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INTRODUCTION

In the present thesis we study quotient spaces arising from group actions
on algebraic varieties. In general, it is not evident how to assign such a
quotient to the action of an algebraic group. There are different approaches to
accomplishing this in a canonical manner including the Mumford quotients,
the GIT-limit, the closely related limit quotient and the Chow quotient. We
examine these quotients with regard to their Cox rings and we enquire how
they arise from simpler varieties by blowing up a sequence of subspaces.

We consider the action of an affine-algebraic group G on the normal algebraic
variety X. In the 1960s Mumford studied the concept of good quotients,
see [55]. As their name suggests these quotients have various neat properties,
for example they parameterise the collection of closed orbits. Also, for affine
X and reductive G they always exist. To obtain quotients for projective X
it is, however, more reasonable to pass to the open G-invariant subsets of X.
In general, there exists a multitude of such sets admitting a good quotient,
yet none of them is canonical in any way. This drawback is overcome by
the construction of the GIT-limit. A certain subcollection of the Mumford
quotients forms an inverse sytem and the GIT-limit is the inverse limit of
this system, see [31]. It possesses a canonical component, the limit quotient.

The Chow quotient constitutes an entirely different approach of devising
a canonical quotient. It was introduced for toric varieties by Kapranov,
Sturmfels and Zelevinsky in [49] and more generally by Kapranov in [50].
One first considers the Chow variety, which parameterises certain subvarieties
of X. The closures of the general G-orbits then define a certain subset of the
Chow variety. Taking the closure of this set yields the Chow quotient. This
construction is more canonical and essentially independent of any choices,
however, the Chow variety and thereby the Chow quotient are fairly hard to
access.
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In general, the Chow quotient and the GIT-limit do not coincide [50]. But for
subtorus actions on toric varieties the Chow quotient and the limit quotient
share a common normalisation which was shown by Kapranov, Sturmfels and
Zelevinsky in [49], see also the papers of Craw, Maclagan and Hu [23, 45]
for generalisations. As a first result we extend this theorem to the case of a
torus action on non-toric varieties, see Theorem 2.4.2 and Corollary 2.4.3.

One approach to understand the geometry of a certain space is to determine
its Cox ring. For toric varieties the Cox ring was introduced by Cox, see [22].
Later it was generalised to non-toric varieties, see [13, 46]. Once the Cox
ring of a projective variety is known, many of the geometric invariants can
be read off. Moreover, it provides a canonical embedding into a toric variety,
which allows explicit computations. All these methods work well in the case
of a finitely generated Cox ring. Thus it is interesting which of the quotient
spaces have this property. As a first result in this direction we give a positive
answer in the case of good quotients, see Theorem 3.1.1 and [10].

Theorem. Suppose that G is reductive and X has a finitely generated Cox
ring. If an open subset U ⊆ X admits a good quotient U → U//G, then also
U//G has a finitely generated Cox ring.

The Chow quotient possesses proper, birational morphisms onto the Mum-
ford quotients of maximal dimension [45], hence it arises as a blow-up of
these. Our first task is to give a precise description of these blow-ups. As we
are also interested in the Cox ring, it is now a natural thing to ask how the
Cox ring changes in this process. There does not seem to be an easy answer
to this question; it is even hard to decide in which cases finite generation of
the Cox ring is preserved.

Interestingly, the first counterexamples were constructed as invariant alge-
bras of unipotent groups. Nagata showed in [56] that there exists an action of
the unipotent group G13

a on K32 such that the invariant algebra is not finitely
generated. Later, Mukai related this invariant algebra to the Cox ring of the
blow-up of P2 in a certain point configuration [54]. He also provided a crite-
rion under which the Cox ring of such a blow-up remains finitely generated.
The results were further strengthened by Castravet and Tevelev in [20], who
determined how many points in general position in a product of projective
spaces could be blown-up without losing finite generation of the Cox ring.
Other results in this direction can be found in [19, 20, 32, 40, 41, 58].

In order to compute the Cox rings of certain blow-ups, we suitably refine
the technique of toric ambient modifications, which was proposed in [39].
As an application we consider torus actions on smooth projective quadrics.
Note that by our Reduction Theorem 2.4.5 an essential step is understanding
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K∗-actions. For these we obtain the following results, see Theorems 5.1.2
and 5.1.3.

Theorem. If K∗ acts on a smooth, projective quadric X, then the nor-
malised Chow quotient X

∼
/

CQ K∗ has a finitely generated Cox ring.

For a number of cases we give an explicit description of the Cox ring in terms
of generators and relations. After applying a suitable linear transformation,
the smooth projective quadric X is of the following shape:

X = V (g1) ⊆ Pr, g1 =

{
T0T1 + . . .+ Tr−1Tr, r odd,

T0T1 + . . .+ Tr−2Tr−1 + T 2
r , r even,

where the K∗-action is diagonal with weights ζ0, . . . , ζr and the defining equa-
tion is of degree zero. Consider an integral matrix P such that

Q · P t = 0, where Q :=
[

ζ0 . . . ζr

1 . . . 1

]
.

We set Σ as the Gelfand-Kapranov-Zelevinsky decomposition associated to
P and put the primitive generators b1, . . . , bl of Σ differing from the columns
of P as columns into a matrix B. Then there is an integral matrix A such
that B = P ·A holds. We define shifted row sums

ηi := Ai ∗+Ai+1 ∗+µ for i = 0, 2, . . . ; ηr := 2Ar ∗+µ, if r is even,

where µ is the componentwise minimal vector such that the entries of the ηi
are all nonnegative. Then our result reads as follows.

Theorem. In the above setting, assume that any r columns of Q gener-
ate Z2 and that for odd (even) r there are at least four (three) weights ζi of

minimal absolute value. Then the normalised Chow quotient X
∼
/

CQ K∗ has Cox
ring

R(X
∼
/

CQ K∗) = K[T0, . . . , Tr, S1, . . . , Sl] / 〈g2〉

with

g2 :=

{
T0T1S

η0 + T2T3S
η2 + . . .+ Tr−1TrS

ηr−1 , r odd,

T0T1S
η0 + . . .+ Tr−2Tr−1S

ηr−2 + T 2
r S

ηr , r even

graded by Zl+2 via assigning to the i-th variable the i-th column of a Gale
dual of the block matrix [P,B].

As an independent second application we consider the blow-up of the (gen-
eralised) diagonal in a product of projectives spaces. For this let X ′ =
Pn1 × . . . × Pnr be a such a product and set ∆X ⊆ X := X ′ × X ′ as the
diagonal. Then we obtain the following Theorem, see 4.2.1.
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Theorem. The Cox ring R(Bl∆X (X)) of the blow-up Bl∆X (X) is isomor-
phic to the Zr × Zr × Z-graded factor algebra RX/IX where

RX : = K[T∞, rTij ; r = 1, . . . , r, 0 ≤ i < j ≤ nr + 2, i ≤ nr],
IX : = I(1) + . . .+ I(r),

for every r = 1, . . . , r the ideal I(r) is generated by the twisted Plücker rela-
tions

rTij T∞ − rTik rTjk + rTil rTjk; 0 ≤ i < j ≤ nr, k = nr + 1, l = nr + 2,

rTij rTkl − rTik rTjk + rTil rTjk; 0 ≤ i < j < k < l ≤ n+ 2, k ≤ nr

and the grading of RX/IX is given by

deg (T∞) = (0, 0, 1), deg (rTij) =


(er, 0, 0) if j = nr + 1,

(0, er, 0) if j = nr + 2,

(er, er,−1) else.

As a similar class of examples we treat the blow-up of the variety Y := Pn1
in the generalised diagonal ∆Y := {(x, . . . , x); x ∈ P1} ⊆ Y . Again we prove
that the Cox ring of Bl∆Y (Y ) is finitely generated and we give an explicit
presentation.

Theorem. The Cox ring R(Bl∆Y (Y )) of the blow-up Bl∆Y (Y ) is isomor-
phic to the Zn+1-graded factor algebra RY /IY where

RY := K[Sij ; 1 ≤ i < j ≤ n+ 2]

IY := 〈SijSkl − SikSjl + SilSjk; 1 ≤ i < j < k < l ≤ n+ 2 〉,

and the grading of RY /IY is given by

deg (Sij) =


ei if i ≤ n, j = n+ 1, n+ 2,

en+1 if i = n+ 1, j = n+ 2,

ei + ej − en+1 else.

Probably the best known examples of Chow quotients are the Grothdendieck-
Knudsen and Losev-Manin moduli spaces M0,n and Ln. They can be thought
of as canonical compactifications of the spaces of point configurations on P1

up to the action of the full automorphism group SL(2) and the maximal
subtorus T ⊆ SL(2) respectively. It was shown that both of them have a
description as an iterated blow-up of some projective spaces, see [50, 53].

We examine the space of point configurations up to translation, i.e. up to
the action of the maximal unipotent group Ga ⊆ SL(2,K) on Pn1 . In order to
define a compactification analagous to the cases just discussed, we introduce
the non-reductive limit quotient Pn1 /

LQ Ga. Similar to the results of Kapranov,
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Losev and Manin in the cases of M0,n and Ln this quotient space essentially
arises by blowing up a sequence of subspaces in product of projective lines.

Theorem. Denoting by T2, S2, . . . , Tn, Sn the homogeneous coordinates on
Pn−1

1 we consider for every A ⊆ {2, . . . , n} the subschemes XA on Pn−1
1 given

by the ideals 〈
T 2
i , TjSk − TkSj ; i, j, k ∈ A, j < k

〉
.

Let B̃l(Pn−1
1 ) be the normalised blow-up of Pn−1

1 in all these subschemes. If

we write Pn1
∼
/

LQ Ga for the normalisation of the limit quotient, then we have
an open embedding

Pn1
∼
/

LQ Ga ⊆ B̃l(Pn−1
1 ).

For details on this we refer to Theorems 6.5.1 and 6.5.2. Since Ln is a toric
variety, its geometry and also its Cox ring are well known. On the contrary,
the computation of the Cox ring R(M0,n) has long been an open problem,
see e.g. [15, 18, 30, 46]. Only very recently it was proved that for n ≥ 134

the Cox ring is not finitely generated, see [19]. The limit quotient P3
1

∼
/

LQ Ga
essentially arises as a good quotient of the affine cone over the Grassmannian
Gr(2, 4) by a (submaximal) torus action. Similar to M0,5 this already deter-

mines the Cox ring of P3
1

∼
/

LQ Ga; it is given by Plücker relations. For n ≥ 4 it

would be interesting to know whether the Cox rings of M0,n+2 and Pn1
∼
/

LQ Ga
are related in some way.

This thesis consists of six chapters, we give a brief summary for each of them.

In Chapter 1 we introduce the basic notations and concepts. We give an
overview of Cox rings and related geometric constructions. For toric vari-
eties we discuss the Cox construction with respect to the convex geometric
aspects. Moreover, we treat bunched rings, which are a method of construct-
ing varieties with prescribed Cox ring, and their canonical toric embeddings.
In a final section we deal with the GKZ-decomposition of a vector configu-
ration.

In Chapter 2 we summarise the different notions of quotients. We treat the
Mumford quotients, the GIT-limit, the limit quotient and the Chow quotient.
We show that for tori the latter two constructions essentially coincide and
discuss further properties. In the last section of this chapter we extend the
construction of the GIT-limit to certain non-reductive groups.

In Chapter 3 we will prove that for a reductive group any good quotient of a
Mori Dream Space is a Mori Dream Space itself. This was known for certain
GIT-quotients only and expected by Hu and Keel in [46].

In Chapter 4 we refine the technique of toric ambient modifications and give
a criterion to determine whether a certain candidate for the Cox ring of
the blow-up is in fact the Cox ring. In the remaining two sections of this
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chapter we apply this method to two classes of examples and compute explicit
presentations for the Cox rings of Bl∆(X ′×X ′) and Bl∆(Pn1 ) where ∆ is the
(generalised) diagonal and X ′ is a product of projective spaces.

In Chapter 5 we discuss Chow quotients of quadrics arising from an action of
the algebraic torus K∗. Using some tropical geometry and a result from [42]
we show that the Cox ring of the Chow quotient always is finitely generated.
Moreover, in certain cases we can also compute an explicit presentation in
terms of generators and relations.

In Chapter 6 we construct a compactification of the space of point configu-
rations on P1 up to translation similar to M0,n and Ln. For this we use the
methods provided in Chapter 2 and we show how this compactification arises
from a product of projective lines by blowing up a sequence of subschemes.







CHAPTER

ONE

BASIC NOTATION

In this chapter we provide the basic notations and concepts needed through-
out the present thesis. All of this chapter’s content is well known, much of
it is summarised in our main source [4].

1.1. The Cox Ring

Let X be a normal algebraic variety over an algebraically closed field K of
characteristic zero. We denote by WDiv(X), PDiv(X) and CaDiv(X) the
groups of Weil divisors, principal divisors and Cartier divisors respectively.
To any f in the field of rational functions K(X) we denote the associated
principal divisor by div(f). Furthermore, the divisor class group and Picard
group of X are given by

Cl(X) = WDiv(X) / PDiv(X), Pic(X) = CaDiv(X) / PDiv(X),

respectively. For two Weil divisors D :=
∑
aPP, D

′ :=
∑
a′PP we write

D ≥ D′ if and only if aP ≥ a′P holds for all coefficients. A divisor D is called
effective if D ≥ 0 holds. To a Weil divisor D ∈WDiv(X) and an open subset
U ⊆ X we associate the vector space

Γ(U,D) :=
{
f ∈ K(X) ; div(f|U ) + D|U ≥ 0

}
.

Any subgroup K ⊆WDiv(X) of Weil divisors then gives rise to a K-graded
sheaf of divisorial OX-algebras

SK(U) :=
⊕
D∈K

Γ(U,D).
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Generalising the idea of the homogeneous coordinate ring of toric varieties
(cf. [22]) one can associate a Cox ring to any normal irreducible variety X
with finitely generated divisor class group and only constant invertible global
functions. Note that the latter condition is always satisfied for complete
varieties.

We fix a finitely generated subgroup K of Weil divisors such that the pro-
jection c : K → Cl (X) is surjective with kernel K0. We now associate to K
the sheaf of divisorial OX -algebras S. In order to identify the isomorphic
homogeneous components of S we fix a character χ : K0 → K(X)∗ such that
div (χ(E)) = E holds for every E ∈ K0 and consider the sheaf of ideals I
locally generated by the sections 1 − χ(E) where E runs through K0 and
χ(E) is homogeneous of degree −E.

Definition 1.1.1. The Cox sheaf of X is the sheaf R := S/I together with
the Cl (X)-grading

R =
⊕

[D]∈Cl(X)

R[D], R[D] := p

 ⊕
D′∈c−1([D])

SD′

 ,

where p : S → R denotes the projection. The algebra of global sections
R(X) is called the Cox ring of X.

The Cox ring is - up to isomorphy - independent of the choices of K and χ,
see [4, I, Section 4.3]. For later use, note that by [4, I, Lemma 3.3.5] for any
open set U ⊆ X we have

Γ(U,R) ∼= Γ(U,S) /Γ(U, I).

Moreover, from [4, Lemma 4.2.2] we infer that the Cox ring does not change
when passing to a big open subset, i.e. an open subset whose complement
is of codimension at least two. In particular, by normality of X the two
algebras R(Xreg) and R(X) are equal, where Xreg denotes the set of regular
points of the variety X.

Definition 1.1.2 ([4, I, Definition 5.3.1]). Let K be an abelian group and
R a K-graded integral K-algebra.

(i) A non-zero non-unit 0 6= p ∈ R\R∗ isK-prime, if p is homogeneous
and p|ab for homogeneous a, b ∈ R implies p|a or p|b.

(ii) The algebra R is factorially K-graded (or short K-factorial) if
every homogeneous non-zero non-unit 0 6= f ∈ R\R∗ is a product
of K-prime elements.

Theorem 1.1.3 ([4, I, Proposition 5.2.5, Theorems 3.3.3, 5.1.1]). Let X be
a normal variety with finitely generated divisor class group, only constant
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invertible regular functions and Cl(X)-graded Cox ring R(X). Then the fol-
lowing assertions hold.

(i) The ring R(X) is normal, integral and factorially Cl(X)-graded.
(ii) If O(X) = K holds, then R(X)∗ equals K∗.

(iii) If Cl(X) is free, then R(X) is factorial.

In general, R(X) does not need to be finitely generated. For example, this
happens when blowing up at least nine points in general position on P2,
see [20].

Definition 1.1.4. Let X be a normal, irreducible variety with finitely gen-
erated divisor class group and only constant invertible functions. If its Cox
ring R(X) is finitely generated, then X is called Mori Dream Space, or short
MDS.

1.2. Geometry of the Cox Construction

In this section we deal with the geometric aspects of the previously discussed
Cox ring construction. For this let X be a Mori Dream Space with Cox sheaf
R. Since R(X) is finitely generated, R is locally of finite type (cf. [4, I,
3.2.2]), i.e. for every x ∈ X there exists an affine neighbourhood U such
that R(U) is finitely generated. With this we obtain the relative spectrum

X̂ := SpecX(R) by gluing together the affine pieces Spec(R(U)). The relative

spectrum X̂ is called characteristic space of X. If X is of affine intersection,
i.e. for any two open affine subsets their intersection is affine again, then

X̂ is a quasiaffine variety. It comes with a canonical open embedding into
X := Spec(R (X)), which we call the total coordinate space of X.

In order to describe how to obtain X back from its characteristic space X̂ we
briefly recall the connection between graded algebras and quasitorus actions.
A quasitorus H is an affine-algebraic group which is isomorphic to some
(K∗)r×C where C is a finite abelian group; a torus is a connected quasitorus.
A character of an algebraic group G is a morphism (of algebraic groups)
χ : G → K∗. The characters again form a group, denoted by X(G). The
categories of quasitori and finitely generated abelian groups are equivalent
via the essentially inverse functors

H 7→ X(H), K 7→ Spec(K[K]).

Note that under these functors the subcategory of tori corresponds to the free
groups. We now turn to the correspondence between quasitori actions and
gradings by finitely generated abelian groups. For this let K be a finitely
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generated abelian group and A a K-graded affine K-algebra. Then there
exists a Spec(K[K])-action on Spec(A) which is defined by its comorphism

A→ A⊗K[K], Aw 3 a 7→ a⊗ χw.

Vice versa the action of a quasitorus H on some affine variety X defines a
grading of the regular functions O(X) by

O(X) =
⊕
w∈K

O(X)w, O(X)w := {f ∈ O(X); f(t · x) = χw(t)f(x)}.

These correspondences give rise to an equivalence of the categories of affine
K-graded K-algebras and affine H-varieties, i.e. affine varieties with an H-
action.

Now consider the action of an affine-algebraic group G on an algebraic variety
X. If X is affine this gives rise to a linear G-action on the regular functions
O(X) defined by

(g · f)(x) := f(g−1 · x).

The collection of invariant functions, i.e. the functions with g · f = f is
a subalgebra of O(X), we denote it by O(X)G. By Hilbert’s Finiteness
Theorem this algebra is finitely generated if G is reductive and X is affine.

For a not necessarily affine X an affine morphism π : X → Y is called good
quotient for the G-action if there exists an open, affine cover (Ui)i of Y such
that O(Ui) → O(π−1(Ui))

G is an isomorphism for all i. A good quotient is
geometric, if each fibre is a single orbit.

The good quotient π : X → Y enjoys the following universal property:
For any G-invariant morphism ϕ : X → Z there exists a unique morphism
ϕπ : Y → Z such that the following diagram commutes.

X
ϕ //

π
  

Z

Y

ϕπ

??

In particular, if a good quotient π : X → Y exists, then it is unique up
to isomorphy. In this case we write X//G for the quotient space. Clearly,
Hilbert’s Finiteness Theorem guarantees existence of a good quotient in the
case where X is affine and G is reductive, e.g. a quasitorus. We are now
ready to interpret the Cox ring geometrically.

The Cl(X)-grading of the Cox ring R(X) gives rise to an action of the

quasitorus H := Spec(K[Cl(X)]) on X. The characteristic space X̂ is

an invariant open subset of X admitting a good quotient for this action
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qX : X̂ → X̂//H and the quotient space is isomorphic to the variety X. The
situation fits into the diagram.

SpecX(R) X̂ //

qX

��

X Spec(R(X))

X

1.3. The toric Cox Construction

While for arbitrary varieties their Cox rings are fairly hard to calculate,
it is well known that for toric varieties the Cox ring - as abstract ring -
is isomorphic to a polynomial ring. The grading can be derived from the
structure of the corresponding fan.

We will recall some basic notions from convex geometry and their link to
toric geometry. For this let N and M be mutually dual lattices and NQ, MQ
the corresponding rational vector spaces.

By a cone σ in NQ we always mean a convex polyhedral cone, its dual cone
σ∨ is the (convex) set of linear forms l ∈MQ for which l|σ ≥ 0 holds. A cone
is said to be pointed if it does not contain a line and a face τ of σ is a convex
subset of σ for which there exists an l ∈ σ∨ such that l|τ = 0 holds. The
dimension of a cone is the dimension of the vector space generated by it and
the facets of σ are its 1-codimensional faces. To the 1-dimensional faces of σ
we refer as its (extremal) rays and write σ(1). A lattice cone is a pair (N,σ)
where N is a lattice and σ is a cone in NQ.

By a toric variety we mean a normal, irreducible variety Z together with
an action of an algebraic torus TZ and a base point z0 ∈ Z such that TZ is
openly embedded into Z via the morphism TZ → Z, t 7→ t · z0.

The categories of lattice cones and affine toric varieties are covariantly equiv-
alent with a functor mapping a lattice cone (N,σ) onto the affine toric variety
Z(σ) := Spec(K[σ∨ ∩M ]) with dense torus TZ := Spec(K[M ]).

This correspondence extends to non-affine toric varieties. A quasifan Σ in
NQ is a finite collection of convex, polyhedral cones such that for any cone
σ ∈ Σ all of its faces are members of Σ and for any two cones σ1, σ2 ∈ Σ
their intersection σ1 ∩ σ2 is a face of both cones. A quasifan is called a fan
if all its cones are pointed. The support |Σ| of a fan is the union of its cones
and Σ is said to be complete, if |Σ| = NQ holds. By a lattice fan we mean
the pair (N,Σ).

By a result of Sumihiro [64] any toric variety with dense torus T is covered
by affine T -invariant toric varieties and the gluing data is reflected in the fan
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structure of the associated collections of lattice cones. More precisely, the
categories of lattice fans and toric varieties are equivalent.

We now turn to the toric Cox construction , see [22]. For this let Z be a
toric variety and Σ its corresponding fan in NQ. We assume Z to have only
constant invertible functions which is equivalent to Σ not being contained in
a proper vector subspace of NQ. Set F := Zr where r is the number of rays of
Σ and denote by P : F → N the homomorphism taking the canonical basis
vectors fi to the primitive generators vi of the rays of Σ. We now consider
the following fan in the vector space FQ

Σ̂ := {σ̂ 4 δ; P (σ̂) ⊆ σ for some σ ∈ Σ},

where δ ⊆ FQ is the positive orthant. Clearly, Σ̂ is a subfan of the fan Σ
defined by the single maximal cone δ. This inclusion gives rise to an open

embedding of the corresponding toric varieties Ẑ ⊆ Z = Kr.

If E := F ∗ denotes the dual lattice, then the regular functions of Z are given
by K[δ∨ ∩E]. Moreover, setting Q : E → K := E /P ∗(M) as the projection,
this algebra is K-graded by deg(χe) := Q(e). The K-grading then gives rise

to an action of the quasitorus H := Spec(K[K]) on Z.

Theorem 1.3.1 ([4, II, Theorem 1.3.2]). Let the notation be as above, then
the following assertions hold.

(i) The groups K and Cl(Z) are isomorphic.

(ii) The Cox ring of Z is the K-graded ring O(Z).

(iii) The space Ẑ is a characteristic space and the space Z is a total
coordinate space for Z.

(iv) The toric morphism pZ : Ẑ → Z arising from the morphism of

fans P : Σ̂→ Σ is a good quotient for the H-action on Ẑ.

An advantage of the Cox ring is that it facilitates explicit computations with
a (toric) variety. In particular, for the remainder of this section we will
discuss how a graded R(Z)-module gives rise to a sheaf on Z, for details on
this see [1, 22]. We set

R := R(Z) = K[T1, . . . , Tr]

and consider a K-graded R-module M . From this we obtain a sheaf on Z in
the following way. First, for a cone σ ∈ Σ we consider the localisations

Rσ := RTσ , Mσ := MTσ , where Tσ :=
∏

P (fi)/∈σ(1)

Ti

Then Mσ is a K-graded Rσ-module and by taking the respective homoge-
neous components in degree zero we obtain the (Rσ)0-module (Mσ)0. Note
that Z is covered by the affine pieces Z(σ) := Spec(Rσ)0. On Z(σ) the
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module (Mσ)0 gives rise to a sheaf, for this see e.g. [37, II, Section 5]. These
sheaves patch together and form a sheaf M on Z.

Let I be a sheaf of OZ-modules (or short OZ-module) on Z. The sheaf I is
a sheaf of ideals, if for every open U ⊆ Z the sections Γ(I, U) constitute an
ideal in OZ(U). A closed subscheme ι : Y → Z is characterised by its ideal
sheaf IY , i.e. the kernel of OZ → ι∗OY .

Theorem 1.3.2 ([22, Proposition 2.4, Theorem 3.2, Corollary 3.9]). Let Z be
a simplicial toric variety. Then the following assertions hold.

(i) Every quasicoherent sheaf on Z is of the formM for some graded
R-module M .

(ii) If I is a graded ideal of R, then I is a sheaf of ideals on Z. Vice
versa, for every closed subscheme X of Z there exists a graded
ideal I ⊆ R such that I gives rise to the subscheme X.

(iii) If I is a graded radical ideal in R, then the subscheme correspond-
ing to I is a variety.

If certain restrictions are imposed on the graded module, then the above
assertions can be strengthend to give one-to-one correspondences, see [22]
for details.

1.4. Bunched Rings

Bunched rings are an answer to the problem of constructing varieties with
prescribed Cox ring. However, this answer is not unique. In general, even if
two varieties have isomorphic (graded) Cox rings they need not be isomor-
phic, they rather are isomorphic in codimension two. Bunched rings essen-
tially consist of a Cox ring (with a choice of generators) and an additional
combinatorial datum, which fixes the isomorphy type of the variety.

Let K be a finitely generated abelian group and R an integral, normal, affine,
K-graded K-algebra. Consider a system F = (f1, . . . , fr) of homogeneous
generators of R and let Q : E → K be the map taking the i-th canonical
basis vector ei ∈ E := Zr to wi := deg(fi) ∈ K. The grading gives rise to

a quasitorus action of H := Spec(K[K]) on X := Spec(R). Moreover, we
obtain a closed embedding

ι : X → Kr; x 7→ (f1(x), . . . , fr(x)).

TheH-action onX extends to a diagonal action on Kr given by the characters
χw1 , . . . , χwr , i.e.

h · z = (χw1(h)z1, . . . , χ
wr (h)zr),
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turning the above embedding into an H-equivariant morphism. A face γ0 4 γ
of the positive orthant γ in EQ is called F-face , if there exists some x ∈ X
such that

xi 6= 0 ⇐⇒ ei ∈ γ0.

We say that the K-grading of R is almost free , if any r − 1 of the weights
w1, . . . , wr generate K as an abelian group. Denoting by ΩF := {Q(γ0); γ0 4
γ an F-face} the set of projected F-faces we call a subset Φ ⊆ ΩF thereof an
F-bunch, if the following two conditions are satisfied

• If τ1, τ2 lie in Φ, then τ◦1 ∩ τ◦2 is non-empty.
• If we have τ1 ∈ Φ and τ ∈ Ω such that τ◦1 ⊆ τ◦, then τ ∈ Φ holds.

An F-bunch is said to be true , if for every (one-codimensional) facet γ0 4 γ
we have Q(γ0) ∈ F. We are now ready for the definition of bunched rings. A
bunched ring is a triple (R,F,Φ) where

• R is an almost freely, factorially K-graded affine K-algebra,
• F is a family of homogeneous generators of R and
• Φ is a true F-bunch.

From these three pieces of data, we now construct a variety having R as Cox
ring. For this consider the set of relevant faces

rlv(Φ) := {γ0 4 γ; γ0 an F-face and Q(γ0) ∈ Φ}.

In order to shorten the notation we set for every γ0 4 γ

Xγ0 := Xf
u1
1 ···f

ur
r

with an arbitrary u ∈ γ◦0 .

One easily sees that Xγ0 is independent of the choice of u and we set

X̂ := X̂(R,F,Φ) :=
⋃

γ0∈rlv(Φ)

Xγ0 ,

X := X(R,F,Φ) := X̂//H.

Theorem 1.4.1 ([4, III, Theorem 2.1.9]). Let (R,F,Φ) be a bunched ring

and X, X̂ and X defined as above. Then the following assertions hold.

(i) The variety X is normal and its divisor class group is isomorphic
to the abelian group K.

(ii) All invertible regular functions on X are constant and the Cox ring
R(X) is isomorphic to R (as K-graded ring).

(iii) The dimension of X is given by dim(X)− dim(KQ).

Proposition 1.4.2 ([4, III, Corollary 2.1.11]). Every projective Mori Dream
Space arises from a bunched ring.
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Any variety arising from a bunched ring comes with a canonical embedding
into a toric variety in the sense that the embedding defines an isomorphism
on the level of divisor class groups. First note that with M := ker(Q) we
obtain the following exact sequences.

0 // L // F P // N

0 Koo E
Qoo Moo 0oo

Now we set δ := γ∨ ⊂ FQ as the dual cone of the positive orthant γ ⊆ EQ and
for any γ0 4 γ we denote its corresponding face by γ∗0 := δ ∩ γ⊥0 . We define
the enveloping collection and the following fans in FQ and NQ respectively

Env(Φ) := {γ0 4 γ; there exists rlv(Φ) 3 γ1 4 γ0 with Q(γ1)◦ ⊆ Q(γ0)◦},

Σ̂ := {δ0 4 δ; there exists γ0 ∈ Env(Φ) with δ0 4 γ
∗
0},

Σ := {P (γ∗0 ); γ0 ∈ Env(Φ)}.

Clearly, Σ̂ is a subfan of the fan Σ consisting of the positive orthant δ and
all its faces. Hence, there is an open embedding of the corresponding toric

varieties Ẑ ⊆ Z := Kr. The subset Ẑ is invariant under the H-action and
admits a good quotient pZ : Ẑ → Z := Ẑ//H. The quotient space Z is toric
again and its fan is given by Σ.

We turn to the embedded spaces; recall that X is embedded into Z via ι. This

embedding restricts to a closed embedding ι̂ : X̂ → Ẑ of the characteristic
spaces and then descends to a closed embedding ι : X → Z of the respective
quotient spaces. This situation fits into the following commutative diagram.

X
ι // Z

X̂
ι̂ //

OO

//H

��

Ẑ

OO

//H

��
X

ι // Z

Proposition 1.4.3 ([4, III, Proposition 2.5.4]). The embedding ι : X → Z
has the following properties.

(i) The embedding is neat, i.e. the inverse images ι−1(Di
Z) of the toric

prime divisors Di
Z are pairwise distinct, irreducible hypersurfaces

of X and ι induces an isomorpism ι∗ : Cl(Z)→ Cl(X) on the level
of divisor class groups.
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(ii) The maximal cones of Σ are Σmax = {P (γ∗0 ); γ0 ∈
rlv(Φ) minimal}.

(iii) The image ι(X) intersects every closed toric orbit of Z non-
trivially.

In general, even if X is complete, Z need not be. There exists however a not
necessarily unique toric completion, for details see [4, III, Construction 2.5.7].
All these completions share Z as minimal subvariety containing X.

Let us look closer at the general question which toric orbits are intersected
non-trivially by X. For this let TZ′ be the dense torus of a toric variety Z′

with fan Σ′ in NQ. Recall that for every Laurent polynomial f ∈ O(TZ′) its
Newton polytope is given as

New(f) := conv(ν; aν 6= 0) ⊆ NQ, where f =
∑
ν∈N

aνT
ν .

We consider a non-empty closed subset XT ⊆ TZ′ and define the tropical
variety of XT as

trop(XT ) :=
⋂

f∈I(XT )

∣∣∣N (New(f))(n−1)
∣∣∣ ,

where N denotes the normal fan. Note that although finitely many Laurent
polynomials suffice for this intersection, in general we cannot replace I(XT )
by an arbitrary set of ideal generators. We ask the question which orbits of
Z′ are intersected non-trivially by the closure XT ⊆ Z′. An answer to this
is the following result by Tevelev.

Theorem 1.4.4 ([65, Proposition 2.8]). Let TZ′ be the dense torus of a toric
variety Z′ with corresponding fan Σ′. Moreover, let XT ⊆ TZ′ be a closed
subset of the torus and σ a cone in Σ′. If TZ · zσ denotes the corresponding
torus orbit, then XT ∩ (TZ · zσ) is non-empty if and only if trop(XT )∩σ◦ is.

Let the notation be as above, Σ′ the fan of Z′ and set

Σtrop(XT ) := {σ ∈ Σ′; there ex. σ 4 τ ∈ Σ′ s. that τ◦ ∩ trop(XT ) 6= ∅}.

We return to our original situation where X arises from a bunched ring and
is canonically embedded into the toric variety Z with corresponding fan Σ.

Corollary 1.4.5. Let Z ⊆ Z1 be a toric completion corresponding to the

completion Σ ⊆ Σ1. Then Σ
trop(X)
1 = Σ holds.

1.5. The GKZ-Decomposition

Let V := (v1, . . . , vr) be a family of vectors in the rational vector space NQ.
By a V-cone we mean a cone in NQ with rays generated by elements of V.
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Analogously we define the terms V-(quasi)fan. For a collection of V-quasifans
Σ1, . . . ,Σr the coarsest common refinement is given as the fan

Σ1 u . . . u Σr := {σ1 ∩ . . . ∩ σr; σi ∈ Σi} .

The special case where the collection of cones consists of all possible
V-quasifans yields the Gelfand-Kapranov-Zelevinsky-decomposition (GKZ-
decomposition). By [4, II, Theorem 2.2.3] it is equal to the fan

GKZ(V) :=

{ ⋂
σ a V-cone

σ

}
.

For a given family V we are interested in the structure of its GKZ-
decomposition, in particular the newly occuring rays. To this end we intro-
duce the notion of Gale duality. If W := (w1, . . . , wr) is a family of vectors
in the rational vector space KQ we call V and W Gale dual (to each other) if
for any tuple (a1, . . . , ar) ∈ Qr the following conditions are equivalant.

(i) a1w1 + . . .+ arwr = 0
(ii) There exists a linear form u ∈ Hom(NQ,Q) such that u(vi) = ai

holds for all i = 1, . . . , r.

In order to construct Gale dual vector configurations we follow [4, II, Con-
struction 2.1.3]. Consider a pair of mutually dual exact sequences of finite
dimensional rational vector spaces.

0 // LQ
Q∗ // FQ

P // NQ // 0

0 KQoo EQ
Qoo MQ

P∗oo 0oo

If (f1, . . . , fr) and (e1, . . . , er) are mutually dual bases of FQ and EQ respec-
tively, then the following two collections in NQ and KQ respectively are Gale
dual

V := (P (f1), . . . , P (fr)) and W := (Q(e1), . . . , Q(er)).

As before let γ ⊆ EQ be the positive orthant. We define a γ-collection to be
a set B of faces of γ such that any two γ1, γ2 ∈ B admit an MQ-invariant
separating linear form f ∈ FQ in the sense that

f|MQ = 0, f|γ1
≥ 0, f|γ2

≤ 0, ker(f) ∩ γi = γ1 ∩ γ2.

For two γ-collections B1 and B2 we write B1 ≤ B2 if for every γ1 ∈ B1 there
is a γ2 ∈ B2 with γ1 ⊆ γ2. Moreover, a γ-collection B is said to be normal if
it cannot be enlarged as a γ-collection and the images Q(γ0), where γ0 ∈ B,
form the normal fan of a polyhedron.
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Recall that for a face γ0 � γ, we denote by γ∗0 = γ⊥0 ∩ γ∨ the corresponding
face of the dual cone γ∨. Now suppose that V consists of pairwise linearly
independent, non-zero vectors. Then [4, II, Section 2] provides us with an
order-reversing bijection

{normal γ-collections} → GKZ(V), B 7→
⋂
γ0∈B

P (γ∗0 ).

In particular, the rays of GKZ(V) correspond to the submaximal collections
in the sense that they are dominated only by the collection 〈γ〉 of faces which
are invariantly separable from γ.







CHAPTER

TWO

QUOTIENTS

In this chapter we will discuss different notions of quotients which can be
assigned to the action of a linear algebraic group G on a normal variety X.
In general, it is not evident how to assign such a quotient to the action of an
algebraic group. We will introduce the concepts of the GIT-limit, the closely
related limit quotient and the Chow quotient. We show that for torus actions
the normalisations of the limit quotient and the Chow quotient coincide.

Section 2.1 contains an overview of the variation of GIT-quotients, our main
sources for this are [4, 7, 14, 38]. In Sections 2.2 and 2.3 we discuss the
GIT-limit, the limit quotient and the Chow quotient, in Section 2.4 we prove
that various properties of these quotients. Small parts of Sections 2.2 and
2.3 and with minor modifications the entire Section 2.4 have already been
published in our paper ’On Chow quotients of torus actions’ (joint work with
Jürgen Hausen and Simon Keicher, see [11]). In Section 2.5 we introduce
the GIT-limit for the action of a non-reductive group. This section is part of
the author’s paper ’Point Configurations and Translations’, see [9].

2.1. Variation of GIT-Quotients

The conditions for the existence of good quotients are quite restrictive. In
fact, if the linear algebraic group G acts on a complete variety X such that
there exist a point x ∈ X with finite isotropy group and a good quotient X →
X//G, then G is finite. However, the situtation looks better if we pass to open
G-invariant subsets. By a theorem of Rosenlicht [60], for every irreducible
G-variety there exists an open G-invariant subset with a good geometric
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quotient. Naturally the question arises how one can obtain all these subsets
in systematic manner. This problem is open in general. Mumford showed
in [55] that those open subsets admitting a quasiprojective good quotient
can be obtained from linearisations of (ample) line bundles. This approach
was generalised in [38] to work for Weil divisors. Moreover, there exists
a combinatorial description for all quotients spaces with the A2-property,
see [7].

Let a reductive affine-algebraic group G act on a normal variety X. By a
good G-set U we mean a G-invariant, open subset U ⊆ X admitting a good
quotient π : U → U//G. A subset U ′ of a good G-set U is said to be saturated,
if the set U ′ coincides with π−1(π(U ′)). This is the case if and only if for

every u′ ∈ U ′ the orbit closure G · u′ ⊆ U is contained in U ′.

For a saturated subset U ′ ⊆ U of a goodG-set the quotient morphism π : U →
U//G restricts to a good quotient π : U ′ → π(U ′) with an open embedding
of the quotient spaces π(U ′) ⊆ U//G. This means that it suffices to describe
good G-sets which are maximal with respect to saturated inclusion.

A good G-set U ⊆ X is called qp-maximal if its quotient space U//G is
quasiprojective and U is maximal with respect to saturated inclusion among
those good G-sets with quasiprojective quotient spaces. We now show how
these qp-maximal sets are contructed.

As before let X be a normal variety with the action of a reductive group
G. A G-linearisation of a Weil divisor D ∈WDiv(X) is an extension of the
G-action to the relative spectrum

X(D) := SpecX(A), A :=
⊕
n∈Z≥0

Γ(X,O(nD)),

commuting with the canonical K∗-acting and making the projection equi-
variant. To such a linearised divisor we associate a set of semistable points
in the following way. A point x ∈ X is called semistable (with respect to
this particular linearised divisor) if there exists a G-invariant global section
of some positive multiple nD such that x is not contained in its zero set
and the complement of the zero set is affine. The set of semistable points is
denoted Xss(D). The quotient spaces correspond to the sets of semistable
points in the following way.

Proposition 2.1.1 ([38, Proposition 3.3], [16, Main Theorem]). Let G be a
reductive group and X a normal G-variety. Then the following assertions
hold.

(i) For every linearised divisor D on X the set Xss(D) admits a
good quotient Xss(D) → Xss(D)//G with a quasiprojective quo-
tient space.
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(ii) If U ⊆ X is qp-maximal, then there exists a linearised divisor D
on X such that U = Xss(D) holds.

(iii) The number of good G-sets of X which are maximal with respect
to saturated inclusion is finite.

Note that for any two linearised divisors D1 and D2 their sum D1 + D2

comes with a canonical linearisation, see [14, Section 1]. Moreover, D1 and
D2 are said to be isomorphic, if there exists a G×K∗-equivariant isomorphism
X(D1)→ X(D2) over X. By [14, Proposition 1.10] the isomorphism classes
of linearised divisors form the group ClG(X) of linearised Weil divisors. It
comes with a canonical homomorphisms ClG(X) → Cl(X) forgetting about
the linearisation. Furthermore, the set of semistable points Xss(D) only
depends on the class of D in ClG(X).

In the case of a principal linearised divisor D every linearisation of the corre-
sponding trivial bundle X(D) = X×K→ X is given by a character w ∈ X(G)
of G, see [14, Lemma 2.7]:

(2.1.1) G× (X ×K) → X ×K; g · (x, k) 7→ (g · x, w(g)k).

We now show how to treat the collection of qp-maximal subsets combinato-
rially. In a first step we consider different linearisations of a principal divisor
on an affine variety. For our purposes it suffices to restrict to quasitorus ac-
tions, although most of the results also hold for reductive groups, see [7]. Let
K be a finitely generated, abelian group and A a K-graded, affine K-algebra

A =
⊕
w∈K

Aw.

Its spectrum X := Spec(A) then comes with the action of the quasitorus

H := Spec(K[K]). Now, let D be a linearised principal divisor on X. Then
the linearisation is uniquely determined by some w ∈ X(H) = K as in for-
mula 2.1.1. The corresponding set of semistable points is explicitly given
by

X
ss

(w) := X
ss

(D) = {x ∈ X; f(x) 6= 0 for some f ∈ Anw with n ≥ 1}.

We now discuss which elements of K yield the same sets of semistable points.
For this we set KQ := K⊗Q and identify w and w⊗1 for an element w ∈ K.
We then define for any x ∈ X the orbit cone

ωH(x) := cone(w ∈ KQ; there exists f ∈ Aw with f(x) 6= 0).

The collection ΩX of all orbit cones is finite. The GIT-fan is the following
quasifan in KQ

ΛH(X) := {λ(w); w ∈ KQ}, λ(w) :=
⋂

w∈ωH (x)

ωH(x) ⊆ KQ.
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Its support is the the weight cone ωX := cone(w ∈ KQ; Aw 6= {0}). It

turns out that for a cone λ ∈ ΛH(X) and any two w1, w2 ∈ λ◦ the sets of
semistable points coincide. By [4, III, Lemma 1.2.7] for any w ∈ λ◦ we can
write

X
ss

(λ) := X
ss

(w) = {x ∈ X; w ∈ ωH(x)} = {x ∈ X; λ(w) ⊆ ωH(x)}.

Theorem 2.1.2 ([4, III, Theorems 1.2.8 and 1.4.3]). Let K be a finitely

generated, abelian group, A a K-graded, affine K-algebra and X = Spec(A)
its spectrum. Then there exists an order reversing bijection between the GIT-
fan ΛH(X) and the sets of semistable points of X arising from a principal
linearised divisor

ΛH(X) → {Xss
(w); w ∈ K},

λ 7→ X
ss

(λ).

In particular, for any two cones λ1, λ2 ∈ ΛH(X) in the GIT-fan we have

X
ss

(λ1) ⊆ X
ss

(λ2) ⇐⇒ λ1 ⊇ λ2,

X
ss

(λ1) = X
ss

(λ2) ⇐⇒ λ1 = λ2.

If moreover A is factorially K-graded, then every set of semistable points
stems from a principal linearised divisor, i.e. we have

{Xss
(w); w ∈ K} = {qp-maximal subsets of X}.

We now turn to the non-affine case. For this let X be a normal variety with
finitely generated divisor class group K := Cl(X), only constant invertible

functions and finitely generated Cox ring R(X). Let pX : X̂ → X be the
corresponding Cox construction. Suppose moreover that X comes with the
action of a torus T ×X → X. By [14, Proposition 3.1(iv)] this action lifts

to an action of T on X := Spec(R(X)) leaving X̂ invariant, commuting with
the H-action and turning pX into a T -equivariant morphism.

Since R(X) is K-factorial, all sets of H × T -semistable sets stem from char-
acters in X(H × T ) ∼= K ×M where M := X(T ). We now want to relate
these sets of semistable points to the sets of T -semistable points of X.

It is not true that good H × T -sets of X are in one-to-one correspondence
with the good T -sets of X. In fact, if U ⊆ X is a good H × T set, then its
image pX(U) may even fail to be a good T -set at all. However, there is a

way to surjectively map the good H × T sets of X onto the good T -sets of
X. For details on this we refer to [7, Theorem 4.5].

Let us discuss a setting in which the situation looks significantly better. In
addition to the assumptions made so far let X be projective. We want to
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relate the sets of semistable points arising from ample divisor classes to a
partial fan of the GIT-fan ΛH×T (X). For this let κ◦ ⊆ KQ denote the (open)
cone of ample divisor classes of X. By the open T -ample cone we mean
κ◦ ×MQ ⊆ KQ ×MQ and we call the partial fan

Λam
H×T (X) := {λ ∩ (κ◦ ×MQ); λ ∈ ΛH×T (X)}

the ample GIT fan of X. It describes the sets of semistable points arising
from ample linearised divisor classes in the following sense.

Proposition 2.1.3 ([7, Proposition 6.1]). Let X be a projective Mori Dream
Space and the notation be as before. Then we have an order-reversing bijec-
tion

Λam
H×T (X) −→

{
sets of semistable points

Xss(D) with D ample

}
,

λ 7→ X
ss

(λ)//H.

Note that this decomposition of the T -ample cone was originally already
considered in [24, 66]. However, it was looked at from a different point of
view, for the connection see [14]. Also it was clear to the authors that this
decomposition gives rise to the GIT-limit which we will discuss in the next
section.

2.2. The GIT-Limit and the Limit Quotient

In this section we discuss the construction of the GIT-limit and the limit quo-
tient. As we have seen in the preceding section the quotient spaces depend on
the choice of a linearised divisor. However, we would like to define a canonical
quotient space. The GIT-limit is a method of constructing such a space from
the collection of quotient spaces stemming from different semistable sets. Let
us recall the notion of an inverse system, its limit and universal property.

Definition 2.2.1. Let (I,>) be a partially ordered set and X := {Xi; i ∈ I}
a collection of objects in a category C. Assume that for any i, j ∈ I with
i ≥ j there exists a morphism ϕij : Xi → Xj . Then the pair (X , {ϕij ; i ≥ j})
is an inverse system if it satisfies the following two conditions.

(i) ϕii = idXi holds for every i ∈ I.
(ii) For any i ≥ k ≥ j the equation ϕij = ϕkj ◦ ϕik holds.

Definition 2.2.2. Let I be a partially ordered set and S := (X , {ϕij ; i ≥
j}) be an inverse system. An object X ∈ Ob(C) in a category C together
with morphisms πi : X → Xi satisfying πi = ϕij ◦πj is called its inverse limit
of S if it has the following universal property.
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For every object Y in C with morphisms ξi : Y → Xi satisfying ξi = ϕij ◦
ξj there exists a unique morphism Y → X making the following diagram
commutative.

Y
ξi

$$

ξj

��

  
X

πi //

πj

��

Xi

ϕij
~~

Xj

Remark 2.2.3. The inverse limit need not exists in a specific category;
but if it does it is unique up to isomorphy. In this case we write lim←−(S).
Moreover, in the case of algebraic varieties and a finite inverse system S the
limit has the following explicit form

lim←−(S) =

{
(xi)i∈I ∈

∏
i∈I

Xi; xj = ϕij(xi) for any i ≥ j

}
.

Construction 2.2.4. Suppose that G is a reductive affine-algebraic group
and X is a normal G-variety. Let X1, . . . , Xr ⊆ X be the open sets of
semistable points arising from G-linearised ample divisor classes on X. Then,
whenever Xi ⊆ Xj holds, the universal property of good quotients gives rise
to a commutative diagram

Xi //

��

Xj

��
Xi//G ϕij

// Xj//G

where the induced map ϕij : Xi//G → Xj//G of quotients is a dominant
projective morphism. This turns the quotient spaces into an inverse system,
the (ample) GIT-system.

Definition 2.2.5. Let S be the (ample) GIT-system for the action of G on
X. Then the GIT-limit is the inverse limit

X
GIT

/
Lim G := lim←−(S).

Although each quotient of a set of semistables points of a normal irreducible
varity is normal and irreducible again, their limit need not be. For this
consider the following counterexample.
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Example 2.2.6. Consider the action of T := K∗ on the affine toric variety
X := V (T1T2 − T3T4) ⊆ K4 given by

t · (x1 , x2 , x3 , x4) = (tx1 , t
−1x2 , t · x3 , t

−1x4).

We will now show that the GIT-limit X
GIT

/
Lim H is reducible. For this we will

explicitly compute the quotient spaces of the sets of semistable points arising
from different linearisations of a principal divisor. Note that this might
not yield the GIT-limit itself but rather a partial limit. Still, there exists a
surjective morphism from the full limit onto this partial limit which preserves
reducibility.

The idea is to view X as toric variety and deal with its sets of semistable
points and their respective quotients in terms of lattices and fans. For this
consider the action of the algebraic torus TX := (K∗)3 on X by

(t1, t2, t3) · (x1, x2, x3, x4) := (t1x1 , t2x2 , t3x3 , t1t2t
−1
3 x4).

This fixes an open embedding TX ⊆ X. The cone of convergent one-
parameter subgroups has four extremal rays in Q3 generated by

v1 = (1, 0, 0), v2 = (1, 0, 1),

v3 = (0, 1, 0), v4 = (0, 1, 1).

v4

v3

v2

v1

The T -action on X gives rise to an inclusion T ⊆ TX and hence an injection
of the respective lattices of one-parameter subgroups Z→ Z3. Explicitly this
homomorphism is given by

Q∗ : Z→ Z3; ν 7→ (ν,−ν, ν).

It fits into an exact sequence which allows us to compute the (toric) quotient
space of the sets of semistable points. For details on this see [4, II, Sec-
tion 3.1].

0 // Z
Q∗ // Z3 P // Z2 // 0

The matrix P contains as rows a basis for Z3/Im(Q∗) and can be chosen as

P =

[
2 1 −1

−1 0 1

]
.

Let us determine the sets of semistable points of X arising from the possible
linearisations of a principal divisor. For this note that the GIT-fan for the
T -action on X is the (unique) fan in Q with two maximal cones.



34 Quotients

Q≥0Q≤0

To each of the three cones there corresponds a set of semistable points

Xss(−) = XT2 ∪XT4 , Xss(0) = X, Xss(+) = XT1 ∪XT3 .

The complements of Xss(−) and Xss(+) are precisely the toric divisors which
correspond to the rays generated by v2 and v3 respectively. We then obtain a
commutative diagram where the vertical arrows are the good quotients given
by the matrix P . Note that all three fans in the top row are projectible in
the sense of [4, II, Definition 3.1.3], however in the second case not all the
faces contribute to the quotient space, see [4, II, Construction 3.1.5].

v4

v3

v1

P

��

//

v4

v3

v2

v1

P

��

v4

v2

v1

P

��

oo

P (v4)

P (v3)

P (v1)

//

P (v4)

P (v1)

P (v4)

P (v2)

P (v1)

oo

The two maps of the quotient spaces each contract a toric divisor isomorphic
to P1, hence the partial limit of these quotients (i.e. the fibre product) has
two irreducible components. The first one is isomorphic to either one of
the outer quotients, the second is P1 × P1. They intersect in a P1 and the
universal property of the fibre product yields a morphism from the GIT-limit
onto the fibre product. This shows that the GIT-limit cannot be irreducible.

Although the GIT-limit is in general not irreducible, it has a canonical ir-
reducible component. Again let Xi, i = 1, . . . , r be the sets of semistable
points arising from ample linearised divisor classes on the normal projective

variety X. Note that the GIT-limit Y := X
GIT

/
Lim G comes with a canonical

morphism

U :=

r⋂
i=1

Xi → Y.
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Definition 2.2.7. The closure of the image of U → Y is denoted by X /
LQ G

and is called the limit quotient (of X with respect to G). Its normalisation

X
∼
/

LQ G is the normalised limit quotient.

There are canonical proper birational morphisms onto the GIT quotients:

πi : X /
LQ G → Xi//G.

Suitably shrinking the open set U ⊆ X, we obtain a commutative diagram
involving the normalisation map:

U

|| ""
X

∼
/

LQ G // X /
LQ G.

Note that, in the literature, X /
LQ G is called also the ’canonical component’

of the GIT-limit, or even shortly the ’GIT-limit’. Similar to the full inverse
limit, the limit quotient X /

LQ G enjoys a universal property.

Remark 2.2.8. Given an irreducible varietyW and a collection of dominant
morphisms ψi : W → Xi//G with ψj = ϕij ◦ ψi for all i, j, there is a unique
morphism ψ : W → X /

LQ G with ψi = πi ◦ ψ for all i.

For toric varieties with the action of a subtorus of the dense torus there is
a very convenient way to compute the (normalisation) of the limit quotient.
For this we consider the following setting.

Setting 2.2.9. Let Z be a quasiprojective toric variety with acting torus
TZ and consider the action of a subtorus T ⊆ TZ . The toric variety Z arises
from a fan Σ in some Zr and T ⊆ TZ corresponds to an embedding Zk ⊆ Zr
of a sublattice. Let P : Zr → Zr−k the projection. The quotient fan of Σ
with respect to P is the fan in Zr−k with the cones

τ(v) :=
⋂

σ∈Σ,v∈P (σ)

P (σ), v ∈ Qr−k.

Proposition 2.2.10. See [23]. Consider the Setting 2.2.9, let Σ′ be the
quotient fan in Zr−k with respect to Zr → Zr−k and let Z′ the associated
toric variety. Then Z′ is isomorphic to the normalised limit quotient Z

∼
/

LQ T .

Example 2.2.11. We consider two examples.

(i) We return to Example 2.2.6 and again consider the action of T :=
K∗ on the affine toric variety X := V (T1T2 − T3T4) given by

t · (x1 , x2 , x3 , x4) := (tx1 , t
−1x2 , tx3 , t

−1x4).
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The fan of X has the single maximal cone generated by

v1 = (1, 0, 0), v2 = (1, 0, 1),

v3 = (0, 1, 0), v4 = (0, 1, 1).

The inclusion T ⊆ TX corresponds to an inclusion of the respective
lattices of one-parameter subgroups

ZT → Z3
X ; ν 7→ (ν,−ν, ν).

Then the projection P : Z3
X → Z3

X/ZT = Z2 is given by the matrix
P and from this we can compute the quotient fan.

P =

[
2 1 −1

−1 0 1

]
, Σ′ =

P (v1)

P (v2)=P (v3)

P (v4)

(ii) Consider the action of K∗ on the the projective space P4 given by

t · [x0 : x1 : x2 : x3 : x4] := [tx0 : t−1x1 : tx2 : t−1x3 : x4].

The fan of P4 is the complete fan with rays generated by

v0 = (−1,−1,−1,−1), v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0),

v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1).

The inclusion T ⊆ TX corresponds to an inclusion of the respective
lattices of one-parameter subgroups

Z→ Z4; ν 7→ (ν,−ν, ν,−ν).

Then the projection P : Z4 → Z4/Z = Z3 is given by the matrix
P and from this we can compute the quotient fan.

P =


−1 0 1 0

0 −1 0 1

0 0 1 1

 , Σ′ =

P (v0)

P (v1)

P (v2)

P (v3)

P (v4)

In this example the additional ray generated by (1, 0, 0) appears.
It corresponds to the blow-up of one of the GIT-quotients.
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2.3. The Chow Quotient

We consider the action of an affine-algebraic group G on a normal variety
X. The GIT-limit and the limit quotient have the advantage that they come
with a combinatorial description which makes them at least partially acces-
sible to computations. However, there are two main drawback of the classic
GIT-constructions. Firstly, the GIT-limit lacks being canonical insofar as it
depends on a choice of quotient spaces (namely those stemming from ample
linearised divisors). But there are examples of so-called exotic orbit spaces
which cannot be constructed from ample classes, see [14]. Secondly, clas-
sic invariant geometry heavily relies on Hilbert’s Finiteness Theorem stating
that the algebra of invariants is finitely generated if G is reductive. Although
there are examples of non-reductive groups with finitely generated invariant
algebras, this fails in general, even for relatively simple algebraic groups,
see [54, 56, 59].

Before we introduce a method to extend the notion of the GIT-limit to cer-
tain unipotent groups, we discuss an alternative approach, namely the Chow
quotient. The main idea is to view the orbits (more precisely their closures) of
some action as points in a variety parametrizing subvarieties of X, its Chow
variety. The construction behaves better than the GIT-limit concerning the
two mentioned aspects. Neither does one have to make any (relevant) choices
nor is this method restricted to a certain class of groups. However, the Chow
variety and thereby also the Chow quotient are quite hard to access. Even
for relatively simple examples the Chow variety is unknown. Surprisingly, for
torus actions the Chow quotient and the limit quotient are closely related, in
fact they share a common normalisation, for details on this we refer to the
next Section 2.4.

First let us discuss the Chow variety. It is a classical construction and was
originally introduced by Chow and van der Waerden, see [21]. Our main

source for this section is [36], but see also [51, 61]. Let P̃n := Gr(n−1, n) ∼=
Pn be the variety parametrizing hyperplanes in Pn. For a k-dimensional,
irreducible subvariety X ⊆ Pn its degree is the number of points in E ∩ X
where E is a generic point in the Grassmannian Gr(n− k, n).

Construction 2.3.1 (Chow variety of Pn). Let X ⊆ Pn be a purely k-
dimensional subvariety of degree d. We first consider the set

Γ :=
{

(x,H0, . . . , Hk); x ∈ Hi for i = 0, . . . , k
}
⊆ X × P̃k+1

n .

It is closed, purely (n(k+ 1)− 1)-dimensional and it has as many irreducible

components as does X. Now let p : Γ → P̃k+1
n be the projection. It turns

out that p is birational and its image p(Γ) is a hypersurface in P̃k+1
n . As

such it is the zero set of the so-called Chow form of X, a Zk+1-homogeneous
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polynomial

FX ∈ W := K[Tij , i = 0, . . . , n, j = 0, . . . , k]d,

where d := (d, . . . , d) ∈ Zk+1 and the grading ist given by deg(Tij) := ej .
Since FX is unique up to multiplication with a scalar, there exists a well-
defined map

ξ :


subvarieties X ⊆ Pn
of pure dimension k

and degree d

 → P(W ),

X 7→ [FX ].

This map is injective and ξ(X) is called the Chow point of X. The image

C̃(Pn, k, d) of ξ is a locally closed subset of P(W ) and its closure C(Pn, k, d)
is the Chow variety of Pn for the parameters k and d.

We now want to generalise this idea to an arbitrary projective variety Z. To
this end we choose an embedding of Z into some Pn. It turns out that the
Construction of the Chow variety is in fact independent of the choice of this
embedding.

Construction 2.3.2 (Chow variety). Let Z ⊆ Pn be a projective variety.
Then we set

C̃(Z, k, d) :=
{

[FX ] ∈ C̃(Pn, k, d); X ⊆ Z
}
.

This is a subvariety of C̃(Pn, k, d) and its closure C(Z, k, d) in C(Pn, k, d) is
called the Chow variety of Z with respect to k and n.

Remark 2.3.3. Let Y ⊆ Z ⊆ Pn be two projective varieties. Then
C(Y, k, d) ⊆ C(Z, k, d) holds for all possible choices of k and d.

Example 2.3.4. Compare [29, Chapter 4, Examples 1.2, 1.3] and [26, The-
orem 1].

(i) The Chow variety parametrising subvarieties of Pn with degree 1
and dimension k is the Grassmannian variety Gr(k, n). It is irre-
ducible and smooth and can be described by the Plücker relations.

(ii) The Chow variety of 1-dimensional subvarieties and degree 2 in P3

has two irreducible components of dimension 8. The first compo-
nent describes the subvarieties consisting of two lines, the second
parametrises quadrics.

In [49] Kapranov, Sturmfels and Zelevinsky introduced the notion of the
Chow quotient in order to obtain a somewhat canonical quotient of a group
action. As its contruction relies on the Chow variety again the Chow quotient
does not depend on the embedding.
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Construction 2.3.5 (Chow quotient). Let Z be an algebraic variety with the
action of an algebraic group G. Then on a sufficienly small open subset of Z
the closures of the G-orbits have a common dimension k and degree d. The
collection of orbit closures corresponds to a certain subset of C(Pn, k, d). Its
closure Z /

CQ G is called the Chow quotient of Z with respect to the G-action.

Construction 2.3.6. By the normalised Chow quotient X
∼
/

CQ G we mean the
normalisation of X /

CQ G. With a suitably small chosen U ⊆ X, one obtains a
commutative diagram of morphisms involving the normalisation map:

U

|| ""
X

∼
/

CQ G // X /
CQ G.

Consider the Setting 2.2.9 and assume that in addition Z is projective. In
this situation the normalised Chow quotient is a toric variety.

Proposition 2.3.7 ([49]). Consider the Setting 2.2.9 and assume that Z is
projective. Let Σ′ be the quotient fan in Zr−k with respect to Zr → Zr−k and
let Z′ the associated toric variety. Then Z′ is isomorphic to the normalised
Chow quotient Z

∼
/

CQ T .

2.4. Comparing Chow and Limit Quotient

With minor modifications this section has already been published in the
paper ’On Chow quotients of torus actions’ ([11]), which is a joint work with
Jürgen Hausen and Simon Keicher.

The limit quotient arises from the variation of Mumford’s GIT quotients [55].
Its construction relies on finiteness of the number of possible sets of semistable
points [24, 66].

For a general reductive group action, the (normalised) Chow quotient and the
(normalised) limit quotient need not coincide. For torus actions, however,
they do. This statement seems to have folklore status; a proof under a
certain hypothesis can be found in [45, Thm. 3.8]. Let us indicate how to
deduce it from the corresponding statement in the case of subtorus actions
on projective toric varieties obtained in [23, 49]. For this we consider again
the Setting 2.2.9.

Proposition 2.4.1. See [23, 49]. Consider the projective toric variety Z
arising from a fan Σ in Zr and the action of a subtorus T ⊆ TZ corre-
sponding to a sublattice Zk ⊆ Zr. Let Σ′ be the quotient fan in Zr−k with



40 Quotients

respect to Zr → Zr−k and let Z′ the associated toric variety. Then we have
a commutative diagram

TZ/T

xx �� &&
Z

∼
/

CQ T oo ∼=
//

��

Z′ oo ∼=
// Z

∼
/

LQ T

��
Z /

CQ T oo ∼=
// Z /

LQ T

In particular, the (normalised) Chow quotient and the (normalised) limit
quotient of the T -action on Z are isomorphic to each other.

We turn to the general case. The result is formulated for a projective vari-
ety X which is equivariantly embedded into a toric variety Z. Note that for
a normal projective X, this can always be achieved, even with a projective
space Z.

Proposition 2.4.2. Let Z be a projective toric variety, T ⊆ TZ a subtorus
of the big torus and X ⊆ Z a closed T -invariant subvariety intersecting TZ .
Then there is a commutative diagram

X /
CQ T33

∼=

++

embedding // Z /
CQ T jj

∼=

tt

X
∼
/

CQ T
finite //

OO

Z
∼
/

CQ T

OO

(X ∩ TZ)/T

55

))

;;

##

// TZ/T

gg

ww

__

��

X
∼
/

LQ T
finite

//

��

Z
∼
/

LQ T

��
X /

LQ T
embedding

// Z /
LQ T

where X
∼
/

CQ T → Z
∼
/

CQ T and X
∼
/

LQ T → Z
∼
/

LQ T normalise the closures of the
images of (X ∩ TZ)/T under the canonical open embeddings of TZ/T .

Proof of Proposition 2.4.2, version 1. The right part of the diagram is
Proposition 2.4.1. The closed embedding X /

CQ T → Z /
CQ T exists by the con-

struction of the Chow quotient; compare also [30, Thm. 3.2].

To obtain a morphism X /
LQ T → Z /

LQ T , consider the sets of semistable points
V1, . . . , Vs ⊆ Z defined by T -linearised ample line bundles on Z. Then the
sets Ui := X∩Vi are sets of semistable points of the respective pullback bun-
dles, see [55, Thm. 1.19] and we have induced morphisms Ui//T → Vi//T .
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Since the Ui//T form a subsystem of the full GIT-system of X, the univer-
sal property 2.2.8 yields a morphism of the limit quotients sending X /

LQ T
birationally onto the closure of (X ∩ TZ)/T .

Now look at the canonical morphism X /
CQ T → X /

LQ T provided by [50, 66].
It fits into the diagram established so far which in turn implies that X /

CQ T →
X /

LQ T is an isomorphism and X /
LQ T → Z /

LQ T is an embedding. Finally, the
respective normalisations fit into the diagram via their universal properties.
�

Note that we will only use the part of Proposition 2.4.2 concerning the
normalisations of the Chow and limit quotients. We provide another al-
ternative proof using similar arguments as above but not the isomorphism
Z /

CQ T → Z /
LQ T of Proposition 2.4.1.

Proof of Proposition 2.4.2, version 2. By the definition of the Chow
quotient, there is a canonical closed embedding X /

CQ T → Z /
CQ T and the

image is the closure B ⊆ Z /
CQ T of (X ∩ TZ)/T ; see also [30, Thm. 3.2]

The universal property of the normalisation B̃ → B provides a morphism
B̃ → X

∼
/

CQ T which turns out to be birational and finite and hence is an iso-

morphism. The closure A ⊆ Z
∼
/

CQ T of (X ∩ TZ)/T is mapped onto B under

Z
∼
/

CQ T → Z /
CQ T and for the normalisation Ã → A we obtain an induced

isomorphism Ã → B̃. Together, this gives the upper half of the following
commutative diagram:

X /
CQ T

embedding //

  

Z /
CQ T

B̃ //
∼=
xx

B

88

X
∼
/

CQ T

OO

��

Z
∼
/

CQ T

OO

Ã //

∼=

OO

∼=

��

A

OO

��

88

&&
X

∼
/

LQ T

��

Z
∼
/

LQ T

��

C̃ //&&
C

&&
X /

LQ T // Z /
LQ T.

The morphism X /
CQ T → X /

LQ T from the Chow quotient onto the limit
quotient was established in [45]. It respects the canonical embedding of

(X ∩ TZ)/T , is birational and lifts to a morphism X
∼
/

CQ T → X
∼
/

LQ T of the
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normalisations. The canonical isomorphism Z
∼
/

CQ T → Z
∼
/

LQ T is due to Propo-
sition 2.4.1.

For the remaining part of the diagram, consider the sets of semistable points
V1, . . . , Vs ⊆ Z

∼
/

CQ T0 defined by T -linearised ample line bundles on Z. Then
the sets Ui := X ∩ Vi are sets of semistable points of the respective pullback
bundles, see [55, Thm. 1.19] and we have induced morphisms Ui//T → Vi//T .
Since the Ui//T form a subsystem of the full GIT-system of X, the universal
property 2.2.8 yields a morphism of the limit quotients sending X /

LQ T bira-
tionally onto the closure C ⊆ Z /

LQ T of (X ∩ TZ)/T . For the normalisation

C̃ → C we obtain an isomorphism Ã→ C̃ and a morphism X
∼
/

LQ T → C̃. We

conclude that X
∼
/

CQ T → X
∼
/

LQ T is an isomorphism. �

Corollary 2.4.3. Let T ×X → X be the action of a torus T on a normal
projective variety X. Then the normalised Chow quotient X

∼
/

CQ T and the

normalised limit quotient X
∼
/

LQ T are isomorphic to each other.

The following corollary shows that for torus actions, the limit quotient is up
to normalisation already determined by the possible linearisations of a single
ample bundle; a statement which fails in general for other reductive groups,
compare also [50, Remark 0.4.10].

Corollary 2.4.4. Let T ×X → X be the action of a torus T on a normal
projective variety X. Then the subsystem of GIT quotients arising from
the possible T -linearisations of a given ample line bundle L has the same
normalised limit quotient as the full system of GIT quotients.

Proof. Fix a T -linearisation of L and consider the T -equivariant embedding
X → Pr defined by the a suitable power of L. Then the subsystem of the
GIT quotients on X arising from other linearisations of L is induced from
the full GIT system on Pr. Now apply Proposition 2.4.2. �

We now prove the reduction theorem. It says in particular, that the Chow
quotient of a torus action is birationally dominated by an iterated Chow
quotient with respect to K∗-actions.

Theorem 2.4.5. Let T ×X → X be the action of a torus T on a normal
projective variety X. Fix a subtorus T0 ⊆ T and set T1 := T/T0. Then we
have canonical proper birational morphisms

(X
∼
/

CQ T0)
∼
/

CQ T1 → X
∼
/

CQ T, (X
∼
/

LQ T0)
∼
/

LQ T1 → X
∼
/

LQ T.

Proof. First consider the case that T is a subtorus of the big torus TZ of a
toric variety Z. Then the maps TZ → TZ/T0 → TZ/T correspond to lattice
homomorphisms Zr → Zr−k0 → Zr−k. The fan Σ of Z lives in Zr and we
have the quotient fan Σ0 of Σ with respect to Zr → Zr−k0 . The quotient
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fan of Σ0 with respect to Zr−k0 → Zr−k refines the quotient fan of Σ with
respect to Zr → Zr−k. Translated to toric varieties, this means that we have
the desired maps

(Z
∼
/

CQ T0)
∼
/

CQ T1 → Z
∼
/

CQ T, (Z
∼
/

LQ T0)
∼
/

LQ T1 → Z
∼
/

LQ T.

We turn to the general case. Suitably embedding X, we can arrange the setup
of Proposition 2.4.2. Then we have a finite T1-equivariant map ν : X

∼
/

CQ T0 →
Z

∼
/

CQ T0. We consider the normalised limit quotient of the T1-action on X
∼
/

CQ T0.
In a first step, we establish a commutative diagram

(X ∩ TZ)/T0

vv ''
(X

∼
/

CQ T0) /
LQ T1

// (Z
∼
/

CQ T0) /
LQ T1

For this, let V1, . . . , Vs ⊆ Z
∼
/

CQ T0 be the sets of semistable points arising from

T1-linearised ample line bundles. Then the inverse images ν−1(Vi) ⊆ X
∼
/

CQ T0

are sets of semistable points of the respective pullback bundles, see [55,
Thm. 1.19]. Note that we have canonical induced maps

ν−1(Vi)//T1 → Vi//T1.

Consequently, the limit quotient of the system of the quotients ν−1(Vi)//T1

maps to the limit quotient (Z
∼
/

CQ T0) /
LQ T1. Since the ν−1(Vi)//T1 form a sub-

system of the full GIT system of X
∼
/

CQ T0, this gives rise to a morphism

(X
∼
/

CQ T0) /
LQ T1 → (Z

∼
/

CQ T0) /
LQ T1

as needed for the above commutative diagram. As in the proof of Proposi-
tion 2.4.2, we may pass to the normalisations and thus obtain a morphism

(X
∼
/

CQ T0)
∼
/

CQ T1 → (Z
∼
/

CQ T0)
∼
/

CQ T1.

Now, by the toric case, we have a proper birational morphism from the toric
variety on the right hand side onto Z

∼
/

CQ T . Using once more Proposition 2.4.2,
the assertion follows. �

2.5. The non-reductive GIT-Limit

This section has already been published in the author’s paper ’Point config-
urations and Translations’, see [9].

In this section we deal with the problem of assigning a canonical quotient to
the action of a unipotent group G on a Q-factorial, projective Mori Dream
Space X. For reductive groups an answer to this problem is the GIT-limit,
i.e. the limit of the inverse system consisting of the Mumford quotients
Xss(D)//G. However, this method relies on Hilbert’s Finiteness Theorem
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which guarantees, that for a linear action of a reductive group G on any
affine algebra the invariant algebra is affine again. So we make a further
finiteness assumption on certain G-invariants which for example holds when
G = Ga.

In [25, Definition 4.2.6] Doran and Kirwan introduce the notion of finitely
generated semistable sets for the action of a unipotent group, namely the
sets Xss

fg (D) :=
⋃
Xf where D is some ample divisor, f ∈ OnD(X)G is an

invariant section for some n > 0 and O(Xf )G is finitely generated. These
sets possess enveloped quotients

r : Xss
fg (D) → r (Xss

fg (D)) ⊆ X//DG

where the enveloping quotient X//DG is obtained by gluing together the affine
pieces Spec(O(Xf )G). Using a Gelfand-MacPherson type correspondence
described in [6] we now turn this collection of enveloped quotients into an
inverse system.

Consider the action of an affine-algebraic, simply connected group G with
trivial character group X(G) on the normal, projective variety X. Let K ⊆
WDiv(X) be a free and finitely generated group of Weil divisors mapping
isomorphically onto the divisor class group Cl(X). We then associate to X
a sheaf of graded algebras

R :=
⊕
D∈K

O(D).

We suppose that the algebra of global sections R(X), i.e. the Cox ring
of X, is finitely generated. The K-grading yields an action of the torus

H := Spec(K[K]) on the relative spectrum X̂ := SpecX(R) and the canonical

morphism p : X̂ → X is a good quotient for this action. By linearisation the
G-action on X lifts to a unique action of G on the total coordinate space
X := Spec(R(X)) which commutes with the H-action and turns p into an
equivariant morphism, see [38, Section 1].

Now suppose that the algebra of invariants R(X)G is finitely generated as

well and let Y be its spectrum. The inclusion of the invariants gives rise to
a morphism κ : X → Y . Since κ is not necessarily surjective, it need not
have the universal property of quotients. However, passing to the category

of constructible spaces we obtain a categorical quotient κ : X → Y
′

:= κ(X),
see [6] for details.

For every ample D ∈ K standard geometric invariant theory provides us with
a set of semistable points

Y
ss

(D) :=
⋃

Y f where f ∈ R(X)GnD and n > 0.
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These sets admit good quotients for the H-action which are isomorphic to
the enveloping quotient X//DG in the sense of Doran and Kirwan. The set

of finitely generated semistable points Xss
fg (D) can be retrieved from Y

ss
(D)

by

Xss
fg (D) = p(Û) where Û := κ−1(Y

ss
(D)).

The situation fits into the following commutative diagram:

X

κ

,,

X̂⊇

p

��

Û⊇
κ //

p

��

Y
ss

(D) ∩ Y ′
⊆

⊆

q

��

Y
′

Y
ss

(D)

q′

��

Y
⊆

⊆

X Xss
fg (D)⊇

r

��
V V ⊆

X//DG =

Y
ss

(D)//H

In this setting [6, Corollary 5.3] answers the question whether the morphisms
q and r are categorical quotients.

Proposition 2.5.1 ([6]). If for every v ∈ V the closed H-orbit lying in

q′−1(v) is contained in Y
′

(e.g. q′ is geometric), then q and r are categorical
quotients for the H- and G-actions respectively.

In order to define a canonical quotient for the action of G on X we first
recall the respective methods in reductive geometric invariant theory. For
the affine variety Y let Y 1, . . . , Y r be the sets of semistable points arising
from ample divisors. Whenever we have Y i ⊆ Y j for two of these set we
obtain a commutative diagram.

Y i //

��

Y j

��
Y i//H

ϕij // Y j//H

The morphisms ϕij : Y i//H → Y j//H turn the collection of quotients into an

inverse system, the GIT-system. Its inverse limit Y
GIT

/
Lim H is called GIT-limit.

There exists a canonical morphism⋂
Y i → Y

GIT

/
Lim H
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and the closure of its image is the limit quotient Y /
LQ H of Y with respect

to H. Note that in the literature this space is also called ’canonical compo-
nent’ or ’GIT-limit’. In general, the limit quotient need not be normal; its
normalisation is the normalised limit quotient Y

∼
/

LQ H.

We now turn to the non-reductive case. As constructible subsets of Y i//H
the corresponding enveloped quotients Vi inherit the above morphisms ϕij ,
and again form an inverse system.

Definition 2.5.2. The (non-reductive) GIT-limit X
GIT

/
Lim G of X with respect

to the G-action is the limit of the inverse system of enveloped quotients.

The non-reductive GIT-limit X
GIT

/
Lim G is a constructible subset of the reductive

GIT-limit Y
GIT

/
Lim H. Analogously, we obtain a canonical morphism into the

(non-reductive) GIT-limit X
GIT

/
Lim G⋂

(Y
′ ∩ Y i) → X

GIT

/
Lim G.

Definition 2.5.3. The (non-reductive) limit quotient X /
LQ G of X with re-

spect to the G-action is the closure of the image of the above morphism. Its
normalisation is the normalised limit quotient X

∼
/

LQ G.

The limit quotient in general appears to be relatively hard to access. How-
ever, if Y is factorial we can realise it up to normalisation as a certain closed
subset of a toric variety as follows. For this consider homogeneous generators
f1, . . . , fr of the K-graded algebra O(Y ). With deg(Ti) := deg(fi) we obtain
a graded epimorphism

K[T1, . . . , Tr] → O(Y ); Ti 7→ fi.

This gives rise to an equivariant closed embedding of Y into Kr. We denote
by Q the the matrix recording the weights deg(fi) as columns and fix a
Gale dual matrix P , i.e. a matrix with PQt = 0. The Gelfand-Kapranov-
Zelevinsky-decomposition (GKZ-decomposition) of P is the fan

Σ := {σ(v); v ∈ Qr−rk(K)}, σ(v) :=
⋂
v∈τ◦

τ

where τ is a cone generated by some of the columns of P . It is known that
the normalised limit quotient Kr

∼
/

LQ H is a toric variety with corresponding
fan Σ. Now suppose that Y is factorial. Then every set of semistable points
of Y arises as intersection of Y with a set of semistable points on Kr. In

this situation we obtain a closed embedding of the GIT-limits Y
GIT

/
Lim H →

Kr
GIT

/
Lim H and hence of the respective limit quotients. The inverse image of

Y /
LQ H under the normalisation map ν : Kr

∼
/

LQ H → Kr /
LQ H is in general not

normal. However, its normalisation conincides with the normalised limit
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quotient Y
∼
/

LQ H. The situation fits into the following commutative diagram.

Y
∼
/

LQ H //

%%

ν−1(Y /
LQ H) //

ν

��

Kr
∼
/

LQ H

ν

��
Y /

LQ H // Kr /
LQ H

Finally, if T is the dense torus in Kr, then ν−1(Y /
LQ H) coincides with the

closure of (Y ∩ T )/H in Kr
∼
/

LQ H. Hence we obtain a normalisation map

Y
∼
/

LQ H →
(
(Y ∩ T ) /H

)Σ
.





CHAPTER

THREE

COX RINGS AND GOOD QUOTIENTS

With minor modifications this entire chapter was first published in ’Good
quotients of Mori Dream spaces’ in Proc. Amer. Math. Soc., 139(9), 2011
published by the American Mathematical Society, see [10].

3.1. Good Quotients of Mori Dream Spaces

Let X be a normal variety over some algebraically closed field K of character-
istic zero. If X has finitely generated divisor class group and only constant
invertible global functions then one can associate to X a Cox ring; this is the
graded K-algebra

R (X) :=
⊕

Cl(X)

Γ(X,OX(D)).

In the case of torsion in Cl (X) the precise definition requires a little care; see
Section 2 for a reminder and [4] for details. We ask whether finite generation
of the Cox ring is preserved when passing to the quotient by a group action.
More precisely, for an action of a reductive affine algebraic group G on X we
consider good quotients; by definition these are affine morphisms π : U → V
with OV = (π∗OU )G where U ⊆ X may be any open G-invariant subset.

Theorem 3.1.1. Let a reductive affine algebraic group G act on a normal
variety X with finitely generated Cox ring R (X), and let U ⊆ X be an open
invariant subset admitting a good quotient π : U → U//G such that U//G
has only constant invertible global functions. Then the Cox ring R (U//G) is
finitely generated as well.
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Note that this statement was proven in [46, Theorem 2.3] for the case that X
is affine with finite divisor class group and U//G is a GIT-quotient. Moreover,
in [46, Remark 2.3.1] it was expected that (geometric) GIT-quotients of Mori
dream spaces, i.e. Q-factorial, projective varieties with finitely generated
Cox ring, are again Mori dream spaces, which is a direct consequence of
Theorem 3.1.1.

The following result is a step in the proof of Theorem 3.1.1 but it also might
be of independent interest. Let K ⊆ WDiv (X) be a finitely generated sub-
group of Weil divisors. By the sheaf of divisorial algebras associated to K we
mean the sheaf of OX -algebras

S :=
⊕
D∈K

SD, SD := OX (D) .

Theorem 3.1.2. Let X be a normal variety with finitely generated Cox ring
R(X). Then, for any finitely generated subgroup K ⊆ WDiv (X) and any
open subset U ⊆ X, the algebra of sections Γ(U,S) of the sheaf of divisorial
algebras S associated to K is finitely generated.

In particular, if X has finitely generated Cox ring, then for every open subset
U ⊆ X the algebra of regular functions Γ(U,O) is finitely generated; note
that even for affine varieties this fails in general, compare Example 3.2.2.

3.2. Proof of Theorem 3.1.2

Let us recall the construction of the Cox ring of a normal irreducible variety
X with finitely generated divisor class group and only constant invertible
global functions. Fixing a finitely generated subgroup K of the Weil divisors
such that the projection c : K → Cl (X) is surjective with kernel K0, we can
associate to K the sheaf of divisorial OX -algebras S. In order to identify the
isomorphic homogeneous components of S we fix a character χ : K0 → K(X)∗

such that div (χ(E)) = E holds for every E ∈ K0 and consider the sheaf of
ideals I locally generated by the sections 1−χ(E) where E runs through K0

and χ(E) is homogeneous of degree −E. The Cox sheaf is the sheafR := S/I
together with the Cl (X)-grading

R =
⊕

[D]∈Cl(X)

R[D], R[D] := p

 ⊕
D′∈c−1([D])

SD′

 ,

where p : S → R denotes the projection. The algebra of global sections is
called the Cox ring of X, which is - up to isomorphy - independent of the
choices of K and χ. For later use, note that by [4, I, Lemma 4.3.5] for any
open set U ⊆ X we have

Γ(U,R) ∼= Γ(U,S)/Γ(U, I).
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Moreover, from [4, I, Lemma 5.1.2] we infer that the Cox ring is invariant
when passing to a big open subset, i.e. an open subset whose complement is
of codimension at least two. In particular, the two algebras Γ(XregR) and
Γ(X,R) are equal, where Xreg denotes the set of regular points of X.

Proof of Theorem 3.1.2. For the first part of the proof we proceed as in
[5, Proposition 5.1.4]. First assume that K projects onto Cl (X). By K0 we
denote the subgroup of K consisting of principal divisors, i.e., the kernel of
the projection c : K → Cl (X), and fix a basis D1, . . . , Ds for K, such that K0

is generated by a1D1, . . . , akDk with certain ai ∈ Z≥0. Moreover, let K1 ⊆ K
be the subgroup generated by Dk+1, . . . , Ds and set K′ := K0⊕K1. We then
have the associated Veronese subsheaves

S0 :=
⊕
D∈K0

SD, S1 :=
⊕
D∈K1

SD, S ′ :=
⊕
D∈K′

SD.

We claim that Γ(X,S) is finitely generated. First note, that SD → R[D]

is an isomorphism by [4, I, Lemma 4.3.4]. Since K1 ∼= c
(
K1
)

holds, these
isomorphisms fit together to an isomorphism of sheaves

S1 =
⊕
D∈K1

SD →
⊕

D∈c(K1)

R[D] =: R1.

Since Γ(X,R) is finitely generated, the Veronese subalgebra Γ(X,R1) of
the Cox ring is as well finitely generated (cf. [4, I, Proposition 1.2.1])
which gives finite generation of Γ(X,S1). Every homogeneous function
f ∈ Γ(X,S ′E0+E1

), where Ei ∈ Ki, is a product of a homogeneous section in
Γ(X,SE1) and an invertible section g ∈ Γ(X,SE0), which itself is the product
of certain gαii with div (gi) = aiDi. Consequently, Γ(X,S ′) is generated by
the functions gi and generators of Γ(X,S1); and thus is finitely generated.
Since K′ is of finite index in K the algebra Γ(X,S) inherits finite generation
from Γ(X,S ′) by [2, Proposition 4.4].

Now, let U ( X be an arbitrary open subset. Then the complement X\U
can be written as a union of the support of an effective divisor D′ and a
closed subset of codimension at least two. Let D ∈ K be a divisor which
is linearly equivalent to D′, i.e. D′ = D + div (f) with a suitable rational
function f . Then f is contained in Γ(X,SD) and [4, I, Remark 3.1.7] shows
that Γ(U,S) = Γ(X,S)f is finitely generated.

Finally, if K ⊆ WDiv (X) does not project onto Cl (X), then we take any

finitely generated group K̃ ⊆WDiv (X) with K ⊆ K̃ projecting onto Cl (X)

and obtain finite generation of Γ(U, S̃) for the associated sheaf S̃ of divisorial
algebras. This gives finite generation for the Veronese subalgebra Γ(U,S) ⊆
Γ(U, S̃) corresponding to K ⊆ K̃. �
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Corollary 3.2.1. Let X be normal variety with finitely generated Cox ring.
Then for every open subset U ⊆ X the algebra Γ(U,O) is finitely generated.

This observation allows us to construct normal affine varieties with non-
finitely generated Cox ring.

Example 3.2.2. Let G be a connected semi-simple algebraic group and H
a unipotent subgroup such that the ring of invariants

Γ(G,O)H = Γ(G/H,O)

is not finitely generated. By [34, Corollary 2.8] there is an openG-equivariant
embedding G/H ⊆ X into a normal affine variety X. Since G is semi-simple,
X has only constant invertible global functions and by the exact sequence

0 // Pic(G/H) // Pic(G)

in [52, Proposition 3.2] the divisor class group of G/H is finitely generated.
Consequently, Cl (X) is finitely generated as well but by Corollary 3.2.1 the
Cox ring R (X) is not finitely generated. We consider the following explicit
example of Nagata [56], see also [3, 20]. Let G16 act on Z := K16 ⊕K16 by

k · (x, y) := (x, y1 + k1x1, . . . , y16 + k16x16)

Moreover, let H ⊆ G16 be a general 3-codimensional linear subspace. Then
the algebra of invariants O(Z)H of the induced H-action on Z is not finitely
generated. Since H can be viewed as a subgroup of G := SL(32), we infer
from [3, 33] that also O(G/H) is not finitely generated. Hence, the Cox ring
of any affine variety X with SL(32)/H ⊆ X has a non-finitely generated Cox
ring.

3.3. Proof of Theorem 3.1.1

We consider a smooth irreducible algebraic varietyX. Fix a finitely generated
subgroup K ⊆ WDiv (X). By smoothness of X, the associated sheaf of
divisorial algebras S is locally of finite type. This allows us to consider its

relative spectrum over X which we will denote by X̂ := SpecX(S). Note that

the regular functions on X̂ are precisely the global sections Γ(X,S). Since

S is K-graded, X̂ comes with the action of the torus H := Spec (K[K]) and

the canonical morphism p : X̂ → X is a good quotient for this action.

Now let an affine algebraic reductive group G act on X. By a G-linearisation
of the group K we mean a lifting of the G-action to the relative spectrum

X̂ commuting with the H-action and making the projection p equivariant.
Any such G-linearization yields a G-representation on the regular functions

of X̂ via g · f(x̂) = f(g−1 · x̂) and thereby induces a G-representation on
Γ(X,S). In the special case where K is a group of G-invariant divisors,



Proof of Theorem 3.1.1 53

[38, Propositions 1.3 and 1.7] show that K is canonically G-linearized and
the induced representation on the global sections Γ(X,S) coincides with the
action of G on the rational functions of X given by g · f(x) = f(g−1 · x).

Lemma 3.3.1. Let an affine algebraic reductive group G act on the normal
variety X and let U ⊆ X be an open G-invariant subset which admits a
good quotient π : U → U//G. If Cl (X) is finitely generated then Cl (U//G) is
finitely generated as well.

Proof. Without loss of generality we assume X and U//G to be smooth.
From [52, Proposition 4.2] we infer that the pullback homomorphism

π∗ : Pic (U//G) → PicG(U)

into the classes of G-linearised line bundles is injective. It therefore suffices
to show that PicG(U) is finitely generated. By [52, Lemma 2.2] the following
sequence is exact

H1
alg(G,O(U)∗) // PicG(U) // Pic(U).

Note that the group of algebraic cocycles H1
alg (G,O(U)∗) is finitely generated

by the exact sequence in [52, Proposition 2.3]

X(G) // H1
alg (G,O(U)∗) // H1

(
G/G0, E (U)

)
,

where G/G0 is finite and E (U) = O(U)∗/K∗ is finitely generated by [52,
Proposition 1.3]. �

Proof of Theorem 3.1.1. Without loss of generality we assume X and U//G
to be smooth. By Lemma 3.3.1 we can choose a finitely generated group K
of Weil divisors on the quotient space U//G projecting surjectively onto the
divisor class group Cl (U//G). With S denoting the sheaf of divisorial algebras
associated to K, the Cox ring R (U//G) is the quotient of Γ(U//G,S) by the
ideal Γ(U//G, I). Thus it suffices to show that the algebra of global sections
Γ(U//G,S) is finitely generated.

The pullback group π∗K consists of invariant Weil divisors on U . It is there-
fore canonically G-linearized and we have the corresponding G-representation
on the algebra Γ(U, T ) where T denotes the sheaf of divisorial algebras asso-
ciated to the group π∗K. We claim that we have a pullback homomorphism
mapping Γ(U//G,S) injectively onto the algebra Γ(U, T )G of invariant sec-
tions of Γ(U, T ):

π∗ : Γ(U//G,S) → Γ(U, T )G, Γ(U//G,SD) 3 f 7→ π∗f ∈ Γ(U, Tπ∗D).

We first note that every pullback section π∗f ∈ Γ(U, Tπ∗D) is indeed G-
invariant because π∗K is canonically G-linearized and π∗f is G-invariant as
a rational function on U . On each homogeneous component of Γ(U//G,S) the
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map π∗ is injective because it is the pullback with respect to the surjective
morphism π : U → U//G. Since π∗ is graded this yields injectivity of π∗ as an
algebra homomorphism. For surjectivity it suffices to show that every homo-
geneous G-invariant section is a pullback section because the actions of G and
H commute and, thus, Γ(U, T )G is a graded subalgebra of Γ(U, T ). Consider
a G-invariant homogeneous section f ∈ Γ(U, Tπ∗D). Since f is invariant as
a rational function in K(U) and it is regular on U ′ := U\π−1 (Supp (D)), it

descends to a regular function f̃ on π(U ′) which is an open subset of U//G.
Observe that we have

π∗(div(f̃) +D) = div (f) + π∗D ≥ 0.

In particular, we obtain that the divisor div(f̃) +D is effective and thus f̃ is

a section in Γ(U//G,SD). By construction f equals the pullback π∗f̃ ; hence
our claim follows.

Thus the algebras Γ(U//G,S) and Γ(U, T )G are isomorphic. The algebra
Γ(U, T ) is finitely generated by Theorem 3.1.2. Hilbert’s Finiteness Theorem
then shows that the invariant algebra Γ(U, T )G is finitely generated as well.
�







CHAPTER

FOUR

COX RINGS AND BLOW-UPS

With minor modifications all sections of this chapter have already been pub-
lished. Section 4.1 is the third section of the paper ’On Chow quotients of
torus actions’ ([11]), which is a joint work with Jürgen Hausen and Simon
Keicher. The remaining sections are published as the author’s paper ’On the
Cox ring of blowing up the diagonal’, see [8].

Let Z be a Mori Dreams Space with Cox construction p : Ẑ → Z and π : Z′ →
Z the blow-up in a subscheme. In general it is not true that Z′ is a Mori
Dream Space again. However, if Z and the center of the blow-up are toric,
then so is Z′. This clearly preserves finite generation of the Cox ring. In
this case on the level of total coordinate spaces the blow-up is given by a
morphism of affine spaces

π : Kr+1 = Z
′ −→ Z = Kr.

Now consider an embedding of a Mori Dream Space X into the toric varity Z

such that X := p−1(X) ⊆ Z is a total coordinate space for X. Then we ask

whether π−1(X) ⊆ Z′ is a total coordinate space for the proper transform X ′

of X under the toric blow-up Z′ → Z. In general this fails. In the upcoming
chapter we provide a criterion in which cases this is true and perform these
ambient modifications for two classes of examples.

4.1. Toric ambient Modifications

In this section, we provide a general machinery to study the effect of modifi-
cations on the Cox ring. Similar to [39], we use toric embeddings. In contrast
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to the geometric criteria given there, our approach here is purely algebraic,
based on results of [12]. The heart is a construction of factorially graded
rings out of given ones.

We begin with recalling the necessary algebraic concepts. Let K be a finitely
generated abelian group and R a finitely generated integral K-graded K-
algebra. A homogeneous nonzero nonunit f ∈ R is called K-prime if f | gh
with homogeneous g, h ∈ R always implies f | g or f | h. The algebra R is
called factorially K-graded if every homogeneous nonzero nonunit f ∈ R is
a product of K-primes.

We enter the construction of factorially graded rings. Consider a grading of
the polynomial ring K[T1, . . . , Tr1 ] by a finitely generated abelian group K1

such that the variables Ti are homogeneous. Then we have a pair of exact
sequences

0 // Zk1
Q∗1 // Zr1

P1 // Zn

0 oo K1
oo
Q1

Zr1 oo
P∗1

Zn oo 0

whereQ1 : Zr1 → K1 is the degree map sending the i-th canonical basis vector
ei to deg(Ti) ∈ K1. We enlarge P1 to a n × r2 matrix P2 by concatenating
further r2 − r1 columns. This gives a new pair of exact sequences

0 // Zk2
Q∗2 // Zr2

P2 // Zn

0 oo K2
oo
Q2

Zr2 oo
P∗2

Zn oo 0

Construction 4.1.1. Given a K1-homogeneous ideal I1 ⊆ K[T1, . . . , Tr1 ],
we transfer it to a K2-homogeneous ideal I2 ⊆ K[T1, . . . , Tr2 ] by taking ex-
tensions and contractions according to the scheme

K[T1, . . . , Tr2 ]

ı2

��

K[T1, . . . , Tr1 ]

ı1

��
K[T±1

1 , . . . , T±1
r2 ] oo

π∗2
K[S±1

1 , . . . , S±1
n ]

π∗1

// K[T±1
1 , . . . , T±1

r1 ]

where ı1, ı2 are the canonical embeddings and π∗i are the homomorphisms of
group algebras defined by P ∗i : Zn → Zri .
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Now let I1 ⊆ K[T1, . . . , Tr1 ] be a K1-homogeneous ideal and I2 ⊆
K[T1, . . . , Tr2 ] the transferred K2-homogeneous ideal. Our result relates
factoriality properties of the algebras R1 := K[T1, . . . , Tr1 ]/I1 and R2 :=
K[T1, . . . , Tr2 ]/I2 to each other.

Theorem 4.1.2. Assume R1, R2 are integral, T1, . . . , Tr1 define K1-primes
in R1 and T1, . . . , Tr2 define K2-primes in R2. Then the following statements
are equivalent.

(i) The algebra R1 is factorially K1-graded.
(ii) The algebra R2 is factorially K2-graded.

Proof. First observe that the homomorphisms π∗j embed K[S±1
1 , . . . , S±1

n ] as
the degree zero part of the respective Kj-grading and fit into a commutative
diagram

I2 ⊆

��

K[T1, . . . , Tr2 ]

ı2

��

K[T1, . . . , Tr1 ]

ı1

��

I1

��

⊇

I ′2 ⊆ K[T±1
1 , . . . , T±1

r2 ]

ψ : Ti 7→

Ti 1≤i≤r1

1 r1+1≤i≤r2
// K[T±1

1 , . . . , T±1
r1 ] I ′1⊇

I ′′2

OOff

K[S±1
1 , . . . , S±1

n ]

π∗2

hh

π∗1

66

I ′′1

OO 88

The factor ring R′1 of the extension I ′1 := 〈ı1(I1)〉 is obtained from R1 by
localization with respect to K1-primes T1, . . . , Tr1 :

R′1 := K[T±1
1 , . . . , T±1

r1 ]/I ′1 ∼= (R1)T1···Tr1 .

The ideal I ′′1 is the degree zero part of I ′1. Thus, its factor algebra is the
degree zero part of R′1:

R′′1 := K[T±1
1 , . . . , T±1

r1 ]0/I
′′
1
∼= (R′1)0.

Note that K[T±1
1 , . . . , T±1

r1 ] and hence R′1 admit units in every degree. Thus,
[12, Thm. 1.2] yields that R1 is a factorially K1-graded if and only if R′′1 is
a UFD.

The homomorphism ψ restricts to an isomorphism ψ0 of the respective degree
zero parts. Thus, the shifted ideal I ′′2 := ψ−1

0 (I ′′1 ) defines an algebra R′′2
isomorphic to R′′1 :

R′′2 := K[T±1
1 , . . . , T±1

r2 ]0/I
′′
2
∼= R′′1 .

The ideal I ′2 :=
〈
π∗2((π∗0)−1(I ′1))

〉
has I ′′2 as its degree zero part and

K[T±1
1 , . . . , T±1

r2 ] admits units in every degree. The associated K2-graded
algebra

R′2 := K[T±1
1 , . . . , T±1

r2 ]/I ′2
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is the localization of R2 by the K2-primes T1, . . . , Tr2 . Again by [12,
Thm. 1.2] we obtain that R′′2 is a UFD if and only if R2 is factorially K2-
graded. �

The following observation is intended for practical purposes; it reduces, for
example, the number of necessary primality tests.

Proposition 4.1.3. Assume that R1 is integral and the canonical map K2 →
K1 admits a section (e.g. K1 is free).

(i) Let T1, . . . , Tr1 define K1-primes in R1 and Tr1+1, . . . , Tr2 define
K2-primes in R2. If no Tj with j ≥ r1 +1 divides a Ti with i ≤ r1,
then also T1, . . . , Tr1 define K2-primes in R2.

(ii) The ring R2 is integral. Moreover, if R1 is normal and
Tr1+1, . . . , Tr2 define primes in R2 (e.g. they are K2-prime and
K2 is free), then R2 is normal.

Proof. The exact sequences involving the grading groups K1 and K2 fit
into a commutative diagram where the upwards sequences are exact and
Zr2−r1 → K′2 is an isomorphism:

0 0 0

0 oo K1
oo Q1

OO

Zr1 oo
P∗1

OO

Zn oo

OO

0

0 oo K2
oo

Q2

OO

Zr2 oo
P∗2

OO

Zn oo

OO

0

K′2

OO

oo Zr2−r1 oo

OO

0

OO

0

OO

0

OO

Moreover, denoting by K′1 ⊆ K2 the image of the section K1 → K2, there is
a splitting K2 = K′2 ⊕ K′1. As K′2 ⊆ K2 is the subgroup generated by the
degrees of Tr1+1, . . . , Tr2 , we obtain a commutative diagram

K[T1, . . . , Tr2 ]

ı2

��
K[T1, . . . , Tr1 , T

±1
r1+1, . . . , T

±1
r2 ]

ψ : Ti 7→

Ti 1≤i≤r1

1 r1+1≤i≤r2
// K[T1, . . . , Tr1 ]

K[T1, . . . , Tr1 , T
±1
r1+1, . . . , T

±1
r2 ]

0

µ

OO

∼=

22
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where the map µ denotes the embedding of the degree zero part with respect
to the K′2-grading. By the splitting K2 = K′2⊕K′1, the image of µ is precisely
the Veronese subalgebra associated to the subgroup K′1 ⊆ K2. For the factor
rings R2 and R1 by the ideals I2 and I1, the above diagram leads to the
following situation

R2

ı2

��
(R2)Tr1+1···Tr2

ψ // R1

(
(R2)Tr1+1···Tr2

)
0

µ

OO

∼=

66

To prove (i), consider a variable Ti with 1 ≤ i ≤ r1. We have to show that Ti
defines a K2-prime element in R2. By the above diagram, Ti defines a K′1-
prime element in ((R2)Tr1+1···Tr2 )0, the Veronese subalgebra of R2 defined

by K′1 ⊆ K2. Since every K2-homogeneous element of (R2)Tr1+1···Tr2 can be

shifted by a homogeneous unit into ((R2)Tr1+1···Tr2 )0, we see that Ti defines a

K2-prime in (R2)Tr1+1···Tr2 . By assumption, Tr1+1, . . . , Tr2 define K2-primes
in R2 and are all coprime to Ti. It follows that Ti defines a K2-prime in R2.

We turn to assertion (ii). As just observed, the degree zero part
((R2)Tr1+1···Tr2 )0 of the K′2-grading is isomorphic to R1 and thus integral

(normal if R1 is so). Moreover, the K′2-grading is free in the sense that the
associated torus Spec (K[K′2]) acts freely on Spec ((R2)Tr1+1···Tr2 ). It follows

that (R2)Tr1+1···Tr2 is integral (normal if R1 is so). Construction 4.1.1 gives
that R2 is integral. Moreover, if Tr1+1, . . . , Tr2 define primes in R2, we can
conclude that R2 is normal. �

Let us apply the results to Cox rings. We first briefly recall the basic def-
initions and facts; for details we refer to [4]. For a normal variety X with
finitely generated divisor class group Cl(X) and Γ(X,O∗) = K∗, one defines
its Cox ring as the graded ring

R(X) :=
⊕

Cl(X)

Γ(X,O(D)).

This ring is factorially Cl(X)-graded. Moreover, ifR(X) is finitely generated,
then one can reconstruct X from R(X) as a good quotient of an open subset
of Spec (R(X)) by the action of Spec (K[Cl(X)]).

Now return to the setting fixed at the beginning of the section and assume
in addition that the columns of P2 are pairwise different primitive vectors in
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Zn and those of P1 generate Qn as a convex cone. Suppose we have toric

Cox constructions πi : Ẑi → Zi, where Ẑi ⊆ Kri are open toric subvarieties
and πi are toric morphisms defined by Pi, see [22]. Then the canonical map
Z2 → Z1 is a toric modification. Consider the ideal I1 as discussed before
and the geometric data

X1 := V (I1) ⊆ Kr1 , X̂1 := X1 ∩ Ẑ1, X1 := π1(X̂1) ⊆ Z1.

Assume that R1 is factorially K1-graded and T1, . . . , Tr1 define pairwise
nonassociated prime elements in R1. Then R1 is the Cox ring of X1, see [4].
Our statement concerns the Cox ring of the proper transform X2 ⊆ Z2 of
X1 ⊆ Z1 with respect to Z2 → Z1.

Corollary 4.1.4. In the above setting, assume that R2 is normal and the
variables T1, . . . , Tr2 define pairwise nonassociated K2-prime elements in R2.
Then the K2-graded ring R2 is the Cox ring of X2.

Proof. According to Theorem 4.1.2, the ring R2 is factorially K2-graded.

Moreover, with the toric Cox construction π2 : Ẑ2 → Z2, we obtain that R2

is the algebra of functions of the closure X̂2 ⊆ Ẑ2 of π−1
2 (X2 ∩ Tr2). Thus,

[4] yields that R2 is the Cox ring of X2. �

Example 4.1.5. We start with the UFD R1 = K[T1, . . . , T8]/I1, where the
ideal I1 is defined as

I1 = 〈T1T2 + T3T4 + T5T6 + T7T8〉.

The ideal I1 is homogeneous with respect to the standard grading given by
Q1 = [1, . . . , 1]. A Gale dual is P1 = [e0, e1, . . . , e7], where e0 = −e1− . . .−e7

and ei are the canonical basis vectors. Concatenating e1 + e3 gives a matrix
P2. The resulting UFD is R2 = K[T1, . . . , T9]/I2 with

I2 = 〈T1T2T9 + T3T4T9 + T5T6 + T7T8〉.

4.2. On blowing up the Diagonal

In recent literature it has been discussed how the Cox ring behaves under
blow-ups. In particular, it is of interest whether finite generation is preserved
in this process, and, if so what a presentation in terms of generators and
relations looks like, see for example [19, 20, 32, 40, 41, 58].

In this section we employ the techniques of toric ambient modifications de-
veloped in the preceding section and [11, 40] to compute the Cox rings of
the following blow-ups. Let X ′ := Pn1 × . . .× Pnr be a product of projective
spaces and denote by ∆X ⊆ X := X ′ × X ′ the diagonal. The variety X is
spherical and Bl∆X (X) inherits this property. Hence, it is known that the
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Cox ring R(Bl∆X (X)) is finitely generated, see [4, 17]. Our first result is an
explicit presentation.

Theorem 4.2.1. The Cox ring R(Bl∆X (X)) of the blow-up Bl∆X (X) is
isomorphic to the Zr × Zr × Z-graded factor algebra RX/IX where

RX : = K[T∞, rTij ; r = 1, . . . , r, 0 ≤ i < j ≤ nr + 2, i ≤ nr],
IX : = I(1) + . . .+ I(r),

for every r = 1, . . . , r the ideal I(r) is generated by the twisted Plücker rela-
tions

rTij T∞ − rTik rTjk + rTil rTjk; 0 ≤ i < j ≤ nr, k = nr + 1, l = nr + 2,

rTij rTkl − rTik rTjk + rTil rTjk; 0 ≤ i < j < k < l ≤ nr + 2, k ≤ nr

and the grading of RX/IX is given by

deg (T∞) = (0, 0, 1), deg (rTij) =


(er, 0, 0) if j = nr + 1,

(0, er, 0) if j = nr + 2,

(er, er,−1) else.

In particular, the spectrum of the Cox ring R(Bl∆X (X)) is the intersection
of a product of affine Grassmannian varieties (w.r.t. the Plücker embedding)
with a linear subspace.

As a second class of examples we treat the (non-spherical) blow-up of the
variety Y := Pn1 in the generalised diagonal ∆Y := {(x, . . . , x); x ∈ P1} ⊆ Y .
Again we prove that the Cox ring of Bl∆Y (Y ) is finitely generated and we
give an explicit presentation.

Theorem 4.2.2. The Cox ring R(Bl∆Y (Y )) of the blow-up Bl∆Y (Y ) is
isomorphic to the Zn+1-graded factor algebra RY /IY where

RY := K[Sij ; 1 ≤ i < j ≤ n+ 2]

IY := 〈SijSkl − SikSjl + SilSjk; 1 ≤ i < j < k < l ≤ n+ 2 〉,

and the grading of RY /IY is given by

deg (Sij) =


ei if i ≤ n, j = n+ 1, n+ 2,

en+1 if i = n+ 1, j = n+ 2,

ei + ej − en+1 else.

4.3. Proofs of Theorems 4.2.1 and 4.2.2

Let us recall some definitions, for details see [4]. Let Z be a normal variety
with free and finitely generated divisor class group K := Cl(Z) and only
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constant invertible regular functions. Then we define its Cox ring as the
K-graded K-algebra

R(Z) :=
⊕
K

Γ(Z,O(D)).

If the Cox ring R(Z) is finitely generated, we call its spectrum Z :=
Spec(R(Z)) the total coordinate space of Z. The K-grading of R(Z) gives

rise to an action of the quasitorus HZ := Spec(K[K]) on Z. Moreover, there

exists an open invariant subset, the characteristic space, Ẑ ⊆ Z admitting a

good quotient pZ : Ẑ → Ẑ//HZ ∼= Z for this action.

Before we enter the proofs we will sketch the methods developed in [11, 40]
but see also Chapter 6, Section 6.4. Let Z be a toric variety with Cox

construction pZ : Ẑ → Z, total coordinate space Z = Kr and an ample class
w ∈ K in the divisor class group.

Now let A be a subscheme of Z; we ask for the Cox ring of the blow-up
BlA(Z) of Z in A. By Cox’ construction [22] the subscheme A arises from a
homogeneous ideal a = 〈f1, . . . , fl〉 in the K-graded Cox ring R(Z). For this

consider the associated K-graded sheaf ã on Z; then A is given by (pZ∗ã)0.
As a first step we embedd Z into a larger toric variety Z1 such that the
blow-up can be dealt with using methods from toric geometry. For this we
consider the closed embedding

π : Kr → Kr1 ; z 7→ (z, f1(z), . . . , fl(z)),

where r1 := r + l. We endow K[T1, . . . , Tr1 ] with a grading of K1 := K by
assigning to T1, . . . , Tr the original K-degrees and setting deg(Tr+i) := deg fi
for the remaining variables. Then the quasitorus HZ1 := Spec(K[K1]) acts on

the affine space Z1 := Kr1 and this makes π equivariant. The class w ∈ K1

gives rise to an open subset Ẑ1 ⊆ Z1 and a toric variety Z1 := Ẑ1//HZ1 .

The closed embedding π restricts to a closed embedding π̂ : Ẑ → Ẑ1 of the
corresponding characteristic spaces and then descends to a closed embedding
π : Z → Z1 of the respective quotients. The setting fits into the following
commutative diagram.

Z
π // Z1

Ẑ
π̂ //

//HZ

��

OO

Ẑ1

//HZ1

��

OO

Z
π // Z1
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The idea is to compute the Cox ring of the proper transform Z′ of Z ⊆ Z1

with respect to a toric blow-up of Z1. The following lemma relates Z′ to the
blow-up BlA(Z). Although the result was to be expected, we do not know of
a reference and provide a proof.

Lemma 4.3.1. Let b ⊆ O(Z1) be a K1-homogeneous ideal and let B be
the corresponding subscheme of Z1. Then the proper transform of Z ⊆ Z1

under the blow-up BlB(Z1) → Z1 is isomorphic to the blow-up of Z in the

subscheme of Z associated to the K-homogeneous ideal π∗b ⊆ O(Z).

Remark 4.3.2. If we apply Lemma 4.3.1 in the case b := 〈Tr+1, . . . , Tr1 〉,
then we obtain a = π∗b and the proper transform Z′ of Z ⊆ Z1 is the blow-
up of Z in A. Moreover, if a is prime, then the associated subscheme A is
the subvariety pZ(V (a)) and Z′ is the ordinary blow-up of Z in pZ(V (a)).

Proof of Lemma 4.3.1. First blow-ups are determined locally. We consider

a suitable partial open cover of Ẑ1 and of the characteristic space Ẑ. Let
w ∈ K = K1 be an ample class of Z as above. We set

Γ :=
{
γ ∈ {0, 1}r1 ; w ∈ relint ( cone (deg Ti; where γi = 1) )

}
.

Then Ẑ1 is covered by the HZ1 -invariant sets Z1γ := Z1 \ V (T γ) where

γ ∈ Γ. We now determine a partial cover which already contains π(Ẑ). For
this we consider the subset

Γ′ := Γ ∩ ({0, 1}r × {0}l) ⊆ Γ.

Then the corresponding open subvarieties cover the image of π. More pre-
cisely, if we set Zγ := π−1(Z1γ), then we have

Ẑ =
⋃
γ∈Γ′

Zγ and hence π(Ẑ) ⊆
⋃
γ∈Γ′

Z1γ .

Moreover, we denote by Zγ := Zγ//HZ and Z1γ := Z1γ//HZ1 the respective
quotient spaces and fix some γ ∈ Γ′. If we set I1 ⊆ K[T1, . . . , Tr1 ] as the
ideal generated by all the Tr+i − fi, then the image of π is given by V (I1).

The morphism π factors into an isomorphism π′ : Z → V (I1) and a closed

embedding ι : V (I1)→ Z1.

On the algebraic side we set A := O(Z) and B := O(Z1). We write
Bγ , (B/I)γ and Aγ for the localised algebras and B(0), (B/I)(0) and A(0)
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for their respective homogeneous components of degree zero. Then the situ-
ation fits into the following commutative diagrams.

Z
π′ // V (I1)

ι // Z1

Zγ
π′γ //

OO

��

V (I1) ∩ Z1γ

OO

��

ιγ // Z1γ

OO

��
Zγ

π′ // Zγ
ι // Z1γ

A

��

B/I1//π′∗oo

��

B
ι∗oooo

��
Aγ (B/I1)γ//

π′∗γoo Bγ
ι∗γoooo

A(0)

OO

(B/I1)(0)

OO

//π′∗oo B(0)
ι∗oooo

OO

The proper transform of Zγ ⊆ Z1γ is the blow-up of Zγ with center given by
the affine scheme associated to the ideal ι∗b(0) ⊆ (B/I1)(0). Our assertion
then follows from the fact that in A(0) the ideals π′∗(ι∗b(0)) and (π∗b)(0)

coincide. �

Construction 4.3.3. Let b be the ideal 〈Tr+1, . . . , Tr1 〉 and Z′ → Z the
proper transform of Z ⊆ Z1 with respect to the toric blow-up BlB(Z1)→ Z1.
We turn to the problem of determining the Cox ring R(Z′). For this we set
r2 := r1 + 1 and consider the r1 × r2-matrix

A := [Er1 ,1l], where 1l := (0, . . . , 0︸ ︷︷ ︸
r

, 1 . . . , 1︸ ︷︷ ︸
l

)t.

The dual map A∗ : Zr1 → Zr2 yields a homomorphism α∗ of group algebras
and a morphism α : (K∗)r2 → (K∗)r1 . Together with the canonical embed-
dings ι∗1 and ι∗2 we now have to transfer the ideal

I1 := 〈Tr+i − fi; i = 1, . . . , l 〉 ⊆ K[T1, . . . , Tr1 ]

by taking extensions and contractions via the construction

I1

��

I ′1 := 〈 ι∗1I1 〉

��

I ′2 := 〈α∗I ′1 〉

��

I2 := ι∗2
−1I ′2

��
K[T1, . . . , Tr1 ]

ι∗1 // K[T±1
1 , . . . , T±1

r1 ]
α∗ // K[T±1

1 , . . . , T±1
r2 ] K[T1, . . . , Tr2 ]

ι∗2oo

and call the resulting ideal I2. If we endow K[T1, . . . , Tr2 ] with the grading
of K2 := K1 × Z given by

deg(Ti) :=


(degK1

(Ti), 0) for 1 ≤ i ≤ r,
(degK1

(Ti),−1) for r + 1 ≤ i ≤ r1,

(0, 1) for i = r2,

then I2 is K2-homogeneous and the following Proposition provides us with a
criterion to show that I2 defines the desired Cox ring.
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Proposition 4.3.4 (Proposition 4.1.3 and Corollary 4.1.4). If in the K2-
graded ring R2 := K[T1, . . . , Tr2 ]/I2 the variable Tr2 is prime and does not
divide a Ti with 1 ≤ i ≤ r1, then R2 is Cox ring of the proper transform Z′.

We return to our two cases of X = X ′ ×X ′ and Y = Pn1 . Both of them are
toric varieties, their respective Cox rings are polynomial rings and the total
coordinate spaces are

X =

r⊕
r=1

(Knr+1 ⊕Knr+1 ) and Y = K2 ⊕ . . .⊕K2︸ ︷︷ ︸
n

.

On X we will label the coordinates of the r-th factor with rTij where i =
0, . . . , nr and j = nr + 1, nr + 2. On Y we will use the notation Sij for the
coordinates where similarly i = 1, . . . , n and j = n+ 1, n+ 2.

The first step is to determine generators for the vanishing ideals of the gen-
eralised diagonals ∆X and ∆Y in the respective Cox rings, i.e. the ideals

aX := I(p−1
X (∆X)) ⊆ O(X) and aY := I(p−1

Y (∆Y )) ⊆ O(Y ).

Lemma 4.3.5. As above let aX and aY be the ideals of the generalised
diagonals ∆X and ∆Y in the respective Cox rings. Both of them are prime
and they are generated by the following elements.

(i) The ideal aX is generated by the 2× 2-minors of the matrices[
rT0,nr+1 rT1,nr+1 · · · rTnr,nr+1

rT0,nr+2 rT1,nr+2 · · · rTnr,nr+2

]
, r = 1, . . . , r.

(ii) The ideal aY is generated by the 2× 2-minors of the matrix[
S1,n+1 S2,n+1 · · · Sn,n+1

S1,n+2 S2,n+2 · · · Sn,n+2

]
.

The idea of the proof is to execute the computations on the respective tori.
For future reference let us make the following remark.

Remark 4.3.6. Let ι : (K∗)n → Kn be the canonical open embedding and
ι∗ its comorphism. If I ⊆ K[T1, . . . , Tn] a prime ideal not containing any of
the variables Ti, then (ι∗)−1〈ι∗(I)〉 = I holds.

Proof. The affine variety X := V (J) is irreducible and it intersects (K∗)n.
Hence we have I(X) = I(X ∩ (K∗)n) and this implies

X = X = V (I(X)) = V (I((K∗)n ∩X)) = (K∗)n ∩X.
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Since J is prime, the claim follow from

J = I(X) = I((K∗)n ∩X) = I(ι(ι−1(X)))

= I(ι(V (ι∗J))) = I(V ((ι∗)−1ι∗J)).

�

Proof of Lemma 4.3.5. Let pZ : Ẑ → Z be the Cox construction of a toric
variety Z and Z its total coordinate space. We view the toric morphism pZ
as a mophism TẐ → TZ of the openly embedded dense tori. Moreover, we

denote by ∆ ⊆ Z a subvariety with ∆ = ∆ ∩ TZ and write ι′ : Ẑ → Z and
ι : TẐ → Z for the canonical open embeddings.

TẐ

ι

$$
//

pZ

��

Ẑ

pZ

��

ι′ // Z

TZ // Z ∆⊇

Let d ⊆ O(TZ) be the vanishing ideal of ∆ ∩ TZ . For the vanishing ideal of
∆ in the Cox ring we obtain

I(ι′(p−1
Z (∆))) = I(ι(p−1

Z (∆ ∩ TZ))) =
√

(ι∗)−1(p∗Zd).

We turn to i) and label the coordinates of

TX = ((K∗)n1 × (K∗)n1)× . . .× ((K∗)nr × (K∗)nr)

by rUij where r = 1, . . . , r, i = 1, . . . , nr and j = nr + 1, nr + 2. Then the
comorphism p∗X of the corresponding Laurent polynomial rings is given as

p∗X : K[rU
±
ij ] → K[rT

±
ij ]; rUij 7→ rTij rT

−1
0j .

The vanishing ideal of ∆X ∩ TX is generated by

rUi,nr+1 − rUi,nr+2 where r = 1, . . . , r, and i = 1, . . . , nr.

Note that for any r = 1, . . . , r and i, i′ = 1, . . . , nr this ideal also contains
the elements

rUi,nr+1 rU
−1
i′,nr+1 − rUi,nr+2 rU

−1
i′,nr+2.

Pulling back all these equation via p∗X yields the ideal ι∗X(aX) in the Laurent
polynomial ring O(TX̂). Since aX is an ideal of 2× 2-minors, it is prime (in
fact, it is the vanishing ideal of the Segre embedding). Hence Remark 4.3.6
gives our assertion.
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We turn to ii) and proceed analogously. Here the coordinates of the dense
torus TY = (K∗)n will be labeled Ui with i = 1, . . . , n. The comorphism p∗Y
is given by

p∗Y : K[U±i ] → K[T±ij ]; Ui 7→ Ti,n+1 T
−1
i,n+2.

In O(TY ) the ideal of ∆Y ∩ TY is generated by the relations Ui − Uj for
1 ≤ i < j ≤ n. Pulling them back via p∗Y yields the ideal ι∗aY and the same
argument as in i) yields the assertion. �

We denote the functions from Lemma 4.3.5 by rfij ∈ O(X) and gij ∈ O(Y )
where r corresponds to the r-th matrix and in both cases i, j define the
respective columns. These functions rfij and gij give rise to the stretched
embeddings

πX :

r⊕
r=1

K2(nr+1) →
r⊕
r=1

(
K2(nr+1) ⊕K(nr+1

2 )
)

(x1, . . . , xr) 7→ ( (x1, 1fij(x1)) , . . . , (xr, rfij(xr)) )

πY : K2n → K2n ⊕K(n2)

y 7→ (y, gij(y)).

The vanishing ideals of the images are given by

IX,1 := 〈 rTij − rfij ; r = 1, . . . , r, 0 ≤ i < j ≤ nr + 2, i ≤ nr 〉,
IY,1 := 〈Sij − gij ; 1 ≤ i < j ≤ n+ 2, i ≤ n 〉.

We denote by ι∗X,1, ι
∗
X,2, α

∗
X and ι∗Y,1, ι

∗
Y,2, α

∗
Y the respective morphisms

from Construction 4.3.3. The new Laurent polynomial rings are then given
by

K[T±∞, rT
±
ij ; r = 1, . . . , r, 0 ≤ i < j ≤ nr + 2, i ≤ nr],

K[Sij ; 1 ≤ i < j ≤ n+ 2],

where the additional variables are T∞ and Sn+1,n+2 respectively. We transfer
the above ideals according to Construction 4.3.3, i.e. we set

I ′X,2 : = 〈α∗X (ι∗X,1(IX,1)) 〉
= 〈 rTijT∞ − rfij ; r = 1, . . . , r, 0 ≤ i < j ≤ nr + 2, i ≤ nr 〉,

I ′Y,2 : = 〈α∗Y (ι∗Y,1(IY,1)) 〉
= 〈SijSn+1,n+2 − gij ; 1 ≤ i < j ≤ n+ 2, i ≤ n 〉.

We first have to compute their preimages under ι∗X,2 and ι∗Y,2, we then show
that T∞ and Sn+1,n+2 define prime elements and divide none of the remaining
variables. Since the resulting relations are very closely related to the Plücker
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relations, we introduce some new notation. For this let 0 ≤ i, j, k, l ≤ n be
distinct integers. Then we denote by q(i, j, k, l) the corresponding Plücker
relation; i.e. if i < j < k < l holds, then we set

q(i, j, k, l) := TijTkl − TikTjl + TilTjk ∈ K[Tij ; 0 ≤ i < j ≤ n].

Lemma 4.3.7. Let 0 ≤ i0, j0 ≤ n be distinct integers. In the Laurent
polynomial ring K[T±ij ; 0 ≤ i < j ≤ n] consider the ideal

I :=
〈
q (i0, j0, k, l); 0 ≤ k, l ≤ n, i0, j0, k, l pairwise distinct

〉
.

Then for any pairwise distinct 0 ≤ i, j, k, l ≤ n we have q(i, j, k, l) ∈ I.

Proof. We first claim that for distinct 0 ≤ i, j, k, l,m ≤ n we have

(∗) q(i, j, k, l), q(i, j, k,m), q(i, j, l,m) ∈ I =⇒ q(i, k, l,m) ∈ I.

For this we assume without loss of generality that i < j < k < l < m holds.
The claim then follows from the relation

q(i, k, l,m) =
Tjk
Tij

q(i, j, l,m) − Tjl
Tij

q(i, j, k,m) +
Tjm
Tij

q(i, j, k, l) ∈ I.

Now consider distinct 0 ≤ α, β, γ, δ ≤ n. If {α, β, γ, δ} ∩ {i0, j0} 6= ∅ holds,
then q(α, β, γ, δ) ∈ I follows from the above claim (∗). So assume that
{α, β, γ, δ} and {i0, j0} are disjoint. Applying (∗) to the three collections of
indices

i0, j0, α, β, γ; i0, j0, α, β, δ; i0, j0, α, γ, δ

shows that q(i0, α, β, γ), q(i0, α, β, δ) and q(i0, α, γ, δ) lie in I. Another ap-
plication of (∗) then proves q(α, β, γ, δ) ∈ I. �

We are now ready to prove Theorem 4.2.2, for Theorem 4.2.1 we require some
further preparations.

Proof of Theorem 4.2.2. Using Lemma 4.3.7 we see that the ideals 〈 ι∗Y,2IY 〉
and I ′Y,2 coincide. Since IY is prime from Remark 4.3.6 we infer that

(ι∗Y,2)−1I ′Y,2 = (ι∗Y,2)−1〈 ι∗Y,2IY 〉 = IY .

Since IY is the ideal of Plücker relations, Sn+1,n+2 is prime and does not
divide any of the remaining variables. We determine the grading of the Cox
ring. The ring O(Y ) = K[Sij ; i = 1, . . . , n, j = n+ 1, n+ 2] is Zn-graded by
deg(Sij) = ei. Under the stretched embedding the new variables Sij where
1 ≤ i < j ≤ n are assigned the degrees deg(Sij) = deg(fij) = ei + ej .
Finally, under the blow-up the weights are modified according to 4.3.3 to
give the asserted grading. �

We turn to the remaining case of X = X ′ ×X ′.
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Lemma 4.3.8. Let R := K[T∞, T1, . . . , Tn] be graded by Z≥0 and let I ⊆ R
be a homogeneous ideal. Suppose that T∞ /∈

√
I and deg(T∞) > 0 hold. If

the ideals I + 〈T∞〉 and
√
I are prime, then so is I.

Lemma 4.3.9 (Graded version of Nakayama’s lemma). Let R be a Z≥0-
graded ring and M a Z-graded R-module such that there exists some d0 ∈ Z
with Md = 0 for d < d0. If I ⊆ R>0 is an ideal contained in the irrelevant
ideal of R with I M = M , then M = 0 holds.

Proof of Lemma 4.3.8. Compare also [41, Proof of Theorem 1]. Since

I + 〈T∞〉 is a radical ideal, we have
√
I ⊆ I + 〈T∞〉. With this we obtain

√
I = (I + 〈T∞〉) ∩

√
I = I + 〈T∞〉

√
I.

Note that for the second equality we used that
√
I is prime and T∞ /∈

√
I

holds. Let π : R → R/I denote the canonical projection of Z≥0-graded al-

gebras. Then we have π(
√
I) = π(〈T∞〉

√
I) and deg(π(T∞)) > 0. The

assertion follows from the graded version of Nakayama’s Lemma. �

Lemma 4.3.10 ([41, Proposition 4]). Let 1 ≤ c ≤ n be an integer. Then in
the polynomial ring K[Tij ; 0 ≤ i < j ≤ n+2] the following relations generate
a prime ideal

−TikTjk + TilTjk; 0 ≤ i < j ≤ c < k < l ≤ n+ 2,

TijTkl − TikTjk + TilTjk; 0 ≤ i < j < k < l ≤ n+ 2 other than above.

Proof of Theorem 4.2.2. First we claim that the ideal IX is prime. For
this note that the ideal 〈T∞〉+ IX is generated by T∞ and the equations

− rTik rTjk + rTil rTjk; 0 ≤ i < j ≤ nr, k = nr + 1, l = nr + 2,

rTij rTkl − rTik rTjk + rTil rTjk; 0 ≤ i < j < k < l ≤ n+ 2 oth. t. above

where r = 1, . . . , r. From Lemma 4.3.10 we infer that 〈T∞〉 + IX is prime;
we check the remaining assumptions of Lemma 4.3.8. Consider the classical
grading of RX , then IX is homogeneous and deg T∞ > 0 holds. We only
have to verify that V (IX) is irreducible. For this recall that we transferred
the ideal IX,1 via

I ′X,1 = 〈 ι∗X,1IX,1 〉 and I ′X,2 = 〈α∗XI ′X,1 〉.

Treating the index ∞ as nr + 1, nr + 2 in Lemma 4.3.7 we see that the latter
ideal is given by I ′X,2 = 〈ι∗X,2(IX)〉. We track the respective zero sets.

V (IX) = V (I ′X,2) = α−1
X V (I ′X,1) = α−1

X (ι−1
X,1(V (IX,1))

Since αX has connected kernel and V (IX,1) is the graph of X and as such
irreducible, so is V (IX). This then implies that IX is prime.
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By Remark 4.3.6 this means that IX = (ι∗X,2)−1〈ι∗X,2IX〉 = (ι∗X,2)−1(I ′X,2)
holds. By Proposition 4.3.4 the only thing left to verify is that T∞ does not
divide any of the remaining variables. For this we compute the grading of
the Cox ring; for reasons of degree it is then impossible for T∞ to divide any
other variable. The Zr × Zr-grading of

O(X) = K[rTij ; r = 1, . . . , r, i = 0, . . . , nr, j = nr + 1, nr + 2]

is given by

deg(rTij) =

{
(er, 0) if j = nr + 1,

(0, er) if j = nr + 2.

When stretching the embedding we add for every r = 1, . . . , r the variables

rTij where 0 ≤ i < j ≤ nr. These are assigned the degrees deg(rTij) =
deg(rgij) = (er, er). Finally under the blow-up the degrees are modified
according to Construction 4.3.3 to give the asserted grading. �







CHAPTER

FIVE

CHOW QUOTIENTS OF QUADRICS

With only minor modifications this entire chapter has already been published
in the paper ’On Chow quotients of torus actions’, which is a joint work with
Jürgen Hausen and Simon Keicher, see [11].

5.1. The Cox Ring of the Chow Quotient

Consider an action G×X → X of a connected linear algebraic group G on a
projective variety X defined over an algebraically closed field K of character-
istic zero. The Chow quotient is an answer to the problem of associating in a
canonical way a quotient to this action: it is defined as the closure of the set
of general G-orbit closures viewed as points in the Chow variety, see Chap-
ter 2, Section 2.3 for more background. The Chow quotient always exists
but, in general, its geometry appears to be not easily accessible.

The perhaps most prominent example is the Grothendieck-Knudsen moduli
space M0,n of stable n-pointed curves of genus zero. Kapranov [50] showed
that it arises as the Chow quotient of the maximal torus action on the Grass-
mannian G(2, n). While the Cox ring of M0,5 is easily computed and finite

generation was proven by Castravet in [18], the spaces M0,n are not Mori
Dream for n ≥ 134, see [19]. Motivated by this example, we formulate the
following.

Problem 5.1.1. Consider the action T ×X → X of an algebraic torus T
on a Mori dream space X and the normalization Y of the associated Chow
quotient.

75
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(i) Is Y a Mori dream space?
(ii) If Y is a Mori dream space, describe its Cox ring.

The situation is well understood in the case of subtorus actions on toric va-
rieties [49, 23]. There, the normalized Chow quotient is again toric and
hence a Mori dream space. Moreover, the corresponding fan can be com-
puted and thus the Cox ring of the normalized Chow quotient is accessible
as well. Similarly, one may treat subtorus actions on rational varieties with
a complexity one torus action using their recent combinatorial description.
In this chapter we provide tools for a study of the general case. For example,
our methods allow a complete answer to 5.1.1 (i) in the case of K∗-actions
on smooth projective quadrics:

Theorem 5.1.2. Let K∗ act on a smooth projective quadric X. Then the
associated normalized Chow quotient is a Mori dream space.

Note that a positive answer to the question 5.1.1 (i) in the case of K∗-actions
on arbitrary Mori dream spaces will imply a positive answer for all torus
actions on Mori dream spaces: as we show in Theorem 2.4.5, the normalized
Chow quotient of a torus action is birationally dominated by the space ob-
tained via stepwise taking normalized Chow quotients by subtori and thus,
if the latter space has finitely generated Cox ring, then the normalized Chow
quotient does so.

We turn to Problem 5.1.1 (ii). The motivation to describe the Cox ring
is that this leads to a systematic approach to the geometry of the Chow
quotient. Let us present the results in the case of K∗-actions on quadrics.
After equivariantly embedding into a projective space and applying a suitable
linear transformation, the smooth projective quadric X is of the following
shape:

X = V (g1) ⊆ Pr, g1 =

{
T0T1 + . . .+ Tr−1Tr, r odd,

T0T1 + . . .+ Tr−2Tr−1 + T 2
r , r even,

where the K∗-action is diagonal with weights ζ0, . . . , ζr and the defining equa-
tion is of degree zero. In order to write down the Cox ring of the Chow
quotient, consider the extended weight matrix

Q :=

[
ζ0 . . . ζr

1 . . . 1

]
where we assume that the columns of Q generate Z2. Let P be an integral
Gale dual, i.e. an r − 1 by r + 1 matrix with the row space of Q as kernel.
Determine the Gelfand-Kapranov-Zelevinsky decomposition Σ associated to
P and put the primitive generators b1, . . . , bl of Σ differing from the columns
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of P as columns into a matrix B. Then there is an integral matrix A such
that B = P ·A holds. Define shifted row sums

ηi := Ai ∗+Ai+1 ∗+µ for i = 0, 2, . . . ; ηr := 2Ar ∗+µ, if r is even.

where µ is the componentwise minimal vector such that the entries of the ηi
are all nonnegative. Then our result reads as follows.

Theorem 5.1.3. In the above setting, assume that any r columns of Q
generate Z2 and that for odd (even) r there are at least four (three) weights
ζi of minimal absolute value. Then the normalized Chow quotient Y of the
K∗-action on X has Cox ring

R(Y ) = K[T0, . . . , Tr, S1, . . . , Sl] / 〈g2〉

with

g2 :=

{
T0T1S

η0 + T2T3S
η2 + . . .+ Tr−1TrS

ηr−1 , r odd,

T0T1S
η0 + . . .+ Tr−2Tr−1S

ηr−2 + T 2
r S

ηr , r even

graded by Zl+2 via assigning to the i-th variable the i-th column of a Gale
dual of the block matrix [P,B].

The proof of Theorem 5.1.3 is performed in Section 5.2. Besides the ex-
plicit description of the rays of the Gelfand-Kapranov-Zelevinsky decompo-
sition provided in Proposition 5.2.1, it requires controlling the behaviour
of the Cox ring under certain modifications. This technique is of indepen-
dent interest and developed in full generality in Section 4.1. The proof of
Theorem 5.1.2, given in Section 5.3, uses moreover methods from tropical
geometry: we consider a ’weak tropical resolution’ of the Chow quotient, see
Construction 5.3.3, and provide a reduction principle to divide out intrinsic
torus symmetry, see Proposition 5.3.6.

5.2. Proof of Theorem 5.1.3

We approach the Chow quotient via toric embeddings. The idea then is
to obtain the Cox ring via toric ambient modifications. An essential step
for this is the explicit description of the rays of certain Gelfand-Kapranov-
Zelevinsky decompositions given in Proposition 5.2.1; note that in the setting
of polytopes related statements implicitly occur in literature, e.g. [44, 43].

Recall that the Gelfand-Kapranov-Zelevinsky decomposition associated to a
matrix P ∈ Mat(n, r+1;Z); is the fan Σ in Qn with the cones σ(v) = ∩v∈τ◦τ ,
where v ∈ Qn and τ runs through the P -cones, i.e., the cones generated by
some of the columns p0, . . . , pr of P . Fix a Gale dual matrix Q ∈ Mat(k, r+
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1;Z), where r+ 1 = k+ n, and denote the columns of Q by q0, . . . , qr. Then
we have mutually dual exact sequences of rational vector spaces

0 // Qk
Q∗ // Qr+1 P // Qn // 0

0 oo Qk oo
Q

Qr+1 oo
P∗

Qn oo 0.

By a Q-hyperplane we mean a linear hyperplane in Qk generated by some of
the columns q0, . . . , qr. Given a Q-hyperplane we write it as the kernel u⊥ of
a linear form u and associate to it a ray in Qn as follows:

%(u) := cone

 ∑
u(qi)>0

u(qi)pi

 .

It turns out that %(u) = %(−u) holds and thus the ray is well defined. We
say that a column qi of Q is extremal if it does not belong to the relative
interior of the “movable cone” ∩i cone(qj ; j 6= i).

Proposition 5.2.1. Let Q and P be Gale dual matrices as before, assume
that the columns of P are pairwise linearly independent nonzero vectors gen-
erating Qn as a cone and let Σ be the Gelfand-Kapranov-Zelevinsky decom-
position associated to P .

(i) If a ray % ∈ Σ is the intersection of two P -cones, then % = %(u)
holds with a Q-hyperplane u⊥.

(ii) If k = 2 holds, then every ray of Σ can be obtained as an intersec-
tion of two P -cones.

(iii) Assume k = 2 and fix nonzero linear forms ui with ui ⊥ qi. Then
the rays of Σ are cone(p0), . . . , cone(pr) and the %(ui) with qi not
extremal.

The proof relies on the fact that Σ describes the lifts of regular Q-
subdivisions. We adapt the precise formulation of this statement to our
needs. Let γ ⊆ Qr+1 be the positive orthant and define a γ-collection to
be a set B of faces of γ such that any two γ1, γ2 ∈ B admit an invariant
separating linear form f in the sense that

P ∗(Qn) ⊆ f⊥, f|γ1
≥ 0, f|γ2

≤ 0, f⊥ ∩ γi = γ1 ∩ γ2.

Write B1 ≤ B2 if for every γ1 ∈ B1 there is a γ2 ∈ B2 with γ1 ⊆ γ2. More-
over, call a γ-collection B normal if it cannot be enlarged as a γ-collection
and the images Q(γ0), where γ0 ∈ B, form the normal fan of a polyhedron.
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For a face γ0 � γ, we denote by γ∗0 = γ⊥0 ∩ γ∨ the corresponding face of the
dual cone γ∨.

Now assume that the columns of P are pairwise different nonzero vectors.
Then [4, Sec. II.2] provides us with an order-reversing bijection

{normal γ-collections} → Σ, B 7→
⋂
γ0∈B

P (γ∗0 ).

Proof of Proposition 5.2.1. We prove (i). Let % = P (γ∗1 ) ∩ P (γ∗2 ) with
γ1, γ2 � γ. We may assume that the relative interiors P (γ∗1 )◦ and P (γ∗2 )◦

intersect nontrivially. Then γ1 and γ2 admit an invariant separating linear
form f = Q∗(u) with a linear form u on Qk. In terms of the components of
fi = u(qi) of f , we have

γ1 = cone(ei; fi ≥ 0), γ2 = cone(ei; fi ≤ 0).

Write f = f+− f− with the unique vectors f+, f− ∈ Qr+1 having only non-
negative components. Then P (f) = 0 gives P (f+) = P (f−). We conclude
% = cone(P (f+)) and the assertion follows.

We prove (ii) and (iii). The rays of Σ arise from normal γ-collections which
are submaximal with respect to “≤” in the sense that the only dominating
γ-collection is the trivial collection 〈γ〉 consisting of all faces γ0 � γ which
are invariantly separable from γ. There are precisely two types of such sub-
maximal collections:

• the normal γ-collections B = 〈γ0〉, where γ0 � γ is a facet satis-
fying Q(γ0) = Q(γ),

• the normal γ-collections B = 〈γ1, γ2〉, where γ1, γ2 � γ are invari-
antly separable from each other and satisfy

γi = Q−1(Q(γi)) ∩ γ, Q(γ) = Q(γ1) ∪Q(γ2).

The submaximal γ-collections of the first type give the rays cone(pi) ∈ Σ
with qi not extremal. If qi is extremal, then the (unique) γ-collection of the
second type with Q(γ1) = cone(qj ; j 6= i) defines the ray cone(pi). The
remaining rays of Σ are of the form % = P (γ∗1 ) ∩ P (γ2)∗ with the remaining
collections of the second type. �

Remark 5.2.2. Statements (ii) and (iii) of Proposition 5.2.1 hold as well
for pairs P,Q, where the columns of Q generate the cone over a so called
totally-2-splittable polytope; these have been studied in [44, 43].

As a further preparation of the proof of Theorem 5.1.3 we have to specialize
the discussion of Section 4.1 to the case of a single defining equation. The
following notion will be used for an explicit description of the transferred
ideal.
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Definition 5.2.3. Consider an n× (r+ 1) matrix P and an n× l matrix B,
both integral. A weak B-lifting (with respect to P ) is an integral (r + 1)× l
matrix A allowing a commutative diagram

Zr+1+l

ei 7→ei
ej 7→mjej

yy

[Er+1,A]

$$
Zr+1+l

[P,B]

��

Zr+1

P

��
Zn

En

// Zn

where the ei are the first r + 1, the ej the last l canonical basis vectors of
Zr+1+l, the mj are positive integers and En, Er+1 denote the unit matrices
of size n, r + 1 respectively.

Note that weak B-liftings A always exist. Given such A, consider the follow-
ing homomorphism of Laurent polynomial rings:

ψA : K[T±1
0 , . . . , T±1

r ] → K[T±1
0 , . . . , T±1

r , S±1
1 , . . . , S±1

l ],∑
ανT

ν 7→
∑

ανT
νSA

t·ν .

Set K1 := Zr+1/P ∗(Zn). Then the left hand side algebra is K1-graded by
assigning to the i-th variable the class of ei in K1.

Lemma 5.2.4. In the above notation, let g1 ∈ K[T±1
0 , . . . , T±1

r ] be a K1-
homogeneous polynomial.

(i) We have T νSµψA(g1) = g′2 with ν ∈ Zr+1, µ ∈ Zl and a unique
monomial free g′2 ∈ K[T0, . . . , Tr, S1, . . . , Sl].

(ii) The polynomial g′2 is of the form g′2 =
g2(T0, . . . , Tr+1, S

m1
1 , . . . , Sm1

l ) with a g2 ∈
K[T0, . . . , Tr, S1, . . . , Sl] not depending on the choice of A.

(iii) If, in the setting of Construction 4.1.1, we have I1 = 〈g1〉, then
the transferred ideal is given by I2 = 〈g2〉.

(iv) The variable Ti defines a prime element in K[T0, . . . , Tr+l+1]/〈g2〉
if and only if the polynomial g2(T1, . . . , Ti−1, 0, Ti+1, . . . , Tr+l+1)
is irreducible.

Proof. Consider the commutative diagram of group algebras corresponding
to the dualized diagram 5.2.3. There, ψA occurs as the homomorphism of
group algebras defined by the transpose [Er+1, A]∗. Let Tκ be any monomial
of g1. Then g′1 := T−κg1 gives rise to the same g2, but g′1 is of K1-degree zero
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and hence a pullback g′1 = ψP∗(h). The latter allows to use commutativity
of the diagram which gives (i) and (ii). Assertions (iii) and (iv) are clear. �

Proof of Theorem 5.1.3. Recall that we consider the quadric X = V (g1) ⊆
Pr with g1 = T0T1 + . . . + Tr−1Tr, where we replace the last term with T 2

r

in the case of an even r, and a K∗-action on Pr, given by weights ζ0, . . . , ζr
such that g0 is of degree zero and, in particular, X is invariant.

In a first step, we construct a suitable GIT quotient X1 of the K∗-action
on X. Lifting the above data to Kr+1 gives X̄ := V (g1) ⊆ Kr+1 which is
invariant under the action of T2 = K∗ × K∗ on Kr+1 given by the weight
matrix

Q :=

[
ζ0 . . . ζr

1 . . . 1

]
Consider the weight w = (0, 1) of T2 and the associated set of semistable

points Ẑ1 ⊆ Kr+1, that means the union of all localizations Kr+1
f , where f is

homogeneous with respect to some positive multiple of w. Then Ẑ1 is a toric

open subset, and with X̂1 := X̄ ∩ Ẑ1 we obtain a commutative diagram

X̂1 ⊆

//T2

��

Ẑ1

//T2

��
X1

// Z1

where the induced map X1 → Z1 of quotients is a closed embedding. We are

in the setting presented before Corollary 4.1.4. In particular, Ẑ1 → Z1 is a
toric Cox construction with a Gale dual P of Q as describing matrix; note
that the columns of P generate Zr−1 as a lattice. Moreover, the Cox ring of
X1 is the Z2-graded ring

R1 = K[T0, . . . , Tr] / 〈g1〉.

Observe that X1 is as well the K∗-quotient of the image of X̂1 in X which in
turn is the set of semistable points of a suitable linearization of O(1).

Set n := r − 1 and consider the Gelfand-Kapranov-Zelevinsky decomposi-
tion Σ associated to P . Then, according to Proposition 2.4.1, the toric vari-
ety Z2 determined by Σ is the normalized Chow quotient of the K∗-action on
Pr. Moreover, let X2 ⊆ Z2 denote the proper transform of X1 ⊆ Z1 under
the toric morphism Z2 → Z1. Then Proposition 2.4.2 tells us that X2 and
the Chow quotient X /

CQ K∗ share the same normalization.

We will now show that X2 is in fact normal and that its Cox ring is as claimed
in the Theorem. As before, put the primitive generators b1, . . . , bl of rays of
Σ differing from columns of P into a matrix B and choose a weak B-lifting
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A with respect to P ; using the fact that the columns of P generate Zn, we
can choose the numbers mj all equal to one. With the shifted row sums
η0, η2, . . . , ηr−1 we set

g2 :=

{
T0T1S

η0 + T2T3S
η2 + . . .+ Tr−1TrS

ηr−1 , r odd,

T0T1S
η0 + . . .+ Tr−2Tr−1S

ηr−2 + T 2
r S

ηr , r even.

Lemma 5.2.4 then ensures that I2 := 〈g2〉 is the transferred ideal of I1 := 〈g1〉
in the sense of Construction 4.1.1; define P1 := P and P2 := [P,B] to adapt
the settings. Consider the ring

R2 = K[T0, . . . , Tr, S1, . . . , Sl] / 〈g2〉.

Our task is to show that the variables S1, . . . , Sl define prime elements in
R2. Then Proposition 4.1.3 tells us that R2 and thus X2 are normal and
Corollary 4.1.4 yields that the Cox ring of X2 is R2 together with the Z2+l-
grading defined by a Gale dual Q2 of P2 = [P,B].

Suitably renumbering the variables Ti, we achieve that |ζr−3|, . . . , |ζr| are
minimal among all |ζi| in the case of odd r and, similarly, in the case of even
r, we have ζr−3 = ζr−2 = ζr−1 = 0. In order to see that the Sj define primes,
it suffices to show that, according to odd and even r,

g2 = Tr−3Tr−2 + Tr−1Tr + h, or g2 = Tr−2Tr−1 + T 2
r + h,

holds with a polynomial h ∈ K[T0, . . . , Tr, S1, . . . , Sl] not depending on the
last four (three) Ti, see Lemma 5.2.4 (iv). This in turn is seen by constructing
a suitable weak B-lifting via the description of the rays through b1, . . . , bl
provided by Proposition 5.2.1. Each bj (or a suitable integral multiple) stems
from a Q-hyperplane and the uj can be chosen to be nonpositive on the last
four (three) qi. Putting max(0, uj(qi)) into a matrix A′ gives a weak B-lifting
A′ with A′i∗ = 0 for the last four (three) rows. By Lemma 5.2.4, the weak
B-lifting A′ yields the same g2 which now has the desired form. �

Example 5.2.5. Consider the quadricX = V (T0T1+T2T3+T4T5+T 2
6 ) ⊆ P6

and the action of K∗ on P6 given by

t · [x0, . . . , x6] := [t−2x0, t
2x1, t

−1x2, t
1x3, x4, x5, x6].

An integral Gale dual P of the extended weight matrix Q is of size 5× 7 and
explicitly given as 

−1 −1 1 1 0 0 0

0 0 0 0 −1 1 0

0 −1 −1 1 0 1 0

0 0 1 1 −1 −1 0

0 0 0 0 −1 0 1


.
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Computing the associated Gelfand-Kapranov-Zelevinsky decomposition we
see that it comes with one new ray, namely

b1 = (−1, 0,−1, 1, 0) = 2p0 + p2,

where p0, . . . , p6 are the columns of P . The Cox ring of the normalized Chow
quotient X

∼
/

CQ K∗ is the ring

R(X
∼
/

CQ K∗) = K[T0, . . . , T6, S1] /
〈
T0T1S

2
1 + T2T3S1 + T4T5 + T 2

6

〉
together with the grading by Cl(X) = Z3 via a Gale dual of [p0, . . . , p6, b1],
i.e. the degrees of the variable are the columns of

−2 2 −1 1 0 0 0 0

1 1 1 1 1 1 1 0

2 0 1 0 0 0 0 −1

 .
Remark 5.2.6. The setting of Theorem 5.1.3 can also be interpreted in

terms of Mori theory. There are (up to isomorphism) finitely many nor-
mal projective varieties Y1, . . . , Ys sharing as their Cox ring a given R1 =
K[T0, . . . , Tn]/〈g1〉 with its Z2-grading coming from the extended weight ma-
trix Q. Each Yi is a GIT-quotient of the induced K∗-action on the quadric
X = V (g1) ⊆ Pr and thus dominated in universal manner by the normalized

Chow quotient Y = X
∼
/

CQ K∗. Thus, Y is the “Mori master space” control-
ling the whole class of small birational relatives Yi. This picture obviously
extends to all Mori dream spaces, and it is a natural desire to study the
geometry of the Mori master spaces.

5.3. Proof of Theorem 5.1.2

The main idea of the proof is to consider instead of the Chow quotient its
“weak tropical resolution” and to use intrinsic symmetry of the latter space.
This approach applies also to problems beyond K∗-actions on quadrics; we
therefore develop it in sufficient generality. We begin with recalling the nec-
essary concepts from tropical geometry.

Let f be a Laurent polynomial in n variables. The Newton polytope Bf ⊆
Qn is the convex hull over the exponent vectors of f . The tropical variety
trop(V (f)) of the zero set V (f) ⊆ Tn lives in Qn and is defined to be the
union of all (n− 1)-dimensional cones of the normal fan of Bf . The tropical
variety of an arbitrary closed subset Y ⊆ Tn is the intersection trop(Y ) over
all trop(V (f)), where f runs through the ideal of Y . It turns out that trop(Y )
is the support of an (in general not unique and not pointed) fan in Qn.

Definition 5.3.1. Consider a toric variety Z defined by a fan Σ inQn and an
irreducible subvariety Y ⊆ Z intersecting the big torus Tn ⊆ Z nontrivially.



84 Chow Quotients of Quadrics

We call the embedding Y ⊆ Z weakly tropical if the support |Σ| ⊆ Qn equals
the tropical variety trop(Y ∩ Tn) ⊆ Qn.

Remark 5.3.2. Any tropical embedding in the sense of Tevelev [65] is
weakly tropical. If Y ⊆ Z is a weakly tropical subvariety of a toric variety Z,
then, by [35, Sec. 14], for any toric orbit Tn·z ⊆ Z intersecting Y nontrivially,
we have

dim(Z) − dim(Tn ·z) = dim(Y ) − dim(Tn ·z ∩ Y ).

Construction 5.3.3 (Weak tropical resolution). Let Z be a complete toric
variety arising from a fan Σ in Qn and Y ⊆ Z an irreducible subvariety
intersecting the big torus Tn ⊆ Z nontrivially. Fix a fan structure ΣY carried
on the tropical variety trop(Y ∩Tn) ⊆ Qn for Y ∩Tn and consider the coarsest
common refinement

Σ′ := Σ u ΣY = {τ ∩ σ; σ ∈ Σ, τ ∈ ΣY }

of the fans Σ and ΣY . Then the canonical map of fans Σ′ → Σ defines a
birational toric morphism Z′ → Z of the associated toric varieties. With
the proper transform Y ′ ⊆ Z′ of Y ⊆ Z, we obtain a proper birational map
Y ′ → Y which we call a weak tropical resolution of Y ⊆ Z.

Proof. The only thing to show is properness of the morphism Y ′ → Y . But
this follows directly from Tevelev’s criterion [65, Prop. 2.3]. �

The use of passing to the weak tropical resolution in our context is that
it enables us to divide out torus symmetries in a controlled manner. This
leads to an explicit version of [42, Thm. 1.2] relating the Mori dream space
property of a variety to the Mori dream space property of a certain quotient.

Construction 5.3.4. Consider a toric variety Z arising from a fan Σ in
Qr, and a weakly tropical embedded subvariety Y ⊆ Z. Suppose that Y is
invariant under the action of a subtorus T ⊆ Tr. Set

Z0 := {z ∈ Z; dim(Tr ·z) ≥ r − 1, Tz finite}, Y0 := Y ∩ Z0.

Then Z0 ⊆ Z is an open toric subset corresponding to a subfan Σ0 � Σ
with certain rays %1, . . . , %s of Σ as its maximal cones. Let the matrix P ∈
Mat(n, r;Z) describe an epimorphism π : Tr → Tn with ker(π) = T and
consider the following fan in Zn:

∆0 := {0, P (%1), . . . , P (%s)}.

Note that %1, . . . , %s are precisely the rays of Σ which are not contained in
ker(P ). The matrix P determines a toric morphism Z0 → Z /

0 T onto the
toric variety associated to ∆0. We define Y /

0 T ⊆ Z /
0 T to be the closure of

the image π(Y ∩ Tr).
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Remark 5.3.5. The tropical variety trop(Y /
0 T ∩ Tn) contains all rays

P (%1), . . . , P (%s) of the fan ∆0. If there is a fan ∆ in Zn having trop(Y /
0 T ∩

Tn) as its support and P (%1), . . . , P (%s) as its rays, then Y /
0 T admits a

weakly tropical completion with boundary of codimension at least two.

Proposition 5.3.6. Consider a toric variety Z, a weakly tropical subvariety
Y ⊆ Z and suppose that Y is invariant under the action of a subtorus T ⊆ Tr.
Then the following statements are equivalent.

(i) The normalization of Y has finitely generated Cox ring.
(ii) The normalization of Y /

0 T has finitely generated Cox ring.

Proof. Let ν : Ỹ → Y be the normalization map. By W ⊆ Y we denote
the open T -invariant subset consisting of all points y ∈ Y having a finite
isotropy group Ty. The fact that Y ⊆ Z is tropically embedded ensures that
Y0 ⊆W has a complement of codimension at least two in W . This property
is preserved when passing to the respective normalizations W̃ := ν−1(W )

and Ỹ0 := ν−1(Y0). In particular the separations in the sense of [42, p. 978]

of the corresponding quotients W̃/T and Ỹ0/T have the same Cox rings.
Since normalizing commutes with taking quotients and separating, the latter
space is isomorphic to the normalization of Y /

0 T . Thus the assertion follows
from [42, Theorem 1.2]. �

Proposition 5.3.7. Let Z be a toric variety, Y ⊆ Z a complete subvariety
which is invariant under a subtorus T of the big torus of Z and Y ′ → Y be a
weak tropical resolution. If the normalization of Y ′ /0 T has finitely generated
Cox ring, then the normalization Ỹ of Y is a Mori dream space.

Proof. Since the normalization of Y ′ /0 T has finitely generated Cox ring,
Proposition 5.3.6 shows that the normalization Y ′′ of Y ′ has finitely gen-
erated Cox ring and thus is a Mori dream space. The canonical morphism
π : Y ′′ → Ỹ is proper and birational. In order to see that Ỹ is a Mori dream
space, we may apply the general [57, Thm. 10.4], or look at a suitable sheaf
S = ⊕KOY (D) of divisorial algebras on Y mapping onto the Cox sheaf R
of Y . By properness of π, we obtain S = π∗S ′′ over the set W ⊆ Ỹ of
regular points for S ′′ = ⊕KOX(π∗(D)). Since Y ′′ is a Mori dream space,
Γ(π−1(W ),S ′′) is finitely generated. This implies finite generation of the Cox

ring R(Ỹ ) = Γ(W,R). �

A second preparation of the proof of Theorem 5.1.2 concerns toric ambient
modification. We will always write e1, . . . , en ∈ Zn for the canonical basis
vectors and set e0 := −e1 − . . . − en. Moreover, we denote by ∆(n) the fan
in Zn consisting of all cones spanned by at most n of the vectors e0, . . . , en
and by ∆′(n) ⊆ ∆(n) the subfan consisting of all cone of dimension at most
n− 1.



86 Chow Quotients of Quadrics

Lemma 5.3.8. Consider nonzero vectors v1, . . . , vl ∈ Qn contained in a
maximal cone τ ∈ ∆(n), a cone σ ⊆ Qn generated by some of the vectors
e0, . . . , en, v1, . . . , vl and a cone δ ∈ ∆′(n). Suppose that % := δ ∩ σ is one-
dimensional and % 6∈ ∆′(n). Then % is contained in some facet of τ .

Proof. We may assume that τ = cone(e1, . . . , en) holds. Replacing δ and
σ with suitable faces, we may assume %◦ = δ◦ ∩ σ◦. The proof uses Gale
duality and we work in the notation of Section 5.2. Consider the matrix
P := [e0, . . . , en, v1, . . . , vl] and its Gale dual

Q := [q0, . . . , qn+l] :=


0 v11 · · · v1n −1 0

...
...

...
. . .

0 vl1 · · · vln 0 −1

1 1 · · · 1 0 · · · 0

 .

Set r := n + l, let e′0, . . . , e
′
r denote the canonical basis vectors of Zr+1 and

γ := Qr+1
≥0 the positive orthant. Then there are faces γ1, γ2 � γ such that for

the corresponding dual faces γ∗i we have

P (γ∗1 ) = δ, P (γ∗2 ) = σ, P (γ∗1 )◦ ∩ P (γ∗2 )◦ 6= ∅.

For some n + 1 ≤ j ≤ r we have e′j ∈ γ∗2 and we may assume that γ∗1 is
generated by at most n − 1 of the vectors e′0, . . . , e

′
n. The latter implies

e′n+1, . . . , e
′
n+l ∈ γ1. Let f = Q∗(u) be a separating linear form for γ1 and

γ2. Then f|γ1
≥ 0 implies

u(qn+1), . . . , u(qn+l) ≥ 0, u(q0) ≥ u(q1), . . . , u(qn).

Note that we must have f(e′j) = u(qj) > 0, because e′j does not lie in γ2. Let
τ1, τ2 � γ be the maximal faces with f|τ1 ≥ 0 and f|τ2 ≤ 0. Then f separates
τ1, τ2 and τ∗i ⊆ γ∗i holds. We conclude

∅ 6= P (τ∗1 )◦ ∩ P (τ∗2 )◦ ⊆ P (τ∗1 ) ∩ P (τ∗2 ) ⊆ P (γ∗1 ) ∩ P (γ∗2 ) = %.

Since e′j 6∈ τ2 holds, we obtain τ∗2 6= {0} and thus 0 6∈ P (τ∗2 )◦. Together
with the displayed line this gives P (τ∗1 ) ∩ P (τ∗2 ) = %. Since at least two of
e′0, . . . , e

′
n lie in γ1, we obtain e′0 ∈ τ1 and thus

% ⊆ P (τ∗1 ) ⊆ cone(e1, . . . , en).

�

Lemma 5.3.9. For n ∈ Z≥1 consider ∆′(n) and let b1, . . . , bl ∈ Qn be
pairwise different primitive vectors lying on the support of ∆′(n) but not on
its rays. Denote by σj ∈ ∆′(n) the minimal cone with bj ∈ σj and write

bj = a0je0 + . . .+ anjen, where aij > 0 if ei ∈ σj , aij = 0 if ei 6∈ σj .
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Then, for P := [e0, . . . , en] and B := [b1, . . . , bl], the matrix A := (aji) is a
weak B-lifting with respect to P . The lift of h1 = T0 + . . .+ Tn in the sense
of Lemma 5.2.4 is given by

h2 = T0S
a01
1 · · ·Sa0l

l + . . . + TnS
an1
1 · · ·Sanll .

Moreover, the variables T0, . . . Tn, S1, . . . , Sl define pairwise nonassociated
prime elements in K[T0, . . . Tn, S1, . . . , Sl]/〈h2〉 if and only if the vectors
b1, . . . , bl lie in a common cone of ∆(n).

Proof. Only the last sentence needs some explanation. The fact that
b1, . . . , bl lie in a common cone of ∆(n) is equivalent to the fact that there is
a term of h2 not depending on S1, . . . , Sl, and, moreover, for every k there is
a further is terms of h2 not depending on Sk. Now, Lemma 5.2.4 (iv) gives
the desired characterization. �

Proof of Theorem 5.1.2. We may assume that X = V (g1) ⊆ Pr holds
with a polynomial g1 = T0T1 + . . .+ Tr−1Tr, where we replace the last term
with T 2

r in the case of an even r, and K∗ acts linearly with weights ζ0, . . . , ζr,
where |ar| is minimal among all |ζi|, see [4, Prop. III.2.4.7].

The first step is to determine the normalized Chow quotient of the K∗-action
on X. As observed in Proposition 2.4.2, the Chow quotient X /

CQ K∗ is canoni-
cally embedded into the Chow quotient of Pr by the K∗-action. To determine
the latter, consider the extended weight matrix

Q :=

[
ζ0 . . . ζr

1 . . . 1

]
and let P be a Gale dual matrix. Then, according to Proposition 2.4.1, the
normalized Chow quotient of the K∗-action on Pr is the toric variety Z having
the Gelfand-Kapranov-Zelevinsky-decomposition Σ defined by the columns
of P as its fan. Moreover, by Proposition 2.4.2, the Chow quotient of the
K∗-action on X has the same normalization as the closure

Y = (X ∩ Tr) /K∗ ⊆ Z.

The second step is to determine a weak tropical resolution of Y ⊆ Z. For
this we first need trop(Y ∩ TZ). Let µ0, . . . , µn ∈ Zr+1 be the vertices of
the Newton polytope g1 and consider the matrix Pgr with the rows µi − µ0,
where i = 1, . . . , n. Then we obtain a commutative diagram with exact rows

0 // Q2 //

��

Qr+1 P // Qr−1 //

Π

��

0

0 // Qr+1−n // Qr−1

Pgr

// Qn // 0
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Note that g1 equals Tµ0 times the pullback of the polynomial h1 := 1 +S1 +
. . . + Sn under the homomorphism of tori Tr → Tn defined by Pgr. The
tropical variety of V (h1) ⊆ Tn is the support of the fan ∆′(n) and thus we
have

trop(Y ∩ TZ) = Π−1(trop(V (h1))) = Π−1(|∆′(n)|).
We endow trop(Y ∩ TZ) with the natural fan structure lifting ∆′(n); note
that the cones are in general not pointed. By definition, the weak tropical
resolution Y ′ of Y is the closure of Y ∩ TZ in the toric variety Z′ with the
coarsest common refinement Σ′ := Σ u trop(Y ∩ TZ) as its fan.

In the third step, we pass to Y ′ /0 TY ′ , where TY ′ is the kernel of the homo-
morphism of tori TZ → Tn defined by Π. By Construction 5.3.4, the quotient
Y ′ /0 TY ′ is the closure of the image of Y ∩ TZ under TZ → Tn in the toric
variety Z′ /0 TY ′ associated to the describing fan in Zn having as maximal
cones the rays Π(%), where % runs through the rays of Σ′.

Claim. For every ray % ∈ Σ′ there is a facet of cone(e0, . . . , en−1) containing
the image b := Π(%) ∈ Qn.

Indeed, since every cone of trop(Y ∩ TZ) is saturated with respect to Π, we
have Π(%) = Π(σ) ∩ δ for some σ ∈ Σ and δ ∈ ∆′(n). The image Π(σ)
is a cone spanned by some ei and some images vj := Π(νj), where νj are
the primitive generators of the rays of Σ different from columns pi of P .
Proposition 5.2.1 yields presentations

νj =

r−1∑
i=0

αijpi with certain αij ≥ 0.

Hence we obtain vj ∈ cone(e0, . . . , en−1). Lemma 5.3.8 then shows that Π(%)
lies in some facet of cone(e0, . . . en−1) and the claim is verified.

Finally, in the fourth step, we show that Y ′ /0 TY ′ is normal and has finitely
generated Cox ring; by Proposition 5.3.7 this will complete the proof. First
note that we have the toric modification Z′ /0 TY ′ → W , where W ⊆ Pn is
the open toric subset corresponding to the subfan ∆′(n) of ∆(n). Moreover,
Y ′ /0 TY ′ is the proper transform under Z′ /0 TY ′ →W of the closure of V (h1) ⊆
Tn in W . The claim just verified and Lemma 5.3.9 ensure that we may apply
Proposition 4.1.3 and Corollary 4.1.4. In particular, we see that Y ′ /0 TY ′ is
normal with finitely generated Cox ring. �

Example 5.3.10. Consider the quadric X = V (T0T1 + . . . + T6T7) ⊆ P7

and the action of K∗ on P7 given by

t · [x0, . . . , x7] := [t−3x0, t
3x1, t

−3x2, t
3x3, t

−2x4, t
2x5, t

−1x6, tx7].

Theorem 5.1.3 and its proof do not apply to this case, because only two
weights ζi have minimal absolute value. The way through the weak toric
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resolution Y ′ as gone in the proof of Theorem 5.1.2 produces a quotient
Y ′ /0 TY ′ embedded into the toric variety with fan obtained by subdividing
∆(3) at (0,−1,−1).





CHAPTER

SIX

POINT CONFIGURATIONS AND TRANSLATIONS

With only minor modifications this entire chapter has already been published
in the author’s paper ’Point Configurations and Translations’, see [9].

6.1. A Compactification of the non-reductive Limit Quotient

In this chapter we examine point configurations on the projective line up
to translations. In general, let us consider n distinct points on P1. Then
the open subset U ⊆ Pn1 consisting of pairwise different coordinates is the
space of possible configurations. For an algebraic group G acting on P1 the
question arises what the resulting equivalence classes of configurations are,
i.e. we ask for a quotient U/G of the diagonal action and a possible canonical
compactification.

In the case of the full automorphism group G = SL(2,K) this problem has
been thoroughly studied. The space of configuration classes is canonically
compactified by the famous Grothendieck-Knudsen moduli space M0,n, i.e.
we have

M0,n = U / SL(2,K) ⊆ M0,n.

Originally introduced as moduli space of certain marked curves Kapranov
shows in [50] that M0,n has (among others) the following two equivalent
descriptions. Firstly it arises as the GIT-limit of Pn1 with respect to the G-
action, i.e. the limit of the inverse system of Mumford quotients. Secondly,
it can be viewed as the blow-up of Pn−3 in n − 1 general points and all the
linear subspaces of dimension at most n− 5 spanned by them.
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Later this setting has been studied in the case where the full automorphism
group was replaced by its maximal torus K∗ ⊆ Sl(2,K). Similarly, it turns

out that the Losev-Manin moduli space Ln coincides with the the GIT-limit,
which in this case is the toric variety associated to the permutahedron. Again,
the GIT-limit arises in a sequence of (toric) blow-ups from projective space,
see [29, 49, 53].

In this chapter we treat point configurations on P1 up to the action of the
maximal connected unipotent subgroup Ga ⊆ SL(2,K). It consists of upper
triangular matrices with diagonal elements equal to 1K and can be thought
of as group of translations. Since Ga is not reductive, we are faced with the
additional problem of first finding a suitable replacement for the GIT-limit,
i.e. assigning a canonical quotient to this action. Recall that we overcame
this problem in the following manner, see Section 2.5.

Doran and Kirwan introduced in [25] the notion of finitely generated
semistable points admitting so-called enveloped quotients. Moreover, in [6]
Arzhantsev, Hausen and Celik proposed a Gelfand-MacPherson type con-
struction which allowed to apply methods from reductive GIT to obtain these
enveloped quotients. Building on this work we obtained again an inverse sys-
tem and the corresponding GIT-limit. Note that in general the enveloped
quotients are not projective, hence one cannot expect the GIT-limit to be so.

We then show that (up to nomalisation) the limit quotient, i.e. a canon-
ical component of the GIT-limit, is canonically compactified by an iter-
ated blow-up of Pn−1

1 . To make this a little more precise consider a subset
A ⊆ {2, . . . , n}. Denoting by T2, S2, . . . , Tn, Sn the homogeneous coordinates
on Pn−1

1 we consider the subschemes XA on Pn−1
1 given by the ideals〈

T 2
i , TjSk − TkSj ; i, j, k ∈ A, j < k

〉
.

The scheme-theoretic inclusions give rise to a partial order of these sub-
schemes. Let Bl(Pn−1

1 ) denote the blow-up of Pn−1
1 in all these subschemes

in non-descending order.

Theorem. If P1

∼
/

LQ Ga and B̃l(Pn−1
1 ) denote the normalisations of the limit

quotient and the above blow-up of Pn−1
1 respectively, then we have open em-

beddings

U/Ga ⊆ Pn1
∼
/

LQ Ga ⊆ B̃l(Pn−1
1 ).

For a precise formulation of the main results see Section 6.5.

In the case of two distinct points, i.e. n = 2, the latter space is simply P1.
If n = 3 holds, then the compatification B̃l(P1 × P1) is the unique non-toric,
Gorenstein, log del Pezzo K∗-surface of Picard number 3 with a singularity
of type A1. Similar to M0,5 which arises as a single Mumford quotient of the
cone over the Grassmannian Gr(2, 5), this surface is the Mumford quotient
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of the cone over the Grassmannian Gr(2, 4). For higher n an analogous
Mumford quotient needs to be blown up as will be described in Section 6.5.

The chapter is organised as follows. In Section 6.2 we apply these construc-
tions proposed in Section 2.5 to the action of Ga on Pn1 . We discuss explicitly
the GIT-fan which contains the combinatorial data needed to make the limit
quotient accessible. The blow-ups of Pn−1

1 will be dealt with in a mostly
combinatorial way, i.e. as proper transforms with respect to toric blow-ups.
For this we prove a result on combinatorial blow-ups in the spirit of Feichtner
and Kozlov, see [28]. This will be carried out in Section 6.3. In the short
Section 6.4 we will deal with the connection between stellar subdivisions and
toric blow-ups. The final Section 6.5 then is dedicated to the proof of the
main theorems.

6.2. Point Configurations on P1 and Translations

In this section we examine point configurations on Pn1 up to translations. For
this we consider the diagonal action of Ga on Pn1 and explicitly perform the
Gelfand-MacPherson type construction introduced in the preceding section.
We determine the GIT-fan describing the variation of quotients and show that
it is closely related to the well known GIT-fan stemming from the action of
the full automorphism group SL(2,K) on Pn1 .

For this we consider the unipotent group

Ga =

{(
1 k

0 1

)
; k ∈ K

}
⊆ SL(2,K),

and its action on X := (Kn)2 given by

A ·

[
x1 . . . xn

y1 . . . yn

]
:=

[
A

(
x1

y1

)
, . . . , A

(
xn

yn

)]
.

Viewing [xi, yi] as homogeneous coordinates of the factors in Pn1 this gives
rise to an induced action on X := Pn1 . Note that the Cox ring of X is

R(X) = O(X) = K[T1, . . . , Tn, S1, . . . , Sn]

together with a Cl(X)-grading defined by deg(Ti) = deg(Si) = ei ∈ Zn =
Cl(X). A first Propositions concerns the algebra of invariants in R(X) and
its spectrum.

Proposition 6.2.1. Consider the above Ga-action on X.

(i) The subalgebra O(X)Ga ⊆ O(X) is generated by

S1, . . . , Sn, TjSk − TkSj, with 1 ≤ j < k ≤ n.
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(ii) The canonical morphism κ′ : X → Y where Y := Spec(O(X)Ga)
fits into a commutative diagram

X
κ : (x,y) 7→ (1,x)∧ (0,y) //

κ′

&&

∧2Kn+1

Y

ι

77

where ι is a closed embedding and its image ι(Y ) is the affine
cone over the Grassmannian Gr(2, n + 1). Its vanishing ideal is
generated by the Plücker relations

TijTkl − TikTjl + TilTjk, with 0 ≤ i < j < k < l ≤ n,
where Tij = (ei ∧ ej)∗ are the dual basis vectors of the standard
basis.

Proof. The invariants have been described by Shmelkin, see [62, Theo-
rem 1.1]. For (ii) we define ι by its comorphism

ι∗ : T0i 7→ Si, Tjk 7→ TjSk − TkSj where 1 ≤ i ≤ n, 1 ≤ j < k ≤ n.
Clearly, ι∗ is surjective, hence ι is an embedding. Moreover, the pullback of
the Plücker relations with ι∗ gives the zero ideal. Thus Y lies in the affine
cone C(Gr(2, n + 1)). It now suffices to show that Im(κ′) has dimension
2n− 1.

For this consider two points (x, y), (x′, y′) with only non-zero coefficients. If
they have distinct orbits, then the orbits are separated by the invariants: If
y 6= y′ holds, then there exists a separating Si. Otherwise we can choose
a separating TiSj − TjSi. Hence, over an open set the fibres of κ′ are one-
dimensional and thus the image of κ′ is (2n− 1)-dimensional. �

While for reductive groups the quotient morphism κ′ is surjective, this fails
in general, also see [67]. We provide a description of the image of

κ : X = (Kn)2 →
∧2

Kn+1; (x, y) 7→ (1, x) ∧ (0, y).

Via the embedding of the preceeding proposition we view Y as subset of∧2Kn+1. Observe that Y contains the affine cone Y
?

of the smaller Grass-
mannian Gr(2, n) in the following canonical manner:

Y
?

= {(0, x) ∧ (0, y); x, y ∈ Kn} ⊆ Y .

Proposition 6.2.2. The image of κ is κ(X) = (Y \ Y ?) ∪ {0} .

Lemma 6.2.3. Let V be an n-dimensional vector space, 0 6= v1 ∈ V and
consider the linear map ϕv1 :

∧k−1 V →
∧k V ;x 7→ x∧ v1. Then the rank of

ϕv1 is
(
n−1
k−1

)
.
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Proof. Fix some basis (v1, v2, . . . , vn) of V . From this we then obtain a

basis (vi1 ∧ . . . ∧ vik−1 ; 1 ≤ i1 < . . . < ik ≤ n) of
∧k−1 V and ϕv1(x) = 0

holds if and only if x lies in W := Lin
(
vi1 ∧ . . . ∧ vik−1 ; i1 = 1

)
. This means

that the rank of ϕv1 is given by

rk(ϕv1) = dim

k−1∧
V − dimW =

(
n

k − 1

)
−

(
n− 1

k − 2

)
=

(
n− 1

k − 1

)
.

�

Proof of 6.2.2. From the definition of the morphism κ it follows that its
image is contained in (Y \ Y ?) ∪ {0}. For the reverse inclusion consider

z =
∑

zijei ∧ ej ∈ Y \ Y ?.

We define y := (z01, . . . , z0n) ∈ Kn; note that y 6= 0 holds. With the identi-
fication Kn = {0} ×Kn ⊆ Kn+1 we obtain an affine subspace Wy by

Wy := e0 ∧ y +
∧2

Kn ⊆
(
Ke0

∧
Kn
)
⊕
∧2

Kn =
∧2

Kn+1.

Since z lies in Wy ∩Y , it suffices to show that κ( · , y) maps Kn onto Wy ∩Y .

Clearly, by definition of κ, the image of κ( · , y) lies in Wy ∩ Y . To show
surjectivity we regard Wy as a vector space with origin e0 ∧ y. Then there is
a linear map

ϕ : Wy →
∧3

Kn; e0 ∧ y + u ∧ v 7→ u ∧ v ∧ y.

Observe that we have inclusions Im(κ( · , y)) ⊆ Zy ⊆ ker(ϕ). We claim that
equality holds in both cases. Since by Lemma 6.2.3 κ( · , y) is linear of rank
n− 1, the claim follows from

dim(ker(ϕ)) = dim(Wy)− rank(ϕ) =

(
n

2

)
−

(
n− 1

2

)
= n− 1.

�

We recall from [14, Section 2] the definition of the GIT-fan. Let the algebraic
torus H := (K∗)n act diagonally on Kr via the characters χw1 , . . . , χwr , wi ∈
Zn, i.e.

h · z := (χw1(h) z1, . . . , χ
wr (h) zr)

and suppose that Y ⊆ Kr is invariant under this action. Then the GIT-fan
is defined as the collection of cones

ΛH(Y ) := {λ(w); w ∈ Qn}; λ(w) :=
⋂
w∈ωI

ωI ⊆ Qn,

where ωI := cone(wi; i ∈ I) is the cone associated to a Y -set I, i.e. a subset
I ⊆ {1, . . . , r} for which the corresponding stratum {y ∈ Y ; yi 6= 0 ⇐⇒ i ∈
I} is non-empty.
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We turn back to our setting. The Cl(X)-grading of the Cox ring R(X) =

O(X) yields a diagonal action of the algebraic torus H := (K∗)n =

Spec(K[Cl(X)]) on X = (Kn)2 where

h · (x, y) = (h1x1 , . . . , hnxn , h1y1 , . . . , hnyn).

Since the subalgebra O(X)Ga inherits the Cl(X)-grading, the H-action de-

scends to its spectrum Y ⊆
∧2Kn+1, turning κ into an equivariant mor-

phism. Here the action is explicitly described by

h · e0 ∧ ej = hj e0 ∧ ej , h · ei ∧ ej = hihj ei ∧ ej .

Note that this action differs from the well known maximal torus action. It
rather is a submaximal action, with some connection to the maximal one,
see Proposition 6.2.7.

In order to obtain the GIT-fan ΛH(Y ) we consider the two-block partitions
of N := {1, . . . , n}, i.e. partitions where N is a union of two disjoint subsets
A,Ac. To each such partition R = {A,Ac} we associate the hyperplane

HR :=

{
x ∈ Qn;

∑
i∈A

xi =
∑
i∈Ac

xi

}
.

Theorem 6.2.4. Consider the above H-action on the affine cone Y over
the Grassmann variety Gr(2, n+ 1) and set Ω := Qn≥0. The GIT-fan ΛH(Y )
is the fan supported on Ω with walls given by the intersections HR ∩Ω where
R runs through the two-block partitions of N .

The key step of the proof is relate our submaximal H-action on Y to the
maximal torus action on the smaller Grassmannian cone Y

?
, see Proposi-

tion 6.2.7. The latter action is well understood, in particular the GIT-fan
was described in [24, Example 3.3.21].

The first step, however, is to provide a description of the Y - and Y
?
-sets.

We need some further notation:

N := {1, . . . , n} N := {{i, j}; 1 ≤ i < j ≤ n}

N0 := {0, . . . , n} N0 := {{i, j}; 0 ≤ i < j ≤ n}
Recall that the cones over the Grassmannians lie in the wedge products
Y
? ⊆

∧2Kn, Y ⊆
∧2Kn+1. We use the above index sets N and N0 to refer

to the coordinate indices where {i, j} labels ei ∧ ej .

Proposition 6.2.5. A subset I ⊆ N0 is a Y -set if and only if I satisfies the
following condition

(∗) {i, j}, {k, l} ∈ I =⇒ {j, l}, {i, k} ∈ I or {j, k}, {i, l} ∈ I.
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Proof. It follows from the nature of the Plücker relations that a Y -set I
has in fact the property (∗). We prove that a subset of N satisfying (∗) is a

Y -set by induction on n. For this recall that we have commutative diagram
of closed embeddings

C(Gr(2, n+ 1)) Y // (Ke0

∧
Kn)⊕

∧2Kn
∧2Kn+1

C(Gr(2, n))

OO

Y
? //

OO

∧2Kn

OO

where the embedding of the surrounding wedge products is reflected by the
inclusion N ⊆ N0. Let I ⊆ N0 be a set with the property (∗). If I ⊆ N
holds, then the assertion follows from the induction hypothesis. We turn
to the case where there exists k ∈ N such that {0, k} lies in I. We will

explicitly construct an element z ∈ Y for which zij vanishes if and only if
{i, j} does not lie in I. For this we introduce two graph structures on N by
G12 := (N, E1 ∪ E2) and G2 := (N, E2), where E1, E2 are sets of edges on N
defined by

E1 :=
{
{i, j} ∈ I ∩N; {0, i} ∈ I or {0, j} ∈ I

}
,

E2 :=
{
{i, j} ∈ N \ I; {0, i}, {0, j} ∈ I

}
.

From the definition of the edge sets of the respective graphs we know that if
{i} is a connected component of G12, then it also is a connected component
of G2. Let F1, . . . ,Fq be the connected components of G2 different from a
component {i} of G12. We define a vector x ∈ Kn by

xi :=

{
0 if {i} is a component of G12,

p if {i} ⊆ Fp holds.

Moreover, we define y ∈ Kn by yj := 1 if {0, j} ∈ I and yj := 0 if {0, j} /∈ I.
We then claim that z := (1, x) ∧ (0, y) has the property

zij 6= 0 ⇐⇒ {i, j} ∈ I.

Since z0j = yj holds, it is clear that the claim is true for the components of
this type. For 0 6= i < j the components of z can be written as

zij = xi yj − xj yi =


0 if {0, i}, {0, j} /∈ I,
±xi if {0, i} /∈ I, {0, j} ∈ I,
xi − xj if {0, i}, {0, j} ∈ I.

We now go through these three cases and verify for each that {i, j} lies in I
if and only if zij 6= 0 holds.
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Assume that {0, i}, {0, j} /∈ I holds and recall that there exists a k ∈ N with
{0, k} ∈ I. It follows from (∗) applied to {0, k}, {i, j} that {i, j} does not lie
in I.

For the second case suppose that {0, i} /∈ I and {0, j} ∈ I hold. We then
have

xi 6= 0 ⇐⇒ there exists l ∈ N such that {i, l} ∈ E1 or {i, l} ∈ E2
⇐⇒ there exists l ∈ N such that {i, l} ∈ E1
⇐⇒ {i, j} ∈ I

For the second equivalence note that {0, i} /∈ I holds which implies {i, l} /∈ E2.
The third equivalence is due to an application of (∗) to {0, j} {i, l}.

In the last case where {0, i}, {0, j} ∈ I holds we obtain

xi = xj ⇐⇒ i, j lie in the same connected component of G2

or {i}, {j} are connected components of G12

⇐⇒ {i, j} ∈ E2 or {i}, {j} are connected components of G12

⇐⇒ {i, j} /∈ I

For the second equivalence we use that each connected component of G2 is a
complete graph, which follows from (∗). �

Remark 6.2.6. The affine cone Y
?

over the smaller Grassmannian Gr(2, n)

is invariant under the H-action. The corresponding GIT-fan ΛH(Y
?
) of this

restricted action is well known, it was described in terms of walls in [24,
Example 3.3.21] and [7, Example 8.5] as follows: Set

Ω? := cone(ei + ej ; 1 ≤ i < j ≤ n) ⊆ Qn≥0.

Then the GIT fan ΛH(Y
?
) is the fan supported on Ω? with walls given by

the intersections of Ω? with the above hyperplanes HR.

Proposition 6.2.7. The GIT-fan ΛH(Y
?
) is a subfan of ΛH(Y ).

Example 6.2.8. Consider the weights of the coordinates of the H-action
on
∧2Kn+1

w01 := e1, . . . , w0n := en, wjk := ej + ek, 1 ≤ j < k ≤ n.

The following pictures of polytopal complexes arise from intersecting the
GIT-fan ΛH(Y ) with the hyperplane given by 1 = x1 + . . .+ xn in the cases

n = 3, 4. The shaded area indicates the support Ω? of ΛH(Y
?
).
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w01 w12 w02

w03

w13 w23

w01 w02

w03

w04

w12

w14

w23

w34

w12

w13

w14

w23

w24

w34

n = 3 n = 4

In the case n = 3 the three walls of the GIT-fan are generated by two of the
vectors w12, w13, w23 and correspond to the two-block partitions

{{1}, {2, 3}}, {{2}, {1, 3}} and {{3}, {1, 2}}.

In the case n = 4 again the hyperplanes separating Ω? from the remaining
4 cones correspond to the partitions of the type {{i}, {j, k, l}}. The dotted

lines in the right picture indicate the fan structure inside ΛH(Y
?
). There are

eight maximal cones arising from 3 hyperplanes of the form {{i, j}, {k, l}}.

Proof of Proposition 6.2.7. Recall that the weights of the coordinates of
the H-action are

w01 := e1, . . . , w0n := en, wjk := ej + ek, 1 ≤ j < k ≤ n.

The GIT-fans ΛH(Y ) and ΛH(Y
?
) are the collections of cones which arise as

intersections of cones ωI = cone(wij ; {i, j} ∈ I) associated to Y - or Y
?
-sets

respectively. From Proposition 6.2.5 we know that every Y
?
-set is also a

Y -set. This means we only have to show that for every Y -set I ⊆ N0 there
exists a Y

?
-set J ⊆ N such that ωI ∩Ω? = ωJ holds. For a Y -set I ⊆ N0 we

set

J := J1 ∪ J2, J1 := I ∩N, J2 := {{i, j}; {0, i}, {0, j} ∈ I}

and prove that J has the required properties. We first claim that J is an Y
?
-

set. For this we check that the condition of Proposition 6.2.5 applies to any
two elements of J . If these two elements lie either both in J1 or J2 then the
claim follows from I being a Y -set or the construction of J2 respectively. For
the remaining case consider {j, k} ∈ J1 and {i1, i2} ∈ J2. Since both {0, i1}
and {j, k} lie in I, we can without loss of generality assume that also {i1, j}
and {0, k} lie in I. Finally with {0, i2} ∈ I we conclude that {i2, j}, {i1, k}
are elements of J . This shows that J is a Y

?
-set.

We now prove ωI ∩Ω? = ωJ . It is easy to see that ωJ is in fact contained in
ωI ∩ Ω?; we turn to the reverse inclusion. With non-negative ai, ajk let

x :=
∑
I\N

aiw0i +
∑
I∩N

ajkwjk
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lie in ωI ∩ Ω?. We show that x is a non-negative linear combination of
elements wη, η ∈ J . Let ai1 be minimal among all ai with {0, i} ∈ I. For an
arbitrary {0, i2} ∈ I we then replace in the above sum

ai1w0i1 + ai2w0i2 by (ai2 − ai1)w0i2 + ai1wi1i2 .

Note that now {i1, i2} lies in J2. Iterating this process we see that there
exists some {0, i} ∈ I such that x has the form

(∗∗) x = biw0i +
∑
J1∪J2

bjkwjk.

Without loss of generality we assume that i = 1 holds. The condition x ∈ Ω?

implies x1 ≤ x2 + . . .+ xn, hence we have

b1 ≤ 2
∑
{j, k} ∈ J
j, k 6= 1

bjk and b1 = 2
∑
{j, k} ∈ J
j, k 6= 1

b′jk

for certain 0 ≤ b′jk ≤ bjk. Plugging w01 = 1/2(w1j +w1k −wjk) into (∗∗) we
obtain a non-negative linear combination

x =
∑
{j, k} ∈ J
j, k 6= 1

(
(b1j + b′jk)w1j + (b1k + b′jk)w1k + (bjk − b′jk)wjk

)
+
∑
{1, k} ∈ J

b1kw1k.

The last step to show is that for {j, k} ∈ J both {1, j} and {1, k} lie in J .
Recall that we have {0, 1} ∈ I. If {j, k} lies in J2, then this follows directly
from construction of J2. Otherwise we can without loss of generality assume
that {0, j}, {1, k} lie in I. The claim again follows from the construction of
J2. �

Proof of Theorem 6.2.4. As before we denote the weights of coordinates
with respect to the H-action by w0i = ei, wjk = ej + ek. From Proposi-

tion 6.2.7 we know that ΛH(Y ) has the asserted form on Ω?. Note that the
remaining support Ω \ relint(Ω?) is the union of the cones

σi := cone(wij ; j ∈ N \ {i}), i = 1, . . . , n.

None of the hyperplanes HR intersect σi in its relative interior. This means
that we have to prove that σi is a cone in the GIT-fan ΛH(Y ), i.e. the

intersection of cones ωI associated to Y -sets. Note that σi itself is a cone
associated to a Y -set. Hence, it suffices to show that for any Y -set I ⊆ N0

the intersection ωI ∩ σi is a face of σi. Without loss of generality we assume
that i equals 1 and set σ := σ1. We now claim that ωI ∩σ = ωJ holds where

J := J1∪J2; J1 := I∩{{1, j}; j ∈ N0\{1}}, J2 := {{1, j}; {0, j} ∈ I}.
To prove ωJ ⊆ ωI ∩σ note that any w1j with {1, j} ∈ J1 clearly lies in ωI ∩σ.
Hence, it suffices to show that for w1j with {0, j} ∈ I the same holds. In
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case {0, 1} ∈ I this follows from w1j = w01 + w0j ∈ ωI ∩ σ. Otherwise there
must exist {1, l} ∈ I and from Proposition 6.2.5 we know {0, l}, {1, j} ∈ I.
This implies w1j ∈ ωI ∩ σ.

For the reverse inclusion ωI ∩ σ ⊆ ωJ consider the non-negative linear com-
bination

x := a01w01 +
∑
{1, j} ∈ I
j 6= 0

a1jw1j +
∑
{0, j} ∈ I
j 6= 1

a0jw0j +
∑
{j, k} ∈ I
j, k 6= 0, 1

ajkwjk ∈ ωI

Since x lies in σ, we have x1 ≥ x2 + . . .+ xn and this amounts to

a01 ≥
∑
{0, j} ∈ I
j 6= 1

a0j + 2
∑
{j, k} ∈ I
j, k 6= 0, 1

ajk.

If {0, 1} /∈ I holds, i.e. a01 = 0, then x lies in the cone generated by the w1j ,
{1, j} ∈ J1. Otherwise with w0j = w1j − w01 and wjk = w1j + w1k − 2w01

we get a non-negative linear combination

x =
∑
{1, j} ∈ I
j 6= 0

a1jw1j +
∑
{0, j} ∈ I
j 6= 1

a0jw1j +
∑
{j, k} ∈ I
j, k 6= 0, 1

ajk(w1j + w1k)

+

a01 −
∑
{0, j} ∈ I
j 6= 1

a0j − 2
∑
{j, k} ∈ I
j, k 6= 0, 1

ajk

w01.

The last thing to check is that all the above wij lie in ωJ . For this suppose
that {j, k} ∈ I holds. Since {0, 1} is contained in I, it follows from the
construction of J that both {1, j} and {1, k} lie in J . �

6.3. Combinatorial Blow-ups

In this section we will provide a criterion whether a given cone lies in the
iterated stellar subdivision of a simplicial fan. In [28] Feichtner and Kozlov
deal with this problem in the more general setting of semilattices and give
a nice characterisation in the case where the collection of subdivided cones
forms a building set. We approach the issue of blowing up non-building sets,
see Theorem 6.3.10.

Let us recall the definition of stellar subdivisions, for details see e.g. [39,
Definition 5.1]. For a fan Σ0 in a vector space NQ and a cone σ0 ∈ Σ0 the
star of σ0 is given as

star(σ0) :=
{
σ ∈ Σ0; σ0 4 σ

}
.
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We insert a new ray into the fan Σ0. For this let ν ∈ σ◦0 be some vector in
the relative interior, then the stellar subdivision of Σ0 at ν is

stSubDivν(Σ0) :=
(
Σ0 \ star(σ0)

)
∪
{
τ + cone(ν); τ � σ ∈ star(σ0)

}
.

We now iterate this process. For this let V be a family of rays in a vector
space and consider a V-fan Σ0, i.e. a fan with rays given by V. We then
choose additional rays νi, i = 1, . . . , r lying in the relative interiors σ◦i of
pairwise different cones σi ∈ Σ0. Moreover, we assume that σi � σj implies
j < i, which means that the larger the cone the earlier it will be subdivided.
Now the questions comes up what the cones of the fan Σr are which arises
from Σ0 by the subsequent stellar subdivisions in the rays νi.

We call a subset S ′ of S := {σ1, . . . , σr} conjunct, if the union
⋃
σ∈S′(σ\{0})

is a connected subset in the usual sense and we set

〈S〉 :=

{∑
σ∈S′

σ ; S ′ ⊆ S conjunct

}
.

A collection C ⊆ V ∪S is called geometrically nested, if for any subset H ⊆ C
of pairwise incomparable cones with |H| ≥ 2 the following holds:∑

τ∈H

τ ∈ Σ0 \ 〈S〉.

Proposition 6.3.1. Let Σ0 be a simplicial fan and νi ∈ σ◦i some rays in the
relative interiors of pairwise different cones σi ∈ Σ0. Assume that σi � σj
implies j < i and let Σr be the iterated stellar subdivision of Σ0 in the rays
ν1, . . . , νr in order of ascending indices. If in the above notation C ⊆ V ∪ S
is geometrically nested, then cone(v, νi; v ∈ C ∩ V, σi ∈ C ∩ S) lies in Σr.

We will prove this using the technique of combinatorially blowing up elements
in a semilattice developed by Feichtner and Kozlov in [28].

Definition 6.3.2. A meet-semilattice is a partially ordered set (L,≤) such
that for any A ⊆ L the set {z ∈ L; z ≤ a for all a ∈ A} posesses a greatest
element

∧
A called meet. For the meet of A = {a1, . . . , an} we also write

a1 ∧ . . . ∧ an.

It is well known that any such semilattice has a unique minimal element 0.
Also, for a family or subset A ⊆ L the set {z ∈ L; z ≥ a for all a ∈ A} is
either empty or has a unique minimal element

∨
A called join. If the join of

A = {a1, . . . , an} exists, then for it we also write a1 ∨ . . . ∨ an. For x, y ∈ L
we denote A≤x := {a ∈ A; a ≤ x} and A<x in the analog way.

We now turn to blow-ups of semilattices in the sense of [28, Definition 3.1].
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Definition 6.3.3. The blow-up of (L,≥) in an element α ∈ L is the semi-
lattice Bl(α)(L) consisting of the elements and pairs

• x ∈ L with x 6≥ α,
• (α, x) where L 3 x 6≥ α and x ∨ α exists.

with the order relation ≥Bl given by

• x >Bl y if x > y,
• (α, x) >Bl (α, y) if x > y and
• (α, x) >Bl y if x ≥ y.

where in all three cases x, y 6≥ α holds.

Example 6.3.4. Let L be the semilattice given by the upper diagram and
set α := xyz, β := xy. Then the blow-ups Blα(L) and Blβ(L) is given by
the lower diagrams.

0

x y z

xy xz yz

xyz

L

0

(α,0)
x

y
z

xy xz yz(α,x) (α,y) (α,z)

(α,xy) (α,xz) (α,yz)

0

(α,0) x y z

(α,x) (α,y) (α,z) xz yz

(α,xz) (α,yz)

Blα(L) Blβ(L)

We now want to iterate the blow-up process. Let G = (ξ1, . . . , ξr) be a family
of elements ξi ∈ L. The blow-up of L in G is simply the subsequent blow-
up of L in the elements ξi in order of ascending indices. When we speak
of a subfamily (ξi1 , . . . ξis) of G we always tacitly assume, that the order is
preserved, i.e. that j < k implies ij < ik. We call G sorted if ξi > ξj implies
i < j. Moreover, we denote the underlying set of the family G by SG .
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Definition 6.3.5. A subset S ⊆ L\{0} is called building set for L, if for any
element 0 6= x ∈ L and max(S≥x) = {x1, . . . , xr} there exists an isomorphism
of patially ordered sets

ϕx :

r∏
i=1

[0, xi] → [0, x]

where for every j = 1, . . . , r the element (0, . . . , 0, xj , 0, . . . , 0) maps to xj .

Proposition 6.3.6 ([28, Proposition 2.3]). The set S ⊆ L\{0} is a building
set for L if and only if S generates L by ∨ and for any x ∈ L, {xq, . . . , xs} ⊆
max(S≥x) and z < y ∈ L the following conditions hold:

(i) A≤y ∩ S≤x1∨...∨xs = ∅,
(ii) z ∨ x1 ∨ . . . ∨ xs < y ∨ x1 . . . ∨ xs.

Definition 6.3.7 ([28, Definition 2.2]). A subset C of a building set S is
called nested if for any subset H ⊆ C of pairwise incomparable elements and
|H| ≥ 2 the join

∨
H exists and is not an element in S.

Remark 6.3.8. Note that the collection of nested sets forms an abstract
simplicial complex C(S) with vertex set S.

Theorem 6.3.9 ([28, Theorem 3.4]). Assume that G is a sorted familiy in
the semilattice L such that the underlying set SG is a building set. Then we
have an isomorphism of posets

C(SG)→ BlG(L); C 7→
∨
ξ∈C

(ξ, 0).

We now describe a suffient criterion to test whether an element lies in BlF (L)
in the case where SF is not a building set.

Theorem 6.3.10. Let F be a sorted family in L and consider a subset C of
the underlying set SF . If there exists a building set S of L with SF ⊆ S such
that C is nested in S, then

∨
ξ∈C(ξ, 0) exists in the blow-up BlF (L).

Before we enter the proof of the Theorem we consider an example. Fur-
thermore, for distributive L we provide an explicit construction of such a
building set in the case where SF generates L by ∨, see Construction 6.3.13,
Lemma 6.3.15.

Example 6.3.11. The face poset of a polyhedral fan is a semilattice in
which the stellar subdivision in a ray ν ∈ σ◦ corresponds to the blow-up of the
element σ, see [28, Proposition 4.9]. Viewing the positive orthant Σ := Q3

≥0

as a fan, we ask for the combinatoric structure of its stellar subdivisions Σ1
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and Σ2 in the sorted families

G1 := (ν1, ν2, e1, e2, e3), G2 := (ν2, ν1, e1, e2, e3),

where ν1 := (1, 1, 0), ν2 := (0, 1, 1).

If G1 and G2 were building sets, then Theorem 6.3.9 would imply that Σ1

equals Σ2. Clearly, this is not the case.

e1 e2

e3

ν1

ν2

e1 e2

e3

ν1

ν2

Σ1 Σ2

We now add to G1 and G2 a ray lying in the relative interior of the join of the
faces cone(e1, e2), cone(e2, e3), e.g. ν0 = (1, 1, 1). This yields two building
sets

G1a := (ν0, ν1, ν2, e1, e2, e3), G2a := (ν0, ν2, ν1, e1, e2, e3).

Both families give rise to the same subdivided fan. Note that the faces of
Σ1a = Σ2a not having ν0 as a ray lie in both Σ1 and Σ2. This is essentially
the idea of the proof of Proposition 6.3.1.

e1 e2

e3

ν1

ν2

Σ1a = Σ2a

Definition 6.3.12. Let S = {ξ1, . . . , ξr} be a subset of the semilattice L.
We call a (non-ordered) pair {ξi, ξj} harmonious (with respect to S) if at
least one of the following conditions is satisfied:

ξi ∧ ξj = 0 or ξi ∨ ξj does not exist or ξi ∨ ξj ∈ S.

Construction 6.3.13. Let S = {ξ1, . . . , ξr} be a subset of L. For all pairs
of non-harmonious elements {ξi, ξj} we add to S the element ξi ∨ ξj :
S ′ := S ∪ {ξi ∨ ξj ; {ξi, ξj} non-harmonious with respect to S}.

We continue this process with the new set S ′ instead of S until all pairs are
harmonious and denote the final set by 〈〈S〉〉. Since L is finite, clearly this
process terminates after finitely many steps.

Definition 6.3.14. A semilattice L is called distributive if for any x, y, z ∈ L
the following equation holds

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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Lemma 6.3.15. Assume that L is distributive and a subset S ⊆ L \ {0}
generates it by ∨. Then the following assertions hold.

(i) If for any x ∈ L and distinct ξi, ξj ∈ max(S≤x) their meet ξi ∧ ξj
equals 0, then S is a building set for L.

(ii) The set 〈〈S〉〉 is a building set for L.

Proof. For the proof of (i) we check the two conditions of [28, Proposi-
tion 2.3 (4)]. Fix an x ∈ L and a subset {y, y1, . . . , yt} ⊆ max (S≤x). By
assumption we have

0 = (y ∧ y1) ∨ . . . ∨ (y ∧ yt) = y ∧ (y1 ∨ . . . ∨ yt).

Since 0 6∈ S holds, this implies S≤y ∩ S≤y1∨...∨yt = ∅. For the second
condition let z < y. Clearly z ∨ y1 ∨ . . .∨ yt ≤ y ∨ y1 ∨ . . .∨ yt holds. If they
were equal, so would be the respective meets with y and this would imply
z = y.

We now prove the second assertion (ii). By construction of 〈〈S〉〉, for any
x ∈ L and ξi, ξj ∈ max (〈〈S〉〉≤x) the pair {ξi, ξj} is harmonious (with respect
to 〈〈S〉〉). Its join exists but - by maximality of ξi and ξj - does not lie in
〈〈S〉〉. This implies that ξi ∧ ξj = 0 holds and the assertion follows from (i).
�

Proof of Theorem 6.3.10. Before we enter the proof let us recall the join
rules of blow-ups from [28, Lemma 3.2]. Let x, y, ξ lie in the semilattice L
and consider the blow-up L′ of L in ξ. Then the join (ξ, x)∨L′ y exists if and
only if x ∨L y exists and x ∨ y 6≥ ξ holds. The join x ∨L′ y exist if and only
if x ∨L y exists. In case the joins exist the following formulae hold

(ξ, x) ∨L′ y = (ξ, x ∨L y), x ∨L′ y = x ∨L y.

We turn back to our case and fix some notation. We write F = (ξ1, . . . , ξr)
and denote the elements lying in C by ξij , j = 1, . . . , s where we assume that

the order is preserved, i.e. j < j′ is equivalent to ij < ij′ . Moreover, for
k = 1, . . . , r let Lk be the blow-up of L in (ξ1, . . . , ξk)and for consistency we
set L0 := L. In Lk we consider the following (a priori non-existent) join

j(k)∨
j=1

(ξij , 0) ∨
s∨

j=j(k)+1

ξij , where j(k) := max({0} ∪ {j; ij ≤ k}).

In case this join does exist, we denote it by zk. Note that ij(k) is the smallest
index, such that ξi1 , . . . , ξij(k)

are among the ξ1, . . . , ξk. Since C is nested,

it is clear that z0 =
∨
C does exist in L0. We prove the existence of zr =∨

ξ∈C(ξ, 0) by induction on k. For this assume that zk ∈ Lk exists. We
discriminate two possible cases: In the first case ξk+1 does not lie in C in the
second case it does.
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Assume that ξk+1 /∈ C holds and note that this is equivalent to j(k) = j(k+1).
Hence zk+1 = zk holds in Lk and the only thing to check is that we have
zk 6≥ ξk+1. For this note that the iterated application of the above join rules
shows that

zk = (ξij(k)
, 0) ∨

j(k)−1∨
j=1

(ξij , 0) ∨ ζk

 =

ξij(k)
,

j(k)−1∨
j=1

(ξij , 0) ∨ ζk


= . . . =

(
ξij(k)

, (. . . (ξi1 , ζk) . . .)
)

where ζk :=

s∨
j=j(k)+1

ξij .

If we had zk ≥ ξk+1, then this would mean (ξij(k)− , (. . . (ξi1 , ζk) . . .)) ≥ ξk+1.
Iterating this argument we would get ζk ≥ ξk+1 in L0 which would imply
ξk+1 ∈ S≤ζk . Since S is a building set, by [28, Proposition 2.8 (2)]

max(S≤ζk ) = max(ξij , j = j(k) + 1, . . . , s)

holds. Hence there must exist j0 ≥ j(k) + 1 with ξk+1 ≤ ξij0 . Since ξk+1 /∈ C
holds, we have ξk+1 6= ξj0 . In particular, this implies k > ij0−1 ≥ ij(k)+1−1.
However, from the definition of j(k) we easily see that k ≤ ij(k)+1 − 1 holds,
a contradiction.

We turn to the second case where ξk+1 ∈ C holds which is equivalent to
j(k) + 1 = j(k + 1). In Lk we consider the element

yk :=

j(k)∨
j=1

(ξij , 0) ∨
s∨

j=j(k)+2

ξij .

Since zk exists, it follows that also yk and the join ξk+1 ∨ yk exist. Then
the last thing to show is that yk 6≥ ξk+1 holds. This follows from the same
argument as above with yk instead of zk. �

Proof of Proposition 6.3.1. First note that since Σ0 is simplicial so is
the iterated stellar subdivision Σr. In particular, the further application
of stellar subdivisions in the original rays V leaves Σr unchanged. From
[28, Proposition 4.9] we know that a stellar subdivision in a ray ν ∈ σ◦

corresponds to the blow-up of the face poset of the original fan in σ. More
precisely, as posets Σr and BlF (Σ0) are isomorphic, where

F := (σ1, . . . , σr, v1, . . . , vt), V = {v1, . . . , vt}.

For the proof of the Proposition we now check the assumptions of Theo-
rem 6.3.10. First note that Σ0 is simplicial, hence it is distributive as a
semilattice. Its joins and meets can be computed by taking convex geomet-
ric sums and intersections respectively. Also, with S = {σ1, . . . , σr} it is clear
that V ∪ S, the underlying set of F , generates Σ0 \ {0} by +. In particular,
from Lemma 6.3.15 we infer that 〈〈V ∪ S〉〉 is a building set for Σ0.
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Now note that 〈〈V ∪S〉〉\V equals 〈〈S〉〉 and from the respective constructions
it follows that 〈〈S〉〉 ⊆ 〈S〉 holds. Together this means

Σ0 \ 〈S〉 ⊆ Σ0 \ 〈〈S〉〉 = Σ0 \ (〈〈V ∪ S〉〉 \ V) = (Σ0 \ 〈〈V ∪ S〉〉) ∪ V.

Since C ⊆ V ∪ S is geometrically nested, it follows that it is also nested in
〈〈V ∪ S〉〉 in the sense of semilattices. From Theorem 6.3.10 we now know
that

∨
c∈C(c, 0) lies in BlF (Σ0). Under the above isomorphy Σr ∼= BlF (Σ0)

this means

cone(v, νi; v ∈ C ∩ V, σi ∈ C ∩ S) ∈ Σr.

�

6.4. Stellar Subdivisions and Blow-ups

In this section we relate the toric morphism arising from a stellar subdivision
to classical blow-ups. We recall some of the basic notation, see [27, 37].

Let F be a sheaf of OZ-modules (or short OZ-module) on the normal variety
Z. We call F invertible if it is locally free of rank 1. Moreover, F is a sheaf
of ideals, if for every open U ⊆ Z the sections Γ(F , U) constitute an ideal in
OZ(U). Consider a morphism of varieties ι : Y → Z and an OY -module G.
Then ι∗G and ι−1FOY are the direct image sheaf and inverse image sheaf
respectively.

Let ι : Y → Z be the embedding of a closed subscheme. Then Y is charac-
terised by its ideal sheaf IY , i.e. the kernel of OZ → ι∗OY . The blow-up of
Z along Y is given as

BlY (Z) := Proj(A), where A :=
⊕
n∈Z≥0

InY

and I0
Y = OZ . It comes with a morphism π : BlY (Z) → Z and satisfies

the following universal property, see [37, Proposition 7.14]. If there exists a

morphism of varieties π̃ : Z̃ → Z such that the inverse image sheaf π̃−1IYOZ̃
is an invertible sheaf of ideals on Z̃, then there exists a unique morphism
ϕ : Z̃ → BlY (Z) such that the following diagram commutes.

Z̃

π̃

��

ϕ

||
BlY (Z)

π // Z

Now consider a morphism of varieties ϕ : X → Z and let ι : Y → Z be a
closed subscheme. Then the sheaf of ideals corresponding to the preimage
ϕ−1(Y ) := X ×Z Y → X is given by the inverse image sheaf ϕ−1IYOX .



Stellar Subdivisions and Blow-ups 109

Moreover, there exists a unique morphism ϕ̃ making the following diagram
commutative, see [37, Corollary 7.15].

Blϕ−1(Y )(X)
ϕ̃ //

��

BlY (Z)

π

��
X

ϕ // Z

If ϕ is a closed embedding, then so is ϕ̃ and the image of the latter coincides

with the proper transform of X, i.e. the closure π−1(X \ Y ) ⊆ BlY (Z).

Suppose that Z is affine; then there is a one-to-one correspondence between
the subschemes of Z and the ideals of O(Z). So let IY ⊆ O(Z) be the ideal
corresponding to Y and suppose that ϕ : X → Z is a closed embedding. Then
the blow-ups of Z in Y and of X in ϕ−1(Y ) are

BlY (Z) = Proj

 ⊕
n∈Z≥0

InY

 , Blϕ−1(Y )(X) = Proj

 ⊕
n∈Z≥0

(ϕ∗IY )n

 .

We now turn to the following question. Let π : Z1 → Z0 be the toric mor-
phism arising from a stellar subdivision Σ1 → Σ0. Describe a homogeneous
ideal I in the graded Cox ring R(Z0) such that Z1 is isomorphic to the blow-
up of Z0 in the subscheme associated to the ideal sheaf I on Z0 in the sense
of Cox, [22, Section 3].

We fix some notation. Let Σ0 be a simplicial lattice fan in NQ and suppose
that v1, . . . , vr ∈ N are primitive lattice vectors in the rays of Σ0. Set P as
the homomorphism mapping the standard basis vectors f1, . . . , fr of F := Zr
to the vi. Then the Cox ring of Z0 is K[γ ∩ E] where E := F ∗ is the dual
lattice of F and γ is the positive orthant in EQ := E ⊗Q.

Let ν be a lattice vector in the support of Σ0. Then there exists a unique
subset A ⊆ {1, . . . , r} and a minimal positive integer m such that

mν =
∑
i∈A

αivi, αi ∈ Z≥1

is a linear combination with only positive integer coefficients. By (e1, . . . , er)
we denote the dual basis of (f1, . . . , fr) and set

EA := cone(ei; i ∈ A), f :=
∑
i∈A

αifi ∈ F, c := lcm(αi; i ∈ A).

and obtain a homogeneous ideal in the Cox ring of Z0 and a subscheme Y of
Z0 in the sense of [22].

I := 〈χe; e ∈ EA, 〈 e, f 〉 = c 〉 ⊆ K[γ ∩ E].
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Proposition 6.4.1. Let Σ1 → Σ0 be the stellar subdivision of the simplicial
fan Σ0 in cone(ν). If Z1, Z0 are the toric varieties arising from Σ1,Σ0 respec-
tively, then Z1 is isomorpic to the normalised blow-up of Z0 in the subscheme
Y .

Lemma 6.4.2. Let Z be an affine toric variety with corresponding lattice
cone σ in N . Consider a subset M ⊆ σ∨ ∩ N∗ and the subscheme Y of Z
corresponding to the ideal

〈χy; y ∈M 〉 ⊆ K[σ∨ ∩N∗].

Then the toric variety corresponding to the normal fan N (σ∨ + conv(M)) is
isomorphic to the normalisation of BlY (Z).

Proof of Proposition 6.4.1. Let σ ∈ Σ0 be a cone and denote by B ⊆
{1, . . . , r} the indices with the property cone(vj) ∈ σ(1). We denote by R
the Cox ring of Z0 and consider the localisation Rσ at the element

∏
j /∈B Tj .

Then the regular functions on the affine chart Z(σ) are given by the degree
zero part (Rσ)0. Moreover, on this chart the subscheme Y is defined by the
respective degree zero part of the localised ideal (Iσ)0. It is explicitly given
by

(Iσ)0 =
〈
χe−k; e ∈ EA, k ∈ EAc , 〈e, f〉 = c, e− k ∈ Im(P ∗)

〉
If A ⊆ B holds, which is equivalent to ν ∈ σ, then this ideal is equal to
〈1〉. For the case A 6⊆ B, which holds if and only if ν /∈ σ, consider the
isomorphism of affine algebras

ϕ : K[σ∨ ∩N∗]→ (Rσ)0; χm 7→ TP
∗(m).

Under this isomorphism the preimage of (Iσ)0 is given by

ϕ−1((Iσ)0) = {m ∈ σ∨ ∩N∗; 〈m, ν〉 = c} =: M.

Blow-ups are determined locally, so by Lemma 6.4.2 our assertion follows
from

stSubDivν(σ) = σ uN (conv(M)) = N (σ + conv(M)).

�

Remark 6.4.3. In the affine case a blow-up is normal if and only if the
ideal corresponding to the center of the blow-up is integrally closed. Criteria
for this are provided in [48, Proposition 1.4.6].

6.5. The Limit Quotient as Blow-up

This section is devoted to the main result and its proof. As before, let
Y ⊆

∧2Kn+1 be the affine cone over the Grassmannian Gr(2, n + 1) and
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consider the torus H = (K∗)n acting on Y by

h · e0 ∧ ei = hie0 ∧ ei, h · ei ∧ ej = hihjei ∧ ej .

We assert that the normalised limit quotient Y
∼
/

LQ H normalises the following
iterated blow-up of Pn−1

1 . We set N2 := {2, . . . , n} and consider a subset
A ⊆ N2 with at least two elements. Labeling by T2, S2, . . . , Tn, Sn the homo-
geneous coordinates of Pn−1

1 we associate to A the subscheme of Pn−1
1 given

by the ideal 〈
T 2
i , TjSk − TkSj ; i, j, k ∈ A, j < k

〉
The collection X of corresponding subschemes XA comes with a partial or-
der given by the schme-theorectic inclusions with XN2 being the minimal
element. A linear extension of this partial order is a total order on X which
is compatible with the partial order.

Theorem 6.5.1. Fix a linear extension of the partial order on X . Then
the normalised limit quotient Y

∼
/

LQ H normalises the blow-up of Pn−1
1 in all

the subschemes XA (i.e. their respective proper transforms) in ascending
order.

Recall that the above action stems from the action of Ga on X = Pn1 as
shown in Sections 2.5 and 6.2. Moreover, keep in mind that the enveloped
quotients Vi of X are only subsets of the Mumford quotients of Y . Hence
the non-reductive limit quotient X /

LQ Ga in general only is a subset of the
reductive limit quotient. This is reflected in the second step of the following
procedure to obtain X

∼
/

LQ Ga.

Theorem 6.5.2. The normalised limit quotient X
∼
/

LQ Ga can be obtained by
the following procedure.

(i) Let X1 be the blow-up of Pn−1
1 in the subscheme XN2 .

(ii) Let X ′1 := X1\E be the quasiprojective subvariety of X1 where E is
the intersection of the proper transform of V (T2, . . . , Tn) ⊆ Pn−1

1

with the exeptional divisor in X1.
(iii) Fix a linear extension of the partial order on X and blow up X ′1 in

the respective proper transforms of the remaining subschemes XA,
A ( N2 in ascending order.

(iv) Normalise the resulting space.

We briefly outline the structure of our proof. For this consider En the identity
matrix and

Q := (En, Dn), where Dn := (ej + ek)1≤j<k≤n.

Note that Q is the matrix recording the weights of the coordinates of the
above H-action. We denote the first n columns of Q by w0i and the remaining
ones by wjk. Furthermore, we fix a Gale dual matrix P of Q, i.e. a matrix
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with PQt = 0, and analogously write v0i, vjk for its columns. Denoting by

T the dense algebraic torus of
∧2Kn+1 we recall from Section 2.5 that there

is a normalisation map

Y
∼
/

LQ H →
(
(Y ∩ T )/H

)Σ
,

where the latter is the closure in the toric variety associated to the fan Σ :=
GKZ(P ). With this the proof of Theorem 6.5.1 will be split into two parts.
As a first step we will prove that the blow-up of Pn−1

1 in the subscheme

XN2 yields one of the Mumford quotients X1 of Y . This quotient comes
with a canonical embeddeding into a simplicial toric variety Z1, which arises
from a simplicial fan Σ1 with rays generated by the columns of P . Finally
we show that the iterated stellar subdivision of Σ1 and the fan Σ share
a sufficiently large subfan. This implies that the proper transform of X1

under the corresponding toric blow-ups and the limit quotient Y /
LQ H share a

common normalisation.

In the case n = 2 the normalised limit quotient is the projective line. If we
consider three distinct points the resulting normalised limit quotient is the
unique non-toric, Gorenstein, log del Pezzo K∗-surface of Picard number 3
and a singularity of type A1, see [47, Theorem 5.27]. The standard construc-
tion of this surface is the blow-up of three points on P2 followed by the con-
traction of a (−2)-curve. However, we realise it as a single (weighted) blow-up
of P1×P1 in the subscheme V (T 2

2 , T
2
3 , T2S3−T3S2) where T2, S2, T3, S3 are

the homogeneous coordinates on P1×P1. Similar to M0,5 which is isomorphic
to a single Mumford quotient of the cone over the Grassmannian Gr(2, 5),
this surface arises as Mumford quotient of the cone over the Grassmannian
Gr(2, 4). For higher n an analogous Mumford quotient needs to be blown up
as described above to obtain the limit quotient.

Step 1. Recall that each chamber in the GIT-fan ΛH(Y ) gives rise to
a set of semistable points admitting a Mumford quotient. We define two
particular chambers and look at their respective quotients. For this consider
the following linear forms on Qn:

f1 := e∗1 −
∑
i 6=1

e∗i ; f1j := e∗1 + e∗j −
∑
i 6=1,j

e∗i .

The zero sets of these linear forms are precisely the walls arising from the
partitions {{1}, N \ {1}} and {{1, j}, N \ {1, j}} of N = {1, . . . , n} in the
sense of Section 6.2. We define the following two full dimensional cones in
the GIT-fan

λ0 := Ω ∩ {w ∈ Qn; f1(w) ≥ 0},
λ1 := Ω ∩ {w ∈ Qn; f1(w) ≤ 0, f1j(w) ≥ 0 for j = 2, . . . , n}.
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where Ω is the support of ΛH(Y ). While λ1 lies inside Ω? = supp(ΛH(Y
?
))

the cone λ0 does not. The two cones are adjacent in the sense that they
share a common facet, namely Ω ∩ ker(f1). Now consider the corresponding

Mumford quotients Xi := Y
ss

(λi)//H with i = 0, 1.

Proposition 6.5.3. In the above notation X0 is isomorphic to Pn−1
1 . More-

over, X1 is isomorphic to the blow-up of X0 in the subscheme XN2 .

Recall that λ1 ∈ ΛH(Y ) gives rise to the enveloped quotient V1 which is the

image of the restricted Mumford quotient Y
ss

(λ1) ∩ Y ′ → X1.

Proposition 6.5.4. Let E denote the intersection of the exceptional divisor
of X1 → X0 with the proper transform of V (T2, . . . , Tn). Then the enveloped
quotient V1 is given by X1 \ E. In particular, it is quasiprojective.

Proposition 6.5.5. Let A ⊆ N2 be a subset with at least two elements.
Then the cone cone(vη; η ⊆ A ∪ {0}) lies in Σ0. Moreover, consider the ray

ν := cone

∑
i∈A

v0i + 2
∑
η⊆A

vη


in the relative interior of the above cone. Let X ′ be the proper transform
of X0 under the blow-up corresponding to the stellar subdivision of Σ0 in ν.
Then X ′ is isomorphic to the blow-up of X0 in the subscheme of Pn−1

1 given
by 〈

T 2
i , TjSk − TkSj ; i, j, k ∈ A, j < k

〉
.

We prove Propositions 6.5.3, 6.5.4 and 6.5.5 using the method of ambient
modifications, see [39, Proposition 6.7]. For this note that X0 and X1 come
with canonical embeddings into simplicial toric varieties. We provide an
explicit construction, for the general case see [4, Chapter III, Section 2.5].
For the index sets we use the same notation as in Section 6.2:

N = {{i, j}, 1 ≤ i < j ≤ n}, N0 = {{i, j}, 0 ≤ i < j ≤ n}.

Viewing
∧2Kn+1 as the toric variety arising from the positive orthant δ in∧2Qn+1 we define a subset as follows. We set

envs(λi) = {I ⊆ N0; J ⊆ I, λ◦i ⊆ ω◦J ⊆ ω◦I for some Y -set J}
as the collection of enveloping sets. Denoting by fη with η ∈ N0 the standard

basis vector in
∧2Qn+1 we consider the subfan of δ

Σ̂i := {cone(fη; η ∈ J); J ⊆ N0 \ I for some I ∈ envs(λi)}

and the corresponding toric variety Ẑi ⊆
∧2Kn+1. Then Ẑi admits a good

quotient Ẑi → Zi; the quotient space is toric again and the quotient mor-

phism corresponds to the lattice homomorphim P : Z(n+1
2 ) → Z(n2). The fan
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of Zi is given by

Σi = {cone(vη; η ∈ N0 \ I); I ∈ envs(λi)}

We now turn to the embedded spaces. Starting with the embedding Y ⊆∧2Kn+1 we have Y ∩ Ẑi = Y
ss

(λi) and the quotient Ẑi → Zi restricts

to the good quotient Y
ss

(λi) → Xi. The situation fits into the following
commutative diagram where the vertical arrows are closed embeddings.∧2Kn+1 Ẑi //oo Zi

Y

OO

Y
ss

(λi)

OO

oo // Xi

OO

Proofs of Proposition 6.5.3, 6.5.4 and 6.5.5. We prove the first part of
Proposition 6.5.5. For this we set J := N0 \ {η; η ⊆ A ∪ {0}}. With

Proposition 6.2.5 it is easy to see, that J is a Y -set. Moreover, λ◦0 ⊆ ω◦J holds.
By definition of Σ0 it is now clear that it contains cone(vη; η ⊆ A ∪ {0}).

We now perform the ambient modification. For this note that the weight
w01 is extremal in ΛH(Y ), hence we can contract v01. It can be written as a
non-negative linear combination

v01 =
∑
η∈N0

αηvη, where αη =


0 if 1 ∈ η
1 if 0 ∈ η, 1 /∈ η
2 else

.

In particular, it lies in the above cone cone(vη; η ⊆ {0} ∪ N2}). The total
coordinate spaces of the embedding toric varieties Z0 and Z1 are affine spaces,
they are given by

Z0 = KN0\{0,1} and Z1 =
∧2

Kn+1 = KN0 .

Furthermore, the ambient modification Σ1 → Σ0 gives rise to a morphism of
the total coordinate spaces of the respective toric varieties

c : Z1 → Z0; (xη)η∈N0 7→ (x
αη
01 xη)η∈N0\{0,1}.

We label the variables of the total coordinate space Z0 by Sη where η runs
through N0 \ {0, 1}. Recall that we have a closed embedding Y ⊆ Z1. The

vanishing ideal of the image X0 := c(Y ) in the Cox ring is given as

〈Sij − S0iS1j + S0jS1i ; 2 ≤ i < j ≤ n 〉 ⊆ R(Z0).

It turns out that X0 is in fact isomorphic to the affine space via

ι : Kn−1 ×Kn−1 → Z0 (x, y) 7→ (x, y, (xiyj − xjyi)i<j).

The original H-action on Y descends via ι−1 ◦ c to Kn−1 × Kn−1 and is
explicitly given by the weight matrix Q0 = [En−1, En−1] where En−1 is the
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identity matrix. This shows that X0 is isomorphic to Pn−1
1 . For convenience

we summarise the situation in the following commutative diagram.

Z1
c // Z0

Y
c //

OO

X0

OO

K2(n−1)

ι

cc

ιoo

The next step of the proof is the second half of Proposition 6.5.5. From
Proposition 6.4.1 we infer that the ideal in O(Z0) = R(Z0) yielding the
center of the blow-up is given by

〈 S2
0i, Sη; i ∈ A, η ⊆ A 〉.

If we pullback this ideal via ι∗, then in homogeneous coordinates over Pn−1
1

we obtain

〈 T 2
i , TjSk − TkSj ; i, j, k ∈ A, j < k〉,

see 4.3.1. In the case of the ambient modification of Proposition 6.5.3 we
set A = N2 to obtain the assertion. Finally, we turn to Proposition 6.5.4
and determine the enveloped quotient. For this recall that the image of the

categorical quotient in Section 6.2 was given by Y
′

= (Y \ Y ?) ∪ {0}, see
Proposition 6.2.2. This means that the enveloped quotient V1 ⊆ X1 is given
as the image of

π : Y
ss

(λ1) \D → X1,

where D := V (S0i; i = 1, . . . , n) ⊆
∧2Kn+1. The quotient is geometric,

hence the enveloped quotient is V1 = X1 \π(D). Now consider the subvariety
V (T2, . . . , Tn) ⊆ Pn−1

1 . Transferring it via ι and then taking the proper
transform we obtain the subvariety of X1 given by 〈S02, . . . , S0n 〉 in the Cox
ring R(Z1). The intersection with the exceptional divisor is precisely the set
E = π(D).

�

Step 2. In this step we show that the remaining blow-ups lead to the
limit quotient Y /

LQ H. As before, Q = (En, Dn) is the matrix recording the
weights of the coordinates of the H-action and we label its columns by wη
with η ∈ N0 and N0 = {{i, j}; 0 ≤ i < j ≤ n}. We then have the Gale
dual matrix P with columns denoted by vη. Moreover, Σ1 is the simplicial

fan in Z(n2) from the preceeding step and we recall that X1 = Y
ss

(λ1)//H is
embedded into the corresponding toric variety Z1.
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Now let R = {A1, A2} be a true two-block partition of N , i.e. a partition
with |A1|, |A2| ≥ 2. To every such partition we associate a ray

νR : = cone

∑
i∈A1

v0i + 2
∑

j<k∈A1

vjk


= cone

∑
i∈A2

v0i + 2
∑

j<k∈A2

vjk

 .

Clearly, there exists AR ∈ {A1, A2} with 1 6∈ AR. From Proposition 6.5.5 we
now infer that the cone σR := cone(vη; η ⊆ {0} ∪ AR) containing νR in its
relative interior lies in Σ1.

Note that no two rays lie in the relative interior of the same cone of Σ1.
The above defined collection of rays hence comes with a natural partial order
inherited from the fan Σ1:

νR ≤ νS :⇐⇒ σR 4 σS ⇐⇒ AR ⊆ AS .

We choose a linear extension of this partial order. Beginning with the maxi-
mal ray we then consider the iterated stellar subdivision of Σ1 in all the rays
in descending order. The resulting fan we denote by Σr.

While it is not true that Σr coincides with the GKZ-decomposition Σ =
GKZ(P ), both fans share a sufficiently large subfan. To make this precise let

T be the dense torus of
∧2Kn+1. To Y ∩T we can associate its tropical variety

Trop(Y ∩ T ), which is the support of a quasifan in
∧2Qn+1. For a detailed

description of this space see [63]. For our purposes it suffices to know that the

image ∆ := P (Trop(Y ∩ T )) intersects the relative interior cone(vη; η ∈ J)◦

of a cone if and only if N0 \ J is a Y -set, see [65, Proposition 2.3]. We now
define the ∆-reduction of Σ as the fan

Σ∆ := {σ; σ 4 τ ∈ Σ for some τ with τ◦ ∩∆ 6= ∅}.

Note that the relative interiors of all maximal cones of Σ∆ intersect ∆. More-
over, by [65, Proposition 2.3] the closure of (Y ∩ T )/H in the toric variety
corresponding to Σ is already contained in the toric subvariety defined by
Σ∆ ⊆ Σ.

Proposition 6.5.6. The ∆-reduction Σ∆ is a subfan of Σr.

Corollary 6.5.7. The proper transform of the Mumford quotient X1 ⊆ Z1

under the toric morphism arising from Σr → Σ1 and the limit quotient Y /
LQ H

share a common normalisation.
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Proof. For this just note that the following closures coincide and the first
morphism is the normalisation map.

Y
∼
/

LQ H →
(
(Y ∩ T ) /H

)Σ
=
(
(Y ∩ T ) /H

)Σ∆

=
(
(Y ∩ T ) /H

)Σr
.

�

Remark 6.5.8. In fact, with only minor modifications the Step 2 works for
every Mumford quotient of Y which arises from a fulldimensional chamber λ
lying in Ω?.

The idea of the proof of Proposition 6.5.6 is to give a combinatorial descrip-
tion of the cones in Σ∆ and to show that these are geometrically nested in
the sense of Section 6.3.

For the moment let Q ∈ Mat(k, r;Z) and P ∈ Mat(n, r;Z) be arbitrary Gale
dual matrices. We set R := {1, . . . , r}. For a subset I ⊆ R we denote by γI ⊆
Qn the cone generated by the ei, i ∈ I and by ωI := Q(γI) its image under
Q. Moreover, if vi, i ∈ R are the columns of P we set σJ := cone(vj ; j ∈ J).
A system B of subsets of R is a separated R-collection if any two I1, I2 ∈ B
admit an invariant separating linear form f , in the sense that

P ∗(Qn) ⊆ ker(f), f|γI1 ≥ 0, f|γI2 ≤ 0, ker(f) ∩ γIi = γI1 ∩ γI2 .

The separated R-collections come with a partial order; for two R-collections
B1,B2 we write B1 ≤ B2 if for every I1 ∈ B1 there exists I2 ∈ B2 such that
I1 ⊆ I2 holds. A separated R-collection B will be called normal if it cannot
be enlarged as an R-collection and the cones ωI , I ∈ B form the normal
fan of a polyhedron. With respect to the above partial order there exists a
unique maximal normal R-collection, namely 〈R〉 which consists of all subsets
which are invariantly separable from R. By M we denote the submaximal
normal R-collections in the sense, that 〈R〉 is the only dominating normal
R-collection. Finally, for a fixed normal R-collection B let M(B) consist of
those collections of M lying above B.

If P consists of pairwise linearly independent columns, then by [4, Section
II.2] there is an order reversing bijection

{normal R-collections} → Σ; B 7→
⋂
I∈B

σR\I .

where again Σ = GKZ(P ) is the GKZ-decomposition. It is clear that each
maximal R-collection A ∈M gives rise to a ray νA =

⋂
A σR\I of Σ.

Proposition 6.5.9. Let B be a normal R-collection. Then the cone corre-
sponding to B can be written as⋂

I∈B

σR\I = cone (νA; A ∈M(B)) .
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Proof. From the order reversing property of the above bijection it is clear,
that every ray νA with A ∈ M(B) lies in σ :=

⋂
B σR\I . Moreover, there

must exists a set of maximal γ-collections N ⊆ M such that the extremal
rays of σ are precisely the νA with A ∈ N . Again from the above bijection we
know that this means A ≥ B. The assertion then follows from the maximality
of A. �

We now return to our special case where Q = (En, Dn) holds and the index
set R equals N0. We are interested in a description of the submaximal
collections M(B) where B consists of Y -sets. The reason is the following
Proposition.

Proposition 6.5.10. Let B be a normal N0-collection and suppose that its
associated cone

⋂
I∈B σN0\I is a maximal cone in Σ∆. Then B is a collection

of Y -sets.

Proof. Since (
⋂

B σN0\I)
◦ ∩∆ 6= ∅ holds the same is true for every σ◦N0\I

with I ∈ B. By [65, Proposition 2.3] this implies that B is a collection of
F-faces. �

Proposition 6.5.11. Suppose that B is a normal N0-collection of Y -sets
and A ∈M(B) is a submaximal collection dominating it. Then A is of either
one of the following types.

(i) The collections 〈I〉 where I := N0 \ {η} for some η ∈ N.
(ii) The collections 〈I1, I2〉 where Ii := {η; η∩Ai 6= ∅} for a two-block

partition R = {A1, A2} of N .

Moreover, if a collection of the second type lies over B, then B contains the
set J0 := {η; Ai ∩ η 6= ∅ for i = 1, 2}.

Since every collection of the first type is uniquely determined by the element
η, we write it as Aη. The ray %η of Σ corresponding to this submaximal
collection is generated by vη.

If a submaximal collection is of the second type, then it is characterised by the
partition R of N ; for it we write AR. Moreover, the associated ray arises as
intersection of σN0\I1 and σN0\I2 . We now have to discriminate two cases. If
the partition R is of the form [i] := {{i}, N \{i}}, then the corresponding ray
%[i] = %0i is generated by v0i. Otherwise, if R is a true two-block partition,
by [11, Proposition 4.1] we know that this ray is precisely νR, which was
defined at the beginning of Step 2.

Proof of Proposition 6.5.11. Consider an I ∈ A such that ωI is full dimen-
sional. We now discrimnate two cases. For the first case assume that ωI = Ω
holds. Since A is submaximal, I = N0 \ {η} for some η ∈ N0. If we had
0 ∈ η, then ωI would be a proper subset of Ω.
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We turn to the second case where ωI ( Ω holds. Then there exists an I ′ ∈ A
such that ωI′ is a facet of ωI and ω◦I′ ∩Ω◦ is non-empty. Since B cannot be
enlarged as N0-collection, there moreover exist J, J ′ ∈ B such that

ω◦J ⊆ ω◦I , ωJ′ is a facet of ωJ , ω◦I′ ∩ ω◦J′ 6= ∅.

Now ωJ′ is a subset of one of the walls of ΛH(Y ). Thus, from Theorem 6.2.4
we know that there exists some partition {A1, A2} of N such that J ′ is a
subset of J0 := {η; Ai ∩ η 6= ∅ for i = 1, 2}. We now claim that J ′ equals J0.

For this let i1 ∈ A1, i2 ∈ A2 be two indices. Since ωJ′ is of dimension n− 1,
there exist i′1 ∈ A1, i

′
2 ∈ A2 such that {i1, i′2} and {i2, i′1} lie in J ′. From

the inclusion J ′ ⊆ J0 we know that {i1, i′1} does not lie in J ′, hence from the

characterisation of Y -sets in Proposition 6.2.5 it follows that {i1, i2} lies in
J ′. This proves our claim.

Now let A′ be the normal R-collection consisting of all faces which are in-
variantly separable from

{η; η ∩A1 6= ∅} and {η; η ∩A2 6= ∅}.

Then A′ is submaximal and the assertion follows if we show that A ≤ A′

holds. For this note that ωJ′ is the intersection of Ω with the zero set of

l :=
∑
i∈A1

e∗i −
∑
i∈A2

e∗i .

Since the collection {ωK ; K ∈ A} forms a fan with support Ω, for every cone
ωK , K ∈ A we have l|ωK ≥ 0 or l|ωK ≤ 0. This implies that A ≤ A′ holds.

�

Recall that we want show that the (maximal) cones of Σ∆ are geometrically
nested in the sense of Section 6.3 and hence lie in Σr. The relevant property
of the corresponding N0-collections shall be discusses in the sequel.

Let R = {A1, A2} and S = {B1, B2} be two-block partitions of N and
η ∈ N0. We then call the pair {η,R} compatible if η lies in A1 or in A2.
Moreover, we call {R,S} compatible, if there exist i, j ∈ {1, 2} such that
Ai ⊆ Bj holds. The pairs of submaximal collections {Aη,AR} and {AR,AS}
are compatible, if the corresponding pairs {η,R} and {R,S} are compatible.

Proposition 6.5.12. Let B be a normal N0-collection of Y -sets. Then the
submaximal collections in M(B) are pairwise compatible.

Proof. Let Aη,AR ≥ B be two submaximal collections with R = {A1, A2}.
Then {i, j} := η is contained in no I ∈ B. However, the cones ωI , I ∈ B
cover Ω. Since wij = w0i+w0j is the only positive linear combination of wij ,
the sets {0, i}, {0, j} must lie in a common I ∈ B. From the characterisation
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in Proposition 6.5.11(ii) we can now infer that without loss of generality
i, j ∈ A1 holds and this implies compatibility of η with R.

Suppose we have AR,AS ≥ B with R = {A1, A2} and S = {B1, B2}. From
Proposition 6.5.11 we infer that the set J0 = {η; η ∩Ai 6= ∅ for i = 1, 2} lies
in B. This means that J0 lies in one of the maximal sets of AS . In other
words, there exists j such that

η ∩A1 6= ∅ and η ∩A2 6= ∅ =⇒ η ∩Bj 6= ∅.

This implies that there exists i such that Ai ⊆ Bj holds and hence {R,S} is
compatible. �

The final thing we show is that the cones defined by compatible submaximal
collections are geometrically nested in the sense of Section 6.3. For this we
define S as the collection of two-block partitions of N and set S≥2 as the
subcollection of true two-block partitions, i.e. the partitions {A1, A2} with
|A1|, |A2| ≥ 2.

We set V = {%η; η ∈ N0} as the set of rays of Σ1. Keep in mind that the rays
%0i stem from the partitions [i] = {{i}, N \ {i}}, hence we have %0i = %[i].

Moreover, we define S := {σR; R ∈ S≥2} as the collection of cones in Σ1

associated to true two-block partitions. This is precisely the collection of
cones containing the rays νR in their relative interiors.

Lemma 6.5.13. Consider the collection of cones

C := {%η, σR; Aη,AR ∈ N} for some N ⊆ {Aη, AR; η ∈ N, R ∈ S}.

If any pair in N is compatible, then C is geometrically nested in V ∪ S.

Proof. Consider a subset H ⊆ C of imcomparable elements with |H| ≥ 2.
Moreover, take S ′ ⊆ S to be a non-empty conjunct subset. Assuming that

σ :=
∑
τ∈S′

τ =
∑
τ∈H

τ ∈ Σ1

holds we have to show that there exist an incompatible pair in N .

Recall that the cones of S = {σR; R ∈ S≥2} have the form

σR = cone(vη; η ⊆ {0} ∪AR) where 1 /∈ AR ∈ R.

Consider two cones σ1, σ2 ∈ Σ1 such that their sum lies in Σ1 as well. Since
Σ1 is simplicial, the rays of σ1 + σ2 are precisely given by the union of the
rays of σ1 and σ2. In particular, if % is a ray of some τ ∈ H, then there exists
τ ′ ∈ S ′ such that % is a ray of τ ′. Clearly, the same is true with H and S ′
exchanged.
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If |H∩S| = 0 holds, i.e. H is a subset of V, then one easily sees that there exist
%[i], %ij ∈ H. Clearly, [i] and {i, j} are incompatible, hence A[i], A{i,j} ∈ N
are the incompatible partitions.

We consider the case |H∩S| = 1 and denote the single cone in H∩S by σR.
Since |H| ≥ 2 holds there exists an element % ∈ H ∩ V. We distinguish two
subcases.

In the first case let this ray be of the form % = %[i]. Then we find σS ∈ S ′
with % 4 σS . From the special form of the cone σR we know that there also
exists j ∈ N with %ij 4 σS . By the assumption made on H we have %[i] 64 σR;
and the special form of σR then means that also %ij 64 σR holds. Hence %ij
lies in H and A[i], A{i,j} ∈ N are the incompatible collections.

In the second case where % = %ij holds we again find σS ∈ S ′ with %ij 4 σS .
From the special form of the cone σS we know that both %[i] and %[j] are rays
of σS . Since %ij 64 σR holds, at least one of the rays %[i], %[j] is not a ray
of σR. Without loss of generality this implies that again %[i] lies in H and
A[i], A{i,j} ∈ N are the incompatible collections.

Now we assume that |H ∩ S| ≥ 2 holds. Then there exist σR, σS ∈ H ∩ S.
For η, ζ ∈ N let %η 4 σR and %ζ 4 σS be rays such that %η 64 σS and %ζ 64 σR
hold. Since S ′ is conjunct, we find ξ1, . . . , ξr ∈ N with

ξ1 = η, ξr = ζ, %ξi 4 σ and ξi ∩ ξi+1 6= ∅.

Let i′ be the smallest index, for which %ξi′ is not a ray of σR. If %ξi′ lies in H,
then we know %ξi′ 64 σR holds. This means that ξi′ and R are incompatible.
If %ξi′ does not lie in H, then there exists an σR′ ∈ H such that %ξi′ is a ray

of σR′ . This implies that R and R′ are incompatible. �

Proof of Proposition 6.5.6. Consider the cone σ ∈ Σ∆. In order to show
show that σ lies in Σr we can without loss of generality assume that σ is
maximal. Let B be the associated normal N0-collection with

σ =
⋂
I∈B

σN0\I .

By Propositions 6.5.10, 6.5.12 we know that M(B) is a set of compatible
normal N0-collections. Furthermore, by Proposition 6.5.9

σ = cone(νA; A ∈M(B)) = cone(%, νR; % ∈ V ∩ C, σR ∈ S ∩ C)

holds. Lemma 6.5.13 shows that C = {%η, σR; Aη,AR ∈ M(B)} is geomet-
rically nested in V ∪ S. And finally, from Proposition 6.3.1 we infer that σ
lies in Σr. �

Proof of Theorem 6.5.1. The Theorem now follows directly from Proposi-
tion 6.5.3 and Corollary 6.5.7. �
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Proof of Theorem 6.5.2. As in the reductive case we performed the first
blow-up in Proposition 6.5.3. In Proposition 6.5.4 determined the subset of
X1 that has to be removed due to the fact that the morphism κ : K2n →∧2Kn+1 is not surjective. Finally the remaining blow-ups are performed as
in the reductive case, see Corollary 6.5.7. �
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