ThT7 — To'Th1, 0 0 0 0 0 0o 1 1 1 -1
ToT7 — T5T5 — TsTh1,
ToTy —ThT5 — Ti1Tio
K[Ti,...,T5,Ts,...,Tn] /I,
with I generated by
1 0 0 0 0 0 1 0 -1 1
X! TeTs + T5T9 — TsTH0, o 1 0 0 o0 0 0 1 1 -1
2 T3Tg —T1Ts — ToT11, 8 8 (1) (1J 8 1 _(1) —(1J (1J (1)
1375 + TeT7 — T11Tho, 00 0 0 1 -1 1 1 0 0

W15 + 1715 — 12111,
T3T> — 17Ty — T1Tho
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Note that Yll is a subset of (P, 44 K-e; = K!° whereas YIQ is a subset of P, .4 K-e; =

K19, We claim that the isomorphism ¢: YIQ — Yll of the total coordinate spaces of
the contracted surfaces and its inverse ¢! are given by

-/ -/
X, +— X,
(2'1,28,252,23,267210725,27,211,29) A (21,22,23725,-..,2'11),
(21,-.-725,2'7,--.,211) = (2'1,23,24,28,Z5,297227Z]_]_7Z7,210)

To this end, it suffices to show that the comorphism ¢ := ¢*: R(X]) — R(X}) is
a ZP-graded isomorphism induced by

K[Tl,...,T5,T7,...,T11] — K[Tl,...,T37T5,...,T11],

: ) — |1 2 3 4 5 7 8 9 10 1
T; = o), J'*[18236105711 9}

where o stands for the bijective function {1,...,11} \ {6} — {1,...,11} \ {4}
mapping the i-th element of the first row to the i-th element in the second row;

K-algebras. Observe that 1 is also an isomorphism of Z°-graded algebras. For this
purpose, consider the homomorphism of abelian groups

1
a7 > I5 e A-es, A= 1 € GL(5,Z).

[=NeleNel o
[eNoNeN N
[=Nel e Ne]
o= OOO

1

This turns the pair (¥, ) into an isomorphism R(X]) — R(X}) of Z*-graded
algebras: for all w € Z°, the image ¥(R(X}),) is contained in the component
R(Xé)a(w) as

1
0
1

A-Qp =

coocor
cocoro
corooO
—oooo
COor M
o~ooo
Y=
|
oOrROR R
)
w:\

1

Switching back to the original surfaces X;, X7 can be obtained as the blow up of
X] in the point p; and X2 as the blow up of X} in po where

pr = [1,0,1,0,1,1,1,1,1,-1] € X/,
P2 = [*1,0,0317]-,171713171] € Xé

Both points exist by an application of Algorithm 2.3.8. We claim that we have an
automorphism

—/ —/
n: Xy — X,
(21722,23,257~-~,211) = (29728,23,25,2772672272172117210)-

Then, by definition of ¢!

now Yp1) = [n((1,1,0,1,1,1,0,—1,1,1))] = ps € X5.

is an isomorphism and 7 an automorphism, using uniqueness of the blow

and 7, we have

Since ¢!

is an isomorphism of Z%-graded algebras induced by
K[Tl, R 7713,715, A aTll] — K[Tl,. .. ,T37T5, A 7T11]a

. ) / ._ |1 2 3 5 6 7 8 9 10 11
Ti = Tori), U'_|:9835762111 10

where ¢’ stands for the bijective function {1,...,11}\ {4} — {1,...,11}\ {4}
mapping the i-th element of the first row to the i-th element of the second row.
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Note that x is well-defined since (x(I5)) = I5. Consider the homomorphism of
abelian groups

B:7° — 7P, e; — B ey, B = € GL(5,7).

——OoRO

1
0
-1
0
1

oo~ OO
(=N N eNoNe)
merROO

Similar to before, (x, ) is an isomorphism R(X}) — R(X}) of Z?-graded algebras
since we have k(R(X3)w) C R(X3) () for all w € Z5:

B-Q, =

R OoORrO

1
0
—1
0
1

=Nl NeNe]
=R NeloNe]
HEROO
=HOOOO
[=NeoR-N Nl
[=NeNeNeN
OO K
cCOoR KRR
l\):\

We come to the fourth isomorphism. Let ¢ > 3. Redefine X; := Bl Fqy1(x*x % vi)
and Xy := Bl F, (% % *x vii). We have an isomorphism of K-algebras ¢: R(X;) —
R(X32) induced by

K[Tl,...,Tlo] — K[Tl,...,Tlo],
T — Ty, Tg— Ty, Tygvw— T, Tig+— Tg, T; — T; else.

Comparing the degree matrices of R(X;) we see that (¢,id) is an isomorphism

X, are isomorphic.

For the fifth isomorphism, write X; := Bl F,(*® x i) and X, := Bl F, (% x iii).
Denote by Q; the degree matrices of their Cox rings. We claim that we have an
isomorphism ¢: X1 — X4 with its comorphism ¢ := ¢*: R(X;) — R(X32) induced
by

K[Tl,...,Tlo] — K[Tl,...,Tlo],
T, Tow, o= |13 84201 29 9] e symo)

7
1 2 9 10 3 6
Note that the ideals of relations of R(X;) are mapped to each other. Then ¢ is an
isomorphism of K-algebras. To see that 1 is Z%-graded consider the homomorphism
of abelian groups

1.0 0 0 0 o0
0 1 —a 0 0 a
. 76 6 . 0 0 2 0 0 -1
v: Z° = 77, e; — C ey, C:= 19000 39 0 71| €GL(®6Z).
0 0 1 0 1 —1
0 0 3 0 0 -2

Thus, (1,7) is an isomorphism R(X;) — R(Xz) of Z5-graded algebras since
maps the component R(X1),, into the component R(Xz), ) for all w € Z°:

1 0 0 0 0 0 1 -1 0 0
01 —-a 0 0 a 2-1 —-a+1 0 0

C-Q = 00 2 0 0 -1 -1 1 1 0 = Q..
00 -1 1 0 1 2 -1 0 0 :
0 o 1 0 1 -1 0 0 0 0
00 3 0 0 -2 -1 1 0 1

Therefore, again by Lemma 5.1.5, we conclude that the surfaces X; and X, are
isomorphic.

For the sixth isomorphism, let X := Bl F,(x% x ii) and Xy := Bl F (%3 x iv).
As seen by the blow up sequences of the respective surfaces, the curves V(Xy; Tio)
and V(Xy; Tg) are (—1)-curves. Their contraction leads to surfaces X| and X4,. We
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have a diagram

!

K® 2 X,

71: K® - K, (z1,..

ZQ:KS — K97 (xlr"azﬁava'rlO) — (131,...,$67h2(1')7l’9,1710),

o

)

!

X

c K8

. ,,Tg) — (3?1, A ,$87h1($)),

hl = T1T5_1T4T7T82—T32T5 S K[le"'aTS]a
hy = T1T22a_1T42T10 — T??T5 S K[Th cee 7T8]'

~

The Cox rings and degree matrices @} and QY of the surfaces X| and X/ are as
follows.
Y RY) degree matrix
K[T1,...,To] /I 10 0 0 0 0O 1 -1 0
0 1 0 0 0 a 3a—1 —2a+1 0
X{  with I generated by 00 1 0 0 -1 -2 2 2
00 0 1 0 1 3 -2 0
T;T4 —T3TsTe — T7Ts, Tg — hy L O 0O 0 0 1 -1 -1 1 1
K[T1,...,T7,To, Th0] /I 1 0 0 0 O 0 0 1 -1
0 1 0 0 0 a 0 3a—1 —2a+1
X% with I generated by 00 1 0 0 -1 2 -2 2
00 0 1 0 1 0 3 -2
T;T4 —T3T5Te — ToT10, T7 — ho Lo o o o 1 -1 1 -1 1
K[Ty,...,T8] /I 10 0 0 0 0O 1 -1
0 1 0 0 0 a 3a—1 —2a+1
X{"  with I generated by 00 1 0 0 -1 -2 2
00 0 1 0 1 3 —2
T;T4 — T53T5Tg — T7Ty LO 0O 0 0 1 —1 —1 1 ]
K[T1,...,Te,To, Th0] /I 1 0 0 0 O 0 1 -1
0 1 0 0 0 a 3a—1 —2a+1
XY with I generated by 00 1 0 0 -1 -2 2
00 0 1 0 1 3 —2
T;‘T4 —_ T3T5T6 - T9T10 L O 0 0 0 1 —1 —1 1 ]

Inspecting the degree matrices Q)7 and the ideals of R(X}), we see that we have an
isomorphism R(X{) — R(X}) of Z°-graded algebras that arises from

K[Tl, . ,Tg] — K[Tl, . ,Tﬁ,Tg,Tlo],

T97 1= 77
Ti —> Tlo, 7= 8,
T, #4178

This yields an isomorphism ¢: Y;’ — Ylll. The surface X; is obtained as the blow

up of X7 at the point [71(q1)] € X{ where

q1 = (1a151717170’1’1) € X{,’

Zl(ql) € )?{7
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the blow up of X} at the point [t2(¢~*(q1))] delivers X5. We conclude X5 = X;.

Further note that no isomorphisms between cases with fixed discrete parameter
a € Z>3 but different continuous parameters are possible. For the blow ups of Py,
this is due to the fact that the respective originating point configurations are not
isomorphic. For blow ups of F, we only need to show that the point configuration

moved to the same configuration with continuous parameter ' € K* \ {x} by an
automorphism. To this end, let

vy = (=1,—a), vy := (1,0), w3 := (0,1), wvy4:= (0,—-1) € Z?

be primitive generators of the rays of the fan X, of F,. Recall from [27] that a root
of ¥, is an element u € Z? such that there is 1 < i(u) < 4 with

(U, vi(w)) = 1, (u,vj) < 0 fori(u) # j.

By [27, Cor. 4.7] the group of equivariant automorphisms of @a is generated by
the maximal torus, (certain) permutations of coordinates and automorphisms cor-
responding to one-parameter subgroups

Tj + M1, T’i—u,vw, j=i(u),
1) J # i(u),
of graded automorphisms of R(F,) = K[T1, ..., Ty] where u € Z? runs through all
roots. Since the roots of F, are

(—1,0), (1,0), (—=b,1) where 0<b<a,

these automorphisms are as in Lemma 5.1.6. In particular, two configurations of

type Fo (% * * * xiv) with same a € Z>3 but different continuous parameter cannot
be mapped to each other by an automorphism. O

Yu(N): R(Fo) — R(Fo), Tj { AeK

Remark 5.4.15. To compute the Cox ring of the {{ case Bl F,(* x x x ziv) for
a > 15 one may proceed by the following steps.

e Prove that the ideal I3 shown in the table is saturated with respect to 77 .
As in other cases, this can be done by providing a Grobner basis depend-
ing on the parameter a > 15.

e Show that the binomial ideal Iy + (T1) is prime. Again, this can be

However, note that in experiments with fixed a > 15, a Grébner basis for the first
step contained more than 800 elements.






APPENDIX A

Procedures of the MDSpackage

We describe an implementation of the algorithms that we have developed through-
out this thesis. The MDSpackage is currently available for the computer algebra
system Maple in joint work with J. Hausen [54; 55]. We make use of the convex-
package [40] by M. Franz. Some of the algorithms have already been implemented
in [20, 70] and [16]. This appendix mainly serves as a manual.

The structure of this chapter will be similar to Chapter 2. Section 1!describes proce-
dures on AGs and AGHs whereas Section 2 introduces functions on GRs. Section 3,
4 and 5 present procedures on MDSs, complexity-one T-varieties and miscellaneous
functions. We first shortly recall the involved data types from Chapter 2. Corol-
lary:1.3.9:and the description of Construction.1.3.6:serve as a theoretical foundation.

Data types A.0.16. We store a Mori dream space X in a MDS, i.e., a pair (R, ®)
where R is a graded ring, GR for short, and ® a collection of overlapping cones
in CI(X) ® Q, called a BUN. The GR R = (G, Q,Q°, P, F5) encodes the Cox ring
R(X) in K[T1,...,T;]/(G) with a list of polynomials G C K[T1,...,T,] and the
grading of R by K := Cl(X) in the form of a degree map, i.e., a homomorphism of
finitely generated abelian groups

Q:7" — K, e; — deg(T;).

We encode @ in a data type AGH and K in a data type AG for finitely generated
abelian groups. It is useful to also store the projection QV: Z" — K° = K /K~ onto
the free part as a matrix as well as a Gale dual matrix P of the homomorphism Q.

AG A}(;;HAG
- o F:
e U: matrix o K: AC

e [: matri .
Matrx e A: matrix

GR

e (G: polynomials

e T'T: list of variables T;
e [Q,Q°: AGH, matrix

e P: matrix

o Fy: list of sets: F-faces

BUN
o C: list of CONEs

MDS

e R: GR
e &: BUN

1. Procedures on finitely generated abelian groups

In this section, we describe procedures on finitely generated abelian groups (AGs)
and their homomorphisms (AGHs). This describes an implementation of the algo-
rithms of Section 1 of Chapter 2. Here is an overview:

225
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Recall that given an integral r x n matrix A we write lingz(A) for the sublattice of
Z" spanned by the n columns of A. In the following procedures one should use the
option ’nocheck’ if possible to speed up the computations.

Procedure A.1.1 (createAG). Constructor for the data type AG.
Input: there are four input types:

e An integer r. This will create the AG Z".
e An integer r and a list [aq, ..., ax] with a; € Z. This will create the AG
7o @, Z/ail.
e Anintegral rxs matrix L. This will create an AG representing Z" /lingz(L).
e An integral r x n matrix U and an integral r» x s matrix L. This will
create an AG representing (ling(U) + ling(L))/ling(L).
Output: an AG. Also prints an integer r and a list of integers [a1, . .., ax] such that
the returned group is isomorphic to Z" @ @, Z/a;Z as a Z-module.
Ezample: > createAG(2, [3]1); # creates Z> ® Z/3Z
AG(2,[3])
> L := linalg[matrix] ([[0],[3]11):
> createAG(L); # creates Z2/ling(L)
AG(1,[3])
> U := linalg[matrix] ([[3,0],[0,31]):
> createAG(U, L); # creates (ling(U) + ling(L))/ling(L).
AG(L,[])

Procedure A.1.2 (AGdata). Returns the stored information of the given AG G,
ie.,alist [U,L,r,[a1,...,as]] with integral matrices U, L and r, a; € Z>( such that

G = (ling(U)+ling(L))/ling(L) = 2" & @Z/aiZ.

Input: an AG G = (U, L).
Output: a list [U, L, r,[a1,...,as]] with matrices U and L an integer r and inte-
gers a; € Z~g as explained above.

Ezample: > Ul := linalg[matrix] ([[2,0],[0,31]1):
> L1 := linalg[matrix] ([[0],[31]):
> H1 := createAG(U1, L1);

H1:= AG(1,]])
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51

Procedure A.1.3 (createAGH). Constructor for the data type AGH. Represents
a homomorphism Q: G; — G5 of AGs G and Gs.

Input: an AG Gy = (U1, Ly), an AG G2 = (U, L) and an integral matrix A.
Throws an error if A -ling(L;) € ling(Lg) or if A - (ling(Uy) + ling(Ly)) is not
contained in ling(Us) + ling(Ls).

Output: the AGH (G1,G2,A). Also prints integers r; and lists [a;1,. .., aik,] of
integers such that the G; are isomorphic to Z™ & @ j Z/a;;Z as Z-modules.
Ezxample: > Gl := createAG(3,[3]);

G1:= AG(3,[3])

> AGdata(H1);

> G2 := createAG(2,[2]);

G2 = AG(2,2)
> A := linalg[matrix]([[1,1,0,0],[0,1,0,0]1,[0,0,1,211);
1 1 0 O
A= 0O 1 0 O
0O 0 1 2
> Q := createAGH(G1, G2, A);

Q= AGH([3,[3]], [2, [2]])

Procedure A.1.4 (AGHdata). Returns the stored data of the given AGH ¢ =
(G1,Ga, A), ie., returns a list [G1, G2, A] with G; AGs and A an integral matrix.
Input: an AGH .

Output: alist [Gy1, Ga, A] with AGs G, G2 and a matrix A as explained above.

Procedure A.1.5 (AGareisom). Implements Algorithm 2.1.4.
Input: an AG G and an AG Gs.
Output: true if Gy is isomorphic to G2 and false otherwise.

Ezample: > Ul := linalg[matrix]([[2,0],[0,3]1]):
> L1 := linalglmatrix] ([[0],[3]1]1):
> H1 := createAG(U1l, L1);

H1:= AG(1,]])
> H2 := createAG(1);
H2:= AG(1,])
> AGareisom(H1, H2);
true

Input: there are two input possibilities:

e An AG G and an AG Gs.
e An AG G and a vector w.
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Output: true if G contains G4 or, for the second input type, if w € G. Returns
false otherwise.

Ezample: > L := linalg[matrix] ([[0],[3]11);

]

> Ul := linalg[matrix] ([[2,0],[0,1]11);
oo
> H1 := createAG(U1, L);
H1:= AG(1, [3])
> U2 := linalg[matrix] ([[2,0],[0,3]11);
oo ]
> H2 := createAG(U2, L);
H2 = AG(1, )
> AGcontains(H2, H1); AGcontains(H1, H2);
true
false
> AGcontains(H2, [2,0]);
true

Procedure A.1.7 (AGareequal). Implements Algorithm2.1.8.

Input: there are two input types:

e An AG GG; and an AG Gs.
e Vectors w, w’ € Z" and an AG G = (U, L) such that w + linz(L) and
w’ + ling (L) are elements of G.

Output: true if G; = G4 or, for the second input type, if w = w’ € G. Returns
false otherwise.

Options: ’nocheck’: do not check whether w, v’ € G.

> AGareequal (H1, H1); AGareequal(H1, H2);

true

false
> AGareequal([2,4],[2,7], H1);

true

Procedure A.1.8 (AGfactgrp). Implements Algorithm 2.1.9.
Input: an AG G and an AG H such that H < G.

Output: an AG representing the factor group G/H.

Options: ’nocheck’: do not check whether H < G.

Ezxample: > U1l := linalg[matrix] ([[2,0],[0,31]1);

2 0
-y
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> U2 := linalg[matrix] ([[4,0],[0,3]11);

4 0
sy

> L := linalg[matrix] ([[0],[3]1);
+= ]
> G := createAG(U1, L);
G := AG(,])
> H := createAG(U2, L);
H:=AG(L,[])

> GH := AGfactgrp(G, H); AGdata(GH);
GH = AG(0, [2])

EIREC

Procedure A.1.9 (AGprodgrp). Implements Algorithm 2.1.10.
Input: an AG G and an AG Gs.

Output: an AG representing the product Gy x Gs.

Example: > U1l := linalgl[matrix] ([[2,0],[0,2]1]1);

2 0
ay

> L1 := linalg[matrix] ([[0],[3]11);
0
Ll := |:3:|
> G1 := createAG(U1, L1);
G1:= AG(1,[3])
> U2 := linalg[matrix] ([[3,0],[0,211);
3 0
U2:= |:0 2:|
> L2 := linalg[matrix] ([[0],[3]1]);
0
L2:= {3]
> G2 := createAG(U2, L2);

G2 = AG(1, [3)
> G12 := AGprodgrp(Gl, G2); AGdata(G12);
G12 := AG(2,[3,3))

2 0 0 O 0 0
0 2 0 O 3 0
0 0 3 0]’|0 O 213,3]
0 0 0 2 0 3

Procedure A.1.10 (AGfreered). Implements Algorithm 2.1.11.
Input: an AG G.

Output: an AG representing the free part of G, i.e., the lattice G/G*".

Example: > U := linalg[matrix] ([[2,0],[0,2]1);

2 0
ot

229
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> L := linalg[matrix] ([[0],[311);
o
> G := createAG(U, L);
G = AG(1, [3])
> GO := AGfreered(G); AGdata(GO);
GO == AG(1, )

CELE

Procedure A.1.11 (AGintersect). Implements Algorithm 2.1.13.

Input: an AG G and an AG Gbs.

Output: an AG G representing the intersection G N Gos.

Options: ’nocheck’ prevents checks for the groups to have the same torsion part.

> G12 := AGintersect(Gl, G2); AGdata(G12);
G12:= AG(1, [3])

A

Procedure A.1.12 (AGHim). Implements Algorithm 2.1.17.

Input: an AGH Q = (G1,G2, A) and an AG Hy < G;. If the subgroup H; is left
out, Hy = G will be used.

Output: an AG representing Q(Hy) < Gs.
Erample: > Gl := createAG(2);
G1:= AG(2, )

> G2 := createAG(1,[4]);
G2 = AG(1, [4))
linalg[matrix] ([[2,0],[0,2]11);

2 o]
0 2
createAGH(G1, G2, A);
Q= AGH([2,]],[1, [4]])
> H1 := AGHim(Q); AGdata(H1); # the image is 27 ¢ 27 /47
H1:= AG(L, [2]);

(EE I

Procedure A.1.13 (AGHpreim). Implements Algorithm 2.1.18.
Input: an AGH Q = (G1,G2,A) and an AG Hy < Gs.
Output: an AG representing the preimage Q~!(Hz) < G;.
Options: ’nocheck’: do not check whether Hy < Gs.
Example: > G1 := createAG(2); G2 := createAG(1,[4]);
G1:= AG(2,[))
G2 := AG(1,[4])

> A

A=

>Q :



1. PROCEDURES ON FINITELY GENERATED ABELIAN GROUPS

> A := linalg[matrix] ([[1,0],[0,11]1);
1 0
A= 1]
> Q := createAGH(G1, G2, A);
Q= AGH([2,[]], [1,[4]])
> U := linalg[matrix] ([[2,0],[0,3]11);
2 0
V=1 3}
> L := linalg[matrix] ([[0],[4]1);
0
o
> H2 := createAG(U, L);
H2 == AG(L, [4]);
> H1 := AGHpreim(Q, H2); AGdata(H1);

H1:= AG(2,]])

[l

Procedure A.1.14 (AGHker). Implements Algorithm 2.1.19.
Input: an AGH Q = (G1,G2, A).
Output: returns an AG representing ker(Q) < Gy.

> H1 := AGHker(Q); AGdata(H1);
H1:= AG(1,]])

e

Procedure A.1.15 (AGHisinj). Implements Algorithm 2.1.20.
Input: an AGH Q.

Output: returns true if @ is injective and false otherwise.

Ezxample: > Gl := createAG(1, [2]); G2 := createAG(1, [4]);

a1 = AG(1, [2))
G2 = AG(1, [4))
> Al := linalg[matrix] ([[1,0], [0,211);
1 0
Al := [0 2:|

> phil := createAGH(G1, G2, Al);
phil := AGH([1, [2]], [1, [4]])
> AGHisinj(phil);
true

> A2 := linalg[matrix] ([[1,0], [0,411);

1 0
b ]

> phi2 := createAGH(G1, G2, A2);
phi2 :== AGH([1,[2]], [1, [4]])

231



232 A. PROCEDURES OF THE MDSPACKAGE

> AGHisinj(phi2);
false

Procedure A.1.16 (AGHissurj). Implements Algorithm 2.1.21.
Input: an AGH Q.
Output: returns true if Q) is surjective and false otherwise.

> AGHissurj(phil);

false
> G3 := createAG(0, [2,2]);
G3 = AG(0,[2,2])
> A2 := linalg[matrix] ([[1,0], [0,111);

1 0
wefp ]

> phi2 := createAGH(G1, G3, A2);
phi2 := AGH([1,[2]],[0,[2,2]])
> AGHissurj(phi2) ;

true

Procedure A.1.17 (AGHcompleteseq). Implements Algorithm 2.1.22.

Input: an AGH ¢ = (G1, G2, A) that is either injective or surjective.

Output: an AGH v completing the respective exact sequence

0 GQ@leG 0

P ®

0 G

Gy G1 0

Options:  ’inj’ or ’surj’ assumes ¢ is injective or surjective without further
tests.

Example: > U1l := linalg[matrix] ([[0],[2]1]);

-

> L1 := linalg[matrix] ([[0],[4]1]1);

o]

> G1 := createAG(U1, L1); # represents {0} @ 2Z/4Z
G1:= AG(0,[2])

> G2 := createAG(1,[4]); # represents Z @ Z/4Z
G2 = AG(L, [4))

> U3 := linalglmatrix] ([[1,0],[0,2]1);

1 0
o-f ]

> L3 := linalg[matrix] ([[0], [4]1]1);

o
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> G3 := createAG(U3, L3); # represents Z @ 2Z /47
G3 = AG(1,[2])
> A := linalg[matrix] ([[1,0],[0,2]11);

1 0
0 2
> phi := createAGH(G2, G3, A);
phi = AGH([1, [4]], [1, [2]])

A=

> iota := AGHcompleteseq(phi, ’surj’); AGHdata(iota);
iota = AGH ([0, [2]], [1, [4]])

AG(O, [2), AG(1, 4)), {é ?”

> pi := AGHcompleteseq(iota, ’inj’); AGHdata(pi);
pi = AGH([L, [4]], [1,[2]])

Procedure A.1.18 (AGHgradiator). Implements Algorithm 2.1.29.

Input: alist of polynomials [fi,. .., fs] and a list of variables [T, ..., T,] such that
fi S K[Tl, Ce ,TT].

Output: alist [@, P] with an AGH @Q: Z" — K representing the gradiator, i.e., the
maximal quasi-torus action keeping V' (fi,..., fs) invariant. The second element is
a Gale dual matrix P of Q.

Example: > RL := [T[1]1*T[2] + T[3]*T[4] + T[5]*T[6],
T[11*T[2] + T[3]"2 + T[5]"2];
RL = [T(1]T[2] + T[3)T[4] + T[5]T[6], T T[2] + T[3]* + T[5)°]
> TT := vars(6);
TT = [T[1],T[2],T[3],T[4], T[5], T'[6]]
> L := AGHgradiator(RL, TT);

-1 -1 1 1 0 O
L= [AcH(S ML 2ED. | T1 ) 9 o o e
-1 -1 0 0 2 O
> AGHdata(L[1]);
-1 1 0 0 0 O
AG@6,[),AG2,12),| 2 0o 1 1 1 1
0O 0 1 1 0 O

Procedure A.1.19 (AGHdeg). Computes the K-degrees of a list of polynomials.

Input: an AGH Q = (Z", K, A) with K = (U, L), a list of polynomials [fi, ..., fs],
a list of variables [T1,...,T;] such that f; € K[T1,...,T,].

Output: alist of vectors [wy, . .., ws] with w; € Z" representing the degree deg(f;) =
w; + hnz(L) e K.

Ezample: > Gl := createAG(4);

Gl := AG4,])
> K := createAG(1,[3]);
K = AG(1, [3])
> A := linalg[matrix] ([[1,1,0,0],[1,1,1,1]1]1);

A=

1 1 0 O
1 1 1 1



234 A. PROCEDURES OF THE MDSPACKAGE

> Q := createAGH(G1l, K, A);
Q= AGH([4,[]],[1,[3]])
> TT

vars(4) ;
TT :=[T[1], T(2], T[3], T[4]
[T[11*T[3] + T[2]*T[4], T[1]°3 + T[2]"3];
RL := [T[1)T[3] + T[2)T[4], T[1]* + T[2]?]
> AGHdeg(Q, RL, TT); # interpreted as (1,2) and (3,3) € K:
[11,2],3,3]]

> RL :

Procedure A.1.20 (AGHishomog). Implements Algorithm2.1.31.

Input: an AGH or matrix @, a list of polynomials [fi, ..., fs] and a list of variables
[Ty,...,T,] such that f; € K[Ty,...,T}].

Output: true if all f; are homogeneous with respect to the grading deg(7T;) = Q(e;)-
Returns false otherwise.

Ezample: > E := createAG(4); K := createAG(1, [3]);

E:=AG@4,])
K = AG(1,[3))
> B := linalglmatrix] ([[1,0,-1,2],[1,2,2,2]11);
sl 8 ]
> Q := createAGH(E, K, B);
Q= AGH([4,1],11,[3]])
> RL := [T[1]1=T[3] + T[2]"3, T[31*T[4] + T[1]];
RL := [TT[3] + T[2]%, T[3]T[4] + T[1]};
> TT := [T[1], T[2], T[3], T[41];

TT := [T[1), T[2], T[3], T[4]]
> AGHishomog(Q, RL, TT);

true

Procedure A.1.21 (AGHisalmostfree). Implements Algorithm2.1.32.

Input: an AGH or a matrix Q.

Output:  true if the grading of K[T4,...,T,] given by deg(T;) = Q(e;) is almost
free and false otherwise.

Ezxample: > B := linalg[matrix]([[1,0,1],[0,2,211);

1 0 1
B'|:0 2 2:|

> AGHisalmostfree(B); # B is not surjective
false

> E := createAG(3); K := createAG(l, [3]); # K=Z®Z/3Z

E = AG(3,[))

K := AG(1,[3])
> Q := createAGH(E, K, B);

Q= AGH([3,]], 11, [3]])

> AGHisalmostfree(Q);

true
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Procedure A.1.22 (AGHsection). Implements Algorithm2.1.34.

Input: a surjective AGH @ = (G1, G2, A) or a surjective matrix.

Output: a pair [b,¢]. If the algorithm found a section, then b is true and ¥ a
section. Otherwise, b is false and ¢ = []. In the first case, ¢ is given as AGH
w: G2 — Gl.

Example: > Q := createAGH(createAG(1), createAG(0,[2]),
linalg[matrix] ([[111));

Q= AGH([L,[I], [0, [2]])
> AGHsection(Q) ; # no homomorphism Z/2Z — Z exists:

[false, []]
> P := linalg[matrix] ([[1,0,1],[0,2,111);
1 0 1
P=19 21 }
> 8 := AGHsection(P); AGHdata(S[2]);

S = [true, AGH([2, []], [3, [I])]

1 -1
[AG(Q7 D, AG(, 1), l 0 0 1]
0 1

Procedure A.1.23 (AGHP2Q). Implements Algorithm 2.1.24.

Input: an integral n x r matrix P.

Output: an AGH Q = (Z", K, A) such that K =2 Z" /Im(P*).
Options: ’nocheck’: skip the test of Q) being surjective.
Ezxample: > P := linalg[matrix]([[1,0,2],[0,2,2]]1);

1 0 2
P'_[O 2 2]

Q:=AGH([3, [, [1,[2]])

> Q := AGHP2Q(P);

> AGHdata(Q);

AG(, 1), AG(L, [2), [ 2o ”
Procedure A.1.24 (AGHQ2P). Implements Algorithm 2.1.25.
Input: a surjective AGH Q = (Z", K, A).
Output: a Gale dual matrix P for @, i.e., P is dual to the inclusion ker(Q) — Z".
Ezample: > E := createAG(4); K := createAG(2, [2]);
E:=AGH4,1)
K == AG(2,[2))
> B := linalg[matrix]([[1,0,1,0],[0,1,0,1]1,[1,1,0,011);

1 0 1 0
B:=|0 1 0 1
1 1 0 O

createAGH(E, K, B);
Q= AGH([4,[]],[2,[2]])

\2
o
]

\4
jav)
1]

AGHQ2P(Q) ;
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Procedure A.1.25 (AGHQ2Q0). Implements Algorithm 2.1.26.
Input: a surjective AGH Q = (Z", K, A).

Output: a matrix Q° representing the projection Z" — K/K'"r.
Erample: > E := createAG(4); K := createAG(2, [2]);

E = AG(4,[))
K = AG(2,[2))
> B := linalg[matrix]([[1,0,1,0],[0,1,0,1]1,[1,1,0,011);
1 0 1 0
B := 0 1 0 1
1 1 0 O
> Q := createAGH(E, K, B);

Q= AGH([4,[]], 2, [2]])

0 1 0
1 0 1

> Q0 := AGHQ2Q0(Q);

1
Q0 := [ 0

2. Procedures on graded rings

In this section, we describe the implementation of algorithms that work on rings
that are graded by a finitely generated abelian group (GRs). See mainly Section 2.
of Chapter 2. Here is an overview:

Procedure A.2.1 (createBUN). Constructor for the data type BUN. Represents
a true §-bunch ® in Kjg.

Input: there are five types of input:

e A vector w € Mov(Q")° C Kg and a GR R = (G, Q,Q°, P, F3).

e A vector w € Mov(Q%)° C Ky, a list of polynomials G C K[T1,...,T,], a
list of variables [T1,...,T;] and an integral matrix Q°.

e A list of cones [d1,...,9;] in Kg, a GR R = (G,Q,Q° P, F3).

o A list of cones [¢1,...,V,] in Kgq, a list of polynomials G C K[T1,...,T},],
a list of variables [T1,...,T;] and an integral matrix Q°.

e A list of cones [94,...,7;] in Kp.

Output: a BUN @ in Kg. The printed information is the number of stored cones.
Depending on the input type, ® is given by

Q°(v0); Yo J-face, w € (Q° (70))0} , in case one or two,
¢ = Q°(v0); Yo F-face, 95 C (QO(VO))O for some z} , in case three or four,
{01,..., 0}, in case five.

Options: ’nocheck’: in cases four and five, do not check whether the cones satisfy
99 N Y3 # ; in cases one and two, do not check whether w € Mov(Q°)°.
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Example: In the following example B1 to B4 all define the same BUN. Its cones are

> RL := [T[1]*T[2] + T[3]*T[4] + T[5]"2];
RL = [T[1T[2] + T[3]T[4] + T[5]%]
> TT := vars(5);
TT:=[T[1],T[2], T3], T[4], T[5]]
> Q0 := linalg[matrix] ([[-2, 2, -1, 1, 01,[1, 1, 1, 1, 111);

Q0 = -2 2 -1 1 0

>w = [-1,2];
> R := createGR(RL, TT, [QO0]);

R:= GR(5,1,12,[])
> Bl := createBUN(w, R);

B1:= BUN(5)
> B2 := createBUN(w, RL, TT, QO);
B2 := BUN(5)

> CL3 := [poshull([-2,1],[1,1]), poshull([-2,1],[2,1]),
poshull([2,1],[-1,1]), poshull([-1,1],[1,1]), poshull([-2,1],[1,11)];
CL3:= [CONE(2,2,0,2,2), CONE(2,2,0,2,2), CONE(2,2,0,2,2),
CONE(2,2,0,2,2), CONE(2,2,0,2,2)]

> B3 := createBUN(CL3);

B3 := BUN(5)
> CL4 := [poshull([-1,1],[1,11)];

CL4 := [CONE(2,2,0,2,2)]

> B4 := createBUN(CL4, RL, TT, QO);

B4 := BUN(5)

Procedure A.2.2 (BUNdata). Returns the data stored in a given BUN &.
Input: a BUN
Output: a list with its only entry a list of CONEs in Kg.

> L4 := BUNdata(B4);
L4 :=[[CONE(2,2,0,2,2), CONE(2,2,0,2,2), CONE(2,2,0,2,2),
CONE(2,2,0,2,2), CONE(2,2,0,2,2)]]

> map(b -> rays(b), L4[1]);

[[[727 1}7 [17 1]]7 [[2» 1}7 [71’ 1“7 [[72’ 1}7 [17 1”7
[[717 1}7 [17 1”7 [[729 1]7 [27 1”]

Procedure A.2.3 (createGR). Constructor for the data type GR.

Input: there are multiple ways to use this function:

e a list of polynomials [fi,..., fs], a list of variables [T7,...,T;] such that
fi € K[Ty,...,T,], a pair [Q,Q°] with an AGH Q = (Z", K, A) and a

matrix Q°, a matrix P.
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e a list of polynomials [f1,..., fs], a list of variables [T7,...,T,] such that
fi € K[T1,...,T;], a list [@] with an AGH Q = (Z", K, A), a matrix P.

e a list of polynomials [fi,..., fs], a list of variables [T7,...,T;] such that
fi € K[Ty,...,T,], alist [Q°] with a matrix Q°, a matrix P. The AGH
Q:=Q": Z" — 7™ will be used.

e a list of polynomials [f1,..., fs], a list of variables [T7,...,T,] such that
fi € K[Ty,...,T,], alist [Q] with an AGH Q = (Z", K, A). Both Q° and

e a list of polynomials [f1,..., fs], a list of variables [T7,...,T;] such that
fi € K[T,...,T,], alist [Q"] with a matrix Q°. Here, Q := Q": Z" — Z"

e a list of polynomials [fi,..., fs], a list of variables [T7,...,T;] such that
fi € K[Ty,...,T,], alist [Q] with an AGH Q: Z" — K. Here, both Q°

e a list of polynomials [f1,..., fs], a list of variables [T7,...,T,] such that
fi € K[Ty,...,T,], a matrix P. Both @ and Q° will be computed from P

In each case, we require @) to be surjective, P to be of full rank, the grading of
K[Ty,...,T;] given by deg(T;) = Q(e;) to be almost free and all f; must be K-
homogeneous. Moreover, all variables must be K-prime, P(Q°)! = 0 and K =
Z" [Tm(P*).

Output: a GR R = ({f1,...,fs},Q,Q° P, F5). Then R represents the ring
K[Ty,...,T,]/I with the ideal I = (f1,..., fs) and degree map Q: Z" — K. It
fixes matrices P, Q° such that K = Z"/Im(P*) and the matrix Q° represents the
projection Z" — K/K'*. See Chapter 2 for details.

Internally, the list of all §-faces is stored unless the option ’noffaces’ was given.
The printed information is the number of variables, the number s of generators for
the ideal of relations and information about the AG K.

Options:
e ’nocheck’: skips tests for the parameters.
e ’noffaces’: postpones the computation and storage of §-faces.
e ’Singular’: use the software Singular for the computations of F-faces;
this only possible on UNIX-based machines where Singular is available
on the command line. Writes temporary files to the current directory.

Example: > RL := [T[1]1*T[6] + T[2]1*T[5] + T[31*T[4] + T[7]1*T[8]1]1;
RL := [T[1)T[6] + T[2]T[5] + T[3]T[4] + T[7)T[8]]

> TT := vars(8);
TT :=[T[1],T[2], T[3], T[4],T(5], T16], T'[7], T'[8]]

> A := linalg[matrix]([[1,1,0,0,-1,-1,2,-2], [0,1,1,-1,-1,0,1,-1],
[1,1,1,1,1,1,1,11, [1,0,1,0,1,0,1,011);

1 1 0 o -1 -1 2 =2

A= o 1 1 -1 -1 0o 1 -1
’ 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

> F := createAG(8); K :

createAG(3, [2]1);
Fi= AG(S, )
K = AG(3,[2)
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> Q := createAGH(F, K, A);
Q= AGH([8,[]], [3,[2]])
> Q0 := linalgl[delrows] (A, 4..4);

1 1 O o -1 -1 2 =2
Q=01 1 -1 -1 0 1 -1
1 1 1 1 1 1 1 1
> P := AGHQ2P(Q);
1 0 0o 0 01 -1 -1
o 1 0 0o 1 O -1 -1
P .= o o 1 o0 2 0 -1 =2
o 0 0 1 2 4 -2 -5
0O 0 0 0 4 4 -2 -6

> R1 := createGR(RL, TT, [Q, Q0], P);
R1:= GR(8,1,[3,[2]])

The printed information means that R1 represents K[T, ..., Tg]/I with I generated
by a single polynomial and the grading group K is isomorphic to Z3 @ Z/27. The

example with a free grading group:
> RL := [T[1]°2 + T[2]"2 - T[3]*T[4]];
RL := [T[1)? + T[2)? — T[3]T[4]]

> TT := vars(4);
TT :=[T[1],T[2], T3], T[4]]

> Q0 := linalg[matrix] ([[0,0,-1, 1], [1,1, 1, 111);
=11 1 1]

> R2 := createGR(RL, TT, [QO], ’Singular’);

R2:= GR(4,1,[2,[]]))
In the next example, we enter a toric variety:
> RL := []; TT := vars(4);
RL =]
TT := [T[1], T[2], T3], T'[4]]
> P := linalg[matrix] ([[-1,1,0,1], [-1,0,1,1]11);

-1 1 0 1
Pi= [—1 0 1 1]

> R3 := createGR(RL, TT, P);
R3:=GR(4,0,[2,[]])

We now enter a K*-surface with Z*-graded Cox ring K[T1, ..., Ts)/(ThTs + T3Ty +
T5Tg) by providing its P-matrix and a list A of integers:

> P := matrix([[—l,‘l,lyl,O,O], [_1,_1y030!1:1]]);

-1 -1 1 1 0 O

Pe=1 41 100 11

\4
=
i

(f1,01,01,11,[0,111;
A:=1[1,0],[1,1],[0,1]]

v
)
i

createGR(P, A);
R:=GR(6,1,[4,[]])
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Procedure A.2.4 (GRdata). Returns the stored information on the given GR R.
Input: a GR R = (G,Q,Q°, P, F3) with AGH Q = (Z", K, A).

Output: alist [G,[T1,...,T,],[Q,Q°], P, F] with a list G of K-homogeneous poly-
nomials in K[T7,...,T;], integral matrices Q° and P as well as a list of all §-faces
F such that

R = K[Tla'~-7TT‘]/<f1a-~'afs>7
the matrix P is dual to the inclusion ker(Q) — Z" and Q° is a matrix describing

the projection Z" — K/K®*. Moreover, @ is surjective and the grading given by
deg(T;) = Q(e;) is almost free.

> GRdata(R2) ;

[[T[1]2 +T[2]” - TEITM]] , [T[), T[2], T(3), T[4]],

AGH(MJ]L[Z[]])[? o }]Hé o H

{{},{1,2,3},{3},{1,3,4},{4},{1,2,4},{1,2},{1,2,3,4},{2,3,4}}}

Procedure A.2.5 (GRgradedcomp). Implements Algorithm 2.2.3.

Input: there are two possible input types:

e A graded ring R = (G, Q,Q", P, F5) and a vector w € Q°(Q%,).

e A list [f1,...,fs] of polynomials f; € K[T,...,T;], a list of variables
[Ty,...,T], ar x k matrix Q° and w € Q°(Q%,) where the f; are homo-
geneous with respect to the grading deg(T;) = Q°(e;).

In both cases, the cone over the columns of Q° must be pointed and Q° must not
contain zero-columns.
Output: a basis for the vector space (G),, as a list of polynomials.
FEzample: > RL := [T[1]1*T[2] + T[31*T[4] + T[5]"2];
RL := [T[UT[2] + T[3]T[4] + T[5]?]

> TT := vars(5);
TT := [T[1],T[2],T[3],T[4], T[5]]
> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 111);
e[ 21
>w = [-1,2];
w:=[—1,2]
> R := createGR(RL, TT, [Q0]);
R :=GR(5,1,[2,[]]))
>w := [-1,3];
w:=[—1,3]
> C := GRgradedcomp(R, w);

C = [TTRTE) + TBE*T[4] + T[3]7[5]?]

Procedure A.2.6 (GRgradedcompdim). Implements Algorithm 2.2.5.

Input: there are two possible input types:
e A graded ring R = (G, Q,Q°, P, F5) and a vector w € Q°( Zo)-
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e A list [f1,...,[fs] of polynomials f; € K[Ty,...,T,], a list of variables
[T1,...,T}], ar x k matrix Q° and w € Q°( o) where the f; are homo-
geneous with respect to the grading deg(T;) = Q°(e;).

In both cases, the cone over the columns of Q° must be pointed and Q° must not
contain zero-columns.

Output: the dimension of the vector space K[T1,. .., T ]w/{G)w-

>w = [-1,3];
w:=[—1,3]
> C := GRgradedcompdim(R, w);

in [70].

Input: a GR R = (G,Q,Q° P, F3).

Output: the GIT-fan A(X, H?) given as a list of maximal CONEs.
Options: ’FAN’: return a FAN instead of a list of its maximal CONEs.

Procedure A.2.8 (GRH2max). Implements Algorithm 3.3.4.

Input: a GR R or a MDS X.

Output: a list of BUNs. They correspond to the (H,2)-maximal sets of X.
Example: > Q0 := linalg[matrix]([[1,0,1,0], [0,1,0,1], [0,0,1,1]1]1);

1 010
Q=0 1 0 1
00 1 1

> R := createGR([], vars(4), [Q0]);
R := GR(4,0,[3,[]])
> GRH2max(R) ;
[BUN(1), BUN(1), BUN(1), BUN(1), BUN(1), BUN(1), BUN(1),
BUN(1), BUN(3), BUN(3), BUN(3), BUN(3), BUN(3), BUN(3),
BUN(3), BUN(3), BUN(3)]

Procedure A.2.9 (GRtrop). Implements Algorithm 2.2.7. Also works for arbi-
trary ideals if gfan [63] is available.

Input: There are three input possibilities:
e AGR R=(G,Q,Q% P, F;).
e A MDS X = (R,®) witha GR R = (G,Q,Q°, P, F3).
e A list of polynomials G = [fi,..., fs] and a list of variables [T1,...,T}]
such that f; € K[Ty,...,T,].

In the first two cases, let P be the integral n x r matrix dual to the degree matrix Q.

Output: a FAN in Q" with support P(trop((G))) or a FAN in Q" with support
trop({G)) if the option *F’ was specified or the third input type was used.
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Options:
e ’F’: return a FAN in Q" with support trop((G)).
e ’CONEs’: return a list of CONEs instead of a FAN. These represent the
maximal cones of the fan.
e ’gfan’: if the software gfan is installed on a UNIX-based machine, then
arbitrary ideals may be entered. Writes temporary files in the current
directory.

Ezample: > RL := [T[1]1*T[2] + T[31*T[4] + T[5]"2];
RL := [T[UT[2] + T[3]T[4] + T[5]?]
> TT := vars(5);
TT := [T[1], T[2], T(3], T[4], T[5]]
> Q0 := linalglmatrix] ([[-2, 2, -1, 1, O],[1, 1, 1, 1, 111);

-2 2 -1 1 0
QO'_11111

> R := createGR(RL, TT, [QO]);
R:=GR(5,1,[2,]])
> GRtrop(R); # after projection under P: Z° — Z3.
FAN(3,1,[0,3,0])
> GRtrop(R, ’F’, ’CONEs’); # in Q°.
[CONE(5,4,3,1,1), CONE(5,4,3,1,1), CONE(5,4,3,1,1)]

> RL := [T[2]°3 -3*T[1]°2+T[2]"°3 + 1, T[2]+T[1]1+T[11*T[2]"2 -1];
RL := [T[2]® = 3T1°T[2]® + 1,T(2] + T[1] + T[1]T[2)* — 1]
> TT := vars(2);

TT :=[T[1], T[2]]
> F := GRtrop(RL, TT, ’gfan’);
F:=FAN(2,1,[1,0])

Procedure A.2.10 (GRtropcontains). Implements Algorithm 2.2.8.

Input: there are two input types:

e AGR R = (G,Q,Q" P,F5) or a MDS X = (R, ®) with P of size n x r
and a vector f € Z".

e AGR R=(G,Q,Q° P, F3) or a MDS X = (R, ®) with P of size n x r
and a vector v € Z™.

Output:  true if Q>¢ - v C P(trop((G))) or if Q¢ - f C trop((G)) respectively.
Returns false otherwise.

> f := [0,0,0,-2,-1];
£:=100,0,0,-2, —1]
> GRtropcontains(R, £); # Qx¢ - f is contained in trop({G)).
R true
> v := [0, -2, -1];
v:=[0,—-2,—1]
> GRtropcontains(R, v); # Q¢ - v is contained in P(trop((G))).

true
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3. Procedures on Mori dream spaces

In this section, we describe an implementation of our algorithms that work on
Mori dream spaces (MDS). The algorithms have been stated mainly in Section 3.
of Chapter 2. The special case of complexity-one T-varieties will be treated in the
next section. Here is an overview:

e Creation and stored data: create an MDS (Procedure ‘A.3.1), return the

Procedure A.3.1 (createMDS). Constructor for the data type MDS. Represents
Mori dream spaces in terms of bunched rings.

Input: there are two types of input:

e AGR R=(G,Q,Q" P, F5) and a vector w € Kg. This input will return
the result of createMDS with parameters R and the BUN

d(w) = {QO(%); "o is an §-face and w € (QO(%))O}'

e a GR R=(G,Q,Q° P, F;) and a BUN ® in Kg.
Output: ’nocheck’: do not perform checks. Use this option if you know that the
input is valid.

Options:  the MDS X = (R,®). The printed information of an MDS is the
number of variables, the number of relations, its dimension and information about
the grading group.

Ezample: We reenter the GR R, the BUN B1 and the vector w as in the example

> RL := [T[1]1*T[2] + T[3]1*T[4] + T[5]"2];
RL := [T[1]T[2] + T[3]T[4] + T[5)?]

> TT := vars(5);
TT := [T[1), T[2], T[3], T[4], T[5]]

> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 111);

-2 2 -1 1 0
Qo'ill 1 1 1
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>w = [-1,2];
w = [—1,2]
> R := createGR(RL, TT, [Q0]);
R:=GR(5,1,[2,]]])
> B := createBUN(w, R);
B := BUN(5)
> X := createMDS(R, B);
X :=MDS(5,1,2,[2,[]])
> Y := createMDS(R, w);
Y :=MDS(5,1,2,[2,[]])

Procedure A.3.2 (MDSdata). Returns the stored data of the given MDS.
Input: an MDS X = (R, D).
Output: alist [R, ®] with a GR R and a BUN .

> MDSdata(X) ;

Procedure A.3.3 (MDSrlv). Implements Algorithm 2.3.5.

Input: there are three types of input:

e An MDS X = (R, D).
e A BUN @, a matrix Q°, a list F' of F-faces.
e A BUN @, a matrix Q°, a list of polynomials [fi, ..., fs], a list of variables
[Tla s ?TT‘}'
Output: in the first case, the list rlv(X) of all relevant §-faces is returned. In the
second case, all 79 € F such that Q°(yo) € ® is returned. In the third case, all
(f1,..., fs)-faces 9 < QL such that Q%(vo) € ® are returned.

Then the lists FFr1 to FFr3 coincide:
> FFrl := MDSrlv(X);
FFrl:=[{1,2,3,4,5},{2,3,4,5},{1,2,3,4},{3,4,5}, {1, 3,4, 5},
{1,2,4,5},{1,2,5},{1,2,3,5},{2,3},{1,4}

> FFr2 := MDSrlv(B, QO0, RL, TT);
FFr2:=[{1,2,3,4,5},{2,3,4,5},{1,2,3,4},{3,4,5}, {1, 3,4, 5},
{1,2,4,5},{1,2,5},{1,2,3,5},{2,3},{1,4}]
> FFr3 := MDSrlv(B, QO0, ffaces(RL, TT));

FFr3:= [{17273’ 475}7{273:47 5}7{1727374}7{3747 5}7{1737475}7
{1,2,4,5},{1,2,5},{1,2,3,5},{2,3}, {1,4}]

Procedure A.3.4 (MDScov). Implements Algorithm 2.3.6.

Input: there are three types of input:

e An MDS X = (R, D).

e A BUN @, a matrix Q°, a list of F-faces F.

e A BUN @, a matrix Q°, a list of polynomials [fi, ..., fs], a list of variables
[T, ...,T,] such that f; € K[T1,...,T,].
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Output: in the first, second, third input case, the algorithm returns

e the list cov(X) of all minimal relevant F-faces.

e all g € F such that Q°(y0) € ® and ~, is minimal with this property.

o all (f1,..., fs)-faces 79 = Q% such that Q°(yp) € ® and 7 is minimal
with this property. a

> C1 := MDScov(X);
C1:=[{1,2,5},{3,4,5},{1,4},{2,3}]

> C2 := MDScov(B, QO0, RL, TT);
C2:=[{1,2,5},{3,4,5},{1,4},{2, 3}]
> C3 := MDScov(B, Q0, ffaces(RL, TT));

C3:=[{1,2,5},{3,4,5},{1,4},{2,3}]

Procedure A.3.5 (MDSambtorvar). Implements Algorithm 2.3.9.
Input: an MDS X.
Output: a FAN or a list of FANs if ’completions’ was given.
Options:
e ’completions’: return a list of FANs representing all possible comple-
tions for projective X as in Algorithm 2.3.9.
e ’nocheck’: do not test whether X is projective.

e ’CONEs’: return lists of maximal cones, i.e., lists of CONEs, instead of
FANs.

> Z := MDSambtorvar (X);
Z = FAN(3,0,[0,2,2])
> ZL := MDSambtorvar (X, ’completions’);
ZL = [FAN(3,0,[0,0,6]), FAN(3,0,[0,0,5]), FAN(3,0,]0,0,6])]
> map(iscomplete, ZL); ZL[1] &>= Z; ZL[2] &>= Z; ZL[3] &>= Z;

[true, true, true]
true
true

true

Procedure A.3.6 (MDSchambers). Implements Algorithm 3.2.11:to compute the
Mori chamber decomposition; compare also [70].

Input: an MDS X = (R, ®) with R = (G,Q, Q°, P, F3).

Output: the Mori chamber decomposition as a list of maximal CONEs or a FAN
if the option *FAN’ was used.

Options: ’FAN’: return a FAN instead of a list of its maximal CONEs.

> MDSchambers (X, ’FAN’);
FAN(3,0,[0,0,37])
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Procedure A.3.7 (MDSdim). Implements Algorithm 2.3.4.
Input: an MDS X = (R, ).
Output: an integer d € Z>( such that dim(X) = d.

> MDSdim(X) ;

Procedure A.3.8 (MDSpointex). Implements Algorithm 2.3.8,
Input: an MDS X and a vector z € K".

Output: true if z € X and false otherwise. This means [z] € X.

>z = [1,1,_1>130];
z:=[1,1,-1,1,0]
> MDSpointex(X, z);

true

Procedure A.3.9 (MDSirrel). Implements Algorithm 2.3.11.
Input: an MDS X = (R, D).

Output:  a list of generators g1,...,g, € K[Th,...,T,] for the vanishing ideal of
X\ X in K"

> MDSirrel(X);
[T)T[3), TTH, TRITAT[], TWTRITS), THITR) + TEITM) + T[]

Procedure A.3.10 (MDSstrat). Implements Algorithm 2.3.39.

Input: an MDS X = (R, ®). Optional: a relevant §-face vo < Q%,.
Output: Depending on the input type:
o If a second parameter vy was given: computes a list of generators G.,, C
K[Ty,...,T,] for the ideal I,, C K[TE!, ... TF!] of the stratum X (vo) C
X. Returns the pair [G,, [Th, ..., T,]].
e If no second parameter was given: generators G-, C K[T1,...,T;] for the
ideals I, C K[T, ..., T+ of all strata X (7o) are returned as a pair

[L,[T4,...,T,]] where the list L consists of all pairs [yy,G,]] with o
running through rlv(X).

> gam0 := {2, 3, 4, 5};
gam0 := {2,3,4,5}
> MDSstrat (X, gamO);
[[712] + T[3]?), [T[1], T[2], T[3]]]
> MDSstrat (X);
[[3,4,5,[T(2] + T[3]]], [1,3,4,5, [T[2] + T3], [1,2,4,5,[T[1] + T[3]?]],
[1,2,5,[T[1] + T[3)2]), [1,2,3,5, [T[1] + T[31]], [1,2,3,4, 5, [T[1] + T[2] + T[3)?]],
[2,3,4,5,[T[2] + T[3%]], 12,3, [], (1,4, [, [1,2,3,4, [T[1] + T(2])], [T[1], T(2], T[3]]
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Procedure A.3.11 (MDSdegmat). This is a special version of Procedure A.1.23.

Q' = (Z",K', A) where
k
Q:7 — K, K =7® @Z/aiZ
=1

and the columns of A represent the degrees deg(T;) € K'. Afterwards, A is returned
together with the integers aq,...,a.

Input: an MDS X = (R, ®) or a GR R where R = (G, Q,Q°, P, F3).
Output: a pair [A,[a1,...,ax]] with an integral matrix A and a; € Z. The entries

Ezample: > A := linalg[matrix] ([[ 1, 0, 11,[ 1, 1, 011);

1 0 1
A'_[l 1 0:|

> Q := createAGH(createAG(3), createAG(1, [3]), A);
Q= AGH([3,[I], [1, [3]])
> R := createGR([], vars(3), [Q]);

R := GR(3,0,[1,[3]])
> X := createMDS(R, [1]);
X :=MDS(3,0,2,[1,[3]])
> MDSdegmat (X); # the last row must be interpreted as elements of Z/3Z.

e e

Procedure A.3.12 (MDSintersgraph). Implements Algorithm 2.3.27.
Input: an MDS X = (R, ®) of dimension two.
Output: the graph of exceptional curves Gx (without intersection numbers).

Options: ’latex’: prints WTEX code to draw Gx. Gray vertices stand for negative
curves and black vertices for negative curves which are incident with at least three
other curves. Also, the non-negative curves among the V' (X; T;) are drawn in white.

> G := MDSintersgraph(X); # also draws a representation of the graph.
G =G

> networks[vertices] (G); # shows the names of all vertices of G.
{777"1777 77T277}

> networks[edges] ("T1", "T2", G); # there is an edge between the vertices
representing V(T ) and V(T2)

{el}
> MDSintersgraph(X, ’latex’); # prints code for Gx
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Procedure A.3.13 (MDSsample). Implements Algorithm 2.3.15.
Input: an MDS X.
Output: the CONE SAmple(X) in the vector space Kg.

> ¢ := MDSsample(X); rays(c);
c:= CONE(2,2,0,2,2)
[[17 ”7 [_17 1“

Procedure A.3.14 (MDSeff). Implements Algorithm 2.3.13.
Input: an MDS X = (R, D).
Output: the CONE Eff(X) in the vector space Kg.

> ¢ := MDSeff(X); rays(c);
CONE(2,2,0,2,2)
[[_27 1]7 [2’ 1”

Procedure A.3.15 (MDSmov). Implements Algorithm2.3.14.

Input: there are three input possibilities:

e An MDS X = (R, ®).
e A GR R where the matrix Q° has columns ¢1,...,q, € K.
e An integral matrix with columns ¢y, ..., g..

Output: the CONE Mov(X) C Kg or, for the other input types, the CONE

() cone(q;; j#i) € Ko
=1

> cl := MDSmov(X); rays(cl);
¢l :== CONE(2,2,0,2,2)
([-1,1],11,1]]
> ¢2 := MDSmov(QO0); cl &= c2;
€2 := CONE(2,2,0,2,2)

true

Procedure A.3.16 (MDSclassgrp). Returns the divisor class group.
Input: an MDS X.
Output: an AG representing the class group C1(X).

> MDSclassgrp(X);
AG(2,)

Procedure A.3.17 (MDSlocclassgrp). Implements Algorithm 2.3.18.

Input: an MDS X = (R, ®) and a point z € X which is given either in Cox
coordinates z € K" or as a relevant §-face 7o = Q% such that z € X (70)-

Output: an AG representing the local class group Cl(X, ).
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Ezample: we computationally verify part of [5, Ex. I111.3.3.5]:
> RL := [T[11*T[2] + T[3]1"2 + T[4]1%T[51];

RL := [T[1]T[2]) + T[3]* + T[4]T[5]]
> TT :

vars(5);
TT := [T[1],T[2],T[3],T[4], T[5]]

> Q0 := linalg[matrix] ([[1, -1, O, -1, 11, [1, 1, 1, O, 211);

> R := createGR(RL, TT, [QO0]);
R:=GR(5,1,[2,]]])

\2

w := [0,3];
w := [0, 3]
> Y := createMDS(R, w);
Y :=MDS(5,1,2,[2,[]])
> x0 := [0,1,0,0,1]; # Cox coordinates for a point in X (cone(es, e5)).
20 := [0,1,0,0, 1]
MDSlocclassgrp(Y, x0); # will be Z/3Z.
AG(0,[3])

\2

\4

gam123 := {1,2,3};

gam123 = {1,2,3}
> MDSlocclassgrp(Y, gam123); # will be the trivial group:
AG(0,1)

Procedure A.3.18 (MDSpic). Implements Algorithm 2.3.20.
Input: an MDS X.
Output: the AG Pic(X) as a subgroup of Cl(X).

> Pic := MDSpic(X); AGdata(Pic);
Pic = AG(2,]))

6 0 0
Xhiee

Procedure A.3.19 (MDSpicind). Implements Algorithm 2.3.21.
Input: an MDS X.
Output: the Picard index [C1(X) : Pic(X)].

> MDSpicind(X);

Procedure A.3.20 (MDSantican). Implements Algorithm 2.3.41.

Input: an MDS X = (R, ®) such that R is a complete intersection.

Output: avector w € Z". If K = (U, L) is the grading group then the anticanonical
divisor class —w@" € K satisfies —w@" = w + ling(L).
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> MDSantican(X); # represents an element of K = Z2:
[0, 3]

Procedure A.3.21 (MDSisgorenstein). Implements Algorithm 2.3.44.

Input: an MDS X = (R, ®) such that R is a complete intersection.

Output: true if X is Gorenstein and false otherwise.

Example: let Y be as in the example of Procedure A.3.17. We computationally
verify part of [5, Ex. I111.3.3.5]:

> MDSisgorenstein(Y);

true

Procedure A.3.22 (MDSisQgorenstein). Implements Algorithm 2.3.43.

Input: an MDS X = (R, ®) such that R is a complete intersection.

Output: true if X is Q-Gorenstein and false otherwise.

Ezample: let Y be as in the example of Procedure ‘:A.3.17. We computationally
verify part of [5, Ex. I111.3.3.5]:

> MDSisQgorenstein(Y); # since (0,5) — (0,2) € Q(cone(esz,es)):

true

Procedure A.3.23 (MDSgorensteinind). Implements Algorithm :2.3.45.

Input: an MDS X = (R, ®) such that R is a complete intersection.

Output: true if X is Q-Gorenstein and false otherwise.

Ezample: let Y be as in the example of Procedure ‘:A.3.17. We computationally
verify part of [5, Ex. I11.3.3.5].

> MDSgorensteinind(Y); # Y is Gorenstein:
1

Procedure A.3.24 (MDSisfano). Implements Algorithm 2.3.46.

Input: an MDS X = (R, ®) such that R is a complete intersection.

Output: true if X is Fano and false otherwise.

Ezample: let Y be as in the example of Procedure ':A.3.17. We computationally
verify part of [5, Ex. I11.3.3.5]:

> MDSisfano(Y); # since (0,5) — (0,2) € 9° for each ¥ € ®:

true

Procedure A.3.25 (MDSintersno). Implements Algorithm 2.3.48.

Input:  a quasiprojective MDS X = (R, ®) with R having a principal ideal of
relations and two elements w,w’ € K.

Output: the intersection number D - D’ € Q where D, D’ are divisors on X with
classes [D] = w and [D'] = w'.

Options: ’allself’: return the list of all V(X; T;)2.

FEzample: let Y be as in the example of Procedure :A.3.17. We computationally
verify [5;, Ex. II1.3.3.5]:

> w := -MDSantican(Y);
w := [0, —3]
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> n := MDSintersno(Y, w, w); # the self-intersection number (w$*)?

n:=6

Procedure A.3.26 (MDSisfact). Implements Algorithm 2.3.30.

Input: an MDS X = (R, ®). Optional second parameter: a point € X given in
Cox coordinates z € K" or as a relevant §-face 7o < Q% such that z € X (o).

Output: if only X was given: true if X is factorial and false otherwise. If a point
x € X was given: true if x € X is factorial and false otherwise.

> MDSisfact(X); # since Q(ling(cone(ey, ez, e5) NZ8)) # Z%:
false
> gam0 := {1,2,5};
gam0 := {1,2,5}
> MDSisfact (X, gam0); # no point = € X(v) is factorial:
false
> MDSisfact(X, [-1,1,0,0,11); # the point [-1,1,0,0,1] € X is not factorial:
false

Procedure A.3.27 (MDSisQfact). Implements Algorithm 2.3.31.
Input: an MDS X = (R, D).
Output: true if X is Q-factorial and false otherwise.

> MDSisQfact(X); # all cones of ® are full-dimensional.

true

Procedure A.3.28 (MDSisquasismooth). Implements Algorithm 2.3.23.

Input: an MDS X = (R, ®). Optional second parameter: a point € X given in
Cox coordinates z € K" or as a relevant §-face o < Q% such that z € X (7).

Output: if only X was given: true if X is smooth and false otherwise. If also a
point x € X was given, true if x € X8 and false otherwise.

true

> MDSisquasismooth(X, {2,3}); # this means X (cone(ez,es)) N X is smooth.

true

> MDSisquasismooth(X, [-2,1,1,1,11); #(-2,1,1,1,1) € X is smooth.

true

Procedure A.3.29 (MDSissmooth). Implements Algorithm 2.3.24.

Input: an MDS X = (R, ®). Optional second parameter: a point € X given in
Cox coordinates z € K" or as a relevant §-face 7o < Q% such that z € X (o).

Output: if only X was given: true if X is smooth and false otherwise. If a point
x € X was given, true if z € X is smooth and false otherwise.
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> MDSissmooth(X); # X is smooth, the toric ambient variety is singular:
false

> MDSissmooth(X, {2,3}); # the stratum X (cone(es,e3)) is singular:
false

> MDSissmooth(X, [-2,1,1,1,1]); # the point [-2,1,1,1,1] € X is smooth:

true

Procedure A.3.30 (MDSsing). Implements Algorithm 2.3.25.
Input: an MDS X.
Output: a list of lists [[J, [T7, ..., T,]], F] where

e J is a list of polynomials in K[T7,...,T;] such that the vanishing set

V(J) C K" equals Ymg,
e [ is a list of all relevant §-faces such that X () is singular.

Example: > RL := [2*T[1]1°3*T[2]"2 + T[3]"3*T[4]"2 + T[5]"3*T[6]"2];

RL = [2T[1]*T[2]* + T[3]*T[4)* + T[5]°T[6]?]

> TT := vars(6);
TT := [T[1],T[2],T[3],T[4], T[5], T'[6]]
> Q0 := linalg[matrix]([[ O, 1, O, 1, O, 1 1,[ 1, 0, 1, 0, 1, 0 11);
@=17 0101 0
> R := createGR(RL, TT, [Q0]);
R :=GR(6,1,[2,[]])
> Y := createMDS(R, [2,3]);

Y := MDS(6,1,3,[2,[]])
> MDSsing(Y); # both X and X are singular
[[mzunqqm2,47qu37qm,37qa27qq2,21qm311q,31qm211m2,271m3TKm

2T(1PT(2)? + TEPPTA + T1°TI6)%), (T11], T(2), T(3], T[4, T[5], T(6])]
[{1,6}, {3,6}, {1,3,6}, {2,3,6}, {1,4,6}, {2,5},

{2,3,5}, {4,5}, {1,4,5}, {2,4,5}, {2,3},{1,4}@

Procedure A.3.31 (MDSisquasiproj). Implements Algorithm 2.3.35.
Input: an MDS X = (R, D).

Output: true if X is quasiprojective and false otherwise.

> MDSisquasiproj(X); # ® was defined by a vector w € Kq:

true

Procedure A.3.32 (MDSisproj). Implements Algorithm 2.3.36.
Input: an MDS X.
Output: true if X is projective and false otherwise.

> MDSisproj(X); # X is quasiprojective and the grading is pointed

true
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Procedure A.3.33 (MDSiscomplete). Implements Algorithm 2.3.33.

Input: an MDS X = (R, ®) where the ideal of relations of R is principal.
Output: true if X is complete and false otherwise.

true

4. Procedures on complexity-one T-varieties

In this section, we describe our implementation of algorithms for complexity-one
T-varieties. See Section 4 of Chapter 2 for the algorithms. Here is an overview:

e Automorphisms: horizontal and vertical Demazure P-roots (Procedure

and A.
Procedure A.4.1 (MDShdemazure). Implements Algorithm 2.4.2.

Input: there are three input types:

e An MDS X = (R, ®) of complexity one.
e A GR R of complexity one.
e Integral matrices P and A as in Construction.1.5.2. If instead of A the

number of blocks of P is given, the procedure chooses A.

In the first two cases, we require that R = (G, Q,Q°, P, F5) has been entered as
createGR(P,A).

Output: a list of all horizontal Demazure P-roots of R = R(P, A).
Ezample: we computationally verify [6, Ex. 5.3]:
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,111);

-1 -3 3 0
P := -1 -3 0 2
-1 -2 1 1

A= HO’ 1}7 [717 71}7 [170”§

createGR(P, A);

>R :
R:=GR(4,1,[1,[]])
> HDEM := MDShdemazure(R);
HDEM = [[[-1,-2,3]],2,3,[1,1,1]]]
Let us consider another example and input type:

> P := cols2matrix([[-1,-1,-1]1,[-3,-3,-2],[2,0,1]1,[0,1,1],
[0,0,1]1,[0,0,-111);

-1 -3 2 0 O 0
P=| -1 -3 0 1 0
-1 -2 1 1 1 -1
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> HDEM := MDShdemazure(P, 3); # there are three blocks in P; no horizontal
Demazure P-root exists:

HDEM :=[[[),1,2,[1,1,1],1[,1,2,[2,1,1]],[[], 2, 3, [1, 1, 1]]]

Procedure A.4.2 (MDSvdemazure). Implements Algorithm2.4.1.

Input: there are three input types:

e An MDS X = (R, ®) of complexity one.
e A GR R of complexity one.
e Integral matrices P and A as in Construction '1.5.2. If instead of A the

number of blocks of P is given, the procedure chooses A.

In the first two cases, we require that R = (G, Q,Q°, P, F5) has been entered as
createGR(P,A).

Output: a list of all vertical Demazure P-roots of R = R(P, A).

Ezample: as in Procedure A.4.1, we continue the verification [6, Ex. 5.3]:

> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,111);

-1 -3 3 0
P .= -1 -3 0 2
-1 -2 1 1

Vv
=
i

[[031] > [_13_1] ) [1)0]] 5
A= [[0,1],[-1, —1],[1,0]];

\4
)
i

createGR(P, A);
R:=GR(4,1,[1,[])
> VDEM := MDSvdemazure(R); # There are no vertical P-roots:
VDEM := [[[], 0]]
In the next example there are vertical P-roots. Note that we use another input
type:

> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[2,0,1]1,[0,1,1],
[0,0,1],[0,0,-111);

-1 -3 2 0 O 0
P=| -1 -3 0 1 0 0
-1 -2 1 1 1 -1

> VDEM := MDSvdemazure(P, 3); # there are three blocks in P; (v,2) with v =
(0,—1,1) is the only vertical Demazure P-root:

VDEM := [[[], 1], [[[0, -1,1]],2]]

Procedure A.4.3 (MDSautroots). Implements Algorithm 2.4.6;

Input: there are two input types:

e An MDS X = (R, ®) of complexity one.
e A GR R of complexity one.

Output:  the roots of the unit component Aut(X)" as a set of integral vectors.
These are the P-roots of X.

Example: we verify Example 2.4.7:

> P := cols2matrix([[-2,-2,-1,-1], [1,0,0,0], [1,0,1,0], [0,1,0,1],
[0,1,0,0]11);

-2 1 1 0 0

— -2 0 0 1 1
pP= -1 0 1 0 ©0
-1 0 0 1 0
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> A := [[1,0],[0,1],[-1,-11];
A=[1,0],[0,1],[-1,-1]]
> R := createGR(P, A);
R:=GR(5,1,[L,]])
> Roots := autroots(R); # root system Bs:
Roots == {[1,—1],[1,1], [~ 1, —1],[~1,1], [0, —1], [0, 1], [1, 0], [~ 1, 0]}

Procedure A.4.4 (MDSresolvesing). Implements Algorithm 2.4.8.

Input: there are two input types:

e An MDS X = (R,®) of complexity one, i.e., R = R(P,A) has been
entered as createGR(P,A).
e An MDS X = (R, ®) where the ideal of relations of R is principal.

Output: a pair Y = (R, ®’). If X is of complexity one or if in the second case the
>verify’-tests succeeded, Y is a smooth MDS such that ¥ — X is a resolution of
singularities.
Options:
e ’verify’: tries to verify that Y is a smooth MDS; this is not needed if
X is of complexity one.
e ’minimal’: compute a minimal resolution if X is a surface.
e ’noffaces’: skip the computation of §-faces.
e ’noMDS’: do not return a data type MDS but only a list of generators for
the defining ideal, a list of variables and the new matrix P’; this usually
is much quicker.

Ezample: we algorithmically verify [5, Ex. 111.4.4.10]:
> A := [[011] > [_1,_1] > [1’01] 5
A= [[07 1}7 [717 71}7 [17 0”7

> P := linalg[matrix] ([[-3,-1,3,0],[-3,-1,0,2],[-2,-1,1,11]1);
-3 -1 3 0
P := -3 -1 0 2
-3 -1 1 1
> R := createGR(P, A); GRdata(R);

R := GR(47 17 [17 []])

[Tl + T3 + T[] [T, 7(2), 708), T4)), [AGH (4,1, [0, [t 3 2 3],

-3 -1 3 0
[ -3 —1 0 2 ] {1,243, {1, 3,4}, {1, 2,3}, {1}, {2}, {3,4}, {1,2,3,4},{2,3,4}]
-3 -1 1 1

> w := relint (MDSmov(R));
w = [1]
> X := createMDS(R, w);
X:=MDS(4,1,2,[1,[]])
> Y := MDSresolvesing(X, ’noffaces’);
Y := MDS(13,1,2,[10,[]])
> GRdata(MDSdata(Y) [1]) [1]; # print the defining equation:

[T[5]T[8]3T[10}T[11]2 + T[2)T[4)2T[6]T[9]® + T[?]T[12}2T[13]]
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Procedure A.4.5 (MDSanticanpoly). Implements Algorithm 2.4.13.

Input: an MDS X = (R, ®) of complexity one, i.e., R = R(P, A) has been entered
as createGR(P,A).

Output: the anticanonical polytope Ax.
Ezample: we enter the Fg-singular cubic, see [61, Ex. 7.3]:
> P := cols2matrix([[-3,-3,-2],([-1,-1,-1],[2,0,1],[0,3,111);
-3 -1 2 0
pP:= [ -3 -1 0 3 ]

-2 -1 1 1

> A := [[-1,-1],[1,0],[0,1]]
A= ([-1,-1],[1,0], [0,1]
> R := createGR(P, A);
R:=GR(4,1,[L,]])
> X := createMDS(R, relint(MDSmov(R)));

X :=MDS(4,1,2,[L,]]])
> AX := MDSanticanpoly(X);
AX := POLYTOPE(3,3,6,8)

\

vertices(AX);
-3,-3,-2],[-1,-1,-1],[2,0,1],]0,3,1],[0,0,—1/5], 0,0, 1]]

Procedure A.4.6 (MDSanticancomp). Implements Algorithm 2.4.14.

Input: an MDS X = (R, ®) of complexity one, i.e., R = R(P, A) has been entered
as createGR(P,A).

Output: the anticanonical complex Ax of X.

> AXC := MDSanticancomp(X);
AXC := PCOMPLEX(3,]0,0,7,0])
> vertices(AXC);
{lo0,0,-1/5],[0,0,0],[-3,-3,-2],[-1,-1, —1],[2,0,1],[0, 3,1],[0,0, 1]}

Procedure A.4.7 (MDSisterminal). Implements Algorithm 2.4.16.

Input: an MDS X = (R, ®) of complexity one, i.e., R = R(P, A) has been entered
as createGR(P,A).

Output: true if X is terminal and false otherwise.

> MDSisterminal(X);

Procedure A.4.8 (MDSisepslogterminal). Implements Algorithm 2.4.15.

Input: an MDS X = (R, ®) of complexity one, i.e., R = R(P, A) has been entered
as createGR(P,A) and a rational number 0 < ¢ < 1.

Output: true if X is e-log-terminal (for € < 1) and false otherwise.

> MDSisepslogterminal(X, 1/2);

true
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5. Miscellanea

This section contains information on several procedures that do not fit into one of
the previous categories. Most of them have been described throughout Chapter 2.
Here is an overview:

Procedure A.5.1 (closure). Implements Algorithm 2.2.14.

Input: alist of polynomials [fi,. .., fs] and a list of variables [T, ..., T,] such that
fi S K[Tl, Ce ,TT].

Output: alist [[g1,- .., 9m], [T1,-..,T,]] such that g; € K[T1,...,T,] and the clo-
sure V (T7; f1,..., fs) in K" is given by V(K"; ¢1,...,9s)-

Ezample: > RL := [T[11*T[10]1-T[3]1*T[7]1+T[4]1*T[6], T[11*T[8]-T[2]1*T[6]
+T[3]*T[6], T[11*T[9]-T[2]1*T[7]1+T[4]1*T[5]];

RL :=[T1To — T3T7 + TyTe, Th Tz — ToT6 + 1375, T1To — ToT7 + Ty T5)
> TT := vars(10);
TT := [T[1],T[2],T[3],T[4], T[5],T[6], T[7],T[8],T[9], T[10]]
> closure(RL, TT); # the affine cone over G(2,5).
UT7T8 =TTy + T5Tho, TuTs — T3Ty + T2T10, T1Tio — T3T7 + TyTg,
T Ty — ToTr + TyTs, ThTs — ToTe + T5T5s),
(T(1], T[2], T[3], T[4], T[5], T[6], T(7), T[8], T(9), T[10]]

Procedure A.5.2 (isprimeideal). Implements Algorithm 2.2.10:for the case of
a free class group.

Input: alist [f1,..., fs] of polynomials and a list of variables [T, ..., T;] such that
fieQ[Th,...,T,].
Output:  true if the ideal (f1,..., fs) € Q[T1,...,T}] is prime and false otherwise.
Example: > RL := [T[1]°2 +1];
[T[1)% +1]
> isprimeideal (RL, vars(1)); # the ideal (T? + 1) C Q[T}] is not prime:
false

Procedure A.5.3 (primevars). Successively applies Procedure 'A.5.2 to test
whether T; defines a prime element in R = K[Ty,...,T:]/{(f1,.- -, fs)-

Input: alist [f1,..., fs] of polynomials and a list of variables [T, ..., T;] such that
fi €Q[Ty,...,T}].
Output: the set of all indices 1 < i < r such that T; defines a prime element in R.
Example: > RL := [T[1]1*T[2] + T[2]*T[3]1+T[4]1*T[5]];
RL := [T[1]T[2] + T[2)T[3] + TAT[5]]
> primevars(RL, vars(5)); # In K[Ti,...,T5]/{(T1T> + ToT5 + T4T5) only Ty
and T3 define prime elements:

{1,3}
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Procedure A.5.4 (w2fan). Consider a surjective integral k x r matrix Q° and
a Gale dual matrix P of size n x r. Let either a vector w € cone(Q") or a BUN &
in Q¥ for the ring K[T1, ..., T,] with grading deg(T}) := Q(e;) be given. In Q" we
have fans

o
g
I

{P(WS); Y0 = Q% and w € (QO(Vo))O},
N(@) = {P(%); v = Q% and Q°(y0) € @} .

Input: in the above notation, there are three input types:

e A vector w € QF, a matrix Q°, a matrix P.
e A CONE ) C QF, a matrix Q°, a matrix P. Then w € A\° will be chosen.
e A BUN @ in QF, a matrix Q°, a matrix P.

Output: a FAN ¥ C Q™. For the first two input cases, we have ¥ = ¥(w) whereas
Y = X(®) holds for the third input case.

Options: ’CONEs’: return a list of maximal CONEs instead of a FAN.
Ezample: in the following example, the fans Sigw, Siglam and SigB coincide.
> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0], [1, 1, 1, 1, 111);

> P := linalg[matrix] ([[3, 1, -4, 0, 0], [2, O, -3, 1, 0],
(1, 0, -2, 0, 111);

>w = [-1,2];

> Sigw := w2fan(w, QO, P);

Sigw := FAN(3,0, 0,0, 6])
> lam := poshull([-1,1],[0,1]);

lam := CONE(2,2,0,2,2)
> Siglam := w2fan(lam, QO, P);

Siglam := FAN(3,0,[0,0,6])
> B := createBUN(w, [], vars(5), Q0);

B := BUN(8)

> SigB := w2fan(B, QO0, P);

SigB := FAN(3,0,[0,0,6])

Procedure A.5.5 (fan2w). Let ¥ C Q" be a fan and P an integral n X r matrix
such that the columns of P are pairwise different primitive generators for the rays of
¥ and the columns of P generate Q" as a cone. Let Q° be a matrix that describes
the map Z" — K" that is dual to the inclusion ker(P) — Z". In Kg, we have
a BUN ®(%) in the ring K[T}, ..., T,] that is graded by deg(T;) := Q(e;) where

(2) = {Q(6); do < Q% and P(%) € X} .
Input: a FAN ¥ C Q" as well as integral matrices P and Q° as explained above.
Output: the BUN ®(%) in K.

Options: ’w’: instead of a BUN return a vector w € ([0, 9)° where ¥ ranges over
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the elements of ®(X).

> w := fan2w(Sigw, P, QO0, ’w’);

w = [—1,2]
> B := fan2w(Sigw, P, Q0);

B := BUN(8)

Procedure A.5.6 (fiberpoly). Consider an integral surjective k x r matrix Q°
and a vector w inside the cone over the columns of Q°. The fiber polyhedron is

B, = (@) ' (w) N Q% C Q.

Input: there are two input types:
e A matrix Q° and a vector w € QF.
e A matrix Q° and a CONE X C Q. Here, w € \° will be chosen.

In both cases, a Gale dual matrix P of Q° may be given as a third parameter.

Output: the POLYHEDRON B,, C Q". If a third parameter P was given then
(P*)~Y(By) € Q" will be returned.

Example: > Q0 := linalg[matrix] ([[-2, 2, -1, 1, 0],
[1, 1, 1, 1, 111);
-2 2 -1 1 0
QO:[ 11 1 1 1}

> P := linalg[matrix] ([[3, 1, -4, 0, 0], [2, 0, -3, 1, 0],

(1, 0, -2, 0, 1]11);
3 1 —4
P:=|2 0 -3
2

1 0 -
>w := [-1,2];
wi=[-1,2]
> Bw := fiberpoly(QO0, w);
Bw := POLYTOPE(5,3,6,5)
> MBw := fiberpoly(QO, w, P);
MBuw := POLYTOPE(3,3,6,5)
Procedure A.5.7 (intpoints). Implements Algorithm 2.2.2.
Input: a POLYTOPE B C Q.
Output: ’relint’: return the list of elements of B° NZ" instead of BN Z".
Options: a list of the elements of BNZ".
Ezxample: > B := cube(3);
B := POLYTOPE(3,3,8,6)
> intpoints(B);
l-1,-1,-1],[-1,-1,0],[-1,-1,1},[-1,0,-1],[-1,0,0],[-1,0,1],[-1,1,—1],
[-1,1,0],[-1,1,1],[0,-1, -1}, [0,-1,0], [0,-1,1],[0,0,-1],[0,0,0],[0,0, 1],
0,1,-1j,[0,1,0,10,1,1},[1,-1,-1},[1,-1,0],[1,-1,1],[1,0,-1],[1,0,0],[1,0, 1],
[1,1,-1],[1,1,0],[1,1,1]]
> intpoints(B, ’relint’);
[[0,0,0]]
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Procedure A.5.8 (pull). Implements Algorithm 2.2.12.

Input: there are two input types:

e A list of polynomials [f1,..., fs], a list of variables [T7,...,T;,] with f; €
K[Ty,...,T,], an integral n x r matrix P.

e A polynomial fi, a list of variables [T1,...,T,] with f1 € K[T4,...,T,],
an integral n x r matrix P.

Output: alist [G,[T4,...,T,]] where
o for the first input type, G = [p* f1,...,p* fs] with p* f; € K[T1,...,T}],
e for the second input type, G = p*f; € K[T1,...,T,].
Example: > £ := T[1]*T[2] + 3%T[3]"2;
f:=T[]T[2] + 3T[3]?
> TT := vars(3);
T :=[T0], T[2], T[3]]
> P := linalg[matrix] ([[1, 0, 3, 0], [0, 1, O, 41, [1, 1, 1, 111);

3

1 0 3 O
P=|(0 1 0 4
1 1 1 1

[ T3Te T + 3TRTS TS T, (T(1), T(2), T3], T[4]]]
> pull ([T[1] + T[2], T[2] + T[3]1, TT, P);
([T T5 + ToT), To T — 3Ty TR T Ty, [T[1], T(2), T[3], T[4]]]

> pull(f, TT, P);

Procedure A.5.9 (push). Implements Algorithm 2.2.13.

Input: there are two input types:

e A list of polynomials [f1,..., fs], a list of variables [T1,...,T,] with f; €
K[Ty,...,T;], an integral n x r matrix P of rank n.

e A polynomial fi, a list of variables [T1,...,T;] with f; € K[Ty,...,T}],
an integral n x r matrix P of rank n.

We require the polynomials f; to be K-homogeneous with respect to the K :=

Output: alist [G,[T4,...,T,]] where

e for the first input case, G = [pyf1,...,psfs] With p.f; € K[Th,...,Ty],
e for the second input case, G = p, f1 € K[T1,...,T,]

Ezample: > £1 := T[11xT[2] + T[31#T[5];
f1:=TNT(2] + T[3]T[5]
> £2 := T[1]1°2 + T[2]°2 + T[3]*T[4]1*T[5]"2;
f2:= TN+ T[2]* + TBITAT[5)?
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> TT := vars(5);
TT := [T[1], T[2], T[3], T[4], T[5]]
> P := linalg[matrix]([[-1,1,0,0,0],[2,0,-1,1,0],[-2,0,1,0,111);
l1 1 0 0 0]
P = 2 0 -1 1 0
-2 0 1 0 1
> push(f1i, TT, P);
(T[] +T(3],1+ T[1]* + TRT[3)?, [T[1], T(2], T(3]]]
> push([f1, £2], TT, P);
(T[] + T(3],1 + T[1]? + T[2T[3]?], [T[1],T(2], T(3]]]

Procedure A.5.10 (vars). Returns a list of variables.
Input: an integer r € Z>1 or a list of polynomials [f1, ..., fs].

Output: the list [T1,...,T,] if an integer r was given; assumes that 7' has not yet
been assigned. If a list of polynomials was given, then a list of all found variables
is returned.

Ezrample: > TT := vars(3);
TT :=[T[1],T[2],T[3]]
> TTf := vars([T[1]1*Y[3]"2 + 7*S[2] + 1, -2«S[1] - 9]1);
TTf = [S[), T[], S[2], Y[3]]
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good, 96
toric ambient modifications, 93
toric variety, 14:
canonical ambient, 94:
torus, .9
quasi-, .9
standard, .9-
total coordinate space, 14
tropical
prevariety, ‘78
variety, 78
weak tropical resolution, 57
tropical variety, ‘40, 51
containment, ‘40:

variation of GIT-quotients, 75

variety, 9

with complexity-one torus action, 23:

vars, 261
Veronese embedding, 78

w2fan, 258;

weak tropical resolution, 57

weight cone, 11,15

weighted projective space, 111
blow up of, 111:
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