
An Integrated Data Analysis Suite and Programming Framework
for High-Throughput DNA Sequencing

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Felix Ott

aus Basel

Tübingen
2013

Tag der mündlichen Quali�kation: 18.12.2013

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Detlef Weigel

2. Berichterstatter: Prof. Dr. Daniel Huson

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig und nur mit den angegebenen Hilfsmitteln
angefertigt habe, und dass alle Stellen, die im Wortlaut oder dem Sinn nach anderen Werken
entnommen sind, durch Angabe der Quellen kenntlich gemacht sind.

Beiträge Dritter, auf die im Text eingegangen wird, sind auf der Seite Contributions
aufgelistet. Des Weiteren wird auf thematische Überschneidungen mit Publikationen, an denen
ich mitgewirkt habe, im Text explizit hingewiesen. Weitere Überschneidungen mit zukünftigen
Publikationen sind möglich.

Tübingen, 19. Dezember 2013 Felix Ott

Contributions

The high-throughput DNA sequencing data analysis pipeline SHORE that this work is built
around is the work of a variety of contributors. The foundations to the software were laid by
Stephan Ossowski and Korbinian Schneeberger, and are meticulously described in Stephan Os-
sowski's Ph.D. thesis �Computational Approaches for Next Generation Sequencing Analysis and
MiRNA Target Search� [1]. Concerned with a direct continuation of this work are sections 2.1, 2.3
and 2.6. The prerequisites are however discussed explicitly, and further delineation is provided
in section 1.7. Jörg Hagmann has supported the development with ideas and has contributed a
multitude of improvements as well as modules for RNA editing analysis, bisul�te sequencing data
analysis and multi-reference variation calling, which are however not subject of this work. Jonas
Müller has contributed RAD-Seq motivated extensions to the read demultiplexing code, which
were incorporated into the methods described in section 2.4. Alf Scotland has supported parts
of the coding e�ort, and Sebastian Bender has contributed further extensions to the software
pipeline not discussed in this work.

In accordance with standard scienti�c protocol, �rst-person plural pronouns will be used to refer to
the reader and the writer, or to my scienti�c collaborators and myself.

Acknowledgment

First of all I would like to thank my supervisors Detlef Weigel and Daniel Huson for supporting
my thesis and the opportunity to work on countless interesting and challenging questions at the
Max-Planck-Institut Tübingen. Further I am grateful to Ste�en Schmidt and Karsten Borgwardt,
for helpful and encouraging advice given over the years in their role as members of my Thesis
Advisory Committee.

Jörg Hagmann, Stephan Ossowski and Korbinian Schneeberger must be singled out, but I
am grateful for the excellent collaboration with all other contributors to the SHORE software.
Norman Warthmann, Jun Cao, Sang-Tae Kim, Stefan Henz out of many others have been of
great help by using, testing and suggesting improvements to the application in various areas.

Markus Schmid, Levi Yant, David Posé Padilla, François Parcy, Edwige Moyroud, Stephan
Wenkel, Ronny Brandt, Richard Immink and others deserve my gratitude for excellent ChIP-Seq
collaborations, discussions and explanations.

There are plenty of other people I would like to thank for outstanding professional collabora-
tions, advice or interesting discussions and input. Among them are Lisa Smith, Brandon Gaut,
Jesse Hollister, Xi Wang, Marco Todesco, Felipe Fenselau de Felippes, Pablo Manavella, Ignacio
Rubio Somoza and Christa Lanz. To Rebecca Schwab, Jörg Hagmann and Jonas Müller I am
immensely grateful for doing a great job proofreading this thesis.

Finally, I apologize to those I forgot.

Zusammenfassung

Die Dideoxynukleotid-Kettenabbruchmethode wird seit dem Jahr 2005 durch eine
Vielzahl an parallelen DNA-Sequenzierungsmethoden ergänzt. Diese haben sich als eine
Schlüsseltechnologie mit einer groÿen Anzahl von Einsatzmöglichkeiten in der Genetik
erwiesen, stellen andererseits mit einer Flut an erzeugten Daten auch eine Heraus-
forderung dar. Eine Vielfalt an Algorithmen, die sich mit unterschiedlichen Aspekten der
Sequenzierdaten-Verarbeitung und Analyse befassen, wurde bereits erarbeitet und imple-
mentiert. Zur routinemäÿigen Analyse dieser Daten benötigt es jedoch zudem eine optimal
aufeinander abgestimmte Sammlung von Analysewerkzeugen, die alle notwendigen Schritte
von der initialen Rohdatenverarbeitung bis zum Erlangen der primären Analyseergebnisse
abdeckt.

Mit der Software SHORE wird eine modulare, vielfältig nutzbare Datenanalyse-Lösung
für die parallele DNA-Sequenzierung bereitgestellt. In der vorliegenden Arbeit werden
die SHORE zugrunde liegenden Konzepte erweitert und verallgemeinert, um den En-
twicklungen der neuen Sequenziermethoden Rechnung zu tragen. Diese Entwicklungen
schlieÿen unter anderem einen deutlich erhöhten Datenertrag ein, sowie die Verbreitung
von Protokollen, die das Multiplexen von Proben mittels spezieller Kennzeichnungsse-
quenzen ermöglichen. Um eine breitgefächerte Unterstützung grundlegender Funktionen
wie Datenkompression und indexierter Suchalgorithmen zu ermöglichen, wurde eine
allgemein nutzbare C++-Programmierumgebung libshore entwickelt, die als gemeinsame
Basis aller Datenverarbeitungsmodule in SHORE fungiert. Ein weiteres Ziel war hierbei,
Programmierschnittstellen bereitzustellen, die modulares Design sowie Parallelisierung von
Sequenzierdaten-Verarbeitungsalgorithmen unterstützen.

Ein weiterer Schwerpunkt dieser Arbeit war die Entwicklung von Analysealgorithmen
für mittels der Chromatin-Immunopräzipitation gewonnener Daten. Eine Schlüsselrolle in
der Regulierung der DNA-Transkription wird von einer Klasse von DNA-bindenden Pro-
teinen, den Transkriptionsfaktoren, eingenommen. ChIP-Seq-Studien erlauben die Darstel-
lung von Transkriptionsfaktor-Bindestellen für das gesamte Genom, und besitzen daher
groÿes Potential, zum Verständnis der Funktionsweise der komplexen regulatorischen Netzw-
erke beizutragen. In dieser Arbeit wird ein Analysemodul SHORE peak vorgestellt, welches
zur Verarbeitung von Transkriptionsfaktor-Immunopräzipitationsdaten dient. Das Comput-
erprogramm vereint statistische Detektion angereicherter Sequenzabschnitte mit empirischen
Regeln zur Aus�lterung von Artefakten, um so die zuverlässige Erkennung der entschei-
denden Bereiche des Genoms zu gewährleisten. Da Wiederholungsexperimente, die durch
fallende Sequenzierungskosten verstärkt ermöglicht werden, ein wichtiges Mittel zur Iden-
ti�zierung der biologisch relevanten Sequenzbereiche darstellen, wurde zudem besonderer
Wert auf die simultane Auswertung dieser Datensätze gelegt.

Die entwickelten Algorithmen wurden zudem auf weitere Analysemodule übertragen,
die mit dem Ziel der möglichst �exiblen Kon�gurierbarkeit entwickelt wurden. In Kom-
bination mit der bereits enthaltenen Funktionalität zur Detektion genomischer Varianten
sollte die Software SHORE von Nutzen für einen groÿen Teil des Anwendungsbereiches der
neuen DNA-Sequenzierungstechnologien sein. Mit der allgemein nutzbaren Funktionalität
der libshore-Programmierumgebung sollte zudem die einfache Erweiterbarkeit im Hinblick
auf zukünftige Ansätze zur Datenanalyse gewährleistet sein.

Abstract

The various parallel DNA sequencing methods that have been introduced since 2005 to
complement the established dideoxynucleotide chain termination method have proved a key
technology with a wide range of applications in genetic research, but also challenge with
a constant �ood of data. A multitude of algorithms have been proposed and implemented
addressing di�erent aspects of sequencing data processing and data analysis for a variety
of high-throughput sequencing applications. Routine data analysis however requires a con-
sistently assembled tool chain to ensure smooth end-to-end processing starting from raw
sequencing read data up to primary analysis results.

The software SHORE aims to be a modular, general-purpose data analysis suite for high-
throughput DNA sequencing. With this work, we extend and generalize the concepts of the
SHORE analysis pipeline to accommodate increased throughput of sequencing devices and
development of novel sequencing protocols such as bar-coded sample multiplexing. To pro-
vide universal support of basic features such as data set compression or indexing and query
mechanisms, we develop a generic C++ programming framework libshore to form the founda-
tion of all of SHORE's modules. Furthermore, we aim to provide a generic application pro-
gramming interface facilitating modular design as well as parallelization of high-throughput
sequencing data processing and analysis algorithms.

A further focus of this work was on the development of data analysis algorithms for chro-
matin immunoprecipitation and other sequence enrichment and expression pro�ling studies.
Through genome-wide binding-site pro�ling for transcription factors, DNA-binding proteins
occupying a key role in transcription regulation, ChIP-Seq studies have the potential to
greatly improve the ability to understand the functioning of complex regulatory networks.
We present an analysis module SHORE peak oriented towards processing of transcription
factor immunoprecipitation data. Our program combines statistical enrichment detection
with empirical artifact removal rules to ensure robust identi�cation of the most relevant
sites. As replicate experiments are an important factor for the identi�cation of biologically
relevant sites and with dropping sequencing cost are rendered more feasible, emphasis was
put on the simultaneous processing of such data sets.

By transferring enrichment detection and expression analysis algorithms to further aux-
iliary modules emphasizing �exibility of con�guration, as well as maintaining previously
available variation analysis functionality, SHORE should represent a valuable resource for
the majority of high-throughput sequencing applications. Furthermore, in combination with
the generic functionality of the libshore framework, we hope to ensure extensibility to readily
accommodate future analysis strategies.

Contents

1 Introduction 1

1.1 High-Throughput DNA Sequencing . 1
1.2 Approaches to Parallel DNA Sequencing . 2
1.3 Applications of High-Throughput Sequencing . 3

1.3.1 Genome and Transcriptome Sequencing 4
1.3.2 ChIP-Seq and further Immunoprecipitation Protocols 5

1.4 Properties of Sequencing Data . 6
1.5 Sequencing Data Analysis . 8

1.5.1 Base Calling and Read Quality Assessment 8
1.5.2 Assembly . 9
1.5.3 Short Read Alignment . 9
1.5.4 Variation and Genotype Calling . 10
1.5.5 Quanti�cation by Deep Sequencing . 11
1.5.6 ChIP-Seq Analysis . 12

1.6 Storage and Representation of Sequencing Data 13
1.6.1 Storage Formats for Next-Generation Sequencing Data 13
1.6.2 Accelerated Queries on Sequencing Data 15

1.7 Contributions of this Work . 15

2 A High-Throughput DNA Sequencing Data Analysis Suite 19

2.1 Overview . 19
2.2 E�cient Storage of High-Throughput Sequencing Data Using Text-Based File For-

mats . 21
2.2.1 Overview . 21
2.2.2 Widely Compatible Indexed Block-Wise Compression 23
2.2.3 E�cient Queries on Text Files . 25
2.2.4 Improved Compression of Read Mapping Data 27
2.2.5 Compression Results . 29
2.2.6 Data Storage Considerations . 32

2.3 A Non-Destructive Read Filtering and Partitioning Framework 33
2.4 A Flexible Sequencing Read Demultiplexing System 34

2.4.1 Overview . 35
2.4.2 A Format for Description of Multiplexing Setups 36
2.4.3 Barcode Recognition and Sample Resolution 38

2.5 Versatile Oligomer Detection and Read Clipping 38
2.5.1 Overview . 39
2.5.2 Dynamic Programming Alignment and Backtracing Pipeline 41

xi

xii CONTENTS

2.6 A Parallelization Front-End for Short Read Alignment Tools 43
2.7 Robust Detection of ChIP-Seq Enrichment . 45

2.7.1 Overview . 45
2.7.2 Correcting for Duplicated Sequences . 45
2.7.3 Detection Phase . 47
2.7.4 Recognition of Read Mapping Artifacts 47
2.7.5 Ranking and Assessment of Peak Signi�cance 49
2.7.6 Experimental Relevance of Peak Signi�cance 51

2.8 Visualization of Sequencing Read and Alignment Data 52
2.8.1 Gathering Run Quality and Sequence Composition Statistics 52
2.8.2 Visualization of Read Mapping Data . 55
2.8.3 Visualization of Local or Genome-Scale Depth of Coverage 56
2.8.4 Quantile Correction . 57

3 A C++ Framework for High-Throughput DNA Sequencing 61

3.1 Overview . 61
3.2 A Modular Signal-Slot Processing Framework . 64

3.2.1 Reader and Writer Concepts . 64
3.2.2 De�nition of Processing Network Topology 64
3.2.3 Module Implementation . 67
3.2.4 In-Place Data Manipulation . 69

3.3 A Simpli�ed Parallelization Interface . 71
3.3.1 Parallelization Modules . 72
3.3.2 Parallel Pipeline Architecture . 73

4 Closing Remarks 77

Bibliography 81

1 Introduction

Next-Generation Sequencing has evolved into a powerful tool for many areas of bio-
logical science, but has also introduced many new challenges related to data analysis
and computing infrastructure into the �eld. Following a brief recapitulation of high-
throughput DNA sequencing technology, this chapter highlights important areas of
application while discussing previous and related work. We outline general sequenc-
ing data analysis methodology and conclude by establishing the motivation for this
work.

1.1 High-Throughput DNA Sequencing

Widely deployed for less than a decade, the impact of parallel next-generation sequencing tech-
nology on genetic research has already been considerable. The novel high-throughput sequencing
approaches are characterized by massive parallelism implemented in a single device. From this
design results the key advantage of a signi�cantly reduced cost per sequenced base, which has
allowed to quickly displace the previously predominant Sanger sequencing method in many areas
of application.

Sanger sequencing, the prevalent sequencing method for the majority of time since its intro-
duction in 1977 [2], needed to rely on extensive automation in dedicated sequencing centers to
achieve time and cost e�ective readout of large amounts of sequence. Most prominently, this was
put into e�ect during the e�ort of generating the �rst draft sequence of the human genome [3�6].
By contrast, high-throughput sequencing instruments are designed to analyze thousands to mil-
lions of DNA molecules simultaneously, and thus enable even smaller institutions to produce
large quantities of sequence data on site.

Secondary to elucidation of DNA primary structure, sequencing utilized as a random sam-
pling device delivers quantitative clues on sample composition. In this capacity, it has been
used for diverse purposes such as inference of DNA methylation levels [7] or the analysis of en-
vironmental samples [8]. In concert with the economical advantage over the dideoxynucleotide
chain-termination method, parallel DNA sequencing becoming widely accessible to researchers
has served to promote such deep sequencing approaches that open up whole new areas of appli-
cation beyond the domain previously occupied by Sanger sequencing.

As an alternative to microarray technologies, for example in gene expression pro�ling or
chromatin immunoprecipitation assays, deep sequencing overcomes fundamental technological
restrictions such as probe resolution and probe saturation. Furthermore, without the inherent
requirement of a-priori knowledge of sequences to be detected or quanti�ed, development of novel
protocols of application has been furthered to transform high-throughput sequencing methods
into a versatile tool for research.

1

2 CHAPTER 1. INTRODUCTION

1.2 Approaches to Parallel DNA Sequencing

An early parallel sequencing method, massively parallel signature sequencing (MPSS), was pub-
lished in the year 2000 [9] and had already been available as a centralized, commercial service.
However, as its short read length of only 17 to 20 nucleotides proved to be prohibitive in most
potential areas of application, MPSS mainly found use as a gene expression pro�ling assay.

A technological and commercial breakthrough was marked by the deployment of integrated
bench top devices through a variety of di�erent providers. The �rst high-throughput sequencing
instrument brought to the market was the 454 Life Sciences Genome Sequencer FLX in 2005 [10].
Soon after, in 2006, followed Illumina'sGenome Analyzer [11] instrument and the Life Technology
SOLiD system [12] in 2008.

Over a short period of time, considerable technological maturation has ensued, and vendors
have started to broaden their portfolios by tailoring their respective solutions to di�erent oper-
ational scenarios, exempli�ed by the Illumina HiSeq and MiSeq devices or the 454 Life Sciences
bench top model GS Junior. On the other hand, diverse alternative approaches have been pro-
posed and introduced into the market, notably a semiconductor-based solution marketed as Ion
Torrent by Life Technology [13] and the Paci�c Biosciences single molecule sequencing system
PacBio RS [14].

As their de�ning feature, all high-throughput sequencing systems share the parallel interro-
gation of large numbers of DNA molecules. Sample DNA to be analyzed is typically applied to
an expendable �ow cell or �ow chip, a specialized glass slide or microtiter plate particular to
the respective technology. Aside from such fundamental analogies, the respective methods of se-
quence interrogation di�er in key aspects. The basis of most current technologies is formed by the
sequencing-by-synthesis (SBS) principle, with the notable exception of the SOLiD sequencing-
by-ligation method. Sequencing-by-synthesis decodes the sequence of DNA molecules by keeping
track of nucleotides incorporated by a DNA polymerase during complementary strand synthesis,
with the distinguishing feature of the di�erent technological implementations being the manifold
methods employed for detecting events of nucleotide incorporation.

The 454 family of sequencers realize a pyrosequencing approach. The four deoxyribo-
nucleoside triphosphates (dNTP) adenine, cytosine, guanine and thymine are �owed cyclically
over microtiter wells holding clonally ampli�ed DNA templates, where each �ow of reagents
delivers a speci�c type of dNTP. The amount of pyrophosphate released during nucleotide
incorporation, which is determined by the number of nucleotides incorporated in each �ow, is
converted into light intensity through an enzymatic reaction and recorded by a CCD camera. [10]

The Illumina systems are based on reversible chain termination chemistry. A mixture of
all four dNTPs is �owed over a slide with randomly distributed clusters of clonally ampli�ed
templates. The dNTPs are modi�ed by a chain terminator, limiting elongation of the synthesized
strand to a single nucleotide. Furthermore, each type of dNTP is distinguished by fusion to a
speci�c �uorophore, allowing for identi�cation of the respective incorporated base by means
of laser excitation and a CCD detector. Reagents subsequently applied displace the reversible
terminator and dye to enable further strand elongation in the following cycle. [11]

The Ion Torrent design adopts the homopolymer detection approach introduced by pyrose-
quencing. However, instead of pyrophosphate, the release of hydrogen ions serves as a proxy for
strand elongation. The individual pH measurements are realized non-optically on an expendable
semiconductor chip. [13]

PacBio RS sequencers implement a technology termed single molecule real-time sequencing
(SMRT). The method is enabled by zero-mode waveguides (ZMW), nanostructures that enable
probing of volumes smaller than the wave length of light [15]. In contrast to the other current
technologies described, the SMRT approach therefore does not need to rely on clonally ampli�ed

1.3. APPLICATIONS OF HIGH-THROUGHPUT SEQUENCING 3

DNA templates, and instead single DNA molecules and polymerases su�ce for obtaining a rec-
ognizable signal. DNA polymerases are immobilized in ZMW detection volumes, creating a slide
suitable for the parallel observation of polymerase activity. Fluorescently labeled dNTPs are em-
ployed as the substrate, where nucleotides being incorporated are detected via laser excitation
and a CCD detector. The �uorophore itself is displaced upon nucleotide incorporation. [14]

As opposed to sequencing-by-synthesis reliant on DNA polymerase, SOLiD sequencing consti-
tutes a sequencing-by-ligation technique that exploits DNA ligase enzymes for sequence decoding.
Probe oligomers partially consisting of degenerate and universal bases [16] are ligated to inter-
rogate di-nucleotides at a spacing of three base pairs. When reaching the full read length, the
template is reset and the ligation process is repeated �ve times at di�erent o�sets, and thus
each of the template's bases is measured twice through di�erent probe oligomers. Four di�erent
�uorophores serve to label the 16 types of probe to obtain an ambiguous color space code. The
properties of the dibase color encoding are such that for any base, the ambiguity may be resolved
as long as the identity of the preceding base is known. [12]

The following discussion centers on Illumina sequencing technology as the primary focus of
the present work, although applicable � to varying extent � to multiple or all of the currently
available high-throughput sequencing devices.

1.3 Applications of High-Throughput Sequencing

While high-throughput sequencing devices in general excel in the cost-e�ective generation of mas-
sive amounts of sequence data, the new technologies are still associated with weaknesses regard-
ing error rates and maximal achievable sequencing read length (section 1.4). These weaknesses
limit the capacity to generate base-by-base readouts of entire genome sequences. Nonetheless,
concerted application of complementary technologies including Sanger sequencing has served to
greatly accelerate the pace at which novel reference assemblies for manifold model organisms are
being generated.

Certainly, despite the reduction in cost-per-base that has been achieved, decoding larger,
repeat-rich genome sequences remains a massive task with current DNA sequencing technology.
Genomic inter-individual and inter-species variation may however be assessed circumventing the
issue of global-scale sequence topology (section 1.3.1), which has thus evolved as one of the
primary applications of high-throughput sequencing. In turn, interpretation of data generated
with the aim of such consensus-based characterization of sequence variation is greatly facilitated
by the availability of a suitable reference genome assembly.

Similarly, the resequencing scenario facilitates data interpretation for an extensive family of
deep sequencing and genome-wide screening applications. As throughput of sequencing devices
has grown to enable routine sequencing even of large genomes to multiple depths of coverage, its
potential for quantitative measurement has been leveraged for the assessment of diverse genomic
properties. With stock genome sequencing protocol, deep sequencing allows estimation of quan-
ti�able statistics such as gene copy number [17�19], application to forward genetic screens [20, 21]
or dissection of environmental samples [22�24]. To exploit its potential for quanti�cation in a
wide range of further research settings, high-throughput sequencing is complemented by a host
of di�erent sample and library preparation protocols acting as adapters between the property of
interest and DNA sequencing technology.

RNA conversion protocols facilitate investigation of transcript structure and abun-
dance [25�29] and address structure, expression and distribution of speci�c types of transcript
such as long non-coding RNA or small RNA [27, 30�33]. In ChIP-Seq, MeDIP-Seq or HITS-
CLIP, immunoprecipitation-based sequence enrichment protocols provide insight into diverse

4 CHAPTER 1. INTRODUCTION

genetic and epigenetic mechanisms including transcription factor binding events, histone and
DNA modi�cations or speci�city of RNA binding proteins [17, 34�38].

Conversely, depletion protocols such as MNase-Seq are for example applicable to investigation
of nucleosome positioning [39]. An additional option for the study of epigenetic features by high-
throughput sequencing is available in sequence conversion protocols utilizing bisul�te treatment
of the sample DNA (BS-Seq) [27, 40, 41].

Further protocols aiming at a reduction of library complexity can supply signi�cantly reduced
cost of sequencing for certain applications, such as retrieval of genetic markers through sequencing
of restriction site associated DNA (RAD-Seq) [42, 43].

By standard sample preparation protocols, a molecular mixture retrieved from millions of
cells is assessed. This property is exploited deliberately for example by genomic enrichment or
epigenetic sampling protocols such as ChIP-Seq as well as BS-Seq. On the other hand, single-cell
sequencing protocols are being developed to enable the maximally �ne-grained assessment of
cellular populations [44].

While each sequencing protocol has on its own furthered our understanding of the molecular
makeup of cells, integration and correlation of the di�erent types and sources of data now avail-
able shows great promise to provide detailed insight into the complex interplay of the various
mechanisms governing the cellular machinery.

1.3.1 Genome and Transcriptome Sequencing

Molecular genetics studies how an organism's genome interacts with its cellular environment,
ultimately shaping the organism's phenotype inside its habitat. Learning how this interaction
can be in�uenced may ultimately help to develop new capabilities to counteract diseases or
enhance traits like disease resistance or crop yield. Analysis of the DNA-level di�erences between
organisms, regardless of whether they are of the same species or not, presents an entry point
to obtaining clues on this interaction. With the emergence of next-generation sequencing, for
the �rst time researchers are able to employ this approach on the very large scale, exempli�ed
by a variety of major sequencing projects both on the intra- and inter-species level like the
1000 genomes project [45, 46] for the human genome, the 1001 genomes project [19] for the
Arabidopsis thaliana genome, the Genome 10K project [47] with the goal of analyzing 10000
vertebrate genomes or the metagenomic human microbiome project [48, 49].

Due to the short lengths of the sequence reads recovered by most high-throughput sequencers,
most studies circumvent the complex task of whole genome assembly focusing on small scale se-
quence variants or localized larger scale rearrangements (section 1.5.4). These genetic markers
thus recovered can be processed further allowing application to a wide range of scienti�c ques-
tions. Recovered on population scale, they provide insight into a species' population structure
and the evolution of its genomes and of its subpopulations. When integrated with phenotype
data, functional clues may further be obtained by means of genome wide association studies
(GWAS) (e. g. [50]).

Knowledge of gene expression pro�les proves valuable in many di�erent contexts, and may on
the one hand provide a means for the classi�cation of entire cells, as well as on the other hand of
certain genes or groups of genes with respect to their involvement in speci�c cellular pathways or
function. While gene expression has been routinely assessed on the large scale using microarray
technology, the method su�ers from non-linear measurement, probe saturation and suboptimal
signal-to-noise ratio.

High-throughput sequencing by contrast allows basically unlimited dynamic range only
bounded by allocatable e�ort and amounts of cellular material. Other than microarrays,

1.3. APPLICATIONS OF HIGH-THROUGHPUT SEQUENCING 5

sequencing further enables recovery and quanti�cation of unexpected transcripts and splice
forms.

A variety of di�erent transcriptome sequencing protocols are available, distinguished by their
suitability for assessment of transcript structure and quanti�cation as well as capabilities to
detect certain types of transcript and to recover transcript directionality. As with all examples
of quanti�cation by sequencing, data interpretation may be intricate (section 1.5.5).

A special class of transcript is given by small RNA, short cellular RNA molecules ∼20�25
nucleotides in length ubiquitous in almost all well-studied eukaryotes. These have been identi�ed
as another vital factor for transcript regulation, and are further implicated in various important
cellular processes such as DNA methylation and pathogen response [51, 52]. Transcript levels
are a�ected by small RNA through RNA interference (RNAi). As the speci�city-determining
component of RNA induced silencing complexes (RISC), they direct the degrading enzymatic
activity of ARGONAUTE proteins at the targeted, roughly complementary transcripts.

Small RNA molecules are attributed to multiple cellular pathways in plants and animals gen-
erally involving double stranded RNA or RNA stem-loop structures. According to the generating
biochemical pathway, small RNA can be categorized into di�erent classes, notably microRNA
(miRNA) and small interfering RNA (siRNA), linked with overlapping, but distinct cellular roles.

High-throughput small RNA pro�ling by sequencing facilitates genome-wide discovery, cate-
gorization and relative quanti�cation for the various small RNA species. However, small RNA
quanti�cation is sensitive to sequence speci�c bias [53], with their short length likely introducing
increased variance to base composition bias (section 1.4) and emphasizing the importance of lig-
ation biases. Furthermore, relative quanti�cation with reference to library size is often deemed
unsuitable for an investigation, and consensus on appropriate normalizing transformations is cur-
rently lacking (cf. [54]). Nonetheless, small RNA sequencing data prove a valuable quantitative
resource on the genome scale, e. g. as a proxy for RNA-directed DNA methylation [55] or in
correlation with further transcriptome or epigenetic data.

1.3.2 ChIP-Seq and further Immunoprecipitation Protocols

Expression of genes is thought to be connected in complex regulatory networks of positive and
negative feedback. A key role in these networks is occupied by transcription factors, DNA-binding
proteins involved with initiation of gene transcription at the promoter sequences. ChIP-Seq, the
successor of the microarray-based ChIP-chip technology featuring improved signal-to-noise ratio
and sharper signal bounds, facilitates the identi�cation of putative transcription factor targets
in a relevant in-vivo context. By elucidation of individual transcription factors' targets, our
understanding of the complex transcriptional interplay can be gradually improved.

Immunoprecipitation (IP) methods exploit the antibody-antigen a�nity to enrich speci�c
molecules in a solution. In the course of the procedure, antibodies for the antigen to be con-
centrated are incubated with the solution to promote formation of antibody-antigen complexes.
Antibodies are captured on solid-phase beads, thus enabling precipitation to enrich for the formed
complexes.

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) employs
the IP technique for in-vivo detection of regions of co-localization of a speci�c molecule, usually a
protein, with the genomic DNA. During the procedure, live tissue is prepared with formaldehyde
or an appropriate alternative cross-linking reagent. Formaldehyde undergoes a reaction that
induces cross-linking of amino groups in close vicinity, thereby promoting formation of DNA-
protein complexes (DPC) (cf. Barker et al. [56]). Following lysis of the tissue, the DNA is
sonicated, yielding DPC associated with only short fragments of genomic DNA. The DPC are
immunoprecipitated and, by puri�cation and ampli�cation of the contained DNA, prepared as

6 CHAPTER 1. INTRODUCTION

Instrument Max. Average
Read Length

Read Pairs /
Flowcell

Run Time

Illumina MiSeq 2x250bp 16M 39h
Illumina Genome Analyzer IIx 2x150bp 300M 14 days
Illumina HiSeq 2x100bp 1400M 11 days
454 Life Sciences GS Junior ∼400bp 100000 10h
454 Life Sciences GS FLX+ ∼700bp 1M 23h
Life Technologies Ion PGM up to 400bp 100000�5M 3.7h�7.3h
Life Technologies Ion Proton up to 200bp ∼70M 2h�4h
Life Technologies 5500W (SOLiD) 1x75bp / 2x50bp ∼1600M 6 days
Paci�c Biosciences PacBio RS ∼4.5kbp ∼22000 2h

Table 1.1: DNA Sequencer Speci�cations According to Device Vendors (3/2013)

a sequencing library. Following deep sequencing, thus precipitated tags facilitate identi�cation
and localization of putative protein binding sites.

Immunoprecipitation is complemented by techniques that seek to deplete segments of the
DNA that are not protein-bound, e. g. using exonucleases like micrococcal nuclease (MNase) to
digest the unbound parts of the DNA fragments following cross-linking and sonication. MNase-
Seq is used on its own to investigate nucleosome positioning [39, 57], but can also be combined
with ChIP-Seq for improved binding site resolution.

When available, immunoprecipitation of the DPC is achieved using a speci�c antibody raised
against the protein of interest. Alternatively, the experiment is performed using transgenic
organisms where the protein is tagged by an appropriate adapter protein, e. g. GFP [58], for
which a high quality antibody is available. However, this fusion protein approach comes with
the drawback of possible tag-induced alteration of protein function or binding a�nity.

Apart from its application to the identi�cation of transcription factor targets [34, 35], ChIP-
Seq is most prominently applied for genome-wide screening of histone modi�cations [36]. Using
5-methylcytosine-speci�c antibodies, immunoprecipitation is further applicable for generating
genome-wide maps of DNA methylation (MeDIP-Seq) [37].

RNA analogues to the ChIP-Seq strategy, high-throughput sequencing of RNA isolated
by crosslinking immunoprecipitation (HITS-CLIP) [38] and photoactivatable-ribonucleoside-
enhanced crosslinking and immunoprecipitation (PAR-CLIP) [59] are used in a similar
fashion to investigate in-vivo binding of RNA associates like e. g. the miRNA binding protein
ARGONAUTE.

1.4 Properties of Sequencing Data

Modi�cations to both the instruments themselves as well as to the sequencing chemistry utilized
have led to vast improvements in per-run output since the �rst iteration of next generation se-
quencers, which has frequently drawn comparisons to the famous Moore's Law of the development
of integrated circuits [60, 61].

A further reduction of overall sequencing cost remains a primary objective in the further
development of the technologies, often illustrated by the catch phrase 1000 dollar [human]
genome [13, 62]. E�orts directed at this goal include the ongoing pursuit of new sequencing
technologies as well as streamlining key operational aspects such as ease of library preparation,
run time and quantization of throughput � i. e. the minimal amount of sequence that must
be generated per sequencing run to achieve acceptable cost-per-base. However, with dropping

1.4. PROPERTIES OF SEQUENCING DATA 7

cost-per-base further di�erentiated considerations including data handling and analysis cost as
well as the unique capabilities of either respective technology are increasingly moving into focus.

Di�erences between the various technologies also imply di�erent behavior regarding important
parameters such as read length, frequency, type and randomness of sequencing errors or sequence
dependent depth-of-coverage biases. With the targeted �eld of application, the impact of either
property varies. Table 1.1 provides a comparison of read length, throughput and run time of
sequencing instruments. Despite speci�cations of the young technologies being in constant �ux,
the overview highlights the technology's strengths and weaknesses discussed in the following.

Reversible chain terminator as well as sequencing-by-ligation approaches enforce in-phase
measurement of all DNA templates being sequenced. Therefore, these devices provide a �xed,
user selectable read length. Albeit currently providing the highest level of parallelism and of
per-run throughput in terms of sequenced bases, they o�er a signi�cantly shorter maximal read
length compared to the other methods discussed.

Sequencing-by-synthesis methods that as in the case of 454 and Ion Torrent instruments
imply measurement of the homopolymer sequence of the respective DNA templates generate se-
quence reads of variable length determined by the actual nucleotide composition of the molecules.
Whereas minimum read length equals the number of sequencing cycles, i. e. one quarter of the
number of dNTP �ows, the average read length thus depends on the type of DNA being se-
quenced.

By contrast, no phasing of strand elongation is enforced by the single molecule real time
sequencing approach, neither on single base nor on the homopolymer level. The method instead
attempts near-continuous tracking of the strand elongation process. SMRT devices produce
variable length reads, with the read length largely dependent on the binding a�nity of the
polymerase enzyme utilized by the technology. The method currently achieves the longest average
read length, with however a broad spectrum of read lengths and below-average level of parallelism.

The dideoxynucleotide chain-termination sequencing method has undergone a considerable
time span of continued re�nement. Therefore, although next-generation instruments are improv-
ing steadily with more and more sophisticated chemistry and signal processing, Sanger sequencing
technology still de�nes the gold standard in terms of single read accuracy. Apart from stochastic
measurement �uctuations, all present technologies feature an error pro�le with an increase in
error frequency towards the end of the read. Typical sources of systematic decline in sequence
quality include deterioration of the sequencing reagents over time or loss of phasing for methods
relying on clonally ampli�ed DNA. Orthogonally, overall read quality is in�uenced by factors like
cross-talk between adjacent spots, mixed clusters or optical distortion. [63]

Due to phased probing of the template DNA, with the Illumina and SOLiD instruments
measurement error mostly induces base substitution errors. Conversely, 454 and Ion Torrent
instruments are primarily susceptible to over- or underestimation of homopolymer lengths, which
results in an elevated frequency of base insertion and deletion errors. SMRT su�ers from an
elevated frequency of nucleotide deletion errors.

All platforms including Sanger sequencing are furthermore subject to sequence speci�c biases,
where both the probability of sampling speci�c sequences as well as single base accuracy can be
strongly in�uenced by the local sequence context. Besides the implications for sequencing data
analysis and interpretation, uneven error rates and sampling probabilities result in an increase
of required average sequence coverage and thus elevated cost-per-base.

Sampling bias may be introduced not only during the actual steps of the sequencing procedure,
but also the weakly standardized sequencing library preparation, with e. g. PCR ampli�cation an
important and frequently cited source of bias [64]. Sequencing bias is classi�ed either according
to the introducing reaction or step of the library preparation, such as ligation or fragmentation
bias, or according to the sequence properties it is attributed to, such as base composition or end

8 CHAPTER 1. INTRODUCTION

biases.
Since quality and strength of these biases are dependent on an only vaguely understood

interplay of variable factors like fragmentation size and exact PCR conditions, they are not
easily corrected for and must be considered during data analysis and interpretation of results.

1.5 Sequencing Data Analysis

While data analysis strategies for di�erent applications of high-throughput sequencing naturally
diverge at some point following the initial base calling of the read sequences, they frequently share
common data processing tasks or generic approaches such as reference genome-based resequenc-
ing. In addition to software solutions o�ered by device vendors or other commercial providers,
countless computational utilities are developed by the scienti�c community implementing speci�c
analysis strategies or prerequisites of generic analysis approaches such as read mapping.

Following the base calling step in which nucleotide sequences are deduced from signal inten-
sities delivered by the sequencing device, raw sequence data undergo quality control and further
processing according to parameters dictated by the respective application and analysis strategy.
Subsequent strategies diverge into di�erent classes such as reference sequence-guided resequenc-
ing approaches, de-novo sequence analysis such as genome assembly as well as reference-free
multi-sample comparison for diverse purposes such as e. g. assessment of variation or microRNA
content. Primarily motivated by the relatively short read lengths o�ered by current sequencing
technology, reference sequence-guided resequencing remains the most widely used and practical
method (section 1.5.3).

1.5.1 Base Calling and Read Quality Assessment

Base calling is the initial step of deducing an actual nucleotide sequence from the raw signal
measurements delivered by sequencing machines, e. g. the brightness levels measured by the
CCD detector for �uorescence-based techniques. Parallel sequencers operate by sampling the
entire measurement area supporting large numbers of DNA molecules (e. g. �ow cell) at certain
intervals (section 1.2). Instrument measurements initially are stored as a series of images, where
each image represents the signal intensities across the measurement area at a single sampling
interval. The stack of images generated is subsequently processed in software.

In short, base calling software is required to locate spots within the measurement area that
represent valid DNA templates, and further analyze the run of signal intensities at each spot
to provide a nucleotide sequence that likely explains the observed intensities. In addition to
this maximum likelihood estimate of a sequencing read's nucleotide sequence, a measure of
reliability for the issued base calls is desirable. Due to their conceptual simplicity, PHRED-
like per-base quality scores [65, 66] have become the de facto standard across all platforms.
Additional measures that capture the peculiarities of the respective sequencing process, like e. g.
individual base likelihood in the case of reversible chain terminator sequencing or homopolymer
accuracy in the case of pyrosequencing, can be calculated by speci�c base callers but are widely
disregarded by downstream analysis software.

Base calling software is usually highly device speci�c and thus provided by the instrument
vendors; alternative software solutions exist in some cases [67�71], but have not become widely
adopted.

Quality of high-throughput sequencing reads can be highly variable and is dependent on many
di�erent factors (section 1.4). Therefore, prior to further analysis it is often desirable to assess
the quality of the generated sequencing reads, and to pre-�lter the raw read data accordingly.
Furthermore, depending on the sequencing protocol and application, the relevant sequences are

1.5. SEQUENCING DATA ANALYSIS 9

often fused to utility oligomers like bar codes, sequencing adapters or linker sequences that are
still present in the sequencer's output and interfere with direct application of the appropriate
analysis algorithm. Countless tools and scripts have been developed for these purposes and are
in some cases made freely available.

FastQC [72] for example is a simple Java application providing visualization for average read
quality and various other properties of the data set. The FASTX Toolkit [73] provides tools for
creating sequence quality charts, adapter removal and demultiplexing operations. TagDust [74]
is a tool that identi�es library artifacts such as sequencing primer dimers. Similar capabilities
are o�ered by the tool TagCleaner [75], with additional read clipping, trimming and splitting
options. A collection of Perl scripts for read �ltering, quality-based trimming and creating read
quality charts is provided by the NGS QC Toolkit [76].

1.5.2 Assembly

While the classical domain of large-scale DNA sequencing is the assembly of entire genomes,
due to their short read length most high-throughput sequencing technologies do not produce
data optimally suited to this approach. Computational tools based on alternative assembly
algorithms and data structures such as De Bruijn graphs have been developed that can better
cope with large amounts of short reads, for example the Velvet [77], Oases [78], SOAPdenovo [79],
ALLPATHS [80, 81] and ALLPATHS-LG [82, 83] assemblers. Despite these improvements, stock
short read assemblies still do not reach the quality of typical laboriously generated reference
genomes [84]. Generating high quality reference assemblies continues to require enormous e�ort
often involving construction of BAC libraries and large amounts of man-hours both on the wet
lab and data analysis sides for closing gaps in the assembly, ordering the assembled sca�olds or
identi�cation of mis-assembled regions.

These remaining issues prevent large-scale multiple whole-genome comparison approaches,
and as a consequence, solutions to data representation and methodology for this type of analysis
are not yet well established. In the medium term, sequencing technology can be expected to
reach a su�cient mixture of sequencing cost, throughput, read length and accuracy to render
whole-genome assembly a rather routine task. For genome-wide variation analysis, this should
bring about a shift towards such large-scale assembly approaches.

1.5.3 Short Read Alignment

While direct genome assembly remains impractical, most applications of next-generation se-
quencing are analyzed through resequencing approaches that rely on the availability of a suitable
reference genome sequence. Relating all data to a single assembled genome circumvents the issue
of assembly, facilitates comparisons by establishing a common coordinate system and allows to
examine analysis results in the context of a fully re�ned genome annotation.

Mapping millions of short reads to reference genomes up to multiple gigabases in size con-
stitutes one of the computationally most demanding tasks of the resequencing strategy. In the
presence of sequencing errors, erroneous reference sequences and possibly genomic variation such
as SNPs, indels and rearrangements, perfect match queries between read and reference sequence
cannot in general deliver satisfactory results.

The read alignment problem presents a string matching task that has quickly been met
by a variety of proposed algorithms and software solutions, confronting the scienti�c commu-
nity with a multitude of freely available alignment tool options like BWA [85], Bowtie [86],
Bowtie2 [87], SOAP [88], SOAP2 [89], SHRiMP [90], SHRiMP2 [91], MAQ [92], GenomeMap-

per [93], PALMapper [94] or CloudBurst [95].

10 CHAPTER 1. INTRODUCTION

To achieve satisfactory performance, alignment tools rely upon precomputed, static index
data structures usually generated for the reference genome, ranging from simple k-mer hashes
or spaced-seed strategies to su�x trees, su�x arrays or equivalent compressed full text indexes
such as the Burrows-Wheeler transform (BWT) based FM-index [96]. The genome indexing
approach has implications regarding both performance and hardware requirements of an align-
ment algorithm. Disk space and index memory required for k-mer indexes, su�x trees and plain
su�x arrays amount to a multiple of the size of the indexed nucleotide sequence. In contrast,
compressed BWT-based indexes have the advantage of an inherent representation of the genome
sequence, with their size approaching that of the compressed sequence.

Di�erent index data structures aside, read mapping algorithms are set apart by their choice of
trade-o�s between mapping speed, accuracy, sensitivity and supported alignment parameters. At
the same time, mapping accuracy is partially in�uenced by mapping sensitivity, since a missed
mapping location for a read may lead to spurious mappings to a di�erent location of similar
sequence. Read mapping algorithms commence by identi�cation of potential origins of seeds,
short substrings of the sequence read matching the reference genome sequence at high sequence
identity. The tradeo� between mapping speed on the one side and accuracy and sensitivity on the
other is greatly in�uenced by seed selection, seed length as well as the required level of sequence
identity. Tools may decide to ignore seeds that occur with very high frequency in the reference
genome, further accelerating the mapping process at the cost of sensitivity.

Following seed placement, follow-up alignment algorithms establish the actual base pair-
ings between sequencing read and reference sequence, in the process identifying the best possible
match for the entire read according to the scoring measure de�ned by the mapping tool. Further-
more, many mapping utilities in addition allow the explicit or implicit retrieval of the next-best
mapping location, permitting to infer the reliability of the assigned location (�mapping qual-
ity�) under the assumption of completeness and correctness of the provided reference genome
sequence.

The set of features supported by mapping and alignment algorithms decides over their suit-
ability for di�erent kinds of sequencing data or application. However, omission of certain features
may help with optimization of the algorithm. Gapped alignments for example come with a signif-
icant performance hit, but are indispensable for application in variation detection or for aligning
sequencing reads obtained by pyrosequencing, Ion Torrent or SMRT technology. Further gap-
related features such as a�ne gap costs or split-read approaches permit correct placement of the
read in presence of longer insertions and deletions or intron-exon boundaries.

Sequencing reads with special properties such as color space or bisul�te converted data fur-
thermore require fully customized mapping and alignment strategies.

1.5.4 Variation and Genotype Calling

Reversing the assembly and multi-genome comparison approach (section 1.5.2), resequencing
has become the current method of choice for assessing genomic variation. In the resequencing
setting, all read data for certain subspecies, strains or mutants are mapped to a single reference
sequence of a closely related organism. The complexity of the analysis task is therefore shifted
from establishing and examining complex relations between multiple assembled genomes towards
obtaining a comprehensive and reliable readout of the structural information contained in the
short read alignments.

Basic consensus calling is limited to the detection of conserved regions and small scale vari-
ation like single nucleotide polymorphisms and small insertions and deletions contained therein.
Such regions of evident sequence conservation are directly suggested by the short read mappings.
The task for analysis algorithms is therefore to assess each of the supported positions to identify

1.5. SEQUENCING DATA ANALYSIS 11

the most likely combination of alleles to give rise to the observed data, along with a measure of
con�dence for the provided solution.

Identi�cation of this most likely combination of alleles at each reference genome position is
therefore the main problem to be solved by analysis algorithms. A major issue to be overcome
by these algorithms is to achieve an integration of models for sequencing errors, read mapping
and base alignment errors. While the probability of sequencing errors may be systematically
in�uenced by the local sequence context, individual error events in di�erent reads may be con-
sidered as largely independent. Sources of mapping and base alignment error are however mostly
systematic in nature. Reads and aligned bases therefore do not represent independent evidence
for a certain allele con�guration, preventing these types of error from being as readily captured
by statistical modeling.

The majority of consensus and genotype calling algorithms commence by examining the
pileup of base calls and base qualities provided by the mapped reads overlapping a position.
Given su�cient depth of coverage, eventual sequencing errors can be thereby identi�ed at high
con�dence.

However, sequencing error may not only cause invalid readout of single positions, but also
spurious cross-mappings to loci with similar sequence to that of the true origin of a read. The
likelihood of such spurious mappings may be assessed using measures like the mapping quality
provided by some alignment tools (section 1.5.3). Furthermore, heuristic parts of the mapping
algorithms used to achieve improved mapping performance may also cause systematic cross-
mappings that can be indistinguishable from true variants or give rise to invalid multi-allelic
calls. Such pseudo multi-allelic regions may further arise due to copy number variants, under-
representation of repetitive sequence in the reference assembly or sample contamination.

Another source of systematic miscalls presents base alignment error. Base alignment error
is introduced by reads, albeit mapped to the locus on the reference genome from which they
originate, whose alignment provided by the read mapping tool does not suggest the correct set
of base pairings. This type of error mainly occurs at transition points to insertions, deletions,
copy number variants or other types of rearrangement or at exon-intron boundaries in mRNA
sequencing. Reads overlapping these transition points only with a small number of positions do
not contain enough information to support the correct type of variant, causing spurious alignment
of terminal nucleotides.

For these reasons, current consensus and genotype call algorithms employ combinations of
statistical models as well as alignment correction algorithms and heuristics for removing or
penalizing read alignment issues.

The Genome Analysis Toolkit (GATK) [97] combines Bayesian heterozygous genotype calling
based on quality score recalibration with indel realignment and various heuristics for penalizing
mapping artifacts [98].

SHORE [18] implements a �exibly calibratable scoring matrix approach [1, 99] that calculates
SNP, indel and reference call scores based on a user-de�nable weighting of various properties of
the read alignments overlapping a position. The method allows to impose a penalty on, or to
ignore a number of terminal nucleotides towards the ends of each alignment, ruling out many
cases of base alignment error at the cost of an e�ective loss of sequencing depth.

The SAMtools package [100] implements a pro�le HMM for estimation of a Base Alignment
Quality (BAQ) for the assessment of potential mapping artifacts [101].

1.5.5 Quanti�cation by Deep Sequencing

In principle, deep sequencing constitutes statistical sampling of the population of molecules that
make up the sequencing library. Therefore, obtained sequencing data may be transformed into

12 CHAPTER 1. INTRODUCTION

quantities that represent a frequency distribution that may be used to infer relative quantities
with reference to this population.

Depending on the application, these measurements may be processed further for mere clas-
si�cation purposes (e. g. enriched versus not enriched in chromatin immunoprecipitation (ChIP)
assays) or transformed into quantities appropriate for multi-sample comparison (e. g. normalized
expression level in RNA sequencing).

For routinely used, but weakly de�ned concepts such as gene expression, de�nition of an ap-
propriate reference for obtaining biologically meaningful quantities can be intricate. Depending
on the application the appropriate unit of measurement might be absolute, i. e. the number of
copies of a molecule in the cell or in the sample, a cellular or compartmental concentration, or
relative to the total population of molecules of the same family. To a certain degree, relative mea-
surements can be directly obtained from sequencing data, whereas calculation of absolute values
is in general not possible. For identi�cation of di�erentially expressed loci in a multi-sample
comparison, it may however be su�cient to represent all measurements in relation to a common
reference value. Given many loci contribute to the sequencing library with a majority follow-
ing the same distribution in all conditions examined, the problem of calculation of a common
reference value can be reduced to identi�cation of outliers in a multi-sample comparison.

Next to basic compensation for sequencing library size, further specialized normalization pro-
cedures are therefore often applied to the raw quantities of sequenced reads. Some of these pro-
cedures attempt inference of quantities that are better suited to the comparison of the biological
conditions in question, such as estimation of absolute quantities. Further aims of normaliza-
tion include stabilization of measurement variance or removal of sequence speci�c biases. As
an example, for whole transcriptome sequencing a normalizing procedure termed trimmed mean
of M-values (TMM) [102] has been shown to compare favorably with plain relative quanti�ca-
tion. For data with di�erent properties such as microRNA pro�les, consensus regarding data
normalization is yet to be reached [103].

1.5.6 ChIP-Seq Analysis

While chromatin IP (section 1.3.2) enriches for sequence fragments that contain a binding site for
the protein of interest, no perfect puri�cation is achieved. Obtained sequencing data therefore
tend to contain signi�cant amounts of background noise in the form of reads that represent
DNA fragments that were sequenced purely by chance rather than due to their a�nity to the
DNA-binding protein. Primary data analysis involves the identi�cation of those genomic regions
that potentially contain one or more binding sites, recognizable from the mapped read data by
characteristic peaks in sequencing depth at the respective sites and their close vicinity.

Single transcription factors are often thought to contribute to the regulation of hundreds
or thousands of di�erent genes, and to take on di�erent roles in various regulatory networks.
This creates the need for peak calling algorithms that are able to process the ChIP-Seq data
to identify all putative binding sites in a genome-wide scan. Multiple freely available computa-
tional tools including MACS [104], QuEST [105], SISSRs [106], PeakSeq [107], cisgenome [108] or
FindPeaks [109] all implement di�erent algorithmic approaches to the peak calling problem.

MACS employs estimation of local depth of coverage background using a sliding window. By
this background estimate, p-values for enrichment are calculated based on the Poisson distri-
bution. The program is able to operate with or without control libraries and calculates false
discovery rates through a sample-control swap.

SISSRs calculates �net tag count� as the di�erence of forward and reverse strand read mappings
in short jumping windows. Base line transitions of net tag count are retained as sites of putative
enrichment, which are further compared to Poisson-motivated read support thresholds.

1.6. STORAGE AND REPRESENTATION OF SEQUENCING DATA 13

The PeakSeq program identi�es candidate enriched regions through segment-wise calculation
of a depth of coverage threshold obtained by simulation of random read distribution, taking into
account a pre-computed �mappability map� to capture repetitive parts of the genome. Thus
obtained candidates are assessed further using a binomial test comparing sample and scaled
control data.

Particular to the QuEST algorithm, peak detection relies on score pro�les generated by kernel
density estimation over the reads' 5′ mapping coordinates rather than depth of coverage. Peak
calling is achieved by identi�cation of local score maximums and a combination of score and fold
change thresholds.

While a multitude of di�erent analysis algorithms thus exist, due to the di�culty of assess-
ing the quality of the provided solution there is generally no consensus which of the available
algorithms performs best in a given scenario.

1.6 Storage and Representation of Sequencing Data

High and constantly improving throughput of sequencing instruments implies routine production
of uncommonly large data sets. The amount of data produced poses challenges not only regarding
data transfer, processing and analysis, but also in terms of data storage. In the desire to guarantee
best possible traceability of scienti�c results and all potential sources of error, the bene�t of long-
term storage of all raw data must be balanced with storage cost, further considering the likelihood
to again require certain types of data and the cost of eventually regenerating experimental data.
Under these considerations it has become accepted practice to require long-term storage of at
least nucleotide sequences and PHRED qualities of sequencing reads, whereas the preservation
of raw signal measurements or further quality measures (section 1.5.1) is deemed optional.

Generally, large storage size of the data sets emphasizes the importance of the tradeo� between
space and access e�ciency. While o�-line long-term storage solutions are able to mainly address
space e�ciency, with the only restriction being that the computational e�ort required to convert
to and from the compressed representation of the data should remain in tolerable bounds, on-line
representation of the data during the data analysis phase has to provide additional guarantees
regarding data access.

1.6.1 Storage Formats for Next-Generation Sequencing Data

High-throughput sequencing data sets store elements like sequencing reads or read alignments,
which de�ne a tuple of attributes, such as a read identi�er, nucleotide sequence and per-base
qualities. Additional meta-data items like sequencing instrument, run or processing information
may be required to be kept alongside the data set. On-line sequencing data representation has
to at least guarantee e�cient sequential traversal of a data set's elements, i. e. enable e�cient
retrieval of all of the respective next element's attributes. Furthermore, it is typically required
to allow storage of the data set elements in a speci�c order not dictated by space e�ciency
considerations. Finally, accelerated queries for data set elements with speci�c properties, such
as range queries for retrieval of elements overlapping with a given region of the genome, require
a certain degree of random access support from the storage solution.

While generic solutions such as relational database management systems (RDBMS) address
many of these requirements, they come with an excess of further features while impeding data
set distribution. Therefore, most sequencing data analysis solutions rely on custom �le-based
storage solutions. File formats in the bioinformatics �eld have traditionally been ASCII text
�les following simple formatting rules. Examples include the de facto standard formats for rep-
resentation of biological sequences, FASTA and FASTQ [110]. For description of large amounts

14 CHAPTER 1. INTRODUCTION

of features that are relative to a reference sequence, simple tab-delimited tables have emerged as
the predominant storage formats. For example, SAM [100, 111] is a standard �le format used for
storing sequencing reads and read alignments. GFF [112] is a generic format for description of
genomic features that is primarily used, but not restricted to, representation of genome annota-
tion data, and its subset speci�cation GVF [113] is targeted at description of genomic variation
like SNP or structural variants. VCF [114] provides a speci�cation for storage of multi-sample
variation and genotype information. SAM, GFF and VCF are structured similarly, with each data
set element being represented on a single line. Common or mandatory element attributes like
reference genome coordinates are stored as mandatory columns, whereas optional attributes are
added in arbitrary order in the form of key-value pairs (tags). All three formats are generic for-
mats that allow users to specify arbitrary additional attributes, and allow inclusion of meta-data
in the �le in the form of lines starting with a certain character sequence serving as meta-data
indicator. The SAM format comes with an equivalent binary companion format BAM with the
aim of reduced �le parsing overhead.

While processed data like variant calls are usually moderate in size, space e�ciency is a
concern for raw read and read alignment data, suggesting the application of data compression
algorithms. The generic compression algorithm DEFLATE [115] is one of the most widely used
compression methods due to a tradeo� between compression e�ciency and compression and
decompression speed that is acceptable in many settings. Generic compression algorithms are
also applied to sequencing data, e. g. the BAM format is routinely encoded as BGZF [111], a
simple subset speci�cation of the GZIP [116] format for DEFLATE-compressed data.

However, compression e�ciency can be improved through use of sequencing data speci�c en-
coding methods or preprocessing. To some extent, high-throughput sequencing data compression
is related to the issue of DNA sequence compression. Complete genome sequences are known
to be hardly compressible beyond the typical 2-bit encoding of the four bases using common
generic compression algorithms [117]. Most e�orts preceding the emergence of high-throughput
sequencing have thus been directed at generating e�cient representations of such large biological
sequences. However, algorithms that have been made available for this purpose are not readily
applicable to short read sequencing data.

Common approaches used by most DNA compression algorithms in the literature rely on
su�x arrays or similar index data structures for detecting and collapsing perfectly or imperfectly
repetitive regions in a small set of large sequences. As such, these implementations are not suited
to the task of compressing the huge sets of very short sequences generated by a high-throughput
sequencing run. Analogous approaches are however available for short read sequences. Imposing
a speci�c ordering on the elements of a data set potentially leads to an increase in entropy, and
thereby reduced compression e�ciency. A utility SCALCE implements a read reordering method
using a similarity-based clustering approach that serves as a compression booster in combination
with generic compression algorithms and formats [118]. However, as speci�c element order is
often a requirement of analysis algorithms, SCALCE and similar reordering approaches are most
suitable for o�-line long-term storage and data distribution. A di�erent approach is taken by
the tool Quip, which implements an assembly-based short read compression scheme where reads
are represented by their position on speci�cally assembled contigs [119]. Assembled contigs must
be stored along with the data set elements, but allow e�cient compression of data sequenced to
multiple depth.

While these approaches focus on compression of short nucleotide sequences, those represent
just one of the attributes to be stored in next-generation sequencing data sets, along with read
identi�ers, per-base PHRED qualities and possibly read alignments. Various methods therefore
attempt to improve compression ratio for these heterogeneous collections of data. Notably, the
CRAM format [120] aims at being a drop-in replacement for the SAM/BAM format, to large extent

1.7. CONTRIBUTIONS OF THIS WORK 15

supporting the same logical structure and set of features. The main features of CRAM are reduced
representations of aligned read sequences and per-base qualities. For aligned sequences, the
format implements reference compression. In reference compressed alignments only the lengths
of read subsequences that perfectly match the reference genome are stored, or an equivalent
representation. While in principle a lossy operation, all discarded information may subsequently
be recovered as long as the appropriate reference sequence is available. For PHRED quality
data, CRAM o�ers a choice of various lossy binning schemes aimed at reduction of the entropy
introduced with the read qualities. Following such preprocessing operations, CRAM encodes data
into a custom binary format utilizing well-known encoding schemes such as Golomb [121] and
Hu�man coding [122].

1.6.2 Accelerated Queries on Sequencing Data

Support for accelerated queries on a data set is required to enable rapid data visualiza-
tion [123, 124] and data set exploration. Indexed range queries are e. g. supported by the
BigWig and BigBed formats [123], the BAM format or the utility Tabix [125] using R-tree [126]
based indexing [124].

While stock generic compression algorithms permit streaming encoding and decoding and are
thus compatible with the goal of sequential, ordered traversal of data sets, they do not comply
with random access requirements. This disadvantage is commonly mitigated by enabling seeking
to de�ned positions in the stream. These decoding o�sets are realized by periodically either
saving the complete state of the encoder, or by causing an encoder reset. In both cases, the
cost is an e�ective decrease in compression e�ciency, either because of the overhead of saving
the series of encoder states along with the compressed data, or because the encoder needs to be
retrained following each reset. Additionally, an index data structure must be integrated to allow
conversion between compressed and uncompressed stream o�sets. As a result, there is a tradeo�
between compression ratio and random access granularity, and thus e�ciency.

1.7 Contributions of this Work

The software SHORE is a processing and analysis pipeline for high-throughput DNA sequencing
data [1, 18]. The pipeline is targeted at a reference sequence-based resequencing data analysis
approach, combining raw read manipulation and �ltering, read mapping and several analysis
modules speci�c to di�erent sequencing applications.

With this work, large parts of our pipeline were reworked for coping with increasingly large
amounts of data, optimization of work�ows and extended analysis requirements. In the process,
SHORE was embedded into a generic programming framework to provide universal support of
introduced features across all processing modules (section 3.1). Increasing storage sizes of data
sets produced by high-throughput sequencing devices have been addressed by implementation of a
variety of data compression options. At the same time, increased processing times were countered
by extended parallel processing facilities, and speci�cally distributed memory parallelization
of the read mapping process. Furthermore, with greater data set size, e�ciency of retrieval
of speci�c data set elements or subsets has gained importance for data set exploration and
visualization. To meet these requirements, appropriate data indexing and query algorithms were
incorporated. Exploiting the data set indexing facilities, within several analysis modules we
address basic visualization of sequencing read alignment and depth of coverage distribution to
mitigate the need for time-consuming data set copying and conversion for use with external
visualization solutions.

16 CHAPTER 1. INTRODUCTION

Our application programming framework libshore was implemented as a common foundation
to all SHORE processing modules. In addition to elementary functionality such as automatic
input and output decoding and encoding, algorithms for indexing sequencing-related data and
alignment of biological sequences are provided. Furthermore, we developed a generic process-
ing framework with the aim of facilitating breakdown and implementation of rather complex
sequencing data analysis algorithms as collections of manageable and self-contained processing
modules. We further extended on this framework for straightforward parallelization of basic
sequencing data processing.

The fundamental data analysis work�ow introduced with the initial version of SHORE con-
sists of subsequent application of read �ltering, read mapping and application-speci�c analysis
modules. While this basic approach has been maintained, it has been extended in many areas
for simpli�cation of a variety of routine tasks. An overview of the modi�ed work�ow is therefore
given in section 2.1.

Signi�cant modi�cations to core pipeline modules concern raw sequencing read import and
�ltering as well as read mapping. Data import was modi�ed to enable recovery of raw data
or iterative data set re-�ltering (section 2.3), and complemented with extended functionality to
address e. g. the more and more widespread use of a variety of library multiplexing and fur-
ther adapter ligation protocols. For this purpose, �exible sequence-speci�c read partitioning and
clipping facilities have been added (sections 2.4, 2.5). SHORE's read mapping module initially
constituted a basic parallelization wrapper providing a uni�ed interface to di�erent short read
alignment tools. To take advantage of an increasing diversity of read mapping algorithms, fea-
tures have been added to enable integration of the results obtained using di�erent alignment
algorithms or parameters (section 2.6).

Application-speci�c data analysis modules initially implemented in SHORE mainly addressed
the assessment of genomic variation. This functionality has largely been maintained, with only
slight modi�cations to take advantage of the libshore infrastructure. A focus of this work how-
ever was on quantitative application of high-throughput sequencing, and primarily ChIP-Seq
data analysis. Within the SHORE analysis environment, we have implemented an enrichment
detection module targeted at the analysis of transcription factor immunoprecipitation data (sec-
tion 2.7). In comparison to other approaches, our method emphasizes robustness towards read
mapping artifacts and simpli�es handling of replicate experiments. Our ChIP-Seq enrichment
detection module is complemented by con�gurable auxiliary utilities allowing composition of cus-
tom work�ows applicable to various expression pro�ling or enrichment detection applications.

In conclusion, with this work the SHORE software has been developed from an analysis pipeline
consisting of a set of largely independent submodules targeted primarily at genomic variation
assessment into a tightly integrated, general-purpose sequencing data analysis suite supporting
a set of coordinated, interdependent features. The SHORE sequencing data analysis suite is open
source software freely available1 under the GNU General Public License (GPL) version 3.

1http://shore.sf.net

http://shore.sf.net

2 A High-Throughput DNA Sequencing Data Analysis

Suite

The constant pace of development of high-throughput sequencing technology and pro-
tocols is a force driving continued adaptation and improvement of related software
solutions. The present chapter is concerned with the data storage solutions and re-
trieval algorithms, high-throughput sequencing data analysis algorithms and software
utilities that were developed in the course of this work for use with the SHORE DNA
sequencing data processing and analysis pipeline.

2.1 Overview

Amounts of data produced by high-throughput sequencing devices have from the start posed
a challenge with respect to data analysis. Since their introduction, countless computational
utilities have been developed to satisfy di�erent data processing and analysis needs in all areas of
application. Large-scale high-throughput sequencing projects however emphasize the importance
of standardized work �ows and data storage. With data analysis extending over multiple phases
as well as a signi�cant time span and overall man-hours distributed among multiple individuals,
coordinated e�orts to ensure coherence and reproducibility of processing and analysis results
become imperative.

A basic level of standardization is readily achieved by reliance on whole-sale software solu-
tions, with all required data processing and analysis algorithms based on a common framework.
However, apart from commercial o�ers few freely available high-throughput sequencing appli-
cations provide integration � to varying degrees � of more than just isolated processing and
analysis steps, e. g. SOAP, SAMtools [100] or GATK [97].

With the SHORE software, we provide an integrated high-throughput sequencing read pro-
cessing and analysis framework based on consistent data storage concepts. SHORE o�ers an
end-to-end pipeline including all relevant steps starting from initial raw read data �ltering and
partitioning and proceeding up to primary analysis results. An overview of SHORE's general data
analysis work �ow is provided in �gure 2.1. While in principle consistent with what has been
described [1] (cf. section 1.7), we implement a variety of extensions including optional recovery
of raw data, on-the-�y merging, subset selection and �ltering as well as data visualization, as
discussed in the following.

In a reference sequence-guided resequencing approach, primary data analysis proceeds in three
main stages. First, raw sequencing read data obtained from the base calling software become
subject to quality control and demultiplexing algorithms (�gure 2.1(a)). Thus processed reads
are subsequently mapped to the appropriate reference genome sequence (b). Application-speci�c
algorithms then interpret the read alignment data as the �nal step of the primary analysis (d),
such as genotype calling, assessment of structural variation, enrichment detection or di�eren-
tial expression analysis. Approaches to follow-up analysis of the generated primary results are
manifold and highly divergent, and therefore not currently integrated with the pipeline.

19

20 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Export

Recovery

Archiving or

Unprocessed

Unprocessed

Processed

Merge,

Base Calling

Reads

Reads

Reads

Processed
Reads

Import,
Filtering and
Demultiplexing

Read

Mapping

Read
Alignments

Analysis

Results

Export

Visualization Read
Alignments

Visualization and

Quality Assessment
Distribution

Select
and Filter

External Analysis

or Visualization

(a)

(b)

(c)

(e)

(f)

(d)

(g)

(h)

(i)

Figure 2.1: The SHORE Work�ow

Our analysis pipeline is realized as a command line application organized as a collection of
submodules. A module SHORE import provides initial processing of raw read data and logically
organizes its output in a prede�ned directory hierarchy, which forms the basis for the operation of
further modules (section 2.3). The module provides a comprehensive set of commonly required
�ltering operations such as quality based �ltering and read trimming, removal of sequencing
adapters or demultiplexing for bar-coded samples (section 2.4). To facilitate iterative adjustment
of �ltering parameters or distribution of raw read data to third parties, the module further
provides functionality to fully restore its original input data (e).

Analysis of SHORE processed data by means of third-party analysis utilities is possible through
format conversion. A module SHORE convert provides read and alignment data export to a
variety of commonly supported data exchange formats such as FASTA, FASTQ, SAM, BED or
GFF (f, h). To assess overall run quality, nucleotide composition and base quality distributions
may optionally be visualized with a module SHORE tagstats (g, section 2.8).

Data analysis methods implemented in SHORE primarily follow a reference sequence-oriented
resequencing approach (section 1.5). The provided module SHOREmap�owcell is responsible for
the required mapping of the processed read data to a reference genome sequence. The mapping
module is realized as a high-level command line interface and parallelization front-end to a variety
of widely useful read mapping tools such as GenomeMapper, BWA or Bowtie2 (section 2.6).

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 21

Read mapping data stored as a result of the SHOREmap�owcell module constitute the input
for data analysis modules such as variant calling or enrichment detection (d). Available analysis
modules cover SNP and indel detection (SHORE qVar, consensus), ChIP-Seq analysis (SHORE peak,
section 2.7), reference-based small RNA analysis as well as versatile modules SHORE coverage and
SHORE count applicable to a variety of expression analysis and enrichment sequencing approaches.
A further module SHOREmapdisplay as well as SHORE coverage and count support data set explo-
ration through visualization of read alignments or depth of coverage, respectively (i, section 2.8).

Alignment input data to analysis and visualization modules can on-the-�y be selected by
region of interest, merged with data of e. g. further sequencing runs as well as passed through a
variety of �ltering operations such as duplicate sequence removal (c, sections 2.2.3, 2.7.2).

The SHORE data analysis suite is designed for seamless integration into established Unix
command line work�ows. Where appropriate, modules support streaming input and output
to and from other commands. SHORE's data are stored in simple line based text �le formats
utilizing standards-compliant compression formats, facilitating data manipulation by stock text
processing utilities. To support routine application in a speci�c scenario, all of SHORE's defaults
may be pre-con�gured through user-speci�c con�guration �les.

2.2 E�cient Storage of High-Throughput Sequencing Data Using

Text-Based File Formats

For large data sets as generated by high-throughput sequencing machines, space e�cient on-
disk representation is imperative. At the same time, during active analysis phases data must
remain easily retrievable, requiring an appropriate compromise between compression ratio and
access e�ciency (section 1.6). This section presents data storage formats, indexing and retrieval
mechanisms implemented in the SHORE pipeline.

Typical binary �le formats for sequencing data come with both advantages and disadvantages
compared to traditional text-based alternatives. SHOREmakes use of compressed text �le formats
for read alignment data that achieve similar or better compression ratios compared to compressed
binary formats such as CRAM. SHORE's �le compression formats all support streaming input
and output as well as near-random read access to decompressed �le o�sets. Users may �exibly
choose the desired tradeo� between compression ratio, decoding and encoding speed and random
access guarantees. Specialized utilities o�er binary search like queries and range queries on
compressed or uncompressed data sets for many types of text-based �le format popular with the
bioinformatics community.

2.2.1 Overview

Driven by the amounts of short read and alignment data generated during HTS data analysis,
specialized binary storage formats have been introduced, notably the BAM format [100] and
the CRAM format [120] both designed for storage of aligned as well as unaligned short read
data. BAM employs binary encoding of values with the aim of reduced �le parsing overhead,
i. e. to improve e�ciency of conversion between the disk and the in-memory representations of
data. On the other hand, CRAM de�nes a specialized format with the aim of enabling increased
compression ratios by supporting custom encoding for certain attributes of the data set elements.

In spite of the reasons in favor of specialized binary data encoding, there are also drawbacks
compared to traditional ASCII text-based storage formats. Parsing custom binary formats re-
quires careful consideration of technical details like machine endianness and representation of
�oating point numbers. Additionally, in depth knowledge of the relevant data encoding and
compression algorithms is inevitable. Unless a parsing library is provided for the programming

22 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

language of choice, readout of binary formats is therefore often too laborious or beyond basic pro-
gramming skills, e�ectively limiting users of the format to choose from a narrow set of supported
programming languages.

In contrast, basic parsers are straightforward to implement for simple tab-delimited table
formats. Requirements such as string tokenization and conversion between character strings and
numeric types are well supported by high level scripting languages popular in the bioinformatics
�eld such as Perl or Python, and considered a basic skill in next to any programming language.
The line-based formats are furthermore accessible to shell scripting and readily �ltered through
widely used Unix text processing utilities such as grep, awk, sed or sort. While conversion
between �le and in-memory representation is less e�cient compared to optimized binary formats,
the introduced overhead is marginal in relation to the overall CPU consumption of data analysis
algorithms.

Furthermore, delimited text tables can serve as a basic framework for �le format de�nitions
such as SAM, GFF or VCF. This common foundation enables implementation of generic algo-
rithms applicable to a large variety of di�erent �le formats, as demonstrated for example by the
tool Tabix [125] for range indexing of genomic feature �le formats. Adapting similar algorithms to
di�erent specialized binary formats is laborious, requiring reimplementation or implementation
of sophisticated adapter mechanisms.

Format issues are easily identi�able with text-based �le formats without requirement of expert
knowledge or implementation of specialized format veri�cation routines. Software dealing with
data produced by a rapidly evolving technology as is high-throughput sequencing instrumentation
is likely required to undergo constant adaptation. Besides, at high rates of data production
storage systems may operate close to the limits of their capacity. In such potentially unstable
settings, simplicity of �le formats constitutes a signi�cant advantage.

On grounds of these considerations, the SHORE analysis suite relies on tab-delimited table
formats for storing reads, read mapping data and analysis results. Users may further choose to
store �les either directly as plain text, or between one of two widely used compression formats,
GZIP [116] and XZ [127]. While such generic compression �le formats themselves represent
binary formats, decoding commands and routines are widely available across platforms and
programming languages and are employed merely as a �ltering layer, thus retaining most of the
advantages of a text-based format. With compression, SHORE implements block-wise encoding
for both the GZIP and the XZ format to enable near-random read access at any decompressed
�le o�set. Our implementation enables free adjustment of random access and space e�ciency
trade-o�s (section 2.2.2).

SHORE's text-based read alignment �le format was extended to support reference compression
as introduced by the binary CRAM format (section 1.6), as well as further simple preprocess-
ing �lters serving to boost compressibility in combination with generic compression algorithms.
Depending on the choice of preprocessing �lters, compression algorithm and random access res-
olution, our compressed text �le formats enable similar or better read alignment compression
ratios compared to CRAM (section 2.2.5).

Another common requirement in sequencing data analysis is the retrieval of data set elements
with a certain attribute value, e. g. extraction of the set of single nucleotide polymorphisms
included in a certain range of the reference genome or retrieving a read with a speci�c identi�er
for a short read data set. However, standard linear search is slow when processing large data sets.
Given the data set is in sorted order with respect to the key attribute, accelerated queries are
possible. SHORE sort o�ers text �le sorting functionality similar to the standard sort command
line utility, optimized for use with typical high-throughput sequencing �le formats. Additionally,
the tool is capable of performing binary accelerated queries on arbitrary sorted tab-delimited
text �les.

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 23

(a) GZIP

(b) BGZF

(c) dictzip

(d) SHORE-GZIP

GZIP header

DEFLATE compressed data

GZIP footer

Indexing information embedded in header

Figure 2.2: Basic Structure of the GZIP Format and its Sub-Formats

Binary search is however not applicable to elements like read mappings, gene models or
variant information representing two-dimensional objects with a start and an end coordinate.
Fast access to such data set elements overlapping a speci�c region of interest is crucial for data
visualization and manual data set exploration. A text-�le indexing approach capable of answering
various types of range queries is implemented as a utility SHORE 2dex, providing functionality
similar to Tabix [125] or the BAM [100] and BigBed [123] indexing schemes. In comparison to
the also-generic Tabix indexer, SHORE provides additional functionality such as �exible choice of
compression format and random access resolution, indexing of �les not sorted by start coordinate
and fast queries on data sets with deep sequence coverage.

Both utilities SHORE sort and SHORE 2dex make use of SHORE's generic random read access
back end and can thereby seamlessly be applied to both compressed and uncompressed data sets.

2.2.2 Widely Compatible Indexed Block-Wise Compression

GZIP [116] is one of the most widely used generic compression formats with a high level of
support across operating systems, programming languages, command line utilities and many
further software applications. The employed DEFLATE compression algorithm [115] o�ers a
reasonable compromise between encoding and decoding speed and compression ratio. Therefore,
the format is an obvious choice for compression of sequencing related data. However, it lacks
random read access support, forcing decompression of all data preceding a required section of
the compressed �le. As this interferes with the ability to perform accelerated queries on the
compressed data sets, subset speci�cations have been developed to add this feature without
breaking compatibility.

The GZIP �le format embeds DEFLATE compressed data between a header and a footer
sequence (�gure 2.2(a)). Encoding parameters are speci�ed within the header, whereas the
footer consists solely of eight byte specifying a checksum as well as the decompressed �le size
modulo 232. Header, compressed data and footer constitute a GZIP stream, and a GZIP compliant
�le consists of one ore more concatenated streams. Upon decompression, data of concatenated
GZIP streams are concatenated as well.

24 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

The BGZF format developed for the BAM format and the Tabix utility [100, 111, 125] exploits
the concatenation feature to implement independently compressed blocks within the GZIP speci-
�cation. Uncompressed data are split into 64 kilobyte (kB) blocks, compressed independently as
GZIP streams and eventually concatenated (�gure 2.2(b)). Although the resulting compressed
size of a block is unpredictable and depends on the compressibility of the data, with the knowl-
edge of the start o�sets of all blocks in a compressed �le it is possible to quickly locate the block
containing a speci�c uncompressed �le o�set. Thereby excess data that have to be decompressed
to access any speci�c position of the �le are limited to at most the block size of 64 kB. BGZF
however does not specify a means of storing the start o�set of each of the compressed blocks. To
realize accelerated queries on top of BGZF, block o�set information must therefore be incorpo-
rated in external index �les. This represents a source of potential error, as the contents of the
compressed �le may diverge from the stored index data. Furthermore, various software appli-
cations do not correctly implement the stream concatenation feature of the GZIP speci�cation,
resulting in BGZF compressed data being truncated after decompression of the �rst block.

The open source command line tool dictzip comes with a speci�cation for an indexed GZIP-
compliant format. The GZIP format speci�cation allows up to 64 kB of arbitrary extra data
to be embedded within the header sequence. This extra data is simply to be ignored by basic
GZIP decoders. The dictzip format takes advantage of the extra data �eld for storing block
o�set information (�gure 2.2(c)). During the encoding process, the DEFLATE algorithm o�ers
the possibility of manual insertion of reset points from which decompression may be started
without processing the entire �le. By exploiting this feature to compress blocks of input data
independently, the dictzip tool avoids reliance on the stream concatenation feature as in the
case of BGZF. However, with the extra data �eld in the GZIP header being limited to 64 kB by
speci�cation, the number of blocks that can be stored is limited as well, e�ectively prohibiting
storage of data with an uncompressed size of more than 1.8 gigabyte (GB). Furthermore, the
entire index data to be stored in the GZIP header only becomes available after the entire �le has
been encoded. Streaming output is therefore incompatible with the format, which is therefore
suitable for medium size, static data sets, but is not well matched to the compression of large-scale
sequencing data.

Due to the shortcomings of available formats, we introduce a further subset speci�cation.
The SHORE-GZIP format compresses the entire �le as a single GZIP stream to provide optimal
compatibility. To enable streaming output, all indexing information is stored at the end of the
�le. On decompression using either SHORE or arbitrary third party tools, block o�sets stored
in the index are discarded. Thereby, index information is guaranteed to remain consistent with
the �le contents. To allow �ne-tuning the tradeo� between compression ratio and random access
overhead, the format enables free choice of encoding block size.

SHORE-GZIP realizes block-wise encoding similar to the dictzip approach by requesting peri-
odic resets of the DEFLATE encoder (�gure 2.2(d)). During encoding, the method keeps track
of the compressed block o�sets. After encoding all input data, the recorded index information
is split into blocks of approximately 64 kB. Each block is embedded as extra data �eld into a
GZIP header, which is appended to the compressed �le followed by two byte signaling empty
compressed data to DEFLATE decoders, as well as eight further byte forming the appropriate
GZIP footer. The indexing information is hence stored as consecutive empty GZIP streams that
will be ignored by standard decoding of the data set. The SHORE-GZIP implementation is how-
ever able to recognize, collect and decode the trailing index blocks on demand to enable random
read access.

An important feature of plain GZIP is the ability for users to concatenate compressed �les
without breaking format compliance. With SHORE-GZIP, concatenation results in index records
being interspersed among the data streams. Through correct recognition of such interspersed

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 25

index elements by SHORE's index parsing algorithm, random access functionality is preserved in
concatenated �les.

Apart from GZIP, SHORE o�ers �le compression using the XZ [127] format. XZ employs the
Lempel�Ziv�Markov chain algorithm (LZMA) to achieve considerably improved average com-
pression ratio compared to DEFLATE. LZMA o�ers decompression performance close to that
of DEFLATE, whereas compression requires signi�cantly more computational resources. XZ is
modeled after the GZIP format by speci�cation of a similar structure of concatenated streams
of encoded data. The �le format however natively includes terminal index records that store
all positions of an eventual encoder reset and can therefore be employed within SHORE without
further extensions.

2.2.3 E�cient Queries on Text Files

Queries for speci�c elements in a sorted sequence can be quickly answered by binary search
in O(log n) time, where n is the length of the input sequence. Stock binary search algorithms
however are not directly applicable to text-formatted data sets where the total number of elements
and their exact start o�sets in the �le are not known. We therefore implement a modi�ed binary
search for text �le queries. Our algorithm bisects the data set by seeking to the central byte and
subsequently seeking past the next newline marker following that position. Except for border
cases that must be handled separately, the following line is compared to the user-provided search
key and the algorithm is applied recursively to the appropriate subset of the �le. In general,
worst case time complexity of the modi�ed binary search algorithm is O(m) on arbitrary text
�les with a total size of m byte, which however reduces to O(log n) for an n-element data set if
a static limit for the maximal byte size per element is assumed to exist.

Generic text �le search functionality is made available through the SHORE sort utility. The
program is applicable to arbitrary sorted tab-delimited text tables, o�ering the capability to
retrieve speci�c data set elements as well as to bisect the data set using a search key.

Automated data analysis can often narrow down the data relevant to the investigation to
a small set of regions on the reference genome. Close examination of such individual genomic
regions necessitates rapid retrieval of data associated with the appropriate range of positions. Un-
less consisting completely of non-overlapping entries, range queries can however not be answered
by binary search.

Objects associated with a speci�c range are two-dimensional entities that can be interpreted
as points in a plane de�ned by their start and end coordinate. A query range q = (xq, yq)
then is itself a point in the plane, which together with its re�ection about the 45 degree line
q′ = (yq, xq) partitions the search space into six di�erent quadrants (�gure 2.3(a)). Area A
includes all objects fully included in the query range, de�ned by constraints x ≥ xq and y ≤ yq.
Subdivision B represents all elements whose range itself includes the entire query range, with
the constraints x ≤ xq and y ≥ yq. All objects intersecting the query are represented by the set
union of areas A to D de�ned by y > xq and x < yq, whereas elements completely disjoint from
the query range fall into quadrants E and F (y ≤ xq or x ≥ yq).

One of many ways to impose a spacial partitioning on multi-dimensional data represent
k-d trees [128], recursively bisecting the data set with respect to alternating dimensions (�g-
ure 2.3(b)). In a perfectly balanced k-d tree, each recursion splits the current subset of the data
at the median of the respective dimension's values. In that case, the tree may be represented
implicitly by an array of its elements with a particular ordering [129]. k-d trees can answer
region searches with a worst case time complexity of O(k · n1−1/k + r), i. e. O(

√
n + r) in the

two-dimensional case, with n the total number of data set elements and r the number of elements
to be retrieved [130].

26 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Start

St
ar
t
+
Si
ze

q = (xq, yq)

q′ = (yq, xq)

A
C

B D

E

F

(a) Range Query

Start

(b) Search Space Partitioning

Figure 2.3: Range Search Using k-d Trees

SHORE implements a generic algorithm to impose 2-d tree ordering on array-like objects.
Given a 2-d tree ordered array object, further algorithms facilitate retrieval of elements inter-
secting (A�D), included by (A) or including (B) a query range or entirely located upstream (E)
or downstream (F) of a query position.

Based on the 2-d tree algorithms, we developed a persistent indexing scheme for text-
formatted range data �les, made available through the SHORE 2dex utility. The indexing method
processes input �les in blocks of a �xed, user-provided byte size. For each block, we record
a sequential identi�er as well as the sequence range spanned by the combined elements whose
storage entry starts inside the respective block. If a block is not associated with any storage
entry, no information is saved. Blocks records are arranged in 2-d tree order and saved to disk
as the concatenation of three arrays providing the reordered identi�ers, genomic start positions
and sizes. For answering range queries, array information is mapped into memory and supplied
to the appropriate 2-d tree query algorithm, thereby providing the identi�ers of all blocks that
potentially contain elements relevant to the query. In combination with the index block size,
block identi�ers allow calculation of the uncompressed start o�sets of the blocks in the �le. A
subsequent linear search phase scans the blocks indicated by the 2-d tree query to assemble the
�nal search result.

Through the block size parameter, users are enabled to variably adjust the tradeo� between
index �le size and maximum length of the linear search phase. In sparse range data sets or
data sets not ordered by sequence coordinate, a query range may be spanned by the combined
elements associated with a block although none of the individual elements is of relevance to the
respective query. In such cases irrelevant blocks must frequently be subjected to linear search
unless the index block size is su�ciently small. To overcome this slight de�ciency, we introduce
a second user parameter maxgap. If subsequent data set elements in a block are farther apart on
the genomic sequence than the provided maxgap size, then the respective block is stored multiple
times associated with di�erent ranges that do not include any coverage gap larger than maxgap.

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 27

(a)
CCCTAAACCCTAAACCCTAAACCCTAAACCTCTGAATCCTTA
||||||||||**|||||||||||||****|||||||||||||
CCCTAAACCCGTAACCCTAAACCCT---TCTCTGAATCCTTA

(b) CCCTAAACCC[TG][AT]AACCCTAAACCCT[A-][A-][A-][CT]CTCTGAATCCTTA

(c) 10[TA,GT]13[AAA,---][CT]13

(d)
Query CIGAR MD
CCCTAAACCCGTAACCCTAAACCCTTCTCTGAATCCTTA 10=2X13=3D1X13= 10T0A13^AAA0C13

Figure 2.4: Example Read Alignment and its Representations in the MapList and SAM Formats

BAM indexing as well as the Tabix utility are two incarnations of a similar indexing scheme
based on R-trees which was �rst introduced for the UCSC Genome Browser [124]. Utilities like
the BAM indexer however are tied to their speci�c associated �le format. The more versatile
Tabix utility supports many text-based �le formats, but requires BGZF compressed data. By
separating the random access and range indexing concepts, the 2d-tree index is universally appli-
cable to all storage formats supported by the random access back end, currently including plain
text, XZ and SHORE-GZIP. Moreover, the ability of indexing data sets not strictly required to
be ordered by sequence coordinate is unique among the stated indexing methods. As described,
our method indexes chunks of the data set having a �xed byte size. The UCSC R-tree family of
indexes di�er in this respect by grouping data set elements into tiling windows on the genomic
sequence at a maximum resolution of 16 kilobases. This binning approach implies the disad-
vantage of potential uncontrollable growth of the linear search phase for deeply covered regions
of the genome. We further regard the 2d-tree index's homogeneous array layout a substantial
implementation advantage.

2.2.4 Improved Compression of Read Mapping Data

To cope with increasingly large amounts of read mapping data, we implement reference based
compression, quality reduction, read relabeling as well as a simple transposition algorithm capable
of further boosting compressibility of SHORE alignment �les and other types of tab-delimited ta-
ble. Conversion from standard to condensed representations is implemented as a tool SHORE coal.

A read mapping by our de�nition is a multi-attribute entity composed of its mapping co-
ordinates on the reference genome as well as a read alignment that speci�es the exact set of
base pairings, traditionally represented in a multi-line format (�gure 2.4(a)). The line-based,
tab-delimited MapList format [1] de�ned by SHORE stores mapping coordinates, read alignments
along with the original read information and attributes describing the reliability of the mapping
as well as read pairing information. Alignments are stored in an alignment string format resem-
bling that originally introduced by Vmatch [131], a sequence matching tool based on enhanced
su�x arrays [132]. In the Vmatch format, matching positions are represented literally by the
matching nucleotide symbol, whereas edit operations are described by the pair of mismatching
symbols enclosed in square brackets (�gure 2.4(b)).

To adjust to the development of sequencing technology and read mapping tools, we have
carefully amended the original alignment representation with a small set of additional features
while maintaining full backwards compatibility. With the constant increase of achievable read
length, it becomes possible for read mapping tools to align reads across longer stretches of

28 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

inserted, deleted or polymorphic sequence. For more concise and readable representation of such
alignments, we additionally allow consecutive edit operations of the same type to be indicated by
two comma-separated strings representing the sequence of the reference and the read, respectively.
Reference-based compression as introduced by CRAM in our format is supported by simple
substitution of all substrings representing exact matches between read and reference sequence by
their length (�gure 2.4(c)).

The standard SAM/BAM format splits read alignment information across three attributes
(�gure 2.4(e)). In this format, the nucleotide sequence of a read (query) is stored unaltered.
Actual alignment information is separated into a CIGAR string as well as an optional MD tag
required to specify reference sequence information for mismatch and deletion positions. Omission
of read information redundant with the reference sequence via reference-based compression is
not supported by the format speci�cation. In the opposite direction, the SHORE alignment
string format speci�es further enhancements such as inclusion of soft clipped sequence enclosed
in angle brackets (not shown) to enable full feature compatibility with the CIGAR alignment
representation.

Apart from read alignments, read qualities and identi�ers can make up for a considerable
fraction of the storage requirements of compressed read data (cf. section 2.2.5). SHORE o�ers a
simple algorithm capable of lowering base quality resolution and thereby read quality entropy
similar to the quality binning approach taken by cramtools [120]. We take a user-speci�ed
resolution threshold k to partition each read quality string into sections where the lowest and
highest quality value di�er by at most k. Each nucleotide is then assigned the lowest quality
value found in the respective section. Information on edit operations is prioritized by always
storing the exact quality value for read bases representing mismatches or insertions relative to
the reference sequence.

Simpli�cation of read identi�ers can amount to a signi�cant further reduction of storage
requirements. Standard read identi�ers are strings automatically generated by the base calling
software. For example, Illumina software builds read labels from a sequencing run identi�er
as well as the reads' coordinates on the �ow cell. Due to the randomness of the coordinates
as well as the random order of occurrence of the reads in a typical mapping data set ordered
by alignment coordinate, the sequence of identi�ers to be stored is of high entropy and poor
compressibility. Post-mapping systematic relabeling of reads can therefore drastically improve
compression ratio. Following relabeling, information content of the sequence of stored identi�ers
is primarily determined by their actual function, which is identi�cation of associated data set
entries such as paired reads or repetitive read mappings. SHORE coal o�ers such relabeling
combining simple enumeration by alignment coordinate with a static data set identi�er.

In general, generic compression algorithms like DEFLATE or LZMA better pick up redun-
dancy in homogeneously structured data. This suggests that e. g. read quality data might be
compressed more e�ectively when grouped together rather than stored interleaved with the fur-
ther attributes of the data set elements such as identi�ers and read alignments. Isolated storage
of these attributes however prohibits data streaming. Furthermore, given presence of variable-
length attributes that cannot reasonably be stored in a �xed, predetermined amount of space,
random access to the full set of attributes of a certain data set element requires additional index
data structures that counter the aim of optimizing compression ratio. A compromise between
such an attribute centric and the regular element centric representation constitutes block-wise
coding of the data in an attribute centric representation, with block size chosen small enough to
transform a block into an element centric representation on-the-�y.

To explore the e�ectiveness of such a mixed representation for boosting compressibility, we
implemented a simple transposition operation applicable to tab-delimited �le formats (algo-
rithm 2.1). Our algorithm takes as parameter a �xed block size k for transformation of the

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 29

input : Text T , block size k
output : Transposed text T ′

foreach block B in T of size k
do

�rst_row ← �rst row of B;
remove the �rst row from B;
last_row ← last row of B;
remove the last row from B;
append �rst_row to T ′;

if B is a table then
foreach column C in B
do

append C as row to
T ′;

end

else

append B to T ′;
end

append last_row to T ′;
end

Algorithm 2.1: Block-Wise Text Transposition

input data. Input is subdivided into blocks of k byte. First and last row of a block are de�ned
as the characters up to, and including the �rst newline, as well as the characters following the
last newline marker found in the block. For each block, �rst and last row are output unaltered,
preserving lines spanning block boundaries. Data in between are checked whether they represent
a table with �xed number of columns, and if so are transposed swapping rows for columns.

When applied to data represented as a tab-delimited table with a �xed number of columns,
the transposition algorithm succeeds in grouping together all attribute values of the same type
in a block, lines at block boundaries excluded. For tables with variable number of columns or
other data, the input is left unaltered. Applied twice with the same block size parameter value,
the original input is guaranteed to be restored.

SHORE supports a transposed format by addition of a special header marking transposed
data and specifying the transformation's block size. On �le access this header is recognized and
input is passed through a �lter applying the appropriate block-wise back-transposition. Random
access is supported by reading the appropriate block of data, back-transposing and subsequently
seeking to the correct o�set inside the block.

2.2.5 Compression Results

We used a data set consisting of approximately 6.8 million aligned 40 base pair Arabidopsis
thaliana reads obtained by Illumina sequencing for evaluation of e�ectiveness of the measures
implemented to improve space e�ciency.

In plain MapList format, the read mapping data set occupied about 1.1 Gb of disk space. To
assess the potential for reduction of total data set size by optimizing encoding and representation
of certain attributes, we extracted individual data set columns (table 2.1). Read alignments and

30 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Attribute Plain Size Compressed Size Compression Ratio
read alignments (ref. comp.) 349 Mb (33 Mb) 19 Mb (3.4 Mb) 5.7% (10.3%)
read IDs (relabeled) 227 Mb (117 Mb) 39 Mb (3.2 Mb) 17.5% (2.7%)
qualities (reduced) 341 Mb (341 Mb) 76 Mb (30 Mb) 22.3% (8.8%)
other �elds 163 Mb 5.4 Mb 3.3%

Table 2.1: Compressibility of Individual Read Mapping Attributes

qualities accounted for 349 Mb and 341 Mb, each corresponding to approximately 32% of the
total storage size, followed by standard read identi�ers with 227 Mb (21%) and the collective
size of all further attributes (163 Mb, 15%).

Column data were compressed in XZ format at 128 kB block size. Read alignments were
thereby reduced to 5.7% (19 Mb) of their original size, further �elds to 3.3% (5.4 Mb), whereas
read identi�ers and quality strings could not be compressed as e�ectively with compression ratios
of 17.5% (39 Mb) and 22.3% (76 Mb), respectively.

By application of reference-based compression, storage size of read alignments was reduced to
less than ten percent (33 Mb) in plain text format. This gain was however somewhat diminished
in compressed format due to the worse compressibility of the data, resulting in a compressed size
of 3.4 Mb at a compression ratio of 10.3%.

Relabeling of the reads resulted in a storage gain of roughly �fty percent relative to the
original representation owing to the shorter read identi�ers. Vastly improved however was the
compressibility of the identi�er sequence, resulting in a reduction to just 2.7% (3.2 Mb) relative
to plain text format.

E�ect of reduced quality value resolution was assessed using the cramtools quality binning
con�guration N40-R8 to allow direct comparison to the CRAM format, although the algorithm
implemented in SHORE achieved similar results. The N40-R8 setting preserves quality values of
all reference sequence mismatches, while assigning quality values of sequence matches to one of
eight possible bins. Application of quality resolution reduction improved compression ratio of
the quality data from 22.3% to 8.8%.

We further assessed the e�ect of various combinations of compression and data reduction
con�gurations on total data set size by application of the SHORE compress and SHORE coal utilities
to the data set inMapList format and compare the results with storage of SAM/BAM and CRAM

formatted data (table 2.2).
E�ect of compression block size was evaluated using SHORE's random access granularity pre-

sets �fast�, corresponding to 128 kB block size, �medium�, 2 MB, and �slow�, 64 MB. Compression
of the 1.1 GB data set in SHORE-GZIP format at 128 kB block size reduced space requirements
to 205 MB, or 19% of the uncompressed �le size. Increasing block size to 2 MB further improved
space e�ciency by just 1.5% to 202 MB storage size, and use of 64 MB blocks did not have a
signi�cant advantage over 2 MB.

Selecting the XZ compression format at 128 kB block size resulted in a storage size of 163 MB,
15% of plain data set size and a 20% improvement over SHORE-GZIP at the same block size. E�ect
of increased compression block size was more pronounced for XZ than for SHORE-GZIP. At 2 MB
and 64 MB block size disk usage was reduced to 140 MB and 116 MB, respectively, improvements
of 14% and 17% over the respective previous block size.

Block-wise transposition was applied using the block size parameter matching the respective
compression block size. At the smallest block size, size of the transformed data in SHORE-GZIP
format was 181 MB, a 12% improvement over untransposed storage. Block-wise transposition
also augmented the e�ect of increased block sizes, achieving �le sizes of 160 MB at 2 MB and of

2.2. EFFICIENT STORAGE OF HIGH-THROUGHPUT SEQUENCING DATA USING

TEXT-BASED FILE FORMATS 31

File Format Preprocessing Compression Format Block Size Compressed File Size
SAM - - - 1.3 GB
MapList - - - 1.1 GB
BAM - BGZF default 237 MB
SAM - GZIP 128 kB 216 MB
MapList - GZIP 128 kB 205 MB
MapList - GZIP 2 MB 202 MB
MapList - GZIP 64 MB 202 MB
MapList BT GZIP 128 kB 181 MB
MapList - XZ 128 kB 163 MB
MapList BT GZIP 2 MB 160 MB
MapList BT GZIP 64 MB 157 MB
MapList BT XZ 128 kB 150 MB
MapList BT, RC GZIP 2 MB 143 MB
MapList - XZ 2 MB 140 MB
CRAM RC - default 135 MB
MapList BT, RC XZ 128 kB 132 MB
MapList BT XZ 2 MB 123 MB
MapList - XZ 64 MB 116 MB
MapList BT, RC, RL GZIP 2 MB 114 MB
MapList BT, RC, QR GZIP 2 MB 109 MB
MapList BT, RC XZ 2 MB 108 MB
CRAM RC, QR - default 103 MB
MapList BT, RC, QR XZ 128 kB 100 MB
MapList BT XZ 64 MB 96 MB
MapList BT, RC, RL XZ 128 kB 95 MB
MapList BT, RC XZ 64 MB 84 MB
MapList BT, RC, RL, QR GZIP 2 MB 81 MB
MapList BT, RC, QR XZ 2 MB 80 MB
MapList BT, RC, RL XZ 2 MB 77 MB
MapList BT, RC, QR XZ 64 MB 62 MB
MapList BT, RC, RL XZ 64 MB 60 MB
MapList BT, RC, RL, QR XZ 64 MB 39 MB

BT: block-wise transposition
RC: reference-based compression
RL: read relabeling
QR: lossy quality resolution reduction (cramtools [120] preset N40-R8)

Table 2.2: Comparison of Alignment File Compression E�ciency

32 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

157 MB at the 64 MB con�guration. This corresponds to advantages of 21% and 22% over the
matching untransformed representations.

With XZ/LZMA compression, compression ratios bene�ted slightly less from block-wise trans-
position, at the three di�erent block sizes gaining 8%, 12% and 17% over untransposed data to
obtain �le sizes of 150 MB, 123 MB and 96 MB, respectively.

We further list the e�ect of additionally applying various combinations of reference-based
compression, read relabeling and quality resolution for transposed data encoded in GZIP format
with 2 MB block size as well as encoded in XZ format at the three di�erent block sizes. In
all compression formats and block sizes assessed, reference-based compression could account for
11% to 12% of additional storage space savings. Added relabeling of reads resulted in �le sizes
reduced by further 20% in SHORE-GZIP format and by over 28% in the three XZ encoded �les.
Reduction of quality resolution gave similar improvements, producing slightly higher savings
than read relabeling in GZIP compressed data, but had somewhat lesser impact compared to
relabeling in XZ encoding.

For comparison of formats, table 2.2 also includes disk usage for the same data set converted
to SAM, BAM and CRAM �le formats. The SAM format representation of the data set entries
was slightly more verbose compared to the MapList formatting, resulting in an uncompressed
�le size of approximately 1.3 GB. The BAM encoded data set was about 14% larger compared
to MapList, and about 9% larger than the SAM formatted data compressed as SHORE-GZIP
at 128 kB block size. When applying reference-based compression only, size of CRAM encoded
data ranked slightly better than the MapList �le compressed in XZ format at 2 MB block size
or compressed as GZIP following block-wise transposition and reference-based compression, and
slightly worse than the 128 kB block size XZ-encoded �le with block-wise transposition and
reference-based compression enabled. With additional reduction of quality value resolution,
CRAM ranked somewhat worse than the XZ compressed MapList �le for the same data encoded
in 128 kB chunks with block-wise transposition.

2.2.6 Data Storage Considerations

Choice of sequencing data storage formats depends on three areas of application with overlapping,
but distinct design goals. O�-line data archiving requires primarily space-e�cient representation.
Data exchange formats must conform to a highly standardized and stable format speci�cation and
allow combined distribution of all data and meta-data in a single �le, while directly supporting
simple analysis and processing tasks. Finally, on-line storage solutions should be optimized
regarding the trade-o� between space e�ciency and certain access guarantees to provide optimal
support for the respective approaches to analysis.

With the implementation of the SHORE storage formats, we demonstrate indexable, space ef-
�cient on-line data storage for high-throughput sequencing on the basis of simple text-based �le
format de�nitions and stock compression formats. While binary formats dedicated to sequenc-
ing data storage such as CRAM should permit further optimization for improved performance
and space e�ciency, the outlined simple formats and pre-processing methods should provide a
valuable benchmark for future e�orts.

The implemented indexing solution for compressed sequencing data �les forms the basis for
rapid data retrieval for iterative analysis and data set exploration. Furthermore, our indexing
approach should facilitate the implementation of caching strategies e. g. for implementation of
fully interactive visualization of large sequencing data sets.

2.3. A NON-DESTRUCTIVE READ FILTERING AND PARTITIONING FRAMEWORK 33

2.3 A Non-Destructive Read Filtering and Partitioning Framework

To streamline further processing and analysis, it is in general desirable to initially prune high-
throughput sequencing data sets of sequence with below-par quality. Sequencing of short poly-
mers such as small RNA, bar-coded multiplexing and diverse other protocols in addition to that
require sequence context sensitive read clipping and data partitioning.

With SHORE import, we provide a utility to apply such initial read �ltering operations, in
the process converting sequencing reads from various supported input formats into SHORE's
FlatRead format and partitioning the data according to the prede�ned SHORE directory hierarchy
as described [1]. This work further develops the application into a modular and extensible read
�ltering framework.

Data analysis frequently is an iterative process, where at advanced stages it may become clear
that an initial choice of �ltering parameters for a data set was suboptimal. However, retrieval of
the original source data may be hampered by archiving in backup solutions, unless large amounts
of duplicate data are to be supported and managed on disk. Our utility was therefore reworked to
perform all sequencing read editing and �ltering in a non-destructive, reversible manner, exploit-
ing the prede�ned SHORE directory hierarchy for preventing loss of information. It is thus able
to seamlessly recover the raw unprocessed sequencing data sets for straightforward re-�ltering
or distribution to third parties. Processing facilities provided by the application include custom
quality and chastity �ltering, low complexity read removal, quality-based trimming of read ends
and small RNA adapter clipping, as described [1, 18]. We have further added �lters for sequence
context-dependent read splitting as well as a versatile demultiplexing system (section 2.4). De-
faults of the program are con�gured such that no �ltering is applied automatically, but quality
�lters indicated by the input format are respected. Supported read �ltering operations must be
selectively enabled by the user and are applied in a de�ned order.

SHORE import further provides optional functionality for partitioning its output into batches of
�xed, user de�nable size, as well as additionally by the length of the processed reads. As sequence
length is a highly signi�cant property e. g. for small RNA data, length partitioning facilitates
selection of subsets relevant to the respective analysis. Data partitioning may furthermore o�er
technical advantages. For example, large sequencing data sets may require a long period time
to be written to disk, with a correspondingly high possibility of encountering system failures or
other issues in the process. Reduction of the amount of data stored in a single �le represents a
trivial yet e�ective measure for limiting the signi�cance of such failures for processing operations
that are applied on a per-�le basis. As SHORE is capable of merging sorted data sets on-the-�y
with minor processing overhead, potential downsides of data set partitioning are minimized.

The original de�nition of the SHORE run directory hierarchy was amended to support non-
destructive read �ltering, sample demultiplexing and raw data recovery. The directory hierarchy
by default includes four levels (�gure 2.5). The root of the hierarchy represents a single run of
a sequencing instrument. This directory is named according to the respective output directory
parameter, an arbitrary user provided string. Subdirectory names have de�ned meanings. The
�rst level below the root directory comprises of solely numeric names, representing the individual
physically separated lanes of the sequencing run. The second level includes two di�erent types
of directory. Cleaned and demultiplexed read data are stored in directories corresponding to
the appropriate sample identi�er pre�xed by the string sample_. On the same level, a directory
filtered stores all data required to restore the original unedited data set.

A further sub-level resides within the sample directories. Valid paired-end sequencing reads
are partitioned into directories named according to an integer enumeration of the paired-end
read indexes. Reads obtained by single end sequencing or paired-end reads losing their partner
due to read �ltering are stored in a separate directory single. Data �les are stored either

34 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Run-EAS67.136

1

2

�ltered

sample_Ler-1

sample_Col-0

�ltered

sample_Kro-0

sample_Bur-0

1
2
single
1
2
single

1
2
single
1
2
single

Figure 2.5: SHORE Run Directory Hierarchy

directly in the single and paired-end directories, or below a further sub-level for batching or read
length-dependent partitioning.

On completion of a batch of reads, the associated �le is sorted to enable accelerated queries
on the data set (section 2.2.3) and compressed in a supported indexed compression format (sec-
tion 2.2.4). Output is formatted in SHORE's FlatRead format; results of read trimming and
clipping are on request reported via a set of optional tags rather than being applied directly
to make �ltering results available for further customized processing. Optionally, SHORE direc-
tory hierarchy output can be disabled to transform the program into a Unix pipeline-compliant
standalone read �ltering utility. The application reports basic read trimming and �ltering statis-
tics, whereas quality and nucleotide content statistics are implemented as a separate module
SHORE tagstats (section 2.8).

SHORE import de�nes various di�erent importers to be capable of dealing with a variety of
input formats. For correct processing of read data, the program must be able to determine
all reads belonging to the same read pairing. For pairing recognition to be possible without
disproportional time or memory overhead, input data must be ordered according to adequate
criteria. Currently available importers allow input where read pairs are provided as separate,
correspondingly ordered �les such as Illumina GAPipeline directories, sets of FASTQ �les or
SOLiD color space FASTA �les, as well as sorted input in FlatRead, FASTQ, Illumina QSEQ or
454 SFF format. Therefore, unordered input data require preprocessing, but can be conveniently
passed to the application via Unix pipes using utilities SHORE convert and SHORE sort.

Our utility automatically recognizes any filtered directories residing within SHORE run or
lane directories that are passed to it as input. The contents of these directories are automatically
parsed to restore the original state of the data prior to any SHORE speci�c �ltering, optionally
re-�ltering the data set with altered settings. Filtering de�ned by the original input format is
by default restored as well, but can be explicitly ignored. By passing the restored output to the
tool SHORE convert, raw data can be obtained for distribution in a variety of widely supported
formats.

2.4 A Flexible Sequencing Read Demultiplexing System

To minimize cost per sequenced base, next-generation sequencing instruments must be uncom-
promisingly optimized for maximum throughput, at the expense of generating more data in a
single run than would be required for many types of research project. Therefore, most current se-

2.4. A FLEXIBLE SEQUENCING READ DEMULTIPLEXING SYSTEM 35

quencers feature physically separated sequencing lanes or di�erent types of �ow cells or �ow chips
to allow either to distribute overall throughput to multiple samples or to enable reduced-output
modes of operation. While physical compartmentalization allows simple sample multiplexing
without any requirement for adaptation of work �ows, it is tied to the sequencing hardware and
therefore o�ers very limited capabilities.

Bar coded multiplexing strategies have thus quickly become the method of choice to achieve
greater operational �exibility with the primarily throughput-optimized high-end sequencer mod-
els. Bar coding protocols o�er near-perfect scalability by allowing to distribute per-run sequenc-
ing depth to an almost arbitrary number of samples.

Bar coded sequencing data require that prior to further analysis demultiplexing is performed
in software to separate the respective samples as well as sample sequences from the arti�cial bar
code oligomers. The SHORE import utility integrates a �exible demultiplexer capable of dealing
with a wide variety of standard and custom bar coding protocols. The respective bar coding
setup is provided by the user in a simple tab-delimited sample sheet format. Our tool supports
all combinations of 5′ bar code ligation and index read protocols, variable length bar codes and
is able to take advantage of additional common subsequences such as e. g. restrictions sites in
RAD-Seq applications (section 1.3).

2.4.1 Overview

Bar coding is realized by fusing sample DNA with index oligomers that serve as an unambiguous
sample identi�er. Ligation of these bar codes can be achieved in many di�erent ways, each coming
with a di�erent set of advantages and disadvantages regarding library preparation, cost and
�exibility. Therefore, various bar coding protocols as well as di�erent bar coding kits provided
by sequencing instrument vendors are available.

Using the Illumina platform, index sequences may be associated with particular sequencing
primers to be read as a separate index read. Other protocols ligate bar codes to be read in one
go with the sample DNA, resulting in index oligomer and sample DNA being fused into a single
sequence read. Moreover, paired-end sequencing protocols imply various possible bar coding
con�gurations, with oligomer labels either attached to the start of just one of the sequencing
reads, identical labels attached to either read, or di�erent labels inserted at the start of the
�rst and the second read. Labeling reads individually, or even combining 5′ and index read bar
codes, enables large numbers of samples to be discriminated using only few di�erent oligomer
tags, at the cost of a more elaborate sample preparation procedure and an increased overhead
in sequencing cycles.

Often multiple di�erent labels are chosen to identify each respective sample. For example,
strong bias in the sequenced sample may in certain cases interfere with sequencing instrument
calibration, and due to that the set of bar code oligomers must be carefully compiled to achieve
a largely balanced nucleotide composition in the multiplexed DNA.

Demultiplexing via tools provided by the sequencing instrument vendors is usually only possi-
ble for the vendor-speci�c indexing protocols. With the increasing variety in di�erent bar coding
protocols, we have gradually developed bar code matching integrated with the SHORE import util-
ity into a �exible demultiplexing solution that is con�gurable for all compositions of index read
and 5′ ligated bar coding via a simple sample sheet format. We employ a read oriented format to
avoid manual enumeration of all valid bar code combinations for multi bar code con�gurations.
Prior to resolving tuples of bar codes to the appropriate sample identi�ers, bar code matching is
performed individually for each read for improved performance and detection of potential misla-
beling. The current bar code matching implementation is able to tolerate a �xed, user-speci�ed
number of mismatches and no gaps.

36 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

1 #?sample read barcode
Col-0 2 TTCACG
Col-0 2 GGATGT
Ler-1 2 CTAGGC

5 Ler-1 2 AGACCA

Listing 2.1: Example of a Simple Demultiplexing Sheet

2.4.2 A Format for Description of Multiplexing Setups

A SHORE demultiplexing sample sheet is a simple tab-delimited text table with named columns.
The recognized column names are lane, sample, barcode_group, read, barcode, extbarcode
and barcode_type.

The sample sheet is parsed utilizing a generic table input API provided by the SHORE library.
Column names are de�ned in the header line, the �rst non-empty line of the �le that is not a line
comment, or is introduced with a special comment tag �#?�. Columns are recognized by name
and may occur in arbitrary order; further columns may be present, but are ignored.

The only mandatory column, named sample, de�nes the sample identi�ers that bar codes are
to be translated to. All further columns may be added in arbitrary combinations and order. A
typical simple index read demultiplexing con�guration is described by additionally specifying the
read and barcode columns (listing 2.1), with read specifying the index of the read that contains
the bar code tag and barcode the actual sequence of the bar code oligomer. The read index
column may be omitted, indicating that all sequence reads of a pair are attached to identical bar
codes.

Index read and 5′ bar coding require suitable treatment of the respective bar code oligomers.
While 5′ bar codes must be clipped, with the remaining part of the read sequence to be retained,
index reads must be removed completely from the data set. The default implemented in SHORE
is to apply bar code clipping if the sample sheet entry refers to the �rst read or if the read
index was omitted, and to �lter bar-coded reads where the read index is greater than one. The
barcode_type column allows to explicitly control this behavior. SHORE accepts bar code types
read, 5prime and none, where the type is associated with the read index, i. e. all of a lane's
entries with the same read index must also specify the same bar code type. Bar codes of type
read will trigger �ltering of the entire bar code associated read, whereas 5prime bar codes will
be clipped.

For con�gurations with bar code information distributed across multiple sequence reads, sev-
eral entries with di�erent read index values are for each sample added to the de�nition (listing 2.2,
lines 4�7). The sample sheet entries will then be grouped on the sample identi�er, with each
possible combination of bar codes with di�ering read indexes considered a valid bar code tuple
for the respective sample. Sample sheet entries with the special sample identi�er �*� are inter-
preted as valid for each sample speci�ed for the respective sequencing lane (e. g. lines 16�17).
For example, listing 2.2 de�nes two valid bar codes for the Ler-1 sample for each of the three
sequencing reads, and thus 23 = 8 valid 3-tuples of bar codes that can be resolved to that sample.

Automatic combination of all entries listed for a sample can be controlled by the user via
speci�cation of the barcode_group column. Sample sheet entries with di�erent bar code group
values are not able to form a valid bar code tuple (e. g. listing 2.2, lines 10�13). For example, the
�rst read bar code speci�ed in line 10 for the Col-0 sample may only combined with the second
read entry from line 11 and not the one from line 13. Furthermore, a combination of line 10 and
13 would collide with the bar code tuples including entries from line 4 and 7, which are already
speci�ed to resolve to the Ler-1 sample. As with the sample column, the bar code group may be
set to �*� to specify and entry that refers to all groups of the respective sample in the respective

2.4. A FLEXIBLE SEQUENCING READ DEMULTIPLEXING SYSTEM 37

1 #?lane sample barcode_group read barcode extbarcode barcode_type

Bar codes for the Ler-1 sample.
1 Ler-1 0 1 AACT TGCAG 5prime

5 1 Ler-1 0 1 TAGC TGCAG 5prime
1 Ler-1 0 2 AACT * read
1 Ler-1 0 2 CCCT * read

Bar codes for the Col-0 sample.
10 1 Col-0 0 1 AACTT GCAG 5prime

1 Col-0 0 2 GGAC * read
1 Col-0 1 1 TTGCT GCAG 5prime
1 Col-0 1 2 CCCT * read

15 # Third read has the same bar codes for all valid samples.
1 * * 3 GGAC * 5prime
1 * * 3 TTGC * 5prime

Lane 2 is not multiplexed, discard the index read.
20 2 Bur-0 0 2 * * read

Listing 2.2: Example of a Full Demultiplexing Sheet

lane (e. g. lines 16�17).

For certain applications, the identity of several nucleotides immediately following 5′ bar code
sequences is known, like for example restriction site sequence in RAD-Seq (section 1.3). While
such sequences can be exploited to correctly assign each read to the appropriate sample, they
usually should in contrast to the bar code oligomers not be removed from the output. Parts of the
recognition sequence that should not be clipped from the read can be speci�ed in the extended
bar code (extbarcode) �eld of the table. Internally, the sequence to be recognized is contructed
by concatenation of the barcode and extbarcode �elds, while the division of sequence among
both �elds is translated into a bar code cut position. For bar code types other than 5prime, the
split into bar code and extended bar code has no e�ect. The bar code cut position is determined
in the context of the respective bar code tuple, i. e. for the same recognition sequence di�erent
samples may de�ne a di�erent split between bar code and extended bar code, as demonstrated
by lines 4 and 10 of listing 2.2. If no part of the recognition sequence is to be removed from the
output, then the entire oligomer can be provided as extended bar code, with column barcode
either omitted or set to �*�.

If neither bar code nor extended bar code are provided with a value other than �*�, then the
respective sample sheet entry will match any read sequence. With bar code type either none
or 5prime, such an entry can be utilized for assigning a certain sample identi�er to an entire
sequencing lane. On the other hand, this property may be exploited to completely remove all
reads with a certain read index from the output (e. g. listing 2.2, line 20).

The sample sheet column lane serves to allow independent demultiplexing speci�cations for
di�erent sequencing lanes in a single sample sheet �le. Rows with di�ering sequencing lane �elds
are completely independent of each other. If the sequencing lane column is omitted, then the
entire demultiplexing speci�cation is considered valid for all lanes of the instrument run.

38 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

2.4.3 Barcode Recognition and Sample Resolution

Despite current sequencing technologies having reached rather high levels of stability, single cycle
quality dropouts can not completely ruled out. Therefore, algorithms matching reads and bar
code oligomers should be able to tolerate at least limited hamming or edit distance. Rather than
directly mapping each tuple of reads to one of the potentially huge number of possible bar code
tuples with a certain cumulative edit distance, our algorithm proceeds by individually assigning
each sequence read to a speci�c bar code.

Sample demultiplexing is thus broken down into three successive operations. First, each
sequencing read is matched to the set of allowed bar code sequences associated with the respective
read index. Subsequently, given all sequences for a �ow chamber spot could be matched to one
of the oligomers, the resulting tuple of bar codes is mapped to the appropriate sample identi�er.
Following successful bar code resolution, reads are then pruned of the index oligomers as required.

The initial bar code recognition step tolerates up to a �xed, user speci�ed hamming distance
between pre�x of the sequencing read and bar code sequence. We perform a staged pre�x
matching to precomputed sorted sets of sequences, where each stage corresponds to a certain
hamming distance to the exact tag sequences. The set of sequences for each stage is generated
from the set of valid tags for the respective read index by recursively mutating the sequences
of the respective previous set, with the mutated sequences carrying a pointer to the original
unmodi�ed bar code. Potential collisions in bar code resolution are automatically detected and
the corresponding entries pruned. At each stage, the read being assessed is used to query the set
of tag sequences utilizing a binary relation that de�nes a pair of sequences as equivalent given
that one is the pre�x of the other. If the query returns no result, the algorithm proceeds to the
next stage, until the user speci�ed number of mismatches is reached and the read is discarded
as unresolvable.

Given a tuple of reads could thus be successfully mapped to a tuple of valid index sequences,
the set of valid bar code tuples is interrogated to resolve the bar code combination to the appro-
priate sample identi�er. Each of the reads is then either pruned of its 5′ end or �agged as �ltered
according to the sample sheet's bar code type speci�cation. Since the bar code cut position can
in general only be resolved in the context of the complete bar code tuple, this clipping operation
is postponed until sample identi�er and bar code group have been resolved.

Due to its restriction to hamming distance rather than edit distance, our demultiplexer is of
limited applicability to indel-prone sequencing technologies such as 454, Ion Torrent of SMRT
sequencing. However, in certain cases perfect matching may be su�cient, or probable indels
might be represented explicitly in the sample sheet. In setups requiring very long bar code
oligomers and a high mismatch tolerance, recursive generation of the mutated bar code sets
threatens to become overly resource intensive. However, bar code matching is implemented as
one of several isolated modules with a simple interface, such that additional matching options
might easily be added in the future as required, e. g. utilizing the dynamic programming alignment
algorithms provided by the SHORE library. For highly customized context sensitive read clipping
and splitting allowing for gaps and user de�ned scoring schemes, we provide a separate utility
SHORE oligo-match (section 2.5).

2.5 Versatile Oligomer Detection and Read Clipping

In addition to sample demultiplexing, a wealth of di�erent library preparation protocols and
sequencing applications exist that involve ligation of certain adapter or linker sequences, or oth-
erwise require sequence context aware clipping or splitting of the unprocessed read sequences.
Depending on the protocol or application, the respective recognition sequences may be degener-

2.5. VERSATILE OLIGOMER DETECTION AND READ CLIPPING 39

ate or truncated in various ways. Therefore, computational tools are required that are capable of
detecting optimal sequence matches given de�ned constraints, and can utilize detected matches
for pruning, splitting or otherwise manipulating sequencing read data according to user require-
ments.

In this work, a highly con�gurable utility SHORE oligo-match for pair-wise sequence matching
and match based read manipulation was implemented. The program utilizes dynamic program-
ming alignment algorithms with customized alignment matrix and backtrace initialization, modes
of backtracing and match �ltering. Various modes of sequencing read manipulation or annotation
are provided, and full match information may be retrieved for advanced customization needs.

Our application supports both threaded as well as distributed memory modes of parallel oper-
ation. It is applicable to matching, manipulating and �ltering even large data sets of sequencing
reads by a small set of provided oligomer sequences.

2.5.1 Overview

Optimal pairwise sequence alignments can be computed using well known dynamic programming
algorithms, given that no larger-scale sequence rearrangements need to be accounted for. Pairwise
alignment algorithms are grouped into two classes, global alignment methods like the Needleman-
Wunsch algorithm [133] and local alignment such as the Smith-Waterman algorithm [134]. How-
ever, matching pairs of short sequences such as high throughput sequencing reads and adapter
oligomers usually implies speci�c sequence overlap con�gurations, and therefore represents nei-
ther a global nor local alignment use case.

Mate pair sequencing libraries for Roche 454 Genome Sequencer instruments are constructed
through the Cre/lox system. Cre is an enzyme that catalyzes site speci�c recombination at
pairs of lox sequences. The protocol exploits this a�nity for circularizing multiple kilobase DNA
fragments. Circularized DNA is then cut in relative proximity to the recombination site to
obtain a shorter linear fragment consisting of the inverted ends of the original fragment joined
by a linker oligomer that includes a lox sequence. To obtain mate pair reads, the compound
insert is sequenced and then split computationally adjacent to the detected location of the linker
oligomer.

Cre/lox mate pair sequencing protocols have also been introduced to Illumina technol-
ogy [135]. Due to the by comparison short read lengths, both ends of the circularized fragment
cannot in general be retrieved as a single sequence read and thus the insert is sequenced from
both ends. The linker oligomer may be detectable in none, only one, or both sequences of a
read pair, depending on read length, linker position and size of the insert.

Recognition and removal of adapter oligomers is further required in all situations where there
is an overlap between the distributions of insert size and sequencing read length. In small RNA
sequencing, all relevant sequencing reads will contain the 3′ sequencing adapter due to the short
length of the sequenced polymer. Alternative multiplexing protocols are enabled by this property
where the bar code oligomer is ligated to the 3′ library adapter. In total RNA libraries adapter
sequences are in contrast only picked up in a minority of reads.

Adapter and linker recognition require �nding the optimal pair-wise alignment with the con-
straint of speci�c sequence overlap con�gurations. We de�ne �ve di�erent keywords global,
local, dangling_qry, dangling_ref and dangling_any for description of pair-wise sequence
overlap con�gurations. At either end of the sequence alignment there are four di�erent possi-
ble overlap con�gurations � overhang of the reference sequence (dangling_ref), overhang of
the query sequence (dangling_qry), unaligned sequence in both reference and query (local) as
well as no sequence overhang (global) � and therefore 16 di�erent alignment con�gurations in
total (table 2.3).

40 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Alignment Matrix initialization (left end) Backtracing (right end)

1 global global

2 global dangling_qry, dangling_any

3 global dangling_ref, dangling_any

4 global local

5 dangling_qry, dangling_any global

6 dangling_qry, dangling_any dangling_qry, dangling_any

7 dangling_qry, dangling_any dangling_ref, dangling_any

8 dangling_qry, dangling_any local

9 dangling_ref, dangling_any global

10 dangling_ref, dangling_any dangling_qry, dangling_any

11 dangling_ref, dangling_any dangling_ref, dangling_any

12 dangling_ref, dangling_any local

13 local global

14 local dangling_qry, dangling_any

15 local dangling_ref, dangling_any

16 local local

Table 2.3: Dynamic Programming Alignment Modes

2.5. VERSATILE OLIGOMER DETECTION AND READ CLIPPING 41

The con�guration depicted in the �rst column indicates the type of end overhang that should
not be penalized by the alignment algorithm's scoring method, with the lower line de�ned as
reference (ref) and the upper line as query (qry). The di�erent end alignment modes form a
hierarchy of constraints, with dangling_any a subset of local, dangling_qry and dangling_ref
subsets of dangling_any, and global a common subset dangling_qry and dangling_ref.

The term query will be used in the following to always indicate the sequencing read, and
reference may thus refer to a possibly much shorter oligomer sequence. Alignment of a short
read to a part of a genomic reference sequence constitutes an example of overlap con�guration 11,
de�ned by the keyword pair (dangling_ref;dangling_ref). Detection of sequencing adapters
or 3′ bar codes in small RNA sequencing data corresponds to con�gurations 6 or 7, depending
on whether the read contains the entire or only the partial adapter sequence. This subset of
con�gurations is de�ned by the pair (dangling_qry;dangling_any). Detection of bar codes in
5′ bar-coded sequences is represented by case 2 (global;dangling_qry).

For Cre/lox-type recombinant mate pair sequencing varied overlap constraints may be ap-
propriate depending on the desired sensitivity-speci�city tradeo�. Conservative detection of
linker sequences in valid 454 type mate pairs corresponds to con�guration 6. Illumina Cre/lox
mate pair protocols obtain read pairs where the linker sequence is expected towards the end
of either read (con�guration 6 or 7). Occasionally one of the enzymatic cuts of the circu-
lar DNA may also occur inside the linker DNA. Such cases are described by con�guration
10. The subset of con�gurations 6, 7 and 10 constitutes a case of mutually dependent end
alignment con�gurations. Thus, it can not be accounted for by a single keyword pair, but the
two pairs (dangling_qry;dangling_any) and (dangling_ref;dangling_qry) (or alternatively,
(dangling_any;dangling_qry) and (dangling_qry;dangling_ref)).

The SHORE oligo-match utility is capable of for each sequencing read selecting the opti-
mal alignment or alignments out of multiple pairs of end alignment modes, multiple reference
oligomers and optionally their reverse complemented sequence.

By utilizing a fully customizable 16x16 scoring matrix, the program enables adjustable han-
dling of ambiguous IUPAC nucleotide codes as well as asymmetric base mismatch penalties with
respect to the direction of the match.

A pair-wise sequence mapping is composed of two pairs of end coordinates as well as the
alignment describing actual base pairings and sequence gaps. To increase speci�city of read
clipping and splitting operations, it is desirable to ensure that optimal pair-wise mappings feature
a unique pair of end coordinates, whereas potential alternative alignments can be considered
irrelevant. Our alignment algorithm is capable of either generating an exhaustive list of all
possible alignments, a list featuring a representative of all alignments with a di�erent pair of
end coordinates, or just a single representative for each pair-wise mapping, which is optionally
assessed for uniqueness of end coordinates.

The utility provides �lters for pair-wise mappings with respect to uniqueness of oligomer
selection and end coordinates. Alignments valid following �ltering may be comprehensively
reported and applied to clipping or splitting sequencing reads at either, or at both ends of the
detected oligomer.

2.5.2 Dynamic Programming Alignment and Backtracing Pipeline

Our alignment pipeline proceeds in three subsequent passes. Initially dynamic programming
alignment of the sequencing read is performed to each oligomer and for each pair of provided end
alignment modes. The optimal alignment or alignments are passed to the backtracing module.
Finally, generated traces are �ltered and may subsequently be applied to read manipulation.

42 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

While alignment scores become available after the initial stage, �ltering is delayed until after
backtracing for reasons of threshold calculation.

The end alignment mode for the left end of the alignment determines the mode of alignment
matrix initialization and alignment score calculation. With left end alignment mode local
initialization and score calculation proceeds according to standard local alignment, with �rst
row and column initialized to zero and the alignment score at each �eld of the matrix truncated
at zero from below. Left end mode dangling_any utilizes the same matrix initialization, but
does not clip alignment scores at zero. With dangling_ref and dangling_qry, only the �rst row
or column is zero-initialized, respectively, given the width of the matrix is determined by the
size of the reference sequence. Sequence overhangs for the respective other sequence are valued
with the regular gap penalty. Mode global does not perform pre-initialization of the matrix, as
in standard global alignment.

For selection of the best out of multiple permitted pairs of end alignment mode for a refer-
ence oligomer, multiple passes of dynamic programming alignment must be performed due to the
distinct requirements of matrix initialization. For each distinct left end alignment mode a corre-
sponding right end alignment mode may be de�ned. However, alignment is only performed if the
con�guration is not included by a di�erent pair of modes speci�ed, i. e. if the constraint on the
right end of the alignment is weaker than that speci�ed by the next left end mode that includes the
current one. Due to the hierarchical nature of tolerated sequence overhang con�gurations there
is nonetheless a chance that the same alignment will be produced multiple times by di�erent key-
word pairs. For example, (dangling_ref;dangling_qry) and (dangling_qry;dangling_ref)
both de�ne supersets of the (global;global) con�guration. Such redundancies can be elimi-
nated prior to backtracing by determining the subset of the respective end alignment mode that
has already been covered by previous alignments and excluding it by assigning corresponding
�elds of the alignment matrix the maximum penalty.

For backtracing initialization and alignment score calculation, the alignment algorithm
keeps track of values and locations of last row, last column and global score maximums for the
matrix. Mirroring matrix initialization, backtracing starts at global score maximums for right
end alignment mode local, at last row and last column maximums for modes dangling_ref
and dangling_qry, respectively, at the combined last row and last column maximums for
dangling_any, and at the lower right corner for global.

Whenever the backtracing algorithm encounters multiple possible �elds of origin for an align-
ment score, alternative paths are stacked for later completion, unless retrieval of only a single
representative alignment was requested. While exhaustive tracing of all possible alignment paths
can be combinatorially unfavorable, generating a representative for all distinct pairs of mapping
end coordinates can be performed e�ciently. For this purpose, each �eld of the matrix that has
been reached by the backtracing algorithm from the same right end coordinates is marked as
visited. If a �eld marked as visited is reached from one of the stacked alternative paths, the
respective path is aborted and the algorithm proceeds to assessing the next path.

For read clipping purposes it is typically only relevant whether an oligomer can be assigned
to unique coordinates on the sequencing read. For assessment of coordinate uniqueness, the
backtracing algorithm proceeds only until alternative end coordinates have been encountered, and
the alternative trace is not emitted. If the backtrace completes without encountering coordinates
di�erent from the primary trace, its end coordinates are marked as unique.

Reliability of a sequence match is determined by both the length of the match and its relative
amount and type of edit operations. Alignment score �ltering is therefore con�gured by setting
slope and o�set of a linear function. By default, the function's parameter is the length within the
shorter sequence out of reference and query that is spanned by the match. Alignments with a
score below the threshold thus calculated are not propagated to the list of results and sequencing

2.6. A PARALLELIZATION FRONT-END FOR SHORT READ ALIGNMENT TOOLS 43

read manipulation. Alternatively, the score threshold may be set up to be calculated using the
total length of the selected sequence as the function parameter.

2.6 A Parallelization Front-End for Short Read Alignment Tools

A great variety of sequencing read mapping and alignment programs are nowadays available to
users. While most of these applications are similar in operation, each comes with its own speci�c
user interface and usage peculiarities. Despite the huge selection of di�erent implementations
and extensive optimization of the underlying mapping and alignment algorithms, read mapping
is furthermore still one of the computationally most expensive steps for resequencing applica-
tions (section 1.5.3). While parallel processing can often solve the issue of extensive run times,
parallelization support is not uniform among all available solutions. Therefore, as each read
alignment tool comes with its own set of trade-o�s, strengths and weaknesses, users are often left
to decide between performance and required or desired features, and frequently need to adapt to
di�erent interfaces.

The SHOREmap�owcell application is a parallelization, pre- and post-processing wrapper for
a variety of widely used and freely available short read mappers [1]. In addition to shared mem-
ory parallelization, the application has been reimplemented supporting networked distributed
memory architectures through the Message Passing Interface (MPI) standard. Further added
capabilities include automatic adjustment of parameters for handling of data sets with hetero-
geneous read lengths, as well as straightforward integration of mapping results obtained using
di�erent aligner back-ends or sets of mapping parameters. The program thus constitutes a
meta-alignment tool able to amend mapped sequencing read data sets using di�erent aligners,
parameters or additional reference sequence information. Such multi-pass read mapping may
especially bene�t computationally expensive approaches such as spliced read mapping.

SHOREmap�owcell currently provides a common user interface to the tools GenomeMapper,
BWA, Bowtie, Bowtie2, ELAND and BLAT. User parameters are automatically transformed into
the appropriate equivalent for the respective mapping back-end and results consistently reported
in compressed, seekable SHORE MapList format easily convertible to various data exchange for-
mats such as SAM.

Ion or pyrosequencing read data sets as well as other types of sequencing data set following
quality based read trimming (section 2.3) or sequence context speci�c read clipping (section 2.5)
feature read length distributions with broad support range. However, many read mapping tools
only support a set of static alignment parameters provided at program startup, resulting in
below-par mapping speci�city for reads on the lower tail of the read length distribution and
insu�cient sensitivity for reads at the upper end of the length spectrum.

The SHOREmap�owcell application automates read length-dependent selection of all relevant
alignment parameters such as maximum tolerated edit distance, gap extension lengths or seed
sizes. These user parameters may be provided as either absolute values or percentage of read
length; additionally, edit distance may be bounded according to the alignment seed lemma.
Given a certain read length l and edit distance d, a read alignment is guaranteed to contain a
perfectly matching seed of size s = bl/(d + 1)c, and therefore the maximum edit distance that
guarantees �nding a seed for each valid mapping is d = bl/sc − 1. We provide two modes of
reducing the initially speci�ed edit distance. A mode �strict� limits maximum edit distance to
dmax = bl/sc − 1, thereby ensuring that either all valid alignments with optimal edit distance
are found for a read, or it is left unmapped (further seed selection heuristics implemented by
the mapping tool excluded). An alternative setting �on� sets a weaker limit dmax = bl/sc, such
that some of multiple mappings with the same edit distance may be missed, but reads are left
unmapped if valid alignments at lesser edit distance can not be excluded.

44 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Sequencing of DNA that is highly diverged from available reference genome sequences as well
as transcriptome sequencing due to intron exon junctions imply that many sequencing reads
can not be mapped to the reference as a contiguous unit. Such data must be mapped using
specialized spliced sequencing read mapping programs like PALMapper [94] or generic matching
tools such as BLAT [136]. Specialized spliced mapping algorithms may however represent a
suboptimal choice for mapping the entire data set, either for reasons of performance or speci�city.
A di�erent, yet related problem pose cases where the respective reference sequence is too large
to be handled with a certain combination of mapping tool and available hardware. Our utility
is able to mitigate these issues through automatic combination of the results of multiple read
mapping passes using di�erent alignment tools, parameters or reference sequence information.
Two di�erent re-mapping modes o�er either full reassessment of the entire data set utilizing
the information of prior read mapping passes, or processing and integrating additional mapping
results for read previously not mappable to the reference genome.

For robust handling of variable reference sequence information provided to the program,
SHOREmap�owcell maintains a sequence dictionary used to record reference sequence identi�ers,
metadata and checksums along with the alignment result �le. With each read mapping pass the
reference dictionary is updated appropriately and possible additional sequences are assigned new
unique sequence identi�ers as required.

For reassessment of read previously not mappable to the reference genome, mapping proceeds
as in single pass application, and results are the union of all newly discovered read mappings with
the results of the previous pass. For full re�nement of entire data sets, both previously mapped
and unmapped reads become subject to realignment. Previous mapping results are however
factored into calculation of alignment parameters and determination of batch identity. On com-
pletion, results of the current and previous mapping run are merged while at the same time
pruning read alignments rendered suboptimal by the newly obtained results from the mapping
data set.

Read mapping tools incorporating computationally more expensive spliced alignment algo-
rithms further emphasize the need for e�cient and capable parallelization of the mapping process.
While many aligners implement simple threaded parallelization, support is not universal, and
only a few mapping tool-speci�c solutions exist for distributed memory settings or cloud envi-
ronments, like e. g. CloudBurst [95]. SHOREmap�owcell implements a simple batch-based paral-
lelization approach, in which automatically generated batches of input data may be distributed
to either an alignment tool running in multi-threaded mode, to multiple aligner processes instan-
tiated on the same machine, to alignment tools running within MPI processes distributed over a
network, or a hybrid combination of all of the above.

SHOREmap�owcell de�nes a binary relation on read data by which reads are equivalent if
they are set to be aligned using the same combination of static mapping parameters, and divides
the data set into batches accordingly. Reads are partitioned into batch-speci�c �les in SHORE's
temporary �le directory and, on reaching a user speci�ed maximum batch size, submitted for
parallel processing. Parallel operations include actual read mapping as well as format conversions
and sorting where required. With �ne tuning of the maximum batch size parameter, a simple
measure is provided for adjustment of the tradeo� between minimal parallelization overhead and
improved load balancing. For distributed memory parallelization, the temporary �le location
speci�ed is required to be shared over the relevant network, with only meta information on each
batch being transmitted via MPI channels for simplicity of implementation. On completion of
all batches related to a speci�c input �le, mapping results are automatically merged back into
the permanent storage location.

2.7. ROBUST DETECTION OF CHIP-SEQ ENRICHMENT 45

2.7 Robust Detection of ChIP-Seq Enrichment

Investigation of protein-DNA interaction by ChIP-Seq can help to further our understanding of
cellular regulatory networks (section 1.3.2). Primary data analysis for ChIP-Seq experiments
requires software tools that can pinpoint hundreds to thousands of putative protein binding sites
from data sets of high-throughput sequencing read alignments (section 1.5.6).

This section discusses the peak calling pipeline SHORE peak integrated into the SHORE analy-
sis suite. The utility is able to discriminate true enrichment from common artifact patterns using
various robust heuristics, calculates false discovery rates (FDR) by interrogation of control exper-
iments and implements a unique �joint detection, separate evaluation� approach to handling of
replicate experiments. The program outputs locations of possible binding regions together with
their FDR and various additional features potentially useful for ranking, �ltering or �ne-tuning
the detection. It further enables users to generate graphical representations of peak regions,
put detected loci into the context of available genome annotation or to extract binding region
sequences for subsequent motif sampling and analysis.

Our pipeline is pre-con�gured for straightforward detection of de�ned loci of ChIP-Seq enrich-
ment as produced by transcription factor (TF) binding sites. Settings may however be adjusted
to support the detection of clusters of enrichment that occur e. g. in data representing states
of histone modi�cation. Individual algorithms are implemented as pluggable modules and have
been brought over to multi-purpose tools SHORE coverage and SHORE count, allowing �ne-grained
control and �exible applicability of enrichment detection in diverse scenarios such as MNase-Seq
assays or assessment of copy number variation (CNV).

The SHORE peak pipeline has been outlined [58, 137] and further employed [138�141] in mul-
tiple biological publications.

2.7.1 Overview

Were sequencing reads randomly sampled from the genome, sequencing depth should be dis-
tributed according to the Poisson distribution whose parameter equals the average depth [142].
Although high-throughput sequencing is known to be highly non-random, with biases that bring
about considerable deviation from the Poisson model (section 1.4), the distribution can still
present a powerful tool for the detection of irregularities in sequencing depth at high sensitivity.
Our peak calling algorithm consists of two major steps. The �rst pass is a detection phase that
employs a relaxed Poisson assumption to the read alignment data generated through the ChIP-
Seq experiment to identify regions of putative enrichment at high sensitivity. In the subsequent
second pass implemented to improve speci�city of the prediction, these candidate regions are
subjected to several robust empirical rules for artifact removal and further tested against control
experiment data to assess signi�cance of the enrichment.

2.7.2 Correcting for Duplicated Sequences

The ChIP-Seq procedure yields quantities of DNA that are typically orders of magnitude below
the amounts retrieved by other methods of DNA sampling. The excess PCR rounds required
to obtain a compliant sequencing library often bring about signi�cant amounts of duplicated
sequences, reducing library complexity. PCR may entail signi�cant sequence bias (section 1.4)
with erratic rates of fragment duplication.

Duplicate sequences represent the same fragment of DNA and therefore violate the assumption
that each sequencing read is sampled independently from the set of sequences under examination.
During detection of sequence enrichment, the presence of duplicate sequences must thus be
explicitly accounted for by the predictive model, or these sequences must be pruned from the

46 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

data set prior to application of the actual detection algorithm. Most current ChIP-Seq analysis
algorithms including SHORE peak implement a pruning approach.

In the presence of sequencing errors or variable read length, PCR duplicates cannot be rec-
ognized by simply collapsing all reads having the same nucleotide sequence. Furthermore, at
enriched loci identical sequences may be sampled independently. In the sequencer output, these
identical sequences are thus indistinguishable from PCR artifacts.

Duplicate recognition is therefore implemented as a �ltering step that is applied after mapping
the reads to the reference genome. ChIP-Seq algorithms typically restrict usage of duplicate reads
by applying a static limit to the number of reads having their 5′ end mapped to the same position
of the genome. While reliably removing duplicated sequences, the approach does not distinguish
between duplication events and independent sampling, and thus su�ers from saturation once all
reference positions are becoming occupied.

We therefore adaptively remove PCR duplicates, using a heuristic based on the assumption
that the number of non-duplicated reads n∗x that have their 5′ end at any position x of the
genome is sampled from a Poisson distribution with unknown distribution parameter λx, and
that each of these reads is represented on average by an unknown number of copies αx. Given the
assumption holds, αx equals the dispersion index Dx = σ2

x/µx for the read count distribution
including duplicates. We further assume that all λi and all αi for positions that are in close
vicinity take similar values, and that the read count distribution for any position x can therefore
be approximated using a short range of positions adjacent to x. Based on these assumptions,
we estimate α for each position using a sliding window. In a window, the dispersion index is
estimated as the ratio of the empirical variance and mean of the read counts. To increase the
adaptiveness of the sliding window calculation, the ratio is calculated independently for a left
window that includes all positions from x− k to x, and a right window including positions x to
x+ k

D̂left =
s2

(x−k)..x

n̄(x−k)..x

D̂right =
s2
x..(x+k)

n̄x..(x+k)

with s2 and n̄ the empirical variance and mean over the positions indicated, respectively. The
left and right results are then averaged using the root mean square (RMS) of both values to
obtain an estimate α̂x of αx

α̂x =

√
1

2
· (D̂2

left + D̂2
right)

The division into left and right windows should allow for sharper boundaries between enriched
and background sites. RMS average over the two windows was chosen to ensure that re-evaluation
using a scaled read count vector n′ = n · 1/α̂x as input will always yield α̂′x = 1.0.

In scenarios where it is desirable to retain the complete set of sequences with their associated
base qualities, the estimated multiplicity factor α̂x may be incorporated into the analysis by
assigning each read starting at x a weight of 1/α̂x during calculation of sequencing depth. If
retaining all sequences is not a concern, the maximal number of reads may alternatively limited
to bnx/α̂xc, with nx the observed read count at a position x. The limiting approach is cur-
rently implemented in SHORE, discarding all excess alignments when the read count limit for the
respective position has been reached.

The duplicate correction algorithm does not provide any guarantees regarding the correctness
of α̂x. However, given that the variance of the read counts of adjacent positions is likely to
exceed the Poisson assumption, average multiplicity should be overestimated. The algorithm is

2.7. ROBUST DETECTION OF CHIP-SEQ ENRICHMENT 47

therefore conservative in the sense that the true number of non-duplicated reads per position
will be underestimated. In contrast to imposing a static limit on the number of reads accepted
at each position, the adaptive heuristic still allows to discriminate di�erent levels of extreme
enrichment as well as peak calling in presence of deep background coverage.

2.7.3 Detection Phase

The ChIP-Seq procedure enriches for short DNA fragments with above average a�nity to the
protein of interest. One or both ends of these fragments are subsequently sequenced, allowing
detection of its origin on the reference genome assembly. In the following, the enriched DNA
fragments subjected to sequencing will be referred to as inserts, whereas the sequenced ends
of the fragments will be referred to as reads. The number of inserts putatively overlapping a
position will be termed insert depth, and the number of reads overlapping the position read depth.

The primary peak detection phase, resembling that of MACS [104] (section 1.5.6), is realized
as a sliding window analysis of insert depth. A window of �xed, user-selectable width is shifted
along the reference sequence in single base steps. In each step, the algorithm calculates the
average depth of insert coverage over the current window. In the case of paired-end sequencing,
insert depth is calculated from the ranges de�ned by read pairs. For single end sequencing, each
read is extended in 3′ direction to match the estimated average insert size. To exclude regions
not accessible to the sequencing experiment, positions with sequencing depth zero are ignored,
i. e. the average depth is calculated as

d̄′W =

∑
x∈W d(x)

|{x ∈W : d(x) > 0}|

where W is the set of reference sequence positions included by the sliding window and d(x)
signi�es the depth at a position x. Since the sliding window may or may not contain enriched
sites, d̄′W may be regarded a conservative estimate of the minimum average background signal
over the window. d̄′W is used as the average coverage depth parameter to evaluate the potential
enrichment at the central position xc of the sliding window by a one-sided Poisson test. The
test calculates the p-value for the respective coverage depth from the cumulative distribution
function for the upper tail of the Poisson distribution

p(xc) = 1− e−d̄
′
W ·
bd(xc)c∑
i=0

(d̄′W)i

i!

Consecutive positions falling below a certain signi�cance threshold, by default set to 0.05, are
joined to form a candidate region.

Detection is �ne-tunable using two auxiliary signi�cance thresholds. A relaxed probing sig-
ni�cance threshold is accepted to automatically join candidate regions separated only by short
drops in depth of coverage into a contiguous region. Furthermore, candidate regions may be
pre-�ltered using an acceptance threshold, discarding all regions that do not include at least one
position that satis�es this more stringent signi�cance criterion.

2.7.4 Recognition of Read Mapping Artifacts

Final signi�cance scores for enrichment are calculated based on the number of read mappings
providing evidence for a respective site (section 2.7.5). For multiple reasons, signi�cance of
enrichment is on its own of limited value for singling out relevant protein binding sites (sec-
tion 2.7.6). Peak signi�cance is therefore primarily used as a means of imposing a ranking on
the detected loci.

48 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

Strong oversampling of a region of the reference sequence, for example due to collapsing of
repetitive sequence onto few representations in a reference (section 1.5.3), may result in high
levels of signi�cance for such loci even for minimal strengths of enrichment. Thus oversampling
entails high-ranking loci that are of limited relevance to the analysis when compared to signi�cant
loci sampled at regular depth.

SHORE peak o�ers various �ltering heuristics that allow for reliable removal of typical over-
sampling artifacts. Oversampled regions are marked by elevated depth of coverage in both
experiment and control sample. By speci�cation of a maximum coverage depth tolerated in the
control for valid candidate regions, many oversampled positions are ruled out. SHORE �lters
candidate regions based on their average depth of control sample coverage, discarding regions
whose depth lies above a certain threshold. The rejection threshold is calculated adaptively in
terms of a user speci�ed multiple of standard deviations distance from the median chromosomal
depth of coverage. When analyzing multiple replicate experiments, such suspiciously high depth
of coverage in any of the controls speci�ed triggers removal of the proposed candidate region
by our algorithm. By default, regions with average control sample read depth more than six
standard deviations above median depth are ignored.

Fold change, calculated as the ratio of read counts or average depths of experiment and
control sample coverage at a candidate locus, in some cases presents a more sensitive criterion for
recognition of loci that satisfy a strict signi�cance cuto� due to oversampling, but are of limited
relevance to further analysis. Oversampling is then marked by large amounts of supporting
evidence in the form of reads mapped to the region, but comparably weakly pronounced fold
change. SHORE calculates normalized fold change values for a region as

f =
d̄e

ke,c · d̄c
(2.1)

where d̄e and d̄c represent the mean depth of coverage for experiment and control, respectively,
and ke,c a scaling factor calculated for experiment and control over the respective chromosome to
accommodate di�erences in overall sequencing depth (section 2.7.5). Regions with a normalized
fold change f < 2 are not considered by default. For experiments comprising multiple replicates,
the user-speci�ed fold change criterion must be satis�ed by at least one replicate.

For true sequence enrichment, mapped reads represent precipitated fragments of DNA typ-
ically larger than the sequenced read length. By contrast, oversampling artifacts arise due to
over-representation solely of the part of the sequence utilized for read mapping. Given this
mapping length is shorter than the actual insert length, a characteristic di�erence in the strand
speci�c read depth curves ensues for enrichment compared to oversampling. In the case of enrich-
ment, read depth curves for the forward and the reverse strand are shifted, with the shift o�set
representing the missing 3′ parts of the inserts that are not taken into account for the read depth
calculation (�gure 2.6). Contrarily, for oversampled regions not comprising enriched sequence,
no such shift in strand speci�c read depth may be observed. The peak shift of single-end read
depth therefore may be exploited as an acceptance criterion for enriched regions. SHORE peak

estimates a peak shift value for a region based on the two areas under the read depth curves
for each strand. For both these areas, the center of gravity (COG) is calculated. The estimated
peak shift then equals di�erence between the x-coordinate of the COG for the reverse strand and
the x-coordinate of the forward strand COG. In multi-replicate experiments, the user-speci�ed
peak shift threshold must be satis�ed by at least one replicate.

COG-based shift estimation may be considered robust for de�ned loci such as transcription
factor binding sites. For larger stretches of enriched sequence representing clustered binding
sites or histone methylation, the COG is easily skewed by local biases or random �uctuations in
sequencing depth, and therefore does not provide reliable estimation of peak shift.

2.7. ROBUST DETECTION OF CHIP-SEQ ENRICHMENT 49

18810400 18810600 18810800 18811000 18811200 18811400 18811600 18811800

0

5

10

-10

-5

0

100

200

-200

-100

Control

SOC1

Position [bp]
Chromosome 2

D
ep
th

o
f
C
ov
er
a
g
e
[#

R
ea
d
s]

Figure 2.6: ChIP-seq Depth of Coverage in the Vicinity of a Transcription Factor Binding Site

2.7.5 Ranking and Assessment of Peak Signi�cance

In a �nal step, the peak calling algorithm assesses detected candidate regions to establish a
ranking of putative peak sites and determine their level of signi�cance.

For any candidate region, given the read count for the experiment is a random variable X
and the read count for the control is a random variable Y , then their joint read count is the
convolution Z = X ∗ Y .

Assuming the joint read count in a region takes an observed value Z = z, then the experiment
read count is distributed according to a probability mass function P (X = x|Z = z). Using Bayes'
theorem, it is

P (X = x|Z = z) =
P (Z = z|X = x) · P (X = x)

P (Z = z)

=
P (Y = (z − x)) · P (X = x)

P (Z = z)
(2.2)

=
P (Y = (z − x)) · P (X = x)∑z

k=0 (P (Y = (z − k)) · P (X = k))
(2.3)

Were experiment and control read counts following Poisson distributions, X ∼ Pois(λ1)
and Y ∼ Pois(λ2), then their convolution is Poisson distributed as well, Z ∼ Pois(λ3), where

50 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

λ3 = λ1 + λ2.
When applying the Poisson assumption to equation 2.2, it follows that

P (X = x|Z = z) =

λz−x2 ·e−λ2
(z−x)! · λ

x
1 ·e
−λ1

x!

λz3 ·e−λ3
z!

=
z!

x! · (z − x)!
· λ

x
1 · λz−x2 · e−(λ1+λ2)

λz3 · e−λ3

=

(
z

x

)
· λ

x
1 · λz−x2

(λ1 + λ2)z

=

(
z

x

)
·
(

λ1

λ1 + λ2

)x
·
(

1− λ1

λ1 + λ2

)z−x
(2.4)

Therefore, given Poisson distributed read counts and an observed joint read count for a region
Z = z, the read count of the experiment follows a binomial distribution, X ∼ B(z, p), with the
probability parameter p as implied by equation 2.4

p =
λ1

λ1 + λ2
(2.5)

Our algorithm relies on the Poisson assumption to assess the signi�cance level of candidate
peaks using a one-sided binomial test, i. e. by evaluating the upper tail of the cumulative distri-
bution function (CDF) of the binomial distribution for the experiment read count x and joint
read count z

P (X ≥ bxc) =

z∑
k=bxc

(
z

k

)
· pk · (1− p)z−k

The �oor function b c is applied to x to accommodate weighted read counts as e. g. used for
reads mapping to multiple positions of the reference genome in a conservative way.

Normalization of experiment and control is therefore de�ned by calculation of an appropriate
value for the probability parameter p of the binomial distribution. To obtain an estimate p̂ of the
probability parameter we de�ne a sequencing depth scaling factor as δ = λ1/λ2. By equation 2.5,
the relation between the depth scaling factor and the probability parameter is

p =
δ

δ + 1
δ =

p

1− p
(2.6)

Chromosomal, mitochondrial and plastid sequences may be present at considerably di�erent
number of copies in the cell, implying potentially di�erent depth of coverage for these sequences.
The probability parameter is therefore estimated independently for each chromosome or organelle
sequence. The sequence is subdivided into �xed-size non-overlapping bins. The normalization
algorithm then chooses δ̂ such that the median of the read counts associated with the bins for
the experiment equals the median of the control sample bins multiplied by δ̂. This estimate is
then used to replace δ in equation 2.6 to obtain a probability parameter for the binomial tests
on the respective chromosome or organelle sequence.

While detection of candidate regions is applied to the joint data of all experiments, �nal
assessment of peak signi�cance is carried out separately for each replicate data set. This �joint

2.7. ROBUST DETECTION OF CHIP-SEQ ENRICHMENT 51

detection, separate evaluation� approach ensures that replicate results are immediately compa-
rable without requirement for peak overlap calculation involving arbitrary thresholds. At the
same time, signi�cance levels obtained still represent independent entities.

To account for the potentially large number of binomial tests performed, we �nally process
the p-values calculated to obtain false discovery rates (FDR) using Benjamini-Hochberg estima-
tion [143].

Finally, to allow �ne-grained custom �ltering of peak lists, a variety of further peak properties
are reported by our program, such as peak shift, peak height and fold enrichment ratio. Fold
change values between sample and control are reported as a score F on the interval [−1, 1] using
the transformation F = 4

π · arctan(f)− 1 on equation 2.1.

2.7.6 Experimental Relevance of Peak Signi�cance

Besides true DNA binding a�nity of the protein of interest and described artifact patterns,
sources of bias may contribute to sequence enrichment in some cases indistinguishable in ChIP-
Seq results.

For example, between-sample variation in the strength of sequence speci�c sampling bias
might potentially be introduced due to slight di�erences in sample preparation parameters (sec-
tion 1.4). Modeling varying sequencing depth as a scaling factor that globally applies to entire
chromosomes then has the consequence that the de�nition of enrichment of a sequence in a
two-sample comparison may include positions with above-average sampling bias, if the speci�c
bias is pronounced more strongly in the experiment than in the control; as well as positions with
below-average bias where the bias in the experiment is weaker when compared to control. Such
di�erences in sampling bias strength can likely not be estimated globally, as the e�ects of mul-
tiple sources of bias might be superimposed. Adequate sampling bias estimation and correction
therefore can be expected to require complex modeling based on speci�c sequence features and
likely further investigation into sequencing and sample preparation processes. Strand speci�c
e�ects may however be ruled out by assessment of properties like peak shape, peak shift or
forward-reverse fold change. Furthermore, such technical sources of enrichment can sometimes
be excluded by downstream binding motif analysis.

Moreover, correctly identi�ed sites with above-average protein-DNA a�nity might be biolog-
ically irrelevant. With multiple co-factors contributing to transcription initiation, evolutionary
forces restricting the genome-wide development of individual binding sites are likely weak. Rel-
evant sites should therefore be de�ned by presence of further promoter elements. Furthermore,
both transcription factor binding as well as the ChIP procedure itself are governed by complex
physico-chemical dynamics. DNA fragments with above-average a�nity to the protein of inter-
est might become detectable in ChIP-Seq, where the induced binding is however not su�ciently
stable to result in transcription-regulatory relevance. Signi�cance of such sites is however solely
determined by su�cient depth of sequencing.

Further biological factors such as chromatin state and accessibility may contribute to signif-
icant enrichment not directly related to protein binding events. For these reasons, statistical
signi�cance of enrichment can on its own not provide a criterion for de�nition of biologically
relevant binding sites.

Furthermore, the interpretation of the ranking imposed by binding site signi�cance involves
intricate considerations. Signal resulting from several di�erent in�uences becomes convoluted
through the ChIP procedure. Quality of the employed antibody, overall quality of the precipi-
tation procedure, prevalence of the DNA-protein interaction across tissues as well as the actual
a�nity of the protein of interest to its target motifs all contribute to the overall signal observed.
The �rst two e�ects globally a�ect the ratio of enriched sites to the magnitude of background cov-

52 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

erage, and therefore impair the ability to observe global discrepancies in binding a�nity between
samples. By contrast, tissue composition and binding a�nity are both locus speci�c e�ects that
are indistinguishable during analysis, i. e. the procedure does not allow distinguishing between
the strength of the Protein-DNA interaction and its predominance across the cells and tissue
types from which the sample was retrieved. The large amount of tissue required for immuno-
precipitation protocols likely contributes to a lack of controllability of the analyzed tissue states
and composition, which may constitute a factor impeding experimental reproducibility.

2.8 Visualization of Sequencing Read and Alignment Data

Exploration and iterative analysis of high-throughput sequencing data require computational
tools able to rapidly retrieve and visualize certain subsets or features of a data set. After obtaining
raw or �ltered read data, assessment of base call quality, nucleotide composition and read length
distribution is desirable to verify overall data quality prior to further analysis (section 1.5.1).
At later stages of data analysis, visual inspection of read alignment data can be a valuable
tool for veri�cation of loci of identi�ed mutation candidates (section 1.3) or understanding the
structure of complex genomic regions of clustered polymorphisms or rearrangements. For other
applications such as mRNA-, small RNA- or ChIP-Seq, examination of local depth of coverage
curves is an adequate approach to value structure or expression of individual transcripts or
rule out a potential mapping artifact. Finally, di�erent approaches to data visualization are
required for gaining cues towards potential megabase scale or genome wide characteristics of the
sequencing depth distribution in applications targeting e. g. epigenomic modi�cations.

While web browser or graphical user interface driven applications allow fully interactive nav-
igation of data sets, they may require considerable e�ort in data preparation or are not easily
operated remotely over a network.

The SHORE pipeline implements a variety of means to ad-hoc sequencing data visualiza-
tion. The SHORE tagstats utility o�ers a summarized view of base quality distributions, per-base
nucleotide composition as well as read length distribution. We further provide an application
SHOREmapdisplay capable of rapidly generating comprehensible views of read alignment data,
either as a text-based representation viewable in a terminal window, or in the form of static
scalable vector graphics (SVG) images readily displayed in modern web browsers. In addition
to that, versatile utilities SHORE coverage and SHORE count provide options for visualizing local
depth of coverage as well as larger-scale genomic distribution of read mappings, respectively.

2.8.1 Gathering Run Quality and Sequence Composition Statistics

The SHORE tagstats utility summarizes content of unique read sequences in a data set, and
additionally gathers base quality and per base nucleotide statistics. Statistics are collected in
various tables and may additionally be visualized in the form of an all-in-one �gure generated as
a static Portable Document Format (PDF) image (�gure 2.7).

Read quality distribution is represented as a per-base box plot, with indicators for median
values, second and third quartile as well as the range included by a single standard deviation
distance from the mean. Median and quartile values are corrected for quantization bias (sec-
tion 2.8.4).

Total number of reads extending beyond a certain length is indicated by the support curve.
The �gure further includes the frequency of either nucleotide at each cycle of the sequencing run.
Nucleotide frequencies are displayed multiplied by four to allow lineup with the support curve. In
presence of sequencing errors and varying read length, uniqueness of read sequences cannot serve
as a means of removal of duplicate sequences arising due to PCR ampli�cation. Moreover, the

2.8. VISUALIZATION OF SEQUENCING READ AND ALIGNMENT DATA 53

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 160

0
8

16
24

32
40

48

0
53
56

10
71
2

16
06
7

21
42
3

26
77
9

32
13
5

Median Base Quality

Inner Quality Quartiles

Average Quality ±SD

Support

4A

4C

4G

4T

Length Distribution

Dashed: Unique Sequences

Q
ua
lit
y
Sc
or
e
|
N
uc
le
ot
id
e
C
ou
nt

Cycle [bp]

Figure 2.7: Read and Quality Statistics for a Paired-End Sequencing Run Following Quality-
Based Read Trimming

likelihood of reads originating from duplicates having the same nucleotide sequence decreases with
increasing read length (sections 1.4, 2.7.2). Frequency and nucleotide composition of unique read
sequences can however still provide valid clues on ChIP-Seq library quality and complexity and
reveal important sample properties in small RNA sequencing applications. Thus, support and
nucleotide composition after pruning of redundant read sequences is indicated by a corresponding
dashed line for each property.

Finally, distribution of read lengths is di�cult to pick up visually from support distributions
alone. For improved appraisal, the distributions are therefore additionally indicated by short
vertical bars at the bottom of the �gure.

While the presented superimposition of quality and nucleotide composition curves may in
some cases serve to obfuscate the interpretability of either individual property, it renders multi-
variate entities such as correlations between read quality issues and skews in nucleotide compo-
sition or the e�ectiveness of read trimming algorithms visually immediately appraisable.

54 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

G

g

G

G

G

A

G

-A

a

a-

G
T

C

c

T

A

G

A

a

A

G

G

a

A

c

G

c
a

A

G

AA

A

a

T

g

C

g

A

c

A

T

C C

A

A

C

A

A

A

C

A

a

A

GG

A

T

A

G

t

A

a

a

G

G

A

C

G

a

a

a

T

T

T

A

5’

T

A

t

c-

A

A

T

A

A

t

C

G

G

C

a

G
A

TA

G

A

A

T

G

G

g

t

G

A

T

C

t

A

c

T

CA

t

A

T

c

G

c

a

C

G

A

G

C

5’

A

A

A

AA

A

A

A

A

A

c c

G G

G

3’

G

A

3’
c

T

T

A

g

A

t

G

T

a

TN

a

C

C

A

G

C

G

A

a

t

A

AA

a

A

g

-A

A

C

t

A

C

G

A

g

C

c

a

a

a

C

A

c

A

A

C

T

T

G

TT

A

G

C

TT

GG

A

A

A

-A

A

a

A

A

g

C

g

A

c

T

c

G

A

t

G

A

G

A

A

G

A

T

A-

A

a

a

a

c

A

a

c

G

C

A

g

A

G

A

a

t

3’

A

A

G

c

c

t

G

A

A

g

a

G

a

g

C

A

A

A

G

a

a

a

G

G

g

a A

T

T

T

t

t

A
A

A

A 3’

A

a

a

GG

g

G

c

5’

G

T

G

tT

A-

g

3’t

G

g

a

A

a-

A

A

A-

G

C

a

5’

C

G

a

G

G

G

A

TT

a

g

A-

C

A

Aa

A

G

a

c

A

C

a

a

A

GG

T

Cc

a

g

T

A

T

C

TA

A

t

T

A-A-

t

A

A

G

c

A

A

T

A

A

T

A

g

G

g

a

-A

C

G

c

-A

G

A-

g

g
A

A

C C
Tta

A

C

T

A

A

C

A

A-

G

a

a

a

T

a

T

g
A

a

T

A

A

A

tT

-a

A

-a

A

C

g

a

t

G

A

T

g

A

G

T

3’

5’

g3’

A

C

G

A

A

aa

a

A 3’

G

t

A

C

G

A

C

g

C

g

g
G

a
G

c

A

A

A

G

A

c

A

3’A

A

t

G

gg

T

A

A

A

g

A

a

G

G

c

A
ac

aa

a

A
A

a

a

A

A

A

a

A

G

c

A

g

a

g

G

A

t

A-

G

A-

G

a

3’

A a

G

C C

3’
A

A

A3’

5’C

3’

G

G

t

A

A

T

A

a

a

T

a

C

a

a

C

a

G

A

a

A

A

a

T

T

T

T

a

A

A

A A

g

T

a

G G

G

A

g

t

G

g

C

A

A

c
a

A

A

G G

G

A

G

T

a

T

G

T

A

g

G

G

G

A

T

TT

C

a

g

A

T

A

t

T

G

A

t

c

A

G

c

g

A

g

t

t T

A
-A

C

-a

a

t

C

t

A

A

c

T

a

A

A

g

a

G5’

g

t

G

G

G

a

C

a

A

a

G

C

A

A

A

c

3’

C

C

t

g

g

g

C

a A

CC

T

T

A

a

A

T

A

g

a

G

A
a

G G

a

5’
A

G

G

a

G

T

a

A

c

a a

C

A

5’

A

5’

A

a

AA

c

A

a

C

A

g

g

g

3’

G

G

G

G

T

A

A

G

G

A

gg

A
Aa

A

AA

g

C

t

a

G

A

aa

tT

T

5’

t

g

t

A

C

a

A

a

A

a

3’

A

A

A

A AA

3’

A

t

t

A

A

tT

a

G

G

A

A

G

A

A

T

G

t

T

g

a

a A

g

G

t

G

g

G

a

G

G

a

T
A

c

G

t

T

T

G

a

G

T

t

5’

G

G

G

G

A

c

A

t

a

A

a

3’

a

T

C

t

A

T

g

G

T

ca

T

G g

g

G

ac

T

a

t

-A

3’t

a

5’

t

A

T

5’

G

A

G

A

t

A

g

G

-a

a

A

g

a

CC

A

A

t

G

t

A A

G

C

A

G

a

C

A

A

C

C

G

t

A

a

a

a

ga

A

G

A

A

A

a

AA

a

g

G

a

T

A

G

G

a
A

g

t

a

A

G

T

a

A

A

C

A

t

A

A

A

A

C

c

C

A

G

C

A

G

G G

G

G

A

g

A

G

GG

a

C

a

A

g

C

a

A

3’

g

T

g

A

T

A

T

A

C

T

a

A

T
AA

A A

A

AA

a

G

a

T

G

g

g

t

A

T

a

G G

A

C

G

a

A

5’

A

-A

T

G

G

G G

G

c

t

A

C

T

g

G

A

a

A

G

A

t

a

A

t

C

A

C

A

T

c

T

A

g

g

t

A

g

g

g

t

T

A A

3’

A

g

t

G

A

g

a

G

a

A

g G

g

a

g

AA

A

G

A

A

g

AA

A

A

A

ca

A

A

C

G

g

T

G

T

A

A
G

a

A

A

C

c

T

C

t

C

A

AA

g

a

A

a

G

T

gg

a

A

A

t

A

a

A

AA

AA

A

C

a

a

3’G

c

A

gg

g

G

AA

G

G

3’

t

G

a

a

A

C

a

3’

a

G

5’

G

g G

c

a

T

c

T

T

T

A

a

a-

G

A

t

G

c

G G

aA

A

G

A

c

G

A

AG

T

g

-A

G

G

a

G

T

G

A

a

G

A

c

T

G G

a

a

cC

G

G

T

-a

t

G

5’T

T

G

T

T

a

c C

G

g

G

g

a

C

t

G

c

ac

3’

c

A

G

3’

a

A

c

T

c

t

a

a

G

G

a

A

A

aA

3’

T

T

T

a

ta

C

3’

a

c

a

a

G

C
t

A

a

A

G

G

g

A A

A

A

A

3’

A

a

C

c

G

A

c

a

c

g

T

tt

G
a

a

g

ca

5’A

A

a

3’

C

A

C

c

g

TT
T

A

A

A

-A

G

g

-A

A

G

t

5’

AA

5’

A

T

g

g

A

a

A 5’

a

C

t

a

A

a

A

G g

A

G

a

G

A

A

g
a

A

G

3’

G

g

T

a

T

C

G

A

T

AA

A

a

g

G

a

3’

t

a

T

c

T

TTA

a

T

C

G

c

T

A

a

a

G

a

C

A

T

A

a

g G

A-

G G

A

Tt

A

T

a

a

A

a

A

a

A

a

C

a

GC

G

A
a

C

g

A

G G

T

T

T

AA

T

T

T

G

A

a

t

a

c

a a

A

A

c

a A

T

c

G

a

a

T

T

A

a

GG

3’

a

a

g

g

g

A

G

A

g

A

C

c

A

tT

A

C

C

A

A

T

C

C

A

T

g

A

C

a

A

T

G

T

g

a

A

A a

A

A

a

C

3’

a

C c

a

G

G

g

t

g

g

A

a

A

a

A

g

G

A

G
T

T

c

t

a

5’

A

a

A

a

5’

G

Aa

G

g

A

A

T

Gg

A

A

t

a a

A

C

t

AAC

A

A

A

A

c

c

A

a

A

A

a

A

T

A

g

GG

C

a

G

T

G

g

t

G

G

5’

G G

A

A

C

a

A

A

C

A

t

A

C

t

C

T

G

A a

t

A

T

a

T

a

a

A

A a

a

a

t

G

A

A

G

A

G

C

G

a

aa

AA

a

a

a

T

A

C

a

g

c

g

A

c

C

a

G

-A

A

C

A-

G

T

T

T

g

t

A A

G

T

Tt

A

GG

A

A

a

A-

TT

a

a

a a
c

A

T

c

A

T

A

T

3’

A

G

A a

G

GN

a

A
A

5’

G

G

T

a

A

T

G

C

a A

C

t
G

a

T
G

A

a

G

G

G

A

A

G

G

A

A

t
G

T

A

C

a

G

A

a

A

a

G

A

C

a

g

a

G

c

g

T

A

G

5’

G
T

t

g

g

AC

a a

G

G

A

G

G

a

A

A

A

G

A

5’

A

AA

C

G

t

a

T

C

A

G

a

a

G

A

3’

a

A

G

TT

G

G

G

A

G

G

TG

a

G

G

GN

t

a

A

A

A

C

A

A

a

a

T

A

A

A

T
T

a

C

A

t

A

C

c

C

T

A

A

A

A

A

G

A

g

T

c

A

A

G

A

G

a

A

A

G

a

C

A-

A

c

T

A

G g

G

AA

A

T

5’

A

a

t

g

A

a

A

a

G

A

A

c

g

C

a

A

-A

A

G

T
G

5’

c

A

T

C

5’

g

A

A

a

G G

a

a

g

A

G

G

G

G

a

a

A

T

a

T

a

C

C

G

A

3’

A

g

a

a

TT

C

G

G

T

G

a

T

G

G
t

a

c

g

c

C

5’

C

g

A-

G

A A

G

A

A A

a

tt

G
t

A

T
G

c

A

a

C

C

C

A

G

C

C

G

a

G

TT

A

A

A

t

g

T t

a

T

A

g G

g

A

g

a

t t

a

T

A

T

A

T

t

G
T

t

G

a

3’

G

3’

A

AA

a

A

a
A

G

a

A

a

a

g

T

g

G

G

C

A

TG

C

A A

t T

a

C

g

t

T

AA

G

T

A

A

T

t

a

A

G

g

A

a

A

A

G

T

A

T

A

A A

C

A A

a

A

A

A

G

A

g

A

A

T

g

A

A

T

G

aA

g

A

-A

G

A

g

g

TA

g

C

t t

T

A

T

T

g gG

A

C

c

G

T

A

T

a

C

A

a

T

C

G

G

G

G

A

a

t

C

A

C

a

G

a

c

GG

A

t

c

c

T

a

c

CC

G
A

A

A

A

a

A

a

A

T

A

G

a

5’

a

A

g
T

A

A

A

A

A

a a

A

c C

c

A

C

C

g

c

3’

A

GG

t

g

C

t

G

a

G

AA

5’

t

g

A

c

a

gt

A

G

T

A

T

g

T

A

T

T

A

G

t

G

A

G

t

G

g
A

A

a

g

T

A

A

A

g

G

g

c C

A

T

A
A

A

A

A

T

a

A-

A

TG

a

c

a

Tt

A

t

G

g

A

A

g

Aa

T

5’

T

C

A-

A

A

A
A

G

A

G

t

G

a

G

T

G

aA

T

a

g

a

G

G

A

a

a

C

G

G

t

A A

T

-A

G

a A

t T
G

A

G

g

a

A

Gg

A

A

C

A

A

a

G

3’

G

A

C

G

t

A

A

T

A

G

c

G

C

g

G

t

C

c

A

C

a

A

C

a

t

a

C

A

t

A

3’

G

aA

G

T

a

G

a

A

t

A

g

aa

A

C

A

G

a

A

5’g

C

G

t

G

a

G

G

a

a

A

a

-A

A

g

c

g

G

A

A

G

g

T

G

A

TT

AA

G

G

A

g

A

T

G

G

A

3’

g

A

g

A

a

3’C

g

a

A

c c

C

g

A

a

A

5’

a

A

a

A

t

A

A

A

T

A

g g

A

T

A

A

A

G

3’

a-

C

T

A

A

A
A

5’

g

G

a

g

G

A

T

G

T

G

T

A

g

A

T

A

G

T

G

a

A

A

C

a A

C

A

A

-A

G

A

A

t

A-

A

A

A

t

A

-N

A

T

5’

T

a

AA

g

C

t
G

3’

g

A-

g

A-

A

C

a

a

A

G

A

A

G

A

A

A

C

3’

3’

G

Gg

T

G

G

A

t

5’

c

T

c

A

G

C

A

a

A

C

T

A A

a

A

a

a

C

A

A

A

g

G

3’

g

C

g

a

T

cc

A

A

A

C

A

C

C

G

G

G

C

C

GT

A

t

t

T

G

T

g

a

g

A A

A

g

A

G

5’

C

A

A

T t

A

5’

A a

tT

t

a a

A

t

g

g

A

G

ac

C

A

A

T

G

A

G

g

A

C

A

A

T

c

G

c

5’

c

G

A

A

A

A a
A

A

A

a

AA

A

A

a

A

g

ac

A

G

A

G

A

G

G
G

a

G

A

T

c

c

A A

A

TN
G

T

G

G

G

GG

T

5’
G

C

A

A

5’

G

g

A

T

G

G

A

G

A

A

c

A

A

A-

A

G

A

G

A

3’

G

A

G

G

a

a

a

A a

T

G

A

A

T

Aa-

a

A

a

g

A

C

C

aa

T

C

T

a

C

T

G

C

G

G

T

A

a

C

c

A

C

a

A

g

gG

G

G

G

A

A

C

c

G

a

T

A

T
g

a

A

c

A

C

C

A5’

C

A

C

T

A

a

A

C

A

C

a

T T

A

Gg

g

T

A

T

G

G

g

G

a

a

a

a

a

G

-A

a

-A

T

a

t

a

G

T

G

T
A

a

tT

A

3’

a

a

g

A

GG

G

T

G

T

G

A

G

A

C

c

A

c

C

C

T

A

C c

A

t

A

Aa

a
A

A

a

A A

A

A

A

A

-A

A

G

a

G

AA

A

A

t

T

a

T

t
T

A

C

T

c

GG

A

A

g

A

a

A
g

A

T

t

G

G

t

A A

C

C C

T

C

A
g

A a

g

AA

a-

5’

t

A
A A

A

-A

g5’

3’

g

T

A

A

3’

A

G

c

T

g

g

g

c

ca

C

C

a

g

3’

g

g

g

C

t

G

A

A

g

g

A

A

A

aA

T

A

g

A

c

A

t

G

A

3’

A

G

G

A

G

A

3’

g

C

A

A

C

Tt

A A

C

a

G

a

AA

C

A

G

C

a

3’

G

T

A

c

G

g

G

c

000002

000002

000002

000002

000002

000002

000002

000002

000002
000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002
000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

000002

#?chr

----------|-

----------|-

0001018414|C

0001018391|C

0001018411|T

0001018408|A

0001018370|A

0001018372|C

0001018365|G

0001018403|A

0001018394|A

0001018388|A

0001018417|T

0001018378|A

0001018371|A

0001018367|G

0001018422|A

0001018369|A

0001018379|A

0001018430|A

0001018380|G

0001018397|A

0001018395|A

0001018431|G

0001018384|G

0001018373|G

0001018366|A

0001018386|G

0001018416|T

0001018361|G

0001018399|G

0001018387|T

0001018383|G

0001018401|A

0001018363|A

0001018368|G

0001018402|A

0001018421|G

0001018432|T

0001018404|C

0001018377|G

0001018396|A

0001018359|G

0001018362|A

0001018376|A

0001018358|G

0001018428|C

0001018435|C

0001018375|G

0001018434|A

0001018418|A

0001018405|A

0001018374|T

0001018415|T

0001018420|G

0001018423|G

0001018412|G

0001018429|A

0001018410|T
0001018409|C

0001018381|A

0001018389|A

0001018407|A

0001018398|T

0001018393|A

0001018425|G

0001018433|A

0001018390|A

0001018436|T

0001018406|C

0001018424|G

0001018427|C

0001018392|A

0001018385|A

0001018364|A

0001018382|T

0001018419|T

0001018426|C

0001018413|A

0001018400|A

0001018360|T

pos|refbase alignments

Figure 2.8: Vertical Scrolling Text Mode Alignment View of SHOREmapdisplay

2.8. VISUALIZATION OF SEQUENCING READ AND ALIGNMENT DATA 55

2:1018241 2:1018261 2:1018281 2:1018301 2:1018321 2:1018341 2:1018361 2:1018381 2:1018401 2:1018421 2:1018441 2:1018461

C T C A C A A G A G C T G T T T T A T G T C C T A A A T G A A A C A A T T T A T G G A T T A T A T T T T T T T C T C G T C A T G A T T T T A T G G A G T T T A T T G A T T T G G T A A A T A A T A A G T A A C T T T T T T T G G T A A A A T G G T G A A A G A G G A A A C G T G A G A A G A T G G A G T A A A C A A A A A A T G A A A A C A C A A C T T G A C T T T A T G G A G G G C C C A A G T A A C T T T G A A A A C G G G C C A A A G A G A C A A T A C A T C C T T A A T A

A

G

G

N

T

T

A

A

C

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C
C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

T

C
T

T

T

A

T

T

G

T

C

N G

A

A

A

A

A
A
A
A
A
A
A
A

A

A

A
A

A

A
A

A
A
A
A
A
A
A
A
A
A

N

C

A

N

A

C

-

-
-
-
-
-

-

G
-

-

-
-

-
-

-
-
-

-
-
-
-
-
-
-
-
-
-

-

C

C

A

-

C
N

A

C

G

T

C

A

A

A

C

G

A

A

A

C

T

A

A

A C

C

A

A A
A

C

Figure 2.9: Vector Graphics Alignment View of SHOREmapdisplay

2.8.2 Visualization of Read Mapping Data

By utilizing SHORE's generic indexed query mechanisms (section 2.2.3), the SHOREmapdisplay

program is able to rapidly retrieve all read mappings associated with a user speci�ed genomic
region. By default, the program generates a comprehensible colored ASCII/ANSI text represen-
tation of the read alignments, which is presented as a scrollable terminal view using the Unix �le
pager utility less. For technical reasons, read mappings are displayed in a vertical layout (�g-
ure 2.8).

Insertions are represented as additional positions in the alignment view. Analogous to SHORE
alignment string format (section 2.2.4), mismatching positions in the alignment are displayed
with the reference base on the left and the query base on the right side. When a more compact
view is required, display of the reference nucleotide is omitted. To allow distinguishing between
reads mapping to the forward or to the reverse strand of the reference sequence, reverse strand
associated alignments are printed in lower case and forward strand sequences in upper case letters,
and 3′ and 5′ ends are indicated by corresponding colored end markers. To allow identi�cation of
individual reads in the alignment view, inclusion of further information such as read identi�ers
and paired-end sequencing information may be requested on program startup.

The text mode mapping viewer provides a rapid, detailed view of read mapping data with-
out interruption of work�ows. It is however less suited to obtaining a medium- to larger-scale
overview of complex genomic regions. Therefore, we additionally provide the possibility of gen-
erating an alternative alignment view as an SVG image (�gure 2.9).

SVG �les generated are easily and e�ciently rendered in a web browser. In contrast to
the text view, read sequences are omitted in the SVG view except for mismatching alignment
positions to enable improved rendering performance. Mismatching alignment positions as well
as insertions and deletions are color coded and their sequence included for direct examination at
close zoom levels. Directionality of read mappings is indicated both by shape and color of the
corresponding horizontal bars. As layout locations for the read mappings are generally assigned
by a greedy algorithm that picks the lowest possible y coordinate immediately when an alignment

56 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

0
5

10
15

20
25

D
ep
th

of
C
ov
er
ag
e
[#

R
ea
ds
]

2:1 2:10000001 3:200001 3:10200001 3:20200001
Position [bp]

Median Depth of Coverage
Depth Inner Quartiles
Average Depth ±SD

Figure 2.10: Segment-Wise Genome-Wide Box Plot

is encountered, depth of coverage can be hard to judge from the read alignments alone. Therefore,
the SHOREmapdisplay program generates an overlay of depth of coverage, represented as vertical
bars, and the horizontal bars of the read mappings. In addition, the SVG view allows retrieval
of exact depth of coverage information for each position and detailed alignment information for
each of the reads displayed in the form of mouse activated tool tips.

2.8.3 Visualization of Local or Genome-Scale Depth of Coverage

SHORE coverage is a multi-purpose tool for depth of coverage calculation and depth based segmen-
tation (section 2.7). The complementary SHORE count utility gathers a wide variety of segment-
related statistics. Like most SHORE modules, both programs are capable of rapidly retrieving
and processing alignment information associated with de�ned regions of the genome.

SHORE coverage can be utilized to obtain visual representations of local depth of coverage (�g-
ure 2.6) or of kmer-phasing for small RNA data analysis (not shown). Per-base rendering of depth
of coverage is however inappropriate for examination of larger scale distribution of sequencing
depth. Visualization capability for such types of analysis is integrated with the SHORE count
program. The software collects segment associated statistics for either user provided or �xed size
jumping window segments. The segment data collected may be incorporated into a continuous
genome- or chromosome-wide box plot (�gure 2.10).

In the representation, the median line connects the median depth of coverage value for each
of the segments provided, and is enclosed by boxes indicating second and third quartiles as well
as the single standard deviation range surrounding the average depth of coverage of the segment.
Red vertical bars indicate chromosome boundaries. As read depths mostly represent integer
values, median and quartile values are adjusted to compensate quantization (section 2.8.4).

2.8. VISUALIZATION OF SEQUENCING READ AND ALIGNMENT DATA 57

Median Depth of Coverage
Depth Inner Quartiles

0
5

10

Position [bp]
3:9250001 3:9250001

D
ep
th

of
C
ov
er
ag
e
[#

R
ea
ds
]

16
24

32
40

Q
ua
lit
y
Sc
or
e

Cycle [bp]

Median Base Quality
Inner Quality Quartiles

1 11 21 31 41 51 61 71 81 1 11 21 31 41 51 61 71 81

Figure 2.11: Quantile Interpolation Applied to Base Qualities and to Depth of Coverage

2.8.4 Quantile Correction

As in the case of base quality data or positional depth of coverage, quantile values of integer
data distributed over a narrow range only coarsely represent the distribution of interest due to
the small number of di�erent values that such quantiles can assume (�gure 2.11, left side).

Given that the integer data in fact represent real-valued entities that have at some point
been rounded, then it can be assumed that the original value of an integer s follows an unknown
distribution supported on the interval [s − 0.5, s + 0.5). For an integer data set of size N , this
implies for an arbitrary integer j-th c-quantile qi, that the expected value for the quantile of
the original, non-rounded data qr data equals the minimal value to be considered for qr plus the
k-th order statistic for n values distributed according to the unknown distribution. Here, n is
the number of values in the integer data set of equal value to qi, and k = d(j ·N)/ce − u, where
u denotes the number of integer data with smaller value than the quantile qi.

Given n i. i. d. samples X1, . . . , Xn, then their k-th order statistic is a random variable W(n,k)

with probability density function

fW(n,k)
(x) = n ·

(
n− 1

k − 1

)
· fX(x) · FX(x)k−1 · (1− FX(x))n−k (2.7)

Assuming X is distributed uniformly over the unit interval, then the k-th order statistic follows

58 CHAPTER 2. A HIGH-THROUGHPUT DNA SEQUENCING DATA ANALYSIS SUITE

a beta distribution, W(n,k) ∼ Beta(k, n− k + 1), with expected value and variance

E(W(n,k)) =
k

n+ 1
(2.8)

Var(W(n,k)) =
k

(n+ 1) · (n+ 2)
·
(

1− k

n+ 1

)
(2.9)

The assumption of rounded data is reasonable for base quality values and arguable also for
observed read count data. Therefore, it can be considered valid to estimate corrected quantile
values as

q̂r = qi − 0.5 +
k

n+ 1
(2.10)

While the assumption of uniformity for the distribution of the original data to be considered
may be questionable with special emphasis for read depth data with value zero, the adjusted
quantiles still provide a considerable improvement for appraisal of the distribution compared
to their integer counterparts. Equation 2.7 might be exploited where a better approximation
of the actual distribution is available. For simplicity of implementation, we do not calculate
the exact values of the q̂r, but employ a probabilistic algorithm that adds a random real value
uniformly sampled from the interval [−0.5, 0.5) to each integer value prior to quantile calcula-
tion (�gure 2.11, right side).

3 A C++ Framework for High-Throughput DNA

Sequencing

In a large, multi-purpose data analysis software solution, there are inevitably many
recurring processing tasks and algorithmic challenges. To avoid large amounts of
complex, redundant and error-prone code, the common subproblems must be isolated
as reusable modules. With the SHORE DNA sequencing data analysis suite, we have
striven to implement frequently required segments of code using consistent design pat-
terns and interfaces. The resulting C++ programming framework libshore constitutes
the subject of this chapter.

3.1 Overview

High-throughput sequencing has become adopted as a versatile tool applicable to a wide range of
di�erent scienti�c questions (section 1.3). While data analysis for di�erent types of application
must be approached from unique angles (section 1.5), in their elementary building blocks methods
and algorithms often share considerable overlap on many levels.

Reading, parsing and formatted output of sequencing data in standard storage formats is a
near universal requirement. Additionally, subsetting data sets by de�ned properties, achievable
through di�erent combinations of simple accept-reject �ltering operations, is an often powerful
tool for adjustment of an analysis' sensitivity-speci�city tradeo�. More complex operations rely
on the relationship between multiple data set elements, like e. g. removal of PCR duplicate se-
quences from read alignment data, or alter certain properties of the data set elements themselves,
and are therefore sensitive to, and potentially useful not only in various combinations, but also
orders of application. Finally, entire analysis processes can be modeled as modules or series of
modules transforming the type of the data, for example read alignments into depth of coverage
or read alignments into positional pileups into variant calls.

While isolation and encapsulation of subproblems facilitates correct implementation and com-
prehensibility of each individual step, the logic required to tie components into end-to-end pro-
cessing pipelines can itself become extensive. For versatile modes of application, modularized
components must therefore be embedded into a more generic framework capable of providing the
glue between input, output and data �ltering, manipulation and transformation.

The libshore C++ framework code is loosely categorized into ten di�erent packages including
application framework functionality, generic data processing infrastructure and sequencing spe-
ci�c processing modules and data structures. With �gure 3.1 we present a package overview in
a simpli�ed UML-like representation, illustrating exemplary classes and associations.

The base package comprises elementary low level functionality and utilities as well as machine
or system-dependent blocks of code. While its functionality is required for most other packages,
it is self-contained and does not by itself depend on other parts of the library.

The class program from the package of the same name constitutes the base class of all SHORE
command line utilities. The base class combines command line interface de�nition, documen-

61

62 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

base

datatype

alignment_tokenizer

program

av_parser

add_option(spec,var,desc)
operator()(argc,argv)

program

add_option(speci�cation,variable,description)
operator()(argc,argv)

uncaught_handler

operator()(func)

statistics

binomial

�Distribution�

poisson

�Distribution�

mtc

su�x_array

�Function�
DataIterator

su�x_query

�Function�
DataIterator

container

intpack

d2tree

cmp_x: CmpX
cmp_y: CmpY
cmp_xy : CmpXY

CmpX

line_sorter
CmpCmp

sort_�les(�les)
merge_�les(�les)
is_sorted(�le)
upper_bound(�le, line)

parallel

T
parallelizer

thread

1..*

T
sync

T
desync

Source/Pipe/Sink
serial

Pipe/Sink
parallel

processing

�Source�

source

Reader

�Sink�

sink

Writer

�Pipe�
pipe

Writer-Reader

�Writer�
�Reader�

pipe_box

Pipe

alignment_�lter_pipe

�Pipe�

su�x_index

twodex

stream

istreams std::istream

0..*

xz_istream

gzx_istream

xz_ostream

gzx_ostream

ostreams

0..*

std::ostream

�Pipe�

pipe_facade

Derived

fastq_reader

�Reader�

s�_reader

�Reader�

sam_reader

�Reader�

bam_reader

�Reader�

fasta_reader

�Reader�

�atread_writer

�Writer�

maplist_writer

�Writer�

sequence_recordalignment read

bu�er_chain

T

plugin

T
0..*

dp_aligner_pipe

�Pipe�

�Sink�
�Reader�

extractor

T

�Writer�
�Source�

feed

T

alignment_reader

�Reader�

sam_writer

�Writer�

�atread_reader

�Reader�

�Reader�

monolithic

Basic_Reader

read_reader

�Reader�

maplist_reader

�Reader�

fmtio

algo

ArrayIterator

ArrayIterator

CmpY
CmpXY

nucleotide

Figure 3.1: libshore Overview

3.1. OVERVIEW 63

tation and command line parsing through an auxiliary class av_parser and incorporates an
object of class uncaught_handler to provide handling and reporting of fatal error conditions
encountered by the application.

Classes istreams and ostreams of the stream package simplify handling of �les or other input
or output destinations. Interpretation of special location strings or pre�xes facilitates speci�ca-
tion of special �les or other sources or destinations of input and output as option arguments or
option default values, like e. g. standard input, output or Unix pipes. Input or output locations
compressed in GZIP, BAM or XZ format are delegated to appropriate helper stream classes for
automatic decoding, encoding or handling of random access requests (section 2.2.2). Both classes
in addition provide input/output error checking and further stream-related functionality. Class
ostreams furthermore implements simpli�ed handling of temporary �le destinations as well as
optional temporary �le compression for improved handling of large amounts of temporary data.

Package algo comprises of dynamic programming alignment (section 2.5.2) as well as in-
dexing, sorting and query algorithms and associated persistent data structure implementations
(section 2.2.3). The platform for range indexing and queries is provided by a generic 2-d tree al-
gorithm template d2tree, which is further utilized by the class twodex that supplies a persistent
index data structure con�gurable for a variety of genomic data formats. Multiple algorithm tem-
plates with the pre�x suffix_ implement generic su�x array construction and queries [144, 145].
The su�x array algorithms are employed by objects of class suffix_index, which provides per-
sistent disk indexes for genomic sequences con�gurable and capable of answering various types
of sequence match queries. To support up to 64 bit data at reasonable space e�ciency, persistent
suffix_index and twodex index data are encoded and decoded non-byte aligned with respective
exact required bit width utilizing class intpack of the container package.

The libshore data processing infrastructure is de�ned and implemented as a set of templates
forming the processing package (section 3.2). Package parallel extends on this infrastructure
to build an abstracted parallel processing interface (section 3.3).

Despite growing acceptance of data exchange speci�cations such as SAM/BAM for short read
mapping data, data format issues can present a major impediment to application of algorithms
to input data from diverse sources. Therefore, the library includes support for a broad variety
of sequencing read, mapping and further sequencing and DNA-related input and output �le for-
mats provided through the fmtio package. Format support is implemented as Reader andWriter
classes with a consistent interface modeled after the requirements of the data processing infras-
tructure. To simplify working with various formats, for sequencing read and alignment data the
library provides multi-format readers read_reader and alignment_reader which automatically
incorporate the adequate Reader objects for each respective input �le.

File format parsing and decoding requires adequate in-memory representation for the respec-
tive elements of the various types of data set, which are de�ned in the datatype package. Plain
data structures read and alignment provide the standard representation of short sequencing
read data, whereas large genomic sequences are stored as sequence_record objects with more
sophisticated internal memory management. Additionally, processing modules and utilities spe-
ci�c to a certain type of data set element � or certain properties of data set elements � are also
grouped under this package. For example, a class alignment_filter_pipe combines application
of a variety of frequently required �ltering and editing modules to read mapping data. Parsing
and decoding the SHORE alignment string pair-wise alignment representation (section 2.2.4) into
CIGAR string-equivalent tokens is provided as a class alignment_tokenizer. Class nucleotide
provides decoding, encoding and e�cient manipulation of IUPAC encoded DNA bases.

The additional statistics package supplies the basis for statistical hypothesis tests based on
a variety of distributions. The complementary class mtc re-implements various multiple hypoth-
esis test correction procedures in C++ following the R multtest package implementation [146].

64 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

Supported procedures include false discovery rate (FDR) calculation following Benjamini and
Hochberg [143] as well as Benjamini and Yekutieli [147] and further family wise error rate
(FWER) control via Bonferroni [148], Hochberg [149], Holm [150] as well as Sidak [151] cor-
rection algorithms.

3.2 A Modular Signal-Slot Processing Framework

3.2.1 Reader and Writer Concepts

The requirement to support large numbers of di�erent input �le formats emphasizes the ad-
vantage of consistent interfaces to provide access to the data. The libshore framework therefore
de�nes the concept of a Reader as a class providing three methods named has_data, current
and next which allow linear iteration over the data set's elements.

The has_data method returns a boolean value indicating whether further data set elements
are available to the respective Reader object. The method current provides access to the element
of the data set at the current position of the iteration, and next indicates the current element
has been processed and may be discarded. Initialization of the following element for retrieval by
current may be handled by either of the next or has_data methods.

Conversely, we de�ne the concept of a Writer as a class supporting methods append and
flush. The method append is used to pass the object a data set element for processing, whereas
flush serves as a noti�cation that no more data are available for processing, triggering �nalizing
actions such as addition of footer sequences for compressed data sets.

Intermediary processing and �ltering modules can thus be realized as classes conforming to
both theWriter and Reader concepts. Method flush in this case adopts the role of �nishing data
processing and propagating all remaining data to the object's Reader interface. For example, in a
sliding window analysis output of data will be delayed until enough input data become available
to cover the entire width of the window. On receiving a �ush request, processing of remaining
elements must however be completed without waiting for further data associated with the sliding
window.

3.2.2 De�nition of Processing Network Topology

With the Reader and Writer concepts, propagation of data through a network of processing
modules might be accomplished through a series of nested processing loops (listing 3.1). The
example illustrates propagation of data read from a single source of input through two cascaded
�ltering operations. Processing results are to be written to the application's standard output
stream, whereas intermediate results following the �rst step of �ltering are additionally recorded
as a separate output �le. The �rst set of loops of lines 8�27 constitute the actual propagation of
input data. Read mapping data provided by the reader object are appended to the �rst �ltering
module (line 10). As a result, the �lter object may or may not produce an arbitrary amount of
data (e. g. due to sliding window based removal of PCR duplicated sequences), which are passed
to the intermediate �le writer as well as the second �lter object (lines 12�24). Data produced by
the second �lter object must be transmitted to the �nal output accordingly through a further
nested loop (lines 17�21). Additional sets of nested loops correspond to propagation of remaining
data following appropriately stacked �ush requests to each of the modules (lines 30�56).

The demonstrated mode of explicit data propagation is verbose and error prone. Our pro-
gramming framework therefore implements a set of class templates providing a signal-slot pipeline
architecture to allow more concise and comprehensible representations. A signal constitutes a
function object that may be connected to an arbitrary number of function objects supporting

3.2. A MODULAR SIGNAL-SLOT PROCESSING FRAMEWORK 65

1 alignment_reader r("in.bam");
alignment_filter f1(filter1_config);
alignment_filter f2(filter2_config);
maplist_writer w1("filtered1.maplist");

5 maplist_writer w2("stdout");

// Process data.
while(r.has_data())
{

10 f1.append(r.current());

while(f1.has_data())
{

w1.append(f1.current());
15 f2.append(f1.current());

while(f2.has_data())
{

w2.append(f2.current());
20 f2.next();

}

f1.next();
}

25

r.next();
}

// Finish.
30 f1.flush();

while(f1.has_data())
{

w1.append(f1.current());
35 f2.append(f1.current());

while(f2.has_data())
{

w2.append(f2.current());
40 f2.next();

}

f1.next();
}

45

w1.flush();

f2.flush();

50 while(f2.has_data())
{

w2.append(f2.current());
f2.next();

}
55

w2.flush();

Listing 3.1: Using Processing Modules with Nested Loops

66 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

data

�ush

freeze

thaw

Source Pipe
data

�ush

freeze

thaw

Signal Slot

Sink

Figure 3.2: Pipeline Connections

1 alignment_source r("in.bam");
alignment_filter_pipe f1(filter1_config);
alignment_filter_pipe f2(filter2_config);
maplist_sink w1("filtered1.maplist");

5 maplist_sink w2("stdout");

// Connect modules.
r | f1 | f2 | w2;

10 f1 | w1;

// Process data and finish.
r.dump();

Listing 3.2: Using Processing Modules with the libshore Pipeline API

the same types of function parameters (slots). Calling a signal function passes the respective set
of function parameters to all connected slots in an unspeci�ed order of invocation.

We thereby de�ne the concept of a Source as a class providing signals named data as well
as flush, and further slots labeled freeze and thaw. A Sink concept is conversely de�ned as a
class providing slots named data and flush, as well as signals freeze and thaw. Furthermore, a
Pipe amalgamates both the Source and the Sink concept. Thus de�ned Pipe processing modules
immediately forward all elements of output data produced in response to �ush requests or data
appended the data slot to their respective data signal. A processing pipeline can thus be de�ned
as a series of connected Pipe elements terminated by Sources and Sinks at either end, respectively
(�gure 3.2).

A Source or Sink can be realized using respective templates source and sink capable of
appropriately transforming Reader and Writer objects. A further template pipe is provided for
transformation of objects conforming to both the Reader and Writer concepts. For each �le
format Reader and Writer class, the library de�nes corresponding Source and Sink classes by
means of the respective template, which are marked by su�xes _source and _sink.

Source, Pipe and Sink objects can be combined into extensive processing networks through
connection of the appropriate signals and slots. To improve the clarity of de�nition of such
networks, an overload of the pipe operator (�|�) is provided for establishing pair-wise module
connections. The code of the processing example can thereby be simpli�ed to a large extent
(listing 3.2). Lines 8 and 10 de�ne the topology of the processing network. The source template

3.2. A MODULAR SIGNAL-SLOT PROCESSING FRAMEWORK 67

further de�nes a method dump, which causes all data provided by the incorporated Reader to be
passed to the data signal before triggering the flush signal to �nalize processing (line 13).

For cases where application to entire data sets is not the intended use, modules must provide
a means of suspending the �ow of processing. Classes implementing the Reader concept may for
example o�er con�gurable standard �ltering facilities comprising of multiple cascaded processing
modules. However, while the Reader concept implies that each data set element is retrievable
individually, Pipe elements may produce an arbitrary amount of output in response to input
data processing, which would render such modules unsuitable for this type of reuse. We therefore
introduce the additional module connections freeze and thaw serving to suspend and resume
processing pipeline data �ow, respectively (�gure 3.2). These connections run anti-parallel to
the data and flush signals. As signal invocation corresponds to a series of nested function
calls transmitted along the connected modules, source and pipe templates are able to directly
detect suspend and resume requests sent by downstream elements. A provided class template
extractor utilizes the implemented suspend facilities to act as a bridge between the Sink and
Reader concepts. Thus, extractor objects may be inserted at the end of a line of processing
modules to retrieve generated output data individually. A complementary template feed provides
bridging between the Writer and Source concepts.

3.2.3 Module Implementation

Encapsulation of subproblems as modules implementing both the Writer and Reader concepts
comes with the disadvantage that all data generated in response to a single invocation of one of
the Writer methods must be kept in an internal bu�er for subsequent retrieval via the Reader
interface. However, in the context of a processing pipeline each element of output data can in
principle directly be transmitted to downstream modules for further processing, often avoiding
the need to implement internal bu�ering. Direct propagation can be achieved by direct im-
plementation of the Pipe concept, thus exposing direct access to the module's data and �ush
signals. Implementation logic of unbu�ered, interruptible processing is however more complex
than the bu�ered equivalent. We therefore provide a base class template pipe_facade enforcing
a restricted programming model to support correct implementation of such modules.

The facade template requires distribution of processing implementation across four function
calls prepare, append, next and flush. A function emit is further made accessible to subclasses
to propagate generated output. The template enforces a single-emit rule by which invocation
of the emit base class function is permissible exactly once during each call to either of the four
implementation functions. The purpose of each of the four functions is illustrated by example
(listing 3.3).

Raw sequencing read input data will typically be ordered by an identi�er speci�c to the
respective insert, whereas order of the individual reads retrieved from the insert is arbitrary.
For some purposes further ordering of sequencing reads of the same insert by their paired-end
sequencing index may however be convenient. Implementation of an appropriate reordering
module demonstrates the purpose of each of the four facade functions.

The reordering module collects all reads belonging to the same insert in an internal bu�er,
and subsequently orders them by value of their paired-end index. The prepare method serves as
an initial noti�cation about next element that will be passed to the object's append method. In
the case of the example module, identi�ers are compared to determine whether further reads are
available for the insert currently being processed. If the next read does not belong to the current
insert, reordering of the reads by paired-end index is triggered. Reads are then transmitted for
downstream processing by invocation of emit on the �rst of the collected reads. In concert with

68 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

1 class order_paired_reads_pipe
:public pipe_facade<order_paired_reads_pipe,

// Input datatype
read,

5 // Output datatype
read>

{
private:

10 // Grants pipe_facade access to private member functions.
friend class pipeline_core_access;

// Stores all reads with the same identifier.
std::vector<read> m_buffer;

15

// Orders all reads collected in buffer by their paired-end index.
void order_reads_by_index();

// Tests if a read has no mates.
20 static bool is_single_read(const read &);

void next()
{

if(!m_buffer.empty())
25 {

m_buffer.pop_front();

if(!m_buffer.empty())
emit(m_buffer.front());

30 }
}

void prepare(const read & r)
{

35 if(!m_buffer.empty() && (r.id != m_buffer.front().id))
{

order_reads_by_index();
emit(m_buffer.front());

}
40 }

void append(const read & r)
{

if(is_single_read(r))
45 emit(r);

else
m_buffer.push_back(r);

}

50 void flush()
{

if(!m_buffer.empty())
{

order_reads_by_index();
55 emit(m_buffer.front());

}
}

};

Listing 3.3: Usage Example for the pipe_facade Template

3.2. A MODULAR SIGNAL-SLOT PROCESSING FRAMEWORK 69

the method next described below, the internal sequencing read bu�er thereby gets successively
freed for processing of the following insert.

Processing of new input data must be handled by the method append. In the context of the
reordering example, single-end and orphan reads � i. e. all reads that for any reason are the only
ones for their respective insert � can be immediately transmitted downstream, whereas paired
reads are appended to the internal sequencing read bu�er for subsequent sorting.

The method next is automatically invoked through the facade class on completing propa-
gation of an element of output data. Subclasses may implement the method with the purpose
of discarding data no longer required. The emit method may be re-invoked inside the method
body. In the example module, this property is exploited to iteratively emit all reads of the
current insert and free the bu�er for processing of the following insert.

By means of the division of implementation among the four processing functions in concert
with the single-emit rule, the facade template is able to ensure correct data propagation and
handling of suspend and resume requests triggered through the freeze and thaw slots. Sub-
classes may however omit implementation of individual methods not required for the respective
processing task.

3.2.4 In-Place Data Manipulation

In the pipeline model, processing modules are presented with individual data set elements that
are invalidated as the following element becomes available. As demonstrated by the example
(listing 3.3), this implies that operations that rely on a relation between multiple elements must
maintain an internal bu�er to accumulate the relevant data. Furthermore, to avoid unintended
side e�ects between di�erent branches of the downstream processing setup, modules and data
sources must prohibit direct manipulation of transmitted data. Copying of data is therefore also a
prerequisite to implementing manipulation of certain properties of the data set's elements. Both
restrictions may therefore result in a considerable level of unnecessary data copying overhead.

To mitigate this issue with the explicit model of data propagation (section 3.2.2), Reader
classes are initially implemented following a lower level concept Basic_Reader, which is de�ned
as a class with a single method next. The method can be used to attempt reading a single data
set element into an externally provided bu�er, and returns a boolean �ag to indicate whether an
element could be successfully retrieved. Data read into the provided bu�er can then be freely
manipulated prior to further processing. The Basic_Reader variant of a class is identi�ed by the
pre�x basic_. The corresponding Reader classes compliant with the processing infrastructure
are generated automatically via a class template monolithic (�gure 3.1).

The processing framework provides a more generic mechanism to avoid data copying overhead.
By implementation as plug-in class, operations with identical input and output data type can be
realized using in-place manipulation of an arbitrary number of data set elements determined by
the class.

For plug-in module support, Reader, Source or Pipe classes inherit a template class
buffer_chain. The template maintains an extensible list of re-assignable bu�ers for the
respective type of data set element associated with the data source. Prior to downstream
propagation of data, objects of classes inheriting a class plugin of appropriate type may be
granted access to the list of maintained bu�ers for manipulation, removal or requesting further
bu�ering of data set elements.

As a simple example, we present the implementation of a plug-in for sort order veri�ca-
tion (listing 3.4). Prior to propagation of the �rst of the bu�ered elements, plug-in modules
are presented with the internal list of bu�ers, as well as a list of unused bu�ers to which dis-
carded elements may be added. The module's apply method may freely manipulate, discard,

70 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

1 class sequence_sorting_check
:public plugin<read>
{
private:

5

// Generates an exception to indicate data are not sorted
// according to expectation.
void sorting_error();

10 public:

virtual int apply(std::deque<read *> & buffers,
std::vector<read *> & unused,
const bool flush)

15 {
if(buffers.size() < 2)

return flush ? (PLUGIN_SUCCESS) : (PLUGIN_STARVED);

if(buffers[1]->sequence < buffers[0]->sequence)
20 sorting_error();

return PLUGIN_SUCCESS;
}

};

Listing 3.4: Plugin Implementation Example

re-use bu�ers of the unused bu�ers list or allocate further bu�ers for its data manipulation task.
Given enough data set elements have been bu�ered for the module to carry out its operation,
a status value PLUGIN_SUCCESS is returned, and status PLUGIN_STARVED otherwise to cause the
buffer_chain object to delay data propagation and collect further data. In case of the sort order
example, the method indicates at least two elements are required to complete the operation (line
16). Given the prerequisite is ful�lled, the module proceeds to verify the ordering of the �rst two
elements found in the bu�er (line 19).

Support for plug-in modules can be readily combined with the pipe_facade approach (list-
ing 3.5). The source code example presents a simple conversion module for sequencing read
data types. To allow a more direct representation of the �le structure, sequences read from 454
Standard Flowgram Format (SFF) �les are initially stored in a data structure distinct from the
libshore regular sequencing read representation. To be used with generic read processing modules,
a conversion of read data is thus required. The append method of the conversion module requests
an unused bu�er and uses it to perform the data type conversion (lines 21, 23). Given plug-in
modules succeed, a data set element is transmitted downstream (lines 25, 26). The module's
next method invalidates the �rst of the bu�ered elements and transmits further data when ap-
propriate. When combined with the buffer_chain class, the method flush of the pipe_facade
template must be implemented to �nalize processing of elements that were possibly delayed by
request of plug-in modules (lines 29�33).

3.3. A SIMPLIFIED PARALLELIZATION INTERFACE 71

1 class sff_flatten_pipe
:public shore::pipe_facade<sff_flatten_pipe, sff_read, read>,
public buffer_chain<read>
{

5 private:

// Grants pipe_facade access to private member functions.
friend class shore::pipeline_core_access;

10 // Performs the conversion from sff_read to read type.
static void init_read_from_sff(read & r, const sff_read & sff);

void next()
{

15 if(buffer_chain_pop())
emit(buffer_chain_front());

}

void append(const shore::sff_read & r)
20 {

shore::read & current = buffer_chain_push();

init_read_from_sff(current, r);

25 if(buffer_chain_prepare())
emit(buffer_chain_front());

}

void flush()
30 {

if(buffer_chain_flush(false))
emit(buffer_chain_front());

}
};

Listing 3.5: Usage Example for the buffer_chain Template

3.3 A Simpli�ed Parallelization Interface

While run time of simple high-throughput sequencing data processing tasks is often primar-
ily determined by the available capacities for input and output, computationally more expen-
sive operations such as mapping of reads to a reference genome sequence may require heavy
parallelization to complete in an acceptable time span. Correctness of in general error prone
implementation of parallel algorithms is di�cult to assess. We build on the libshore pipeline
infrastructure (section 3.2) to realize a parallelization framework that o�ers a simpli�ed parallel
programming model su�cient for typical processing of sequencing data. The framework pro-
vides an interface that abstracts from parallelization-related implementation details and is able
to seamlessly support both shared and distributed memory modes of operation.

72 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

1 const int NUM_THREADS = 16;
const int BATCH_SIZE = 100;

parallelizer<alignment> par(NUM_THREADS, BATCH_SIZE);
5 sync<alignment> syn1;

sync<alignment> syn2;

serial<alignment_source> r("in.bam");
parallel<alignment_filter_pipe> f1(filter1_config);

10 parallel<alignment_filter_pipe> f2(filter2_config);
serial<maplist_sink> w1("filtered1.maplist");
serial<maplist_sink> w2("stdout");

// Connect modules.
15 r | par | f1 | f2 | syn2 | w2;

f1 | syn1 | w1;

// Process data and finish.
20 dump(r);

Listing 3.6: Parallel Processing Example

3.3.1 Parallelization Modules

Our parallelization library is based primarily on �ve di�erent C++ class templates (�gure 3.1).
Class templates parallelizer, sync and desync can be instantiated to provide special paral-
lelization modules for incorporation into a processing pipeline. Instantiated objects constitute
special processing modules with identical input and output data type. The respective tem-
plates are parametrized on the type of data that is processable by the module. The template
parallelizer is responsible for thread creation and management as well as dispatching of data
to di�erent threads or processes. Objects instantiated from the class template sync can be
incorporated into a parallel pipeline to protect following pipeline modules from concurrent modi-
�cation. The third type of parallelization module desync allows transition from pipeline modules
protected by a sync object to further concurrently modi�able processing modules. For creation
of parallel processing pipelines, the actual processing modules must further be incorporated by
class templates parallel or serial to indicate whether the respective module may be used
concurrently.

While the basic processing infrastructure only enforces compatibility of input and output
data types of connected modules, the parallelization templates impose additional restrictions
upon which classes of object can be connected. Outputs of serial objects may be connected
to either other serial or to parallelizer or desync objects. Objects instantiated from the
parallel template are the only objects capable of receiving input from parallelizer objects.
The parallel objects can be connected downstream to either further objects instantiated from
the parallel template, or to appropriate sync objects. Finally, desync outputs can only be
connected to parallel objects.

Using these templates, the original data processing example (listing 3.2) can be reformulated
to support parallel modes of operation (listing 3.6). As indicated by the example, the level of
parallelism is requested through a parallelizer object (line 4). The parallelizer distributes
batches of data collected from the connected reader object to the worker threads associated with
it. The two subsequent �ltering operations are carried out in concurrent mode, whereas the

3.3. A SIMPLIFIED PARALLELIZATION INTERFACE 73

output operations must be protected by respective sync objects to prevent garbled output.
Our API abstracts from the actual implementation by which parallelization and synchro-

nization of program �ow is accomplished. The underlying framework currently supports multi-
threaded operation as well as distributed memory con�gurations such as compute clusters uti-
lizing the Message Passing Interface (MPI) standard. To avoid a hard dependency on MPI
implementations, support for distributed operation is disabled by default, but may be enabled
at compile time without further source code modi�cation.

3.3.2 Parallel Pipeline Architecture

Internally, automation of parallel processing is accomplished by introduction of further signal-
slot connections between the parallelization modules. The framework's mode of operation is
illustrated with a block diagram depicting all possible module connections (�gure 3.3(a)). The
data Source for the processing pipeline is incorporated by the leftmost serial object. The
data and flush signals of the source are connected to a multiplexer object internal to the
parallelizer. The parallelizer further incorporates multiple thread objects (multiplicity is
indicated by three dots in the lower compartment of the respective block diagram element). Data
collected by the multiplexer are dispatched to threads by means of a condition variable and
simple exchange of bu�ers.

Pipeline initialization is controlled by an auxiliary connection numthreads o�ered by all par-
allelization classes (not shown). Objects of class parallel on initialization create multiple sep-
arate processing modules. Each of these modules is associated with one speci�c thread of the
parallelizer, to which it is connected to through its data and flush slots.

On the output side, each module incorporated by the parallel object is further connected
to a unique track provided by the sync object. All of the tracks' data signals are connected
to the same downstream serial object, whereas received flush requests must be integrated by
the parent sync object to ensure that the downstream section of the pipeline gets �ushed after
processing has completed on all threads.

A sync incorporates a mutex variable which is used to protect downstream parts of the
pipeline from concurrent use. On activation of a track object's data or flush slots, this mutex
is acquired by the respective track before conveying the signal to the connected serial object.
By the nested function call property of signals passed to connected pipeline elements, it is ensured
that all contiguous, serial downstream operations are completed as the signal call returns. The
mutex can thus be released immediately to free the protected modules for use by other threads.

The desync template is intended to enable correct resumption of parallel mode of operation
downstream of a section of the processing pipeline controlled by a sync object. To accomplish
that, desync objects must provide a decoupling of downstream processing modules from the
upstream serial modules. For this purpose, the module receives locking information from the
controlling sync object by means of four additional signal-slot connections. These connections
between the sync and the desync object are established through objects lock_link provided
by the serial modules composing the enclosed section of the pipeline. A signal postlock is
transmitted by the sync object after the mutex variable has been acquired by a thread. In
response, the desync object starts to accumulate all data that is generated by the upstream
pipeline in a thread-speci�c bu�er. The signal preunlock is received immediately before the
mutex is unlocked by the upstream sync. The signal causes the thread-speci�c bu�er to be
detached from upstream pipeline input. Finally, a third signal postunlock indicates that the
respective thread has just relinquished the sync's mutex variable, and causes the desync to dump
all data collected in a bu�er to the channel of the downstream pipeline that is associated with

74 CHAPTER 3. A C++ FRAMEWORK FOR HIGH-THROUGHPUT DNA SEQUENCING

Source

serial parallel

. . .

Pipe

sync

track

. . .

desync

track

. . .

multiplexer

lock_link

. . .

Pipe

serial

multiplexer

parallelizer

thread

. . .

Sink

. . .

parallel

serial parallel

. . .

Pipe

sync

track

. . .

desync

track

. . .

multiplexer

lock_link

. . .

serial

multiplexer

parallelizer

thread

. . .

Sink

. . .

parallel

Signal Slot

data
�ush

postlock
preunlock

postunlock
join

(a)

(b)

Figure 3.3: Connections between Parallel Processing Objects

the respective thread. An auxiliary flush signal in addition conveys the thread-speci�c �ush
state across synchronized sections of the processing pipeline.

Finally, a connection join is supported by all parallel processing modules to ensure correct
termination of processing across all threads.

For distributed memory architectures, data are distributed from a single root process to
several worker processes. Worker processes must receive the data to be processed concurrently
from the root process, and must subsequently return their output data for processing by serial
modules (�gure 3.3(b)).

Objects of parallelizer, sync and desync initialized in worker processes automatically
establish connections for exchange of data with their respective counterpart in the root process,
where each connection is associated with an additional thread in the root process.

To prevent initialization con�icts and overhead, serial objects are associated with the ad-
ditional function of preventing creation of their respective incorporated processing module when

3.3. A SIMPLIFIED PARALLELIZATION INTERFACE 75

not in the root process.
Threads of worker processes' parallelizer objects operate by requesting data from the re-

spective counterpart in the root process. Failure to retrieve data indicates that processing is
complete, and triggers invocation of the thread's �ush signal and subsequently thread termina-
tion. Otherwise, data received are transmitted to the subsequent parallel object, identical with
threaded operation.

Subsequent sync objects submit received data and �ush signals to the corresponding object
of the root process. Sections formed by serial objects however cause an interruption in the
pipelines of worker processes. Therefore, sync objects must exploit the postlock signal trans-
mitted through serial modules to trigger a downstream desync object to request data generated
by serial processing from its counterpart in the root process.

4 Closing Remarks

Routine analysis of high-throughput sequencing data not only requires development of an appro-
priate analysis strategy for the respective application as well as solving associated algorithmic
challenges, but is further greatly facilitated by embedding the approach into an underlying frame-
work optimized for handling large sequence data sets. With SHORE, we have implemented an
end-to-end pipeline providing a powerful and modular analysis environment. Through tight
integration of all required analysis modules, data �ow is optimized, minimizing overhead and
incompatibilities at the transition points between the various steps of an analysis. Through em-
bedding into the pipeline environment, even supplementary utility algorithms are augmented by
readily available complementary functionality such as capable read data �ltering.

A variety of analysis modules dedicated to speci�c high-throughput sequencing applications
are already made available with SHORE. With the SHORE peak module, this work introduced sup-
port for ChIP-Seq enrichment pro�ling o�ering highly con�gurable peak detection and �ltering
mechanisms. With an approach that renders analysis results of simultaneously processed data
sets immediately comparable, obtaining conclusions from replicate experiments is in our view
greatly facilitated. With further general-purpose modules SHORE coverage and SHORE count pro-
viding �exible depth of coverage-based sequence segmentation and comprehensive gathering of
segment-associated statistics, SHORE should prove applicable to a wide range of expression pro-
�ling, enrichment or depletion protocols without further adaptation.

With the integrated approach, we were able to introduce a common foundation in the form
of the libshore framework. This has allowed us to implement a common data storage solution
allowing universal support of �exible and e�ective data compression and accelerated data set
queries across all analysis modules. Thereby, we maintain the usefulness of the analysis suite in
the face of vastly increased quantities of data produced by sequencing instruments. With general-
purpose modules such as SHORE oligo-match, we further demonstrate that usability of stand-alone
utilities also bene�ts from the common framework in terms of �le format independence, familiar
command line interfaces, automatic support for compressed or streaming input and output, or
capable parallelization. With the libshore processing framework, we provide a means for designing
complex analysis algorithms as a collection of manageable, self-contained modules. The ability
to parallelize many such algorithms without further modi�cation from our point of view has
signi�cant value with the still increasing rate of sequencing data production, and might serve as a
basis for the development of further abstracted parallel processing approaches targeted at speci�c
subclasses of sequencing application. For example, parallel implementations of reference-guided
variant calling algorithms require appropriate data partitioning and result merging mechanisms,
distributing read mapping data to di�erent processing threads according to their location on the
reference sequence. Such mechanisms are potentially intricate if multi-position traits such as
allelic phasing of single nucleotide polymorphisms are to be assessed.

Despite next-generation sequencing technology now having been available for several years,
for most applications surprisingly little consensus has been reached regarding optimal analysis

77

78 CHAPTER 4. CLOSING REMARKS

algorithms. With the sample preparation procedure leading up to the sequencing device being
application-speci�c, weakly standardized, involving signi�cant amounts of manual work and thus
ultimately highly variable, development of robust statistical models has proved intricate. Fur-
thermore, strategies for result validation are usually laborious, cost-intensive or have yet to be
developed. In many cases, speci�city or sensitivity of predictions can be improved by intersec-
tion or union of results obtained through partially complementary algorithms, respectively. For
example, with the SHOREmap�owcell utility, we provide a uni�ed interface that allows to readily
obtain and combine the results of a variety of available read mapping algorithms in consistent
and immediately comparable output formats. Implementation of further wrapper infrastructure
to similarly integrate third-party analysis algorithms for applications such as variation calling or
enrichment pro�ling might be a future direction to obtain a valuable resource to readily deter-
mine individual algorithms' strengths and weaknesses through large-scale comparison. However,
the various algorithms available for a speci�c high-throughput sequencing application often share
similar fundamental ideas, and thus su�er from corresponding systematic issues.

The initially rapid pace at which innovations improving throughput, read lengths or error
rates have been achieved now seems to be diminishing for the current generation of sequencing
technologies. However, conceptually di�erent high-throughput sequencing approaches such as
nanopore sequencing are being investigated, and might in the medium term account for further
drastic changes in the �eld. With cost reduced by a further magnitude and improved reliability
and automation of sample preparation, DNA sequencing could �nd its way into routine medical
application. However, other than cost-per-base, changes in the properties of the data should
prove most relevant for scienti�c application and data analysis.

Sequencing read length has long been perceived as a critical factor for genome assembly or
assessment of genome structure. It seems likely that a technology able to deliver read lengths
of multiple tens of kilobases at competitive accuracy and price would bring about a major shift
towards multiple whole-genome comparison strategies. In addition to whole-genome topology,
such approaches will implicitly yield traits like copy number variation as well as single nucleotide
polymorphisms and all other types of localized, small-scale variation, and possibly render the
corresponding reference-based resequencing approaches irrelevant. However, to fully leverage the
advantages compared to reference sequence-guided analysis, signi�cant further challenges with
respect to data analysis and representation will have to be overcome. Reasonable relations must
be devised to capture homology, replacing the linear reference genome coordinate system. Pro-
viding manageable breakdown and visualization of such data will be essential, and likely require
a variety of di�erent approaches depending on the respective focus of the investigation. To assess
the functional implications of primary analysis results, gene annotation or annotation transfer
algorithms will have to be simpli�ed and improved. Finally, ensuring immediate comparability
of results across di�erent studies should prove challenging.

Technological innovations that could potentially replace � or drastically improve the power
of � current deep sequencing approaches such as whole-genome enrichment or expression pro-
�ling are more di�cult to envision. Single-molecule sequencing methods however may in the
future permit ampli�cation- and ligation-free sequencing of samples from small amounts of start-
ing material. From such elimination of steps of the sample preparation procedure might follow a
signi�cant reduction of sequence-speci�c biases. Furthermore, this simpli�cation should present
opportunities for standardization and automation of sequencing library production to further re-
duce technical variability. With minimization of the amount of required DNA and tissue, sample
composition should correspondingly be rendered more controllable. Spike-in of standard quanti-
ties of DNA oligomers seems to have been abandoned by the scienti�c community, but might in
future re�ned and standardized incarnations provide an additional resource to data normalization
and estimation of measurement variance. Dropping sequencing cost and simpli�cation of library

79

preparation should further induce tolerance to employ the resource sequencing less sparingly.
While most current studies due to economical considerations rely on no more than two replicate
experiments, gathering extensive experimental evidence in the form of many replicate data sets
could become standard in the future. Combined, these factors may entail improved statistical
power from quantitative sequencing experiments, while at the same time facilitating statistical
modeling of the sequencing and sample preparation process.

To this e�ect, the fundamental approaches to quantitative sequencing data analysis should
require rather gradual modi�cation compared to genome structure and variation analysis. Ref-
erence sequence-based analysis as implemented in our modules SHORE peak or SHORE count will
probably remain the preferred strategy in the near future, although it may become more com-
monplace to generate appropriate reference genomes de-novo along with the quantitative data. A
medium-term goal might be complementing the available algorithms for quantitative data with
methods that allow to better leverage the statistical power acquired by increasing the number of
replicate experiments. Short-term improvements could possibly be achieved by investing in more
sophisticated models and algorithms to capture and estimate an increasing number of parame-
ters of library preparation, sequencing and data analysis. However, the characteristics of current
data sets may be the result of superimposition and complex interplay of a variety of e�ects, and
are furthermore subject to constant change as protocols and sequencing chemistry evolve.

With progress with respect to sequencing read length, sequence assembly and auto-
mated genome annotation algorithms, reference-based variation detection as implemented by
SHORE consensus or SHORE qVar modules could be superseded by fundamentally di�erent strate-
gies. However, SHORE and libshore may still constitute a valuable framework for implementation
of such future methods. While increasing read length should automatically resolve many of
the ambiguities that current analysis algorithms are confronted with, the biological questions
to address by future algorithms are likely to gain complexity. They should therefore pose
computationally intensive tasks that bene�t from application programming frameworks oriented
towards the e�cient processing of large amounts of biological sequence data.

While the focus of this work was on the technical and algorithmic aspects of obtaining pri-
mary analysis results from various types of high-throughput DNA sequencing data set, a future
challenge will lie with moving from elucidation of isolated properties of the cellular mechanism
to building consistent theoretical frameworks through integration of the data made accessible by
di�erent sequencing applications and further complementary technologies.

Bibliography

[1] S. Ossowski. �Computational Approaches for Next Generation Sequencing Analysis and
MiRNA Target Search�. PhD thesis. Wilhelmstr. 32, 72074 Tübingen: Universität Tübin-
gen, 2010.

[2] F. Sanger, S. Nicklen, and A. R. Coulson. �DNA sequencing with chain-terminating in-
hibitors�. In: Proc. Natl. Acad. Sci. U.S.A. 74.12 (Dec. 1977), pp. 5463�5467. doi: 10.
1073/pnas.74.12.5463. pmid: 271968.

[3] J. C. Venter, M. D. Adams, G. G. Sutton, A. R. Kerlavage, H. O. Smith, and M.
Hunkapiller. �Shotgun sequencing of the human genome�. In: Science 280.5369 (June
1998), pp. 1540�1542. doi: 10.1126/science.280.5369.1540. pmid: 9644018.

[4] T. S. Centre and T. W. U. G. S. Center. �Toward a complete human genome sequence�.
In: Genome Res. 8.11 (Nov. 1998), pp. 1097�1108. doi: 10.1101/gr.8.11.1097. pmid:
9847074.

[5] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O.
Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew,
D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski,
G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G.
Clark, J. Nadeau, V. A. McKusick, N. Zinder, et al. �The sequence of the human genome�.
In: Science 291.5507 (Feb. 2001), pp. 1304�1351. doi: 10.1126/science.1058040. pmid:
11181995.

[6] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon,
K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland,
L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov,
C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C.
Sougnez, et al. �Initial sequencing and analysis of the human genome�. In: Nature 409.6822
(Feb. 2001), pp. 860�921. doi: 10.1038/35057062. pmid: 11237011.

[7] M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W. Grigg, P. L.
Molloy, and C. L. Paul. �A genomic sequencing protocol that yields a positive display of
5-methylcytosine residues in individual DNA strands�. In: Proc. Natl. Acad. Sci. U.S.A.
89.5 (Mar. 1992), pp. 1827�1831. doi: 10.1073/pnas.89.5.1827. pmid: 1542678.

[8] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen,
D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W.
Lomas, K. Nealson, O. White, J. Peterson, J. Ho�man, R. Parsons, H. Baden-Tillson, C.
Pfannkoch, Y. H. Rogers, and H. O. Smith. �Environmental genome shotgun sequencing
of the Sargasso Sea�. In: Science 304.5667 (Apr. 2004), pp. 66�74. doi: 10.1126/science.
1093857. pmid: 15001713.

81

http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.12.5463
http://www.ncbi.nlm.nih.gov/pubmed/271968
http://dx.doi.org/10.1126/science.280.5369.1540
http://www.ncbi.nlm.nih.gov/pubmed/9644018
http://dx.doi.org/10.1101/gr.8.11.1097
http://www.ncbi.nlm.nih.gov/pubmed/9847074
http://dx.doi.org/10.1126/science.1058040
http://www.ncbi.nlm.nih.gov/pubmed/11181995
http://dx.doi.org/10.1038/35057062
http://www.ncbi.nlm.nih.gov/pubmed/11237011
http://dx.doi.org/10.1073/pnas.89.5.1827
http://www.ncbi.nlm.nih.gov/pubmed/1542678
http://dx.doi.org/10.1126/science.1093857
http://dx.doi.org/10.1126/science.1093857
http://www.ncbi.nlm.nih.gov/pubmed/15001713

82 BIBLIOGRAPHY

[9] S. Brenner, M. Johnson, J. Bridgham, G. Golda, D. H. Lloyd, D. Johnson, S. Luo, S.
McCurdy, M. Foy, M. Ewan, R. Roth, D. George, S. Eletr, G. Albrecht, E. Vermaas, S. R.
Williams, K. Moon, T. Burcham, M. Pallas, R. B. DuBridge, J. Kirchner, K. Fearon,
J. Mao, and K. Corcoran. �Gene expression analysis by massively parallel signature se-
quencing (MPSS) on microbead arrays�. In: Nat. Biotechnol. 18.6 (June 2000), pp. 630�
634. doi: 10.1038/76469. pmid: 10835600.

[10] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J.
Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V.
Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, C. H. Ho, G. P. Irzyk, S. C. Jando,
M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H.
Leamon, S. M. Lefkowitz, M. Lei, et al. �Genome sequencing in microfabricated high-
density picolitre reactors�. In: Nature 437.7057 (Sept. 2005), pp. 376�380. doi: 10.1038/
nature03959. pmid: 16056220.

[11] D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown,
K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, J. M. Boutell, J. Bryant, R. J.
Carter, R. Keira Cheetham, A. J. Cox, D. J. Ellis, M. R. Flatbush, N. A. Gormley, S. J.
Humphray, L. J. Irving, M. S. Karbelashvili, S. M. Kirk, H. Li, X. Liu, K. S. Maisinger,
L. J. Murray, B. Obradovic, T. Ost, M. L. Parkinson, M. R. Pratt, et al. �Accurate whole
human genome sequencing using reversible terminator chemistry�. In: Nature 456.7218
(Nov. 2008), pp. 53�59. doi: 10.1038/nature07517. pmid: 18987734.

[12] K. J. McKernan, H. E. Peckham, G. L. Costa, S. F. McLaughlin, Y. Fu, E. F. Tsung, C. R.
Clouser, C. Duncan, J. K. Ichikawa, C. C. Lee, Z. Zhang, S. S. Ranade, E. T. Dimalanta,
F. C. Hyland, T. D. Sokolsky, L. Zhang, A. Sheridan, H. Fu, C. L. Hendrickson, B. Li, L.
Kotler, J. R. Stuart, J. A. Malek, J. M. Manning, A. A. Antipova, D. S. Perez, M. P. Moore,
K. C. Hayashibara, M. R. Lyons, R. E. Beaudoin, et al. �Sequence and structural variation
in a human genome uncovered by short-read, massively parallel ligation sequencing using
two-base encoding�. In: Genome Res. 19.9 (Sept. 2009), pp. 1527�1541. doi: 10.1101/gr.
091868.109. pmid: 19546169.

[13] J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey, J. H. Leamon,
K. Johnson, M. J. Milgrew, M. Edwards, J. Hoon, J. F. Simons, D. Marran, J. W. Myers,
J. F. Davidson, A. Branting, J. R. Nobile, B. P. Puc, D. Light, T. A. Clark, M. Huber,
J. T. Branciforte, I. B. Stoner, S. E. Cawley, M. Lyons, Y. Fu, N. Homer, M. Sedova, X.
Miao, B. Reed, et al. �An integrated semiconductor device enabling non-optical genome
sequencing�. In: Nature 475.7356 (July 2011), pp. 348�352. doi: 10.1038/nature10242.
pmid: 21776081.

[14] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan,
B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark,
R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K.
Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, et al. �Real-time
DNA sequencing from single polymerase molecules�. In: Science 323.5910 (Jan. 2009),
pp. 133�138. doi: 10.1126/science.1162986. pmid: 19023044.

[15] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb.
�Zero-mode waveguides for single-molecule analysis at high concentrations�. In: Science
299.5607 (Jan. 2003), pp. 682�686. doi: 10.1126/science.1079700. pmid: 12560545.

[16] D. Loakes. �Survey and summary: The applications of universal DNA base analogues�.
In: Nucleic Acids Res. 29.12 (June 2001), pp. 2437�2447. doi: 10.1093/nar/29.12.2437.
pmid: 11410649.

http://dx.doi.org/10.1038/76469
http://www.ncbi.nlm.nih.gov/pubmed/10835600
http://dx.doi.org/10.1038/nature03959
http://dx.doi.org/10.1038/nature03959
http://www.ncbi.nlm.nih.gov/pubmed/16056220
http://dx.doi.org/10.1038/nature07517
http://www.ncbi.nlm.nih.gov/pubmed/18987734
http://dx.doi.org/10.1101/gr.091868.109
http://dx.doi.org/10.1101/gr.091868.109
http://www.ncbi.nlm.nih.gov/pubmed/19546169
http://dx.doi.org/10.1038/nature10242
http://www.ncbi.nlm.nih.gov/pubmed/21776081
http://dx.doi.org/10.1126/science.1162986
http://www.ncbi.nlm.nih.gov/pubmed/19023044
http://dx.doi.org/10.1126/science.1079700
http://www.ncbi.nlm.nih.gov/pubmed/12560545
http://dx.doi.org/10.1093/nar/29.12.2437
http://www.ncbi.nlm.nih.gov/pubmed/11410649

BIBLIOGRAPHY 83

[17] X. Zhang, J. Yazaki, A. Sundaresan, S. Cokus, S. W. Chan, H. Chen, I. R. Henderson,
P. Shinn, M. Pellegrini, S. E. Jacobsen, and J. R. Ecker. �Genome-wide high-resolution
mapping and functional analysis of DNA methylation in arabidopsis�. In: Cell 126.6 (Sept.
2006), pp. 1189�1201. doi: 10.1016/j.cell.2006.08.003. pmid: 16949657.

[18] S. Ossowski, K. Schneeberger, R. M. Clark, C. Lanz, N. Warthmann, and D. Weigel.
�Sequencing of natural strains of Arabidopsis thaliana with short reads�. In: Genome Res.
18.12 (Dec. 2008), pp. 2024�2033. doi: 10.1101/gr.080200.108. pmid: 18818371.

[19] J. Cao, K. Schneeberger, S. Ossowski, T. Gunther, S. Bender, J. Fitz, D. Koenig, C.
Lanz, O. Stegle, C. Lippert, X. Wang, F. Ott, J. Muller, C. Alonso-Blanco, K. Borgwardt,
K. J. Schmid, and D. Weigel. �Whole-genome sequencing of multiple Arabidopsis thaliana
populations�. In: Nat. Genet. 43.10 (Oct. 2011), pp. 956�963. doi: 10.1038/ng.911.

[20] K. Schneeberger, S. Ossowski, C. Lanz, T. Juul, A. H. Petersen, K. L. Nielsen, J. E.
J?rgensen, D. Weigel, and S. U. Andersen. �SHOREmap: simultaneous mapping and mu-
tation identi�cation by deep sequencing�. In: Nat. Methods 6.8 (Aug. 2009), pp. 550�551.
doi: 10.1038/nmeth0809-550. pmid: 19644454.

[21] K. Schneeberger. �Whole genome analysis of Arabidopsis thaliana using Next Generation
Sequencing�. PhD thesis. Wilhelmstr. 32, 72074 Tübingen: Universität Tübingen, 2010.
urn: urn:nbn:de:bsz:21-opus-56685.

[22] E. A. Dinsdale, R. A. Edwards, D. Hall, F. Angly, M. Breitbart, J. M. Brulc, M. Furlan,
C. Desnues, M. Haynes, L. Li, L. McDaniel, M. A. Moran, K. E. Nelson, C. Nilsson, R.
Olson, J. Paul, B. R. Brito, Y. Ruan, B. K. Swan, R. Stevens, D. L. Valentine, R. V.
Thurber, L. Wegley, B. A. White, and F. Rohwer. �Functional metagenomic pro�ling of
nine biomes�. In: Nature 452.7187 (Apr. 2008), pp. 629�632. doi: 10.1038/nature06810.

[23] J. Frias-Lopez, Y. Shi, G. W. Tyson, M. L. Coleman, S. C. Schuster, S. W. Chisholm,
and E. F. Delong. �Microbial community gene expression in ocean surface waters�. In:
Proc. Natl. Acad. Sci. U.S.A. 105.10 (Mar. 2008), pp. 3805�3810. doi: 10.1073/pnas.
0708897105. pmid: 18316740.

[24] X. Mou, S. Sun, R. A. Edwards, R. E. Hodson, and M. A. Moran. �Bacterial carbon
processing by generalist species in the coastal ocean�. In: Nature 451.7179 (Feb. 2008),
pp. 708�711. doi: 10.1038/nature06513. pmid: 18223640.

[25] A. Mortazavi, B. A. Williams, K. McCue, L. Schae�er, and B. Wold. �Mapping and
quantifying mammalian transcriptomes by RNA-Seq�. In: Nat. Methods 5.7 (July 2008),
pp. 621�628. doi: 10.1038/nmeth.1226. pmid: 18516045.

[26] B. T. Wilhelm, S. Marguerat, S. Watt, F. Schubert, V. Wood, I. Goodhead, C. J. Penkett,
J. Rogers, and J. Bahler. �Dynamic repertoire of a eukaryotic transcriptome surveyed
at single-nucleotide resolution�. In: Nature 453.7199 (June 2008), pp. 1239�1243. doi:
10.1038/nature07002. pmid: 18488015.

[27] R. Lister, R. C. O'Malley, J. Tonti-Filippini, B. D. Gregory, C. C. Berry, A. H. Millar,
and J. R. Ecker. �Highly integrated single-base resolution maps of the epigenome in Ara-
bidopsis�. In: Cell 133.3 (May 2008), pp. 523�536. doi: 10.1016/j.cell.2008.03.029.
pmid: 18423832.

[28] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and M. Snyder. �The
transcriptional landscape of the yeast genome de�ned by RNA sequencing�. In: Science
320.5881 (June 2008), pp. 1344�1349. doi: 10.1126/science.1158441. pmid: 18451266.

http://dx.doi.org/10.1016/j.cell.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/16949657
http://dx.doi.org/10.1101/gr.080200.108
http://www.ncbi.nlm.nih.gov/pubmed/18818371
http://dx.doi.org/10.1038/ng.911
http://dx.doi.org/10.1038/nmeth0809-550
http://www.ncbi.nlm.nih.gov/pubmed/19644454
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-56685
http://dx.doi.org/10.1038/nature06810
http://dx.doi.org/10.1073/pnas.0708897105
http://dx.doi.org/10.1073/pnas.0708897105
http://www.ncbi.nlm.nih.gov/pubmed/18316740
http://dx.doi.org/10.1038/nature06513
http://www.ncbi.nlm.nih.gov/pubmed/18223640
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1038/nature07002
http://www.ncbi.nlm.nih.gov/pubmed/18488015
http://dx.doi.org/10.1016/j.cell.2008.03.029
http://www.ncbi.nlm.nih.gov/pubmed/18423832
http://dx.doi.org/10.1126/science.1158441
http://www.ncbi.nlm.nih.gov/pubmed/18451266

84 BIBLIOGRAPHY

[29] N. Cloonan, A. R. Forrest, G. Kolle, B. B. Gardiner, G. J. Faulkner, M. K. Brown, D. F.
Taylor, A. L. Steptoe, S. Wani, G. Bethel, A. J. Robertson, A. C. Perkins, S. J. Bruce,
C. C. Lee, S. S. Ranade, H. E. Peckham, J. M. Manning, K. J. McKernan, and S. M.
Grimmond. �Stem cell transcriptome pro�ling via massive-scale mRNA sequencing�. In:
Nat. Methods 5.7 (July 2008), pp. 613�619. doi: 10.1038/nmeth.1223. pmid: 18516046.

[30] C. Lu, K. Kulkarni, F. F. Souret, R. MuthuValliappan, S. S. Tej, R. S. Poethig, I. R.
Henderson, S. E. Jacobsen, W. Wang, P. J. Green, and B. C. Meyers. �MicroRNAs and
other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mu-
tant�. In: Genome Res. 16.10 (Oct. 2006), pp. 1276�1288. doi: 10.1101/gr.5530106.
pmid: 16954541.

[31] J. G. Ruby, C. Jan, C. Player, M. J. Axtell, W. Lee, C. Nusbaum, H. Ge, and D. P. Bartel.
�Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous
siRNAs in C. elegans�. In: Cell 127.6 (Dec. 2006), pp. 1193�1207. doi: 10.1016/j.cell.
2006.10.040. pmid: 17174894.

[32] R. D. Morin, M. D. O'Connor, M. Gri�th, F. Kuchenbauer, A. Delaney, A. L. Prabhu,
Y. Zhao, H. McDonald, T. Zeng, M. Hirst, C. J. Eaves, and M. A. Marra. �Application of
massively parallel sequencing to microRNA pro�ling and discovery in human embryonic
stem cells�. In: Genome Res. 18.4 (Apr. 2008), pp. 610�621. doi: 10.1101/gr.7179508.
pmid: 18285502.

[33] P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfe�er, A. Rice,
A. O. Kamphorst, M. Landthaler, C. Lin, N. D. Socci, L. Hermida, V. Fulci, S. Chiaretti,
R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R. U. Muller, B. Schermer, U. Bissels, J. Inman,
Q. Phan, M. Chien, D. B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H. I. Trompeter,
et al. �A mammalian microRNA expression atlas based on small RNA library sequencing�.
In: Cell 129.7 (June 2007), pp. 1401�1414. doi: 10.1016/j.cell.2007.04.040. pmid:
17604727.

[34] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold. �Genome-wide mapping of in
vivo protein-DNA interactions�. In: Science 316.5830 (June 2007), pp. 1497�1502. doi:
10.1126/science.1141319. pmid: 17540862.

[35] G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao, T. Zeng, G. Euskirchen, B.
Bernier, R. Varhol, A. Delaney, N. Thiessen, O. L. Gri�th, A. He, M. Marra, M. Snyder,
and S. Jones. �Genome-wide pro�les of STAT1 DNA association using chromatin im-
munoprecipitation and massively parallel sequencing�. In: Nat. Methods 4.8 (Aug. 2007),
pp. 651�657. doi: 10.1038/nmeth1068. pmid: 17558387.

[36] A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev,
and K. Zhao. �High-resolution pro�ling of histone methylations in the human genome�.
In: Cell 129.4 (May 2007), pp. 823�837. doi: 10.1016/j.cell.2007.05.009. pmid:
17512414.

[37] T. A. Down, V. K. Rakyan, D. J. Turner, P. Flicek, H. Li, E. Kulesha, S. Graf, N.
Johnson, J. Herrero, E. M. Tomazou, N. P. Thorne, L. Backdahl, M. Herberth, K. L.
Howe, D. K. Jackson, M. M. Miretti, J. C. Marioni, E. Birney, T. J. Hubbard, R. Durbin,
S. Tavare, and S. Beck. �A Bayesian deconvolution strategy for immunoprecipitation-
based DNA methylome analysis�. In: Nat. Biotechnol. 26.7 (July 2008), pp. 779�785. doi:
10.1038/nbt1414. pmid: 18612301.

http://dx.doi.org/10.1038/nmeth.1223
http://www.ncbi.nlm.nih.gov/pubmed/18516046
http://dx.doi.org/10.1101/gr.5530106
http://www.ncbi.nlm.nih.gov/pubmed/16954541
http://dx.doi.org/10.1016/j.cell.2006.10.040
http://dx.doi.org/10.1016/j.cell.2006.10.040
http://www.ncbi.nlm.nih.gov/pubmed/17174894
http://dx.doi.org/10.1101/gr.7179508
http://www.ncbi.nlm.nih.gov/pubmed/18285502
http://dx.doi.org/10.1016/j.cell.2007.04.040
http://www.ncbi.nlm.nih.gov/pubmed/17604727
http://dx.doi.org/10.1126/science.1141319
http://www.ncbi.nlm.nih.gov/pubmed/17540862
http://dx.doi.org/10.1038/nmeth1068
http://www.ncbi.nlm.nih.gov/pubmed/17558387
http://dx.doi.org/10.1016/j.cell.2007.05.009
http://www.ncbi.nlm.nih.gov/pubmed/17512414
http://dx.doi.org/10.1038/nbt1414
http://www.ncbi.nlm.nih.gov/pubmed/18612301

BIBLIOGRAPHY 85

[38] D. D. Licatalosi, A. Mele, J. J. Fak, J. Ule, M. Kayikci, S. W. Chi, T. A. Clark, A. C.
Schweitzer, J. E. Blume, X. Wang, J. C. Darnell, and R. B. Darnell. �HITS-CLIP yields
genome-wide insights into brain alternative RNA processing�. In: Nature 456.7221 (Nov.
2008), pp. 464�469. doi: 10.1038/nature07488. pmid: 18978773.

[39] D. E. Schones, K. Cui, S. Cuddapah, T. Y. Roh, A. Barski, Z. Wang, G. Wei, and K.
Zhao. �Dynamic regulation of nucleosome positioning in the human genome�. In: Cell
132.5 (Mar. 2008), pp. 887�898. doi: 10.1016/j.cell.2008.02.022. pmid: 18329373.

[40] S. J. Cokus, S. Feng, X. Zhang, Z. Chen, B. Merriman, C. D. Haudenschild, S. Pradhan,
S. F. Nelson, M. Pellegrini, and S. E. Jacobsen. �Shotgun bisulphite sequencing of the
Arabidopsis genome reveals DNA methylation patterning�. In: Nature 452.7184 (Mar.
2008), pp. 215�219. doi: 10.1038/nature06745. pmid: 18278030.

[41] A. Meissner, T. S. Mikkelsen, H. Gu, M. Wernig, J. Hanna, A. Sivachenko, X. Zhang,
B. E. Bernstein, C. Nusbaum, D. B. Ja�e, A. Gnirke, R. Jaenisch, and E. S. Lander.
�Genome-scale DNA methylation maps of pluripotent and di�erentiated cells�. In: Nature
454.7205 (Aug. 2008), pp. 766�770. doi: 10.1038/nature07107. pmid: 18600261.

[42] N. A. Baird, P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U.
Selker, W. A. Cresko, and E. A. Johnson. �Rapid SNP discovery and genetic mapping us-
ing sequenced RAD markers�. In: PLoS ONE 3.10 (2008), e3376. doi: 10.1371/journal.
pone.0003376. pmid: 18852878.

[43] E. M. Willing, M. Ho�mann, J. D. Klein, D. Weigel, and C. Dreyer. �Paired-end RAD-
seq for de novo assembly and marker design without available reference�. In: Bioinfor-
matics 27.16 (Aug. 2011), pp. 2187�2193. doi: 10.1093/bioinformatics/btr346. pmid:
21712251.

[44] C. Zong, S. Lu, A. R. Chapman, and X. S. Xie. �Genome-wide detection of single-
nucleotide and copy-number variations of a single human cell�. In: Science 338.6114 (Dec.
2012), pp. 1622�1626. doi: 10.1126/science.1229164. pmid: 23258894.

[45] G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E.
Hurles, G. A. McVean, D. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley, A.
Chakravarti, A. G. Clark, F. S. Collins, F. M. De La Vega, P. Donnelly, M. Egholm,
P. Flicek, S. B. Gabriel, R. A. Gibbs, B. M. Knoppers, E. S. Lander, H. Lehrach, E. R.
Mardis, G. A. McVean, D. A. Nickerson, L. Peltonen, A. J. Schafer, S. T. Sherry, et al. �A
map of human genome variation from population-scale sequencing�. In: Nature 467.7319
(Oct. 2010), pp. 1061�1073. doi: 10.1038/nature09534. pmid: 20981092.

[46] G. R. Abecasis, A. Auton, L. D. Brooks, M. A. DePristo, R. M. Durbin, R. E. Handsaker,
H. M. Kang, G. T. Marth, G. A. McVean, D. M. Altshuler, R. M. Durbin, G. R. Abecasis,
D. R. Bentley, A. Chakravarti, A. G. Clark, P. Donnelly, E. E. Eichler, P. Flicek, S. B.
Gabriel, R. A. Gibbs, E. D. Green, M. E. Hurles, B. M. Knoppers, J. O. Korbel, E. S.
Lander, C. Lee, H. Lehrach, E. R. Mardis, G. T. Marth, G. A. McVean, et al. �An
integrated map of genetic variation from 1,092 human genomes�. In: Nature 491.7422
(Nov. 2012), pp. 56�65. doi: 10.1038/nature11632. pmid: 23128226.

[47] D. Haussler, S. J. O'Brien, O. A. Ryder, F. K. Barker, M. Clamp, A. J. Crawford, R.
Hanner, O. Hanotte, W. E. Johnson, J. A. McGuire, W. Miller, R. W. Murphy, W. J.
Murphy, F. H. Sheldon, B. Sinervo, B. Venkatesh, E. O. Wiley, F. W. Allendorf, G. Amato,
C. S. Baker, A. Bauer, A. Beja-Pereira, E. Bermingham, G. Bernardi, C. R. Bonvicino, S.
Brenner, T. Burke, J. Cracraft, M. Diekhans, S. Edwards, et al. �Genome 10K: a proposal
to obtain whole-genome sequence for 10,000 vertebrate species�. In: J. Hered. 100.6 (2009),
pp. 659�674. doi: 10.1093/jhered/esp086. pmid: 19892720.

http://dx.doi.org/10.1038/nature07488
http://www.ncbi.nlm.nih.gov/pubmed/18978773
http://dx.doi.org/10.1016/j.cell.2008.02.022
http://www.ncbi.nlm.nih.gov/pubmed/18329373
http://dx.doi.org/10.1038/nature06745
http://www.ncbi.nlm.nih.gov/pubmed/18278030
http://dx.doi.org/10.1038/nature07107
http://www.ncbi.nlm.nih.gov/pubmed/18600261
http://dx.doi.org/10.1371/journal.pone.0003376
http://dx.doi.org/10.1371/journal.pone.0003376
http://www.ncbi.nlm.nih.gov/pubmed/18852878
http://dx.doi.org/10.1093/bioinformatics/btr346
http://www.ncbi.nlm.nih.gov/pubmed/21712251
http://dx.doi.org/10.1126/science.1229164
http://www.ncbi.nlm.nih.gov/pubmed/23258894
http://dx.doi.org/10.1038/nature09534
http://www.ncbi.nlm.nih.gov/pubmed/20981092
http://dx.doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
http://dx.doi.org/10.1093/jhered/esp086
http://www.ncbi.nlm.nih.gov/pubmed/19892720

86 BIBLIOGRAPHY

[48] B. A. Methe, K. E. Nelson, M. Pop, H. H. Creasy, M. G. Giglio, C. Huttenhower, D.
Gevers, J. F. Petrosino, S. Abubucker, J. H. Badger, A. T. Chinwalla, A. M. Earl, M. G.
FitzGerald, R. S. Fulton, K. Hallsworth-Pepin, E. A. Lobos, R. Madupu, V. Magrini,
J. C. Martin, M. Mitreva, D. M. Muzny, E. J. Sodergren, J. Versalovic, A. M. Wollam,
K. C. Worley, J. R. Wortman, S. K. Young, Q. Zeng, K. M. Aagaard, O. O. Abolude,
et al. �A framework for human microbiome research�. In: Nature 486.7402 (June 2012),
pp. 215�221. doi: 10.1038/nature11209. pmid: 22699610.

[49] C. Huttenhower, D. Gevers, R. Knight, S. Abubucker, J. H. Badger, A. T. Chinwalla,
H. H. Creasy, A. M. Earl, M. G. FitzGerald, R. S. Fulton, M. G. Giglio, K. Hallsworth-
Pepin, E. A. Lobos, R. Madupu, V. Magrini, J. C. Martin, M. Mitreva, D. M. Muzny,
E. J. Sodergren, J. Versalovic, A. M. Wollam, K. C. Worley, J. R. Wortman, S. K. Young,
Q. Zeng, K. M. Aagaard, O. O. Abolude, E. Allen-Vercoe, E. J. Alm, L. Alvarado, et al.
�Structure, function and diversity of the healthy human microbiome�. In: Nature 486.7402
(June 2012), pp. 207�214. doi: 10.1038/nature11234. pmid: 22699609.

[50] P. R. Burton, D. G. Clayton, L. R. Cardon, N. Craddock, P. Deloukas, A. Duncanson, D. P.
Kwiatkowski, M. I. McCarthy, W. H. Ouwehand, N. J. Samani, J. A. Todd, P. Donnelly,
J. C. Barrett, P. R. Burton, D. Davison, P. Donnelly, D. Easton, D. Evans, H. T. Leung,
J. L. Marchini, A. P. Morris, C. C. Spencer, M. D. Tobin, L. R. Cardon, D. G. Clayton,
A. P. Attwood, J. P. Boorman, B. Cant, U. Everson, J. M. Hussey, et al. �Genome-wide
association study of 14,000 cases of seven common diseases and 3,000 shared controls�. In:
Nature 447.7145 (June 2007), pp. 661�678. doi: 10.1038/nature05911. pmid: 17554300.

[51] R. W. Carthew and E. J. Sontheimer. �Origins and Mechanisms of miRNAs and siRNAs�.
In: Cell 136.4 (Feb. 2009), pp. 642�655. doi: 10.1016/j.cell.2009.01.035. pmid:
19239886.

[52] O. Voinnet. �Origin, biogenesis, and activity of plant microRNAs�. In: Cell 136.4 (Feb.
2009), pp. 669�687. doi: 10.1016/j.cell.2009.01.046. pmid: 19239888.

[53] S. E. Linsen, E. de Wit, G. Janssens, S. Heater, L. Chapman, R. K. Parkin, B. Fritz, S. K.
Wyman, E. de Bruijn, E. E. Voest, S. Kuersten, M. Tewari, and E. Cuppen. �Limitations
and possibilities of small RNA digital gene expression pro�ling�. In: Nat. Methods 6.7
(July 2009), pp. 474�476. doi: 10.1038/nmeth0709-474. pmid: 19564845.

[54] S. U. Meyer, M. W. Pfa�, and S. E. Ulbrich. �Normalization strategies for microRNA pro-
�ling experiments: a 'normal' way to a hidden layer of complexity?� In: Biotechnol. Lett.
32.12 (Dec. 2010), pp. 1777�1788. doi: 10.1007/s10529-010-0380-z. pmid: 20703800.

[55] J. D. Hollister, L. M. Smith, Y. L. Guo, F. Ott, D. Weigel, and B. S. Gaut. �Transposable
elements and small RNAs contribute to gene expression divergence between Arabidopsis
thaliana and Arabidopsis lyrata�. In: Proc. Natl. Acad. Sci. U.S.A. 108.6 (Feb. 2011),
pp. 2322�2327. doi: 10.1073/pnas.1018222108.

[56] S. Barker, M. Weinfeld, and D. Murray. �DNA-protein crosslinks: their induction, repair,
and biological consequences�. In: Mutat. Res. 589.2 (Mar. 2005), pp. 111�135. doi: 10.
1016/j.mrrev.2004.11.003. pmid: 15795165.

[57] A. Valouev, J. Ichikawa, T. Tonthat, J. Stuart, S. Ranade, H. Peckham, K. Zeng, J. A.
Malek, G. Costa, K. McKernan, A. Sidow, A. Fire, and S. M. Johnson. �A high-resolution,
nucleosome position map of C. elegans reveals a lack of universal sequence-dictated posi-
tioning�. In: Genome Res. 18.7 (July 2008), pp. 1051�1063. doi: 10.1101/gr.076463.108.
pmid: 18477713.

http://dx.doi.org/10.1038/nature11209
http://www.ncbi.nlm.nih.gov/pubmed/22699610
http://dx.doi.org/10.1038/nature11234
http://www.ncbi.nlm.nih.gov/pubmed/22699609
http://dx.doi.org/10.1038/nature05911
http://www.ncbi.nlm.nih.gov/pubmed/17554300
http://dx.doi.org/10.1016/j.cell.2009.01.035
http://www.ncbi.nlm.nih.gov/pubmed/19239886
http://dx.doi.org/10.1016/j.cell.2009.01.046
http://www.ncbi.nlm.nih.gov/pubmed/19239888
http://dx.doi.org/10.1038/nmeth0709-474
http://www.ncbi.nlm.nih.gov/pubmed/19564845
http://dx.doi.org/10.1007/s10529-010-0380-z
http://www.ncbi.nlm.nih.gov/pubmed/20703800
http://dx.doi.org/10.1073/pnas.1018222108
http://dx.doi.org/10.1016/j.mrrev.2004.11.003
http://dx.doi.org/10.1016/j.mrrev.2004.11.003
http://www.ncbi.nlm.nih.gov/pubmed/15795165
http://dx.doi.org/10.1101/gr.076463.108
http://www.ncbi.nlm.nih.gov/pubmed/18477713

BIBLIOGRAPHY 87

[58] L. Yant, J. Mathieu, T. T. Dinh, F. Ott, C. Lanz, H. Wollmann, X. Chen, and M. Schmid.
�Orchestration of the �oral transition and �oral development in Arabidopsis by the bi-
functional transcription factor APETALA2�. In: Plant Cell 22.7 (July 2010), pp. 2156�
2170. doi: 10.1105/tpc.110.075606.

[59] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A. Roth-
baller, M. Ascano, A. C. Jungkamp, M. Munschauer, A. Ulrich, G. S. Wardle, S. Dewell,
M. Zavolan, and T. Tuschl. �Transcriptome-wide identi�cation of RNA-binding protein
and microRNA target sites by PAR-CLIP�. In: Cell 141.1 (Apr. 2010), pp. 129�141. doi:
10.1016/j.cell.2010.03.009. pmid: 20371350.

[60] M. Muers. �Technology: Getting Moore from DNA sequencing�. In: Nat. Rev. Genet. 12.9
(Sept. 2011), p. 586. doi: 10.1038/nrg3059. pmid: 21808262.

[61] G. E. Moore. �Cramming More Components onto Integrated Circuits�. In: Electronics
38.8 (Apr. 19, 1965), pp. 114�117. doi: 10.1109/JPROC.1998.658762.

[62] R. F. Service. �Gene sequencing. The race for the $1000 genome�. In: Science 311.5767
(Mar. 2006), pp. 1544�1546. doi: 10.1126/science.311.5767.1544. pmid: 16543431.

[63] C. Ledergerber and C. Dessimoz. �Base-calling for next-generation sequencing platforms�.
In: Brief. Bioinformatics 12.5 (Sept. 2011), pp. 489�497. doi: 10.1093/bib/bbq077.
pmid: 21245079.

[64] D. Aird, M. G. Ross, W. S. Chen, M. Danielsson, T. Fennell, C. Russ, D. B. Ja�e, C.
Nusbaum, and A. Gnirke. �Analyzing and minimizing PCR ampli�cation bias in Illumina
sequencing libraries�. In: Genome Biol. 12.2 (2011), R18. doi: 10.1186/gb-2011-12-2-
r18. pmid: 21338519.

[65] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. �Base-calling of automated sequencer
traces using phred. I. Accuracy assessment�. In: Genome Res. 8.3 (Mar. 1998), pp. 175�
185. doi: 10.1101/gr.8.3.175. pmid: 9521921.

[66] B. Ewing and P. Green. �Base-calling of automated sequencer traces using phred. II. Error
probabilities�. In: Genome Res. 8.3 (Mar. 1998), pp. 186�194. doi: 10.1101/gr.8.3.186.
pmid: 9521922.

[67] M. Kircher, U. Stenzel, and J. Kelso. �Improved base calling for the Illumina Genome
Analyzer using machine learning strategies�. In: Genome Biol. 10.8 (2009), R83. doi:
10.1186/gb-2009-10-8-r83. pmid: 19682367.

[68] W. C. Kao, K. Stevens, and Y. S. Song. �BayesCall: A model-based base-calling algorithm
for high-throughput short-read sequencing�. In: Genome Res. 19.10 (Oct. 2009), pp. 1884�
1895. doi: 10.1101/gr.095299.109. pmid: 19661376.

[69] J. Rougemont, A. Amzallag, C. Iseli, L. Farinelli, I. Xenarios, and F. Naef. �Probabilistic
base calling of Solexa sequencing data�. In: BMC Bioinformatics 9 (2008), p. 431. doi:
10.1186/1471-2105-9-431. pmid: 18851737.

[70] Y. Erlich, P. P. Mitra, M. delaBastide, W. R. McCombie, and G. J. Hannon. �Alta-Cyclic:
a self-optimizing base caller for next-generation sequencing�. In: Nat. Methods 5.8 (Aug.
2008), pp. 679�682. doi: 10.1038/nmeth.1230. pmid: 18604217.

[71] A. R. Quinlan, D. A. Stewart, M. P. Stromberg, and G. T. Marth. �Pyrobayes: an improved
base caller for SNP discovery in pyrosequences�. In: Nat. Methods 5.2 (Feb. 2008), pp. 179�
181. doi: 10.1038/nmeth.1172. pmid: 18193056.

http://dx.doi.org/10.1105/tpc.110.075606
http://dx.doi.org/10.1016/j.cell.2010.03.009
http://www.ncbi.nlm.nih.gov/pubmed/20371350
http://dx.doi.org/10.1038/nrg3059
http://www.ncbi.nlm.nih.gov/pubmed/21808262
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1126/science.311.5767.1544
http://www.ncbi.nlm.nih.gov/pubmed/16543431
http://dx.doi.org/10.1093/bib/bbq077
http://www.ncbi.nlm.nih.gov/pubmed/21245079
http://dx.doi.org/10.1186/gb-2011-12-2-r18
http://dx.doi.org/10.1186/gb-2011-12-2-r18
http://www.ncbi.nlm.nih.gov/pubmed/21338519
http://dx.doi.org/10.1101/gr.8.3.175
http://www.ncbi.nlm.nih.gov/pubmed/9521921
http://dx.doi.org/10.1101/gr.8.3.186
http://www.ncbi.nlm.nih.gov/pubmed/9521922
http://dx.doi.org/10.1186/gb-2009-10-8-r83
http://www.ncbi.nlm.nih.gov/pubmed/19682367
http://dx.doi.org/10.1101/gr.095299.109
http://www.ncbi.nlm.nih.gov/pubmed/19661376
http://dx.doi.org/10.1186/1471-2105-9-431
http://www.ncbi.nlm.nih.gov/pubmed/18851737
http://dx.doi.org/10.1038/nmeth.1230
http://www.ncbi.nlm.nih.gov/pubmed/18604217
http://dx.doi.org/10.1038/nmeth.1172
http://www.ncbi.nlm.nih.gov/pubmed/18193056

88 BIBLIOGRAPHY

[72] S. Andrews. FastQC: A quality control tool for high throughput sequence data. May 2012.
WebCite: 68W7OHlEL. url: http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/ Feb. 27, 2013.

[73] A. Gordon. FASTX-Toolkit: FASTQ/A short-reads pre-processing tools. Feb. 2010.WebCite:
5zWQ6Eqh6. url: http://hannonlab.cshl.edu/fastx_toolkit/index.html Feb. 27,
2013.

[74] T. Lassmann, Y. Hayashizaki, and C. O. Daub. �TagDust�a program to eliminate artifacts
from next generation sequencing data�. In: Bioinformatics 25.21 (Nov. 2009), pp. 2839�
2840. doi: 10.1093/bioinformatics/btp527. pmid: 19737799.

[75] R. Schmieder, Y. W. Lim, F. Rohwer, and R. Edwards. �TagCleaner: Identi�cation and
removal of tag sequences from genomic and metagenomic datasets�. In: BMC Bioinfor-
matics 11 (2010), p. 341. doi: 10.1186/1471-2105-11-341. pmid: 20573248.

[76] R. K. Patel and M. Jain. �NGS QC Toolkit: a toolkit for quality control of next generation
sequencing data�. In: PLoS ONE 7.2 (2012), e30619. doi: 10 . 1371 / journal . pone .
0030619. pmid: 22312429.

[77] D. R. Zerbino and E. Birney. �Velvet: algorithms for de novo short read assembly using
de Bruijn graphs�. In: Genome Res. 18.5 (May 2008), pp. 821�829. doi: 10.1101/gr.
074492.107. pmid: 18349386.

[78] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney. �Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels�. In: Bioinformatics 28.8 (Apr.
2012), pp. 1086�1092. doi: 10.1093/bioinformatics/bts094. pmid: 22368243.

[79] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J.
Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. Cheung, S.-M.
Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.-W. Lam, and
J. Wang. �SOAPdenovo2: an empirically improved memory-e�cient short-read de novo
assembler�. In: GigaScience 1.1 (2012), p. 18. doi: 10.1186/2047-217X-1-18.

[80] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,
C. Nusbaum, and D. B. Ja�e. �ALLPATHS: de novo assembly of whole-genome shotgun
microreads�. In: Genome Res. 18.5 (May 2008), pp. 810�820. doi: 10.1101/gr.7337908.
pmid: 18340039.

[81] I. Maccallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter, A. Gnirke, J. Malek, K.
McKernan, S. Ranade, T. P. Shea, L. Williams, S. Young, C. Nusbaum, and D. B. Ja�e.
�ALLPATHS 2: small genomes assembled accurately and with high continuity from short
paired reads�. In: Genome Biol. 10.10 (2009), R103. doi: 10.1186/gb-2009-10-10-r103.
pmid: 19796385.

[82] F. J. Ribeiro, D. Przybylski, S. Yin, T. Sharpe, S. Gnerre, A. Abouelleil, A. M. Berlin, A.
Montmayeur, T. P. Shea, B. J. Walker, S. K. Young, C. Russ, C. Nusbaum, I. MacCallum,
and D. B. Ja�e. �Finished bacterial genomes from shotgun sequence data�. In: Genome
Res. 22.11 (Nov. 2012), pp. 2270�2277. doi: 10.1101/gr.141515.112. pmid: 22829535.

[83] S. Gnerre, I. Maccallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker, T.
Sharpe, G. Hall, T. P. Shea, S. Sykes, A. M. Berlin, D. Aird, M. Costello, R. Daza, L.
Williams, R. Nicol, A. Gnirke, C. Nusbaum, E. S. Lander, and D. B. Ja�e. �High-quality
draft assemblies of mammalian genomes from massively parallel sequence data�. In: Proc.
Natl. Acad. Sci. U.S.A. 108.4 (Jan. 2011), pp. 1513�1518. doi: 10.1073/pnas.1017351108.
pmid: 21187386.

http://www.webcitation.org/68W7OHlEL
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.webcitation.org/5zWQ6Eqh6
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://dx.doi.org/10.1093/bioinformatics/btp527
http://www.ncbi.nlm.nih.gov/pubmed/19737799
http://dx.doi.org/10.1186/1471-2105-11-341
http://www.ncbi.nlm.nih.gov/pubmed/20573248
http://dx.doi.org/10.1371/journal.pone.0030619
http://dx.doi.org/10.1371/journal.pone.0030619
http://www.ncbi.nlm.nih.gov/pubmed/22312429
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1093/bioinformatics/bts094
http://www.ncbi.nlm.nih.gov/pubmed/22368243
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1101/gr.7337908
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://dx.doi.org/10.1186/gb-2009-10-10-r103
http://www.ncbi.nlm.nih.gov/pubmed/19796385
http://dx.doi.org/10.1101/gr.141515.112
http://www.ncbi.nlm.nih.gov/pubmed/22829535
http://dx.doi.org/10.1073/pnas.1017351108
http://www.ncbi.nlm.nih.gov/pubmed/21187386

BIBLIOGRAPHY 89

[84] K. Schneeberger, S. Ossowski, F. Ott, J. D. Klein, X. Wang, C. Lanz, L. M. Smith, J.
Cao, J. Fitz, N. Warthmann, S. R. Henz, D. H. Huson, and D. Weigel. �Reference-guided
assembly of four diverse Arabidopsis thaliana genomes�. In: Proc. Natl. Acad. Sci. U.S.A.
108.25 (June 2011), pp. 10249�10254. doi: 10.1073/pnas.1107739108.

[85] H. Li and R. Durbin. �Fast and accurate short read alignment with Burrows-
Wheeler transform�. In: Bioinformatics 25.14 (July 2009), pp. 1754�1760. doi:
10.1093/bioinformatics/btp324. pmid: 19451168.

[86] B. Langmead. �Aligning short sequencing reads with Bowtie�. In: Curr Protoc Bioinfor-
matics Chapter 11 (Dec. 2010), Unit 11.7. doi: 10.1002/0471250953.bi1107s32. pmid:
21154709.

[87] B. Langmead and S. L. Salzberg. �Fast gapped-read alignment with Bowtie 2�. In: Nat.
Methods 9.4 (Apr. 2012), pp. 357�359. doi: 10.1038/nmeth.1923. pmid: 22388286.

[88] R. Li, Y. Li, K. Kristiansen, and J. Wang. �SOAP: short oligonucleotide alignment pro-
gram�. In: Bioinformatics 24.5 (Mar. 2008), pp. 713�714. doi: 10.1093/bioinformatics/
btn025. pmid: 18227114.

[89] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang. �SOAP2: an
improved ultrafast tool for short read alignment�. In: Bioinformatics 25.15 (Aug. 2009),
pp. 1966�1967. doi: 10.1093/bioinformatics/btp336. pmid: 19497933.

[90] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and M. Brudno. �SHRiMP:
accurate mapping of short color-space reads�. In: PLoS Comput. Biol. 5.5 (May 2009),
e1000386. doi: 10.1371/journal.pcbi.1000386. pmid: 19461883.

[91] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno. �SHRiMP2: sensitive yet prac-
tical SHort Read Mapping�. In: Bioinformatics 27.7 (Apr. 2011), pp. 1011�1012. doi:
10.1093/bioinformatics/btr046. pmid: 21278192.

[92] H. Li, J. Ruan, and R. Durbin. �Mapping short DNA sequencing reads and calling variants
using mapping quality scores�. In: Genome Res. 18.11 (Nov. 2008), pp. 1851�1858. doi:
10.1101/gr.078212.108. pmid: 18714091.

[93] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing, O. Kohlbacher,
and D. Weigel. �Simultaneous alignment of short reads against multiple genomes�. In:
Genome Biol. 10.9 (2009), R98. doi: 10.1186/gb-2009-10-9-r98. pmid: 19761611.

[94] G. Jean, A. Kahles, V. T. Sreedharan, F. De Bona, and G. Ratsch. �RNA-Seq read
alignments with PALMapper�. In: Curr Protoc Bioinformatics Chapter 11 (Dec. 2010),
Unit 11.6. doi: 10.1002/0471250953.bi1106s32. pmid: 21154708.

[95] M. C. Schatz. �CloudBurst: highly sensitive read mapping with MapReduce�. In: Bioinfor-
matics 25.11 (June 2009), pp. 1363�1369. doi: 10.1093/bioinformatics/btp236. pmid:
19357099.

[96] P. Ferragina and G. Manzini. �Opportunistic data structures with applications�. In: Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science. FOCS '00.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 390�. isbn: 0-7695-0850-2. doi:
10.1109/SFCS.2000.892127.

[97] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K.
Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. �The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data�.
In: Genome Res. 20.9 (Sept. 2010), pp. 1297�1303. doi: 10.1101/gr.107524.110. pmid:
20644199.

http://dx.doi.org/10.1073/pnas.1107739108
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1002/0471250953.bi1107s32
http://www.ncbi.nlm.nih.gov/pubmed/21154709
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/bioinformatics/btn025
http://www.ncbi.nlm.nih.gov/pubmed/18227114
http://dx.doi.org/10.1093/bioinformatics/btp336
http://www.ncbi.nlm.nih.gov/pubmed/19497933
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://www.ncbi.nlm.nih.gov/pubmed/19461883
http://dx.doi.org/10.1093/bioinformatics/btr046
http://www.ncbi.nlm.nih.gov/pubmed/21278192
http://dx.doi.org/10.1101/gr.078212.108
http://www.ncbi.nlm.nih.gov/pubmed/18714091
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://www.ncbi.nlm.nih.gov/pubmed/19761611
http://dx.doi.org/10.1002/0471250953.bi1106s32
http://www.ncbi.nlm.nih.gov/pubmed/21154708
http://dx.doi.org/10.1093/bioinformatics/btp236
http://www.ncbi.nlm.nih.gov/pubmed/19357099
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199

90 BIBLIOGRAPHY

[98] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, and M. J. Daly.
�A framework for variation discovery and genotyping using next-generation DNA sequenc-
ing data�. In: Nat. Genet. 43.5 (May 2011), pp. 491�498. doi: 10.1038/ng.806. pmid:
21478889.

[99] S. Ossowski, K. Schneeberger, J. I. Lucas-Lledo, N. Warthmann, R. M. Clark, R. G. Shaw,
D. Weigel, and M. Lynch. �The rate and molecular spectrum of spontaneous mutations
in Arabidopsis thaliana�. In: Science 327.5961 (Jan. 2010), pp. 92�94. doi: 10.1126/
science.1180677. pmid: 20044577.

[100] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin. �The Sequence Alignment/Map format and SAMtools�. In: Bioinformat-
ics 25.16 (Aug. 2009), pp. 2078�2079. doi: 10.1093/bioinformatics/btp352. pmid:
19505943.

[101] H. Li. �Improving SNP discovery by base alignment quality�. In: Bioinformatics 27.8 (Apr.
2011), pp. 1157�1158. doi: 10.1093/bioinformatics/btr076. pmid: 21320865.

[102] M. D. Robinson and A. Oshlack. �A scaling normalization method for di�erential expres-
sion analysis of RNA-seq data�. In: Genome Biol. 11.3 (2010), R25. doi: 10.1186/gb-
2010-11-3-r25. pmid: 20196867.

[103] L. X. Garmire and S. Subramaniam. �Evaluation of normalization methods in mammalian
microRNA-Seq data�. In: RNA 18.6 (June 2012), pp. 1279�1288. doi: 10.1261/rna.
030916.111. pmid: 22532701.

[104] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nus-
baum, R. M. Myers, M. Brown, W. Li, and X. S. Liu. �Model-based analysis of ChIP-Seq
(MACS)�. In: Genome Biol. 9.9 (2008), R137. doi: 10.1186/gb-2008-9-9-r137. pmid:
18798982.

[105] A. Valouev, D. S. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglou, R. M. Myers,
and A. Sidow. �Genome-wide analysis of transcription factor binding sites based on ChIP-
Seq data�. In: Nat. Methods 5.9 (Sept. 2008), pp. 829�834. doi: 10.1038/nmeth.1246.
pmid: 19160518.

[106] R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao. �Genome-wide identi�cation of in
vivo protein-DNA binding sites from ChIP-Seq data�. In: Nucleic Acids Res. 36.16 (Sept.
2008), pp. 5221�5231. doi: 10.1093/nar/gkn488. pmid: 18684996.

[107] J. Rozowsky, G. Euskirchen, R. K. Auerbach, Z. D. Zhang, T. Gibson, R. Bjornson, N.
Carriero, M. Snyder, and M. B. Gerstein. �PeakSeq enables systematic scoring of ChIP-
seq experiments relative to controls�. In: Nat. Biotechnol. 27.1 (Jan. 2009), pp. 66�75.
doi: 10.1038/nbt.1518. pmid: 19122651.

[108] H. Ji, H. Jiang, W. Ma, D. S. Johnson, R. M. Myers, and W. H. Wong. �An integrated
software system for analyzing ChIP-chip and ChIP-seq data�. In: Nat. Biotechnol. 26.11
(Nov. 2008), pp. 1293�1300. doi: 10.1038/nbt.1505. pmid: 18978777.

[109] A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S. J. Jones. �Find-
Peaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read
sequencing technology�. In: Bioinformatics 24.15 (Aug. 2008), pp. 1729�1730. doi: 10.
1093/bioinformatics/btn305. pmid: 18599518.

http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1126/science.1180677
http://dx.doi.org/10.1126/science.1180677
http://www.ncbi.nlm.nih.gov/pubmed/20044577
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btr076
http://www.ncbi.nlm.nih.gov/pubmed/21320865
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
http://dx.doi.org/10.1261/rna.030916.111
http://dx.doi.org/10.1261/rna.030916.111
http://www.ncbi.nlm.nih.gov/pubmed/22532701
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://dx.doi.org/10.1038/nmeth.1246
http://www.ncbi.nlm.nih.gov/pubmed/19160518
http://dx.doi.org/10.1093/nar/gkn488
http://www.ncbi.nlm.nih.gov/pubmed/18684996
http://dx.doi.org/10.1038/nbt.1518
http://www.ncbi.nlm.nih.gov/pubmed/19122651
http://dx.doi.org/10.1038/nbt.1505
http://www.ncbi.nlm.nih.gov/pubmed/18978777
http://dx.doi.org/10.1093/bioinformatics/btn305
http://dx.doi.org/10.1093/bioinformatics/btn305
http://www.ncbi.nlm.nih.gov/pubmed/18599518

BIBLIOGRAPHY 91

[110] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. �The Sanger FASTQ �le
format for sequences with quality scores, and the Solexa/Illumina FASTQ variants�. In:
Nucleic Acids Res. 38.6 (Apr. 2010), pp. 1767�1771. doi: 10.1093/nar/gkp1137. pmid:
20015970.

[111] T. S. F. S. W. Group. The SAM Format Speci�cation. Sept. 2011. WebCite: 6FqvzGZJ8.
url: http://samtools.sourceforge.net/SAM1.pdf Feb. 27, 2013.

[112] L. Stein. Generic Feature Format Version 3. Feb. 2013. WebCite: 5R00Wxobq. url: http:
//www.sequenceontology.org/gff3.shtml Mar. 4, 2013.

[113] M. G. Reese, B. Moore, C. Batchelor, F. Salas, F. Cunningham, G. T. Marth, L. Stein, P.
Flicek, M. Yandell, and K. Eilbeck. �A standard variation �le format for human genome
sequences�. In: Genome Biol. 11.8 (2010), R88. doi: 10.1186/gb-2010-11-8-r88. pmid:
20796305.

[114] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.
Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, R. Durbin,
D. Altshuler, G. Abecasis, D. Bentley, A. Chakravarti, A. Clark, F. De La Vega, P.
Donnelly, M. Dunn, P. Flicek, S. Gabriel, E. Green, R. Gibbs, B. Knoppers, E. Lander,
H. Lehrach, E. Mardis, G. Marth, et al. �The variant call format and VCFtools�. In:
Bioinformatics 27.15 (Aug. 2011), pp. 2156�2158. doi: 10.1093/bioinformatics/btr330.
pmid: 21653522.

[115] P. Deutsch. DEFLATE Compressed Data Format Speci�cation version 1.3. RFC 1951
(Informational). Internet Engineering Task Force, May 1996. WebCite: 6Fr6mTscx. url:
http://www.ietf.org/rfc/rfc1951.txt.

[116] P. Deutsch. GZIP �le format speci�cation version 4.3. RFC 1952 (Informational). Internet
Engineering Task Force, May 1996. WebCite: 6Fr6csgTT. url: http://www.ietf.org/rfc/
rfc1952.txt.

[117] X. Chen, M. Li, B. Ma, and J. Tromp. �DNACompress: fast and e�ective DNA se-
quence compression�. In: Bioinformatics 18.12 (Dec. 2002), pp. 1696�1698. doi: 10.1093/
bioinformatics/18.12.1696. pmid: 12490460.

[118] F. Hach, I. Numanagic, C. Alkan, and S. C. Sahinalp. �SCALCE: boosting sequence
compression algorithms using locally consistent encoding�. In: Bioinformatics 28.23 (Dec.
2012), pp. 3051�3057. doi: 10.1093/bioinformatics/bts593. pmid: 23047557.

[119] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. �Compression of next-generation
sequencing reads aided by highly e�cient de novo assembly�. In: Nucleic Acids Res. 40.22
(Dec. 2012), e171. doi: 10.1093/nar/gks754. pmid: 22904078.

[120] M. Hsi-Yang Fritz, R. Leinonen, G. Cochrane, and E. Birney. �E�cient storage of high
throughput DNA sequencing data using reference-based compression�. In: Genome Res.
21.5 (May 2011), pp. 734�740. doi: 10.1101/gr.114819.110. pmid: 21245279.

[121] S. Golomb. �Run-length encodings (Corresp.)� In: Information Theory, IEEE Transac-
tions on 12.3 (1966), pp. 399�401. issn: 0018-9448. doi: 10.1109/TIT.1966.1053907.

[122] D. Hu�man. �A Method for the Construction of Minimum-Redundancy Codes�. In: Pro-
ceedings of the IRE 40.9 (1952), pp. 1098�1101. issn: 0096-8390. doi: 10.1109/JRPROC.
1952.273898.

[123] W. J. Kent, A. S. Zweig, G. Barber, A. S. Hinrichs, and D. Karolchik. �BigWig and
BigBed: enabling browsing of large distributed datasets�. In: Bioinformatics 26.17 (Sept.
2010), pp. 2204�2207. doi: 10.1093/bioinformatics/btq351. pmid: 20639541.

http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://www.webcitation.org/6FqvzGZJ8
http://samtools.sourceforge.net/SAM1.pdf
http://www.webcitation.org/5R00Wxobq
http://www.sequenceontology.org/gff3.shtml
http://www.sequenceontology.org/gff3.shtml
http://dx.doi.org/10.1186/gb-2010-11-8-r88
http://www.ncbi.nlm.nih.gov/pubmed/20796305
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522
http://www.webcitation.org/6Fr6mTscx
http://www.ietf.org/rfc/rfc1951.txt
http://www.webcitation.org/6Fr6csgTT
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://dx.doi.org/10.1093/bioinformatics/18.12.1696
http://dx.doi.org/10.1093/bioinformatics/18.12.1696
http://www.ncbi.nlm.nih.gov/pubmed/12490460
http://dx.doi.org/10.1093/bioinformatics/bts593
http://www.ncbi.nlm.nih.gov/pubmed/23047557
http://dx.doi.org/10.1093/nar/gks754
http://www.ncbi.nlm.nih.gov/pubmed/22904078
http://dx.doi.org/10.1101/gr.114819.110
http://www.ncbi.nlm.nih.gov/pubmed/21245279
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1093/bioinformatics/btq351
http://www.ncbi.nlm.nih.gov/pubmed/20639541

92 BIBLIOGRAPHY

[124] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and
D. Haussler. �The human genome browser at UCSC�. In: Genome Res. 12.6 (June 2002),
pp. 996�1006. doi: 10.1101/gr.229102. pmid: 12045153.

[125] H. Li. �Tabix: fast retrieval of sequence features from generic TAB-delimited �les�. In:
Bioinformatics 27.5 (Mar. 2011), pp. 718�719. doi: 10.1093/bioinformatics/btq671.
pmid: 21208982.

[126] A. Guttman. �R-trees: a dynamic index structure for spatial searching�. In: SIGMOD Rec.
14.2 (June 1984), pp. 47�57. issn: 0163-5808. doi: 10.1145/971697.602266.

[127] L. Collin and I. Pavlov. The .xz File Format version 1.0.4. Aug. 2009. WebCite: 6FqpSZFsW.
url: http://tukaani.org/xz/xz-file-format.txt Nov. 4, 2012.

[128] J. L. Bentley. �Multidimensional binary search trees used for associative searching�. In:
Commun. ACM 18.9 (Sept. 1975), pp. 509�517. issn: 0001-0782. doi: 10.1145/361002.
361007.

[129] Y. Livnat, H.-W. Shen, and C. R. Johnson. �A Near Optimal Isosurface Extraction Al-
gorithm Using the Span Space�. In: IEEE Transactions on Visualization and Computer
Graphics 2.1 (Mar. 1996), pp. 73�84. issn: 1077-2626. doi: 10.1109/2945.489388.

[130] D. Lee and C. Wong. �Worst-case analysis for region and partial region searches in multi-
dimensional binary search trees and balanced quad trees�. English. In: Acta Informatica
9.1 (1977), pp. 23�29. issn: 0001-5903. doi: 10.1007/BF00263763.

[131] S. Kurtz. The Vmatch large scale sequence analysis software. Dec. 2011. WebCite:
5EyNRAwVK. url: http://www.vmatch.de Feb. 27, 2013.

[132] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. �Replacing su�x trees with enhanced su�x
arrays�. In: Journal of Discrete Algorithms 2.1 (2004), pp. 53 �86. doi: 10.1016/S1570-
8667(03)00065-0.

[133] S. B. Needleman and C. D. Wunsch. �A general method applicable to the search for
similarities in the amino acid sequence of two proteins�. In: J. Mol. Biol. 48.3 (Mar.
1970), pp. 443�453. doi: 10.1016/0022-2836(70)90057-4. pmid: 5420325.

[134] T. F. Smith and M. S. Waterman. �Identi�cation of common molecular subsequences�.
In: J. Mol. Biol. 147.1 (Mar. 1981), pp. 195�197. doi: 10.1016/0022-2836(81)90087-5.
pmid: 7265238.

[135] F. Van Nieuwerburgh, R. C. Thompson, J. Ledesma, D. Deforce, T. Gaasterland, P.
Ordoukhanian, and S. R. Head. �Illumina mate-paired DNA sequencing-library prepa-
ration using Cre-Lox recombination�. In: Nucleic Acids Res. 40.3 (Feb. 2012), e24. doi:
10.1093/nar/gkr1000. pmid: 22127871.

[136] W. J. Kent. �BLAT�the BLAST-like alignment tool�. In: Genome Res. 12.4 (Apr. 2002),
pp. 656�664. doi: 10.1101/gr.229202. pmid: 11932250.

[137] E. Moyroud, E. G. Minguet, F. Ott, L. Yant, D. Pose, M. Monniaux, S. Blanchet, O.
Bastien, E. Thevenon, D. Weigel, M. Schmid, and F. Parcy. �Prediction of regulatory
interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY
transcription factor�. In: Plant Cell 23.4 (Apr. 2011), pp. 1293�1306. doi: 10.1105/tpc.
111.083329.

http://dx.doi.org/10.1101/gr.229102
http://www.ncbi.nlm.nih.gov/pubmed/12045153
http://dx.doi.org/10.1093/bioinformatics/btq671
http://www.ncbi.nlm.nih.gov/pubmed/21208982
http://dx.doi.org/10.1145/971697.602266
http://www.webcitation.org/6FqpSZFsW
http://tukaani.org/xz/xz-file-format.txt
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1109/2945.489388
http://dx.doi.org/10.1007/BF00263763
http://www.webcitation.org/5EyNRAwVK
http://www.vmatch.de
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://www.ncbi.nlm.nih.gov/pubmed/7265238
http://dx.doi.org/10.1093/nar/gkr1000
http://www.ncbi.nlm.nih.gov/pubmed/22127871
http://dx.doi.org/10.1101/gr.229202
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://dx.doi.org/10.1105/tpc.111.083329
http://dx.doi.org/10.1105/tpc.111.083329

BIBLIOGRAPHY 93

[138] R. Brandt, M. Salla-Martret, J. Bou-Torrent, T. Musielak, M. Stahl, C. Lanz, F. Ott,
M. Schmid, T. Greb, M. Schwarz, S. B. Choi, M. K. Barton, B. J. Reinhart, T. Liu,
M. Quint, J. C. Palauqui, J. F. Martinez-Garcia, and S. Wenkel. �Genome-wide binding-
site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated
growth responses�. In: Plant J. 72.1 (Oct. 2012), pp. 31�42. doi: 10.1111/j.1365-
313X.2012.05049.x.

[139] R. G. Immink, D. Pose, S. Ferrario, F. Ott, K. Kaufmann, F. L. Valentim, S. de Folter, F.
van der Wal, A. D. van Dijk, M. Schmid, and G. C. Angenent. �Characterization of SOC1's
central role in �owering by the identi�cation of its upstream and downstream regulators�.
In: Plant Physiol. 160.1 (Sept. 2012), pp. 433�449. doi: 10.1104/pp.112.202614.

[140] D. Pose, L. Verhage, F. Ott, L. Yant, J. Mathieu, G. C. Angenent, R. G. Immink, and M.
Schmid. �Temperature-dependent regulation of �owering by antagonistic FLM variants�.
In: Nature (Sept. 2013). doi: 10.1038/nature12633.

[141] P. Merelo, Y. Xie, L. Brand, F. Ott, D. Weigel, J. L. Bowman, M. G. Heisler, and S.
Wenkel. �Genome-Wide Identi�cation of KANADI1 Target Genes�. In: PLoS ONE 8.10
(2013), e77341. doi: 10.1371/journal.pone.0077341.

[142] E. S. Lander and M. S. Waterman. �Genomic mapping by �ngerprinting random clones: a
mathematical analysis�. In: Genomics 2.3 (Apr. 1988), pp. 231�239. doi: 10.1016/0888-
7543(88)90007-9. pmid: 3294162.

[143] Y. Benjamini and Y. Hochberg. �Controlling the false discovery rate: a practical and
powerful approach to multiple testing�. In: Journal of the Royal Statistical Society. Series
B (Methodological) (1995), pp. 289�300.

[144] U. Manber and G. Myers. �Su�x arrays: a new method for on-line string searches�. In:
Proceedings of the �rst annual ACM-SIAM symposium on Discrete algorithms. SODA '90.
San Francisco, California, USA: Society for Industrial and Applied Mathematics, 1990,
pp. 319�327. isbn: 0-89871-251-3.

[145] G. Nong, S. Zhang, and W. H. Chan. �Two E�cient Algorithms for Linear Time Su�x
Array Construction�. In: IEEE Transactions on Computers 60.10 (2011), pp. 1471�1484.
issn: 0018-9340. doi: 10.1109/TC.2010.188.

[146] K. S. Pollard, H. N. Gilbert, Y. Ge, S. Taylor, and S. Dudoit. multtest: Resampling-based
multiple hypothesis testing. R package version 2.4.0.

[147] Y. Benjamini and D. Yekutieli. �The control of the false discovery rate in multiple testing
under dependency�. In: Annals of statistics (2001), pp. 1165�1188.

[148] O. J. Dunn. �Multiple comparisons among means�. In: Journal of the American Statistical
Association 56.293 (1961), pp. 52�64.

[149] Y. Hochberg. �A sharper Bonferroni procedure for multiple tests of signi�cance�. In:
Biometrika 75.4 (1988), pp. 800�802. doi: 10.1093/biomet/75.4.800.

[150] S. Holm. �A simple sequentially rejective multiple test procedure�. In: Scandinavian jour-
nal of statistics (1979), pp. 65�70.

[151] P. H. Westfall and S. Young. Resampling-Based Multiple Testing: Examples and Methods
for P-Value Adjustment. A Wiley-Interscience publication. Wiley, 1993. isbn: 9 780471
557616.

http://dx.doi.org/10.1111/j.1365-313X.2012.05049.x
http://dx.doi.org/10.1111/j.1365-313X.2012.05049.x
http://dx.doi.org/10.1104/pp.112.202614
http://dx.doi.org/10.1038/nature12633
http://dx.doi.org/10.1371/journal.pone.0077341
http://dx.doi.org/10.1016/0888-7543(88)90007-9
http://dx.doi.org/10.1016/0888-7543(88)90007-9
http://www.ncbi.nlm.nih.gov/pubmed/3294162
http://dx.doi.org/10.1109/TC.2010.188
http://dx.doi.org/10.1093/biomet/75.4.800

	Contributions
	Abstract
	Contents
	1 Introduction
	1.1 High-Throughput DNA Sequencing
	1.2 Approaches to Parallel DNA Sequencing
	1.3 Applications of High-Throughput Sequencing
	1.3.1 Genome and Transcriptome Sequencing
	1.3.2 ChIP-Seq and further Immunoprecipitation Protocols

	1.4 Properties of Sequencing Data
	1.5 Sequencing Data Analysis
	1.5.1 Base Calling and Read Quality Assessment
	1.5.2 Assembly
	1.5.3 Short Read Alignment
	1.5.4 Variation and Genotype Calling
	1.5.5 Quantification by Deep Sequencing
	1.5.6 ChIP-Seq Analysis

	1.6 Storage and Representation of Sequencing Data
	1.6.1 Storage Formats for Next-Generation Sequencing Data
	1.6.2 Accelerated Queries on Sequencing Data

	1.7 Contributions of this Work

	2 A High-Throughput DNA Sequencing Data Analysis Suite
	2.1 Overview
	2.2 Efficient Storage of High-Throughput Sequencing Data Using Text-Based File Formats
	2.2.1 Overview
	2.2.2 Widely Compatible Indexed Block-Wise Compression
	2.2.3 Efficient Queries on Text Files
	2.2.4 Improved Compression of Read Mapping Data
	2.2.5 Compression Results
	2.2.6 Data Storage Considerations

	2.3 A Non-Destructive Read Filtering and Partitioning Framework
	2.4 A Flexible Sequencing Read Demultiplexing System
	2.4.1 Overview
	2.4.2 A Format for Description of Multiplexing Setups
	2.4.3 Barcode Recognition and Sample Resolution

	2.5 Versatile Oligomer Detection and Read Clipping
	2.5.1 Overview
	2.5.2 Dynamic Programming Alignment and Backtracing Pipeline

	2.6 A Parallelization Front-End for Short Read Alignment Tools
	2.7 Robust Detection of ChIP-Seq Enrichment
	2.7.1 Overview
	2.7.2 Correcting for Duplicated Sequences
	2.7.3 Detection Phase
	2.7.4 Recognition of Read Mapping Artifacts
	2.7.5 Ranking and Assessment of Peak Significance
	2.7.6 Experimental Relevance of Peak Significance

	2.8 Visualization of Sequencing Read and Alignment Data
	2.8.1 Gathering Run Quality and Sequence Composition Statistics
	2.8.2 Visualization of Read Mapping Data
	2.8.3 Visualization of Local or Genome-Scale Depth of Coverage
	2.8.4 Quantile Correction

	3 A C++ Framework for High-Throughput DNA Sequencing
	3.1 Overview
	3.2 A Modular Signal-Slot Processing Framework
	3.2.1 Reader and Writer Concepts
	3.2.2 Definition of Processing Network Topology
	3.2.3 Module Implementation
	3.2.4 In-Place Data Manipulation

	3.3 A Simplified Parallelization Interface
	3.3.1 Parallelization Modules
	3.3.2 Parallel Pipeline Architecture

	4 Closing Remarks
	Bibliography

