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Abstract

Modern genomics entered a new era with the invention of next-generation sequencing
techniques. Technical progress, high throughput and reasonably cheap costs of the
systems enable us to look into the genomic sequences of whole communities or even
extinct species. In the first part of this work we present and discuss state-of-the-art
methods for analyzing metagenomes efficiently. As the assignment of sequencing reads
to known species or functions is one key element in the analysis we discuss currently
used methods. Those methods are usually either slow or do not provide all necessary
information, such as genome alignments, for a detailed analysis. Here we present a novel
approach, which is faster compared to previous methods while still providing genome
alignments. Database composition and the assignment of database entries to species
or functions is an equally important step during a metagenomic analysis. We inspect
how well the taxonomy is covered by commonly used databases such as the NCBI-NR
database. We also evaluate the efficiency of assignment methods using either plain text
or RefSeq accession numbers to map reference sequences to taxa or functions. In this
context we present a method using a the GenBank identifier for classifying reference
sequences. Validation using an in vitro simulated metagenomic dataset shows that the
new approach can assign more reads to function or taxa. At the same time the new
approach is more specific than the previously used methods.

The huge amounts of data and the steadily increasing number of samples require an
initial investment of time and effort to be able to analyze the incoming data efficiently.
Interdisciplinary work and external collaboration partners emphasize the need for a
flexible approach to present intermediate steps during the analysis and sharing of the
final results. Here we present a local instance of the workflow system galaxy which was
used in the different projects throughout this thesis.

In the second part of this thesis we analyze ancient DNA samples which are suspected
to be infected with ancient M. tuberculosis. Ancient strains have the potential of giving
insight into evolution and distribution of extinct pathogens. Screening for potentially
interesting samples was done using a whole genome shotgun approach. An additional
screening was performed by sequencing samples which were enriched for four specific
genes. For the final analysis we performed a genome wide enrichment prior to sequencing
as ancient samples often yield only very low amounts of DNA. Design of the enrichment
chip is discussed as well as the subsequent analysis. In the end of the analysis consensus
sequences for three ancient strains are calculated. Single nucleotide polymorphisms are
determined as a base for a downstream phylogentic analysis.
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"The story so far:
In the beginning the Universe was created.
This has made a lot of people very angry and been widely regarded as a bad move."
Douglas Adams, The Restaurant at the End of the Universe






CHAPTER 1

Introduction

All known forms of life on our planet rely on a macromolecule called Deoxyribonucleic acid (DNA)
to define their complete genome. The genome of the organism determines all reactions within
each single cell and is therefore responsible for the whole appearance, the fitness and even up
to some part the behavior of the organism in question. To achieve this the DNA encodes for a
huge number of other macromolecules which are mediating between, code for or interact with
proteins and regulatory structures. Even with the observed diversity of life in all habitats of earth,
organisms share the same genomic content up to some point. The size of the shared information
varies from only single genes over basic cell functions or pathways up to complete body features.
The information shared between different organisms depend on their common evolutionary
history.

More than 150 years after the initial discovery of the DNA by Friedrich Miescher in 1869, we
are able to read the complete genomic content of a single organism in reasonable time and costs.
Especially in the last 20 years DNA sequencing made huge steps forward catapulting modern
biology into a new area.

Projects like the Human Genome Project (HGP) [1, 2] helped in focusing money and scientists
and were a major motor in the development of new technologies. With the HGP finished in 2003
after 13 years of runtime the race for the $1,000 Genome was started. In January 2013 the Archon
Genomics X-Price [3] started offering a reward of $10 million for the first team or company which
manages to achieve this ambitious goal.

Nevertheless reading and understanding the genomic code and its function are two separate
sides of the coin, so voices increasingly reminding us to keep the big picture in mind (e.g. "The
$1,000 genome, the $100,000 analysis?"[4]).

This thesis discusses two fields descending from classic genomics: Metagenomics and ancient
DNA research.



1 Introduction

Metagenomics

Compared to genomics the field of metagenomics is a pretty young field and after 15 years of
the first metagenomic study [5] published it is still vastly changing. Especially the introduction
of newly developed sequencing methods enabled even smaller labs to undertake their own
metagenomic studies.

Metagenomics is often defined as the science of analyzing the genomic content of an environ-
mental sample. Popular locations are either nature samples such as soil and water or host-based
(e.g. gut, nose etc.).

One motivation of metagenomics is the fact that only a fraction of the microbes can be cultured
at a lab. Estimates suggest that 99.6% of the human microbiota can not be cultured through lab
techniques [6]. The sole investigation of the remaining 0.4% for sure neglects the full potential,
wastes a huge amount of information and hinders the full understanding of the whole community
as it is. Another aspect is the chance of understanding microbial communities and interaction on
various levels as seen in their natural environment. Early and popular projects such as the Sargasso
Sea Survey [7] already employed whole genome shotgun (WGS) sequencing, but also targeted
sequencing approaches exist. Targeted sequencing approaches often focus on phylogenetic
markers such as 165 rRNA to reconstruct taxonomic composition of the samples whereas WGS
projects have the advantage of possibly identifying novel genes and function previously not
known.

Big projects such as the Human Microbiome Project [8] investigate microbe-community-host-
interaction and are pushing general development and interest forward.

Sampling the environment and library preparation of the sample have their own challenges,
but globally seen there are typical questions in each metagenomic project which need to be
addressed by the downstream analysis.

Over the years various computational tools have been published to help analyzing metagenomes.
The range of tools varies from database comparison tools [9, 10] over phylogentic predictors
[11, 12] and visualisation tools [13] and finally to complete analysis pipelines [14, 15].

Despite the developments there is still need for new analysis methods as samples, databases,
data volumes and complexity tend to grow rapidly [16]. This thesis will cover the different
problems in detail and discusses novel approaches to solve them.

Ancient DNA Research

Nearly twice as old as the field of metagenomics is the field of ancient DNA (aDNA) research.
The first publications now date back nearly 30 years [17, 18] using clonal amplification before the
invention of PCR. Those early studies of aDNA already revealed that recovered aDNA mainly
consists of damaged and short fragmented DNA in very low concentration. High copy number
regions such as the mitochondrial DNA were yielding the best results. Protocols using PCR
enabled the investigation of very low amounts of (endogenous) aDNA but also increase the
potential of possible contamination during lab processes. The introduction of modern sequencing
technologies literally amplified the impact that PCR made to the field and enabled various
exciting publications. Publications describing the (draft) genomes of the extinct wolly mammoth
[19] and Neanderthal [20] demonstrate that increased throughput now allows nearly full genome



sequencing of ancient samples. But even with new technologies contamination with modern
DNA, DNA concentration and DNA damage are major concerns of modern aDNA research
[21, 22].

The ability to investigate extinct species is especially interesting with respect to pathogen
evolution. Recent studies [23, 24] were able to reconstruct ancient strains enabling an unique
view into the past. This work will investigate multiple ancient samples of remains which are
suspected to be infected with Mycobacterium tuberculosis and discuss challenges met along the
way. This includes different wet-lab approaches as well as computational solutions.

Overview

Metagenomics and ancient DNA research both challenge current analysis methods with the
complexity of the sample and the huge amount of data.

In the first part of the thesis we present and discuss current and novel computational approaches
for analyzing metagenomes.

For this we first introduce current sequencing technologies and modern methods in genomics
in Chapter 2. We will also focus on specific metagenomic needs during the analysis. Chapter 4
will introduce methods for quality control to assure a high standard analysis. Assigning reads to
specific species or functions which is a demanding task is discussed in Chapter 5 where also a
novel hybrid method for classification of metagenomic reads is presented.

Database accuracy and mapping efficiency of downstream analysis is evaluated in Chapter 6
including suggestions for further improvements.

The last section of the first part introduces a workflow management system to enable multiple
investigators easy and reproducible access to the same data.

In the second part of the thesis we focus on the investigation of ancient DNA. DNA in all
non-living organisms is subject to change forced on it by the environment resulting in specific
needs during the analysis. Chapter 8 will introduce systematic modifications encountered
during aDNA research. This chapter will also introduce current theories of the evolution of
Mycobacterium tuberculosis. In Section 8.2 we investigate aDNA samples using three different
approaches including a specifically designed capture array to optimize the amount of sequenced
aDNA of interest.

Conclusion and outlook in Part IV will summarize our findings and discusses potential fields
for further research.






Part 1

Background on Sequencing,
Genomics and Metagenomics






This part introduces the technologies and methods building the foundation for genomics and
metagenomics. In the beginning we will present state-of-the-art sequencing technologies as a
base for all following analysis and discuss the advantages and drawbacks of the current methods.
We will introduce common approaches and challenges in the field of metagenomics. The last

chapter of this part focuses on special computational challenges.






CHAPTER 2

Technology: Sequencing

Completing the first full sequence of the human genome was a milestone for modern genomics.
Only 10 years later modern genomics has evolved into a field with a many interesting subjects at
least as exciting as the beginning questions.

In this chapter we will present the history and state of the art methods of DNA sequencing
and give an introduction into genomics and metagenomics. After discussing basic questions and
challenges we focus on challenges related to the computational analysis.

2.1 Sequencing Technologies

The genomic content of an organism is described by a sequence consisting only of the four bases
adenine (A), cytosine (C), guanine (G), and thymine (T). Reading and determining the order of the
recurring bases forming the genetic code is referred to as DNA sequencing.

In the end of the 1970s the first two methods for DNA sequencing were developed by Maxam
and Gilbert [25] as well as Sanger et al. [26]. Up to now the procedures advanced and were
supplemented or replaced by new technologies. By the end of 2012 we have multiple sequencing
technologies available ranging from the first generation of Sanger Sequencing, over massively
parallel sequencing up to single molecule sequencing.

Only with few exceptions the basic approach for sequencing is to mimic or use the function
of DNA polymerase to synthesize a new strand based on a DNA template out of modified
deoxyribonucleotides (INTPs). The different technologies now use various techniques to determine
the order and amount of nucleotides incorporated and therefore can reconstruct the original
sequence of the template DNA strand. Detection is mainly based on optical systems, but also a
few different promising systems are on the market. Although most systems share the basic idea,
they differ in the exact execution as well as preparation, efficiency and potential biases.
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2 Technology: Sequencing

2.1.1 Sanger sequencing

The original Sanger sequencing method [26] is based on chain termination techniques which uses
modified bases missing a 3’-hydroxy group inhibiting further extension of the DNA strand. Those
dideoxyribonucleoside triphospates (ddNTPs) where originally radioactively labeled and mixed with
unmodified dNTPs, which don’t stop the elongation of the strand. Only a fraction of ddNTPs
were mixed with dNTPs. This proportion ensures that the copy process was stopped only on a
random basis. Using a DNA polymerase together with a primer and the mix the sequence of
interest gets amplified. During this process the DNA polymerase gets repeatedly stopped by
ddNTPs, resulting in multiple strands of different length with the last base labeled. Using a gel
electrophoresis the fragments can be ordered by their length, representing the complement DNA
sequence of the template. Over the years Sanger sequencing was modified further including non
radioactive labeling, automating of the process and various other improvements. Up until today
for some people Sanger sequencing is still the gold standard in sequencing [27].

2.1.2 Massively Parallel sequencing

With the advent of new sequencing technologies the term next generation or second generation
sequencing was coined to describe new technologies trying to succeed Sanger sequencing. The
rapid developments with more and more new techniques makes it difficult to draw the line
between second generation sequencing and third or even forth generations. Most new methods
have in common that template DNA is shattered into fragments and then amplified to a specific
amount to facilitate detection of the signals generated during nucleotide incorporation. For
this the fragments need to be immobilized to ensure that multiple copies of the strands are
at close physical range. The most common techniques for amplification of the template DNA
are emulsion-PCR [28] and bridge amplification [29]. Emulsion-PCR binds single strand DNA
templates to beads and encapsulates them into tiny bioreactors within an emulsion. The DNA
is then amplified on the surface of the bead. After amplification the beads are placed into
micro-wells where the sequencing reaction will take place. Bridge amplification uses adaptors
to attach template strands to a surface on which they are clonally amplified. The surface later
contains clusters of DNA representing a single template at high spatial concentration, amplifying
the signal generated during sequencing.

With the new approaches in development a new sub-type of sequencing was developed and
defined as mate-pair or paired-end sequencing. This model is supported by multiple sequencing
technologies and based on the library preparation prior to amplification. The new method has
the advantage of getting pairs of reads from the same strand with a known orientation and
distance between them. Downstream analysis strongly benefits from mate-pair libraries, because
e.g. regions longer than the single read length can be resolved. This can be beneficial if there are
repetitive elements included in the original strand.

Besides their similarities and differences in template preparation and amplification the modern
technologies use different methods to read the DNA template. We therefore describe different
technologies based on their underlying method used for sequence detection.

Pyrosequencing. In 1986 Nyrén [30] developed a method introducing bioluminescence to mea-
sure nucleotide incorporation during DNA synthesis. Nearly 20 years later Margulies et
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2.1 Sequencing Technologies

al. [31] published the first massively parallel approach using bioluminescence for DNA
sequencing.

The approach is based on a complex enzymatic reaction resulting in light emission during
strand elongation. With intermediate steps adenosine triphospate (ATP) is produced which
is then used by the firefly enzyme luciferase to emit a light signal which can be detected.
Alternating the base nucleotides each round, capturing the light signal and removing left
over dNTPs one is able to determine the sequence of the template sequence. Pyrosequencing
uses emulsion-PCR for amplification and immobilization of template DNA.

454 Life Sciences developed the commercial applications and distributes the Genome
Sequencers (GS) Junior and FLX(+) using Pyrosequencing. Their newest system claims to
have read lengths up to 1,000 bps with a total of approximately 700 mega-bases per run.
The company was founded by Rothberg and is since 2007 part of Roche.

Reversible dye termination. The initial method is based on work by Turcatti et al. [32, 33] and
was later adopted by the company Solexa in 2001 which entered the market in 2006 as
the Genome Analyzer. Illumina bought Solaxa in the beginning of 2007. The company now
offers various different sequencers called HiSeq, MiSeq or Genome Analyzer. The latest
models reach read lengths up to 2x100 base pairs and a throughput of 600 giga-bases per

run.

The reversible dye termination technology uses dye-labeled and further modified nu-
cleotides that pause strand elongation after incorporation of one base. The incorporated
nucleotide is detected by a optical device based on its color. After this, the dye and termi-
nation end of the nucleotide is removed leaving an unblocked 3’-end allowing the DNA
polymerase to continue and the next cycle begins.

The underlying protocol uses bridge amplification for preparation of the template DNA.

Sequencing by ligation. Both previously presented techniques implement a sequence by synthe-
sis (SBS) approach to read the nucleotide composition of the DNA strand. The next method
presented uses a sequencing by ligation technique which uses DNA ligases instead of DNA
polymerases to achieve this goal.

The commercial application Sequencing by Oligonucleotide Ligation and Detection system
(SOLID) is based on the work of Shendure et al. published 2005 [34] and entered the market
2007.

The method uses special octamers acting as probes with two known nucleotides and six
degenerated or universal nucleotides. After only perfectly hybridized probes are joined by
the ligase the incorporated two nucleotides are detected by the dye the probe is label with.
The SOLID system uses a degenerated color code with only four different dyes encoding
for four different octamers. After dye detection the last three bases are removed and a new
octamer is hybridized. This results in every fifth base to be read. Completing a specific
number of cycles the whole primer and hybridization product gets removed and a new
round starts with the starting position being shifted one base upstream.

SOLID is now distributed by Life Technologies after acquiring Applied Biosystems. The
current models 5500 W and 5500x] W offer a read length of 75bp with a maximum of 320
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2 Technology: Sequencing

giga-bases of throughput per run. Early ABI SOLID sequencers use emulsion-PCR similar
to pyrosequencing. In 2012 Life Technologies announced the introduction of the "Wildfire"
library preparation for their newest models. Wildfire is similar to bridge amplification used
by Illumina’s sequencers and claims to achieve a reduction in library preparation time and
costs.

lon Sensitive detection. The so called lon torrent technology is base on detecting small voltage
changes as results from the incorporation of nucleotides [35, 36]. The template strands
are amplified using emulsion-PCR and put into micro-wells on a semiconductor chip.
Each well includes a sensor which can measure free protons. The wells are flooded with
a predetermined sequence of nucleotides so the sequencer knows the sequence of the
incorporated base. Ion torrent is distributed by Life Technologies and claims that with the
release of the new Ion Proton II chip a sample-to variant analysis with 20x fold coverage of
the human genome will be possible within a single day.

Single-molecule sequencing

Besides the already presented massively parallel sequencing technologies there are ambitions to
sequence a single DNA molecule in one read. Companies offering single molecule sequencing
approaches are Helicos Biosciences, Pacific Biosciences, and Oxford Nanopore Technologies. Although
their different approaches are highly interesting and promise to yield good results in the future
single molecule sequencing has not managed to compete with the massively parallel approaches
yet. Up to now single molecule sequencing has no broad audience in genomics and metagenomics
and therefore we will not discuss these technologies further.

2.1.3 Sources of Error and Challenges

The previous sections illustrated different technologies for sequencing DNA molecules. Though
they differ in their approach some technologies share a potential methodical bias.

The complex system of modern sequencers, the required library preparation, and constantly
updated chemistry makes it difficult to asses the introduced biases completely. It has been shown
that certain protocols have problems with various genetic features such as high GC-content, high
AT-content or regions interfering with primer ligation [37, 38]. A general observation is that
sequencing quality drops towards the maximum read length the current technology is offering.
Specific errors of sequencing chemistry and their underlying causes are not scope of this thesis.
We will therefore only briefly discuss typical errors for the different sequencing technologies.

PCR artifacts or other amplification errors play a role for the massively parallel sequencing
approaches because the rely on a high copy number of the template DNA strand to get clear
signals. GC-content or primer selection may interfere with the correct amplification or clus-
ter generation prior to sequencing [37]. This may result in an over- or underrepresentation
of specific genomic regions of the sequenced genome [39, 40].

Indels The pyrosequencing and Ion-torrent technologies have problems when sequencing homopolymer-
runs. This is due to the fact that with the increasing incorporation rate of the same nu-
cleotide at the same time it gets more difficult to calculate the exact number of nucleotides

14



2.1 Sequencing Technologies

incorporated. The visual or electrical signal should behave in a predetermined way, but
errors may occur if signals do not behave linear. Especially tools using translated nucleotide
sequences for analysis may have problem with this type of error, because of the resulting
frame shift during DNA to protein translation [41].

Substitutions Dye termination and ligation sequencing do not suffer from problems of homopoly-
mers, because only one nucleotide is incorporated at the same time. Cluster density and
other factors may play a role that the color determined, representing a specific base, may be
wrong. This leads to substitutions in the DNA sequence [42]. Detecting the difference be-
tween single nucleotide polymorphisms (SNPs) and sequencing errors is one of the challenges
in the analysis of NGS data. SOLID has the advantage of sequencing each base multiple
times, so sequencing errors may be detected more easily.

Besides the generalized error types the vendors offer various different protocols which differ in
multiple ways: the required minimal DNA amount needed, single-end or paired-end capabilities,
read length and insert size. Additionally not only DNA sequencing technologies advanced. Many
of the companies offer RNA sequencing solutions based on their technologies. It is also possible
not only to target the whole genome with an approach, but to use a targeted procedure to limit the
view onto special regions of interest. Typical regions are complete exomes or specific ribosomal
RNA sequences, but also user specific regions could be targeted.

Taking the current developments into account it can be said that sequencing technologies
overtook the whole process of sequence analysis and are now far more advanced than the up-
and down-stream preparation and analysis. Various types of technologies produce similar, but
slightly different types of data which need to be processed and analyzed. Also the amount of
data changed, challenging data storage, access and analysis tools to its final.

The presented technologies all have their own advantages and drawbacks and may be suitable
for specific task. The toolset available for specific types of data also may vary and is potentially
better for different questions in mind.

With this in mind the sequencing technology to use in a project has not only to be determined
by throughput and error rate but also by suitability for the specific task. Nevertheless most
regarded values for sequencer selection are still read length, throughput and costs. The two
most commonly used technologies are until now 454 and Illimina sequencing. The two major
differences are that 454 is offering longer read length at a higher costs and Illumina a higher
throughput costing a fraction per sequences base. Especially Illimina’s cost-throughput ratio
enabled it be favored in metagenomic projects around the globe.
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CHAPTER 3

Genomics and Metagenomics

The previous chapter introduced current technologies to get sequence information from organisms.
In this chapter we will present current approaches and challenges in the field of genomics and
metagenomics.

3.1 Approaches in Genomics

One idea of genomics is the understanding of genomic features (e.g. genes). To understand which
genes play which role in the organism it is crucial to have a potentially complete representation
of the DNA content of the organism. Ideally the complete DNA sequence is resolved. This hold
only true for selected model organisms (e.g. human, mouse) where a reference genome exists in a
finished state. Besides that, a number of genomes exists in various different resolutions and states:
draft genomes which maybe miss only repetitive regions, genomes only existing of contigs (i.e.
longer resolved DNA fragments), or even raw sequencing data.

Sequencing data from today’s sequencers comes as small chunks of DNA so called reads of
DNA. The length of those chunks range from 50 to 700 base-pairs depending on the method used.
Two fundamental steps of the initial analysis in genomics are the alignment or assembly of the
reads.The alignment against a known reference sequence ensures that the experiment worked and
acts as a base for the following analysis of the sample. If no public reference or at least contigs
for the organism in question exist, the first step is creating an assembly using the available data.

In the early days of genomics when Sanger sequencing was the only technique available, an
assembly of the reads was done by looking for longer overlaps of the reads and than rebuilding
the original DNA sequence from these overlaps. Because of the shorter read length of the modern
sequencers the basic overlap approach is not feasible anymore. The basic idea stays the same,
but modern methods look for shared subsequences (k-mers) and build a graph which then gets
resolved during the assembly process. The first graph for an assembly was a de Bruijn graph.
Popular assembler for short reads are VELVET [43], EULER-SR [414], SOAPdenovo [45] and ABySS

17



3 Genomics and Metagenomics

[46]. Most of the modern assemblers make use of previously described mate-pairs libraries to
resolve complicated regions.

Modern alignment programs use one or more reference sequences to place to reads upon.
Depending on their capabilities some tools are even referred as Reference Guided Assemblers. They
are designed to handle the vast amount of sequencing data, and some of them are especially
tuned for a special sequencing technology. Those optimizations include file format, read lengths
and technology specific error models. Most modern algorithms use either a hash based approach
(indexing reads and/or reference) or use Burrows Wheeler transformation (BWT) for indexing of
the reference sequences.

In general the hash based approach hashes multiple subsequences (SEEDs) of the input and
than compares this against the reference sequences, often referred to as database. Allowing some
hashes to be unmatched the algorithm is able to find even non perfect matches. Depending on the
subsequence length, hash collisions (i.e. the same hash is representing two different sequences)
are unlikely to happen, so this approach is extremely fast compared to earlier methods. Tools
implementing a hash based approach are MAQ [47], SOAP(2) [48, 49], BFAST [50].

Most hash based methods have been redeemed by BWT based methods. Some of the most
popular aligners for short reads using BWT are BOWTIE [51], BOWTIE 2 [52], and BWA [53].
The advantages of the BWT over the classical hash are rapid search capabilities and compression
of the index. Burrows-Wheeler is simplified based on a suffix array of shifted positions of the
reference sequence. The compression during index creation has the additional advantage of
loading the complete reference into memory speeding up the analysis further.

After creating longer stretches of sequences or placing the reads onto a known reference
genomics offers a multitude of question and procedures to investigate. One of the main topics is
the detection of genomic variance and its induced changes to the phenotype of the organism in
question. Single nucleotide polymorphisms (SNPs) are the most common genetic source of variance
and can be relatively easily detected when comparing multiple sequences.

SNP detection will be later revisited in Chapter 8.

3.2 Challenges for Metagenomics

The complexity of metagenomic samples introduces new challenges which are different than the
original genomic approach. A classic way to give an overview is to categorize computational
challenges into three basic questions.

The three metagenomic questions

The first computational question in a metagenomic study tries to identify the composition of
the sampled community, e.g. figuring out the taxonomic content of a dataset. This is usually
achieved by using either database-based methods or composition based approaches. Both ideas -
comparing either features of sequences or sequences itself - have various advantages as well as
disadvantages which will be discussed later on.

The second classical question is concerned about the functional content of a metagenomic
sample. Reconstructing genes and interaction between organisms is a complex task. One way
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3.2 Challenges for Metagenomics

of inspecting the functional content of a metagenomic sample is also by some kind of sequence
comparison. This time the sequences need to be translated and compared against known protein
databases. Knowledge about the function of the reference proteins can then be transferred to the
dataset. It may also be possible to successfully apply gene prediction algorithms from genomics -
depending on available fragment length.

The last question deals with the comparison of multiple metagenomic datasets. Examples are
experiments where different datasets come from either the same location and different time-points
(e.g. prior and past a specific event) or just from different locations. One approach is to analyze
samples as previously described and use this information to compare the samples with each
other. The second approach compares the sequencing information of the samples directly. This
has the advantage that similarities not represented in the database can be detected.

We have seen that a central point in the analysis therefore is the assignment of reads to taxa or
functions. This process is commonly referred to as binning.

Binning of metagenomic reads

Solving questions in a metagenomic study usually depends on functional and taxonomic as-
signment of reads. Different approaches have been developed to tackle this specific problem.
Comparing the whole metagenomic dataset to all sequences in a public database such as the
NCBI-NR or NT [54] database using BLASTX or BLASTN [55] is the most thorough approach,
but is computationally very demanding.

As such reference databases continue to grow, and as the datasets to be analyzed continue to
grow as well, this type of analysis is becoming increasingly challenging.

In the context of mapping and resequencing, numerous new algorithms and tools have been
developed for ultra fast mapping of short reads to a reference genome using for example Burrows-
Wheeler transformation or Bloom filters, for example BFAST [50], BLAT [56] or Bowtie [51].
Unfortunately, such tools are not directly applicable to metagenomic data, often failing to map
more than one percent of all reads of a typical metagenome dataset, as they require near identity
between sequences.

A different approach is to try to predict the affiliation of the single reads to specific species,
using machine learning techniques such as HMMs or SVMs. The idea is based on the assumption
that related species have correlating GC-content, k-mer frequencies etc. Tools in this categories
are for example Phymm, PhymmBL [57], Treephyler [12], Naive Bayesian Classifier (NBC) [11]
and PhyloPythia [58].

While such methods require an initial training effort, potentially they are much faster than
a brute-force BLAST analysis of all reads. Their main drawback is that they do not provide
alignments for the reads, which is a limitation because biologists often resort to inspecting such
alignments to decide whether a match is significant. The longer the fragments are the better
the tools usually perform. Studies show that large contigs such as >8kb outperform BLAST
regarding accuracy and runtime, but usually metagenomic fragments are much shorter. Moreover,
an alignment to known functions is often required to perform a functional analysis of a dataset.

Recent methods such as Rapsearch(2) [10, 9] and Pauda [59] combine modern mapping
approaches with the use of reduced alphabets. In principal those tool translate the amino
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acid sequence to a reduced form, allowing faster search patterns to be employed. Afterwards
nucleotide or protein alignments are calculated allowing a functional analysis as well. Those tools
are able to achieve high speed analysis while keeping sensitivity and specificity reasonably high.

Classification: Taxonomy and Ontologies

Information about sequence content, including sequence origin and protein function, needs to be
presented and organized in a feasible manner. Species are often grouped in a taxonomy whereas
functions are represented in some form of ontology. Especially for functional classification
various schemes exist, but also for taxonomy multiple classifications are available. We will briefly
introduce three common classification systems: one taxonomy and two systems for functional
content.

NCBI-Taxonomy: One scheme for the classification of organisms is the NCBI taxonomy [60]
where different species are grouped and visualized as a rooted tree. Intermediate nodes
represent various common categories such as Family, Genus, Order or Kingdom. The NCBI
taxonomy currently consists of approximate 1 million entries and is based on all sequences
in the public NCBI database. It currently represents about 10% of all known species on the
planet. A more detailed look into the taxonomy will be given in Chapter 6.

SEED: The SEED classification [61] maps genes (features) onto functional roles which appear
in different subsystems. Subsystems are logical units combining features with similar
high-level association (e.g. RNA Metabolism). Right now there are about 13,000 functional
roles represented in the system.

KEGG: The Kyoto Encyclopedia of Genes and Genomes (KEGG) [62] maps genes onto KEGG
orthology (KO) groups. KO groups are linked to enzymes which are connected to different
pathways. The latest KEGG release includes information about approximately 10 million
genes from roughly 2,500 different organisms. Genes are organized in roughly 15,000 KOs.

The MEtaGenomeAnalyzer: MEGAN

Classification of reads often yields multiple, sometimes scored, hits for each single read. As one
can not assume the best match to be the origin of a metagenomic read various tools exist to
postprocess the output. Here we shortly present the MEtaGenomeAnalyzer (MEGAN) [13] as we
will use the software throughout this thesis.

The software was originally published in 2007 [63] and has been constantly updated and
improved.

For taxonomic classification MEGAN uses a lowest common ancestor (LCA) approach assigning
the read to the lowest common ancestor of all matched species in the taxonomy. For the calculation
only valid hits above a specific threshold are taken into account. The LCA algorithm is a
conservative approach minimizing false positives by decreasing specificity if multiple organisms
are matched.

For functional analysis MEGAN uses the SEED and KEGG classification schemes which are
represented in the software as trees. To perform the analysis MEGAN identifies the best match to
a reference sequence with a functional role or KO group respectively. Technically the functional
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assignment is based on mapping files where RefSeq accession numbers are linked to SEED
functional roles and KEGG KOs respectively. Taxonomic mapping is achieved using text based
analysis of reference sequence identifiers.

After the import and mapping process the software allows users to visually inspect and analyze
metagenomic datasets.

Computational challenges

Besides the specific challenge of assigning reads to species or functions, metagenomic samples
introduce other more generic computational challenges.

Challenge 1: Data Complexity The composition of an environment sample usually consists of a
mix of known, only partially known and completely unknown species. The complexity of
the samples therefore introduces new challenges during the analysis.

Most tools developed for genomic use cases are only partially applicable in metagenomic
projects. The bigger part of tools was designed to handle either resequencing tasks with
known reference sequences or the creation of new reference sequences using DNA reads
originating from a single organism. Gene prediction and most other algorithms either
require or profit from long read fragments to work properly.

Overall the assembly of metagenomes is still experimental and actively discussed in
literature. The main concern is that most assembly algorithms are originally designed with
the assumption that all reads originate from the same species. Using a de novo assembler
without evaluating it on metagenomic data first is therefore not recommended. Problems
occur mostly due to cross species repeats, varying coverage depth and required sequence
depth [64]. Nevertheless some designated metagenome assembly toolkits [65, 66, 67]
already exist.

Varying abundances of species in the sample and database also limit the analyses, as
quantitative as well as qualitative conclusions can not be easily done. The binning process
can be heavily biased by over- or under-representation of specific genes or taxa. Completely
novel or missing sequences in the database additionally may result in an incomplete
taxonomic or functional description of the sample.

Challenge 2: Data Volume & Accuracy The mix of DNA originating from various different
species in varying abundances requires the use of modern sequencing technologies to
capture a reasonable amount of DNA representing the whole community. Those systems
already have a throughput of 100 GB within 24 hours, enabling a detailed view into a
metagenomic sample. On the other hand this huge amount of data emphasises the need
for state of the art analysis methods, when using the whole run for a single sample.

The rapid generation of new data has an additional effect. With the number of known
sequences rapidly increasing the data to compare a sample to increases as well, further
slowing down succeeding analyses.

Up until 2008 this trend was mostly compensated by the parallel evolvement of computa-
tional power. Sequencing throughput basically developed parallel to Moore’s Law, which
oversimplified describes the trend that reasonable cheap computational power doubles
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every 16 to 24 months. Since 2009 the development of sequencing technologies has clearly
outperformed Moore’s Law, which makes it harder and more expensive to analyze all data
just by increasing computational power [68]. Also this computation cost is often neglected
in the overall costs and time estimation [69]. Frankly said the development has shifted the
bottleneck in the study from data generation to data analysis.

Though data generated by modern technologies is relatively good it is not insusceptible to
errors. Quality control steps have to be taken to remove potential errors before submitting
data and making it publicly available.

Challenge 3: Data Access & Sustainability Increasing data volumes also require novel ideas for

data storage and sharing. As with all modern studies the topic has to be investigated
by many specialist of different fields. The data generated has to be accessed, stored and
ideally archived. Depending on the analysis done the result may be more complex and in a
different format than for a genomic project. For metagenomes different public repositories
are available often combined with analysis tools [15, 70], but various sites exist providing
project specific metagenomes in varying formats to download. Major disadvantages of
centralized systems are for example the dependancy on third-parties, data security, transfer
volumes and inflexibility of analysis approaches. Most public sites are therefore only
suitable for post-publication storage, if at all. Private data sharing can be easily achieved
on various ways including offline (physical) data transfers or accessible data staging areas
(e.g. ftp), but an own integrated analysis solution may also be an interesting option as they
offer multiple advantages.

Regarding sustainability of public web services experience shows a high potential of the
service being orphaned or just vanishing after a certain period [71]. The main advantage of
private data sharing areas is the full control over the data and of the potential shutdown.
As usually the main discussion will come back to funding eventually, so no general solution
can be provided.

Additional Challenges: Metadata & Comparative Metagenomics The analysis results need to
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be stored with as much information about analysis parameters as possible, because a single
change can interfere with the reproducibility of the result.

In 2006 Foerstner et al. [72] already pointed out that comparing different metagenomic
dataset one "may end up comparing apples and oranges". The keynote of this is that data
itself relies on the exact sampling protocol used. A comparison of different samples can
only be validated if all interfering factors may be accounted for. Those may include size
filters, sampling site, depth, technology, binning and gene calling protocols. The storage of
this so called metadata is crucial for making reasonable assumptions when comparing two
or more datasets. Different formats have been suggested but a common format was yet not
found and is therefore not comprehensively put into action.

Comparing multiple metagenomic samples is difficult, because many variables need to be
accounted for. Different taxa and functions, varying sample sizes, reference and genome
sizes need to be taken into consideration. Already presented metagenomic storage sites
include comparison capabilities [15, 70], but other approaches also exist offering a more
flexible way to compare multiple samples [13, 73].



Part I1

Addressing computational

challenges in metagenomics
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The previous part introduced modern sequencing technologies, gave an introduction into
genomics and metagenomics and described typical computational challenges in metagenomics.
This part introduces methods of quality control and than moves on to two metagenomic specific
challenges. We first discuss methods for determining the content of a metagenomic sample
focusing on the comparison of sequencing reads and reference databases. We then continue by
studying current methods for assigning reference sequences to specific species or functions. The
last chapter focuses on the computation, the access and sharing of high volume data using a

workflow management system.
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CHAPTER 4

Prelude: Quality Control

Before starting with any kind of analysis the most important step is to begin with some sort of
quality control (QC). The initial QC step insures that the data used is in usable condition, and
if not, it modifies the data to convert it into an usable state. Unfortunately this step is often
neglected or only poorly executed. This result is a not optimal or even not utilizable analysis,
wasting computational and human resources. In this chapter we will first discuss the types of
errors and their detection and later potential strategies how to remove error from the data.

4.1 Detection of Errors and Solutions

The first source of errors, sample extraction, library preparation and sequencing is usually beyond
control of bioinformaticians. It has been shown that even processing the same sample at different
facilities with the same protocols yields different results. This introduces huge effects in the
comparison of multiple samples.

Sequencing Errors

In Section 2.1.3 we already introduced sequencing technology specific errors. Each cycle can
produce base calls of non optimal quality. Detecting bad bases is therefore a requirement to
successfully handle this type of errors. The first successful tool to estimate a base specific quality
was the tool Phred. The idea was fast adopted by most vendors and laboratories. This so called
Phred quality score (QS) is defined as

Q = —1010g10P

with P being the probability of an incorrect call.
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Broadly speaking the Phred quality score is a measure of the correctness of the corresponding
base. Figure 4.1 displays the common range of Phred scores.

PHRED
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Chance of base called is wrong

Fig. 4.1: Figure of the relation Phred vs. probability of a wrong base call. As an example
a score of 30 represents an accuracy of 99.9% i.e. 1 in 1000 bases is wrong.

QS in FASTQ files are often encoded as one ASCII character. Early ASCII encoding varies
between vendors as well as early Solexa models use odds instead of probabilities, so some
attention is required when using older file formats.

Depending on the manufacturer, machine and sequencing mode companies claim and assure
different minimal qualities. Illumina for example asserts that 80% of the HiSeq 2500 data has a
quality score of 30 or above.

It has been shown that the score gives a reliable indicator of sequence quality [74, 75]. Quality
scores are mostly used in alignment tools and assembly programs. Also some SNP detection
algorithms use QS to distinguish between a true SNP or sequencing error [76].

Unfortunately tools such as BLAST do not make use of this information. Malde [77] suggested
such an extension of BLAST but has not gained a broad audience. The extension is based on a
position based substitution matrix combining substitution events and QS of the sequencers. Other
approaches use only a high coverage to remove potential sequencing errors. With metagenomics
having usually a low coverage those approaches are not suitable.

Quality along reads usually tend to drop towards the end. Trimming read ends speeds up
the analysis as overall data gets reduced. Different strategies exist including cutting at fixed
positions, after a bad base or using a sliding window approach. Using a sliding window is the
most feasible way as this ensures that single base errors in the middle of the read do not truncate
reads unnecessarily. Windowsize and quality threshold depend on the overall quality of the data
and if downstream analysis is capable of using QS.

Besides wrong base calls sequencers may introduce PCR artifacts or artificial sequences from
barcodes, linker, primers and adapter. These parts need to be identified and removed from the
data as well. For protocol based sequences (linker, primers and adapters) the best way of doing
this is comparing it against a list of potential sequences. Filter algorithms used should to be able
to detect sequences with sequence errors as well as reverse complements.

Tools such as FastQC [78] are capable of generating QC reports. A graphical report is generated
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of various quality measures. Widely used tools for sequence manipulation are fastx_toolkit [79]
and ea-utils [80]. The tool PrinSEQ [81] provides an integrated approach generating a graphical
representation followed by a guided approach how to process the input data.

Merging of reads

When using a paired-end protocol with very short fragments it can happen that the same paired-
end fragment gets sequences from both ends. This effect can be used to compute a consensus
read eliminating potential sequencing errors. For this the reads have to be joined from both ends
and an overlap consensus needs to be calculated. Tools completing this tasks ea-utils [80], FLASH
[62] and SHERA [83]. Algorithms, scoring and implementation differ, ea-utils for example use a
squared distance for the alignment and is written in C. Also handling of unmerged reads may
differ. It is best to keep unmerged reads for further use.

Low complexity and Sequence Duplication

Sequenced DNA can contain so called low complexity regions which are defined as "intervals
with highly biased distributions of nucleotides" [84]. The problem with those regions is that
besides their zero informational value they use resources during analysis and also could produce
significant hits with no biological meaning [, 85]. Such regions should therefore be removed.
The most popular algorithms for this are the DUST and SEG. The algorithms are implemented in
BLAST and Segmasker respectively, but tools using simpler algorithms, e.g. using a compression
index [13], also exist. Depending on the tool used, the result may be only a modified read file
using either lower case letters or Ns. Depending on downstream tools those regions or reads
need to be removed prior to further processing.

Artificial sequences, such as poly-A/T tails, may also be introduced by sequencing when
fragments are too short for example. Those regions may align well with low complexity sequences
in sequence databases and therefore create false positives [81]. Low complexity filters and special
poly-A/T trimmer can mark and/or remove those sequence parts.

Sequence duplication can occur through either sequencing protocols or amplification steps
after DNA extraction and may affect the downstream analysis . This is especially the case if
low amounts of DNA is used. If a high number of sequence duplication is suspected it is
recommended to scan the data for multiple instances of the same read and to remove those
reads. Some methods remove duplicates only after mapping and not during QC (for example
samtools [86]). Failure to do so may result in computational overhead and bias during coverage
and abundance estimation with resulting bias in the following analysis steps such as variant
calling.

FastX-toolkit [79], GATK [87] and PrinSEQ [81] are capable of removing duplicates as well as
detect low complexity reads during QC.

Contamination

Contaminating may play a role in some projects, although it is not considered a technical error.
Especially host-based projects, where the sampling location is related to another organism
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(i.e. host), face huge amount of host DNA in the initial sample. It is crucial that contamination is
already confined during the wet lab phase. Failure to do so results in the host DNA competing
for amplification and sequencing chemistry displacing DNA of interest. The sequenced result
will yield a high number read originating from the host and only a fraction of DNA of interest.

In a general (not host based) metagenomic project contamination checks should also be
performed as studies indicate that contamination is not as rare as expected [81].

After sequencing, host based DNA can be relatively easily removed by mapping all reads
against the hopefully known host genome. This can be done with short read mappers such as
Bowtie [51] and BWA [53]. Earlier approaches use BLAST against the human genome [88], which
we disencourage from using because of its long runtime. Another approach by Willner et al. [89]
use dinucleotide relative abundance to estimate metagenome contamination on a per sample base.
This has the disadvantage of not being able to remove contamination reads from the sample.

Schmieder and Edwards [81] point out, that contamination removal is only as good as the
used database with the problem that with every resequencing of the human genome novel
sequences can be found [90]. They are also concerned about the an introduced bias by BWA
during contamination removal. BWA replaces an unknown base N with a random base, which
could lead to artificial hits if the reference genome contains longer stretches of N. Introducing the
tool DECONSEQ [91] they provide a complete contamination filtering and removal suite, which
uses different modified databases for sequence comparison, working reasonable fast.

Overall removing host based DNA and other contamination additionally helps downstream
analysis by diminishing data to be processed. We suggest that contamination checks should be
performed as last step of the QC.

After the data has been cleaned one can start on the analysis of the sample. The following
chapter will discuss the needed steps in detail.
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CHAPTER 5

Metagenomics: Determining the Content of a

Sample

The ability of second generation sequencing technologies to produce huge amounts of DNA at a
low cost has shifted the bottleneck in metagenomic projects from data generation to data analysis
(see Chapter 2). The comparison of environmental DNA reads to known reference sequences
using BLAST is now the most expensive step. While taxonomic predictors based on machine
learning techniques promise to speed-up the analysis of datasets by avoiding time consuming
sequence alignments, alignments are still considered an important part of an analysis (see Section
3.2). The following section introduces a combined approach enabling a faster analysis while still
generating full sequence alignments in the last step. We show that the approach offers an up to
10-fold speedup in comparison to a full BLASTX [55] comparison against NCBI-NR [54], while
improving the assignment accuracy. The result of the reduced BLAST comparison can be used to
perform a functional analysis of the dataset.

5.1 Hybrid Method

We propose to use a hybrid approach to analyze the taxonomic content of a metagenomic dataset.
This approach first uses a taxonomic classifiers such as NBC [11] or Phymm [57] to bin reads
by taxonomic assignment, and then blasts the reads only to those reference sequences that
correspond to the assigned taxon. Finally, we apply the lowest common ancestor approach [13] to
all significant matches for a read to obtain a final prediction.

5.1.1 Method

In this approach, we first use a fast taxonomic classifier to assign each read to one taxon in the
NCBI taxonomy. Note that reads will be placed at different ranks of the NCBI taxonomy, as
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they come from different genes and thus have different levels of conservation. In this study we
investigate the use of NBC [11] and Phymm [57] as taxonomic classifiers.

In the second part of the approach, we compare each read using BLASTX against the part of
NCBI-NR that contains sequences from all taxa that lie below the node to which the read was
assigned. For example, if a read was assigned to the node Alphaproteobacteria by the taxonomic
classifier, then the read will be blasted only against those sequences that belong to the class of
Alphaproteobacteria.

In the third and final part of the approach, the results of all BLASTX comparisons are concate-
nated and then provided to the program MEGAN [13] as input. MEGAN uses the LCA algorithm
to place each read on to the node in the NCBI taxonomy that is the lowest common ancestor node
of all species for which the read has a significant BLASTX hit.

To facilitate the second part of the approach, we split the NCBI-NR database into different
sub-databases at the ranks of Superkingdom, Phylum, Class and Order of the NCBI taxonomy
resulting in 3, 89, 243 and 1175 nested databases respectively. Then, each read is blasted against
the smallest enclosing sub-database. For example, a read that is assigned to the Family of
Anaplasmataceae will be blasted against the database associated with the Order of Rhizobiales.

Although NCBI-BLAST has a feature that allows one to limit the search range to a specific
range of organisms, in practice this is much slower than blasting against a reduced database. An
additional advantage of working with sub-databases is that it simplifies parallelization.

In slightly more technical detail, after running the taxonomic classifier on a given set of reads,
each read is placed in an input FastA file for the appropriate sub-database and then each file
is blasted against its sub-database. Figure 5.1 illustrates the process with an example of three
different classes of bacteria. All scripts are written in Python and are made available to the public
as script package as well as included in our local instance of the workflow management system
GALAXY [92].

In summary, the hybrid approach proceeds as follows:

1. Use a taxonomic classifier to assign each read of the input dataset to a node in the NCBI

taxonomy.

2. For each read, perform a BLASTX comparison against the sub-database corresponding to
all species that lie below the node to which the read was assigned in the previous step.

3. For each read, apply the LCA algorithm to all significant BLAST hits found for the read to
perform a final placement of the read in the NCBI taxonomy. Optionally, use the BLAST
hits to place the read in the SEED functional classification, as described in [93].

5.1.2 Performance

To investigate the potential speed-up and accuracy of the hybrid approach, we performed a
simulation study using six different datasets generated by MetaSim [94], each containing 10000
reads. The taxonomic distribution of species in the simulated datasets was adapted from the
FAMES [95] profiles for low, medium and high-complexity metagenomic datasets. For each
complexity class we simulated one 454 [31] and one Solexa [96] mate-pair run, see Table 5.1. All
datasets were compared against a version of the NCBI-NR database using NCBI BLASTX version
2.2.23+ (default parameters).
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Fig. 5.1: Comparison of the hybrid and brute-force approaches. In the brute-force ap-
proach (red), all reads are compared against the whole reference database (in
this case, NCBI-NR), using BLASTX. In the hybrid approach, the database is
split into smaller sub-databases (green) using a utility called DB-split (blue).
The predictor (blue) splits the input reads into sub-input files. Each such file is

compared against its corresponding sub-database (green).
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We used the Naive Baysian Classifier (NBC) [11] and Phymm(BL) [57] as taxonomic classifiers
in the first step of the hybrid approach. We split the BLAST-NR database at the level of
Superkingdom, Phylum, Class and Order of the NCBI taxonomy, as mentioned above. To analyze
those reads for which the employed taxonomic classifier was not even able to predict a taxon at
Superkingdom level, we also kept a copy of the whole NR database.

The output of the taxonomic classifier under consideration was parsed and each read was then
placed in a sub-input file according to the predicted taxon. On average about 99% of all reads
were placed in a file corresponding to the taxonomic rank of Order, independent of sequencing
technology, dataset complexity or prediction method. The sub-input files were then blasted
against the corresponding sub-databases and the resulting BLAST files were then merged.

We used the program MEGAN [13] to analyze the BLASTX results obtained from all three
approaches (the two hybrid approaches and the brute-force approach), as described above.

Dataset | Read Clone | Standard dev. | Number of

length | length | of clone length reads
454 250 bp | 8,000 bp 800 10,000

Solexa | 8obp | 300 bp 30 10,000

Tab. 5.1: Sequencing parameters for simulation study

Accuracy

We analyzed the accuracy of all three processing methods (hybrid approach using NBC, hybrid
approach using Phymm and brute-force approach) on all three datasets (low, medium and high
complexity), for two different sequencing technologies (454 and Solexa) at the taxonomic ranks of
Species, Genus and Order.

For each of these combinations, we assigned every read into one of five bins, depending on
whether the read was assigned to (1) a correct or (2) an incorrect node of the considered taxonomic
rank, (3) a correct or (4) an incorrect higher node, or (5) if it was not assigned or had no significant
hit at all.

Figure 5.2 illustrates the results at the Species rank. For all three datasets (low, medium and
high complexity) and both sequencing technologies, the hybrid approach using NBC shows
slightly better accuracy than the brute-force BLASTX approach, whereas the hybrid approach
using Phymm always performs less well, especially for the Solexa reads.

At the rank of Genus (Figure 5.3), the number of correctly assigned reads is higher than at
the Species level. Again, the NBC-based hybrid approach works slightly better than the brute-
force approach, while the Phymm-based approach works slightly less well on the 454 data and
substantially less well on the Solexa data.

At the rank of Order (Figure 5.4), the NBC-based hybrid approach achieves almost perfect
results on the 454 data and better results than all other methods on the Solexa data. While the
brute-force approach assigns less reads to the correct Order, the other reads are correctly assigned
to nodes at a higher level of the taxonomy. Such assignments are “underpredictions” rather than
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false positives. In other words, the NBC method is more specific than the brute-force approach
(at all three ranks considered).

In summary, in terms of accuracy, the hybrid approach using NBC performs better than the
brute-force BLASTX approach, while the hybrid approach using Phymm performs worse, in
particular on shorter reads.

Assignment Accuracy
High Ci i Medium { Low

= Correct

= |ncorrect
Correct Higher Order
Incorrect Higher Order
No Hit/Not Assigned

Reads
2000 4000 6000 8000 10000

o
BLASTX NBC Phymm BLASTX NBC Phymm BLASTX NBC Phymm BLASTX NBC Phymm BLASTX NBC Phymm BLASTX NBC Phymm
<-— 454 ——> <——— Solexa ——> <-—— 454 ———> <——— Solexa --> <-— 454 ---> <-— Solexa———>

Fig. 5.2: Accuracy at rank of Species. We show the performance of the brute-force
BLASTX approach (labeled BLASTX), the hybrid approach using NBC (labeled
NBC) and the hybrid approach using Phymm (labeled Phymm), for two different
simulated sequencing technologies (454 and Solexa), for three different simulated
metagenomes (high complexity, medium complexity and low complexity). For
each combination, from bottom to top, we show the number of reads assigned
to the correct species (labeled Correct), an incorrect species (labeled Incorrect),
to a correct higher taxon (labeled Correct Higher Order), a wrong higher taxon
(labeled Incorrect Higher Order) or not assigned (labeled No Hit/Not Assigned).
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Fig. 5.3: Accuracy at rank of Genus. For details, see previous 5.2.

Processing Times

All programs were run on an AMD Opteron 2 GHz System with 8 GB of memory. The programs
were executed as single core applications to keep the results comparable between the different

scenarios.
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Fig. 5.4: Accuracy at rank of Order. For details, see figure 5.2.

Figure 5.5 displays the overall runtimes for each of the datasets. The two hybrid approaches,
using NBC and Phymm, require roughly the same amount of time, and are both significantly
faster than the brute-force BLASTX approach. The speed-up for 454 reads is more than ten-fold,
whereas for the shorter Solexa reads it is slightly over three-fold. The reason for this discrepancy
is that the 454 contain roughly three times as many bases as the Solexa datasets (both have the
same number of reads, but the 454 reads are approximately three times as long). This shows that
the runtime for the brute-force BLAST approach depends much more on the sequence length
than for the hybrid approaches.
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Fig. 5.5: Comparison of runtimes on each of the six datasets high-complexity using 454
(labeled HC 454), high-complexity using Solexa (labeled HC Solexa) and so forth.
We plot the run time for the brute-force BLASTX, the hybrid approach using
NBC and the hybrid approach using Phymm.

5.1.3 Discussion and conclusions

This simulation study suggests that taxonomic classifiers can indeed be employed to obtain a
substantial speed-up of analysis without sacrificing accuracy. In fact, in this study the hybrid
approach using the NBC method exhibits a higher accuracy than the brute-force BLASTX approach.
While the result of this simulation study is promising, one weakness of any such simulation study
is that the effect of “dark DNA”, that is, of DNA coming from species that are not represented in
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the reference database, is not taken into account.

In Figure 5.6 we show a comparison of the brute-force BLASTX and NBC-based approaches
in the medium complexity 454 dataset. Here we see that the performance of the NBC-based
approached is supported by the fact that it is not distracted by matches to Eukaryotes, which
appears to be a problem for the brute-force approach. Also, we see that many of the reads are
assigned to very unspecific nodes in the taxonomy. By the nature of the LCA approach, this can
also be explained by distracting matches to eukaryotic model species. In Figure 5.7, we present a
high-level comparison of the SEED functional classification of reads, computed as described in
[93]. Surprisingly, the NBC-based approach gives rise to a slightly higher number of predictions
than the brute-force approach.

The attainable speed-up depends on the read length, the longer the reads, the more significant
the speed-up. Because the hybrid approach uses the predicted taxon to choose the sub-database
to BLAST against, the employed taxonomic classifier should ideally have high sensitivity rather
than high specificity, because, due to the nature of the hybrid approach the BLAST is focused on
one part of the taxonomy and thus cannot recover from a erroneous taxonomic assignment by the
classifier. This explains the difference in performance between the NBC and Phymm approaches.
It remains to be seen whether PhymmBL, the successor of Phymm, can overcome this problem.

The comparatively poor performance of the brute-force BLASTX analysis on the 454 sequences
points to a weakness of the LCA algorithm as implemented in MEGAN. The program currently
does not take multiple BLASTX matches to the same species into account and this leads to a
loss of specificity, which is apparent in Figures 5.2, 5.3 and 5.4. Because the use of a taxonomic
classifier restricts the BLASTX analysis to a part of the NCBI taxonomy, this problem does not
occur in the hybrid approaches.

An additional speedup of the hybrid approaches could be obtained by additionally splitting
the reference database at a lower taxonomic rank such as Family. However, this would lead to an
increase of misclassified reads, as the performance of taxonomic classifiers is less reliable at these
lower levels.

Out of the box, NBC is trained to classify microbial sequences. Hence, when applied to
metagenome datasets that contain eukaryotes or viruses, say, it is important that one trains the
NBC classifier on eukaryotic sequences, or viruses, as well.

Based on this study, for metagenomes consisting of microbial sequences, we recommend using
the hybrid approach with NBC to obtain more accurate results in less time. Once the BLASTX
comparison of the reads against the relevant sub-databases has been completed, the BLAST
matches can be used to compute a functional binning of the reads, as well, for example using
SEED [61] as described in [93], thus obtaining both a taxonomic and functional analysis in a much
shorter time-frame.
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Fig. 5.6: Taxonomic analysis performed by MEGAN on the medium complexity 454
dataset, comparing the results obtained by brute-force BLASTX (red) and the
NBC-based hybrid (blue) approach. Nodes are scaled logarithmically by the
number of reads assigned to, or below, them.
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Fig. 5.7: SEED analysis performed using [93] on the medium complexity 454 dataset,
comparing the results obtained by brute-force BLASTX and the NBC-based
hybrid approach.
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CHAPTER 6

Database and Assignment Accuracy

In the previous chapter we have shown that the result of a metagenomic analysis is highly
dependent on the method used for classification of the reads. Generally speaking the main topic
of the previous chapter was "How do we map sequences?" focusing on the comparison of sequences
against a reference database. Here we investigate the question "What do we map against?" and
"How do we achieve this?". This time we focus on the process of going from the sequence to the
actual organism or function.

Though not as computational as expensive as sequence comparison this step is equally crucial
during downstream analysis. When using database based methods the content of the database
itself, as well as the approach for mapping database entries to different species has a high impact
on the accuracy of the result.

In this chapter we inspect the coverage of the NCBI-NR database and accuracy of different
mapping methods. We will use MEGAN to perform the mapping from database hit to taxon or
function. Based on our findings we suggest improvements to currently implemented methods. In
the last part of the chapter we evaluate the performance of the new approach with an in vitro
simulated metagenomic dataset.

6.1 Analysis of the NCBI-NR database

One often neglected factor of a metagenomic analysis is the coverage of the database. The
included sequences and their description determine what the analysis (i.e. comparison against
the database) can detect. One of the most commonly used databases for metagenomic analyses
is the NCBI-NR (non-redundant) database [54] which is updated on a daily basis. The non-
redundant definition is hereby that absolutely identical sequences are merged into a single entry,
i.e. identical sub-sequences are not removed. The database currently consists of entries from
GenPept, Swissprot, PIR, PDE, PDB, and NCBI RefSeq databases. Most sequence databases such
as the NCBI-NR database offer various alphanumerical or plain text identifiers for each entry,

41



6 Database and Assignment Accuracy

Listing 6.1: Protein sequence with multiple identifiers separated by ">’. Each identifier
has a text description as well as different specially coded notations in the
beginning. Text descriptions and sequence have been artificially shortened
for layout reasons.

>gi 332795804 | ref | YP_004457304.1| thiosulfate-quinone oxidoreductase [..]
>gi 1729430 emb | CAA69986 .1| subunit of the terminal oxidase with [..]

>gi| 1742921 | emb|CAA70827 .1| terminal oxidase subunit [Acidianus ambivalens]
>gi | 332693539 | gb| AEE93006.1| thiosulphate-quinone oxidoreductase [..]

MSGKQSEEFKRTEKMTRMEYLFPVRFAVGWMFLDGGLRKAVLKPAKLDPNSASFVGC[. .]

explaining the origin of the sequence, see Listing 6.1 for example.

As a direct result the taxonomic and functional assignment quality depends on the identifiers
used for mapping. Highly curated sequence identifiers like the RefSeq accession number become
more rare as databases continue to grow rapidly. Additionally the composition of NCBI-NR
implies that only a part of the sequences may have such a RefSeq entry.

To asses the impact of identifier composition and represented species and function we analyze
the performance of three different NCBI-NR databases downloaded on 03.11.09, 15.11.12, and
14.01.13. Databases will later be referred to as their year of download.

Identifier distribution

The NCBI-NR database downloaded 2013 contains a total of 22 million sequences with 63 million
sequence identifiers. Those sequence sum up to 7.7 billion bases. Nearly 17 million identifiers
are hypothetical entries covering 7.5% of all bases. Details can be found in Table C.3. Within the
database the distribution of identifiers is widely spread: About one third of the sequences have
only one unique identifier and therefore represent a very specific mapping, 57% of sequences
contain two identifiers. The remaining sequences have three or more identifiers with a maximum
of nearly 17,000 different identifiers for a single sequence. Exact numbers can be found in Table
C.4. Figures 6.1 and 6.2 illustrate the results.

In comparison to previous years the number of sequences and bases in the database more than
doubled (2013 vs. 2009), the number of hypothetical entries tripled. The identifier count per
sequence composition stayed relatively the same during this period.

The success of NGS is the main contributing factor of database growth. The above-average rise
of hypothetical entries can be explained by the increasing usage of gene prediction algorithms
and the trend of submitting those predictions to public repositories, as methods are expected to
work more reliably. Establishing confident numbers of purely hypothetical entries is difficult,
because proteins are not consistently named (e.g. hypothetical, hypo., predicted, pred., theoretical
etc.). The number is definitely much higher than presented here. A high number of identifiers for
a single sequence indicates that the sequence is highly conserved between various taxa. The more
identifiers a single sequence has, the less specific the assignment later on will be.
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Sequences

Identifiers

10 30 50 70

Entries flagged Hypothetical
Fig. 6.1: Absolute number of sequences and identifiers in millions for the 2013 NCBI-

NR database. Identifiers containing the phrase hypothetical were marked as
hypothetical entries.

[ 1 Identifier [ 2Identifiers [ 3+ Identifiers

0% 20% 40% 60% 80% 100%
Fig. 6.2: Illustration of identifier distribution for the 2013 NCBI-NR database. 3+ identifiers

describes all sequences with three or more identifiers for a single reference
sequence.
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Assignment Rate and Taxonomic Coverage

To asses the taxonomic coverage of the databases in combination with an assignment approach we
map the sequences in the database onto the taxonomic tree using a specific identifier. The initial
method in MEGAN for assigning reads onto the taxonomy was to parse the whole text description
of the read to find the maximum match between all taxonomic nodes and the description. This
method does not rely on any maintaining of mapping files but is prone to typos and inconsistent
naming.

For the representation of different taxa MEGAN uses the NCBI taxonomy. For this analysis we
use the snapshot of the taxonomy downloaded on the 30th of January 2013. The NCBI taxonomy
website provides an overview of the currently represented nodes [60]. A visual comparison of the
taxonomic composition is displayed in Figure 6.3.

Total Formal Total Informal

Archaea

[ Bacteria

Eukaryota

Fungi

Metazoa

Viridiplantae

Viruses

600k 300k 0 0 300k 600k

Fig. 6.3: Total number of entries for each subtree in the NCBI taxonomy.

The taxonomy consists of formally and informally named entries. Including informal entries
into the taxonomy the number of taxa doubles, but for selected taxa (e.g. Archaea) the number
increases by a factor of 10. Tables C.5 and C.6 contain exact numbers. General usage of informal
names, in the taxonomy or database, bears various problems for computational analysis. Hits
for single species may be shared between similar nodes distorting analysis results, as a valid hit
originating from a formal species may be contained in multiple informal nodes. It is also possible
that reads matching an informally named reference sequences can not be placed correctly, as
names differ. Nevertheless if mapping algorithms are using a text based naming approach we
recommend to use the taxonomy with informal, uncultured, and unassigned nodes to ensure that
the maximum of reads can be (correctly) placed.

All three databases where imported into MEGAN with default options, except Min-Support=1
was set, to ensure that taxa represented by only a single sequence will also be displayed. As
taxonomic coverage indicator we display the exact subtree of the taxon of a specific rank and
count the number of leaves below that taxon. We define the ratio of actual leaves to the number
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6.1 Analysis of the NCBI-NR database

of maximum possible leaves as taxonomic coverage for this specific taxon.

In the following we compare the three databases for the big four kingdoms: Bacteria, Eukaryota,
Archaea and Viruses. Results show an increase in the taxonomic coverage over the years with
a focus on Eukaryota and Viruses. With the latest database covering only 12% of the bacteria
represented on species level in the taxonomic tree only a small portion can be specifically addresses
in a metagenomic approach. This should be taken into account when analyzing complex datasets.
It should be noted that sequences of more species have been submitted to the NCBI-NR database,
but if sequences are shared between various organisms they will be combined so that a specific
classification is not possible anymore. Detailed results can be found in table C.7 and C.8. Figure

6.4 visualizes the results.

[0 Bacteria [ Eukaryota [] Archeae [] Viruses

|20II 2013

Fig. 6.4: Taxa (leaves) covered by the NCBI-NR databases for the four main subtrees
Bacteria, Eukaryota, Archaea, and Viruses.

Additionally to taxonomic coverage of a database we define the term assignment efficiency as
the percentage of sequences which can be placed onto the taxonomy (or function respectively).
Table 6.1 shows details about the number of assigned and not assigned sequences for all three
databases using the default text parser in MEGAN. Table C.g lists the total numbers.

Dataset | Assigned | Not Assigned
2013 99.62% 0.38%
2011 99.35% 0.65%
2009 98.37% 1.63%

Tab. 6.1: Table of assigned and not assigned sequences to the taxonomy using the default
name parser in MEGAN.
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Overall the text parser is performing reasonably well with an assignment efficiency of 99.62%
for the latest database. Compared to the previous years, assignment efficiency increases by more
than one percent even in the context of the total number of sequences rising. This may indicate
that maybe some measures of quality control have been taken and naming is checked accordingly.
Taking the high number of sequences into account still approximately 85,000 sequences can’t be
mapped to any taxonomic node. Most of those unassigned sequences are the result of nonsense
and incomplete descriptions in the sequence identifier and IDs containing typos.

Functional mapping using SEED and KEGG

Functional analysis in MEGAN originally used RefSeq accession numbers for mapping reads to
the different functions. The drawback is that only a portion of the sequences of the NCBI-NR
database have such identifiers. From all IDs of the database 2013 only 44% contain a RefSeq-ID.
Additionally a mapping file is required to map a RefSeq-ID to a SEED functional role or KEGG
KO.

SEED The currently used mapping file contains 1.3 million entries from RefSeq to SEED iden-
tifiers. The SEED mapping is based on a freely available file from http://theseed.org
which is now deprecated and was not updated by the maintainers since 2011.

KEGG The latest mapping file contains approximately 2.1 million entries from RefSeq to KEGG
KO. The KEGG consortium introduced a payed subscription model for direct access to files
starting o1.07.2011. The original mapping file is based on information representing the
latest freely available version.

Both systems, SEED and KEGG, are represented as an individual tree in MEGAN. To adjust
to the potential incompleteness of the tree we created a dummy tree only containing the nodes
Assigned and Unassigned as intermediate nodes. This was done to minimize the effect of having
a valid mapping and missing it because it is not represented in the currently used tree. We
then imported the three NCBI-NR databases accordingly using the RefSeq accession number as
mapping identifier. Results are shown in Table 6.2. Total numbers can be found in Table C.1o0.

SEED KEGG
Dataset | Assigned | Not Assigned | Assigned | Not Assigned
2013 2.70% 97.30% 6.76% 93.24%
2011 4-31% 95.69% 10.78% 89.22%
2009 6.93% 93.07% 15.32% 84.68%

Tab. 6.2: Percentage of sequences in the NCBI-NR database mapped to SEED and KEGG
functions using the default RefSeq parser in MEGAN.

In general only a small percentage of sequences can be mapped to SEED or KEGG functions.

With increasing database size the total numbers (C.10) only vary slightly which results in less
efficient mapping performance. Mapping only 2.5% in the case of SEED and 6.7% for KEEG is far
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from the optimum. Outdated mapping files and only partial RefSeq-ID coverage of the database
restricts functional analyses in the current implementation in its efficiency. Another restriction
for functional analysis is that a high number of sequences have not been assigned to any known
SEED or KEGG function. KEGG assignments, for example, only exist for approximately 2,300
different organisms.

6.2 Improved Database Mapping

As shown in the previous section mapping of sequences to functions or species can be further
improved. Especially functional assignment is far from optimal. Database annotation, curation
and optimization are possible solutions, but are not feasible in our case. We will focus on
improving the mapping process.

6.2.1 GenBank Identifier Mapping

Text based and RefSeq ID mapping approaches have both substantial drawbacks. Name consis-
tency errors, missing identifiers and also the low coverage of RefSeq-IDs within the database
requires a new way of mapping. We suggest to use GenBank Identifiers (GI) for mapping database
matches to the taxonomy and functional content. Nearly all reference sequences in the NCBI-NR
database contain a GI number in their identifier. GI information needs to mapped to taxa, SEED
and KEGG respectively to achieve a result. Mapping file generation and evaluation will be
discussed in the following sections.

Taxonomic Mapping

The NCBI already provides a list of GI to taxonomic ID mapping file which is available at
ftp://ftp.ncbi.nih.gov/pub/taxonomy/. Database, taxonomy and mapping file originating
from the same resource (NCBI) is optimal as this should minimize potential inconsistencies
between the files. The mapping file is updated once a week providing a consistent source to new
database and taxonomy versions. MEGAN was modified to load a GI to taxon-ID mapping file
and to use the GI in the sequence identifier for mapping instead of the previously introduced
text based approach. The provided mapping file is a modified binary version of the NCBI file, to
enable memory efficient access.

The mapping file downloaded on the 30th of January 2013 contains about 73 million entries.
After file generation and modification of MEGAN we reanalyzed mapping efficiency as previously
described. For the 2013 database the number of not assigned reads dropped from 85,235 to 19,629,
leaving only 0.09% of sequences which could not be assigned to any node. Most of the sequences
not assigned don’t have a valid GI number or descriptive text in their identifier.

Detailed results can be found in Table 6.3 and C.11.

For the previous databases a decrease in assignment performance can be detected (e.g. from
98,37% to 91,68% for the 2009 database). A possible explanation of this effect is the usage of
a database and a mapping file from two different time-points. GI numbers and taxonomic
identifiers are updated if new versions of sequences or taxa are available, invalidating older

47


ftp://ftp.ncbi.nih.gov/pub/taxonomy/

6 Database and Assignment Accuracy

Dataset | Assigned | Not Assigned
2013 99.91% 0.09%
2011 97.51% 2.49%
2009 91.68% 8.32%

Tab. 6.3: Table of assigned and not assigned sequences of the NCBI-NR database using
the new GI parser in MEGAN.

mapping information. This has to be kept in mind when redoing an analysis: Reanalyzing a
BLAST result using solely an updated mapping file may not increase the assignment efficiency, it
may eventually decrease significantly.

We also calculated the taxonomic coverage as previously defined to estimate the quality of
our new mapping method combined with the database. The result shows an overall decrease in
taxonomic coverage. Up to 5% less of the leaves or taxa are represented in the new assignment.
Table C.12 and C.12 show detailed results. Figure 6.5 visualizes this result.

Name Based Mapping [] Bacteria [] Eukaryota [] Archeae [] Viruses
Gl Based Mapping [ Corresponding Taxa

2013

Fig. 6.5: Taxa (leaves) covered by the NCBI-NR databases for the four main subtrees
Bacteria, Eukaryota, Archaea and Viruses using the old name based method (big
bars) and new GI based approach (small, blue bar).

With the total assignment efficiency increasing, the decrease in taxonomic coverage can be
explained by previously incorrectly placed matches of the text parser algorithm - compared to
the mapping file. The second explanation is that the mapping file provided by the NCBI is faulty.
We will later analyze an in vitro simulated metagenomic dataset to further assess performance of
both methods. A simple way to determine whether text description or the GI number provide the
correct mapping entry does not exist.
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KEGG Mapping

The underlying KEGG organism:gene to KO number mapping is based on the last freely available
KEGG version dated 30.06.2011. This mapping includes functional information of 1,526 different
organisms. This is a limitation as only functions similar or related to the already annotated ones
can be classified during the analysis.

The latest KEGG release list 2,440 organisms to be included, but paid service strategy of the
KEGG consortium denies access to all relevant information via FTP and does not permit bulk
load transfers via HTTP. For this study we decided to use the web API nonetheless to access the
necessary data for evaluating KEGG for further use.

We constructed a new mapping file using different information accessible via the HTTP
REST-API available at http://rest.kegg. jp.

http://rest.kegg.jp/list/ko Provides a list of valid KO numbers.
http://rest.kegg.jp/list/organism Provides a list of valid organism identifiers.

http://rest.kegg.jp/conv/<organism>/ncbi-gi Conversion tables from KEGG-GenelD to GI
per organism.

http://rest.kegg.jp/link/genes/<K0> KEGG-Geneid to KO number translation tables

The GI mapping information provided by the KEGG maintainers through the API is only
limited, as only few GI mappings were generated. To enhance the mapping we therefore used
additional mapping information provided by the Uniprot consortium [97]. The Uniprot database
is highly cross referenced and provides a daily up to date mapping file between different known
identifiers. The idmapping.dat file downloaded on the 6th of February 2013 contains a total of
380 million entries. Out of the total approximately 52 million entries are GenBank identifiers
and 8 million are KEGG entries. Technically the Uniprot mapping offers a basic Gi to KEGG
organism:gene mapping which can be combined with data generated from the web APL

All information was merged to generate a new direct mapping file from GI to KEGG KO. The
whole process is displayed in Figure 6.6.

The resulting mapping file contains about 6 million entries, tripling the number of potential
valid mapping entries. MEGAN was adapted accordingly to use this file instead of the RefSeq
identifiers for functional KEGG mapping. The new mapping file was used during the import of
the databases and the assignment efficiency was calculated as in the previous section.

Final results show an increase of assigned sequences to KEGG function ranging from 2% to 7%
of total reads, doubling the number of assigned sequences for the latest database. Results can be
found in Table 6.4 or C.14 respectively.

Though we were able to double the number of assigned reads still a huge number of reads miss
a functional role. One reason for this may be that only a fraction of proteins in the database have
a known function and if they have it is unclear if they are represented in one KEGG pathway and
have a valid KO number. Additionally the high number of new mappings may result from the
same protein being active in more than one pathway. That’s why the number of valid mappings
triples and the number of assigned sequences only nearly doubles.
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<uniprot> <type> <id> . . .
AF4234 Gl 123456 T01001 hsa Homo sapiens ko:K012412 EC:1.1.1 alcohol d.
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Fig. 6.6: Visualization of the KEGG mapping file generation. The KEGG REST API
is available at http://rest.kegg. jp. Additional mapping information using
UniProt was generated and merged with information from the KEGG APL

Dataset | Assigned Sequences | Not Assigned | Change (Assigned Sequences)
13 13.97% 86.03% +7.21
11 15.55% 84.45% +4.77
9 17.26% 82.74% +1.94

Tab. 6.4: Table of sequences from the NCBI-NR database mapped to KEGG KOs with the
new GI based mapping method.
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SEED Mapping

The original RefSeq to SEED mapping file is based on a, now outdated, freely available file
from theseed.org providing GI to SEED Subsystem identifiers. Maintainers of the SEED do not
provide any updated (mapping) information on their websites. Additionally the Uniprot database
does not offer any SEED based mapping entries. The only way to access information about the
SEED functional classification system is via a perl API. Compared to the KEGG REST API the
SEED API is not well documented and function of the servers is interrupted on a random basis.
The server does not provide a success or fail status, so there is no way to differentiate between
complete or incomplete data transfer while accessing the information.

The API package includes a variety of example servers offering different functionality with the
already mentioned restrictions.

svr_all_features Returns a list of all features.

svr_all_subsystems Returns a list of SEED-subsystems.
svr_subsystem_roles Generates a list of all valid roles.

svr__aliases_of Returns known aliases of the features given as input.
svr__function_of Additionally return the functions of a given input set.

All information combined results in a GI to SEED mapping file. Figure 6.7 visualizes the
mapping file generation.

As with KEGG a dummy tree containing only the node Assigned and Not Assigned as interme-
diate nodes and all functional roles as leaves was generated to minimize the effect of a potential
incomplete tree.

The resulting file contains 6.1 million entries. We also converted the old RefSeq-ID to SEED
mapping file to an GI to SEED mapping file using Uniprot RefSeq to GI mappings. Merging both
files we created a final mapping file consisting of 7.2 million entries.

MEGAN was modified to use the new mapping file and all three databases were imported.
Table 6.5 shows the final results. Total numbers can be found in Table C.15.

Dataset | Assigned Sequences | Not Assigned | Change (Assigned Sequences)
13 2.67% 97.33% -0.03%
11 3.76% 96.24% -0.55%
9 6.09% 93.91% -0.84%

Tab. 6.5: Table of sequences in the NCBI-NR database mapped to SEED IDS with the new
GI based mapping method.

Unfortunately the new mapping method is outperformed by the old existing RefSeq based
method. One reason may be that the quality of the alias data the SEED servers provide is of
very high, or file transfer was interrupted at some point during transmission. The decrease in
performance with newer databases may indicate that the mapping data SEED provided is not up
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Fig. 6.7: Visualization of the SEED Mapping generation. The SEED Server API provides
information about available features and subsystems. With this a list of roles,
functions of features and aliases of features can be queried. All information is
connected for the final mapping.
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to date. The same phenomena was encountered when using an updated mapping file with an
older database.
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6.3 In vitro simulated Metagenomic Dataset

To asses the assignment performance and quality of the GI based mapping approach we rean-
alyzed an in vitro simulated dataset from Morgan et al. [98]. In the study the authors selected
ten different organism for which the whole genomes are known. The species are from all three
domains of life and represent highly related organisms as well as only distantly related ones.
The original composition as well as additional information can be found in the original study.
A known number of cells of each organism were selected and combined. Thereby a synthetic
metagenome with a known sequence content was created. The cells were then sequenced using
different established metagenomic protocols. An overview of the result of the original study can
be found in Figure 6.8.

.
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onasesanser W77 777777 0 V) U

Shewanella amazonensis SB2B
Lactobacillus brevis ATCC 367
Lactobacillus casei ATCC 334
Pediococcus pentosaceus ATCC 25745
Lactococcus lactis subsp. cremoris SK11
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Fig. 6.8: Predicted and observed frequencies of sequence reads from each organism
using different sequencing technologies. Figure from [98](open access CCAL, no
special permissions required).

Besides the known biases the authors suggest to use this metagenomic dataset to asses the
binning accuracy of already established and newly developed tools. Here we will use the reads
from this study generated by a 454 GS 20 (pyrosequencing) to compare both mapping approaches.

The sequences were downloaded from the NCBI Short Read Archive with accession numbers
SRRo33547, SRR033548 and SRR033549. Reads were extracted using the sratoolkit with the "-W"
option activated to trim the files accordingly to the submitters” information. The archives hold a
number of 112, 19,837 and 505,962 reads respectively. Datasets will be referred to as their relative
size small, medium, and big. Reads were blasted against the database downloaded in January 2013
using BLAST + 2.2.27 with default options except -show_gis was set to ensure that GI numbers
are included in the results. Resulting files were imported into MEGAN using the default options
and in a second run using the new optimized mapping methods.

6.3.1 Results

Based on the number of assigned reads both methods, text-based and GI based, perform nearly
identical. Table 6.6 displays the result. Table C.16 contains detailed numbers.

Analyzing the big dataset the new method can assign slightly more reads to taxonomic nodes
(0.01%). The assignment efficiency is identical for the other datasets.
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6.3 In vitro simulated Metagenomic Dataset

Text Based GI Based
Dataset | Reads Assigned | Reads Not Assigned | Reads Assigned | Reads Not Assigned
Big 84.84% 15.15% 84.85% 15.15%
Medium 85.15% 14.85% 85.15% 14.85%
Small 12.28% 87.72% 12.28% 87.72%

Tab. 6.6: Assignment efficiency to the NCBI taxonomy of the text based method and the
GI based mapping approach.

To further verify both methods we created a synthetic MEGAN dataset containing the expected
number of reads according to the ratios published in the original study. Using MEGAN a
comparison file was generated for each of the datasets in comparison to the expected values. Only
the comparison of the big dataset will be discussed as the same results were observed in all three
files.

Figure 6.9 shows the comparison of the synthetic set and both mapping methods on the
Kingdom rank. Both mapping methods underestimate the abundance of Eukaryota and Archaea,
whereas the Bacteria are well covered. The text based method also overestimates the number of
Viruses more clearly than the new method. Also the old method is slightly less specific in its
assignments.

O Expected 788
B Name Based Bacteria
B GiBased

77735

65428

79344
3708

cellular organisms
Archaea
100001 1001

79268 1000

0865
Eukaryota
298 302

Fig. 6.9: Comparison of read assignments to the taxonomy of both mapping methods
and the number of expected reads at Kingdom level.
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6 Database and Assignment Accuracy

When exemplarily focusing on the only species of Archaea present in the sample the classic
method is able to assign more reads to the specific strain. The newer method classifies the reads
to the corresponding species, so the mapping information provided by the NCBI is introducing
this effect. On species level the GI method assigns two reads more in total, see Figure 6.10.

B Expected
B Name Based
B GiBased

64
664 (803)

Halobacterium salinarum R1

Halobacterium salinarum

3708
135 (801)

75

539
Halobacterium sp. NRC-1

Fig. 6.10: Read distribution for halobacterium. The chart displays the number of reads
assigned (sum of all reads). The name based method assigns more reads to the
specific strain. Overall assignment is only marginally better with the GI based
method (802 vs. 801 reads)

On the species level under the Bacteria subtree the new method is able to perform better and
manages to match slightly more reads to the specific species in the sample. As an example Figure
6.11 displays read distribution for the Lactobacillus group.

On species level the GI based method is able to assign 50% more reads to the correct species
than the the text based method. This trend can be seen throughout the whole dataset. With the
total read efficiency being the same, the new method provides in total a higher number of true
positive and more specific hits. This is a major improvement: The more specific assignments of
reads enable a more detailed look into the sample.

Functional Analysis

The authors of the original study do not take the functional content of the in vitro simulated
metagenomic dataset into account. We therefore can only compare old and new mapping methods
based on the number of assigned reads. Results for the small dataset are listed in the tables, but
not further discussed because of the extremely low read count.
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O Expected

B Name Based
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3458 (5624) 1275

Lactobacillus casei group Lactobacillus casei

Fig. 6.11: Read distribution for the Lactobacillus group. The chart displays the number
of reads assigned (sum of all reads). The GI based method is more specific as
more reads are assigned to lactobacillus casei. The text based method assigns
more reads to the higher group but is still slightly outperformed by the GI
based method.

The mapping performance to different KEGG KOs is shown in Table 6.7, see Table C.17 for

exact numbers.

Text Based GI Based
Dataset | Assigned | Not Assigned | Assigned | Not Assigned
Big 44.75% 55.25% 46.71% 53.290%
Medium | 45.39% 54.61% 47.26% 52.74%
Small 7.02% 92.98% 8.77% 91.23%

Tab. 6.7: Assignment efficiency to KEGG KOs of the RefSeq based method and the new
GI based mapping approach.

Overall assignment rate is good compared to the results of the database analysis in the previous
section. For all three datasets the GI based method performs better with 1-2% of more matches
assigned to a KEGG function. For this relatively small datasets this means about 10,000 more
reads can be classified in case of the biggest dataset. We expect the performance to be the same
on bigger datasets which will easily result in 100-250k more reads assigned to a known function
which is a good result.

The functional SEED analysis is shown in Tables 6.8 and C.18.

The overall assignment rate is with 33-37% not as high as the KEEG assignment rate but still
higher than expected. The new method again outperforms the RefSeq based method by up
to 4.5%. This is surprisingly good because the maximum mapping efficiency as shown in the
previous section is lower with the new method. This number could be artificially low because
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Text Based GI Based
Dataset | Assigned | Not Assigned | Assigned | Not Assigned
Big 32.87% 67.14% 37.11% 62.89%
Medium | 33.17% 66.83% 37.46% 62.54%
Small 3.51% 96.49% 3.51% 96.49%

Tab. 6.8: Assignment efficiency to SEED functions of the RefSeq based method and the
GI based mapping approach.

only a low complexity dataset was used for evaluation with high chances that reference sequences
are mostly covered by RefSeq identifiers as well established genomes were selected. Real life
metagenomic datasets will introduce new species with only GI number mapping (if at all).

6.4 Conclusion

General problems occurring within metagenomic analyses are database coverage and functional
classification of sequences. The number of high quality and well annotated sequences added to
reference database is comparable small, although databases get bigger. The functional classifica-
tions of bacterial sequences are only known for a fraction of organisms. Especially SEED seems to
be outdated and not well maintained. Replacing SEED with an updated system such as Clusters
of Orthologous Groups of proteins (COGs) [99] and derivated systems such as KOGs [100], and
eggNOGs [101, 102] may be an interesting alternative depending on further development in
the next years. Overall the mapping accuracy is highly dependent on the freely available data
supplied by the authors and maintainers of databases and functional classification systems.

The method for assigning reference sequences to function or taxa is a key element of the
analysis and responsible for the quality of whole study.

We have shown that it is possible to generate a GI based mapping approach which outperforms
the currently used text based and RefSeq based mapping approaches. On the taxonomic level
our method was able to assign the same number of reads to a more specific level. Both results
for KEGG and SEED show that the GI based mapping improves the functional analysis. Results
were confirmed using a synthetic dataset and showed that the more specific hits are indeed true
positive assignments.

With the GI based method we are still able to use the new tabulator based BLAST format for
reduced file size. MEGAN will in that case compute the alignment from this output and will
present it to the user. With the limitation that taxonomy, mapping file, and database have to be
kept in sync to avoid artifacts seen during the analysis, the new method outperforms the older
one. The new assignment method has been integrated in MEGAN and is available as option
during import of BLAST files. We therefore suggest to use the new method in new ongoing
analysis.



CHAPTER 7

Processing, Accessing and Sharing High Volume
Data

Analyzing a single sample requires various different steps to get a reliable result as we have
seen in the previous sections. The used tools offer, most of the time, a multitude of options and
are often only accessible via the command line. The combination of different tools sometimes
requires an intermediate conversion step transforming one file format into another. The output
produced by each step of the analysis leads to a high number of files which need to be managed
efficiently.

Additionally the user has to wait for a single step to complete before he can continue with the
next step. The sighted user can automate this process to some point, but still has to invest some
time into the process. When processing multiple samples the same process has to be repeated all
over again, sometimes with small adaptions. The analysis results and sometimes the analysis
as whole needs to be made available to a multitude of people, often not coming from the same
background.

Besides this, the installation of the tools itself and more often of the required dependencies
take some time and are often difficult to complete for people without training in a computer
related discipline.

Running the analysis within a centralized environment has multiple advantages. Tools and data
have to be only maintained in a single place enabling easy management and sharing. Especially
web-based solutions enable flexible access to a broader audience. Various public instances of
services promising easy analysis of metagenomic data already exist as introduced in Part I.
Transfer volume, data safety and security as well as sharing of computational resources may be
disadvantages when using those platforms as sole source for the complete analysis.
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7 Processing, Accessing and Sharing High Volume Data
7.1 Galaxy-Server

To match the different requirements for processing and accessing high volume data we suggest to
use a local instance of the Galaxy platform. Galaxy is an open, web-based platform for the analysis
of high-throughput genomic data. It was originally developed by Goecks et al. [92, 103] as "a
comprehensive approach for supporting accessible, reproducible, and transparent computational
research in the life sciences". A public instance of the website is available via http://usegalaxy.
org, but this introduces previously mentioned disadvantages as not allowing users to implement
their own tools and sharing of computational power between all users. Also the public galaxy
is more focused on genomics than metagenomics only offering a small toolset for metagenomic
analyses. With galaxy being open-source it is possible to set up a local server which than can be
modified to specific needs. This includes management of tools, data access, and computational
resources in an efficient way.

7.1.1 Technical Design

The local Galaxy-Server is accessible via https://galaxy.informatik.uni-tuebingen.de. To
manage computational resources and sensitive experimental data access is restricted to selected
user accounts of the department and extra local user accounts to offer external collaboration
partners easy access. Web access is limited to the secure HTTPS protocol to ensure data privacy
and integrity. The server manages multiple instances offering a stable, legacy version, and local
instance which is a development snapshot of the tools. This ensures that the productive instance
will continue working while new tools are implemented and updates of the base system are
imported. To increase responsiveness the different instances serve more than one web-server
thread per instance. Each entity is accessible through its own URL and is proxied through
Apache to load balance access to the server. The Apache web-server in combination with multiple
PAM modules is also handling user authentication and authorization. Jobs are run by the job-
runners locally or computational expensive jobs will be submitted to the local compute cluster for
computation. Scheduling of cluster jobs is done by the SunGridEngine (SGE) of the cluster-master.
Metadata is stored in a local PostgreSQL database for newer instances, the read-only legacy
version has metadata stored in a MySQL database. The file system is connected through NFS with
the cluster and the departments share. Local workspace is excluded to ensure high throughput for
local computations. Full and incremental backups are done through a separate sshfs connection to
third computer via duplicity. The layout is visualized in Figure 7.1.

The instances are based on a single mercurial repository cloned from the public official galaxy
repository on Bitbucket https://bitbucket.org/galaxy/galaxy-central/src. Base system
code and own tools can therefore be easily shared between the instances. Development process
and documentation is provided by a content management system (Redmine) running on the server
(Figure 7.2). Source code, tickets, changelog, news, and documentation can be viewed through
the website. This allows easy interaction between involved developers and users.
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Fig. 7.1: Layout of the local Galaxy Server hosting three different instances. Instances
offer multiple web-server which are load-balanced through the systems Apache

webserver to ensure responsiveness when accessed by multiple users at the same
time.
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Fig. 7.2: Beside the galaxy instances the server offers a mercurial repository and redmine
environment. Both additional environments are also shared through the main
Apache webserver allowing easy interaction for developers and users.

7.1.2 Tools and Pipelines

The graphical user interface makes it easy to use different tools and combine them into whole
workflows. The basic galaxy instance already supplies a variety of tool description files allowing
the executing of such tools (if installed on the server). Tool description files are XML files
containing information about possible parameters, input/output file formats, descriptions and
information about job execution. The file is automatically used for generating the user interface
during interaction (Figure 7.3). New tools can be easily integrated by writing a new specific XML
file.

Depending on the project task we integrated already existing tools into galaxy. The following
list gives an overview of external tools.

EA-Utils: ea-utils is capable of filtering adapters and trim reads accordingly. It is also able to
merge paired end reads into longer fragments [80].

Bowtie: Version 1 and 2 of the short read mapper was included for filtering metagenomic reads
which originate from a specific host. Matching reads were removed from the input file

[51, 52].

GATK: The Genome Analysis Toolkit (GATK) was integrated to use the UnifiedGenotyper for SNP
calling, VariantFiltration for SNP filtering and FastaAlternateReferenceMaker for consensus
generation [87].

Picard: The following tools from Picard were included: addOrReplaceReadGroups for preparing
BAM files for further processing and MarkDuplicates for duplication flagging and removal
[ro4].
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Generate MEGAN RMA (version 1.1.0)

BLAST File:

| 5: Map with BWA for ..apped reads * |
Read file:

| No readfile available s

MEGAN settings to use:
| Full parameter list + |
For most needs use Commonly used settings. If you want full control use Full parameter list

Maximum matches to include:
25

Minimum bit score:

35.0

Default: 35.0

Minimum bit score divided by read length:
0.0 ‘

Percentage win against top score:
o ‘

Winscore:

0

Default: 0

Minimum number of reads that must support a taxon:
5 ‘

Default: 5

Ignore duplicate matches in data:
O

Default: off

Ignore reads with no hits in data:
O

Default: off

Execute

Fig. 7.3: MEGAN user interface automatically generated by GALAXY. The user can input
various parameters or can use the program’s default options.
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BLAST: Different versions of BLAST and the BLAST+ suite were integrated [55].

samtools: Samtools-wrapper were extended to efficiently convert SAM-files and sort and merge
BAM-files [86].

MEGAN: The MEGAN tool-wrapper creates a rma-file from any valid input-format. An optional
read file can be supplied as well as options for the LCA algorithm can be set. GI mapping
files to use can also be defined [13].

mapDamage : For ancient DNA projects the mapDamage scripts were included. The tool
calculates and plots possible DNA damage patterns using a mapping file. Damage patterns
can later be used for authentication of the sample [105].

Some tools did not offer the needed capabilities so own tools were developed and integrated
as well. The following list gives an overview. If an external tool is required as dependancy a
reference is given.

Trimmer: Trims FASTQ reads for bad quality using a sliding window approach. Thresholds can
be set accordingly.

Adapter removal: Removes known adapters from the sequence. The tool takes a FASTQ read file
and FASTA adapter file as input.

Linker Removal 454: Removes known 454 linker from the reads. Similar to the previous tool,
this tool removes 454 bases linker sequences.

Convert Solid: Converts solid color space reads into base space. The tool generates all valid
reads where the CS read may originate from.

Plot Coverage: Using Bedtools [106] and GnuPlot the tool plots the coverage graphically over
the whole genome.

Calculate Coverage Histogram : Using Bedtools the tool generates a coverage histogram.

Create Consensus: This tool creates a consensus sequence based on a variant calling file from
GATK. Unconfident or filtered sites are marked as 'N’.

Get Mapping Stats: Extracts information about a mapping file, such as number of mapped
reads.

In addition to the tools multiple databases, indexes (NCBI-NR, NCBI-NT, RefSeq, Environmen-
tal, viral etc.) and reference genomes (hg19, various model organisms and bacterial strains) have
been integrated.

A combination of single tools have been deployed in various smaller projects by multiple users.
For more complex tasks the tools have been combined to different workflows. For example SNP
calling and consensus creation workflows for ancient DNA research contain up to 46 different
steps. A simple exemplarily metagenomic workflow is displayed in Figure 7.4.
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7 Processing, Accessing and Sharing High Volume Data

7.1.3 Discussion

Aside from work for metagenomics and ancient DNA research the server has been extensively
used and extended by Magdalena Feldhahn from Oliver Kohlbachers group, University of
Tuebingen. For her project the instance was extended for building multiple immunoinformatics
workflows [107]. Tools include additional mapping, SNV detection, SNV epitope prediction and
database export. Design and implementation allowed parallel development of tools as well as
workflow building, testing and execution. We have demonstrated that galaxy provides a flexible
way to use tools already in the basic version, integrate external tools as well as easy integration of
own tools. Sharing of results or complete workflows with external collaborators allowed short
feedback times while discussing results. The initial investment in time for setting up the server
and implementing new tools is easily paid of by savings later on.
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Ancient DNA Research

67






CHAPTER 8

The Ancient Mycobacterium Tuberculosis

This chapter is about the analysis of ancient Mycobacterium tuberculosis samples. We first give a
short introduction and explain typical challenges in ancient DNA research. Additionally needed
techniques are explained. After the analysis a short summary is given.

8.1 Motivation and Background

The disease tuberculosis (TB) remains until today a serious health problem around the world.
The Global tuberculosis report 2012 [108] states that in 2011 approximately 9 million new infections
and 1.4 millions TB induced deaths took place. Especially human immunodefficiency virus (HIV)
positive patients infected with TB develop the disease. Leaving the disease untreated 70% of the
patients die within 10 years. Focus of TB infections are mostly developing countries, but numbers
are eventually rising all over the planet. Especially the increased encounter of multidrug-resistant
TB strains (MDR-TB), hindering the effective treatment, is a worrying development [108]. A
study suggest that TB’s over average capabilities of adapting to drugs and effective transmission
between hosts is based on the specific genetics and therefore the evolution of M. tuberculosis

[ro9].

8.1.1 Theories on the Evolution of Mycobacterium tuberculosis (complex)

In principal there are two major theories about the evolution of today’s M. tuberculosis. A long
supported theory was the descent of M. tuberculosis out of M. bovis as a result of a zoonotic event
- that is the infection of humans by an animal pathogen. A newer theory suggest the evolution of
today’s strains out of a ancestral group named M. prototuberculosis.

TB: A result of zoonosis: The long time established theory suggest that evolution of TB started
with the beginning of agriculture and domestication of cattle approximately 13,000 years
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8 The Ancient Mycobacterium Tuberculosis

ago [110, 111]. M. bovis infected animals are suspected to infect human and as a result
M. bovis adapted to the new host and evolved eventually into today’s M. tuberculosis [112].
Until now zoonotic events with M. bovis infecting humans and causing TB, are estimated
at rates of 1.4-2.5% of all TB cases [113].

M. prototuberculosis: Wirth et al. [114] suggest that the origin of the modern Mycobacterium
tuberculosis complex (MTBC) was lied out approximately 40,000 years ago at the Horn of
Africa. Their study support the idea of a pool of mycobacteria where the ancestral MTBC
emerged from a pool of microorganisms named M. prototuberculosis and co-migrated with
humans from Africa [115]. They further suggest that 20-30,000 years later the ancestral
strain formed two main lineages with one spreading in human population and one being
the source of animal tuberculosis. Other studies also suggest that TB spread from human
to animal and not vice versa [116, ]. Nevertheless the theory of M. prototuberculosis, is
controversially discussed [118, ].

8.1.2 Ancient DNA: complex, fragmented and damaged

In contrast to living organisms where damage to the DNA is quickly repaired, post-mortem
damage is accumulated over time. Different types of damage happen to the DNA molecules
over time including oxidative and hydrolysis damage as well as DNA degradation and crosslinks
[22]. Typical results of oxidative damage and DNA degradation are strand breaks and blunt ends
explaining the short average read length of 7obp typically encountered when handling aDNA
[120]. Hydrolysis mainly leads to misconding lesions which introduces a bias of C -> T and G ->
A transitions and to a lower amount of A/T -> G/C transitions [121]. This is a direct result of
hydrolytic deamination of cytosine to uracil or hypoxanthine respectively. The damage patterns
are not evenly distributed over the reads, but tend to pile up at the ends of each strand where
blunt ends are more likely to be exposed to the environment [122]. It has been shown that the
use of Uracil-DNA glycosylase (UDG) can repair deaminated sites and after further processing
those reads can be sequenced [123].

Besides the challenges of fragmentation and damage of aDNA the concentration within the
sample itself is often a problem. Usually the sample is a complex mix of past and present
microbial and fungal, host and contaminating organisms as well as the organism of interest.
Quality and concentration of retrieved aDNA are highly variable depending on the sample and
usually in favor of cold environments such as permafrost soil (e.g. [19]).

Removing contamination and authenticating aDNA remain an evolving challenge. Cautious
steps need to be taken to ensure the integrity of the analysis. On the bioinformatics side the
introduced damage patterns can be used to authenticate aDNA [120].

8.1.3 Sample Enrichment

Especially the low amounts of target DNA in a sample is sometimes problematic as not enough
material can be generated for a genome wide analysis. For this reason early studies mostly
focused only on mitochondrial DNA (mtDNA) [22]. By contrast nuclear DNA has the advantage
of being less accessible for damaging reactions, resulting in higher preservation despite its
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relatively low abundance compared to mtDNA. Targeted enrichments offer a solution to this
problem. Besides SNP arrays the use of custom made bait capture arrays are a reasonable option.
This technique uses a chip similar to a microarray where target DNA hybridizes to previously
synthesized probes on a chip and unbound DNA gets subsequently removed. Remaining DNA is
then sequenced [120]. The drawback of targeted approaches is by definition that one can only
enrich the sample for known sequences, so a minimal knowledge of the target organisms is
required. One can also extend the capture width by taking related species into account when
designing the array. Unfortunately completely novel sequences of the organisms will be missed
anyway because no capture bait will be available. Recent studies [23, 24] demonstrated that
genome wide reconstruction of ancient strains is feasible using this technique.

8.2 Analysis of Ancient M. Tuberculosis Samples

This section describes the analysis of multiple ancient samples from human remains which
are suspected to be infected with M. tuberculosis (TB). Samples of ancient remains were taken
from different sites mostly from Southern and Northern America. Skeletal markers, such as
specific damage to the spine, ribs or phalanx, suggest an infection with TB. The project is done
in collaboration with Anne Stone, Arizona State University. The aim of the experiment is to
study the evolutionary relationship between known and the ancient strains. For this, suitable
samples need to be identified, consensus sequences need to be created and single nucleotide
polymorphisms compared to known strains need to be determined. The analysis presented in
this work consists of three different steps: A whole genome shotgun approach, an additional
screening process by sequencing samples which were enrichment using four specific genes and
finally the sequencing of samples which were genome wide enriched using a custom build bait
capture array. We will present each approach in detail with a separate section of methods, results
and a short discussion. A final conclusion is given in the end of the section.

8.2.1 Whole Genome Shotgun Analysis

Depending on the environment the sample was found in, the storing condition and the sam-
pling location DNA of the sample may display different levels of DNA degradation. A whole
genome shotgun (WGS) approach may yield enough endogenous DNA for the complete analysis,
depending on DNA preservation. This WGS analysis was designed as screening for potentially
interesting samples.

Methods: A total of 102 samples including blanks as controls were prepared and sequenced
using a paired-end protocol on an Illumina MiSeq sequencer. Initial quality control (QC),
adapter trimming and merging of paired-end reads was done as described in Chapter 4
using ea-utils. QC identified approximately 5-10 bps in the beginning of the reads forming
some sort of artificial k-mers which could not be definitely described and reliably identified.
Reads were therefore trimmed 5 bps in the beginning to minimize effect on the downstream
analysis. Samples were mapped against all available full genomes of the strains M. avium (2
strains), M. tuberculosis (14 strains) and M. kansasii (1 strain). Samples were also mapped
against the human genome (hg19) and additionally the human mitochondrial chromosome
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as a control. Duplication removal was performed and damage pattern calculated using the
mapDamage tool [105]. Average and maximum coverage for each reference was calculated.
Mapped reads were individually visually inspected if necessary.

Results: After QC average read length was around 60-8o bp with a standard deviation of 10-30

Frequency

Frequency

depending on the sample. For most samples the number of mapped reads to the different
complexes was below 0.5%, different spikes were observed with a maximum of 1.5% of
mappable reads. Coverage analysis for the individual sequences indicated that on average
more than 99% of the reference sequence was not covered. Reads for most samples often
clustered in short positions with a very high coverage. Calculated damage plots showed
ancient DNA specific damage patterns, but seem artificially flattened on both ends. See

Figure 8.1 for an example.
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Fig. 8.1: Damage pattern of sample 58 mapped against gene gyrAB (extended). The
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lower plot is based on the mapping done with BWA. The upper plot is based on
mapping done with Bowtie2. One can clearly see the artificial flat ends induced
by soft-clipping of Bowtie2. Data taken from the analysis with gene enriched
samples for demonstration purposes.

Regarding pathogen coverage Sample 58 has the highest percentage mapping to the
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tuberculosis complex with 1.58% of reads mapping against the reference. Those reads only
span 0.01% of the genome with 100 fold coverage.

A few samples show an exceptionally high number of reads mapped to the human genome
with up to 77% of mappable reads within a single sample.

Sample STG380 mapped exceptionally well to the human hgig9 genome (77%) and a low
number of reads mapping to the human mitochondrial DNA (mtDNA) with only 0.02%
of all reads. For the mtDNA coverage calculations showed a 30% coverage with 1-2x
fold and maximum coverage of 3. Reads from this sample are well distributed along the
chromosome and not clustered in few positions.

Discussion: Preliminary authentication of aDNA was done using average read length and DNA
damage pattern. The overall short average read length can be seen as indicator that samples
are actually containing ancient DNA. Damage plots support aDNA characteristics except
of the flat ends encountered during the analysis. The low percentage of mappable reads to
reference sequences has been already described by previous publications (e.g. [23]) and is
no indicator for potential problems.

The analysis itself has three major concerns which can be only partly explained during
this discussion: flat ends, clustering and k-mers. Although the flat ends could not be
explained originally at this point, a later analysis discovered the source of the flat ends. The
reason for this phenomena is the combination of the mapDamage tool and the mapping
with Bowtie2. During setup we decided to use Bowtie2 in local-mapping mode, because
we expect the damage pattern to interfere with the default end-to-end mapping. This was
successful as more reads got mapped to the reference sequences. Bowtie2 soft-clips the end
parts of the reads not in the alignment (e.g. marking bases as not used). Technically the
mapping process is well within its defined range. The problem is that the mapDamage
script does not consider those clipped positions for damage calculation. In detail the script
is considering the soft-clipped ends for length calculation, but not for damage pattern. We
assume that this is mainly because the script was designed to work with BWA which does
soft-clipping of positions only in cases of bad quality. Masking bases using soft clipping is
reasonable when low quality bases would interfere with damage pattern calculation.

Using BWA for mapping can quickly circumvent the problem, also BWA has been already
established in different pipelines. The drawback is that BWA does not support local
alignments and thus decrease mapping performance because of the damage of aDNA
interfering with mapping efficiency.

The second problem, clustering of reads at specific positions could be potentially prob-
lematic during a full WGS analyses. Clustering of reads is often some sort of PCR or
amplification error. Usually reads can be observed outside clusters as well which is not the
case here. One explanation may be the relatively low fragment count per sample which
may increase competition during library preparation. Highly amplified fragments will then
be preferentially sequenced resulting in clusters. It is also unclear why some samples do
not show this behavior. Again the amount of initial DNA during sample preparation may
be one reason as samples with high amounts of DNA may potentially get more evenly
amplified.
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Artificial k-mers in the beginning of the reads could be a result of an unknown and
uncontrolled process during the wet lab phase of the project. As the k-mers could not
clearly be identified a removal is only partly possible. Other sequencing runs done in
the same time-frame seem to encounter similar artifacts [124], so the problem may be
sequencing chemistry or the sequencer itself. Artificial parts of the sequence may interfere
with the mapping process and can in theory also hinder effective duplicate removal.
Incomplete duplicate removal will also support generation of clusters during mapping.

Potential problems during wet lab processes and especially sequencing can be hard to track
down and usually can not be solved in silico as multiple preparations and sequencing runs
should be performed to pinpoint the exact problem.

Screening using the WGS did not clearly identify potentially interesting samples for the ancient
M. tuberculosis project. Sample STG380 will be further investigated in another project because
of the exceptionally high number of reads mapping to human hgig. For this study the sample
has been excluded as pathogen coverage was not as high as expected. Results show that using
WGS for these samples is not practicable as low amounts of DNA preserved within the single
samples may cause different unresolved problems during the analysis. An alternative to WGS is
the enrichment of the different samples prior to sequencing as already introduced.

8.2.2 Gene Enrichment Analysis

As a preparation to an enrichment using a bait capture array a number of samples were screened
to identify suitable samples. Screening was done using four different genes gyrAB, rpoB, katG
and mptgo. Three genes rpoB, katG and mpt4o are specific for the M. tuberculosis complex while
the the combination of gyrA and gyrB is also present in Mycobateria in general. Using the genes
one should be able to estimate the potential M. tuberculosis content of samples and make a final
selection for a detailed genome wide analysis.

Methods: Samples were enriched for the four genes prior to sequencing, because of the low
amount of DNA of the samples. Sequence information about the four genes for enriching
were extracted from the H37Rv strain of M. tuberculosis. Sequencing was done using a
paired-end protocol on an Illumina MiSeq. After sequencing QC was done accordingly.
All samples were mapped against the four specific gene regions. Additionally mapping
was done using extended versions of the genes using extended fragments of the genes
including 150bp up and downstream of the region. This was done to ensure that reads
which originated from the ends and are overlapping were also mapped correctly. As
control the reads were also mapped against human hgig and the human mitochondrial
chromosome to spot potential contamination issues. Average coverage was calculated and
coverage distribution was plotted for the extended and not extended fragments. Damage
plots were calculated for all completed mappings. Alignments for samples 64.U, 65, 54, 58,
and 162 against the extended gene sequences were further manually inspected for final
decision of sample selection. For selected samples all reads were compared to a reference
database using blast to ensure that no cross contamination occurred. Blast results were
analyzed using MEGAN.
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Results: Average read length after QC was between 50-70 bps with a standard deviation of 15-25
depending on the sample. Mapping results showed up to 2% of mapped reads for all
samples, but was usually in the range below 0.5%. Especially the number of mapped reads
for katG and mpt4o usually was below 0.01%. As contamination control the mapping to
hg19 and mtDNA was usually negative with 0% of mapped reads. Initial damage plots
showed flat ends, but the issue was resolved and final damage plots showed typical aDNA
damage patterns. Coverage for the specific regions varied widely: Depending on sample
and gene 9% to 100% of the reference sequence was not covered. Selected samples showed
average coverage between 1.3x and 27.6x, see Figures 8.2 and 8.3.
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Fig. 8.2: Coverage plot of sample 54 mapped against the four extended gene fragments.
The ends of the fragments are not covered as for this regions the sample was not
enriched.

Sequence comparison against the NCBI-NT collection using blast for the final three datasets
54, 58, 64 showed significant matches for the M. tuberculosis complex only.

Discussion: Average read length and DNA damage patterns support preliminary authentication
of ancient DNA. Sequence coverage do not suggest high read clustering as previously
observed. Coverage of gyrAB is not exceptionally huge, which provisionally suggests that
reads originating from another Mycobacteria complex did not contaminated the samples.
The additional sequence comparison of all mapped reads using blast showed no cross
contamination, see Figure 8.4.

Based on this result and final manual inspection the samples 54, 58, 64 where selected for
the genome wide enrichment and analysis. All selected samples originate from Peru with a
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Coverage Sample_64.U
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Fig. 8.3: Coverage plot of sample 64.U mapped against the four extended gene fragments.
The ends of the fragments are not covered as for this regions the sample was not
enriched.
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Fig. 8.4: Taxonomic assignment of samples 54, 58, and 64 using the NCBI-NT database.
Visualization only include previously mapped reads to reduce noise.
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find spot at high altitude. The dominating colder climate at these heights may have been
favorable for DNA preservation.

8.2.3 Genome Wide Capture Array

Combining the results of the gene enrichment and whole genome shotgun analysis, we focused
on the Samples 54, 58, and 64 for the following genome wide capture array analysis. The selected
samples all originate from Peru and are dated 1285 to 750 AD, see Table 8.1 for an overview.

Name Location Dated
54 Peru AD 750 - 1150
58 Peru AD 900 - 1285
64 Peru AD 9goo - 1200

Tab. 8.1: Site location and approximate age of the selected samples.

Before sequencing a partial amount of the samples have been UDG (U) treated. Enrichment for
partially unknown aDNA strains requires a specially designed capture array. The design and the
subsequent analysis will be described in the following section.

Design

The design of the array needs to mirror most of the specificity and variation of multiple strains at
the same time. We selected M. africanum (1 strains), M. bovis (4 strains), M. canettii (1 strains),
and M. tuberculosis (14 strains) to be included in the final array design. The detailed list including
accession numbers is represented in Table C.19. The design of the chip is based on a degenerated
consensus sequence of the included strains representing each observed variation. Consensus
sequence creation is based on a multiple sequence alignment (MSA) which was done using Mauve
[125]. The design target was to stay below 2 million probes (i.e. 2 arrays).

Methods: All strains which were selected to be included in the final design (Table C.19) were
aligned using Mauve. Genomes of the included KZN strains contain a major rearrangement
compared to H37Rv. To optimize the consensus we rearranged the order of the blocks to
match the order of the reference H37Rv strain. For this the individual blocks were identified
using SPRING [126]. The sequences were then rearranged based on this information. From
the MSA a degenerated consensus was created to represent the complete variation at all
positions. Each position was encoded using a one letter code (e.g. M: A+C) depending on
all nucleotides in the MSA at the specific location. Artificial breaks, such as gaps in the
alignment spanning more than 4 bps or brakes introduced during genome rearrangement,
were included using 60 bp up and downstream on the original sequence. Overlapping
fragments were merged to minimize introduced redundancy. Highly degenerated regions
with more than 10 degenerated sites per 60 bps were identified and replaced by the original
H37Rv sequence, as those may be artificially induced by the alignment process.
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In addition to the main degenerated consensus a separate consensus was created using two
M. avium strains: M. avium 104 (NC_008595.1) and M. avium subsp. paratuberculosis K-10
(NC_002944.2). The K-10 strain was rearranged to match the block order of the longer 104
strain.

Array probes with length 60 were designed from the main consensus sequences. Duplicate
probes were removed and remaining free space on the array was filled with M. avium and
M. kansasii probes. For this, unique regions in M. avium and M. kansasii (NZ_CMo000636.3)
not represented in the other genomes were calculated.

Results: The initial degenerated main consensus is 5,037,910 bps long with an average coverage

of 19.89 during consensus creation. Additional 299 blocks, induced by only partially
shared sequence fragments, span 196,111 bps with 2.86 fold coverage. Gaps introduced
additionally 23,738 blocks. The final main consensus covers 7,887,472 bps including all
flanking positions from blocks and rearrangements. Table C.20 gives an overview of the
composition of the degenerated consensus sequence. The degenerated M. avium consensus
is 5,922,143 bps long. The consensus contains 883 gaps spanning more than 4 bps, see Table
C.21 for base composition.

Discussion During the design phase various obstacles were encountered especially when creating
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a MSA of the sequences. The initial design considered more reference strains to be included
(e.g. M. avium and M. kansasii) on the array. In this early phase we observed that Mauve
has potential problems when aligning strains which are too distantly related. As a result
we used SPRING for detecting rearrangements in the sequences and reordered them prior
to aligning.

Both additional strains showed heavy structural variance compared to H37Rv. For M. avium
SPRING calculation showed 78 blocks spanning about 91% of the genome which needed to
be rearranged. The genome of M. kansasii (NZ_CMo000636.3) contains 138 blocks which
were identified. Adding the additional diversity by including those strains we observed
that the length of the MSA and therefore the created consensus sequence was to large to fit
onto two arrays.

Up to some part the diversity of the strains may be responsible for the observed increase in
complexity, but we assume that even with the rearranged strains the MSA is not optimal,
as it suddenly gets stretched artificially. Removing M. avium and M. kansasii from the
alignment enabled Mauve to create a MSA which was considered valid.

The replacement of highly degenerated regions in the consensus sequence was also based on
the assumption that those regions are more likely an artifact of the MSA than representing
real genomic diversity.

Including 120 bps of the original sequence if the alignment contains a longer (>4 bps) gap
was done to ensure that the gaped region of the sequence is represented as continuous
stretch on the array to enable capturing of it. The additional probes on the array covering
partially M. avium and M. kansasii ensures that potential diversity represented only in
those strains should be potentially captured as well. The final array design represents most
of the complexity of the M. tuberculosis complex, while it tries to minimize enrichment
bias towards single specific strains.
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8.2.4 Capture Array Analysis

Using the previously designed enrichment array the selected samples can be further processed.
We again included line and extraction blanks as controls. As an additional check we also included
an ancient sample which pathologically showed no signs of a TB infection.

Methods Samples were enriched using the custom build bait array and sequenced on an Illumina
HiSeq 2000 using a paired-end protocol. QC was performed accordingly to the previous
chapters. Samples were initially mapped against M. avium, M. kansasii and M. tuberculosis
strains. Potential PCR duplicates were removed using Picard [104]. Coverage plots and
coverage histogram were calculated using BEDTools [106]. DNA damage plots were
calculated for all samples.

The three UDG treated samples (54.U, 58.U, 64.U) were additionally mapped against
M. canettii, M. africanum, and M. bovis. Duplicate removal was performed, coverage
information and damage plots were generated accordingly.

Based on the mapping against M. canettii, M. africanum, M. bovis, and M. tuberculosis
SNP calling was performed using the UnifiedGenotyper [87]. SNPs were filtered using a
minimum coverage of 5 and a minimum quality of 30.

Using the SNP information we calculated a total of 24 consensus sequences: two consensus
sequences for each combination of samples (3) and references (4). The first consensus
contains Ns at each position which is not covered by reads or did fail quality checks, this
sequence will be referred to as consensus sequence. The second consensus contains the
original base of the reference sequence at positions previously containing Ns, this will be
referred to as overlay-consensus sequence. The whole pipeline up to this point was integrated
into galaxy as single workflow.

Based on the overlay-consensus sequences a MSA was created and SNP calling performed
using Mauve. SNP positions of the overlay MSA were replaced by the initial consensus
sequences to ensure that originally not covered SNPs will be marked by Ns and filtered.

To evaluate the MSA results different pairwise alignments were calculated: For each
reference sequence we aligned the reference and the corresponding overlay-consensus
sequence. This was only performed for sample 54.U. For each reference two alignments
were generated: one using the default options and a second time we instructed Mauve
to assume collinear genomes. These options were also used to generate additional MSAs
using the four TB complex reference sequences.

The three samples were additionally assembled using SOAPdenovo [48, 19] using different
k-mer sizes. The longest contigs found for each sample were exemplarily compared against
the NCBI-NT database using BLASTN.

Results Table C.22 gives an overview of the total number of reads per sample. Average read
length is between 50-65 bps with a standard deviation of 10-25 depending on the sample.
The maximum number of mapped reads to M. avium and M. kansasii is 3% whereas the
mapping to H37Rv achieved 20-30%. An exception to this are extraction and line blanks as
well as the TB negative control: Mapping was usually below 1% regardless of the reference
sequence.
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Coverage calculations show that samples do not cover 85% to 99% of the M. avium and
M. kansasii genomes. In comparison to that only 2% to 16% of H37Rv is not covered by the
samples. Overall the not UDG treated samples have a lower count of mappable reads and
less overall genome coverage. Again negative controls fail to cover most of the reference
sequences.

For the second mapping against the four TB complex references about 18% (64.U), 26%
(58.U), and 30% (54.U) of reads were mapped regardless of the reference sequence used.
All reference genomes were covered between 97% and 99%. Table 8.2 displays the average
fold coverage.

Sample H3yRv M. africanum M. bovis M. canettii

54.U 34.8 35.2 349 33-2
58.U 22.3 22.6 22.4 21.3
64.U 26.5 26.7 26.5 25.3

Tab. 8.2: Average fold coverage of samples against different references.

After consensus generation SNP calling was performed: Depending on the sample approxi-
mately 16,000-17,000 raw SNPs were called for M. canettii as reference and 1,200-2,200 raw
SNPs for the other three reference sequences. Filtering SNPs removed 10% of all SNPs on
average.

The initial overlay-consensus MSA was generated using Mauve. Mauve called 17,122 SNPs
and approximately 4 million gapped positions, see Table 8.3 for details. After replacing
originally not covered positions a total of 3,913 SNPs were observed.

Default Collinear
Sequences Gaps SNPs Gaps SNPs
Overlay-consensus sequences 4,792,067 17,122 10,827,919 14,761
TB complex references 1,374,252 29,249 1,537,104 28,401

Tab. 8.3: Results for the two MSAs using the overlay-consensus sequences and TB complex

8o

reference sequences. Gap positions and SNPs in the alignment created by Mauve
using either default options and assuming collinear genomes.

Visual analysis of SNP positions indicated potential problems with the MSA: According
to the alignment different bases get called for the same sample at the same position if a
different reference sequence is used, see Figure 8.5 for an example.

Table 8.3 also displays the results for the MSA using the TB complex reference sequences.
The alignment is overall less gapped and more SNPs are identified.

For the pairwise alignments gaps and SNPs were determined. Depending on the reference
and the options used, huge gaps are introduced into the alignment. It is interesting that
only for M. bovis and M. tuberculosis the alignment and SNPs stayed constant or only
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varied sightly. Compared to M. bovis the alignment using M. tuberculosis contains a huge
number of gapped positions which may indicate problems with the sequence alignment.
Table 8.4 displays the results.

54U-africanun| A A A A
54U-bovis | A JBY A JBI A il A [ [
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Fig. 8.5: SNPs based on the MSA of the consensus sequences. Left: Potential mis-
alignment as the reference H37Rv has a different base compared to the other
sequences. Right: Assumed correct alignment. The samples are conclusive
within themselves regardless of the used reference sequence.

Default Collinear
Reference Gaps SNPs Gaps SNPs
M. africanum 2,453,232 1,391 0 1,854
M. bovis 0 1,911 0 1,911

M. canettii 53,428 15,5531 359,993 14,744
M. tuberculosis 1,277,589 1,928 1,277,577 1,926

Tab. 8.4: Result of the pairwise sequence alignments for sample 54.U. Gap positions
and SNPs in the alignment created by Mauve using either default options or
assuming collinear genomes.

Additional to the number of gapped positions, the pairwise alignments indicate potential
problems with Mauve: Mauve identifies a region as specific for each sequence (see white
block in Figure 8.6) although manual inspection shows that both sequences are nearly
identical. Additionally Mauve identifies variation in the genomic structure (differently
colored blocks in Figure 8.6) for the Overlay-H37Rv vs. Reference-H37Rv alignment which
is unlikely.

For the assembly different results were observed depending on k-mer size and sample.
The best N5o0 is 1,043 (sample 54U, k-mer size 83) and the longest contig 23,750 bps long
(sample 58U, k-mer size 49). The database search using BLASTN did identify the longest
contigs to be only partly covered by the database result, see Table 8.5.
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Fig. 8.6: Mauve alignment for two different reference sequences: Overlay-H37Rv
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vs. Reference-H37Rv and Overlay-M. africanum vs. Reference-M. africanum.
In H37Rv Mauve indicates a different genomic structure (different colors). In
both alignments Mauve assumes that a section is completely different and unique
for the specific genome (white block). However the regions identified by Mauve
are nearly similar which indicates a potential problem with the alignments.

Sample Hit Description % of Query Covered E-Value
54.U Clostridium difficile Blg 94% 0.0
58.U Alkaliphilus metalliredigens QYMF 73% 0.0
64.U  Acinetobacter baumannii AB307-0294 6% 2e-56

Tab. 8.5: Best BLAST Hit for the longest contig generated during assembly.
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Discussion Average read length and DNA damage pattern are again used for preliminary
authentication of the aDNA. Additionally the damage pattern of UDG treated samples are
not as distinctive as of the not UDG treated samples. This also supports the authenticity of
the samples, as DNA damage is partially repaired by the UDG treatment.

The initial mapping versus the M. avium, M. kansasii, and M. tuberculosis strains strains
ensured that no complete outgroup was captured. The higher number of mappable reads
for the UDG treated samples is due to the decreased DNA damage. The negative controls
do not suggest that there are major problems during extraction and preparation of the
samples.

The second mapping against the four TB complex reference sequences was done to ensure
that the analysis is not substantially biased by mapping exclusively to H37Rv. Based on the
number of mapped reads, total coverage and average coverage we are not able to identify
an exclusive reference sequence for the subsequent analysis.

The SNP calling for the TB complex mappings resulted in a relatively high amount of SNPs
for M. canettii in comparison to the other three reference sequences. A main problem for
interpreting the numbers is that SNP numbers vary widely between publications as only
few publications perform genome wide SNP analysis. Most studies perform the phylogeny
analysis based on SNPs found in single genes (e.g. katG, gyrA, gyrB, hsp6s, rpoB, and
sodA). Based on this the estimated numbers of SNPs for the full genome are much lower as
encountered here.

Two publications [127, 128] investigating full genome SNPs describe more than 14,000 SNPs
between two modern strains of M. canettii and H37rv, as well as 2,437 SNPs between the
genomes of H37Rv and M. bovis strain AF2122/97. The published numbers suggests that
our mapping of the ancient strains to the modern references and the SNP calling is within
the possible ranges and not obviously flawed.

During creation of the MSAs we encountered various challenges which we assume are
mainly introduced by Mauve. The initial minor problem that Mauve is unable to handle Ns
in sequences correctly was solved by using the overlay-consensus sequences for the MSA
generation. After the initial MSA generation we replaced not covered positions in the MSA
with Ns.

Unfortunately we further discovered potential serious problems with the MSA of the
overlay-consensus sequences which is generated by Mauve: The MSA resulted in SNP
positions which differ depending on which reference sequences used during mapping
(Figure 8.5 left). This should not happen as we expect reads to create a consistent consensus
regardless of the reference sequence used. Positions not covered by any read are substituted
by N and therefore identified. To clarify: We expect to only see variation between the
different samples and not between the different reference sequences (Figure 8.5 right).

The comparison of the alignment using the TB complex reference indicates that the MSA is
artificially stretched (see Table 8.3). The pairwise alignment confirmed that Mauve does
not align the sequences correctly as it marks whole regions as separate blocks, although
sequences are identical. For the pairwise alignment the region is usually half the size of the
gapped positions.
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For the pairwise alignment of Overlay-H37Rv vs. Reference-H37Rv Mauve indicates struc-
tural differences which are highly unlikely based on the process we generated the consensus
sequences. It would be interesting to assemble the aligned reads to see if structural changes
occurred.

We assume that the observed behavior of Mauve to identify similar blocks as specific for
the separate genomes by mistake introduces misalignments when using a higher number
of sequences. To pinpoint the problem it is necessary to validate the genome mapping and
consensus creation and later inspect multiple alignment positions by hand. At this point
the exact trigger is unknown and it is therefore hard to circumvent the problem.

We have to expect that the MSA is invalid which puts the following analysis on hold.
Depending on the mechanics one has to consider to replace Mauve with an alternative
approach to align the genomes.

The results for the assembly are only preliminary as we have only performed initial tests for
different k-mer sizes. Without further tests it remains unclear if the reads were assembled
correctly. The still existing DNA damage can interfere with the assembly process which
results in the low N5o numbers. The single BLAST results for the longest contig should not
be seen representative for the whole dataset. Especially the result for sample 64.U with only
6% of the query covered rises the question if the contig is an artificial construct. Determining
the validity of the assembly and the for the match to Clostridium difficile in Sample 54.U.
is also of interest. Spores of Clostridium difficile have been detected in hospital air [129]
which could have theoretically contaminated the sample during processing depending on
the wet-lab’s location.

8.2.5 Final Conclusion

In this part we introduced methods for ancient DNA research which enables researchers unique
views into the past of evolution. In comparison to modern DNA, aDNA puts unique challenges
on the studies: Samples usually only yield low amounts of DNA which is additionally damaged
and can be easily contaminated with modern DNA.

Here we described a project using samples from subjects which are suspected to have been
infected with M. tuberculosis. The study was done in three different parts in which we encoun-
tered various challenges. During the initial screening using a whole genome shotgun approach
we observed artifacts which may have been the result of the low amount of DNA and problems
with the sequencing chemistry. Screening of samples which have been previously enriched for
four different gene regions successfully identified three samples for the continuing analysis. All
three samples originated from sites with high altitude. The probably colder climate may have
been beneficial for DNA preservation compared to other samples. To overcome the limitation of
low amounts of starting DNA we designed a special genome wide enrichment chip. This was
done by creating a degenerated consensus of twenty known TB complex strains. During the final
analysis of the enriched and sequenced samples various problems were observed with the MSA
which could not be explained or solved until now. The key element of the analysis, the multiple
sequence alignment generated by Mauve, is suspected to be flawed. In pairwise alignments
Mauve identifies clearly identical regions as specific for the separate genomes, creating huge gaps.
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We assume that this behavior leads to misalignments when aligning more sequences. Continuing
with the downstream analysis does not make sense at this point, as a valid MSA is crucial for
identifying SNPs and the subsequent analysis. Overall this part expresses the full spectrum of
what can happen during an analysis, including potential wet-lab artifacts and various software
flaws.

The continuing analysis outside this work has to establish a way to circumvent the occuring
problems, before being able to establish a phylogentic analysis of the samples.
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CHAPTER 9

Conclusion and Perspectives

Today’s modern genomics highly benefits from new sequencing methods, allowing scientist to
sequence the genomic content faster, more efficiently and cheaper than ever before. Fields such
as metagenomics and ancient DNA research highly benefit from this development. This work
introduced and discussed mainly computational challenges for both disciplines.

As experiments and lab equipment do not produce perfect data, it is important to validate and
preprocess the data in a quality control step prior to the initial analysis. Chapter 4 presented and
discussed various established methods.

The mapping of reads to species or functions is the most important step during a metagenomic
analysis. In this thesis we have divided this step into two separate parts: the classification of
reads using a reference database and assigning reads based on the matched reference sequences.
For the initial classification we have shown that current methods are often slow and / or do not
provide any kind of sequence alignment, which is required to establish a thorough analysis. In
this context we presented a new hybrid method enabling faster analysis of metagenomic datasets.
The main idea is that the search space for the BLASTX run is reduced by classifying reads on a
higher level in a previous step. A simulation study shows that the approach is faster and achieves
a higher sensitivity than a BLASTX run.

The part of assigning reads to the taxonomy or functional content is highly dependent on the
used database. This includes database coverage as well as identifiers provided by the database
which is used for mapping. To asses the impact of database accuracy on the assignment we
analyzed overall mapping coverage of various database using the NCBI taxonomy. Functional
mapping was evaluated by the number of reads which could be mapped to valid SEED functional
roles or KEGG KOs.

Results show that mapping approaches using a text based description of sequences are some-
times unable to map the reference correctly because of missing descriptions or typos. For
functional analyses we have seen that highly curated identifiers like RefSeq can be found less in
newer versions of the database, which results in not mappable references.
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We therefore described an improved and generalized mapping approach using a GI based
mapping. Results for taxonomic and functional mapping improved using the new approach.
Evaluation with an in vitro simulated dataset showed that the GI based approach is able to reduce
false positive matches of the text based mapper which were not detected in the prior analysis.
Functional mapping accuracy was also improved, but compared to taxonomic assignment the
assignment rate was low. The main reason for this is that still only few genomes are functionally
annotated. All new mapping methods are already implemented in MEGAN for general use.

Interdisciplinary approaches with many scientists involved strengthens the need for an inte-
grated approach to analyze and share data easily. A few solutions already exist for the integrated
analysis of metagenomes. Those solutions are mostly off-site and don’t allow a local deployment
which would be beneficial to ensure data security, safety and the use of local resources. To ease
and automate analysis in our projects the Galaxy workflow management system was set up,
modified and evaluated. The system was used in different projects and performed well in data
analysis, management and sharing. Exemplary workflows as well as the implemented tools have
been described throughout this thesis.

The last part of this work described a current project using ancient DNA. Extinct specimen yield
high value information concerning evolutionary and distribution patterns. Especially knowledge
of the evolution of pathogens may be beneficial for understanding diseases and the development
of new treatments and vaccines. Here were analyzed multiple ancient Mycobacterium tubercu-
losis samples. The samples were initially screened using a whole genome shotgun approach.
Selected samples were specifically enriched using a custom designed hybridization array and
then sequenced again. Consensus sequences were generated for three different ancient strains
and an analysis for single nucleotide polymorphisms was performed. Quality of the consensus
and downstream analysis need to be evaluated further as there are discrepancies depending on
the reference sequence used.

Current developments in metagenomics show promising results in the area of fast assignment
methods, but further work needs to be done as data volumes tend to increase. Also the develop-
ment of integrated analysis pipelines enabling interdisciplinary groups to easily share, access and
analyze data should be further pursued.

Ancient DNA research will clearly benefit from technical progress. Literally uncountable
samples may prove or confute current theories of evolution. From the technical point of view
the authentication of aDNA is a topic which needs to be addressed in the future. Additionally
untargeted enrichment of aDNA samples is a high value ambition as this will enable to capture
the full spectrum of an ancient sample.
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APPENDIX A

Contributions

Hybrid Approach

Nico Weber (NW), Dominik Damerow (DD) and Daniel Huson (DH) contributed to this project.
NW conceived the project. DD implemented and tested the scripts. DD and NW performed the
analysis. NW, DD and DH contributed to the discussion. Parts of this section were presented at
the 1st Thiinen Symposium on Soil Metagenomics in Braunschweig 2010

Database and Assignment Accuracy

Nico Weber (NW), Daniel Huson (DH), and Sonja Héagele (SH) contributed to this project.

NW designed the original study. SH and NW performed the initial experiments to asses the
usability of the in vitro simulated metagenomic dataset. NW performed the database analysis
and generated the new mapping files. NW and DH suggested improvements to MEGAN and
DH implemented them. Final analysis of the in vitro simulated metagenomic dataset was done
by NW.

Workflows in Galaxy

Nico Weber (NW) and Magdalena Feldhahn (MF) contributed to this project. NW designed and
implemented the Galaxy server. MF integrated, tested the tools and designed and implemented
the immoninformatic workflows. NW implemented and tested tools and workflows presented in
this thesis. NW and MF contributed to the testing of the server.

aDNA Research

Nico Weber (NW), Johannes Krause (JK), Kirsten Bos (KB), Giinther Jager (GJ]), Alexander Herbig
(AH), and Kay Nieselt (KN) contributed to this project. JK and KB conceived the project. NW
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and KB designed the capture array. NW performed the bioinformatic analysis. JK performed

the visual inspection of alignments and the phylogenetic analysis. NW, JK, KB, G], AH and KN
contributed to the discussion.
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Publications

Published Manuscripts

* Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative analysis of envi-
ronmental sequences using MEGAN4. Genome Research, 2011 Sep;21(9):1552-60. [13]

* Daniel Huson and Nico Weber. Analysis of Soil Metagenomes using the Metagenome
Analyzer Megan. In: Nannipieri P (Editor), Pietramellara G (Editor), Renella G (Editor),
Omics in Soil Science. In press.

¢ Daniel Huson and Nico Weber. Microbial community analysis using Megan. In: Delong EF
(Editor), Methods in Enzymology. Volume 531: Microbial Metagenomics, Metatranscriptomics,
and Metaproteomics, 1st Edition. In press.
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APPENDIX C

Supplements

C.1 Hybrid Approach

Dataset | Technology | NBC | BLASTX | BLASTX (NBC) | Speedup (Combined)
HC 454 14 268.5 5.75 12.9
HC Solexa 12.5 50 2.5 3.3
MC 454 14 265.5 7.5 112.3
MC Solexa 12.5 68 6.25 3.6
LC 454 14 259 8 10.36
LC Solexa 12.5 66.5 6.25 3.5

Tab. C.1: Runtimes (in CPU hours) for the NBC classifier and BLASTX on simulated
data. HC, MC, and LC stand for high, medium, and low complexity respectively.
Technology describes the error model of the simulated data.
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Dataset | Technology | Phymm | BLASTX | BLASTX (Phymm) | Speedup (Combined)
HC 454 6.75 268.5 16.5 11.5
HC Solexa 2.5 7 5.2
MC 454 7 265.5 13.5 12.9
MC Solexa 5 6 6.1
LC 454 7 259 16 11.2
LC Solexa 4.75 66.5 5.5 6.4

Tab. C.2: Runtimes (in CPU hours) for the Phymm classifier and BLASTX on simulated
data. HC, MC, and LC stand for high, medium, and low complexity respectively.
Technology describes the error model of the simulated data.

C.2 Database Accuracy

Database | Sequences Bases IDs Hypothetical Entries | Hypo. Bases
2013 22,540,640 | 7,750,666,634 | 63,671,296 17,970,078 7.6%
2011 16,118,048 | 5,541,108,926 | 36,272,663 10,196,207 8.0%
2009 9,987,577 | 3,407,368,633 | 22,263,912 6,308,198 5.02%

Tab. C.3: Overview of the composition of NCBI-NR. Columns describe the number of
Sequences, Bases, Identifiers (IDs), and Hypothetical Entries with the percentage of
Hypothetical bases.
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C.2 Database Accuracy

Identifier Bases covered
Database | Max | One | Two by one ID by two IDs
2013 1,6342 | 32.7% | 56.6% | 2,534,829,532 | 4,387,131,907
2011 9,504 | 36.8% | 53.1% | 2,041,652,088 | 2,944,924,392
2009 6,511 | 31.0% | 58.4% | 1,056,622,585 | 1,992,533,027

Tab. C.4: Overview of the NCBI-NR identifier spread. Columns describe the maximum
number of IDs a single entry has (Max), the percent of sequences having one or
two ID(s) (One, Two) as well as the number of bases with one or two IDs (by one

ID),by two IDs).

Rank Higher taxa | Genus | Species | Lower taxa | Total
Archaea 265 131 6,616 287 7,299
Bacteria 3,386 2,304 | 248,124 21,615 275,429

Eukaryota 20,141 60,460 | 487,018 23,194 590,809

Fungi 1,756 4,132 | 80,562 2407 88,853

Metazoa 14,162 39,570 | 266,838 10,333 330,903
Viridiplantae 2,441 14,183 | 113,577 8,638 138,839
Viruses 610 387 10,336 89,873 101,206
All taxa 24,432 63,290 | 759,350 135,004 982,072

Tab. C.5: NCBI Taxonomy statistics downloaded on the 30.1.13. The columns display the
number of taxa at specific taxonomic ranks. Informal names are included in

this listing, This overview also shows the statistics of the taxonomy used by

MEGAN for this study.

Rank Higher taxa | Genus | Species | Lower taxa | Total
Archaea 265 131 467 0 863
Bacteria 3,386 2,304 | 11,348 774 17812

Eukaryota 20,141 60,460 | 254,734 19,342 354,677

Fungi 1,756 4,132 | 25,765 995 32,648

Metazoa 14,162 39,570 | 119,452 9,693 182,877
Viridiplantae 2,441 14,183 | 101,254 8,422 126,300

Viruses 610 387 1,985 0 2,082

All taxa 24,432 63,290 | 268,567 20,116 376,405

Tab. C.6: NCBI Taxonomy statistics downloaded on the 30.1.13. The columns display the
number of taxa at specific taxonomic ranks. Informal names are excluded from
this listing for comparison.
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Database Bacteria Eukaryota Archaea Viruses
2013 | 34,527 (12,80%) | 219,996 (43,12%) | 1,214 (17,59%) | 62,159 (62,03%)
2010 | 27,592 (10,23%) | 225,089 (44,12%) | 1,060 (15,36%) | 51,843 (51,73%)
2009 | 19,531 (7,24%) | 121,291 (23,77%) | 793 (11,49%) | 30,056 (29,99%)

Tab. C.7: Number of leaves covered by the NCBI-NR database using the text-based parser.
Results are displayed for kingdoms Bacteria, Eukaryota, Archaea and Viruses.

Database Bacteria Eukaryota Archaea Viruses
2013 | 39,913 (14.49%) | 280,487 (47.48%) | 1,628 (22.30%) | 64,309 (63.54%)
2010 | 32,071 (11.64%) | 287,885 (48.73%) | 1,424 (19.51%) | 49,797 (49.20%)
2009 | 22,859 (8.30%) | 172,799 (29.25%) | 1,065 (14.59%) | 31,831 (31.45%)

Tab. C.8: Number of total taxa covered by the NCBI-NR database using the text-based
parser. The selected subtrees are Bacteria, Eukaryota, Archaea and Viruses.

Database Total Not Assigned | Assigned | Assignment Efficiency
2013 22,540,640 | 85,235 (0.38%) | 22,455,405 99.62%
2011 16,118,048 | 104,608 (0.65%) | 16,013,440 99.35%
2009 9,987,577 | 162,453 (1.63%) | 9,825,124 98.37%

Tab. C.9: Number of total, assigned and not assigned sequences of the NCBI-NR database
using the default name parser in MEGAN.

SEED KEGG
Database Assigned Not Assigned Assigned Not Assigned
2013 | 689,557 (2.70%) | 24,851,083 (97.30%) | 1,726,223 (6.76%) | 20,814,417 (81.50%)
2011 | 694,447 (4.31%) | 15,423,601 (95.69%) | 1,737,791 (10.78%) | 14,380,257 (89.22%)
2009 | 691,824 (6.93%) | 9,295,753 (93.07%) | 1,530,234 (15.32%) | 8,457,343 (84.68%)

Tab. C.10: Total and relative number of Assigned and Not Assigned sequences of the NCBI-
NR database to valid SEED and KEGG mappings. Mapping was performed
using the RefSeq based approach.
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Database Total | Not Assigned Assigned
2013 | 22,540,640 | 19,629 (0.09%) | 22,521,011 (99.91%)
2011 | 16,118,048 | 402,126 (2.49%) | 15,715,922 (97.51%)
2009 | 9,987,577 | 830,728 (8.32%) | 9,156,849 (91.68%)

Tab. C.11: Number of total, assigned and not assigned sequences from the NCBI-NR

database using the GI parser in MEGAN.

Database Bacteria Eukaryota Archaea Viruses
2013 | 32,010 (11.87%) | 200,469 (39.29%) | 1,169 (16.93%) | 57,877 (57.76%)
2010 | 25,925 (9.61%) | 168,421 (33.01%) | 1,026 (14.86%) | 47,431 (47.33%)
2009 | 18,934 (7.02%) | 121,395 (23.79%) 792 (11.47%) | 30,778 (30.71%)

Tab. C.12: Number of total leaves of a specific taxonomic rank Bacteria, Eukaryota, Archaea
and Viruses and percentage covered by the NCBI-NR Database using the GI
based approach

Database

Bacteria

Eukaryota

Archaea

Viruses

2013

37,416 (13.58%)

269,148 (45.56%)

1,579 (21.63%)

60,520 (59.80%)

2010

30,788 (11.18%)

231,039 (39.11%)

/1418 (19.43%)

49,991 (49-40%)

2009 | 22,926 (8.32%) | 173,803 (29.42%) | 1,117 (15.30%) | 33,084 (32.69%)

Tab. C.13: Number of total taxa of the subtree of a specific taxonomic rank Bacteria, Eu-
karyota, Archaea and Viruses and percentage covered by the NCBI-NR Database
using GI based approach.

Tab. C.14: Number of sequences from the NCBI-NR database mapped to KEGG KOs

Database | Assigned Sequences Not Assigned
2013 3,148,802 (13.97%) | 19,391,838 (86.03%)
2011 2,506168 (15.55%) | 13,611,880 (84.45%)
2009 1,723,434 (17.26%) 8,264,143 (82.74%)

using the GI based mapping method.
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Database | Assigned Sequences Not Assigned
2013 602,036 (2.67%) 21,938,604 (97.33%)
2011 605,383 (3.76%) 15,512,665 (96.24%)
2009 607,837 (6.09%) 9,379,740 (93-91%)

Tab. C.15: Number of sequences from the NCBI-NR database mapped to SEED functional
roles using the GI based mapping method.

Text Based GI Based
Dataset Assigned Not Assigned Assigned Not Assigned
Big 402,736 (84.84%) | 71,933 (15.15%) | 402,771 (84.85%) | 71,925 (15.15%)
Medium | 15,874 (85.15%) | 2,768 (14.85%) | 15,874 (85.15%) | 2,768 (14.85%)
Small 7 (12.28%) 50 (87.72%) 7 (12.28%) 50 (87.72%)

Tab. C.16: Comparison of assignment efficiency to the NCBI taxonomy of the text-based
method and the Gl-based mapping approach.Assigned is the number of as-

signed reads whereas Not Assigned represents the number of not assigned
reads.

RefSeq Based GI Based
Dataset Assigned Not Assigned Assigned Not Assigned
Big 212,407 (44.75%) | 262,289 (55.25%) | 221,741 (46.71%) | 252,955 (53.29%)
Medium | 8,461 (45.39%) 10,181 (54.61%) | 8,811 (47.26%) 9,831 (52.74%)
Small 4 (7.02%) 53 (92.98%) 5 (8.77%) 52 (91.23%)

Tab. C.17: Comparison of assignment efficiency to KEGG KOs of the RefSeq based method
and the GI based mapping approach. Assigned is the number of assigned reads
whereas Not Assigned represents the number of not assigned reads.

RefSeq Based GI Based
Dataset Assigned Not Assigned Assigned Not Assigned
Big 156,012 (32.87%) | 318,684 (67.14%) | 176,125 (37.11%) | 298,517 (62.89%)
Medium | 6,183 (33.17%) 12,459 (66.83%) 6,983 (37.46%) 11,659 (62.54%)
Small 2 (3.51%) 55 (96.49%) 2 (3.51%) 55 (96.49%)

Tab. C.18: Comparison of assignment efficiency to SEED functional roles of the RefSeq-
based method and the GI-based mapping approach.Assigned is the number of

assigned reads whereas Not Assigned represents the number of not assigned
reads.
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C.3 aDNA: Array Design
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Tab. C.19: Reference genomes included in the main array design.

GI RefSeq Description
339630083 NC_o15758.1 Mycobacterium africanum GMo41182 chromosome, complete genome
31791177 NC_002945.3 Mycobacterium bovis AF2122/97 chromosome, complete genome
121635883 | NC_008769.1 Mycobacterium bovis BCG str. Pasteur 1173P2 chromosome, complete genome
224988383 | NC_012207.1 Mycobacterium bovis BCG str. Tokyo 172, complete genome
378769743 NC_o016804.1 Mycobacterium bovis BCG str. Mexico chromosome, complete genome
340625033 NC_015848.1 Mycobacterium canettii CIPT 140010059, complete genome
375294201 NC_016768.1 Mycobacterium tuberculosis KZN 4207 chromosome, complete genome
253796915 NC_012943.1 Mycobacterium tuberculosis KZN 1435, complete genome
148821191 NC_o009565.1 Mycobacterium tuberculosis F11, complete genome
297749916 | NZ_CMo00789.2 | Mycobacterium tuberculosis KZN R506 chromosome, whole genome shotgun
306478687 | NZ_CMo00788.2 | Mycobacterium tuberculosis KZN V2475 chromosome, whole genome shotgun
383305933 NC_017026.1 Mycobacterium tuberculosis RGTB327 chromosome, complete genome
386003090 | NC_o017528.1 Mycobacterium tuberculosis RGTB423 chromosome, complete genome
385993125 NC_o17523.1 Mycobacterium tuberculosis CCDC5079 chromosome, complete genome
385989534 NC_o17522.1 Mycobacterium tuberculosis CCDC5180 chromosome, complete genome
50953765 NC_o002755.2 Mycobacterium tuberculosis CDC1551 chromosome, complete genome
385996772 NC_o17524.1 Mycobacterium tuberculosis CTRI-2 chromosome, complete genome
148659757 NC_o009525.1 Mycobacterium tuberculosis H37Ra, complete genome
57116681 NC_o000962.2 Mycobacterium tuberculosis H37Rv chromosome, complete genome
297595741 | NZ_CMooo787.2 | Mycobacterium tuberculosis KZN 4207 chromosome, whole genome shotgun
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Code  Original Count Percent
A A 852,060 16.9
C C 1,642,074 32.5
G G 1,631,011 32.3
T T 850,750 16.8
M A+C 4,650 00.0
R A+G 13,176 00.2
W A+T 1,647 00.0
Y C+T 12,959 00.0
S G+C 8,696 00.1
K G+T 4,622 00.0
H A+T+C 87 00.0
B G+T+C 139 00.0
D G+A+T 76 00.0
\Y G+A+C 168 00.0
N  A+C+G+T 15,795 00.3

Tab. C.20: Composition statistics of the main degenerated consensus sequence used for
building the enrichment arrays. Code and Original represent the code in the
consensus or the nucleotides encountered in the multiple sequence alignment.
Count and Percent reflect the absolute and relative occurrence.

Code  Original Count Percent
A A 894,233 15.4
C C 1,975,501 34.0
G G 1,981,726 34.1
T T 899,551 15.5
M A+C 3,580 00.0
R A+G 14,271 00.2
W A+T 990 00.0
Y C+T 14,456 00.2
S G+C 13,490 00.2
K G+T 3,684 00.0
H A+T+C 0 00.0
B G+T+C 0 00.0
D G+A+T 0 00.0
\% G+A+C 0 00.0
N A+C+G+T 0 00.0

Tab. C.21: Composition statistics of the degenerated M. avium consensus sequence. Code
and Original represent the code in the consensus or the nucleotides encountered
in the multiple sequence alignment. Count and Percent reflect the absolute and
relative occurrence.
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C.4 Analysis

Sample Name | Right Reads | Left Reads | Total Number of Reads
54U 103,846,833 | 103,091,354 206,938,187
54N 9,640,140 | 9,559,346 19,199,486
58U 25,727,133 | 25,615,876 51,343,009
58N 5,149,171 5,058,027 10,207,198
64U 66,215,214 | 65,803,949 132,019,163
64N 3,112,331 3,042,352 6,154,683
LSD16U 6,878,939 6,835,964 13,714,903
EB1.20U 3,074,674 2,901,840 5,976,514
EB1.31 6,373,853 5,896,757 12,270,610
EB2.20 4,796,914 4456957 9,253,871
EB2.31 10,621,110 9933779 20,554,889
LB1U 8,398,013 7,811,861 16,209,874
LB2U 7,268,581 6,853,502 14,122,083
Total 517,964,470

Tab. C.22: Number of raw reads per sample after paired-end sequencing using a Illimina
HiSeq 2000. U indicate UDG treated samples, N are non-treated samples. EB
are extraction blanks, whereas LB are line blanks. Sample LSD16 is a suspected
non-TB associated sample as an additional negative control.
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