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Abstract

Ribonucleic acid (RNA) sequences are polymeric molecules ubiquitous in every living cell.
RNA molecules mediate the flow of information from the DNA sequence to most functional
elements in the cell. Therefore, it is of great interest in biological and biomedical research
to associate RNA molecules to a biological function and to understand mechanisms of their
regulation. The goal of this study is the characterization of the RNA sequence composi-
tion of biological samples (transcriptome) to facilitate the understanding of RNA function
and regulation. Traditionally, a similar task has been addressed by algorithms called gene
finding systems, predicting RNA sequences (transcripts) from features of the genomic DNA
sequence. Lacking sufficient experimental evidence for most of the genes, these systems learn
sequence patterns on a few genes with direct evidence to identify many additional genes in
the genome.

High-throughput sequencing of RNA (RNA-Seq) has recently become a powerful tech-
nology in studying the transcriptome. This technology identifies millions of short RNA
fragments (reads of ≈100 letters length), holding direct evidence for a large fraction of the
genes. However, the analysis of RNA-Seq data faces profound challenges.

Firstly, the distribution of RNA-Seq reads is highly uneven among genes, resulting in a
considerable fraction of genes with very few reads and the stochastic nature of the technology
leads to gaps even for well covered genes. To accurately predict transcripts in cases with
incomplete evidence, we need to combine RNA-Seq evidence with features derived from
the genomic DNA sequence. We therefore developed a method to learn the integration
of both information sources and implemented this strategy as an extension of the gene
finder mGene. The system, now called mGene.ngs, determines close approximations of
potentially non-linear transformations for all features on the training set, such that the
prediction performance is maximized. With this ability, which is to our knowledge unique
among gene finding systems, mGene.ngs can not only learn complex relationships between
the two mentioned information sources, but gains the flexibility to take many additional
information sources into account. mGene.ngs has been independently evaluated within the
context of an international competition (RGASP) for RNA-Seq-based reannotation and has
shown very favourable performance for two out of three model organisms. Moreover, we
generated and analyzed RNA-Seq-based annotations for 20 Arabidopsis thaliana strains, to
facilitate a deeper understanding of phenotypic variation in this natural plant population.

A second major challenge in transcriptome reconstruction lies in the complexity of the
transcriptome itself. A process called alternative splicing generates multiple mature RNA
sequences from a single primary RNA sequence by cutting out so-called introns, typically
in a tightly regulated manner. Inference algorithms of almost all gene finding systems
are limited to predict transcripts not overlapping in their genomic region of origin. To
overcome this limitation, purely RNA-Seq-based approaches have been developed. However,
biologically implausible assumptions or the neglect of available information often led to
unsatisfactory results. A major contribution of this study is the integer optimization-based
transcriptome reconstruction approach MiTie. MiTie utilizes a biologically motivated loss
function, can take advantage of a priori known genome annotations and gains predictive
power by considering multiple RNA-Seq samples simultaneously. Based on simulated data
for the human genome as well as on an extensive RNA-Seq data set for the model organism
Drosophila melanogaster we show that MiTie predicts transcripts significantly more accurate
than state-of-the-art methods like Cufflinks and Trinity.
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Zusammenfassung

Ribonucleinsäuren (RNA) sind polymere Moleküle, die in jeder lebenden Zelle allge-
genwärtig sind. RNA Moleküle übermitteln die in der genomischen DNA einer Zelle
gespeicherte Information zur Erzeugung der meisten funktionalen Komponenten der Zelle.
Daher ist das Entschlüsseln von Funktion und Regulationsmechanismen der RNA in vielen
Bereichen der biologischen und biomedizinischen Forschung von großer Bedeutung. Ziel
dieser Arbeit ist es die Zusammensetzung von RNA Molekülen in einer biologischen Probe
zu charakterisieren, um die Erforschung von Funktion und Regulation der RNA zu un-
terstützen. Die herkömmliche Herangehensweise an ein sehr ähnliches Problem bedient
sich sogenannter gene finding Systeme, die RNA Sequenzen (Transkripte) mit Hilfe der
genomischen DNA Sequenz vorhersagen. Mangels hinreichender Evidenz für die meisten
Gene, werden diese Systeme auf wenigen Genen mit direkter Evidenz trainiert, um viele
weitere Gene im Genome vorherzusagen.

Hochdurchsatzverfahren zur Sequenzierung von RNA Molekülen (RNA-Seq) haben sich
in jüngerer Vergangenheit als mächtige Werkzeuge zur Untersuchung des Transkriptoms
etabliert. Diese Technologie ermöglicht es Millionen von kurzen RNA Sequenzfragmenten
(≈ 100 Zeichen Länge) zu entschlüsseln, die direkte Evidenz für die Mehrheit der Gene
beinhalten. Allerdings hält die Analyse von RNA-Seq Daten auch große Herausforderungen
bereit.

Zum einen sind die Sequenzfragmente sehr ungleich über die Gene verteilt, weshalb für
eine bedeutende Anzahl von Genen nur sehr wenig Evidenz zu finden ist. Außerdem entste-
hen durch die stochastischen Eigenschaften der Technologie auch Lücken ohne Evidenz in
Genen, für die insgesamt sehr viel Evidenz vorhanden ist. Um in Fällen mangelnder Evi-
denz Transkripte akkurat vorherzusagen, müssen zusätzliche Informationsquellen genutzt
werden. Zu diesem Zweck haben wir eine Methode entwickelt, die die Integration von
RNA-Seq und genomischen Merkmalen auf Trainingsbeispielen lernt. Wir haben diese
Strategie im gene finding System mGene implementiert.

Das System, das nun mGene.ngs heißt, findet gute Approximationen für potenziell nicht
lineare Transformationen für alle Merkmale, so dass die Vorhersagegenauigkeit maximiert
wird. Diese Fähigkeit, die unseres Wissens unter gene finding Systemen einzigartig ist,
ermöglicht es mGene.ngs nicht nur komplizierte Zusammenhänge zwischen genomischen
und RNA-Seq basierten Merkmalen zu lernen, sondern bringt auch die Flexibilität mit
sich, viele weitere Informationsquellen mit zu berücksichtigen.

mGene.ngs wurde im Rahmen des internationalen Wettbewerbs RGASP zur RNA-Seq
basierten Genomannotation von einer unabhängigen Jury ausgewertet und war bei zwei
von drei der untersuchten Modellorganismen sehr erfolgreich. Außerdem haben wir 20
Stämme des Modellorganismus Arabidopsis thaliana mit Hilfe von RNA-Seq Daten an-
notiert und analysiert, um die Charakterisierung Phänotypischer Variationen in dieser
natürlichen Pflanzenpopulation zu unterstützen.
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viii Zusammenfassung

Eine weitere Herausforderung bei der Analyse von RNA-Seq Daten liegt in der Kom-
plexität des Transkriptoms an sich begründet. Ein biologischer Prozess, das alternative
spleißen, erzeugt verschiedene reife RNA Sequenzen aus der selben Ursprungssequenz, in-
dem unterschiedliche Teile (Introns) der Sequenz meist auf genau regulierte Weise heraus-
geschnitten werden. Aufgrund der verwendeten Inferenzmethoden können gene finding
Systeme meist nur eines dieser RNA Endprodukte vorhersagen. Um diese Einschränkung
zu umgehen wurden Programme entworfen, die ausschließlich RNA-Seq Evidenz zur Vorher-
sage von Transkripten verwenden. Allerdings haben diese Programme entweder durch bio-
logisch unplausible Annahmen oder durch die Vernachlässigung vorhandener Information
oft keine zufriedenstellenden Resultate geliefert.

Ein wichtiger Beitrag der vorliegenden Arbeit ist das auf diskreten Optimierungsver-
fahren basierende Programm MiTie zur Rekonstruktion von Transkriptomen. MiTie ver-
wendet eine biologisch begründete Kostenfunktion, kann Nutzen aus bekannten Genoman-
notationen ziehen und außerdem gleichzeitig mehrere biologische Proben berücksichtigen,
um genauere Vorhersagen zu erzielen.

Mit Hilfe simulierter Daten für das menschliche Genom und auf einem umfangreichen
RNA-Seq Datensatz für den Modellorganismus Drosophila melanogaster konnten wir zeigen,
dass MiTie signifikant bessere Transkriptvorhersagen erzielt, als führende Programme wie
Cufflinks und Trinity.
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1. Introduction

The ”gene” is nothing but a very applicable little word, easily com-

bined with others, and hence it may be useful as an expression for

the ”unit-factors”, ”elements” or ”allelomorphs” in the gametes,

demonstrated by modern Mendelian researchers.

(Wilhelm Johannsen, 1911)

Remarkably, the terms ”gene” as ”elements of inheritance”, ”genotype” as the union

of one organisms genes, and ”phenotype”, as the set of an organisms observable

traits, have been defined by Wilhelm Johannsen already in 1909 [58], when the

physical manifestation of inheritable elements was still unclear. In the light of mod-

ern biochemical research the abstract concept gene as a inheritable unit has changed

into a biochemical term [89] describing a region on the genomic DNA sequence.1

Similar to Johannsen, but based on a modern gene definition, we may express

the relationship between genotype and phenotype as follows. The phenotype of

an organism is determined by the combined effect of environmental influences and

inherited elements, including genes encoded in the genomic DNA sequence.2

However, to answer the question of how the genome contributes to the phenotype

of an organism has turned out to be a substantial challenge, even if the entire se-

quence of the genome is known [e.g. 28, 34]. This can be attributed to the complexity

of the processes that regulate the flow of information from the genome to functional

molecules. The macro molecule ribonucleic acid (RNA) is the first step the infor-

mation stored in a gene on the genomic DNA sequence takes. RNA molecules in

a cell are essentially copies of the genomic sequence generated by a process called

transcription. But these copies are then modified in many different ways, until a

large fraction finally is translated into an amino acid sequence forming a protein.

Proteins perform the vast majority of chemical reactions in a cell, build up the

skeleton of the cell and perform essential tasks like metabolite transport. Therefore,

proteins determine the phenotype of the organism to a large extend. Other types

of RNA molecules serve as regulatory elements, catalyze chemical reactions or form

1An exact definition of the term gene is very difficult to give[89]. A working definition may be
found in Section 2.1 and is intuitively apparent from Figure 1.1.

2A modern definition of the term gene and the implied definition of genotype excludes a large
fraction of regulatory elements as well as epigenetic features, which are also known to be in-
herited ”elements”. We have to account for these additional inherited elements also influencing
the phenotype.
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2 Introduction

complexes with proteins. The mechanisms by which the processing, translation and

degradation of RNA is regulated is essential for understanding the connection of

genotype and phenotype. Disentangling this relationship allows us to better under-

stand diseases [e.g. 25, 93], to develop drugs that cure diseases in a personalized

manner [e.g. 26] or breed plants that are more robust to pathogens [e.g. 5, 119].

The subject of this thesis is the characterisation of the transcriptional landscape

based on diverse sources of information and using diverse machine learning and

inference techniques. This task has been approached for many years [e.g. 2, 39, 133],

but the complexity of the transcriptome and technical limitations pose profound

challenges.

Transcripts in eukaryotic3 genomes are not necessarily encoded continuously on

the genomic DNA sequence. They may be interspersed by so called introns, that are

spliced from the transcribed molecule (pre-mRNA4) at precisely defined boundaries.

The final result of this process is called mature mRNA. The task of transcript iden-

tification is to find start and end of transcripts as well as the boundaries of introns,

called splice sites. This task is further complicated by the presence of alternative

isoforms. In cases where the same pre-mRNA can lead to multiple different ma-

ture mRNA molecules with distinct patterns of splicing events we call those mature

mRNA molecules alternative isoforms of the gene. The basic terminology of genes

and transcripts is illustrated in Figure 1.1.

The task of transcript identification has originally been addressed using gene

finding techniques. Based on a set of known gene structures (often identified using

low-throughput sequencing technologies) these systems train a model based on the

sequence content of the genomic DNA, which is then used to find additional genes

in the same or a closely related organism.

Such systems however have several shortcomings. Due to the training and in-

ference algorithms, the prediction is often limited to a single isoform per locus.

Moreover, since the information of the genomic DNA sequence is nearly identical in

each cell of an organism, the gene prediction is static and cannot capture changes

in the transcriptome depending on a given tissue or environmental condition.

The characterization of the comprehensive set of RNA-molecules being present

at a given time point in the cell is essential for modeling the processes involved in

transcriptional regulation and RNA processing. Many studies for human diseases,

or in biological sciences rely on the measurement of transcription in a series of time

points to measure the effects of a perturbation on the system. This perturbation

can be for instance to administer a drug to a cancer patient or the treatment of the

3Organisms whos cells are organized in compartments, e.g. having a cell nucleus storing the
genomic DNA, belong to the category of Eukaryotes

4The m stands for messenger RNA because it carries the information of the protein sequence
from the cell nucleus to the ribosomes in the cytosol that synthesize the protein



3

Genomic DNA sequence

Transcript 1

Transcript 2

Transcript 3 (noncoding)

Protein sequence 1

Protein sequence 2

Transcription start site (TSS) Transcription end site TES

5’UTR 3’UTR
Exon

Intron

Acceptor splice site (ACC)Donor splice site (DON)

TES
ACCACC

DONTSS

CDS

Gene

Translation initiation site (TIS) Translation termination site (TTS)

TTS

Figure 1.1.: Basic definitions on genes and parts of genes. We illustrate one locus on
the genomic DNA sequence encoding a gene with three transcripts. Two
transcripts encode the amino acid sequences for two different proteins and
one transcript encodes a noncoding RNA molecule. Transcription starts at
transcription start sites (TSS) and stops at transcription end sites (TES).
Acceptor and donor splice sites precisely indicate boundaries of introns. The
region between translation initiation site (TIS) and translation termination
site (TTS) is translated into an amino acid sequence after removal of the
introns. Parts of exons (or entire exons) that encode amino acid sequences are
called coding exons (CDS). Red boxes indicate regions retained in the mature
mRNA of a transcript (exons). Here we distinguish between exon parts that
encode the amino acid sequence of a protein (high red boxes) and untranslated
regions (UTRs)/ noncoding transcripts (low red boxes). Each strand of the
genomic DNA sequence is directional. We distinguish between the 5’ end
and the 3’ end for biochemical reasons. Transcription and translation always
happen in direction 5’ to 3’, indicated by the arrow of the TSS sites.

model plant Arabidopsis thaliana with a heat shock. The measured changes on the

transcriptional landscape may allow us to identify parts of the regulatory network

[e.g. 59].

Recent advances in biotechnology have resulted in an immense growth in the

availability and the quality of transcriptome measurements. The so called Next

Generation Sequencing technology allows for sequencing of very large numbers of

randomly selected fragments of RNA (termed RNA-Seq). Computational analysis

of these fragments yields qualitative as well as quantitative information about the

transcriptome. Nevertheless, the extensive amount, the significant error rates and

biases observed in these measurements state profound challenges for the analysis of

these data sets. Therefore, the demand for computational solutions to analyse these
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data sets has never been as high as now and is expected to keep growing.

We propose two methods for this task that emphasize different aspects and com-

plement one another. The first method called mGene.ngs extends the gene find-

ing system mGene to account for different types of transcriptome measurements.

mGene.ngs is a supervised machine learning approach, which needs examples of

known genes to find additional genes in the same or a closely related genome. This

method is motivated by the limited detection sensitivity of transcriptome measure-

ments. Transcripts that are expressed at low levels might lack evidence from tran-

scriptome measurements entirely, or are only partially confirmed. The strength of

mGene.ngs is that it combines prior knowledge about the structure of genes with

multiple sources of information. This can resolve ambiguities that emerge when

considering individual sources of information independently. Ambiguities might

originate from the lack of evidence in one data source or contradictory evidence

from different data sources. The integration of the data, specifically, how does a

certain level of evidence from a given source of information influence the prediction,

is learned on a set of genes with known structure. Taking RNA-Seq measurements

into account not only improves the transcript prediction for a given organism, but

it allows us to capture the dynamics of transcriptome measurements at different

time points or tissue. However, mGene.ngs still lacks the ability to predict multiple

overlapping transcripts simultaneously.

To address this shortcoming was the main motivation to devise the second tool

called Mixed Integer Transcript Identification (MiTie). MiTie is a pure inference

technique. It identifies sets of transcripts and expression levels that maximizes the

likelihood of the RNA-Seq data. In comparison to mGene.ngs, MiTie has two sig-

nificant conceptual differences. First, it may predict several overlapping transcripts

at the same time and second, it relaxes assumptions on the dependencies of output

variables. This allows us to model the transcriptome measurements more accurately,

while it comes with the downside of a considerable increase of computational com-

plexity. Therefore, the data integration performed by mGene.ngs can currently not

be learned using the MiTie model, although this is in principle possible [9].

MiTie is designed for the case, where a large amount of RNA fragment sequences

is available, such that a more complex model with fewer assumptions is identifiable.

mGene.ngs on the other hand is well suited for cases where partial information from

RNA measurements has to be extended and complemented by information from the

genomic DNA sequence to predict a single isoform.

Manuscript organization and contributions In the following three chapters, we

define the basic terminology first for the genome biology (Chapter 2) and bioinfor-

matics aspects of this thesis (Chapter 3) and then introduce the machine learning

and optimization methods employed by mGene.ngs and MiTie in Chapter 4.
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Chapter 5 covers the gene finding specific methodology, related work, extensions
developed for mGene as part of this theses and applications. The development of
mGene is a joint effort with several colleagues. The author’s contributions are stated
in the beginning of the chapter. The genome-based gene finder mGene, without the
extensions for additional evidences is published in:

[1] Schweikert G, Zeller G, Zien A, Behr J, Dieterich C, Ong C S, Philips P, Bohlen

A, Hartmann L, Krüger N, Sonnenburg S, Rätsch G. mGene: Accurate Compu-

tational Gene Finding with Application to Nematode Genomes. Genome

Research, 19:2133-2143, 2009.

Results for the RNA-Seq-based annotation of 20 Arabidopsis thaliana strains along
with a basic description of the methods of mGene.ngs are available in the following
publication and are discussed in detail in Section 5.5.2.

[2] Gan X*, Stegle O*, Behr J*, Steffen JG*, Drewe P*, Hildebrand KL, Lyngsoe R,

Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent

P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark

RM, Rätsch G, Mott R. Multiple reference genomes and transcriptomes for

Arabidopsis thaliana. Nature 477:419-423 doi:10.1038/nature10414, 2011.

* These authors contributed equally to this work

A more technical description of the concepts of mGene.ngs and its relations to MiTie
can be found in the book chapter:

[3] Behr J, Schweikert G and Rätsch G. Genome Annotation with Structured

Output Learning. In S. Nowozin, P. Gehler, J. Jancsary, and C. Lampert, editors,

Advanced Structured Prediction, The MIT Press, in press.

SVM based splice site predictors are important components of the gene finding sys-
tem mGene. A comparison of mGene’s splice site predictors with related approaches
on several organisms may be found here:

[4] Sonnenburg S, Schweikert G, Philips P, Behr J, and Rätsch G. Accurate

Splice Site Prediction using Support Vector Machines. BMC Bioinformatics,

8(Suppl. 10):S7, 2007.

To facilitate the accessibility of the gene finding system mGene.ngs by non-computer-
scientists we have developed a Galaxy-based web service [59]:

[5] Schweikert G*, Behr J*, Zien A, Zeller G, Ong C S, Sonnenburg S, Rätsch G.

mGene.web: A Web Service for Accurate Computational Gene Finding.

Nucleic Acids Research, 37 (suppl 2): W312-W316, 2009.

* These authors contributed equally to this work

In Chapter 6 we describe the concepts and performance evaluation of MiTie. The
software package and performance comparisons to competing methods have been
published in:

[6] Behr J, Kahles A, Zhong Y, Sreedharan VT, Drewe P and Rätsch G. MiTie:

Simultaneous RNA-Seq-based Transcript Identification and Quantification

in Multiple Samples. Bioinformatics, page btt442, 2013.

Parts of MiTie have been applied to identify potential nonsense-mediated decay
targets in intergenic regions of the Arabidopsis thaliana genome. Results and exper-
imental validations are accessible here:
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[7] Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Rätsch G,

and Wachter A. Nonsense-mediated decay of alternative precursor mRNA

splicing variants is a major determinant of the eukaryotic steady state

transcriptome. The Plant Cell, tpc-113, 2013.

SHOGUN is a general purpose machine learning toolbox with a particular focus on
fast/large scale implementations of SVMs, string kernels and related sequence anal-
ysis tools. The author has contributed improvements to the dynamic programming
implementation in SHOGUN used by mGene, and the interfaces to the different
programming languages.

[8] Sonnenburg S, Rätsch G, Henschel S, Widmer C, Behr J, Zien A, De Bona F,

Binder A, Gehl C, Vojtech F. The SHOGUN Machine Learning Toolbox.

Journal of Machine Learning Research, 99:1799-1802, 2010.



2. Genome Biology

In the first part of this chapter we introduce the basic terms of genome biology

with the aim of giving sufficient details such that non-biologists understand the

problems we tackle in this thesis. Details not essential for this understanding were

excluded from this description. The author is aware of the fact that this has lead

to some simplifications. In Section 2.3, we introduce sequencing technologies, which

are important driving forces in genome research.

2.1. Definitions

Genome The genome of an organism consists of polymeric molecules called De-

oxyribonucleic acid (DNA). It stores essential information about functional molecules

and regulatory elements. The four monomers building the linear structures of DNA

sequences are guanine, adenine, thymine, and cytosine (abbreviated G, A T and C)

collectively called nucleotides. Nucleotides consist of a base distinguishing the four

nucleotides ligated to the five-carbon sugar 2-deoxyribose (ribose in case of RNA),

which binds a phosphate group at the 5’-carbon. Nucleotides can form polymers by

forming a bond between the 3’ hydroxy group of the sugar and the phosphate group

of another nucleotide. Two chains of DNA can form a double stranded molecule

where the bases form hydrogen bonds and the strands wrap into a very stable he-

lix structure. The two pairs G, C and A, T located on corresponding positions

on the two strands are energetically highly preferred compared to other base pair-

ings. Apart from the additional hydroxy group of the sugar, in RNA the nucleotide

thymine is replaced by uracil. The double stranded state is less stable for RNA than

for DNA, nevertheless, double stranded RNA-structures are biologically important.

The ends of single stranded DNA and RNA molecules can be distinguished by the

C-atom of the ribose which is free to bind another nucleotide. At the 5’-end (3’-

end) the 5’-C-atom (3’-C-atom) of the sugar is free, respectively. In many cases the

genome of a cell is present in separate polymers called chromosomes.

DNA Replication DNA replication is essential for cell devision. Both daughter

cells receive a near identical copy of the original genome. Replication is initiated

by separating the two strands. For both strands the enzyme DNA polymerase

synthesizes the complementary strand by matching the two pairs of bases with very

7
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high accuracy. DNA polymerase needs a small part of double stranded DNA, which

it then extends by adding nucleotides to the 3’ sugar of a already paired nucleotide.

In order to initiate this process an enzyme called DNA primase synthesizes a short

sequence of RNA (primer) complementary to a stretch of single stranded DNA [49].

Gene As previously mentioned, the exact definition of a gene is difficult to give

[89]. Throughout this thesis we are going to work with the following definition. A

gene is a contiguous part of one strand of DNA sequence encoding the information

for a functional element of the cell. The functional element is either an amino acid

sequence (protein) or an RNA molecule. In both cases the process of constructing

the functional element is mediated by an RNA-copy of a contiguous DNA sequence

called transcript. Here, we define a gene as the smallest part of contiguous genomic

DNA sequence containing all overlapping transcripts.

In the following section, we will detail the mechanisms of creating RNA transcripts

and proteins.

2.2. Gene Expression and Regulation

2.2.1. Transcription: Mechanisms and Regulation

Transcription refers to the process of generating an mRNA copy of a region in the ge-

nomic DNA sequence. It is initiated by the binding of the enzyme RNA-polymerase

to the promoter region of a gene. The binding is mediated by transcription factors

that recognize certain DNA motives called transcription factor binding sites (TFBS)

upstream of the transcription start site (TSS).

Elongation of the RNA-molecule happens in the same manner as DNA-replication

with the major distinction that the RNA copy quickly detaches from the DNA-

template obtaining its single stranded state.

Termination of transcription in eukaryotes is not completely understood. It is likely

to be induced by the secondary structure of the newly synthesized RNA and/or by

RNA binding proteins and can occur far behind the cleavage site.

Recent studies [86] revealed that transcription start and termination are much more

stochastic processes than formerly assumed.

2.2.2. RNA-processing and Posttranscriptional Modification

RNA-processing comprises several important steps that modify precursor mRNA

(pre-mRNA) resulting in mature mRNA. Processing takes place in the nucleus of

eukaryotic cells and begins during transcription as soon as the functional elements
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are accessible.

During splicing particular segments called introns are excised from the pre-mRNA.

The splice site at the 5’-end of an intron is called donor splice site and the splice

site at the 3’-end of an intron is called acceptor splice site. After cutting the mRNA

at the donor splice site a so called lariat structure is formed by covalent binding

of the 5’-end of the intron to a intronic position called branch point (br) close to

the acceptor splice site. Thereafter, the mRNA is cut at the acceptor splice site

and the flanking exons are covalently bound. Accuracy in this step is critical for

the functionality of the resulting mature mRNA, because only one nucleotide more

or less at the joining of the exons will corrupt the reading frame (see below) for

translation. The chemical reaction is preformed by the spliceosome, an assembly

of so called small nuclear ribonucleo-particles (snRNPs) and larger proteins. The

snRNP’s bind the pre-mRNA at specific places around the splice sites and thus

contribute highly to their correct recognition.

Splice sites can be classified into at least two subtypes [101]: U2 and U12 dependent

splice sites. These terms are justified by different assemblies of snRNPs building the

spliceosome. U2-dependent introns comprise the vast majority of introns. U12-type

splice sites are found in vertebrates, insects, jellyfish and plants only [101].

Alternative Splicing Alternative splicing is mechanism, that causes variation of

mature mRNA representations from the same pre-mRNA. This is accomplished by

excluding one or more exons (exon skipping), moving exon/intron boundaries or by

retention of introns. The rate of each variant is typically regulated by a complex

machinery [16] depending on the given environment. Regulation of acceptor and

donor splice sites is due to exonic/intronic splicing enhancers/silencers (ESE, ESS,

ISE, ISS). These short sequences flank the splice sites and are recognized by snRNPs

[128]. This process is not jet fully understood and it remains an open challenge to

accurately predict the rate of splicing given the flanking genomic sequence alone

[6, 35].

Posttranscriptinal Modification During transcription GTP is ligated to the 5’-end

of the mRNA. The modification called 5’-cap has several functional implications. It

renders the 5’-end of the mRNA insensitive to 5’exonucleases1 and is essential for

mRNA recognition, transport and ribosome binding [67].

Rare cases of posttranscriptional modification include the exchange or chemical

modification of individual nucleotides. This process is called RNA-editing [66].

Most mature transcripts are endowed with a poly-adenyl tail by an enzyme called

Polyadenylate Polymerase (PAP). Polyadenylation is tightly connected to the cleav-

1Exonucleases are enzymes degrading RNA by cutting short pieces from either the 3’ or the
5’-end.
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age process. The Cleavage and Polyadenylation Specific Factor (CPSF) binds to a

consensus sequence typically 11 to 23 bases upstream of the cleavage site. About

10-30 nucleotides downstream of the cleavage site the Cleavage stimulation Factor

(CstF) binds to the RNA-strand at a weak pattern often referred to as U rich el-

ement (URE) and causes cleavage and poly-adenylation together with CPSF. This

complex is completed by PAP and further cleavage factors. Sequence of CstF bind-

ing site and mentioned distances vary in large ranges between genes and species

[56, 73].

2.2.3. Translation: Mechanisms and Regulation

Mature mRNA is transported actively out of the nucleus. Translation into amino

acid sequence is done by protein-RNA complexes called ribosomes. Ribosomes bind

to the 5’-UTR, which is determined by the start codon (ATG). The start codon

defines the reading frame. All triplets of nucleotides following the start codon

map to exactly one amino acid except the three so called stop codons (TAG, TAA,

TGA) that cause translation to stop. This mapping is mediated by RNA-oligomers

called tRNA, that reveal a three nucleotide antisense pattern and carry one specific

amino acid according to that pattern. This construction guarantees that one ma-

ture mRNA-template determines the exact composition of amino acids to build a

functional protein. On the other hand the redundancy of the triplet code leads to

the possibility that more than one template codes for one amino acid sequence.

More than 99.9% of the start codons are ATG. But there exist cases where non-ATG

codons are used for translation initiation [118]. In most of these cases downstream

ATG codons are used for alternative initiation as well. According to Tikole et al.

[118] many of the resulting proteins seem to be involved in regulatory and signaling

mechanisms (DNA/RNA-binding, kinases, growth factors and immune response).

Termination of translation, when a ribosome is reaching one of the canonical stop

codons, TAG, TAA and TGA, is mediated by two release factors (eRF1 and eRF2).

Beside the canonical mechanism three other events may occur: According to the

context of the stop codon, the codon itself and concentrations of release factors and

particular tRNAs the stop codon can be read through (inserting an arbitrary amino

acid), the frame can be shifted or re-initiation can occur leading to two disjoint

peptides [31].

Read-through can be evoked either by near-cognate or by suppressor tRNA. Sup-

pressor tRNAs are tRNAs matching to one of the three stop codons. This enables

tissue specific regulation of three autonomous read-through events, one for each stop

codon.

In many viruses (e.g. tobacco mosaic virus) read-through mechanism is employed

for regulation of the balance between envelope proteins and polymerases for genome
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amplification. In S. cerevisiae reading frames only separated by a stop codon with

weak termination contexts were identified, indicating that this mechanism does in-

deed have physiological meaning [31].

2.3. Sequencing Technologies

Advances in genetics research are often driven by advances in sequencing technology.

The basis of the whole field of research is the knowledge of the genome of an rapidly

increasing number of organisms. In addition sequencing of RNA-transcripts enables

qualitative and quantitative measurements of the process of transcription. In this

section, we introduce the most important sequencing technologies.

2.3.1. Sanger Sequencing

The Sanger sequencing technology [96], named after the inventor Frederick Sanger,

poses the first technology allowing to sequence DNA with relatively low costs and

time consumption [1]. Using purified DNA polymerase enzymes and specific primers

of length k DNA replication is conducted in vitro if 4 different experiments. In

addition to endogenous deoxynucleotide triphosphates (dATP, dGTP, dCTP, and

dTTP), modified nucleotide 2 are added in low concentration. Whenever a dideoxynu-

cleotide is added to the synthesized DNA sequence the DNA polymer is terminated.

Gel or capillary tube electrophoresis [1] determines the length distributions of the

synthesized sequences in all four experiments with single base resolution. If capillary

tube electrophoresis is used to determine the sequence length then this technique is

often referred to as capillary sequencing. If each given length l >= k is observed in

only one of the four experiments then the sequence of the original DNA is exactly

determined up to the first gap. With read lengths of 400 to 900 bases the accuracy

of Sanger sequencing is approximately 99.9 percent and costs are estimated to be

2400 US-dollars per million bases [50].

2.3.2. Pyrosequencing

The pyrosequencing technique, also known as 454 sequencing, monitors the incorpo-

ration of nucleotides based on the release of pyrophosphate as a side product of form-

ing the phosphodiester bond. The chemiluminescent enzyme luciferase emits light

upon the detection of free pyrophosphate. Adding one type of nucleotide triphos-

phate at a time the emitted light is detected and the intensity is proportional to

2dideoxynucleotides lacking the 3’ hydroxyl group which is needed to form the phosphodiester
bond forming the backbone of the DNA polymer
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the number of incorporated nucleotides. Pyrosequencing allows for sequencing of 1

million 700 bp reads within 24 hours at costs of 10 US-dollars per million bases and

an accuracy of 99.9% [50].

2.3.3. Illumina Genome Analyzer

The illumina sequencing technology is based on the clonal amplification of DNA on a

glass surface. Starting with a large variety of sequence fragments being immobilized

on the glass, polymerase amplification results in localized clusters of monoclonal

fragments [50]. In each round fluorescently labeled nucleotides with 3’ terminal

blockers are added to the solution. This leads to incorporation of at most one

nucleotide at a time. Then unbound nucleotides are washed away, images are taken

and finally, blockers are removed. Illumina sequencing can generate up to 3 billion

reads of length 30 to 150 bases in a run taking 5-10 days. Estimated costs per

million bases are 0.05 to 0.15 US-dollars [50].

2.3.4. Single-molecule Real-Time Sequencing

Single-molecule real-time sequencing (SMRT) is able to generate sequences of up to

15 kb in length with an average of 2.4 to 2.9 kb [50, 53]. DNA polymerase enzymes

are immobilized in perforations of a metal film (zero-mode waveguides). This al-

lows to observe the incorporation of fluorescently labeled nucleotides separately, but

highly parallel [65]. Nucleotides are labeled with four different fluorescent dyes being

permanently present in the solution. The longer sequences allow to resolve low com-

plexity genomic regions that could not be sequenced unambiguously with previous

techniques [19]. The relatively low accuracy of SMRT (87%) can be increased with a

protocol called circular consensus sequencing. Here, the same molecule is sequenced

several times leading to considerably higher accuracy (99%) at the cost of shorter

reads and lower read numbers [50]. The costs are estimated at two US-dollars per

million bases.
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In the beginning of this chapter, we introduce the terminology and formalizations of

bioinformatics problems we discuss in this thesis. We then briefly introduce general

concepts of bioinformatics algorithms addressing these problems.

3.1. Formalization of the Problem

The following problem definitions appear mostly identical in [9].

The genome sequence S = ΣL of length L, with Σ = {A,C,G, T}, contains regions

that encode G genes. The boundaries (psg, p
e
g) of genes are typically unknown. The

genomic sequence Sg ∈ ΣLg associated with a gene g = 1, . . . , G of length Lg encodes

all transcripts ti, i = 1, . . . , Tg, that can be produced at any time by any cell. A

transcript t is given by its start and end positions, pst and pet respectively, translation

start and stop positions, ptt and pot , as well as a list of Jt acceptor/donor splice site

positions (p
dj
t , p

aj
t ), j = 1, . . . , Jt (see Figure 1.1 for illustration).

Definition 3.1 (Ab initio Gene Prediction) The aim of ab initio gene pre-

diction is to predict the boundaries (psg, p
e
g) of all genes g = 1, . . . , G and all tran-

scripts ti, i = 1, . . . , Tg, that are encoded in these genes in the given genome se-

quence S. Hence, we seek a prediction algorithm as follows:

Aai : S 7→
{

(psg, p
e
g), {ti}

Tg
i=1

}G
g=1

.

While it would be nice to predict the transcript abundance from the genomic se-

quence, it is very hard and, to our knowledge, has not been done with reasonable

accuracy. Also, most algorithms are not able to predict multiple transcripts and

only report one transcript per gene (with very few exceptions1).

Experimental evidence is typically associated with a cell (or mixture of cells) in

one or more specific condition. In de novo gene prediction the experimental evidence

is used to improve gene prediction:2

1Exceptions include work from M. Stanke [e.g. 115] and V. Solovyev [54]. We discuss these
approaches in Section 5.4.1.

2The term “de novo gene finding” has typically been used for gene finding using the genome
sequence and conservation. We use it in a broader sense.

13
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Definition 3.2 (De novo Gene Prediction) As in Problem 3.1 one attempts

to predict all genes and transcripts. In addition to the genome sequence, there is

genome-wide experimental evidence X (possibly of different type and of heteroge-

neous origin) that can be taken advantage of to solve the problem. Hence, we seek

a prediction algorithm as follows:

Adn : (S,X) 7→
{

(psg, p
e
g), {ti}

Tg
i=1

}G
g=1

.

Ultimately, one is interested in reconstructing the transcriptome and proteome

of a single cell or of a collection of cells in a specific state. Here it is important

to predict not the transcripts that could potentially be produced, but to predic-

tively reconstruct transcripts that are present in a given cell and to determine their

abundance:

Definition 3.3 (Transcriptome Reconstruction) As in Problem 3.2 one at-

tempts to predict genes and transcripts, however, in a sample-specific manner. In

transcriptome reconstruction one additionally has to predict the abundance αi of

transcripts ti in a biological sample. Hence, we seek a prediction algorithm as

follows:

Atr : (S,X) 7→
{

(psg, p
e
g), {ti, αi}

Tg
i=1

}G
g=1

.

If the set of genes and transcripts is already known (for instance, by solving

Problem 3.1 or 3.2), then it will be sufficient to solve a simpler problem:

Definition 3.4 (Transcriptome Quantification) Given a complete set of

genes and transcripts, in transcriptome quantification one predicts the abundance

αi of transcripts ti in a biological sample. Hence, we seek a prediction algorithm

as follows:

Atr :

(
S,X,

{
(psg, p

e
g), {ti}

Tg
i=1

}G
g=1

)
7→
{
{αi}Tgi=1

}G
g=1

.

3.2. Computational Assembly

Computational assembly is defined as the inference of long sequences from multiple

measurements of fragments of the sequences. The general idea is to find fragments

that share a common sequence and are consistent with each other. Two reads are

consistent, if they can be represented as substrings of a single sequence. To account

for errors in sequencing technology and biological modifications of the sequence the

consistency definition is often relaxed in different ways depending on the peculiarities

of the sequencing technology and requirements of the computational method.
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3.2.1. Genome Assembly

Genome assembly is a computational task aiming to construct chromosome se-

quences from DNA sequencing measurements. Low complexity sequences are con-

tiguous parts of DNA sequence consisting of repeated occurrences of short sequence

patterns. Low complexity regions and multiple copies of identical or similar DNA

sequence pose difficulties for genome assembly. The shorter the sequence reads,

the higher the repeat content of the genome, and the higher the error rate of the

sequencing technique the more ambiguities remain for the sequence assembly.

3.2.2. Methods for Transcriptome Reconstruction

The transcriptome reconstruction task is often addressed using assembly strategies.

Then, the problem is related to genome assembly, but it entails two major additional

difficulties. While each part of the genome is available at exactly the same abundance

in a cell, transcript abundance depends on the cells need for a given function and

differs in a wide range between different transcripts, cells (e.g. in separate tissues

of a multicellular organism) and time points. The second difficulty originates from

alternative splicing. One segment of RNA sequence may be continued with several

distinct portions of the same pre-mRNA. The former problem leads to the technical

difficulty of observing all transcripts in different ranges of expression, while the

latter leads to a conceptual difference between genome and transcriptome assembly.

In genome assembly the ground truth is known to be a linear structure. Instead,

overlapping transcripts sharing identical sequence parts can be represented as a

directed acyclic graph called splicing graph [45]. Lacking the information of long

range dependencies, a splicing graph defined on reads from only a few transcripts

may encode an enormous set of biologically implausible transcripts in addition. The

number of encoded potential transcripts (paths in the graph) is in the worst case

exponential in the number of nodes (segments or exons) in the graph.

3.3. Methods for ab initio Gene Prediction

While the prediction algorithm only takes the sequence S as input, parameters of

the model typically need to be trained on known examples. There are two main

sources for training examples. These are, related organisms which have already

been annotated, and transcriptome sequencing data [135].

Training a model based on related organisms is conceptually straightforward.

However, the success critically depends on the evolutionary distance. Changes in

parts of the transcription and splicing regulatory system may reflect on the level of

the genomic DNA sequence and thus violates the assumption that training exam-
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ples and prediction examples are samples from the same distribution. To account for

this protein sequence obtained from the annotated organism may be aligned to the

organism of interest, such that the model can be trained directly on the organism

of interest. However, this approach assumes a high sequence conservation on the

protein level, which may also be violated.

Traditionally, gene prediction efforts were mainly based on relatively long (100-

900bp) sequence fragments (Expressed Sequence Tags, ESTs) obtained from se-

quencing random fragments of cDNA3 libraries and full-length cDNAs [21], ideally

corresponding to entire transcript sequences. ESTs and full-length cDNAs were

aligned to the genome and ESTs subsequently assembled to transcripts. Due to

their length this is relatively straightforward, but because of technical constraints of

the sequencing technologies the coverage is relatively low and most of the informa-

tion is limited to a small fraction of highly expressed genes. To identify additional

genes that could not be directly observed using these sequencing technologies, com-

putational models are trained on a reliable subset of assembled transcripts. These

models (gene finding systems) infer statistical properties of the gene structures in

a training set and try to identify additional gene structures in other parts of the

genome. The accuracy of the models can be estimated on a hold out set of assembled

transcripts not used for training.

More recent advances in sequencing technology (foremost Illumina sequencing cf.

Section 2.3) allow for direct measurements of a much larger fraction of genes. The

downside of this technique is the significantly shorter read length posing substantial

computational challenges in transcript assembly. In the following, we will give an

overview of methods for gene prediction using high throughput sequencing data.

We will distinguish between methods primarily based on features obtained from the

genomic DNA sequence and methods primarily aiming to assemble sequences from

mRNA fragments.

3.3.1. Genome based Methods

Computational methods for gene finding that are primarily based on the genomic

DNA sequence belong to the broad category of label sequence learning methods.

The goal is to segment a given sequence by assigning each nucleotide to a finite set

of states, e.g. the exonic, intronic or intergenic state. Different approaches for this

method have quite distinct strengths and weaknesses, but the limitation common to

almost all of these methods is that they can predict only one transcript per locus.

We will detail the different approaches in Chapter 5.

3RNA-molecules are relatively instable and can be degraded rapidly by ubiquitously abundant
RNAse enzymes. To facilitate manageability in the laboratory RNA sequences are often con-
verted to DNA sequences (complementary DNA or cDNA) using an enzyme called reverse
transcriptase.
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3.3.2. RNA-Sequencing based Methods

Most of the gene prediction methods that are mainly based on deep sequencing

data do not have the limitation of predicting only a single transcript per locus.

Many methods first generate a splicing graph from the read information and then

infer transcripts as paths in this graph. However, the strategies of dealing with the

exponential number of paths in the graph differ greatly. We present an overview of

the methods in Section 6.2.





4. Machine Learning and

Optimization

In the following chapter we introduce basic mathematical definitions, algorithms for

solving several types of optimization problems and finally a class of machine learning

algorithms for binary classification called Support Vector Machines.

4.1. Mathematical Notation

4.1.1. General Terms and Notations

We denote the set of real and natural numbers by R and N, respectively. For a given

set of numbers X, X+ denotes the subset of non-negative numbers and X++ denotes

the subset of strictly positive numbers.

In the following, we will list basic definitions used throughout the text.

Definition 4.1 (Domain) Let function f : Rp → Rq be defined on a subset of

Rp, then we call this subset the ”domain” of f . We will use the notation dom(f)

to refer to the domain of f .

4.1.2. Linear Algebra

Definition 4.2 (Norm) We call a function p : Rn → R a ”norm” if (1) for

all u ∈ Rn p(u) ≥ 0 and p(u) = 0 if and only if u is the zero vector, (2) for all

u, v ∈ Rn p(u+ v) ≤ p(u) + p(v) and (3) |a| · p(u) = p(a · u) for all a ∈ R (positive

scalability).

For u ∈ Rn and p ∈ N++ we define the lp-norm as

‖u‖p =

[
n∑
i=1

|ui|p
] 1
p

.

Moreover, we adopt the term l0-norm commonly used in the machine learning com-

munity to refer to

‖u‖0 =
n∑
i=1

I(ui 6= 0),

19
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although this is not a norm according to Definition 4.2 (it does not satisfy the

positive scalability criterion). To simplify notation here and throughout this thesis

we use the indicator function I(.). Given an expression (in the common computer

science sense) this function returns a one if the expression evaluates to true and zero

otherwise.

The scalar product 〈u, v〉 of vectors u, v ∈ Rn is defined as

〈u, v〉 =
n∑
i=1

ui · vi.

Definition 4.3 (Affine Function) A function f : Rn → Rm is called affine if it

is a sum of a linear function and a constant, i.e., if it has the form f(x) = Ax+ b,

where A ∈ Rm×n and b ∈ Rm [15].

Definition 4.4 (Hyperplane) The set h(w, b) ⊂ Rn with w ∈ Rn and b ∈ R

h(w, b) = {x|〈w, x〉+ b = 0}

is called hyperplane. w can be accounted for a normal vector on the hyperplane

and b (bias) is the distance of the hyperplane from the origin.

4.2. Optimization

General Optimization Problem Without loss of generality we define an optimiza-

tion problem over variable x ∈ RN , with m inequality constraints and n equality

constraints as follows [15]:

min
x

f(x) (4.1)

s.t. gi(x) ≤ 0, i ∈ 1, ...,m

hi(x) = 0, i ∈ 1, ..., n

This formalizes the goal to find a value for vector x such that f(x) is minimal among

all vectors x satisfying the m inequality and n equality constraints. For simplicity of

notation we assume that functions f , gi and hi are defined on RN . The feasible set F
of the optimization problem is defined as the set of vectors satisfying all constraints,

i.e. F = {x|gi(x) ≤ 0 ∀i ∈ {1, ...,m}, hi(x) = 0 ∀i ∈ {1, ..., n}}. If F is nonempty

we call the optimization problem feasible and infeasible otherwise.
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Convex Functions

Definition 4.5 (Convex Function) A function f : Rn → R is called ”convex”

if for any two vectors x ∈ dom(f) and y ∈ dom(f) and any 0 ≤ θ ≤ 1:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f is called ”strictly convex” if for x 6= y equality only holds if θ ∈ {0, 1}. f is called

”concave” if −f is convex.

Based on Definition 4.5 it is straightforward to see that affine functions are convex.

It can easily be shown that a weighted sum of convex functions is convex if all weights

are nonnegative [15].

Duality A general optimization problem as defined in 4.1 can be viewed from

either of two perspectives [15]. There are different approaches to change from the

initial optimization problem, referred to as the primal optimization problem or just

the primal, to the dual optimization problem or dual. Here we will introduce the

Lagrange dual problem. The basic idea of the Lagrange dual is to substitute the

constraints of an optimization problem into the objective function, to obtain a lower

bound (Lagrangian function or Lagrangian) of the original objective for all x ∈ F .

Given an optimization problem in standard form (4.1) the Lagrangian can be defined

as

L(x, α, β) = f(x) +
m∑
i=1

αi · gi(x) +
n∑
i=1

βi · hi(x), (4.2)

with α ∈ Rm
+ and β ∈ Rn. We will call x the vector of primal variables and α and β

vectors of dual variables. Using the Lagrangian we define the Lagrange dual function

L(α, β) = min
x
L(x, α, β). (4.3)

The dual optimization problem corresponding to 4.1 can then be defined as

max
α,β

L(α, β) (4.4)

s.t. αi ≥ 0, i ∈ 1, ...,m.

Once we have found the optimal values for the dual function α̃ and β̃ we can

compute the optimal value x̃ for the primal as
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x̃ = argmax
x

L(x, α̃, β̃) (4.5)

In general this problem can be solved if we are able to compute the dual function.

Example In this example we demonstrate how to solve a small constrained opti-

mization problem using the Lagrange dual. Figure 4.1 shows a plot of the objective

function, the Lagrangian and Matlab/octave code for creating the plot.

Given the optimization problem

min
x

x3 − 6x

s.t. x2 ≤ 1

we obtain the Lagrangian

L(x, α) = x3 − 6x+ α(x2 − 1).

Figure 4.1 shows the Lagrangian for different values of α. We then define the dual

function and solve analytically for x by setting ∂
∂x
L(x, α) = 0 and solving for x:

L(α) = min
x
L(x, α)

= min
x
x3 − 6x+ α(x2 − 1)

= x̃3 − 6x̃+ α(x̃2 − 1)

with x̃ = −1
3
α +

√
1
9
α2 + 2. We then perform a line search maximizing L(α) and

substitute into the Lagrangian. The Lagrangian with optimal α has a minimal value

for x corresponding to the minimal value of f(x) ∀x ∈ F .

Applicability For various reasons an optimization problem may be easier to solve

in the dual than in the primal. If the number of variables in the primal is large, the

dual might be favourable, where the number of variables corresponds to the number

of inequality constraints. Moreover, in some very important cases the functional

form of the dual is easier tractable. In the case of Support Vector Machines the

functional form of the dual does not rely on explicit representations of vectors in

the primal optimization space. This allows to solve optimization problems with

extremely large (even infinite) numbers of primal variables using kernel functions

(cf. Section 4.4).
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% range of values 
x = -2:0.01:2;
alphas = 0:0.01:3;
% objective function
y = x.^3 - 6*x;
% compute the Lagrangian for di�erent values 
% of Lagrange multipliers alpha
for alpha = alphas,
    L = x.^3 - 6*x + alpha * (x.^2 - 1);
    plot(x, L); hold on;
end
plot(x, y, 'r');
% compute the dual function, set derivative of  the
% Lagrangian with respect to x to zero and solve
cnt = 0;
for alpha = alphas
    cnt = cnt+1;
    x1 = -1/3*alpha + sqrt((1/3*alpha)^2+2);
    D1(cnt) = x1^3 + -6*x1 + alpha*(x1^2 -1);
end
% plot Lagrangian for maximal alpha
[m, idx] = max(D1);
alpha = alphas(idx);
L = x.^3 - 6*x + alpha * (x.^2 - 1);
plot(x, L, 'k'); x

Figure 4.1.: Example: Solving a constrained optimization problem in the dual with mat-
lab/octave. The objective function is shown in red and the Lagrangian for
different multiplier values is shown in blue. In black is shown the Lagrangian
with optimal α (having the maximal lower bound of all blue lines). The
feasible set is indicated with dashed lines.

The dual of an optimization problem is always concave, even if the original op-

timization problem in non-convex [15]. To show this, we consider the functional

form of the Lagrangian for a fixed primal vector x̃. Let Φi = gi(x̃), i = 1, ...,m,

Ψi = hi(x̃), i = 1, ..., n, and γ = f(x̃), then we can rewrite the Lagrangian as

L(x̃, α, β) = αTΦ + βTΨ + γ, (4.6)

which is clearly an affine function. Thus, the dual function is the minimum over a

set of affine functions (being convex and concave). The maximum of a set of convex

functions is convex, since this operation corresponds to the intersection of convex

sets, which is known to be convex. The same clearly holds true for the minimum

of concave functions. We present efficient algorithms to solve convex optimization

problems in Section 4.2.1.

Thus, we can obtain a lower bound for the original optimization problem by

solving the dual.
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4.2.1. Solving Convex Optimization Problems

In this thesis, we formulate all optimization problems as convex optimization prob-

lems. In the following, we will introduce numerical strategies to solve convex opti-

mization problems. This description is largely based on Chapter 10 and Chapter 11

of [15]. Firstly, we will present Newton’s method for solving convex optimization

problems with linear equality constraints and then demonstrate how to approxi-

mate a convex optimization problem with inequality constraints using interior point

methods.

Newton’s Method with Equality Constraints We aim to solve an optimization

problems of the form:

min
x

f(x) (4.7)

s.t. Ax = b.

We assume we are given a feasible starting point x0. The algorithm iteratively

increments xt such that for each step t the increment ∆xt satisfies

A∆xt = 0.

With Axt = b we have A(xt + ∆xt) = b, guaranteeing that each step satisfies

the equality constraints. Similar to the unconstrained Newton method steps are

performed by minimizing the second order Taylor approximation of the objective

function at the current solution xt:

f(xt + ∆xt) ≈ f̂(∆xt) = f(xt) +∇f(xt)
T∆xt +

1

2
∆xTt ∇2f(xt)∆xt (4.8)

We find the optimal step ∆xt by solving the optimization problem:

min
∆xt

f̂(∆xt) (4.9)

s.t. A∆xt = 0

Using the Lagrangian

L(∆xt, α) = f(xt) +∇f(xt)
T∆xt +

1

2
∆xTt ∇2f(xt)∆xt + (A∆xt)

Tα (4.10)
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and

∂L(∆xt, α)

∂∆xt
= 0 (4.11)

⇔ ∇2f(xt)∆xt + ATα = −∇f(xt)

we obtain the system of equations[
∇2f(xt) AT

A 0

] [
∆x

α

]
=

[
−∇f(xt)

0

]
(4.12)

which can be solved analytically [15, page 526].

Approximation of Convex Optimization Problems with Inequality Constraints

A wide spread method to numerically solve convex optimization problems with in-

equality constraints is called interior point method or barrier method. Optimization

problems of the form

min
x

f(x) (4.13)

s.t. gi(x) ≤ 0, i = 1, ...,m

Ax = b

can be approximated with arbitrary accuracy ε by substituting the inequality con-

straints into the objective function as follows:

f̂(x) = f(x)− 1

t

m∑
i=1

log(−gi(x)) (4.14)

The domain of f̂ is limited to feasible points of the original optimization problem.

As soon as x approached the boundaries of the feasible set f̂(x) approaches infinity.

Parameter t is closely related to the approximation accuracy ε1. With t→∞ f̂(x)

approaches the step function with 1
t
log(−gi(x)) ≈ 0 if constraint i is strictly satisfied

and 1
t
log(−gi(x))→∞ if gi(x)→ 0. If f and gi are twice continuously differentiable

the approximate optimization problem

min
x

f̂(x) (4.15)

s.t. Ax = b

(4.16)

1ε = m/t proof: [15, page 566]
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can be solved using Newton’s method. For large values of t the gradient becomes

very small, causing numerical difficulties with Newton’s method. Therefore, the

optimization is started with moderate values for t and iteratively increases t using

the solution of the previous iteration as a starting point for the next iteration.

4.2.2. Combinatorial Optimization

Optimization problems with discrete output spaces cannot be solved with the previ-

ously described methods. Under certain assumptions on the dependencies of output

variables such problems can be solved efficiently using Dynamic Programming. Most

importantly, dynamic programming is advantageous if we can split the objective

function into parts, that may be computed independently. We describe the theory

and application of such models in Chapter 5.

Branch and Bound In Chapter 6 we make use of quadratic optimization techniques

where a subset of the variables is binary. In this case the dependency structure of

output variables suggests that dynamic programming based solution strategies are

suboptimal. Instead the optimal solution has to be found by trying combinations

of choices for the integer variables. Given n binary variables an exhaustive search

needs to check all 2n combinations. A search tree can be defined by choosing an

order on the binary variables and then fixing these variables to one of the two values.

Once we entered a branch of the tree, by fixing one binary variable, this variable

will be treated as a constant in all computations in this branch. A node at depth k

in the tree is then defined by the values of the first k variables that have been fixed.

Branch and bound techniques can be used to avoid an exhaustive search of this tree

by pruning parts of the search space that cannot yield the optimal solution. This is

based on the following observation. The relaxed version of the optimization problem,

where we allow intermediate values also for the binary variables (xi ∈ [0, 1]), will have

an optimal objective value smaller or equal (in the case of minimization problems)

to the optimal objective value of the original problem. The solution of the relaxed

problem x̂s at node s therefore serves as a lower bound for the optimal solution that

may be found in the branch associated with s.

An upper bound for the global optimal solution can be derived by performing a

depth first search for a feasible integer solution. The currently best integer solution

we denote by x∗. Whenever we reach a feasible leave node (a node at depth n) we

update x∗ if necessary.

The branch and bound algorithm for solving mixed integer optimization problems

searches through the tree and performs the following steps at each node s: (1) it

checks the constraints and prunes the branch below s, if the so far fixed variables

violate a constraint and (2) it solves the relaxed optimization problem with k fixed
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variables to obtain x̂s. If the x̂s is larger or equal to x∗, this branch cannot lead to

a better solution and therefore it can been pruned. Otherwise, the algorithm starts

searching the branch associated with node s.

Since the lower bound generated by the relaxed version of the optimization prob-

lem might not be very tight, there is no guarantee that the runtime is better than

an exhaustive search. We will discuss the relationship of problem formulation and

runtime of the branch and bound algorithm in Section 6.

Branch and Cut The result of the relaxed optimization problem determines, whether

the current branch has to be searched or may be pruned. Therefore, a variety of

strategies has been developed to improve the lower bound obtained from the relaxed

solution [78]. The general idea is to find constraints that prune parts of the feasible

set of the relaxed optimization problem without excluding feasible integer solutions.

Ideally, one could identify constraints such that the feasible set of the relaxed op-

timization problem is restricted to the convex hull of the feasible integer solutions.

Then, the result of the relaxed solution (using the simplex algorithm) would also

provide the optimal integer feasible solution [78] (see Figure 4.2 for an illustration).

However, enumerating all necessary constraints is in general not feasible [78]. Never-

theless, strategies for generating constraints to restrict the feasible set of the relaxed

optimization problem have been successful in practice [78]. General purpose combi-

natorial optimization solvers often include one or several such strategies, such that

the user of such packages does not necessarily need to reimplement them. We will

discuss one branch and cut method to illustrate the idea.

We discuss the branch and cut strategy introduced by Crowder and Johnson [24],

which may be applied for binary optimization problems with N variables and M

constraints of the form:

max
x∈{0,1}N

F (x)

s.t. Ax ≥ b

for given A ∈ RM×N and b ∈ RM . If there is any constraint i

N∑
j=1

Ai,jxj ≥ bi (4.17)

with coefficients

Ai,j ≥ 0 ∀j = 1, ..., N, (4.18)

then we may replace any coefficient Ai,j > bi with bi and thereby reduce the feasible
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set of the relaxed problem, while not excluding any feasible integer solution [24].

This can be easily seen, since setting xj to one will already satisfy the constraint,

independent of all other variables. On the other hand, if we set the variable xj
to zero, the coefficient does not matter. Moreover, it it possible to convert all

constraints into the form with only positive coefficients by substituting xj with

(1− x′j) whenever needed [24].

Example Figure 4.2 illustrates this strategy based on the following optimization

problem:

max
x1,x2∈{0,1}

2x1 + x2

s.t. x1 + x2 ≤ 1.5

We now transform the only constraint by substituting x1 = 1− x′1 and x2 = 1− x′2:

−x1 − x2 ≥ −1.5

⇔ x′1 + x′2 ≥ 0.5

Setting the coefficients larger than the right hand side to that value leads to:

0.5x′1 − 0.5x′2 ≥ 0.5

⇔ x′1 + x′2 ≥ 1

and back transformation:

⇔ x1 + x2 ≤ 1

Including the box constraints xi ∈ [0, 1], this constraint reduces the feasible set of

the relaxed optimization problem directly to the convex hull of the feasible integer

solutions and the result of the relaxed problem will be the optimal integer solution.

4.3. General Concepts in Machine Learning

Machine learning is the automatic extraction of information from data by means

of statistical methods [129]. There are two major subclasses of machine learning

algorithms, supervised and unsupervised methods. Unsupervised machine learn-

ing methods identify statistical properties in unlabeled data. Clustering algorithms

represent the most well known class of unsupervised learning algorithms. All meth-

ods discussed in the following belong to the class of supervised learning algorithms.

Therefore, we will focus on supervised learning methods in our description.
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1 2x  + x   = 1.5

1 2x  + x   = 1

direction of optimization

1x  

2x

Figure 4.2.: Branch and cut (see Section 4.2.2 for problem definition and details). We
illustrate a simple binary optimization problem with two variables. The solid
dots indicate the feasible integer solutions, the gray shaded area is the convex
hull of the integer feasible solutions and the area shaded in red indicates the
feasible set of the relaxed problem (including box constraints xi ∈ [0, 1]). The
newly generated constraint (dashed line) restrict the feasible set of the relaxed
problem, without excluding any feasible integer solutions.

Supervised machine learning algorithms aim to identify parameters θ of a function

fθ : X → Y given a set of m training examples (xi, yi) ∈ X×Y, 0 ≤ i < m. Once the

parameters θ are determined the function fθ can be used to predict on new instances

x ∈ X.

ŷ = fθ(x)

The performance of the prediction can be evaluated on instances from the training

set (training error) or a test set (test error) using an evaluation function e : Y ×Y →
R. A test set is a set of pairs (xi, yi) ∈ X × Y, 0 ≤ i < n independently drawn from

the same distribution as the training set, but not overlapping with the training set.

If Y is finite, the machine learning task is referred to as a classification problem

otherwise it is called a regression problem. Structured Output Learning (SOL)

comprises learning problems (classification or regression), where Y is arbitrarily

complex. If Y is the set of sequences on a finite alphabet, the problem is referred to

as Label Sequence Learning (LSL).

4.3.1. Decision Theory

In the following, we will present three distinct ways of taking the class decision

in supervised classification. Taking a probabilistic point of view our training data
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(xi, yi) ∈ X × Y, 0 ≤ i < m are drawn from a joint probability distribution with

probability P (x, y). We will assume that each observation was drawn independently

from this distribution. The joint probability P (x, y) of observing data point x with

label y can be divided into the conditional probability P (y|x) of observing label y

given the data point x and the marginal probability P (x):

P (x, y) = P (y|x) · P (x) (4.19)

Equivalently, we can express the joint probability as a product of the class prior

distribution P (y) and class densities P (x|y):

P (x, y) = P (x|y) · P (y) (4.20)

Equalizing 4.19 and 4.20 we obtain

P (y|x) =
P (x|y) · P (y)

P (x)
(4.21)

known as Bayes’ theorem.

Intuitively, we only need to know the probabilities P (y|x) for each y ∈ Y to take

the decision of class assignment to minimize the rate of misclassification. The simple

proof for this intuition can be found in [10].

Generative Learning Generative learning methods aim to estimate P (y|x) by es-

timating all quantities on the right hand side of 4.21. While the class prior P (y)

can be estimated as the fraction of observations with label y, estimation of the class

densities P (x|y) is generally a very hard problem needing large data sets for training

[10]. If P (x|y) and P (y) are known, the marginal probability P (x) can be computed

as:

P (x) =
∑
y∈Y

P (x|y) · P (y) (4.22)

Discriminative Learning Discriminative learning methods directly model the class

probabilities P (y|x) without estimating the individual class densities. This is con-

siderably easier, especially when there is complex structure in the different class

densities in areas not important for the decision [10]. On the other hand models for

class densities are able to quantify the uncertainty in the decision in terms of the

marginal probability. If a new data point x has low marginal probability it repre-

sents an outlier or a novel type of observation and therefore we will be less confident

in the prediction [10].
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Decision Functions Finally, there are methods directly deriving decision functions

without modelling the class probabilities. Among those are linear models for binary

classification separating the feature space X into two half spaces associated with

the two classes. While these methods have been proven very powerful in many

applications [e.g. 108] the ability of quantifying the uncertainty in the prediction is

lost [10].

4.3.2. Regularization

A general concern of supervised learning strategies is how well a trained model

performs on the test set, i.e. how well the model generalizes. A measure for the

generalization capability of a model can be obtained by comparing the training and

the test performance of the model. If the training error is much smaller than the test

error (the model has a low generalization capability) we call the model overtrained.

Important questions in supervised learning are when does overtraining happen

and how can we avoid it. The generalization capabilities of a model depend on the

size of the training set and the complexity of the model.

A widely applied measurement for the complexity of a model is the Vapnik-

Chervonenkis (VC) dimension [125]. Here we use the definition of the VC dimension

from [11] for an M dimensional Euclidean space X. A concept corresponds to a re-

gion of X and a concept class is a nonempty set of concepts, e.g. the set of half

spaces in X.

Definition 4.6 (VC-dimension) Given a nonempty concept class C ⊆ 2X and

a set of points S ⊂ X, ΠC(S) denotes the set of all subsets of S that can be

obtained by intersecting S with a concept in C, that is, ΠC(S) = {S ∩ c : c ∈ C}.
If ΠC(S) = 2S, then we say that S is shattered by C. The Vapnik-Chervonenkis

(VC) dimension of C is the cardinality of the largest finite set of points S ⊂ X that

is shattered by C. If arbitrarily large finite sets are shattered, the VC dimension of

C is infinite.

Intuitively, the VC dimension is the maximal number of points where any binary

labeling of the points can be correctly reproduced by the model.

Application to Machine Learning The rate of misclassification of training exam-

ples or empirical risk Remp(θ) of a model fθ : X → {−1, 1} for binary classification

of examples x1, ..., xN ∈ X is computed as:

Remp(θ) =
1

N
·
N∑
i=1

1

2
(yi − fθ(xi)) (4.23)
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Based on the empirical risk and the VC dimension of the model a probabilis-

tic upper bound on the misclassification rate on new data can be given [e.g. 76].

With probability 1 − η the rate of misclassification on new samples from the same

distribution as the training set is

R(θ) ≤ Remp(θ) +

√
h ·
(
log
(

2N
h

)
+ 1
)
− log

(
η
4

)
N

. (4.24)

Where N is the number of training examples, 0 < η < 1 and h is the VC dimension

of the model. Based on this formulation the general concept of regularization arises.

According to Equation 4.24 we need to minimize training error and model complexity

at the same time to have good performance on the test set with high probability.

A regularization function Ω : RM → R maps points in parameter space to real

values. Low values of a regularization function correspond to low complexity of

model f measured e.g. as the VC dimension of fθ. Using a regularization function

the trade off between training error and model complexity can be formalized in the

following way [117]:

R(θ) = λΩ(θ) +Remp(θ) (4.25)

The parameter λ > 0 has to be determined using model selection. By varying

measurements of the empirical error (loss functions) and regularization functions,

a large class of widely used machine learning methods arise [117]. We will see in

Section 4.4 that a very popular class of machine learning methods called Support

Vector Machines (SVMs) are a special case of this formulation.

4.3.3. Model Selection

Model selection is a technique to optimize meta parameters of an algorithm A.

Using a single value performance measurement fA(θ) for A and meta parameters θ

standard optimization techniques like grid search, simulated annealing2 and gradient

descent3 methods are applicable in the meta-parameter space. The choice of the

2Simulated annealing is an optimization technique that performs random jumps in parameter
space. The direction of movement is controlled by rejecting jumps according to particular
criteria. Jumps that improve f are always accepted, whereas jumps impairing f in the opti-
mization sense are accepted if the loss is below a threshold t. t is decreased during training.
Simulated annealing is applicable for optimization in discrete, continuous and mixed spaces,
where some dimensions are continuous and others are discrete, but there is no guarantee that
either a global or a local optimum is found.

3 Gradient decent methods calculate a direction D depending on ∇fA and then change the
parameters by s · D. s is the step size calculated heuristically using for example quadratic
interpolation of f in direction D.
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method depends largely on the number and type of meta parameters and on A.

Grid search, the most simple technique, uses discretized sets of values for each meta

parameter. For each combination of meta parameter values fA is computed. The

run time of a grid search is therefore given by

T = O(enumber of meta parameters · T (A)).

Where T (A) is the run time of A. Independent of T (A) grid search is not applicable

if the number of meta parameters is large.

If fA is defined such that
∂fA
∂p

for any meta parameter p can be calculated, gradient descent methods are applica-

ble.

In machine learning one has to estimate f using an additional set of examples called

validation set. Just like the error rates on the training set the error rate on the

validation set are of interest but do not constitute an estimation of the overall per-

formance of the algorithm.

4.3.4. Cross Validation

Cross validation is a technique to derive test predictions for all available data. From

a single machine trained on one part of the data we can only obtain test predictions

for the rest of the data. Using n-fold cross validation one splits the data into n parts

and trains n machines on n − 1 parts such that for each part there is one machine

that has not seen this particular part in training.

The smaller n is the less machines have to be trained and the bigger n is the more

data is left for training of each machine. Setting n is therefore a trade off between

runtime and accuracy.

4.4. Binary Classification with Support Vector

Machines

Support Vector Machines (SVMs) are a powerful machine learning technique for

classification problems. We will show how the SVM formulation arises as a special

case of the regularized risk minimization (cf. [117]). In this section, will focus on

binary classification and discuss multi class classification in Section ??.
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Empirical Risk of Linear Separators Given the M dimensional Euclidean space

X, a hyperplane can be written as

S(w, b) = {x ∈ X|〈w, x〉+ b = 0} , w ∈ X, b ∈ R.

w can be accounted for an orthogonal vector to the hyperplane. S is invariant to

scaling w and b with the same nonzero factor. We define the parameter vector

θ ∈ RM+1 as a concatenation of w and b and obtain the decision function:

fθ(x) = sgn(〈w, x〉+ b).

The empirical risk of fθ is:

Remp(θ) =
1

N
·
N∑
i=1

1

2
(yi − fθ(xi)) (4.26)

=
1

N
·
N∑
i=1

1

2
(yi − sign(〈w, xi〉 − b)) (4.27)

Hinge Loss The empirical risk computed in Equation 4.27 is a step function also

referred to as the 0-1-loss function (cf. Figure 4.3). Minimizing 4.25 using the 0-

1-loss function to compute the empirical risk is a non-convex optimization problem

and computationally very challenging. To enable the application of SVMs for large

training sets a convex upper bound for the 0-1-loss called hinge loss is used in SVMs

(cf. Figure 4.3). The hinge loss is computed as:

lθ(xi) = max(0, yi · (〈w, xi〉 − b) + 1) (4.28)

Using the hinge loss and Ω(w) = 1
2
‖w‖2

2 we obtain the formulation of an SVM

from 4.25:

min
w∈X,ζ

r(w, ζ) =
1

2
||w||22 +

C

N

N∑
i=1

ζi, C ∈ R+ (4.29)

s.t. yi(〈w, xi〉+ b) ≥ 1− ζi, i = 1, ..., N,

ζi ≥ 0, i = 1, ..., N

C is a hyper-parameter of the SVM. The choice of the l2 norm as regularizer is

justified by learning theoretic results we review in Section C. The so called slack

variables ξi quantify misclassification of sample i by implementing the hinge loss. It

determines the trade off between performance on the training set and generalization
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Figure 4.3.: Hinge loss. 0-1-loss counts the number of misclassified examples. The hinge-
loss is an upper bound of the 0-1-loss.

ability. For each trained classifier C has to be determined by model selection.

4.4.1. Solving the SVM Optimization Problem

The optimization problem 4.29 can be solved directly in the primal formulation using

general purpose solvers for quadratic optimization problems with linear constraints

(cf. 4.2.1). The primal optimization problem has M+N variables and N constraints.

If the number of feature dimensions M is significantly larger than the number of

examples N it is more efficient to solve the SVM in the dual space. The resulting

quadratic optimization problem has N variables and N constraints.

The SVM dual As described in Section 4.2 we can create a dual representation

of the SVM by first substituting the constraints into the objective function using

Lagrange multipliers α ≥ 0 ∈ RM .

L(w, b, ζ, α, ν) =
1

2
||w||2 +

C

N

N∑
i=1

ζi −
N∑
i=1

αi(yi(〈w, xi〉+ b)− 1 + ζi)−
N∑
i=1

νiζi (4.30)

Minimizing the Lagrangian with respect to the primal variables w, b and ζ and

maximizing with respect to the dual variables α ≥ 0 and ν ≥ 0 is equivalent to

minimizing the primal 4.29. We can find the stationary point by setting the partial

derivatives to zero:
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∂
∂w
L(w, b, ζ, α, ν) = 0

⇔ w −
∑N

i=1 αiyixi = 0

⇔
∑N

i=1 αiyixi = w (4.31)

∂
∂b
L(w, b, ζ, α, ν) = 0

⇔
∑N

i=1 αiyi = 0 (4.32)

∂
∂ζi
L(w, b, ζ, α, ν) = 0

⇔ αi + νi =
C

N
(4.33)

Substituting 4.31 into 4.30 we obtain:

L(w, b, ζ, α, ν) =
1

2
〈
N∑
i=1

αiyixi,
N∑
j=1

αjyjxj〉 −
N∑
i=1

αi(yi〈
N∑
j=1

αjyjxj, xi〉)

+
N∑
i=1

αi − b ·
N∑
i=1

αiyi +
C

N

N∑
i=1

ζi −
N∑
i=1

αiζi −
N∑
i=1

νiζi

= −1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉

+
N∑
i=1

αi−b ·
N∑
i=1

αiyi︸ ︷︷ ︸
=0 (using 4.32)

+
C

N

N∑
i=1

ζi −
N∑
i=1

(αi + νi)ζi︸ ︷︷ ︸
=0 (using 4.33)

= −1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉+
N∑
i=1

αi (4.34)

Using 4.33 and νi > 0 we get constraints 0 ≤ αi ≤ C
N

and obtain the dual

optimization:

min
α
L(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉 (4.35)

s.t. 0 ≤ αi ≤
C

N
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Those observations with associated multipliers αi > 0 are called support vectors.

4.4.2. Kernels

To solve 4.35 the training examples never have to be considered individually, but

only in terms of inner products of pairs of examples. Therefore we can rewrite 4.35

using kernel function K(xi, xj) = 〈φ(xi), φ(xj)〉.

min
α
L(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj) (4.36)

s.t. 0 ≤ αi ≤
C

N

With φ(xi) = xi this is equivalent to the original problem, but using the kernel-

ized version we gain additional flexibility and under certain circumstances drastic

reductions in runtime and memory consumption. First, if the training examples are

not embedded in a dot product space we can choose a feature mapping function

φ : X → F mapping the original examples into the dot product space F . Sec-

ond, since no explicit representation of φ(xi) is needed the dimensionality of the dot

product space may be arbitrarily large. Note that in many cases the kernel function

K(xi, xj) can be computed significantly more efficient than 〈φ(xi), φ(xj)〉.
In the following, we will present several kernel functions that will be used later in

this work.

String Kernels Problems arising in many areas in computational biology are clas-

sification tasks on strings. Using suitable kernels we can train an SVM also on data

that does not come from a dot product space, like the set of strings on a given

alphabet. In this section, we will introduce kernels defined on strings.

Weighted Degree Kernel

Consider two strings si and sj of length L over an alphabet Σ. The weighted degree

(WD) kernel of order K counts all exact k-mer (1 ≤ k ≤ K) matches of two strings

si, sj. The number of exact k-mer matches is multiplied by a specific weight and

added up to derive the result of the kernel function as follows:

k(si, sj) =
K∑
k=1

βk

L−k+1∑
l=1

I(uk,l(si) = uk,l(sj))

Where uk,l(s) denotes the k-mer starting at position l of string s. The indicator

function I(.) equals 1 if its argument is true and 0 otherwise. The weights βk were
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chosen to be [106]:

βk =
2(K − k + 1)

K(K + 1)

The weights decrease with increasing k. This is counter intuitive, but it can be seen

by considering that a match of length k encloses two matches of length k− 1, which

also contribute to the final sum. The feature space of the WD-kernel has

dK =
K∑
k=1

(L− k) · |Σ|k

dimensions, where L is the length of the sequences. This illustrates the impossibility

of an explicit calculation of the mapping into the feature space for even moderate

values of K4. The WD kernel is used to detect positional arrangements of sequence

patterns around genomic signal sites.

Spectrum Kernel

The spectrum kernel detects co-occurring k-mers in the pair of sequences. The

kernel function is given by

k(si, sj) =
K∑
k=1

βk
∑
σ∈Σk

|{l|uk,l(si) = σ}| · |{l|uk,l(sj) = σ}|,

i.e. the product of the number of occurrences of all substrings in each of the sequence

[107]. Positional information is not taken into account.

Weighted Degree Kernel with Shifts

The WD kernel with shifts (WDS kernel) is an extension of the WD kernel such

that not only matches on equivalent positions are considered, but also matches that

are shifted to a certain degree. The kernel function is given by

k(si, sj) =
K∑
k=1

βk

L−k+1∑
l=1

S(l)∑
s=0,s+l<L

δs(I(uk,l+s(si) = uk,l(sj)) + I(uk,l(si) = uk,l+s(sj))).

Every position l of the string can be assigned with a maximal shift S(l). β and

I(.) are defined as for the WD kernel. The shift is penalized through the parameter

δs > 0, such that a perfect match, that is shifted, will not score as high as a non-

shifted match. This kernel is computational more expensive than the WD kernel,

but it is still feasible for up to ten million training sequences of reasonable length

[108].

For numerical reasons, the WD as well as the WDS-kernel are normalized accord-

4with L = 100 and K ≥ 18 storage of a single example explicitly will exceed main memory
capacities on a large compute server
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ing to the following formula:

K(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)

Kernel Combinations Let K1 and K2 be kernels with respect to the mapping func-

tions φ1 and φ2. Then Kc with

Kc(xi, xj) = K2(xi, xj) +K1(xi, xj)

is also a kernel since we can define the mapping function φc as

φc =

〈(
φ1(xi)

φ2(xi)

)
,

(
φ1(xj)

φ2(xj)

)〉
.

A function Kt with

Kt(xi, xj) = t ·K1(xi, xj) (4.37)

is also a Kernel since the corresponding mapping function φt can be defined as

φt(x) = t · φ1(x), (4.38)

mapping into the same feature space as φ1.

Applying 4.37 and 4.38 iteratively one can define new kernels as weighted sums of

known kernels.





5. RNA-Seq-based gene finding

(mGene.ngs)

Before the invention of high throughput expression measurements, direct evidence

for the existence of transcripts originated mainly from Sanger sequencing of cDNA

libraries. This resulted in long sequence fragments (ESTs) and full-length cDNAs

that gave relatively accurate information on the structure of transcripts. However,

the limited throughput of the Sanger sequencing technology resulted in a very low

fraction of transcripts for which direct evidence was available. Gene finding systems

were employed to predict the structure of transcripts without direct evidence, being

trained on labels generated e.g. from ESTs.

The establishment of high throughput expression measurements (first based on

microarrays, then using high throughput sequencing platforms) put us into a sit-

uation where expression measurements were available for a majority of genes in

a genome. Due to biases, high error rates, and the extensive dynamic range of

transcript expression levels the inference of transcript structures purely based on

expression measurements has proven to be challenging [e.g. 8, 136]. The motivation

to develop mGene.ngs was to overcome this limitation by integrating information

from the genomic DNA sequence with expression measurements. This entails the

challenge to weight the different, potentially contradictory sources of information

based on varying levels of confidence for each information source.

In order to learn the trade-off between the different information sources from

the data we extended the gene finding system mGene to take additional sources

of information into account. In the first part of this chapter we will describe the

methodical background of gene finding systems in general and then the important

details of mGene in Section 5.3. We then introduce the changes and extensions we

implemented to take additional information sources into account in Section 5.4. In

Section 5.5 we present the results of mGene.ngs in an international competition, for

the reannotion of 19 Arabidopsis thaliana genomes and we assess the performance

of mGene.ngs to recover known genes of model organisms without using the genome

annotation for training. We compare our results to two well-known RNA-Seq-based

approaches.

41
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5.1. Contributions

The gene finding system mGene uses discriminative classification as well as struc-

tured output learning methods to identify protein coding and noncoding genes based

on a training set and a large variety of information sources. Components of this sys-

tem have been developed by several people, which we want to acknowledge here to

the best of our knowledge.

The learning algorithm of mGene was first applied to this problem in mSplicer

[92] to predict the splice structure of a transcript with known start and end sites.

This model was then extended to the full gene finding system mGene [100]. Sig-

nal predictors were mainly developed by Sören Sonnenburg, Alexander Zien, Petra

Philips, Gabriele Schweikert, Jonas Behr and Gunnar Rätsch [107, 108]. Integration

of signal predictions into a common cross validation framework was done by Gabriele

Schweikert and Jonas Behr. Extension of mSplicer to account for all additional sig-

nals was done by Gabriele Schweikert and is described in detail in [99]. Speedup of

mGene to be applicable to mammalian genomes was done by Jonas Behr, Gunnar

Rätsch and Peter Niermann [84]. Extensions to account for expression measure-

ments and additional biological measurements resulting in mGene.ngs were done by

Jonas Behr.

5.2. Background

Protein coding as well as noncoding genes consist of a small set of distinct types

of segments that are organized according to an underlying grammar. The grammar

arises from biological mechanisms acting on the genomic DNA as well as the RNA

sequence. The general mechanisms are known (see Chapter 2) and this knowledge

can be used to construct models enforcing the grammatical rules of genes. We

frequently refer to the different types of genomic segments as content types (e.g.

”exon”, ”intron”, ”5’UTR”, ”intergenic region”, ...).

The aim of gene finding systems is to segment a genomic DNA sequence into these

distinct segments according to the predefined grammar. This is an instance of label

sequence learning (LSL). One of the most well-known algorithms to solve LSL tasks

is called Hidden Markov Models (HMMs).

In the following, we formally introduce HMMs and then discuss benefits, limita-

tions and several extensions and enhancements.

5.2.1. Markov Models

Markov Models (MMs) are probabilistic models for distributions of sequences on

finite alphabets. We assume an unknown distribution Λ of sequences defined on
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alphabet Σ. Given a set of sequences S drawn independently from Λ, then a MM

of order n models Λ by estimating the probability of observing symbol σi ∈ Σ

succeeding a substring l of length n. The model can be represented as a directed

graph G = (V,E), where the set of nodes V corresponds to all possible sequences of

length n. Edges e ∈ E exist between node v1 and v2 if and only if s(v1)2,n is equal to

s(v2)1,n−1, where s(v) denotes the sequence associated with node v and sj,k denotes

the substring starting at position j and ending at position k.

The length of sequences is modeled by including explicit start and end states in

the set of nodes V . Each node has an incoming edge from the start state and an

outgoing edge to the end state. Each edge e has an associated weight θe ∈ R+.

Weights of outgoing edges of each node are required to sum to one.

Maximum likelihood estimates for parameter θe, frequently termed transition

probability associated with edge e from node v1 to v2 can be computed from the

training set as follows:

θe =
N(s(v1)2,ns(v2)n,n)∑|Σ|

i=1N(s(v1)2,nσi)

N(s) is defined as the number of occurrences of substring s in the training set.

Transition weights from start states and to end states can be computed accordingly.

For better generalization capabilities it is advisable to assume a uniform prior on

transition probabilities and compute the posterior using pseudo count k > 0 .

θe =
N(s(v1)2,ns(v2)n,n) + k∑|Σ|

i=1N(s(v1)2,nσi) + k

Inhomogeneous MMs are a generalization of MMs where the transition probabil-

ities are not independent from the position in the sequence.

Sequence Classification with Markov Models The posterior probability of se-

quence s for given parameters θ of a MM can be computed as

P (s|θ) =
∏

e=Ξ(s)

θe,

where Ξ(s) denotes the sequence of edges needed to generate s from the model.

Training two MMs on different classes we can obtain a decision function for clas-

sification:

D(s) = sign

(
log

(
P (s|θ+)

P (s|θ−)

))
.
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5.2.2. Hidden Markov Models

Hidden Markov Models (HMMs) are a generalization of MMs, where the one-to-one

mapping of graph nodes and symbols in the alphabet may be violated. An emission

probability ev(σ) for symbol σ is associated with node v. Thus, using HMMs we

distinguish sequences of states (label sequences) from sequences of emitted symbols

(observation sequences). The transition probabilities pv1,v2 is independent of the

sequence of symbosl, when conditioned on the previous state v1. With HMMs one

can model segmentations of sequences where each segment consists of the same set of

symbols (e.g. Σ = {A,C,G, T}), but originates from different source distributions.

Since many paths through the graph G = (N,E) of an HMM can produce the same

sequence of observations, the true path that generated a given sequence cannot be

directly inferred from the observation sequence. In the following, we present the

Viterbi algorithm to decode the path that has most likely produced the observed

sequence under a given model parametrization.

5.2.3. The Viterbi Algorithm

The Viterbi algorithm [38] solves the inference problem to find the path π1, ..., π|s|
maximizing the likelihood P (s|π, θ) for any observation sequence s. The Viterbi

algorithm is based on a dynamic program defined on a matrix V with |s| columns

and |N | rows. The entries of V are given recursively by

V (i, j) =

{
ei(sj) ·maxk∈N(V (k, j − 1) · pk,i) ,∀ 2 ≤ j ≤ |s|
ei(s1) , else

Using a matrix of trace-back pointers T

T (i, j) = argmax
k∈N

V (k, j − 1) · pk,i,∀2 ≤ j ≤ |s|

one can infer π.

πj =

{
T (πj+1, j + 1) , ∀ 1 ≤ j < |s|
argmaxk∈N V (k, j) , else

5.2.4. Application of HMMs to Gene Finding

As discussed in the beginning of this section, biological constraints define a gram-

mar on genes encoded by a genome. This grammar is common knowledge and

conserved to a very large degree among eukaryotes. HMMs are well suited to model

sequence segmentations incorporating strict grammatical rules originating from bi-
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ological prior knowledge. Therefore, HMMs are a widely used formalism to solve

LSL problems in computational biology and are the basis of many well-known gene

finders (e.g. GenScan [18] and Augustus [111]1).

However, though the commonly used maximum likelihood estimation of parameters

is computationally very efficient, it has been shown to be a major reason for the

limited performance commonly observed in HMM based gene finding systems [134].

A second limiting factor is the assumption of HMMs stating that an observed symbol

is independent of the state sequence, when conditioned on the state that generated

the symbol. This assumption limits the set of features that can be used to model

certain genomic signals. The method we present in the Section 5.2.5 addresses these

shortcomings of HMMs.

5.2.5. Hidden Markov Support Vector Machines

Altun et al. [3] proposed a method called Hidden Markov-SVMs (HM-SVMs) com-

bining the above mentioned advantages of HMMs with a discriminative training

procedure. Let X and Y be the set of possible observation sequences and the set

of label sequences, respectively. To simplify the notation we assume all observa-

tion and label sequences having the same length l. Given a training set of tuples

(xi, yi), i ∈ 1, ...,m with observation sequences xi ∈ X and label sequences yi ∈ Y
the goal is to learn a discriminant function Fθ : X × Y → R such that the label

sequence yi scores higher than all other sequences y ∈ Y, y 6= yi for each training

example i. This can be formalized in terms of an optimization problem:

min
θ∈Rn,ξ∈Rm+

Ω(θ) + C
∑
i

ξi (5.1)

s. t. Fθ(xi, yi)− Fθ(xi, y) > 1− ξi (5.2)

∀ i = 1, . . . ,m, y ∈ Y
∧
y 6= yi (5.3)

Ω(.) is a regularization function. A typical choice is the l1 or l2 norm.

To enable efficient decoding of the highest scoring label sequence via a dynamic

program (using the Viterbi algorithm; Section 5.2.3), F is required to be linear in

θ, i.e.

Fθ(x, y) = 〈θ, φ(x, y)〉

Function φ : X × Y → Rn maps tuples of observation and label sequences into the

n-dimensional euclidean space. The choice of the joint feature map φ depends on the

problem at hand. It is clearly crucial for the performance of the algorithm that φ

encodes the features necessary to distinguish true from wrong examples. The slack

1Augustus provides an option to train parameters using a conditional random field
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variables ξ allow misclassification of training examples. This problem is an instance

of regularized empirical risk minimization approaches discussed in Section 4.3.2.

Like in other instances of this class of problems the hyper-parameter C has to be

determined using model selection.

Given the optimal value θ̂, predictions are done by maximizing F over Y , i.e.

f(x) = argmax
y∈Y

Fθ̂(x, y)

Due to the number of wrong label sequences, resulting in an exponential number

of constraints, this problem cannot be solved directly. In the following, we introduce

a method called column generation that can be applied to optimization problems,

where the enumeration of inequality constraints is not feasible.

Column Generation

Column generation is a method for solving optimization problems, where the enu-

meration of inequality constraints is not feasible. This technique in generally guar-

antees optimality of the solution and converges in polynomial time under conditions

discussed below. The main idea is to exploit the fact that at the optimal solution

most of the constraints are inactive. Column generation is applicable if, for a given

solution, we can guarantee to find violated constraints. The simple procedure iter-

ates between (1) solving the original optimization problem with respect to a subset

of constraints and (2) finding constraints violated by the current solution. (3) The

currently violated constraints are appended to the subset of constraints. If step (2)

does not return any violated constraints, then the current solution is the optimal

solution also with respect to all constraints. If we can further guarantee that step

(2) finds the constraint that is maximally violated by the current solution, then

Tsochandaridis et al. [122] have shown a polynomial bound on the number of con-

straints that have to be considered until the algorithm convergences.

For the optimization problem 5.4, we can easily see, that the maximally violated

constraint is given by the highest scoring label sequence ỹ:

ỹ = argmax
y∈Y

Fθ(x, y)

As mentioned previously, ỹ can be efficiently computed using the Viterbi algorithm.

Margin Rescaling

The optimization problem 5.4 treats every wrong label sequence the same way. The

constraints enforce a margin of size 1 if f(xi) is different from yi and 0 otherwise.We
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can equivalently formulate the optimization problem as:

min
θ∈Rn,ξ∈Rm+

Ω(θ) + C
∑
i

ξi (5.4)

s. t. Fθ(xi, yi)− Fθ(xi, yj) > ∆(yi, yj)− ξi (5.5)

ξi ≥ 0 (5.6)

∀ i = 1, . . . ,m, yj ∈ Y
∧
yj 6= yi (5.7)

using

∆(yi, y) =

{
0 if yi and y are equal

1 else

When encountering complicated output structures like in gene finding this choice

of the ∆ function might be too stringent. Each example we cannot predict exactly

correct will incur the same loss, independent of how close the prediction to the label

is. We can generalize the formulation using other choices for ∆(., .) that reflect

our intuition of how good a prediction is. We then enforce a larger margin if the

prediction is very far from the label. This technique is called margin rescaling.

The only property ∆(., .) has to fulfill is that it has to be decomposable over the

sequence, to allow for an efficient maximisation with dynamic programming. To find

the maximal margin violator y∗ for training example i we have to maximize:

y∗ = argmax
y

Fθ(xi, y) + ∆(yi, y)

One example for an appropriate ∆ function would be the Hamming distance.2 How-

ever, the choice of the distance measurement should be similar to the evaluation

metric we intend to optimize.

Semi-Markov Extension

Hidden semi-Markov Models (HSMMs) are an extension to HMMs that is closely

related to generalized HMMs [62]. The system is allowed to stay in one state for a

non unit number of observations. The observation sequence generated during that

time is not necessarily treated as a Markov chain.

Rätsch et al. [91] transferred the semi-Markov extension to HM-SVMs. This has

large effects on the Viterbi decoding. In the original form one had to consider

transitions between all pairs of states in every step. The set of states we denote

by Υ. Since all steps were of length one the run time was given by O(|Υ|2 · l(xi)).
2The Hamming distance of two sequences of the same length counts the number of positions

where the sequences differ.
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With the semi-Markov extension we need to consider all transitions from previous

states of distance less than some maximal lookback parameter κ. Thus the overall

run time of the semi-Markov Viterbi decoding is given by O(|Υ2| · l(xi) · κ). The

major advantage of this extension is that arbitrary features depending on the entire

sequence generated from one state can be taken into account. For example it is

possible to learn length distributions of individual states in a nonparametric way.

5.3. The Gene Finding System mGene

In this section, we present how the strategies introduced in Section 5.2 are realized in

the two layers of mGene. We point out details of the implementation, whenever this

does not trivially follow from the formal description. This is important for two rea-

sons. First, the applicability of mGene to large genomes (like mammalian genomes)

is a computational challenge and heavily depends on an efficient implementation.

Several contributions of this thesis improving the runtime of training and prediction

made it possible to apply mGene to mammalian genomes. Second, the flexibility

to deal with a wide variety of information sources is due to the flexible design and

attentive implementation. This allows us to take advantage of an information source

to improve genome annotation even without prior information on whether and in

which sense (enrichment or depletion in one or several genomic segment types) this

information source is informative for transcript structure prediction.

5.3.1. Genomic Signal Prediction

Genomic signal predictions (foremost splice site predictions) are the most informa-

tive genome-based features. mGene performs genome-wide signal predictions in a

separate step preceding the data integration and gene finding step itself. In this

section, we describe the pipeline for genome-wide cross validated signal prediction.

Implementation of the genomic signal prediction pipeline was part of a previous

thesis of the author [7]. Details of label generation and modeling of the signals can

be found in the Supplemental Section A.2.

Training

For the positive and negative example sets we cut out genomic DNA sequences from

windows around the example site. For a given signal all example sequences are of

the same length. Figure A.1 visualizes positive and negative example sequences

for the acceptor splice site, by encoding each nucleotide with a different color. We

performed a five fold cross validation to obtain test predictions for each consensus

position in the genome. Each classifier undergoes model selection using training
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and validation sets nested into the outer cross validation loop to tune the SVM

regularization parameter.

Genome Wide Predictions

SVM predictions from different cross validation splits may vary significantly in scale.

mGene computes empirical estimates of posterior probabilities3 for each SVM and

then fits a piecewise linear function to transform SVM predictions into posterior

probabilities. This procedure is described in detail in [108] and recapitulated in

Section A.2.2.

5.3.2. Sequence Based Content Prediction

For the different content types our model accounts for, we train sequence-based

content predictors. Content predictors are used to classify the DNA sequence into

the four classes intergenic, UTR, exon and intron. This is an instance of multi

class classification. There are several possible solutions for multi class classification

with SVMs and we decided to use an one-versus-rest training procedure.4 This

is motivated by the observation that during decoding we know for any transition

between two states which content type we should see in between. Therefore, we need

a score for a given sequence being of a given content type. As features we use counts

of substrings. We train a linear SVM on feature vectors having one dimension for

each possible sequence of length one to k. Similar to signal predictions we train

content predictors in a five fold cross validation scheme with nested model selection

to tune the SVM hyper-parameters.

In addition to these content predictors, we train one predictor to discriminate

frame 0 versus other frames in coding regions. The feature vector consists of sub-

string counts for substrings beginning at every third position. Coding regions of

spliced mRNA sequences serve as positive training examples. Two sets of negative

examples are generated by removing 1 or 2 leading nucleotides, respectively. In

addition, we discriminate against all three frames of the reverse complement of the

positive examples.

5.3.3. Transcript Structure Prediction

In this section, we introduce the second layer of the gene finding system mGene. We

describe how the general methods presented in Section 5.2 are applied to solve the

3This is the probability of observing a positive example given the SVM prediction value.
4training four SVMs using one out of four classes as positive labels and the rest as negative labels
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transcript structure prediction problem: Informally, we seek to find a discriminant

function F (x, y) such that for a majority of training examples xi, f(xi) with

f(xi) = argmax
y∈Y

Fθ(x, y)

is equal to the true label sequence yi.

Features

The usage of HM-SVMs allows us to construct features depending on a single po-

sition as well as features depending on the start and stop position of a segment.

We denote the set of features depending on a single position by S. Additionally to

these signal features, there are three types of features associated with transitions:

Length features L, content features C and transition counters. Since there is no

one-to-one mapping between the states Υ and the signal features S we introduce

the function Ξs : Υ → P(S) returning the set of features associated with a given

state. P(.) denotes the power set. In the same way we define Ξc : Υ × Υ → P(C)
and Ξl : Υ × Υ → L for transitions. The set of allowed transitions we denote by

T ⊆ Υ×Υ.

Joint Feature Map

The joint feature map Φ projects an observation-label sequence pair (x, y) into

the parameter space Rn. To give consideration to the semi-Markov property of our

model, we switch notation of the label sequence equivalently from a nucleotide based

to a segment-based one:

y = {(ψ1, υ1), ..., (ψs, υs)}

where ψk is the start of segment k, υk is the label of segment k and s is the number

of segments. We define the joint feature map Φ(x, y) as a concatenation of four

parts:

Φ(x, y) =



(∑s−1
k=1 Cc,k · φc(xψk...ψk+1

)
)

(σ,ρ)∈T ,c∈Ξc(σ,ρ)

(
∑s

k=1 Ss,k · φs(xψk±w))σ∈Υ,s∈Ξs(σ)(∑s−1
k=1 Ll,k · φl(ψk+1 − ψk)

)
(σ,ρ)∈T ,l=Ξl(σ,ρ)(∑s−1

k=1 I(υk = σ ∧ υk+1 = ρ)
)

(σ,ρ)∈T


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Cc,k, Ss,k and Ll,l are an indicator variable defined as

Cc,k = I(υk = σ ∧ υk+1 = ρ ∧ c ∈ Ξc(σ, ρ))

Ss,k = I(υk = σ ∧ s ∈ Ξs(σ))

Ll,k = I(υk = σ ∧ υk+1 = ρ ∧ l = Ξl(σ, ρ))

using the indicator function I(.). xψk...ψk+1
denotes the DNA-sequence between po-

sition ψk and ψk+1. Assuming that all signal features are only dependent on a

symmetric window of size 2 · w, xψ±w denotes the DNA-sequence xψ−w...xψ+w.

φ is a set of functions mapping features f to Rb. These functions are designed

individually for the different features. The functions φ have the common form:

φk(x) = πk(τk(x))

where τk : X → R is a feature specific function (e.g. a trained classification function)

and πk : R→ Rb. The constant b defines the number of support points of the piece

wise linear feature transformation functions. b is defined in advance, typical values

range between 10 and 100. Intuitively, πk computes a smoothed histogram of a

single value according to predefined bins5 (limits) l1, ..., lb with l1 < l2 < ... < lb:

πki(v) =



v−li
li+1−li if l1 < v < lb and li = max({lj|lj < v, 1 ≤ j < b})
li−v
li−li−1

if l1 < v < lb and li = min({lj|lj > v, 1 < j ≤ b})
1 if v ≥ lb and i = b

1 if v ≤ l1 and i = 1

0 else

Taking all the different feature types together, Φ(x, y) has the dimensionality

n = (|C|+ |S|+ |L|) · b+ |T |,

corresponding to the number of parameters we determine in training.

Piecewise Linear Functions

Given the training parameters (weights) θs ∈ Rb corresponding to feature s ∈
{S, C,L} we define the piecewise linear function (PLiF):

Ψs(r) = 〈θs, πs(r)〉

5the bins are computed as percentiles of the feature distributions
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This way we decompose the large scalar product of the discriminant function F to

a sum of PLiFs over all features. PLiFs transform any real valued feature into a

different range such that the feature is most useful in discriminating true from wrong

paths. The parameters defining the PLiFs are learned during training in a globally

optimal way.

The PLiFs also offer possibilities to interpret the training results. Uninformative

features for example will be transformed to 0, whereas PLiFs of highly informa-

tive features will have large output ranges and therefore contribute more to the

discriminant function F than less informative features.

Since all PLiF parameters are learned during training, mGene is robust to trans-

formations of its input data and new features can be included without defining the

weighting relative to the old features in advance. Choosing the number of bins

b, PLiFs can approximate any kind of transformation as accurate as needed. But

since b is a linear factor in the number of training parameters, large values for b

increase the time and space requirements for training. However, using smoothness

constraints6 and monotonicity constraints7 the learned transformations are appro-

priately regularized and transcript predictors with larger values for b are expected

to generalize equally well (see Section 5.3.3 for details).

Dynamic Program

With the Dynamic Program we compute the label sequence maximizing the discrim-

inant function Fθ for a given input sequence x.

The Viterbi matrix V has size |x| × |Υ| and is recursively defined by:

V (σ, 1) = 0, ∀1 ≤ i ≤ |Υ|
V (σ, ψ2) = maxρ,ψ1 V (ρ, ψ1) +

∑
s∈Ξs(σ)

Ψs(τs(xψ2±w)) +

∑
c∈Ξc(ρ,σ)

Ψc(τc(xψ1...ψ2)) + θtransρ,σ

s.t. 1 ≤ ρ ≤ |Υ|
max(ψ2 − κ, 1) ≤ ψ1 < ψ2

Where θtransρ,σ is the parameter associated with transition count ρ → σ and κ is

the maximal length allowed for a single segment. For positions ψ where we have no

prediction for signal s, we define Ψs(τs(xψ±w)) = −∞. For reasons of efficiency we

use a sparse representation of V by removing columns with only −∞ values. After

6we use an l1 or l2 penalty on the difference of parameters corresponding to neighboring bins
7If it is known in advance that higher values of a given feature should correspond to higher (lower)

scores, we strictly enforce monotonic increasing (decreasing) PLiF transformations
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computing V we decode the corresponding label sequence using trace back pointers.

Computing τ for the signal features can be expensive since one needs to predict using

SVMs with combinations of complex string kernels. However, signal predictions can

be precomputed once genome-wide prior to the training of the HSM-SVM training.

Optimization Problem

We map the problem 5.4 to the following definition of a quadratic optimization

problem:

min
z∈Rn+m+o

1

2
zTQz + fT z (5.8)

subject to Az ≤ c

l ≤ z ≤ u (5.9)

The vector z determined by the optimization problem is composed of three different

parts:

z =

 θ ∈ Rn

ξ ∈ Rm

S ∈ Ro


Where θ is the vector of model parameters, ξ is the vector of slacks for each of the

m training examples and S is a vector of auxiliary variables enforcing a smooth

shape of the Ψ-functions. o is given by (|C| + |S| + |L|) · (b − 1), i.e. for each pair

of neighboring bins of the Ψ-functions we penalize the absolute difference of the

corresponding model parameters. The constraint matrix A has n+m+ o columns.

The number of rows of A increases during training. A encloses three different types

of constraints. First, 2 · o smoothness constraints enforcing smooth Ψ-functions:

θi − θi+1 ≤ Si

θi+1 − θi ≤ Si

We favour smooth transformations by incorporating γs
∑

i Si into the objective func-

tion. γs is a hyperparameter of the method and has to be determined using model

selection. Second, A comprises a set of o constraints enforcing monotonicity of the

Ψ-functions for monotonically increasing with θi ≤ θi+1 and monotonically decreas-

ing Ψ-functions using θi ≥ θi+1. And third, we define a constraint for training

example i to enforce that the score of the true label sequences is higher than the

score of another label sequence yj:

〈θ,Φ(xi, yj)− Φ(xi, yi)〉 ≤ ∆(yi, yj)− ξi
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To derive initial model parameters, we generate a set of constraints by constructing

wrong label sequences from the true label sequence with a simple heuristic skipping

some gene fragments.8

Q is a (n+m+o)×(n+m+o) diagonal matrix. Linear regularization parameters

are determined by f ∈ Rn+m+o. While the Ψ-parameters are regularized quadrati-

cally, we regularize the slacks linearly to promote sparsity.

5.3.4. Evaluation of Transcript Structures

Evaluation of gene predictions on real world data entails the difficulty of uncertainty

in the labels. A large fraction of the genes in any genome annotation are predicted

by a gene finding system and were never experimentally confirmed. To account

for this, we assess gene prediction methods following an evaluation scheme that is

similar to the strategy described in [23, 100]: If a transcript confirmation score for

annotated transcripts is available, we assess the sensitivity on the confirmed tran-

scripts only, while all annotated transcripts were used to determine the methods’

specificity. Furthermore, we report the F-score as a single value performance esti-

mate. Given the sensitivity SN and the specificity SP , the F-score is defined as
2∗SN∗SP
SN+SP

. We distinguish performance metrics on three different levels: nucleotide,

exon and transcript level. Considering the evaluation of coding regions as a special

case, the number of true positive predictions (TP ) on nucleotide level is the number

of predicted nucleotides that are part of an coding exon with respect to the predic-

tion as well as the annotation. On exon level we require the entire predicted coding

exon to exactly match an annotated coding exon and on transcript level we require

an exact one to one relationship of all exons of a predicted coding transcripts to

all coding exons of an annotated transcript. All predicted features, that are not

counted as true positives are false positives (FP ) and correspondingly we call all

annotated features that are not matched false negatives (FN).

5.4. mGene.ngs Methods

In this section, we will first present related approaches for transcript prediction using

expression measurements. We then present our contributions to the gene finding

system mGene that allow us to (1) integrate various types of information sources,

(2) train on examples generated from RNA-Seq data, (3) speedup computations to

be applicable to mammalian genomes, and (4) predict noncoding genes in addition

to protein-coding genes.

8Note that the heuristic only influences the starting point, but not the solution of the optimization
problem, which is globally optimal in any case.
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5.4.1. Related Work

In the following, we discuss tools for gene finding using RNA-Seq evidence as well

as information from the genomic DNA sequence. Tools for transcript prediction

only based on RNA-Seq data are discussed in Section 6.2. A detailed comparison

of RNA-Seq based gene finding systems and transcriptome assembly tools has been

the goal of the RGASP competition [116].

Fgenesh++R

Fgenesh [95] is an HMM based gene finding system. For participation in the rGASP

competition it has been extended to take evidence from RNA-Seq read alignments

into account. This version of Fgenesh is called Fgenesh++R. RNA-Seq information

is considered during the prediction by forcing the prediction to include a previously

defined set of compatible introns [54]. Alternative transcripts are found by iteratively

predicting transcripts for a given gene locus using an intron not yet explained by

previously predicted transcripts.

Augustus

Similar to Fgenesh, Augustus [110–113] (in its extended version Augustus+ [114])

considers RNA-Seq information not during training but only during the prediction

step of the model. The scoring function of the dynamic program is modified in the

following way. For each transition of the dynamic program corresponding to an exon

or intron Augustus checks whether there is confirmation from RNA-Seq alignments.

If their is confirmation a predefined bonus value > 0 is added to the score, otherwise

a predefined malus value > 0 is subtracted. Bonus and malus values do not depend

on the amount of RNA-Seq confirmation, but the RNA-Seq data is filtered prior

to the prediction such that lowly confirmed exons and introns are discarded from

the RNA-Seq evidences being passed to Augustus. The bonus and malus values are

determined using model selection for exon and intron evidences separately.

In contrast to Fgenesh++R Augustus’ bonus/malus system does not force the

prediction to comply with all hints. Therefore, contradictory hints may be used

in a single prediction run. On the other hand, contradictory hints may indicate

alternative splicing variants. In [115] multiple prediction runs are performed where

only one out of a group of incompatible hints is considered at a time. Similar

predictions are collapsed in a post-processing step.

Interestingly, Augustus proposes a second strategy for alternative transcript pre-

diction based on sampling from the posterior distribution of transcript structures

[48]. Instead of reporting only the transcript with the largest posterior probability,

multiple predictions may be sampled with frequencies proportional to their poste-
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rior probabilities. From those predictions feature specific (exon and intron) posterior

probabilities may be estimated. Thresholds on the minimal and mean (geometric

mean across the transcript) feature specific posterior probabilities may be used to

control the sensitivity/specificity trade-off. This strategy allows Augustus to report

multiple overlapping transcripts and still control for the specificity in a methodically

sound way. However, not all information (in particular quantitative information)

provided by RNA-Seq data is taken into account.

Discussion

To our knowledge mGene.ngs is the only gene finding system that learns the scoring

of additional evidence during the training of the system. While in principle a model

selection strategy like the one employed by Augustus can achieve similar results,

this strategy is limited to few parameters and therefore cannot learn complex rela-

tionships between varying levels of confidences from different sources. Even when

restricting the number of parameters to two for each additional source of informa-

tion (like in the case of Augustus) it is computationally challenging to find optimal

parameters for more than one additional information source. Moreover, the data

processing for hint generation is critical for the performance and needs (at least

once for each new data type) expert knowledge.

Fgenesh does not take exon coverage into account and therefore cannot benefit

from read coverage e.g. in cases of single exon transcripts. On the other hand the

idea, that each well confirmed intron should be explained by at least one transcript is

reasonable and it is sensible to use a gene finding system to propose transcripts based

on partial information. However, enforcing combinations of introns at the same

time may lead to wrong predictions, which could have been avoided by iteratively

enforcing the prediction of one not yet explained candidate intron per locus (which

is nontrivial to define). The latter strategy might be beneficial if (1) combined with

an appropriate filtering of predicted transcripts and (2) additional RNA-Seq-based

features are taken into account during the prediction. Otherwise, ambiguities of

parts of transcripts that are not enforced, but could be resolved using RNA-Seq

data, result in suboptimal predictions. In this context, the probabilistic treatment

of RNA-Seq data by Augustus seems more favourable.

The performance of Augustus, Fgenesh++R and mGene.ngs were compared among

others in an international competition. We present the results in Section 5.5.1. We

now present the strategies mGene.ngs employs to overcome the limitations discussed

above.
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5.4.2. Integration of Additional Evidence

An HMM can model an arbitrarily large sets of output sequences F by estimating

emission probabilities efk(s) for state k ∈ N , symbol s in the alphabet Σ(f) of

output sequence f ∈ F . Each output sequence f is modeled to be dependent on the

current state k only. Therefore, it is assumed that output sequences are conditionally

independent from each other, given the current state. In practice this assumption

can be violated, resulting in an inaccurate estimation of the posterior probabilities.

Discriminative approaches like Conditional Random Fields [64] and HM-SVMs

do not make this assumption. Therefore, these models are well suited to integrate

sources of evidence in addition to the genomic DNA sequence. In Section 5.4 we

introduce the strategy to integrate various features based on the genomic sequence

into HM-SVMs. We make use of the same strategy to integrate features based on

other information sources like RNA-Seq measurements.

We distinguish between two types of evidences. Evidences associated with a

single genomic position and evidences associated with a continuous segment on the

genome. In the following section, we describe how the integration is is implemented

using existing strategies of mGene.

5.4.3. Pice-Wise Linear Functions to Integrate Heterogeneous

Sources of Evidence

Similar to features predicted based on the genomic DNA sequence we implemented

generic interfaces to integrate features from other sources. For features f associated

with a single genomic position we define piece-wise linear function and associate

them with segment types like exons and intron. Such that for each transition (p1, p2)

of type c we include
∑

f

∑
x∈Xp1,p2

Ψc,f (τc,f (x)) in the scoring function F , where

Xp1,p2 is the set of observations of type f between genomic position p1 and p2.

Features f associated with a pair of positions in the genome, e.g. evidence for

introns from spliced reads, are also associated with a segment type c. For a transition

(p1, p2) we add
∑

f Ψc,f (τc,f (x)) to the scoring function with observation x being

associated with pi, p2. Missing observations are set to zero.

5.4.4. Extension for noncoding Genes

One of the difficulties gene finding systems face when applied to RNA-Seq data

is the enormous number of reads mapping outside of protein coding genes. These

reads may be true biological measurements of noncoding genes or originate from

false alignments to possibly non-functional duplications of coding genes. Based on

RNA-Seq data one cannot decide between these different sources. Therefore, when

only considering protein coding genes, the evidence from RNA-Seq data is very often
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misleading. We solved this difficulty by extending the model of mGene described in

[100] to also predict noncoding genes at the same time. Figure 5.1 shows how the new

states for noncoding genes are integrated with the existing model for coding genes.

We integrate the noncoding gene model as a bypass to the coding gene model, such

that for each genic locus the prediction algorithm has to determine wether this locus

is coding or noncoding. To avoid an excessive increase in the number of parameters

that have to be trained the model for noncoding genes shares many parameters with

the model for coding genes. All signal sites (TSS, TTS, acceptor and donor slice

sites) share all features with the corresponding signal sites of the coding region.

Moreover, the exonic transitions (TSS → donor and acceptor → TTS) share all

features and parameters with the 5’-UTR exon transitions of coding genes. Introns

in noncoding genes share the features and parameters of introns in the coding region.

The only additional parameters that are learned specifically for noncoding genes are

transition scores for each new transition. This way differences in the frequence of

introns in noncoding genes can be captured.

Since it has been difficult to obtain reliable annotations for long noncoding inter-

genic transcripts, we train this model using a fraction of candidate transcripts from

Transcript Skimmer (see Section 5.4.6) that had very short open reading frames as

labels for noncoding genes and transcripts with long open reading frames as label

for coding genes. We assume that a considerable fraction of the ”noncoding” genes

labels are in fact coding genes, where the transcript skimmer prediction failed to

recover the correct transcript from the splicing graph. Therefore, we do not expect

to obtain confident calls for noncoding genes, instead, we use the model for noncod-

ing genes to absorb coverage that could otherwise only be explained by predicting

a coding gene. We found that the predictions for protein coding genes become

considerably more specific, when using the model for noncoding genes.

Intergenic 
Region

TSS
coding

TSS
noncoding

TTS
coding

TTS
noncoding

acceptor
splice site

donor
splice site

coding genes 
model

Figure 5.1.: Extension of the state-transition model for noncoding genes. Four new nodes
(yellow) extend the existing model (in light blue; only scematic). States with
dashed lines are conceptual and do not correspond to real states of the model.
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5.4.5. Scaling up for Mammalian Genomes

Transcript predictions on mammalian genomes are computationally more challeng-

ing than for species like C. elegans, D. melanogaster and A. thaliana because the

maximal segment sizes are one order of magnitude longer. Introns in the human

genome are up to 200,000 nt long (20,000 nt for C. elegans) and therefore increase

the runtime of the semi Markov Viterbi algorithm by a factor of 10 per nucleotide.

With genome sizes also being a factor of 10 larger and a higher number of iterations

needed for training the original model used for smaller genomes became infeasible.

Genome wide transcript predictions for C. elegans require approximately 500 CPU

hours. Extrapolating the runtime requirements for the same model to the human

genome, we expect a runtime of approximately 38 CPU years. Using a lookup table

for very long transitions we could achieve a speedup by a factor of 100, resulting in

a runtime of 3300 CPU hours, which is feasible given the opportunity to distribute

computations over many CPUs.

We extended the method of mGene by five strategies to speedup the training and

prediction, which we first introduce individually and then provide an algorithm that

combines all extensions for training and prediction.

Approximate Viterbi Prediction During the training of mGene.ngs the generation

of constraints iterates with solving the quadratic program. Since the semi-Markov

Viterbi algorithm is very costly, we implemented an approximation by restricting the

positions considering in the Viterbi decoding to a relatively small subset. This subset

includes only positions with high confidence values for any of the signal predictions

and positions used in the label sequence. This reduction in the position list yields

a 10 to 20-fold speedup of the Viterbi decoding, but may potentially exclude the

highest scoring prediction. However, we can still guarantee optimality if we find

that the final parameter set satisfies the constraints 5.2 defined on the full Viterbi

algorithm.

In each iteration we flag a training example for computing the full Viterbi with

a given probability ρ or if the training example with approximate decoding did not

generate a constraint. The latter is the case if the true path scores highest among

all possible paths. As soon as a given fraction of examples are flagged for exact

decoding, we perform a single round of exact decoding for all examples. If once in

the training process the number of new constraints drops below a given threshold,

we turn off the approximation for all iterations to come. This is motivated by the

observation that towards the end of the training the approximate decoding does not

generate constraints that will be active at the final solution and also produces very

few constraints and therefore does not advance the training process significantly.

This strategy is detailed in Algorithm 1. The same convergence guarantee of the
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original training algorithm clearly also holds for this strategy, because we only add

easy to compute negative examples to an otherwise unchanged procedure.

Parallel Constraint Generation We may reduce the number of times we need to

solve the optimization problem by generating a large batch of constraints with the

same parameter vector θt in the t-th column generation iteration. This allows us to

distribute the viterbi prediction for parallel computation at the cost that some of the

generated constraints might not be informative. The parallel constraint generation

is mentioned here for completeness. It is part of the original mGene publication

[100] and has not been developed by the author of this thesis.
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function C,A = generate constraints(X, Y,A, θ)
// X = {xi|i ∈ {1, ...,m}} training examples

// Y = {yi|i ∈ {1, ...,m}} training labels

// A = {ai|i ∈ {1, ...,m}} approximation flags

// θ current parameters

{
// determine if approximation is appropriate

τ = decide(mean(A))

// compute Viterbi decoding in parallel threads

for all i=1, ..., m do

// precompute segment features

fi = precompute features(xi, θ)

// Viterbi decoding

ŷi = V iterbi(xi, fi, τ)

// Update approximation flag

if rand ≤ ρ or ŷi == yi then

ai = 0

end if

end for

Ŷ = {ŷi|i ∈ {1, ...,m}}
C = compute constraints(X, Y, Ŷ );

return C,A

}
Algorithm 1: Generation of constraints. Function decide : R → B is imple-

mented as a simple thresholding function (we use threshold 0.5) and ρ is in

our case fixed to 0.05.

Reduction of Constraints During the training the number of constraints con-

stantly increases. We have noted that most of the constraints generated early in the

training process are not active at later stages and at the final solution. However, the

runtime of the quadratic program solver increases significantly, the more constraints

are accumulated. To speed up the solver we compute the margin of each constraint,

by which it is inactive given the previoius solution. We discard temporarily exclude

constraints which are inactive by a margin larger than ε. This includes by definition

all new constraints. After solving the QP on this subset of constraints, we compute

the fraction of all constraints that are violated. If this fraction exceeds a given

threshold 1− ρ, ρ > 0 we iterate with an increased ε.

Algorithm 2 illustrates this strategy. While in the beginning of the training we

frequently need to increase ε, typically considering up to 20% of the constraints, we

find that towards the end of the training the solution obtained on 1% of the most
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active constraints satisfies all constraints. Therefore, this simple extension saves a

significant amount of computing time, while still guaranteeing optimality.

function θt = solve QP(qp, θt−1)
// qp: structure with fields: Q, f , A, c, l, u (cf. 5.8)

// θt−1: solution of previous iteration, empty if t == 0

{
if is empty(θt−1) then

return solve(qp)

end if

while true do

// select ε percentile of most active constraints

qptmp = select constraints(qp, θt−1, ε)

// solve qp with standard QP solver

θt = solve(qptmp)

// compute fraction of satisfied constraints

η = frac satisfied(qp, θt)

if η > 1− ρ then

return θt
end if

increase(ε)

end while

}
Algorithm 2: Solving the quadratic program with reduced constraint lists

Lookup Table This strategy has been partially implemented by Peter Niermann

and described in his Diplom thesis [84]. We change the model by defining a set of

transitions for which the maximal length is computationally infeasible. We set the

maximal length for these transitions to a significantly smaller value, but allow longer

transitions using a lookup table. For each state t being a potential start state of one

such transition we store the best so far seen score and the corresponding position

p. In each step of the Viterbi algorithm where we computed the score for being in

state t we compare this score to the value in the table (initialized with −∞) and

replace the value in the table if the current score is larger. Whenever we compute

the score for a state which is a potential end state of a transition starting at t, we

also compute the score we would obtain using a transition from p. While the change

to the model is not equivalent, the implementation guarantees to find the best path

given this model.
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Pre-computing Segment Features The transformed scores of each feature f as-

sociated with genomic positions can precomputed to speedup the Viterbi algorithm.

For each content type c and each position p we store

T (f, p) =
∑
x∈X1,p

Ψc,f (τc,f (x)).

During the Viterbi algorithm we then use∑
x∈Xp1,p2

Ψc,f (τc,f (x)) = T (f, p2)− T (f, p1).

Split Chromosomes for Prediction The memory consumption of the Viterbi de-

coding grows linear with the length of the sequence for predictions. For mammals

this often exceeds the available amount of main memory. Therefore, we computed

an extension that allows us to split large chromosomes into overlapping chunks and

perform predictions independently. We choose the overlap large enough such that

it is unlikely that any single gene exceeds the length of the overlapping region.

Given two chunks, we then combine predictions by discarding possibly truncated

genes in the overlap and replacing them by genes from the other trunk accordingly.

This strategy does not only reduce the memory consumption, but also allows us to

distribute the genome-wide prediction more effectively on a compute cluster.

Combining the Extensions In Algorithm 3, we show how the extensions are com-

bined to speedup the training of mGene.ngs. The speedup for the Viterbi decoding

using a lookup table for long transitions reduces the runtime during training as well

as for genome-wide predictions. This is not mentioned explicitly in the following

algorithm.
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function θ = train(X, Y )
// X = {xi|i ∈ {1, ...,m}} training examples

// Y = {yi|i ∈ {1, ...,m}} training labels

{
// according to Equation 5.4

qp0 = initialize QP ()

// initialize approximation settings

A0 = {1}m

for t = 1, 2, ... do

// Solve using Algorithm 2

θt = solve QP (qpt−1)

// Generate constraints using Algorithm 1

[C,At] = generate constraints(X, Y,At−1, θt)

// Termination

if |C| == 0 and mean(At−1) ≥ 0.5 then

break

end if

if |C| == 0 and mean(At−1) < 0.5 then

At := {0}m
end if

// Add constraints

qpt = add constraints(qpt−1, C)

end for

}
Algorithm 3: Training of mGene.ngs

5.4.6. Label Generation based on RNA-Seq Data

mGene is based on supervised learning techniques, where statistical properties of

known transcripts are observed to make predictions of undiscovered genes. The

core system therefore requires a training set of annotated genes. To generate such

a training set from RNA-Seq reads, we developed a simple transcript skimming

technique that constructs preliminary RNA transcripts from read alignments. We

first apply a filter to remove reads containing a high number of mismatches, very

short exons, or very long introns, which are indicative of false alignments. Using

a simple greedy approach we then select consecutive exons and introns until the

coverage drops below a given threshold.

The algorithm starts with searching for regions in the genome that are covered

above a certain threshold. To avoid reporting of incomplete transcripts gaps in
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the coverage up to a certain length are tolerated in this step. Regions without

spliced read mappings are reported as single exon transcripts, if the mean coverage

is above a given threshold and there are no gaps in the coverage. For each remaining

region we then select the intron having maximal coverage and extend the transcript

into both directions. We continue the transcript by selecting the nearest intron, if

this is covered above a certain threshold and if there is no nearby intron having (1)

higher coverage and (2) being connected to our current intron by an potential exonic

region without gaps in the coverage. We terminate transcripts if there is no nearby

intron at the first position the coverage drops below a threshold. To avoid reporting

incomplete transcripts, we discard transcripts as soon as the coverage drops below

a threshold, but there is coverage nearby in the current search direction.

We then detect the longest open reading frame and mark transcripts as being

likely coding transcripts if the fraction of the transcript, which is part of the ORF

exceeds a given threshold. Therefore, in this step, only transcripts with high coverage

that pass very stringent quality criteria are considered. This results in a small set

of transcripts at comparably high specificity that is sufficiently large for training

subsequent steps of the system.

5.5. Results

5.5.1. The rGASP Competition

In 2009 The Wellcome Trust Sanger Institute in Hinxton, Great Britain and the

Spanish Center for Genomic Regulation in Barcelona, Spain launched the RNA-Seq

Genome Annotation Assessment Project (rGASP). The goal of the competition was

to assess and further the current state-of-the-art in genome annotation with RNA-

Seq data. Participants were allowed to use any external source of information for

their predictions, including genome annotations for the three organisms. Predictions

were evaluated against the ENCODE genome annotation.

Data Sets There were two phases of the rGASP transcript recognition competi-

tion. In phase 1 the organizers provided a total of 21 RNA-Seq data sets for C.

elegans, D. melanogaster and H. sapiens. In phase 2 additional 3 data sets were

provided. An overview of the data sets can be found in Table A.1.

Strategy We generated spliced read alignments using PALMAPPER [55] using

splice site predictions trained on the genome annotation and Illumina quality scores

as features. We discarded all alignments but the one with the best alignment score.

We filtered the alignments such that there were at least 5 nucleotides of the aligned

read on each side of an intron and each read had at most 1 mismatch.
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We trained mGene.ngs using the genomic DNA sequence and one RNA-Seq data

set for each organism as additional evidence. From the RNA-Seq data set we ex-

tracted one track with read coverage, one track with RNA-Seq intron evidence and

lists of RNA-Seq confirmed introns. As training examples, a set of annotated genes

with read support was used.

In addition to the single transcript per locus that was discovered by mGene.ngs

we predicted alternative transcripts using a splicing graph based approach. We com-

plemented the prediction for each locus with intron evidence from RNA-Seq data.

Moreover, potential exon skips were inferred where they substantially increased the

length of the open reading frame. From the splice graphs we generated all paths

if the number of paths did not exceed 100. Otherwise we randomly sampled 100

paths. The resulting candidate transcripts were quantified with rQuant [14] and

filtered according to their predicted expression level.

Finally, an SVM based filtering approach was applied. Transcript predictions

which appeared implausible due to short transcript length, low read coverage, or

short open reading frames were filtered out using SVMs with RBF kernels that were

trained on annotated genes.

For each organism, we used mGene.ngs system trained on one of the data sets to

predict all data sets individually.

Results The predictions have been evaluated by the organizers and results are

available from http://www.nature.com/nmeth/journal/v10/n12/extref/nmeth.

2714-S1.pdf. Figure 5.2 shows scatter plots for the sensitivity and specificity of

submissions9 on coding exon and coding transcript level. Results for phase 1 of the

competition are not yet available from the rGASP organizers. Therefore, all results

we show are on the phase 2 data sets.

Discussion The evaluation results provided by the organisers suggest, that mGene.ngs

provides accurate predictions for C. elegans and D. melanogaster. Predictions for H.

sapiens are comparable in specificity to predictions of Stanke et al., but significantly

less sensitive. We discuss potential reasons for this in Section 5.5.3. One significant

inaccuracy of the evaluation is that the training set for the different systems was not

defined by the organizers. Each method used a different set of annotated genes for

training, potentially varying significantly in size. Therefore, the evaluation for each

method is a mixture of training and test error, with unknown shares. Any compar-

ison between the different methods has to be treated with caution and is only valid

if we assume that each participant used a training set size much smaller than the

whole genome. Our own predictions were trained on 3000 genes for each organism

9We discarded the submissions of Jie et al., which was only available for H. sapiens and were
neither in terms of sensitivity nor specificity among the top performers.

http://www.nature.com/nmeth/journal/v10/n12/extref/nmeth.2714-S1.pdf
http://www.nature.com/nmeth/journal/v10/n12/extref/nmeth.2714-S1.pdf
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Figure 5.2.: Sensitivity versus specificity of submissions to the rGASP competition for
organisms D. melanogaster, H. sapiens and C. elegans. The evaluation has
been performed by the organizers. Submissions of Jie et al. are not shown
to keep the Figure uncluttered. Submissions Raetsch 1 and Raetsch 2 were
performed using mGene.ngs with different choices to transcript filters. For
submission Raetsch 3 mTim was used.

and predictions from Stanke et al. were trained on even fewer genes (Katharina

Hoff, personal communication). Exon and transcript level sensitivity and specificity
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for the submissions with mGene.ngs (”Raetsch 1” and ”Raetsch 2”) are among the

best performing submissions for C. elegans and D. melanogaster.

5.5.2. Multiple Reference Genomes and Transcriptomes for

Arabidopsis thaliana

In this section, we describe a collaborative study aiming to characterize sequence

variation in A. thaliana and associate the sequence variation with phenotypic varia-

tion within a set of 19 natural A. thaliana accessions (strains). The project is divided

into two phases. In the first phase genomes of 18 strains have been sequenced and

assembled. Furthermore, transcriptomes were sequenced for all 18 strains plus the

reference strain Col-0 and genomes were (re-)annotated using computational meth-

ods we describe in the following. Main results of the first phase are published in

Gan et al. [39]. The second phase is still ongoing. For this, recombinant lines with

multiple parents (MAGIC lines) were created from the 19 original strains in four

generations. These lines were then selfed for six generations to obtain a high degree

of homozygosity. The resulting mosaic genomes were genotyped and transcriptomes

for more than 700 lines were sequenced. Preliminary results show that this data set

allows for cis and trans association of gene expression levels (eQTLs) with very high

resolution.

The analysis of the phase two of the project depends on correct genome sequence

and genome annotations for the 19 founder strains of the MAGIC lines. There-

fore, the major goal of phase one was to assemble the genomes and characterize

the transcriptome of the founder strains as accurate as possible using all available

information. In the following, we describe the strategies for genome assembly and

annotation we applied in phase one of the project.

Genome Assembly

The genome assembly has been carried out by Xiangchao Gan and colleagues at the

laboratory of Richard Mott at Oxford University. The genomic DNA sequence of

all 18 strains was sequenced with Illumina paired-end reads, with two libraries with

200-bp and 400-bp inserts and reads of 36 and 51 bp, respectively. The coverage

varied per strain between 27-fold and 60-fold. The goal of the genome assembly was

to obtain full length chromosome sequences with an assembly quality sufficient for

a sensible re-annotation using gene finding systems.

In a first step reads were aligned to the TAIR reference genome using STAMPY

[74] to detect a set of high confidence sequence variations. These variations were then

integrated into the genome to generate a new genomic sequence. This procedure was

iterated 5 times. Finally, de novo assemblies were generated using SOAP denovo
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[70] and aligned to the TAIR reference genome to generate a list of variations. This

approach called DENOM generates variant lists that potentially include complex

variants being difficult to detect by the iterative approach. Results of the iterative

approach were integrated with a rule based strategy.

Quality assessment of the resulting pseudo chromosome sequences using capillary

sequencing and previously determined SNP calls revealed a high quality of the as-

semblies with less than one assembly error per gene [39]. We conclude that this

quality is sufficient to sensibly attempt the de novo genome annotation for the 18

genomes using mGene.

An important side product of the reference guided assembly strategy is a mapping

between coordinates of the TAIR reference sequence and the strain genomes. We

used this mapping to project the TAIR genome annotation and gene predictions

between the Col-0 reference sequence and the accessions’ genomes.

Projection of the TAIR Annotation to the Strain Genomes

We projected the TAIR10 genome annotation to the accessions’ genomes and as-

sessed the changes to the gene models. We consider a gene structure being disrupted

if the consensus sequence for a splice site was changed, the consensus for translation

start and termination sites was changed, a frame shift was detected or an additional

in-frame stop codon (premature stop) was introduced. Table 5.1 gives an overview

of the number of disruptions for the different accessions.

Altogether, out of 27,206 protein-coding genes from Col-0 a näıve projection to

the accessions’ genomes predicts a severe disruption of 32% of the genes in at least

one accession. This observation raises the question of how many disrupted gene

structures are still functional with potential minor modifications. To address this

question we re-annotated all genomes using computational methods to find gene

models in the affected accessions that could potentially replace the disrupted Col-0

gene models. We use the similarity on amino acid level as an indicator for similar

function.

Genome Annotation

Parts of the following description are adopted from the Supplemental Information

from [39].10

We used a variety of different strategies to annotate the 18 newly assembled

genomes. We then evaluated these strategies based on two different sources of infor-

mation. Firstly, we measured the consistency with the projected TAIR10 genome

annotation, and secondly we generated an additional RNA-Seq data set for accession

10available from http://www.nature.com/nature/journal/v477/n7365/extref/

nature10414-s1.pdf

http://www.nature.com/nature/journal/v477/n7365/extref/nature10414-s1.pdf
http://www.nature.com/nature/journal/v477/n7365/extref/nature10414-s1.pdf
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Table 5.1.: Numbers of large-effect disruptions observed in annotated genes (TAIR10) on
the strains’ genomes. We count the total number of disruptions of translation
start and stop sites, introductions of premature stop codons, splice site dis-
ruptions (separately for UTR and CDS splice sites and for acceptor (acc) and
donor (don) splice site). We also count how often more than one disruption
type occurs (column ”multiple disruptions”) and additionally report the num-
ber of disruptions when no other type of disruption was determined. In the
second last column we report the number of genes per accession with more than
50% in deletions or polymorphic regions. The last column shows the number
of disrupted miRNA gene stem sequences. (Adapted from [39] Supplementary
Table 13)  

Access- 
ion 

translation 
start 
consensus 
disruption 
(single/mult) 

translation 
stop 
consensus 
disruption 
(single/mult) 

premature 
stop 
introduced 
(single/mult) 

frame shift 
introduced 
(single/mult) 

Splice site 
consensus 
disruption UTR 
[Acc (sngl/mlt) 
Don (sngl/mlt)] 

Splice site 
consensus 
disruption 
CDS 
[Acc (sngl/mlt) 
Don (sngl/mlt)] 

multi 
dis- 
rupt- 
ions 

>50% 
CDS in  
deletion
or PRs 
(union 
1,675) 

mi- 
RNA 
disr. 

Bur-0 307/766 173/487 3552/4285 2182/2794 186/187 142/143 245/251 172/176 770 780 11 
Can-0 323/896 157/515 5054/6161 2587/3308 214/215 142/142 284/286 197/198 907 726 18 
Ct-1 280/697 169/428 3094/3805 2026/2559 173/175 103/105 220/226 142/143 666 768 13 
Edi-0 263/675 146/426 3410/4292 2230/2765 175/175 126/126 236/237 145/146 676 768 12 
Hi-0 276/632 137/361 2644/3372 2105/2567 161/166 115/115 218/220 156/158 568 832 14 
Kn-0 254/688 161/467 3683/4304 2354/2962 174/174 116/117 250/253 161/162 724 766 15 
Ler-0 264/716 155/467 4022/4858 2324/2907 204/204 138/139 274/276 157/160 744 774 10 
Mt-0 256/614 131/402 2928/3685 2132/2646 171/171 115/116 223/226 140/143 624 765 15 
No-0 296/741 150/436 3704/4441 2139/2704 198/200 123/124 230/234 158/158 716 778 11 
Oy-0 263/685 162/435 2512/3102 2064/2607 157/159 109/109 214/216 132/135 679 759 10 
Po-0 329/729 161/402 2621/3373 2217/2732 168/170 107/107 233/235 142/146 629 827 14 
Rsch-4 257/694 139/413 3455/4341 2117/2668 192/192 125/125 222/224 145/146 688 794 9 
Sf-2 305/759 172/494 3886/5063 2390/2984 219/219 150/150 246/249 151/154 766 765 14 
Tsu-0 249/677 152/464 4135/5298 2124/2685 180/181 115/115 214/215 141/143 716 776 17 
Wil-2 263/771 155/497 3804/4748 2222/2892 178/178 131/132 244/246 187/189 830 762 15 
Ws-0 294/788 149/467 3715/4711 2316/2958 221/221 138/139 240/245 156/158 798 770 13 
Wu-0 269/727 166/424 3109/3879 2127/2706 178/179 126/126 234/235 133/137 705 776 11 
Zu-0 286/765 148/410 3352/4139 2217/2793 200/201 129/130 235/237 156/159 716 776 13 

 

Can-0. This data set was a) significantly deeper, b) from three different tissues and

c) used a different protocol for library preparation (strand specific). We therefore

assume the technical noise of this RNA-Seq data set to be to a large degree indepen-

dent from the RNA-Seq data sets used for annotation, which justifies the usage for

evaluation. We discuss the different gene prediction approaches later in this section.

Finally, we consolidated (cf. Section 5.5.2) the best performing prediction with

the TAIR10 genome annotation to remove technical noise from the gene prediction

method. The goal of this rule based approach was to use the RNA-Seq evidence to

decide on gene models, only accepting new predictions if either the TAIR10 gene

model was disrupted in a given strain, or the newly predicted features has sufficient

RNA-Seq support. With this strategy we intend to counteract the tendency of

overestimating the variability between accessions which we expect when directly

comparing the independent gene predictions of each accession.
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Signal Predictions We trained mGene signal and content predictors (cf. Sec-

tion A.2.1 and Section 5.3.2) based on the genome of the Col-0 strain (version

TAIR9) and the TAIR9 annotation. All predictions were performed in a five-fold

cross validation scheme. We then predicted these features on the genome assemblies

of all 18 strains. To avoid training/test overlaps we mapped the cross validation

splits to the genomes and used a predictor which has not used the corresponding

position in Col-0 for training.

Gene Predictions We trained two different mGene gene predictors on 7,500 ran-

domly selected TAIR9 genes. The first predictor (ab initio) was only based on

genomic features while the second (de novo) used RNA-Seq features as additional

evidence. The RNA-Seq data set for Col-0 consisted of 12 million aligned reads.

Both predictors were used to annotate the 18 strains and re-annotate Col-0 and

were then evaluated with respect to the TAIR9 annotation mapped to the respec-

tive genome. The ab initio predictor predicted 26,292 genes on average per strain

with an average transcript level F-score of 58%. The de novo predictor predicted

24,681 genes on average per strain with an average transcript level F-score of 63%.

We also performed predictions using Cufflinks[121] and inferred coding regions us-

ing the maximal open reading frame for each transcript. Ignoring transcripts with

a maximal open reading frame of less than 300bp (likely non coding transcripts

or mis-predictions) we obtained an F-score on transcript level of 37.5%. Table 5.2

shows the exon and coding transcript level for the different predictions on Col-0.

The increase in prediction accuracy by 5% between the ab initio and the de novo

mGene prediction has two main reasons. Firstly, RNA-Seq reads help to determine

ambiguous cases and secondly the prediction is more biased to higher expression

levels. Higher expressed genes are generally detected with higher accuracy, even if

no expression evidence is used for the prediction. See Section 5.5.3 for a discussion

on the expression bias in gene prediction and evaluation.

Consolidation of Gene Predictions and the TAIR Annotation

In the following, we describe the pipeline consolidating the gene predictions with the

TAIR10 annotation. This text appeared identically in [39] Supplementary Informa-

tion Section 10.4. We first identified ”units” of orthologous annotated genes across

the accessions and TAIR10. We use the word unit rather than gene because it is pos-

sible that a TAIR10 gene might be split into several transcriptionally independent

units (but no unit contains more than one TAIR10 gene). The coordinates of each

accession’s predicted transcripts were translated to TAIR10. All overlapping tran-

scripts were treated as a unit, and duplicates (with identical exon/intron structure)

were removed. The TAIR10 gene classification (protein-coding, transposable ele-
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Table 5.2.: Comparison of three annotation strategies on the reference accession Col-0:
a) mGene, which predicts protein-coding genes ab initio and uses the genome
sequence only, b) mGene.ngs, which uses the genome sequence as well as RNA-
Seq read alignments to predict protein-coding genes de novo, and c) Cufflinks,
which only uses the RNA-Seq read alignments to predict transcripts to which
we assigned open reading frames (ORF) of length at least 100nt and 300nt
(the 590 and 2,884 transcripts, respectively, for which we could not identify an
open reading frame were omitted from this analysis). Reported are the coding
(CDS) exon and transcript level sensitivity (SN), specificity (SP) and F-score
(F). (Adopted from [39] Supplementary Table 17)

  CDS Exon   CDS Transcript  
  # predicted SN (%) SP (%) F (%) # predicted SN (%) SP (%) F (%) 

mGene 146,241 84.8 85.5 85.2 26,649 56.5 63.0 59.6 
mGene.ngs 136,391 84.3 91.2 87.6 25,077 57.6 75.5 65.2 

Cufflinks 
ORF 100 

94,921 53.6 88.1 66.7 16,811 28.6 52.0 36.9 

Cufflinks 
ORF 300 

90,176 52.5 90.7 66.5 14,517 27.5 58.8 37.5 

ment gene, pseudogene, etc.) was passed onto the unit. We then back-transformed

each unit to the original accession coordinates and restored lost accession-specific

features (e.g., exons absent in TAIR10). We removed transcripts from a unit if

splice site consensus sequences in an accession’s genome were absent, or if they

overlapped with more than one TAIR10 gene. We incorporated any TAIR10 anno-

tated transcripts into their corresponding units and also mapped these back to each

accession, removing invalid transcripts where a splice site consensus was missing

in the accession. If the resulting unit contained at least one valid TAIR10 anno-

tated transcript/isoform, it was merged with transcripts in the unit provided that

all introns were confirmed by RNA-Seq alignment or were part of an annotated

TAIR10 transcript, and the transcript contained at least one intron different from

the annotated introns. If the unit did not contain a TAIR10 transcript then the

predicted transcript with the highest number of confirmed introns was chosen. In

rare cases there was no transcript in the unit (either they were all removed or the

gene was missed in the de novo gene prediction). However, in most cases (99%)

there was at least one consolidated transcript for each TAIR10 gene in each acces-

sion’s genome. We noticed a number of remaining RNA-Seq-confirmed introns that

were not part of any annotated transcript. With the aim to integrate the introns

with highest confidence, we constructed a strictly filtered set of introns from spliced

RNA-Seq read alignments. We required the intron to be confirmed by at least two

reads with the split position at least 12nt from the read boundary and matching

with at most 1 mismatch. For each such intron, we identified exons in transcripts

with boundaries at most 50nt away from the intron boundary. For each case a new
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transcript including this intron (or otherwise the previous transcript structure) was

generated. The coding sequences of protein-coding transcripts were determined as

follows: The longest region without stop codon in the mRNA was identified. We

then checked whether the 5’ and 3’ ends of this region coincide with the transcript

boundaries. If this condition was violated, we used the first in-frame occurrence

of the translation initiation signal (TIS) consensus ATG as start and the first stop

codon (TAA/TAG/TGA) as end of the coding sequence. If the 3’ end of the re-

gion coincided with the transcript end, we extended the 3’ end of the last exon

by at most 300nt in order to terminate the open reading frame. This modification

of the transcript was necessary, as the transcript ends were often predicted or an-

notated too short to include a suitable in-frame stop codon. If the 5’ end of the

region coincided with the transcript start, we checked the region 300nt upstream

of the transcript for a suitable alternative TIS consensus signal and used it, if the

length of the implied coding region increased by at least 100nt. For consistency, we

also applied this strategy to the annotations of the reference accession Col-0. The

statistics of the resulting consolidated accession-specific gene annotation are given

in Table 5.3. Results for the additional strand specific data for Col-0 and Can-0

show that a significantly larger number of transcripts predicted by mGene.ngs can

be confirmed using deeper sequencing. Thus, many of the predictions conservatively

discarded, because there was not sufficient evidence from the smaller data set of non

strand specific reads, are likely correct.

Analysis of Gene Variability between Strains

We performed a comprehensive comparison of amino acid sequences of all protein

coding genes based on the consolidate gene sets. To relate the diversity between

A. thaliana strains to an outside group we included annotated genes for A. lyrata

in this comparison. Furthermore, we show the diversity of paralogous loci of Col-

0 genes. We measured the distance between two amino acid sequences s1 and s2

as d(s1, s2) = 1 − m
max(l(s1),l(s2))

, where m is the number of matches in a global

sequence alignment and l(.) returns the sequence length. For one pair of organisms

a and b we perform an amino acid sequence alignment for each pair of protein coding

transcripts. For each transcript in a we report the minimal distance to any transcript

in b. We summarize distances for genes taking the minimum over all transcripts.

Figure 5.3 shows the distribution of gene distances for different pairs of organisms.

We computed the gene distances for all pairs of the 19 strains (Figure 5.3 black).

Moreover, we computed for each gene in each strain the minimum and the maximum

gene distance over all strains (Figure 5.3 yellow and Figure 5.3 red, respectively).

Additionally, we computed the minimal distance of each Col-0 gene to any other

Col-0 gene.
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Table 5.3.: Features of the consolidated annotation of the 18 genomes based on RNA-Seq-
based gene predictions and the TAIR10 reference annotation (excluding novel
genes). The upper part describes the consolidated annotations used for most
analyses (NSS). The lower part is based on additional, independent, strand-
specific (SS) validation RNA-Seq data only available for Col-0 and Can-0,
leading to a larger number of predicted novel transcripts and introns.(Adopted
from [39] Supplementary Table 18)

Acces-
sion Genes 

Protein- 
coding 
transcript 

Non- 
coding 
transcript 

Novel 
transcript Introns 

Novel 
introns 

TIS 
sites 

Novel 
TIS 
sites 

Stop 
codon 
sites 

Novel 
stop 
codon 
sites 

genes with 
modifications 
(union=8,757) 
 

Col-0 33,295 41,303 1,395 1,687 129,368 1,143 33,710 323 34,204 351 1,604 
Bur-0 32,842 40,526 1,368 2,152 127,344 1,262 33,201 406 33,635 405 1,977 
Can-0 32,741 40,332 1,362 2,149 127,038 1,289 33,090 423 33,555 467 2,100 
Ct-1 32,858 40,765 1,368 2,384 127,813 1,402 33,271 425 33,776 501 2,232 
Edi-0 32,847 40,623 1,366 2,209 127,570 1,317 33,252 443 33,705 455 2,105 
Hi-0 32,968 40,857 1,381 2,325 127,934 1,421 33,376 450 33,840 474 2,199 
Kn-0 32,833 40,696 1,372 2,307 127,601 1,441 33,235 441 33,723 477 2,191 
Ler-0 32,852 40,839 1,376 2,559 127,585 1,592 33,289 518 33,756 542 2,406 
Mt-0 32,849 40,513 1,372 2,080 127,469 1,205 33,193 370 33,661 399 1,911 
No-0 32,817 40,415 1,366 1,975 127,475 1,209 33,162 389 33,630 422 1,920 
Oy-0 32,866 40,428 1,367 1,841 127,383 1,112 33,217 386 33,677 399 1,835 
Po-0 32,987 40,648 1,377 2,021 127,605 1,251 33,326 376 33,817 413 1,945 
Rsch-4 32,867 40,346 1,364 1,802 127,237 1,050 33,194 341 33,620 358 1,742 
Sf-2 32,806 40,319 1,383 1,980 127,109 1,115 33,138 377 33,569 399 1,875 
Tsu-0 32,832 40,506 1,372 2,030 127,443 1,176 33,211 410 33,658 407 1,941 
Wil-2 32,776 40,363 1,369 1,987 127,197 1,208 33,109 383 33,584 439 1,948 
Ws-0 32,844 40,217 1,365 1,727 127,097 1,030 33,160 355 33,586 357 1,725 
Wu-0 32,879 40,545 1,377 2,041 127,605 1,249 33,241 410 33,670 392 1,984 
Zu-0 32,883 40,745 1,383 2,300 127,699 1,456 33,303 482 33,770 489 2,217 
Col-0 SS 33,295 43,546 1,402 4,420 131,341 3,101 33,656 269 34,066 213 2,959 
Can-0 SS 32,741 42,617 1,369 4,937 129,045 3,276 33,107 437 33,477 386 3,566 

 

We observe that for 99% of the genes in each strain there is at least one other

strain, that has nearly exactly the same amino acid sequence (Figure 5.3 yellow

line). On the other hand about 30% of all genes show a significant diversity of at

least 10% amino acid changes in at least one other strain. Comparing to the amino

acid distance of genes within Col-0 (Figure 5.3 ”Col-0 vs Col-0 (different locus)”)

we can observe that for more than 99% of all genes we find a better match in at

least one different strain than to a paralogous11 gene of the same strain. While

in general our distance measurement cannot distinguish between orthologous12 and

paralogous genes this comparison shows that in most cases we correctly find the

orthologous genes in the respective organisms. Less than 4% of the genes in Col-0

have paralogous genes that are not distinguishable on amino acid sequence level.

Variability of Disrupted Genes We analyzed the changes in accessions’ gene struc-

tures when the TAIR10 gene model was disrupted and frequently observed that dis-

rupted splice sites were ”rescued” by nearby splice sited, resulting in minor changes

of amino acid sequences (e.g. Figure 5.4a). In order to assess if this switch of splice

11Paralogous genes are homologous genes separated by a gene duplication event.
12Orthologous genes are homologous genes separated by a speciation event.
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Figure 5.3: Variability of amino
acid sequences. For
one pair of organisms
we computed all
pairwise alignments
of protein sequences
of all protein coding
genes. This plot
shows the distri-
bution of minimal
pairwise distances for
all genes. See text
for details.

sites is a common evolutionary mechanism we were interested in the extend of similar

events in the A. thaliana population. Based on the consolidated gene predictions we

analyzed the variability of amino acid sequences of TAIR10 coding transcripts that

were disrupted in at least one accession. For any predicted gene structure replacing

a disrupted TAIR10 gene structure we computed the mean amino acid distance to

all other accessions. Figure 5.5a shows the distribution of mean distances for differ-

ent sets of disruptions. We observe that predicted replacement transcripts for splice

site disruptions are on average more similar to the original transcript than any other

type of disruptions. Performing a hierarchical clustering we identified groups of ac-

cessions having small within amino acid distance for a given gene. Figure 5.5b shows

that for genes with splice site disruptions we find more often other accessions with

the same or very similar allel than for other disruptions. This adds evidence that

the proteins might still be functional. Using these measurement, the most severe

types of coding region disruptions are premature stop codons and frame shifts.

Surprisingly, combinations of multiple disruptions are on average not more severely

affecting the amino acid sequence than single disruptions. Therefore, we analyzed

the amino acid similarity also for the most frequently occurring combinations of dis-

ruptions (Figure 5.6). We find that the majority of combinations of disruptions can

be attributed to only two combinations of disruptions: 1) frame shift and translation

terminations site disruptions and 2) frame shift and translation start site disruptions.

In both cases the change in amino acid sequence is less sever than when observing

a frame shift alone. This could potentially be explained by compensatory mecha-

nisms, where a second mutation restores to a large extend the amino acid sequence

after a frame shift occurred. In case 2) this could for example be the disruption of

a translation start site consensus in favor of another in-frame translation start site

downstream of the frame shift.
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Col-0 (Haplotype I)

      CTG gttag aaaag ATGAAG

Ler-0 (Haplotype II)
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Figure 5.4.: Transcript variation. a, Example of a splice site change between two haplo-
types for the gene AT1G64970. Haplotype I (Col-0) is spliced with an intron 6
bp (two amino acids) shorter than haplotype II (Ler-0); Po-0 (heterozygous)
shows allele-specific expression of both. b, Re-annotation of the FRIGIDA
locus showing annotations for accessions Sf-2 (functional), and Col-0 (trun-
cated by a premature stop) and Ler-0 (non-functional) (Supplementary Figs
18 and 42). Right: the 19 accessions are shown clustered on the basis of the
AA distance between their FRIGIDA amino-acid sequences. Common isoform
clusters (at distance 2% or less; red line) are shown, leading to three clusters
with three, seven and nine accessions. (Figure was created by the author, it
appeared identically in [39])

GO-term Analysis

To further characterize the sets of genes that were mostly unchanged between strains

and those with significant variability we analysed varying frequencies of functional

annotations between the sets. As functional annotations we used the GO-annotation

available form the TAIR website (arabidopsis.org).

We created three sets of protein coding genes based on amino acid sequence align-

ments between the Col-0 gene model and the consolidated gene models in the strains.

• Gene set 1: Recovered Genes: This set consists of 940 genes that had at least

one of the four signals acceptor splice site, donor splice site, translation start

site or stop codon disrupted in at least one of the strains. But there was a

gene prediction at the same locus that resulted in an amino acid sequence with

more that 95% alignment identity to the TAIR annotation.

• Gene set 2: Disrupted Genes: This set consists of 312 genes that have at least

one of the four signals disrupted in at least one strain and there was no gene

arabidopsis.org
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Category        n

Disruption

Mean pair AA distance

19 110

Isoform frequency

n

0 0. 5 1Fraction 0 0. 5 1

a b

Common Rare
1 2 3 4 5 10 20 30 40 50100

AA changes (%)

Pseudogene 909
Coding gene 27,203

1,169Frame shift
341Premature stop

Any 2,446

133Translation stop
94Translation start

167Splice site (CDS)

A. lyrata 27,203 n.a.

538Multiple

Figure 5.5.: Protein sequence variation. a Proteome diversity for coding genes, pseu-
dogenes and A. lyrata genes (top) and for genes with disruptions (bottom).
Reported is the fraction of genes with relative AA distance to other accessions
(average over pairs) in the given colour-coded interval (Supplementary Infor-
mation section 10.7). b, Frequency of isoforms of coding genes and pseudo-
genes (top), and those associated with different disruptions (bottom). (Figure
was created by the author, it appeared identically in [39])

prediction in that strain, or the gene prediction had an amino acid similarity

of less than 80%.

• Gene set 3: Conserved Genes: This gene set consists of 18768 genes that were

never disrupted in any of the strains.

We then performed statistical tests for all GO-terms associated with TAIR10

genes and all pairs of the three sets defined above.

The null-hypothesis for the statistical test was that a given GO-term was randomly

distributed between the gene sets with probability equal to the proportions of the

gene set sizes (hypergeometric distribution). The statistical test was performed two

sided detecting over and under represented GO-terms. Table 5.4 shows the GO-

terms significantly enriched in the pairwise comparison of all sets.

Discussion In comparison to the set of disrupted genes we find genes associated

with essential housekeeping related GO terms like chloroplast/plastid, peroxisome,

plasma membrane and transport in both other gene sets. The GO-term which is
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% AA changes

No disruption 24,893

1,169Frame shift (FS)

341Premature stop (PTC)

Any 2,446

133Translation stop (TTS)

94Translation start (TIS)

167Splice site (SS)

538Multiple

FS + TTS 186

11PTC  + FS

12PTC + TIS

FS + TIS 148

19PTC + SS

29PTC + TTS

71FS + SS

10FS  + TTS + SS

Frequent Combinations

Disruption type Mean pair AA-distance

0.0 0.80.60.40.2 1.0

 1     2    3    4     5  10   20   30   40  50 100

Figure 5.6.: Influence of large effect disruptions on AA sequence difference. Dis-
played is the fraction of genes with different degrees of AA sequence change
between accessions with different combinations of disruptions and other ac-
cessions. We observe that splice site disruptions lead to least and FSs/PTCs
lead to most severe AA-sequence changes. Among genes with multiple disrup-
tions, combinations of FSs/PTCs with other disruptions, in particular TTS
and TIS, are frequent. Surprisingly, the AA sequence differences for multi-
ple disruptions are often smaller than one would expect, in particular smaller
than the individual disruptions’ sequence changes. (Figure was created by the
author, it appeared identically in [39])

overrepresented in the set of disrupted genes with highest significance against both

other gene sets is transmembrane receptor activity. Transmembrane receptors detect

extracellular cues and transmit the detection signal to intracellular components.

Reflecting the variety of extracellular ligands like phytohormones [81], metabolites

and pathogen effectors [61] gene duplication is very common among transmembrane

receptors, where the transduction mechanism is shared among members of the family

while ligand binding domain and intracellular effector domain vary. Due to varying

environments and exposure to different pathogens it is expected that a significant

number of transmembrane receptors become unimportant in a given natural A.
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thalina accession. The same argument holds true for GO terms defense response

and innate immune response also significantly enriched in the set of disrupted genes.

GO terms related to defense and pathogen response are also enriched in the group

of Recovered Genes accompanied by the terms chitin binding and chitinase activity

which are also associated with the defense against pathogens [88].

In the test between Conserved Genes and Recovered Genes we expect to identify

genes where any change in amino acid sequence leads to significant reduction of the

accessions fitness. This clearly holds true for genes being part of plastides play-

ing crusial roles in photosynthesis and metabolism storage. Photosynthesis proteins

are shared among green plants with extremely little sequence divergence and can

be expected to be highly optimized such that any change in the amino acid chain

will result in reduction of the plant fitness. The GO-terms chloroplast and plastid

are among the most significantly enriched GO-terms in the Conserved Genes set.

Interestingly, we find that response to auxin stimulus is enriched in the Conserved

Genes set while response to cytokinin stimulus is enriched in the Recovered Genes

set. Auxin is a phytohormone playing an essential role in embryonic development

and growth [77]. Similarly, cytokinins are hormones regulating growth and develop-

ment [60]. Cytokinin receptors are a family of proteins with high sequence similarity

to bacterial histidine kinases. We hypothesize that cytokinin receptors are either

partially redundant or specific to signaling of biotic stresses not present in all ac-

cessions environments. Therefore, there is freedom to evolutionary changes, while

genes responding to auxin (which is just a single substance), are apparently under

high stabilizing selection pressure.

5.5.3. De novo Gene Finding on various Organisms Using

RNA-Seq Data

We investigate the ability of using mGene.ngs to provide genome annotations for

newly sequenced genomes based on RNA-Seq data. Similar to solely RNA-Seq-based

methods like Cufflinks and Scripture we restricted the source of information to the

genomic sequence (used for alignments in the competing methods) and the RNA-Seq

reads.

In order to obtain labels to train the gene finding system we devised a simple

method called Transcript Skimmer (Section 5.4.6) for generating transcript struc-

tures from RNA-Seq data alone. We then trained the gene finding system on a

subset of these labels and perform genome-wide predictions. This set of genes has a

strong bias towards high expression. To increase sensitivity of low expressed genes

we subsampled the amount of RNA-Seq for the training examples. We adjusted

the subsampling strategy and label generation parameters for C. elegans and then

used the same parameters for A. thaliana and D. melanogaster. This shows that the
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Table 5.4.: Statistical GO-term enrichment analysis for all pairs of the three sets Recovered
Genes, Disrupted Genes and Conserved Genes defined in the text. We report
all GO-terms with a p-value smaller than 10−9. The log10 of all p-values is
given in the second column. (abbreviations: a: activity, m: membrane)

Recovered Genes vs. Disrupted Genes

Enriched in Disrupted Genes Enriched in Recovered Genes
transmembrane receptor a. -42.46 plasma membrane -21.40
defense response -41.88 transport -15.03
intrinsic to membrane -38.02 transferase a. -11.94
innate immune response -28.31 peroxisome -9.94
apoptosis -17.93
signal transduction -17.02
molecular function -13.75
serine-type endopeptidase inhibitor a. -13.59
cellular component -12.97
biological process -12.33
nucleoside-triphosphatase a. -11.39

Conserved Genes vs. Disrupted Genes

Enriched in Disrupted Genes Enriched in Conserved Genes
transmembrane receptor a. -60.72 plasma membrane -20.91
intrinsic to membrane -59.02 chloroplast -20.45
defense response -58.65 transport -16.12
innate immune response -43.34 plastid -10.43
cellular component -34.01 cytoplasm -9.94
apoptosis -26.28
serine-type endopeptidase inhibitor a. -18.83
nucleoside-triphosphatase a. -18.50
molecular function -18.17
biological process -14.80
signal transduction -12.67
specification of carpel identity -9.14
cytidine deamination -9.00

Conserved Genes vs. Recovered Genes

Enriched in Recovered Genes Enriched in Conserved Genes
peroxisome -20.06 plastid -13.58
chitin binding -17.56 response to auxin stimulus -10.89
homogalacturonan biosynthetic process -15.38
chitinase a. -14.97
glucosinolate catabolic process -14.67
response to cytokinin stimulus -14.36
microtubule motor a. -14.34
GDP-mannose 3,5-epimerase a. -14.26
small nucleolar ribonucleoprotein complex -13.08
trans-Golgi network transport vesicle m. -12.75
protein kinase a. -12.11
gibberellin 20-oxidase a. -10.39
glycolipid binding, transport -10.39



Results 81

approach developed on C. elegans generalizes to a large range of organisms.

However, it might be beneficial to perform a separate model selection for these

parameters for each organism and data set. In a scenario, where no annotation is

available, the model selection can be performed based on similar evaluation mea-

surements on protein sequence alignments from related organisms or on ESTs. The

latter will prefer predictors with strong expression bias and therefore model selection

based on protein alignments are preferable.

For each of the organisms we adjusted model parameters like the maximal intron

length and for M. musculus we used the mammalian genome speedup described in

Section 5.4.5. These parameters were fixed prior to the training of the gene finding

system and were not adjusted in model selection.

In order to evaluate this approach we performed predictions on a variety of well an-

notated model organisms and compared the predicted structures to the annotation.

In the following we present the results for four different model organisms from four

different phyla (C. elegans kingdom Animalia, phylum Nematoda; A. thaliana king-

dom Plantae, Angiosperms order Brassicales; D. melanogaster kingdom Animalia,

phylum Arthropoda; M. musculus kingdom Animalia, phylum Chordata).

C. elegans Figure 5.7A shows the evaluation results of several transcript predic-

tions compared to the C. elegans genome annotation (wormbase WS199). We split

genes into ten equally sized expression bins using rQuant for quantification results.

Similarly we split the annotation into bins. For each bin we computed the specificity

using all annotated genes, but only the predicted genes in the corresponding expres-

sion bin and we computed the sensitivity using all predicted genes, but only the

annotated genes in the corresponding bin. We can thus measure the performance of

each method as a function of the expression level of genes.

We observe that for each method the performance generally increases with higher

expression levels. This holds true even for predictions solely bases on the genomic

sequence, ignoring expression data entirely. The reasons for this are manifold. First,

higher expressed genes have generally more accurate annotations because annotation

is often based on EST alignments and ESTs are more abundantly available for highly

expressed genes. Secondly, very highly expressed genes tend to have fewer exons in

C. elegans than medium to lowly expressed genes and are thus more easy to detect.

For the de novo predictions using RNA-Seq data (Figure 5.7 red) we observe a

very strong expression bias. The performance for the lower 20% drops drastically,

while the performance for the 70% highest expressed genes is favourable. We wanted

to know to which extent this bias can be attributed to the expression bias in the

Transcript Skimmer training set and to the level of RNA-Seq evidence. We therefore

trained two gene finding systems 1) using annotated genes and RNA-Seq data for

training (Figure 5.7 blue) and 2) using the Transcript Skimmer training set, but
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ignoring the RNA-Seq data (Figure 5.7 cyan). Setting 1) achieves very good overall

results and has a relatively weak expression bias, while setting two has a much

stronger expression bias and overall relatively poor results, first and foremost when

compared to the mGene system trained on the annotation without RNA-Seq data

(Figure 5.7 green).

We conclude that a large part of the expression bias of the de novo prediction using

RNA-Seq data can be attributed to the strong expression bias in the training set,

while subsampling the RNA-Seq data, in order to fit a realistic genome-wide read

coverage distribution also in the training set, could yield improvements in transcript

level F-score of at most 20 percentage points for the 20% of the genes with lowest

expression.

The de novo prediction using RNA-Seq data compare favourable to Cufflinks pre-

dictions. Moreover, we noticed that the performance of Cufflinks critically depends

on the filtering of the RNA-Seq alignments. Unfiltered RNA-Seq alignments resulted

in very poor performance (data not shown). We thus, hand tuned filter settings to

improve Cufflinks’ performance (Figure 5.7 yellow). Finally, we evaluated the ac-

curacy of spliced RNA-Seq alignments using all annotated introns. We optimized

the filter settings to maximize the F-score of candidate introns from RNA-Seq align-

ments and annotated introns. This resulted again in significantly better Cufflinks

predictions. It is important to note that it is not possible to perform the latter

strategy on unannotated organisms. We performed this analysis to exclude the pos-

sibility that the limited performance of Cufflinks is due to suboptimal RNA-Seq

filter settings.

We investigated the set of genes the ab initio mGene system could not identify,

when trained on only highly expressed genes, but identified correctly when trained on

an unbiased selection from the entire genome annotation. We found that the largest

fraction of these genes belong to the family of G-protein coupled receptors. This is

a family of proteins which exhibits a highly conserved structure consisting of seven

transmembrane α-helices. Members of this family of proteins detect extracellular

cues and transduce the signal to intracellular signaling cascades. Only the relatively

small intracellular and the extracellular domains vary, while the signal transduction

mechanism is highly conserved between members of the family. The family members

are known to be expressed at very low levels mainly in neuronal tissue [109], therefore

none of the members of this large family appeared in the training set with strong

expression bias. Figure 5.8 shows the coding transcript length distributions for the

C. elegans genome annotation separate for transcripts with and without expression

evidence. A large fraction of transcripts with exactly 1000 nt length originates from

the family of G-protein coupled receptors.

We conclude that members of this gene family exhibit genomic features distinct

from other gene families and can only be recognized if they are part of the training
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Figure 5.7.: Evaluation of gene predictions for the C. elegans genome. The evaluation is
separated for genes from different equally sized expression level bins. Mea-
sured is the F-score on coding transcript level. See text for evaluation details.

set. We assume that similar effects may be observed for other protein families, but

become less apparent because either, the family has at least a few members being

sufficiently high expressed, or the family has significantly fewer members.

A. thaliana For A. thaliana we observe a strong expression bias for the de novo

predictions as well as for Cufflinks. The mGene.ngs predictor using the annotation

(blue solid line) performs significantly better. This can be likely attributed to rel-

ative low quality RNA-Seq data on one hand and rather simple gene structures on

the other hand. The latter acts in favour of gene predictors trained on the anno-

tation. All these predictions were generated based on seven lanes of RNA-Seq data

(Short Read Archive accessions SRX006192, SRX006681, SRX006682, SRX006688,
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Figure 5.8.: A Length distribution of coding transcripts in the C. elegans WS199 genome
annotation. B Length distribution of transcript predictions for M. musculus
in comparison to the MM9 genome annotation.

SRX006690, SRX006692, SRX006704). To estimate the effect of the RNA-Seq data

we also evaluated the predictions performed for the 19G project (Section 5.5.2). We

observe significant improvements for the mGene.ngs predictor trained on the an-

notation when using more reliable RNA-Seq information (Figure 5.7B blue dashed

line).

D. melanogaster Using the same setup we performed de novo gene predictions

for D. melanogaster. We observe that the performance of the de novo prediction

performs very well on the 90% highest expressed. Only for the lowest 10% the

performance significantly drops. This is most likely attributed to a larger fraction

of expressed genes. The performance of the ab initio predictions are similar to those

of C. elegans, but especially the one trained on the transcript skimmer training set

shows a less severe expression bias. Likely, the larger fraction of expressed genes

results in a training set which is less biases to highly expressed genes.

The performance of mGene.ngs predictors trained on the genome annotation and

on the Transcript Skimmer gene set are comparable. Cufflinks predictions for genes

expressed above median expression perform very similar to the mGene.ngs prediction

trained on the Transcript Skimmer gene set, but the latter approach significantly

outperforms Cufflinks predictions of genes expressed below median.

M. musculus Improvements described in Section 5.4.5 allowed us to perform the

same type of analysis on the mouse genome. We used RNA-Seq alignments provided

by [121] and compared our results to the predictions also provided by [121]. Gene

finding on mammalian genomes is significantly more challenging than on C. elegans,

D. melanogaster and A. thaliana (see e.g. Section 5.5.1 and [42]). Therefore, the
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contribution of the genomic sequence based features to the recognition of transcripts

is relatively small compared to the other organisms. Moreover, the large number

of exons of a gene and the considerably more complex splice graphs pose difficul-

ties for the very simple label generation strategy, aiming to identify the path with

highest coverage in the splicing graph. Therefore, improvements with respect to the

Cufflinks predictions are moderate. The best performing mGene.ngs prediction and

the Cufflinks prediction identify very few transcripts with expression level below

median. When tuning mGene.ngs to rely more on genomic features by subsam-

pling RNA-Seq evidence in the training set, we observe small improvements in the

prediction of lowly expressed genes and the overall performance decreases. For M.

musculus we readjusted the parameters for read subsampling and label generation.

Therefore, the gene prediction has not been carried out independent of the genome

annotation. We still think the comparison to Cufflinks predictions is fair for two

reasons. First, the genome annotation was only used to tune the label generation,

not for training itself. Therefore the flow of information from the annotation to

the classifier is very limited and we can expect this to generalize to other mammal

genomes. Second, the Cufflinks predictions were provided by the organizers as part

of the original Cufflinks publication. Therefore, we can expect that the predictions

are tuned to this data set. This became evident when we tried to regenerate the

transcript predictions. Based on the same alignment files and the published pa-

rameters we obtained significantly weaker results. With nearly the same sensitivity

(25.42% vs. 25.40%) the specificity on transcript level decreased from 44.30% to

37.46%. We contacted the authors, but were unable to resolve this issue.

Figure 5.8B shows the length distribution of predictions from mGene.ngs, Cuf-

flinks, and Scripture in comparison to the mouse genome annotation. Scripture

reports an extremely large number of transcripts resulting in an near zero transcript

level F-score (not shown). The majority of Cufflinks predictions is very short and

no open reading frame of at least 141nt could be found. Therefore, these transcripts

are ignored in the evaluation. We note that inclusion of these transcripts in an eval-

uation scheme not relying on ORF detection would drastically lower the specificity

of cufflinks predictions in comparison to the annotation. However, knowing that

noncoding transcripts are highly underrepresented in the annotation we are limited

to evaluate the coding portion of the genome.

5.6. Conclusion

A detailed comparison of the gene finding performance across organisms is difficult

for various reasons. The quality and amount of RNA-Seq data vary and the quality

of annotations, which we cannot directly assess here, is expected to vary significantly.

Although the behaviour of all predictions varies drastically between organisms, we
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consistently observe a favourable performance of de novo mGene.ngs predictions.

Nevertheless, we expect further significant improvements when a) employing a more

elaborate method for label generation like MiTie, b) using e.g. MiTie to find ad-

ditional alternative transcripts for a given mGene.ngs prediction and c) adjusting

the RNA-Seq subsampling strategy to generate a training set fitting the RNA-Seq

coverage distribution of the entire genome more accurately.

In this study we limited the sources of information to RNA-Seq data and genomic

sequence in order to compare results to methods not being able to take more in-

formation into account. However, the real strength of mGene.ngs is its flexibility

to incorporate a large variety of information sources. In a pilot study on mouse

chromosome 1 we observed an improvement in transcript level F-score from 27.89

(SN: 22.96, SP:35.53) to 30.10 (SN 23.03, SP:43.42) when considering measurements

of nucleosome occupancy13 as features in addition to RNA-Seq data. This finding

supports our theoretical understanding that HSM-SVMs can be used to integrate

multiple heterogeneous information sources.

Recently, the mass spectrometry technology, allowing for high throughput se-

quencing of peptides, reached a genome-wide coverage seeming sufficient for incor-

porating this source of information into genome annotation approaches. So far this

is the only direct biological measurement allowing us to distinguish coding from

noncoding region of transcripts. We assume that proteome measurements will be

very useful to incorporate in mGene.ngs together with transcriptome measurements.

As far as we know mGene.ngs is the only method which is ready to perform the in-

tegration of such various types of information sources. Approaches like Augustus

relying on model selection to tune the weighting of external evidence fail as soon as

the number of tuning parameters prohibits efficient model selection.

13available from ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/

GSM717nnn/GSM717558/GSM717558%5Fnucleosomes%2Ebed%2Egz

ftp://ftp.ncbi.nih.gov/ pub/geo/DATA/supplementary/samples/GSM717nnn/GSM717558/GSM717558%5Fnucleosomes%2Ebed%2Egz
ftp://ftp.ncbi.nih.gov/ pub/geo/DATA/supplementary/samples/GSM717nnn/GSM717558/GSM717558%5Fnucleosomes%2Ebed%2Egz


6. RNA-Seq Based Alternative

Transcript Identification (MiTie)

6.1. Introduction

Most of the complexity of higher eukaryotic transcriptomes can be attributed to

the encoding of multiple transcripts at a single genic locus by means of alternative

splicing, transcription start and termination [e.g., 85, 87]. A comprehensive catalog

of all transcripts encoded by a genomic locus is essential for downstream analyses

that aim at a more detailed understanding of gene expression and RNA processing

regulation.

As introduced in Section 2.3, RNA-Seq is a powerful strategy to measure tran-

scription in a high-throughput manner. In recent years the amount of sequence

data obtained from a single sequencing run has drastically increased from a few

million reads with length 30-50nt to 150-200 million reads of length 50-150nt. This

wealth of information now supports tens of thousands of transcripts in full length,

many of them being alternative splice variants of the same gene. Unfortunately,

the gene finding methods we have discussed in the previous chapter are limited to

predict a single transcript per genomic locus. This is mainly due to the inference

using dynamic programming, which can in principle be extended to predict several

transcripts at the same time, but this extension is computationally very demanding.

To allow for the prediction of several overlapping transcripts we replaced the

inference via dynamic programming by a mixed integer optimization problem (MIP).

This framework is more flexible than dynamic programming and allows us to take

long range dependencies into account. Nevertheless, the runtime for solving the MIP

is on average significantly larger than predicting a single transcript using dynamic

programming. This renders the training procedure of a gene finding system with

a MIP as inference method computationally very costly. Therefore we decided to

implement MiTie as a pure inference strategy based solely on RNA-Seq data. In the

following we discuss in detail the design decisions of MiTie.

Typical RNA-Seq Transcript Prediction Work-Flows In many cases, the RNA-

Seq reads are first aligned to a reference genome using an alignment tool that iden-

tifies possible read origins within the genome. Contiguous regions covered with read

87



88 RNA-Seq Based Alternative Transcript Identification (MiTie)

alignments (possibly with small gaps) are candidates for exonic segments. Align-

ment tools for RNA-Seq reads, such as PALMapper [27, 55], TopHat [120], Map-

Splice [126] or Gsnap [131], are typically able to identify new exon-exon junctions

which are candidates for introns. This information can be compiled into a segment

or splicing graph [45], a directed acyclic graph, where the nodes correspond to ex-

onic segments and the edges correspond to intron candidates (cf. Figure 6.4 for an

illustration). Assuming complete coverage, an expressed transcript corresponds to a

path in the graph. Similar graphs are produced during de novo transcript assembly

with the difference that the graph can potentially be cyclic and the segments are

not explicitly associated with a genomic location. In genome- and assembly-based

transcript reconstruction, tools such as Scripture [43], Cufflinks [121], Trans-ABySS

[94], Trinity [40], and OASES [98] select a subset of paths through the graph as

transcript predictions. For simplicity, we will focus on genome-based transcript re-

construction when describing the approach and discuss de novo assembly whenever

necessary.

Challenges in Transcript Prediction with RNA-Seq Data Due to the nature

of the RNA-Seq reads, the information obtained from the alignments is of local

nature only, even when considering paired-end sequencing [e.g., 103]. The splicing

graph representation implicitly assumes independence of local events. Hence, it will

typically contain more paths than expressed transcripts. This is also true in the ideal

case when the graph is a) complete in the sense that it contains all vertexes and

edges and b) accurate in the sense that it only contains expressed exonic segments as

vertexes and edges that correspond to introns of expressed transcripts. For instance,

the 183,807 splice variants annotated in any of the four human genome annotations

[Ensembl, HAVANNA, ENCODE, Vega, see 22, 37, 44] define splicing graphs that

encode 707,386 paths, with less than 5% of the loci contribute more than 60% of

the paths. Thus, we encounter a few particularly complex cases that contribute

most to transcriptome complexity. Defining splicing graphs based on RNA-Seq

data entails the additional difficulty that inaccurate or ambiguous read alignments

can substantially increase the size of these graphs. While this problem can be

addressed by filtering the read alignments, we find that strict filtering often leads to

a reduced sensitivity of transcript prediction and introduces artifacts, for instance,

in the presence of unknown genomic variations.1

1In the case of a genomic variation all reads spanning a given genomic position will have at least
the number of mismatches of that genomic variation. If this number exceeds the filter criterion,
the graph will inevitably have a gap in RNA-Seq coverage and abundance estimates will be
significantly biased.
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Ideal Design of an RNA-Seq-based Transcript Prediction Methods Based on a

detailed analysis of the problem and of previous work, we identified three important

requirements that a transcript inference algorithm based on RNA-Seq data should

meet. First, following the arguments in [132], we note that it is important to simul-

taneously identify and quantify transcripts in order to identify long range depen-

dencies. In Section 6.5.1, we illustrate how quantitative information can perfectly

deconvolve contributions from multiple transcripts, while ignoring quantitative in-

formation leads to inaccurate predictions. Second, enumeration of all paths defined

by a splicing graph is often not tractable. For instance, for ≈ 13% and ≈ 3% of

human genes, the number of paths in splicing graphs generated from the annotation

and RNA-Seq reads (see Section B.5) is greater than 1,000 and 1,000,000, respec-

tively (see Suppl. Figure 6.3). This large number is the result of a combinatorial

explosion of possible combinations of alternative segments and edges. This effect is

even more severe in case of de novo assembly where several loci are merged into clus-

ter of connected segments if sequence is repeated. Therefore, a generally applicable

approach should avoid explicit enumeration, ideally still guaranteeing optimality.

Third, we show that multiple RNA-Seq samples help to solve the ill-posed prob-

lem of transcript identification [see e.g., 63, 72]. By sharing information between

samples, while still considering them separately, we can often exactly determine the

correct set of expressed transcripts. We provide illustrative examples where neither

merging data of multiple samples nor the independent analysis of data from each

sample can solve the problem.

We describe an approach called MiTie (Mixed Integer Transcript IdEntification)

that meets the aforementioned requirements. The main idea of MiTie is to report a

small, optimal set of transcripts that can well explain the observed RNA-Seq data

in multiple samples. It does not require an explicit enumeration of all paths to find

the optimal set of transcripts. This is achieved by employing branch-and-bound

algorithms that prune parts of the combinatorial search tree that cannot yield the

optimal solution.

MiTie consists of two main parts: A data processing part generates a splicing

graph from RNA-Seq alignments in BAM-format, the annotation in GTF-format

or both (Section 6.4.2). The second part solves the core optimization problem and

expects a graph decorated with quantitative information as input (Section 6.4.1ff).

The design enables the flexible use of MiTie in existing RNA-Seq pipelines. For

example, we can use the output of Trinity’s inchworm tool [40] as input to the second

part of MiTie and thereby solve the transcript reconstruction task, also solved by

Trinity’s butterfly tool.
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6.1.1. Ambiguities in Read Assignment

The goal of RNA-Seq-based quantification tools is to implicitly or explicitly assign

reads to transcripts. Regardless of sequencing errors ambiguities remain in two

cases. First, if genes are duplicated in the genome reads will map to several genomic

locations. The smaller the sequence divergence and the larger the sequencing error

rates, the ambiguities of read assignment will increase. Read with several alignment

positions are termed multi-mappers. The second source of ambiguity stems from

transcripts sharing genomic segments. Reads entirely falling into such segments

cannot be assigned to a specific transcript without considering information from

reads yielding transcript specific features.

Multi-mapper Resolution Assignment of multi mapper reads to one of the loca-

tions (or generating expected values for assignment) relies on specific assumptions.

A popular assumption is that multi-mappers will more likely come from transcripts

with high expression. Many tools compute expression priors based on unique map-

pers and already assigned multi-mappers and assign reads according to this prior.

The second assumption is based on smoothness of local coverage. Here, the flanking

regions of a duplicated region (or a more diverged part) are used to determine an

expected coverage level and multi-mappers are assigned according to the extent of

deviation from this expectation. This strategy heavily depends on the loss function

quantifying the deviation, since the choice of the loss function reflects assumptions

of the variance of the coverage.

We will describe as strategy to combine both assumptions in Section 6.4.7.

Overlapping Transcripts Reads falling entirely into regions that are part of more

than one transcript can only be assigned based on quantification priors. Similar

to multi mapper resolution these priors will mainly be determined based on reads

yielding transcript specific features.

6.1.2. Splicing Graphs

Based on alignments of RNA-Seq data against a reference genome one can define

an acyclic directed graph called splicing graph. Nodes in the graph correspond

to continuous genomic segments covered by RNA-Seq alignments. Edges in the

graph connect neighboring segments and distant segments if there are spliced read

alignments indicating a potential intron between the respective segments. In MiTie

we slightly vary this definition to increase the robustness of the method (see Sec-

tion 6.4.2 for details. Similar graphs can be defined by overlaps (or identical kmers)

of RNA-Seq reads without prior alignment to a reference gene [e.g. 40, 98]. The

additional difficulty is that repeats in the transcript sequence lead to cycles in the
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graph that cannot be resolved unambigiously. Heuristical solutions include pruning

of the entire cycle or cutting the edge of a cycle with the lowest coverage.

6.1.3. Mathematical Models for Read Count Data

In the following we will assume to have R samples of RNA-Seq data, corresponding

to different experimental conditions. Sample i may have Ni biological or technical

replicates. In this context a technical replicate refers to several sequencing runs

using the same RNA-material, whereas a biological replicate is obtained by taking

independent biological samples under the same condition.

Variability in RNA-seq measurements can be attributed to different sources. Dif-

ferences between technical replicates can be attributed to the stochastic process

during the sequencing itself. We denote the variance of read counts X for a given

genomic region between technical replicates as Vart(X). The variance between bi-

ological replicates is determined by the technical variance and variability in the

regulatory system of an organism, termed biological variability. We denote the bio-

logical variability as Varb(X). Finally, by Varc(X) we denote the variability between

samples originating from different biological conditions. Assuming an unobserved

read count Xc depending only on the biological condition without biological and

technical noise, we can decompose the total variance [cf. 51] with E(X|Xc) = Xc.

Var(X) = E(V (X|Xc)) + Var(E(X|Xc)) (6.1)

= Varb(X|Xc) + Var(Xc) (6.2)

In a typical RNA-Seq experiment we are interested in finding transcripts that

are expressed in a condition dependent manner. Thus, we would like to estimate

Var(Xc) based on Var(X) by computing estimates for Xc and Varb(X|Xc).

Several approaches [e.g. 127] propose to model the read count distribution with

a Poisson distribution. The probability density function of the Poisson distribution

with parameter λ > 0 is given by:

P (X = k) =
λk

k!
∗ e−λ ∀k ∈ N+

0

The mean and variance of a Poisson distribution with parameter λ is equal to λ.

The Poisson distribution naturally arises when we assume reads are sampled inde-

pendently with uniform distribution from each position of each copy of a transcript

in the biological sample [127]. This model fails as soon as the observed variance is

larger than the mean value. To account for biological variability e.g. Anders and

Huber [4] propose to use the negative binomial distribution. The negative binomial
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distribution arises as a continuous mixture of Poisson distribution where the mixture

rate is Gamma distributed with parameters r and p [52]:

PNB(X = k|r, p) =

∫ ∞
0

PPois(X = k|λ) · PGamma(λ|r, p) dλ (6.3)

=
Γ(r + k)

k!Γ(r)
(1− p)r · pk (6.4)

The mean and variance of the negative binomial distribution are given by pr
1−p and

pr
(1−p)2 , respectively. This derivation of the negative binomial distribution motivates

the application to model read counts emerging from mixtures of samples. The mean

values of the different samples are then assumed to be gamma distributed. This

model allows us to adjust the variance σ2 ≥ µ independent of the mean µ, when

modeling read count observations.

Estimation of within Transcript Variability Methods for read assignment based

on local smoothness assumptions need to model the read distribution within a single

transcript. Assuming that the sequencing is a random process selecting reads uni-

formly along the transcript we could accurately model this process using a Poisson

distribution. However, several studies [e.g. 14] found significant biases in read dis-

tribution along transcripts, depending e.g. on the position and the sequence of the

mRNA (see also Figure 6.1). Assuming that these biases act independently on each

read and assuming the summarized effect of all biases to come from an unknown

distribution A with mean 1 and variance η, we expect to see X = θs ·Xs reads in a

given segment s, with θs ∼ A(1, η) and Xs ∼ P (λ). Assuming independence of θs
and Xs we obtain E(X) = λ and

Var(X) = Var(θs)E(Xs)
2 + E(θs)

2Var(Xs) + Var(θs)Var(Xs) (6.5)

= ηλ2 + (1 + η)λ (6.6)

We note that under these assumptions we expect the variance of read counts to be

a quadratic function of the mean. In Section 6.4.4 we propose a method to estimate

the parameters of this model from the data.

6.2. Related Work

6.2.1. Transcript Quantification

Basic Read Counting Methods The simplest strategy for RNA-Seq quantification

is to count the number of reads that aligned to the genomic location of a gene
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[e.g. 82]. This strategy has several shortcomings. First, reads mapping to multiple

locations in the genome cannot be unambiguously assigned to one genomic location.

Workarounds like a) ignoring multi-mappers altogether, b) random assignment with

uniform distribution and c) uniform partial assignment (add 1/l to all l mapping

locations) introduce significant biases [68]. Moreover, the read coverage depends on

local sequence context and the position of the read in the transcript [14].

Models based on the Poisson Distribution Jiang et al. [57] model read counts

using the Poisson distribution. Based on maximum likelihood estimates of the tran-

script abundance vector a sampling strategy provides confidence intervals for the

transcript abundance. The model does not take sequencing biases into account.

rQuant rQuant casts the quantification task into a quadratic optimization prob-

lem. It was the first quantification tool estimating positional biases (cf. Figure 6.1a)

along the length of the transcripts to improve quantification results [13]. Moreover,

it takes sequence content biases into account (Figure 6.1b). A significantly simplified

version of the rQuant optimization problem can be formalized as follows:

min
w,β,θ

∑
p∈G

‖Cexp
p − Cobs

p ‖2
2 + γ1‖w‖1 + γ2Ω2(β) + γ3Ω3(θ) (6.7)

with Cexp
p =

∑
t∈T

Bβ(p) ·Θθ(p, t) · wt (6.8)

s.t. wt ≥ 0 ∀t ∈ T (6.9)

Cexp
p and Cobs

p and the expected and the observed coverage at position p of gene G.

wt is the relative abundance of transcript t and functions Bβ(·) and Θθ(·, ·) model

the content and transcript length bias, respectively. Parameters β and θ for bias

estimation are determined within the same optimization problem. This renders the

optimization problem to be non-convex, while it is still convex with respect to w,

β and θ individually. rQuant solves this problem by iteratively solving the convex

optimization problem associated with the three parameter types.

While it is appealing to optimize parameters for bias estimation together with

transcript abundance in a unified framework, this comes at the cost of significantly

increased computing time. As discussed in [75] the l1-norm on transcript abundance

does not lead to solutions as sparse as it would be desirable. This is mainly accredited

to the positive nature of the transcript abundance and the fact that the sum over

all abundances is more or less fixed.2 In other words, independently of how the

2Significant deviations of the optimal sum over all transcripts will lead to a general under or
overestimation and will be strongly penalized by the data fit term of the objective function.
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abundance is distributed among transcripts, ‖w‖1 will have the same value. The

l2-norm on the goodness-of-fit term 6.7 implies a Gaussian distribution of the read

coverage (cf. [10] Chapter 1) with constant variance for all expression levels. This

model fails to explain the dependency of mean and variance commonly observed in

read count data (cf. Section 6.1.3).
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Figure 6.1.: Sequencing biases. Biases for the C. elegans SRX001872 data set [47].
(a) Biases in read coverage estimated by rQuant for transcripts of different
length ranges. (b) Nucleotide frequency as a function of the position within
the reads. Figure from [13].

RSEM RSEM [68] builds on a statistical model for observing a read with a given

sequence and quality score based on the abundance of all transcripts. The likelihood

of observing N RNA-Seq reads in the data set r is given by:

P (r|θ) =
N∏
n=0

M∑
i=0

P (rn|Gn = i) · P (Gn = i|θ) (6.10)

θ ∈ RM+1 corresponds to the relative abundance of M given transcripts and one

noise transcript explaining unmappable reads. The variable Gn determines the as-

signment of read rn to one of the M + 1 transcripts. The maximum likelihood

values for the transcript abundance vector θ and model parameters are then com-

puted using the EM algorithm [29]. In the E-step of iteration t, expected values for

transcript assignments are computed using the θ(t) as prior (θ(0) = { 1
M+1
}M+1). In

the M-step θ(t+1) is determined based on the transcript assignment. The formula-

tion is guaranteed to find the maximal likelihood solution with arbitrary proximity

[68, 69].
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Transcript length biases and sequencing errors are incorporated into the model

for P (rn|Gn = i), i.e. the probability of observing read rn given that the read is

assigned to transcript i.

Initially, the RSEM procedure assigns multi mapper reads with equal probability

to each location. Transcript abundance values for transcripts with high sequence

similarity will differ if there are reads mapping to unique portions of the transcripts.

Those unique mappers then change the prior probabilities for the next E-step and

transcripts with more uniquely mapped reads will accumulate more multi-mappers

over time until the fraction of multi mapper assignments fits the fraction of unique

mappers.

While being intuitive this strategy fails to determine transcript abundances in

cases where one transcript is a short version of another transcript. In this case

the short transcript will have only multi mapper reads assigned and its expression

will be underestimated. This limitation can be overcome by modeling the spacial

distribution of reads along the transcript sequences as implemented in rQuant. The

homogeneous treatment of multi-mappers between transcript at the same genomic

locus and between different loci is conceptually appealing (cf. Section 6.4.7).

6.2.2. Genome Guided Assembly

In the following we will discuss transcript identification methods building on quan-

tification approaches. These methods first generate a set of potential transcripts

from a splicing graph and then quantify them. Finally, a subset of transcripts is

reported based on the quantification values.

iReckon [75] and NSMAP are capable of finding new transcripts but limit the

search to transcripts having the same transcription start and termination site as

known transcripts. While this significantly reduces the search space it is a bio-

logically implausible restriction. Moreover, the applicability of both methods is

restricted to cases where a subset of transcripts is already known.

Scripture [43] enumerates all potential transcripts from a splicing graph and reports

them in the result file. While this approach guarantees maximal sensitivity in the

case of unfiltered data it is in general not feasible and alignments have to be filtered

stringently. The approach does not aim to achieve specific results. IsoLasso [71] uses

the l1-norm to regularize transcript abundance. This approach significantly reduces

the number of reported transcripts, but the choice of the regularizer is suboptimal

given that all abundance values are positive and the sum is fixed. Thus, the reg-

ularizer does not penalize a solution explaining the coverage with two very similar

transcripts compared to a solution with only one transcript [compare 75].

CLIIQ [72] addresses this problem by applying an integer linear programming (ILP)

approach to limit the number of isoforms expressed in any sample combined with



96 RNA-Seq Based Alternative Transcript Identification (MiTie)

an l1 loss on the difference of observed and expected coverage. While this is concep-

tually similar to the MiTie optimization problem with respect to the integration of

multiple samples the formulation has significant disadvantages. The number of inte-

ger variables in the CLIIQ ILP depends on the number of potential isoforms which

increases exponentially with the number of exons. Thus, given S exonic segments

the theoretical runtime of the algorithm is O(22S) and therefore stringent filters on

the read data and on the enumerated transcripts have to be applied to prevent a

combinatorial explosion.

The following approaches avoid the expensive enumeration of transcripts using di-

verse techniques. Cufflinks reports the minimal number of transcripts such that each

read alignment is explained by at least one transcript. While this parsimony assump-

tion reduces the computations significantly it is violated by many known genes and

is not robust to noise from read alignment. We will discuss the benefits and draw-

backs of Cufflinks in more detail in Sections 6.5.1 and 6.5.2. Montebello [46] uses a

probabilistic model to score sets of transcripts and implements a probabilistic search

strategy to generate and modify transcript sets until a certain criterion is reached.

While this strategy allows for a wide range of functions to quantify the quality of a

solution it does not provide any guarantee of optimality. MiTie instead guides the

search using the branch and bound strategy and can therefore avoid regions in the

search space that cannot yield the optimal solution.

6.2.3. De novo Assembly

De novo transcript assemblers have been proven useful in cases where the reference

genome is missing or of poor quality. They have the additional advantage of treat-

ing alternative transcripts and paralogous genes (resulting in multiple mappings for

reads in genome alignment) naturally the same way. The optimization problem for-

malized by MiTie generalizes to solve the transcript prediction task also in the de

novo setting and we show in Section 6.5.5 that the MiTie strategy is superior to the

dynamic programming-based strategy of Trinity. OASES follows a different heuris-

tic which has been shown by the authors to be more sensitive but less specific than

the Trinity approach. Trans-ABySS extends the genome assembly method ABySS

[102] to cope with the high variation in local read densities observed in RNA-Seq

data. Like Cufflinks and OASES, Trans-ABySS does not aim to explain the read

data quantitatively during the transcript prediction.
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Figure 6.2: The observed read coverage alone
cannot unambiguously determine
the transcripts present in the
sample. Transcript sets {T1,
T2}, {T3, T4} and {T1, T2, T3,
T4} can perfectly explain the ob-
served coverage. The quantities
of splices reads spanning between
the segments can exactly resolve
this case, even if all four tran-
scripts are present.

6.3. Concepts and Design of MiTie

In this section, we will discuss the design and conceptual ideas that lead to the

development of MiTie.

Mixture Model As discussed in the previous section it is beneficial to include

the spacial structure of transcripts into account when trying to assign reads to

transcripts overlapping on the genome. This lead us to model the read information as

a mixture of transcripts with unknown abundance including the spacial information

similar to rQuant.

Cobs ≈ Cexp = UT ·W (6.11)

Cobs ∈ RP and Cexp ∈ RP are observed and expected read coverage values for each

of the P positions of the locus. All K possible transcripts are encoded in a binary

matrix U ∈ {0, 1}K×P and W ∈ RK corresponds to the transcript abundance (cf.

Figure 6.5).

Spliced Reads In many cased the coverage information cannot determine the set

of expressed transcripts without ambiguities. Such a case is illustrated in Figure 6.2.

In this case the quantities of splices reads spanning between any pair of segments S1 -

S4 can determine the transcripts present in the sample and their relative abundance

level. Therefore, we decided to integrate another term into the objective function

modeling the abundance of spliced reads as a sum over all transcripts sharing a given

intron. This idea has been previously realized in rQuant.

Paired-end Reads Paired-end reads have the potential to determine the correct set

of transcripts, where coverage and spliced reads fail. Read pairs from one fragment

falling into two separate segments indicate transcripts using both segments. If the
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fragment size distribution is known, then read pairs can offer information about the

splice structure between those segments.

Multi Mapper Optimization We extended the idea of RSEM to use an EM al-

gorithm for multi mapper assignment to the case, where the transcript structure

is taken into account. Based on an initial random assignment of multi-mappers

to genomic loci we compute expected coverages for each genomic locus and then

reassign multi-mappers to fit the genome-wide expected coverage. This combines

the strength of the mixture model approach to implicitly assign reads to transcripts

within a genomic locus and the conceptual advantage of RSEM over rQuant to

model all read assignments (between genomic loci and between different transcripts

of the same locus) in a single objective function.

Sparsity As discussed in Section 6.2.1 the l1-norm does not give sufficiently sparse

solutions and has unfavorable stability properties. We decided to use the l0-norm on

transcript weights. This norm directly penalizes the number of transcripts needed

to explain the data. Due to the introduction of integer variables this modification

causes an increase in computational costs, even in the pure quantification scenario,

where all transcripts are assumed to be known.

Multiple Samples Integration of multiple RNA-Seq samples within a single op-

timization problem has been previously done by assuming similarity of transcript

abundance values across samples. rQuant for example uses an l2-norm penalty for

deviations of transcript abundance between samples. While this strategy increases

stability in abundance estimation, it aims to decrease real differences in abundance,

which is not favourable from a biological point of view. We decided to integrate

multiple samples without this assumption by extending the concept of the l0-norm

to multiple samples. Whenever a transcript has non-zero predicted expression in

one sample it will not incur additional penalty when predicted in another sample.3

The rationality behind this is to aim for a small set of transcripts explaining the

read data in all samples. This is biologically plausible, since in general not all paths

in the splicing graph will encode functional products, but our goal is to find exactly

those.

Extension for Complex Graphs The number of paths in a splicing graphs with S

nodes is in O(2S). In the vast majority of cases the adjacency matrix of the graphs

is extremely sparse, but we encountered several cases where the number of paths

3This idea has been presented at the NIPs workshop ”Machine Learning in Computational Biol-
ogy” in December 2011. It has been developed in parallel by Lin et al. and published [72] in
September 2012
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Figure 6.3.: Number of paths in splicing graphs for 43,500 annotated human genes. We
merged the four human genome annotations [Ensembl, HAVANNA,ENCODE,
Vega, see 22, 36, 37, 44] by concatenating the transcripts and generated
a splicing graph. We then extended the splicing graph by adding evi-
dence from two RNA-Seq libraries for cell lines HepG2 (wgEncodeCshl-
LongRnaSeqHepg2CellLongnonpolyaAlnRep2.bam) and K562 (wgEncodeC-
shlLongRnaSeqK562CellPapAlnRep1.bam) from http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/ [36].

prohibits an explicit enumeration. A distribution of the number of paths occurring

in graphs constructed from the human genome annotation combined with one RNA-

Seq sample obtained from the ENCODE project [36] can be found in Figure 6.3.

To cope with this complexity we limit the number of transcripts we aim to predict

to a predefined constant k. This is motivated by two observations. First, as we show

in Section 6.5.1, the quantification problem is underdetermined even for much fewer

paths in the graph. Therefore, we can have little confidence in the quantification

results for transcripts with low relative abundance. Second, introducing a limit

for the number of transcripts allows us to compute the optimal quantification result

with up to k transcripts without enumerating all possible transcripts. This is related

to the concept of approximation set coding [e.g. 17].

Modular Design We designed MiTie in a modular fashion with a clear interface

between data processing and optimization. Different data processing pipelines pro-

duce directed acyclic graphs (DAGs) decorated with quantitative values for nodes

and edges. The optimization procedure only takes those graphs into account. This

allows a flexible integration of MiTie into different pipelines, e.g. for genome-based

and de novo transcriptome assembly.

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/


100 RNA-Seq Based Alternative Transcript Identification (MiTie)

6.4. Methods

6.4.1. The Core Optimization Formulation

Preliminaries We define segments as sets of neighboring genomic positions corre-

sponding to minimal entities of paths in the splicing graph G = (S, I) with nodes

(segments) S and edges (introns) I. A segment s can be allowed to be used as the

initial or terminal segment in a transcript. This information is assumed to be given

as ι(s) =
{

1 s is initial
0 otherwise

and τ(s) =
{

1 s is terminal
0 otherwise

. The transcript matrix U is

defined as a S × k binary matrix, where S = |S| and k is a parameter determining

the maximal number of transcripts returned by the algorithm. Paths through the

splicing graph G can be represented as a binary vector of length S. Let P be the set

of all valid paths, R the number of RNA-Seq samples, and Wr ∈ [0, 1]k the (normal-

ized) abundance estimates for the k transcripts and sample r. Moreover, Cexp
r ∈ RS

and Iexpr ∈ R|I| are the expected segment read counts and intron confirmation values

(from spliced reads) for sample r under our model, respectively. Analogously, Cobs
r

and Iobsr correspond to observed segment and intron counts for sample r.

Using these definitions, the core of MiTie is an optimization problem that can be

formalized as:

min
W,U

R∑
r=1

(L(Cexp
r , Cobs

r ) + γ1L(Iexpr , Iobsr )) + γ2‖W‖0 (6.12)

s.t. Ut ∈ P ∀t ∈ {1, .., k},
W ∈ [0, 1]k×R

U ∈ {0, 1}S×k.

For technical reasons we use the normalized transcript abundance Wr ∈ [0, 1]k.

However, without loss of generality we can define the maximal observed count as

cg,r = max(Cobs
r , Iobsr ) and then the expected counts can be computed from Wr and

U as Cexp
r = cgU

TWr. Similarly, we can compute the expected number of reads

Iexp(s1,s2),r from sample r that span from segment s1 to segment s2 for all (s1, s2) ∈

I as Iexp(s1,s2),r = cg

(∑k
t=1 i

t
s1,s2
×Wr,t

)
, where its1,s2 is a binary variable indicating

whether intron (s1, s2) is part of transcript t. L is a loss function (see Section 6.4.3)

and ‖W‖0 is defined as the number of non-zero rows in W , hence we only count

transcripts that are quantified above zero in any of the samples. γ1 and γ2 are

hyper-parameters determining the trade-off between the different terms.4 A version

of this optimization problem is illustrated in Figure 6.5.

4The hyper-parameters have to be tuned by model selection in order to obtain the best perfor-
mance. We provide useful default settings (cf. Section B.9).
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6.4.2. Constructing the Splicing Graph

We start by defining the boundaries of a region either based on annotated genes or

read coverage. If gene/transcript annotations are available, we define regions within

each annotated genic locus (see Figure 6.4). Otherwise, we define islands by identi-

fying genomic regions that are connected by fragment alignments (cf. Section B.4).

Each region may contain exonic and intronic segments and the splicing graph gener-

ation is performed independently from other regions. This process is illustrated and

described in more detail in Figure 6.4. The main emphasis of the graph generation

is completeness. False information can be tolerated to some extent, since the loss

function includes a model for noise e.g. originating from wrong alignments.

6.4.3. The Loss Function

A commonly used loss function is the sum of squared deviations between expected

and observed values [`2-loss, see for instance, 14, 71], i.e.,
∑S

s=1(Cexp
s − Cobs

s )2. The

choice of the loss function, however, reflects assumptions on the variance of the

measurements [e.g. 83]. The underlying assumption of penalizing the quadratic de-

Read Coverage

1. Segment Id.

2. Exon Id. 

3. Intron Id. 

1 2 3 4 5 6 7 9 11 12 13 14 158 10
Annotations
Segment No.

Figure 6.4.: Splicing graph generation from aligned RNA-Seq reads: 1. Segment identifi-
cation: Given a genomic region, we construct splicing graphs by generating a
list of segment boundaries. Boundaries are either splice sites (SS) depicted as
black vertical lines, potential transcription start sites (TSS; green) and end
sites (TES; blue). Potential SS positions can originate from spliced reads (e.g.,
between segments 4 and 5) or annotated transcripts. Analogously, TSS and
TES sites can stem from annotated transcripts or from potential transcript
end positions (e.g., between 2 and 3 as well as 13 and 14). See B.4 for more
details. 2. Exon identification: We keep a) segments that have more than
5% of their nucleotides covered, b) are part of annotated transcripts, or c)
if the removal of segment s does not leave any path between two segments
connected by paired-end reads (if available). 3. Intron identification: We
connect segments based on spliced reads and annotated introns.
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Figure 6.5.: Illustration of the core optimization problem of MiTie. The transcript matrix
U (bottom left) and abundance matrix W (bottom center) will be optimized
such that the implied expected read coverage of the k valid transcripts (bot-
tom right) matches the observed coverage (top right) well. Validity of the
transcripts is ensured by appropriate constraints derived from the segment
graph (top left). We illustrate the case of two samples. For each sample we
have abundance estimates W for each of the k = 4 transcripts. The identity of
the transcripts, i.e., the rows of U are shared among the samples. By Occam’s
razor principle, we implement a trade-off between loss between the observed
and expected coverages and the number of used transcripts, i.e., number of
rows in W with non-zero abundances.

viation is that the measurement is Gaussian distributed with mean equal to the true

abundance of the mRNA and variance constant for all expression levels. Following

the arguments in Section 6.1.3 and [4, 33] we employ a negative binomial distribution

with a standard deviation dependent on the mean of the observation to model the

distribution of read count data. We make use of this distribution to define the log-

likelihood-based loss function. In addition, we model background noise stemming

from false alignments or incomplete RNA processing using a Poisson distribution

with fixed mean λ.

We define the likelihood of observing a count V in dependence of the unknown

expected count V ∗ as follows

pM(V |V ∗) =
V∑
x=0

pP (x|λ)× pN
(
V − x|V ∗, (1 + η1)V ∗ + η2V

∗2
)
,

where pP (·|λ) is the probability under the Poisson distribution with mean λ and

pN(·|V ∗, (1 + η1)V ∗ + η2 × V ∗
2
) is the likelihood under the negative binomial distri-

bution with mean V ∗ and variance (1 + η1)V ∗ + η2V
∗2 . The choice for parameters

η1, η2 ≥ 0 depends on the extent of biases present in the RNA-Seq library. In the
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Section 6.4.4, we propose a method for estimating the parameters η1 and η2 of this

model. We optimize the parameter λ using model selection. In Section 6.5.2 we

investigate the impact of different choices for these parameters on sensitivity and

specificity of the prediction results.

We assume deviations being independent between the segments and can thus de-

fine the negative log-likelihood L̂(Cexp, Cobs) for all segments in sample r as follows:

− log

(
S∏
s=1

pM(Cobs
r,s , C

exp
r,s )

)
= −

S∑
s=1

log(pM(Cobs
r,s , C

exp
r,s )).

6.4.4. Estimation of Read Count Variability

To estimate the variability of read counts falling into segments we investigated hu-

man annotated single transcript genes using one RNA-Seq library from the EN-

CODE project5 [36]. We counted read starts falling into 20 randomly selected seg-

ments for each transcript and computed mean and variance. Figure 6.6 shows a

scatter plot of mean versus variance. As discussed in Section 6.4.3 we model the

relationship of mean µ and variance σ2 with σ2 = (1 + η1)µ + η2µ
2. We estimate

parameters η1 and η2 by computing a weighted least squares fit, where the standard

least squares is modified using a gaussian distributed weighting (mean zero and

standard deviation 5,000) to increase robustness. For η1 = 0 we find that η2 = 0.42

gives the best fit for the observed data (see Figure 6.6 red dots). We repeated the

analysis for one sample obtained from the TCGA RNA-Seq data collection 6 and

obtained an optimal value of η2 = 0.50. We conclude that we consistently observe a

significantly higher variability between segments in the same sample than previously

observed for the same segment in different samples (cf. [4] and [33], where values

for η2 ranging from 0.1 to 0.2 were estimated). For the data sets simulated using

the Flux Simulator we estimate η2 = 0.38.

6.4.5. Implementation as Mixed Integer Quadratic Program

In this section, we detail the implementation of the optimization problem in terms

of a quadratic objective function and linear equality and inequality constraints.

5 library for cell line K562 (wgEncodeCshlLongRnaSeqK562CellPapAlnRep1.bam) from http:

//hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
6https://wiki.nci.nih.gov/display/TCGA/RNASeq+Data+Format+Specification TCGA-

DK-A3IM-01A-11R-A20F-07.d0cbd85a-e244-4f99-9adf-71f7afa5f6ec aligned with Star aligner
[30]

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
https://wiki.nci.nih.gov/display/TCGA/RNASeq+Data+Format+Specification
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Figure 6.6.: Relationship of mean and variance of read start counts for randomly selected
segments in 10,820 single transcript genes (human hg19). We counted read
starts for up to 20 non-overlapping regions of length 30nt and computed mean
and variance of read start counts. In red we show the weighted least squares
fit.

Fitting the Expected Read Counts The read count loss term of the objective

function is computed as:

R∑
r=1

S∑
s=1

L

(
k∑
t=1

Cexp
s,t,r, C

obs
s,r

)

With L(.) being a piecewise quadratic approximation of the negative log likelihood

under the negative binomial distribution with mean Cobs
s,r . We implement the piece-

wise approximation using indicator variables Is:

Is,r =

{
1, if

∑
tC

exp
s,t,r < Cobs

s,r

0, else

We then equivalently formulate this term of the objective function as

R∑
r=1

S∑
s=1

Hs,r
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with

Hs,r =
∑
t

(qleft · Is,r ·∆2
s,r + qright · (1− Is,r) ·∆2

s,r (6.13)

+ lleft · Is,r ·∆s,r + lright · (1− Is) ·∆s,r) (6.14)

and

∆s,r = |
∑
t

Cexp
s,t,r − Cobs

s,r |.

We formulate this relationship with the following linear constraints:

∆s,r ≥
∑
t

Cexp
s,t,r − Cobs

s,r

∆s,r ≥ Cobs
s,r −

∑
t

Cexp
s,t,r

With binary variables Us,t encoding participation of segment s in transcript t and

the relative abundance values Wt,rof transcript t in sample r, the expected segment

count Cexp can be computed as Cexp
s,t,r = cg ·Us,t ·Wt. cg is a constant scaling factor for

gene g, which is sufficiently large such that optimal Wt,r values reside in the interval

[0, 1]. We equivalently reformulate this equality in terms of linear constraints:

Cexp
s,t,r ·

1

cg
≤ Us,t (6.15)

Cexp
s,t,r ·

1

cg
≤ −Us,t −Wt,r + 1 (6.16)

Cexp
s,t,r ·

1

cg
≥ Us,t +Wt,r − 1 (6.17)

Reduction of the Search Space We require the transcript abundance Wt,r to be

zero for each sample r if transcript t does not have any segments:

Wt,r ≤
∑
s

Us,t ∀1 ≤ r ≤ R (6.18)

Moreover, we sort the transcript in order to reduce the search space by eliminating

equivalent solutions corresponding to permutations of transcripts.

Wt,1 ≥ Wt+1,1, ∀1 ≤ t < k (6.19)
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l0 Regularization The transcript indicator variables It =

{
1
∑R

r=0 Wt,r > 0

0 else

can be computed as:

R∑
r=1

Wt,r ≤ R · It (6.20)

γ2 ·
∑k

t=1 It is part of the objective function.

Prior Knowledge from the Splice Graph We enforce all predicted introns to

correspond to connections in the graph G = (S, I). This can be done by firstly

enforcing that, if segment s is used in transcript t (i.e., Us,t > 0) any of the segments

preceding s in the graph (and being directly connected) is used as well:

Us,t ≤
∑

x∈{x|(s,x)∈I}

Uxt (6.21)

Us,t ≤
∑

x∈{x|(x,s)∈I}

Uxt (6.22)

Secondly, we need to make sure, that no intron (s1, s2) is used which is not in G:

Us1,t + Us2,t <= 1 +

s2−1∑
i=s1+1

Ui,t (6.23)

Since constraints (6.22) force any of the segments directly preceding s1 to be used,

there is no need to exclude intron (s1, s3) for any s3 > max({i|(s1, i) ∈ I}). If

segment s is a potential TSS or TES site, we allow a connection to conceptual

source and sink nodes similar to introns, for which we do not expect to see any

evidence.

Fitting Spliced Alignment Counts To compute expected intron counts CI,exp
s1,s2,t,

we first determine if the intron (s1, s2) is used in transcript t and if so, we set CI,exp
s1,s2,t

be equal to Wt. Otherwise we set CI,exp
s1,s2,t to zero. This can be formulated as follows:

CI,exp
s1,s2,t = Wt · Us1,t · Us2,t ·

s2−1∏
i=s1+1

(1− Ui,t) (6.24)
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This relationship can be expressed in terms of linear constraints as follows:

CI,exp
s1,s2,t ·

1

cg
≤ Us1,t (6.25)

CI,exp
s1,s2,t ·

1

cg
≤ Us2,t (6.26)

CI,exp
s1,s2,t ·

1

cg
≤ 1− Ui,t ∀s1 < i < s2 (6.27)

CI,exp
s1,s2,t ·

1

cg
≤ Wt − Us1,t − Us2,t + 2 +

s2−1∑
i=s1+1

Ui,t (6.28)

CI,exp
s1,s2,t ·

1

cg
≥ Wt + Us1,t + Us2,t − 2−

s2−1∑
i=s1+1

Ui,t (6.29)

Paired-end Information For all pairs of segments (s1, s2) that have confirmation

from paired end alignments to be part of a single transcript, we compute binary vari-

ables Ps1,s2,t indicating that segment pair (s1, s2) is part of an expressed transcript

t:

Ps1,s2,t = Us1,t · Us2,t · It (6.30)

In terms of linear constraints this can be rewritten as:

Ps1,s2,t ≤ 1/3(Us1,t + Us2,t + It) (6.31)

Ps1,s2,t ≥ Us1,t + Us2,t + It − 2 (6.32)

Then, we compute binary variables P n
s1,s2 indicating weather segments s1 and s2

confirmed by paired-end reads do not occur together in any predicted transcript

with nonzero expression:

P n
s1,s2

≥ −
k∑
t=1

Ps1,s2,t + 1 (6.33)

The term Ns1,s2 · P n
s1,s2

is part of the objective function, where Ns1,s2 is the number

of paired-end fragments supporting the connection between segments s1 and s2.

6.4.6. Confidence Quantification for Transcript Calls

Given a set of k transcripts we are interested in the importance of each transcript

for explaining the total RNA-Seq data. We make use of a likelihood-ratio test to
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quantify the confidence in each predicted transcript t. We compute the test statistic:

T = −2ln

(
p̃(D|M)

p̃(D|Mt)

)
(6.34)

Where p̃(D|M) is the approximate likelihood of observing the read data D under

our model M based on all k transcripts and p̃(D|Mt) is the approximate likelihood

when restricting the quantification value of transcript t to zero. To compute this

we solve the quantification task k times using all transcripts from the transcript

inference step and set the quantification value of transcript t to zero. We compute

the objective function setting all regularization parameters to zero. We assume the

test statistic to be χ2- distributed with df = k − (k − 1) = 1 degrees of freedom

and compute a p-value for each transcript. This strategy allows us for example

to estimate the probability that a newly predicted transcript explains features of

RNA-Seq data that cannot be explained by known annotated transcripts.

6.4.7. MiTie+MMO: Joint-Optimization of Transcript

Abundance, Structure and Multiple Mapping Locations

Mitie seeks to maximize the approximated likelihood of the observed data being

generated by the predicted transcripts. Ambiguities in read alignment result in

uncertainties in the observed data which are impossible to resolve without knowing

the transcripts and their abundance. This interdependence of finding the correct

transcripts and finding the correct alignments can be accounted for by treating not

only the transcripts and their abundance as variables, but also the alignments. We

make use of the statistical model introduced in Section 6.4.3 and maximize the

likelihood also with respect to the read alignments.

Starting with alignments where only the alignment with the highest alignment

score was present we predicted transcript structures and abundances. Given the

transcript structures and abundances, we can compute the expected read counts for

segments and exon-exon junctions (Cexp
r and Iexpr ; see Section 6.4.1). For each read

with multiple alignments of similar quality we selected the alignment that maximized

the likelihood (approximated with the ÑB-loss function). We define the alignment

quality here as the number of edit operations7 of the alignment. We consider all

alignments to have similar quality if the number of edit operations differs by less than

a predefined constant r.8 We then recompute transcript structure and abundance

7 The total number of insertions, deletions and mismatches
8We found that a very stringent cutoff with r = 0 works best in the cases we observed. This

is expected since the chance that an alignment with r more edit operations than the best
alignment is the correct alignment is expected to decreases rapidly with r, given error rates of
about one percent in Illumina reads and an even lower chance for genomic alterations.
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predictions and iterate until very few alignments change. This EM-like algorithm

can find a local maximum of the approximated likelihood function.

6.5. Results

6.5.1. An Illustrative Simulation Study

We start by considering a specific case of transcript inference to illustrate the limits

of transcript identification from a single sample and to show how multiple samples

can help identifying commonly expressed transcripts. In Figure 6.7A, we consider a

splicing graph encoding three exons skips leading to eight possible transcripts. The

task is to determine which transcripts are expressed. We consider multiple samples

and assume that the same small set of transcripts are expressed in all samples but

with different abundances (including the possibility of zero abundance).

This problem can be reduced to solving systems of linear equations [63]. If a

system of equations is solvable, then the corresponding set of transcripts can fully

explain the observed read coverage (see Section B.6; for simplicity, we ignore statis-

tical fluctuations and use exact quantities). In case of multiple samples, we identify

the sets of transcripts that are consistent with all samples (intersection of the sets of

sets of transcripts). If only one such set of transcripts remains, then we can be sure

to have found the correct solution (“exactly one solution”). If several sets remain,

the best strategy is to randomly select one set out of the possible ones (“optimal

strategy”).

It turns out inference for the considered example becomes increasingly more dif-

ficult the more transcripts are expressed (Figure 6.7B). If only one transcript is ex-

pressed, all strategies always find the correct answer. If two of the eight transcripts

are expressed, it is theoretically always possible to identify them correctly. Also,

Cufflinks and MiTie often identify the correct set of transcripts (see Figure 6.7B

top). Repeating the same experiment for three expressed transcripts, the observa-

tions change completely. Only in 16% and 60% of the cases, there is exactly one

solution or the optimal algorithm identifies the correct one (one sample), respec-

tively. The success rate increases significantly with the number of samples (88%

and 95%). The accuracy of MiTie is close to the optimum and better than the

optimal conservative algorithm. Cufflinks finds the correct 3 transcripts in only 2%

of the runs, which comes close to randomly guessing three out of eight (1.78%) (see

Figure 6.7B middle). If four out of eight transcripts are expressed Cufflinks never

finds the correct solution, while MiTie performs comparable to the optimal strategy

(cf. Figure 6.7B bottom).9

9Cufflinks was run on merged samples since the Cufflinks/Cuffmerge combination as described in
Section 6.5.2 did perform worse.
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Figure 6.7.: A Example with four samples of simulated reads. All four samples express
the same 4 transcripts (marked with asterisks) with different relative abun-
dances. The different relative abundances lead to distinct coverage patterns
in the alternative regions. B We randomly selected 2 (top), 3 (middle), and
4 (bottom) transcripts and simulated 4 samples RNA-Seq reads each. For
each sample, we uniformly redistributed the abundance between the selected
transcripts. We then predicted transcripts with different methods. The pre-
diction was counted as correct if all transcripts were exactly matched and no
additional transcripts were predicted. To obtain more robust measurements
we repeated the whole procedure 50 times and report the mean number of
correct predictions for each method.

6.5.2. Simulated Data for H. sapiens

Read Simulation

A major obstacle for the evaluation of tools for transcriptome reconstruction is the

lack of a gold standard set of RNA-Seq libraries and known expressed transcripts.

Simulated reads have the advantage that we can evaluate different aspects of pre-

dictions which we would not be able to observe in reality. They are therefore an

important part in evaluating many RNA-Seq-based algorithms. To obtain realis-

tic RNA-Seq read alignments, we a) randomly draw the transcript abundances in

multiple samples, b) used the FluxSimulator [41] to incorporate typical biases from

library preparation and sequencing, and c) introduced errors into the generated reads

and d) mapped the generated reads against the whole genome (see Section B.2 for

more details). For this study, we generated simulated reads for a set of 1, 000 hu-

man genes with 8, 592 transcripts in total. The first 500 genes were used to tune

hyper-parameters for all compared methods. Reported results correspond to the

performance on the second set of 500 genes.
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Quantification, Loss Functions and Multi-Mapper Resolution

Figure 6.8A illustrates the effect of different loss functions on the Pearson corre-

lation of predicted and ground truth transcript abundances. Similar to MiTie’s

loss function (ÑB-loss) we implemented a quadratic proxy function for the negative

log-likelihood under the model of Poisson-distributed reads (P̃ -loss). The ÑB-loss

generally gives more accurate results than the P̃ -loss and the `2-loss. Both the P̃ -loss

and ÑB-loss are significantly more robust to erroneous data (for instance, spurious

alignments when allowing more mismatches) than the `2-loss.10

We investigated the impact of the three hyper-parameters on the ability of Mi-

Tie to detect expressed transcripts. Figure 6.9 shows sensitivity and specificity for

varying loss parameter η1, η2 and λ, respectively. We switch to a binary evaluation

measurement here, because the correlation prefers non-sparse, and therefore less

specific solutions. The binary representation of the predicted abundance allows us

to distinguish between sensitivity and specificity.

We observe that increasing η2, corresponding to a model expecting higher read

count variability for segments with high levels of RNA-Seq evidence, leads to more

10For independence of hyper-parameters, we only use the exon coverage.
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Figure 6.8.: Assessment of quantification results. A MiTie quantification results for
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gent (0 mismatches) and liberal read alignments (up to 5 mismatches), leading
to fewer or more multi-mapping reads, respectively. B MiTie quantification
results with ÑB-loss, when considering ground truth alignments, all multiple
alignments, or after multi-mapper handling with MMO (see Section 6.4.7).
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specific, but less sensitive results. The higher expected variance allows us to explain

a larger fraction of the RNA-Seq data with a single transcript. Therefore, the

threshold for ”triggering” an additional transcript is increased. Similarly, increasing

λ results in more specific results, since an increased fraction of RNA-Seq data can

be explained as noise (Figure 6.9C). Increasing the parameter η1 also results in

more specific results, but similarly to the effect when increasing λ the increase in

specificity saturates quickly and higher values only result in a lower sensitivity. In

both cases we allow more transcripts to be quantified as zero, and therefore loose

sensitivity, while segments with higher expression levels are essentially unaffected.

We also investigated the effect of multi-mapper handling on the quantification

performance (Figure 6.8B). For this experiment, we used the full set of MiTie fea-

tures as described above and the ÑB-loss. We observe that using all features, the

quantification is much more robust with respect to noise in the reads. Moreover,

by using MMO (see Section 6.4.7) one can significantly improve the quantification.

After resolving multi-mappers with MMO, the quantification improves even beyond

less stringent filtering.

Finally, we evaluated how indicative the confidence value based on the likelihood-

ratio test (Section 6.4.6) is for a transcript to be expressed. We find that among the

4718 nonzero quantified transcripts with p-value smaller than 0.1 we have 86% cor-

rect transcripts with nonzero simulated expression, whereas out of 326 transcripts

with p-value larger or equal to 0.1 we find 44% correct predictions. This result

shows that the confidence values accurately indicate cases with possible alternative

explanations. We argue that it is more favourable to use the confidence values to

filter transcripts than the frequently employed filtering based on relative or absolute

abundance estimates, because ambiguities might originate from the topology of the
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Figure 6.9.: Loss function parameter selection. We assess the three parameters of
the loss function in terms of sensitivity and specificity of the quantification
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splicing graph and are therefore independent of the expression level. This is sup-

ported by a relatively low Pearson correlation between predicted relative transcript

abundance and p-values of only 0.18, indicating that the likelihood-ratio test adds

additional information about the topology of the graph which cannot be retrieved

from the predicted abundance alone.

Accuracy of Transcript Prediction (MiTie and Cufflinks)

For most genes of many organisms we know a subset of transcripts in advance. The

known transcripts are likely the ones with the highest expression level as those are

easiest to identify by traditional annotation strategies. To test the accuracy for this

realistic scenario, we omit the information of all transcripts, except the one that has

the highest simulated abundance. We ran MiTie and Cufflinks both given only this

one annotated transcript and the RNA-Seq reads from a larger set of transcripts

to predict transcripts. We compare transcript-level sensitivity and specificity of

the predictions relative to all known transcripts. We counted transcripts as being

correct, if the intron structure matched the one of an annotated transcript. Single

exon transcripts were counted as being correct if they overlapped with an annotated

single exon transcript. Each prediction was matched to at most one annotated

transcript and each annotated transcript was associated to at most one predicted

transcript.

The results for one to five samples are shown in Figure 6.10A. For Cufflinks we

optimized the hyper-parameters (see Section B.7) and used two different strategies

to perform predictions. The first strategy merged all RNA-Seq alignments and

the second strategy merged individual Cufflinks predictions for each of the samples

with Cuffmerge. We observe that the latter strategy outperforms the data merge

strategy, but both strategies can not benefit from additional samples. This is mostly

attributed to a drastically decreasing specificity, while the sensitivity improves with

more samples (cf. Suppl. Figure B.1). MiTie with MMO outperforms the best

Cufflinks prediction on average by 6.7 percentage points in F-score. MiTie/MMO

on five samples is 2.4% more accurate than with one sample. We observe that

the significant improvements MMO contributes in quantification accuracy to not

translate to similarly high transcript recognition improvements. We attribute this

to the robustness of the loss function.

6.5.3. Runtime comparison

In Figure 6.11 we compare the runtime of Cufflinks and MiTie on 1000 genes with

simulated RNA-Seq reads. We discarded the time spent on regions not overlapping

the respective genes. For each method we only recorded the time needed in the

core algorithmic part, disregarding data input, output and processing. For MiTie
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we recorded the CPU-time needed to solve the mixed integer optimization prob-

lem using the MATLAB function cputime. For Cufflinks we recorded the CPU-time

spend in the assemble bundle method in the cufflinks.cpp file using the boost::chrono

library. We recorded the time for each bundle and stored it with bundle start and

stop coordinates in a separate output file. For each gene we searched for overlap-

ping regions (bundles in the case of Cufflinks) and added the CPU-time spent on

the region. Regions overlapping with more than one gene contributed only to the

runtime of one gene.

We note that the runtime of Cufflinks is favourable for filtered alignment files.

However, we were not able to compute Cufflinks predictions for unfiltered alignment

files. This is likely caused by additional alignments (potentially a single alignment)

merging large graphs resulting in an explosion of runtime and memory consumption.

This observation was consistent over several Cufflinks releases.
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Figure 6.10.: MiTie/Cufflinks transcript prediction evaluation. A Transcript-level
F-score as a function of the number of samples for the simulated human data
set. B Transcript-level F-score as a function of the number of modENCODE
samples for up to seven developmental stages of D. melanogaster.
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Figure 6.11.: MiTie runtime assessment. Runtime for the prediction of 1000 genes
with simulated RNA-Seq reads. We show the runtime for identical parameter
settings evaluated in the main paper. MiTie uses unfiltered read alignments.
In several attempts we failed to compute a Cufflinks run with unfiltered
read alignments on a 64 core machine with 512GB memory. Instead we
computed Cufflinks runs with increasing number of alignments by allowing
more mismatches per alignment. Number of alignments is given in brackets.
Values smaller than 0.1 were set to 0.1.

6.5.4. Predictions for Developmental Stages of D. melanogaster

Setup

To show that the performance improvements we have seen on simulated data trans-

late to large scale, experimental data sets, we applied MiTie to a data set of seven de-

velopmental stages of Drosophila melanogaster (550M alignments from 38 RNA-Seq

libraries for 7 developmental stages). We filtered the modENCODE D. melanogaster

genome annotation for genes with at least two annotated transcripts. We then ran-

domly removed one transcript variant (a transcript differing in splice structure to

all other transcripts) which had a non-zero Cufflinks quantification value. We dis-

carded genes where no such transcript could be found. From the remaining genes

we randomly selected 1, 000 genes for tuning the hyper-parameters and 1, 000 genes

for testing. This setup retrospectively simulates the identification of new transcripts

in already well-annotated genomes (as in Section 6.5.2).

Results

We evaluated the sensitivity of MiTie and Cufflinks based on the omitted tran-

scripts and the specificity with respect to all annotated transcripts. Figure 6.10B

shows a comparison of the F-score as a function of the number of samples. MiTie
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outperforms the best (in terms of F-score) Cufflinks prediction in sensitivity and

specificity. Similar to the simulated data, the merge of the Cufflinks predictions

using Cuffmerge significantly outperforms the Cufflinks prediction on merged data

(not shown). While having a similar performance for large sample numbers, MiTie

has a much higher F-score on up to five samples. This is mostly due to a higher

sensitivity at a similar specificity.

Since we used the alignment files provided by [20], we had no control over the

quality or sensitivity of the alignments and multi-mapper resolution. Our results on

simulated data let us expect an even higher performance for more sensitive align-

ments and appropriate multi-mapper handling.

6.5.5. Application to De Novo Assembly

Comparison to Trinity

On the same set of simulated reads we also compared the core optimization of MiTie

to the transcript calling method Butterfly, which is part of the Trinity pipeline. We

ran the entire Trinity pipeline and then generated MiTie predictions based on the

graphs reported by the Trinity component Chrysalis.

We evaluated the performance of both methods by aligning predicted mRNA se-

quences to the annotated mRNA sequences. A prediction was counted to be correct

if a) it was ≤ 1% longer than the annotated transcript and b) the region 20nt up-

stream of the first exon-exon junction to 20nt downstream of the last exon-exon

junction aligned with at most 5 edit operations to the reference sequence.11 In

its current implementation, Trinity is not capable of integrating multiple samples.

Therefore, we compared the results using only a single sample. We performed a

model selection to tune hyper-parameters of Trinity and observed that the parame-

ter determining the merging/splitting behaviour of components (–min glue) strongly

influences the performance of Trinity. If –min glue=1 predictions are more sensitive

but approximately 15 percentage points less specific compared to the performance

with –min glue=2 (default). For both sets of predictions we selected Pareto-optimal

predictions and ran MiTie on the corresponding graphs. The MiTie core optimiza-

tion problem outperforms Butterfly significantly in terms of sensitivity while having

similar or higher specificity (cf. Figure 6.12).

Since Trinity applies stringent filtering in the Inchworm step, the obtained segment

graph does not contain all true transcripts. From our results on genome based

assembly we expect even higher performance gains with a more sensitive graph

generation algorithm. Furthermore, we expect improvements from multiple samples,

which can theoretically be utilized in the same way as in genome based assembly.

11For efficiency reasons, we ran the entire experiment for each gene separately on a FASTA file only
containing the simulated reads as they were simulated from this genic locus without mismatches.
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Figure 6.12.: MiTie Trinity comparison. Cycles show a subset of Trinity model selection
runs. We selected the pest performing predictions for different trade-offs of
sensitivity and specificity. We ran MiTie predictions on the De Bruijn graphs
generated by trinity. Dotted lines connect the corresponding predictions.

6.6. Conclusion

The transcript prediction problem is typically under-determined. One important

consequence of this observation is that deeper sequencing only helps to reduce the

variance of abundance estimation and to close gaps in the splicing graph, but it

does not solve the transcript identification problem as such. The proposed method

reduces the set of solutions by leveraging quantitative information and multiple

RNA-Seq samples combined with mild, biologically plausible assumptions. Further-

more, prior information can be taken into account in a direct way within a single

optimization problem, which we think will turn out particularly advantageous for in-

tegrating long reads from third-generation sequencing platforms [97] with RNA-Seq

data.

Our results highlight the importance of a well-motivated loss function to penalize

the read count deviation. The application of the ÑB-loss significantly improved

our quantification and transcript recognition results, while it comes at nearly zero

additional computational cost.

The underlying assumption of previously published transcript calling strategies

like Cufflinks and Trinity is correctness and completeness of the graphs. Achieving

both at the same time is challenging and typically not possible. This results in

either wrong transcript predictions that have to be filtered out heuristically or in

fragmented transcript predictions. MiTie assumes completeness of the graph, but

not correctness. Completeness can often be achieved by not filtering the input

alignments or not pruning the assembly graph. The decision of filtering can be

deferred to the optimization problem that may choose to discard information in

a context-dependent way. This is conceptually more attractive than global and

uninformed filtering as a pre-processing step.

MiTie finds a solution which is compatible to the overall observed read data. As
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observed on simulated and real world RNA-Seq data, MiTie pushes the boundaries

of what can be observed from RNA-Seq data towards more complex mixtures of

transcripts by leveraging variability between samples. These improvements come

with the downside of higher computational costs, however, the vast majority of

cases can be optimally computed within seconds and our implementation provides

options for approximations in cases where exact computations are too expensive.

Furthermore, our experiments clearly show that we can obtain the same performance

as competing methods with only a fraction of the data. Which in turn can save the

time, money, and storage capacity of deeper sequencing.

MiTie allows us to pool information from different samples in an effective way.

This conceptual improvement will further future RNA-Seq studies; rather than

spending efforts into very deep sequencing of a few samples, future studies will

have the choice to investigate a larger variety of samples at a lower depth. The com-

bination of these samples allows us to obtain more confident transcript predictions

in each sample and more insights into the biological questions at the same time.



7. Conclusion

Investigation of the transcriptional landscape provides clues to connect genotype

to phenotype. However, estimating the transcriptome state in a qualitative and

quantitative manner from current high-throughput measurements poses profound

computational challenges.

We devised two strategies for improved characterization of the transcriptome com-

plementing each other in the applicability. mGene.ngs combines evidence from RNA-

Seq data with information from the DNA sequence in a structured output learning

framework to predict a single transcript per genomic locus.

This design was motivated by the high variability and error rates in expression

measurements and has proven to be very powerful and flexible also with respect

to other high throughput information sources. The major limitation however is

that mGene.ngs can only predict a single transcript per genomic locus. Given the

coverage levels in early RNA-Seq experiments this limitation was less severe than

it is nowadays, where tens of thousands of transcripts may be fully covered with a

single lane of RNA-Seq data.

For such genomic loci with large amounts of RNA-Seq evidence MiTie detects

transcripts using a mixed integer optimization approach solely based on the RNA-

Seq data. While the performance for those cases is decent, it is difficult to judge

whether a given transcript prediction is full length or fragmented by a gap in the

coverage. This decision should be taken using features from the genomic DNA

sequence and prior knowledge about the structure of genes like the existence of

open reading frames and length distributions of exons and introns.

In the following, we describe additional ideas and strategies that go beyond this

work, but will likely lead to additional improvements.

Combination of Methods We provide indirect means to integrate such prior

knowledge by accounting for known gene structures during the prediction step. How-

ever, it is non-trivial to take the confidence of these gene structures into account and

find new genes structures with similar features. The most promising approach is to

combine the powerful learning strategy of mGene.ngs with the MIP based inference

strategy of MiTie. In this case the MIP would replace the dynamic programming

based Viterbi algorithm. This would allow us to find transcripts that explain the

RNA-Seq coverage as good as possible and exhibit genomic features similar to genes

119
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in a training set. We have proposed this idea in the book chapter [9]. In order to

train such a system a training set with accurately annotated alternative transcripts

is needed. We think that using RNA-Seq data and a high quality genome annota-

tion it should be possible to compile such a training set, at least for commonly used

model organisms. The main challenge remaining is the computational complexity

for training such a system.

The implementation of the combination of both strategies lies beyond the scope of

this thesis. But we think that this is a very promising direction for further research,

given that both methods individually were shown to further the state-of-the-art in

transcriptome annotation.

RNA-Seq Library Normalization The extensive dynamic range of transcript ex-

pression levels renders the detection of lowly expressed transcripts very difficult. For

the mouse transcriptome data (cf. Section 5.5) we observed that 40% of the genes

have less than a hand full of reads mapped to them, although we can expect that a

considerable fraction of those genes are expressed at low levels.

In principle there are two possibilities to directly measure the expression of these

transcripts. First, the depletion of highly expressed transcripts from the cDNA

library by designing specific probes that capture those transcripts. Using duplex-

specific nucleases the captured transcripts can be degraded in solution [12]. This

can be accomplished because it is known that very few genes contribute the vast

majority of messenger RNAs in a given sample [12]. Second, the enrichment of lowly

expressed transcripts by designing specific probes against these transcripts. This

could be done cost efficiently using standard exome capture kits designed for DNA-

exome-sequencing. The rationality behind this strategy is that highly abundant

transcripts saturate the capture probes and remaining transcripts of the same type

will be washed away.

The benefit of the first technique is that the identification of transcripts is not

limited to the set of known and predicted transcripts, but the depletion will likely

be less effective than the enrichment strategy. However, with both techniques we

will likely miss lowly expressed isoforms of highly expressed genes. Both methods

will distort the quantitative information of the RNA-Seq data, but for the depletion

strategy we can expect relative transcript abundance values of genes not targeted

by the depletion probes to be largely conserved. In the enrichment scenario, relative

transcript abundance are only expected to be conserved between transcripts that

share the same probe target sites. Under the assumption that only full length

transcripts are removed from the library, MiTie is still applicable. We believe that

library normalization is a very promising approach, as it has already proven to be

effective in EST sequencing [105]. It may allow us to correct the transcript structures

of many lowly expressed genes and find a large number of so far uncharacterized
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transcripts even for well studied model organisms.

Third Generation Sequencing So called third-generation sequencing technologies

(3GS) [97] allow for direct measurement of large fractions or even full length RNA

molecules. But the throughput of these technologies is significantly lower than for

the second-generation sequencing. Therefore, a promising approach to obtain more

accurate transcript predictions for a large fraction of genes is to integrate both

types of measurements. There are several possible solutions for integrating 3GS

reads with MiTie. A straightforward and computational efficient way is to use the

paired end feature of MiTie to account for 3GS reads. By doing so, we impose

a fixed penalty on a solution that does not contain a pair of segments together

in at least one transcript, which has been confirmed by a 3GS reads to be in a

single transcript. The drawback of this solution is that we cannot guarantee that

the predicted transcripts are consistent with all confirmed fragments, although they

might fulfill all the pairwise segment occurrences.

A more accurate but also more expensive approach is to fix partial transcripts,

fully confirmed by 3GS reads, in the transcript matrix and let MiTie extend those

transcripts to full length. The penalty of those partial transcripts will be set lower

than for entirely newly predicted transcripts, to favor the selection of the frag-

ments. This strategy becomes computational costly, as soon as a large number of

incompatible or non-overlapping 3GS reads is available for a given gene. Moreover,

non-overlapping fragments, that originate from the same transcripts are not ideal

handled, because it might turn out to be favourable to use them in different tran-

scripts to avoid the expensive l0 regularization of completely new transcripts. This

undermines the idea of the l0 regularization.

This could again be overcome by a third approach to integrate 3GS reads. Here,

we would keep a list of 3GS fragments during the optimization and introduce binary

variables if one fragment has been explained by at least one transcript. This can be

accomplished by a single constraint per fragment. The l0 regularization would then

favour solutions where many compatible fragments are explained by a single tran-

script. Regarding the computational costs of this solution, we expect positive effects

due to the reduction in search space by induction of long range dependencies as well

as negative effects due to the additional binary variables. Therefore, the additional

computational cost of this approach will have to be determined empirically.

Interpretation of Results Even if the prediction of a given transcript is accurate,

it remains unclear whether the transcript has a biological function or appears as a

result of inaccurate splicing regulation. We have hypothesized [32] that the degrada-

tion of non functional transcripts known as nonsense mediated decay plays a major

role in shaping the transcriptome distribution of the model plant A. thaliana. The



122 Conclusion

underlying assumption is that the splicing process is stochastic and splicing regu-

lators influence the outcome not in a deterministic fashion, but rather change the

odds of splicing event. This results in a fraction of transcripts that is degraded

shortly after biosynthesis. Very sensitive transcript prediction approaches might

identify those biologically irrelevant transcripts and there is no direct way to avoid

this based on expression measurements only.

But the question of biological function can be answered by identifying phenotypic

consequences upon removal of a transcript or the encoded protein from a given

cell, tissue or individual. Various low and high throughput techniques exist for this

purpose. RNA interference screens for example deplete a given transcript from a set

of cells and observe phenotypic changes like growth or drug sensitivity. In addition

association of varying transcript expression with phenotypic changes can provide

hints to biological function.

In summary, we note that many biological and biomedical studies critically de-

pend on the accurate characterization of RNA compositions of biological samples.

However, the RGASP competition made apparent that gene finding systems using

RNA-Seq data as well as purely RNA-Seq-based methods have clear limitations in

terms of prediction accuracy. At the time of the RGASP competition, gene finding

systems outperformed pure RNA-Seq-based systems on average across the genome,

mainly because the performance of gene finding systems depends less on the expres-

sion level of genes. Interestingly, the performance gap is smallest for the human

genome, although we observe the largest fraction of uncovered genes for mammalian

genomes (cf. Figure 5.7). As discussed in Section 5.5.3, we can attribute this to

the increased difficulty of ab initio gene prediction in mammals. Since the RGASP

competition technological improvements (resulting in longer reads, less severe biases

and higher coverage) and methodological improvements, like the ones implemented

in MiTie, have substantially improved the performance of RNA-Seq-based methods,

while we expect gains of gene finding systems (still mainly relying on the genomic

DNA sequence) to be milder.

Therefore, we perceive the field to be shifting more towards purely RNA-Seq-

based methods, where we can soon expect even further improvements as discussed

previously in this section. The development of MiTie contributed to this positive

trend in two ways. First, by being applied in biological studies and second, we

observe that ideas implemented in MiTie fertilize other method developments in the

field.

Nevertheless, we do not expect that technological and methodological improve-

ments will result in accurate predictions for all transcripts purely based on RNA-Seq

data. For a considerable fraction of transcripts, we still have to rely on predictions

from gene finding systems, in particular, in cases where a gene is only expressed
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under specific environmental conditions. mGene has shown very favourable results

using genome and RNA-Seq-based features and we reckon that the flexibility of

mGene to take many types of high-throughput measurements simultaneously into

account will prove invaluable in future, with rapidly increasing amounts and types

of measurements becoming available.

Concluding, we think that the developments of this thesis contributed important

ideas to the transcriptome bioinformatics community and lead to more accurate

transcriptome reconstructions. We thereby facilitate a deeper understanding of RNA

regulatory mechanisms and further efforts to associate genotype and phenotype.
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A. mGene.ngs: Supplemental

Information

A.1. Availability and Documentation

mGene is available for download from www.mGene.org. The standalone version con-

tains several introductory command line scripts on small sized sample data guiding

the user through the most common use-cases.

A.2. Genomic Signal Prediction

mGene.ngs identifies several types of gene features based on the genomic DNA se-

quence content. In the following we describe how these signals are trained in practice.

Label Generation

The first step of creating genome-wide signal predictions is to create a training set for

each signal type. These training examples are then used to train binary classifiers.

If a genome annotation is available for training we compile training labels for all

signals directly from the genome annotation. In general we use the whole anno-

tation for signal training in a five fold cross-validation scheme to obtain unbiased

predictions.

In the case of full de novo predictions, we generate training examples directly

from RNA-Seq alignments if possible, or from transcripts predicted by Transcript

Skimmer. In the following we describe the details of this process.

Splice Sites We observed previously [108] that computational splice site predic-

tions greatly benefit from large training sets. We therefore decided to generate splice

site labels directly from RNA-Seq alignments, instead of using only splice sites be-

ing part of Transcript Skimmer predictions. We extract candidate splice sites from

splices alignments and select a confident subset using several filter criteria. We then

extract negative training examples from potentially exonic and intronic portions of

RNA-Seq alignments. For each alignment satisfying certain quality criteria, we ex-

tract all consensus positions from the first to the last alignment position. We then
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exclude the intersection of candidate positive and negatively labeled positions from

both sets and use the remaining positions for training.

Transcription and Translation Start and Termination We obtain training exam-

ples for TIS and TTS sites by computing maximal open reading frames for tran-

scripts predicted by transcript skimmer. We filter out cases where the maximal open

reading frame is either very short or not significantly longer than the second longest

open reading frame. Transcripts passing this filter are also used to generate labels

for transcription start and termination sites.

Figure A.1.: Visualization of positive (left) and negative (right) example sequences for the
acceptor splice site signal. Each column corresponds to one example sequence.
The nucleotides are encoded by dots of different colors. The sequences are
all of length 400 and the positive as well as the negative examples exhibit the
acceptor consensus ’AG’ at position 199.

A.2.1. Modeling of the Signals

Splice Sites Most U2-dependent introns are bound by GU-AG and GC-AG (donor-

acceptor site) splice sites, but at a very low rate also AU-AC bounded U2-dependent

splice sites can be found. The terminal nucleotides of U12-type introns are AU-AC,

GU-AG and few others at very low rates.

We modeled the splice sites using the canonical consensus GU-AG and GC-AG only.

A window of size 141 around the intron boundaries, with 80 nucleotides inside the

intron and 61 nucleotides of exonic sequence was used for training and prediction.

Accurate prediction can be done with a single weighted degree kernel or a weighted

degree kernel with shifts applied to the whole window, but additional spectrum

kernels for intronic and exonic content prediction improve the accuracy [108].
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Start and Stop Codons Our tool considers the canonical start (AUG) and stop

codons (UAG, UAA, UGA) and models these sites with a spectrum kernel on each

side of the consensus and a weighted degree kernel with shifts from -30 to 110 relative

to the consensus position. The spectrum kernels reach from -200 to 0 and from 0 to

180. The spectrum kernels are both weighted by 0.5 and the WD-kernel by 1.0.

Transcription Start Sites RNA polymerase II binds to the promoter region up-

stream of 5’-UTR and begins transcription not necessarily at a specific place but

rather within a range of about 40 nucleotides. Therefore, no specific consensus site

exists and often no single TSS can be pinned down [107]. We model the TSS sites

with a spectrum kernel from -600 to 100, a weighted degree kernel with shift from

-70 to 70 and another spectrum kernel from 0 to 900. The kernels are weighted

equally. We note that explicit modeling of specific elements of the promoter region

like the TATA-box and the cap-site is not necessary in this approach because the

spectrum kernels will catch such elements independently of their position and the

SVMs will regard them if they are discriminative.

Cleavage Sites The cleavage of an mRNA does not accurately occur at a specific

place [79], but usually 13 to 30 nucleotides downstream of a poly-A site. Thus like

for TSS sites, no strong consensus can be found. The cleavage site is modeled with

two spectrum kernels with windows from -400 to 100 and 0 to 800, respectively. A

WDS-kernel is used from -60 to 60. The kernels are weighted equally.

A.2.2. Estimation of posterior probabilities

In order to provide an interpretable and comparable confidence score of the SVM

predictions, we estimated the conditional likelihood P (y = 1|f(x)) of the true label y

being positive for a given SVM output value f(x). To do this, we applied a piecewise

linear function which was determined on the validation set (the same used for the

classifier model selection). We used the N = 50 quantiles taken on the SVM output

values as supporting points φi, i = 1, . . . , N . For convenience, denote φ0 = −∞. For

each point φi the corresponding π̂i-value, which represents the empirical probability

of being a true positive, was computed as π̂i =
nTPi
ni

, where ni (i = 1, . . . , N) is the

number of examples with output values φi−1 ≤ f(x) < φi and nTPi is the number of

true splice sites in the same output range. Additionally, we determined the empirical

cumulative probability as follows π̂ci =
(∑N

j=i n
TP
j

)/(∑N
j=i nj

)
. In order to obtain

a smooth and strictly monotonically increasing probability estimate, we solve the
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following quadratic optimization problem:

min
π,πc∈RN+

N∑
i=1

(si(π) + ti(π
c))

s.t. πi ≤ πci , for all i = 1, . . . , N

πi ≤ πi+1 − ε, for all i = 1, . . . , N − 1

πci ≤ πci+1 − ε, for all i = 1, . . . , N − 1,

where ε = 10−4 is a small constant ensuring that the functions are strictly monotoni-

cally increasing and si(π) = ni∑N
j=1 nj

(πi− π̂i)2 and ti(π
c) =

∑N
j=i nj∑N
j=1 nj

(πci − π̂ci )2 ensuring

that big differences between the final and empirical estimates in ranges with many
outputs are penalized stronger. Using the newly computed values π1, . . . , πN , we can
compute for any output value f(x) the corresponding posterior probability estimate
P (y = 1|f(x)) by linear interpolation

P (y = 1|f(x)) ≈


π1 for f(x) < φ1

r(φi, φi+1) for φi ≤ f(x) < φi+1

πN for f(x) ≥ φN
,

where r(φi, φi+1) = πi+1(f(x)−φi)+πi(φi+1−f(x))
φi+1−φi . The cumulative posterior probability

P c(y = 1|f(x)) is computed analogously. The above estimation procedure was

performed separately for every classifier.

Performance Measurements

In hypothesis testing two kinds of errors are known. A type I error is to reject the

null hypothesis (in our case: the position is a decoy site) if the null hypothesis is in

fact true. A type II error occurs if the alternative hypothesis (the position is a true

signal site) is rejected, when it is true. Positions that underlie the type I error are

called false positives (FP=#false positives), whereas those underlying the type II

error are referred to as false negatives (FN=#false negatives). Correctly classified

examples are named equivalently as true positives (TP = #true positives) and true

negatives (TN = #true negatives).

The true positive rate (TPR, =sensitivity, =recall) is defined as TP
TP+FN

. The false

positive rate (FPR) is defined as FP
FP+TN

. The specificity is defined by 1−FPR. Set-

ting the threshold for classification to different values leads to different (TPR, FPR)

pairs. Plotting these values against each other leads to the receiver operating char-

acteristic (ROC).

The precision is defined as 1 − FDR = FP
FP+TP

. Plotting precision against sen-

sitivity (recall) leads to the precision-recall curve (PRC). The areas under these
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curves (auROC, auPRC) are derived by linear interpolation serve as single-number

performance measurements.

A.3. RGASP

Table A.1.: Overview of rGASP data sets. Data sets marked with P2 were provided in the
second round of the rGASP competition. Sequencing parameters: single-end
(s), paired-end (p), strand-specific (ss) read length in base pairs (bp)

Tissue RNA extraction Sequencing Sequencing
technology parameters

Homo sapiens
Cell line K562 total RNA Illumina s-33bp
Cell line K562 total RNA Illumina p-75bp
Cell line GM12878 total RNA Illumina s-33bp
Cell line GM12878 total RNA Illumina p-75bp
Cell line K562 cytosolic RNA Illumina s-ss-36bp
Cell line K562 cytosolic RNA SOLiD 36bp
Cell line GM12878 cytosolic RNA SOLiD 36bp
Cell line K562 cytosolic RNA Helicos 31bp
Cell line HepG2 (P2) total RNA Illumina p-75bp

Drosophila melanogaster
Cell line S2-DRSC total RNA Illumina p-37bp
Cell line S2-DRSC total RNA Illumina s-75bp
Cell line CME-W1-CI total RNA Illumina p-37bp
Cell line Kc167 total RNA Illumina p-37bp
Cell line Kc167 total RNA Illumina s-36bp
Cell line ML-DmBG3-c2 total RNA Illumina p-37bp
L3 stage larvae (P2) total RNA Illumina p-75bp

Caenorhabditis elegans
Early embryo total RNA Illumina s-36bp
Late embryo total RNA Illumina s-36bp
mid-L1 total RNA Illumina p-36bp
mid-L2 total RNA Illumina s-36bp
mid-L3 total RNA Illumina s-36bp
mid-L4 total RNA Illumina s-36bp
Young adult total RNA Illumina s-36bp
L3 live stage (P2) total RNA Illumina p-76bp
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B.1. Availability and Documentation

The MITIE code including documented scripts on sample data are available from

git@github.com:ratschlab/MiTie.git. Additional information is available from

www.bioweb.me/mitie.

B.2. Read simulation

The reads were simulated using the flux simulator [41]. The gene expression values

cg (sum over transcript mRNA copy numbers) for gene g was given by

cg =

√
m

xg
× e−

xg
x1
−xg
x1

2

Where m = 108, x1 = 2, 000 and xg is randomly chosen without replacement from

the natural numbers from 1 to x1. Therefore, cg values range from 60 to 9, 980 with

an average of 567. Gene expression values were then distributed over the transcripts

based on a stick breaking process resulting in an exponential decay of the number

of reads per transcript. Read length was set to 75bp, library preparation simulation

parameters were chosen to be ”random priming” and ”chemical fragmentation”.

We simulated sequencing errors by estimating an error model based on an Illumina

sequencing run [HepG2 Encode cell lines, 36] The error model computes a mutation

probability based on read quality scores, while error positions are assumed to be

independent. A set of read quality strings was sampled from the same Illumina run

and randomly assigned to a read. Thus, we obtain a read error distribution similar

to a given Illumina run. This strategy is implemented in the PALMapper package

[27, 55].

B.3. Read Alignment

Reads were aligned against the human reference genome hg19 using PALMapper [55].

We performed very sensitive alignments allowing up to 10 mismatches and 2 gaps
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(but at most 10 edit operations in total). Splice site predictions were made with the

mGene toolbox [92, 100, 108]. Reads for which no full length match could be found

were trimmed in steps of 5 nt until they could be matched or a minimum length

of 40 nt was reached. Junction remapping was allowed with a junction coverage

greater than 2. All further options are summarized below:

-l 10 -L 20 -K 12 -C 30 -I 200000 -NI 2 -SA 100 -CT 50 -a -S

-seed-hit-cancel-threshold 1000 -report-splice-sites 0.95

-filter-splice-region 5 -qpalma-use-map-max-len 2000

-qpalma-prb-offset-fix -min-spliced-segment-len 8

-report-splice-sites-top-perc 0.01

B.4. Splicing Graph Generation

We generate the splicing graphs in four major steps from aligned RNA-Seq reads:

1. Genomic region identification: For genes where at least one transcript was

known we used genomic regions starting 50000 bases upstream of the tran-

script start to 50000 based downstream of the transcript end to account for

potentially significantly longer transcript. We then trimmed the regions if

we found a gap in read coverage of more than 100 bases that was also not

overlapped by spliced reads. Other parts of the genome were segmented into

regions based on a map adding per position coverage, number of spliced reads

spanning a position and number of read-pairs spanning a position. Whenever

the value of this map exceeds a user defined threshold (default 2) we call a

region. We join neighboring regions with a distance of less than 50 bases and

finally, we discard regions with fewer than a user defined number of reads

(default 50).

2. Segment identification: Given a genomic region, we construct splicing graphs

by generating a list of segment boundaries. Boundaries are either splice sites

(SS), potential transcription start sites (TSS) and termination sites (TTS). Po-

tential SS positions can originate from spliced reads or annotated transcripts.

Analogously, TSS and TTS sites can stem from annotated transcripts or from

potential transcript start and end positions inferred from RNA-Seq coverage.

We identify possible start and end positions as a) drop of the read coverage

to zero or b) steep drops in read coverage. The latter we find by applying a

statistical test as follows. For each segment, we use a sliding window of length

60 and compare the number of read starts (ends) in the first half of the window

to the corresponding number in the second half of the window in case of TSS
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(TTS). We apply a binomial test on the obtained counts and call a TSS/TTS

site, if the p-value is smaller than 10−4.

3. Exon identification: We keep segments that a) have more than 5% of their

nucleotides covered, b) are part of annotated transcripts, or c) if the removal

of segment s does not leave any path between two segments connected by

paired-end reads (if available).

4. Intron identification: We connect segments based on spliced reads and anno-

tated introns.

See Figure 6.4 for more details.

B.5. Number of Paths in Human Segment Graph

We merged the four human genome annotations [Ensembl, HAVANNA, ENCODE,

Vega, see 22, 36, 37, 44] by concatenating the transcripts and generated a splicing

graph. We then extended the splicing graph by adding evidence from two RNA-Seq

libraries for cell lines HepG2 (wgEncodeCshlLongRnaSeqHepg2CellLongnonpolyaAlnRep2.bam)

and K562 (wgEncodeCshlLongRnaSeqK562CellPapAlnRep1.bam) from http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/ [36].

B.6. Transcript identification with exact information

The regions in Figure 6.7A summarize genomic positions sharing the same compo-

sition of overlapping transcripts. If we assume to know the number of expressed

transcripts in advance (3 transcripts in this case), then we know that at least five

of the unknowns are equal to zero. If we randomly select 5 unknowns and set them

to zero, then this results in a system of four equations and three unknowns which is

either infeasible or has exactly one solution. If it is infeasible, we know that the three

remaining transcripts cannot explain the read coverage. Otherwise, we found one

possible solution. We iterate this by setting all possible permutations of transcripts

to zero and count the number of cases the corresponding system of equations has a

solution.

B.7. Transcript prediction with Cufflinks

Model selection for MITIE optimized the F-score on transcript level. Doing the

same for Cufflinks results in sub-optimal predictions when samples are merged with

Cuffmerge. Thus, the main text shows the Cufflinks+Cuffmerge combination, where

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
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the mean of sensitivity and specificity was optimized for Cufflinks. Figure B.1 shows

the sensitivity and specificity for all predictions also shown in Figure 6.10A and in

addition the result for the F-score optimized version. We note that if we optimize

the same criterion for Cufflinks and MiTie then MiTie predictions significantly out-

perform Cufflinks predictions in sensitivity as well as in specificity. Furthermore, we

note that ranking methods based on the mean of sensitivity and specificity favors

trivial and meaningless solutions. One example for such a trivial solution is to select

only a single high confidence transcript prediction for the whole genome which if

correct results in an mean(SN, SP) of 50%, but a F-score close to zero. For each of

the eight optimized Cufflinks parameters we tried seven values. Thus we performed

56 predictions for each optimization criterion (112 in total). Tested values were

equally distributed in log-space from default value divided by five to default value

times five. All optimized parameters are shown in Table B.1

Table B.1.: Optimized Cufflinks parameters

Parameter name Default value Optimized F-score Optimized mean(SN, SP)

–min-isoform-fraction 0.1 0.1 0.29
–pre-mrna-fraction 0.15 0.26 0.26
–junc-alpha 0.001 0.001 0.001
–small-anchor-fraction 0.09 0.09 0.09
–min-frags-per-transfrag 10 10 50
–overhang-tolerance 8 8 8
–trim-3-avgcov-thresh 10 10 10
–trim-3-dropoff-frac 0.1 0.1 0.1
Cuffmerge:
–min-isoform-fraction 0.25 0.25 0.25

We combined the different cufflinks predictions using Cuffmerge and also opti-

mized the hyper-parameter ”–min-isoform-fraction” of the Cuffmerge tool. Sensi-

tivity and specificity of the predictions are shown in (Suppl. Figure B.1).

For the D. melanogaster data set we performed Cufflinks predictions with default

parameters. The parameter values optimized for the human artificial data are not

likely to perform better in this setting, since data as well as the evaluation criterion

have changed. Performing the same model selection on genome wide data was

computationally prohibitive.

B.8. Transcript prediction based on Trinity graphs

We parsed the graphs and read counts for all components from files ”comp*.out”

and collapsed linear portions of the graph. We then resolved cycles by removing
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Figure B.1.: Sensitivity and specificity of different Cufflinks and MITIE predictions.

self loops and cutting each larger cycle at the first node on the path from an initial

segment which is also part of the cycle. We then defined a total order of nodes and

ran the MiTie optimization. For simple cases with less than 9 paths we did not run

MiTie, but reported all possible paths instead.

B.9. Model selection

Following ideas from [104], we used Gaussian Processes (GP) to find optimal hyper-

parameters for MiTie on the respective training sets. We employed the GP imple-

mentation provided by [90]. We trained a GP to predict the performance of our

algorithm by randomly choosing initial parameter vectors and 20 training examples

from the training set. As target values for the GP, we chose the F-score on transcript

level. In each iteration, we randomly sampled parameter vectors and selected the

one for evaluation. As selection criterion, we used the maximal upper confidence

bound ucb:

ucb = µy + γσy

Where µy and σy are the mean and standard deviation of the predictive distribution

of the GP. γ is a hyper-parameter of the model selection strategy and was chosen to

be 2. We iterated until we had 100 data points. Finally, we selected the parameter

combination with maximal lower confidence bound (lbc) to predict on the test set.
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The lbs can be computed as:

lcb = µy − γσy

The rationale behind this strategy is to explore the space and choose new parameter

vectors that might lead to good performance (vectors with high predicted mean and

high variance), but finally to select a vector with a high mean and low variance to

achieve good performance with high confidence. We optimized the regularization

parameters for (1) the number of transcripts (2) the intron coverage fit, (3) the

paired-end penalty term and (4) the exonic segment read count fit. We did not

include parameters η1 and η2 into the model selection. We found that choices of 1.2

and 0.0 worked consistently well in all experiments.

B.10. Transcript Evaluation

We evaluate against a set of annotated genes by first finding all transcripts over-

lapping with a given gene. We then compute a binary match score for each pair of

transcripts according to the criteria described in Section 6.5.2. We then computed

a maximal matching to find pairs of annotated and predicted transcripts such that

the total number of correct matches is maximal. The number of matching pairs is

taken as the number of true positive predictions, when computing sensitivity and

specificity of the methods. Clearly, no annotated and no predicted transcript is

allowed to be part of more than one such pair. All predicted transcripts not being

part of a matching pair are counted as false positives and all annotated transcripts

not being part of a matching pair are counted as false negatives.



C. Learning Theory of Support

Vector Machines

In this section, we recapitulate learning theoretic results for SVMs. In the following,

we show that a linear separator in the M dimensional space has VC-dimension

h = M + 1 [cf. 80].

VC-dimension of Linear Separators in RM First we proof a lower bound h ≥
M + 1 and finally we proof the upper bound h < M + 2. We choose the M + 1

data points as: xM+1 = {0}M and for i = 1, ...,M xi is the point where all but

the ith coordinate are zero and the ith coordinate is equal to one. Given a labeling

y1, ..., yM+1 we choose the parameters as wi = yi∀i = 1, ...,M and b = 0.5 · yM+1.

Substituting into 4.27 we obtain a misclassification rate equal to zero.

Using Radon’s theorem [130] we can proof that the VC-dimension of a linear

separator in an M -dimensional space is less than M+2. Given a set of M+2 points

x1, ..., xM+2 ∈ RM we can find multipliers a1, ..., aM+2 ∈ R such that:

M+2∑
i=0

ai · xi = 0 (C.1)

M+2∑
i=0

ai = 0 (C.2)

We solve this system of M + 1 equations and M + 2 variables and fix any solution

where not all multipliers are zero. This ensures that there is a non empty set of

positive multipliers I and a non empty set of negative multipliers J . We can split
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the sum in equation C.1:

M+2∑
i=0

ai · xi = 0 (C.3)∑
i∈I

ai · xi +
∑
j∈J

aj · xj = 0 (C.4)∑
i∈I

ai · xi =
∑
j∈J

−aj · xj (C.5)

∑
i∈I

ai∑
i∈I ai

· xi =
∑
j∈J

−aj∑
j∈J aj

· xj (C.6)

Equation C.6 proofs the existence of a point that is element of the convex hull of

both sets I and J and therefore the sets cannot be separated linearly. Thus, for any

set of M + 2 points we have found a labeling of the points corresponding to the sign

of the multipliers such that the points are not linearly separable. q.e.d.

Substituting h = M + 1 into 4.24 leads to poor generalization bounds especially

when we apply kernel functions with very large or even infinite dimensional fea-

ture spaces. In the following section, we will discuss results for significantly better

generalization bounds. By taking into account that the SVM does not choose any

separating hyperplane, but the one with maximal margin and allows misclassifica-

tion of training data (even if the data is separable) significantly better generalization

bounds have been proven.

VC Dimension of Support Vector Machines Vapnik [124] showed that a hyper-

plane separating classes with margin ρ has a VC dimension of:

h = min(
D2

ρ2
,M) + 1 (C.7)

Where D is the diameter of the smallest sphere in feature space that encloses all

training examples. With ρ = 2
‖w‖ this result justifies the SVM regularizer minimizing

the l2 norm of w. This result has strong implications when considering kernels

associated with very high dimensional, but sparse feature spaces, like string kernels.

Considering the weighted degree kernel with degree K on strings of length L on

alphabet Σ. The dimensionality of the feature space is in
∑K

k=1(L − k) · |Σ|k. We

know that each example x has the same l2 norm ‖x‖ < K · L, which gives:

D < K · L�M =
K∑
k=1

(L− k) · |Σ|k
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This result can be used to proof an upper bound on the risk R [76]:

E[R] ≤ E

[
D2 ·

∑N
i=1 ζi

ρ2 ·N

]
(C.8)

Where
∑N

i=1 ζi is a measure for the training error. This result could be further

improved by Vapnik and Chapelle [123]:

E[R] ≤ E

[
S ·max(D, 1√

C
) · A+m

N

]
(C.9)

Where S is the maximal distance of one support vector to a linear combination of all

other support vectors. A is the sum over all Lagrange multipliers αi with αi < C and

m is the number of Lagrange multipliers with αi = C. Note that for all i = 1, ..., N

0 ≤ αi ≤ C.
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Karls Universität Tübingen, 2011. supervised by Gunnar Rätsch.
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[107] S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: accurate recognition of transcription starts

in human. Bioinformatics, 22(14):e472–80, 2006.

[108] S. Sonnenburg, G. Schweikert, P. Philips, J. Behr, and G. Rätsch. Accurate splice site
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