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Abstract

Genome-wide association studies aim at uncovering genetic loci that regulate a pheno-
type of interest by performing statistical tests for association between observed genetic
variants and the phenotype. However, confounding factors like population structure,
family relatedness, and cryptic relatedness often lead to false positive findings, if not
accounted for in the analysis. Linear mixed models are among the richest class of models
used today for genome-wide association studies, and in contrast to other methods have
been shown to be capable of to capture all of these forms of relatedness simultaneously,
without knowledge of which are present and without the need to tease them apart. De-
spite their benefits the use of linear mixed models so far has been limited to smaller
studies, due to the large computational burden. In this thesis, we investigate linear
mixed models for genome-wide association studies and present new algorithms to scale
up linear mixed model computations that thereby enable their use for the analysis of
extremely large genome-wide association studies for the first time. Besides algorithmic
contributions we also present improvements to the statistical modeling part, that lead
to an increase in power and better calibration over the traditional use of linear mixed
models. Based on these improvements, we investigate association tests for single as well
as multiple genetic variants and a phenotype. Finally, we conclude by with a multivariate
version of the linear mixed model that allows simultaneous analysis of multiple related
traits.






Zusammenfassung

Das Ziel von genomweiten Assoziationsstudien ist es, genetische Loci zu finden, die
einen Phanotyp regulieren, indem man statistische Tests zwischen gemessenen genetis-
chen Varianten und dem Phénotyp durchfiihrt. Allerdings ziehen Stérgroflen, wie Pop-
ulationsstruktur, Verwandtschaftsverhéltnisse innerhalb Familien, oder unbekannte Ver-
wandtschaften zwischen scheinbar unverwandten Individuen, wenn diese nicht in Be-
tracht gezogen werden, die Gefahr von falsch positiven Ergebnissen in der Studie nach
sich. Lineare gemischte Modelle gehtren zu den komplexesten Modellen, die heutzu-
tage in genomweiten Assoziationsstudien angewandt werden, da diese, im Gegensatz
zu anderen Korrekturmethoden, in der Lage sind fiir all diese Storgrofien aufzukom-
men, ohne das explizite Wissen, welche davon vorkommen, und ohne diese auseinan-
derzudréseln zu miissen. Trotz der klaren Vorteile durch die Anwendung von linearen
gemischten Modellen, war diese wegen des hohen Rechenaufwandes bisher auf kleinere
Datensétze beschrankt. Diese Arbeit setzt sich mit linearen gemischten Modellen fiir
genomweite Assoziationsstudien auseinander und stellt neue Algorithmen vor, die lineare
gemischte Modelle hochskalieren und somit mit zum ersten mal die Analyse von extrem
groflen Datensdtzen mit diesen Modellen ermdoglichen. Neben diesen algorithmischen
Beitrédgen werden auch Verbesserungen auf der Seite der statistischen Modellierung von
genomweiten Assoziationsstudiesn vorgestellt, welche im Vergleich zur traditionellen An-
wendung von linearen gemischten Modellen zu mehr statistischer Power bei gleichzeitig
besserer Kontrolle des Typ 1 Fehlers fithren. Aufbauend auf diese Verbesserungen werden
Assoziationstests von einzelnen als auch von mehreren genetischen Varianten vorgestellt
und analysiert. Zum Abschluss der Arbeit wird eine multivariate Version von linearen
gemischten Modellen zur Analyse von mehreren verwandten Phéanotypen vorgestellt.
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1. Introduction

1.1. A chronological overview of genetics and association
studies

1.1.1. The beginnings of genetics and Mendel’s laws for simple traits

Since about hundred and fifty years geneticists try to understand the mechanisms that
shape variation in heritable traits. The field started with Gregor Mendel, who observed
how trait alleles are transmitted across related individuals. He soon understood, how
simple discrete traits caused by a single mutation are inherited in diploid organisms, that
is organisms having two distinct sets of chromosomes. From his observations he deduced
two rules that described these “Mendelian” traits. The rule of “Segregation” states that
for crosses of parents, each being homozygous carriers of one of the two trait alleles, then
all direct descents will have the same trait as they are all heterozygous between the two
parent alleles. The distribution of trait characteristics among descendent of heterozygous
individuals like these on the other hand is given by a probability distribution over each of
up to three distinct states for the traitﬂ Finally, the rule of “Independent Assortment”
states that any two (unlinked) traits are inherited independent of each other [Mendel,
1866].

1.1.2. Development of statistical models for complex traits

Mendel’s laws were able to explain inheritance of a wide range of traits and rare diseases.
Douglas Galton, a cousin of Charles Darwin, analyzed many quantitative traits, including
human height, intelligence and a range of behavioral traits by linear regression |Galton,
1869, Visscher et al.l [2011]. The heritable nature of these traits has been known and
utilized by animal and plan breeders for thousands of years. But for these traits, in
contrast to Mendel’s law of Segregation, Galton observed continuous blending inheritance
and large environmental influences |Galton, |1897, |1898|. During his studies he invented
a range of important concepts like statistical correlation or the standard deviation. He
also came up with study designs that could be used to estimate heritability of a trait and
the effects of environment. He measured the shared variation between twins to study the
heritable variation in a trait. In order to control for the effects of shared environment he
performed studies of adopted children [Burbridge, 2001, [Bulmer| 2003].

Ronald Fisher correctly speculated that quantitative traits are influenced by a large
number of unobserved mutations, each of which following Mendelian inheritance patterns
and having a small additive effect on the trait. He showed that in the limit of an infinite
number of unobserved random loci, each with an infinitesimally small effect on the trait,
the trait would be normally distributed and the degree of trait covariation between

'For alleles A and a, these states are homozygous AA, homozygous aa and heterozygous Aa



1. Introduction

related individuals is identical to the amount of their genetic material that is identical
by descent. In this seminal work he unified the genetics of quantitative traits with
Mendelian inheritance [Fisher| |1918].

Also, many heritable common diseases, despite being qualitative and showing famil-
ial aggregation, could not be explained in terms of Mendel’s laws [Lobo, 2008]. Simi-
larly to quantitative traits these could be explained by a complex polygenic inheritance
of a large number of causal loci, each contributing a small amount to an unobserved
normally distributed liability, which affects disease susceptibility and severeness of the
disease |Wright), [1934alb].

In the 1950s, building on Fisher’s random effects model, Charles Henderson stated a
system of equations that would subsequently revolutionize animal breeding. The solution
of these “mixed model equations” provided an efficient criterion for artificial selection,
as it yields an unbiased prediction of the unknown genetic component of a quantitative
trait that is independent of environmental covariates [Henderson, |1950, [1984].

1.1.3. Linkage studies

Recombination [Morgan et al., |1922] (see Figure leads to a reduction in genetic
linkage between two loci that are far apart on the chromosome [Morgan et all 1922].
This understanding allowed to build linkage maps by tracing the co-inheritance between
known genetic markers across pedigrees |Griffiths et al. 2004]. Initially, such markers
where phenotypes that followed Mendelian inheritance. Later, simple non-coding DNA
sequences like microsatellites were used as markers.

In linkage studies use the insight that a causal locus cane mapped by tracing linked
markers shared by affected related individuals over a pedigree [Morton, [1955]. Such
studies successfully determined the genetic cause of many Mendelian traits including
rare human diseases like Huntington’s disease or Cystic Fibrosis |Chial, [2008].

Interventional gene knockouts allow to validate strong effects found by mapping studies
by disrupting the functionality of a target gene and observing the resulting phenotype.
These were a first steps towards the ultimate goal of genetic analyses: to gain functional
knowledge that would allow for targeted intervention at the genomic level.

For many common diseases as well as quantitative traits, even though these showed
strong heritability among relatives, linkage studies are usually underpowered in order to
map a larger number of causal loci with small individual effects |[Risch et al., [1996].

1.1.4. Genome-wide association studies

With the advent of high-throughput genotyping technologies, GWAS have recently emerged
as a novel study design. Microarrays or extremely low-coverage sequencing are used to
screen hundreds of thousands to millions of common single nucleotide polymorphism
(SNP) markers at a population scale. The genetic variation is subsequently used to
detect regions in the genome that are linked to causal variants by testing for statistical
association between the individual SNP markers and the phenotype on a population level
(see Figure . In contrast to linkage studies, which study related individuals to detect
linked loci, in GWAS the individuals are usually assumed to be unrelated [Astle and
Balding, 2009].
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Crossing over

G =
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Double crossing over

Figure 1.1. Recombination due to crossing over. During Meiosis, random crossing
over of chromosomes lead to recombination of the chromosomes. The further the distance
between two loci, the higher is the chance that a recombination event happens during
meiosis. The resulting genetic distance is measured in centimorgans (¢M) and refers to
one meiosis out of one hundred causing recombination. The effect leads to a reduction
of genetic linkage between loci that are far apart on the chromosome until they are in
equilibrium [Morgan et al., 1922|EI
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Figure 1.2. Graphical model representation of an idealized genome-wide as-
sociation study involving a single causal variant. The state of the phenotype,
denoted by y is caused by the state of a single unknown variant . While most of the
markers ' are statistically independent of the phenotype, markers x* that are in in
close proximity to the causal variant « assert an indirect association with the phenotype
y due to linkage.

The population-based study design of GWAS has substantial practical advantages over
family-based designs [Pritchard et al., 2000b|. Genotyping the relatives of individuals
carrying a causal allele poses limitations on the size of a study compared to sampling
unrelated individuals [Risch et al., 1996]. This limitation is especially true for studies
of late-onset diseases. The use of unrelated individuals also allows to reduce genotyping
costs by sharing individuals between studies of multiple quantitative traits or by re-using
unaffected control individuals in studies of common diseases |Atwell et al., [2010, Huang
et al., 2010, Burton et al., 2007].

The SNPs included on an array are chosen in a way that they most densely tag re-
gions that are likely to be functional, including exonic regions and the regions upstream
and downstream of genes. For low-density or low-quality samples the resolution can be
increased further by imputation of missing loci based on the distribution that has been
observed before in data that has been genotyped at a higher-resolution [de Bakker et al.|
2008]. At this end population-scale re-sequencing projects |[Altshuler et al., 2010, Au-
tosomes Chromosome, 2012, |Cao et al.| 2011] aim at providing a complete view of the
genetic variation that is present in a large sample, including SNPs, rare variants, inser-
tions/delitions and copy-number variations. The data from these projects also helps to
build maps of linkage-disequilibrium at the highest resolution possible.

GWAS of quantitative traits like human height, growth traits in plants and animals, or
studies of molecular traits like gene expression have identified a large number of loci [Viss-
cher, 2008, |Atwell et al., 2010, Tian et al., 2011, Bolormaa et al., 2011} Kim et al., 2013].
Due to their study design, they have proven especially useful for detecting associations
of common variants. Due to the polygenicity of common human diseases the selective
pressure on individual disease-causing mutations is assumed to be reduced, leading to
the common disease, common variant hypothesis |Lander et al., (1996, Reich and Lander,
2001, Pritchard and Cox, 2002] and the belief, that GWAS should be especially useful
for these kinds of diseases (see Figure [1.3).
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Figure 1.3. The allelic spectrum of human diseases and implications for ge-
netic studies. The area between the two diagonal lines defines the targets of genetic
studies of human disease. Mendelian diseases are usually caused by a single variant with
large effect sizes that are rare due to strong selective pressures. Many of these have been
detected by family studies. Variants with large effects on disease are usually rare due
to strong selective pressures. Common diseases are assumed to be caused by multiple
variants having smaller effect sizes due to reduced selective pressures. Common variants
are valuable targets of GWAS. Rare variants with small effect sizes are hard to detect
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The number of loci that have been reliably associated with heritable human diseases
is close to nine thousand. Since the publication of the first GWAS, the number of
publications of human GWAS has constantly been growing every year [Hindorff et al.,
2009, Manolio, [2010], already surpassing 1.5 thousandﬁ

1.2. Challenges in modern genome-wide association studies

The sheer quantity of reported loci of course is an obvious success. And even though
loci with weak effects reach genome-wide significance levels and reliably replicate, the
practical value of these markers is in doubt. Personalized medicine based on genetics is
already clinical practice for a small fraction of common diseases like breast cancer [Palma
et al., 2006], but most of the currently available genetic tests are based on a small number
of rare genetic variants with large effects on disease risk. These tests are generally only
helpful for a small fraction of the affected individuals. One has to admit that the amount
of functional knowledge that has been gained is limited, leading to justified criticism of
the GWAS design [Visscher et al., |2012, Wadel 2010].

1.2.1. Missing heritability

Heritability is defined as the fraction of phenotypic variance that is caused by genet-
ics and has traditionally been estimated from studies of families or twins and yields an
upper bound on the amount of information that can be gained by genetic studies. A
distinction is made between narrow-sense heritability (h%) due to linear additive effects
and the less commonly used broad sense heritability, which also measures non-additive
effects like gene-gene interactions or interactions between genes and environment. Even
though many common traits are highly heritable (h? = 30% — 80%) [Visscher et al.,
2012], the genetic variants identified to date generally explain only a small fraction of
the heritable trait variability as estimated from family studies, giving rise to the “missing
heritability problem” [Maher, 2008]. Possible sources for missing heritability include ef-
fects not covered in the standard GWAS study design, like gene-gene or gene-environment
interactions or effects of rare variants. On the other hand it is also hypothesized that
estimates of heritability might be inflated due to confounding environmental effects in
twin studies [Manolio et al., 2009).

By estimating narrow-sense heritability from genome-wide SNPs, Visscher and col-
leagues convincingly argued that most common diseases have a highly polygenic genetic
architecture [Yang et al., 2010, 2011b} Stahl et al., [2012]. As a result of high polygenicity
and the huge number of tests performed, GWAS need extremely large sample sizes to
yield enough power to meet genome-wide significance for smaller effects [Manolio, 2010,
Park et all [2010]. The hypothesis that given a large enough sample size the complete
heritable portion of a phenotype could be explained has already been shown to be true
for the model organism yeast [Bloom et al., 2013].

“The numbers reported are taken from http://www.genome.gov/gwastudies (as of 3/15/2013).
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1.2.2. Handling large volumes of data

In order to increase statistical power, researchers collect ever-increasing studies, in the
tens of thousands to over a hundred thousand samples [Do et al. |2011]. Large inter-
national consortia are forming and combine their data into meta-analyses with total
sample-sizes ranging well into the hundreds of thousands [Speliotes et al., 2010} |Allen
et al., 2010, Teslovich et al., 2010} |[Ehret et al., 2011]. These tremendous volumes of data
impose huge technological challenges and requires the development of efficient algorithms
and tools that enable experimental scientists to accurately analyze the data in a timely
manner.

1.2.3. Confounding by population structure

Another problem in GWAS are confounding factors like population structure, shared en-
vironment or technical artifacts, which have lead to false positive associations [McClellan
and King, |2010, [Lambert and Black, 2012}, Devlin and Roeder}, (1999, Pritchard et al.,
2000b), [Price et al., [2006].

In GWAS the individuals are assumed unrelated. Population structure, family struc-
ture and cryptic relatedness cause correlations between genome-wide SNPs. GWAS
look for correlations between the phenotype and a marker linked to the causal variant.
However, relatedness causes correlations between genome-wide loci including causal and
non-causal variants, thereby causing spurious associations between the phenotype and
unlinked markers (see Figure ) For example for a phenotype that is regulated by
a single variant only, common inheritance of the causal variant and other SNPs yields
statistical association between the phenotype and unlinked SNPs all over the whole
genome |Ewens and Spielman, 1995, Pritchard and Rosenberg, 1999|. In extreme cases
even for traits that are not genetically heritable cryptic relatedness can create false pos-
itive associations. An example would be a phenotype that depends on sociographic or
geographic influences that correlate with population structure [Mathieson and McVean,
2012].

As a result of confounding by population structure some associations reported in the
literature could be explained by differences in allele frequencies between populations and
do not replicate [Freedman et al.,[2004, McClellan and Kingj, 2010, |Wang et al., 2009]. For
example in a study of native North Americans, an association has been found between
immunoglobulin and type II diabetes, that disappeared when the authors stratified by
admixed European ancestry [Knowler et al., |1988]. A popular example of stratification
in European-derived populations is an association between the Lactase gene and height
that has been found significant in European Americans. Though by ancestry-matching,
the authors showed that the association was purely due to stratication [Campbell et al.)
2005).

Improvements in study design and exclusion of individuals based on ethnicity help
to somewhat alleviate the problem of population structure, but the problem of cryptic
relationships remains. This approach also puts limitations on the data that can be
collected. Close relatives could be detected based on genotype data and removed from
the study, but such removal reduces statistical power.

A complementary way to account for confounding structure is by ways of statistical
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Figure 1.4. Graphical model representation of a genome-wide association
study involving multiple causes. In panel @ the phenotype y is affected by mul-
tiple independent unknown causal variants x1,...xg. A marker x, that lies within a
region of linkage to a causal variant s becomes indirectly associated with the phenotype
y. In panel @ an unknown confounding variable P like population structure causes de-
pendence between causal variants and markers ¢ that are not in the proximity to any
causal variant, leading to spurious associations.
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modeling, an approach that is becoming more important as larger data sets are used
to increase power. A range of methods have been proposed to correct for confounding
in GWAS, including genomic control, principle components analysis and linear mixed
models. Most of these account for confounding variation within the model.

Among these, only linear mixed models have been shown to be capable of correcting for
population structure, family structure, and cryptic relatedness, while retaining sufficient
power to detect true associations [Yu et al., [2005a, Zhao et al., 2007, [Malosetti et al.,
2007, Kang et al., [2008], 2010, [Price et al., 2010b]. Despite their benefits, linear mixed
models have so far seen relatively little use on large data sets due to their tremendous
computational cost.

1.2.4. Aggregating weak signals

Another important strategy that has been proposed to detect associations to complex
traits is to perform aggregate analyses of sets of rare or common variants within a
gene or pathway [Price et al. 2010al Bansal et al., 2010, [Wu et al., 2011], or to use
regularization-based approaches to enable joint analysis of a large number of markers.
In particular, such methods allow for aggregation of weak signals within the group if
markers analyzed, enable interplay among variants to be captured, and reduce the burden
of multiple hypothesis testing. Unfortunately, until now, these approaches mostly did
not address confounding by family relatedness and population structure.

1.3. Thesis structure

A main topic of this thesis are enhancements to linear mixed models, covering novel
efficient algorithms that break the aforementioned computational barriers and to allow
joint analysis of GWAS containing hundreds of thousands of samples (see Chapter [3)),
as well as improvements in modeling of confounding effects that yield larger power and
better correction by selection of phenotype-specific sets of markers for confounder cor-
rection (see Chapter . In these two chapters we also point out and investigate the so
far unappreciated problem that use of target markers for correction leads to a loss in
power and propose two efficient ways to avoid the problem by excluding physically linked
markers.

In order to overcome limitations in power to detect weak effects while accounting
for confounding structure, we present two powerful and efficient methods based on linear
mixed models that aggregate smaller effects in a joint analysis and correct for population
structure (see Chapter [3)).

Finally, in Chapter [6] we give an outlook in how recent multivariate machine-learning
methods could be used to speed up joint analyses of multiple related traits, which gained
attention as a way to increase increase power in GWAS, but are constrained by compu-
tational complexity.

1.3.1. Publications covered and individual contributions

e Christoph Lippert*!, Jennifer Listgarten®*!, Ying Liu, Carl M Kadie, Robert I
Davidson, David Heckerman*:
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2. Statistical methods for genome-wide
association studies

In association testing, the strength of a potential relationship between a SNP and a
phenotype is quantified by a statistical model. The models used in this work are all
linear, both for continuous, as well as for case-control phenotypes (See Section for a
discussion).

To introduce linear models, we start out in Section [2.1 by the most basic linear model,
linear regression, which models a phenotype by linear-additive effects of a fixed set of
regressors that can include causal or linked variants, confounders, and other covariates.
In the context of this model we give an introduction to parameter inference by maximum
likelihood and statistical testing for GWAS.

The problem of confounding by population structure, family structure, and cryptic
relatedness in GWAS is now widely appreciated [Balding), 2006, Kang et al., 2008, Price
et al., 2006, Yu et al.l 2006, |[Kang et al.| 2010} [Price et al., [2010b|. Statistical methods
for correcting these types of confounders have progressed through the years and include
a variety of approaches, that will be discussed in the remainder of the chapter. Linear
mixed models are considered to be the best method for confounder correction and are
introduced in Section In GWAS testing using linear mixed models the phenotype
is typically modeled as the sum of a fized linear regression, containing the effects of
the marker to be tested, and a random linear-additive term that accounts for unwanted
confounding structure. In other GWAS applications, as in the example of Section [5.1
the random effects may also be used to model joint genetic effects of a set of genetic
markers.

Linear mixed models have been shown numerous times to account for all levels of
genetic structure, including population structure, that is differences in allele frequencies
between populations, family structure and cryptic relatedness, both of which introduce
confounding due to close relatedness [Yu et al., 2005a, |Zhao et al., 2007, Malosetti et al.)
2007, Kang et al., |2008]. For completeness, in Section other commonly used methods
like genomic control and principle components analysis are reviewed.

2.1. Linear regression

Linear regression is introduced based on a model, where the phenotype is given as the
sum of a single linear marker effect and random noise. In order to evaluate this model on
data, an appropriate set of parameters has to be determined. The method of maximum
likelihood estimation of linear regression parameters is introduced in Section[2.1.3] Given
the maximum-likelihood estimate of the marker effect, the significance of the association
between the marker and a phenotype can be evaluated by a P value. In Section we
give short introduction on how P values can be computed by comparing a test statistic
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2. Statistical methods for genome-wide association studies

obtained for the SNP to a hypothetical distribution of test statistics that would be
expected for SNPs that have no association to the phenotype.

Under the simple linear regression model all other effects present in a study including
environment or other genetic effects are modeled as noise, which is assumed to be inde-
pendent between samples. As argued in Section this assumption is overly simplistic
for most of the traits studies in GWAS and in most cases this model fails to account for
the complex structure of other influences on the phenotype. In Section the model
is extended to include known genetic and non-genetic influences.

2.1.1. A linear model of simple traits

In the simple linear regression model, the phenotype ¥, of an individual with index n is
given by as the sum of a bias u that is constant across all individuals, a linear effect of
a marker of interest x, , and random environmental noise ¢, € R.

Yn = Bo +«Tn,*'5*+ €n -
NN S

Phenotype bias SNP effect noise

Assuming that the noise are independent samples of a Gaussian distribution with
variance 02 € R*, then for a dataset of N samples, the probability of the data given a
set of parameters defines the likelihood L of the model.

N
L {y1,-- yn}|Bos Brs0?) = HN(ano-i-xn,*ﬂ*; o). (2.1)
n=1

As the data is observed and fixed, the likelihood £ (8), and also the log likelihood denoted
as log £ (0) are a good way to score a set of parameters 6 and are usually written as a
function of these parameters alone.

2.1.2. A linear model of complex traits

Most quantitative traits take on a continuous range of values and can be considered
complex, in the sense that the variation can not merely be traced back to a single
polymorphic locus, but rather is the result of a variety of influences, including other
SNP-effects and influences like race, gender, or environment.

In the single SNP linear regression model all such additional influences are accumulated
in the noise variable ¢,,. If these influences are not independent between individuals, then
the assumption of independent noise is violated.

An easy way to account for such influences is to include variables with known effects
into the model as regression covariates. The likelihood of a linear model containing C
covariates x, . with effects 3., is defined by

N C
ﬁ(ﬁ,ﬁ*,{wl,...,wp},JQ) = HN (yn}u+:v*'ﬁ*+2xn,c-ﬁc; 02> . (2.2)
n=1 c=1

To unclutter notation, the N-dimensional column vector y, holding the phenotype
values of all samples, the N x D-dimensional design matrix X holding all regressors plus
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2.1. Linear regression

a constant vector of ones as columns, and the D-dimensional column vector 8 holding
the corresponding regression coefficients are introduced.

Y1 1 21 ®mg2 ... 710 Bo

Y2 1 x91 ®22 ... @20 b1
y=1 . | X=1. . S : ) B=1 . |;

YN 1 zy1 ZN2 ... ZNC Be

Without loss of generality, the SNP vector «, and the weight [, are also assumed to be
contained in X and B whenever appropriate, unless we want to highlight these explicitly.
Using this notation, linear regression defines a multivariate normal distribution in the
phenotype vector y.

Given the N-by-1 vector of target values y and the N-by-D design matrix X, the
log-likelihood of linear regression is

log £ (8, 02) = —g log (27702) - % (y—XB) (y—Xg). (2.3)

2.1.3. Estimation in the linear regression model

The likelihood of the data under a set of parameters is a way to evaluate the quality
of such parameters. A good estimator of the parameters o2 and 3 can be obtained by
maximizing the likelihood. For the linear regression model in Equation (2.3), such an
estimate can be obtained, by jointly equating the derivatives of the log-likelihood with
respect to all parameters to zero.

Score function

The score is defined as the derivative of the log-likelihood with respect to a parameter
and is important for parameter estimation as well as statistical testing. For the linear
model, the score function for the effects 3 is given by the gradient

VlogE(B,JQ) 1 T 1 o7
— ==X 'y- X' X3 2.4
And the score of the residual variance parameter o2 is given by
dlog L (B, 0° N 1
#——erf(y—Xﬁ)T(y—Xﬁ)- (2.5)

do? 202 204

Maximum likelihood estimation

The maximum-likelihood parameters of linear regression can easily be found by jointly
equating the score with respect to all parameters to zero.

1 1
?XTy — ;XTXﬁ =0. (2.6)
N 1 .
—ﬁ—l—ﬁ(y—X,@) (y—XpB)=0. (2.7)

15
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Equation (2.6)) can readily be solved for By that does not depend on o2.
-1
By = (XTX) XTy. (2.8)
Plugging the expression for maximum likelihood weights By back into the equation for
derivative with respect to o2, we obtain

T

N 1

st e y_X(XTX)_ley y_X<XTX)_1XTy =0. (2.9

Bum [;1:1

Solving for 0%y gives the maximum likelihood estimate for the variance.

o2y = % <y s (XTX)il XTy>T (y X (XTX)il XTy) : (2.10)

2.1.4. Association testing using linear regression

When testing for association between a SNP «, and a phenotype using the linear regres-
sion model in Equation , the null hypothesis Hg that the SNP has no association is
compared to the alternative hypothesis #; that the SNP is associated to the phenotype.

From the linear regression likelihood it is easy to see that the amount of phenotypic
variation explained by the SNP «, is a quadratic function of the regression effect p.,.
So the magnitude of the regression effects is a measure of association between SNP and
phenotype. If Hy would be true, the regression effect g, would be zero, whereas if H;
would be true, the regression effect would deviate from zero. In a statistical test for
association, these two hypotheses are compared to each other, where a SNP would be
called associated to the phenotype, if the test rejects the null hypothesis Hg in favor of
the alternative-hypothesis H;.

Likelihood-ratio test

Using the likelihood as a measure to evaluate the quality of the hypotheses H; and Hy,
a test statistic follows as the ratio of the maximum of the likelihood under H; and the
maximum of the likelihood under H.

We define the likelihood-ratio statistic LRT as twice the logarithm of the ratio of
the maxima of the respective likelihood functions, or equivalently the difference in their
logarithms.

LRT =2 | sup logL(61)— sup logL(Og) |. (2.11)
O1 | Hy ©o | Ho

If Ho and H; are nested in the sense that H is fully contained in Hi, as in the case of
the tests considered here, this statistic is always larger than or equal to zero.

For two-sided tests in nested hypotheses, where the parameters are not bounded, the
asymptotic distribution of LRT under H, is approximately distributed as a Chi-square
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random variable. The degrees of freedom of the distribution equal the difference in the
number of free parameters between the null and the alternative hypothesis [Wilks, |1938].

So when testing for association of the N x 1 SNP-vector «, while conditioning on
the effect of the covariates contained in X, the null distribution of the likelihood-ratio
statistic for linear regression LRTR is approximated by a chi-square distribution with
one degree of freedom, as the alternative model contains a single extra parameter:

maxﬁﬁ*,gzj\/‘(y}XB—i—m*-ﬁ*;JQI) )
e (2.12)
maxBJQN(y‘X,B—l—:B*-O,UI)

2log

P values are computed from the survival function of the distribution.

2.2. Linear mixed models

This section gives an introduction to linear mixed models and their use in genome-wide
association studies. When introducing linear regression, effects of known variables are in-
cluded in the model as covariates whose effects are estimated using maximum likelihood.
The central idea behind confounder correction in GWAS using linear mixed models is
that while it is hard to get reliably give point estimates for the effects of confounding
genetic structure, it is often possible to describe these in terms of random effects, for
which covariation can be quantified in terms of the degree of genetic relatedness between
the samples.

The linear mixed model is introduced for the effects of a number of causal variants
in Section The most commonly used measures of relatedness are introduced in
Section[2.2.1] Methods for parameter estimation in in linear mixed models are introduced
in Section and statistical testing is introduced in Section [2.2.4]

A linear mixed model of complex traits

In linear mixed models the phenotype y is written as the mized sum of a linear term in
the fized effects 3, that as in the linear regression model include a bias term as well as
the effects of known covariates and the marker of interest, and linear random effects u.

y=Xp+ Gu +_ € , (2.13)

fixed random  noise

where the N-by-S matrix G is the design matrix holding S causal loci.

When testing a marker for association with the phenotype, the standard application
of linear mixed models for genome-wide association studies, the variables of interest are
modeled as fixed, whereas the random effects account for nuisance variation and are
integrated out. If the causal loci are confounded by population structure, then including
these in a test for association corrects for confounding variation in the phenotype, similar
to covariates in a standard linear regression model (see Figure [2.1(a))).

For many complex traits it has been observed that the contribution of each of the
S causal loci to the total level of genetic variance O’g is approximately equal, with an
effect size distribution that is inversely proportional to the corresponding minor allele
frequencies fs [Park et al.; 2010, 2011]. Under this model the random effects are treated
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2. Statistical methods for genome-wide association studies

as independent Gaussian variables, each contributing an equal fraction of %ag to the
total variance ag . The S loci contained in the design matrix G are assumed to have a
mean of zero and unit variance.

If we define the total random genetic effect as v = Gu, then v follows a multivariate
normal distribution:

v~ N (0;0.K), (2.14)

where the covariance is proportional to K = %(_;G’T, a matrix that quantifies the genetic
relationship between individuals based on the causal loci.

Under this commonly used model the marginal likelihood of y follows from marginal-
ization of v:

/./\/'(y‘XB+v;021)-N('v’O;aéK)dv:N(y’X,B;agKJrUQI). (2.15)

Equivalently, the log (marginal) likelihood is a function of fixed effects 3, and the
variance parameters 8 = [02, Ug], namely the level of environmental noise ¢? and the

genetic variance aé.

N 1 1 _
log £(B,60) = = log (2r) — S log [Va| — 5 (y = XB)' Vy ' (y — XB),  (2.16)
where we defined the complete covariance term of the distribution as Vp = UEK +o%I.

In this form, the causal variants enter the model only in the genetic relatedness ma-
trix K, which directly represents the confounding variation in the phenotype (See Fig-

ure [2.1(b))).

2.2.1. Measures of relatedness

So far we have assumed that the matrix of genetic relatedness K is computed from the
causal loci. In practice these are unknown and other measures of genetic relatedness have
to be used instead. Here we review the most commonly used measures of genetic similar-
ity, including identity by descent computed from pedigrees and the realized relationship
matrix.

We also provide a brief introduction to kernel methods, that can be used to model
other types of covariance structures.

Kinship Matrix

In Fisher’s infinitesimal model the distribution of a phenotype is derived for the case of
an infinite number of causal variants in Equation (2.13). In his model a quantitative
phenotype y with total genetic variance o2 be given by the sum of a large number of

g
genetic effects of individual variances %O’é.

S
7=1
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Figure 2.1. Graphical model representations of two related concepts to ac-
count for confounders in GWAS. In both panels the phenotype y is affected by
multiple unknown genetic causes x1,...2xg. There is a close relationship between @ a
model that conditions on possibly confounded background variants and @ a model that
corrects for unknown confounding influences P by either an estimate of the confounding
variable or the variance it induces.
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2. Statistical methods for genome-wide association studies

then in the limit of an infinite number of causal loci (S — o), that independently follow
Mendelian inheritance, the phenotypic covariation between two individuals is propor-
tional to the amount of genetic material at the causal loci that is identical by descent
(IBD).

Introducing additional fixed effects 3, then the distribution of the phenotype is given
by a linear mixed model.

y~N(XB;0iKmp +0°I), (2.18)

where Kigp is the matrix of IBD coefficients between pairs of individuals.

Kinship coefficients can be computed from known pedigrees |Fisher] 1918] and should
be corrected for an increase in relatedness due to inbreeding [Wright, (1922, |Malécot,
1948|. For the case, where the pedigree is not known, the kinship matrix Kipp from
genetic markers [Abecasis et al. 2001, Hardy and Vekemans, 2002]. Such marker-based
estimates of IBD have been used in mixed model applications to GWAS in maize and A.
thaliana [Yu et al., [2005a), Zhao et al.l 2007].

Realized Relationship Matrix

Estimates of realized relationships between individuals are obtained by counting aver-
age number of shared marker alleles between two individuals and have been shown to
improve prediction of the genetic component of a trait over predictions using pedigree-
based kinship estimates [Nejati-Javaremi et al., |[1997]. These predictions have been fur-
ther improved by the use of dense genome-wide markers that tag causal loci due to
linkage [Meuwissen et al. 2001} Villanueva et al., 2005]. Also for GWAS the use of rela-
tionships estimated from genome-wide markers have been shown to improve correction
for confounders over relationship based on kinship [Kang et al., 2008].

Let the N-by-S matrix G be a matrix holding S genotyped markers for N individuals.
We assume that each marker in G is mean centered and is normalized to have unit
variance. We define the realized relationship matriz (RRM) as the empirical covariance
matrix

Krpyv = %GGT. (2.19)
Similar to the linear mixed model that uses the causal variants, the linear mixed model
using the RRM can be written as a linear regression model where some regressors are
fixed and some regressors are random.

y=XpB+ Gu +e. (2.20)

fixed random

In this view the variants contained in the RRM are used as random regressors or
covariates that capture the genetic variation in the phenotype by being linked to the
unknown causal variants or by ways of confounding. Overfitting due to the large number
of covariate effects is avoided by integrating the regressors over independent normal
distributions with variance o /S (See Figure .
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Kernel methods

Random effects can be interpreted as a Gaussian random process, whose covariance is
given by the genetic relatedness [Rasmussen and Williams, |2005]. After integration of the
genetic effects in the linear mixed model likelihood (Equation (2.15])), the random effects
only appear implicitly as a function of their covariance matrix K. Any features contained
in the original design matrix are used only implicitly in the form of dot-products.

For these kinds of models, it has been shown that in principle any symmetric semi-
positive-definite kernel matrix could be used for K. While in the standard linear mixed
model these dot products are computed directly on the features, resulting in a model
that is linear in the features, kernel functions may represent non-linear dot-products and
thus can yield models that are non-linear in the original features [Kimeldorf and Wahba,
1970, |Scholkopf et al.l 2001, Scholkopf and Smolal 2001].

Kernel methods have been used to come up with covariance structures that do not
only cover genetic effects, but also effects of hidden environment.

For example in the context of expression quantitative trait locus (eQTL) studies, co-
variance structures based on latent variable models |[Lawrence, 2004, [2005] representing
shared hidden influences can be estimated jointly from all expression phenotypes, and
has been shown to yield improved correction and a gain in power to detect novel asso-
ciations [Stegle et al., 2010, Listgarten et al., |2010, Fusi et al., [2012} [Stegle et al., 2012,
Fusi et al., [2013].

2.2.2. Best linear unbiased prediction

The best linear unbiased predictor (BLUP) is a minimum variance predicted value of
the random effects v in a linear mixed model. Predictions of random effects are a means
to predict the phenotype of an individual from genotyped SNP-data [Lee et al., 2008].
For example in animal breeding these predictions are utilized as a genomic selection
index or breeding value to increase gain in breeding experiments [Henderson, 1950, 1984,
Meuwissen et al., 2001, |Villanueva et al., [2005],.

The BLUP 9, of an individual of interest indexed by * is obtained by maximizing
the joint distribution of the vector of all observed phenotypes y and the random genetic
effect v, of that individual of interest. Let Vg be the total covariance term of y, the
1-by-N dimensional vector of genetic relatedness between the individual of interest and
all observed individuals be k, . and the genetic relatedness of the individual of interest
with itself be k, ., then the joint distribution of y and v, is given as

Yy Xp3 . Vo UQkI:
(U0 L )

The BLUP is now equal to the mean of the the conditional distribution of v, given y.

Ve |ly ~ N ngh;V;l (y—XpB); agk‘*,* - Jékz*’:V(;lagkI: . (2.21)

BLUP

Given the vector of covariates for the individual of interest @, then the conditional
distribution of the phenotype of the individual y, follows by adding the covariates effects
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and accounting for the environmental variance.

_ -1
yely ~N (ac*,@ + ng*,;VO Yy —-Xp); (Ték*,* + 02— O’ék*7; (aéK + JQI) ngl—,z) .
(2.22)

Equivalent predictors of random or latent quantities in Gaussian models have been de-
veloped multiple times in other fields, these are for example known as Wiener-Kolmogorow
filters, smoothing-spline models, Kriging and Gaussian-process regression [Robinson,
1991, Matheron) 1963, [Wahbal, (1990, Rasmussen and Williams|, [2005]. Many tricks devel-
oped for these methods are directly applicable to linear mixed models with applications
in genetics.

2.2.3. Parameter estimation in linear mixed models

Starting with the linear mixed model with random effects integrated out with log likeli-
hood equal to (2.16), the goal is to infer the model parameters 3 and 6 = [o?, aé] and
any additional covariance parameters if these are present.

Score

The gradient of the log-likelihood as given in Equation ([2.16]) with respect to fixed effects
w defines the score of w.

Vlog L (,@, az,ag)
V3

The score of a variance parameter is the partial derivative of the log-likelihood with

=X"V,ly- X"V, X3 (2.23)

respect to a variance parameter 6;:

dlog L(B8,6) 1 _19Vp 1 Ty-19Ve
90, 2" )ty XB) Ve 5y

Volly—XpB). (224)

The matrix derivative of the covariance Vy = O'éK + oI with respect to the environ-
mental variance 6; = o2 equals

Ve

do2 7

and the matrix derivative with respect to the genetic variance 6y = ag equals

oV _
80% a

Maximum likelihood estimation

As in the case of the linear regression, the likelihood is maximized by equating the
gradient with respect to all parameters to zero and jointly solving the resulting equations.
Though, while for linear regression the maximum likelihood parameters can be found
in closed form from the gradient equations, this is not the case for linear mixed models.
Moreover, the log marginal likelihood function is not jointly convex in the variance
parameters, rendering it hard to ensure global maximization of the likelihood.
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2.2. Linear mixed models

A straightforward way to obtain a local optimum of the parameter values is to use
gradient descent methods. For most GWAS applications, though, naive use of gradient
descent techniques is not well suited, as these involve repeated computation of the log-
likelihood function as well as of the gradients and for second-order methods like Fisher
scoring or Newton-Raphson also of the Fisher or observed information matrix [Demi-
denko, 2004].

Maximum likelihood estimation can be simplified by writing the log likelihood in Equa-

2
tion (2.16)) as a function of the ratio v = % of the genetic variance Ug over the environ-
mental variance o2 [Hartley and Raol, [1967].

N 1 1 _
10g£ (7) 027/6) = _Elog (27T0—2)_§10g ’H7|_ﬁ (y - XIB)T H’y ! (y - Xﬁ)v (225)

where we defined the matrix H, = I + K. In this formulation the maximum likelihood
solutions for all parameters other than ~ (3, and o2) follow in closed form for any positive
value of ~.

The maximum likelihood value By, of the fixed effects as a function of ~ is found by
taking the gradient of the log-likelihood in Equation with respect to 8 and jointly
setting all entries of the gradient to zero.

L T g1 L T g1

By bringing the part involving Bu,, to one side and after cancelling o2 from the equation,
this becomes
X'H'XBy, = X"H;'y.

Multiplication of both sides by the inverse of the factor on the left side yields the maxi-
mum likelihood solution of the fixed effects given a value of v as

-1
Bu, = (XTH'X) X"H'y. (2.26)
To find the maximum likelihood value of the genetic variance o2 as a function of +y, the
maximum likelihood values of the fixed effects By, from Equation (2.26]), which do not

depend on o2, are substituted into the log likelihood, Equation (2.25). The derivative
with respect to o2 is set to zero, giving

N 1 T e
- 2U2M7 + 2U4Mw (y - XBM’Y) H’Yl (y - XﬁMv) =0.

Both sides are multiplied by 264, and the result is solved for O'QMW, such that the maxi-
mum likelihood solution of the residual variance given -y is

1
oy, = & (v~ XBu,) Hy' (y - XBr,).-

After further simplification, this becomes
1 _
o'm, = v P H Py, (2.27)
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2. Statistical methods for genome-wide association studies

where we defined P, as the matrix
T 1o 1
P,=1-X(X"H;'X) X'H;" (2.28)

Plugging the maximum likelihood estimators of 3 and o2 back into the likelihood, a
profile log likelihood is obtained as

N 1 1
log £ (v) = félog (2%021\/{7) —5 log |H,| — 302y (y - X,@MW)—r H;l (y — X,@MW) .
2

Using the maximum likelihood expressions from Equations (2.26) and (2.27) and simpli-
fying, this profile log likelihood becomes a function of + alone

N 2 1 N _
log £ (7) = —5 (1 + log N) — 5 log |H.,| — - log y P H 'Py. (2.29)

In principle, a local optimum with respect to + of this profile log-likelihood could be
obtained by the use of gradient descent methods. Alternatively, derivative-free methods
like a grid search can be used to find an optimum for ~.

Restricted maximum likelihood estimation

On finite data the maximum likelihood estimate has been found to underestimate the
variances in the Gaussian model. This can be attributed to the fact that under maximum
likelihood estimation, the estimate of variances depends on a distribution that has been
profiled for the fixed effects and exerts a loss in degrees of freedom.

Restricted maximum likelihood] estimation has been proposed to overcome this loss on
degrees of freedom by estimating variance components of the model only on a projection
of the target variable (i.e., the phenotype) into an N — D-dimensional subspace, that is
orthogonal to the fixed effects. Intuitively, the variance components are estimated from
residuals of the target variable, after the fixed effects have been regressed out. The fixed
effects on the other hand are estimated from another projection, which under the model
is statistically independent to the former projection. More formally, for N > D, two
suitable projection matrices S and Q- are chosen such that they fulfill the four following
criteria [Patterson and Thompson, [1971]:

1. rank(S) =N — D.
rank(Q~) = D.

2. The two projections are statistically independent under the model.
& Cov(Sy,Q+y) = 0.
& SH,Q) =0.

3. The expected value of Sy under the model is zero.
< E(Sy) =0.
& SX3=0.
=8X =0.

talso: residual maximum likelihood
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2.2. Linear mixed models

4. rank(Q,X) = D.

From these conditions it follows that the likelihood can be written the product of like-
lihood functions of two independent projection of the data, one on Sy and one on
Q-y |Patterson and Thompson, 1971].

L (165770-2) o L (Wa 02|Sy) L (B|Q7y”77 02) ’ (230)

where £ ('y, 02|Sy) is also called the restricted likelihood, for which [Harville [1974] pro-
posed suitable matrices for S and Qﬂ namely the N-by-N orthogonal projector for the
fixed effects X

—1
S=I-X (XTX) x7 (2.31)
and the D-by-N matrix

-1
T 1 T -1
Q, - (X"H'X) X'H; (2.32)

Parameter estimation is then performed in a two-step procedure. First log £ (7, 02]Sy)
is maximized with respect to the variance parameters v and . Then, the solutions
obtained are plugged into log L (6]Q7y,’y,02) which subsequently is maximized with
respect to 3.

Estimation of variance parameters by restricted maximum likelihood In order to
find a suitable expression for log £ (v,az\Sy) one has to account for the fact that the
covariance of Sy is 02SH, S, a matrix that is rank deficient due to a projection to the
space orthogonal to X. A way to do so is the use of the pseudo-determinant and the
Moore-Penrose pseudo-inverse of SH.,S.

log L (7,02\.5'1;) =— log (27r02) - %log |SH,S|; — %yTS’ (SHVS)T Sy.
Both, the pseudo-determinant as well as the pseudo-inverse can be computed from the
economy spectral decomposition Vg X, Vg of SH., S, where X, is an (N—D)-by-(N—D)
diagonal matrix, holding the non-zero eigenvalues of SH,S and Vg is an N-by-(N — D)
matrix, holding the corresponding eigenvectors as columns. As shown in Lemma S
can be written as VSVST. Also using VSTVS =1, we get

N-D
2

1 1 _
log (270?) — 5 1081 25| — T‘zyTVSZ‘fVSTy.

It follows, that L ('y, 02|Sy) equals to the regular multivariate normal distribution on
VST y with covariance matrix X jumma-

L (7,02|Sy) :N<V5Ty } 0; 0227) : (2.33)

The restricted maximum likelihood estimators of the variance parameters U2R,Y and
YR, are found by applying maximum likelihood estimation to £ (7,02]Sy), given by

ZNote, that [Patterson and Thompson [1971] originally used S = I — X (XTX)71 X" and Q, =
XTH;.
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2. Statistical methods for genome-wide association studies

Equation ([2.33]). Taking the derivative of the logarithm of £ (7, 02]Sy) with respect to
o2 and setting this to zero, we get

N-D 1 T —1y, T
0=— VeX Vg uy.
QO'QRA/ + 20'2R7y S~ sY
The solution to this Equation is
1 _
o?r, = N DyTVSZ‘W W4 y. (2.34)

Profile restricted likelihood When plugging the restricted maximum likelihood esti-
mator for the environmental noise O'QRW back into the log restricted likelihood, a log
restricted likelihood, which is profiled over o2, is derived as

N-D 2 1
log £ (7, 02R7|Sy) = <1 —log ) — §log | X, - log Rg, (2.35)

N-D

where the residual term is

Rs=y Vs 'Vgy. (2.36)
The derivative of this log likelihood with respect to the remaining free parameter - is
dlog L (v, 02, |S 1 0%, N-D%=
8L (1 wISY) | 1 5103, o (2.37)
0y 2 77 Oy 2 Rg

Herein, the derivative of the matrix X', of the N — D non-zero eigenvalues of SH., S is

given by
0%, %, —In_p
0y v
As can easily be verified using Lemma the derivative of the residual term is given

by

(2.38)

OR 0%,
ETS 5 St AT (2.39)

T -1
=y VgX
y Vs 5o

Estimation of fixed effects by restricted maximum likelihood An expression for the
logarithm of £ (,B\wa, v, 02) can be found as

D 1 1 1
log £ (8|Qy,7,0%) = =5 logo® — log QH, Q|2 — 552 RaQy (2.40)

where .

R, = Q- QXA (QH,Q]) (Qy-Q,X8). (2.41)
So, L (ﬁ QY. 7, 02) is equal to a multivariate Normal distribution of Q,y.
£(81Qy.7,0%) =N (Quy|B; *X H'X ). (2.42)

From this, the maximum with respect to Br, is found in closed form as the general
least squares estimator:

-1
Br, = (XTH'X) XTH'y. (2.43)
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2.2. Linear mixed models

The estimator has the same form as the maximum likelihood estimate, but differs in
the estimate of the parameter v, as for REML + is estimated by maximizing the profile
restricted likelihood (Equation (2.35))).

Bayesian interpretation of restricted maximum likelihood estimation While restricted
maximum likelihood estimation might seem heuristic, there is the following equivalent
Bayesian interpretation. When instead of maximizing the likelihood over the fixed ef-
fects, these are integrated over a prior distribution, then, as the prior variance O'% goes
to infinity, the resulting marginal likelihood is proportional to the restricted likelihood.
It follows, that the restricted maximum likelihood covariance parameters coincide with
the maximum likelihood parameters of the marginal likelihood. Also, the posterior ex-
pectation of the fixed effects coincide with the restricted maximum likelihood estima-
tor [Harville, (1974, Dempster et al., 1984].

As the integral over the fixed effects B of the posterior distribution p (8|Q~y) of 8
equals one, the restricted likelihood £ (7, 02|Sy) can be written as

£(1.0%189) = £ (1,071Sy) [ p(8IQ,p) 4B, (2.44)

1

L (’y, o?|S y) is not affected by the fixed effects and thus can be moved inside the integral.

Lmﬁwwzjcwﬁwwpwwwma (2.45)

Assuming that the prior distribution over the fixed effects is an isotropic normal distri-
bution with variance 0%. Then, the posterior distribution can be identified by completing
the squares as

B~N(mg; Vg), (2.46)
where 1
Vs = (12 (x7H; ' x) Ty 121> (2.47)
g Uﬂ
and ) .
mg = Vs (XTH'X) Q. (2.48)

It is easy to see, that in the limit of this distribution, as 0[23 goes to infinity
2% T py—
ﬁN./\/'<Q7y; o X Hle),

which equals £ (,B\wa, 7, 02).

For this case, we can write
£(101Sy) = [ £(20%1S9) £ (81Q,.7. ) 46 (2.49)

As shown before, the product of £ ('y, UQISy) and L (,B\ny,’y,az) is proportional to
the full likelihood

zxmﬁww=0 /cmwwmm%m1 (2.50)
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2. Statistical methods for genome-wide association studies

using Lemma the constant C' can be identified as | X T X |% [Harville, [1974]. Solving
the integral analytically, the restricted likelihood is obtained as being proportional to the
marginal distribution of y, when the fixed effects are integrated over a prior distribution
with infinite variance.

N—-D
(2r0%) 7 X X3 X TH X e~y (y - X0n,) T H (v - XB,).
(2.51)
where the posterior expectation of the fixed effects equals the restricted maximum like-
lihood estimator Br., = (XTHW_lX)_1 XTHW_ly.

2.2.4. Statistical testing using linear mixed models

Here we provide the likelihood ratio test for testing a fixed effects in a GWAS.

2.2.5. Likelihood ratio test

Also for linear mixed models the null distribution of the likelihood-ratio statistic for linear
regression LRTy R can be approximated by a chi-square distribution with one degree of
freedom, as the alternative model contains a single extra parameter, when testing for
association of the NV x 1 SNP-vector «, while conditioning on the effect of any covariates
contained in X [Hartley and Rao, [1967].

maxg g, 5252 N (y | XB + @s - fu; 03 K + 0°I)
maXﬁJQ,o.gN(y‘X/@—i—a;*.O; 02K + 021 )

LRTL R = 2log ~ X1 (2.52)

As for linear regression P-values are computed from the survival function of the distri-
bution.

2.3. Other methods for population structure correction

Apart from linear mixed models a range of methods have been proposed to correct for
population structure. Even though linear mixed models have been shown to improve
confounder correction over these alternative methods in a number of GWAS in maize, A.
thaliana, potato and human [Yu et al. 2005al Zhao et al., 2007, Malosetti et al. 2007,
Kang et al., 2008|, 2010], there might be benefits from combining mixed models with
these other methods to get a more stringent correction.

Genomic control estimates the amount of inflation in a GWAS by comparing quantiles
of the observed distribution of test statistics to the theoretical unconfounded distribution
and corrects for inflation by simple matching of the median [Devlin and Roeder] 1999).

While genomic control corrects for inflation in a standard analysis, the other methods
presented in this section correct for genetic structure by ways of modeling. The idea
underlying these methods is that population structure is summarized by a small number
of features that subsequently are included as covariates in a standard regression analysis.
Similar to the different variants of the genetic relatedness matrix, these methods can be
interpreted as either trying to estimating the confounding variable, or conditioning on
other confounded variables (see Figure [2.1).
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2.3. Other methods for population structure correction

2.3.1. Genomic control

The idea underlying genomic control is simple. In order to correct for inflation of P val-
ues, it is possible to compare the distribution of test statistics obtained to their theoretical
null distribution.

Genomic control defines the genomic inflation factor A as the ratio of the observed
median test statistic over the theoretical test statistic under an the null hypothesis in a
theoretical unconfounded analysis.

median (LRT)

~ median (Hnull) (2:53)

So for the likelihood ratio test of a fixed effect in a linear model (like linear regression
or linear mixed models) A equals the median of twice the observed LRT over the median
of a Chi-square distribution with one degree of freedom. Another common variant uses
quantiles of the base ten logarithmic distribution of P values. In this case, A is given by
the median of the observed —log;,(P) over —log;,(0.5)

Correction by genomic control is performed by dividing all test statistics by A and can
be shown to yield a conservative test.

From an intuitive standpoint the reasoning behind genomic control is that the vast
majority if not all tested markers are not linked to causal loci and for this reason their
test statistics should follow the distribution under the null hypothesis. Differently than
methods that account for population structure by ways of modeling, genomic control
uniformly affects the test statistics of unlinked as well as linked SNPs and does not change
the order of test statistics. In experiments Price et al. [2006] show that such uniform
adjustment is on the one side insufficient for markers showing stronger than average
differentiation between ancestral populations and leads to a loss in power at markers
having weaker differentiation. While approaches that model population structure can in
some cases lead to an increase in power compared to an uncorrected analysis, the use of
genomic control always reduces power.

Due to its simplicity though, correction by genomic control can be applied in conjunc-
tion with any model or statistical test, as long as the distribution of the test statistics is
known or can be reliably estimated. For example it would be possible to apply genomic
control to correct for residual inflation in an analysis using mixed model.

Besides for correction A is also a commonly used measure of the calibration of the Type
1 error in a GWAS. A value of A larger than one is an indicator of anti-conservativeness,
or inflation of Type-1 errors, a value that is smaller that one indicates loss of power due
to deflation.

Note however, that while values of A larger than 1.05 and above in studies of human
have usually been attributed to confounding [Burton et al., 2007], for studies of highly
polygenic traits like body mass index or human height much larger values of A have
been shown to occur due to broad linkage to causal loci alone, without the presence of
confounding [Speliotes et al., 2010, |Allen et all [2010, Yang et al., 2011b|. In this case
correction by genomic control would yield overly conservative estimates.
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2. Statistical methods for genome-wide association studies

2.3.2. Ancestry informative markers

Similar to the use of SNP makers to estimate relatedness in linear mixed models, such
markers have also be used as covariates in a linear or logistic regression analysis. A
concern when introducing covariates in a standard regression analysis is that the model
suffers from a loss in degrees-of-freedom due to fitting the covariate effects in the null
model. Only effects that are orthogonal to the set of covariates can show any association.
To avoid a strong loss of power, the number of covariates should be kept small, instead
of using all genome-wide markers. Still, the use of a relatively small number of widely
spaced, randomly selected markers (=~ 10?) has been shown to correct for population
stratification [Setakis et al.,2006]. Also the use of a single marker that has been selected
to be ancestry informative has been proposed [Wang et al., 2005].

Another approach that uses ancestry informative markers to place the individuals in
subgroups of varying degree of admixture has been proposed by |Epstein et al., 2007].
Instead of including these markers as covariates in a regression analysis, the markers
where used as a score that allows a stratified analysis of the individual subgroups.

2.3.3. Structured association

Instead of directly including markers that implicitly reflect population structure by differ-
ences in allele frequencies between populations, markers can also be used estimate explicit
estimates of shared ancestry. From genetic markers, the software package STRUCTURE
estimates a number of latent variables representing ancestry using Markov-chain Monte
Carlo sampling [Pritchard et al., [2000a]. The model can be interpreted as clustering,
where the membership variables represent shared ancestry between cluster members.
These latent variables are then used as covariates in an association study [Pritchard
et al., 2000Db].

Compared to use of markers, summarizing the genetic variation in a small number of
latent variables has the advantage that typically a fewer number of covariates are required
to correct for population structure, yielding a smaller loss in power. The Markov-chain
Monte Carlo algorithm, though, has a runtime that makes application of structured as-
sociation infeasible on larger numbers of markers and individuals. Another problem is
to properly determine the correct number of latent variables. Even though the STRUC-
TURE program outputs the likelihoods achieved for a number of latent variables, re-
peated runs of the algorithm would further increase the runtime of the method.

As latent variables capture differences in variation on a population scale, structured
association is useful for correcting for population structure but unlikely to correct for
cryptic relatedness present in the data.

2.3.4. Principal components analysis

Another latent variable method that has been applied to correct for population structure
genetic studies is principal components analysis (PCA) |[Zhang et al., 2002, [Price et al.
2006].

Principal components (PCs) are estimated from a genome-wide covariance matrix sim-
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ilar to the realized relationship matrix

Kpca = %GGT. (2.54)

While PCA is computationally more efficient than structure association, as is requires
computation of the first & Eigenvectors of Kpca, which can be performed in O(N?%k)
runtime.

As for structured association it is unclear how to best chose the number of principal
components to use. By default EIGENSTRAT uses the first ten principal components.
Identifying the correct number of components to use can be cumbersome. It was proposed
to select the number of components such that the total genomic variation is significantly
captured by the PCs [Patterson et al., [2006, Price et al.,2006]. In practice, however the
number of components is typically chosen by comparing values of A [Tian et al.| 2008].
The first principle components tend to be dominated by large regions of strong linkage.
As a result these components give little information on population structure [Astle and
Balding, [2009]. Two to fifteen PCs ave been reported to by sufficient in practice [Astle
and Balding) 2009].

It has also been shown that the number of PCs required for correction could be reduced
by selecting the PCs by correlation to the phenotype [Novembre and Stephens, 2008, [Lee
et al., 2011].

2.4. Application of linear models to case-control phenotypes

Theoretically, linear models as linear regression or linear mixed models are not appropri-
ate for modeling case-control phenotypes. These would ideally be modeled using a logistic
or probit model. Use of linear models, however, severely reduces computational burden
and avoids assessment of statistical significance of approximations to logistic or probit
mixed models, for which no exact solution can be computed [Rasmussen and Williams,
2005, Agresti, [2002]. The linear approximation of case-control phenotypes finds broad
use in practice as it has been shown to work well in practice for tests of sufficiently
common SNPs and intermediate ratios of cases and controls [Price et al., 2006, |Astle and
Balding, 2009, |Agresti, [2002]. Note however, that we observed skewed distributions of
test statics when testing rare variants (f < 0.01) using a linear model [Listgarten et al.)
2013b).
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3. FaST linear mixed models for
genome-wide association studies

Linear mixed models are among the richest class of models used today for genome-
wide association studies, and have been shown to be capable of correcting for population
structure, family structure, and cryptic relatedness |Astle and Balding, 2009} Price et al.,
2010b|. In contrast to other methods that were discussed in Section linear mixed
models can capture all of these forms of relatedness simultaneously, without knowledge
of which are present and without the need to tease them apart.

Despite of the benefits of linear mixed models, their widespread use on contemporary
data sets has long been limited. The main reason for this is that statistical inference
in linear mixed models involves computations that in terms of runtime scale cubic in
the number of samples V. Even on studies involving a moderate number of samples,
naive evaluation of the model for every single SNP is infeasible, as the typical number
of SNPs in a genome-wide association study ranges from the hundreds of thousands to
millions. Another bottleneck, when applying linear mixed models to large cohorts is that
the memory requirements to store the complete relationship matrix is quadratic in the
number of samples.

The situation has changed due to a recent focus on adapting linear mixed models to
make them scalable to larger and larger studies [Aulchenko and de Koning, 2007, Kang
et al., 2008, 2010}, Zhang et al., [2010].

We start by an introduction to the Efficient Mixed Model Association (EMMA) al-
gorithm. EMMA makes smart use of linear algebra to avoid repeated cubic operations
on the covariance matrix in the mixed model when estimating the variance parameters
in a test |[Hartley and Rao, (1967, Patterson and Thompson, (1971, [Kang et al., 2008].
Even though the computational savings over naive evaluation are tremendous, a spec-
tral decomposition of an N-by-N matrix has to be computed for every marker that is
tested, such that the cubic runtime requirements per test remain. Due to this runtime
bottleneck this approach is practically limited to the analysis of genome-wide association
studies on no more than several hundred samples.

As exact mixed model computations have commonly been considered too expen-
sive to be applicable to even moderately sized cohorts, various approximations have
been proposed, that aim at faster computations at the possible cost of reduced accu-
racy |[Aulchenko and de Koning} 2007, Kang et al. 2010, |[Zhang et al. 2010, Svishcheva,
et al., 2012]. An overview over these methods can be found in Section The most
widely used approach, which has been shown to work well on many data sets, is to make
the simplifying assumption that variance parameters are fixed for every SNP tested and
can be estimated on the null model [Kang et al. 2010, |Zhang et al., [2010]. Due to this
simplification, cubic computations in the form of two spectral decompositions of N-by-N
matrices have to be performed only once, for the null-model. The computations that are
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required per SNP are reduced from cubic to quadratic in the number of samples. The
storage requirements remain quadratic, as the algorithm still requires the full genetic
relatedness matrix. Even though this approach has successfully been applied to cohorts
of over ten thousand samples, together with the quadratic storage, the remaining cubic
computations, which are hard to parallelize efficiently, are still a considerable bottleneck.
In practice, the approach is not applicable to studies on extremely large cohorts, that
are produced nowadays in order to gain sufficient power to get new insights on complex
phenotypes, detect weak SNP effects, or effects of rare alleles |Do et al., 2011}, Speliotes
et al., 2010, Allen et al., |2010| Teslovich et al., 2010} [Ehret et al., |2011].

With the new FaST-LMM algorithm |[Lippert et al., 2011], presented in Section
we demonstrate, that exact mixed model computations are feasible on data sets of more
than ten thousand samples, without making any simplifying assumptions. In contrast to
earlier algorithms FaST-LMM requires only a single initial cubic spectral decomposition,
while the computations that have to be performed per SNP tested are only quadratic
in the number of samples. Thus, the runtime is N times faster than previous exact
algorithms |[Kang et al., |2008] and has the same runtime as when variance parameters
are assumed to be fixed [Kang et al., 2010, |Zhang et al., QOIO]H

Finally, in Section an extension of the FaST-LMM algorithm is presented, that
breaks the quadratic barrier by use of a reduced set of SNPs to measure genetic similarity,
thereby achieving both linear runtime and linear memory use. Thus, FaST-LMM enables
application to extremely large data sets. The computational gains rely on the number of
markers used to estimate genetic similarity being smaller than the number of individuals
in the study. On real data sets we show that a set of only a few thousand SNPs sampled
linearly along the chromosome provides a good measure of genetic similarity and is
sufficient to correct for population structure in a genome-wide association study. In
Chapter [d] we show that by selecting a small number of markers by their association to the
phenotype FaST-LMM even yields a consistent increase in power and better correction
for genetic relatedness compared to use of genome-wide markers. Consequently, FaST-
LMM provides extraordinary speedups when tens of thousands of individuals or more are
analyzed, which we demonstrate by analyzing a dataset containing more than 120,000
individuals |Lippert et al., [2011].

3.1. Efficient mixed model association

The EMMA algorithm [Kang et al.l |2008] builds on the insight that the maximum like-
lihood, or alternatively, the restricted maximum likelihood, of a linear mixed model can
be rewritten as a function of just a single parameter, v, the ratio of the environmental
noise variance o2 to the genetic variance O'g, rather than as a function of all of the model
parameters |[Hartley and Rao, (1967, |[Patterson and Thompson, 1971, [Kang et al., 2008].
Given a value of v the (restricted) maximum likelihood values for all of the model param-

LAn algorithm similar to the full-rank FaST-LMM algorithm was proposed earlier in an unpublished
PhD thesis that we obtained by personal correspondence [Astlel 2009] and is implemented in the R
package GenAbel |Aulchenko et al.,|2007] as well as in the MMM package |Pirinen et al., [2012]. An
algorithm that is almost identical to the full-rank FaST-LMM algorithm has also been proposed and
implemented as Genome-Wide Efficient Mixed Model Association (GEMMA) |Zhou and Stephens)
2012|.
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3.1. Efficient mixed model association

eters (i.e. the genetic and environmental variances along with the fixed-effects) follow
in closed form. Consequently, the identification of the optimal parameters becomes an
optimization problem over this single variable ~.

Additionally, EMMA makes clever use of spectral decompositions to reduce the cost of
evaluating the log-likelihood for any value of -y, which is ordinarily cubic in the number of
individuals, to linear in the number of individuals, once the two spectral decompositions
are performed [Patterson and Thompson, 1971, Kang et al., 2008].

3.1.1. Maximum likelihood estimation

For maximum hkelihood estimation, EMMA uses the formulation of the likelihood using

the ratio v = —§ of the variance parameters ag and ¢, for which the maximum likelihood
estimators for all other parameters follow in closed fornﬂ By plugging the maximum
likelihood estimators By, as given in Equation (2 and the maximum likelihood esti-
mator 0'2M,Y as given in Equation back into the log-likelihood, the profile likelihood

log L () is obtained as given in Equation ([2.29):

N 27 1 N _
log £ (v) = -5 (1 + log N> ~ 3 log |H,| — 5 logyTP,YTH7 1P7y,

where

-1
_ T -1 T rr—1
P,=1-X(X"H;'X) X'H;"
According to Lemma PJ H 1P7 equals the Moore-Penrose pseudoinverse of SH, S,
where § = (T - X (XTX) "' XT).

N 2m 1
log £ (v) = 5 (1 + log N) ~log |H,| — logy (SHWS)Ty

As shown in Lemma the economy spectral decomposition of SH., S can be obtained
efficiently from Ug (¥ + I)Ug, the economy spectral decomposition of S (K + I).S,
where X' is obtained by subtracting one from each non-zero eigenvalue of S (K +I) S.
The pseudoinverse of SH,S can be solved from this economy spectral decomposition,
by inverting the non-zero eigenvalues:

-1

(SH,S)' =Us |72 +Iy_p| UJ. (3.1)
—_——
2"(
Let the spectral decomposition of K be UAU . As shown in Lemma the spectral
decomposition of H, = vK + I is given by U (yA+ 1)U T. By using the equalities
|AB| = |A| - |B|, for full rank matrices A and B, and |U| = 1, the logarithm of |H,|
can be written as the logarithm of |yA + I|. Plugging in these terms, we get

N 27 1 N _
log L () = 5 <1+10gN> —510g|7A+I|—510gyTU5 (vE 4+ 1)ULy, (3.2)

2For keeping the presentation consistent with earlier literature |Hartley and Rao, 1967, [Patterson
and Thompson), [1971], we prefer to use « instead of § = %, as used in the original publication of

EMMA |Kang et al.;[2008]. All derivations are analogous and the runtime is the same.
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3. FaST linear mixed models for genome-wide association studies

In order to make efficient evaluation efficient, we write Equation (3.2)) using only the
entries of these matrices.

N N—D T 712

N or\ 1 N [Usy],

IE:——ll——fl(A 1)——1 —==r |

og L (7) 5 ( + ogN> 231 og (v[4],, + 5 0g<i§:1 ), 41

The derivative with respect to «y is then given by

N—D [USY])1%);
Zi:l (V[E]i,ﬁ‘l)z

dlog L () _ 1 Z [A]nn B N _ (3.3)
O 2 v(4],,+1 2 N-D [Ugy]j
Zj:l 'y[Eb’jJrl

n=1

3.1.2. Restricted maximum likelihood estimation

EMMA maximizes the log restricted likelihood log £ (7, 0'2R7’Sy) in the form given in
Equation with o2 profiled out. As in the case of maximum-likelihood estimation
described in Section the economy spectral decomposition of SH,S is obtained effi-
ciently from the economy spectral decomposition Ug (¥ + In_p)Ug of S (K + In) S.

N-D
2

2 1 N-D
log L (v,0%r, |Sy) = — (1 +log > —slog |y +In-p|— log R,
— 2

N-D 2
E'Y
where the residual is given by
-1
Rs=y ' Us [v¥ +In_p Usy.
—_————
E’Y
Again, this log-likelihood can be evaluated efficiently for any value of v in O(N) as
N-D N-D T 12
N-D 2 1 N-D Udy];
—— (141 —— 1 ( X 1) — 1 ——=—= .
5 <+ogN_D> 2; og (v[X],, + 5 0g<27[2]i,i+1

The same is true for the derivative with respect to « given by

dlog L (7y,0°r, |Sy) 1 z_: (20 _N-D = (), ,41)°
oy = 2 = y[¥]

. (34)
n,n +1 2 ZN—D [U;y]j
J=1 7[2}]',]'"—1

3.1.3. Optimizing the ratio of variances

In order to solve the non-convex optimization over the ratio of variances v, EMMA applies
a combination of grid search and a derivative based method. To bracket local minima,
the derivative of the likelihood as in Equation or the derivative of the restricted
likelihood as in Equation is evaluated on one hundred equally spaced points on
the logarithm of v ranging from -5 to 5. For every two consecutive points, where the
derivative changes, a root finder based on Brent’s algorithm is applied to equate the
derivative to zero within the respective interval and retrieve the local optimum.
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3.2. Efficient approximations to the mixed model

3.1.4. Runtime and memory footprint

Once A, ¥ and U "y are computed, both the log-likelihood as well as the derivative with
respect to y can be evaluated in O(N) for any value of 7. Assuming that the number of
evaluations of the derivative is given by a constant C|, the cost of finding an optimal ~
for a single SNP is O(C' - N). The required upfront computations are computation of the
eigenvalues A of K, the economy spectral decomposition Ug (¥ + I) Ug of SH1.S, and
multiplication of the phenotype by UST . A problem that arises when this algorithm is
applied to GWAS is, that for every SNP tested, the matrix X of fixed effects is a different

one. It follows that the matrix S = (I - X (XTX)fl XT> is a different one for each

SNP. As a result a new economy spectral decomposition of an N-by-N matrix SH1.S
is required. As the rank of SH1S equals N — D, the economy spectral decompositions
could be computed in O(N? - (N — D)) for example using iterative methods. In practice
though, the number of fixed effects D used in genome-wide association studies, is not
more than a one digit integer and can be treated as a constant. It follows, that the
required computations for testing all SNPs are in O(C'- N +S-N3) = O(S- N3), where S
is the number of all SNPs tested. If each SNP only is into loaded to memory while being
tested, the memory footprint is dominated by the cost of storing the genetic similarities
K, given by O(N?).

3.2. Efficient approximations to the mixed model

In order to apply the linear mixed model to the analysis of larger data several approxima-
tions have been proposed. The earliest such approximation was the Genomewide Rapid
Association using Mixed Model and Regression (GRAMMAR) algorithm [Aulchenko
and de Koning, [2007], which uses a mixed model only in a single upfront to compute
a population-structure corrected version of the phenotype which can be analyzed by
standard linear regression. The EMMAX and P3D algorithms avoid repeated cubic
computations by estimating the ratio + of variance parameters in the mixed model only
once, keeping it fixed across all tests.

3.2.1. Generating stratified pseudo-phenotypes by prediction

The idea of the GRAMMAR algorithm is to use a linear mixed model to generate strat-
ified pseudo-phenotypes, which can be analyzed efficiently by a linear regression and is
implemented in the GenAbel package [Aulchenko and de Koning, 2007, |Aulchenko et al.)
2007]. From a linear mixed model without including a SNP, the pseudo-phenotypes are
obtained by subtracting the BLUP as derived in Section of the random effects from
the phenotype.

-1
Ystrat = Y — Jgk:,: (U;K + U2I) (y - X/@) . (35)

BLUP

The remaining free parameters o>

or restricted maximum likelihood.
GRAMMAR has been shown to lead to overly conservative correction as upfront strat-
ification ignores a possible linear-additive interactions between the BLUP and the effects

, O'g and 3 can be found by either maximum likelihood
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3. FaST linear mixed models for genome-wide association studies

of the SNPs tested |Aulchenko and de Koning}, 2007]. In order to correct for conservative-
ness, GRAMMAR typically yield genomic control values (A, see Section smaller
than one. It has been proposed to use correction by genomic control to account for this
conservativeness [Amin et al., |2007].

Runtime and memory footprint

The computations required for testing a single SNP on the pseudo-phenotype by linear
regression is linear in the number of individuals. As GRAMMAR uses a standard linear
mixed model to generate the pseudo phenotype, the runtime required for optimizing the
parameters on the null model and computing the best linear unbiased prediction is O(N?)
and the memory requirement is O(N?), dominated by the size of the genetic similarity
matrix.

3.2.2. Linear mixed models with fixed ratio of variances

A practical approximation that leads to a considerable speedup over exact linear mixed
model computations was obtained by estimating the variance parameters only once,
rather than re-estimating these per SNP [Kang et all 2010, Zhang et al.l |2010]. For
many studies of interest, this approximation is expected to work nearly as well as the
exact model, yet it made problems that were computationally infeasible, now feasible.
The algorithm has successfully been applied to the analysis of genome-wide association
studies containing five thousand samples [Kang et al., 2010, Burton et al., 2007]. But on
a study in Mouse it has been shown that fixing + results in a loss in power compared to
an exact mixed model |Zhou and Stephens, [2012].

The algorithm performs maximum likelihood or restricted maximum likelihood estima-
tion on the null model using the EMMA algorithm, as shown in Section3.1] to obtain an
estimate g for the ratio of variances is obtained. Given this value of 7, the inverse and
the determinant of H,, = (yK + I), and in case of REML estimation the determinant
of XTH%lX can be computed once and used to test all SNPs.

Runtime and memory footprint

The runtime to find v, and compute all terms involving H., is given by O(N 3). Evalu-
ation of the likelihood for testing a single SNP requires computation of a matrix vector
product with runtime of O(N?). Storage of the inverse of Hy requirement O(N?) mem-
ory. The total asymptotic runtime for testing S markers in a GWAS follows as O(N29).

3.2.3. Compressed mixed models

Another way to speed up linear mixed models is by approximating the relationship
matrix by a matrix that can be inverted more efficiently than standard relationship
matrices. Compressed mixed models [Zhang et al., 2010] perform a clustering of the
individuals present in a study to come up with a simpler covariance structure, where the
cubic dependency in the number of individuals is reduced to a cubic dependency on the
number of clusters G of genetically similar individuals.
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3.3. FaST-linear mixed models

In this approach, individuals are first grouped into G genetically similar groups. Then,
for the purposes of confounder correction, members of a group were assumed to be
genetically identical. A G-by-G between group genetic similarity matrix Kg is obtained
by averaging the genetic similarities over all group members. Finally, a LMM-analysis is
performed, using the log likelihood

log £ (02,02, 8, Z) = log N <y |XB; 2ZKoZ" + 021) , (3.6)

where Z is an N-by-G binary indicator matrix, that assigns each of N individuals to
exactly one of the G groups.

Using the Woodbury-Sherman Lemma as well as the matrix determinant lemma, all
expensive computations involving the genetic similarities can be computed in O(G?’)ﬂ

('yZKgZT n I) —I-Z <7KG1 i ZTZ> Z7
1
‘fyZKgZT + I) - ‘7K§1 + ZTZ‘ yKal -]

To determine the number clusters, a hierarchical clustering is computed based on
genetic relatedness. Then, for a range of distance thresholds , the likelihood of the
model is computed on the null model. The final analysis is performed on the distance
threshold maximizing the likelihood [Zhang et al., [2010].

Runtime and memory footprint

Compression reduces the runtime of the expensive computations to cubic in the number
of groups G. When the number of groups is much smaller than the number of individuals,
the computational savings are tremendous. Determining the similarities and clustering
the individuals, however, is a quadratic operation in the number of individuals. Finding
an appropriate number of clusters for a data set is an important issue, as it greatly
influences the results . For this purpose, the authors propose to determine the appropriate
number of clusters by maximizing the model likelihood over the distance threshold in
the hierarchical clustering. As such an approach requires repeated solutions of the mixed
model, compression can hardly be considered a speedup in this case [Zhang et al., 2010].

3.3. FaST-linear mixed models

Here we describe our approach called FaST-LMM, which stands for factored spectrally
transformed linear mixed models. The algorithm computes the same exact linear mixed
model as the EMMA algorithm described in Similarly to the EMMA algorithm,
the spectral decomposition of the genetic similarity matrix is used to cache expensive
computations. But unlike the EMMA algorithm FaST-LMM provides a mathematical
reformulation of the likelihood that allows to re-use of a single spectral decomposition

3The original publication does not contain details about the exact computations performed |[Zhang
et al.l |2010].
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3. FaST linear mixed models for genome-wide association studies

for all tests. As a result, the FaST-LMM algorithm performs exact linear mixed model
inference in a runtime that is N times faster than EMMA.

A key insight behind our approach is that the spectral decomposition of the genetic
similarity matrix allows the likelihood of the linear mixed model to be refactored in such a
way that it is directly analogous to the likelihood of a linear regression model. Intuitively,
our algorithm algebraically transforms/rotates the target data (the phenotypes) and the
input data (the SNPs and covariates) in such a way that that this rotated data effectively
contains pseudo-individuals that are uncorrelated, and hence can be analyzed with a
linear regression model that is linear in the number of individuals.

3.3.1. Maximum likelihood estimation
In what follows, we derive formulas that allow for efficient evaluation of the log likelihood,
and the maximum likelihood parameters.

Linear-time evaluation of the log likelihood

Applying the formula for the N-variate Normal distribution to the log-likelihood param-
eterized by the ratio of variance parameters v, as in Equation (2.25)), we obtain

1
—_R,

N 1
log £ (ﬁ,7,02) = —Elog (271'0’2) —3 log |[vK + I|— 552

H,

where the residual term equals

-1

R=(y-XB) [+K+I| (y—XB).
H

Let UAUT = K be the spectral decomposition of K, and noting that I = UU .
-1
R=(y-X0) (Una+DUT) (y-Xp).

The inverse can be rewritten using the property that (AB)~! = B~'A~!, the fact that
U '=U" and U"T =U. Thus, after additionally pushing U out from the covariance
term so that it now acts as a rotation matrix on the inputs X and targets y

R= (UTy - UTXﬂ)T (vA+ 1) (UTy - UTXﬂ) . (3.7)

Also the determinant can be written using the spectral decomposition of K, where the
property that |[AB| = |A||B| and the fact that |[U| = |[UT| = 1 are used.

WK +I|=|vyA+1|.

Using this determinant and the expression for R in Equation (3.7) the log likelihood, we
obtain

N 1 1
log £ (B,7,0%) = -5 log (2m0?) — 3 log [yA + I| — 5zt (3.8)
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3.3. FaST-linear mixed models

As the covariance matrix of the Normal distribution is now a diagonal matrix (yA + I),
the log likelihood can be rewritten as the sum over N terms, yielding

N ol [UTX] B)°
-5 log (2m0*) — 2T;log (’W\ n 1) 257 Z MHH . (3.9

Note that this expression implies, that the model likelihood equals the product of N
single-variate Normal distributions, on the data transformed by U .

T T 1
L(v,0%8) = HN(U In | U X185 0 w\+1)

The “Fa” in FaST-LMM gets its name from this factored likelihood.

Having pre-computed the spectral decomposition of K, we can rotate the phenotype
and all SNPs once to get UT X and U'y. Given the parameters 7,02 and B each
evaluation of the likelihood is now linear in the number of individuals N, as compared
to cubic for direct evaluation of the log likelihood.

Finding the maximum likelihood fixed effect weights efficiently

We take the gradient of the log likelihood in Equation (3.8]) with respect to 3 and set it
to zero, giving

iQ (UTX)T (A + 1) (UTy) - % (UTX)T (A + 1) (UTX) B, =0.

g

Solving for Byr,, we obtain

B, = ((UU{)T (vA+ )" (UTx)) - (UTx)T A+ (UTy).  (3.10)

As (yA + 1) is a diagonal matrix, the matrix products again can be written as a sum
over N independent terms, yielding

Moo - Ny .
IBMw = (Z 1 [UTX]n,: [UTX]n,;> (Z - [UTX]n,: [UTy]n>, (3'11)

n=1 YAn+1 n=1 YAn+1

which is analogous to linear regression estimates for 3 on the rotated data. Assuming
that all the terms involving the spectral decomposition of K are precomputed, this
equation can be evaluated in O(N).

Finding the maximum likelihood environmental variance efficiently

We start by substituting By, from the previous section into the log likelihood, Equa-
tion (3.9), and set the derivative with respect to o to zero, giving

_% <U£V B 041 i Uyl - [U;TX]n,:BMw) > —0. (3.12)

My OMy o Pt
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3. FaST linear mixed models for genome-wide association studies

Multiplying both sides by 204M7 and solving for 02M7, we get

1 LUyl — U X8,
UQM,Y = an:l M .

- (3.13)

YAn+1

This equation also can be evaluated in O(V).

Efficient evaluation of the maximum likelihood

Plugging in ¢%\, and By, into Equation (B.9), the log likelihood becomes a function
only of v:

N
N 1 1 N N 1
2 _ v . vy -
log £ (B, 7, 0%M,) = 5 log (2) 5 E log <7)\n+1> 7 5 log <NRMW>,
(3.14)

n=1

where the residual term includes the maximum likelihood weights.

N 2
Ry, = (Z (U Yl — [U" X]0B,) )

Y 1
n=1 "/)‘n+1

As described next, we optimize this function of v using a one-dimensional numerical
optimizer to find the maximum likelihood value of 7y, from which the maximum likelihood
values of all the parameters can be directly computed.

3.3.2. Restricted maximum likelihood estimation

So far the derivations have been limited to maximum likelihood parameter estimation.
However, it is straightforward to extend these results to the restricted log likelihood,
which comprises the log likelihood with Bgr. plugged in, plus three additional terms
as can easily be seen from the restricted likelihood log L (’y,aﬂSy) given in Equa-
tion [Kang et al., 2008, Harville, [1974].

1 1 1
log £ (BRW,’Y,O'Q) + 5 <Dlog (27r02) + ilog ‘XTX) — ilog ‘XT (K —I—I)f1 XD ,

(3.15)
where Br., has the same form as By, .
Again, using the spectral decomposition of K, the restricted log likelihood log £ (’y, o?|S y)
becomes

N 1 T
> U X U X,

— ~log . (3.16)

2

Neglecting the cubic dependence on d for computing the determinants, these additional
terms can be evaluated in time complexity O(N).
The restricted maximum likelihood variance estimate is given by

N 2
asz _ ¥ i 5 Z ([UTy]n - [UTX]R,:BMA,) ' (3'17)
N=1

1
YAn+1
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3.4. FaST-linear mixed models in linear time

3.3.3. Optimization of the ratio of variances

As we’ve just shown, finding the maximum likelihood solution or the restricted maximum
likelihood solution of the mixed model (log £ (02, ag, ,6)) is equivalent to finding the value
of v that maximizes the log likelihood log £ (,BM Y o2\ W) or the log restricted likelihood
log £ (7, 02]Sy), a non-convex optimization problem. To avoid local maxima in FaST-
LMM, a quasi-exhaustive one dimensional optimization scheme similar to the one used
by EMMA in Section is applied. In order to bracket local minima, we evaluate
the maximum of the log likelihood for 100 equidistant values of log~, ranging -10 to
10. Note that setting the number of grid-values to 100 is a conservative choice that in
our experience can considerably reduced (in typical settings 10 should be sufficient) to
obtain a mild speedup. Then, we apply the derivative-free version of Brent’s method (a
1D numerical optimization algorithm) to find the locally optimal v in each bracket where
the middle log likelihood is higher than the log likelihoods of the neighboring evaluations.

3.3.4. Time and space complexity

Given v and having pre-computed the spectral decomposition of K, each evaluation of
the likelihood has time complexity that is linear in N. Consequently, when testing S
SNPs in a genome-wide association study, the time complexities are O(N?3) for finding
all eigenvalues (A) and eigenvectors (U) of K, O(N2S) for rotating the phenotype
vector y, and all of the SNP and covariate data (i.e. computing U 'y and U' X), and
O(CNS) for performing C' evaluations of the log likelihood during the one-dimensional
optimization over . The total time complexity of FaST-LMM, given K, is therefore
O(N3 + N2S 4+ CNS) = O(N2S). If optionally 7 is kept fixed to its value from the null
model (as done in EMMAX/P3D), this complexity reduces slightly without reducing
the asymptotic complexity to O(N3 + N2S + CN) = O(N2S). The size of both K
and U is O(N?), which dominates the space complexity, as each SNP can be processed
independently so that there is no need to load all SNP data into memory at once. In
most applications, the number of fixed effects per test, D, is a single digit integer and is
omitted in these expressions because its contribution is negligible.

3.4. FaST-linear mixed models in linear time

In general, obtaining the required rotation matrix (i.e. it via a spectral decomposition)
for FaST-LMM is a cubic operation in the number of individuals. When the number of
SNPs used to construct the genetic similarity matrix is less than the number of individ-
uals, however, the required rotation matrix can be obtained in time linear in the number
of individuals (and quadratic in the number of SNPs). Intuitively, these savings can be
achieved because the intrinsic dimensionality of the space of the SNPs and individuals
can never be higher than the smaller of these two values (i.e. the rank of the data matrix
used to construct the similarities is at most the smaller of these two values). Thus, we
can always choose to perform operations in the smaller space without any loss of infor-
mation. That is, the computations remain exact. Once the rotation matrix has been
computed, performing the rotations is linear in the size of the matrix and the number
of SNPs tested. On one or a small number of processors, these rotations require the
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most time. However, these rotations are easily parallelized, making construction of the
rotation matrix the dominant computation.

This linear-time speed-up requires use of a particular type of genetic similarity matrix—
in particular, the realized relationship matrix (see Section . We show that perfor-
mance of the linear mixed model on two data sets with this genetic similarity is compara-
ble to that of a linear mixed model with an identity by state matrix. Additionally, it was
reported that use of an identity by state matrix often outperforms indentity by descent
in a linear mixed model |[Kang et al., 2010]. As shown in Section when realized
relationships are used, the spectral decomposition required by the linear mixed model
can be obtained directly from the data bypassing explicit computation of the realized
relationship matrix. The required time complexity is linear in the number of individuals.
This computation is possible because of the well-known relationship between the spectral
decomposition of a covariance matrix and the singular value decomposition of the data
from which a covariance matrix is estimated (e.g. [Berrar et al., [2003]). Consequently,
an exact linear mixed model analysis remains linear in the number of individuals.

Our approach using spectral transformations offers speedups beyond those of EMMA
and EMMAX even when the realized relationship matrix is not used, provided the rank
of the matrix is low—that is, less than the number of individuals. The resulting speed-
up, however, is then quadratic in the number of individuals and linear in the rank of the
matrix, because even when the matrix is low rank, the starting point of the computation
is the matrix itself, an object that is quadratic in the number of individuals.

3.4.1. Relating spectral decomposition and singular value decomposition

Before we discuss the low-rank version of FaST-LMM, it will be useful to review the rela-
tionship between spectral decomposition and singular value decomposition for matrices,
for which the factorization K = GG is known, such as the realized relationship matrix
or the Eigenstrat covariance matrix [Price et al., 2006]. In this section, we shall refer to
a matrix K that has this form as being factored.

The spectral decomposition of the genetic similarity matrix, K, given by UAU " = K,
yields the eigenvectors (U) and eigenvalues (A) of K. In general, this decomposition
can be determined by first computing the genetic similarity matrix (K'), and then taking
the spectral decomposition of it. For many measures of genetic similarity, including
realized relationship matrix, the time complexity of computing K is O(N2S,), where S,
is the number of SNPs used to compute K. Given the genetic similarity matrix, the
eigenvalues and eigenvectors of K can then be found solving the spectral decomposition
at a time complexity of O(N3) and space complexity of O(N?). If only the first k
eigenvectors are desired, the computation can be achieved with other algorithms that
have time complexity of O(N?k) and a space complexity of O(N?).

When K if factored, however, one can bypass explicit computation of K, obtaining
the required eigenvectors and eigenvalues by direct application of an singular value de-
composition to the S. x N data matrix of SNP markers at a time complexity of O(NS?)
(or O(NS¢k) for only the top k eigenvectors using, for example, [Tipping and Bishop),
1999]) and space complexity of O(NS.). Construction of K can be bypassed because
(1) the eigenvectors (equivalently, singular vectors) of the factored matrix are the same
as the singular vectors of the data matrix, and (2) the eigenvalues (equivalently singular
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3.4. FaST-linear mixed models in linear time

values) of the factored matrix are the square of the singular values of the data matrix.
This relationship is widely-known (e.g. [Berrar et al.,|2003]) and is demonstrated below.
In our experiments, FaST-LMM bypasses computation of the factored matrix to obtain
the required spectral decomposition whenever S. < V.

Note that, when the rank of K is less than the number of individuals N (such as occurs
when the data matrix used to compute the factored genetic similarity matrix contains
fewer SNPs than individuals), the singular value decomposition with time cost O(NS?)
is actually an economy singular value decomposition, that is, it yields only the first S,
eigenvectors. This set of eigenvectors is denoted U; in Section and referred to as
the economy spectral decomposition.

We now demonstrate the relationship just noted. Let G € ¢ be the matrix
containing the set of SNPs used to compute the factored matrix, K, defined as

RNXS

K=GG". (3.18)

Let UA2VT be the singular value decomposition of G. Then Equation (3.18) can be
rewritten as

.
K= (UA%VT) (UA%VT) —UAVTVASUT. (3.19)

Because V'V = I, we obtain
K=UA:A:U" =UAU", (3.20)

11
where A;; = A2 A’. By definition, U consists of the eigenvectors of K (because it
satisfies the properties of a spectral decomposition of K, namely that K = UAU '
where A is diagonal and U contains orthonormal vectors). Furthermore, the eigenvalues

11
of K are clearly given by A2 A”%. Consequently, we can obtain the spectral decomposition
of K by computing the singular value decomposition of G, which has time cost O(NS?).

3.4.2. Low rank linear mixed models

Next we consider the case where the rank of K, k, is low (k < N) (i.e. K is not
full rank). This case will occur when the realized relationship matrix is used and the
number of SNPs used to estimate it, S. = k, is smaller than N, or when we use a rank
k approximation of the genetic similarity matrix as mentioned in the Discussion.

Let UAU T = K be the complete spectral decomposition of K. Thus, A is an N-by-N
diagonal matrix containing the k non-zero eigenvalues on the top-left of the diagonal,
followed by N — k zeros on the bottom-right, and U is an N x N matrix of eigenvectors.
Now, write the N-by-N orthonormal matrix U as U = [Uy, Us|, where U; € R"¥F
contains the eigenvectors corresponding to non-zero eigenvalues, and U, € RN*N—k
contains the eigenvectors corresponding to zero eigenvalues. Thus, we have

A7 O

_ T _
K=UAU _[Ul,UQ][ o A,

} UL U — UUT + Us AU

As Ay = [0], K can be recovered by K = U1A1U1T , the economy-spectral decompo-
sition of K, so-called because it contains only eigenvectors corresponding to k non-zero
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eigenvalues and arises from taking the spectral decomposition of a matrix of rank k. The
expression (7K + I) appearing in the LMM likelihood, however, is always of full rank,
as it is the sum of the positive semi-definite matrix vK and the positive definite matrix
I

7K+I:U(7A+1)UT:U[7A10+I HUT.

Therefore, it is not possible to simply ignore Uy while using the FaST-LMM in sec-
tion as it enters the expression for the log likelihood. However, directly computing
the complete spectral decomposition does not exploit the low rank of K.

3.4.3. Linear time evaluation of the likelihood

To exploit the low rank of K to evaluate the log likelihood efficiently, one possible
approach would be to augment the spectrum using N — k vectors that are orthogonal
to the first k. Unfortunately, this strategy has a time complexity of O((N — k)N?).
Consequently, we take the following alternative approach.

We begin with Equation (2.25):

N 1 1
2 — 2
logﬁ(ﬁ,ﬂ,’y)——Elog(%ra)—ilog"yK—kI]—T‘QR’
where the quadratic form is given by
R=(y—XB) WK+I)"'(y—Xg).

The two terms involving vK + I will be treated separately in the following.

Efficient evaluation of the log determinant

As in Equation (3.9)), the log-determinant of the genetic similarity matrix can be effi-
ciently computed using the economy spectral decomposition of K:

N
1
log WK +I1 =S log [ ——— ).
gy | nzl g(,MnH)

As the last N — k eigenvalues equal zero, the last N — k terms in the sum are equal to
ZEro.

k
1
1 K+1|= 1 — . 21
oulK 1= 3 s (1) 321)

Efficient evaluation of the quadratic form

Also, as we show in Section the residual quadratic form R can be evaluated using
the low-rank decomposition:

(y—XB)" (vK +I)""(y— XB) = Ry, + Ry_y,
R
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where Ry is a quadratic form on data transformed by the first k& eigenvectors of the
genetic similarity.

Ry = (UlTy - UlTXﬁ)T (YA + I) " (UlTy - UlTXﬁ) . (3.22)

Further, Ry_j is a quadratic form computed on the residuals obtained from regressing
out the first k eigenvectors from the data.

Ry = ((IN - U1U1T> (y — Xﬁ))T ((IN - U1U1T) (y — X,@)) : (3.23)

Furthermore, both expressions can be written as sums.

(U7, - U7 X),.8) &

ey W PP) Sy o) - [x o 07x)] )

n=1 'Y>\n+1 n=1

Ry, Ry _k

Finding the maximum likelihood and parameters efficiently

Plugging both the determinant (Equation (3.21))) and the quadratic form (Equation ({3.24)))
into the log likelihood, we obtain

k
N 1 1

n=1

Setting the gradient of log £ (,8,7,02) in Equation (3.25) with respect to 3 to zero,
we obtain

Bu, = Cx'xexy, (3.26)

where the D-by-D matrix C'x x equals

Crx = T (1 o) o] [(r- wio) x],
n=1 Pt = (3.27)
and the D-by-1 vector cx 4 equals
T
oy =3 v X],, (0T, i (r-vol) x| [(1-vwy)s]
n—1 YAn+1 n=1 b

Plugging Bn, into the log likelihood and setting the derivative with respect to % to
zero, we get
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3. FaST linear mixed models for genome-wide association studies

_1< N >— 41 (Re(Bm,) + Ry—k(Bu,)) =0,

2
2 \o*m, oM,

where we made the dependence of Ri(Bwm,) and Ry_(B,) on the maimum likelihood
estimator of the weights By, explicit. Consequently, the maximum likelihood estimator
is
1
O'QMW = N (Rk(BMV) + Rka(ﬁMﬂ,)) . (3.28)

Plugging Equations (3.26)) and (3.28]) into (3.25)) yields an expression for the logarithm

of the likelihood profiled for the fixed effects and the environmental noise variance o2.

log L (/BMM% O'QM,Y), which can be evaluated in O(N + k), as

k
N 1 1 N N . Rp(Bwm,) + By_r(Bu,)

3.4.4. Restricted maximum likelihood

Here we extend the derivations so far to restricted maximum likelihood, in a similar
fashion as was done in Section for full rank genetic similarities. We start with the
form of the log restricted likelihood from Equation that equals the log likelihood
with the restricted maximum likelihood estimator of the fixed effects Br, plugged in,
plus three additional terms |[Kang et al., 2008|, Harvillel [1974]:

log £ (7,02\Sy) =log L (51%,7,02)—1—% (Dlog (2#02) + log ’XTX‘ — log ‘XT (K + I)_1 XD ,

where the restricted maximum likelihood estimator of the fixed effects Br, equals the
form of the maximum likelihood estimator By, .

Neglecting the cubic dependence on D for computing the determinants, these addi-
tional terms can be evaluated in time complexity O(N + k), using the economy spectral
decomposition K = Uy A4 Ul—r . For this purpose, we re-use the results from Section
substituting X for a, to get

D 1 1
log £ (,BR,Y,’)/,O'2) =log L (,BRW,%U2) + 5 log (27702) + 3 log ‘XTX‘ — ilog ICx x|,
(3.30)

where C'x x is given by Equation ([3.27)).
The restricted maximum likelihood (REML) variance component estimate is given by

o’r, = N (Be+ Byk), (3.31)

where Ry, is given in Equation (3.22) and Ry_j in Equation (3.23). The formulas for

the remaining parameters remain unchanged.
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3.4. FaST-linear mixed models in linear time

Time and space complexity

Given the economy spectral decomposition of K, the likelihood of the model can be eval-
uated in a time complexity of O(NNSk) for the required rotations and O(C(N + k)S) =
O(CNS) for the C evaluations of the log likelihood during the one-dimensional optimiza-
tion over 7. By keeping v fixed to its value from the null model, as in EMMAX/P3D,
O(C(N + k)S) can be reduced to O(C(N + k)). In general, as discussed, the economy
spectral decomposition can be computed from k£ = S, SNPs by first computing the ge-
netic similarity matrix with a time complexity of O(N?2S.) and a space complexity of
O(N?), and then finding its first k eigenvalues and eigenvectors with a time complexity
of O(N?k). When the realized relationship matrix is used, however, we can perform the
economy spectral decomposition more efficiently by circumventing the computation of
K, because the singular vectors of the data matrix are the same as those of the realized
relationship matrix constructed from that data (e.g. [Berrar et al. 2003]). In particu-
lar, we can obtain the economy spectral decomposition of K from the economy singular
value decomposition of the N x S, SNP matrix directly, which is an operation with a
time complexity of O(N S.k) and requires space O(NS,). For testing S variants the total
asymptotic runtime follows as O(NS.S)

However, we note that, for both the normal and low-rank versions of FaST-LMM, the
rotations and the search for + for each test are easily parallelized. Consequently, the
runtime of the LMM analysis is dominated by the spectral decomposition (or singular
value decomposition for the low-rank version). Although parallel algorithms for singular-
value decomposition exist, improvements to such algorithms should lead to even greater
speedups.

3.4.5. Compressed FaST-LMM

The ideas behind FaST-LMM can be applied to compressed linear mixed models to
improve their computational efficiency. Here, we demonstrate this application for a
compressed linear mixed model similar to the one in Section [Zhang et al., [2010].

In the spirit of FaST-LMM, we look for an efficient way of computing the spectral
decomposition of ZK ZT. This spectral decomposition can then be plugged into For-
mulas f as a means to evaluate Equation , in runtime and memory that
are linear in the number of individuals N. In Section we consider the case where
genetic similarity is defined by an realized relationship matrix. We show that, given a
G x S, matrix G of S SNPs, obtained by averaging the SNP data for individuals over the
members of each group, the economy spectral decomposition of the realized relationship
matrix ZGG'Z" can be computed from the singular value decomposition of the G x S,
matrix (Z7 Z)'/2G in O(min(G, S;)GS.) time and O(G'S,.) memory. (It is easy to verify
that the same GG would be obtained if instead we used a group-wise average of the
N x N realized relationship matrix.) In Section we consider arbitrary genetic
similarity. We prove that, given any G x G positive semi-definite group similarity matrix
K, the spectral decomposition of the N x N matrix ZK Z ' can be computed from the
spectral decomposition of the much smaller G x G matrix (2 Z)/2K(Z" Z)'/? using
O(G?) time and O(G?) memory.
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3. FaST linear mixed models for genome-wide association studies

3.5. Experiments

As we have just discussed, FaST-LMM reduces the computational effort from cubic
to linear in the number of samples, when the realized relationship matrix is used as
the measure of genetic similarity between individuals and when the number of SNPs
used to estimate these similarities is substantially less than the number of individuals
in the data. We explored these conditions using two publicly available, real data sets:
the Genetic Analysis Workshop (GAW) 14 for smoking (see Section [Edenberg
et al., 2005] and the Wellcome Trust Case Control Consortium (WTCCC) 1 data for
seven common diseases (see Section |[Burton et al., 2007], of which the latter has
been previously analyzed using linear mixed models |[Kang et al. 2010]. In contrast
to previously published analyses of WTCCC, we included non-white individuals and
close family members so as to produce a dataset with greater potential confounding
structure—structure that LMMs have been shown to be able to handle well [Price et al.|
2010b].

We obtained P values from our linear mixed model analyses using a likelihood ratio
test (see Section . The calibration of P values was assessed, in part, using the A
statistic (see Section. In addition to this summary statistic, we assessed differences
in two P value distributions using a two-sample Kolmogorov-Smirnov test on P values
near the level of genome-wide significance (5 x 10~7 as in [Burton et al|[2007]).

Proximal contamination While investigating the benefits of FaST-LMM, we encoun-
tered a phenomenon that substantially affected our evaluation. In particular, we found
that A was consistently lower when the genetic similarity matrix was constructed from
the same SNPs tested for association than when the genetic similarity matrix was con-
structed from SNPs not tested for association. In order to avoid this effect caused by
linkage between the marker being tested and the markers used for estimating similar-
ity, when testing a given chromosome we estimated genetic similarity always from all
but this chromosome (see Section for an in-depth analysis of the effect of proximal
contamination.)

3.5.1. Comparison of computational cost

We compared memory footprint and run time for non-parallelized implementations of
the FaST-LMM and EMMAX algorithms (Figure 3.1). (The EMMAX implementation
was no less efficient in terms of run time and memory use than that of P3D in the trait
analysis by association, evolution and linkage (TASSEL) package). In the comparison,
we used Genetic Analysis Workshop 14 data to construct synthetic datasets with the
same number of SNPs ( 8,000 SNPs) and roughly 1, 5, 10, 20, 50 and 100 times the
cohort size of the original data (see Section [A.3). The largest such dataset contained
data for 123,800 individuals. We tested all SNPs and used them all to estimate genetic
similarity. EMMAX would not run on the 20x, 50x or 100x datasets because the
memory required to store the large matrices exceeded the 32 gigabytes available. In
contrast, FaST-LMM, which did not require these matrices (because it bypassed their
computation, using them only implicitly), completed the analyses using 28 gigabytes
of memory on the largest dataset. Runtime results highlight the linear dependence of
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Figure 3.1. Computational costs of FaST-LMM and EMMAX. Memory foot-
print [(a)| and run time[(b)|of the algorithms running on a single processor as a function of
the cohort size in synthetic datasets based on GAW14 data. In each run, we used 7,579
SNPs both to estimate genetic similarity (realized relationship matrix for FaST-LMM
and identity by state for EMMAX) and to test for association. In the FaST-LMM full
analysis, the variance parameters were re-estimated for each test, and in the FaST-LMM
analysis these parameters were estimated only once for the null model, as in EMMAX.
FaST-LMM and FaST-LMM full had the same memory footprint. EMMAX would not
run on the datasets that contained 20 or more times the cohort size of the GAW14 data
because the memory required to store the large matrices exceeded the 32 GB available.

the computations on the cohort size when that size exceeded the 8,000 SNPs used to
construct the realized relationship matrix. Also, computations remained practical using
our approach even when we re-estimated the variance parameters for each test.

3.5.2. Assessing the accuracy of SNP sampling

As shown in Section [2.2.7] the linear mixed model with no fixed effects using a realized
relationship matrix constructed from a set of SNPs is equivalent to a linear regression
of the SNPs on the phenotype, with weights integrated over independent normal dis-
tributions with the same variance. In this view, sampling SNPs for construction of the
realized relationship matrix can be seen as the omission of regressors and hence an ap-
proximation. Nonetheless, SNPs could be sampled uniformly across the genome so that
linkage disequilibrium would diminish the effects of sampling.

To examine this issue, we compared association P values with and without sampling
on the Wellcome Trust Case Control Consortium (WTCCC) data for Crohn’s disease.

Specifically, we tested all SNPs on chromosome 1 while, in order to avoid proximal
contamination (see Section , using SNP sets of various sizes from all but this chro-
mosome (the complete set ( 340,000 SNPs) and uniformly distributed samples of 8,000
SNPs and 4,000 SNPs) to compute the realized relationship matrix. The 4,000 and
8,000 SNP sets were created by including every forty-eighth and every twenty-forth SNP,
respectively, along each chromosome. The P values resulting from the complete and
sampled sets were similar (see Figure . The different SNP sets led to nearly identi-
cal calls of significance, using the genome-wide significance threshold of 5 x 107. When
we used the complete set, the algorithm called 24 SNPs significant, and the 8,000-SNP
and 4,000-SNP analyses labeled only one additional SNP significant and missed none.
By comparison, the Armitage trend test labeled seven additional SNPs significant and
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Figure 3.2. Accuracy of association P values resulting from SNP sampling on
WTCCC data for the Crohn’s disease phenotype. Each point in the plot shows
the negative In P values of association for a particular SNP from a linear mixed model
using @ 4,000-SNP and 8,000-SNP samples and all SNPs to compute the realized
relationship matrix. The complete set used all 340,000 SNPs from all but chromosome
1, whereas the 4,000-SNP and 8,000-SNP samples used equally spaced SNPs from these
chromosomes. All 28,000 SNPs in chromosome 1 were tested. Dashed lines show the
genome-wide significance threshold (5 x 10~7). The correlation p for the points in the
plots are 0.965 for 4,000 SNPs and 0.976 for 8,000 SNPs.

missed none. Furthermore, the A\ statistic was similar for the complete, 8,000-SNP and
4,000- SNP analyses (1.132, 1.173 and 1.203, respectively) in contrast to A = 1.333 for
the ATT. We show corresponding quantile-quantile (Q-Q) plots in Figure Finally,
using these SNP samples to construct genetic similarity, FaST-LMM ran an order of
magnitude faster than EMMAX: 23 min and 53 min for the 4,000-SNP and 8,000-SNP
FaST-LMM analyses compared with 260 min and 290 min for the respective EMMAX
analyses.

3.5.3. Materials and Methods

All analyses assumed an additive effect of SNP on phenotype. To normalize the SNP
data and impute missing SNPs, we used the approach reported in [Price et al., 2006].
Runtimes were measured on a dual AMD six core Opteron machine with a 2.6GHz clock
and 32GB of RAM. We restricted computations to a single core. FaST-LMM used the
AMD Core Math Library.
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Figure 3.3. Q-Q plot comparison for FaST-LMM analyses of the WTCCC
data. Shown are observed versus expected negative log P values for the association
analyses on the Chrohn’s disease phenotype. We used FaST-LMM to test all SNPs on
chromosome 1, and SNP sets of various sizes from all but this chromosome—the complete
set (340K), 8K, and 4K—to compute the realized relationship matrix. We also used the
Armitage trend test to compute P values.
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3.6. Chapter summary and discussion

In this chapter we have introduced and demonstrated FaST-LMM, a new, computation-
ally efficient approach to linear mixed models for the analysis of genome-wide association
studies.

Our new approach is linear in the number of individuals. Moreover, when paral-
lelized, the slowest computation in our approach is linear in the number of individuals
and quadratic in the number of SNPs used to estimate genetic similarity. The dramatic
speedups are realized provided (1) the number of SNPs used to estimate the genetic sim-
ilarities between individuals is substantially less than the number of individuals in the
dataset and (2) these genetic similarities are determined with the realized relationship
matrix. Using two real data sets, we showed that the realized relationship matrix com-
puted from only thousands of linearly spaced SNPs provides a good measure of genetic
similarity. Consequently, FaST-LMM breaks the current computational barrier of linear
mixed model application to data sets with tens of thousands or more individuals.

Furthermore, even when we use all available SNPs, use of any kind of genetic similarity,
and re-learn the variance parameters for each SNP tested, our approach requires only a
single cubic operation in the number of individuals rather than one cubic operation per
SNP tested, as is required by EMMA [Kang et al.l 2008].

While random selection of markers may be seen as an approximation to using all
available SNPs for correction, in the next chapter we are going to demonstrate how
careful selection of such markers can be used to improve correction in the linear mixed
model.

While investigating the benefits of FaST-LMM, we observed that A was consistently
lower when the genetic similarity matrix was constructed from the same SNPs tested for
association than when the genetic similarity matrix was constructed from SNPs not tested
for association. Here we avoided this problem by leaving out the whole chromosome being
tested from computation of genetic similarities, but this approach ignores confounding
due to linked causal markers on that chromosome. A more thorough exploration of
the problem and an efficient algorithm for excluding markers only in a linked region is
presented in Section

Another important computational saving that results from our approach is that once
the expensive upfront computation needed for univariate SNP tests has been performed
(i.e. computation and application of the rotation matrix to individual SNPs), joint as-
sociation tests of any number of SNPs can be achieved just as efficiently as univariate
tests (i.e. linear in the number of individuals). In Chapter |5 we are going to propose
two variants of such linear-additive mixed models involving multiple markers, one pro-
poses association tests of pre-defined sets of markers, like SNPs in a gene or pathway
(Section , and one that allows to automatically detect groups of relevant markers
from a genome-wide panel using shrinkage estimation (Section .
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4. Modeling phenotype-specific relatedness
by selection of genetic markers

Linear mixed models tackle confounding by using a matrix of pairwise genetic similarities
to model the relatedness among subjects. Until now, the consensus has been that,
ideally, all available SNPs should be used in the determination of these similarities. As
demonstrated in Section thousands of linearly-spaced SNPs could be used to achieve
good performance in practice with a greatly reduced computational burden [Lippert
et al., [2011]. Initially, this approach was proposed as an approximation in order to scale
linear mixed models to larger data sets. In this chapter, however, we argue that a small
number of carefully selected SNPs should be used for determining genetic relatedness.
Based on these insights, we propose the FaST-LMM-Select algorithm, that comprises
two methods presented in this chapter. On real and synthetic data we demonstrate,
that FaST-LMM-Select achieves systematically increased power (joint reduction of false
positives and false negatives), improved calibration (the avoidance of inflation or deflation
of the test statistic), and a lower computational cost compared to the traditional use of
linear mixed models.

When using realized relationships the genetic relatedness at unknown causal variants
is approximated by genome-wide markers utilizing linkage to the causal variants (see Sec-
tion . We noted that the linear mixed model using genetic similarities constructed
from a set of SNPs is mathematically equivalent to linear regression of the SNPs on the
phenotype, where the weights of the SNPs used to determine the genetic similarities have
been integrated over independent Normal distributions having the same variance. That
is, a linear mixed model using a given set of SNPs for genetic similarity is equivalent
to linear regression using those SNPs as random covariates to correct for confounding.
It follows that by using a linear mixed model to test a given SNP for an association
with the phenotype, we are in effect adjusting for the effect of background SNPs (see
Figure [2.1(a))).

In the light of this equivalence, it becomes evident that the common approach of
including all SNPs in the computation of genetic similarities has two potential flaws:
proximal contamination by inclusion of nearby SNPs and dilution by inclusion of SNPs
that are unrelated SNPs.

The first of these problems means that whenever a SNP is tested for association, all
SNPs that lie in close proximity to this SNP should be excluded from computation of
genetic similarities. This becomes evident from the fact, that inclusion of such SNPs is
equivalent to using these SNPs as covariates in a linear regression model. As genetic
linkage causes strong correlation among SNPs nearby, the induced null model that only
includes such covariates should have a reduced potential of improving its model fit by
inclusion of the SNP tested and thus smaller likelihood ratios. While inclusion of SNPs
that are correlated due to confounding is used to stratify for such confounding, correlation
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due to physical linkage is expected to cause a loss in power to detect associations. We
call this effect prozimal contamination. A demonstration of the deflation due to proximal
contamination is given in Section [4.1]

An ideal procedure that avoids proximal contamination requires exclusion of all SNPs
in a window of linkage disequilibrium to the SNP tested from computation of the ge-
netic similarity matrix. Such an approach involves many thousand different sets of SNPs
used to estimate genetic similarity. If done naively, even using the efficient algorithms
presented in Sections [3.3] and [3.4] this would require the computation of a new spectral
decomposition and subsequent transformation of the data each time a new set is con-
sidered. As these computations that dominate the runtime of mixed model evaluation,
such a naive procedure is infeasible in practice.

In Section[4.1.3|we present an efficient algorithm to correct for proximal contamination,
that avoids computation of new spectral decompositions. We prove that by computing
of corrective terms, that take the implied difference in genetic similarities between the
complete (contaminated) genetic similarity matrix a genetic similarity matrix that avoids
proximal contamination into account, the algorithm only requires the spectral decom-
position of the full matrix and yields exactly the same result as the naive approach.
Asymptotically, the runtime of the algorithm is identical to the runtime, when proximal
contamination is not taken into account.

The second problem is due to the observation, that in a linear regression model one
would ideally include only such SNPs that are either related to the phenotype or tag
a latent confounding variable. If on the other hand, SNPs that are unrelated to the
phenotype were included, these only add random noise to the model and for this reason
could result both in a loss of power as well as worse stratification for true confounding.
We call this effect dilution. In Section [4.2] we propose a heuristic to carefully select the
SNPs used to determine genetic similarities in order to combat dilution, that is easy to
use and works well in practice.

Together with the efficient algorithm to avoid proximal contamination, this comprises
our new method, FaST-LMM-Select, an algorithm for genome-wide association studies
that avoids systematic loss of power and inaccurate test statistics arising in the traditional
use of linear mixed models.

In Section [4.3] we demonstrate empirically, that by avoiding proximal contamination
and dilution FaST-LMM select not only improves on the traditional use of linear mixed
models in terms of power and P value calibration, but in combination with the algorithm
presented in Section also yields large computational savings as typically only a few
hundred SNPs are selected to determine genetic similarity.

4.1. Proximal contamination

As stated in Section while investigating the benefits of FaST-LMM (see Chapter [3)),
we encountered a phenomenon that substantially affected our evaluation. In particular,
we found that A was consistently lower when the genetic similarity matrix was constructed
from the same SNPs tested for association (in-sample matriz) than when the genetic
similarity matrix was constructed from SNPs not tested for association (out-of-sample
matriz). A likely explanation for this effect is that the analysis with the out-of-sample
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matrix is the correct approach and that the analysis with the in-sample matrix is deflated
with respect to it. In particular, if there is a true association between a SNP and the
phenotype (or a spurious one due to residual confounding), then if that SNP is included
in the construction of the genetic similarity matrix, the random effects may predict the
phenotype too well. Consequently, the log likelihood of the null model in the likelihood
ratio test may be too high, leading to a P value that is too low. We refer to this
effect as prozimal contamination. A similar theoretical concern has been made about
stratification by the use of principal components constructed from genome-wide SNPs,
but the authors did not find empirical evidence for the problem [Price et al., 2006].

An alternative explanation for this phenomenon is that P values obtained using the
out-of-sample matrix are inflated with respect to that using the in-sample matrix due
to local confounding structure not captured by the linear mixed model, wherein genetic
similarities determined from SNPs for one chromosome do not adequately capture lo-
cal confounding structure in other chromosomes. Evidence against this hypothesis and
for null-model contamination, however, is that when SNPs having a large apparent as-
sociation with the phenotype were removed from the set used to construct the genetic
similarity matrix, the values of A for in-sample analyses increased. Experiments de-
scribed in Section [4.1.1] and Section also suggest that the alternative explanation
is unlikely.

4.1.1. Testing proximal contamination on real data

In order to check for apparent null model contamination on the data from the Wellcome
Trust Case Control Consortium (See Section , we partitioned the SNPs by even and
odd chromosome numbers. The X chromosome was included in the even group. The
resulting partitions had 184,559 and 176,098 SNPs in the even and odd chromosomes,
respectively. using either the same (in-sample) or different (out-of-sample) partitions for
testing and construction of the genetic similarity matrix. With WTCCC, we computed
P values using a genetic similarity matrix constructed from SNPs on even chromosomes
and then tested SNPs on odd chromosomes only. The in-sample analyses on several of
the phenotypes yielded substantially lower values for A\ (see Table .

With GAW14 [Edenberg et al. [2005] (see Section [A.2)), when we performed an out-
of-sample analysis, wherein we computed P values using a genetic similarity matrix
constructed from the 3,769 SNPs on even chromosomes and then tested on the 3,810
SNPs on odd chromosomes, and vice-versa, A for the combined distribution of P values
was 1.005. In contrast, when we performed an in-sample analysis, wherein we computed
P values using a matrix constructed from SNPs on even (odd) chromosomes and testing
SNPs on even (odd) chromosomes, A was 0.951.

4.1.2. Proximal contamination by distance to the SNP tested

In this section, we show that, on the WTCCC data for the Chrohn’s disease phenotype,
this effect produces substantially deflated P values as measured by the A statistic, and
quantify the degree to which linkage disequilibrium plays a role.

We used an approach where the SNPs used to construct the realized relationship ma-
trices were chosen to be systematically further and further away from a set of test SNPs,
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genetic relatedness H bd ‘ cad ‘ ht ‘ Cd ‘ ra ‘ t1ld ‘ t2d ‘
Out-of-sample IBS || 1.156 | 1.083 | 1.072 | 1.12 | 1.069 | 1.071 | 1.105
Out-of-sample RRM || 1.151 | 1.091 | 1.069 | 1.111 | 1.076 | 1.071 | 1.109
In-sample RRM || 0.987 | 0.798 | 0.982 | 0.962 | 0.953 | 0.98 | 0.991
Uncorrected || 1.185 | 1.099 | 1.103 | 1.304 | 1.087 | 1.081 1.13

Table 4.1. Effect of proximal contamination on genomic control A in WTCCC
data. “Out-of-sample IBS” refers to use of a linear mixed model with an identity by state
matrix computed from genome-wide SNP markers from even chromosomes when testing
odd chromosomes and vice versa. “Out-of-sample RRM” refers to use of a linear mixed
model with an RRM computed from genome-wide SNP markers from even chromosomes
when testing odd chromosomes and vice versa. “In-sample RRM” refers to use of a
linear mixed model using an RRM computed from genome-wide SNP markers from even
chromosomes when testing even chromosomes and from odd chromosomes when testing
odd chromosomes. “Uncorrected” refers to an uncorrected analysis using the Armitage
trend test.

while holding the number of SNPs used to construct the realized relationship matrices
(i.e., the number of background SNPs in the equivalent linear regression) constant. In
particular, after ordering SNPs by their position, we used every thirty-second SNP start-
ing from the i*® SNP in each chromosome to form a set of test SNPs. In addition, we
created six sets of SNPs to construct realized relationship matrices, each set lying further
away from the set of test SNPs. In a given set, we included every thirty-second SNP
starting at the 7+ j'" SNP in each chromosome, j = 0, 1,2, 4,8, and 16. This experiment
was performed for ¢ = 1,2,3,4, and 5. Each set of SNPs contained approximately 11K
SNPs. As shown in Figure A generally increased with j for j < 8, (i.e. distance be-
tween SNPs tested and SNPs used to estimate genetic similarity), beyond which linkage
disequilibrium presumably had little effect. Note that the values for A for the experi-
ments having the greatest amount of proximal contamination (j = 0) were quite similar
to those when all 367K SNPs were used to construct the realized relationship matrix
(differences were less than 0.027 over all values of 7), suggesting that our experiment did
not deviate substantially from the idealized one.

These experiments show that null-model contamination can be a substantial effect.
Consequently, when using a linear mixed model to test whether a given SNP is associated
with the phenotype, the realized relationship matrix should be computed from all SNPs
except for those in close proximity to the test SNP.

4.1.3. Efficient algorithm to avoid proximal contamination

As discussed, when using a linear mixed model to test for the association between a given
SNP and phenotype, the SNPs used to construct the realized relationship matrix should
exclude that test SNP and those that lie in close proximity to it. A naive approach to this
problem would involve a new spectral decomposition each time some SNPs were removed
or added back in to the computation for the matrix. As it is this spectral decomposition
that is the computational bottleneck of linear mixed model analysis, such an approach
would not be feasible for testing for association on a genome-wide scale [Lippert et al.|

58



4.1. Proximal contamination

095 Il Il Il Il
0 1 2 4 8 16

mimimal distance (j)

Figure 4.1. Strength of proximal contamination as a function of distance
between markers used to compute genetic similarities and markers tested.
The X statistic as a function of the minimum distance between a SNP in the test set and
a SNP used to construct the realized relationship matrix. For a given curve, the set of
test SNPs was selected by incorporating every thirty-second SNP along each chromosome
starting at position i. A increases with distance between the sets of tested markers and
markers used to compute genetic similarities.

2011]. Here we present an algorithm that enables us to use just a single spectral de-
composition, and then cheaply add corrective terms into the log-likelihood to exactly
account for having used the spectral decomposition of the uncorrected realized relation-
ship matrix. We prove that result is the same as though we had actually computed the
spectral decomposition of the corrected matrices for each test. We obtain an efficient
algorithm for performing our desired association analysis that has identical asymptotic
runtime and memory footprint as the uncorrected version of FaST-LMM presented in
Sections [3.3 and B.4]

The algorithm uses the property that the realized relationship matrix, given by K =
GG, where G denotes the matrix of SNP data to be used in the RRM and is of
dimension N x S¢ (for N individuals), decomposes into a sum of contributions from Sc
single SNPs.

Sc
GGT =>[G..[G]..

87
s=1

where [G], ; denotes the s-th column of G.

It follows that the realized relationship matrix with a subset A of SNPs removed can
be written as the difference between the full realized relationship matrix and the sum
over contributions from the SNPs in the set .A. With a slight abuse of notation, where
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Figure 4.2. Schematic illustration of an efficient algorithm for avoiding prox-
imal contamination. For every SNP tested, we exclude all SNPs in a window (e.g., 2
centimorgans) around that SNP from the realized relationship matrix used in the likeli-
hood calculations, by subtracting the product of the corresponding columns of the SNP
matrix used to construct the realized relationship matrix from the covariance term in the
linear mixed model likelihood.

A denotes the set of indices of SNPs in the set A, this difference becomes

K'=GG' - (G, [G]].
leA

GGT

where G is the N x kup matrix containing the k., SNPs to be removed. In most prac-
tical circumstances,k,p will be smaller than both the number of individuals /N and the
number of SNPs in the realized relationship matrix Sc, and thus, as will show, it would
be wasteful to compute the spectral decomposition of K. Instead our algorithm uses the
spectral decomposition of the full realized relationship matrix to efficiently evaluate the
maximum likelihood function (or alteratively the restricted maximum likelihood func-
tion) and treats the removal of SNPs from the realized relationship matrix as low-rank
updates at evaluation time. This approach is described in Section for the case
where the RRM is full rank (Sc > N) and in Section for the case where the RRM
is low rank (Sc < N). A schematic overview of our new algorithm is given in Figure

Low-rank updates to full-rank genetic similarity matrices

Let GG be a factored genetic similarity matrix, as defined by Equation (3.18]). Let
G € RNV*kw be a matrix containing a subset of kup columns of G. Given the spectral
decomposition of GG' = UAU' we can evaluate the likelihood of a linear mixed

model with the updated genetic similarity matrix (G’G’—r — éé’T> in O(Nkup2 + k:up3)
as follows:
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4.1. Proximal contamination

In this section, we treat the case where G is an N x S¢ matrix with N < S¢, resulting
in a full-rank genetic similarity matrix. The log-likelihood can be written as

log N (y ‘ Xp3; o? (vGGT +1-— véé’—r) ) .
Replacing GG " by its spectral decomposition UAU T, we get
log N/ (y | X8; o? <7UAUT Ty . ’yé’é’T> ) .

In contrast to the approach taken in Chapter |3| rotating the data by the matrix of
Eigenvectors U of GG does not yield a diagonal covariance term in the log-likelihood,
but rather a full N x N matrix,

log N (UTy UTX3; o (m Y (UTé) (UTG)T> ) .

When applying the logarithm to the formula of the multivariate Normal distribution, we
get

N 1
-5 log (27702) ~3 log

4414 (UT6) (U76) |- R )
where
R= (UTy . UTX,a)T (’y/l Ty S (UTG> (UTé')T) - (UTy . UTX,a) . (42)

To evaluate the maximum of this log-likelihood efficiently, we have to solve for the
maximume-likelihood parameters, and evaluate the squared form of the Normal distri-
bution and the determinant of the covariance term. In Sections |4.1.3 we provide
efficient solutions for each of these steps.

Maximum likelihood parameters

Given <, the maximum likelihood weight parameters of the log likelihood in Equa-
tion (4.1) are given by the generalized least squares estimator

/BM»Y == C}_(%XCX,"lﬁ (43)

where

Cxx— ((07x) (a1 (076) (7€) ) (7))

exy=(Ux) (1412 (076) (@) (uT).

Given v and 0’2M,Y, the maximum likelihood environmental variance parameter is given

by

and

2
oM,

(U xp) (34415 (U76) (U76) ) (UTy-UTXBy).
(4.4)

1
N
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4. Modeling phenotype-specific relatedness by selection of genetic markers

Both the weight vector Byr, as well as the environmental variance parameter 02M7 involve
quadratic forms of the same form as in the log-likelihood function in Equation (4.3)). An
efficient solution for these quadratic forms is provided in Section [4.1.3

Determinant update

To compute the log likelihood of the linear mixed model we need to compute the deter-
minant of the covariance,

log ‘7/1 Ry N (UTG> (UTé)T :

To do so efficiently, we make use of the matrix determinant lemma, }A—i— BCT‘ =
|A| - |I+CTA_1B‘. In particular, we plugin A = (yA+1I), B = —y (UTG) and

C = (UT(;), yielding

log|yA + I -

I, — 7 (UTG)T (yA+ 1) (UTé) ‘ .

Finally, applying the logarithm to this expression, we obtain the sum of two log deter-
minants,

log |[vA + I| +log | M|,
where the kyp-by-kyp matrix M is given by
TA\ 1 (77T A
M=1I,, —~ (U G) (vA +I) (U G) (4.5)
The log determinant of (yA + I') is merely the sum of the logs of its diagonal entries. The
right side is a full kyp, X kyp matrix whose computation has runtime O(N kup2). Computing

its log determinant is an O(kyp>) operation, resulting in a runtime of O(Nkyp® + kup)
to compute the determinant.

Squared form update In all three Equations (4.1)), (4.3), and (4.4) needed to evaluate
the maximum-likelihood, we must evaluate squared forms such as

a’ <7A Yy (UTé) (UTG'>T> - b,

~ N\ T
for different values of a and b. We note that the term (UTG> (U TG) is a rank-kyp

update on the genetic similarity matrix. It follows that we can use the Sherman-Morrison-
Woodbury identity (also called the Matrix inversion lemma) to efficiently evaluate these
squared forms. The lemma states that

(A+ BCD)=A"'—A'B(C"'+DA'B) ' DA™ .. (4.6)
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4.1. Proximal contamination

We apply the Sherman-Morrison-Woodbury identity to our case by plugging in A =
- AT
(yA+ 1), B= —~ (UTG), C=I,, and D= (UTG) , yielding

a"(YA+I) 'b+ya (yA+I)" (UTG) M (UTG‘>T (vA+I) 6. (47)

The bracketing
~ N
a' (YA +I) b+ ((aT(vA + I)’l) (UTG)) M ((UTG) ((vA + I)lb))
allows for evaluation of these squared forms in O(Nkyp?® + kup®).

Updates for low-rank similarity matrices

In this section, we treat the case where G is an N X S¢ matrix with N > Sc, resulting
in a low-rank genetic similarity matrix. The log-likelihood is

logN(y‘XB; o? <7GGT+I—7ééT> )

Let UlAlUlT, with U; € RV*5¢ and A; € R9¢*5¢ be the economy spectral decom-
position of GG as in Section Replacing GG by its spectral decomposition and

writing out the formula for the logarithm of a Normal distribution yields an expression
for the log likelihood of

N 1 -~
5 log (270?) — B log "yUlAlUlT +I-+yGG" (4.8)
1

—ﬁ(y—Xﬁ)T <7U1A1U1T +I—7ééT)_1 (y—XB). (4.9)

As in the full rank case, we have to solve for the maximum-likelihood parameters, and
evaluate the squared form of the Normal distribution and the determinant of the co-
variance term. In Sections [4.1.3H4.1.3| we provide efficient solutions for each of these
steps.

Maximum likelihood parameters Given ~, the maximum likelihood weight parameters
of the log likelihood in Equation (4.9) are given by the generalized least squares estimator

~ ~ -1 -1 - -1
By, = (XT (wlAlUlT Ty . fyGGT> X> bdl (ﬂyUlAlUlT iy 7GGT) y.
(4.10)

Given v and By, the maximum likelihood genetic variance parameter is given by

o\, = % (y—XB8)" (fyUlAlUlT +I- yééT)_l (y— XB). (4.11)

Analogously to the full rank update section earlier, here, quadratic forms are again
need for evaluation of Equations (4.9), (4.10)), and (4.11). An efficient solution for these
quadratic forms is provided in Section
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4. Modeling phenotype-specific relatedness by selection of genetic markers

Determinant update The determinant in the log-likelihood in Equation (4.9)) that we
have to evaluate is o
log )’yUlAlUlT + I - 'yGGT‘ .

Given the log determinant of (’yUl MU +1 ) from Equation (3.21]), we can apply the
matrix determinant lemma to evaluate the log determinant of the updated linear mixed
model covariance,

Sc
1 ~T T -1 -
> log <7An+1> +10g‘I—7G (leAlU1 +I) G‘. (4.12)

n=1

Using the equivalence shown in Equation , we get the expression
GT (7U1A1U1T n 1)71 G = M, + My_y, (4.13)
where the kyp-by-kyp, matrices M), and My _j, are obtained as
M= (U7 G) (4 + 1) (U7 @),

and My = ((1x - i) é)T<(IN_U1U1T) G).

This S¢ x Sc¢ matrix can be computed in O((N + Sc)kyp) time. Substituting the ex-
pression from Equation (4.13]) into the determinant from Equation (4.12)), we obtain

Sc

1
E log —l—log\IN—'yMk—'yMN_k],
n=1 '7)\n + 1

which can be evaluated in O(Sc + kup®) time, resulting in a total runtime of O (ky,® +
(N + Sc)kup) to evaluate the log determinant.

Squared form update Here we derive efficient evaluations for the squared form
-1
a' | \GGT +1-—~GG" b, (4.14)
————
H’Y

that allows for efficient evaluation of Equations (4.9), (4.10)), and (4.11)) by plugging in
the the appropriate values for a and b.

Given the inverse of H,, we can apply the Sherman-Morrison-Woodbury identity in
Equation (4.6 to derive the inverse of the updated genetic similarity matrix as

(H,~+GG") " = B +yH;'G (L, -G H'G) G HS

When plugging this expression into the squared form in Equation (4.14)) that we need to
evaluate, we obtain

~ ~ ~\—1 -
CLTHFY_lb—i-"yaTHFy_lG (Ikup —"}/GTH,Y_lG> GTH,Y_lb (415)

64



4.2. A simple heuristic to avoid dilution

Noting that there are now squared expressions in HY L we can use the solution for the
low-rank quadratic form in Equation to efficiently evaluate these expressions in
O((N + Sc)kup). The additional required inversion of an kyup X kyup matrix has runtime
O(k:up2). Finally, using the following ordering of computations, we can efficiently compute
the required matrix products.

~ ~ ~\—1 /-
o H b+ ((a"HY) G) (L, -G THT'G) (G (H;'D)).
The total runtime to evaluate this expression becomes O((N + Sc)kup + kup?)-

Restricted maximum likelihood

So far the derivations have been limited to maximum likelihood parameter estimation.
However, it is straightforward to extend these results to the restricted log likelihood
log L (’y, 02]Sy) from Equation (2.51)), which comprises the log likelihood with the re-
stricted maximum likelihood estimator of the fixed effects Br., plugged in, plus three
additional terms [Kang et al., 2008, [Harville, [1974]:

D 1 1 _
log £ (/@RW%U2) + Elog (27702) + ilog‘XTX‘ - Qlog‘XT (vK'+1I) 1X’,

where the restricted maximum likelihood estimator of the fixed effects Br, equals the
form of the maximum likelihood estimator By, .
We observe that the only additional term involving the updated genetic similarity
matrix is 1
log| X' [vGGT -GG +1| X[,

vK’

which again involves a squared form that can be solved efficiently using the efficient
squared form update from Equation for the case when GG' has full rank and
Equation for the case where GG'' has low rank.

The restricted maximum likelihood estimator of the residual variance component, given
by

2 1

= T (UTy . UTXﬁ}PW)T (fyGGT . ’yC:'G'T) - (UTy - UTXBRW) :

involves no additional expensive terms to be compute compared to the ML solution. The
formulas for the remaining parameters remain unchanged. The space requirements for
resrticted maximum likelihood estimation are the same as those for maximum likelihood
estimation.

4.2. A simple heuristic to avoid dilution

As mentioned, we refer to the possible loss of power and worse stratification due to the
use of SNPs, that are not associated to the phenotype in the computation of genetic
relatedness, as dilution. We combat dilution by identifying SNPs for inclusion in the
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4. Modeling phenotype-specific relatedness by selection of genetic markers

genetic similarity matrix that are most strongly associated with the phenotype when
no correction for confounding is performed. That is, we select those SNPs that are
associated with the phenotype according to univariate linear regression. SNPs identified
in this way are likely either to be indirectly associated with the phenotype (e.g., by way of
population structure), to have a direct effect on the phenotype, or tag a hidden common
cause of the SNP and the phenotype. These three categories represent precisely those
SNPs that we want to include in computing the similarity matrix.

As for the threshold for inclusion, we have found the following to yield improved
power and calibration. First, we order SNPs by their linear-regression P values. Then,
we construct genetic similarity matrices with an increasing number of SNPs according
to this ordering until we find the first minimum in the genomic control factor A. We
determined the first minimum in A by a coarse grid search followed by a golden section
search. For the Chrons disease genome-wide association studies, the grid search consisted
of the SNP set sizes 0, 100, 200, 300, 400, and the golden section search consisted of the
SNP set sizes 280, 340, 320, 290, and 310.

In practice, the number of SNPs selected is typically smaller than the number of
individuals analyzed, a condition that can be exploited by the FaST-LMM algorithm
presented in Section to yield runtime, that is linear in the number of samples.

Others have explicitly used only a subset of available SNPs as covariates to correct
for population structure [Setakis et al., |2006], and have included only a subset of SNP
principal components that are predictive of phenotype so as to increase genome-wide
association studies power [Novembre and Stephens, 2008, [Lee et al., |2011].

4.3. Emprical assessment of FaST-LMM-Select

Together, the linear-regression scan to select SNPs for inclusion in the matrix along with
removal of the test SNPs and those nearby constitute our new approach, FaST-LMM-
Select.

4.3.1. Assessment of dilution and proximal contamination in simulations

We explored the detrimental effects of dilution and proximal contamination using syn-
thetic data so as to have access to ground truth. As in other papers examining correction
for population structure in genome-wide association studies, SNPs were generated with
the Balding-Nichols model [Astle and Balding, 2009]. We used 3000 individuals consist-
ing of two populations in a ratio of six to four. We chose 100 SNPs at random to be
causal of the phenotype, half of which were differentiated between the two populations
(Fsp = 0.1), and the other half not. We generated the phenotype by way of the linear
mixed model, using the 100 causal SNPs in the genetic similarity matrix (realized re-
lationship matrix), no fixed effects, and parameters that were comparable to what has
been seen on real data when using a traditional linear mixed model approach (genetic
variance=0.1, residual variance=0.1) [Kang et al., |2010].

FaST-LMM-Select yielded better calibration and more power than the traditional ap-
proach, which in turn yielded less deflation and more power than using a small number
of equi-spaced SNPs (as in the original version of FaST-LMM). Furthermore, we saw
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Figure 4.3. Synthetic experiments showing effects of dilution on calibration
while avoiding proximal contamination. We generated 100,000 SNPs that could
be used to construct the similarity matrix and varied the proportion of undifferentiated
to differentiated SNPs (99:1, 9:1, and 0:1), with Fsp = 0.1 for the differentiated SNPs.
The test set comprised another 5000 independently generated SNPs, of which twenty
percent were differentiated (Fsp = 0.1). "FaST-LMM all” refers to use of all SNPs in
the similarity matrix. ”"FaST-LMM orig X” refers to the random selection of X SNPs
for the similarity matrix, where X was the number used by FaST-LMM-Select. FaST-
LMM orig 4K refers to using 4,000 randomly selected SNPs to estimate genetic similarity.
(4,000 equi-spaced SNPs were used in Chapter . A realized relationship matrix was
used for genetic similarity.

that the deleterious effects of proximal contamination were lessened when dilution was
greater.

Calibration under dilution in the absence of proximal contamination First, we ex-
amined how circumventing dilution in the absence of proximal contamination improved
calibration (the avoidance of inflation or deflation of the test statistic). In particular, we
generated 100,000 SNPs that could potentially be used in the genetic similarity matrix
(only some of which would be selected by our method). We varied the proportion of
undifferentiated to differentiated SNPs (99:1, 9:1, and 0:1), with Fsp = 0.1 for the dif-
ferentiated SNPs. Although there is evidence that many SNPs are undifferentiated (e.g.,
the fact that Ancestry Informative Marker panels typically number in the hundreds |[Kidd
et al., 2011, Price et al. 2008, Nassir et al.,|2009]) we wanted to examine how spurious as-
sociations change under a range of scenarios. We used a test set comprising another 5,000
independently generated SNPs, of which twenty percent were differentiated (Fsr = 0.1).
We chose such a test set for three reasons: (1) we wanted the set to be constant across
the different proportions of 99:1, 9:1 and 0:1, (2) we wanted a reasonably high proportion
of SNPs to be differentiated as these are the ones that become spuriously associated due
to confounding, and (3) we wanted the set to be independent from SNPs in the genetic
similarity matrix so that proximal contamination could not occur. No SNP in the test
set was causal, but we expected those that were differentiated to be spuriously associated
with the phenotype if confounding was not corrected for, thus producing inflated test
statistics. We also expected that, with a smaller and smaller proportion of differentiated
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Figure 4.4. Synthetic experiments showing effects of both dilution and prox-
imal contamination on calibration. We generated 100,000 SNPs that could be used
to construct the similarity matrix and varied the proportion of undifferentiated to dif-
ferentiated SNPs (99:1, 9:1, and 0:1), with Fsy = 0.1 for the differentiated SNPs. The
test set comprised another 5000 independently generated SNPs, of which twenty percent
were differentiated (Fgr = 0.1). “FaST-LMM orig X” refers to the random selection of
X SNPs for the similarity matrix, where X was the number used by FaST-LMM-Select.
“FaST-LMM orig 4K” refers to using 4,000 randomly selected SNPs to estimate genetic
similarity. (4,000 equi-spaced SNPs were used in Chapter ) Variations in A when both
dilution and proximal contamination could occur. We limited ourselves to the 99:1 con-
dition from Figure [4.3] and used the same 100,000 SNPs for possible inclusion in the
similarity matrix. The test set comprised the true causal SNPs as well as a 5,000 SNP
subset of the 100,000 SNPs allowed in the matrix (including the 1,000 that were differ-
entiated). The genomic control factor A is plotted as a function of number of SNPs used
in the similarity matrix with our new approach when contamination was accounted for
(line with triangular points). A first minimum in A occurs when 250 SNPs were used.
“FaST-LMM-Select X7 refers to the use of the top X SNPs from linear regression to
estimate genetic similarity. A realized relationship matrix was used for genetic similarity
except for the conditions labeled “IBS all” and “IBS ground truth”, wherein identity by
state was used with all available and ground truth SNPs, respectively.
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Figure 4.5. Synthetic experiments showing effects of both dilution and prox-
imal contamination on power. We generated 100,000 SNPs that could be used to
construct the similarity matrix and varied the proportion of undifferentiated to differ-
entiated SNPs (99:1, 9:1, and 0:1), with Fgp = 0.1 for the differentiated SNPs. The
test set comprised another 5000 independently generated SNPs, of which twenty percent
were differentiated (Fgr = 0.1). “FaST-LMM orig X” refers to the random selection of
X SNPs for the similarity matrix, where X was the number used by FaST-LMM-Select.
“FaST-LMM orig 4K” refers to using 4,000 randomly selected SNPs to estimate genetic
similarity. (4,000 equi-spaced SNPs were used in Chapter [3]). Receiver operating charac-
teristic curves and area under the curve (in parentheses) when both dilution and proximal
contamination could occur. We limited ourselves to the 99:1 condition from Figure
and used the same 100,000 SNPs for possible inclusion in the similarity matrix. The test
set comprised the true causal SNPs as well as a 5,000 SNP subset of the 100,000 SNPs
allowed in the matrix (including the 1,000 that were differentiated). The genomic control
factor A is plotted as a function of number of SNPs used in the similarity matrix with
our new approach when contamination was accounted for (line with triangular points).
A first minimum in A occurs when 250 SNPs were used. “FaST-LMM-Select X” refers to
the use of the top X SNPs from linear regression to estimate genetic similarity. A real-
ized relationship matrix was used for genetic similarity except for the conditions labeled
“IBS all” and “IBS ground truth”, wherein wherein identity by state was used with all
available and ground truth SNPs, respectively.
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SNPs used in the realized relationship matrix, dilution would lead to more and more
inflated test statistics, because the differentiated SNPs were those that should be in-
cluded in the matrix. Indeed, we saw these results (Figure [4.3). Only FaST-LMM-Select
remained calibrated across all experimental conditions, whereas other approaches were
calibrated only when all SNPs were differentiated (0:1). As expected, calibration for the
other approaches became worse as fewer SNPs were differentiated. Linear regression, not
shown in the figure, yielded extremely inflated test statistics (A = 10.2).

Calibration and power under proximal contamination Next, we examined how dilution
and proximal contamination together affected calibration and power. Here we limited
ourselves to the 99:1 condition just described, using the same 100,000 SNPs for possible
inclusion in the realized relationship matrix as in the previous experiment. The test set
comprised the true causal SNPs as well as a 5,000 SNP subset of the 100,000 SNPs allowed
in the genetic similarity matrix (including the 1,000 SNPs that were differentiated).
When accounting for proximal contamination, we removed only the test SNP itself from
the matrix (rather than using the 2 centimorgan rule that we apply on real data), because
the synthetic SNPs are not in physical linkage disequilibrium. FaST-LMM-Select used
250 SNPs in the matrix, as this is where the first minimum in A occurred (Figure ,
and yielded A = 0.99, comparable to A = 1.01 from the ground truth matrix (using
only the causal SNPs) that accounts for proximal contamination. In contrast, when all
SNPs were used in the matrix, A was strongly inflated as in the previous experiment.
Note that identity by state performed similarly to the realized relationship matrix, but
does not have the required factored decomposition which allows FaST-LMM to run most
efficiently, nor is it directly amenable to the efficient algorithm for removing SNPs to
account for proximal contamination. Also note that using a random selection of SNPs
in the matrix (in the experiments in Section we used equi-spaced SNPs, which
corresponds to a random selection in these synthetic experiments) did not perform well,
either with 4,000 SNPs, or 250 SNPs, the number used by FaST-LMM-Select.

Turning to power (Figure , when proximal contamination was avoided with the
ground truth genetic similarity matrix, the linear mixed model obtained nearly perfect
power, whereas failing to avoid proximal contamination dramatically reduced power—no
SNP signal remained. In contrast, when all available SNPs where used in the matrix,
proximal contamination had little effect on power, illustrating the interaction between
dilution and proximal contamination. FaST-LMM-Select obtained the most power among
methods that did not have access to the ground truth. Note that whether the realized
relationship matrix or identity by state were used with all, or ground truth SNPs, power
and A were about the same. Using a random selection of SNPs did not perform well,
either with 4,000 SNPs or 250 SNPs, the number used by FaST-LMM-Select. Finally,
note that although dilution and proximal contamination had opposite effects on A (so
that models having both effects appeared to perform well in terms of calibration), both
effects reduced power.

4.3.2. Genome-wide association study of Crohn’s disease

When applied to Wellcome Trust Case Control Consortium data for Crohns disease (see
Section [A.1]) [Burton et al., [2007], including close family members and non-Caucasians,
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Runtime Runtime
false false without with Memory

Algorithm A positives  negatives speedup (min) speedup (min) usage (GB)
FaST-LMM-Select 1.08 0 1 1.3 x 103 45 <1
FaST-LMM (all) 1.09 2 2 4.0 x 10° 4,567 86
FaST-LMM (orig 310) | 1.26 9 1 1.1 x10? 6 <1
FaST-LMM (orig 4,000) | 1.17 5 1 2.1 x 10° 30 2
Traditional 0.97 2 6 4.1 x 10t NA 45

Table 4.2. Algorithm performance on Chron’s disease. The original version of
FaST-LMM, which used equally spaced SNPs to estimate genetic similarity, was evaluated
using 310 SNPs (the same number used by FaST-LMM-Select) and 4,000 SNPs (as used
in the original version of FaST-LMM). The five algorithms yielded substantially different
P values (Figure , which in turn led to different SNPs being deemed significant (using
the P value threshold of 5 x 107 [Burton et al., 2007]). Previous studies were used to
determine the gold standard in order to label the false positive and false negative loci
(for a list of all SNPs found significant by at least one method see supplementary Table
1 in |Listgarten et al.|[2012].). “speedup” refers to the use of efficient low-rank updates
to avoid recomputing the spectral decomposition of the genetic similarity matrix when
correcting for proximal contamination.

FaST-LMM-Select performed well (see Table [4.2). Compared with the use of all SNPs
(while still accounting for proximal contamination), FaST-LMM-Select had slightly less
inflation and fewer false positives (due to lack of dilution), and used far less computer
time and memory. Compared with the traditional approach, FaST-LMM-Select had bet-
ter calibration, far more power, and better computational efficiency. Compared with the
original version of FaST-LMM, wherein equi-spaced SNPs were used to reduce computa-
tional demands, FaST-LMM-Select had far better calibration and fewer false positives.
Finally, the avoidance of proximal contamination alone (comparing “FaST-LMM all”
with “Traditional” wherein all available SNPs are used) had a dramatic effect on cali-
bration and false positives, even though only 516 SNPs on average were excluded from
the genetic similarity matrix for the testing of a given SNP.

4.3.3. Genome-wide association study of LDL in a Finnish cohort

The first cohort consists of 5,546 Finnish individuals in the 1966 Northern Finland Birth
Cohort (NFB066)|I| [Sabatti et al., 2008, Rantakalliol |1969].

Among the available phenotypes, we analyzed low-density lipoprotein, as it had the
most genetic structure (A = 1.10) among the phenotypes having genome-wide significant
SNPs. We used a 2 megabase exclusion window, because genetic distances were not
available. The relative performance of the different algorithms was similar to that for
the WT'CCC data. In particular, FaST-LMM-Select, which chose 300 SNPs, yielded a A
of 1.02. In contrast, using all available SNPs and correcting for proximal contamination
gave A = 1.05, showing inflation with respect to FaST-LMM-Select due to dilution. The
traditional approach, which used all available SNPs but did not correct for proximal
contamination, yielded a lower value (A = 1.00), demonstrating the effect of deflation
compared to the analysis that corrected for proximal contamination. As for power, using
all SNPs (with or without correcting for proximal contamination) identified three loci

'For a description of the data see Section
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Figure 4.6. A comparison of P values for the algorithms described in Ta-
ble Each point in a plot shows the paired negative log P values of association for
a particular SNP from two algorithms. Dashed lines show the genome-wide significance
threshold (5 x 10~7). Green points indicate SNPs called significant by the algorithm
shown on the y axis but not the algorithm shown on the x axis, whereas magenta points
indicate the opposite. The algorithm with the lower value for A (see Table is shown
on the x axis.



4.3. Emprical assessment of FaST-LMM-Select

as significant, (p < 7.2 x 1078) as in [Kang et al.| [2010]. The first locus was near genes
CELSR2, PSRC1, SORT1 on chromosome 1, the second was near APOB on chromosome
2, and the third was LDLR on chromosome 19. Associations with all three loci have been
validated |[Sabatti et al.|[2008]. In contrast, FaST-LMM-Select identified these same three
loci and one additional locus near genes FADS1 and FADS2 on chromosome 11, which
also has been validated [Sabatti et al., |2008].

4.3.4. Genome-wide association study of smoking

Data for this cohort was obtained from the Genetic Analysis Workshop (GAW) 14 |Eden-
berg et al., [2005]. It consisted of autosomal SNP data from an Affymetrix SNP panel and
a phenotype indicating whether an individual smoked a pack of cigarettes a day or more
for six months or more (see Section [A.2)). The cohort included over eight ethnicities and
numerous close family members—1,034 individuals in the dataset had parents, children,
or siblings also in the dataset. As in the main paper, we used a 2 centimorgan exclusion
window.

On this data, linear regression yielded A = 3.8, significantly higher than 1.0 (p < 0.001),
reflecting the large amount of genetic structure. Despite this substantial structure, FaST-
LMM-Select chose only 650 SNPs and was well calibrated, yielding A not significantly
different from 1.0 (p = 0.19; Figure [4.7(a)). Interestingly, FaST-LMM-Select identified
a single SNP, 151950284, as significant (p = 1.7 x 10~8). While this association has not
been validated, the SNP lies in the GPHN gene, for which a prior association with other
forms of addiction has been reported [Enoch et al.,[2012]. Use of all available SNPs in the
similarity matrix while accounting for proximal contamination also yielded no significant
deviation from A = 1.0 (p = 0.24), but did not identify this SNP as significant. The
traditional approach (use of all SNPs and not accounting for proximal contamination)
yielded A significantly lower than 1.0 (p = 0.02). This deflation presumably resulted from
not accounting for proximal contamination. Statistical significance of deviation of X from
1.0 was estimated using a Monte Carlo simulation of the null distribution (uniform on
[0,1]) with 1000 sampled distributions.

To demonstrate the robustness of FaST-LMM-Select to extremely strong genetic struc-
ture, we filtered the data to include only sib pairs (N = 920). Again, FaST-LMM-
Select was well calibrated, yielding A not significantly different from 1.0 (p = 0.31;
Figure . Here, the approach used 630 SNPs in the genetic similarity matrix. Pos-
sibly due to the reduced sample size, the SNP rs1950284 no longer reached genome-wide
significance. Use of all available SNPs in the similarity matrix, either accounting or not
accounting for proximal contamination, also yielded no significant deviation from A = 1.0
(p=0.41, p = 0.16).

4.3.5. Genome-wide association study of flowering time in A. thaliana

The data was taken from a GWAS of 107 phenotypes on 199 Arabidopsis thaliana inbred
lines [Atwell et all 2010] (see Section [A.5). Arabidopsis thaliana exhibits continuous
isolation by distance at every geographic scale with the result that population genetic
models assuming discrete populations work poorly on this species [Platt et al., 2010a].
FaST-LMM-Select chose 800 SNPs for the genetic similarity matrix. Note that values
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Figure 4.7. Comparison of calibration obtained by FaST-LMM-Select for the
analysis of GAW14 data. Quantile-quantile plots of negative log P values for FaST-
LMM-Select, FaST-LMM all (using all available SNPs to estimate genetic similarity and
accounting for proximal contamination), Traditional (using all SNPs to estimate genetic
similarity but not accounting for proximal contamination), and linear regression, on a
GWAS of [(a)] the GAW14 data and a subset including only sib pairs. Dashed lines

show 0.05 confidence intervals.
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of A were somewhat noisy due to the small sample size of this cohort. Consequently, we
identified the first minimum using a grid search smoothed by a polynomial fit, rather
than golden section search.

There were many strong associations in this cohort, making it difficult to evaluate
calibration [Atwell et al., |2010]. Consequently, as in |Atwell et al. [2010], we compared
methods by their ability to identify SNPs that were likely a priori to be associated with
a given phenotype. Following the main example used in |Atwell et al.[[2010], we analyzed
the phenotype of flowering time at 10° Centigrade. For each method, we sorted SNPs
by their P value of association, identifying the most strongly associated k& SNPs for k
ranging from 1 to 2000 (Atwell et al.| [2010] selected approximately 2000 SNPs using an
uncorrected approach, and approximately 250 SNPs using a LMM—see their Figure 3).
Then, for each method and value of k, we determined how many of the k associations
coincided with candidate SNPs, those that were within 20 kilobases (as in |Atwell et al.
[2010]) of a gene likely to be associated with flowering (Figure [1.8). The list of such
genes was provided by |Atwell et al. [2010] and was an updated version from the one used
in their paper.

Over the range of k, FaST-LMM-Select generally identified the most candidate SNPs
(i.e., true positives) among the top-ranked k& SNPs, followed by FaST-LMM all (where all
available SNPs were used in the genetic similarity matrix), the traditional LMM approach
(which used all available SNPs and did not account for proximal contamination), and
finally linear regression. At k = 2000, these methods (in order) identified 176, 148, 147,
and 110 true positives. Only FaST-LMM-Select identified more SNPs than what would
have been expected by chance (P values reported in Figure .

4.3.6. Experimental details

A likelihood ratio test was used to compute P values (see Section . The calibration
of P values was assessed using the A statistic, also known as the inflation factor from
genomic control (see Section[2.3.1)) Devlin and Roeder| [1999], Balding| [2006]. The value A
is defined as the ratio of the median observed to median theoretical test statistic. Values
of X\ substantially greater than (less than) 1.0 are indicative of inflation (deflation) (see
Section . Missing SNP data was mean imputed. Runtimes were measured on a
40-core Dell PowerEdge R910 machine with a 2.0 GHz clock and 256 GB of RAM. All
algorithms used the MKL for linear algebra computations.
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Figure 4.8. Enrichment of likely SNP associations for the trait of flowering
time at 10° Centigrade for results obtained from FaST-LMM-Select and com-
parison methods. Number of candidate SNPs (i.e., true positives) identified versus the
number of SNPs labeled positive (k) are plotted for each method. The methods include
Fast-LMM-Select, Fast-LMM all, the traditional LMM approach which ignores proximal
contamination, and linear regression. The solid black line shows what would be expected
by chance. Two-sided P values for whether candidate SNPs were more enriched than
by chance are shown adjacent to each curve. These P values were determined using the
permutation method described in Supplementary Information 3.3 of [Atwell et al.[[2010],
which preserves the linkage-disequilibrium structure in the SNPs.



4.4. Chapter summary and discussion

4.4. Chapter summary and discussion

Here we pointed out two possible pitfalls when performing GWAS using LMMs, the
effects of proximal contamination and dilution.

Proximal contamination refers to a loss of power due markers linked to the marker
being tested entering the genetic similarity matrix. We demonstrated this effect on data
from the WT'CCC [Burton et al., 2007] as well as on GAW14 [Edenberg et al., [2005] and
provided an efficient and accurate way co correct for this effect. To this end we developed
a window-based method that avoids re-computing the matrix of genetic similarities by
performing low rank updates.

Dilution refers to the effect of markers unrelated to the phenotype entering the matrix
of genetic similarities, leading to both a loss in power as well as reduced ability to correct
for confounding. To avoid dilution, we proposed a simple method for selecting markers
to be included in computation of genetic similarities by association to the phenotype.

In synthetic experiments as well as in GWAS from four cohorts with substantial genetic
structure we demonstrated that FaST-LMM-Select yields an improvement in power as
well as calibration over the traditional approach of using genome-wide markers to com-
pute genetic similarities.

Here, markers where selected by association to the phenotype. Another feature se-
lection criterion that shows great promise is out of sample prediction [Lippert et al.,
2013b].

So far we considered tests of single SNPs for association with a phenotype. In Sec-
tion based on FaST-LMM-Select we develop a test for association between sets of
SNPs and a phenotype.
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5. Aggregating multiple effects in linear
mixed models

Approaches for testing sets of variants, such as a set of rare or common variants within
a gene or pathway, for association with complex traits are a promising way to detect
causal variants with smaller effect sizes or effects of rarer variants. In particular, set
tests allow for aggregation of weak signal within a set, enable interplay among variants to
be captured, and reduce the burden of multiple hypothesis testing. Unfortunately, until
now, these approaches did not address confounding by family relatedness and population
structure, a problem that is becoming more important as larger data sets are used to
increase power.

In traditional GWAS one single variant at a time is tested for association with a
heritable trait, overlooking interplay between SNPs, missing weak signal that aggregates
in sets of related SNPs, and incurring a severe penalty for multiple testing.

More recently, sets of SNPs have been tested jointly in a gene-set enrichment style
approach |[Holden et al., |2008], and also in seeking association between rare variants
within a gene and disease [Wu et al., 2011, Bansal et al., 2010]. As next generation
sequencing rapidly becomes the norm, these set-based tests, complementary to single
SNP tests, will become increasingly important.

Several types of approaches have been used to jointly test sets of SNPs: post-hoc,
gene-set enrichment style approaches in which univariate P values are aggregated |[Holden
et al., 2008|; operator-based aggregation such as “collapsing” of SNP values [Braun and
Buetow, 2011, Li and Leal, 2008]; and kernel based approaches such as a linear mixed
models [Wu et al.| {2010} {2011} |Quon et al [2013]. The latter methods can be interpreted
as tests for significant local heritability in a genomic region |[Quon et al., [2013].

However, until recently none of the existing methods for testing sets of SNPs handle
confounders arising when related individuals or those of diverse ethnic backgrounds are
included in the study. Such confounders, when not accounted for, result in spurious
associations and loss in power [Balding, 2006, [Price et al., 2010b]. Yet it is precisely
these richly structured cohorts which yield the most power for discovery of the genetic
underpinnings of complex traits. Moreover, such structure typically presents itself as
data cohorts become larger and larger to enable the discovery of weak signals.

For cases, where it is not clear how to define such sets, sparse predictors of all genome-
wide SNPs, use of shrinkage priors or employing stepwise forward selection has been
successful [Yang et all [2012, [Schwender et al., 2011} Malo et al. 2008]. Applying a
Laplacian prior leads to the Lasso [Li et al.| 2011]. Other related priors have also been
considered |Hoggart et al., [2008].

For the former application of testing pre-defined sets of markers for association to a
phenotype we introduce a new approach called FaST-LMM-Set, a variance component
based test that handles confounders (see Section [5.1). The model uses two random
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effects—one to capture the set association signal and one to capture confounders. Based
on the the FaST-LMM algorithm (see Section we also introduce a computational
speedup for two-random-effects models that makes this approach feasible even for ex-
tremely large cohorts, whereas it otherwise would not be. Experiments based on syn-
thetic data demonstrate control of type I error and better power of the likelihood ratio
test over a more traditional score test. Application of FaST-LMM-Set to the richly struc-
tured GAW14 data demonstrates that our method successfully corrects for population
structure, while application of our method to WITCCC Crohn’s disease demonstrates
that our method additionally recovers genes not recoverable by univariate analysis.

For the latter case where such sets are not available, we propose LMM-Lasso, a model
for multi-locus mapping using shrinkage estimators while accounting for relatedness in
the mixed model framework. We show practical use in GWAS through retrospective
analyses. In data from Arabidopsis thaliana and mouse, the benefits in modeling are
demonstrated by significant improvements in prediction of phenotype from genotype in
91% of the phenotypes considered. At the same time the results are interpretable as
the model dissects these predictions into components due to individual SNP effects and
general population structure. In addition to improved prediction, enrichment of known
candidate genes suggests that the associations retrieved by LMM-Lasso are more likely
to be genuine.

5.1. A powerful and efficient set test for GWAS

In this section we introduce a new approach for set tests of genetic variants that handles
confounders. As mentioned, our approach is based on the linear mixed model (LMM),
which has an equivalence to linear regression. As we have argued in Chapters [2| and
this equivalence states that use of a LMM with a particular genetic similarity matrix
is the same as regressing those SNPs used to estimate genetic similarity on the pheno-
type [Hayes et al., 2009} Listgarten et al.l 2012]. One may choose to regress on SNPs for a
number of reasons, including correction for confounders in GWAS [Yu et al., 2006, Kang
et al 2010, Listgarten et al., 2012}, testing them for association with a phenotype [Wu
et al., [2010,2011], and conditioning on other causal SNPs to increase power [Kang et al.|
2010, |Atwell et al., [2010} Segura et al., |2012].

Independent of the use of LMMSs for matters of population structure correction, the
use of LMMs to jointly test sets of rare variants has become prevalent [Wu et al.l 2010,
2011]. In our new approach, we marry the aforementioned uses of LMMs to perform set
tests in the presence of confounders within a single, robust, and well-defined statistical
model.

The first of the two random effects in our model captures confounders in a manner
similar to the common usage of a LMM for correction of confounding variables in GWAS.
By including this rich covariance structure among the individuals, the individuals effec-
tively become de-correlated, thereby avoiding spurious signal and loss of power otherwise
caused by such structure. The second random effect captures signal from the set of SNPs
of interest (in a manner similar to the SKAT algorithm used to test sets of rare variants
when no confounders are present [Wu et al. 2011} Lee et al., 2012b]).

Because of the aforementioned equivalence, our approach can also be viewed as a
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form of linear regression with two distinct sets of covariates. The first set of covariates
consists of markers that correct for confounders, that is, those which predict race and
relatedness, for example. Their inclusion makes the data for individuals independently
and identically distributed (i.e., knowing the value of these markers induces a common
distribution from which the individuals are drawn). The second set of covariates consists
of SNPs for a given set of interest, such as those SNPs belonging to a gene. We call our
approach FaST-LMM-Set.

Computing the likelihood for our model—a LMM with two random effects—is, naively,
extremely expensive, as it scales cubically with the number of individuals [Yu et al.,
2006, [Listgarten et al., [2010]. For example, on the 15,000 individual WTCCC data set
we analyse, currently available algorithms would need to compute and store in memory
genetic similarity matrices of dimension 15,000 x 15,000 and repeatedly perform cubic
operations on them to test just a single set of SNPs. However, extending the work
presented in Chapter [3]that made LMMs with a single random effect linear in the number
of individuals [Lippert et al.l 2011] to the two-variance component model needed here,
we bypass this computational bottleneck, yielding a new two-random-effects algorithm
which is linear in the number of individuals. This advance enables us to analyse data
sets which could not otherwise be practically analysed, such as the 15,000 individual
WTCCC cohort [Burton et al.l 2007]. For example, using the naive cubic approach to
test the gene set IL23R (containing 14 SNPs) took 13 hours as compared to one minute
for our new approach (all on a single processor), demonstrating a factor speed-up of 780.

5.1.1. Linear mixed models with two variance components

The log likelihood in the linear regression view is given by
o2
log £ (,8,02,(7;) = log/./\/(y | X8+ Gu; o I)N [ v |0; ggI du (5.1)

where y is a 1 x N vector of phenotype values for N individuals; B is the set of the
fixed effects of the covariates stored in the design matrix X; o2 is the residual variance
in the regression; u are the S x 1 random effects for the SNPs, stored in the design
matrix G (dimension N x S), and N (u | 0; JE%I ) is the distribution for those weights.
That is, the random regression weights, u are marginalized over independent Normal
distributions with equal variance o*é /S. Equivalently, the log likelihood is sometimes
written with random effects marginalized out,

log £ (8,0°,07) =logN (y| XB; 0iK +0°T). (5.2)

where the kernel, K, is given by K = %GGT as is the case, for example, when K is
given by the realized relationship matrix (RRM) [Hayes et al., 2009, Lippert et al., 2011].
Given this equivalence, the SNPs used to estimate genetic similarity (those in G) can be
interpreted as a set of random covariates in the regression. In our model, we partition
the random effects into two sets: one set of random effects, uc (with design matrix G¢),
are used to correct for confounders, while the other, ug, are used to test our set of SNPs
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in the corresponding design matrix, G'g. The log likelihood is then written
log £ (,3, 02, ag‘;, a?g)
=log N (y ‘ XB+ Geouc + Gsug ; 021)N <uc ‘ 0; Z’QEI>N (us ‘ 0; g%I) ducdug,
(5.3)

where each set of random effects has a separate variance (c2,/Sc and 0%/Ss). Equiva-
lently, we can write this in the marginalized form

2 2
log £ (,8, o2, U%,O’%) = log (y ‘ X3, g—CGCGE + %Gng + 02I> (5.4)
C S

For convenience, we re-parameterize this as

1—
log £ (8,02, 0%,0%) = logN <y | X3; o? (SCTGCGE + STSGSG§) - 021> :
(5.5)

where now the covariance matrix, K, has been partitioned into two variance components:
K=(1-7)Kc¢+7Kg, (5.6)

using K¢ = %GCGE (where G¢ is of dimension N x S.) to account for confounders,

and Kg = %GSGE (where Gg is of dimension N x Sg) to account for signal from a
pre-defined set of SNPs such as those within a gene; and 7 € [0, 1] is a scalar parameter
estimated from the data by, for example, restricted maximum likelihood (REML). The
null model for our set test is given by 7 = 0, while the alternative model allows 7 > 0.

Until recently, estimating the parameters and computing the likelihood of a LMM
was cubic in the number of individuals. However, as shown in Section when the
number of SNPs used to estimate genetic similarity, S, is less than the cohort size, N,
and when genetic similarity matrix, K, factors as GG (G of dimension N x S), then
the computations (and memory requirement) become linear in N |Lippert et all 2011].
So far this result has been applied in the context of correcting for confounders in a
univariate GWAS, with just a single variance component.

In principle, the S SNPs for inclusion in G could be obtained by sampling SNPs
genome-wide and relying on linkage disequilibrium, as was done in Section [3.5] or using
feature selection (see Chapter {]) as one would do in any statistical modelling prob-
lem [Listgarten et al., 2012]. Here we used the feature selection method described in
Section We performed an uncorrected, univariate scan of the SNPs to select those
which should be used to correct for confounders.

Thus, in our approach, we select S, SNPs for K¢ by first sorting all available SNPs
according to their univariate linear-regression P values (in increasing order), and then
evaluate the use of more and more SNPs according to this ordering, until we find the first
minimum in A, using a grid search. This resulted in 650 and 310 SNPs for the GAW14
and Crohn’s analyses, respectively. Additionally, any SNPs that were being tested (i.e.,
those in Gg), and those within 2 centimorgans, were removed from G¢ so as not to
contaminate the null model (see Section [Listgarten et al., |2012].
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For estimation of variance parameters, and computation of the likelihood ratio test
statistic, we use the restricted likelihood. While the restricted likelihood does not yield
a valid nested likelihood ratio test for the case of testing fixed effects, it is a valid
likelihood when testing random effects, and can be computed in the same time and
memory complexity as the (unrestricted) likelihood.

When testing sets in an uncorrected manner, that is, without accounting for con-
founders (which we did for comparison purposes), we omitted the portion of the variance
which corrected for confounders, K. In particular, we set 7 = 1, and tested the signifi-
cance of aé with the same likelihood ratio test described next.

5.1.2. Statistical testing of variance components

We have now fully specified our model for doing set tests when confounders are present.

Likelihood ratio test

To obtain a P value on the set of SNPs of interest, such as those belonging to a gene (i.e.,
those in Gg), we use a likelihood ratio test. In particular, to test the significance of the
set of SNPs of interest, we compare the maximum restricted likelihood of the data with
and without the set of SNPs of interest, that is, the maximum restricted likelihood of the
alternative and null models. More formally, our null hypothesis is given by Hgy : 7 = 0,
while our alternative hypothesis is given by H; : 7 > 0.

To obtain calibrated P values, we require an accurate estimate of the distribution of
statistics under the null hypothesis. However, obtaining a sufficiently accurate estimate
of this distribution is not straight-forward. Standard software uses a parametric form for
this distribution of

LRT ~ 0.5x2 4 0.5x3, (5.7)

a 50-50 mixture of two x? distributions, one with one degree of freedom, and the other
with zero degrees of freedom, the latter which accounts for the fact that the tested
parameter is on the boundary of the allowed space in the null model [Self and Liang],
1987, Dominicus et al., 2006]—that is, to account for the fact that 7 = 0 in the null
model, and 7 > 0 in the alternative model (because it is a variance). The necessary
regularity conditions for this include that the outcome variable can be partitioned into
a large number of identically and independently distributed sub-vectors |Greven et al.,
2008]—conditions which are not generally met in our setting because individuals may be
arbitrarily related to one-another. It has been shown that when the regularity conditions
are not met, the 0.5x3 + 0.5x3 distribution yields conservative P values |Greven et al.,
2008| because the mixing weight on the X% component is too low at fifty percent. We
have also found this to be the case in our setting (Table [5.1]).

Although one might consider use of a parametric bootstrap to estimate the null distri-
bution (e.g., [Greven et al., 2008|), such an approach dramatically increases the running
time over computation of the test statistics themselves. Yet another alternative is to use
an empirical distribution based on permutations. Although such an approach might be
feasible, one can use many fewer permutations by instead assuming a parametric form
of the null distribution and then fitting the few required parameters to the test statistics
generated from the permutations. It is such an approach that we take here. Note that
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this approach assumes that the null distribution of test statistics is the same across all
tests, an assumption that has also been made in the small sample correction in SKAT-O
and elsewhere |Lee et al., 2012a), \Greven et al.| 2008, |Greven, |2007].

The parametric form of the null distribution that we assume, and to which we fit null
distribution test statistics to, is inspired by |Greven [2007], |Greven et al. [2008], who
reported that a mixture of X(2) and a scaled x7, where a is the scaling parameter for
the scaled chi-square distribution, yielded good type I control when testing a variance
component in a single-component LMM. We use the same parametric form of the null
distribution, except, to gain additional flexibility for the two-component LMM, we allow
the degrees of freedom on the second component, d, to be different from 1 (finding this
to be useful). That is, we use the null distribution,

aLRT ~ 7x3 + (1 — 7)x3, (5.8)

with free parameters 7, a, and d. Using this distributional form, we found that a fit
to the full range of test statistics yielded P values that were too liberal in the tail
(Table . Thus, we instead fit our parametric form to only the more significant tail
of the distribution of test statistics. (Note that in our experiments with just a single
variance component, P values were also liberal in the tailthose for which p < 0.05).

We now describe the details of our approach for estimating the parameters of this null
distribution. To generate a null statistic for a set, we permuted the individuals for only
the SNPs in that set. Because we do not permute the SNPs (rather, the individuals), the
pattern of linkage disequilibrium between the SNPs within a single test remains intact.
Although we permute the individuals, who are not (generally) identically and indepen-
dently distributed, we do so only for the SNPs in the test set, leaving any confounding
signal among the covariates, the confounding SNPs and the phenotype intact. We found
that parameter estimates stabilized with the use of 10 permutations per test (for both
WTCCC and GAW14). Thus, our procedure has a runtime roughly a factor of ten larger
than if we had not needed permutations. We used the same 10 permutations across all
tests (and all SNPs within a gene).

Given this permutation-generated sample of statistics from the null distribution, we
fit the parameters a, d, and 7 as follows. The x3 distribution is a Dirac delta function
at Othat is, this component of the null distribution yields only test statistics of 0, and
correspondingly p = 1. Furthermore, the X3>0 yields a test statistic of 0 with measure
zero. Consequently, one can obtain good estimates of the parameters simply by assuming
that precisely those tests with variance parameter 7 = 0 belong to the x3 component,
and then estimating 7 as the proportion of tests belonging to this component. We
estimate a and d directly from the non-zero test statistics (those likely to belong to the
axg component) using a regression in which these parameters are adjusted such that
resulting P values for LRT have the least squared error compared to the theoretical P
values. Specifically, we use the log P value squared error, and only use the smallest 10%
of P values in the regression. This truncated regression approach consistently yielded
calibrated quantile-quantile plots (Figure and also controlled type I error (Table .
Furthermore, it yielded better power than the score test (Table |5.2)).

In summary, our overall approach is as follows: (1) for each set to be tested, permute
the individuals of the SNP belonging to this set; (2) compute the restricted LRT statistic
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for this permuted data to obtain a test statistic from the null distribution; (3) repeat step
(1) ten times; (4) estimate the proportion of test statistics drawn from the x2 component,
7, as the proportion of tests in which the parameter 7 = 0; (5) use the largest 10% of test
statistics to perform a regression to fit the ax? component-that is find @ and d which
minimize the squared error of the logiy P values with their theoretical values (uniform
distribution on [, 1]); (6) compute the test statistic for all sets (non-permuted data) and
then compute the corresponding P values for these using the null distribution

. ) Ay 2

aLRT ~ 7xg : (1 — 7)x5-
In application to our real data (described later), our procedure yielded m = 0.641, a =

2.29, d = 0.961, on the GAW14 data, and m = 0.643, a = 1.41, d = 0.85 on the WTCCC
data.

5.1.3. Linear-Time Computations

What remains left to explain is how to achieve the linear time speed-up in the case of
two random effectsthe present setting. The crux of the cubic to linear time speed-up
in the single random effect model was to bypass construction of K and the required
spectral decomposition of K by recognizing that one can instead use G' and the spectral
decomposition of G [Lippert et al., 2011]. Note that we can view the two-random effects
model as a single random effect with covariance K = (1 — 7)K¢ + 7Kg. To use the
algebraic speed-up just mentioned, we observed that K = GG, where now

G=|(1- T>1/2GC771/2G5} , (5.9)

So long as Sg+Sc < N, which was true for all of the data sets examined here, we obtained
the linear time computations and memory footprint just as in Section [Lippert et al.,
2011]. (One might also consider using low rank update equations of the type used in
Section to correct for the effects of proximal contamination, although we did not
implement this.) Finally, to perform parameter estimation in this two-random effects
model, we used an approach similar to that reported in [Lippert et al. [2011]. That
is, we used a one-dimensional Brent search optimization routine to find the value of 7
which maximized the restricted likelihood. For each call to the restricted likelihood for a
particular value of 7, efficiently computations were performed as in Lippert et al. [2011],
except using the two random effects.

5.1.4. Experiments
Data Sets and Methods

We formed SNP sets by grouping all variants within a window around a single gene to a
set. More generally, this approach of forming sets from windows of nearby SNPs along
the genome could be used to map an entire genome into sets, even when the SNPs do
not lie in genes. In any case, it is not our goal here to evaluate different ways in which
one might group SNPs, but to demonstrate that we can test sets of SNPs in the presence
of confounders.
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All analyses assumed additive effects of a SNP on phenotype, using a 0/1/2 encoding
for each SNP (indicating the number of minor alleles for an individual). Missing SNP
data was mean imputed. Multiple testing was accounted for with a Bonferroni correction.

WTCCC: For the WITCCC data described in Section we grouped SNPs into gene
sets using gene positions provided on the USCSC Genome BrowseIEI [Kent et al., 2002,
Dreszer et al., |2012] using build hgl9 (we also converted the original WTCCC annota-
tions to this build), which yielded 13,850 gene sets. We concentrated our evaluations on
Crohn’s disease, as inflation for this phenotype was greatest with an uncorrected uni-
variate analysis. The set sizes ranged from 1 to 748, with a mean value of 11, and a
standard deviation of 24.

In counting hits for Crohn’s disease (Table , we omitted any genes found in the
MHC region because it is complicated by very long range linkage disequilibrium. We
used positions 29-34 Mb on chromosome 6 as the boundaries of the MHC, as suggested
by the MHC sequencing consortium [Pereyra et al., 2010].

GAW14: Because the SNPs for the GAW14 data (see Section mapped to only
251 non-singleton gene sets with this strategy, we formed sets for this analysis by using
overlapping 1 centimorgan windows, yielding 2,157 sets. The set sizes ranged from 2 to
38, with a mean value of 5, and a standard deviation of 4.

Experimental Set-Up to Assess Control of Type | Error and Power

We used synthetic data based on the real WTCCC data to assess the quality of our new
method, as well as to compare it against a more traditional score test. In particular,
to assess type I error, we used SNPs from the WTCCC data set, and then permuted
the individuals for SNPs in each set tested so as to create null only test statistics. We
permuted the data set a total of 72 times, yielding 997,200 null test statistics (because
13,850 sets were tested for each data set). We additionally permuted another 10 data
sets in order to estimate the parameters of the null distribution (7,a,d).

For assessment of power, we again used the SNPs from the WTCCC data set, and
then generated synthetic phenotypes using a linear mixed model. To do so, we first we
fit the null model to the real data to obtain estimates of the parameters ¢ and O'g. Then
we simulated the phenotype from a linear model

y=GsBs+ GcPo ,
~—— ~——

signal confounding

where the signal effects are drawn from a normal distribution such that their contribution
to the phenotypic variance equals the genetic variance estimated on the real data (02 =

g
0.0125)

0.2
ﬂs~N<0;S§I>- (5.10)

"http://genome.ucsc.edu/
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The confounding effects where drawn from a normal distribution, such that their contri-
bution to the phenotypic variance equals the environmental variance estimated on the
real data (02 = 0.094).
o2
,BCNN<O;I). (5.11)
Sc
The same 310 confounding SNPs for G¢ are as on the real data, and with all 321,839
SNPs further than 2 ¢cM away from those in G¢ for the causal SNPs used to form Gg
(those contained in the true positive sets in our power experiments). We generated
5 phenotypes in this way. The resulting phenotypes behaved much like the real data
in that, on average, we found 10 Bonferroni-corrected sets on each of 5 data sets, as
compared to the 23 found on the real data (note that Table does not include SNPs
from the MHC region and therefore shows only 16). For both type I error and power
experiments, we tested the same gene sets as on the real data.
When comparing our new LRT approach against a score-based test, we used the same
score test as SKAT [Wu et all [2011] which uses the Davies method to compute P values
from the null distribution (still with our FaST-LMM-Set model).

Type | Error and Power on Synthetic Data

First we examined whether our new LRT approach controlled type I error. As described
in the previous Section, we generated null-only test statistics by way of permutations on
the WTCCC data, obtaining a total of roughly 1 million test statistics. The type I error
was controlled (Table . Note that neither fitting the null distribution parameters
with all test statistics, by way of maximum likelihood, nor use of a 0.5x3 + 0.5x% null
distribution yielded calibrated P values. The first was liberal, while the latter was
conservative (Table . Finally, Figure additionally demonstrates good calibration
of the entire range of P values from our method, for the same points as in Table

Significance Level | o =105 a=10" a=10"7
Fast-LMM-Set 1x107° 121x107% 1.01x1073
non-truncated ML | 2 x 107°% 1.83 x 107%%x 1.26 x 1073«
0.5x3 + 0.5x3 5x 1076 4x107%% 4.55 x 1074

Table 5.1. Type I error estimates for FaST-LMM-Set using one million
tests across various levels of significance, . The first row shows results for our
new LRT-based method; the second row shows results when fitting the null distribution
parameters using maximum likelihood with all test statistics (non-truncated ML); the
third row shows results using a 0.5x2 + 0.5x7 null distribution. Results significantly
different from expected according to the binomial test (p < 0.05) are denoted with an
asterisk. Next we compared the power of our LRT approach to a score test approach
(using the same model) on synthetic data. Over five synthetic data sets and a range
of significance levels, LRT found significantly more sets than the score test (Table .
Furthermore, on the real WTCCC data, LRT again found significantly more sets passing
the Bonferroni corrected significance threshold (Table .

87



5. Aggregating multiple effects in linear mixed models

a LRT score P value
3.6 x 1076 44 26 0.03
107° 60 39 0.03
10~4 172 138 0.047
1073 556 509 0.14
1072 2419 2195  0.0009

Table 5.2. Power experiments for FaST-LMM-Set. Number of tests with P values
less than a. The last column shows the results of a binomial test comparing the number
of tests found by LRT as compared to the score test. The first row denotes the Bonferroni
threshold for the WTCCC data set.

Application to Real Data

We investigated our new approach on two data sets. The first was the Genetic Analysis
Workshop (GAW) 14 [Edenberg et al., 2005], which included data from over eight ethnic-
ities and numerous close family members—1,034 of the 1,261 individuals in the dataset
had parents, children, or siblings also in the dataset. We used the smoking phenotype
as it showed the most confounding. After filtering there were 7,579 SNPs available for
analysis. The second data set was from the Wellcome Trust Case Control Consortium
(WTCCC) disease with 14,925 individuals [Burton et al., [2007] and 356,441 SNPs after
filtering. We used the Crohn’s phenotypes because this was the one showing the most
confounding in an uncorrected analysis. Unlike the WTCCC [Burton et al., 2007], we
included non-white data for individuals and close family members to increase power and
because the LMM can treat them properly [Price et al., 2010b, Kang et al., [2010} Astle
and Balding}, 2009).

To judge the degree of confounding due to genetic relatedness, and to ensure that our
LMM approach could sufficiently correct for confounding, we ran both an uncorrected
and corrected univariate analysis on each data set, because this is a well-understood
test that has been reported on before. Here the extent of test statistic inflation due to
unmodelled confounders was assessed using the A\ statistic, also known as the inflation
factor from genomic control |[Devlin and Roeder} [1999]. The value A is defined as the
ratio of the median observed to median theoretical test statistic. Values of A substantially
greater than (less than) 1.0 are indicative of inflation (deflation) (see Section [2.3.1]). As
can be seen in Table [5.3] without correction, the test statistics are inflated. Although
some might consider a A of 1.08 (seen on the corrected analysis of WTCCC) as still
moderately inflated, it has been shown that complex, highly polygenic traits lead to
increases in A [Yang et al., 2011b]. Moreover, the WTCCC themselves reported A in the
range of 1.08-1.11 upon removal of individuals from different races and also any related
individuals (neither of which we removed), and upon adjustment with two principal
components, suggesting that a A of 1.08 is the result of polygenic influence |Burton
et al., 2007].

Having established that both of our data sets required correction for confounders, and
that the LMM with our chosen background kernel, Kg, sufficiently corrected for con-
founders, we next applied FaST-LMM-Set, using the same LMM-correcting component
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Method | GAW14 WTCCC
Uncorrected 3.80 1.30
FaST-LMM 1.01 1.08

Table 5.3. Genomic control )\ of univariate tests for confounding-corrected
and naive methods. FaST-LMM denotes a one-component (to correct for confounding)
linear mixed model, testing one SNP fixed effect [Lippert et al.,|2011]; Uncorrected refers
to no correction for confounding (linear regression).

as in the univariate test. On GAW14, the uncorrected set analysis yielded 241 significant
sets, whereas FaST-LMM-Set, which corrects for confounding, yielded none. It is thought
that this data set contains little, if any signal (for example based on the univariate anal-
ysis). On WTCCC Crohn’s disease, an uncorrected set analysis yielded 26 significant
sets, whereas FaST-LMM-Set yielded 16 (Table . Next we investigate these sets in
detail.

To validate the significant sets recovered on the WTCCC Crohn’s phenotype we used
a meta-analysis [Franke et al. |2010, Listgarten et al. [2012], using a 50 kilobase window
of inclusion. Additionally, for the genes not found in the meta-analysis, we conducted
a literature searclrﬂ Using our newly developed method, FaST-LMM-Set, we found 16
significant gene sets, of which all but one were found by the meta-analysis. The remaining
gene, SLLC24A4, performs a similar function to the validated gene SLC22A4both are
cation transporterﬂsuggesting a promising candidate for follow-up.

Method in supported no support

meta-analysis by literature found
FaST-LMM-Set 15 1 0
FaST-LMM-Set-Score 7 0 0
FaST-LMM-Set (uncorrected) 17 3 6

Table 5.4. Validation of FaST-LMM-Set on WTCCC Crohn’s disease. “FaST-
LMM-Set” denotes our newly developed method which corrects for confounding using our
new LRT approach; “FaST-LMM-Set (uncorrected)” is the same but does not correct for
confounding with a second variance component; “FaST-LMM-Set-Score” refers to a score-
based approximation to the LRT-based FaST-LMM-Set (and corrects for confounding),
as described in Methods. Columns: “in meta-analysis” shows the number of significant
sets validated by a meta-analysis [Franke et al.l |2010]; “supported by literature” denotes
the number of significant sets found by a literature search; “no support found” denotes
the number of sets for which we found no support.

In the course of our analysis we noticed that some sets with small P values had
almost no univariate signal in any of the SNPs. In particular, among the 16 sets in the
WTCCC data supported by either meta-analysis or literature search, six (Clorfl41, SAG,
SLC24A4, SLC22A4, TCTA, and PTPN2) were missed by the univariate analysis (i.e., a
SNP lying in any of the regions reported by Franke et al.| [2010] was not found). One of

% Detailed validation results are provided in Supplemental Table 1 of [Listgarten et al.| [2013b].
3www . genecards . org [Rebhan et al.| [1998]
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the motivations for doing set analysis is to uncover signals for such cases. The intuition
here is the same as in a univariate conditional GWAS analysis. That is, conditioning on
variables can lead to an increase in power, revealing signal that would be hidden without
the conditioning [Atwell et al., 2010, Segura et al., 2012]. Thus the set test acts not only
to aggregate weak signal, but also to unmask signal hidden by covariates included by
virtue of doing a set test. We decided to investigate one such case in detail. In particular,
we computed the univariate P values for each of the 15 SNPs associated with the gene
SLC22A4, marginally, as well as conditioned on all the other SNPs in this gene, using
a LMM to correct for confounding. This gene was found to be associated with Crohn’s
disease using FaST-LMM-Set with p = 7.6 x 1078. The smallest marginal univariate
P value was 1.2 x 107°, but when we conditioned on the other SNPs in the set, the
smallest conditional univariate P value obtained was 7 x 10~8. This result demonstrates
the increased power afforded by the set test owing to the interplay of SNPs within the
gene that are missed by a univariate approach.

Next we computed the correlation between set size and set log P value, for each data set
and algorithm, using Pearson correlation with those P values not equal to one (because
of the one-sided nature of our test, these would clearly violate assumptions of Pearson
correlation). We hypothesized that when confounders were not properly accounted for
in the set analysis, that the more SNPs in a set, the more power the set would have
to detect these confounders, and therefore the stronger the correlation between set size
and P value would appear. Of course, we expect that among sets which are predictive
of phenotype, that the larger the number of predictive SNPs in the set, the stronger the
correlation between set size and P value will be. As such, on data with signal, we do
expect to see some correlation between set size and P value; on data with no signal, we
don’t expect to see any. Indeed, this is what we observed, as summarized in Table
Note that when we permuted the Crohn’s phenotype to remove signal, the correlation
was further reduced to p = 0.019 (p = 0.18).

Dataset ‘ FaST-LMM-Set (uncorrected) FaST-LMM-Set
GAW14 0.27 (2 x 109 0.001 (0.98)
WTCCC 0.051 (3 x 1077) 0.025 (0.06)

Table 5.5. Pearson correlation of log;,(P) values with set size for tests using
FaST-LMM-Set. P value is reported in parentheses next to the value for p. Significant
entries are bolded. “FaST-LMM-Set” denotes our newly developed method; “FaST-
LMM-Set (uncorrected)” is the same but does not correct for confounding using a second
variance component.

5.1.5. Section summary and discussion

We have developed a novel, efficient approach for testing sets of genetic markers in
the presence of confounding structure such as arises from ethnic diversity and family
relatedness within a cohort. Application of this algorithm demonstrated that our method
corrects for confounders and uncovers signal not recoverable by univariate analysis. Note,
that a number of related approaches for confounder correction in variance component
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tests have been proposed in parallel, but are based on the less powerful score test and
do not consider linear time computations [Schifano et al., 2012, |Oualkacha et al., [2013,
Chen et al.} 2013].

Although we did not analyze rare variant data, we have shown elsewhere that the
underlying LMM methodology for correction of confounding works well to correct for
confounding of rare variants in a univariate setting [Listgarten et al., 2013a]. Further-
more, others have already shown that LMM-based set tests work well for detection of
sets of associated rare variants [Wu et al., |2011].

It follows that the hybrid approach that we presented here is likely to prove effective in
the setting of testing sets of rare variants affected by confounding, although this remains
to be investigated fully. We note, however, that we have found the use of a linear model
on a case-control phenotype to yield inflated tests statistics when testing rare variants.

As in any regression/classification problem, too many effects relative to sample size
can lead to problems of overfitting and/or loss of power. In the case of the mixed model,
which integrates out its SNP random effects, one can see a loss of power if too many
SNPs are used relative to the sample size [Lippert et al., 2013b]. We do not expect that
this was a problem for analyses in the present work.

We have demonstrated that the LRT outperforms a score test when testing variance
components in our setting (using the same underlying model). This is perhaps unsur-
prising given that the score test can be viewed as an approximation to the LRT by a
second-order Taylor series expansion [Buse, |[1982] in the neighbourhood of the null model.
Furthermore, given its robust properties, the LRT is considered the benchmark for sta-
tistical testing [Dunson) [2008]. We note, however, that in some recent work [Lin and
Tang), [2011], when testing for rare variants using a logistic fixed effects model, a score
test was found to perform better than LRT, which was found to be liberal. Although
the best test may depends on context, we note that Lin et al used a different model
than we did and, in particular, did not use a variance component approach. Also, they
used closed-form, asymptotic-based analytical LRT P values rather than making use of
empirically-derived null distributions as we have done here.

For many cases of hidden structure in genetic data, the use of principal component-
based covariates is sufficient for correction [Price et al., [2006], and thus these covariates
could immediately be added to existing models such as SKAT [Wu et al., |[2011] to achieve
a set test that corrects for confounding. However, it is now widely accepted that there
are various forms of confounding which cannot be corrected for by principal components,
but for which a LMM adequately corrects [Yu et al. 2005a, Kang et al., 2010, Price
et al.l 2010b], and it is for these problems that we have developed our approach.

We here focused on testing SNPs in a manner similar to SKAT [Wu et al., 2011].
However, it would be straightforward to also adapt FaST-LMM-Set to the approach of
SKAT-O, in which the original SKAT model is in effect combined with a collapsing-type
approach [Lee et al.| [2012bla].
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Observed —Iogm(P)
= ®

\®]

2 4 6 8
Expected —Iogm(P)

Figure 5.1. Quantile-quantile plot of observed and expected —log,, P values
on the null-only WTCCC data sets (same data as used for Table for
FaST-LMM-Set. Dashed red error bars denote the 99% confidence interval around
the solid red diagonal. Points shown are for null-only data (generated by permuting
individuals in the SNPs to be testedsee Methods) and only for the non-unity P values
(those assumed to belong to the non-zero degree of freedom component). The portion of
the expected distribution of P values shown is uniform on the interval [r, 1], where 7 is
the mixing weight in the null distribution.

5.2. LMM-Lasso

Similar to the other models considered so far, the phenotype is the sum of individual
genetic effects and random confounding effects. In brief, the phenotype of N samples

Yy = [y1,...,yn]| is expressed as the sum of D fixed covariates, entailing SNPs and
additional covariates X = [x1,...,2p]
)
y~N| XB+ Gu ;01 |. (5.12)

fixed random

The resulting mixed model is typically considered in the context of single candidate
SNPs, i.e. restricting the sum in Equation to a single SNP while ignoring all
others [Yu et al [2005a, Kang et al., 2008, 2010, Zhang et al., 2010, Lippert et al., 2011].
While computationally efficient and easy to interpret, this single SNP analysis is compro-
mised by complex genetic architectures with some genetic factors masking others [Platt
et al., [2010b]. Some improvement can be achieved by step-wise regression or forward se-
lection, however this introduces side effects due to the ordering used [Yang et al., 2012].
Here, we consider joint inference in the model implied by Equation . Our approach
assesses all SNPs at the same time while accounting for their interdependencies and with-
out making any assumptions on their ordering. To allow for applications to genome-wide
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SNP data, we place a Laplacian shrinkage prior over the fixed effects 35, assigning zero
effect size to the majority of SNPs as done in the Lasso |Tibshirani, 1996).

Our new approach is called the LMM-Lasso since it combines the advantages of es-
tablished linear mixed models with the Lasso.This allows for dissecting the explained
variance in individual SNPs effects from the effects caused by population structure. The
model complexity, i.e. the number of individual SNPs included in the model can either
be selected through cross-validation, the Bayesian Information Criterion (BIC) or sub-
sampling (for full details on parameter inference see Section ‘Statistical model” and the
supplementary material).

5.2.1. Linear mixed model Lasso model

Let S denote the N x D matrix of D SNPs that are modeled as fixed effects for N
individuals, s. 4 is then the IV x 1 vector representing fixed effect d, while x. 4 is the
N x 1 vector representing the SNP d for all individuals.

We model the phenotype for N individuals, y = (y1,...,yn) ' as the sum of genetic
effects 34 of the SNPs x. ; and confounding influences v

D
Yy = Zd;pﬁd + v + e . (5.13)
d=1 confounding effects  noise

genetic effects

The genetic effects are modeled as fixed effects, whereas the confounding influences are
modeled as random effects. The sum is over genome-wide polymorphisms, where the
great majority has zero effect size, i.e. 54 = 0, which is achieved by a Laplacian shrinkage
prior on all weights. The random effect v is not observed itself. Instead, we assume that
the distribution of v is Gaussian with covariance proportional to the genetic relationship

matrix K.
vw/\/’(O;agK).

Integrating out the random effects v, we can write down the posterior distribution over
the weight vector 3:

D D
p(Bly, X, K,v,n) <« N (y 1> waBa; 0§K+02I) I exp (—nlBal), (5.14)

d=1 d=1

likelihood prior

where X is the genotype matrix, 1 is the hyperparameter for the Laplacian prior, o2 is
the residual variance and O'g is the variance of the genetic random components.

As shown in Section [2.2.1] using the realized relationship matrix as the covariance
matrix is equivalent to integrating over all SNPs while using an isotropic Gaussian
prior [Goddard et al. [2009]. The choice of a Gaussian prior leads to a dense poste-
rior distribution and thus reflects the a priori belief that a large fraction of SNPs may
contribute a small fraction to the phenotype. This stands in sharp contrast to the gen-
erally accepted opinion that most SNPs are actually not associated with the phenotype.
From our point of view, the covariance matrix K can be seen as modeling SNP effects
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that are confounded due to population structure or are too small to be detected, while
single SNPs that have a sufficiently large effect size are directly included in the model
over X.

Correction for population structure

Learning the hyperparameters © = {7, Ug, 02} and the weights 3 jointly is a hard non-
convex optimization problem. To obtain a practical and scalable algorithm, we first
optimize aé,oQ by Maximum Likelihood under the null model, ignoring the effect of
individual SNPs (similar to the procedure introduced in Section for univariate
models [Kang et al., 2010 Zhang et al., 2010]).

Instead of working with O'g, o2 directly, we choose a different parametrization using
2
v = %, whose estimator can be learnt more efficient by using the computational tricks

proposed in Section

S D
pBly, S, K, v,n) o« N | y|> wys;; (YK +1) | [[exp(—nlBal).  (5.15)

Jj=1

In more detail, we compute the spectral decomposition of the covariance K = UAU T to
rotate the data such that the covariance matrix of the normal distribution is a diagonal
matrix. We then employ a one-dimensional numerical optimizer to optimize ~.

Reduction to an ordinary Lasso problem

Having fixed ~y, we use the spectral decomposition of K again to rotate our data such
that the covariance matrix becomes isotropic:

p(Bly. X, K,v,1) x N (y | Zmdﬁd, vA + I) [T exp (—nlBal) - (5.16)
d=1
Here, X denote the rotated and rescaled genotypes and y the respectively phenotypes:
X = (yA+I)2U'X
g— (YA+1)2UTy.

For fixed v and 7, computing the most probable weights in Equation (5.16) is equivalent
to the Lasso regression model, since maximizing the posterior with respect to 3 is the
same as minimizing the negative log of ((5.16))):

mm;Z —&n,:0)" + 1118l

where ||3]]1 denotes the ¢1-norm of the vector 3.

In experiments, we choose 1 by cross-validation, minimizing the test set mean squared
error. A different algorithm for solving the LMM-Lasso for general purposes is proposed
in Schelldorfer et al| [2011], which includes generalized linear mixed models with ;-
penalty.
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5.2.2. Phenotype prediction

Using the BLUP predictor from Section the phenotype y, of a new test individual
can be predicted by conditioning the joint distribution over all individuals on the training
individuals:

Ui |ly ~ N (a:*ﬂ + Jék:*’;Vefl (y—XpB); Jék‘*,* o — O‘ék*,; (UgK + 021)71 O';klz ) )
where Vy = (aéK + 02I).

5.2.3. Selecting the number of active SNPs

Model Selection in Lasso Methods can either be done by choosing the number of active
SNPs or varying the hyperparameter n explicitly. For better interpretability, we chose
to vary the number of active SNPs directly. The sample size provides a natural limit on
how many SNPs one can select. If the sample size permits, we let the number of active
SNPs vary in {0, 1,2,. .., 10,20, 30,. .., 100, 150, 200, 250}. For a fixed number of selected
SNPs, we find the corresponding hyperparameter 1 by a combination of bracketing and
bisection [Wu et al., |2009]. To speed up the computations we allowed inexact matches
(£10) if the number of selected SNPs exceeded 100.
For model selection, we employed different strategies:

1. 10-fold cross-validation: We split the data randomly into 10 folds. Each fold is once
picked as test dataset, the other folds are used for training. The number of active
SNPs is chosen such that the explained variance over all test sets is maximal.

2. Bayesian Information Criterion (BIC) is defined as
BICg e := —2log L(B,7) + dgslog N,

where d the degrees of freedom. |Zou et al. [2007] show that the number of nonzero
weights is an unbiased estimate for the degrees of freedom for the Lasso. When
applying to the LMM-Lasso, we increment the degrees of freedom by one for fitting

Y-

3. Stability Selection[Meinshausen and Bithlmann, 2010]: we fix the number of active
SNPs to 20 and draw randomly 90% of the data 100 times. All SNPs that are
selected in more than 50 repeats are in the active set.

In our experience, the BIC criterion is best suited for variable selection, cross-validation
for prediction and stability selection for variable screening.

5.2.4. Experiments

Semi-empirical setting with known ground truth

We assessed the ability of LMM-Lasso to recover true genotype to phenotype associations
in a semi-empirical simulated dataset. To ensure realistic characteristics of population
structure, we simulated confounding such that it borrows key characteristics from the
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Arabidopsis thaliana data [Atwell et all 2010] as described in Section Arabidopsis
thaliana is a strongly structured population that exhibits continuous isolation by distance
at every geographic scale [Platt et al., 2010a].

To compare our method with existing techniques, we considered the standard Lasso,
which models all SNPs jointly but without correcting for population structure, as well
as univariate LMM, which effectively control for confounding, but consider each SNP
in isolation. As a baseline, we also considered a standard univariate linear regression
model (LM), which neither accounts for confounding nor considers joint effects because
of complex genetic architectures. Both, the standard Lasso and LMM-Lasso were fit in
identical ways. For LMM and the LMM-Lasso, we used the RRM as covariance matrix
and fit v on the null model. For univariate models, the ranking of individual SNPs was
done according to their P values; for multivariate models, we considered the order of
inclusion into the model. A fair comparison between the univariate and multivariate
methods is difficult, as the univariate methods select blocks of linked markers, whereas
the multivariate methods select only representative markers per block. For this reason we
tried to account for these subtleties by excluding all additional markers within a region
10kb of the strongest associated marker within a region from the evaluation.

LMM-Lasso ranks causal SNPs higher than alternative methods

First, we compared the alternative methods in terms of their accuracy in recovering SNPs
with a true simulated association (Figure . Methods that account for population
structure (LMM-Lasso, LMM) are most accurate, with LMM-Lasso performing best.
Although the linear mixed model performs well at recovering strong associations, the
independent statistical testing falls short in detecting weaker associations that are likely
masked by stronger effects (see Figure . Comparing methods that account for
population structure and naive methods, we observe that accounting for this confounding
effect avoids the selection of SNPs that merely reflect relatedness without a causal effect
(see Figure . An alternative evaluation, which considers the receiver operating
characteristic curve are given in Figure [5.2(a)} yields identical conclusions.

Next, we explored the impact of variable simulation settings. As common in the lit-
erature, we used the area under the precision-recall curve as a summary performance
measure to compare different algorithms. Precision and recall both depend on the de-
cision threshold, above which a marker is predicted to be positive. By varying this
threshold, one obtains a precision-recall curve.

Figure |5.4(a)| shows the area under the precision-recall curve as a function of an in-
creasing ratio of population structure and independent environmental noise. When con-
founding population structure is weak, both the Lasso and the LMM-Lasso perform
similar. As expected, the benefits of population structure correction in LMM-Lasso are
most pronounced in the regime of strong confounding. We also examined the ability of
each method to recover genetic effects for increasing complexities of the genetic model,
varying the number of true causal SNPs while keeping the overall genetic heritability
fixed (Figure . LMM-Lasso performs better than alternative methods for the
whole range of considered settings with the difference in accuracy being the largest for
complex genetic architectures. In a nutshell these results show, that in the regime of a
larger number of true weak associations, it is advantageous to include a genetic similarity
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K that accounts for some of the weak effects [Yang et al., 2010].

The identical effect is observed when varying the ratio between true genetic signal
versus confounding and noise (Figure . Again, the performance of the LMM-
Lasso is superior to all other methods, and the strengths are particularly visible for
medium signal to noise ratios.

LMM-Lasso explains the genetic architecture of complex traits in model systems

Having shown the accuracy of LMM-Lasso in recovering causal SNPs in simulations, we
now demonstrate that the LMM-Lasso better models the genotype-to-phenotype map in
A. thaliana and mouse. Here, we focus on 20 flowering time phenotypes for A. thaliana,
which are well characterized (see Section , and 273 mouse phenotypes, which are
relevant to human health (see Section [A.7)).

LMM-Lasso more accurately predicts phenotype from genotype and uncovers sparser
genetic models We perform phenotype prediction to investigate the capability of alter-
native methods to explain the joint effect of groups of SNPs on phenotypes. To measure
the predictive power, we assessed which fraction of the total phenotypic variation can be
explained by the genotype using different methods |Ober et al., 2012]. Explained variance
is defined as the fraction of the total variance of the phenotype that can be explained
by the model and in our experiments equals one minus the mean squared error, as we
preprocessed the data to have zero mean and unit variance. We avoided prediction on
the training data, as for all methods, this leads to anti-conservative estimates of variance
explained because of overfitting (see Figure for a comparison).

Figures [5.5(a)| and [5.5(a)| show the explained variance of the two methods on the
independent test dataset for each phenotype in the two datasets. For both model or-
ganisms, LMM-Lasso explained at least as much variation as the Lasso. We omitted
the univariate methods, as their performance is generally lower because of the simplis-
tic assumption of a single causal SNP (see Figure for comparative predictions in A.
thaliana). In a fraction of 85.00% of the A. thaliana and 91.58% of the mouse pheno-
types, LMM-Lasso was more accurate in predicting the phenotype, and thus explained
a greater fraction of the phenotype variability from genetic factors than the Lasso. In
contrast, Lasso achieved better performance in only 15% of the A. thaliana and 8.42% of
the mouse phenotypes. Beyond an assessment of the genetic component of phenotypes,
LMM-Lasso dissects the phenotypic variability into the contributions of individual SNPs
and of population structure. Figures[5.5(c)|and [5.5(d)|show the number of SNPs selected
in the respective genetic models for prediction. With the exception of two phenotypes,
LMM-Lasso selected substantially fewer SNPs than the Lasso, suggesting that the Lasso
includes additional SNPs into the model to capture the effect of population structure
through an additional set of individual SNPs. This observation is in line with the in-
sights derived from the simulation setting where the majority of excess SNPs selected
by Lasso are indeed driven by population effects. Although the genetic models fit by
LMM-Lasso are substantially sparser, they nevertheless suggest complex genetic control
by multiple loci. In 90.00% of A. thaliana and in 66.06% of the mouse phenotypes,
LMM-Lasso selected more than one SNP, in 40.00% and 45.49% of the respective cases,
the number of SNPs in the model was > 10.
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5. Aggregating multiple effects in linear mixed models

LMM-Lasso allows for dissecting individual SNP effects from global genetic effects
driven by population structure Next, we investigated the ability of LMM-Lasso to dif-
ferentiate between individual genetic effects and effects caused by population structure.
Figure shows the explained variances for the phenotype flowering time (measured
at 10°C) for A. thaliana. Again, these estimates were obtained using a cross-validation
approach. It is known that flowering is strikingly confounded by with population struc-
ture [Zhao et al.l [2007], which explains why the LMM-Lasso already captured a substan-
tial fraction (45.17%) of the phenotypic variance, when using realized relationships alone
(number of active SNPs=0). Because of the small sample size, cross-validation can under-
estimate the true explained variance |Hastie et al., 2001]. Nevertheless, cross-validation
is fair for comparison and conservative, as it avoids possible overfitting.

For increasing number of SNPs included in the model, the explained variance of LMM-
Lasso gradually shifted from the kernel to the effects of individual SNPs. In this example,
the best performance (48.87%) was reached with 30 SNPs in the model, where the relative
contribution of the random effect model was 33.10% and of the individual SNPs are
15.77%. In comparison, Lasso explained at most 46.53% of the total variance, when 125
SNPs were included in the model.

Associations found by LMM-Lasso are enriched for SNPs in proximity to known can-
didate genes Finally, we considered the associations retrieved by alternative methods
in terms of their enrichment near candidate genes with known implications for flowering
in A. thaliana. To avoid the negative effects of proximal contamination demonstrated
in Section we avoided inclusion of interest in the genetic similarity matrix K. Con-
sequently, we applied LMM-Lasso on a per-chromosome basis estimating the effect of
population structure from all remaining chromosomes.

To obtain a comparable cut-off of significance, we applied stability selection for both
the LMM-Lasso and the Lasso [Meinshausen and Biithlmann| 2010]. Table shows
that the LMM-Lasso found a greater number of SNPs linked to candidate genes for 12
phenotypes, whereas Lasso retrieved a greater number for only 6 phenotypes. In the
remaining two phenotypes, both methods performed identically. We also investigated
to what extent the solution is affected by different selection thresholds (see Figure [5.8).
Reassuringly, the LMM-Lasso outperformed the standard Lasso over a large range of
different values. It is difficult to compare the multivariate approaches with univariate
techniques in a quantitative manner, as the univariate models tend to retrieve complete
LD-Blocks. Thus, we revert to reporting the P values of the univariate methods for
the SNPs detected by the LMM-Lasso. We also considered to what extent the findings
provide evidence for allelic heterogeneity or the existence of an imperfectly tagged causal
locus. Overall, 14.75% of the SNPs linked to candidate genes and selected by the LMM-
Lasso appear as adjacent pairs (Table , that is, having a distance < 10 kb from each
other, whereas 5.56% of the SNPs selected by the Lasso do. From all activated SNPs,
8.18% selected by LMM-Lasso and 18.96% selected by the Lasso have at least a second
active SNP in close proximity.
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Table 5.6.

Phenotype LMM-Lasso Lasso
LD 5/54 4/69
LDV 5/63 3/69
SD 3/55 2/61
SDV 5/54 2/60
FT10 1/48 4/67
FT16 3/51 4/68
FT22 2/54 1/64
2W 3/53 2/65
SW 2/51 4/59
FLC 5/52  3/53
FRI 3/43  3/46
SWGHFT 4/59  2/66
SWGHLN 1/48 4/58
OWGHFT 4/58 3/63
FTField 4/61  3/69
FTDiameterField 1/49  1/51
FTGH 1/49 2/61
LN10 3/50 2/67
LN16 2/58 3/64
LN22 4/54  2/65

5.2. LMM-Lasso

Associations close to flowering candidate genes in A. thaliana

detected by LMM-Lasso and Lasso. We report true positives/positives (TP /P)
for LMM-Lasso and Lasso for all phenotypes related to flowering time in Arabidopsis
thaliana. P are all activated SNPs and TP are all activated SNPs that are close to

candidate genes.

Phenotype | Chrom. Position GenelD LM LMM
LD 4 (466307,466800) AT4G01060  (2.55,6.40) (3.37,4.20)
2W 4 (454542,460246) AT4G01060  (8.29,1.89) (6.03,4.26)
FLC 4 (205170,210657) AT4G00450  (6.88,5.40) (5.01,4.78)
FRI 4 (268809,268990) AT4G00650 (20.91,15.13) (17.45,13.65)
FRI 4 (268990,276143) AT4G00650 (15.13,17.36) (13.65,14.37)

Table 5.7. List of flowering candidate genes in A. thaliana containing multiple
associations. List of all candidate genes that have two activated SNPs in close proximity
for all phenotype related to flowering time of Arabidopsis thaliana. The last two columns
show the —log,, transformed P values for the linear and the linear mixed model.

5.2.5. Section summary and discussion

Here, we have presented a Lasso multi-marker mixed model (LMM-Lasso) for detecting
genetic associations in the presence of confounding influences such as population struc-
ture. The approach combines the attractive properties of mixed models that allow for
elegant correction for confounding effects and those of multi-marker models that con-
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5. Aggregating multiple effects in linear mixed models

sider the joint effects of sets of genetic markers rather than one single locus. Thus,
LMM-Lasso leads to improved recovery of true genetic effects, even in challenging set-
tings with complex genetic architectures, weak effects of individual markers or presence
of strong confounding effects.

LMM-Lasso is relevant for genome-wide association studies on complex phenotypes,
particularly the large number of phenotypes whose genetic basis is conjectured to be
multifactorial [Flint and Mackay, |2009]. We show the practical utility of LMM-Lasso
to real settings in different retrospective analyses in Arabidopsis thaliana and mouse.
First, LMM-Lasso is better able to predict phenotype from genotype, suggesting that
the underlying model accounting for both, population structure effects and multi-locus
effects, is a better fit to real genetic architectures. It is widely accepted that the missing
heritability in single-locus genome wide association mapping can often be explained by
a large number of loci that have a joint effect on the phenotype [Yang et al.l |2010] while
leading only to weak signals of association if considered independently. In addition to
recovering greater fractions of the heritable component of quantitative traits, LMM-Lasso
allows for differentiating between variation that is broad-scale genetic and hence likely
caused by population structure and individual genetic effects. In Arabidopsis and mouse,
this approach revealed substantially sparser genetic models than naive Lasso approaches.
Second, LMM-Lasso retrieves genetic associations that are enriched for known candidate
genes. In line with the findings in [Yang et al.|[2012], we retrieved an increased rate of
physically adjacent SNPs selected in proximity to candidate genes.

Neither the concept to account for population structure nor multivariate modeling
of the genetic data are novel per se. An approach for distinct populations based on
multi-task learning is presented in |Puniyani et al.| [2010]. However, with the notable
exception of [Schelldorfer et al. [2011], these approaches do not include random effects
to control for confounding. Our approach to combining mixed models with Lasso is
much more scalable and efficient, enabling the application to genome wide settings. In
Foster et al. [2007], a combination of linear mixed models and the Lasso is also proposed,
but the markers are modeled as random Lasso effects. Among prior work on mixed
models, few considered joint effects of multiple loci. Perhaps closest related are variance
component models [Yang et all [2010]. The strength of the approach presented here is
the combination of the regime of variance component modeling and multivariate models
for several individual effects which is instrumental for the increase in genetic variation
our model can explain.

In summary, we believe that LMM-Lasso is a useful addition to the current toolbox
of computational models for unraveling genotype-phenotype relationships. As sample
sizes increase, the power of detecting multifactorial effects will quickly rise. However,
multi-marker mapping is inherently linked to the challenge of some markers being picked
up by the model due to their correlation with a confounding variable, such as population
structure. In a pure Lasso regression model, it is unclear which markers merely reflect
these hidden confounders. LMM-Lasso, in contrast, explains confounding explicitly as
random effect, and thus, helps to resolve the ambiguity between individual genetic effects
and phenotype variability due to population structure.

100



5.2. LMM-Lasso

— LMM-Lasso — Lasso — LMM LM

True Positive Rate
© © © o o© o
N w H u q\ ~

e
i

0fi2 2e:4 4e4 6ed Bed 10e-4 12e-4
False Positive Rate

(a) ROC

Precision
o
(o))

©
IS

o
N

080 01 02 03 04 05 0.6 0.7 0.8
Recall

(b) Precision/Recall

Figure 5.2. Evaluation of LMM-Lasso and alternative methods on a semi-
empirical GWAS dataset mimicking population structure as found in Ara-
bidopsis thaliana. @ Receiver operating characteristics (ROC) for recovering simu-
lated causal SNPs using alternative methods. Shown is the True Positive Rate (TPR) as
a function of the False Positive Rate (FPR). @ Alternative evaluation of each method
on the identical dataset using Precision-Recall. Shown is the precision as a function of
the recall.
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Figure 5.3. Evaluation of LMM-Lasso and alternative methods on semi-
empirical GWAS dataset. @ Area under the precision-recall curve as a function
of the total effect size of all causal SNPs. @ Averaged negative log-likelihood of the
selected SNPs under the multivariate normal distribution A/ (0; K ) as a function of the
number of SNPs that are active in the model. The smaller the negative log likelihood
is, the more the SNPs are correlated with the population structure. For the LMM-Lasso
and the Lasso active SNPs have been selected by following the regularization path. For
linear mixed model (LMM) and linear model (LM), the set of active SNPs have been
obtained in ascending order of the P value obtained. In the beginning, Lasso and the
linear model choose SNPs that heavily reflect the population structure, while the mixed
model approaches don’t. In both figures the number of causal SNPs was 100.
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Figure 5.4. Evaluation of LMM-Lasso and alternative methods on semi-
empirical GWAS dataset for different simulation settings. Area under precision-
recall curve for finding the true simulated associations. Alternative simulation parame-
ters have been varied in a chosen range. @ Evaluation for different relative strength of
population structure. @ Evaluation for true simulated genetic models with increasing
complexity (more causal SNPs). Evaluation for variable signal to noise ratio.
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Figure 5.6. Variance dissection of A. thaliana flowering time into individual
SNP effects and global genetic background driven by population structure
using LMM-Lasso. Shown is the explained variance on an independent test set as a
function of the number of active SNPs for the flowering phenotype (10° C) in Arabidopsis
thaliana. In blue, the predictive test set variance of the Lasso as a function of the number
of SNPs in the model. In green, the total predictive variance of LMM-Lasso for different
sparsity levels. The shaded area indicates the fraction of variance LMM-Lasso explains
by means of population structure (yellow) an population structure (green). LMM-Lasso
without additional SNPs in the model corresponds to a genetic random effect model as
in common usage (black star).
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Figure 5.7. Comparison of predictive power and sparsity obtained by LMM-
Lasso and alternative methods on quantitative traits in Arabidopsis thaliana.
Maximal explained variance on an independent test set @] LMM-Lasso vs. linear model
including the top associated SNP. @ LMM-Lasso vs. linear mixed model including the
top associated SNP.
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Recall in %

Figure 5.8. Precision-Recall curves for recovery of proximal SNPs for LMM-
Lasso and Lasso on FLC gene expression in Arabidopsis thaliana. Precision-
Recall Curve for recovering SNPs in proximity to known candidate genes using al-
ternative methods. Shown is precision (TP/(TP+FP)) as a a function of the recall
(TP/(TP+FN)). Each point in the plot corresponds to a specific selection threshold.
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6. Linear mixed models for multiple related
traits

Aiming at a holistic view of how genetics shapes the phenotype of an organism, it is
already common practice to measure high dimensional phenotypes for a number of sam-
ples. Phenotype data spanning multiple omics can for example entail disease phenotypes,
capture physiological measurements of each sample, molecular phenotypes, or expres-
sion levels of thousands of genes [Schadt et al., 2005, Bennett et al. 2010, Smith and
Kruglyakl, 2008, Psaty et al., 2009]. In this setting, the approach of testing for effects of
single genetic variants on a single trait measurement will eventually reach its limits. To
fully utilize such data, methods are needed, that take dependencies among phenotypic
variables into account and allow to formulate and test complex composite hypotheses
involving many phenotypes.

For example we may be interested in the effect of genetic regulators, that cause differ-
ences of the measured value for a multivariate phenotype or groups of related phenotypes,
or to test for a cis-effect of a SNP while conditioning on broad effects of trans-regulators.
Because of the size of genomes, the number of such hypotheses to be considered can be
enormous and hence well powered and calibrated statistical tests are needed to make
sense of these rich data |[Spencer et al., |2009]. As in the case of univariate phenotypes
considered so far in this thesis, samples are usually not independent, but rather get
confounded by genetic structure or by hidden external influences.

To this end, we discuss multivariate approaches to data modeling and hypothesis
testing and propose an accurate and efficient multivariate modeling framework that scales
to thousands of traits.

The matrix-variate normal distribution, which underlies most of the multivariate mod-
eling approaches discussed in this chapter, is introduced in Section It is a distri-
bution over matrices of real values, where the covariance between two entries of a matrix
is given as the product between a covariance between their rows and a covariance be-
tween their columns. If the data matrix in the matrix-variate normal distribution is
fully observed F_], it is possible to derive an efficient inference scheme called the “flip-flop
algorithm”. In this iterative approach, which we present in Section estimation of
the covariances on rows and columns of the matrix is decoupled efficiently by exploiting
the fact, that the covariance factorizes into a Kronecker productﬂ of the two respective
covariances [Dutilleul, 1999, Zhang and Schneider} |2010]. Matrix-variate normal models
have important applications in various fields. These models have been used as regu-
larizer for multi-output prediction, jointly modeling the similarity between tasks and
samples [Zhang and Schneider, [2010]. In related work in Gaussian processes, generaliza-

1 This case is also called a balanced design. In contrast to the case, where some entries in the data matrix
may be missing, which is called an unbalanced design
®See the definition in Equation (6.1)).
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tions of matrix-variate normal distributions have been used for inference of vector-valued
functions [Bonilla et al., 2008, |Alvarez and Lawrence, 2011]. Such models with Kronecker
factored covariance have applications in geostatistics [Wackernagel, [2003], in collabora-
tive filtering [Yu et al., 2009], multi-task prediction [Yu et al.,|2005b, |[Bonilla et al., 2008],
statistical testing on matrix-variate data [Allen and Tibshirani, 2010] and statistical ge-
netics [Lynch and Walsh) 1998].

Attempts to make linear fixed effects models multivariate are reviewed in Section[6.1.3]
These models, which have been developed for hypothesis testing in high-dimensional
data, are are based on the matrix-variate normal distribution, efficient maximum-likelihood
inference can be derived either in closed form or as variants of the “flip-flop algorithm”.

When treating these multivariate fixed effects as random, the covariance of the marginal-
ized likelihood becomes a sum of a random effects covariance as well as a noise covariance
matrix and for this reason does not factor into a Kronecker product, even if the data
matrix is fully observed. As efficient inference techniques similar to the “flip-flop algo-
rithm” are inappropriate, inference scales cubic in the number of samples times cubic in
the number of phenotypes. This severe runtime bottleneck already makes application to
a handful of phenotypes hardly practical.

In theory it would be possible to make the simplifying modeling assumption that the
data is directly given by a noise-free matrix-variate distribution. This has been used
with some success, but there are clear motivations for using a model that includes addi-
tional noise. For example in a closely related multi-task regression setting, a noise-free
matrix-variate Gaussian process leads to a cancelation of information sharing between the
various prediction tasks [Bonilla et al., 2008]. This effect, also known from the geostatis-
tics literature |Wackernagel, 2003|, eliminates any benefit from multivariate modeling
compared to naive approaches.

In Section we address these shortcomings and propose a general framework to
scale random-effects models with i.i.d. observation noise to high-dimensional phenotype
data, involving hundreds to thousands of phenotypes [Stegle et al., 2011, [Yan et al.,
2011]. Although in this model the covariance matrix does not factorize into a Kronecker
product, we show how efficient parameter inference can still be done.

To this end, we provide derivations of both the log-likelihood and gradients with respect
to hyperparameters that can be computed in the same asymptotic runtime as iterations
of the “flip-flop algorithm” on a noise-free model. This allows for parameter learning of
covariance matrices of size 10° x 10°, or even bigger, which would not be possible if done
naively.

We show how for any combination of covariances, evaluation of model likelihood and
gradients with respect to individual covariance parameters is tractable.

Then, in Section we apply this framework to structure learning in Gaussian
graphical models, while accounting for a confounding non-i.i.d. sample structure. This
generalization of the Graphical Lasso [Banerjee et al., 2008, Friedman et al., 2008] allows
to jointly learn and account for a sparse inverse covariance matrix between features and
a structured (non-diagonal) sample covariance. The low rank component of the sample
covariance is used to account for confounding effects, as is done in other models for
genomics [Leek and Storeyl, 2007, Stegle et al., [2010].

We illustrate this generalization called “Kronecker GLASSO” on synthetic datasets and
heterogeneous protein signaling and gene expression data, where the aim is to recover the

108



6.1. Simple multivariate identities and models

hidden network structures. We show that our approach is able to recover the confounding
structure, when it is known, and reveals sparse biological networks that are in better
agreement with known components of the latent network structure.

After having introduced multivariate variants of both fixed-effects models that allow
for hypothesis testing in multivariate scenarios as well as random-effects models that
allow for modeling latent dependencies in the data, in Section we combine these
to achieve multivariate linear mixed models as a full generalization of univariate linear
mixed models.

Bivariate mixed models have already been applied in GWAS to increase power to detect
pleiotropic effects on correlated traits [Korte et al., |2012] as well as for the analysis of
traits measured in different environments [Korte et al., 2012, Yang et al., 2011a].

Existing models have been proposed for the unbalanced case and for this reason come
at a tremendous computational cost. We show in Section for the balanced design
case, how inference in these models can be done efficiently.

Finally, we give an outlook in Section on how these matrix-variate linear mixed
models will allow to phrase and test complex hypotheses involving a large number of
target variables, by using appropriate row and column design matrices.

6.1. Simple multivariate identities and models

Here, we review some important Kronecker identities that are used throughout this
Chapter and the matrix-variate normal distribution. We also introduce a number of
multivariate models that rely on fixed effects only, that serve as a stepping stone for the
development of the multivariate random and mixed models in this chapter.

6.1.1. Kronecker product identities

First we introduce some notation. For any R x C' matrix A, we define vec(A) to be
the vector obtained by concatenating the columns of A; further, let A ® B denote the
Kronecker pmductﬂ between matrices A and B:

ail anB (I12B e ach
(A) asi A ® B ang a22B . CLQC’B (6 1)
vec = . ) = . . .
anm apiB arpoB ... apcB

The first identity allows to write a product of a Kronecker product matrix with a
vectorized matrix in terms of ordinary matrix products:

(C @ BT)vec (A) = vec(BAC). (6.2)
Also the determinant of the Kronecker product of two full-rank matrices C € RM*M
and R € RV*N can be written as the product of the determinants of the individual
matrices times the rank

IcoR|=|C/-|RM. (6.3)

3or tensor product

109



6. Linear mixed models for multiple related traits

(C®R+0°I) = (Uc @ Ur)(Ac ® Ar + *I)(U¢ @ Ug), (6.4)

where C = UCACUE is the spectral decomposition of C, and similarly for R.

On a related note, singular value decompositions and Kronecker product identities were
also used for efficient covariance computation in graph kernel research [Vishwanathan
et al., 2010].

6.1.2. The matrix-variate normal distribution

The matrix-variate normal distribution] is a distribution over matrices of real values,
where the covariance between two entries of a matrix is given as the product between a
covariance between their rows and a covariance between their columns.

We say, that an N-by-G matrix Y with N rows and G columns follows a matrix-variate
normal distribution with mean M, row covariance R and column covariance C),

Y ~ Nyu (M; R, C), (6.5)

iff the vectorized matrix vec (Y') follows a multivariate normal distribution with a covari-
ance matrix, that consists of the Kronecker product between C' and R.

vec(Y)~N (vec(M);C®R). (6.6)

In these expressions the row covariance R is a symmetric positive semi-definite matrix
of size N-by-N, the column covariance C' is a symmetric positive semi-definite matrix of
size G-by-G, and the mean M is of size N-by-G.

In order to find a suitable form for the matrix-variate normal distribution, we write
out the expression for the multivariate normal density as

N -

1
(zﬂ)*TD |IC® R\_% - exp <—2vec (V)" (C® R) ' vec (Y})T> ,

where Y; equals the residuals of the data Y after subtracting the mean M.
Y, = (Y - M)

To achieve a form of the matrix-variate normal distribution, that allows for efficient
evaluation, one can exploit identity (6.2]) for the squared form and identity (6.3]) for the
determinant to get

| 1
2r) "2 - |C|"Y - |R|" T - exp <—2tr (CerTRer)> .

Also the logarithm of the matrix-variate normal density can be evaluated without ex-
plicitly computing the Kronecker product as
N-M
2

N M 1
log (2) — - log|C| — = log | R| — Stx (C‘erTR‘er> . (6.7)

4For a comprehensive review of this family of distributions see for example [Dawid}, [1981].
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6.1. Simple multivariate identities and models

Maximum likelihood estimation

We assume in the following, that the mean M of the matrix-variate normal distribution
is known and given in advance. A sensible estimate of the mean in the matrix-variate nor-
mal distribution requires additional modeling assumptions, like in the examples discussed
in Section First, free-form estimation of the covariance matrix is reviewed, which
can be performed using closed form updates. Second, gradients are provided for the case,
where the covariance matrices are given as the function of a set of hyperparameters.

Maximum likelihood estimation using the “flip-flop algorithm”

In case of free-form estimation of the covariance matrix, the “flip-flop algorithm” can be
used [Dutilleul, [1999]. The central insight that leads to the algorithm is, that instead of
setting the gradient of the logarithm of the matrix-variate normal density with respect to
all entries of the covariance matrix to be equal to zero, we can get an equivalent system
of equations by setting the gradients with respect to entries of its inverse to zero. The
equation we have to solve with respect to the (i, j)-th entry of the inverse of R equals

M R! 1 R!
= —tr | R—mmm— | — =¢% CilYTil/} .
0= r( 3[R_1]z'7j> 2 r( " O[RTY; )

As the derivative of the inverse with respect to the (7, j)-th entry equals a matrix of
only zeros, except for the (i, j)-th entry, which equals one, this expression simplifies to

M 1 _
0= ?[R}m‘ - §[Yr]j,:c YT

This can easily be solved for all 7 and j to obtain the maximum likelihood estimate R as
R=Llvicy]
M™T T

An analogous estimator follows for the column covariance as

C = %YrTR‘lY}. (6.8)
The “flip-flop algorithm” now iterates between computing these two estimators, where
the next estimate of R is computed from data that is transformed using the current
estimate of C' and vice versa, until convergence is achievedﬂ One round of these updates
can be evaluated in O(N? + M?3).

The algorithm can be modified to include several types of regularization terms. For
example for the case, where the entries of the inverse of the covariance matrices are
penalized by their absolute values, the algorithm involves a similar iterative procedure,
where closed form updates are replaced by solving graphical Lasso problems on similarly

transformed data |[Zhang and Schneider, [2010].

®Note, that the algorithm as stated above assumes that both matrices are positive definite. In practice,
it is possible to constrain the matrices to be positive definite, by adding a small positive constant to
the diagonal when performing an update.
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6. Linear mixed models for multiple related traits

Maximume-likelihood estimation by gradient descent

If the matrices C and R are given as the function of hyperparameters @¢ and Og
respectively, we can revert to gradient based optimizers. For this alternative procedure
we need to take the derivative with respect to each parameter fg € O and ¢ € O¢.

dlogNnm (Y |M; R, C) M LOR 1 T 1 OR 4
=——tr| R —— —tr([CT'Y, R —R Y |.
90r 2 r( aeR> T3 r( T >
The derivative with respect to a parameter ¢ € ®¢ is analogous:
=——tr | C" " — —tr(CT"—C 'Y, RY; .
90c > r< aec> T3 r( doc >

Both of these derivatives, as well as the logarithm of the matrix-variate likelihood can
be evaluated in O(N3 + G3).

6.1.3. Existing multivariate linear fixed effects models

Here, we give an overview over multivariate linear fixed effects models. All the models
presented here, are generalizations of the linear regression model presented in Section [2.1
to the case, where more than one target variable is considered.

In the following, let the N-by-G matrix of observations Y be defined as

| |
Y=|v v ... yu |, (6.9)
| |

where each of the vectors y, contains the set of N samples for the g-th target variable
or dimension. For example in the case of a study of gene expression, we might have
measured the expression values of G genes (variables, dimensions) for N individuals
(samples).
In linear regression, as introduced in Section each y, would be modeled by an
independent linear model
Yy = XBy + ey, (6.10)

where the D-by-1 vector 3, is the vector of unknown fixed effects for the g-th regression
and the N-by-D matrix X is a fixed design matrix, that is a shared over all target

dimensions, and e, is normally distributed observation noise with unknown variance
2
eg'

In principle, it is possible to write down a joint likelihood over the individual likelihoods
of G linear regressions.

g

G
LB, Bah Aok, o2 ) = TIN (v | X8y3 02,
g=1

In order to find a more intuitive expression of the joint likelihood, we introduce the
D-by-G matrix B, where the g-th column contains the fixed effects 3, of the g-th linear
model. | | |

B= |8 B2 ... Ba
| |
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6.1. Simple multivariate identities and models

Then, we can jointly write down the linear regression models in terms of a matrix-
variate normal distribution on Y with mean M = X B.

YN/\/'NM(XB;IN,diag(UZI, o, ..., o2 )) (6.11)

e

As in many applications the values obtained for different dimensions are dependent,
the approach of performing G independent linear regressions seems wasteful. Below,
we give a review of generalizations of the linear regression model that allow for joint
modeling of fixed effects in the multivariate case.

The MANOVA model

Given a sufficient number of samples with measurements for each of the target dimen-
sions, it is possible to estimate covariances between the observations. This is used in
the multivariate analysis of variance MANOVA model [Roy, [1957] to jointly estimate
the linear regression coefficients 3, for each of the target dimensions together with a full
G-by-G covariance matrix C' between the target dimensions.
Using the definition of the matrix-variate normal distribution, we can write down the
MANOVA model as
Y ~Nyu (XB; Iy, C). (6.12)
While the covariance estimates get coupled by C, each dimension is still modeled by a

separate univariate regression model X 3,.

Maximum likelihood estimation Inference in the MANOVA model can be performed
by maximizing the likelihood with respect to the parameters B and C. Taking the
derivative of the likelihood with respect to each entry [B]y, of the weight matrix and
jointly setting these to zero, we get the system of equations

0=X'Yyc!'-X"XBC™ (6.13)

Assuming that C' is full rank, this can be right-multiplied by C' and solved for an ex-
pression for By independent of C' and equals the maximum likelihood estimators of GG
independent linear regression models:

—1
By = (XTX> X'y, (6.14)

Plugging this estimator back into the likelihood, we get the residual Y=Y-X (XTX) ! XT,
which we can use in Equation to obtain Cy as

_i T . T 1T
Cn =Y <I X(X X) X >Y (6.15)

Seemingly unrelated regressions

A slightly more general model than MANOVA, is the seemingly unrelated regressions
model |Zellner} 1962, 1963]. In the case of seemingly unrelated regressions, each target
dimension g is allowed to have a distinct design matrix X, of size N-by-D,. As the term
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6. Linear mixed models for multiple related traits

in the mean of the likelihood can not be written as a Kronecker product, the likelihood is
written in terms of a specially structured general linear model on the vectorized matrix
of target values vec (Y'). Define

X; 0 ... 0
0o X, ... 0
xX=| . . . . (6.16)
0 0 Xg
and

B1
B

g=|"" (6.17)
Ba

Then the likelihood of the seemingly unrelated regressions model becomes

vec(Y)~N(XB;Co1Iy). (6.18)

Estimation in seemingly unrelated regressions Even though the seemingly unrelated
regressions model is very similar to MANOVA, estimation of the fixed effects is not
independent for each dimension. To overcome the problem, that dimensions get coupled
by the unknown covariance matrix C, a two-step procedure is applied for estimation in
seemingly unrelated regressions |Zellner, 1962|. First, an estimate C of the covariance
matrix C' is estimated based on the model with the maximum likelihood estimators of
independent regressions on the target dimensions.

IN T T
b=y~ Xy (X] X,) Xy, (6.19)
Using this procedure, the estimate Cis

T

C':N g U2 ... Yc g Y2 ... Yo |- (6.20)
|

The growth curve model

In MANOVA, each target dimension is modeled by a separate univariate vector of fixed
effects 3,. Even though the dimensions get coupled during estimation by ways of the
covariance matrix C, we have observed, that the maximum likelihood estimators of the
fixed effects is identical to the G maximum likelihood estimators in the univariate re-
gression models. The growth curve model [Potthoff and Roy, [1964] achieves multivariate
fixed effects by replacing the linear model in MANOVA by a bilinear model

Y ~ Nyum (XBAT; In, C), (6.21)

where C' is an unknown G-by-G covariance matrix between target dimensions, B is a
D-by-M matrix of unknown fixed effect weights, and the matrices X and A are design
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6.1. Simple multivariate identities and models

matrices. To avoid ambiguity, the N-by-D matrix X is typically referred to as the
between-individuals design matriz and the M-by-G matrix A is typically referred to as
the within-individuals design matriz [Kollo and von Rosenl 2005].

Intuitively, the between-individuals design matrix contains a set of features, say for
example a set of SNPs or a treatment condition, that differs between individuals. The
features defined in the within-individuals design matrix contains are the same over all
individuals, but differ between the various target dimensions, a feature might for example
indicate, which genes are regulated by a common transcription factor. Note, that the
growth-curve model generalizes the MANOVA model, as can be seen by choosing the
within-individuals design matrix to be the G-dimensional identity matrix.

Maximum likelihood estimation By a conditional argument on correlated least squares
estimators with unknown covariance [Rao, [1967], the maximum likelihood estimator By
of B and C)y of C' in the growth curve model can be derived [Raol, [1965]. B follows as

~1 N N -1
By = (XTX) x'yc'A (ATC’lA) : (6.22)
where
C-vyT(r-x (XTX> T xT)y (6.23)
v . .
Using By, the maximum-likelihood estimator Cy; of C' is determined as
.1 ~1
Cu=C+PTY'X (XTX) XTYP, (6.24)
where .
P=I-C'A (ATC*1A> AT (6.25)

The sum of profiles model

Even though the growth curve model is already quite general, it still has a strong lim-
itation in fixed-effects modeling. This limitation is, that there is an interaction weight
[B]4,m for all combinations of features d in the between-individuals design matrix and all
features m in the within-individuals design matrix. In order to incorporate prior knowl-
edge on features that are known to exert no interaction, one would have to constrain
the respective entries in the fixed effects matrix B to zero, by introducing additional
linear constraints. The sum of profiles model [Verbyla and Venables| [1988] allows to
explicitly phrase such knowledge about what features interact (and more importantly on
what features do not interact) by replacing the single bilinear term in the growth curve
model by the sum over J bilinear terms, where each term might involve fixed effects of
different dimensionality.

J
Y ~Nyw | Y X;BjA;; Iy, C |, (6.26)
j=1
with each of J fixed unknown effects matrices B; of sizes D;-by-M; and between-
individuals design matrices X of sizes N-by-D; and the within-individuals design ma-
trices of sizes M;-by-G. Again, the G-by-G covariance matrix between target dimensions
is considered unknown.

115



6. Linear mixed models for multiple related traits

Estimation in the sum of profiles model While for special cases of the model closed
form maximum likelihood estimation is possible [Von Rosen, 1989], the standard way to
perform maximum likelihood estimation in the general sum of profiles model is to perform
an algebraic reduction to an equivalent seemingly unrelated regressions model [Verbyla
and Venables, |1988|, Kollo and von Rosen, [2005].

Multivariate linear models with Kronecker product covariance structure

In all the multivariate fixed-effects models considered so far, the samples have been
assumed to be independent. The multivariate linear model with Kronecker product
covariance structure [Srivastava et al., 2008} 2009] is a generalization of the growth curve
model to the case, where not only the target dimensions are dependent, but also the
samples may covary.

Y ~ N (XBAT 'R, C) : (6.27)

where as in the growth curve model in Equation the between-individuals design
matrix X and the within-individuals design matrix A are given. The matrices to be
estimated are the fixed effects weights B, the N-by-N sample covariance matrix R, and
the covariance between target dimensions C.

Maximum likelihood estimation Maximum-likelihood estimators for the multivariate
linear model with Kronecker product structure can be found by a variant of the “flip-
flop-algorithm” [Srivastava et al., 2009]. The maximum-likelihood estimate By of the
fixed-effects is given based on the current estimate Cy of the covariance between target
dimensions.

-1 -1
By = (XTS*lx) XS 'yoy A (ATCM*IA) , (6.28)
where .
S=Y (CMl _CoylA (ATCM*A) ATCM1> YT, (6.29)
The maximum-likelihood estimator of the covariance between dimensions is given as a
function of the current estimate Ry of the samples covariance.

Cy = % <Y - XBMAT>T Ry (Y - XBMAT) (6.30)

Finally, an estimate Ry of the sample-covariance is given as a function of the current
estimates of the fixed effects and the covariance between target dimensions.

Ry = é (Y - XBMAT) Cu! (Y - XBMAT)T (6.31)

6.2. Efficient multivariate random effects models

Assume we are given a data matrix Y with N rows and G columns, where N is the
number of samples with G features each. As an example, think of N as a number of
samples in a micro-array experiment, where in each sample the expression levels of the
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same G genes are measured; here, y, . would be the expression level of gene ¢ € [1,...,G]
in experiment r € [1,..., N].

For modeling Y, we first introduce N-by-G additional random effects Z, which can
be thought of as the noise-free observations. The data Y is then given by Z plus
i.1.d. Gaussian observation noise. The likelihood function follows as

L(Z,0%) =N (vec(Y)|vec(Z); o’ Ing) -

In order to model the dependence structure between the observed values, we assume
that the matrix of random-effects Z follows a matrix-variate normal distribution given
by Equation with zero mean.

/N(vec(Y) |vec(Z); o*Inp )Ny (Z |0y R, C)dZ.

Marginalizing over the noise-free observations Z results in the marginal likelihood of the
observed data Y

L(C,R,0%) =N (vec(Y)|On.c; COR+0*Ing). (6.32)

We observe, that random observation noise causes addition of a constant diagonal term
to the covariance matrix. For this reason the covariance no longer factorizes into a
Kronecker productﬂ rendering the algorithms presented in Section inapplicable.
Naive inference on the other would require computation and storage of a large (N - G)-
by-(N - G) covariance matrix and perform operations that have a runtime in the order
of O((N - G)3). In practice this already prohibits application of the model to moderate
sizes of data.

6.2.1. Efficient parameter estimation in multivariate random-effects models

We achieve efficient evaluation and parameter estimation of the multivariate random ef-
fects model given in Equation (6.32]) by exploiting the compatibility of a Kronecker prod-
uct plus a constant diagonal term with the spectral decomposition (see Equation (6.4))).

Likelihood evaluation

As shown in Section [E.2.1] using this identity together with the identities in Equa-

tions (6.2)) and (6.2)), the logarithm of the likelihood in Equation (6.32) follows as
N - 1
log £ (C,R,0°) = — 2G In(2m) — S InfAdc @ Ap + o1

1
— 5vec(U;YUC)T(AC ® Ag + o’ ) 'vec(UgYUg).  (6.33)

Analogous to the FaST-LMM algorithm presented in Section this term can be in-
terpreted as a multivariate normal distribution with a diagonal covariance matrix on
rotated data

L(C,R,0*) =N (vec(U;YUc) 10; (Ac ® AR + O'QI)> . (6.34)

SNote that for ¢ = 0, the likelihood model in Equation (6.32) reduces to the matrix-variate normal
distribution in Equation .
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Gradient evaluation

Derivatives of the log marginal likelihood with respect to a particular covariance param-
eter g € Opr can be expressed as

oL (C,R,02) 1. s T L OR
1 T OR
+ Svec (DA ® (U,EYUC)) vec (UIEEUR (DA ® (U;YUC)) AC),

(6.35)

where the entries of the N-times-G matrix D4 are defined as

1

Dyl = .
[ A] 7 [AC]C,C[AR]r,r +0'2

Analogous expressions follow for partial derivatives with respect to ¢ € ®¢ and the
noise level o2, Full details of all derivations can be found in Section [E.2l

Runtime and memory complexity

A naive implementation for optimizing the likelihood with respect to the hyperpa-
rameters would have runtime complexity O(N3-G3) and memory complexity O(N?2-G?).
Using the likelihood and derivative as expressed in Equations (6.33]) and (6.35]), each eval-
uation with new kernel parameters involves solving the symmetric eigenvalue problems of
both R and C, together having a runtime complexity of O(N?34G?). Explicit evaluation
of any matrix Kronecker products is not necessary, resulting in a low memory complexity
of O(N? + G?).

6.2.2. Graphical Lasso in the presence of confounders

Estimation of sparse inverse covariance matrices is widely used to identify undirected
network structures from observational data. However, non-i.i.d. observations due to
hidden confounding variables may hinder accurate recovery of the true network structure.
If not accounted for, confounders may lead to a large number of false positive edges. This
is of particular relevance in biological applications, where observational data are often
heterogeneous, combining measurements from different labs, data obtained under various
perturbations or from a range of measurement platforms.

As an application of the random-effects model described in Section in Sec-
tion[6.2.2] we propose an approach to learning sparse inverse covariance matrices between
features, while accounting for covariation between samples due to confounders. First, we
briefly review the “orthogonal” approaches that account for the corresponding types of
sample and feature covariance we set out to model.

Explaining feature dependencies using the Graphical Lasso

A common approach to model relationships between variables in a graphical model is
the graphical Lasso. It has been used in the context of biological studies to recover the
hidden network structure of gene-gene interrelationships, for instance [Menéndez et al.|
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2010]. The graphical Lasso assumes a multivariate Gaussian distribution on features
with a sparse precision (inverse covariance) matrix. The sparsity is induced by an L;
penalty on the entries of C~!, the inverse of the feature covariance matrix.

Under the simplifying assumption of i.i.d. samples, the posterior distribution of C
under this model is proportional to the joint distribution of C' and the data Y

N
p(Y,C)=p(C) ][N (Y. |0p;C). (6.36)

r=1
Here, the prior is defined in terms of the precision matrix C 1.
p(C)(XeXp(—nHC_lHl) [Cc™! = 0], (6.37)

with || Al|; defined as the sum over all absolute values of the matrix entries. Note that
this prior is only nonzero for positive-definite matrices C~1.

Modeling confounders using the Gaussian process latent variable model

Confounders are unobserved variables that can lead to spurious associations between
observed variables and to covariation between samples. A possible approach to identify
such confounders is dimensionality reduction. Here we briefly review two dimensionality
reduction methods, (dual) probabilistic principal components analysis and its generaliza-
tion, the Gaussian process latent variable model |[Lawrence) 2004, [2005]. In the context
of applications, these methods have previously been applied to identify regulatory pro-
cesses |Yeung and Ruzzo, 2001], and to recover confounding factors with broad effects
on many features [Leek and Storeyl |2007] Stegle et al., [2010].

In dual probabilistic principal components analysis [Lawrence, |2005], the observed data
Y is explained as a linear combination of k latent variables (“factors”), plus independent
observation noise. The model is as follows:

Y = GW + E,

where G € RV*F contains the values of k latent variables (“factors”), W ¢ RF*XM
contains independent standard-normally distributed weights that specify the mapping
between latent and observed variables. Finally, E € RN*¢ contains i.4.d. Gaussian noise
with E,. ~ N (N;0)o? Marginalizing over the weights W yields the likelihood as a
function of G:

G
@ =~ (Y 0N, GG + UZIN) . (6.38)
c=1

Learning the latent factors G' and the observation noise variance o2 can be done by

maximum likelihood. The more general gaussian process latent variable model |[Lawrence,
2005] is obtained by replacing GG in (6.38) with a more general Gram matrix R, with
R, s = /{((gm, s Ork), (Gs1s - ,gs7k)) for some covariance function  : R¥ x R¥ — R.

119



6. Linear mixed models for multiple related traits

Combining the two models

We propose to combine these two different explanations of the data into one coherent
model. Instead of treating either the samples or the features as being (conditionally)
independent, we aim to learn a joint covariance for the observed data matrix Y. This
model, called Kronecker GLASSO, is a special instance of the multivariate random effects
model introduced in Section as the data likelihood can be written as:

L(R,C ' 0%) =N (vec(Y)|Ong; CRR+0*Ing). (6.39)

Here, we build on the model components introduced in Section and Section [6.2.2
We use the sparse Lq penalty for the feature inverse covariance C~! and use a
linear kernel for the covariance on rows R = GG' + p?Iy. Learning the model pa-
rameters proceeds via maximum a-priori inference, optimizing the log likelihood implied
by Equation with respect to G and C~!, and the hyperparameters o2, p?. By
combining the graphical Lasso and Gaussian process latent variable model in this way,
we can recover a network structure in the presence of confounders.

An equivalent generative model can be obtained in a similar way as in dual probabilistic
principal components analysis. The main difference is that now, the rows of the weight
matrix W are sampled from a A/ (0¢, C) distribution instead of a N'(0¢, I) distribution.
This generative model for Y given latent variables G € RV** and feature covariance
C € RE*C ig of the form Y = GW + pV + E, where W € R¥*¢ vV ¢ RVXG and
E ¢ RV*G are jointly independent with distributions vec(W) ~ N(0p.q,C ® Ik),
vec(V) ~ N(Oyg, C ® Iy) and vec(E) ~ N (Ong, 0?Ing).

Inference in the joint model

As already mentioned in Section parameter inference in the Kronecker GLASSO
model implied by Equation , when done naively, is intractable for all but very low
dimensional data matrices Y. Even using the tricks discussed in Section free-form
sparse inverse covariance updates for C~! are intractable under the L; penalty when
depending on gradient updates.

Similar as in Section[6.2.1], the first step towards efficient inference is to introduce N xG
additional latent variables Z, which can be thought of as the noise-free observations:

p(Y|Z,0%) =N (vec(Y); vec(Z), 0’ In.c;) (6.40)

p(Z|R,C) =N (vec(Z); On.c,CRR). (6.41)
We consider the latent variables Z as additional model parameters. We now optimize the
distribution p(Y,C~'|Z,R,0?%) = p(Y | Z,0%)p(Z | R,C)p(C~') with respect to the
unknown parameters Z, C~!, 02, and R (which depends on G and kernel parameters
®pR) by iterating through the following steps:

1. Optimize for o2, R after integrating out Z, for fixed C:

argmaxp(Y | C, RO, G), o) =
02,0Rr,G

argmax N (vec(Y); On., C ® R(OR, G) + 0*Iy.c) (6.42)
02,0r,G
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2. Calculate the expectation of Z for fixed R, C, and o>

vee(Z) = (C ® R)(C ® R+ 0’ In.g) ‘vec(Y)
3. Optimize C~! for fixed R and Z:

argmax p(C~'| Z, R) = argmax N (Vec(Z) :0,C® R) p(C™)
c-1 c-1

and set C = C.

As a stopping criterion we consider the relative reduction of the negative log-marginal
likelihood (Equation ([6.39))) plus the regularizer on C~!. The choice to optimize C! for
fixed Z is motivated by computational considerations, as this subproblem then reduces
to conventional graphical Lasso; a full expectation-maximization approach with latent
variables Z does not seem feasible. Step 1 can be done using the efficient likelihood
evaluations and gradients described in Section We will now discuss step 3 in more
detail.

Optimizing for C~! The third step, optimizing with respect to C~!, can be done
efficiently, using similar ideas as in Section [6.2.1] First consider:

N-G

~

1n./\/<vec( ); ON.G,C'@R) =—
Now, using the Kronecker identity and
In|A® B| =rank(B)In|A|+ rank(A)In|B],
we can rewrite the log likelihood as:
In A (vec( ):0,C® R) (G

= -G n2r) - 1GIn|R| + 1N n ‘C’_l‘ — %tr(ZATR_IZAé_l).
Thus we obtain a standard graphical Lasso problem with covariance matrix Z'R'Z:

. . 1 . . 1 ) .
argmax p(C~!| Z,R) = argmax | —~tr(Z'R'ZC71)+ -Nn ‘C’*l’ -7 HCilH .
c-t Cc-1-0 2 2 1

(6.43)
The inverse sample covariance R~! in Equation (6.43)) rotates the data covariance, sim-
ilar as in the established “flip-flop algorithm” for inference in matrix-variate normal
distributions [Dutilleul, 1999, Zhang and Schneider, 2010).

6.2.3. Experiments

In this Section, we describe three experiments with the generalized graphical Lasso.

121

In(27) — %ln ‘C‘ ® R‘ — %Vec(ZA)T(C’ ® R) Lvec(

Z

)-



6. Linear mixed models for multiple related traits
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(a) Precision-recall curve.

(b) Ground truth. (¢) Kron. GLASSO (d) Ideal GLASSO

Figure 6.1. Network reconstruction by Kronecker GLASSO and comparison
methods. @ Precision-recall curve, when varying the sparsity penalty 1. Compared
are the standard graphical Lasso (GLASSO), our algorithm with Kronecker structure
(Kronecker GLASSO) and as a reference an idealized setting, applying standard graphical
Lasso to a similar dataset without confounding influences (Ideal GLASSO). The model
that accounts for confounders approaches the performance of an idealized model, while
standard graphical Lasso finds a large fraction of false positive edges. @ Ground truth
network. Recovered networks for Kronecker GLASSO and@Ideal GLASSO at 40%
recall (star in . False positive predicted edges are colored in red. Because of the effect
of confounders, standard GLASSO predicted an excess of edges to 4 of the nodes.

Simulation study

First, we considered an artificial dataset to illustrate the effect of confounding factors on
the solution quality of sparse inverse covariance estimation. We created synthetic data,
with N = 100 samples and G = 50 features according to the generative model described
in Section We generated the sparse inverse column covariance C~! choosing edges
at random with a sparsity level of 1%. Non-zero entries of the inverse covariance were
drawn from a Gaussian with mean 1 and variance 2. The row covariance matrix R was
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6.2. Efficient multivariate random effects models

created from k = 3 random factors g;, each drawn from unit variance i.i.d. Gaussian
variables. The weighting between the confounders and the 4.i.d. component p? was set
such that the factors explained equal variance, which corresponds to moderate extent
of confounding influences. Finally, we added independent Gaussian observation noise,
choosing a signal-to-noise ratio of 10%.

Next, we applied different methods to reconstruct the true simulated network. We
considered standard graphical Lasso and our Kronecker model that accounts for the con-
founding influence (Kronecker GLASSO). For reference, we also considered an idealized
setting, applying graphical Lasso to a similar dataset without the confounding effects
(Ideal GLASSO), obtained by setting G = Op.; in the generative model. To determine
an appropriate latent dimensionality of Kronecker GLASSO, we used the Bayesian in-
formation criterion criterion on multiple restarts with £ = 1 to k = 5 latent factors. For
all models we varied the sparsity parameter of the graphical lasso, setting n = 5%, with
x linearly interpolated between —8 and 3. The solution set of lasso-based algorithms is
typically unstable and depends on slight variation of the data. To improve the stabil-
ity of all methods, we employed stability selection [Meinshausen and Biihlmann, 2010],
applying each algorithm for all regularization parameters 100 times to randomly drawn
subsets containing 90% of the data. We then considered edges that were found in at
least 50% of all 100 restarts.

Figure shows the precision-recall curve for each algorithm. Kronecker GLASSO
performed considerably better than standard graphical Lasso, approaching the perfor-
mance of the ideal model without confounders. Figures [6.1b-d show the reconstructed
networks at 40% recall. While Kronecker GLASSO reconstructed the same network as
the ideal model, standard graphical Lasso found an excess of false positive edges.

Network reconstruction of protein-signaling networks

Important practical applications of the graphical Lasso include the reconstruction of gene
and protein networks. Here, we revisit the extensively studied protein signaling data
frorrﬂ Sachs et al.| [2005]. The dataset provides observational data of the activations of
11 proteins under various external stimuli. We combined measurements from the first
3 experiments, yielding a heterogeneous mix of 2,666 samples that are not expected to
be an i.i.d. sample set. To make the inference more difficult, we selected a random
fraction of 10% of the samples, yielding a final data matrix of size 266 times 11. We
used the directed ground truth network and moralized the graph structure to obtain an
undirected ground truth network. Parameter choice and stability selection were done as
in the simulation study.

Figure [6.2] shows the results. Analogous to the simulation setting, the Kronecker
GLASSO model found true network links with greater accuracy than standard graphical
Lasso. This results suggest that our model is suitable to account for confounding variation
as it occurs in real settings.

123



6. Linear mixed models for multiple related traits

0.6

— Glasso
— Kronecker GLasso |

0.5

0.4}

0.3t

Precision

0.2¢

0.1}

02 03 04 05 06 07 08 09 1.0

Recall

(a) Precision-recall curve.

(b) Ground truth. (c) GLASSO (d) Kron. GLASSO

Figure 6.2. Network reconstruction of a protein signaling network from

(2005 @ Precision-recall curve, when varying the sparsity penalty . Compared
are the standard graphical Lasso, and our algorithm with Kronecker structure (Kronecker

GLASSO). Standard graphical Lasso (GLASSO), not accounting for confounders, found
more false positive edges for a wide range of recall rates. Ground truth network.

Recovered networks for [(c)] the graphical Lasso (GLASSO) and [(d)] Kronecker GLASSO
at 40% recall (star in|(a)]). False positive edge predictions are colored in red.

Large-scale application to yeast gene expression data

Next, we considered an application to large-scale gene expression profiling data from
yeast. We revisited the dataset from Smith and Kruglyak| [2008], consisting of 109 genet-
ically diverse yeast strains, each of which has been expression profiled in two environmen-
tal conditions (glucose and ethanol)ﬂ Because the confounder in this dataset is known
explicitly, we tested the ability of Kronecker GLASSO to recover it from observational
data. Because of missing complete ground truth information, we could not evaluate the
network reconstruction quality directly. An appropriate regularization parameter was

"See Section for more details.
8See Section for additional information.
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Figure 6.3. Comparison of Kronecker GLASSO and GLASSO on an eQTL
study in yeast. @ Correlation coefficient between learned confounding factor and
true environmental condition for different subsets of all features (genes). Compared are
the standard Gaussian process latent variable model with a linear covariance and our
proposed model that accounts for low rank confounders and sparse gene-gene relation-
ships (Kronecker GLASSO). Kronecker GLASSO is able to better recover the hidden
confounder by accounting for the covariance structure between genes. Consistency of
edges on the largest network with 1,000 nodes learnt using@ the GLASSO or using
Kronecker GLASSO on the joint dataset, comparing the results when combining both
conditions with those for a single condition (glucose).

selected by means of cross validation, evaluating the marginal likelihood on a test set
(analogous to the procedure described in [Friedman et al| [2008]). To simplify the com-
parison to the known confounding factor, we chose a fixed number of confounders that
we set to k = 1.
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Recovery of the known confounder Figure shows the 2 correlation coefficient
between the inferred factor and the true environmental condition for increasing number
of features (genes) that were used for learning. In particular for small numbers of genes,
accounting for the network structure between genes improved the ability to recover the
true confounding effect.

Consistency of obtained networks Next, we tested the consistency when applying
graphical Lasso and Kronecker GLASSO to data that combines both conditions, glucose
and ethanol, comparing to the recovered network from a single condition alone (glucose).
The respective networks are shown in Figures[6.3(b)|and 6.3(c)l The Kronecker GLASSO
model identifies more consistent edges, which shows the susceptibility of standard graph-
ical Lasso to the confounder, here the environmental influence.

6.3. Efficient multivariate linear mixed models

Various forms of multivariate linear mixed models have been proposed in the past. These
models, which are reviewed in Section were mostly motivated by applications in
animal breeding, where several traits are evaluated for culling of animals to optimize
the genetic composition of farm animals towards a large yield in these traits. While the
models proposed in this field are all rather expressive, in the sense that some of these
allow for unbalanced designs, or varying noise levels between different traits, they share
some deficits that make them hardly applicable to genome-wide association testing in a
large number of traits. In contrast to applications of mixed models in genetic association
studies, where one usually is interested in testing the effects of fixed effects, while the
random effects are treated as nuisance parameters and integrated out, in classical animal
breeding the situation is the exact opposite. Here, the genetic contribution to a trait,
which is selected for, is modeled as a random-effect, while non-genetic influences that
differ between samples are usually explained away in the form of univariate fixed effects
that only involve a between-individuals design matrix. Second, expressiveness of the
noise model as well as allowing for unbalanced designs come at the cost that inference in
these models is expensive and in practice does not scale to more than a couple of traits.

To this end we propose a class of large-scale multivariate linear mixed models, that
allows to efficiently analyze the sum of fixed terms composed from between-individuals
designs and within-individuals designs. We derive a scalable inference scheme that, at
the cost of requiring a balanced setting (i.e. each individual has to be observed for all
traits), allows to jointly analyze and perform statistical testing of the effects of genetic
markers.

6.3.1. Previous multivariate mixed models

A number of related models have been proposed before. These are reviewed in the
following.
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A multivariate mixed model for balanced designs

A model for selection of animals based on their random genetic effect on a set of correlated
traits with a balanced design was proposed by Thompson| [1973].

N (vec(Y)|(Ig® X)vec(B); R C+I1® D), (6.44)

where D is a diagonal matrix of unknown noise covariances between target variables,
and R is a known sample covariance matrix, C' is a G-by-G matrix of random-effects co-
variances between dimensions and R is an N-by-/N matrix of random-effects covariances
between samples.

Maximum likelihood inference for the model has been considered in Meyer| [1985].

A multivariate mixed model for unbalanced designs

As the model above applies only to the balanced case, where the data matrix Y is ob-
served for all individuals and all traits. A similar model was proposed for the unbalanced
case, where not all individuals are observed for each trait |[Schaeffer et al., |1978§].

For each of G traits, let y. be a vector of N. observations for the trait ¢, with ¢ €
[1,...,G]. Each y. is modeled as the sum of fixed effects 3., random effects v, and noise
€.

Yec = ZCX/BC + ZCG,vC + €,

where X is a design matrix for the fixed effects of covariates and G is a design matrix of
random genetic effects. and Z, is an indicator matrix of individuals for which the trait
¢ is observed.
The vector of all phenotypic observations y is given by the vertical concatenation of
all y..
Y1

y=| % |. (6.45)
Yo

The fixed effect design matrix Xy, for the full model is given by the direct sum [Searle
et al. 1966] of all Z.X.

ZX 0 ... 0
0 Z,X ... 0

X = 2 (6.46)
0 0 . ZaX

The noise is assumed independent between individuals and traits, with a different noise
level per target trait.

o?Iy, 0 ... 0
2
0 0 ... oiln,
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6. Linear mixed models for multiple related traits

Integrating over the random effects v. for all traits ¢, then the total contribution of
the random effects K to variance for all observations is a multiplicative between the
covariance between individuals R = GG and the covariance between traits i and j ¢; j,
forallie[l,...,G]and j € [1,...,G].

c1Z\RZ]  c¢12Z\RZ, ... c1cZ1RZ/
K- 21ZoRZ|  22Z5RZ, ... c26Z2RZ/, (6.48)
cLGZ'l'Rzg CQ,GZ'Q'RZg . cG,GZ';;‘RZg
It follows that the distribution of y is
y~N(XB; K+V). (6.49)

If all individuals are observed for all traits, (all Z. = Iy), then K and V have
Kronecker structure and the model is identical to the model considered in Section [6.3.1]

6.3.2. Large-scale multivariate linear mixed models for balanced designs

We propose an efficient algorithmic framework for inference and statistical testing in
multivariate linear mixed models. Our approach generalizes linear mixed models on uni-
variate phenotypes to the setting, where matrix-variate values depend on both row-wise
as well as column-wise features and their interactions. As a multivariate mixed model,
our approach allows for conditioning on random effects with a multivariate Gaussian
prior defined by row and column covariance structures.

By concentrating on the balanced design case, we derive efficient algorithms, that
should allow genome-wide testing for association between genetic markers and a large
number of phenotypes. Similar to our efficient algorithm for parameter estimation in
multivariate random-effects models (see Section use of the spectral decomposition
of row and column covariance matrices allows us to apply Kronecker product identities
despite modeling i.i.d. noise.

The multivariate extensions to linear mixed models aims at explaining the variation
of a matrix-variate data matrix Y with N rows and G columns using a matrix-variate
normal model:

N | vec(Y) |(A® X) vec(B) + \Z’/ o’ | . (6.50)

fixed effects random effects

The model in Equation generalizes the univariate mixed model in Equation (2.15)).
Again, B denotes the fixed-effects. The matrix A is the design matrix of the column
effect and X of the row effect. For example in a test for gene-environment interaction,
the matrix X could be a genetic marker and the matrix A could be a binary indicator of
an environment-specific intervention. In this case the matrix B would contain interaction
effects between the genetic marker and the intervention. When testing for a joint constant
effect of a marker on all target variables, the matrix X would also be a genetic marker
and the matrix A would be a 1-by-G row-vector of ones, thereby replicating the effects B
across all phenotypes. A column design matrix equal to the G-by-G identity matrix on the
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6.3. Efficient multivariate linear mixed models

other hand would allow for (seemingly) unrelated effects, yielding a direct generalization
of the seemingly unrelated regressions model to cases where both rows and columns
covary (see Section [6.1.3).

Analogous as in the linear mixed models introduced in Section 2.2] we assume that
the random effects Z follow a normal distribution, but as in Section we assume it
to be matrix-variate:

N (vec(Z)|0;C@R). (6.51)

Integrating over the random effects distributions, we obtain the marginal likelihood model
N (vec(Y) | (A® X)vec(B); Co®R+0%I). (6.52)

Using the Kronecker vec operation from Equation (E.2)), we can rewrite the mean term
in Equation (6.52)) as a product of row-wise fixed effects X, the weight matrix B, and
column-wise fixed effects A :

N (vec (V) | vec (XBAT> . CoOR+ 021) . (6.53)

We argue that this is a natural extension to linear fixed effects, as marginalization of these
fixed effects over a matrix-variate prior distribution, would also result in a multivariate
random effect. In general, we may assume a sum of fixed effects, which results in the
model we consider in the remainder of this chapter:

J
N | vec(Y)|vec | Y X;B;A/ | ; CoR+°T |, (6.54)
j=1
where each X; is an N-by-D; matrix, with E;-Izl D; = D, and each A; is a G-by-M;
matrix, with ijl Mj; = M The mean term is a linear function in the stacked Kronecker

products of the design matrix for each of the J terms in the sum. We defining the
complete (N - G)-by-(D - M) design matrix ® as follows

P=[A®X, ..., AjX,]. (6.55)
The (D - M)-by-1 vector 3 of concatenated fixed effects is defined as follows:

vec (By)
B= : : (6.56)
vec (By)

Using the definition of ® and B the matrix-variate mixed model in Equation (6.54))
can be written as

N (vec(Y)|®8; C® R+ 0°T). (6.57)

Further generalizations to sums of Kronecker products in the covariance are also pos-
sible, however omitted for brevity.
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Efficient parameter estimation

Having defined the multivariate mixed model in Equation , we now discuss how
to perform efficient parameter inference. Evaluation of the marginal likelihood can be
done efficiently using linear algebra identities previously proposed in Section for the
multivariate random effects model.

Again using the spectral decomposition of the Kronecker product plus a constant
diagonal term given in Equation (6.4)), the log of the likelihood model (Equation (6.54)))
can then be written as

InL | 0c,0r, 0% {B;} | =
[C)

In(2r) — % In|Ac ® Ag + 0%I|

R-C (6.58)

1
- ivec(UEY}UC)T(AC ® Ag + oI 'vec(UR Y, Ug),

allowing for efficient evaluation. Here, we have defined the Y; to be the residuals after
the fixed effects have been subtracted from the data.

J
.= |Y-) X;BA]|. (6.59)
j=1

The variable ® denotes all the parameters to be fit explicitly where ¢ and O parame-
terize the column and row covariances respectively.

Gradient-based optimization of model parameters

Starting from the rotated representation in Equation (6.58)), efficient evaluation of pa-
rameter derivatives are feasible. Derivatives with respect to the covariance parameters
fc, Or and 2 have previously been considered in Section [6.3.2]

<v log £(R,C,02,3) ) i
vec

VB,

Vlieg £ (R,C,0?,3) B .
V3 = : : (6.60)

Vlog L(R,C,0%,8)
vec VB,

Each D-by-M matrix holding gradients with respect to fixed effects B can be evaluated
efficiently as derived in Equation (E.29):

Viog L (R7 C,o?, ﬁ)
VB,

— X Ug (DA © (U;YrUC)) UZ Ay,

where the entries of the N-times-G matrix D4 are defined as

1

Dyl = .
[ A] ' [AC]C,C[AR]T,T + 02
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Choosing the right order to perform multiplications, each of these gradient matrices
takes O(N2G + NG? + N2Dy, + G?M},) = O(N?G + NG?) time to be evaluated, where
multiplication of the residuals with the eigenvectors is the dominating operation. As this
operation can be cached, evaluating the full gradient for all fixed effects takes O(N2D +
G®M + N?G + NG?) time. Space requirement is O(NG).

Joint optimization of the variance components and the fixed effect parameters

Ideally all model parameters would be re-estimated for each test. As the problem involves
a large number of parameters, computation of the Hessian matrix for optimization can
be prohibitive. The easiest way to circumvent computation of the Hessian is by use of a
quasi-Newton method like L-BFGS or its bounded version L-BFGS-B |Liu and Nocedal,
1989, Byrd et al., (1995, [Zhu et al., [1997].

Note, that the approach suffers from local optima and requires some care. For example
could the alternative model erroneously achieve a lower likelihood than the null model,
only due to local optima. This problem can be circumvented using multiple restarts at
different initialization, including the null model as an initialization.

Fixing the variance components

When performing a large number of tests on a genome-wide scale, re-estimation of the
parameters of the covariance matrices C and R on every alternative model is likely going
to be prohibitive, despite the computational methods presented here. For this case, we
propose to estimate these on the null model only and keep them fixed throughout the
testing procedure. A similar approximation is widely applied in the context of univariate
linear mixed models [Zhang et al., 2010} Kang et al., [2010].

Given the covariance matrices, the set of maximum likelihood fixed effects can be
evaluated in closed form using the generalized least squares estimator.

By = (@T (CoR+0%1)" @) YT (Co Rt oD M vee(Y), (6.61)

Using the efficient evaluation derived in Section the fixed effects (Equation (6.61))
can be evaluated efficiently in O(ND? + NGM? + D3M?) or O(GM? + NGD?+ D3M3)
time and O(NG) memory.

6.3.3. Phrasing hypotheses in matrix variate linear mixed models

Aj e RE*M; is a matrix, that replicates the j-th fixed effects matrix X; e RN*D; AjT
typically would be a binary matrix, but could also have real valued features of the target
dimensions. Using different versions of AjT corresponds to choosing a testing strategy:.
For example, when A; is the G x G Identity matrix, then one would fit an independent
weight to every column of Y, when A; is a column-vector of ones, then one would fit a
single joint weight to all columns of Y.

N Vec(Y)‘ZAj@)vaec(Bj); C®R+5°1
J
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As long as Dj < N, M; < @G, the rank of X is D; and the rank of A; is M, and the
rank of [X7,..., X ] is ijl M; < N the number of degrees of freedom of a single B;
is Dj . Mj.

Efficient statistical testing

For the likelihood ratio test the null distribution of the likelihood ratio statistic can be
obtained in closed form. The number of degrees of freedom of the test is the difference in
the fixed effects between the null model and the alternative model. For example, when
testing all fixed effects of a single Kronecker fixed effects term X;B;A;, then the number
of degrees of freedom is D; - M;, the number of entries in the matrix B;.

6.4. Chapter summary and discussion

We have shown an efficient scheme for parameter learning in matrix-variate normal dis-
tributions with 4.7.d. observation noise. By exploiting linear algebra tricks, we have
shown how hyperparameter optimization for the row and column covariances can be
carried out without evaluating the prohibitive full covariance, thereby greatly reducing
computational and memory complexity.

As an application of our framework, we have proposed a method that accounts for
confounding influences while estimating a sparse inverse covariance structure. Our ap-
proach extends the Graphical Lasso, generalizing the rigid assumption of ¢.i.d. samples
to more general sample covariances. For this purpose, we employ a Kronecker product
covariance structure and learn a low-rank covariance between samples, thereby account-
ing for potential confounding influences. We provided synthetic and real world examples
where our method is of practical use, reducing the number of false positive edges learned.

Additionally, we have presented an efficient parameter inference scheme for multi-
variate mixed models and statistical testing within the multivariate framework. This
approach shows great promise for applications in a number of fields, one of which is
genetics.

A natural application of the proposed approach would be in genetic association studies
involving multiple phenotypes, where it enables matrix-variate association tests between
individual genotype markers and groups of phenotypes while accounting for confounding
variation. Our approach is particularly well suited for such application domain, because
the number of hypothesis to be considered requires efficient computations and account-
ing for confounding variation is critical. Relatedness between individuals together with
other unmeasured confounding factors can severely break the i.i.d. assumption, when not
taken into account [Leek and Storey, 2007|. There are numerous possible designs and
modeling choices how matrix variate mixed models can be used in genetics to test entire
pathways [Wang et al. [2011] or phenotypic groups determined by means of clustering.
In future work we plan to explore such applications in full detail.
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Up to today a large number of findings have been made due to genome-wide association
studies, with numbers growing rapidly. Still, GWAS are often criticised for the results
falling behind the initial expectations. In the mid 2000’s, a number of early GWAS dis-
coveries of a considerable number of common variants with moderate effect sizes quickly
led to the hope, that soon a large part of the causal mutations and causal processes for
many common diseases and complex phenotypes would be uncovered. Despite great ef-
forts and spending, the insights gained from GWAS still greatly lack almost any clinically
relevant findings, leading to a prolonged phase of disappointment and criticism.

Today it seems clear, that expectations where overly high, relying on assumptions
that seldom hold in practice. Even though a number of common causal variants with
moderate to large effect sizes, which can easily detected in the GWAS framework, have
been determined, these still make up only for a small fraction of the total heritable
portion of a phenotype. The hypothesis that common diseases are caused by only a
handful of common variants, that can easily be detected by GWAS, seems to apply rarely
at most. On the contrary, many phenotypes have convincingly been shown to be much
more polygenic and effect sizes much smaller then what initially has been assumed |[Yang
et al., 2010, 2011b}, |Stahl et al.l [2012]. Also the influence of uncommon and rare variants
seems to be larger than anticipated.

Instead of just creating more and more data within the traditional GWAS design,
researchers are now thinking about ways to adapt their design according to the lessons
learned. On the one side, huge cohorts involving rich genotype and phenotype data
are being assembled, to achieve the power to detect weaker effects tagged by common
variants. As costs for genotyping common variants have been dropping drastically, large
public consortia and health organizations like Kaiser Permanente are performing large-
scale genotyping on cohorts involving hundreds of thousands of individuals, for which
over the course of decades they have collected a wealth of phenotypic information and
clinical data. In many European countries like the UK, where public health records of
high quality are available for a large fraction of the population, these are being comple-
mented by genotype data. When assembling such gigantic and high-powered cohorts,
hidden relatedness or hidden environmental influences, would almost inevitably lead to
biases in the results of the analysis, when not taken into account. It is also due to
the methodological contributions like the ones presented in this thesis, that robust off-
the-shelve analysis tools for such huge cohorts are are now readily accessible even to
non-experts. Not only does FaST-LMM automatically correct for many problems in a
rapid manner, without requiring explicit knowledge of the problem or the cause, other
advances implemented in FaST-LMM, like variable selection, or correcting for the effects
of proximal contamination, also yield an increase in power over traditional analyses (see
Chapters |3 and [Lippert et all |2011 Listgarten et al. 2012, 2013a, [Lippert et al.
2013aljb].
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Investigation of the full spectrum of variation present in the genome in a depth that
goes beyond genotyping of pre-defined panels od common variants requires the use of
sequencing technology. While it is viable to genotype large cohorts using microarrays,
the cohort sizes for which deep sequencing data are being produced are considerably
smaller. In contrast to typical genotype arrays that tag a large fraction of the common
variation at a low price, the cost for obtaining the depth in sequencing required for a
complete picture of the genotypic variation, including uncommon and rare variants, is
still considerably higher. Depending on the depth of sequencing, the cost for obtaining a
complete human genome is still in the order of several thousand of US Dollars and lately
has been stagnating.

In many studies the cost, which still prohibits study of the whole genome in large
cohorts, is reduced by sequencing only certain parts of the genome, for example the
complete exonic region, a targeted region that is associated to a phenotype, or the whole
genome at lower depth. While such data is likely to many additional contain causal
variants that are not covered by standard SNP arrays, typical sample sizes would still be
too small to obtain the power to significantly associate most individual uncommon and
rare variants.

Set tests are a method of choice to utilize sequencing data to detect genetic regions
involving rare variants that explain a significant fraction of variation [Price et al., 2010a,,
Wu et al) 2011]. As we have found the result of set tests to be especially vulnerable
to genetic relatedness [Quon et al., [2013], methods that correct for genetic structure as
proposed in Chapter [5 should prove useful to overcome this problem [Listgarten et al.,
2013b}, Oualkacha et al., 2013]. Additionally, shallow sequencing makes it hard to reliably
call and detect rare variants across all individuals. Ideally such variability in calling
quality should be accounted for in a GWAS analysis. As long as sequencing data is still
too expensive to obtain at a sufficiently high depth, ways to adjust variance components
to address these biases are a worthy target for further investigation.

Another avenue that will increase in importance is the study the phenotypic varia-
tion of each individual. By collecting a wealth of phenotypic data on the organismal as
well as on the molecular level, traditional GWAS methods that build on the simplistic
model that look at isolated pairs of mutations and phenotype are going to be insufficient
to fully utilize such rich data and gain a complete picture of the complex mechanisms
involved in phenotypic regulation. Multivariate methods for the joined analysis of mul-
tiple phenotypes as considered in Chapter [6] are going to prove useful in a broad range of
applications. For example in the context of RNA sequencing experiments, multivariate
mixed models can be used for testing both joined, as well as differential genetic regu-
lation of alternative transcript isoforms |[Rakitsch et al.| [2012]. Accurate models that
set these data in relation and allow to dissect associations to multiple phenotypes, to
a phenotype over time or to molecular phenotypes for different tissues, would allow to
answer questions that go beyond simple association between variants and phenotypes.
For example conditional independence tests can be used to perform inference over causal
mechanisms and regulatory pathways [Pearl, 2000, Lawlor et al., [2008].

With most of the data being made available on storage platforms like dbgap, methods
that enable to accurately combine the results of multiple existing studies of the same or
related phenotypes are also likely to become important. Such meta analyses have to cope
with population differences in the study cohorts, as well as with external batch effects
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due to different experimental protocols. The mixed model framework is a promising
means to develop methods, that allow joint analysis while taking these subtle differences
into account [Han and Eskin) 2011 Furlotte et al., 2012} Lippert et al., 2013a].

A large number of initial hurdles in studies of complex phenotypes have now been
taken, promising a new wave of important findings from genome-wide association studies.
The next step is to now start thinking about how to turn these findings into practical
value. These for example include using GWAS hits as disease markers in genetic tests for
elevated risk for common and late-onset diseases. Similarly, prediction of drug-genotype
interactions may help avoid serious side effects by to serious side effects. So far such
genetic tests mostly are based on a small number of rare markers with large effect sizes.

As annotation of GWAS hits is still scarce and most effect sizes are small, utilization
of such variants might not seem to be a trivial task. But similar to the prediction of
breeding values of animals and plants [Hayes et al., 2009], multifactorial models, including
the ones considered in Chapter [5] could use a large number of weakly tagging variants to
predict elevated risk for complex diseases. As these models aggregate the effects of many
variants they should not large individual effect sizes of the variants in order to achieve
a reliable prediction of heritable traits or elevated disease risk [Daetwyler et al., 2008,
de los Campos et all 2010, Zhou et al., [2013| Rakitsch et al., [2013 Wray et al., 2013].
For the same reasons even statistical significance of the individual variants should not
be a necessity to warrant use in prediction.

In order to turn such predictors into a resource for clinicians, we have to also address
a number of problems that go beyond pure basic research. Building robust and eas-
ily accessible database solutions that provide secure access to and reliable storage for
anonymized data at scale will be crucial. The information has to be presented in a way
that is in concordance with privacy concerns, while still providing enough insights to be
useful. Another large hurdle is the long and expensive approval processes that has to be
overcome before such resources would be able to hit the market.

Despite these complications, I think that the results of GWAS will prove their value
in foreseeable future, making it an exciting time to be contributing to this field and
following the discoveries made.
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A. Datasets

We have used a number of datasets from different organisms.
All analyses additive effect of a SNP on the phenotype, using a 0/1/2 minor-allele
count encoding for each SNP. Missing SNP data were mean imputed.

A.1. Wellcome Trust Case Control Consortium 1

The Wellcome Trust Case Control Consortium (WTCCC) 1 data consists of the SNP
and phenotype data for seven common diseases: bipolar disorder (BP), coronary artery
disease (CAD), hypertension (HT), Chron’s disease (CD), rheumatoid arthritis (RA),
type I diabetes (T1D), and type II diabetes (T2D). Each phenotype group contains
about 1,500 individuals. In addition, a set of approximately 2,000 controls from the UK
Blood Service Control Group (NBS) was included. A second control group from the 1958
British Birth Cohort (58C) was not included, as permissions for the data precluded use
by a commercial organization.

The difference between values of A from an uncorrected analysis (Armitage Trend
test) and those from Kang et al. [2010] averaged 0.01 across the phenotypes with a
standard deviation of 0.01, indicating that the absence of the 58C data in our analysis
had little effect on inflation/deflation. In these initial analyses, we found a substantial
over-representation of P values equal to one, and traced this to the existence of more than
two thousand non-varying SNPs or single-nucleotide constants (SNCs). In addition, we
found (not surprisingly) that SNPs with very low minor-allele frequencies led to skewed
P value distributions. Consequently, we employed a more conservative SNP filter, also
described by the WTCCC in [Burton et al.| [2007], wherein a SNP was excluded if either
its minor-allele frequency less than 0.01, it was missing in greater than one percent of
the individuals, or it was in the extended MHC region. After filtering, 368,584 SNPs
remained for the data used for Chapter |3 and Sections |4.1.1} and [4.1.2l The remaining
studies in Chapter 4] and in Chapter [5] made use of an additional list of poor quality
SNPs obtained from the WTCCC such that the number of SNPs was reduced to 356,441
SNPs.

In our initial analysis, we excluded individuals and SNPs as described in both [Kang
et al. [2010] and the primary analysis [Burton et al.l 2007]. In total, there were 14,925
individuals across the seven phenotypes and control.

Our analyses for a given disease phenotype used data from the NBS group and the
remaining six phenotypes as controls. In theory such an approach might introduce errors,
as for example disease causing alleles in other diseases might appear protective as well as
lead to a loss in power to detect causal variants that have pleiotropic effects. In practice
though, this approach has been shown to in increase power because of the larger sample
size without introducing false positives, when confounding factors are accounted for using
an LMM [Lippert et al., 2013a].
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A. Datasets

A.2. Genetic Analysis Workshop 14

The Genetic Analysis Workshop (GAW) 14 data [Edenberg et al., 2005] consisted of au-
tosomal SNP data from an Affymetrix SNP panel and a phenotype indicating whether an
individual smoked a pack of cigarettes a day or more for six months or more. The cohort
included over eight ethnicities and numerous close family members—1,034 individuals in
the dataset had parents, children, or siblings also in the dataset. In addition to the cura-
tion provided by GAW, we excluded a SNP when either (i) its minor allele frequency was
less than 0.05, (ii) its values were missing in more than 10% of the population, or (iii) its
allele frequencies were not in Hardy-Weinberg equilibrium (p < 0.001). In addition, we
excluded an individual when more than 10% of SNP values were missing. After filtering,
there were 7,579 SNPs across 1,261 individuals.

A.3. Large-scale synthetic dataset based on GAW14

The GAW14 data (See Section was used as the basis for generating large synthetic
datasets. Datasets GAW14.x, x = 1,5, 10,20, 50, and 100 were generated. Roughly, the
synthetic GAW14.x dataset was constructed by “copying” the original dataset = times.
For each white, black, and Hispanic individual in the original data (1,238 individuals), x
individuals were created in the copy. The family relationships among these individuals
were similarly copied from the original pedigree. For each individual with no parents,
data for each SNP was sampled using the race-based marginal frequency of that SNP in
the original dataset. A phenotype for each individual was then sampled from a gener-
alized linear mixed model (GLMM) with a logistic link function whose parameters were
adjusted to mimic that of the real data. In particular, the offset and genetic-variance
parameters of the GLMM were adjusted so that (i) the phenotype frequency in the real
and synthetic data were almost the same, and (ii) the genetic variance parameter of a
LMM fit to the real and synthetic data were comparable. It was assumed that there were
no fixed effects. GAW14 and GAW14.1 had almost identical runtimes.

A.4. 1966 Northern Finland Birth Cohort

The 1966 Northern Finland Birth Cohort (NFBC66) [Sabatti et al., 2008, |Rantakalliol
1969] was analyzed in Section Genotype data were available for 5,546 Finnish
individuals, all with genotyping completeness > 95%. We prepared the data for analysis
exactly as in Kang et al| [2010]. In particular, we excluded individuals from further
analysis because they had withdrawn consent (15), had discrepancies between reported
sex and sex determined from the X chromosome (14), were sample duplications (2), were
too related to another subject (77), had more than 5% missing genotypes (1) or had no
phenotype data (111), leaving 5,326 individuals for analysis. In addition, we excluded
SNPs from the original set of 368,177 when there were more than two discordant genotype
calls between different methods (4,711), when the allele frequencies were not in Hardy-
Weinberg equilibrium (p < 10~%; 5,260), when more than 5% of the individuals had
missing values (2,535), or when the minor allele frequency was less than 1% (27,002),
leaving 331,475 SNPs for analysis. We adjusted the nine phenotypes used in the original
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A.5. Meta-analysis of 107 phenotypes in A. thaliana

data for sex, pregnancy status, and use of oral contraceptives.

A.5. Meta-analysis of 107 phenotypes in A. thaliana

The data was taken from a GWAS of 107 phenotypes on 199 Arabidopsis thaliana inbred
lines [Atwell et al. |2010]. The lines were genotyped using a 250K Affymetrix SNP-tiling
array containing 248,584 SNPs [Kim et al., 2007].

We study the group of phenotypes related to the flowering time of the plants. We ex-
clude phenotypes that were measured for less than 150 accessions to avoid possible small
sample size effects. 20 out of 23 flowering phenotypes pass this sample size threshold.

For the experiments in Section[4.3.5] we excluded a SNP when its minor allele frequency
was less than 0.05, in addition to the data preparation provided by Atwell et al.| [2010].
We did not filter SNPs based on deviation from Hardy-Weinberg equilibrium, as such a
filter would have excluded all SNPs (using a threshold p < 0.001). After filtering, there
were 206,612 SNPs.

After quality filtering each genotype comprises 216,130 single nucleotide polymor-
phisms per accession for the experiments in Section [4.3.5]

A.6. Semi-empirical data

We used as basis for our simulation real genomic data from Arabidopsis thaliana. Geno-
type data for 1,196 plants is available from Horton et al.| [2012]. For simulating the
population driven effects, we used the real phenotype leaf number at flowering time (LN,
16°C, 16 hrs daylight) which is available for 176 plants. Univariate analyses as done
in Atwell et al. [2010] have shown that the phenotype has an excess of associations when
we do not correct for population structure while after correction the p-values are approx-
imately uniformly distributed. First, we fit a random effects model to LN to determine
the fraction of genetic and residual variance which we subsequently used to predict the
population structure for the remaining 1,120 plants. We then simulated the phenotypes
as follows:

Y = OsigYsig + (1- Usig)[UPOpypop + (1 - Up0p)ei]v

where yg, = X®3, X® is the SNP data for the k causal SNPs, 3 ~ N (0; I)
and e ~ N (0; I). The first two causal SNPs are drawn such that they are in close
linkage disequilibrium (distance between 1kb and 10kb), the remaining causal SNPs are
randomly drawn from the complete genome.

The default settings used for the simulation experiments were oge = 0.7, opop = 0.5
and k£ = 100. To determine the influence of the population strength, we considered
osig = 0.5, k = 20 and varied opop, € {0.0,0.3,0.5,0.7,0.9,1.0}. In experiments to
assess the impact of the overall noise, we fixed k = 100, 0p0p = 0.5, and let og vary
in {0.1,0.3,0.5,0.7,0.9,1.0}. Finally, we considered different numbers of causal SNPs
k € {10, 20,500,100, 300, 1000} and fixed ogig = 0.7, 0pop = 0.5. For the LD experiments,
we used the o4y = 0.7, opop = 0.5 and k = 10. We simulated 30 phenotypes for all
settings.
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A.7. Mouse data

We also obtained genotype and phenotype data for 1940 mice from a study of Valdar
et al. [2006]. Each genotype comprises 12,226 single nucleotide polymorphisms. All mice
were derived from eight inbred strains and were crossed to produce a heterogenous stock.
The phenotypes span a large variety of different measurements ranging from biochemistry
to behavioral traits. Here, we focused on 273 phenotypes which have numeric or binary
values.

Preprocessing We standardized the SNP data which has the effect that SNPs with a
smaller MAF have a larger effect size. On the phenotypes, we performed a Box-Cox
transformation [Box and Coxl [1964] and subsequently standardized the data.

A.8. Sachs signaling

In Section we analyze the extensively studied protein signaling data from [Sachs
et al. [2005]. The dataset provides observational data of the activations of 11 proteins
under various external stimuli. We combined measurements from the first 3 experiments,
yielding a heterogeneous mix of 2,666 samples that are not expected to be an i.i.d. sample
set.

A.9. Smith and Kruglyak data

In Section we analyzed the dataset from Smith and Kruglyak| [2008], consisting of
109 genetically diverse yeast strains, each of which has been expression profiled in two
environmental conditions (glucose and ethanol).
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B. Score and information for linear mixed

models

Here we provide a summary of a few useful quantities for computations of linear mixed

models.
The log likelihood of the linear mixed model equals

N 1 1 -
log £ (v, 0%, B) = =~ log (2m0%) — S log | Hy| = o (y - XB) H'(y-XB).

2

B.1. Score and observed information for a model parameter

Vieg L (B,02,~ 1 _
V(ﬁ ) _ - X8 H,'X (B.1)
V2log£ ,3,02,'7 1 _
Vgﬁ ) _ EXTHA, 1x (B.2)
VologL (B,0%~) 1 T 10Hy -
va10g£ (5702a7) 1 T -1
S = - XB) Hy X (B.4)
dlog L (B,02,7) 1 _,0H, 1 T.. 1O0Hy
9 =50 <H'y o ) +@(y—X,3) H, o H,”" (y—Xp).
(B.5)
0%log L (,8,02,’7) :ltr H‘laHﬂy H‘laH’y R BQH.Y
97i0; 2 7oy Y Oy T 070
0’H. OH OH.
L X TH —1 Y 'YH —1 Y H -1 - X
#aa o= X0) iy (G0 -2 O - X
(B.6)
dlog L (B,0%7) N 1 T 1
952 :*T‘gﬁLﬂ(y*Xﬁ) H,” (y—Xp). (B.7)
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B. Score and information for linear mixed models

d*log L (B,0%,7) N 1

5252 =51~ s W XB8) H, " (y - Xp). (B-8)
9*log £ (B,02,7) 1 (y- X8 H _16H'7H Ly - XpB) (B.9)
D520 DY TR Yooy T Y . |

B.2. Fisher Information

This assumes that the expectation is taken over the likelihood, meaning that the param-
eters are the correct ones.

2] 2
B [6 og L (B>O— aﬂY)] :ltr (H—laH'YH—laH'Y> . (BlO)

9710 2 7oy Y Oy

d?log L (B,0%,7) N
0%log L (,EI, 02,’7) 1 _,0H
T =5 3tr <H7 afy:> : (B.12)

B.3. Average Information

1 (—E [aQIOgE ([3,02,7)] B 9% log L (,3,0’2,'7)>

2 07i0v; 07i0v;
1 _, 0°H,
1" (HV 07i07;

0*H, _0H, __ _,0H,
- H,
Ovidvj O 0

vy xp) H, <

& )i - xp). @)

2
;<—E [a%gﬁ(ﬁ’az"’)] _ gL (B0 ’7)> - L w-x8) H, - XB).

0202 0202 " 206
(B.14)
1 5 d*log L (B,0%,7) _0210g£(ﬂ,02,7) _
2 0020; d020;
R T 10Hy RS _10H,
i W XA H, I HL T (- XB) — ot (H ) (B5)
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C. Linear mixed model derivations

The matrices § = I — X (XTX) "' X and Q = (X "TH'X) X H~! meet all the
requirements needed for restricted maximum likelihood from Section [2.2.3]

Proposition C.1. rank(S) = N — D.
Proof. This is shown in Proposition O
Proposition C.2. rank(Q) = D.

-1
Q= (XTH—lx) XTH!
Proof. As both (XTH_lX)_1 is a D-by-D matrix of full rank and X T has rank D as
long as all the columns of X are linearly independent, their product @ is also of rank D.

Proposition C.3. The two projections are statistically independent under the model.
< Cov(Sy,Qy) =0.

& SH.QT =0.
Proof.
-1
T _ —1 T -1
SH.Q' = SHI;I X (X H X)

- sx(x7Hx)”

0
= 0. O
Proposition C.4. The expected value of Sy under the model is zero.
< E(Sy) =0.
< SX3=0.
=8X =0.
Proof.
SXpB=0 0
0
Proposition C.5. rank(QX) = D.
Proof.
-1
QX — (XTH*X) XTH'X
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C. Linear mixed model derivations

C.1. The restricted likelihood

Let in the following Z and R be defined as follows:

1
20 ~
R

N(y}Xﬂ; U2H) = (2#02)7% |H|_% -exp (2 (y—Xﬁ)TH_1 (yXﬁ)) .
Z

Let in the following Zg and Rg be defined as follows:

N (Uy]0:0°A) = (2r0%) "7 A e | - yTUA DTy
-

Zs Rs

Let in the following Zg,and Rg be defined as follows:

N (Qy |w; UZXTH’1X> = (27702)‘% IXTH 'X|"2-exp <—2i2RQ> ,

Zq

with .
Ro=(Qy-8) (XTH'X) (Qy-p).
Proposition C.6.

R = Rs + Rg.
Proof.
R= (y-XB) H ' (y-Xp)
- o [G] (9] Q] [G e
7 7

T T\ 1
- wxo [ ] ([%T}H[lg] > % |w-xo
- (2] (& xodx] [an2s]
B Qy - 0 X'H'X Qy-8
- yUA Uy +(Qu-p) (XTH'X) (Qu-p)
Rs P
— Rs+ Rg U

The following Proposition was stated in Harville [1974] without a complete proof:

Proposition C.7.
_1
7z = ’XTX‘ * Zs-Zo.
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C.1. The restricted likelihood

Proof.
Zs-2qQ = (2r0?)” 2 |A|7: (2m2)’% IXTH 'X| 2
N (2n0%) " [ g_ )(Tlg—l)(} K
: N LA
- e ][]
: e i [ [ )]

- 7z \UTU -QQT—LQU<U$U>7HJTQT

_ Z-10QT —QQT +QXx (XTX)A X'Q'
—_—— ——

0

N

S

=

I I

1
Z-’XTX2. O

The following Proposition was stated in Harville| [1974] without a proof:

Lemma C.8. Given S = (I - X (XTX) XT) e RN @ = (XTH_lX)_1 XTH 'e
RPN U e RVN*WN=D) " with the economy spectral decomposition of SHS given as

UAUT
N (y|XB;0?H) =|X"X|2-N (Uy|o0;

Proof.

N (Uy|0;0*A) - N (Qu|w; X TH'X )

02A) ~J\/’<Qy‘w; JQXTH_1X>.

1
= Zs-Zq -exp —72(R5+RQ)
20% — 2
1 R
Z|XTX|?

1
2
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C. Linear mixed model derivations

Lemma C.9. Let H, be defined as YK + I, where K 1is a positive semi-definite matriz
and v > 0. Further, let the spectral decomposition of K be UAU . Then, the spectral
decomposition of H. is given by U (YA + IN)U T, where (YA + Ix) is a diagonal matriz
holding the N eigenvalues of H. and the eigenvectors are unchanged.

Proof.

H, = vK +1
NUAU" + 1

= UnAUT +UU"

= UnNA+DHU'. O

The following Lemma was stated and used in Patterson and Thompson, [1971]:

Lemma C.10. Let K be a positive semi-definite matriz, and the spectral decomoposition
of K be UAU". Then the Moore-Penrose pseudo inverse of K is given by UATUT,
where At is obtained by inverting the non-zero diagonal entries, contained in the upper
diagonal part Ay of the diagonal matriz A.

Proof. This is proven, by Propositions to the four properties of the Moore-
Penrose pseudo inverse. O

Proposition C.11. (UAUT) (UATUT) is symmetric.

Proof.
(UAUU(UAWﬂ): UAU U ATUT
I
- A1 O Al_l 0 T
- vl o]l ol
B I 0],
_ U[O O}U
= uu. O

Proposition C.12. (UATUT) (UAUT) is symmetric.

Proof.
(UAWﬂ)(UAUT)z U[é g]cﬂ
= uul. O

Proposition C.13. (UAUT) is a weak inverse of (UATUT).
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C.1. The restricted likelihood

Proof.
(UAUT) (UATUT) (UAUT) - UL U U, AU/
— ~——
U U/ U AU T
= U AU
= UAU'. O

Proposition C.14. (UATUT) is a weak inverse of (UAUT).

Proof.
(UAT UT) (UAUT> (UAT UT> - UL U U, A7'UY
——
uuy U ATUT T
= U AU
= UA'UT. O

The determinant of the genetic similarity matrix, (U (yA + I)U T‘ can be written
using the property that |[AB| = |A||B|, the fact that |[U| = |[U"| = 1, and that the
determinant of a diagonal matrix is the product of the diagonal entries. The inverse of the
genetic similarity matrix can be rewritten using the property that (AB)™! = B~1A~1,
the fact that U = U and U~ T =U

The following lemma was stated and used in [Patterson and Thompson| [1971]:

Lemma C.15. Let Hy be defined as K + 1 and H., be defined as YK + I, where K is a
positive semi-definite matrix and v > 0. Further, let the economy spectral decomposition
of SH1S be Ug (¥ + In_p) U;. Then, the economy spectral decomposition of SH.S
is given by U (vX +In_p)U', where (X + In_p) is a diagonal matriz holding the
N — D non-zero eigenvalues of SH.S and the first N — D eigenvectors given as columns
of Us are unchanged.

Proof.

SH,S = S(K+1I)S (C.2)

= S|v(K+D)+(1—-y)I|S
———
H;
= YySH S+ (1-7)8
= VWUs (X +1)Ug + (1 -9)UsUg
= Us(’yZ—i-IN_D)UST,

where we used idempotency of S and Proposition to replace S by U, SU;— O

!The proof relies on H,, to be full rank, which is always true by definition.
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C. Linear mixed model derivations

C.1.1. Orthogonal projection matrices

Given an N-by-D matrix X of full column rank D, the N-by-IN orthogonal projection
matrix S is defined as
-1
S=T1-X (XTX) xT. (C.3)

Proposition C.16. S is singular of rank N — D has N — D eigenvalues that equal one.
and D eigenvalues that equal zero.

Let USV T be the singular value decomposition of X, where U is an N-by-N orthog-
onal matrix, holding the left singular vectors as columns, V' is an D-by-D orthogonal
matrix, holding the right singular vectors as columns, and ¥ is an N-by-D diagonal
matrix, holding the D singular values on the diagonal.

Proof.

S = I—X(XTX)_lXT
-1

- I —uxv'|lvzu'uxs'v'T vy'uT
~~ ~——

UuUT I
—1
- vuT —usvvT (zzﬂ) vivsTuT
I I

- U (I _> (ZET) - 2T> U’

: ool 8]

B 0 0 T
- U[O IND]U

It follows that the rank of S is N — D and that all N — D non-zero eigenvalues equal
one. O

Proposition C.17. S is orthogonal to X
Proof.
-1
SX = (I - X (XTX> XT) X

- X-X (XTX)_1 xX'x

I
= 0. O

Proposition C.18. For any vector a, the projection Sa is orthogonal to X.
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C.1. The restricted likelihood

Proof.
(Sa)" X = a X
0
= 0. O

Proposition C.19. S is idempotent.

Proof.
SS = <I - X (XTX)A XT> (I - X <XTX>71 XT>

—1 —1 —1
- I-92X <XTX> XT+Xx (XTX> xXTx (XTX> xT

I
1
- I-X (XTX> xT
_ S. O

Proposition C.20. Any matriz A that is orthogonal to X, stays constant multiplication
with S.

Proof
SA= (I - X (XTX>_1 XT) A
= A—X(XTX)_l&s
_ =

C.1.2. Conjugate projection matrices

Given an N-by-D matrix X of full column rank D, a positive definite N-byN matrix
H' of full rank, the N-by-N matrix P is defined as

—1
P-I-X (XTH—IX) XTH

Proposition C.21. P is orthogonal to X .

Proof.
—1
PX = (I X (XTH—1X> XTH—l) X

-1
- X_-X (XTH—1X) XTH'Xx

I
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C. Linear mixed model derivations

Proposition C.22. P is idempotent.

Proof.

PP — (I ' (XTH_1X>_1 XTH_1> P
- P-X (XTH*)()_1 X'H'P
- P-X (XTH_IX)_I XTH!

—1 —1
e (XTH—1X> XTH'Xx (XTH_1X> XTH!

I

= P. O
Proposition C.23. SP = S, where S = (I - X (XTX)f1 XT>
& P'S=S
Proof.
SP = S (I - X (x"H'X) XTH_1>

Proposition C.24. PS = P, where § = (1 - X (X' X) 7' X")
& SPT=P'

Proof.

PS = P (I - X (XTX)_l XT>

—1
- P - PX (XTX) xT
0

= P. O

Proposition C.25. H~'P is symmetric.
s H'P=P H.
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C.1. The restricted likelihood
Proof.
H'P= H! <I X (XTH‘IX)A XTH_1>
- H'-H'X (XTH_1X>_1 XTH!

-1
- (I _H'Xx (XTH—1X> XT> H!

= P H! O (C.8)
Proposition C.26. PH is symmetric.
& PH=HP'.
Proof.
PH = <I s (XTH_lX) - XTH—1> H

_ H-X (XTH*X) T xT
- H-HH'X (XTH_lX) T
I
= HP'. O (C.9)

Lemma C.27. P"H'P is the Moore-Penrose pseudoinverse of SHS, where S =
(If X (XTX)_1 XT) (Kang et al., |2008].

Proof. The four properties of the Moore-Penrose pseudoinverse are proven below in

Propositions to O

Proposition C.28. (SHS) (P"H~'P) is symmetric.

Proof.
(SHS) (PTH*P) - SHP'H™'P
——
H-'P
= SHH ' PP
SN——
I P
= SP
= S.
As S is symmetric, (SHS) (P"H~1P) is also symmetric. O

Proposition C.29. (PTH'P) (SHS) is symmetric.
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C. Linear mixed model derivations

Proof.
(PTH_1P> (SHS) = P H'PSHS
~~
P
= P "H'PHS
—
PTH-!
= P'P H'HS
S——
PT 1
= P'S
= S.
As S is symmetric, (PTH'P) (SHS) is also symmetric. O
Proposition C.30. PTH™'P is a weak inverse of SHS.
Proof.
<PTH‘1P) (SHS) (PTH—1P) - SP H'P
N~
PT
s
= P'H'P. O

Proposition C.31. SHS is a weak inverse of PT H™'P.

Proof.
(SHS) (PTH*1P> (SHS) = SS HS
P4 S
- SHS. O

Lemma C.32. Let UAU " be the economy spectral decomposition of (SHS), where A
is an (N — D)-by-(N — D) matriz, holding the non-zero eigenvalues of (SHS), and U
is the N-by-(N — D) matriz, holding the corresponding N — D eigenvectors of (SH.S)
as columns. Then 8 = UU" [Patterson and Thompsonl, [1971].

Proof.
S = (SHS) (PTH*P)
= (SHS)(SHS)'
- (UAUT) (UA*lUT)

= UAU'UA'UT
I
- UAA'UT
I
= vu'. O
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D. Derivations for FaST linear mixed
models

Here we provide additional derivations that are used in Chapter

D.1. Derivation of the low-rank quadratic form
Let K be a rank k genetic similarity matrix whose spectral decomposition can be written
K=UAU" =U AU/ + U AU = U AU + U, 01U} =U AU/, (D)

where

U= [Ub UQ] ) (DQ)
The N-times-k matrix U; contains the eigenvectors corresponding to non-zero eigenval-
ues, and the N-times-N — k matrix Us. Using the fact that U is a normal N-times-N
matrix, that is, U™ = U ", we have
Iy =UU" = [U, U] U, Us]" = U U +U,U, . (D.3)
Solving Equation (D.3)) for UyU,’, we get
U,U, = Iy — U U, . (D.4)

Further, because the columns of U are orthonormal, it follows that

In=U"U, (D.5)
I, =U/ U, (D.6)
In_;, =U,) U, (D.7)

Let a = (y — X3). Our goal is to efficiently evaluate a' (K + 6I) ' a. Substituting
the spectral decomposition for K into this expression, we have

a (K+6I) ‘a= (UTa)T (vA+ 1)~ (UTa) . (D.8)

Using Equation (D.2)), we can stack the matrix product in blocks involving U; and Uy
to re-write this expression as

T -1
[Ul—ra UQTa} [ (v A1 ;Ik) I;(,]l . } [Ul—ra U;—a} . (D.9)
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D. Derivations for FaST linear mixed models

As the off-diagonal blocks of the central matrix are equal to zero, the quadratic form
reduces to the sum of two terms, namely

(UlTa)T (yAL + I)) ! (UlTa) + <U2Ta>T In_y (UQTa) . (D.10)
Substituting U, Uy for Iy, (using Equation (D.7)), the second term becomes
<U2T a)T In_i (U2T a) —a UsIy_wUj a
=a'U, (U2T UQ) U, a. (D.11)
Finally, using Equation , we can eliminate Uy to obtain
(UQUJa)T (UQUQTa> - ((IN - U1U1T> a,)T ((IN - U1U1T> a) : (D.12)
Substituting the expression into (D.10)), we obtain @' (YK + I )~ a equals
(UlTa)T (vA, + I) " <U1Ta> + ((IN - UlUlT) a,)T ((IN . U1U1T> a) . (D.13)

Substituting (y — X 3) for a, we obtain Equation (3.24).

D.2. FaST compressed linear mixed models

Let Z be the nx g group indicator matrix that assigns each of n individuals to exactly one
group. Let K be the g-by-g group similarity matrix. Then the genetic similarity matrix
in compressed mixed models is ZK Z". In order to combine the ideas of compression
and FaST-LMM, we need to compute the spectral decomposition of ZKZ".

If K factors into GG, where G is a g x s, matrix of SNP data, Then the genetic
similarity matrix in compressed mixed models is ZGG ' Z". In this case the spectral de-
composition of ZK Z T can be found as described in Section If K does not factor,
then the spectral decomposition of ZK Z T can be found as described in Section

D.2.1. Spectral decomposition of the compressed similarity matrix, when
the group similarity matrix factors

For our argument, we use the fact that, given a matrix A, both AAT as well as AT A
share the same eigenvalues, and that these eigenvalues are given by the square of the
singular values of A. The eigenvectors of AAT are given by the left, and the eigenvectors
of AT A are given by the right singular vectors of A respectively.

So the eigenvalues of ZGG'Z" are the same as the eigenvalues of

G'z2'2G=G"(z"2)*(z"z)'*G.
Using the same argument, the latter matrix has the same eigenvalues as

(2" 2)\?GGT (2" z)\/2.
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D.2. FaST compressed linear mixed models

These eigenvalues are given by the square of the singular values of (Z'Z )1/ 2@, where
(ZT7 Z)'/? is a g x g diagonal matrix holding the square root of the number of members of
each group on the diagonal. Because (Z'Z )1/ 2 is diagonal, multiplication can be done
in O(gsc) time.

Let UAV'T be the SVD of (Z' Z)'/2G. Then the following holds:

ZGG'Z" =2(2"2)"V*(Z2"2)'*GG" (2" 2)\*(z"z)\*ZT, (D.14)

where (Z 'z )_1/ 2 is a g x ¢ diagonal matrix, holding one over the square root of the
number of members of each group on its diagonal. Substituting (Z ' Z )1/ 2@ by its SVD,
we get o s

Z(Z'Z)VPOAVIVAUT (27 2)"\ %27, (D.15)
Finally, by orthonormality of V', this expression simplifies to

AVARARRE W AR VAN ARV AN (D.16)

where A = A7 is a diagonal matrix, holding the non-zero eigenvalues of GG on its
diagonal. The columns of Z(Z" Z)~/2U are orthonormal, as can be seen by

U'(z2"2)2272(2"2)YPU=0"(2"2)(2"2)'U=0"U=1, (D17)

where we have once again used the fact that (ZTZ) is diagonal. It follows that the
eigenvectors of ZGG' Z are given by

Z(z"z)7V*U,

completing the spectral decomposition of ZGG ' Z.

Note that the rotation of the data by (Z(Z"Z)~'/2U)7T can be done efficiently by
multiplying the data by the transpose of the rows of (Z'Z)~'/2U belonging to the
respective cluster.

D.2.2. Spectral decomposition of the compressed similarity matrix, when
the group similarity matrix does not factor

Here we extend the arguments in Section to any positive semi-definite g x g group
genetic similarity matrix K. In this case, the spectral decomposition of ZKZ'T =
UAU can also be computed efficiently, namely from the spectral decomposition of

(Z"2)\?K(Z2"Z)'? =UAU T,

which can be computed in O(g®) runtime. As K is positive semi-definite, there always
exists some square root G of K, such that K = GG'. In Section we have shown,
that ZKZ ' and (Z"Z)2K(Z" Z)'/? have the same eigenvalues. Consequently, we
can compute the eigenvalues A of ZKZ' from the spectral decomposition UAU .
Analogous to the derivation in Equations 7, it follows that the eigenvectors
of ZKZ" are Z(Z' Z)~Y/2U, where by Equation (D.17), the columns are orthonormal.
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E. Kronecker Product Derivations

Here we provide derivations used for high-dimensional linear mixed models described in
Chapter [6]

E.1. Kronecker product identities

In the following, we repeatedly use two well-known facts about Kronecker products [Bern-
stein, 2009, |Petersen and Pedersen, [2006].

E.1.1. Vectorization of Kronecker products

(A® B)(C ® D) = AC @ BD, (E.1)

where A € RVXM B e RPXQ € € RM*E and D € RO*S are matrices.
Let vec be an operation that concatenates the columns of an N x M matrix into a
vector of length IV cot M. Then the following three statements hold:

vec (ABC) = (C" @ A)vec (B)
vec (ABC)" =vec(B)' (C® AT)
(A ® C)vec (B) = vec (CBAT> (E.2)

E.1.2. Singular value decomposition of a Kronecker product

In the following, we make heavy use of the eigenvalue decomposition of C® R = UAU ",
where U is an N - G-by-N - G orthonormal matrix, holding the eigenvectors of C
and A = A¢c ® AR is an N - G-by-N - G diagonal matrix, holding the corresponding
eigenvalues on the diagonal. This decomposition can be efficiently obtained from the
composition of the individual Kronecker terms (after some reordering), i.e. C ® R =
(Uc ® Ur)(Ac ® AR)(UL ® UR). Then simply substituting in the definition of the
singular value decomposition leads to

C®R=(Uc®Ug)(Ac ® AR)(UL @ Ug). (E.3)

E.1.3. Efficient evaluation of covariance term inverse times a vector

The first expression exploiting the eigenvalue decomposition that is going to be used
frequently is the product of some vectorized N-by-G matrix A and the inverse of a
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E. Kronecker Product Derivations
Kronecker covariance with independent noise matrix [Stegle et al., 2011].

(C®R+0%T) ' vec(A) = (Uc @ Ug) (Ac ® Ag + o2I) " (Ug ® U;) vec (A)

—(Uc ® Ug) (Ac ® Ag +0°I) ' vec | UL AUG
—_——
A
= (Uc @ Ug) vec (D 40 A) (E.4)

—vec (UR (DA ® A) Ug) , (E.5)

with the N x G matrix D, defined as having entries

1
[Ac]c,c ) [AR]T',T +0?

[Dal,.. =

forallr € {1,...,N} and c € {1,...,G}.

E.2. Covariance estimation in matrix-variate random effects
models

Here, we give details of an efficient implementation of the tensor random effects model
derived in Section [6.2]

The basic model

We start with a general form a random effects model where the covariance has a Kro-
necker structure:

L(Y|M,R,C,0%) =N (vec(Y); vec(M),C(®¢c) ® R(OR) +0°I) . (E.6)

Here, Y is the data matrix with NV rows (samples) and G columns (features). We defined
R(®R) as the row “row covariance” of the data matrix and C(®¢) corresponds to the
“column covariance”.

For notational convenience we will drop the dependence of the covariance matrices on
additional hyperparameters ® g and ®¢, respectively. Furthermore, we will make the
simplifying assumption that C' is kept constant, i.e. has no parameters that need to
be adapted during learning. Importantly, this is no restriction for general solutions as
all calculations can be performed with respect to other covariance as well, for example
iteratively optimizing hyperparameters of R and C' in turn.

To implement parameter optimization of the covariance parameters of the model in
Equation , we require efficient evaluation of the marginal likelihood and the gradi-
ents with respect to hyperparameters.
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E.2. Covariance estimation in matrix-variate random effects models

E.2.1. Efficient evaluation of the log likelihood

The term we want to evaluate is the log-likelihood, given by the log of the multivariate
Normal density

IogL(M,GR,(-)C,a2) = logN(vec ‘vec M); C®R+02I)

N-D
= - 10g27r—710g|C®R+0' In.pl

log det

1
— 5 vee(Y — M) (C® R+ c*In.p) tvec(Y — M) .

squared form

(E.7)

We derive efficient solutions for the logarithm of the determinant of C' ® R and the
squared form separately.

Efficient evaluation of the log-det
Assuming that we have the eigenvalue decompositions for R and C, the logarithm of the
determinant can be written as
log |C ® R+ 0?Ing| =log|(Uc ® Ur)(Ac ® AR)(Uk @ UR) + o?Ing|
=log|(Uc ® Ug)| +log|(Ac ® Ar + 0’ In.)| +log U @ Ug|
=log |(Ac ® Ar + c*In.p)|
N G
= Z Z - log([AR]r,r ’ [AC]c,c + 02)' (E.8)

r=1c=1

This term can be evaluated in O(N - G).

Efficient evaluation of the squared form

The squared form in the log marginal likelihood can be evaluated efficiently using the
expression in Equation (E.4]). Writing the residuals Y; =Y — M, the squared form can
be evaluated as

vee (¥;)T (C ® R+ 02I) " vee (V) = vec (URYUC> (Uc @ Ug)vec (D4 © Y;)
= vec (Y; ) vee (D4 © Y;)
v 6 [er
= ; ; y PR P (E.9)

As this term involves the multiplication of the data matrix Y; with Uc and UE, it can
be evaluated in O(N%G + NG?).
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E. Kronecker Product Derivations

E.2.2. Efficient evaluation of the gradients of covariance parameters

Here, the aim is to evaluate the gradient of Equation (E.6|) w.r.t. a particular covariance
parameter 6.

dlog L (M,C(0c), R(9r),0*)  10log|C + 01| 19vec(Yy)T(C + oI)  vec(Y;)

00 2 00 2 0

(E.10)

The derivative consists of the derivative of the determinant term and the derivative of
the squared form. Each of these is given separately for the cases where 0 is either the
noise parameter o2, or a row covariance parameter fg € ®r. The case of a column
covariance parameter ¢ € @¢ is analogous to the case of a row covariance parameter
and therefore is omitted for brevity.

E.2.3. Derivatiaves w.r.t. noise variance o2

Here, we provide the gradient of Equation (E.6) w.r.t. the noise parameter o2.

dlog L (M,C, R, 0?) _ 10log|C® R+ o?I| B lavec(Yr)T(C + 021" tvec(Y;)

Oo? 2 Oo? 2 Oo?

Derivatiaves of the log-det term w.r.t. noise variance o?

dlog|C ® R+ o*I|
o2 B

Oo?

= tr [(c ® R+ 021)1‘9(5‘;1)}

N
1
=3y Arl., Aol o (E.11)

Squared form derivatives w.r.t. noise variance o>

vec(Y;)T (C® R+ 02I)_1 vec(Y;)
do?

The derivative only affects the covariance term

L0(CeR+0%1)"

vec(Yr) 952

vec(Yy).
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E.2. Covariance estimation in matrix-variate random effects models

Using 85};21 =—-A"! [%] A~!, this becomes

9 (C®R+0*I)
o2

—vec(Y;)" (C®R+U2I)_1 < ) (C®R+021)_1 vec(Yy).

The remaining matrix derivative equals the identity matrix and vanishes, leaving
T 27\~1 2\~ 1
—vec(Y;)' (C@R+0°I)  (C®R+0°I)  vec(Ys).
In this term we use the Kronecker expression (E.4]) on both sides, giving
~ N\ T T T ~
—vec (DA © Yr) (UC ® UR) (Uc ® Ug) vec (DA © Yr) .

Using orthogonality of the eigenvectors, the middle part vanishes, leaving the vector
product

~\ 1 ~
—vec (DA ® Yr) vec (DA ® Y}) .
This can be evaluated as the sum

ve o [Ff
3 5 (E.12)

RN T

E.2.4. Derivatives w.r.t a row covariance parameter

Here, we provide the gradient of Equation (E.6) w.r.t. a particular row covariance
parameter 6 € OR.

dlogL (M,C,R,0%) 10log|C® R+ o] B lavec(Y})T(C + o2I) " tvec(Yr)

891{ 2 89R 2 8HR

(E.13)
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E. Kronecker Product Derivations

Derivatives of the determinant w.r.t. a row covariance parameter 0

2 2
dlog |C ® R+ o1 . (C®R+J2I)_18(C®R+U I)
00r 00r
i 2y—1 (77T T IR
=tr |(Uc ®UR)(4 +07)" (Uc ®Ug)(C® 5] -
L R
Using the identity (A ® B)(C ® D) = AC ® BD this equals
tr |[(Uc @ Ur)(A + o*I) " (ULC ® UI’T"'(?TR)
R |

Using tr(AB) = tr(BA), this becomes

tr [(A+ 2T L (UkLC ® U;gTR)(UC ® UR)
L R

=tr | (A + o*I)"HULCUc ® U,ESGRUR)]
L R

[ OR
L R

OR

=diag ((Ac ® AR + 021)*1)T <diag(Ac) ® diag(Ugﬁ
R

UR)>
(E.14)

As this derivation only involves the trace, we just need the diagonal of the Kronecker
product, which only involves the diagonal of (UE&%UR)-

Derivatives of the squared form w.r.t. a row covariance parameter 6g

dvec(Y;)" (C® R+ 021)71 vec(Yr)
00r

L0(CoR+ )™
00r

A L 0A

using = — —— A~ this becomes

00r 00r

=vec(Y;)

vec(Yr)

0 (C ® R+ oI )
d0r

using the efficient Kronecker expression (E.4]) on both sides, this becomes

OR

R (DA @ifr)T (Ug ® UE) (C@ aeR) (Uc ® Ug) vec (DA @ffr) :

N
ULCUc @ Ug oR
90r

(Pao¥)
— _ vec (DA @f@)T (Ac ® UE;;ZUR> vec (DA @ffr) .
(Pao¥:)

— —vee(Ys)T (Co R+0%T) ( ) (C®R+0°T) " vee(¥;)

UR> vec (DA ® Yr) .
RUR) (DA ® f/;) AC> . (E.15)
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Derivatives for the Kronecker GPLVM

In latent variable models, the covariance parameters represent the values of a latent
variables of a given row (or column) of Y. These latent variables serve as inputs to
a kernel function a possibly non-linear positive semi-definite kernel function k(.,.) that
describe the covariance between any two rows (or columns). Models of this kind are an
extension of the Gaussian process latent variable model [Lawrence, 2004}, 2005].

Let the N-by-K matrix holding the K latent dimensions of all of N rows be Gr (G¢
for columns). For example for the case, where the row-covariance is modeled in this way,
R is defined as follows.

k(IGrl, [GR),) - k(IGR), [Grly,)
R— : : : (E.16)

k([Grly, [GrlL,) - k((Grly,.(Grly,)
In this case, each parameter 0 represents a value of a single entry [G]MC of Gg for

re€[l,...,N]and k € [1,...,K]. The derivative of a kernel value with respect to g
follows from applying the chain rule to each argument of k.

Ok ((Grl..Grl;,) 0k (IGrli..(Grly.) oGl Ok (IGRL..Gnl,.) 016G,
g B 2GRl . g 9[Grl; p

where the derivatives of the entries of G g are zero except for [GRr), ;.-

8[GR]i,k a[GR]j,k

= =1 fori=r. —gg =1 for j =r.
0GR, . OGR|; .
[QGRR”’“ =0 fori#r. [8;;]”“ =0 forj#r.

We observe, that in this case the derivative of g only has an effect on the r** row and
the 7" column of R.

As the kernel is symmetric in both arguments, the derivative of the log-likelihood can
be computed using only using a row vector d,; holding the non-zero derivatives with
respect to the first input of the kernel w.r.t. [GR]r,k'

— 8k([GR]T,:’[GR]1,:) ak([GR}r,;?[GR]N,:)
i = I|GRl, oy IGRl, ' (E-17)

In the efficient derivative evaluations provided above, the derivative of R always appears
rotated by Ugr from both sides.

1 OR

R@UR =[Url,.d,+Ur + Ugd,);; [Ug,. (E.18)

Derivative of the log-determinant Let 0 be the value of [GR], ;. Using the derivatives
in (E.17), we can evaluate the derivative of the log-determinant.
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E. Kronecker Product Derivations

dlog|C ® R+ o1
00r

=diag ((Ac ® Ar + 02I)_1)T (diag(/lc) ® diag (UE;QRUR>>
R

—diag (Ac ® Ar +0°D)7") " (diag(Ac) @ diag ([Unl,, dUr + Ud,  [Ur],..))

=2diag ((AC QR Ar + 021)_1)T (diag(/lc) & ([UR]T,: © (d7-7kUR))T) . (E.19)

Derivative of the squared form Let 0 be the value of [GR], ;. Using the derivatives
in (E.17), we can evaluate the derivative of the log-determinant.

— vec <DA ® f’r)Tvec ((UEE?GIZUR> (DA ® fG) AC>

= — vec <DA ® Yr)T vec (([UR]I: d, Ug +Upd, [UR]T,;> (DA © f’}) AC)

. ((DA oY T [UR]I: d U + Ugdzk [UR]T,:> (DA © f’r) AC>

~ 24, Ur (Da© ¥:) Ac (Do ¥:) (U] (E.20)

E.3. Efficient computations for matrix-variate linear mixed
models

In the matrix-variate linear mixed model the mean vec (M) in the basic model (E.6)) is
modeled as the sum of J terms.

J
log N | vec (Y) | vec ZXijAjT ;C® R+ T
j=1

N | vee (Y)| ZAj ® Xjvec (B;); C® R+ 0’1 (E.21)
J

We define the complete design matrix @ as the horizontal concatenation of all the
Kronecker design terms

P=[A1®X,...,A;® X/J] (E.22)

and the column vector of all fixed effects 3 as the vertical concatenation of all vectorized
weight matrices
vec (By)

B= :
vec (By)

N (vee (Y) | 28; C®R+02I)
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E.3. Efficient computations for matrix-variate linear mixed models

In the matrix-variate mixed model the mean vec (M) is given by a linear term in the

basic model ([E.6])

E.3.1. Efficient evaluation of the matrix-variate mixed model likelihood
J
log N | vec (Y) | Z A; ® Xjvec(B;); C® R+ 0’1
j=1
Apply the vec-trick to the mean term:
J
log NV | vec (Y) | vec Z:XijAT ;C® R+ oI
j=1
Writing out the log normal distribution this equals

C-R

1 1 _
log(27) — B log|C ® R+ o°I| — gvec (v,)" (C®R+ O'QI) ! vec (Yy), (E.23)

where the matrix of residuals of Y in this context is defined as

J
Y,=Y -> X;BjA]. (E.24)
7j=1

M

Using the spectral decomposition of the covariance matrix, the log likelihood (Equa-
tion (E.23))) and be written using residuals rotated by the eigenvectors of the covariance
matrix.

fCéR log(27) — %log |A + o?T| — %vec (U;Y}UC)T (Ac ® Ag + O'QI)_l vec (U;Y}Uc) ,
(E.25)
E.3.2. Derivative of the rotated residual term
0 b J
—— (UgYUc)=—— |ULYU:--ULD X,B,A!U
9[Bla, ( R C> OBiay \ T € R; ibBis; Yo
0B;,
=UpXi——"t AU,
R ka[Bk]a,b BEC
= Ug[X].a[Ak],Uc (E.26)
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E.3.3. Estimation of the fixed effects
Score vector for fixed effects

From the definition of 3 in Equation (6.56]), a single fixed effect can be identified as a
single entry [By|q of the fixed effect matrix B;.

Vv;log/\/(vec(Y) |®8; C® R+ 0°T)
_VVB _ % (vec (Y) — 0B)" (C® R+ 0?I) ™" (vec (Y) — 0)
—®" (C®R+0I)"'  (vec(Y) - ®B)
~—_——
vee(Y-3/_, X;B;AT)

The right term of this expression for the gradient can easily be identified as the vectorized
matrix of residuals Y;.
Efficient evaluation of the gradient with respect to a single fixed effect

9 —lvec T o2I) " vec
3[Bk]a,b< 2 (¥) (CeR+oT) (Y})>

- 0Y;
—echTC®R+ 21 1ec( - )
vee () 7\ s

Using the efficient Kronecker inverse formula (E.4)), we get
~\ T )
— vec (DA ® Yr) (UT ® UT) vec <r> .
© R 8[Bk]a,br
Resolving the derivative of the data term on the right yields

A T T
vec (D 40 Yr> vec (UR [Xk};,a[Ak]:7bUC) .
This scalar value can be identified as the trace of the product of the two matrices.
o\ T T
—tr (DA ® Yr) URIX4).olAlUc | -
Using the properties tr(AB) = tr(BA) and tr(A") = tr(A), this equals the scalar
- [XiLUR (D4 © ;) UL AL, (E.27)
When stacking together the derivatives for all ¢ and b the gradient with respect to all
entries of By, follows as

\V4 1 T _
B, (—2vec (UEYLUC) (Ac ® Ag +0I) " vee (UgKUC>>

= X[ Ur (D40 ¥;) UL A, (E.28)

J
—XUr | Doxr© | Y ULX;B;A]Uc | | ULA] — X[UR (DA ® ff) ULA]
=1

: (E.29)
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E.3.4. Closed form maximum likelihood estimate of the fixed effects

By setting the gradient of the log-likelihood with respect to the weight vector to zero,
we can solve for the maximum-likelihood weight estimate Byr:

VZM <—; (vec (Y) — ®8)7 (C @ R+ 02I) ™" (vec (Y) - cw)) —0  (E30)
T (C®R+0I) 9By -0  (C®R+0%I) 'vec(Y) =0 (E.31)
" (C®R+0I) '®3=0" (C®R+0°I) " vec(Y) (E.32)

Bu= (2 (CoR+I) @) & (CaR+0T)  vee(¥) (E.33)

left term right term

Kronecker structures are used to to simplify this expression for both terms separately.

Right term
The column vector can be written as the vertical concatenation of

vec (X?UR(UI—;YUC ®© D)UgAl)
T (C@R+0%T) ' vec(Y) = : (E.34)
vec (XTUR(URLYUc ® D)ULA,)

For the j*" term, this looks as follows:

(4,9 X;)" (C® R+ 0%T) " vec () (E.35)

(AjT @ X ) (Uc @ Ug) (Ac ® Ag + o*T) " (Ug ® Ug) vec (Y) (E.36)
(AJT © X/ ) (Uc ® Ug) (Ac ® Ag + 0°T) ' vec (U;YUC) (E.37)

(A]-T © X/ ) (Uc ® Ug) vec (D © U;YUC) (E.38)

(A]T =pel ) vec <UR (D ® U;YUC) Ug) (E.39)

vec (XjT Ur (D ® U;YUC) UgAj) (E.40)
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Left term
T(CoR+0I)" @ (E.41)

This matrix to be inverted has a block structure, where the (i, )™ block involves the it"
and the ;' fixed effects:

(A0 X)) (C® R—|—<72I)_1 (A; ® X;)

(4TUc © X[ Ur) (A0 ® Ap+0°T) " (ULA; © URX;)

N G
Z AC]C C[AlR]rr + o2 ([UgAZ]I ® [U;XZ]T—!:> <[U8Aj]cﬁ ® [U;Xj]ﬁ)
N G 1
> Al Anls T o? ([UEAZ-]C,;[UZ,AJ»]C,) ([URX] [ULX),. )

This can be simplified in two different ways, depending on which one is cheaper to
compute. If the number of target variables GG is smaller than the number os samples N
(G < N), we use

ZGI([U A)L[UEA;)..) @ (X[ UR (ARlAclec + 0°T) " URX;) (E42)

else, we use

Z (ATUC (Ac[AR)y, + 0I)” UgA) ® ([XZTUR];’T[UEXJ]T,:) (E.43)

Let D = ijl D; be the total number of row effects and M = Z}le M; be the total
number of column effects. Then Equation takes O(N D?+NGM?) time to evaluate
and Equation (E.43)takes O(GM? + NGD?) time to evaluate. Inversion of the whole
term takes O(D3M?3).
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