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Abstract

Computer-aided drug design is very important for modern drug discovery. Using a

variety of different algorithms, approximations of the binding free energy of chemical

compounds to a molecular target can be generated in silico in a very fast and very

cheap way, without any need for physical availability of those compounds in this step.

Computer-aided drug design thus allows to drastically speed up the task of developing

new drugs, strongly reduces costs and enables the rapid testing of new, yet unsynthe-

sized, classes of compounds.

In this dissertation, new approaches for computer-aided drug design are presented: a

framework for Quantitative Structure-Activity Relationship (QSAR) modeling, a receptor-

ligand scoring function and a docking algorithm, a three-dimensional target-specific

rescoring procedure and CADDSuite, a software suite that contains all the aforemen-

tioned algorithms and a large set of additional, auxiliary tools and algorithms.

The QSAR framework provides all necessary steps to generate regression or classifica-

tion models with high predictive quality: read input, generate molecular descriptors,

generate a variety of different regression and classification models, automatically se-

lect relevant descriptors and evaluate the quality of models. Using several data sets,

we will show that is easily possible to obtain high-quality QSAR models by using all the

functionality in combination.

IMGDock, a deterministic receptor-ligand docking algorithm employing a specially de-

signed empirical scoring function has been developed. Using the established DUD

(Cross et al., J Med Chem, 2006, 49, 6789-6801) docking benchmark sets, we show

that IMGDock yields results of high quality and in many cases outperforms other dock-

ing approaches. Furthermore, IMDock is fast, easily configurable and freely available

as open source and can easily be deployed on compute clusters, clouds, or grids.

Target-Specific Grid-based Rescoring (TaGRes) employs three-dimensional information

generated by docking and experimental binding free energy measurements for other

compounds in order to rescore molecular interactions. Thereby, this approach takes

into account receptor-ligand interactions, their three-dimensional locations and their

target-specific importances. We will show that using this technique, the enrichment

obtained by docking can be strongly enhanced.

CADDSuite (Computer-Aided Drug Design Suite), was created as a framework for com-

puter-aided drug design, containing all the algorithms mentioned before, and a high

number of auxiliary tools, for example for preparation or analysis purposes. Thus,

CADDSuite provides flexibly combinable programs for all commonly required steps

and can therefore make solving common drug design tasks much easier. To make
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creation of pipelines even simpler, CADDSuite has also been integrated into the well-

known workflow system Galaxy, thus essentially allowing users to create drug design

workflows directly from a web browser, without any need for software installations on

their local computer, and also to directly submit them to a compute cluster, grid, or

cloud.

Last but not least, we will explain our work towards discovery of inhibitors for bac-

terial biofilm formation. We will describe how we found a number of very promising

inhibitor candidates, using a combination of our computer-aided drug design tools and

experimental validations.
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1 Introduction

The development of medical drugs is a very important and exciting process, helping

to finally alleviate or even cure many diseases. In former times, for hundreds and

thousands of years until approximately the beginning of the 20th century, finding new

remedies just occurred by chance. However, as many of those discoveries are nowa-

days known as classical home remedies, we know that most of them probably had

either a rather weak or nearly no effect at all. This may have been due to the use

of the entire plant or animal parts instead of isolated chemical compounds serving

as their active ingredients or simply due to the fact that for most diseases nature

most likely does not present us with so easily available cures. Furthermore, relying on

random chance is obviously a much too slow way to counter the spread of diseases,

so that no cures for the great plagues having beset mankind - black death, cholera,

typhus, tuberculosis, and many more - have been found in nature.

At the beginning of the 19th century, chemists for the first times extracted and purified

the chemical compounds bestowing a medically relevant effect on some plants. Exam-

ples for this are morphine, extracted from poppy plants in 1804 by Friedrich Sertürner

[1], and salicin (pre-predecessor of acetylsalicylic acid, known today under its trade

name Aspirin), isolated in 1828 by Johann Buchner [2].

Although this was a very important step, no completely new remedies could be gener-

ated and no existing ones could be chemically modified. This changed at the beginning

of the 20th century, when the latter was successfully attempted. Two of the first ex-

amples for this were the modification of morphine, yielding heroin (diacetylmorphine)

and of salicylic acid to acetylsalicylic acid. Heroin acts as a much stronger analgesic

than morphine and acetylsalicylic acid has much less severe side-effects than salicylic

acid.

In the following decades, principles learned this way were extended and, step-by-step,

procedures to check the effects of replacing moieties of known drugs by a number

of fragments by in vivo or in vitro tests were established. Some more decades later,

laboratory automations invented in the meantime allowed to speed up this process,

so that the term high-throughput screening (HTS) was coined (HTS will be explained in

more detail in the next chapter).

HTS was and still is an important tool for drug design, but still, it is very expensive,

time-consuming and depends on the availability of both, protein and compounds to be

tested in purified, high-quality form. Huge warehouses of compounds are necessary,

leading to very high initial investments for setting up such a system and high costs for

maintaining it. Although the speed with which experiments are performed is increased
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1 Introduction

by HTS in comparison to manual testing, screening a huge data bank containing hun-

dreds of thousands or even millions of compounds would (depending on the size of

the respective HTS infrastructure) currently probably still take several weeks. In ad-

dition, such large-scale testing would also be very expensive, since the test of each

compound consumes a certain amount of the highly purified stockpile of this molecule.

Also, HTS must work in a very fast way, so that only very quick experimental binding

detection procedures, e.g. fluorescence-based ones, can be used. Those fast tech-

niques however do not allow a measurement of the binding free energy and are less

reliable than those that do allow this, which can be seen as the gold standard. (Ex-

planations of binding free energy measurement techniques and descriptions of other

issues with HTS will be given in Section 2.1.3.) Of course, evaluation of compounds

that have not already been obtained from a natural source or synthesized, which are

complicated and time-consuming efforts, is not possible by use of HTS.

Computer-aided drug design, established step-by-step over the course of the last few

decades, makes it possible to eliminate many of the aforementioned problems. Using

a variety of different algorithms, approximations of binding free energy of chemical

compounds to a molecular target can be generated in silico in a very fast and very

cheap way, without any need for physical availability of those compounds in this step.

Computer-aided drug design thus allows to drastically speed up the task of developing

new drugs, strongly reduces costs and enables the rapid testing of new, yet unsyn-

thesized, classes of compounds. Furthermore, it can also be used to predict other

chemical properties of molecules, like their absorption, distribution, metabolism, and

excretion, and thereby speed up drug development by either removing compounds

with undesired properties or by helping to optimize properties of discovered hits. In

order to make use of all the advantages of modern computer-aided drug design, a

plethora of different algorithms and preparation steps is necessary, which have be to

utilized together in huge computational pipelines. However, this in practice is often

difficult because of software tools that are incompatible, too slow, instable, produce

too poor results, or are unavailable due to e.g. licensing issues. In addition, such soft-

ware nearly always is not available as open source, so that it often cannot serve as a

framework for further methological research by other scientists.

In this dissertation, we present algorithms and tools for most common applications of

computer-aided drug design that are fast, scalable, stable, and efficient and can easily

be used in conjunction with each other. Furthermore, all of them are publicly released

as one open-source framework, CADDSuite, making it possible for everyone to use and

even extend them free of any charge. Using a number of different data sets and also

one drug design project with experimental validations, will we show that the created

algorithms produce results of good quality and can be very helpful.

One of the areas of application of computer-aided drug design is quantitative structure-

activity (QSAR) modeling. As will be described in Chapter 4, we implemented a variety

of different regression and classification models, as well as input generation, data

management, feature selection, and model validation techniques under one common

framework, so that all of those procedures are easy to use in combination, are quickly

extensible and flexibly usable.
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For the field of structure-based drug design, we developed a fast receptor-ligand scor-

ing function, a docking algorithm and a three-dimensional, target-specific rescoring

approach. The scoring function and docking algorithm will be introduced in Chapter

5. The docking approach, utilizing this scoring function, is fast and scalable and easily

and efficiently deployable on compute clusters, clouds or grids, and will be shown to

achieve a quality better than the one obtained by other approaches for a significant

number of data sets.

Furthermore, to allow for optimization of binding free energy estimates obtained by

docking, we developed a new receptor-ligand rescoring technique, to be described in

Chapter 6. It uses the three-dimensional informations (i.e., the so-called poses de-

scribing the putative ligands inside the binding pocket) generated by docking and ex-

perimental binding free energy measurements for other compounds in order to rescore

the docking poses. Thereby, this approach, in contrast to all other ones known to us,

takes into account receptor-ligand interactions, their three-dimensional locations and

their target-specific importances. We will show that using this technique, the quality

obtained by docking can be strongly enhanced.

Chapter 7 will then present an overview of our entire framework, called CADDSuite

(Computer-Aided Drug Design Suite). This framework contains all the algorithms men-

tioned before, and a high number of auxiliary tools, e.g. for preparation or analysis

purposes. The chapter will explain why a large number of auxiliary tools are necessary

and shortly introduce those provided by CADDSuite. It will also contain a case study

involving the virtual screening for carbonic anhydrase II inhibitors that will nicely visu-

alize the practical usefulness of CADDSuite.

Chapter 8 will detail our efforts to find inhibitors for bacterial biofilm formation using

a combination of our computer-aided drug design tools and experimental validations.

We will describe how we found a number of very promising inhibitor candidates this

way.

But first of all, Chapters 2 and 3 will now introduce you to the biochemical and compu-

tational background of all the topics mentioned above. Chapter 2 will give an overview

of the long process of finding new medical drugs, as it is used in modern drug dis-

covery projects and also mandated by the agencies responsible for approval of new

drugs. This will include explanations about in which steps computer-aided drug design

can help to speed up the overall process. Furthermore, Chapter 2 will also clarify the

different means of obtaining binding free energy measurements and explain the bio-

logical and medical significance of carbonic anhydrase II, used a molecular target in

Chapter 7, and bacterial biofilms. Chapter 3 will then give an overview of computer-

aided drug design, introduce its different categories structure-based and ligand-based

drug design, and describe machine learning techniques, quality statistics and other

algorithms used by our approaches.
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2 Biological Background

2.1 Overview of drug design pipelines

The development of a new drug is a lengthy, time-consuming, and very expensive

process. It involves many steps to first generate candidates and then, step by step,

filter out those that do not show the desired activity or exhibit adverse effects. In total,

the entire process may well take more than a decade and its typical cost is currently

estimated as 1.8 billion US dollars [3].

In order to show its complexity and point out at which points computational methods

may aid and speed-up the process, we now give a short, generalized overview of this

drug design pipeline. The succession of different steps that are usually employed and

that are described in Sections 2.1.1-2.1.6 is furthermore visualized by Figure 2.1.

2.1.1 Disease selection

The fist step consists of the seemingly trivial but in practice far from simple task of

selecting the disease for which a drug should be developed. While there are lots of ill-

nesses for which no cure is known and no helpful drug is currently available, a number

of criteria have to be satisfied. On the one hand, the degree and quality of existing

medical, biological and biochemical knowledge about those diseases varies strongly.

In some cases (animal) models of possible causes and courses may exist, while in

others research is still in a very early stage. The more well-founded knowledge is

available about a disease, the better. But, on the other hand, the question of the dis-

ease’s complexity may have an important influence, too. If the possible causes of an

illness are manifold or if its progress varies widely among different patients, it may be

considered inappropriate for drug design if those complexities are not yet understood

to a reasonable degree. Last but not least, economic considerations (unfortunately)

usually also have to be taken into account. Diseases that do not affect a significant

portion of the population but are either comparably rare or location-specific (like, for

Figure 2.1: Overview of the usual process of drug development. The individual steps
are be described in Sections 2.1.1-2.1.6.
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2 Biological Background

example, tropical diseases) may often be neglected with respect to drug development,

due to the decreased potential of financial benefits of potential drugs targeting such

illnesses. Although this may not necessarily be true for non-commercial research insti-

tutes, the immense cost associated with developing new drugs shows that successfully

executing all steps of the drug design pipeline may in most cases be impossible with-

out involvement of pharmaceutical companies and (unfortunately) also explains, at

least to a certain extent, the need for this economical constraint.

2.1.2 Target identification

If and when a disease has been selected, the next goal is to find an appropriate molec-

ular target. For many ailments, many medical research results are available but no

molecular source of either the illness or already known remedies, if any, are known.

Thus, the progress of a disease might have been medically studied and its progress

well documented, but the molecular structures, e.g. enzymes or receptors, that are its

cause have not been identified. Even if some drugs exist, especially some that have

been found more or less serendipitously without use of modern drug design, it is often

unknown, which enzyme or other molecular structure they influence. Hence, identi-

fying a list of possible target structures is often not easy. However, since the selec-

tion of a molecular target is vital for modern rational drug design, several techniques

have been established in order to aid achieving this. One example are microarrays,

chips containing single-stranded DNA probe segments that allow to bind complemen-

tary, fluorescently labeled sample gene transcripts. A second option is the use of

proteomics, which can measure the amount of proteins of interest within a sample

and thereby the degree of their expression by techniques like high-throughput liquid

chromatography coupled to mass spectroscopy (HPLC-MS). Both, transcriptomics- and

proteomics-based studies, then compare expression levels of respectively genes and

proteins in cells obtained from healthy patients against the expression levels in cells

obtained from patients affected by the illness in order to find proteins that are signifi-

cantly up- or downregulated in the latter. In any case, differentially expressed proteins

found this way just make up a list of possible targets and do not directly yield a definite

molecular target. All candidate structures found in this, or any way, must be examined

further to determine whether they meet a range of criteria.

First, an important point is how much biochemical information is already available

about the respective structure, whether its function or, in the case of enzymes, its

exact mode of action is already known. Candidates for which no or hardly any such in-

formation is attainable will most likely be rejected as target candidates. Furthermore,

it is of interest to which class the respective target candidate belongs: enzymes, re-

ceptors, transporter or other kinds of molecular structures. While enzymes are the

class from which most drug design targets have been chosen so far, receptors and

transporters might be relevant as targets as well, if enough biochemical information

is available about them. Other molecular structures, like non-enzyme proteins, DNA

or RNA, are much less obvious choices and have only very rarely been chosen as po-

tential drug targets. This is due to the point that for those molecules there is often no
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2.1 Overview of drug design pipelines

well-defined structural area that might be targeted by a potential drug, as is the case

with active or allosteric sites of enzymes.

Another factor influencing the selection of a target structure is the similarity of the re-

spective target candidate to known antitargets, i.e. targets which may not be affected

by the drug to be developed. If this similarity is too high, it may be prudent to reject

the respective structure and instead prefer others that have lower similarities to the

antitargets, thereby decreasing the chance of potential drug candidates to cause ad-

verse effects. A special case of this is the development of drugs against enzymes of

a pathogen, e.g. the search for antibiotics. Here, it thus has to be checked whether

the same enzyme or one with a very high sequence similarity exists in humans. If an

enzyme with exactly the same amino acid sequence is present in humans, the target

candidate will have to be rejected. On the other hand, if that is not the case but there

still is very high similarity, then the respective structure may or may not be dismissed,

but its selection could well complicate efforts to find an effective drug without severe

side effects.

If a long list of possible targets has been obtained by the above-stated methods and

criteria, there any several points that can help to choose the most promising candi-

date. For one, the physiological or subcellular location of these structures may be

examined. Depending on e.g. in which organs of the human body an enzyme is ex-

pressed or whether it is present in the cell wall or in the nucleus, the availability of

different target candidates to potential drugs can vary strongly. Thus, structures that

are more likely to be easily accessible to drugs can be preferred over others. Another

option for reducing the set of candidates is to examine for each structure whether is

known to be involved in diseases other than the one for which a drug is to be de-

veloped. If that is the case and the activity of the target candidate either needs to

be up-regulated (e.g. by agonists in case enzymes) for all those illnesses or down-

regulated (e.g. by an enzyme inhibitor) for all of them, the respective candidate might

be especially interesting as a target structure for drug design. This way, several dis-

eases could in the best case be alleviated by one and the same developed drug. Even

if the drug candidate turns out not be a success for all targeted diseases, its chance

of having an effect on at least one diseases may be higher, compared to targeting of

only one disease.

2.1.3 Lead identification

After a molecular target structure has been agreed on, the next step is to findmolecules,

so called leads, that, at least to a low to moderate degree, show the desired effect on

the target. Leads may bind relatively weakly to the target structure or have severe

side-effects if they were administered to humans, because the goal here is just to

obtain starting points, i.e. molecules that can be examined and in the next step be

exchanged against similar ones or be chemically modified.

Traditionally, the quest for leads was and is often directed by high-throughput screen-

ing (HTS). HTS approaches aim to experimentally and as fast as possible check chem-
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ical compounds for effects on the given target in an automated fashion. Many of the

systems involved with this include fluorescence-based ligand binding detection tech-

niques. One example for this is fluorescence resonance energy transfer (FRET) [4], for

which receptor and (potential) ligands are endowed with different fluorescent tags. If

and when target and ligand are close enough to each other, i.e. if the latter is bound to

the former, energy is transferred from one fluorescent tag (donor) to the other one (ac-

ceptor). This emission of light, at a wavelength known for the chosen donor-acceptor

pair, can be measured and thus help to evaluate whether molecules bind the target

structure of interest. Since it may be impractically to fluorescently label all compounds

to be screened, in several cases the substrate (or other binding partner), if any, of the

target structure can be labeled instead. Thus, if leads for the development of inhibitors

of enzymes are searched, decreased fluorescent light emission after addition of a com-

pound will show that this molecule is able to act in the desired way.

HTS can be run completely automated, with robots extracting prepared proteins and

compounds from storage facilities, mixing them and analyzing the resulting images

of fluorescence, so that a high number of compounds can be screened per day this

way. However, HTS also has a number of disadvantages. First, no information about

(approximate) binding strength of detected hits is obtained by HTS. Compounds are

just classified as active or inactive, based on the detected level of fluorescence. The

measuring of fluorescence furthermore needs to be very accurate, so that in practice

many false positives and false negatives might occur, especially when ligand candi-

dates are small and bind relatively weakly, if at all, thus yielding only tiny changes in

the level of emitted fluorescence. This problem is aggravated by the fact that during

lead identification most molecules will indeed not bind strongly to the target. Further-

more, it can be hard to attach the tags required for HTS (e.g. fluorescent ones) to the

target structure and the ligand candidates, or this may not work at all. These tags

can also influence the properties and behavior especially of small molecules, so that

ligands might not bind to their receptor any more after having been tagged. This may

be due, among others, to sterical constraints of the binding pocket, induced electro-

static repulsion, compounds with attached tags binding (unspecifically) to other areas

of the target structure or even to other molecular structures, or aggregation of the lig-

ands caused by the tags. Additionally, no information about (putative) binding-modes

is obtained by HTS and the procedure requires huge storage facilities in order to be

able to test a high number of compounds automatically. Although HTS can be run in

an automated way, it still necessitates immense financial investments for setting up

and maintaining such a system and considerable costs in terms of time and money to

screen a high number of compounds. Last, but not least, since HTS is done in vitro and

not in silico, each and every compound to be tested has to have been synthesized,

purified and added to the storage system. It is thus not possible to screen compounds

before their synthesis could be achieved. Since synthesis of chemical compounds can

often be a complicated procedure requiring a long time and often very many attempts,

this is a significant constraint. Also, even with huge compound storage facilities, the

number of molecules that can be stored and therefore screened is of course limited,

whereas the number of theoretically possible molecules can be considered to be prac-
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tically unlimited (e.g., an estimated 1040 molecules with a molecular weight less than

750 g/mol [5]). This also means that most compound libraries used for HTS will ei-

ther have been created to be as chemically diverse as possible or it will be focussed

towards a specific target (family).

As a complement to traditional in vitro high-throughput screening, virtual high-throughput

screening (VHTS) can help to alleviate many these problems. VHTS in principle uses

in silico methods to filter huge compound libraries for potential binders. This might

involve various filtering steps, in order to remove molecules with undesired proper-

ties, and the application of a variety of algorithms that in essence try to predict the

binding free energy between chemical compounds and the target structure. Which

algorithm or which class of algorithms is applicable or most promising, depends on

the kind and degree of chemical information that is available about the target and al-

ready known ligands, if any. The most important techniques towards this end include

Quantitative Structure-Activity Relationship (QSAR) modeling, receptor-ligand docking

and rescoring. An overview of computer-aided drug design methods, their key differ-

ences and their prerequisites will be given in Section 3.1. Furthermore, QSAR, along

with the approach and software developed by us, will be described in more detail in

Chapter 4, while docking, including our own docking algorithm, is covered in Chapter 5

and rescoring, along with our algorithm, will be introduced in Chapter 6. When using

those VHTS procedures, only compounds for which a high affinity to the target was

predicted by the respective approach will be regarded as hits (analogously to hits by

HTS) and examined further. All other compounds will be rejected as ligand candidates.

Since all this is done in silico, VHTS can drastically reduce cost and time requirements

for lead discovery and also allow to quickly screen new compounds or entire classes

of compounds, without needing to wait for their synthesis.

In any case, whether HTS or VHTS is used, hits, i.e. molecule that seem to some extent

show the desired activity, have to be experimentally validated before they are classi-

fied as leads. This is done by in vitro measurement of the actual binding free energy

between each hit and the target structure. Various techniques exists for achieving

this, which will be described in Section 2.2. Only those compounds for which at least

a low to moderate strength of binding is determined by one of those approaches will

be regarded as leads. All other molecules, i.e. those having been determined to most

likely not bind to the target at all, will be cast aside.

2.1.4 Lead optimization

If leads have been found by the aforementioned steps, the next important goal then

is to try to modify those compounds in such a way that their strength of binding to the

target structure of interest is enhanced. A secondary aim may be the optimization of

absorption, distribution, metabolism, excretion and toxicity (ADMET).

Historically, this was done in a mostly trial-and-error fashion. Thus, compounds that

were very similar to the obtained leads were more or less arbitrarily conceived and

then synthesized and subjected to binding affinity measurements as mentioned above
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and explained in more detail in Section 2.2. Newer approaches included computer

programs that allow a scientist to interactively try to manually place molecules into

the binding pocket of the target. Repeating this procedure for different derivatives

of one molecule could then make it possible to determine beneficial substitutions of

individual moieties.

As extensions of those ideas, current computer-aided drug design procedures allow to

automatically search for derivatives with enhanced binding affinity. QSAR approaches

can thus be used be predict the binding free energy of derivatives by regression tech-

niques based on previously experimentally determined affinities of similar compounds.

Receptor-ligand docking can, either alternatively to QSAR or subsequently, dock those

derivatives into the target of interest and obtain estimates of the binding free energies

by scoring the obtaining compound poses. For an overview of computer-aided drug de-

sign approaches, please see Section 3.1; for more detailed descriptions of QSAR and

docking, please refer to Chapters 4 and 5, respectively. Furthermore, it can be very

helpful to rescore receptor-compound complexes attained by docking in such a way

that the three-dimensional information of the pose and previously determined free

energy measurements for other compounds can be used. This target-specific, three-

dimensional rescoring was, at least to our knowledge, not possible until now. However,

we developed an approach that works in this way, which is described in Chapter 6.

If computer-aided drug design approaches are used for lead optimization, the best

candidates, i.e. the best-scored derivatives of the original leads, will be subjected to

experimental determination of their binding free energies. As explained previously,

this reduction in the number of compounds to be experimentally tested is of huge

importance due to large savings in both time and money. Again, as is the case during

lead discovery, the loss of a need to synthesize all compounds before their affinity can

be predicted is a tremendous advantage of computer-aided drug design techniques.

In the end of the lead optimization step, only those derivatives with the very best,

experimentally confirmed, binding affinity will be retained and find their way into the

next step.

2.1.5 Preclinical trials

All candidates, as generated by the drug design pipeline described so far, will be sub-

jected to testing in animals during preclinical trials. The focus here lies on filtering out

drug candidates that have severe side-effects or exhibit very unfavorable pharmacoki-

netical or pharmacodynamical behavior. Thus, the different candidates are adminis-

tered in varying concentrations to mostly mice or rats in order to check for toxic, car-

cinogenic or teratogenic effects. In addition, tests studying the pharmacokinetics and

pharmacodynamics are performed. As results of pharmacokinetic experiments, infor-

mation about, among others, how fast the drug candidate is absorbed and distributed

throughout the body, and how quickly it is metabolized and excreted is collected. Phar-

macodynamic studies reveal, for example, the relationship of the concentration of the

administered compound and its desired effect on the body.
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Hence, if toxic, carcinogenic or teratogenic side-effects are observed with doses that

are not at least by several orders of magnitude larger than the minimal effective dose

determined during pharmacodynamics experiments, then the respective drug can-

didate will most likely be dismissed. Alternatively, such a compound could also be

transferred to another iteration of lead optimization, so that chemical modifications

that do hopefully remove these adverse properties might be obtained. If, on the other

hand, several candidates show no significant side-effects, only the ones with the best

pharmacokinetical and pharmacodynamical properties can be selected.

2.1.6 Clinical trials

If a drug candidate has been found by the above-mentioned steps, it is then exten-

sively studied during clinical trials. Clinical trials are divided into several phases (I-IV),

during which the compound, in contrast to preclinical trials, will be tested in humans.

In phase I of the clinical trials, the drug candidate is administered in various doses

to a couple dozen healthy subjects. The aim is to study the pharmacodynamics and

pharmacokinetics of the compounds and to check for adverse effects, all of which

might differ considerably from those determined in animals during preclinical trials.

Typically, the maximal applied dose is only a fraction of the minimal dose found to

cause adverse side-effects in animals.

If a candidate passed phase I tests, it is subsequently evaluated during phase II using

a larger group of several hundred patients affected with the disease for which a drug is

to be developed. Now the goal is to ascertain that the drug candidate actually has the

desired effect on the illness and to establish a suggestion for doses of the putative drug

for use in humans. Also, attention is again paid to possible side-effects, which would,

if severe or frequently occurring, lead to the adandonment of drug design efforts for

the current candidate.

Phase III of the clinical trials then consists of a large double-blind study, usually involv-

ing several different clinics and several thousand patients, conducted over the course

of several years. Here it has to be shown that the proposed drug is safe, i.e. does

not have frequent or severe side-effects, that it is effective and has advantages over

existing drugs targeting the same illness. Only if those criteria have been fulfilled, ap-

proval for general use and marketing as a drug might be obtained from the appropriate

national regulatory agencies (FDA, the Food and Drug Administration, in the US and

the EMA, European Medicines Agency, in the EU). However, approval is always limited

to the drug’s application to the specific illness for which is was developed and to the

exact doses and dosage form established in the clinical trials.

After approval for a pharmaceutical drug has been granted, its safety is continuously

monitored in phase IV. The primary aim is to check for potential severe side-effects that

however occur so seldom that they were not experienced during phase I-III. Causes for

the latter may be, among others, interactions of the new drug with other drugs used by

21



2 Biological Background

the general public but not by patients of phases I-III, or preexisting medical conditions

that were also not encountered in earlier trial stages.

2.2 Binding-Affinity measurements

As explained previously, the determination of binding affinities of compounds to the

target structure of interest is vital during both lead discovery and lead optimization.

Several methods exists to achieve this and the two perhaps most prominent and most

reliable procedures will be shortly explained in the following. However, the principle

prerequisites are similar for all approaches: the target structure of interest has to have

been produced in relatively high amounts using (mostly) bacterial expression systems

and purified to a very high degree. Furthermore, all compounds whose binding affinity

to this target is to be determined must have been synthesized and be available in pure

form.

The binding affinity of a compound is then commonly calculated in form of the dis-

sociation constant KD, the concentration at which half of the molecules are excepted

to be bound to the target structure, with the other half remaining in solution. The

dissociation constant is defined as

KD =
[T] · [C]
[TC]

where [T] denotes the concentration of the molecular target (e.g. an enzyme), [C]

the concentration of the solvated compound to be investigated and [RC] the one of

the complex of target and compound.

If the dissociation constant has been obtained for compound, its binding free energy

can be calculated as

ΔG = R · T · n(KD) (2.1)

with R being the gas constant (approximately 8.314
J

K ·mo
) and T the temperature in

degrees Kelvin.

2.2.1 Surface plasmon resonance

One way to measure binding affinities is by use of the surface plasmon resonance (SPR)

phenomenon. This phenomenon can be observed in an electrically conducting gold

layer at the interface of buffer and glass. Under conditions of total internal reflection,

light reflected by this gold layer will generate electromagnetic waves that oscillate

parallel to the interface (evanescent waves). Only at a certain angle of incident, light

excites plasmons in the gold layer, leading to absorption of energy by the evanescent

waves and a reduction of the intensity of reflected light. The exact angle (SPR angle) at

which this surface plasmon resonance phenomenon occurs depends on the refractive

index of the medium and thereby the amount of protein or ligand near the surface
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Figure 2.2: Example of an SPR diagram showing measurement for one compound done
for 4 different concentrations (adapted from [6]). Equilibrium level is ob-
tained with 100 nM. Thus, KD = 100 nM.

of the SPR chip. A change in the mass concentration near the SPR chip surface is

proportional to the resulting change in the SPR angle (SPR response).

The surface plasmon resonance phenomenon is thus utilized to obtain binding affinities

by attaching target structure molecules to SPR chips and measuring the change of

the SPR angle, during and after a compound is injected across the surfaces. If the

compound binds to the target, the generated SPR response increases. On the other

hand, if the ligand does not bind at all, no significant change in the SPR response

occurs. In case binding does occur, it is possible to find the concentration at which

the target is saturated with ligands (saturation level) and the one at which half the

targets have ligands bound to them (equilibrium level) by repeating the experiment

several times with varying concentrations of the compound. An example is shown in

Figure 2.2.

Alternatively, it is also possible to calculate the dissociation constant by use of asso-

ciation rate kon and dissociation rate koƒ ƒ , both of which can be computed from the

generated response curves, as KD = koƒ ƒ /kon.

2.2.2 Isothermal titration calorimetry

Another frequently used approach for obtaining the binding affinity between a ligand

and a target structure is isothermal titration calorimetry.

This approach works by detecting the temperature change generated by a binding be-

tween molecules. Therefore, two reaction cells, placed in an adiabatic container, are

used. The temperature in one of those (sample cell) is always held at an identical level

to the one in the other cell (reference cell) via a feedback mechanism that automati-

cally powers a heater in the sample cell up or down, as needed. The change in energy

consumption by the heater, which can then be directly monitored, is then equivalent to

the enthalpic energy taken up or generated by ligand binding. A schematic overview

of an isothermal titration calorimetry device in shown in Figure 2.3.
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Figure 2.3: Schematic of an isothermal titration caliometry device.

Thus, for studying the binding of a compound to a target structure, the latter is placed

into the sample cell and the former is subsequently injected into the chamber. The

decrease and speed of decrease of energy consumption of the heater, due to the

increased temperature in the sample cell, are then used to calculate the binding-free-

energy (ΔG) of this receptor-ligand pair. The dissociation constant, can then be calcu-

lated in analogy to (2.1) as

KD = e
ΔG/ (R·T).

The examination of the change in free energy over time furthermore allows to calculate

the association and dissociation rates.

2.3 Carbonic Anhydrase II

Carbonic anhydrase II will be used as molecular target of a computer-aided drug design

pipeline described in Chapter 7. We will thus shortly describe the function of this

enzyme here and explain its medical significance.

In mammals, red blood cells transport oxygen through the entire body and release it

fastest where it is needed most, i.e. in tissue that either has a lack of oxygen or an

excess of carbon dioxide. In the former case, a low oxygen partial pressure prompts

hemoglobin to do so, but in the latter case it is due to an increased acidity within the

red blood cells. This increase in acidity is generated by carbon dioxide (CO2) that has

been converted to carbonic acid (H2CO3), which in turn dissolves into HCO−3 , a strong

acid, and H+. However, the spontaneous conversion of CO2 into H2CO3 is much too

slow for cellular respiration to be able to work appropriately. The enzyme carbonic
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Figure 2.4: Crystal structure of carbonic anhydrase II (PDB ID: 3k34). Shown is the ac-
tive site with three histidines coordinating a zinc ion and a bound inhibitor.

anhydrase II (and other carbonic anhydrases) catalyzes this reversible reaction and

speeds it up by two orders of magnitude [5].

Thus, carbonic anhydrase II is vital for cellular respiration and is ubiquitous in mam-

mals. On the other hand, it has been shown to be involved in the development of

glaucoma [7]. Hence, a variety of carbonic anhydrase II inhibitors has been developed

for intraocular application.

These inhibitors work by binding near the active site of carbonic anhydrase II and thus

preventing a water molecule from associating with the enzyme in this position. The

active side consists of three histidines that together with a water molecule mediate

one zinc ion. This water molecule is, by doing so, converted to an hydroxide ion.

Carbon dioxide, the substrate of carbonic anhydrase II, will then be the target of a

nucleophilic attack by the zinc ion, creating a bond between the hydroxide ion and the

carbon dioxide and thereby resulting in carbonic acid [5]. Hence, molecules that bind

near the active site and block the binding of this water molecule can inhibit carbonic

anhydrase II. Figure 2.4 shows a picture of the active site of carbonic anhydrase II with

a bound inhibitor as an example.

2.4 Biofilms

Several bacterial families have be ability to attach themselves to each other and to

polymer surfaces, thus creating so-called biofilms. Inside these biofilms, very many
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layers of bacteria grow on top of each other, while those aggregations are firmly at-

tached to (mostly) polymer materials and well protected from external influences like

antibiotics.

During the development of biofilms, bacteria in a first step attach to a surface (Fig-

ure 2.5a). Several different chemical compounds produced by these microorganisms

make this possible, one of which will be discussed later. Subsequently, bacteria grow

layer-by-layer on top of each other (Figure 2.5b). By production of extracellular poly-

meric substances that form an extracellular matrix around each colony, the bacteria

then protect themselves from attack (Figure 2.5c) by the host’s immune system or

drugs. Finally, bacterial cells are released from the colonies, disperse and form new

colonies (Figure 2.5d).

One of the medically most problematic surfaces to be susceptible to biofilms are im-

plants like artificial joints or catheters. There, bacteria can grow quickly and, due to

the protective property of biofilms, be virtually immune to all antibiotics. The con-

sequences of this are frequent infections that require the immediate removal of the

respective medical implant and, even beyond this, have serious and often even life-

threatening effects on the patient. Hence, biofilms are one of the most commonplace

cause for nosocomial diseases [8]. A picture of a biofilm on a catheter is shown in

Figure 2.6 as an example. Efforts to limit the growth of biofilms have so far mostly

failed. Either a variety of antibiotics were tried or the surface of medical implants was

in experimental versions changed in such a way as to be less susceptible to bacterial

attachment. However, antibiotics did not work due to the self-protective property of

biofilm colonies and the changed implant surfaces did not help either because lots of

host cells attached to those new surfaces, so that the latter again was well suitable for

biofilm formation [8].

The bacterial species that is the most frequent cause of medically problematic biofilms

is Staphyloccus epidermidis [9]. This microorganism is ubiquitous on human skin and

in the respiratory tract. A less frequent initiator of biofilms is Staphyloccus aureus.

However, it is the most virulent strain, leading to the most severe medical compli-

cations for affected patients. In S. epidermidis and S. aureus, a group of proteins

called intercellular adhesion proteins (Ica) has been shown to make up the machin-

Figure 2.5: Development stages of biofilm formation (adapted from [8]).
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Figure 2.6: Biofilm on a catheter removed from a patient [8].

ery producing the adhesion that firmly attaches cells to a surface in the first step of

biofilm development [10, 11]. This adhesion is made of many molecules of N-acetyl-

glucosamine (GlcNAc) that are connected to each other to form complex networks.

The protein IcaA catalyzes the polymerization and might therefore be considered the

most important Ica protein. Is has in fact been shown that with an erased IcaA gene,

no biofilm at all is being produced by Staphylococci [12]. Other Ica proteins (B, C

and D) are assumed to be responsible for optimization of production and transport of

polymerized GlcNAc and its cross-linking [11].

The substate of IcaA is UDP-N-Acetyl-Glucosamine, the UDP of which binds in the

glycosyl-donor site of the enzyme. N-Acetyl-Glucosamine is then transferred to a

mono- or polymer of N-Acetyl-Glucosamine in the glycosyl-acceptor site of IcaA [13,

10]. Thus, a chain of GlcNAc molecules (Figure 2.7) is created and elongated by IcaA.

Figure 2.7: N-Acetyl-Glucosamine (GlcNAc; left), one moiety of the substrate of IcaA,
and polymerized GlcNAc as the product of IcaA (right).
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All this makes IcaA a good, although not perfect, target for drug design, according to

the criteria explained in Section 2.1.2: It is an enzym that exists only in bacteria and

not in humans and also has no orthologue in humans. Its significance for the disease,

as explained above, has been well established and its mode of action is known. Prob-

lematic on the other hand is that IcaA is expected to be a membrane-bound protein

(see Chaper 8 for details), and as such probably hard to express, purify and crystallize,

and the fact that no crystal structure of IcaA exists, yet.

In Chapter 8 we describe how we searched for IcaA inhibitors using computer-aided

drug design and experimental validation procedures. Such inhibitors would, due to

the described function of IcaA, be very helpful in preventing bacterial biofilms and

could hence alleviate the common problem of nosocomial infections. The most likely

mode of application for them would be a coating of medical implants, so that these

potential drugs would be available in the appropriate location in the body without

need for systemic application. Chapter 8 will also show that we obtained a number of

experimentally confirmed hits that may even serve as leads for such inhibitors.
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3.1 Overview of computer-aided drug design

Computer-aided drug design (CADD) is, as explained in Section 2.1, very important for

the development of new drugs. Especially during lead discovery and lead optimization

steps it can help to drastically reduce the search-space, i.e. the number of molecules

to be experimentally tested, thus strongly lowering financial costs and the amount of

time necessary to develop a new drug. The point that traditionally, i.e. without the

help of computer-aided drug design, identifying a drug candidate and performing all

optimization, test and clinical trail steps (as detailed in Section 2.1) can easily take

ten to 15 years and cost more than a billion US dollars [3], clearly visualizes the sig-

nificance of reducing the development time by potentially several years. Furthermore,

computer-aided drug design may also establish molecules as promising drug candi-

dates that would never have been tested without computer-based methods, due to ei-

ther the huge search-space or their initial unavailability in synthesized form. A special

case of the latter reason is the in silico construction of new molecules, i.e. compounds

that have not been observed in nature but were constructed on a computer manually

or by an algorithm designed for this purpose.

In essence, computer-aided drug design approaches try to predict properties and ac-

tions of chemical compounds by a variety of techniques, so that molecules that are

unlikely to experience the desired effect on the chosen molecular target (see Section

2.1.2 for target identification) can be cast aside. Examples of such molecular prop-

erties are absorption, distribution, metabolism, excretion and toxicity (ADMET). The

expected effect on the molecular target, on the other hand, is usually evaluated by

a prediction of the binding free energy (or binding affinity) of the compound to the

target structure.

Computer-aided drug design can be divided into two major categories: ligand-based

drug design and structure-based drug design. Ligand-based drug design uses informa-

tion about known ligands of the target of interest, and, if available, their binding free

energies to model the affinities of chemical compounds by a linear or non-linear func-

tion of their properties, particularly their topology. Structure-based drug design, on

the other hand, tries to automatically place compounds into a previously determined

three-dimensional structure (model) of the molecular target and scores the resulting

complexes by use of various techniques.

The following two sections will explain the concepts of ligand-based and structure-

based drug design, respectively, in some more detail. However, first there is the
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question when to select which approach. The answer to this mainly depends on the

type and quality of the available input data. If a number of compounds is already

known to bind to the target of interest, and perhaps also a list of molecules experi-

mentally verified not to bind to it is available, then ligand-based drug design might

be helpful. For details, please see the next section. However, one rule is obvious so

far: ligand-based drug design is not applicable to the prediction of binding affinities

for a new molecular target, for which no known ligands (or only very few) exist, yet.

This in practice of course is a considerable disadvantage of ligand-based drug design.

Structure-based drug design, on the other hand, does not depend on the availability of

known ligands but on the existence of a molecular structure for the target. The latter

may have been obtained by x-ray crystallography, nuclear magnetic resonance (NMR),

or homology modeling. Therefore, structure-based drug design procedures in practice

may be applicable either if and when protein crystallography or NMR succeeds or if a

crystal or NMR structure of a close homologue is available.

Beyond the above-mentioned different prerequisites, there are somemore advantages

or disadvantages of ligand- and structure-based drug design. In general, ligand-based

approaches need much less time to predict the activity of each molecule (although

the preceding creation of a QSAR model can take considerable time). They can also be

Protein structure

available 

known binders

available

both

available

Figure 3.1: Flow chart of generally recommended application of the various computer-
aided drug design techniques in dependence of the available input data.
Note however, that the applicability of each step in a concrete case can
significantly depend on the quality of the input data (see text for details).
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used to model molecular properties, e.g. ADMET, which is not currently possible with

most structure-based procedures. However, ligand-based techniques in principle are

prone to problems with non-applicability due to low chemical similarity between train-

ing and prediction data set. Structure-based procedures mostly do not use any training

steps and are thus immune to these troubles. In addition, it, in contrast to ligand-based

approaches, generates three-dimensional information about chemical compounds in-

side the binding pocket that can be analyzed in order to evaluate the credibility of the

obtained binding affinity estimate. Due to the direct modeling of interactions between

target and putative ligand, structure-based procedures can also be considered to be

better suited to differentiate between small changes in a molecule’s topology. This

point is particularly important for lead optimization.

Accordingly, if the necessary input data is available for both, it is often desirable to

combine ligand- and structure-based techniques within one virtual screening pipeline.

Especially if the dimension of the input data is very huge (i.e. millions of compounds),

QSAR can thus be used in a first step to filter out molecules that are unlikely to bind to

the target and subsequent docking and, if desired, rescoring can analyze the potential

interactions between target structure and chemical compounds, step by step reducing

the number of apt molecules. An overview of generally possible combinations of var-

ious ligand- and structure-based drug design techniques, in dependence of the type

of available input data, is shown in Figure 3.1. The concepts of the different steps

contained in it will now be explained in the following two sections.

3.2 Ligand-based drug design

Ligand-based drug design approaches, as previously mentioned, aim to model the

action of a property of chemical compounds by a function of their topology or structure.

The two most frequently used ligand-based drug design techniques can be considered

to be Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-

Activity Relationship (QSAR) modeling.

Properties modeled by the former include absorption, distribution, metabolism, excre-

tion and toxicity (ADMET) or the logP, the octanol-water partitioning coefficient, of a

compound. The logP estimate is commonly used to evaluate whether a molecule will

be able to permeate biological membranes and thus reach the tissue or subcellular

compartment where its molecular target resides. Since those properties are usually

not dependent on a specific biological target, QSPR methods can be applicable even

if no ligands for a target are known, yet (as indicated in Figure 3.1). However, a good,

reliable and generalizable QSPR model for the property to be described is necessary

for this. Problems with missing generalizability will be discussed below. The activ-

ity modeled by Quantitative Structure-Activity Relationship approaches usually is the

compounds’ binding free energy to the target of interest. The underlying machine

learning technique are nevertheless the same for both QSPR and QSAR. Their differ-

ence lies only in the response (property vs. binding affinity) to be described by the

respective approach.
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Commonly, input for QSPR or QSAR consists of files describing the topology of chemi-

cal compounds and the experimentally determined response value for each molecule.

Using this input, a number of so-called features or descriptors is then usually calcu-

lated. These features will be used to model the compounds’ property respectively

its activity. Frequently used examples are counts of different atoms types or of func-

tional groups and indices that describe the topological complexity of a molecule or

its three-dimensional structure. Anyhow, the latter is generally not that important or

helpful for ligand-based drug design, since the actual three-dimensional structure of

the compounds when bound to the receptor usually is not available to the QSPR/QSAR

method, as docking (if any) is performed after the QSPR/QSAR analysis (as depicted in

Figure 3.1).

The generated descriptors, whose number might vary from only a few dozen to several

thousands, can then by used by a plethora of machine learning techniques to model

the compounds’ property, respectively its activity. If no binding free energy measure-

ments are available but just information about known binders and non-binders of the

target structure is at hand, classification algorithms can try to learn the characteristics

that separate them. On the other hand, if the binding free energies of the compounds

in the training data set are known, regression techniques may be able to model the

response variable by, depending on the respective approach, either a linear or non-

linear combination of the previously created features. The different classification and

regression models implemented, evaluated and used by us in drug design pipelines are

described in Section 3.6.1 and 3.6.2, respectively. In order to select the model type

best suited for the data set at hand, a nested evaluation (see Section 3.5.1) should be

done for each available and applicable type. A model of the type that achieved the

best quality this way can then be trained and used to predict the property, respectively

the binding free energy, of compounds for the target of interest.

Out of all generated features, usually just a relatively small number is sufficient to

describe the response variable. Furthermore, a lower number of descriptors makes

the created model more interpretable, which is very important in order to be able to

manually verify it and to have the chance to infer general distinct rules that appear

to govern the compounds’ property, respectively their activity. This reduction in the

number of descriptors can be achieved by a variety of feature selection procedures, as

described in Section 3.6.3. Often several such techniques are applied in succession,

which can strongly enhance the quality of the resulting model and can also significantly

reduce run-time. Note that during a nested evaluation, these feature selection steps

are done for each sample.

After a model has been created, its predictive quality should be evaluated using data

on which this model was not trained. The sampling techniques described in Section 3.5

can be used for this. All of those approaches generate samples that each consist of

one training and one test set. For each sample, the model is trained on the training set

and the response values predicted by it thereafter for the compounds of the test set

are compared to the experimentally determined values. The quality of the prediction

for the current sample is then calculated according to one of the statistics described
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3.3 Structure-based drug design

in Section 3.4. The average over the qualities obtained for each sample is then used

as estimate of the model’s predictive quality.

However, if feature selections that themselves use a sampling technique have been

used to obtain the model at hand (which is the case for most feature selection; for

details see Section 3.6.3), then a nested evaluation has to be performed in order to

obtain an unbiased approximation of the model’s predictive quality. During a nested

evaluation, the input data is split into multiple samples using one of the techniques

described in Section 3.5. Each of these samples consists of a training and a test

partition. For each sample, a model is generated using only the training partition.

If feature selections are to be performed for this, they also utilize only the training

partition (and not the test partition). The quality of the obtained model of each sample

is then evaluated by use of the respective sample’s test partition. The average over

all quality values (using statistics described in Section 3.4) obtained for the various

samples is reported as the nested model quality.

If a model has been created, evaluated and judged to have sufficient quality, it can

be used to quickly predict the binding free energy (respectively the property in case

of QSPR) of a different data set. Thus, for example, a QSAR model can be created

for compounds whose binding free energies to the target of interest have been ex-

perimentally determined and this model can later be employed to swiftly predict the

binding free energy of other compounds, for which no experimental measurements

are available.

3.3 Structure-based drug design

Structure-based drug design uses the three-dimensional structure of the target of in-

terest in order to find compounds that likely bind to its binding pocket and could thus

be good drug candidates. The three-dimensional structure can be obtained by either x-

ray protein crystallography, nuclear magnetic resonance (NMR), or by homology mod-

eling. The latter technique employs the structure of a homologous protein that has

been determined by one of the former procedures.

Algorithms for the field of structure-based drug design mainly consist of receptor-

ligand docking and rescoring approaches.

The goal of receptor-ligand docking is to predict the pose of a ligand in the binding

pocket of a receptor, given only the 3D coordinates of the latter and the topology (or

input conformation) of the former. Therefore, docking approaches usually consist of

a scoring function that evaluates the interaction energy of each (intermediate) pose

and an algorithm that generates many different poses to be evaluated by the scoring

function. Scoring functions can generally be divided into knowledge-based and empir-

ical ones. While the former use an inversion of the Boltzmann factor [14] to calculate

scores from the frequency of different observations, the latter employ a number of

(often physically motivated) terms whose coefficients are optimized using a specific

data set with known binding free energies.
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A well-known example for knowledge-based scoring functions is the Potential of Mean

Force (PMF) [15]. Using the assumption that chemically favorable receptor-ligand in-

teractions appear more often in co-crystal structures than unfavorable interactions,

a statistical analysis of the frequencies of receptor-ligand atom pairs within different

distances is performed. Thereby, a probability p for a ligand atom of type  to ap-

pear within a given distance of a receptor-atom of type j is derived. An approximation

of the binding free energy is then obtained by evaluating each receptor-ligand atom

pair, ΔG =
∑

,j−kBT ln(pj(r)). DrugScore, a modification of this approach, was later

developed by Gohlke et al [16], adding a knowledge-based solvation term to the scor-

ing function. The solvation contribution is attained by calculating the probability of

each ligand atom type to be solvated via comparison of the average solvated and

desolvated fraction of the solvent-accessible surface of atoms of the respective type

in the training data set. One of the first empirical scoring functions was LUDI [17],

which uses a linear combination of terms evaluating hydrogen bonds, lipophilic con-

tact surface area and the number of rotatable bonds of the ligand. Modifications of

this scoring function later resulted in, among others, ChemScore [18], FlexXScore [19]

and Glide [20]. ChemScore in effect adds a term for metal interactions to the LUDI

function. Glide and FlexXScore then modify the ChemScore function in different ways.

While FlexXScore adds an evaluation of aromatic interactions, Glide includes terms for

polar-hydrophobic and van der Waals interactions and for solvation.

Docking algorithms, on the other hand, can be separated into those that use a stochas-

tic sampling (e.g., genetic algorithms) and deterministic approaches. An example of

the former category is AutoDock [21], which docks compounds using a Lamarckian

genetic algorithm. FlexX [19] and Glide [20] are well-known representatives of the

second group.

The goal of rescoring is to generate an estimate of the binding free energy that is

more accurate than one provided by the score produced by docking, using the dock-

ing result as a start point. Most available rescoring methods can usually be classified

into one of the following three groups: Members of the first group scale the score

generated by docking in some fashion. A frequently used example for this is the scal-

ing with respect to the number of heavy atoms of the ligand [22]. While this might

seem to be a tantalizing approach, it of course only makes sense if the scoring func-

tion does not already penalize very large ligand molecules. Besides alleviating such

possible shortcomings of a scoring function, no other enhancement of the score is pos-

sible this way. Another group of rescoring procedures tries to enhance the results by

using consensus-scoring [23–25]. Therefore, several scoring functions are employed

and the scores are averaged in some way. This approach is sometimes used because

weaknesses of one scoring function can be mitigated by the scores computed by the

remaining functions. At the same time, though, the result of the scoring function that

performs best on a particular target is deteriorated. Furthermore, if the applied scor-

ing functions are significantly collinear, even using the consensus might result in no

quality increase. The third group of rescoring approaches modifies the scoring function

used during docking in order to (hopefully) attain higher quality. Usually new, compu-

tationally expensive scoring terms are added or existing ones are replaced by more
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complex ones [26, 27]. Although the average approximation of binding free energy

may be enhanced by those new or modified scoring terms, no target-specific rescoring

can be done this way. For different protein target families, the importance of differ-

ent contributions to the overall binding free energy might vary significantly and, even

more important, it may depend on the three-dimensional location of the interactions

between receptor and ligand. Therefore, for example, for one target the existence of

hydrogen bonds and their strengths in exactly defined regions may be important, while

for another target the electrostatic interactions between charged groups of ligand and

receptor play a predominant role. One approach that alleviates those problems and

allows for target-specific rescoring will be described in Chapter 6.

3.4 Quality statistics

3.4.1 Coefficient of determination

As a quality statistic for regression approaches, we use the coefficient of determina-

tion, commonly abbreviated as Q2, to assess the model’s predictive quality,

Q2 = 1−
∑n

=1
(y − ŷ)2

∑n

=1
(y − ȳ)2

where n is the number of compounds in a test data set, y the expected, ŷ the pre-

dicted activity value for compound , and ȳ the mean of the activity.

If identical data sets are used for training and testing, the above statistic will be called

R2, measuring the model’s quality of fit to the training data instead of its prediction

quality.

3.4.2 Quality of classifications

For classification approaches, we make use of the following statistics in order to eval-

uate their prediction quality, where TP is the number of true positives, FP the false

positives, TN the true negatives, FN the false negatives and c the number of classes:

Sensitivity (SE) = TP
TP+FN

Specificity (SP) = TN
TN+FP

average Accuracy (ACC) = 1
c

∑c

=1

TP
TP+FP+FN

overall Accuracy (oACC) = 1
n

∑c

=1
TP

average Matthew’s Correlation Coefficient (MCC) =

1

c

c
∑

=1

TP · TN − FP · FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

overall MCC = TP·TN−FP·FN
(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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3.4.3 Receiver operating characteristics curves

Receiver operating characteristics (ROC) curves make it possible to evaluate the per-

formance of an algorithm in dependence of a variable parameter with respect to both

sensitivity and specificity. Therefore, they consist of a plot of sensitivity (usually on

the Y-axis) against 1-specificity (commonly on the X-axis).

ROC curves are in general created by either modifying one (or several) parameters of

the algorithm under investigation or by using many different data sets and in each step

calculating sensitivity and specificity. In the context of computer-aided drug design, we

will modify the score threshold by which compounds are classified as putative binders

or non-binders. The score, to which this threshold is applied, is generated by most

computer-aided drug design algorithms as an estimate of the compound’s binding

free energy to the target structure. Thus, our algorithms will only be run once for each

data set and a varying threshold is applied to their output.

The goal of using ROC curves for our computer-aided drug design algorithms is to an-

alyze the fraction of binders (sensitivity) in dependence to the fraction of non-binders

(specificity) that would be selected as putative ligands (according to their score) with

a varying score threshold. ROC curves thus, among others, show whether the clas-

sification between binders and non-binders obtainable with our algorithms deviated

significantly from random performance, which can be visualized by a diagonal line.

Furthermore, they allow to see in which part of the rank-list (i.e. the list of compounds

sorted ascendingly according to the score assigned by the algorithm) the highest en-

richment of binders was achieved.

In order to be able to more easily compare ROC curves or compute the average quality

of an algorithm over several data sets, several metrics can be used to compute one

value for an entire ROC plot. The perhaps most commonly used metric is the AUC, the

area under the ROC curve, which we will use to evaluate the quality of our docking

and rescoring algorithms. In the context of drug design, the AUC is calculated as the

average relative rank of binders [28]

AUC =

n
∑



1− r()

where  is the index of the respective binder and r() is its relative rank. The rank of

a molecule is defined as its position within the list of all compounds (including non-

binders) of the data set, sorted ascendingly according to their scores assigned by the

CADD algorithm. The relative rank, on the other hand, is the fraction of non-binders

that has been assigned a better score than the current binder.

Thus, in the best case, i.e. if a CADD algorithm could perfectly distinguish binders from

non-binders, an AUC of 1.0 would be obtained. In case of random results the value of

the AUC would be 0.5.
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3.4.4 Enrichment factors

Enrichment factors compare the number of active compounds (ctesobs) observed

within a certain top-scored fraction of a docking result against the number of actives

expected in this fraction due to random distribution

enrchment() =
ctesobs

 · ctestot

where  is the fraction of the docking result, sorted ascendingly according to assigned

scores, and ctestot is the total number of active compounds in the given data set.

3.5 Sampling techniques

3.5.1 Cross-validation

Cross-validation partitions the input data into k evenly sized samples, where k is the

user-defined number of folds. Each of those folds thereafter contains n
k
compounds,

where n is the number of compounds in the input data set.

In total, the model is then trained k times. Each time one fold serves as test data set

and the remaining folds together make up the training data set. The average quality of

the k predictions is used to describe the prediction quality of the model (Figure 3.2).

3.5.2 Boot strapping

In contrast to cross-validation, bootstrapping [29] does not partition the input data,

but creates groups by randomly drawing compounds with replacement from the input

input data

result of

training

test

result

average

test result

input partitions

folds

Figure 3.2: Schematic illustration of three-fold cross-validation. Training partitions are
shown in yellow, test partitions and results in blue.
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data set. The groups are usually called bootstrap samples and each of them has the

same size (n) as the input data set. Since the drawing is done with replacement, a

high number of bootstrap samples can be created, even for a relatively small input

data set.

The predictive power of the model is evaluated successively for each bootstrap sam-

ple. Therefore, the model is trained each time on a bootstrap sample and then tested

with those compounds on which it was not trained, i.e. which are not part of the current

bootstrap sample.

However, since the probability of a compound  to be chosen for a bootstrap sample b

is [29]

Pr( ∈ b) = 1−
�

1−
1

n

�n

≈ 1− e−1 ≈ 0.632

the effective size of the bootstrap samples is reduced in comparison to the input data

set by this factor, leading to underestimation of the model’s predictive power.

To alleviate this problem, we use the ”0.632 estimator” [29] (Figure 3.3), which weights

the test results as described above by 0.632 and then adds the average quality of fit

to the training data weighted by 0.368.

3.5.3 Response Permutation Testing

Cross-validation and bootstrapping, as described above, provide an estimate of the

predictive power of the model but they do not assess the statistical significance of

this predictive power [30, 31]. Response permutation testing thus repeatedly and

input data

result of

training

test

result

r1 r1
-1

r2
-1

r2 r3

r3
-1

r : randomly draw 

    with replacement
i

bootstrap 

sample

Figure 3.3: Schematic illustration of bootstrapping with three samples and the ”0.632
estimator”. r denotes a random drawing with replacement from the input
data set, while function r−1 returns those compounds that have not been
drawn by r.

38



3.6 Machine learning

randomly permutates the response values and checks the predictive quality after each

permutation by use of cross-validation.

However, it might happen that sometimes relatively high predictive qualities are ob-

tained during this procedure as a result of structural redundancy of the data set or

chance correlation [32]. Nevertheless, if the predictions of the model are statisti-

cally significant, the prediction qualities obtained with randomized response variables

should in most cases be much lower than those obtained with unchanged response

variables. If, on the other hand, nearly all results of the response permutation tests

are similar to those attained with unchanged response variables, this indicates that

this model does not have significant predictive power for the current data set.

3.6 Machine learning

3.6.1 Classification approaches

In those cases where appropriate prediction of an activity cannot be achieved by either

linear or non-linear regression, a classification might be a useful resort. The response

variable could thus be discretized so that the applied classification approaches would

predict, e.g., whether a compound binds strongly, relatively weakly, or not at all to the

target structure of interest.

Furthermore, classification approaches are also helpful if no measurements of affinities

(C50, K, etc.) are available for a given data set but results indicating whether or not

each examined compound shows the desired activity.

Thus our software package also provides several classification approaches, which we

describe in the following.

Naïve Bayes

Naïve Bayes [29] is a simple probabilistic classification approach that considers all fea-

tures to be independent of each other. It calculates for each compound the probability

that it is part of a certain class as the product over the probabilities of all feature values

to belong to this class.

Since chemical properties are basically continuous values, they need to be discretized

first, e.g., using equal-width discretization:

r() =
( −mn)s

m −mn

where s is the number of discretization steps to be used, mn the minimal and m

the maximal value of feature  within the training data set.
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Naïve Bayes thus assigns the class k to a given compound  that maximizes the prod-

uct over the probabilities of all m features as

css() = rg mk p(k) ·
m
∏

=1

p(|k) .

Simple Naïve Bayes

Simple naïve Bayes is a modification of naïve Bayes that does not need to discretize

the features. Instead, it uses the normal distribution as a probability density function

(pdf) in order to obtain a score for a given value  of a feature  to be derived from

class k

pdƒ (k, , ) =
1

σ,k
p
2π
· ep

 

−
( − μ,k)2

2σ,k

!

where μ,k denotes the mean and σ,k the standard deviation of feature  found within

class k of the training data set.

This score can be converted into a probability by dividing it by the sum of all pdf values

for the same feature value so that a given compound is assigned to class k for which

the product over the probabilities of all m features is maximized,

css() = rg mk p(k) ·
m
∏

=1

pdƒ (k, , )
∑c

j=1
pdƒ (j, , )

where c is the number of classes.

Linear Discriminant Analysis

For a given compound, linear discriminant analysis (LDA) [33] assigns the class that is

nearest to this input, taking into account the different covariances of descriptors,

css() = rg mnk (− μk)−1(− μk)−1

where μk is the vector of the mean values of the descriptors for class k and −1 is the

inverse of the covariance matrix of descriptors.

Thus, linear discriminant analysis minimizes the weighted distance between a test

compound and the mean of its predicted class; it is weighted in such a way that de-

scriptors with large variance/covariance contribute less to the distance than those with

small variance/covariance.
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3.6.2 Regression approaches

Linear Regression

Linear regression techniques try to model one or more continuous response variables

as a linear function of features. In the case of QSAR applications, the biological ac-

tivity of a compound is approximated by a linear function of descriptor values  and

coefficients b
ŷ = b00 + b11 + ...+ bmm (3.1)

where m is the number of descriptors. The coefficients are derived by different lin-

ear regression techniques described below and each conveys a weight to a specific

descriptor. Thus, interpreting linear regression models is relatively easy, which is a

great advantage over nonlinear models as long as the number of descriptors is not too

large. If a very large number of descriptors is available, it is thus very important to

select them carefully, as will be explained later.

Examples of well-known linear regression models include:

Multiple Linear Regression (MLR) minimizes the residual sum of squares, i.e. the sum

over all squared errors of activity predictions.

Ridge Regression (RR) [34] is an extension of Multiple Linear Regression which is

better able to cope with multicollinearity of descriptors. It therefore adds a con-

stant λ (usually 0.01 or less) to the diagonal of the variance-covariance matrix

of descriptors.

Principle Component Regression (PCR) [35] uses singular value decomposition to

reduce the dimensionality via calculation of principle components that explain

most of the variance of the given data set, followed by projection of input data

onto these principle components. Multiple Linear Regression is then applied to

the principle components.

Partial Least Squares (PLS) [36] reduces the dimensionality through latent variables

computed in such a way that their covariance with observed activities is maxi-

mized. We use the non-linear iterative partial least squares algorithm (NIPALS)

[36] for this purpose.

Orthogonal Partial Least Squares (OPLS) [37] is an extension of PLS that eases the

analysis of the regression result if large variation uncorrelated to the response

variables (orthogonal variation) is present in the descriptor matrix. Therefore, a

modified NIPALS algorithm [37], which computes PLS components with minimal

covariance to the response variables and subtracts them from the descriptor

matrix, is applied prior to the unmodified NIPALS algorithm.

Although in many cases the desired activity can be modeled quite well by a linear

function of descriptors after selection of necessary features (see below), sometimes

this cannot be achieved. This may either be due to chemical features important for
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binding for which no descriptors have been computed or to the activity of interest

depending on a more complex function of the structure and topology of the ligands.

There are two different general approaches for approximating higher-dimensional rela-

tionships: locally weighted linear regression and kernel-based regression techniques,

both of which will be described in the following.

Locally Weighted Linear Regression

To predict activity, locally weighted linear regression approaches use a linear function

of descriptors that is weighted with respect to the chemical similarity of the com-

pounds of the training data set to the compound whose activity is to be predicted.

Thus, these models minimize the locally weighted residual sum of squares instead of

the residual sum of squares

E =

n
∑

=1

2

(y − ŷ)2

where  is a weight factor based on the chemical similarity of the compound whose

activity is to be predicted to the ’th compound of the training data set. Different ways

of obtaining the weights are shown below.

This minimization is then achieved through a modification of ridge regression that

includes a diagonal matrix W comprised of the weights, so that a coefficient-vector

containing one coefficient for each feature can be obtained as

~b = (XTWX + λ)−1XTW ~y . (3.2)

It is noteworthy that due to the use of these weights, there is no training of a locally

weighted linear regression model that is separate from the prediction of activities, i.e.

an individual regression is done each time an activity is to be predicted. Thus, there

also is no single resulting vector of coefficients, as is the case for linear regression

approaches (as described above), which could be analyzed in order to find chemical

properties especially important for the modeled activity.

Automated Lazy Learning (ALL) [38] first calculates distances between the compound

t whose activity is to be predicted and all compounds  of the training data set in terms

of Euclidean distances of their descriptor values

d =

m
∑

j=1

(Xj − tj)2,

where m is the number of features.

These distances are then transformed into weights by use of a Gaussian

 = ep

 

−d2
k

2K2

!

.
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Here, K is the kernel width, determining how fast the weight decreases with increas-

ing distance. This parameter can be optimized for each data set using, e.g., cross-

validation or bootstrapping. The activity of the compound for whom the weights have

thus been calculated can then be predicted as shown in Eq. 3.2.

k-Nearest Neighbor (KNN) regression uses only the k compounds that are chemically

most similar to the compound whose activity is to be predicted.

It can thus be seen as a specialization of ALL, generating weights which are either 0 or

1, so that

 =







0, ƒ d < sk

1, ese

where s contains the distances, computed as shown above, sorted in descending or-

der.

Kernel-Based Non-linear Regression

Kernel-based non-linear regression methods do not directly use the descriptor matrix

X to perform a regression, but a kernel matrix K that constitutes a mapping of X into

higher dimensional space. The basic reason for doing this is that linearly non-separable

data is often linearly separable after having been mapped into a higher dimension.

Therefore, descriptor matrix X is mapped to the implicitly high-dimensional kernel ma-

trix K

κ : X→ K

by way of a non-linear kernel function κ calculating one value for each combination of

rows of X

Kj = κ(X, Xj).

We provide three different kernel functions that can be used for non-linear regression

models:

1. polynomial kernel function κ(X, Xj) = (X · XTj )
d, where d > 1.

2. radial basis kernel function κ(X, Xj) = e−γ||X−Xj||
2
, with γ > 0.

3. sigmoid kernel function κ(, j) = tnh(c
T
j
+ d), where c > 0, d < 0 and tnh

denotes the hyperbolic tangent.

The different kernel-based regression approaches supplied with our programs are de-

scribed in the following. Training results in coefficients for all compounds of the training

data set, instead of coefficients for the descriptors, as is the case with linear regression

approaches (see above).

Regardless of which kernel-based non-linear regression model is used, its quality sub-

stantially depends on the choice of kernel and kernel parameters. Only when a kernel
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that adequately approximates the overall relationship between activity and descriptor

values is chosen, optimal results might be achieved.

Kernel-Based Ridge Regression

Kernel-based ridge regression (KRR) first transforms the descriptor matrix X into a

kernel matrix K by use of one of the kernel functions described above.

The result of the regression in the form of one coefficient for each compound of the

training data set can then be obtained by

~b = (K +  ∗ λ)−1 ~y .

Kernel-Based Principle Component Regression

After transforming X into a kernel matrix K, kernel-based principle component regres-

sion (KPCR) reduces the dimensions of K by the application of singular value decom-

position and creation of latent variables, so that most of the variance of the kernel

matrix is explained by the latter.

Kernel-Based Partial Least Squares

Kernel-based partial least squares (KPLS) transforms the descriptor matrix into a kernel

matrix K and calculates PLS components from K in such a way that their covariance

with the response variables is maximized. This is done by use of the NIPALS algorithm

[36] as mentioned above.

3.6.3 Feature selection

To receive easily interpretable training results and to reduce overfitting, it is very im-

portant to reduce the number of descriptors used by the model.

The goal therefore is to combine only those descriptors that result in the highest pre-

dictive power of the model. In theory one might try to assess all possible combinations

of descriptors in order to find the one that yields the highest possible prediction power.

But since the number of combinations to be evaluated this way is given by

m
∑

=1

�

m



�

= 2m − 1

where m is the number of descriptors of the data set, we can clearly see that this is in

practice infeasible due to its immense complexity.

Instead, a number of heuristics, which will be described in the following, can be uti-

lized.
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Forward Selection

Forward selection [39, 40] starts with no features, and in each step adds the feature

that results in the largest increase of predictive quality, which is estimated by use of

cross-validation.

Feature selection is stopped if either the predictive quality cannot be increased by

more than a given minimum or all features have been selected.

Backward Selection

Backward selection [39, 40] starts with all features and in each step removes the

feature whose removal results in the largest increase of predictive quality as estimated

by cross-validation.

The procedure terminates once the predictive quality cannot be increased by more

than a given minimum or only one feature remains selected.

Stepwise Selection

Stepwise selection [39, 40] can be used to combine forward and backward selection.

In our software, it consists of a forward selection that, after adding a feature, always

applies backward selection so that the properties that have become unimportant can

be removed.

Removal of collinear features

Highly collinear features can be removed directly from the given model without need

for assessment with cross-validation or bootstrapping.

Thus all features  that have a correlation coefficient cor(, j) to at least one other

feature j, for which |cor(, j)| > t, where t is a given threshold, are removed from the

model.

TwinScan

TwinScan performs a simple check consisting of two successive scans of all features.

In the first scan, the best single feature to start with is searched. Cross-validation is

therefore used to assess the predictive quality of each feature. In the second scan, it is

checked for each remaining descriptor whether it can increase the prediction quality.

Here, the features are tested in descending order according to their predictive quality

as determined in the first scan.

Thus, this method is particularly suitable as a fast heuristic for very large data sets

or as a first filtering step in the case of several feature selection procedures being

employed successively.
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Removal of insignificant coefficients

For linear regression models it may be desirable to remove features with insignificant,

i.e. very small or highly variable, coefficients. To evaluate the variability of coefficients,

a bootstrapping is done. All features whose absolute coefficient value is smaller than

d times its standard deviation are removed, with d being a user-defined threshold.

Since features are discarded whose coefficients vary a lot for slightly different train-

ing data sets, the resulting model is conceivably more stable, i.e. less prone to over-

fitting.

Removal of low response correlation

In the case of very large data sets, especially those with very many features, it can

be helpful to remove those features that show very low correlation with response vari-

ables.

Since all described regression approaches do not consider features to be independent

of each other, only a very small threshold (e.g. ≤ 0.1) can be chosen without consider-

ably decreasing the quality of the resulting model. Nevertheless, this still often results

in removal of a substantial number of features, thus decreasing run-time of further

analyses.
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3.7 Multi-greedy heuristics

Multi-greedy algorithms [41] are heuristical optimization techniques that are very use-

ful if a high number of conditions has to be evaluated. Instead of enumerating all

conditions, multi-greedy approaches can then used.

Figure 3.4: Schematic visualization of a multi-greedy heuristic. The best conditions of
each layer are highlighted in green.

Multi-greedy heuristics work in several layers. In each layer, an external algorithm is

used to generate a set of new conditions (e.g., ligand poses), along with a score for

each of them, for the set of input conditions. Then, only the k best conditions (with k

being a user-defined constant) are retained for use in the next layer and all others are

not examined further. Usually, one multi-greedy layer is used for each variable to be

optimized (e.g., the rotation angle of one bond in case of docking).

This way, the total number of generated conditions depends only linearly instead of,

as in the case of trivial enumeration, exponentially on the number of employed layers.

A schematic visualization of this procedure is shown in Figure 3.4.
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4 QSAR approaches for ligand-based
drug design

4.1 Introduction

Quantitative structure-activity relationship (QSAR) modeling is, as has been detailed in

Section 3.2, very important for computer-aided drug design and can help reduce a list

of putative drug candidates by predicting the binding free energy of those compounds

to the molecular target of interest by a function of molecular properties.

A large number of machine learning techniques exist that can be used to derive a lin-

ear or non-linear function for this. Furthermore, there is a variety of feature selection

and model validation approaches. Only by evaluating different modeling techniques

on a given data set and applying several feature selection and model validation pro-

cedures can the probability of obtaining a good, interpretable and stable model be

maximized.

However, while there are several software packages [42–45] available for QSAR re-

search, most of them provide just a small range of the necessary functionalities and

are also not extendable. Often just one (or very few) types of regression models are

made available by those programs, so a comprehensive comparison of many different

approaches is impossible. Furthermore, feature selection is often ignored even though

it is absolutely vital for obtaining interpretable and stable models. Another major

problem is the common lack of advanced model validation methods. A simple cross-

validation does not suffice to estimate over-fitting and is unable to detect chance cor-

relation. Nested validation (as described below) is probably the most reliable method

to achieve the former but is also not available in most QSAR software packages. Ad-

ditionally, most of these programs are not made available as open source, so that

extending their functionality or adapting them to specific needs is not possible for

anyone but their initial authors. Last but not least, robustness and speed of performed

computations are seldom a focus of attention, making many applications unsuitable

for use with large data sets, which would however be essential for lead identification

projects since they often require the screening of huge data bases of chemical com-

pounds (more details about lead identification can be found in Section 2.1.3).

Thus, we implemented a large set of well-established regression and classification

models, feature selection and model validation techniques into one framework, which

is presented in this chapter, that makes all techniques easy to use, open source, fast

and efficient, numerically stable, and easily extendable. Furthermore, methods for

reading of input and generation of molecular descriptors are provided, so that this
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4 QSAR approaches for ligand-based drug design

Figure 4.1: Overview over the modules provided by our QSAR framework.

framework contains all functionality necessary for reliable large-scale application of

QSAR analysis, as required in the context of computer-aided drug design. Since, in ad-

dition to a library, a set of tools is supplied, these tasks can be directly solved, without

any programming on the user’s part, by using these programs in combination.

The tools provided by this framework are applied to a number of standard QSAR bench-

marking data sets and thereby shown to achieve good modeling quality with high in-

terpretability, i.e., with a low number of descriptors. In addition, this framework is used

and shown to be very helpful in a large drug-design pipeline presented in Chapter 7.

4.2 Design & Implementation

The created QSAR framework is divided into four modules (represented by baseclasses

in the actual implementation) for the following tasks: Creation and handling of input

data, QSAR models, feature selection and model validation.
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4.2.1 Input data module

The input data module allows reading input from files, preprocess it in the desired way

and store the resulting data consisting of a set of descriptor values and one or more

response values (e.g., a binding free energy) for each molecule. Input in the form of

topologies and conformations can be read from files. Molecular descriptors can be

automatically computed for all contained molecules. These descriptors can be divided

into the following categories:� 40 atom and bond count descriptors� 2 connectivity indices (Balaban and Zagreb index)� 4 partial charge descriptors� 14 surface descriptors� 133 topological descriptors (functional group counts)

A detailed list of all descriptors is provided in the Appendix in Table A1. Additionally,

descriptors computed externally by some other program can be used by reading them

from simple, comma-separated files.

Data, as read and generated by the input data module, can furthermore be centered

(to a mean of zero and a standard deviation of one for each descriptor) and saved to

files in order to facilitate reuse of this data by different tools, thus facilitating quick

creation of workflows. Also, data can be split, randomly or evenly with respect to

response values, into several data sets. This is useful for setting aside data for testing

purposes or for nested validation.

4.2.2 Models module

This module supplies all implemented models under one common interface. It is di-

vided into classification and regression models and the latter is furthermore subdi-

vided into linear, non-linear and kernel-based non-linear models. Supplied models are

furthermore listed in Figure 4.1 and their underlying principles have been explained

in Section 3.6. For kernel-based methods, polynomial, radial-basis function (rbf) and

sigmoidal kernel functions are available (as described in Section 3.6.2).

All models are kept track of by a registry created for this purpose, so that newly imple-

mented models can be used by all tools without actually changing the tools them-

selves. Furthermore, the only significant functionality usually implemented in the

childclasses representing the QSAR models is the actual training algorithm. Fetching

of data, transforming, storing and loading it, etc. is performed by the respective parent

classes, so that new models are easy to implement and add to this infrastructure.

The focus of the implementation of all models rested on fast, efficient and numerically

stable calculations. In order to ensure the last point, vector and matrix operations

have been delegated to the well-established BLAS [46] and LAPACK [47] packages.

Since the popular BLAS interface is used to do this, those packages can, if desired,
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4 QSAR approaches for ligand-based drug design

be exchanged for other ones, e.g. ones with hardware-dependent optimization like the

Automatically Tuned Linear Algebra Software (ATLAS) [48].

4.2.3 Feature Selection

A range of different feature selection techniques is provided by the feature selection

module. All techniques operate on a connected QSAR model and, depending on the

respective method, either evaluate its input data or repetitively train the model with a

varying set of descriptors and evaluate its performance with cross validation. In each

case, as a result of feature selection, information about which descriptors are to be

used is set in the respective model object. Thus, no copying of large amounts of data is

necessary and different feature selection techniques can easily be used in succession.

Furthermore, all feature selection techniques are also registered in a registry, so that

new ones can be implemented and later used by tools without any need to modify the

latter.

Successive application of different feature selection approaches is especially important

in cases of huge input data sets (containing thousands of molecules and/or features).

By first utilizing computationally less demanding approaches, overall run-time can be

considerably reduced and at the same time the quality of the obtained reduced models

can be strongly enhanced.

Feature selection methods currently provided by this module are, listed in ascending

order according to their computational complexity:� Removal of low response correlation� Removal of highly correlated features� Removal of insignificant coefficients� TwinScan� Forward selection� Stepwise selection� Backward selection

The underlying theory of each of those approaches has been explained in Section

3.6.3.

4.2.4 Model Validation

The model validation module supplies a number of different evaluation techniques

that can be used to assess the predictive power of a QSAR model. All approaches

(repetitively) train a connected QSAR model using (parts of) the data stored in input

data object bound to the latter. The response values (e.g. a binding free energy)

predicted by the QSAR model are then compared by the validation technique to the

expected (i.e. in most cases experimentally determined) response values annotated

in the input data. The quality measure used to describe the similarity of those two sets
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of values is the coefficient of determination (see Section 3.4.1) in case of regression

models and one of the measures detailed in Section 3.4.2, as chosen by the user.

Model Validation techniques currently provides are cross validation, boot strapping,

response permutation and evaluation of quality of fit to input data. All of them have

been explained in Section 3.5. To allow for easy integration of newly implemented

validation procedures, they are also tracked by a registry, just as has been explained

for QSAR models and feature selections above.

4.3 Results & Discussion

We use six different data sets in order to evaluate our QSAR framework, which are

described by Table 4.1.

For each data set, molecular descriptors are generated as explained above, but the last

block of descriptors (topological features) has been replaced with 3,000 descriptors

computed externally by Dragon [44]. All descriptors as well as the response variables

were furthermore scaled to a mean of zero and a standard deviation of one.

The following steps are then performed for each data set and each model type:

1. Features having a correlation to another feature that is larger than 0.97 or

smaller than -0.97 are removed. If applicable, model and kernel parameters

are consecutively optimized by a grid search.

2. Forward selection is applied to the reduced model, using 5-fold cross-validation

for estimation of predictive quality. Again, model and kernel parameters are

optimized thereafter.

3. In case of linear regression models, a filtering of insignificant coefficients (see

Section 3.6.3) is carried out, removing all features whose absolute coefficient

value is smaller than three times its standard deviation. All parameters are

again automatically optimized after this step.

4. The model obtained this way is assessed by a 4-fold nested validation. Thus, for

each of the four folds, 25% of the compounds of the input data set are randomly

selected as test data. The remaining compounds make up the training data of

name abbrev. source cpds min max
Angiotensin-converting enzyme ACE [49] 114 -9.9 -2.1
Benzodiazepines Benzo. [49] 163 -8.9 -5.5
Carbonic Anhydrase II CarbAn2 [50] 75 -6.0 0.2
Cyclooxygenase II COX2 [49] 322 -9.0 -4.0
Dihydrofolate reductase DHFR [49] 397 -9.8 -3.3
Heat shot protein 90 HSP90 [50] 108 -5.3 -0.3

Table 4.1: Data sets used to test our QSAR framework. The number of compounds
(cpds), as well as the minimal pIC50 (min) and the maximal pIC50 (max) of
inhibitors contained in each of those data sets is indicated.
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Figure 4.2: Nested validation (shown in green) and non-nested cross-validation Q2

(blue) of our best model for each of the data sets in comparison to results
obtained by Sutherland et al. [49] (where available; in red)

.

ACE Benzo. CarbAn2 COX2 DHFR HSP90
no. of selected features 23 31 13 19 49 16

Table 4.2: The number of selected features of our best model for each of the data sets.

the respective fold. Steps 1-3 are repeated for each nested validation fold. The

average coefficient of determination over all four folds is then used as descrip-

tion of the predictive power of the respective model type for the current data

set.

The results of our best model for each of the ACE, BZR, COX2 and DHFR data sets are

qualitatively compared to the regression correlation achieved by the best respective

model of Sutherland et al. [49] on their test set.

The best quality obtained by one of our modeling techniques for each of the six data

sets, determined as described above, is shown in Figure 4.2. As the latter shows, it is

possible to easily create QSAR models with high predictive quality, in all cases tested

here outperforming those models that were published by the creators of the respective

data set. Since our models were validated using multi-fold nested validation, a high

observed quality is not simply due to the composition of a single test partition. Fur-

thermore, as is detailed in Table 4.2, we utilized a relatively small number of features,

which greatly facilitates interpretability of the models.

Table 4.3 shows the necessary runtimes for analyzing a data set of average size by use

of the different regression procedures on a 1GHz AMD Opteron machine with use of

Lapack [47] and ATLAS [48]. Theses numbers take into account all applied feature se-

lections and nested validation as described above. As can be seen from Table 4.3, the

data sets described above can be analyzed in the described way in a matter of minutes

by linear regression approaches or at most in a few hours by non-linear approaches.
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MLR/RR PCR PLS/OPLS ALL KNN GP KPCR KPLS
w/o opt 8 10 6 48 50 17 25 20
w opt – – 8 160 170 50 40 75

Table 4.3: Runtime performances (with and without model or kernel parameter opti-
mization) in minutes for the different model types for a data set of average
size (111 compounds and approximately 3,400 features). These numbers
take into account all applied feature selections and nested validation as de-
scribed in Section 4.3.

Since the predictive quality of a particular type of regression or classification model

depends on the relationship between activity and selected features of the examined

data set, it is, in general, advisable to try several different approaches. Thus, for

each type of model to be evaluated, the entire pipeline including all desired feature

selection steps as well as a multi-fold nested validation has to be utilized, to which our

framework is ideally suited.

However, on average, the model that performed best on all data sets is PLS. It shows

a high overall predictive quality and a relatively low amount of overfitting, compared

to other types of models. An estimate for the latter property can be observed as

the difference between the predictive qualities obtained by nested and non-nested

validation, as shown in Figure 4.3. Partially weighted linear regression approaches

(especially ALL) in our study exhibit very good modeling capability, which they achieve

after feature selection if tested in a non-nested way. Still, they are also very prone to

overfitting, displayed by much lower predictive qualities obtained by nested validation.

Kernel-based regression models, on average, showed predictive quality similar to our

partially weighted linear regressions. Nevertheless, both types of approaches have

the disadvantage of their results being much harder to interpret than those of linear

regressions.
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Figure 4.3: Average nested validation (shown in green) and non-nested cross-
validation Q2 (blue) of each type of regression model
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Due to the smaller risk of overfitting, as well as the higher interpretability, it is thus

recommended to try to create a model as simple and stable as possible, i.e. preferably

using a linear regression approach and as few features as possible. As we showed

here, it is often possible to obtain models with high predictive accuracy by employing

this strategy. Thus, it is advisable to resort to more complex approaches only if simpler

ones fail to achieve a sufficient prediction quality.

In order to make the described functionality of this framework useable in an easy way

and to provide access to a number of preprocessing tools, this framework has been

integrated into our computer-aided drug design suite, CADDSuite. More about this will

be described in Chapter 7.
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IMGDock

5.1 Introduction

As explained in Chapter 3, molecular docking is of great importance to computer-

aided drug design since it allows to predict the binding pose and binding free energy

of chemical compounds to the receptor of interest. Thus, it finds frequent use in lead

identification (Section 2.1.3) and lead optimization (Section 2.1.4) steps of drug dis-

covery projects.

In this chapter we present IMGDock, a docking approach developed with the goal of

fast, scalable, interpretable, reproducible, universally applicable, and easily config-

urable docking.

A high speed of docking is especially important for applications in lead discovery

where often hundreds of thousands or even millions of chemical compounds are to be

screened in silico. Scalability allows to efficiently apply the algorithm to a high num-

ber of molecules and distribute the calculations to compute clusters, clouds or grids.

An empirical scoring function is developed in order to ensure chemical interpretability

of obtained results. The contribution of all modeled terms of interaction, like van der

Waals or electrostatic, to the binding free energy can be examined separately and the

pair-wise interaction between ligand and selected residues can be evaluated. Further-

more, the created pose generation algorithm is a deterministic one, so that obtained

results are always reproducible, i.e. it always returns the same pose for the same pair

of receptor and ligand, something seemingly trivial but of huge practical importance

since otherwise exact reproduction of experiments is not possible. To ensure that the

docking approach is universally applicable to a wide range of target (protein) families,

the scoring function has been parameterized on a large and diverse set of protein-

ligand complexes and validated on a separate, even larger and also very diverse data

set. Easy configurability ensures that, if desired and the necessary biochemical infor-

mation is available, the quality of docking can be enhanced by adapting it to a specific

target. To this end, various scoring constraints can be generated, either manually

or automatically, and used by our docking approach, thus guiding the latter towards

ligands poses that are chemically more senseful with respect to the specific target.

Hence, major advantages of IMGDock over other docking programs (see 3.3) are the

robustness and high speed of its algorithm, the ability to easily add different scoring
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constraints, its availability free of charge as open-source software, high quality of ob-

tained results and its simple deployment on compute clusters, clouds or grids (HPC,

high-performance computing systems).

The quality of IMDGDock is evaluated using the DUD [51] library, a well-established

benchmark set for receptor-ligand docking. We will show that IMGDock, even when

used in a completely automatic fashion, in many cases outperforms state-of-the-art

programs and even on average performs as well or better than most of them.

To ease the deployment on HPC systems, IMGDock has been integrated into our Com-

puter-Aided Drug-Design Suite (CADDSuite) and thereby into the workflow-system

Galaxy [52]. The inclusion into CADDSuite makes it possible to use IMGDock in com-

bination with all data retrieval, preparation, checking and analysis tools provided by

the former, making the usually very tedious setup of in silico drug design pipelines

very easy and fast. All those tools together cover most areas of commonly used ap-

plications for computer-aided drug design, so that no external (commercial) software

packages are required (but can be used if desired) within such pipelines. The integra-

tion into Galaxy enhances the user-friendliness even more, in effect adding a graphical

user-interface and the ability to run individual tools or generate or execute workflows

directly from a web browser, without any need for software installation on part of the

user. It also allows to directly submit jobs to a cluster, grid or cloud and tracks all

executions of jobs and their results, which makes work involving large workflows much

easier and much more reproducible. Since furthermore all our tools use a modular

concept and are available free of charge, eliminating the need for separate licenses

for each process, IMGDock, together with CADDSuite, is therefore optimally suited for

high-performance computing in the field of computer-aided drug design.

IMGDock is, as part of CADDSuite, licensed under the GPL and is available from http://

www.ball-project.org/caddsuite. For more information about CADDSuite, please

refer to Chapter 7.

5.2 Methods

5.2.1 Scoring function

We developed an empirical scoring function that contains terms for van der Waals

interactions, electrostatic contributions, desolvation of the ligand, hydrogen bonds be-

tween receptor and ligand and rotational entropy.
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score = ΔGdW + ΔGES + ΔGSo + ΔGHB + ΔGent + ΔGpentes

= KdW
∑

,j∈d

Aj

r12j

−
Bj

r6j

+ KES

∑

,j∈ES

qqj

rj · ϵj

+ KSo
∑

∈gnd
p · so · sƒ rc

+ KHB

∑

,j∈HB
ƒ (rj, r0) · g(α,H,j, α0)

+ n · ΔKent
+ ΔGpentes

(5.1)

The contribution of van der Waals interaction is computed by a standard Lennard-Jones

potential as calculated by an AMBER [53] force field. For calculation of electrostatic

interaction energy, a Coulomb potential, scaled by an approximation of the relative

dielectric constant εj, is used. The latter is obtained as the average between dielectric

constant of the protein (4.0) and the dielectric constant of the solvent (80.0), weighted

by the fraction ƒ rj of the space between ligand  and receptor atom j that is taken up

by solvent

εj = ƒ rj · εsoent + (1− ƒ rj) · εproten. (5.2)

For each ligand atom, the desolvation term computes a score as a product of the

atom’s solvation parameter (p), its solvation volume (so) and the fraction of its

volume that is desolvated (sƒ rc). Values for solvation parameters and solvation vol-

umes are taken from AutoDock [54]. Hydrogen bonds are scored using a distance- and

angle-dependend term (adapted from SLICK [55]). Deviations from the optimal hydro-

gen bond length (1.85 Å) or the optimal angle (180◦) are penalized using a sigmoidal

base function ƒ in such a way that very unfavorable hydrogen bond geometries result

in a contribution of zero. Very large and flexible ligands are furthermore penalized by a

rotational-entropy term, so that 1∗Kent is added for each rotational bond of the ligand

exceeding the average number of rotational bonds in our calibration data set (14). A

further scoring term adds a penalty value for each clash between non-bonded atoms.

A pair of atoms, ligand intramolecular or receptor-ligand intermolecular, are consid-

ered to overlap if their distance is smaller than the sum of their van der Waals radii

minus a predefined threshold (1.0 Å). The last term of our scoring function computes

a penalty score for each constraint that has been added to be the scoring function (if

any). Please see below for the description of our scoring constraints. The coefficients

K of Equation 5.1 were optimized using the data set of AIScore [56]. The resulting

values are shown in the Appendix in Table A2.

As an empirical scoring function, our function has several advantages over commonly

used knowledge-based potentials. For its calibration, experimental data in form of

binding free energymeasurements could be used, whereas knowledge-based approach-
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5 Receptor-Ligand Docking for structure based drug design: IMGDock

es take into account only the number of different atom types around each ligand atom.

Furthermore, empirical functions are also chemically interpretable, so that the individ-

ual contribution of the terms to the binding free energy can be examined or pairwise

interactions visualized. Our scoring function is also nearly completely precalculate-

able, allowing for score-grids to be computed and saved to a file, leading to a strong

speed-up for successive docking. Only the part of the hydrogen term that evaluates

interactions between hydrogen donor groups in the receptor and acceptor groups in

the ligand cannot be precalculated (due to the angle-dependence of the term), so that

it is automatically computed during docking and the resulting score added to the one

obtained from the score-grids.

5.2.2 Preparation algorithms

Before docking ligands into a receptor it is often useful and advisable to remove all

irrelevant water molecules from the receptor structure and try to find target-specific

constraints that can later help to guide the docking algorithm to chemically meaningful

optima.

Water placement

Crystal structures of proteins often contain hundreds or even thousands of water

molecules, although only a small number of them is actually relevant for receptor-

ligand docking. Water molecules that are either not bound to the receptor at all or

are bound somewhere far outside of the ligand binding pocket are thus of no interest.

On the other hand, water molecules that bind strongly to the receptor within the lig-

and binding pocket and/or to the (reference) ligand might play a significant role for

establishing receptor-ligand binding.

We thus created an algorithm that searches water molecules within an input protein

structure according to this criterion. Since water molecules found in (most) crystal

structures contain no hydrogens (due to the resolution of the structure), waters are

protonated in a first step. Water molecules that are far apart from all atoms of the

reference ligand (more than 5Å) are discarded. Then, all remaining protonated wa-

ter molecules are iteratively rotationally optimized. In this step, the scoring function

described in Equation 5.1 is used to evaluate the binding of each water molecule to

the receptor and to other molecules. Finally, the binding of each water molecule to

the receptor and to the reference ligand is evaluated using the same scoring function.

All waters that either interact very strongly with the receptor (score < −5) or strongly
with receptor and reference ligand (scores < −2 and < −1.5 resp.) are retained, while

all others are deleted. Also, networks of water molecules (i.e. water molecules that

are bound to each other) are retained if this condition is fulfilled for at least one their

members.
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Residue-specific interaction-constraints

Often the interaction of ligands with specific residues of the receptor is vital for its

binding and the function of the enzyme. We therefore allow to set residue-specific

constraints that can be used during docking in order to enhance its specificity. Those

constraints can either be defined manually or created automatically. In any case, any

such constraint contains information about the residues with which a strong interac-

tion should take place, the minimal desired strength of this interaction (d), types of

interactions (vdW, electrostatic, etc., according to Equation 5.1) to be considered, and

a penalty factor (ƒ ). Thus, for each of those constraints a penalty score p is calculated

for a ligand pose after computing the interaction energy e between the ligand and the

desired residues as follows:

p =







|(e− d)/d| · ƒ if e > d,

0 else.
(5.3)

To automatically find residue-specific constraints, we evaluate the binding of the refer-

ence ligand observed in the crystal structure to each of the residues of the protein. For

each residue for which the sum of vdW, electrostatic and hydrogen bond interactions

is larger than a predefined threshold (1.5), a constraint is created. If there are more

than a maximal number of residues (3) that fulfill this criterion, constraints are only

generated for those whose interaction with the reference ligand is strongest.

Pocket description

Another helpful way to enhance the specificity of docking is to describe the ligand

binding pocket of the protein of interest. Our pocket descriptions are simple rectan-

gular cuboids plus information about the number or fraction of ligand atoms (0) that

should be located inside this area and a penalty factor (ƒ ). For each ligand pose, a

penalty score p is calculated after computing , the fraction (respectively the number)

of ligand atoms inside the pocket description, as follows:

p =







(0 − ) · ƒ if  < 0,

0 else.
(5.4)

This pocket description can be created manually or automatically. In the latter case, we

use a sphere based approach. Non-clashing spheres that have a significant number

of neighboring receptor atoms, i.e. that are buried within a pocket, are placed onto

the receptor surface. These spheres are then sorted ascendingly according to their

distance to the geometrical center of the reference ligand. Starting with the sphere

nearest the center, spheres are marked as part of the binding pocket if they are nearer

than 1.5Å to least one sphere that has already been selected. A cuboid is then placed
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5 Receptor-Ligand Docking for structure based drug design: IMGDock

around all selected spheres, resulting in a pocket description constraint as described

above.

5.2.3 Docking algorithm

Our docking algorithm uses the scoring function described in Equation 5.1 and an iter-

ative multi-greedy approach to dock compounds into the binding pocket of a receptor.

In the first step, the ligand to be docked is moved into the binding pocket and (option-

ally) superimposed with the reference ligand. Then, rotatable bonds of the ligand are

detected. As rotatable, we regard all bonds that have an order of one, are not part of

a ring and are not a peptide-bond.

During subsequent docking steps, each pose will be represented by a compact form of

2n+3 angles of rotation. For each rotational bond, two degrees of freedom are added,

since we allow to independently rotate both sides of the molecule that are connected

by this bond around the latter. In addition to this, there are three degrees of freedom

for global rotation of the entire ligand. The use of two degrees of freedom per bond,

as opposed to one degree, allows to always optimize the binding of a compound while

keeping its more strongly bound part (e.g., its headgroup) in place, instead of testing

only poses that force its removal from the current binding position.

During docking, already created poses, represented in the above-mentioned way, are

stored together with their binding free energy estimate in a list (pose list). Starting

with the pose that was obtained by moving the ligand into the active site, each angle

of rotation of each entry in the pose list is permuted with a predefined level of dis-

cretizaton (e.g., 10◦). In each of these permutation steps, the pose as defined by the

compact representation of the entry of the pose list is applied to the ligand and the

scoring function is used to obtain an estimate of the binding free energy. After this

has been done for all entries of the pose list for one angle of rotation, the k best poses

(where k is the multi-greedy step-size; e.g. 100) found so far are retained, constituting

the pose list for the next step of the multi-greedy optimization, i.e. the permutation of

the next angle of rotation.

When all angles of rotation have been permutated in this way, one iterative application

of the multi-greedy minimization is finished. If the score for the best obtained pose is

not better than the one obtained during the last iteration (if any), the entire docking

algorithm will abort here. If, on the other hand, an enhancement was achieved, the

best ligand pose will be translationally optimized and the multi-greedy heuristic will

be started again with the optimized pose. In any case, if the maximal number of

iterations have been performed, the algorithm stops and returns the best obtained

pose. A schematic overview of IMGDock is shown in Figure 5.1.
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Figure 5.1: Schematic overview of IMGDock.

5.3 Results & Discussion

5.3.1 Scoring function

We evaluate our scoring function on two data sets, the one used for AIScore [56], and

PDBbind [57]. The former consists of 101 receptor-ligand complexes and was used to

develop our scoring function. PDBbind currently contains about 1,300 co-crystal struc-

tures, i.e. all complexes available in the PDB which were deemed to have sufficient

quality and for which binding free energies are known. The scoring function is succes-

sively applied to all receptor-ligand complexes without any modification of receptor or

ligand conformations in order to be able to the evaluate the scoring function without

any docking. Complexes in which clashes between heavy atoms of receptor and ligand

are detected, are excluded from the following correlation analysis.

The scores obtained by our scoring function for the AIScore set are shown in Figure 5.2a

in comparison to experimentally determined binding free energies. On this data set,

we achieve a correlation of 0.70. This result is better than the one obtained by Raub

et al. with a version of the FlexX scoring function that was specially optimized on this

data (correlation of 0.65) and lower than the correlation of AIScore (0.87).

However, since all these scoring functions have been optimized on the AIScore data

set, we use the much larger PDBbind set in order to get a better estimate of the useful-

ness of the scoring function for predicting binding free energies. On the PDBbind data
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5 Receptor-Ligand Docking for structure based drug design: IMGDock

set, our scoring function achieves a correlation of 0.48, as shown in Figure 5.2b. This is

better than the correlation obtained by Raub et al. [56] with both the optimized Version

of FlexScore and AIScore (0.43 and 0.46, respectively). Note however, that the differ-

ence to the publicly available version of FlexScore (i.e. the one not optimized by Raub

et al [56]) is even greater, since it attained a correlation of only 0.17. Furthermore, a

study by Wang et al. [58] found that only four out of 14 scoring functions achieved a

correlation at least as high as the one obtained by our function on PDBbind.

5.3.2 Docking

In order to evaluate our docking algorithm, we use the "Directory of Useful Decoys"

(DUD) [51], an established benchmark data set for molecular receptor-ligand docking.

DUD contains 40 subsets, each of which consists of a co-crystal structure (with one

exemption of an homology model), a set of compounds known to bind to the respective

target, and a set of decoys. While Huang et al. collected the known binders from

various published experimental results, decoys were generated in silico in such a way

that they have "similar physical properties but dissimilar topology" to the ligands.

To assess how well our scoring function and our docking algorithm agree with experi-

mentally observed ligand poses, we dock all ligands appearing in the co-crystal struc-

tures of DUD into their respective target. We then calculate the root-mean-square

deviation (RMSD) between the pose generated by our docking and the crystal struc-

ture ligand pose. The distribution of RMSD values is shown in Figure 5.3. Hence, for

60% of the targets, the resulting RMSD is smaller than 1.1Å, showing that reference

ligand binding-poses can be approximated suitably by our approach.

Although the evaluation of RMSDs of docked reference ligands is a first step towards

this end, it alone does that suffice to asses the quality of a docking approach. Po-

tential problems like bad placement of known binders not appearing in the co-crystal

structure or very indiscriminate docking, resulting in high scores for non-binders, could

a) b)

Figure 5.2: Correlation between experimentally determined binding free energies and
scores computed by our scoring function for the AIScore [56] (left) and
PDBbind [57] (right) data sets.
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in Å

Figure 5.3: RMSDs for docking the reference ligand of all 40 DUD targets.

not be detected by docking of reference ligands. Since both, known ligands and de-

coys can be chemically very different to the reference ligand, this problem is actually

profoundly aggravated.

Therefore, we evaluate our docking algorithm using the ligand and decoy sets for all

40 DUD targets. Molecules of both subsets are of course chemically different from the

reference ligand, so that a more realistic estimate of the usefulness of docking than

by simple examination of the RMSD of the docked reference ligand can be obtained.

However, please note that the similarity between ligand molecules as well as between

ligands and decoys unfortunately varies greatly between DUD data sets for different

targets, complicating comparative analysis.

In a first step, water molecules observed in the PDB structure of the respective target

that are tightly bound to the receptor are detected as described above and retained,

while all other water molecules are removed. Then, residue-specific interaction-constraints

and a binding-pocket description are automatically generated according to the above

explanations. A score-grid is then precalculated for the target and the ligands and

decoys supplied by DUD are docked into the pocket.

a)

IMGDock

b)

Figure 5.4: Analysis of AUCs for all 40 DUD targets: distribution of AUCs of IMGDock
(left) and average AUC of IMGDock in comparison to other approches [59]
(right).
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5 Receptor-Ligand Docking for structure based drug design: IMGDock

In order to assess the results, we compute a receiver operating characteristic (ROC)

curve for each target, which shows the fraction of decoys in comparison to the fraction

of ligands that are observed within the docking result with a score smaller than a

varying threshold. For 57.5% of all data sets, an AUC larger than or equal to 0.6 could

be achieved (see Figure 5.4a), showing that in the majority of all examined cases the

applied docking resulted in good separation of binders and decoys. ROC plots for all

40 DUD targets are furthermore shown in the Appendix in Figure A1.

For six of the DUD targets, our approach was observed to strongly outperform all other

algorithms evaluated by Cross et al. [59]. The ROC plots for these data sets are in

Figure 5.5. Therein, note especially the very high enrichments at the top of the rank-

lists (e.g. for 0-10% of selected decoys).

Comparison of the average AUC over all 40 DUD data sets by our approach and several

well-known docking algorithms (Figure 5.4b) shows that even on average our approach

performs very competitively and also outperforms several other algorithms. The aver-

age AUC of 0.623 achieved by our approach is significantly higher than the results for

FlexX (0.61) and DOCK (0.55) obtained by Cross et al. [59].

These results, obtained in a completely automatic fashion (i.e. without any manual

tuning), together with the high speed of docking (approx. 30 sec for averaged-sized

ligands with 15 rotatable bonds) and its availability free of charge make IMGDock

very interesting for high-throughput screening applications. The easy way to manually

define additional scoring constraints furthermore points out the usefulness of IMGDock

for even more complicated task, e.g. during lead optimization.

However, on average Glide performs better (average AUC of 0.72) than our approach,

although in eleven cases (DUD data sets for ACE, AChE, ADA, AmpC, GPB, HSP90, InhA,

NA, PR, SAHH, TK) our approach yielded significantly better results. In order to thus

enhance the scores obtained by docking, we developed TaGRes and also applied it

the docking results of the DUD data sets. Please see the next Chapter for a detailed

description of TaGRes.
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Figure 5.5: ROC plots for selected DUD data sets. In all of those cases, IMGDock signif-
icantly outperforms all other approaches evaluated by Cross et al. [59].
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6 Receptor-Ligand Rescoring for
structure based drug design: TaGRes

6.1 Introduction

As explained in Section 3.3, there exist several different strategies for rescoring recep-

tor-ligand docking results. However, no target-specific rescoring can be done by most

of the existing approaches. For different protein target families, the importance of

different contributions to the overall binding free energy might vary significantly and,

even more important, it may depend on the three-dimensional location of the inter-

actions between receptor and ligand. Therefore, for example, for one target the exis-

tence of hydrogen bonds and their strengths in exactly defined regions may be impor-

tant, while for another target the electrostatic interactions between charged groups of

ligand and receptor play a predominant role. Furthermore, inclusion of available exper-

imental binding free measurements for improvement of rescoring is also not possible

with most of the established procedures.

We therefore developed Target-Specific Grid-Based Rescoring (TaGRes), which is pre-

sented in this Chapter. TaGRes allows to rescore docking results based on their three-

dimensional pose in the binding pocket and employs experimentally determined bind-

ing free energy measurements for the respective target. Using docking results ob-

tained with IMGDock, we will show that TaGRes can strongly enhance the binding free

energy approximations (scores), leading to better separation of active and inactive

ligand candidates and higher enrichment.

TaGRes has furthermore been integrated into our Computer-Aided Drug-Design Suite

(CADDSuite) and thus into the workflow-system Galaxy [52]. This allows to easily

and efficiently use TaGRes in conjunction with all other tools supplied by CADDSuite.

Rescoring by use of TaGRes can thus, if desired, be started directly from a web browser

and submitted to a compute cluster, cloud, or grid. Furthermore, even huge rescoring

workflows can be easily created, used and shared with other users. A more detailed

description of CADDSuite will be given in Chapter 7.

TaGRes is, as part of CADDSuite, licensed under the GPL and are available from http://

www.ball-project.org/caddsuite.
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6 Receptor-Ligand Rescoring for structure based drug design: TaGRes

6.2 Methods

6.2.1 TaGRes model generation

After having docked compounds into the binding pocket of the protein of interest,

rescoring approaches can help to enhance the obtained estimate of the binding free

energy. If experimental binding free energy measurements for the respective target

are available, a training-based rescoring, which would be able to make use of this data,

could be employed.

To this end, we developed Target-Specific Grid-Based Rescoring (TaGRes). As input we

need a training data set consisting of compound poses in the binding-pocket of the

target of interest and experimentally determined binding free energies for those com-

pounds. Poses generated by any docking approach can be used for this. If, on the other

hand, receptor-ligand co-crystal structures are available, they should be preferred over

docking results.

TaGRes scores each input ligand pose with the function described in Equation 5.1 and

generates an interaction grid for which each cell contains the sum over the score

contributions of all ligand atoms located inside this cell (TaGRes-3D). By default, the

binding pocket is therefore discretized into grid cells with 3Å side length. Ligands that

could not be successfully placed by the docking approach into the binding pocket with-

out any heavy atom clashes are skipped. Molecules for which the input file contains

no or an invalid binding free energy (e.g., one larger than zero) are ignored as well and

do not contribute to the training data.

The procedure described above is repeated for each ligand and each resulting inter-

action grid is linearized to one interaction vector. The interaction vectors of all ligands

are then joined into one interaction matrix. The latter, together with the experimen-

tally determined binding free energies, is then used to find a regression model that

can suitably model the latter. Therefore, all linear as well as non-linear regression

techniques shown in Figure 4.1 are automatically evaluated on the given training data

set. For each of those regression approaches, all model and kernel parameters (if

any) are automatically optimized, feature selection is performed and the quality of the

model obtained this way is evaluated using a nested cross-validation procedure. The

nested evaluation in each step splits the given training data into two subsets covering

approximately equal binding free energy range, executes all the previously mentioned

steps with use of the first subset and then predicts the binding free energies of the

second subset. This way, we are able to obtain an estimate of how useful each model

could be for subsequent rescoring of a different data set. However, this estimate relies

on the assumption that the latter will not be chemically completely dissimilar to the

training set (please see Section 6.3 for a discussion of this).

After this evaluation has been done for each regression approach, the one with the best

nested cross validation quality will be selected. If, however, all regression approaches

achieved only a very low quality (by default a nested Q2 below 0.2), then all models

are rejected and the rescoring is aborted. This check is necessary in order to try to
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fetch next docked ligand

combine all interac�on

calculate interac�on

Figure 6.1: Schematic overview of the TaGRes model generation process.
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prevent creation of a rescoring model that will result in deterioration of the binding

free energy estimates when applied to a docking output.

For those cases in which TaGRes-3D could not find a suitable model, we developed

an extension (TaGRes-4D) that allows for independent modeling of all scoring terms.

Thus, TaGRes-4D generates the interaction grid for each given ligand pose in such a

way that each cell contains the sum over the score contributions of one scoring term

(e.g., vdW, ES) of all atoms located inside this cell. In this way, one interaction grid is

created for each scoring term. TaGRes-4D therefore can be beneficial if a specific type

of molecular interaction (in specific spatial areas of the binding pocket) is important

for strong receptor-ligand binding.

An overview of the training process of TaGRes, as described above, in shown in Fig-

ure 6.1.

6.2.2 Rescoring of docking results

After a TaGRes model has been generated as described above, it can be used to predict

the binding free energies of compounds based on their three-dimensional pose in the

binding pocket.

Therefore, compounds to be rescored should first of all be docked into the binding

pocket of same molecular structure that was used be generate the TaGRes model.

TaGRes then fetches each docked compound from an input file and applies the scoring

function described in Equation 5.1 to it. The interaction scores of all ligand atoms

within each discretized area of space are then summed up, yielding an interaction grid

grid, which is afterwards linearized to an interaction vector. Compounds whose pose

generated by docking contains heavy atom clashes or was assigned a very bad score

due to nonfulfillment of scoring constraints are skipped. This way, the number of false

positives (i.e. non-binders/decoys obtaining a very good score) created by TaGRes is

reduced, and the specificity of the latter enhanced.

The previously created TaGRes model is then applied to the interaction vector. In

case of linear regression models, whose training results in coefficient for each grid

cell, this is achieved by a simple vector product of interaction vector and coefficient

vector. Non-linear models, on the other hand, first apply a kernel function to the

interaction vector. This function evaluates the similarity of the interaction vector of the

compound to be rescored to the interaction vector of each compound of the training

data set and thus transforms the former into kernel-space. After this, a vector product

of transformation and training result yields an estimate of the binding free energy of

the molecule.

Figure 6.2 shows a schematic of the process used by TaGRes to rescore molecules.
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Figure 6.2: Schematic overview of the process used by TaGRes to rescore molecules.
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6.3 Results & Discussion

For each DUD target for which data could be obtained from BindingDB [60], TaGRes

is employed in order to try to enhance the docking results by rescoring. Therefore,

for each of those targets, the BindingDB set, containing compounds that bind to the

respective target and their experimentally determined binding free energies, is down-

loaded and a set of decoys is generated. The latter is obtained by searching the Zinc

data base [61] for compounds that exhibit a moderate similarity to the molecules in

the BindingDB set. Hence, Zinc compounds that have a maximal Tanimoto coefficient,

calculated on binary pathway-based fingerprints, between 0.35 and 0.55 to molecules

of the BindingDB set are chosen. BindingDB set and decoy set are then separately

docked into the receptor and the top-scored 25% of both docking results together

make up the training data set for TagRes.

Note that this use of decoys is important here, since we ultimately want to rescore

DUD docking results with the created TaGRes models, i.e. we want to achieve a better

separation between binders and non-binders (decoys), whereas BindingDB data sets

contain only binders. On the other hand, if the final goal is to obtain a more accurate

binding free energy estimate of only binders, as is the case for example during lead

optimization, generation of the decoy data set should be skipped.

Since at least a moderate similarity between training and rescoring data set should

be present in order for TaGRes to be able to do a helpful rescoring, we evaluate the

similarity between those two sets for each target using the median of all pairwise Tan-

imoto coefficients on binary, pathway-based fingerprints. DUD targets for which the

obtained similarity value is smaller than 0.5 are skipped, i.e. no rescoring is performed

on them.

The training data set is then used to train a TaGRes-3D model. If this fails because

no model with significant predictive quality could be found, a TaGRes-4D model is

generated where possible.

If a model with significant predictive quality (as evaluated automatically by nested

cross-validation) is returned, it is used to rescore the docking results for the respective

DUD data set. In those cases were no such model could be generated, rescoring

cannot be done. However, by use of this quality check, we prevent rescoring that

would most likely result in a deterioration of binding free energy estimates (compared

to the scores assigned by the docking algorithm).

The performance of TaGRes is evaluated using the AUC criterion, whose value is then

compared to the one for the docking result for the same target. As Figure 6.3 shows,

in six out of eight cases, a significant to large improvement of AUC was achieved by

use of TaGRes. In only two cases, a slight decrease in AUC was observed. Figure 6.4

furthermore visualized the huge differences in quality between docking and rescoring

results using ROC curves.

This shows that TaGRes can be very helpful for rescoring docking results. The en-

hanced binding free energy estimates obtained this way allow a better separation of
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binders and non-binders (as shown above), which may therefore result in higher hit

rates in lead discovery projects. Experimental binding free energy measurements for

the target of interest must be available for TaGRes to be applicable, but on the other

hand TaGRes enables integration of this experimental knowledge, something which is

not possible with other rescoring approaches.

Figure 6.3: AUCs of rescoring and docking results in comparison.
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7 Consolidation of approaches into
modular, workflow-enabled package:
CADDSuite

7.1 Introduction

Computer-aided drug design, as explained in Chapter 3, aims to speed up lead dis-

covery or lead optimization projects that make up the first steps of the development

of new drugs. In essence, this is done by trying to predict the binding free energy

of chemical compounds to the target of interest (e.g., an enzyme) using various in

silico approaches. This way, a usually huge database of candidate compounds can

be screened for a set of first hits. Depending on the available data, either ligand- or

structure-based approaches, or a combination of both, are possible.

In a ligand-based approach, we are given only a set of active compounds and their

experimentally determined binding free energies and maybe also a set of non-active

compounds. We can then generate quantitative structure-activity relationship (QSAR)

models that employ machine learning approaches, e.g. regression techniques, to de-

scribe the compounds’ biological activities by a function of their properties, particu-

larly their topologies [62–64]. Using these models we can screen a database for new

putatively active compounds. For a more detailed introduction to ligand-based drug

design, please refer to Section 3.2 and for a description of our QSAR software, see

Chapter 4.

For a structure-based approach, on the other hand, we need obtain the three-dimen-

sional structure of the receptor of interest, e.g., by protein crystallography or homology

modeling. Thus, we can make use of molecular receptor-ligand docking, where sophis-

ticated search-algorithms try to find optimal placements of the compounds within the

binding pocket of a receptor. The interaction energy of the generated poses is eval-

uated using a scoring function that needs to be as fast as possible, since it is used

very many times during each docking run, and consequently needs to be a simplified

approximation. To get more accurate estimates of the binding free energy, rescoring

methods are often used which try to achieve this by reevaluating the pose generated

by docking in a different, usually computationally more complex, way [26, 27]. For

more details about structure-based drug design in general, see Section 3.3 and for

descriptions of our docking and rescoring algorithms, please refer to Chapters 5 and

6, respectively.
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However, utilizing computer-aided drug design approaches is far from trivial. Each of

them requires a number of pre- and postprocessing steps. Usually, input data needs

to be generated in some way, for example by exporting compounds from a database

or by creation of combinatorial libraries. Then, data commonly have to be prepared

before they can be used by QSAR, docking or rescoring algorithms. This includes for

example creation of three-dimensional coordinates for compounds and protonation of

the receptor. In a next step, compounds as well as the receptor should be checked for

chemical errors or dubiousness. Furthermore, the chosen modeling technique (QSAR,

docking or rescoring) might require additional, specific preparation tasks (like those

explained in the following section). Last but not least, it is often desirable to analyze

the final output, in order to show the quality of a generated model or to visualize the

distribution of compounds’ properties or scores, or to convert it to different file formats

or import into a database. On top of this plethora of tools, it is often prudent to combine

QSAR, docking and rescoring approaches within one drug-design pipeline.

All this illustrates the need for a framework that provides modular tools for all the

aforementioned tasks, makes them useable in a simple and consistent manner, and

allows to easily create and reuse workflows employing those tools. Moreover, the

often computationally demanding modeling steps and huge data sets make support

for easily using those programs on a compute cluster or cloud very desirable.

Still, all software packages for computer-aided drug design we are aware of do not

fulfill at least some of those specifications: Most of them provide tools for only a very

small subset of the tasks mentioned above, thereby leading to the problem of having

to use many different software packages in conjunction. Examples for this are FlexX

[19] or AutoDock [21], which provide tools for docking but not for structure prepara-

tion, QSAR, rescoring or analysis of results. Then, there are some system like Accelrys’

Pipeline Pilot [65] or Schrödingers’ KNIME extension [66], that offer some more func-

tionality but are commerical products, thus not being available free of charge, and

furthermore often depend on third party tools to fulfill various tasks. Availability as

only commercial products also means that, apart from programs in practice not being

available to many researches, deployment of those tools on compute clusters or clouds

is, if at all supported, practically impossible, since most times a separate license for

each and every parallel process would have to be bought. Last but not least, most of

the available software packages offer no integration into any workflow system, making

creation of huge pipelines hard and reducing reproducibility.

Even using several different software packages in conjunction as a fall-back does not

solve these problems and is tedious and error-prone: Many different software packages

would have to be bought, installed, and maintained. The outputs of different tools are

often incompatible with each other or require many conversions, usually involving loss

of information. Furthermore, tools often have to be used in very different ways, confus-

ing the user and complicating application of computer-aided drug design techniques.

Hence, if tools are either not available or not easily usable in conjunction, users, at

least less experienced ones, will often skip steps that would however be prudent or

even vital to use. Thus, compounds or receptors might not be checked for errors,
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only a QSAR analysis is performed, without successive docking (or vice versa), selec-

tion of important features during QSAR is skipped or generation of important docking

constraints is not done and so forth.

Here, we present CADDSuite, a flexible framework that provides tools for all commonly

required steps and can therefore make solving computer-aided drug design tasks much

easier. It contains tools for data retrieval, preparation, checking receptor and ligand

files, import of compounds into a database and own algorithms for QSAR, docking and

rescoring. All tools can be used in a simple and consistent way, making it easy to use

them in combination in order to solve all of the above mentioned tasks. CADDSuite

furthermore is available free of charge, licensed under the GNU GPL. In order to im-

prove its ease of use even more, CADDSuite has been integrated into the workflow

system Galaxy [67, 52]. This way, a graphical interface can be used to run individual

jobs or generate or execute workflows directly in a web browser, without any need for

software installations by the end user. Furthermore, it also adds support for using a

compute cluster, grid or cloud, so that jobs can be run and tracked on those. This, to-

gether with the point that all our tools use a modular concept and are available free of

charge, eliminating the need for separate licenses for each process, makes CADDSuite

optimally suited for high-performance computing (HPC) in the field of computer-aided

drug design.

7.2 Methods

The tools provided by our package cover most areas of application of computed-

aided drug design. There are tools for obtaining and preprocessing input from vari-

ous sources, for quantitative structure-activity relationship (QSAR) modeling, receptor-

ligand docking and rescoring and postprocessing and analysis of results. See Figure 7.1

for an overview over all packages. All of these tools have a similar interface and can

operate on standard chemical structure files, thus allowing to easily solve complex

tasks by using them in conjunction. In the following we will describe each package

and explain its benefit for computer-aided drug design.

7.2.1 Data input

tool name description
File upload import molecules, receptors
CombiLibGenerator generate combinatorial library
PDBDownload retrieve pdb-file from pdb.org
DBExporter fetch molecules from database

Table 7.1: Names and descriptions for tools of the Input module.

As a first step for computer-aided drug design, import of input data is necessary. We

provide several tools in order to facilitate this. Aside from programs for uploading files

and downloading files from publicly available web servers, combinatorial libraries can
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Figure 7.1: Overview over all provided packages.

be generated by enumeration of all possible combinations of molecule scaffolds and

moieties, where the latter two are specified by the user using SMARTS expressions.

Furthermore, we created a database schema which allows to store molecules in a

binary form and automatically creates, saves and tracks all additional data that is

required for efficient storing and searching of molecules. After a such a database

has been created (see below for DBImporter), compounds can be filtered from this

database using a wide range of criteria, for example by specification of canonical

smiles, logP, molecular weight, SMARTS [68] expressions, or by similarity to given

query molecules.

7.2.2 Preparation

tool name description
PDBCutter separate ligand and receptor
ProteinProtonator protonate protein
Ligand3DGenerator generate 3D conformations
BindingDBCleaner fix data from bindingdb.org
EvenSplit generate splits w/ equal property range
PropertyModifier modify property tags

Table 7.2: Names and descriptions for tools of the Preparation module.

Although the previous tool package provides tools for obtaining input files, in the field

of computed-aided drug design those input files often require several preprocessing

steps before they can be used by the core algorithms of interest (e.g., QSAR, docking
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or rescoring). Performing all steps manually is often tedious, time consuming, error-

prone and often leads to irreproducible results.

Protein co-crystal structure files (as obtained from, e.g., the Protein Data Bank [69])

need to be split into receptor and ligand files (PDBCutter) and the receptor structure

needs to be protonated (ProteinProtonator), since in most cases hydrogens are not de-

tected by x-ray crystallography due to a resolution that is too low for this. If compounds

that are not observed in the co-crystal structure are to be docked, the assignment of

initial 3D coordinates for those compounds is necessary as a starting point for docking

(Ligand3DGenerator). In case of QSAR analysis, 3D conformations are also required

for the input molecules since several 3D features will be calculated by the respective

tools (see below for QSAR tools). Furthermore, it is often helpful to be able to quickly

rename or add molecule property tags, which could store information about e.g. iden-

tifiers, scores, experimental results (PropertyModifier). If the user wants to validate

or assess his drug design pipeline, splitting of the input data into subsets that cover

equal property (e.g. binding free energy) range is often desirable (EvenSplit).

7.2.3 Checks

tool name description
ProteinCheck evaluate protein quality
LigCheck chemical sanity check for ligands

Table 7.3: Names and descriptions for tools of the Checks module.

After input files have been obtained and prepared as described above, they could

be used for computed-aided drug design algorithms. However, many molecules in

publicly available sources contain problems, chemical errors, or have dubious quality.

Especially for small molecule files, information about the elements of the molecule’s

atoms are sometimes missing, bonds sometimes have an incorrect length or are miss-

ing altogether, in effect resulting in two disconnected molecules, and hydrogens or

3D coordinates have not been assigned. Those simple but important checks are done

by our tools for ligand files as well as for proteins. For the latter, we also generate

a report in portable document format (PDF) containing information that can help to

assess the quality the protein, like a secondary structure plot, a Ramachandran plot or

visualization of temperature factors.

7.2.4 QSAR

Quantitative structure-activity relationship (QSAR) models allow to predict the binding

free energy of molecules to a given drug target by use of regression techniques if an

appropriate training data set is available. The training data set should therefore con-

tain compounds and information about their experimentally determined binding free

energy. Furthermore, the compounds whose activity is to be predicted need to have

some similarity (with respect to both feature and activity space) to the compounds in
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tool name description
InputReader read molecules and generate features
ModelCreator create a QSAR model
FeatureSelector automatically select features of a QSAR model
Validator evaluate quality of a QSAR model
MolPredictor predict molecule activities with QSAR model
AutoModel automatically find best QSAR model

Table 7.4: Names and descriptions for tools of the QSAR module.

the training data set (although details depend on the employed model). Therefore,

the availability of an appropriate training set can in practice be problematic. However,

if suitable training data is available, QSAR models can be used in a drug discovery

pipeline to quickly and strongly reduce the number of compounds to be considered for

further examination. QSAR predictions are computationally much less expensive than

for example receptor-ligand docking (see next package description), so that even very

large data sets can be processed very quickly this way. An example for this is shown

in the following section.

This module provides all necessary tools to perform fast and efficient QSAR model-

ing. Input can supplied in form of standard chemical structures files and a set of

193 descriptors (see Table A1 in the Appendix) is then automatically created for each

molecule (InputReader). However, input files should be checked for chemical correct-

ness and uniqueness of contained molecules beforehand (see subsection above for

these checks), since the existence of identical molecules would obviously distort the

created models. A variety of different QSAR models can then be created (ModelCre-

ator), relevant features selected (FeatureSelector), QSAR models validated (Model-

Creator) and the activities of molecules predicted (MolPredictor). Using the EvenSplit

tool (Section 7.2.2) to split the input data, nested validation workflows can be created.

Furthermore, AutoModel can be employed to automatically find the most appropriate

QSAR model for a given data set. This tool performs nested validations of all available

model types, including several successive feature selection steps and model and ker-

nel parameter optimizations. For more information about our QSAR software, please

see Chapter 4.

7.2.5 Docking

tool name description
WaterFinder find strongly bound water molecules
SpatialConstraintDefiner define spatial constraint
InteractionConstraintDefiner define interaction constraint
ConstraintsFinder find strongly interacting residues
PocketDetector detect ligand binding pocket
GridBuilder precalculate grids for docking
IMGDock Iterative Multi-Greedy Docking

Table 7.5: Names and descriptions for tools of the Docking package.
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Molecular docking can be used to predict the binding poses and binding free energies

of ligands to a drug target. Although it is computationally more expensive than QSAR

predictions, it allows direct three-dimensional modeling of the interaction between re-

ceptor and ligand. Unsuitable ligand candidates can thus be rejected due to either

a bad binding free energy estimate or a bad binding pose. In order to automate the

latter, the creation of several kinds of constraints if often helpful. These include con-

straints for receptor residues with which a strong interaction should take place (e.g.,

residues in the active site; InteractionConstraintDefiner and ConstraintsFinder) and a

spatial description of the binding pocket (SpatialConstraintDefiner, PocketDetector).

Those constraints also help to enhance docking results since they can be used during

docking, so that they can guide the algorithms towards favorable poses. Furthermore,

important for docking are water molecules. While protein structures often include hun-

dreds of water molecules, in most cases only very few of them (if any) have any effect

on the binding of the ligands to the receptor. Therefore, it is helpful to try to distinguish

water molecules that are strongly bound to the receptor and/or the reference ligand

from unbound ones and use only the former during molecular docking (WaterFinder).

In any case, before a docking is attempted, the receptor structure as well as all com-

pounds that are to be docked should be checked for chemical errors and 3D start

conformations for the latter should have been generated (see description of packages

Checks and Preparation for this).

Our Docking module contains a program (IMGDock) with our own docking approach

as well as tools for automatic search or manual definition of the above mentioned

constraints, detection of strongly bound water molecules and a tool for precalculation

of score-grids to be used during docking. For more detailed information about IMGDock

and our other tools mentioned above, please see Chapter 5.

7.2.6 Rescoring

tool name description
SimpleRescoring use scoring function to rescore
TaGRes-train Target-specific Grid-Rescoring, training
TaGRes Target-specific Grid-Rescoring
AntitargetRescoring rescore w/ respect to antitarget

Table 7.6: Names and descriptions for tools of the Rescoring module.

After compounds have been docked into a target it is often desirable to try to enhance

the estimate of the binding free energy and thereby optimize the specificity of docking

results by use of rescoring.

In our Rescoring module we therefore offer several different rescoring procedures.

One possibility is to reevaluate all poses generated by docking with a scoring function

(which may be similar to the one used during docking). Another way to rescore docking

poses is by statistical analysis of the interaction fields of known binders (TaGRes-train

and TaGRes). For this approach, a set of compounds whose binding free energies to
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the receptor are known is docked into the binding pocket and a regression resulting

in a contribution factor for each discretized area of space of the binding pocket is per-

formed. For more information about TaGRes, please refer to Chapter 6. Furthermore,

an alternative for enhancing the specificity of docking results (but not the correlation

with actual binding free energies) is to compare the score (ts) each compound was

assigned after being docked into the target to the score (s) it got after docking into

an anti-target (AntitargetRescoring). A new score is thus calculated as

nttrget_rescore =







ts+ (ts− s) · p if s < ts,

ts else

where p is a penalty factor (100 by default). Molecules that received a good anti-

target score (indicating strong binding) that is even better than the score obtained on

the target, are penalized, so that the probability of false-positives can be reduced.

7.2.7 Analysis

tool name description
ScoreAnalyzer generate ROC or enrichment plots
SimilarityAnalyzer analyze similarity between two molecule sets
PropertyPlotter plot molecule properties
RMSDCalculator calculate RMSD between conformations

Table 7.7: Names and descriptions for tools of the Analysis module.

After in silico drug design experiments, like those described in the previous sections,

have been performed, it is often desirable to analyze the results and their quality. If ex-

perimental binding free energy measurements or binder/non-binder classifications are

available, generation of receiver operating characteristics (ROC) curves or enrichment

plots, is often helpful (ScoreAnalyzer). While ROC plots allow to analyze the sensitivity

in comparison to the specificity of the applied technique, enrichment plots visualize

the increase in the number of binders between a top-scored subset of a molecules

(e.g., by docking or QSAR) and random sampling. Furthermore, analyzing the simi-

larity between sets of molecules can help to interpret or enhance the performance of

a drug design workflow (SimilarityAnalyzer). This is of course particularly important

for QSAR experiments, where the reliability of binding free energy predictions strongly

depends on the existence of at least a moderate chemical similarity of the molecule

whose activity is to be predicted to compounds in the training data set.

Also included in this module are tools for plotting molecule properties (e.g., scores ob-

tained by docking or QSAR) and calculation or root-mean-square deviations (RMSDs).

The former thus allows to, e.g., visualize the distribution of scores or to plot the cor-

relation between scores and experimentally determined binding free energies. The

calculation of RMSDs on the other hand is interesting if compounds taken from a co-

crystal structure are docked into the binding pocket, so that the deviation of the pose
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generated by docking from the experimentally determined pose can be evaluated.

7.2.8 Converter

tool name description
Converter interconvert molecular file-formats
MolCombine combine molecular files
DockResultMerger merge and sort docking output files
Mol2Picture generate structure diagrams
DBImporter import molecules into data base
VendorFinder search vendors for compounds

Table 7.8: Names and descriptions for tools of the Converter module.

After executing a drug design workflow, converting the output to a format of the user’s

choice or storing results in a database is often necessary. This last package contains all

tools to easily achieve this. Files can be converted between several chemical file for-

mats (Converter), report documents containing structure diagrams for all compounds

in the given data set can be generated (Mol2Picture) and molecule files can be sorted

and filtered according to the scores of contained compounds (DockResultMerger). Fur-

thermore, compounds can be imported into a database (DBImporter). Information

necessary to enable fast searching of molecules in the database, like canonical smiles,

logP, molecular fingerprints, molecular weight and functional group counts are auto-

matically generated for each compound during import and stored in the database. In

addition to this, scores obtained by docking or QSAR analysis will be automatically

saved in the database as well.

7.3 Results & Discussion

7.3.1 Integration into Galaxy

To make the use of all described tools even more convenient, we integrated CADDSuite

into the workflow system Galaxy [52, 67]. It is thus possible for users to start individual

tools (see Figure 7.2), create or execute entire workflows (Figure 7.3) directly and easily

from a web browser, without any need to install any programs on their local computers.

Furthermore, data sets, results and workflows can easily be shared between different

users or exported and downloaded.

This makes combining all CADDSuite tools even easier and the results more repro-

ducible. Galaxy also offers compute cluster and cloud support, so that jobs will auto-

matically be started and monitored on available nodes. This, together with the point

that all our tools use a modular concept and are available free of charge, eliminating

the need for separate licenses for each process, makes the combination of Galaxy

of CADDSuite optimally suited for high-performance computing (HPC) in the field of

computer-aided drug design.
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Figure 7.2: Screenshot of the Galaxy-CADDSuite web-interface.

Figure 7.3: Screenshot of the Galaxy-CADDSuite workflow editor.
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A release of CADDSuite, including the integration into Galaxy, can be obtained from

http://www.ball-project.org/caddsuite.

7.3.2 Carbonic anhydrase II virtual screening workflow

In order to illustrate the usefulness of the CADDSuite, we generate a virtual screening

workflow for the target carbonic anhydrase II in analogy to the well-known pipeline

devised by Klebe et al. [70] and evaluate the quality of its result. As a hypothetical

lead discovery pipeline, the focus here lies on achieving a high enrichment. Thus, the

final output of a helpful pipeline should contain a higher ratio of binders to non-binders

(or decoys) than the input data.

We will now shortly describe the individual steps involved in creating the described

pipeline in order to show which preparation steps are necessary, which modeling pro-

cedures can be used, and which of our tools can be employed to easily solve each of

those assignments. Figure 7.4 shows a schematic overview of this pipeline.

First, we download the data set for carbonic anhydrase II from bindingdb.org [60],

convert the contained IC50 values to binding free energies and remove compounds

without annotated activity data (BindingDBCleaner). The resulting set of compounds

is filtered according to SMARTS expressions defined by Klebe et al. [70]. All compounds

that match at least one of those expression are selected, while all others are rejected

(MolFilter). This set of molecules will serve as binders for our pipeline and is then

divided into two subsets (EvenSplit); one will be used for training a QSAR model (see

below) and one will be used as part the prediction data set, i.e. the one containing the

compounds whose activities are to be predicted by our pipeline.

Next, two sets of decoys are generated. One of those sets (training decoys) will be

used during training and the other (prediction decoys) as part of the prediction set.

Figure 7.4: Schematic overview of the created virtual screening pipeline for carbonic
anhydrase II. The number of binders (b) and non-binders (nb) are indicated
for the output of each step.

87

http://www.ball-project.org/caddsuite


7 Consolidation of approaches into modular, workflow-enabled package: CADDSuite

Training decoys are obtained by similarity filtering of the ZINC [61] data base (DBEx-

porter). Compounds that have a low to medium topological similarity to the binders are

selected. Prediction decoys are found by filtering the ZINC data base for the SMARTS

expressions defined by Klebe et al. [70]. We hereby assume that all compounds that

match one of those expressions but were not part of the BindingDB data set are non-

binders.

Subsequently, the training data set is created by combining the training decoys with

the training binders and the prediction set by combination of prediction binders with

prediction decoys (MolCombine).

A QSAR model is then generated by first reading the training data and generating

features for it (InputReader), creating an initial model (ModelCreator) and applying

feature selection techniques to it (FeatureSelector). The resulting final QSAR model is

then used to predict the binding free energies of the compounds in the prediction data

set.

The top 10% of compounds with respect to the predicted binding free energy are

then filtered, all other molecules are discarded as likely non-binders. The resulting set

contains approximately 1.2% binders (987/82,279 molecules), which in comparison to

the 0.125% binders (1035/831,630 molecules) in the input data set is an enrichment

by a factor of 9.6.

This reduced set is then be docked into the binding pocket of carbonic anhydrase II

in order to enhance the enrichment even more. Therefore, the crystal structure for

carbonic anhydrase II is downloaded from the Protein Data Bank [69] and prepared

(PDBCutter, ProteinProtonator). Three-dimensional coordinates are generated for all
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order to find just one carbonic anhydrase II inhibitor: random sampling in
comparison to the output of QSAR analysis alone and QSAR combined with
IMGDock (as explained in text).
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compounds to be docked (Ligand3DGenerator) and a spatial constraint for use during

docking is created using the available reference ligand (SpatialConstraintDefiner). All

compounds are then docked into the binding-pocket by IMGDock and afterwards sorted

ascendingly according to their assigned score (DockResultMerger). The top-scoring

0.01%, i.e. 80, molecules are filtered and make up the final result of our pipeline.

Analysis of this final output shows that it contains seven molecules known to inhibit

carbonic anhydrase II. The resulting inhibitor-concentration of 8.75% (7/80 molecules)

is thus equal to a total enrichment factor of 70. Thus, when, as part of a drug dis-

covery project, a set of several hundred randomly chosen molecules would have been

selected for experimental testing, most likely none of them would have turned out

to inhibit carbonic anhydrase II. However, if the set of 80 molecules proposed by our

pipeline were tested, seven inhibitors would have been found. Figure 7.5 furthermore

visualizes the obtained enrichment.

We hope that this example illustrates the usefulness of CADDSuite and its contained

tools. Note however, that no manual modification of either the target structure nor

the pipeline setup was done. By specification of specific constraints (as explained in

Section 5.2.2) and manual examination or correction of the target structure, results

can often be improved even more.

89





8 Application: Virtual screening for
biofilm-formation inhibitors

8.1 Introduction

Biofilm-mediated infections are a huge and common medical problem, leading to re-

pulsion of medical implants, chronic infections and even death. Reasons for this, to be

found in the biological function of such biofilms, have been explained in Section 2.4. In

this chapter, we describe our work focused on searching inhibitors for S. epidermidis

and S. aureus-mediated biofilm formation with the help of computer-aided drug de-

sign, including the methods presented in previous Chapters, and also present the hits

that we found.

The chosen molecular target for inhibiting biofilm formation is Intercellular Adhesion

A (IcaA). Its advantages as molecular target for drug discovery (as already mentioned

in Section 2.4) are its lack of orthologues in humans, its already published mode of

enzymatic action and the point that is has been shown to be essential for biofilm

formation in staphylococci. However, no crystal structure of IcaA exists yet, which is

of course a significant disadvantage for computer-aided drug design.

The only orthologue with known enzymatic function for which a crystal structure exists

is SpsA, a protein relevant for spore-coat formation in B. subtilis. The substrate of IcaA

and SpsA is identical (UDP-N-acetylglucosamine) and the function of both enzymes is

the polymerization of glucosamine. Only a small difference exists in the exact way

in which this polymerization is executed (β-1,6 connections created by IcaA, β-1,4 by

SpsA). The sequence identity between IcaA and SpsA is rather low at 23%. Neverthe-

less, the crystal structure of SpsA does contain the UDP moiety of the substrate (which

can be used as reference ligand during docking) in a relatively deep pocket, so that it

is reasonable to assume that at least the UDP binding area is well conserved between

SpsA and IcaA. Furthermore, there is a crystal structure of an unclassified protein in

the Protein Data Bank (PDB identifier: 3BCV), which shows the same level of sequence

identity to IcaA as SpsA does. Thus, the only way to immediately obtain a structure

(model) of IcaA is to use homology modeling, for which the SpsA and 3BCV can serve

as templates. This will be detailed in the next section.

The most likely way of delivery for any future biofilm inhibitors would be the coating

of medical devices or implants. In this way, the hypothetical drug would be located

in their target area (the surface of the implant or medical device) and would inhibit

biofilm establishment by over time being slowly released from the coating. Thus, com-

pounds’ theoretical ability to reach target areas inside the human body are mostly
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irrelevant, as are potential deactivations of molecules by metabolism that take place

before the former can act as inhibitors (although metabolites might in principle still

show toxic or other side-effects). For this reason, no predictions of absorption, distri-

bution, metabolism, and excretion (ADME) are attempted. Toxicity on the other hand is

very hard to predict, especially for arbitrary sets of molecules that do not necessarily

show significant similarity to available training sets containing data about experimen-

tally observed toxicity. Furthermore, the focus of this project is on finding leads for

biofilm inhibitors, which, as explained in Section 2.1.4, can in a later step be opti-

mized with respect to toxicity and other properties. Therefore, prediction of toxicity

was judged to be unrealistic and not carried out.

The main goal of this project, as mentioned, is finding leads for biofilm formation

inhibitors for S. epidermidis and S. aureus. The strategy we use for this employs

homology modeling, computer-aided drug design, and experimental verification of hits

by biofilm formation assays. An overview of the entire pipeline is given in Figure 8.1.

Figure 8.1: Schematic overview of our computational and experimental work towards
inhibitors for IcaA.
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8.2 Homology Modeling

The individual steps will be covered in more detail in the next sections. This chapter

will also highlight several promising inhibitor candidates that have been found and

experimentally validated by the pipeline described in the following sections.

A variety of CADDSuite tools (or their predecessors) are used for this project. Among

them are DBImporter, DBExporter, VendorFinder, ProteinProtonator, LigandFileSpli-

iter, Ligand3DGenerator, ProteinCheck, LigCheck, GridBuilder, IMGDock, DockResult-

Merger, Converter and MolDepict. Those tools cover most modules offers by CADD-

Suite; the only modules not used are the ones for QSAR and Rescoring, which is only

due to the lack of experimental binding free energy measurements for IcaA. If such

measurements can be conducted in the future, use of our QSAR modeling and, partic-

ularly, TaGRes, might be highly interesting and helpful to find molecules with higher

binding affinities than the hits described in this chapter. Hence, the applicability of a

lot of CADDSuite tools to this project, together with the results, i.e. the hits that are

found, also nicely depicts the usefulness of CADDSuite for drug design projects.

8.2 Homology Modeling

In a first step, homology models are to be built for IcaA. An important requirement for

this is a good multiple alignment of IcaA and the two chosen template proteins, SpsA

and 3BCV.

Since separate homologymodels are to be generated for the two Staphylococci strains,

this multiple alignment is generated for the sequence of SpsA, 3BCV and the sequence

of IcaA of S. epidermidis and S. aureus by use of the program ClustalW [71] (Figure 8.2).

Problematic hereby hereby is the low sequence identity between SpsA and IcaA (23%),

and the point that the sequence of IcaA is much longer than the one of SpsA, leading

to large fractions of IcaA that do not show any homology do SpsA (e.g., amino acids

204-251 in Figure 8.2). Nevertheless, the UPD binding-pocket (amino acids 47-204

in Figure 8.2) shows significantly stronger conservation than the overall sequence, so

that homology models should contain reasonable reliability for this area.

The alignment, together with the crystal structure of SpsA, was then used to build

homology models, one for IcaA of S. epidermidis and one for IcaA of S. aureus, by use

of the program MODELLER [72]. A rough comparison of the resulting protein models

and SpsA is shown in Figure 8.3).

Due to its mentioned higher conservation and distinct structural definition, the UDP

binding site, as it appears in the derived homology models, is determined as the pri-

mary binding site. Thus, all following molecular docking steps aim to dock molecules

into this area of IcaA.

93



8 Application: Virtual screening for biofilm-formation inhibitors

Figure 8.2: Mulitple alignment of SpsA (PDB ID 1QGQ), a related protein (PDB ID 3BCV)
and IcaA of S. epidermidis and S. aureus.
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8.3 Scaffold finding

Figure 8.3: SpsA crystal structure (green) and IcaA homology models for S.epidermidis
(yellow/orange) and S. aureus (blue). Parts of IcaA marked in yellow indi-
cate the sequence area with higher conversation.

8.3 Scaffold finding

Since no inhibitors are known, yet, for IcaA, and therefore knowledge about putative

pharmacophores cannot be extracted from those, we employ a docking of a diverse

set of molecules in order to investigate whether any particular molecular fragments

might be especially important for the compounds’ binding in the UPD pocket of IcaA.

Thus, PubChem [73] is filtered for compounds that contain the linear fragment of UDP-

N-acetylglucosamine that was determined to bind most strongly to IcaA, as shown

in Figure 8.4. The resulting 12,000 diverse compounds obtained this way are then

docked into the crystal structure of SpsA and into the homology models. The top

scored compounds in these results (nearly) all contained an pyrimidine-oxolan scaffold

(as is also the case with the reference ligand UDP-N-acetylglucosamine), so that it is

used a constraint in the following step. An example of an pyrimidine-oxolan scaffold in

shown in Figure 8.5.
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Figure 8.4: Left: UDP-N-acetylglucosamine, with atoms predicted to interact most
strongly with IcaA highlighted in yellow. Right: extracted linear fragment.

8.4 Virtual screening I

In the next step, a virtual screening with compounds containing an pyrimidine-oxolan

scaffold is carried out. The homology model for IcaA of S. epidermidis is used pri-

marily during docking, and the one of S. aureus is utilized for docking for comparison

purposes.

In order to be able to experimentally validate hits found by docking, a database of pur-

chasable compounds is created from the libraries supplied by 15 vendors. In total, this

database contains about 5.4 million compounds and can be filtered with the tools sup-

plied by CADDSuite according to a variety of criteria. Next, this database is searched

for structures containing an oxolan-pyrimidine scaffold, resulting in approximately 300

molecules.

Those molecule are docked into the homology models and the output is sorted as-

cendingly according to the score (i.e. the binding free energy estimate) assigned by

the docking algorithm.

8.5 Hit verification I

50 molecules top-scored by docking are purchased and tested in a biofilm assay in

the Götz lab. Therefore, S. aureus SA113 and S. epidermidis RP62A strains as well

as the compounds that are to be tested are dissolved in dimethyl sulfoxide (DMSO)

and added to microtiter polystyrene wells containg TSB (tryptic soy broth) buffer with

0.25% glucose. After incubation for 24 hours, biofilm-forming cells adhere to the plates

and are detected, after a washing step, by safranin staining.

Figure 8.5: Example of an pyrimidine-oxolan scaffold.
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8.5 Hit verification I

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 8.6: Hits found by virtual screening I. Hits confirmed by biofilm formation assays
are highlighted with red numbering. Part 1 of 4.
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17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

Figure 8.6: Part 2 of 4.
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33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

Figure 8.6: Part 3 of 4.
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49 50

Figure 8.6: Part 4 of 4.

Figure 8.7: Biofilm-formation assay results for S. epidermidis RP62A for some of the
compounds found during the virtual screening I.

This way, 15 compounds can be identified that show inhibition of biofilm formation in

S. aureus and/or S. epidermidis at concentrations of 100 µM. All experimentally tested

compounds are depicted in Figure 8.6, where molecule showing biofilm inhibition in

either S. epidermidis or S. aureus have been highlighted with red numbering. Selected

biofilm assays are shown in Figure 8.7 as examples.

8.6 Virtual screening II

After obtaining experimentally validated hits in the previous steps, we then try to find

compounds inhibiting biofilm formation that, in total, show more diversity.

Thus, in contrast to virtual screening I, no scaffold constraints are used now. Instead,

compounds having a moderately high similarity (i.e., a Tanimoto coefficient between

0.75 and 0.85) to validated hits obtained in virtual screening I are screened. In ad-

dition, in order to add even more diversity, our database containing the purchasable

compounds is clustered (by k-means clustering employing the binary, fragment-based

fingerprints) and 5,400 cluster centroids are retrieved.

The approximately 8,000 compounds obtained in these ways are docked into the UDP

binding pocket of the IcaA homology model. The output is then sorted ascendingly
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8.7 Hit verification II

according to the score assigned by the docking algorithm.

8.7 Hit verification II

30 top-scoring compounds identified by the docking approach are purchased and

tested experimentally by use of biofilm assays. The protocol used for experimental

validation is the same as in Section 8.5.

As a result of these biofilm assays, six compounds were validated to possess the ability

to inhibit biofilm formation in either S. aureus or S. epidermidis at a concentration of

100 µM. All compounds experimentally tested in this step are depicted in Figure 8.8.

Selected biofilm assays are shown in Figure 8.9 as examples.

51 52 53 54

55 56 57 58

59 60 61 62

Figure 8.8: Hits found by virtual screening II. Hits confirmed by biofilm formation as-
says are highlighted with red, compounds obtained as database cluster
centroids with italic numbering. Part 1 of 3.
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63 64 65 66

67 68 69 70

71 72 73 74

75 76 77 78

Figure 8.8: Part 2 of 3.
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79 80

Figure 8.8: Part 3 of 3.

Figure 8.9: Biofilm-formation assay results for S. epidermidis RP62A for some of the
compounds found during the virtual screening II.

8.8 Discussion

By a combination of virtual and experimental procedures, it has been possible to find

21 candidates for biofilm-formation inhibitors.

15 of those candidates have been found during the first screening. Since those com-

pounds were obtained by filtering our database by use of a pyrimidine-oxolan scaffold

constraint, the existence of this scaffold, which is also contained in the reference lig-

and, within the hits supports the hypothesis that those compounds do indeed bind to

IcaA. However, final proof of this hypothesis can of course only be obtained by in vitro

determination of inhibition constants (as described in Section 2.2). The performed in

vivo biofilm assays, on the other hand, do not suffice to validate this. In principle, the

observed biofilm formation inhibition might be due to compounds’ influence on other

molecular structures (other Ica proteins or other enzymes participating in the creation

of biofilms) or could be caused by aggregation of the compounds [74–76]. Until now,

in vitro tests could not be done since purification of IcaA by cooperation partners has

not been not successful, yet.

Six more hits have been found and experimentally validated by biofilm-assays dur-

ing the second screening. Interesting hereby is that none of those hits contains a

pyrimidine-oxolan scaffold, although molecules containing one were not excluded in

the database search. All those hits do however contain at least one pyrimidine and

one 5-membered heterocycle, the latter similar to oxolan (tetrahydrofuran). These two

103



8 Application: Virtual screening for biofilm-formation inhibitors

fragments are not direcly connected to each other in the obtained hits, but in topo-

logical (and thus spacial) neighborhood, indicating that the primidine-oxolan scaffold

ligand can be replaced by similar scaffolds. Nevertheless, since no compounds show-

ing biofilm inhibition have been found that do not contain at least a similar scaffold

similar, this constraint might quite likely be essential for binding to IcaA.

Another interesting point observed in the results of the second screening is that four

out of the six observed and experimentally confirmed hits are compounds that have

been obtained as database centroids (as described above). This shows that our virtual

screening worked quite well, even for a set of very diverse molecules.

In any case, while the results obtained so far are very promising and exciting, they

need to be validated with in vitro measurements of binding free energies, for reasons

already mentioned above. If and when IcaA can be enriched successfully with ade-

quate quality, these experiments can be performed, which would allow more detailed

analysis of chemical differences between binders and non-binders and thus might lead

to possible optimizations of the current hits. If furthermore, the crystallization of the

purified IcaA succeeds, a resulting crystal structure could be used for docking. While

the use the homology models for docking seems to have worked reasonably well, the

improved accuracy of a crystal structure would be very helpful, especially if the goal

is to optimize binding to IcaA. Also, if binding affinity measurements and, optionally,

the crystal structure are available, Target-Specific Rescoring (TaGRes), as described in

Chapter 6, will be a very promising approach for determination of important contribu-

tions to the binding free energy and search or generation of compounds with higher

binding affinity.
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9 Discussion & Conclusion

In this dissertation, new approaches for computer-aided drug design were presented:

a framework for Quantitative Structure-Activity (QSAR) modeling, a receptor-ligand

scoring function and a docking algorithm, a three-dimensional target-specific rescor-

ing procedure and CADDSuite, a software suite of contains all the aforementioned

algorithms and a large set of additional, auxiliary tools and algorithms.

First, we presented a framework for QSAR modeling that includes all necessary ca-

pabilities to read input, generate molecular descriptors, generate a variety of differ-

ent regression and classification models, automatically select relevant descriptors and

evaluate the quality of QSAR models. Thus, all functionality for establishing even

complex QSAR pipelines is available. Furthermore, all algorithms were implemented

with focus on high speed and numerical stability and all functionalities are available

as CADDSuite tools, making them easy to use separately and in combination. Using

a number of different data sets, we showed that by use of our software, it is easily

possible to obtain high-quality QSAR models, out-performing models published for the

same data sets, while still only using a small number of descriptors and thus enhanc-

ing their interpretability. Hence, this QSAR framework is optimally suited for use in

lead discovery or lead optimization steps in drug design projects.

Next, we presented IMGDock, an efficient deterministic docking algorithm, employing

an empirical scoring function and an iterative multi-greedy pose-finding approach. In

addition, algorithms and tools for automatic determination of spatial or interaction-

based scoring constraints and for detection of water molecules tightly bound to the

receptor structure have been developed, which for consistency use the same scoring

function as the docking approach. The created scoring function was shown to result in

good correlation with experimentally determined binding free energies by use of the a

large data set containing more than 1,000 co-crystal structures. The docking approach

was thoroughly evaluated using a well-established docking benchmark set (DUD) for

40 protein targets. For many of those targets our approach outperforms state-of-the-

art programs and even on average performs as well or better than most of them.

Furthermore, IMGDock is fast and stable, available free of charge as open-source and

can easily be deployed on compute clusters, clouds, or grids.

In order to in the future enhance the results of IMGDock even more, there are pri-

marily two options: The optimization of the specificity of the scoring function and the

selective integration of relevant protein flexibility. The first option would create new

scoring terms or modify existing ones in order to reduce the false positive rate. Thus,

molecules that actually do not bind to the target structure would be more reliably

predicted not to do so. While the enhancement of specificity is a perpetual goal in

105



9 Discussion & Conclusion

the field of receptor-ligand scoring research, there are some promising approaches

for our scoring function. One way would be a more detailed calculation of desolva-

tion effects, although great care has to be taken to ensure that the modified scoring

function would still be precalculatable as grids or otherwise fast enough for docking

purposes. The second option would be to try to find types of molecular interactions

that are currently not explicitly modeled and that render poses currently generated

for non-binders chemically unfavorable. If any are found, special scoring terms could

be developed for them, including possibly also cross-terms with the aforementioned

solvation terms.

However, as always during the development of scoring functions, there are several

caveats when trying to modify existing or create new scoring terms. The compo-

sition of data sets used to optimize and evaluate the function are two such issues.

This data set of protein-ligand complex structures employed for optimization of coeffi-

cients needs to be large and diverse enough, and may not just contain data for certain

classes of enzymes (at least as long as the goal still is to develop a universally applica-

ble scoring function). The make-up and quality of the data set used to finally evaluate

docking and scoring is another important issue. Data sets like the DUD library com-

monly used for this derive decoys by in silico procedures (e.g., similarity-based), i.e.

decoys are not experimentally validated to be non-binders. In our opinion, it is impor-

tant to keep this point in mind when evaluating docking and scoring algorithms. It may

furthermore be desirable to devise procedures for checking the plausibility of decoys

contained in such data sets. To name just one example, we observed decoys in DUD

data sets that actually were nearly identical to experimentally determined binders, but

just had one additional terminal moiety that, after the molecule was docked, turned

out to be located outside the binding pocket and pose no sterical problems. Other

examples in theory might include putative non-binders that contain significantly large

fragment that are also observed in binders or that are highly similar to fragment found

in binders. It may also be helpful to include three-dimensional information, so that

high similarity or even identity of fragments that will probably be located near the

active site is considered worse than similarity of ligand fragments far apart from the

active site. Since in dubious cases it is of course not possible (without wet lab tests) to

tell whether such molecules definitely do or do not bind to the target structure, such

molecules should not be included into data sets intended to test the power of docking

to discretize binders from non-binders.

One promising, recently published, approach to prevent false decoys is the one em-

ployed by DEKOIS [77]. Comparison of binary molecular fingerprints containing infor-

mation about the occurrence of atoms with various functional roles are used to achieve

this. However, it will certainly be necessary to investigate whether the use of, for ex-

ample, functional group count fingerprints or the explicit search for maximal common

substructures, are even more helpful before the data sets generated by DEKOIS might

be established as generally accepted replacements for DUD. For this reason, we did

not (yet) use DEKOIS to evaluate IMGDock, but DUD, which is currently widely regarded

as the standard benchmark set for docking.

Integration of protein flexibility would be another way to try to enhance the quality
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of docking results even more. However, this will of course only be helpful for protein

targets that exhibit significant flexibility near the binding pocket. Also, great care has

to be taken to make sure that only flexibility that is significant and relevant for ligand

binding is integrated into the docking approach. If otherwise too many side chains

are considered to be flexible, although they in reality are not flexible, or if too many

backbone conformations are used that actually would never occur in vivo, then this will

not only not improve docking results but will most likely significantly deteriorate them.

Advanced analysis of molecular dynamics simulations or nuclear magnetic resonance

(NMR) spectroscopy could help to study protein flexibility towards this end. Thus,

integration of protein flexibility in a biologically sensible way is far from trivial, but

offers significant enhancement of docking results for many protein targets.

We next presented TaGRes, Target-Specific Grid-based Rescoring. After docking a set

of compounds whose binding affinities are known, the three-dimensional poses gen-

erated by docking are used together with the binding free energies to generate a

regression model of the binding free energy as a function of molecular interaction

scores in discretized areas of space. The obtained model can than be applied to other

compounds (whose binding affinity is unknown) after they have been docked, thereby

rescoring these compounds. Thus, this approach takes into account receptor-ligand

interactions, their three-dimensional locations and their target-specific importances.

We showed that by use of TaGRes, the quality of docking results with respect to their

power to discretize between binders and decoys could be strongly enhanced. Specif-

ically, in six out of eight cases docking results for DUD targets could be decisively

improved by TaGRes, employing for the model generation step data for the same

molecular target obtained from BindingDB [60]. Thus, TaGRes should be very inter-

esting for both lead discovery and lead optimization steps and is applicable to any

molecular target as long as at least several binding free energy measurements for this

target are available. While, due to protein structure and ligand data set dependency,

it is impossible to state a universal lower threshold for the number of required binding

affinity measurements, it is, according to our experience, possible to achieve a very

good rescoring with as few as about 20 measurements. If for a given training data

set, TaGRes determines (by automatic use of nested validation) the obtained model

to most likely have no significant predictive power, it automatically aborts. Thus, if a

model is successfully generated, there is significant probability that a good rescoring

will be possible for compounds that show at least a moderate chemical similarity to

the molecules of the training data set. The only further check that, as described in

Chapter 6, is advisable to perform is to test whether the median chemical similarity of

these two data sets is at least as high as 0.5 (Tanimoto coefficient based on binary,

pathway-based fingerprints). This comparison can however be easily done by use of

the SimilarityAnalyzer tool that is part of CADDSuite.

Possible improvements in our opinion are primarily to be found in the generation of the

training data sets. This involves the selection of compounds, as well as the reliability

of binding affinity measurements. For example, a certain degree of diversity within the

training data set should be present, with respect to both binding affinity and topology.

Furthermore, there sometimes exist cases with drastically different binding free energy

107



9 Discussion & Conclusion

measurements for one and the same compound in publicly available databases such

as BindingDB. Reasons for this may either be due to experimental errors or due to ex-

periments done (by different scientists) under strongly different conditions (e.g., pH).

Enhancements of the specificity of the scoring function, as discussed above, would on

the other hand most likely only have a very limited impact on the results obtained by

TaGRes, since TaGRes achieves specificity by direct modeling (i.e. regression) of the

differences of receptor-ligand interaction patterns between binders and non-binders

(or between strong and week binders).

In this dissertation, we next presented CADDSuite, a flexible and open workflow-

enabled framework for computer-aided drug design. CADDSuite makes solving com-

mon computer-aided drug design tasks considerably easier by providing all necessary

tools for structure preparation and checking, QSAR, docking, rescoring, and analysis of

results, all of which are useable in a simple and consistent manner. That is, all afore-

mentioned approaches have been integrated into CADDSuite. Even complex assign-

ments can be accomplished by combining the provided tools into a pipeline. To make

creation of those pipelines even easier, CADDSuite has also been integrated into the

well-known workflow system Galaxy. This essentially allows a user to create drug de-

sign workflows directly from a web browser, without any need for software installations

on his local computer, and also makes it possible to directly submit workflows to a com-

pute cluster, grid or cloud. Hence, CADDSuite is optimally suited for high-performance

computing (HPC) in the field of computer-aided drug design. CADDSuite is an ex-

tensive framework, written as efficiently as possible and using the BALL [78] library

for standard handling of chemical data (data structures for chemical systems, read-

ing/writing of standard chemical files). CADDSuite encompasses about 100 classes,

50 tools, and approximately 65,000 lines of code. We furthermore illustrated the use-

fulness of CADDSuite by creating a virtual screening workflow for the target carbonic

anhydrase II, which, as shown, resulted in a high enrichment of inhibitors in the fi-

nal output. CADDSuite is available free of charge, licensed under the GNU GPL, from

http://www.ball-project.org/caddsuite.

Last but not least, we recounted our efforts to find inhibitors for bacterial biofilm for-

mation using a combination of computer-aided drug design techniques, provided by

CADDSuite tools, and experimental validation steps. We found 21 compounds that

exhibit biofilm formation inhibition in either S. epidermidis or S. aureus according to

biofilm assay verifications. These are very encouraging results, which can hopefully, in

the longer term, help to develop medical drugs that prevent infections due to biofilm

creation on medical devices or implants. Since those kinds of infections are very fre-

quent and often lead to severe medical problems for the affected patients, from the

need to remove artificial joints to even death, the impact of such drugs would of course

be considerable. Besides being encouraging in themselves, those results are also an-

other nice example for the usefulness of CADDSuite.

The next steps necessary for continued drug design efforts in this field in our opinion

would clearly consist of high-quality enrichment and purification of IcaA, determination

of binding free energies for the hits obtained so far and the crystallization of IcaA. If

and when this (or at the very least the first two steps) are achieved, it will be feasible
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to apply computer-aided drug design procedures to try to find compounds that bind

even stronger to IcaA or to modify existing hits towards this goal.
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Appendix

ID descriptor name ID descriptor name

1 AtomicPolarizabilities 50 PolarVdWSurface
2 AtomInformationContent 51 PositivePolarVdWSurface
3 BondPolarizabilities 52 PositiveVdWSurface
4 FormalCharge 53 RelHydrophobicVdWSurface
5 MeanAtomInformationContent 54 RelNegativePolarVdWSurface
6 MolecularWeight 55 RelNegativeVdWSurface
7 NumberOfAromaticAtoms 56 RelPolarVdWSurface
8 NumberOfAromaticBonds 57 RelPositivePolarVdWSurface
9 NumberOfAtoms 58 RelPositiveVdWSurface
10 NumberOfBonds 59 VdWSurface
11 NumberOfBoron 60 VdWVolume
12 NumberOfBromine 61 terminal primary C(sp3)
13 NumberOfCarbon 62 total secondary C(sp3)
14 NumberOfChlorine 63 total tertiary C(sp3)
15 NumberOfDoubleBond 64 total quaternary C(sp3)
16 NumberOfFlourine 65 ring secondary C(sp3)
17 NumberOfHeavyAtoms 66 ring tertiary C(sp3)
18 NumberOfHeavyBonds 67 ring quaternary C(sp3)
19 NumberOfHydrogen 68 aromatic C(sp2)
20 NumberOfHydrogenBondAcceptors 69 unsubstituted benzene C(sp2)
21 NumberOfHydrogenBondDonors 70 substituted benzene C(sp2)
22 NumberOfHydrophobicAtoms 71 non-aromatic conjugated C(sp2)
23 NumberOfIodine 72 terminal primary C(sp2)
24 NumberOfNitrogen 73 aliphatic secondary C(sp2)
25 NumberOfOxygen 74 aliphatic tertiary C(sp2)
26 NumberOfPhosphorus 75 allenes groups
27 NumberOfRotatableBonds 76 terminal C(sp)
28 NumberOfRotatableSingleBonds 77 non-terminal C(sp)
29 NumberOfSingleBonds 78 cyanates
30 NumberOfSulfur 79 isocyanates
31 NumberOfTripleBonds 80 thiocyanates
32 PrincipalMomentOfInertia 81 isothiocyanates
33 PrincipalMomentOfInertiaX 82 carboxylic acids
34 PrincipalMomentOfInertiaY 83 esters
35 PrincipalMomentOfInertiaZ 84 primary amides
36 RelNumberOfRotatableBonds 85 secondary amides
37 RelNumberOfRotatableSingleBonds 86 tertiary amides
38 SizeOfSSSR 87 (thio-)carbamates
39 VertexAdjacency 88 acyl halogenides
40 VertexAdjacencyEquality 89 thioacids
41 BalabanIndexJ 90 dithioacids
42 ZagrebIndex 91 thioesters
43 RelNegativePartialCharge 92 dithioesters
44 RelPositivePartialCharge 93 aldehydes
45 TotalNegativePartialCharge 94 ketones
46 TotalPositivePartialCharge 95 urea (-thio) derivatives
47 Density 96 carbonate (-thio) derivatives
48 HydrophobicVdWSurface 97 amidine derivatives
49 NegativePolarVdWSurface 98 guanidine derivatives

Table A1: List of molecular descriptors generated by our software. Part 1 of 2.
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99 imines 147 R=CRX
100 oximes 148 R#CX
101 primary amines 149 CHRX2
102 secondary amines 150 CR2X2
103 tertiary amines 151 R=CX2
104 N hydrazines 152 CRX3
105 N azo-derivatives 153 halogene on aromatic ring
106 nitriles 154 X on ring C(sp3)
107 positive charged N 155 X on ring C(sp2)
108 quaternary N 156 halogene on exo-conjugated C
109 hydroxylamines 157 Aziridines
110 nitrosamine 158 Oxiranes
111 nitroso groups 159 Thiranes
112 nitro groups 160 Azetidines
113 imides 161 Oxetanes
114 hydrazones 162 Thioethanes
115 hydroxyl groups 163 Beta-Lactams
116 aromatic hydroxyls 164 Pyrrolidines
117 primary alcohols 165 Oxolanes
118 secondary alcohols 166 tetrahydro-Thiophenes
119 tertiary alcohols 167 Pyrroles
120 ethers 168 Pyrazoles
121 hypohalogenides 169 Imidazoles
122 anhydrides 170 Furanes
123 water 171 Thiophenes
124 thiols 172 Oxazoles
125 thioketones 173 Isoxazoles
126 sulfides 174 Thiazoles
127 disulfides 175 Isothiazoles
128 sulfoxides 176 Triazoles
129 sulfones 177 Pyridines
130 sulfenic acids 178 Pyridazines
131 sulfinic acids 179 Pyrimidines
132 sulfonic acids 180 Pyrazines
133 sulfuric acids 181 135-Triazines
134 sulfites 182 124-Triazines
135 sulfonates 183 Phenoles
136 sulfates 184 Phenyles
137 sulfonamides/sulfinamides/sulfenamides 185 Toluenes
138 phosphites/thiophosphites 186 Glucose
139 phosphates/thiophosphates 187 Fructose
140 phosphanes 188 Methyl
141 phosphonates/thiophosphonates 189 Halogenides
142 phosphoranes/thiophosphoranes 190 Propyl
143 CH2RX 191 Butyl
144 CHR2X 192 Pentyl
145 CR3X 193 Prenyl
146 R=CHX

Table A1: Part 2 of 2.
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Figure A1: ROC plots for all DUD data sets. Part 1 of 3
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9 Discussion & Conclusion
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Figure A1: Part 2 of 3.
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VEGFr2

Figure A1: Part 3 of 3.

term coefficients K
vdW 0.1
electrostatics 0.01
desolvation 19.82
hydrogen bonds 3.0
nRot 1.0

Table A2: Coefficients of our scoring function as show in Equation 5.1
.
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