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Zusammenfassung

In der vorliegenden Arbeit wird eine Einteilchen-Schrödinger-Gleichung mit einem
periodischen Potential, einem starken, konstanten Magnetfeld und nicht-periodi-
schen Störungen in zwei Dimensionen betrachtet. Unser Ziel ist die mathematisch
rigorose Herleitung eines effektiven Modells, das die wesentlichen Eigenschaften der
Gleichung wiedergibt. Dieses wird “effektiver Hamiltonian“ genannt. Das Modell,
das wir untersuchen möchten, beschreibt die Bewegung von Leitungselektronen in
einem kristallinen Festkörper in dem von den Atomkernen erzeugten Potential. In
der Festkörperphysik ist es eine Standardapproximation, bei vielen Fragestellun-
gen die Coulomb-Abstoßung zwischen den Elektronen zu vernachlässigen. Deshalb
reicht es aus, das Verhalten eines einzelnen Teilchens unter dem Einfluss eines pe-
riodischen Potentials anzuschauen. Sei nun Γ ∼= Z2 das von den Atomkernen
erzeugte Bravais-Gitter. Wir nehmen also an, dass sich die Kerne an festen Posi-
tionen befinden. Dann ist das mathematische Modell für diese Fragestellung (mit
geeigneten physikalischen Einheiten) durch den folgenden Hamiltonian gegeben:

Hε = 1
2
(−i∇x − A0(x)− A(εx))2 + VΓ(x) + Φ(εx). (1)

Unter geeigneten technischen Bedingungen ist dies ein selbstadjungierter Opera-
tor, dessen Definitionsbereich der magnetische Sobolev-Raum D(Hε) = H2

A0
(R2) ⊂

L2(R2) ist. Hier ist VΓ das kristalline Potential, welches periodisch bezüglich des
Bravais-Gitters Γ ist, und A0 das Vektorpotential des starken, konstanten Mag-
netfeldes B = dA0. Desweiteren betrachten wir auch nicht-periodische Störungen
A und Φ. Die Potentiale A = A(εx) und Φ = Φ(εx) werden als langsam vari-
ierend auf der Skala des Gitters Γ angenommen. Hierbei ist ε ein dimensionsloser
Parameter, von dem A und Φ unabhängig sind. Wir nehmen an, dass die Störun-
gen glatt und einschließlich aller Ableitungen beschränkt sind. Die entsprechen-
den schwachen elektromagnetischen Felder sind B(x) = curlA(x) beziehungsweise
E(x) = −∇Φ(x). Der ungestörte Operator ist dann definiert als

HMB = 1
2
(−i∇x − A0)2 + VΓ. (2)

Nach einer magnetischen Bloch-Floquet-Transformation kann man diesen Hamil-
tonian als Weyl-Quantisierung eines operatorwertigen Symbols Hper(k) auffassen.
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Für festes k ist dieses Symbol ein Operator auf einem Hilbertraum Hf und hat
diskretes Spektrum. Wir bezeichnen die Eigenwerte als E1(k) ≤ E2(k) ≤ .... Die
dadurch gegebenen Eigenwertfunktionen (En)n≥1 des transformierten Hamiltoni-
ans werden magnetische Blochbänder genannt. Unser Ziel ist es, das Verhalten
von Teilchen, deren Dynamik durch den Hamiltonian Hε beschrieben wird, für
ε � 1 genau zu verstehen. Dazu möchten wir effektive Modelle herleiten, die zu
einem magnetischen Blochband gehören. Damit diese Einleitung so verständlich
wie möglich bleibt, geben wir unsere Ergebnisse für den Fall Γ = Z2 an.
In [Teu03, PST03b] wird der nicht-magnetische Fall, also der Fall A0 ≡ 0, genau
untersucht. Wir möchten die Methoden der eben genannten Arbeiten auf den
magnetischen Fall verallgemeinern. Im nicht-magnetischen Fall konnte zu einem
isolierten, nicht degenerierten Blochband E ein sogenannter fast invarianter Un-
terraum definiert werden, sodass der Operator Hε eingeschränkt auf diesen Unter-
raum durch das effektive Modell

ĥeff = E(k − A(iε∇k)) + Φ(iε∇k) +O(ε)

beschrieben werden kann, wobei

ĥeff auf L2(T2∗)

operiert und ĥeff die Weyl-Quantisierung des Symbols heff ist. Darüberhinaus ist
T2∗ = R2/Γ∗, wobei Γ∗ das duale Gitter zu Γ ist. Die Darstellung E(k−A(iε∇k))+
Φ(iε∇k) wird Peierls Substitution genannt.
Im magnetischen Fall möchten wir ebenfalls mathematisch rigoros ein effektives
Modell für Hε herleiten, welches als Pseudodifferentialoperator gegeben ist und
in führender Ordnung durch eine Peierls Substitution gegeben ist. Allerdings
führt die Einbindung des Potentials A0 im Hamiltonian Hε auch zu einigen Un-
terschieden zwischen unseren Resultaten und denen aus dem nicht-magnetischen
Fall. Das effektive Modell auf dem zu dem magnetischen Blochband E gehörigen
Unterraum ist

ĥeff

eff
= E(k − A(iε∇eff

k )) + Φ(iε∇eff
k ) +O(ε),

wobei ĥeff

eff
auf

Hθ = {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = e

iθ
2π
γ∗1k2ψ(k) ∀γ∗ ∈ Γ∗}

operiert und
∇eff
k = ∇k + (0, iθ

2π
k1)T.

Hier bezeichnet θ die Chernzahl eines bestimmten Linienbündels (des Blochbün-
dels) und ist somit ganzzahlig. Wir erhalten also immer noch ein Operator vom
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Typ einer Peierls Substitution, aber im Unterschied zum nicht-magnetischen Fall
ist die Quantisierung, die benutzt werden muss, neu. Sie bildet das Symbol f(k, r)
auf den Operator f(k, iε∇eff

k ) ab und setzt also einen nicht-trivialen Zusammen-
hang ein. Die Definition dieser Quantisierung ist ein wesentlicher Teil dieser Arbeit.
Ein weiterer Unterschied ist, dass der effektive Operator nicht mehr auf Funktio-
nen über dem Torus, sondern auf Schnitten eines möglicherweise nicht-trivialen
Linienbündels operiert.
Der Grund dafür ist, dass der effektive Hamiltonian auf einem isolierten, nicht
degenerierten Blochband E immer ein Operator zwischen Schnitten eines Linien-
bündels über dem Torus ist. Dieses Bündel heißt Blochbündel und wird mit der
Spektralprojektion P (die Spektralprojektion, die zu dem Blochband E gehört)
assoziiert. Im nicht-magnetischen Fall ist das Blochbündel stets trivial und daher
isomorph zu T2∗ ×C. Damit sind die Schnitte in diesem Bündel gerade die Funk-
tionen von T2∗ nach C. In diesem Fall muss also nicht weiter beachtet werden, dass
der effektive Hamiltonian ein Operator zwischen Schnitten eines Linienbündels ist.
Im magnetischen Fall hebt jedoch das Auftreten von A0 die Zeitumkehrsymmetrie
des ungestörten Operators HMB und damit die Trivialisierbarkeit des Blochbün-
dels auf. Folglich können wir nicht mehr vernachlässigen, dass wir einen Operator
zwischen Schnitten eines Linienbündels erhalten. Der einfachste Raum für den
effektiven Operator ist der Raum Hθ, welcher Funktionen von R2 nach C beinhal-
tet, die bis auf eine Phase periodisch sind. Wendet man unsere Ergebnisse auf den
nicht-magnetischen Fall an, erhält man θ = 0 und Hθ=0

∼= L2(T2∗) sowie ∇eff = ∇.
Somit reproduziert diese Arbeit auch den nicht-magnetischen Fall.
Wie in [PST03b, Teu03] möchten wir unsere Ergebnisse mittels raumadiabatischer
Störungstheorie herleiten. Diese wurde in [PST03a] entwickelt und wir müssen die
Methoden aus [PST03b, Teu03] auf den magnetischen Fall verallgemeinern. Das
wichtigste mathematische Instrument, das in der raumadiabatischen Störungs-
theorie verwendet wird, sind Pseudodifferentialoperatoren mit operatorwertigen
Symbolen. Ein Pseudodifferentialoperator H ist die Quantisierung eines Symbols
h ∈ C∞(R4,L(H)) mit H = h(k,−iε∇k) = ĥ. Ein Symbol ist immer eine glatte
Funktion über deren Ableitungen man eine gewisse Kontrolle hat, wie zum Beispiel
die Existenz einer (Ordnungs-)Funktion w, sodass für alle α, β eine Konstante Cα,β
existiert, sodass für alle k, r ∈ R2 gilt∥∥(∂αk ∂

β
r h)(k, r)

∥∥
L(H)
≤ Cα,βw(k, r).

Die wichtigste Eigenschaft von Pseudodifferentialoperatoren ist, dass man im Sym-
bolraum ein Produkt ] definieren kann, dass auf Operatorebene der Hintereinan-
derausführung von Abbildungen entspricht. Für zwei Pseudodifferentialoperatoren
A = â und B = b̂ gilt also AB = â]b. Oft ist es einfacher, einen Operator erst auf
der Symbolebene zu konstruieren und ihn danach zu quantisieren.
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Um die raumadiabatische Störungstheorie anwenden zu können, muss der betref-
fende Hamiltonian als Pseudodifferentialoperator gegeben sein. Der Hamiltonian
(1) kann durch eine magnetische Bloch-Floquet-Transformation UBF, welche im
Wesentlichen eine Fourier-Transformation auf dem Gitter Γ ist, in die gewünschte
Form gebracht werden. Um die Transformation definieren zu können, brauchen
wir die zusätzliche Bedingung B|M | ∈ 2πZ, wobei M die Fundamentalzelle des
Gitters Γ ist. (Man beachte, dass es ausreichend ist, B|M | ∈ πQ zu fordern und
zu einem Untergitter Γ̃ ⊂ Γ überzugehen, welches B|M̃ | ∈ 2πZ erfüllt.) Sei nun
M∗ die erste Brillouin-Zone des Gitters Γ, also die Fundamentalzelle des dualen
Gitters Γ∗. Dann bildet UBF den Raum L2(R2) auf den Raum Hτ

∼= L2(M∗)⊗Hf

ab, wobei Hf ein seperabler Hilbertraum ist und

Hτ = {ϕ ∈ L2
loc(R2,Hf) : ϕ(k − γ∗) = τ(γ∗)ϕ(k) ∀γ∗ ∈ Γ∗},

wobei τ eine unitäre Darstellung von Γ∗ in L(Hf) ist. Dies transformiert den
ungestörten Operator (2) zu

UBFHMBU∗BF =

∫ ⊕
M∗

Hper(k)dk,

wobei
Hper(k) := 1

2
(−i∇y − A0(y) + k)2 + VΓ(y).

Der volle Operator (1) wird transformiert zu

UBFH
εU∗BF =: Hε

BF = Ĥ0(k, r),

wobei
H0(k, r) = Hper(k − A(r)) + Φ(r).

Eine weitere Voraussetzung dafür, die raumadiabatische Störungstheorie anwenden
zu können, ist eine Lücke im Spektrum des Hauptsymbols des Hamiltonians Ĥ. In
dieser Arbeit nehmen wir deshalb an, dass E(k) ein nicht degenerierter, isolierter
Eigenwert von Hper(k) mit zugehörgier Spektralprojektion P (k) ist. Damit ist
E(k − A(r)) + Φ(r) ein nicht degenerierter, isolierter Eigenwert von H0(k, r) mit
Spektralprojektion P (k − A(r)).
Der erste Schritt in der raumadiabatischen Störungstheorie ist die Konstruktion
der sogenannten fast invarianten Unterräume. Diese Konstruktion funktioniert
abgesehen von kleinen, technischen Änderungen wie im nicht-magnetischen Fall.
Das heißt, wir bekommen eine Projektion Πε = π̂+O(ε∞), die fast als Pseudodif-
ferentialoperator mit Hauptsymbol π0(k, r) = P (k−A(r)) gegeben ist. Der Raum
ΠεHτ heißt “fast invarianter Unterraum”, da [Hε

BF,Π
ε] = O(ε∞) gilt.

Allerdings ist dieser Unterraum schlecht zugänglich und man kann die Funktionen,
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die er enthält, nicht explizit beschreiben. Desweiteren hängt er von ε ab und es
ist klar, dass es keinen Limes für ε → 0 gibt. Von daher ist der nächste Schritt
in der raumadiabatischen Störungstheorie, diesen Unterraum unitär auf einen ε-
unabhängigen und explizit gegebenen Raum Href abzubilden. Dieser Schritt kann
im Gegensatz zur Definition der fast invarianten Unterräume nicht aus dem nicht-
magnetischen Fall übernommen werden. Die Definition der verknüpfenden Abbil-
dung U ε und des geeigenten Referenzraums Href sind einige der Hauptziele und
der Ausgangspunkt dieser Arbeit.
Dies wird nun genauer beschrieben. Wir betrachten das folgende Bündel über T2∗:

E = (R2 ×Hf)∼ wobei (k, ϕ) ∼ (k′, ϕ′) :⇔ k′ = k − γ∗ und ϕ′ = τ(γ∗)ϕ

mit Zusammenhang ∇B = P (k)∇P (k) + P⊥(k)∇P⊥(k).

Dieser Zusammenhang wird Berry-Zusammenhang genannt und Hτ ist der Raum
der L2-Schnitte in diesem Bündel. Das Blochbündel ist das zur Projektion P (k)
assoziierte Unterbündel von E, das heißt

EBl = {(k, ϕ) ∈ (R2,Hf)∼ : ϕ ∈ P (k)Hf} mit Zusammenhang ∇B
k = P (k)∇k.

Die L2-Schnitte im Blochbündel sind dann gegeben durch

Π0Hτ := {f ∈ Hτ : f(k) ∈ P (k)Hf}.

Im nicht-magnetischen Fall ist die wesentliche Voraussetzung für die Konstruktion
von U ε, dass EBl trivial ist. Folglich gibt es eine Funktion ϕ mit ϕ(k − γ∗) =
τ(γ∗)ϕ(k) für alle k ∈ R2 und ϕ(k) ∈ P (k)Hf mit ‖ϕ(k)‖Hf

≡ 1. Mit Hilfe dieser
Funktion kann man, ausgehend vom Hauptsymbol u0(k, r) := 〈ϕ(k−A(r))|+ u⊥0 ,
die verknüpfende unitäre Abbildung fast als Pseudodifferentialoperator U ε = û +
O(ε∞) konstruieren. Der Referenzraum kann als L2(T2∗) gewählt werden, da dieser
Raum isomorph zum Raum der L2-Schnitte im Blochbündel EBl ist. Die Tatsache,
dass Πε und U ε fast Pseudodifferentialoperatoren sind, ist ausschlaggebend dafür,
den effektiven Operator ebenfalls als Pseudodifferentialoperator zu erhalten, da
man dann ausnutzen kann, dass das Produkt “]” auf der Symbolebene mit der
Hintereinanderausführung auf der Operatorebene übereinstimmt:

Heff = U εΠεHε
BFΠεU ε∗ = ûπ̂Ĥπ̂û∗ +O(ε∞) = Op(u]π]H]π]u∗︸ ︷︷ ︸

=:h

) +O(ε∞)

= ĥ+O(ε∞).

Die Konstruktion liefert den effektiven Hamiltonian also direkt als Pseudodiffe-
rentialoperator.
Nun wenden wir uns wieder dem magnetischen Fall zu. Das Hauptproblem ist,
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dass das Blochbündel in diesem Fall nicht mehr trivialisierbar ist. Also gibt es
keine Funktion ϕ mehr wie vorher - jeder globale Schnitt ϕ im Blochbündel muss
Nullstellen haben. Wir werden daher wie folgt vorgehen: Wir betrachten das
Bündel

E ′Bl = {(k, ϕ) ∈ (R2,Hf) : ϕ ∈ P (k)Hf},

welches als Bündel über R2 trivial sein muss. Also muss es einen globalen Schnitt
in diesem Bündel geben, der nirgends verschwindet. Einen solchen Schnitt ϕ kon-
struieren wir mit Hilfe des Paralleltransports bezüglich des Berry-Zusammenhangs
∇B. Dies liefert (entspricht Lemma 3.3.2 im Haupttext)

Lemma. Es gibt eine Funktion ϕ ∈ C∞(R2,Hf), sodass für alle k ∈ R2 gilt:
ϕ(k) ∈ P (k)Hf , ‖ϕ(k)‖Hf

= 1 und

ϕ(k − γ∗) = e−
iθ
2π
k2γ∗1 τ(γ∗)ϕ(k) für alle γ∗ ∈ Γ∗,

wobei θ die Chernzahl des Blochbündels ist.

Man beachte, dass die Chernzahl eine ganze Zahl ist, die genau dann null ist,
wenn das entsprechende Linienbündel trivial ist, siehe z.B. [BT82].
Mit Hilfe dieser Funktion kann man das zum Blochbündel unitär äquivalente Li-
nienbündel Eθ definieren als

Eθ := {(k, λ)∼ ∈ R2 × C},

wobei (k, λ) ∼ (k′, λ′)⇔ k′ = k − γ∗ und λ′ = e
iθ
2π
k2γ∗1λ.

Der gewünschte Referenzraum ist dann der Raum der L2-Schnitte in diesem Bün-
del, also der Raum

Hθ = {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = e

iθ
2π
γ∗1k2ψ(k) ∀γ∗ ∈ Γ∗}.

Natürlich sind Hθ und Π0Hτ unitär äquivalent.
Die erste Idee für die Konstruktion von U ε könnte sein, als Hauptsymbol u0(k, r) :=
〈ϕ(k − A(r))| + u⊥0 zu wählen. Aber im Gegensatz zum nicht-magnetischen Fall
ist diese Funktion in keiner geeigenten Symbolklasse, da sie keine beschränkten
Ableitungen mehr hat. Deshalb vernachlässigen wir zunächst, dass der Referenz-
raum ein möglichst einfacher Raum sein soll. Stattdessen konzentrieren wir uns
zunächst darauf, die ε-Abhängigkeit des fast invarianten Unterraums zu besei-
tigen. Mit Hilfe der Funktion ϕ definieren wir eine unitäre Abbildung U ε

1 =
û+O(ε∞), welche ΠεHτ auf Π0Hτ abbildet. Das Hauptsymbol von u ist u0(k, r) :=
|ϕ(k)〉〈ϕ(k −A(r))|+ u⊥0 . Diese Funktion ist (mit einer geeigneten Eichung für A
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oder einer zusätzliche Phase) τ -äquivariant und hat daher beschränkte Ableitun-
gen.
Die unitäre Abbildung U θ : Π0Hτ → Hθ zwischen den Schnitten im Blochbün-
del und den Schnitten in Eθ ist dann durch 〈ϕ(k)| gegeben. Also setzen wir als
verknüpfende unitäre Abbildung

U ε := U θ ◦ U ε
1 .

Das Problem ist, dass U θ kein Pseudodifferentialoperator ist. Es ist offensichtlich,
dass das Symbol u(k, r) = 〈ϕ(k)| sein müsste, man aber die Ableitungen dieser
Funktion nicht kontrollieren kann. Bis hierher erhalten wir also als effektiven
Hamiltonian

Heff = U εΠεHε
BFΠεU ε∗ = U θU ε

1 ΠεHε
BFΠεU ε∗

1 U
θ∗ = U θûπ̂Ĥπ̂û∗U θ∗ +O(ε∞)

= U θOp(u]π]H]π]u∗)U θ∗ +O(ε∞)

= U θĥU θ∗ +O(ε∞).

Man kann hier also nicht wie im nicht-magnetischen Fall die unitäre Abbildung
via Weyl-Produkt zum Symbol hinzuzufügen, da U θ kein Symbol hat. Deshalb
müssen wir eine andere Methode finden, die es ermöglicht U θĥU θ∗ als Pseudo-
differentialoperator darzustellen.
Dies ist der nächste wichtige Schritt dieser Arbeit. Wir müssen einen Weg finden,
die nicht-triviale Geometrie des Blochbündels in den Quantisierungsvorgang einzu-
binden. Dazu ist zu beachten, dass der Zusammenhang des Bündels nicht der
triviale Zusammenhang ∇k, sondern der Berryzusammenhang ∇B

k = P (k)∇k ist.
Deshalb werden wir nun Quantisierungen definieren, die für ein Symbol f(k, r)
zwar immer noch k auf k abbilden, aber r nicht mehr mit dem trivialen Zusammen-
hang −iε∇k, sondern mit anderen Zusammenhängen ersetzen, wie zum Beispiel
mit −iε∇B

k . Desweiteren müssen diese neuen Quantisierungen Operatoren zwi-
schen Schnitten von möglicherweise nicht-trivialen Bündeln erzeugen. Dies is nötig,
da wir auf einen Pseudodifferentialoperator zwischen Schnitten eines Bündels mit
einem nicht-trivialen Zusammenhang abzielen. Die benötigten Bündel und Zusam-
menhänge sind

• die Bündel E und EBl versehen mit dem Berry-Zusammenhang ∇B,

• das Bündel Eθ versehen mit dem θ-Zusammenhang ∇θ = U θ∇BU θ∗ und

• das Bündel Eθ versehen mit dem effektiven Zusammenhang ∇eff = (∇k +
(0, iθ

2π
k1)T).

Also sind die drei Weyl-Quantisierungen
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• die Berry-Quantisierung OpB(f) = f(k,−iε∇B
k ), die Operatoren auf Hτ

beziehungsweise Π0Hτ erzeugt,

• die θ-Quantisierung Opθ(f) = f(k,−iε∇θ
k), die Operatoren auf Hθ erzeugt,

und

• die effektive Quantisierung Opeff(f) = f(k,−iε(∇k + (0, iθ
2π
k1)T), die Opera-

toren auf Hθ erzeugt.

Diese Quantisierungen werden definiert, indem man die entsprechenden Parallel-
transporte in die Integralformeln der Quantisierungen einfügt.
Die Motivation für die ersten zwei Quantisierungen ist

U θΠ0r̂j
τΠ0U θ∗ = U θr̂j

BU θ∗ = r̂j
θ.

Wir werden also zunächst von der τ - zur Berry-Quantisierung übergehen. Danach
zeigen wir, wie es möglich ist, die unitäre Abbildung U θ in die Berry-Quantisierung
“hineinzuziehen“, indem man zur θ-Quantisierung übergeht. Dies ist der wesentli-
che Schritt um einen Pseudodifferentialoperator auf Hθ zu bekommen. Danach
gehen wir außerdem noch zur effektiven Quantisierung über, weil der Zusammen-
hang∇eff unabhängig von ϕ ist und für θ = 0 mit dem trivialen Zusammenhang∇k

übereinstimmt. Dies ermöglicht es, unsere Ergebnisse mit dem nicht-magnetischen
Fall A0 ≡ 0 zu vergleichen beziehungsweise diesen Fall einzuschließen.
In Kapitel vier werden diese drei Quantisierungen mathematisch rigoros definiert
und zueinander in Beziehung gesetzt. Letzteres bedeutet zu zeigen, wie man ein
Symbol f zu einem Symbol fc abändern muss, sodass

f̂
τ

= f̂c

B
+O(ε∞)

gilt. Nachdem wir gezeigt haben, wie man die τ - in die Berry-Quantisierung um-
rechnet, nutzen wir als nächstes die unitäre Äquivalenz von ∇B und ∇θ aus, um
einen Operator der Form U θf̂

B
U θ∗ in einen der Form f̂θ

θ
umzuschreiben. Das

Symbol dieses Operators kann wiederum mit dem gleichen Vorgehen wie vorher
umgerechnet werden, sodass

(̂fθ)c

eff

= f̂θ
θ

+O(ε∞)

gilt. Dieses Programm kann also folgendermaßen zusammengefasst werden: Wir
beginnen mit

Heff = U εΠεĤτΠεU ε∗ = U θΠ0ĥ
τ
U θ∗ = ĥeff

?

und lösen dieses Problem durch

U θΠ0ĥ
τ
U θ∗ = U θĥc

B
U θ∗ = (̂hc)θ

θ

= ĥeff

eff
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(wobei Gleichheit bis auf O(ε∞) gilt).
Dies wenden wir nun auf unseren Hamiltonian Hε

BF an und bekommen das folgende
Ergebnis (hier lassen wir die genauen technischen Voraussetzungen weg - sie stehen
in Theorem 5.1.1).

Theorem. Sei E ein nicht degeneriertes, isoliertes Eigenwertband. Dann gibt es

(i) eine orthogonale Projektion Πε ∈ L(Hτ ),

(ii) eine unitäre Abbildung U ε ∈ L(ΠεHτ ,Hθ) und

(iii) einen selbstadjungierten Operator ĥeff

eff
∈ L(Hθ),

sodass
‖[Hε

BF,Π
ε]‖L(Hτ ) = O(ε∞)

und ∥∥∥(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

= O(ε∞(1 + |t|)).

Der effektive Hamiltonian ist die effektive Quantisierung des Symbols heff ∈
S1
τ≡1(ε,C), welches in jeder Ordnung berechnet werden kann.

Desweiteren berechnen wir (in Theorem 5.2.4) die führenden Ordnungen des
Symbols explizit:

Theorem. Das Haupt- und Subhauptsymbol des Symbols heff = h0 + εh1 +O(ε2)
aus dem obigen Theorem sind

h0(k, r) = E(k − A(r)) + Φ(r)

und

h1(k, r) = (∇Φ(r)−∇E(k̃)×B(r)) · (iA1(k̃), i(A2(k̃)− iθ
2π
k1))T −B(r) · M(k̃),

wobei Aj(k) = 〈ϕ(k), ∂jϕ(k)〉Hf
, k̃ = k−A(r), B(r) = ∂1A2−∂2A1 undM(k̃) der

Rammal-Wilkinson-Term ist.

Am Ende der Arbeit bringen wir unsere Resultate mit dem Hofstadter-Modell
in Verbindung.

xiii



Chapter 1

Introduction

In this work we consider a one-particle Schrödinger equation with a periodic po-
tential, a strong constant magnetic field, and non-periodic perturbations in two
dimensions. Our goal is a rigorous derivation of an effective model called effective
Hamiltonian that captures the main features of the equation.
The model we want to analyse describes the movement of conduction electrons in a
crystalline solid in the potential created by the atomic cores, for instance electrons
in some metal or crystal. For a lot of questions, it is a standard approximation in
solid state physics to neglect the Coulomb repulsion between the electrons. Hence,
it suffices to look at the behaviour of a single particle under the influence of a
periodic potential. Let Γ ∼= Z2 be the Bravais lattice generated by the nuclei. This
means that we assume the nuclei to be on fixed positions. Then the mathematical
model for this problem is given (with suitable physical units) by the Hamiltonian

Hε = 1
2
(−i∇x − A0(x)− A(εx))2 + VΓ(x) + Φ(εx). (1.1)

Under suitable technical conditions, this is a self-adjoint operator defined on the
magnetic Sobolev space D(Hε) = H2

A0
(R2) ⊂ L2(R2). Here, VΓ is the crystal

potential which is periodic with respect to the Bravais lattice Γ and A0 is the
vector potential of a strong constant magnetic field B = dA0. Moreover, we
also take into account some non-periodic perturbations A and Φ. The potentials
A = A(εx) and Φ = Φ(εx) are assumed to be slowly varying on the scale of the
lattice Γ. Here ε is a dimensionless parameter and A and Φ are independent of ε.
The perturbations are assumed to be smooth and bounded together with all their
derivatives. The corresponding weak electromagnetic fields are B(x) = curlA(x)
respectively E(x) = −∇Φ(x). The unperturbed operator is denoted by

HMB = 1
2
(−i∇x − A0)2 + VΓ. (1.2)

After a magnetic Bloch-Floquet transformation, this operator is given as the Weyl
quantisation of an operator-valued symbol Hper(k). For fixed k, this symbol acts
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on some Hilbert space Hf and has discrete spectrum. The eigenvalues are denoted
by E1(k) ≤ E2(k) ≤ ... and the resulting eigenvalue functions (En)n≥1 of the trans-
formed Hamiltonian are called magnetic Bloch bands. Our aim is to understand
in detail the behaviour of particles governed by the Hamiltonian Hε for ε � 1.
Thereto we want to get effective models associated to a magnetic Bloch band. To
keep this introduction as clear as possible, we state our results for the case Γ = Z2.
In [Teu03, PST03b] the non-magnetic case, that is to say the case where A0 ≡ 0,
is discussed in detail. Our goal is to generalise the methods of the aforementioned
works to the magnetic case. The result in the non-magnetic case is that for an
isolated, non-degenerate Bloch band E one can define a so-called almost invariant
subspace associated to this Bloch band E so that restricted to this subspace, the
operator Hε can be described by the effective model

ĥeff = E(k − A(iε∇k)) + Φ(iε∇k) +O(ε),

where
ĥeff acts on L2(T2∗)

and the “ ̂ “ indicates that ĥeff is the Weyl quantisation of the symbol heff .
Moreover, T2∗ = R2/Γ∗, where Γ∗ is the dual lattice of Γ. The representation
E(k − A(iε∇k)) + Φ(iε∇k) is called Peierls substitution.
In the magnetic case, we again aim for a rigorous derivation of an effective model for
Hε given as a pseudodifferential operator with a Peierls substitution type operator
in the leading order. However, the inclusion of the potential A0 in the Hamiltonian
Hε causes some differences between our results and the results in the non-magnetic
case. On the subspace corresponding to the magnetic Bloch band E, the effective
model is

ĥeff

eff
= E(k − A(iε∇eff

k )) + Φ(iε∇eff
k ) +O(ε),

where ĥeff

eff
acts on

Hθ = {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = e

iθ
2π
γ∗1k2ψ(k) ∀γ∗ ∈ Γ∗}

and
∇eff
k = ∇k + (0, iθ

2π
k1)T.

Here θ is the Chern number of a certain line bundle (the Bloch bundle) and hence
an integer. So we still get a Peierls substitution type operator, but in contrast to
the non-magnetic case, we need to use a different quantisation that maps a symbol
f(k, r) to the operator f(k, iε∇eff

k ) and thus inserts a non-trivial connection. It is
a main part of this thesis to define this new quantisation. Moreover, the effective
operator no longer acts on functions over the torus but on sections of a possibly
non-trivial line bundle.
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The main reason for this is that for an isolated, non-degenerate eigenvalue band
E, the effective Hamiltonian is always an operator on sections of a line bundle
over the torus called Bloch bundle. This vector bundle is associated to the spec-
tral projection P (the spectral projection associated to the Bloch band E), and is
always trivial in the non-magnetic case. Hence in the non-magnetic case, it is iso-
morphic to T2∗×C and the sections are just functions from T2∗ to C. Thus in this
case, one can neglect that the effective Hamiltonian is an operator on sections of a
line bundle and treat it like an operator between function spaces. However, in the
magnetic case, the inclusion of A0 breaks the time-reversal symmetry of the unper-
turbed operator HMB and therewith the trivialisability of the Bloch bundle. Thus
we cannot ignore that we get an operator on sections of a line bundle. The simplest
space for the effective operator to act on is the space Hθ that consists of functions
from R2 to C that, however, must fulfil a twisted periodic boundary condition.
Applying these results to the non-magnetic case yields θ = 0 and Hθ=0

∼= L2(T2∗)
as well as ∇eff = ∇. So this thesis also reproduces the non-magnetic case.
As in [PST03b, Teu03], the method we want to apply and generalise is space-
adiabatic perturbation theory - a method developed in [PST03a]. The main math-
ematical tool used in this theory are pseudodifferential operators with operator-
valued symbols. A pseudodifferential operator H is the quantisation of a symbol
h ∈ C∞(R4,L(H)) with H = h(k,−iε∇k) = ĥ. Recall that a symbol is always a
smooth function and one always has some kind of control over the derivatives, like
the existence of a (order) function w so that for all α, β there is a constant Cα,β
so that for all k, r ∈ R2∥∥(∂αk ∂

β
r h)(k, r)

∥∥
L(H)
≤ Cα,βw(k, r).

The most important property of pseudodifferential operators is that one can define
a product ] on the space of symbols that corresponds to the composition of ope-
rators, i.e. for two pseudodifferential operators A = â and B = b̂ we have AB =
â]b. Often it is easier to construct an operator on the level of symbols first and to
quantise it afterwards.
To apply space-adiabatic perturbation theory, the Hamiltonian in question must
be given as a pseudodifferential operator. The Hamiltonian (1.1) can be put into
this framework using a magnetic Bloch-Floquet transform UBF which is basically a
Fourier transformation on the lattice Γ. To define the transformation, we need the
additional condition B|M | ∈ 2πZ, where M is the fundamental cell of the lattice
Γ. (Note that it is sufficient to take B|M | ∈ πQ and then pass to a sublattice
Γ̃ ⊂ Γ that fulfils B|M̃ | ∈ 2πZ.) Let M∗ be the first Brillouin zone of the lattice
Γ that is to say the fundamental cell of the dual lattice Γ∗. Then, UBF maps the
space L2(R2) to the space Hτ

∼= L2(M∗) ⊗ Hf , where Hf is a separable Hilbert
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space, and

Hτ = {ϕ ∈ L2
loc(R2,Hf) : ϕ(k − γ∗) = τ(γ∗)ϕ(k) ∀γ∗ ∈ Γ∗},

where τ is a unitary representation of Γ∗ in L(Hf). This transforms the unper-
turbed operator (1.2) into

UBFHMBU∗BF =

∫ ⊕
M∗

Hper(k)dk,

where
Hper(k) := 1

2
(−i∇y − A0(y) + k)2 + VΓ(y).

The full operator (1.1) transforms as

UBFH
εU∗BF =: Hε

BF = Ĥ0(k, r),

where
H0(k, r) = Hper(k − A(r)) + Φ(r).

Another requirement to apply space-adiabatic perturbation theory is that one
needs some gap in the spectrum of the principal symbol of the Hamiltonian Ĥ.
Throughout this work, we assume that E(k) is a non-degenerate, isolated eigen-
value ofHper(k) with spectral projection P (k). Hence E(k−A(r))+Φ(r) is a a non-
degenerate, isolated eigenvalue of H0(k, r) with spectral projection P (k − A(r)).
The first step of space-adiabatic perturbation theory is the construction of the
so-called almost invariant subspaces. This construction carries over from the non-
magnetic case with only small technical modifications, which means that we get a
projection Πε = π̂ +O(ε∞) that is nearly a pseudodifferential operator with prin-
cipal symbol π0(k, r) = P (k − A(r)). The space ΠεHτ is called “almost invariant
subspace” since [Hε

BF,Π
ε] = O(ε∞) holds.

However, this subspace is not easily accessible at all and we cannot describe the
functions it contains explicitly. Moreover, it depends on ε and it is clear that there
is no limit for ε→ 0. Hence the next step of space-adiabatic perturbation theory
is to unitarily map this space to a space Href that does not depend on ε and ad-
ditionally is given explicitly. In contrast to the definition of the almost invariant
subspace, this step does not carry over from the non-magnetic case. The definition
of the intertwining unitary U ε and an appropriate reference space Href are one of
the main goals and the motivation of this work.
Let us explain this in more detail. Consider the following bundle over T2∗:

E = (R2 ×Hf)∼ where (k, ϕ) ∼ (k′, ϕ′) :⇔ k′ = k − γ∗ and ϕ′ = τ(γ∗)ϕ

with connection ∇B = P (k)∇P (k) + P⊥(k)∇P⊥(k).
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The connection is called "Berry connection" and Hτ is the space of L2-sections of
this bundle. The Bloch bundle is a subbundle of E associated to the projection
P (k), that means

EBl = {(k, ϕ) ∈ (R2,Hf)∼ : ϕ ∈ P (k)Hf} with connection ∇B
k = P (k)∇k.

The L2-sections of the Bloch bundle are given by

Π0Hτ := {f ∈ Hτ : f(k) ∈ P (k)Hf}.

In the non-magnetic case, the key ingredient for the construction of U ε is that EBl is
trivial and hence there is a function ϕ so that ϕ(k−γ∗) = τ(γ∗)ϕ(k) for all k ∈ R2

and ϕ(k) ∈ P (k)Hf satisfying ‖ϕ(k)‖Hf
≡ 1. With the help of this function one

can construct the intertwining unitary as U ε = û+O(ε∞), that is to say nearly as
pseudodifferential operator, with principal symbol u0(k, r) = 〈ϕ(k − A(r))| + u⊥0 .
The reference space can be chosen as L2(T2∗) because this space is isomorphic
to the space of L2-sections of the Bloch bundle EBl. The fact that Πε and U ε

are nearly pseudodifferential operators is crucial to get the effective operator as a
pseudodifferential operator since one now can exploit that the product “]” on the
level of symbols corresponds to the composition on the level of operators:

Heff = U εΠεHε
BFΠεU ε∗ = ûπ̂Ĥπ̂û∗ +O(ε∞) = Op(u]π]H]π]u∗︸ ︷︷ ︸

=:h

) +O(ε∞)

= ĥ+O(ε∞).

So the construction directly gives the effective Hamiltonian as a pseudodifferential
operator.
Let us go back to the magnetic case. The key point or better key problem is that
we lose the trivialisability of the Bloch bundle. So we do not get a function ϕ as
before - every global section ϕ of the Bloch bundle must have zeros. The approach
in this work is to take a global non-zero section of the bundle

E ′Bl = {(k, ϕ) ∈ (R2,Hf) : ϕ ∈ P (k)Hf},

which must be trivial because it is a bundle over R2. We construct such a section
ϕ by using the parallel transport with respect to the Berry connection ∇B. The
result is (see Lemma 3.3.2 in the main text)

Lemma. There is a function ϕ ∈ C∞(R2,Hf) so that for all k ∈ R2 we have
ϕ(k) ∈ P (k)Hf , ‖ϕ(k)‖Hf

= 1, and

ϕ(k − γ∗) = e−
iθ
2π
k2γ∗1 τ(γ∗)ϕ(k) for all γ∗ ∈ Γ∗,

where θ is the Chern number of the Bloch bundle.

5



Recall that the Chern number is an integer that is zero if and only if the line
bundle is trivial, see e.g. [BT82].
With this function at hand, we can define a line bundle Eθ that is unitarily equi-
valent to the Bloch bundle by

Eθ := {(k, λ)∼ ∈ R2 × C},

where (k, λ) ∼ (k′, λ′)⇔ k′ = k − γ∗ and λ′ = e
iθ
2π
k2γ∗1λ.

The reference space we aim for is the space of L2-sections of this line bundle, that
is to say the space

Hθ = {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = e

iθ
2π
γ∗1k2ψ(k) ∀γ∗ ∈ Γ∗}.

Of course, Hθ and Π0Hτ are unitarily equivalent.
For the construction of U ε, the first idea is to define the principal symbol u0 as
〈ϕ(k − A(r))| + u⊥0 . But in contrast to the non-magnetic case, this function is
in no suitable symbol class since it does not have bounded derivatives. Thus the
next difference to the non-magnetic case is that we first neglect that we want the
reference space to be the space that is as simple as possible and focus on getting
rid of the ε in the almost invariant subspace. Thereto, we use the function ϕ to
construct a unitary U ε

1 = û + O(ε∞) that maps ΠεHτ to Π0Hτ . The principal
symbol of u is u0(k, r) := |ϕ(k)〉〈ϕ(k−A(r))|+ u⊥0 , which is (with an appropriate
gauge for A or an additional phase) τ -equivariant and hence has bounded deriva-
tives.
The unitary map between the sections of the Bloch bundle and the sections of the
bundle Eθ is given by U θ : Π0Hτ → Hθ defined as 〈ϕ(k)|. So we set

U ε := U θ ◦ U ε
1

as the intertwining unitary. The problem is that the map U θ is not a pseudo-
differential operator. Obviously, the symbol would have to be u(k, r) = 〈ϕ(k)|,
but the problem is that we cannot get any control over the derivatives of this
function. Until now, we get as effective Hamiltonian

Heff = U εΠεHε
BFΠεU ε∗ = U θU ε

1 ΠεHε
BFΠεU ε∗

1 U
θ∗ = U θûπ̂Ĥπ̂û∗U θ∗ +O(ε∞)

= U θOp(u]π]H]π]u∗)U θ∗ +O(ε∞)

= U θĥU θ∗ +O(ε∞).

Hence the procedure from the non-magnetic case to add the unitary map to the
symbol via Weyl product does not work because there is no symbol for U θ. Thus
we need to think of other ways to make it possible to write U θĥU θ∗ as a pseudo-
differential operator.
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This is the next main step in this thesis. We need to find a way to include the
non-trivial geometry of the Bloch bundle into our quantisation procedure. Thereto
note that the connection on the bundle is not the trivial connection ∇k but the
Berry connection∇B

k = P (k)∇k. Our approach here is to define quantisations that,
although they still map k to k for a symbol f(k, r), no longer replace r with the
trivial connection −iε∇k, but with other connections, for example −iε∇B

k . More-
over, those new quantisations need to generate operators that act on sections of
possibly non-trivial bundles. This is necessary since we aim for a pseudodifferential
operator on sections of a bundle with a non-trivial connection. The bundles and
connections we need are

• the bundles E and EBl with the Berry connection ∇B,

• the bundle Eθ with the θ-connection ∇θ = U θ∇BU θ∗, and

• the bundle Eθ with the effective connection ∇eff = (∇k + (0, iθ
2π
k1)T).

Hence the three new Weyl quantisations are

• the Berry quantisation OpB(f) = f(k,−iε∇B
k ) that generates operators on

Hτ respectively Π0Hτ ,

• the θ-quantisation Opθ(f) = f(k,−iε∇θ
k) that generates operators on Hθ,

and

• the effective quantisation Opeff(f) = f(k,−iε(∇k+(0, iθ
2π
k1)T) that generates

operators on Hθ.

Those quantisations are defined by including the respective parallel transport maps
in the integral formulas of the quantisations.
The motivation for the first two quantisations is

U θΠ0r̂j
τΠ0U θ∗ = U θr̂j

BU θ∗ = r̂j
θ.

This means that we first pass from the τ -quantisation to the Berry quantisation.
Then we show how it is possible to “absorb” the unitary map U θ into the Berry-
quantisation passing to the θ-quantisation. This is the main step to get a pseudo-
differential operator on Hθ. After that, we even pass to the effective quantisation
because the connection ∇eff is independent of ϕ and coincides for θ = 0 with the
trivial connection ∇k. This permits us to include respectively compare our results
with the non-magnetic case A0 ≡ 0.
The content of the fourth chapter is to rigorously define these quantisations and
to link them together. This means that we show how we have to alter a symbol f
to a symbol fc so that

f̂
τ

= f̂c

B
+O(ε∞)
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holds. After we have linked the τ - to the Berry quantisation, we can exploit the
unitary equivalence of ∇B and ∇θ to translate an operator U θf̂

B
U θ∗ into an ope-

rator f̂θ
θ
. Following the same ideas as before, the symbol of this operator can

again be corrected so that

(̂fθ)c

eff

= f̂θ
θ

+O(ε∞).

So one can summarise our program to get to the effective Hamiltonian as a pseudo-
differential operator as follows: We started from

Heff = U εΠεĤτΠεU ε∗ = U θΠ0ĥ
τ
U θ∗ = ĥeff

?

and solved this problem by

U θΠ0ĥ
τ
U θ∗ = U θĥc

B
U θ∗ = (̂hc)θ

θ

= ĥeff

eff

(where the equalities are up to O(ε∞)).
Applying this program to our Hamiltonian Hε

BF yields our result (here we do not
state the exact technical conditions - they can be found in Theorem 5.1.1).

Theorem. Let E be a non-degenerate, isolated eigenvalue band. Then there exist

(i) an orthogonal projection Πε ∈ L(Hτ ),

(ii) a unitary map U ε ∈ L(ΠεHτ ,Hθ), and

(iii) a self-adjoint operator ĥeff

eff
∈ L(Hθ)

such that
‖[Hε

BF,Π
ε]‖L(Hτ ) = O(ε∞)

and ∥∥∥(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

= O(ε∞(1 + |t|)).

The effective Hamiltonian is the effective quantisation of the symbol heff ∈
S1
τ≡1(ε,C) which can be computed to any order.

We also compute (in Theorem 5.2.4) the leading orders of the symbol:

Theorem. The principal and subprincipal symbol of the symbol heff = h0 + εh1 +
O(ε2) from the theorem above are

h0(k, r) = E(k − A(r)) + Φ(r)
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and

h1(k, r) = (∇Φ(r)−∇E(k̃)×B(r)) · (iA1(k̃), i(A2(k̃)− iθ
2π
k1))T −B(r) · M(k̃),

where Aj(k) = 〈ϕ(k), ∂jϕ(k)〉Hf
, k̃ = k −A(r), B(r) = ∂1A2 − ∂2A1, andM(k̃) is

the Rammal-Wilkinson term.

We conclude this work with some comments on the connection of our results
with the Hofstadter model.
This thesis is organised as follows: In Chapter 2 we introduce the setting and the
strategy of space-adiabatic perturbation theory and summarise the construction
of the almost invariant subspace. Moreover, we state conditions under which
the subspace coincides with the corresponding spectral subspace. Chapter 3 is
dedicated to the intertwining unitary. The new Weyl quantisations are the content
of Chapter 4. Finally, the effective dynamics of our model are treated in Chapter
5, where we also connect our results with the Hofstadter model.
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Chapter 2

Space-adiabatic perturbation theory

2.1 The model
In this work, we consider a one-particle Schrödinger equation with a periodic
potential, a strong constant magnetic field, and non-periodic perturbations. Our
goal is a rigorous derivation of an effective model called effective Hamiltonian that
captures the main features of the equation. In a crystalline solid, we consider the
problem of conduction electrons moving in the potential created by the atomic
cores, for instance electrons in some metal or crystal. For many questions, it is
a standard approximation in solid state physics to neglect the Coulomb repulsion
between the electrons. This leads us to study one fundamental problem of solid
state physics: We want to understand the behaviour of a single particle under the
influence of a periodic potential. Taking into account the preceding considerations,
it is clear that this includes a grasp of the behaviour of an ideal fermi gas. For a
more detailed introduction we refer the reader to [AM76].
Let us look at this problem more closely. Let Γ0 be the Bravais lattice generated
by the nuclei. This means that we assume the nuclei to be on fixed positions.
Then it is possible to chose a basis {γ1, γ2} of R2 so that

Γ0 = {γ =
2∑
j=1

λjγ
j, where λ ∈ Z2}.

The crystal potential VΓ0 is then periodic with respect to Γ0 which means that
VΓ0 : R2 → R satisfies VΓ0(x + γ) = VΓ0(x) for all γ ∈ Γ0. If there are no other
external forces involved, the one-particle Hamiltonian reads

HBl = −1
2
∆ + VΓ0 (2.1)

and is defined on the Sobolev space D(HBl) = H2(R2) ⊂ L2(R2). To simplify
matters here and in the following, we have chosen physical units so that me =
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~ = c = 1, where me denotes the electron mass, ~ the reduced Planck constant,
and c the speed of light. The purely periodic operator (2.1) can be diagonalised
via Bloch-Floquet transformation. The eigenvalue bands E of the transformed
Hamiltonian are called Bloch bands. However, we want to study the dynamics of
particles in solids under the influence of external non-periodic forces. Laboratory-
generated magnetic fields can produce forces comparable with −∇VΓ0 . Hence, the
associated vector potential A is split up into A = A0 +Aext, where A0 is the vector
potential of a strong constant magnetic field B = dA0. This means that we regard
A0 ∈ Ω1(R2) as a one-form and B = dA0 ∈ Ω2(R2) as its exterior derivative. We
choose the symmetric gauge A0(x) = (A1(x), A2(x)) = B

2
(−x2, x1). Adding A0 to

our Hamiltonian (2.1), the magnetic Bloch Hamiltonian reads

HMB = 1
2
(−i∇x − A0)2 + VΓ0 . (2.2)

We take this as our unperturbed Hamiltonian again defined on a suitable domain
D(HMB) ⊂ L2(R2). Due to the linearity of A0, this domain is different from the
domain D(HBl) of the non-magnetic Bloch Hamiltonian (2.1). The Sobolev space
has to be replaced by a magnetic Sobolev space H2

A0
(R2), see Appendix A.

We do not just want to study the Hamiltonian (2.2), but we also want to take
into account some non-periodic perturbations A and Φ. The potential Aext(x) =
A(εx) is assumed to be slowly varying on the scale of the lattice Γ0. Here ε is a
dimensionless parameter and A is independent of ε. For this weak perturbation we
choose the gauge A(x) = (A1(x), 0). Also the laboratory-generated electrostatic
potentials vary slowly on the lattice scale of Γ0. Thus, we set Φext(x) = Φ(εx),
where again ε is a dimensionless parameter and Φ is independent of ε. After
including all electromagnetic potentials, the full Hamiltonian Hε finally reads

Hε = 1
2
(−i∇x − A0(x)− A(εx))2 + VΓ0(x) + Φ(εx) (2.3)

with domain H2
A0

(R2). Our purpose is a detailed comprehension of the behaviour
of particles governed by the Hamiltonian (2.3) for ε� 1.
The method we want to use is space-adiabatic perturbation theory, see [PST03a,
PST03b, Teu03]. Thereto we must generalise the methods developed in [PST03b]
and [Teu03] to the case of a strong magnetic field with potential A0 6= 0. We
aim for a rigorous derivation of an effective Hamiltonian. Thus we first have to
construct subspaces which are almost invariant under the time evolution generated
by the Hamiltonian (2.3). Restricted to these subspaces, we want to show that the
Hamiltonian is unitarily equivalent to suitable simpler effective operators (up to
an error in powers of ε). The basic idea of this procedure is well known in physics
under the name “Peierls substitution”, see [Pei33].
The main obstruction we have to overcome is that the obtained effective ope-
rators are no longer operating on L2-functions over the torus, but on sections of
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a non-trivial line bundle over the torus (in the case of an isolated non-degenerate
eigenvalue band).
Let us introduce some technical assumptions. The perturbations are assumed
to be smooth and bounded together with all their derivatives which means A ∈
C∞b (R2,R2) and Φ ∈ C∞b (R2,R). The corresponding weak electromagnetic fields
are B(x) = curlA(x) respectively E(x) = −∇Φ(x).
To ensure the self-adjointness of the Hamiltonian (2.3), we need VΓ0 to be rela-
tively (−i∇+A0)2-bounded with relative bound smaller than 1. This is shown in
Appendix A, Proposition A.0.8. These technical assumptions are summarised as

Assumption 1. Assume that A ∈ C∞b (R2,R2), Φ ∈ C∞b (R2,R) and that VΓ0 is
relatively (−i∇+ A0)2-bounded with relative bound smaller than 1.

We will always make this assumption in the following if we do not explicitly
state that we do not.

Remark 2.1.1. Note that if VΓ0 is −∆-bounded with relative bound smaller than
1, this implies (see [AHS78], Theorem 2.4) that it is relatively (−i∇+A0)2-bounded
with relative bound smaller than 1.

Let us take a closer look at the differences of the Hamiltonians (2.1) and (2.2).
While the non-magnetic Hamiltonian (2.1) commutes with the ordinary lattice
translations, this is not the case for the magnetic Hamiltonian (2.2). Yet for the
magnetic Hamiltonian, there is an analogon of the lattice transformations due to
[Zak68] called magnetic translations. Often they are defined as

T̃γψ(x) := e−i〈A0(x),γ〉ψ(x− γ).

An easy calculation shows that for this translation, [HMB, Tγ] = 0 holds for all γ ∈
Γ0. However, unlike the ordinary lattice translations, these magnetic translations
do in general not commute with each other:

T̃γT̃γ̃ψ(y) = ei〈A0(γ),γ̃〉T̃γ+γ̃.

They only commute if

B(−γ2γ̃1 + γ1γ̃2) =: B(γ ∧ γ̃) ∈ 2πZ (2.4)

for all γ, γ̃ ∈ Γ0. To get general commutativity, we have to make the assumption

B(γ1 ∧ γ2) ∈ πQ

because then it is possible to choose a sublattice Γ ⊂ Γ0 so that (2.4) holds for all
γ, γ̃ ∈ Γ. This implies

T̃γT̃γ̃ = T̃γ̃T̃γ = ±T̃γ+γ̃.
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So if we additionally wanted {T̃γ, γ ∈ Γ} to form a group representation, we would
have to demand B(γ ∧ γ̃) ∈ 4πZ for all γ, γ̃ ∈ Γ. To avoid this, we choose a
slightly different definition of the magnetic translations that form a group already
if (2.4) holds for all γ, γ̃ ∈ Γ. For γ = aγ1 + bγ2 ∈ Γ0 with a, b ∈ Z, we set

Tγ := (T̃γ2)b(T̃γ1)a,

which yields

Tγψ(x) := e−iab〈A0(γ1),γ2〉e−i〈A0(x),γ〉ψ(x− γ)
(

= e−iab〈A0(γ1),γ2〉T̃γψ(x)
)

(2.5)

Hence, if (2.4) holds for all γ, γ̃ ∈ Γ, we immediately get for γ = aγ1 + bγ2 and
γ̃ = ãγ1 + b̃γ2

TγTγ̃ = (T̃γ2)b(T̃γ1)a(T̃γ2)b̃(T̃γ1)ã = (T̃γ2)b+b̃(T̃γ1)a+ã = Tγ+γ̃.

Of course, [Tγ, HMB] = 0 still holds for all γ ∈ Γ since we have only altered T̃γ
by a constant factor (for constant γ). We will see why we need {Tγ, γ ∈ Γ}
to form a group representation when we later define the magnetic Bloch-Floquet
transformation.
In the following, let Γ be the lattice generated by {γ1, γ2}, M the fundamental
cell of Γ, and T2 = R2/Γ the corresponding torus. Furthermore, let Γ∗ be the dual
lattice generated by {γ1∗, γ2∗} with γiγj∗ = δij and M∗ the fundamental cell of Γ∗

and hence the first Brillouin zone. In the following, M∗ is always equipped with
the normalised Lebesgue measure dk. Finally T2∗ = R2/Γ∗.
The presence of the magnetic field in the Hamiltonian (2.2) causes a splitting of
the Bloch bands into magnetic sub-bands. To be more precise, if the magnetic flux
per unit cell of the lattice Γ is a rational multiple p

q
of the flux quantum h

e
, which

in our units chosen above equals 2π, the original Bloch band splits into q magnetic
subbands, see [Hof76]. Another difference already indicated is the domains of those
Hamiltonians, which is treated in Appendix A.

2.2 A general overview of space-adiabatic pertur-
bation theory

Since we want to study the operator (2.3) using space-adiabatic perturbation the-
ory, we first give an outline of this theory. For a more detailed introduction we
refer the reader to [PST03a] and [Teu03] respectively [PST03b] and [Teu03] for
the case of the Bloch electron without strong magnetic field, that is to say A0 ≡ 0.
The key ingredient of space-adiabatic perturbation theory is a distinction of some
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degrees of freedom of a physical system named slow respectively fast degrees of
freedom. The theory shows that certain dynamic degrees of freedom are in some
sense subordinate and no longer autonomous. The point is that the fast modes
adjust quickly to the slow modes which in return are ruled by a suitable effective
Hamiltonian Heff . This phenomenon is called adiabatic decoupling.
The prime example for this is the Born-Oppenheimer approximation [BO27].
There, molecules are analysed. Due to the fact that the nuclei have a much larger
mass than the electrons, they move considerably slower than the electrons. So the
separation is to take the fast degrees of freedom as the movement of the electrons
and the slow ones as the movement of the nuclei. Then, the fast modes adapt to
the status of the lowest energy at the given position of the nuclei, while in turn the
slow modes are governed by an effective potential which arises from the electronic
energy band.
The philosophy of space-adiabatic perturbation theory is to use the separation of
scales and some gap in the spectrum to split up the original Hamiltonian into a
direct sum of simpler operators which are more accessible. The main mathemat-
ical tool used are pseudodifferential operators with operator-valued symbols. For
more detailed information about this we refer the reader to the Appendix B and
references therein, which contains all information about pseudodifferential calculus
that we need throughout this work. In that appendix we also settle the notation
as far as pseudodifferential calculus and associated symbol spaces are concerned.
To apply space-adiabatic perturbation theory to an operator Ĥ acting on some
Hilbert space H, three basic ingredients are needed:

(i) The state space H decomposes as

H = Hs ⊗Hf = L2(Rd)⊗Hf
∼= L2(Rd,Hf).

The Hilbert space Hs is called the state space of the slow degrees of freedom
and must be of the form L2(Rd). The space Hf , the state space of the fast
degrees of freedom, may be any separable Hilbert space.

(ii) The Hamiltonian Ĥ which generates the time-evolution of states is given as
Weyl quantisation of a semiclassical symbol

H(z, ε) �
∞∑
j=0

εjHj(z)

in some suitable symbol space Smρ (ε,L(Hf)) with values in the bounded self-
adjoint operators on Hf .

(iii) The principal symbol H0(z) of H(z, ε) has a pointwise isolated part of the
spectrum which means that it fulfils the Gap-condition
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Condition 1. (Gap)γ
For all z ∈ R2d there is a relevant subset σ∗(z) ⊂ σ(z) of the spectrum σ(z)
of H0(z) so that there exist f± ∈ C(R2d,R) with f− ≤ f+ so that

• for all z ∈ R2d the set σ∗(z) is entirely contained in the interval I(z) :=
[f−(z), f+(z)],

• dist(σ(z) \ σ∗(z), I(z)) ≥ Cg〈p〉γ, and
• supz∈R2d |f+(z)− f−(z)| ≤ Cd.

Note that for γ = 0 there is a constant gap.

However, in our special case of the Bloch electron, some modifications are neces-
sary:

(i) The Hilbert space of the slow degrees of freedom will be L2(M∗), where M∗

is the first Brillouin zone.

(ii) We will need to allow for more general symbol classes Sw(R2d,L(D,Hf))
because the operator H0 will be unbounded as an operator on Hf . Thus, we
will have to perceive it as an operator on its domain D, equipped with the
graph norm, to Hf to get a bounded operator.

(iii) In our case, the spectrum of H0 will consist only of eigenvalue bands, where
the unperturbed band is periodic with respect to the lattice Γ∗. Because
of the periodicity, the spectrum will not fulfil an increasing gap condition
but a constant gap condition, which can be written down in a way which is
adapted to the structure of the spectrum in question.

Now we give a quick outline of the strategy. There are three main steps:

(i) The first step is to construct an orthogonal projection Πε ∈ L(H) which is
associated to an isolated part σ∗(z) of the spectrum of H0(z). The accordant
subspace ΠεH of H is called almost invariant subspace because it is approxi-
mately invariant under the time-evolution generated by the Hamiltonian Ĥ.
The usual construction procedure is to first construct a semiclassical symbol
π which Weyl-commutes with the symbol H up to an error of O(ε∞). The
prinicipal symbol π0 of π is just the spectral projection associated to σ∗(z).
Then one takes the quantisation π̂ and slightly modifies it to turn it into a
true projector Πε = π̂ +O(ε∞).

(ii) We are interested in the dynamics inside the almost invariant subspace ΠεH.
But this space is ε-dependent and we do not know how it looks like. More-
over, it is clear that there is no limit for ε → 0. Therefore, the second step
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is to construct a unitary map U ε which maps the subspace ΠεH to a sim-
pler, explicitly given, and ε-independent subspace Href . The choice of this
space and of the unitary is not unique but nevertheless natural and chosen
in order to reflect the physics of the reduced system. As in the first step, the
usual procedure to construct U ε is to first define a symbol u, then to take
its quantisation û, and afterwards modify the quantisation to turn it into a
true unitary U ε = û+O(ε∞).

(iii) The third step is dedicated to the effective dynamics inside the almost invari-
ant subspace. Thereto the effective Hamiltonian is defined by first projecting
it to the subspace ΠεH and then rotating it to the simpler space Href . Thus,
we get

Heff = U εΠεĤΠεU ε∗ = ĥ+O(ε∞)

where h := u]π]H]π]u∗. Although the effective Hamiltonian obtained this
way is still quite abstract, we can exploit that it is given in powers of ε
and compute its leading order terms. It turns out that they provide quite
interesting information about the dynamics inside the subspace.

This is the general strategy of space-adiabatic perturbation theory. Here O(ε∞)
means:

Definition 2.2.1. Let Rε and Sε be two ε-dependent operators on H. One says
that Rε = Sε +O(ε∞) if for every n ∈ N there is a constant Cn such that

‖Rε − Sε‖L(H) ≤ Cnε
n

for all ε ∈ [0, ε0). One says that Rε is O(ε∞)-close to Sε.

The next goal is to show how the above defined Hamiltonian (2.3) can be put
into a form that fits into the space-adiabatic framework with the three ingredients
described above. This will be the content of the next section.

2.3 The magnetic Bloch-Floquet transformation
In this section, we want to show how the Hamiltonian (2.3) can be transformed
into a more convenient form for the space-adiabatic framework. For this purpose
we use the fact that the operator Hε is invariant under magnetic translations with
respect to the lattice Γ. This suggests a split-up of R2 into R2 ∼= Γ×M , where M
is the fundamental cell of Γ, and hence a split-up of

L2(R2) ∼= L2(Γ×M) ∼= l2(Γ)⊗ L2(M).
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This method is a known technique called “Bloch theory” by physicists, see [AM76],
or Floquet theory, see [Kuc93], where we also refer the reader to for general results
about Floquet theory. The transformation we are going to use will be called “Bloch-
Floquet transformation”, although it is sometimes also called “Zak transformation”
due to [Zak68]. So let us introduce the transformation.
Since we aim for a continuous L2-space for the slow degrees of freedom, we basically
do a Fourier transformation on the space l2(Γ) to transform it into L2(M∗). For
ψ ∈ S(R2), this is the Fourier transformation

(F ⊗ 1)ψ(k, y) =
∑
γ∈Γ

eikγψ(y − γ).

The fact that the operator (2.3) is only invariant under the magnetic translations
Tγ and not under ordinary translations reflects in the fact that we take a magnetic
Bloch-Floquet transformation where the ordinary translations are replaced by the
magnetic translations defined by (2.5):

(Fmagn ⊗ 1)ψ(k, y) =
∑
γ∈Γ

eikγTγψ(y).

For technical reasons, we define the magnetic Bloch-Floquet transformation for
functions ψ ∈ S(R2) as

UBFψ(k, y) := e−iky(Fmagn ⊗ 1)ψ(k, y) =
∑
γ∈Γ

e−i(y−γ)kTγψ(y) (2.6)

=
∑
γ∈Γ

e−i(y−γ)ke−iab〈A0(γ1),γ2〉e−i〈A0(y),γ〉ψ(y − γ).

Lemma 2.3.1. For ψ ∈ S(R2) it holds

• (TγUBFψ)(k, y) := e−iab〈A0(γ1),γ2〉e−i〈A0(y),γ〉(UBFψ)(k, y − γ) = (UBFψ)(k, y)
for all γ ∈ Γ and

• (UBFψ)(k − γ∗, y) = eiyγ
∗
(UBFψ)(k, y) for all γ∗ ∈ Γ∗.

Proof.
Let ψ ∈ S(R2) and γ̃ ∈ Γ. Then

Tγ̃UBFψ(k, y) = Tγ̃

(∑
γ∈Γ

e−i(y−γ)kTγψ(y)

)
=
∑
γ∈Γ

e−i(y−γ̃−γ)kTγ̃Tγψ(y)

= UBFψ(k, y),

where in the last equality we used that the set {Tγ, γ ∈ Γ} is a group. The second
claim is straight forward. �

Now we need to define a target space for the magnetic Bloch-Floquet transfor-
mation. Thereto and for later use we need the following definition.
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Definition 2.3.2. Let m ∈ N0. Then

Hf := {ψ ∈ L2
loc(R2) : Tγψ = ψ for all γ ∈ Γ}

is a Hilbert space with inner product

〈f, g〉Hf
:=

∫
M

f(y)g(y)dy

and
Hm
A0

(R2) := {f ∈ Hf : (−i∇− A0)αf ∈ Hf for all |α| ≤ m}

is a Hilbert space with inner product

〈f, g〉HmA0
(R2) :=

∑
|α|≤m

〈(−i∇− A0)αf, (−i∇− A0)αg〉Hf
.

The target space for the magnetic Bloch-Floquet transformation is then defined
as follows:

Definition 2.3.3. Let τ(γ∗) ∈ U(Hf) be given by

τ(γ∗)ψ(y) := eiyγ
∗
ψ(y) for γ∗ ∈ Γ∗ and ψ ∈ Hf .

Then

Hτ := {f ∈ L2
loc(R2

k, (Hf)y) : f(k − γ∗) = τ(γ∗)f(k) for all γ∗ ∈ Γ∗}

equipped with the inner product

〈f, g〉Hτ =

∫
M∗
〈f(k), g(k)〉Hf

dk,

where dk is the normalised Lebesgue measure, is a Hilbert space.

Proposition 2.3.4. UBF can be extended to a unitary map

UBF : L2(R2)→ Hτ .

The inverse map is defined by

(U−1
BFφ)(x) :=

∫
M∗

eikxφ(k, x)dk.
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Proof.
It can be easily checked that UBF is an isometry. Thereto it suffices to consider
functions in the dense subset S(R2). Let ψ ∈ S(R2). Then

‖UBFψ‖2
Hτ = 〈UBFψ,UBFψ〉Hτ

=

∫
M∗

∫
M

∑
γ∈Γ

∑
γ′∈Γ

e−i(γ−γ
′)ke−i〈A0(y),γ′−γ〉ψ(y − γ)ψ(y − γ′)dydk

=
∑
γ∈Γ

∑
γ′∈Γ

∫
M

e−i〈A0(y),γ′−γ〉ψ(y − γ)ψ(y − γ′)
∫
M∗

e−i(γ−γ
′)kdkdy

=
∑
γ∈Γ

∫
M

|ψ(y − γ)|2dy

= ‖ψ‖2
L2(R2)

since
∫
M∗

e−i(γ−γ
′)kdk = δγ,γ′ .

A quick computation shows U−1
BFUBFψ = ψ for all ψ ∈ S(R2):

U−1
BFUBFψ(x)

=

∫
M∗

eikx

(∑
γ∈Γ

e−i(x−γ)ke−iab〈A0(γ1),γ2〉e−i〈A0(x),γ〉ψ(x− γ)

)
dk

=
∑
γ∈Γ

e−iab〈A0(γ1),γ2〉e−i〈A0(x),γ〉ψ(x− γ)

∫
M∗

eikγdk

= ψ(x).

It is also checked easily that U−1
BF extends to an isometry from Hτ to L2(R2) since

for ψ ∈ C∞τ it holds∥∥U−1
BFψ

∥∥2

L2(R2)
=

∫
R2

|
∫
M∗

eikxψ(k, x)dk|2dx

=
∑
γ∈Γ

∫
M

|
∫
M∗

eikxe−ikγψ(k, x− γ)dk|2dx

=
∑
γ∈Γ

∫
M

|
∫
M∗

eikxe−ikγe−iab〈A0(γ1),γ2〉ei〈A0(x),γ〉ψ(k, x)dk|2dx (2.7)

=
∑
γ∈Γ

∫
M

|
∫
M∗

eikxe−ikγψ(k, x)dk|2dx =

∫
M

∑
γ∈Γ

|aγ|2dx

=

∫
M

∫
M∗
|eikxψ(k, x)|2dkdx =

∫
M∗

∫
M

|ψ(k, x)|2dxdk

= ‖ψ‖2
Hτ ,
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where aγ is the Fourier coefficient of the function ei〈·,x〉ψ(·, x)|M∗ ∈ L2(M∗) and,
moreover, in (2.7) we exploited that ψ is in Hτ which yields ψ(k, x − γ) =
T−γψ(k, x − γ) = e−iab〈A0(γ1),γ2〉ei〈A0(x),γ〉ψ(k, x). Thus U−1

BF is injective and hence
UBF is surjective and therefore a unitary. �

Since we want to transform the Hamiltonian (2.3) via magnetic Bloch-Floquet
transformation, we first investigate how the operators Q = “multiplication with
x” and P = −i∇x − A0(x) and the multiplication with the periodic potential VΓ

transform under UBF. We will keep things short.

Proposition 2.3.5. Under the above defined magnetic Bloch-Floquet transforma-
tion, the operators

• Q as multiplication with x on its maximal domain D(Q) = {ψ ∈ L2(R2) :
xjψ ∈ L2(R2)∀j ∈ {1, 2}}

• P := −i∇x − A0(x) with domain H1
A0

(R2)

• VΓ as multiplication with VΓ

transform as

• UBFQU∗BF = i∇τ
k ⊗ 1Hf

with domain Hτ ∩H1
loc(R2,Hf)

• UBFPU∗BF = 1L2(M∗)⊗(−i∇y−A0(y))+k⊗1Hf
with domain Hτ∩L2

loc(R2,H1
A0

)

• UBFVΓU∗BF = 1L2(M∗) ⊗ VΓ.

Proof.
For the proof one just uses the definition of the magnetic Bloch-Floquet transfor-
mation and for the domains also the formula for the inverse of UBF. �

Remark 2.3.6. Note that the domain of i∇τ
k is independent of k because we have

chosen the suitable definition for the magnetic Bloch-Floquet transformation in
(2.6).

The next step is to use this knowledge to write the transformed operator
UBFH

εU∗BF as a pseudodifferential operator. We will start with the transforma-
tion of the unperturbed Hamiltonian (2.2).

Proposition 2.3.7. The Hamiltonian HMB = 1
2
(−i∇x − A0(x))2 + VΓ(x) trans-

forms under magnetic Bloch-Floquet transformation as

H0
BF := UBFHMBU∗BF =

∫ ⊕
M∗

Hper(k)dk,
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where
Hper(k) := 1

2
(−i∇y − A0(y) + k)2 + VΓ(y). (2.8)

For fixed k, the domain of Hper(k) is H2
A0

(R2) and thus independent of k. The
domain of H0

BF is L2
τ (R2,H2

A0
(R2)).

We skip the proof since it directly follows from the above results.
Now we finally transform the full Hamiltonian (2.3).

Theorem 2.3.8. The Hamiltonian (2.3) defined on D(Hε) = H2
A0

(R2) transforms
under magnetic Bloch-Floquet transformation as

Hε
BF = UBFH

εU∗BF = 1
2
(−i∇y − A0(y) + k − A(iε∇τ

k))
2 + VΓ(y) + Φ(iε∇τ

k) (2.9)

with domain D(Hε
BF) = L2

τ (R2,H2
A0

(R2)).

We again skip the proof.
Let us now make the connection with the theory of pseudodifferential operators.
Formally, Hε

BF just looks like the quantisation of the symbol

H0(k, r) = 1
2
(−i∇y − A0(y) + k − A(r))2 + VΓ(y) + Φ(r). (2.10)

To be more precise, this is a symbol in Sw=1+k2

(τ1,τ2) (R4,L(H2
A0
,Hf)) where τ1 =

τ |H2
A0

and τ2 = τ defined on Hf . Thus, its τ -quantisation Ĥ0

τ
: S ′τ1(R2,H2

A0
) →

S ′τ (R2,Hf) can be restricted to L2
τ (R2,H2

A0
(R2)). Hence, recalling that i∇τ

k is just
defined as the restriction of i∇k|H1(R2,Hf)∩Hτ and using spectral calculus, one can
see that Ĥ0

τ
and Hε

BF coincide on L2
τ (R2,H2

A0
(R2)). Thus we have proven

Theorem 2.3.9. Let H0(k, r) = 1
2
(−i∇y − A0(y) + k − A(r))2 + VΓ(y) + Φ(r).

Then under the Assumption (1) it holds

• H0 ∈ Sw=1+k2

(τ1,τ2) (R4,L(H2
A0
,Hf)), where τ1 = τ |H2

A0
and τ2 = τ defined on Hf ,

and

• Ĥ0

τ
|L2
τ (R2,H2

A0
(R2)) = Hε

BF.

2.4 Space-adiabatic perturbation theory in the
(magnetic) Bloch case

So far we have shown how the Hamiltonian (2.3) can be unitarily transformed into
a pseudodifferential operator acting on a Hilbert space which is suited to fit into
the framework of space-adiabatic perturbation theory.
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Let us now go back to showing how the three ingredients for applying space-
adiabatic perturbation theory are satisfied in the magnetic Bloch case. The results
of the previous section provide a distinction of slow and fast degrees of freedom and
also show how the Hamiltonian can be written as a pseudodifferential operator. So
two of the ingredients for applying space-adiabatic perturbation theory are given
by

H = Hτ
∼= L2(M∗)⊗Hf

and
Hε

BF = Ĥ0(k, r)
τ

with H0 ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)).

The fact that the space Hs of the slow degrees of freedom is not L2(R2) any more
and the differences in the symbol spaces are solved by using the τ -quantisation
from Appendix B. Let us take a closer look at the spectrum of the symbol (2.10).
First, we analyse the spectrum of the unperturbed periodic operator (2.8) defined
on H2

A0
(R2). As in the case A0 ≡ 0, one can show that Hper(k) has a compact

resolvent for every k ∈ M∗ and hence has discret spectrum with eigenvalues of
finite multiplicity that accumulate at infinity. So let

E1(k) ≤ E2(k) ≤ ...

be the eigenvalue bands {En(k), n ∈ N} repeated according to their multiplicity
and let

{ϕn(k), n ∈ N} ⊂ H2
A0

be the corresponding eigenfunctions which thus form an orthonormal basis of Hf .
In the following, En will be called the nth band function or just the nth band. Note
that in the case of eigenvalue crossings they do not have to be smooth functions.
However, this will not bother us in the following since we are going to work with
an isolated non-degenerate band E(k), where the meaning of “isolated” will be
specified below. Note also that because of the τ -equivariance of Hper(k), the band
functions En(k) are periodic with respect to Γ∗. Hence we will not get an increasing
gap condition but some constant gap condition. Using this knowledge about the
spectrum of Hper(k), we can define a suitable gap condition as follows:

Definition 2.4.1. A family of bands {En(k)}n∈I with I = [I−, I+] ∩ N is called
isolated respectively satisfies the gap condition if

inf
k∈M∗

dist (∪n∈I{En(k)},∪m/∈I{Em(k)}) =: Cg > 0.

Remark 2.4.2. Often not the function En(k) itself is called Bloch band but the
set

En := ∪k∈M∗En(k).
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In this setting, a band is called isolated if En ∩ En±1 = ∅. Of course, this is a
stronger request than our gap condition above. Since for our purposes we only
need the weaker condition given in Definition 2.4.1, we stick to that terminology
of isolated Bloch bands.

The connection with the perturbed Hamiltonian is H0(k, r) = Hper(k−A(r))+
Φ(r). So in our magnetic Bloch case, the three ingredients of space-adiabatic
perturbation theory are fulfilled by

• the Hilbert space H = Hτ
∼= L2(M∗)⊗Hf ,

• the operator Hε
BF = Ĥ0(k, r)

τ

, where H0 ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)), and

• we assume that E(k) is an isolated, non-degenerate eigenvalue of Hper(k).

Now we are in position to apply space-adiabatic perturbation theory to our Hamil-
tonian Hε

BF.
The non-magnetic case, where Hε does not include the potential of a strong con-
stant magnetic field A0, is done in Chapter 5 of [Teu03] respectively in [PST03b].
Our aim is to generalise the methods used there to the magnetic Bloch case A0 6= 0.
Let us now go through the three main steps of space-adiabatic perturbation theory
and illustrate where we can follow the line of the non-magnetic case and where we
cannot and why. We also sketch our further proceeding and point out where we
take care of which step.
For the construction of the almost invariant subspace, we can follow the line of
the non-magnetic case with slight technical modifications. The construction of Πε

was already done in [Sti11], but for the sake of completeness we will give a quick
overview of the construction in the next section.
In contrast, the construction of the intertwining unitary U ε fails. The main in-
gredient in the non-magnetic case is the trivialisability of a vector bundle called
Bloch bundle. For A0 ≡ 0 and dimP (k) = m, it is shown in [Pan07], that the
corresponding Bloch bundle EBl is trivial if m = 1 or m ∈ N and d ≤ 3. The key
ingredient in [Pan07] is the time-reversal symmetry of the Hamiltonian HBl. How-
ever, the inclusion of the strong constant magnetic field breaks the time-reversal
symmetry and thus in the magnetic case, the results of [Pan07] do not hold. The
fact that the Bloch bundle is not trivial in the case of magnetic Bloch bands is
also studied elaborately in papers of Dubrovin and Novikov, see [DN80a], [DN80b]
and [Nov81].
So our main aim is to define a reference Hilbert space Href and construct the
unitary map U ε which maps ΠεHτ to Href as well as the derivation of an effec-
tive Hamiltonian acting on Href which is given as a pseudodifferential operator.
The construction of the intertwining unitary U ε will be the content of Chapter
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3. The main difference in the construction of U ε is, as already indicated, the
non-trivialisability of the Bloch bundle. Thus we will use local trivialisations to
at least map the space ΠεHτ to an ε-independent space denoted by Π0Hτ . This
can be done using the pseudodifferential methods suggested above. Afterwards,
the space Π0Hτ has to be unitarily mapped to a simpler space Href since we want
the simplest space we can get for our reference space. The difficulty is that this
map cannot be defined as a pseudodifferential operator. So these ideas only give
a definition of U ε as the combination of the two described unitaries, but do not
immediately yield the symbol for the effective Hamiltionian.
This is the motivation for Chapter 4, where we show how we have to include
the non-trivial geometry of the Bloch bundle into our quantisation procedures.
Thereto we develop three new Weyl quantisations which we need to finally write
the effective Hamiltonian Heff = U εΠεĤ

τ
ΠεU ε∗ as a pseudodifferential operator.

The point is that without a definition of U ε as a pseudodifferential operator, we do
not get the symbol of the effective operator by just Weyl-multiplying the symbols
of Ĥ, Πε, and U ε. Therefore, we are going to introduce pseudodifferential calculi
for sections of non-trivial bundles. Those calculi will also be linked together in
some way so that it will be possible to include the unitary map from Chapter 3 in
the quantisation respectively the symbols.
In Chapter 5, we will use the results of the aforegoing chapters to finally derive
the effective Hamiltonian as a pseudodifferential operator. Moreover, we will as
well compute the principal and subprincipal symbol of it.
The definitions of the three new pseudodifferential calculi are new as well as the
resulting effective Hamiltonian. Also the definition of the reference Hilbert space
and the unitary map U ε are new.
Let us give a quick overview of existing results about the Bloch electron case. The
case without a strong magnetic field, that is to say A0 ≡ 0, is done in [Teu03] and
[PST03b] and it is slightly generalised in [DL11] to the case that not the potential
A of the weak perturbation has to be in C∞b (Rd,Rd) but only the magnetic field
B. This is done by using a magnetic Weyl calculus. In [DP10] the authors derive
an effective model for the case A0 ≡ 0 and A(x) = B

2
(−x2, x1)T, where the modifi-

cation of [Teu03] and [PST03b] is mainly just the use of magnetic Sobolev spaces.
In the papers mentioned so far, the authors always derive an effective Hamiltonian
whose leading order is given by the Peierls Substitution. All these works share
that they have the trivialisability of the Bloch bundle.
For the case A0 6= 0 there is no corresponding rigorous derivation of an effective
model for Hε in the literature. But in [Sti11] the author establishes a new method
to derive semiclassical results for this case. More precisely, this work contains a
rigorous justification of the equations proposed by Niu at al. in [SN99, SNSN05].
In [Sti11], the authors do not need the trivialisability of the Bloch bundle any
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more because they just construct invariant subspaces as usual but then, instead
of constructing an intertwining unitary U ε and an effective Hamiltonian, they de-
rive their semiclassical result with a different method, which can also be found in
[ST11a] and for the Bloch case in [ST11b]. So it is not possible to derive effective
Hamiltonians with their methods.
Let us also mention that in [DGR04] the authors claim to have already solved the
problem. But they use the assumption that the Bloch bundle is trivial and hence
their results do not hold in general. Moreover, because of the assumption that the
Bloch bundle is trivial, the results of [DGR04] could have also been achieved using
the methods of [Teu03] and [PST03b]. In fact, the non-trivialisability of the Bloch
bundle is the main obstruction one has to overcome in the magnetic Bloch case
in contrast to the non-magnetic case. All in all, the result of the paper coincides
with our result for the (trivial) case θ = 0, but in general it holds θ 6= 0 - the case
which is excluded in the [DGR04].
Now we quickly motivate why we expect a Peierls Substitution type operator
for the effective Hamiltonian on an almost invariant subspace. Let E(k) be a
non-degenerate isolated Bloch band with associated projection P (k). Then for
ψ ∈ U∗BFP (k)UBFL

2(R2) we get from Proposition 2.3.5(ii) that

HMBψ(x) = U∗BFHper(k)UBFψ(x) = U∗BFE(k)UBFψ(x)

= E(−i∇x − A0(x))ψ(x).

Thus the wave functions from the band subspace associated to E propagate with
dispersion relation E(pmagn) where pmagn is the magnetic momentum. However,
when we include non-periodic potentials A and Φ, the subspace PHτ is no longer
invariant since the perturbations A and Φ cause band transitions. But if we assume
them to be slowly varying as we indeed do, those transitions will be small and we
can still expect approximately invariant subspaces which are associated to the
magnetic Bloch band E. Hence we expect the dynamics inside an almost invariant
subspace to be given through a Peierls substitution type Hamiltonian.
We conclude this section with an outlook on how the effective Hamiltonian will
look like compared to the non-magnetic case A0 ≡ 0. For the sake of clarity let
Γ = Z2. In the non-magnetic case we know from [Teu03, PST03b] that

ĥeff

τ
= E(k − A(iε∇k)) + Φ(iε∇k) +O(ε),

where
ĥeff

τ
operates on L2(T2∗)

with T2∗ = R2/(2πZ)2. In our more general, magnetic case we will get the same
symbol for the leading order of the effective Hamiltonian but the fact that it no
longer operates on L2-functions on the torus but on L2-sections of a non-trivial
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line bundle reflects both in the fact that we have to take a different quantisation
procedure as well as a different Hilbert space which are both better adjusted to
the non-trivial geometry of the Bloch bundle. So our effective Hamiltonian will
read

ĥeff

eff
= E(k − A(iε∇eff

k )) + Φ(iε∇eff
k ) +O(ε),

where
ĥeff

eff
operates on Hθ

with
∇eff
k = ∇k + (0, iθ

2π
k1)T.

Here θ is supposed to be the Chern number of the Bloch bundle and thus an in
general non-zero integer. Note that for the case A0 ≡ 0, we get exactly the result
of [Teu03, PST03b] since then the Bloch bundle is trivial which is equivalent to
the condition θ = 0, the vanishing of the Chern number, see for example [BT82].
We will see later that Hθ=0

∼= L2(T2∗).

2.5 The almost invariant subspace
This section is dedicated to the construction of the almost invariant subspace
ΠεHτ . This concept goes back to [Nen02] and a similar construction can also be
found in [NeSo04] and [MaSo02]. We, however, will follow the lines of [PST03a,
PST03b, Teu03]. The goal is to construct a subspace of the statespace Hτ which
is approximately invariant under the time-evolution of the Hamiltonian Ĥ

τ
. After

that, we conclude this section with a new result. We state conditions under that
the constructed subspace can be taken as the spectral subspace associated to the
family of bands in question.
The construction is first done on the level of symbols. We start with the spec-
tral projection PI(k) belonging to the isolated band family as principal symbol.
Afterwards, one takes the quantisation and then turns that operator into a true
projector. We will shortly sketch the way this is done in our case. A detailed
description of the whole construction can be found in [PST03b, Teu03], since the
methods there carry over to the magnetic case without difficulties, as it is done in
[Sti11].
Note that if we take PI(k) as the spectral projection associated to an isolated
band familiy {En(k)}n∈I , we get a smooth function PI because of the gap condi-
tion. Moreover, the τ -equivariance of Hper(k) implies the τ -equivariance of PI(k).
We present the results for semiclassical symbols H ∈ Sw=1+k2

τ (ε,L(H2
A0
,Hf)) with

principal symbol H0.
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Lemma 2.5.1. Let {En}n∈I be an isolated family of bands according to Defintion
2.4.1 and PI the associated spectral projection. Then there exists a unique formal
symbol

π(k, r) =
∞∑
j=0

εjπj(k, r) ∈M1
τ (L(Hf)) ∩Mw=1+k2

τ (L(Hf ,H2
A0

(R2)))

with principal symbol π0(k, r) = PI(k − A(r)) such that

• π]π = π,

• π∗ = π, and

• [π,H]] = 0.

Theorem 2.5.2. Let the assumptions of Lemma 2.5.1 be satisfied. Then there
exists an orthogonal projection Πε ∈ L(Hτ ) such that

[Hε
BF,Π

ε] = O(ε∞)

and
Πε = π̂τ +O(ε∞)

with π ∈ S1
τ (ε,L(Hf)) with principal symbol π0(k, r) = PI(k − A(r)).

Corollary 2.5.3. It holds

[e−iH
ε
BFs,Πε] = O(ε∞|s|).

For the proofs, we refer the reader to the beforehand mentioned sources [Teu03,
PST03b, Sti11].
Note that, although the obtained almost invariant subspaces ΠεHτ are associated
to some isolated family of bands {En}n∈I of the spectrum of the principal symbol
H0 of H, they are in general not spectral. This is due to the fact that, although
the family of bands is isolated from the other bands, the image of it may overlap
with the image of other bands. Yet the gap condition can be sharpened, as already
indicated in Remark (2.4.2), so that the projection Πε can be taken as the spectral
projection P ε of Hε

BF associated to the gap corresponding to the family of bands.
So in this case, the effective Hamiltonian P εHε

BFP
ε has exactly the same spectral

properties as Hε
BF on the spectral subspace P εHτ . Let us formulate this more

precisely.
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Proposition 2.5.4. Let the assumptions of Lemma 2.5.1 be satisfied so that even

dist(∪n∈I ∪k∈M∗ En(k),∪n/∈I ∪k∈M∗ En(k)) := dg > 0.

Let ‖φ‖∞ < 1
2
dg and moreover P ε be the spectral projection associated to the subset

σ(Hε
BF)∩Bdg

2

(∪n∈I ∪k∈M∗ En(k)) of the spectrum of Hε
BF. Then for the projection

constructed with respect to Lemma 2.5.1 it holds

π̂ = P ε +O(ε∞).

Proof.
To prove the above lemma, one has to look at the construction of the symbol π
in Lemma 2.5.1. There, one starts constructing a local Moyal resolvent of H. We
adopt the notation from the proof of Lemma 5.17 in [Teu03]. Under the above
conditions, for any z0 = (k0, r0) ∈ R4, the circle Λ(z0) can be chosen as the same
circle Λ that encloses the set ∪n∈I ∪k∈M∗ En(k) in a way that the circular line has
the distance greater or equal than 1

2
dg to the set ∪n∈I ∪k∈M∗ En(k) and the area of

the circle has the distance greater or equal than 1
2
dg to the set ∪n/∈I ∪k∈M∗ En(k).

This circle Λ fulfils

dist(Λ, σ(H0(k, r))) ≥ 1
2
dg − ‖φ‖∞ > 0 for all (k, r) ∈ R4

and
radius(Λ) ≤ Cr. (2.11)

Now we show Λ ⊂ ρ(Hε
BF). To see this let ζ ∈ Λ. Then one can construct the

Moyal resolvent R(ζ) and it holds

(Ĥ
τ
− ζ)R̂(ζ)

τ

= idHτ + U (2.12)

R̂(ζ)
τ

(Ĥ
τ
− ζ) = idHτ + V

with U, V = O(ε∞). Hence one can use the Neumann series of −U to define the
operator S := R̂

τ
(id + U)−1. It is easy to see that S is the continuous inverse of

Ĥ
τ
− ζ and hence ζ must be in the resolvent set of Ĥ

τ
= Hε

BF.
Moreover, for every ζ ∈ Λ the quantisation of R(ζ) is O(ε∞)-close to the resolvent
T (ζ) of Hε

BF since (2.12) implies (multiplying with T (ζ) from the left)

R̂(ζ)
τ

= T (ζ) +O(ε∞). (2.13)
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Then it holds for any n ∈ N (again adopting the notation from [Teu03]) that

Πε = π̂(n)
τ

+O(εn+1) = Opτ
(

i
2π

∫
Λ

R(n)(ζ, k, r)dζ

)
+O(εn+1) (2.14)

= i
2π

∫
Λ

Opτ (R(n)(ζ, k, r))(−T (ζ) + T (ζ))dζ +O(εn+1) (2.15)

= i
2π

∫
Λ

T (ζ)dζ +O(εn+1) (2.16)

= P ε +O(εn+1).

Here equality (2.14) follows by construction and equation (2.16) follows using (2.13)
and (2.11). For equation (2.15), note that for T ∈ S ′τ and ϕ ∈ S(R2,Hf) it holds

Opτ
(

i
2π

∫
Λ

R(n)(ζ, k, r)dζ

)
(T )(ϕ)

= T (k 7→ Opτ
(
−i
2π

∫
Λ

R(n)∗(ζ, k, r)dζ

)
ϕ(k))

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε −i
2π

∫
Λ

R(n)∗(ζ, k+y
2
, r)dζϕ(y)dydr)

= T (k 7→ −i
2π

∫
Λ

1
(2πε)2

∫
R4

e
i(k−y)r

ε R(n)∗(ζ, k+y
2
, r)ϕ(y)dydrdζ) (2.17)

= T (k 7→ −i
2π

∫
Λ

Opτ (R(n)∗(ζ))dζϕ(k))

= T (k 7→ −i
2π

∫
Λ

Opτ (R(n)(ζ))∗dζϕ(k)) (2.18)

= i
2π

∫
Λ

Opτ (R(n)(ζ))dζ(T )(ϕ).

For equation (2.17) we again used (2.11), while equation (2.18) follows by using
Proposition B.3.8, R ∈ S1

τ (ε), and Proposition B.3.6. �
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Chapter 3

The intertwining unitary

3.1 The general construction of the intertwining
unitary

In the previous chapter we showed how the almost invariant subspace ΠεHτ associ-
ated to a family of bands {En}n∈I is constructed. Hence, so far we have a subspace
which decouples from its complement up to a small error in ε. The question is how
to describe the dynamics inside this subspace. As already indicated, the problem
is that the subspace ΠεHτ is ε-dependent and in general not even a limit ε → 0
exists. Hence the space is not easily accessible at all. One way to deal with this
complicacy is to find an explicit space Href which is ε-independent and unitarily
equivalent to ΠεHτ . This is the method we want to use to get into the dynamics
inside the decoupled subspace.
We will define the unitary map to the reference space in two steps. The first step is
to construct an almost unitary pseudodifferential operator which diagonalises the
pseudodifferential operator Opτ (π]H]π). This approach has a long tradition, see
[Nir73] and references therein, and has been used in different settings, see for ex-
ample [Tay75, HeSj90]. The successive diagonalisation also appears in the physics
literature as for example in [Bl62a], [Bl62b] and [LiWe93].
Before we present our construction, we want to give a quick outline how this is
done in general and in [Teu03, PST03b] in the case A0 ≡ 0. Afterwards, we will
point out why and where this construction fails in our case. Recall that the main
difference is the non-trivialisability of the Bloch bundle.
In the general case, one first fixes an adequate reference space. The strategy is the
following: The smoothness of the prinicipal symbol H0(z) of the Hamiltonian and
the gap condition imply the smoothness of the spectral projection P (z) = π0(z).
This means that the subspaces π0(z)Hf are all of the same dimension and hence
isomorphic to some subspace Kf ⊂ Hf which does not depend on z; for example,
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one could take Kf = π0(0)Hf . Let πr be the projection in Hf onto Kf . With our
above choice we get πr = π0(0). Then a projection Πr = π̂r = 1⊗πr ∈ L(H) can be
defined since πr is in S0

ρ(L(Hf)) and Href is chosen as Href = ΠrH. The goal is to
unitarily map ΠεH to Href . To do this, one needs a symbol u0(z) which pointwise
intertwines π0(z) and πr, which means

u0(z)π0(z)u0(z)∗ = πr.

The existence of u0(z) and its smoothness follow from the trivialisability of the
smooth vector bundle

E = {(z, ψ) ∈ (R2d,Hf) : ψ ∈ π0(z)Hf}

because then the associated bundle of the orthonormal frames admits a global
section which in turn implies the existence of u0(z). For example in the special
case ranP (z) = 1, E is a trivial line bundle and thus admits a global section ϕ
without zeros and ‖ϕ(z)‖Hf

= 1 for all z ∈ R2d. Then ũ0(z) := |ϕ(0)〉〈ϕ(z)| can
be extended to a map u0(z) ∈ U(Hf). Note that u0 is not unique. The problem is
that, although from this construction we get the existence and smoothness of u0,
it cannot be proven that it is in some appropriate symbol class Smρ (L(Hf)) since
we do not get any information about boundedness of its derivatives. Hence in the
general setting, one has to make the assumption that u0 ∈ S0

ρ(L(Hf)). Normally
in physical examples for which intertwining unitaries have been constructed in
the framework of space-adiabatic perturbation theory so far, like for example the
Bloch electron in the non-magnetic case, u0 can be chosen conveniently so that
the boundary conditions for it and its derivatives are fulfilled. We emphasise that
this will not be the case in the magnetic Bloch case and one of our goals is to show
how an intertwining unitary can be constructed nevertheless.
After having defined u0(z), one has to extend it to a formal symbol u(z) =
u0(z) + O(ε) which satisfies u]u∗ = 1 = u∗]u and u]π]u∗ = πr. Then one takes
a resummation of it whose quantisation û has to be modified to be turned into a
true unitary U ε that exactly intertwines Πr and Πε.

3.2 The construction of the intertwining unitary in
the non-magnetic Bloch case

In the case of the Bloch electron without strong magnetic field the just described
strategy can be followed with some small modifications. To be as much com-
prehensible as possible we will stick to the case of an isolated Bloch band E(k)
which is non-degenerate. One can define πr as πr = π0(0). But πr is in the sym-
bol class S1

τ≡1(L(Hf)) and not in S1
τ (L(Hf)). So the projection Πr = π̂r

τ≡1 =
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1 ⊗ πr is in L(Hτ≡1) and not in Hτ and hence the reference space is chosen
to be ΠrHτ≡1

∼= L2(T2∗). However, it is not hard to solve this problem. One
just needs to find a symbol u0(k, r) which is right-τ -equivariant, that is to say
u0(k − γ∗, r) = u0(k, r)τ(γ∗)−1 for all γ∗ ∈ Γ∗. So again one aims for a function
ϕ 6= 0 which fulfils ϕ(k) ∈ P (k)Hf . To get the right-τ -equivariance, additionally
we need ϕ(k − γ∗) = τ(γ∗)ϕ(k). This is were the Bloch bundle

EBl = {(k, ϕ) ∈ (R2,Hf)∼ : ϕ ∈ P (k)Hf}, (3.1)

where (k, ϕ) ∼ (k′, ϕ′) :⇔ k′ = k − γ∗ and ϕ′ = τ(γ∗)ϕ,

comes into play. The point is that the existence of a τ -equivariant function ϕ
without zeros is equivalent to the trivialisability of the Bloch bundle. It is shown
in [Pan07] that this is the case when A0 ≡ 0. So in this case, one sets ũ0(k, r) :=
|ϕ(0)〉〈ϕ(k − A(r))| and gets a symbol which pointwise intertwines π0(k, r) and
πr. Moreover, u0(k, r) is bounded in the Hf-norm together with all its derivatives
because of the right τ -equivariance, which implies u0(k, r) ∈ S1

(τ,τ≡1)(L(Hf)). Then
this symbol is extended as in the general case to a symbol u ∈ S1

(τ,τ≡1)(ε,L(Hf))

and then modified to a true unitary U ε ∈ L(Hτ ,Hτ≡1) so that U εΠεU ε∗ = Πr.

3.3 The construction of the intertwining unitary in
the magnetic Bloch case

Now let us return to our general case A0 6= 0 for the Bloch electron. Let moreover
from now on E be a non-degenerate isolated eigenvalue band. The above described
approach does not work anymore since the Bloch bundle is no longer trivial. So if
we defined πr = π0(0), Kf = π0(0)Hf , and Πr = π̂r

τ as above, we would again need
a function ϕ 6= 0 which is τ -equivariant and forms an orthonormal basis of ranP (k).
But if we have a function ϕ which is τ -equivariant it must have zeros and otherwise
if we have a function ϕ which forms for every k an orthonormal basis of ranP (k)
it cannot be τ -equivariant, because in either case it would be a contradiction of
the non-triviality of the line bundle EBl. So the best we can look for is a function
ϕ with norm ‖ϕ(k)‖Hf

= 1 and ϕ(k) ∈ P (k)Hf , which then must have some sort
of twisted periodic boundary conditions like ϕ(k − γ∗) = eig(k,γ

∗)τ(γ∗)ϕ(k), where
g is a smooth, real function. Our strategy will be to construct such a function
and analyse explicitly its twisted periodic boundary conditions. The obtained
function ϕ will not have bounded derivatives. This is because the Bloch bundle
now has a curvature. So we cannot define a symbol ũ0 = |ϕ(0)〉〈ϕ(k − A(r))| as
in the non-magnetic case since we cannot control its derivatives in any way. To
deal with this, we first focus on getting rid of the ε-dependence of the decoupled
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subspace ΠεHτ and neglect that we want to map ΠεHτ to a subspace Href which
is as simple as possible. Thereto we take Kf := π0(k)Hf and thus πr := π0(k)
is no longer independent of k. But at least it does not depend on r, which after
all is the reason for the appearance of the ε in the quantisation procedure (k 7→
k and r 7→ iε∇k). Then πr(k) is in the suitable symbol class S1

τ (L(Hf)) and
thus Πr = π̂r

τ = 1 ⊗ π0(k) := Π0 is an operator in L(Hτ ) whose range Π0Hτ is
independent of ε. Then the symbol ũ0, which pointwise intertwines π0(k, r) and
πr(k), is basically given by |ϕ(k)〉〈ϕ(k − A(r))|. With an appropriate gauge for
A, which is adapted to the definition of ϕ, this is a τ -equivariant function. So we
can define u0(k, r) ∈ S1

τ (L(Hf)) and proceed as usual, that is to say that one can
define a semiclassical symbol u ∈ S1

τ (ε,L(Hf)) with principal symbol u0 and then
modify its quantisation ûτ = U ε

1 +O(ε∞) to turn ûτ into a true unitary satisfying
U ε

1 ΠεU ε
1 = Π0.

Using the function ϕ, we can write down explicitly how the space Π0Hτ looks like:

Π0Hτ = {f ∈ Hτ : f(k) ∈ P (k)Hf ∀k}
= {f(k) = ψ(k)ϕ(k) with ψ ∈ L2

loc(R2) and ψ(k − γ∗) = e−ig(k,γ
∗)ψ(k)}

=: {f ∈ Hτ : f(k) = ψ(k)ϕ(k) with ψ ∈ Href}.

So there is our reference space Href which will be named Hθ as it will become clear
after the construction and analysis of ϕ. Here we just give the hint that θ will be
the Chern number of the Bloch bundle and thus in Z(\{0}). It is also clear how to
unitarily map Π0Hτ to Href ; this is just the map 〈ϕ(k)|. Now we can combine this
map with U ε

1 to get the required unitary map from ΠεHτ to Href . The problem
is that the map 〈ϕ(k)| cannot be written as a pseudodifferential operator. This
problem will be treated in Chapter 4.
So now we start the explicit construction of the intertwining unitary U ε. Before
we start with the construction of the function ϕ, we need the following Lemma:

Lemma 3.3.1. Let

E ′Bl := {(k, ϕ) ∈ R2 ×Hf : ϕ ∈ P (k)Hf}

and let ∇B = P (k)∇ be the connection on the bundle. For arbitrary x, y ∈ R2

let tB(x, y) be the parallel transport with respect to the Berry connection along the
straight line from y to x. Then

tB(x− γ∗, y − γ∗) = τ(γ∗)tB(x, y)τ(γ∗)−1. (3.2)

Proof.
Let x, y ∈ R2, γ∗ ∈ Γ∗, and α(s) = y + s(x − y). Then, for any hy ∈ P (y)Hf , it
must hold

∇B
α̇t

B(α(s), y)hy = 0. (3.3)
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This determines the map tB uniquely. Thus to verify (3.2), it suffices to show

∇B
˙̃α
τ(γ∗)tB(α̃(s) + γ∗, y)τ(γ∗)−1hy−γ∗ = 0,

where α̃(s) = y − γ∗ + s(x − y) and hy−γ∗ ∈ P (y − γ∗)Hf . Thereto note that
α̃(s) = α(s)− γ∗ and ˙̃α = α̇. Hence

∇B
˙̃α
τ(γ∗)tB(α̃(s) + γ∗, y)τ(γ∗)−1hy−γ∗

= P (α(s)− γ∗)∇α̇τ(γ∗)tB(α(s), y)τ(γ∗)−1hy−γ∗

= τ(γ∗)P (α(s))τ(γ∗)−1∇α̇τ(γ∗)tB(α(s), y)τ(γ∗)−1hy−γ∗

= τ(γ∗)P (α(s))∇α̇t
B(α(s), y) τ(γ∗)−1hy−γ∗︸ ︷︷ ︸

∈P (y)Hf

= 0

because of (3.3). �
The content of the following lemma is the construction of the function ϕ.

Shortly speaking, we first construct a function using the parallel transport with
respect to the induced connection on the Bloch bundle, the so-called Berry con-
nection, and then analyse its “quasi-periodicity“. From now on, we will restrict
ourselves to the case Γ = Z2, which implies Γ∗ = (2πZ)2, to keep everything as
clear as possible. Nevertheless, our results can be generalised easily to an arbitrary
Bravais lattice Γ. We will give the general results at the end of each section and
comment shortly on the changes in the proofs.

Lemma 3.3.2. There is a function ϕ ∈ C∞(R2,Hf) so that for all k ∈ R2 we
have ϕ(k) ∈ P (k)Hf , ‖ϕ(k)‖Hf

= 1, and

ϕ(k − γ∗) = e−
iθ
2π
k2γ∗1 τ(γ∗)ϕ(k) for all γ∗ ∈ Γ∗, (3.4)

where θ is the Chern number of the Bloch bundle (3.1).

Proof.
First let us mention that if the Bloch bundle (3.1) was trivial, the statement of the
lemma would follow directly. But the point is that it holds also in the non-trivial
case. The idea is to consider the bundle

E ′Bl := {(k, ϕ) ∈ R2 ×Hf : ϕ ∈ P (k)Hf}.

This is a line bundle with base space R2 and thus trivial. This is the difference
from the Bloch bundle (3.1). Nevertheless, the Berry connection ∇B = P (k)∇ is
still a connection on this bundle. Now we construct a trivialisation ϕ̃ of E ′Bl by
using the parallel transport with respect to the Berry connection and then analyse
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the relation between ϕ̃(k − γ∗) and ϕ̃(k) for γ∗ ∈ Γ∗.
For arbitrary x, y ∈ R2 let tB(x, y) be the parallel transport with respect to the
Berry connection along the straight line from y to x. Then the τ -equivariance of
P implies, as we have seen in Lemma 3.3.1,

tB(x− γ∗, y − γ∗) = τ(γ∗)tB(x, y)τ(γ∗)−1

for all γ∗ ∈ Γ∗. Now we define the function ϕ̃. Let h0 be an arbitrary element in
P (0)Hf with ‖h0‖Hf

= 1 and fix

ϕ̃(0) := h0.

Now we set
ϕ̃(0, k2) := tB((0, k2), (0, 0))h0

and
ϕ̃(k1, k2) := tB((k1, k2), (0, k2))ϕ̃(0, k2).

By construction, ϕ̃ is a smooth function that fulfils ϕ̃(k) ∈ P (k)Hf and ‖ϕ̃(k)‖Hf
=

1 for all k ∈ R2.
The next step is to analyse the relation of ϕ̃(k − γ∗) and ϕ̃(k) for k ∈ R2 and
γ∗ ∈ Γ∗. From the τ -equivariance of P (k) and the fact that ϕ(k) spans P (k)Hf

for every k ∈ R2, we get

ϕ̃(k − γ∗) = τ(γ∗)P (k)τ−1(γ∗)ϕ̃(k − γ∗)
= τ(γ∗)〈ϕ̃(k), τ−1(γ∗)ϕ̃(k − γ∗)〉Hf

ϕ̃(k)

=: α̃(k, γ∗)τ(γ∗)ϕ̃(k). (3.5)

Thus we have to identify α̃(k, γ∗). It is already clear that α̃ must have absolut
value 1 since τ is a unitary and ‖ϕ̃(k)‖Hf

= 1 for all k ∈ R2.
As we want to map the space Π0Hτ to a suitable subspace of L2

loc(R2,C), we regard
the following: Let ψ be a function in L2

loc(R2). Then, using (3.5), we get

ψ(k)ϕ̃(k) ∈ Hτ iff ψ(k−γ∗)ϕ̃(k−γ∗) = ψ(k)τ(γ∗)ϕ̃(k) = ψ(k)α̃(k, γ∗)ϕ̃(k−γ∗).

This is equivalent to the condition

ψ(k − γ∗) = α̃(k, γ∗)ψ(k), (3.6)

where
α̃(k, γ∗) = 〈ϕ̃(k − γ∗), τ(γ∗)ϕ̃(k)〉Hf

.

Now let H̃θ := {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = α̃(k, γ∗)ψ(k)} and let Ũ : Π0Hτ → H̃θ

be the map defined by f 7→ 〈ϕ̃(k), f(k)〉Hf
. Then Ũ is a unitary map between the

Hilbert spaces Π0Hτ and H̃θ. For j ∈ {1, 2}, consider the maps

∂τkj : Hτ ∩H1
loc(R2,Hf)→ Hτ
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and
∂̃θkjψ(k) := Ũ∂τkj Ũ

∗ : H̃θ ∩H1
loc(R2)→ H̃θ.

We have ∂̃θkjψ(k) = ∂kjψ(k)+
〈
ϕ̃(k), ∂τkj ϕ̃(k)

〉
Hf

ψ(k) for all ψ ∈ H̃θ∩H1
loc(R2). Let

Ãj(k) :=
〈
ϕ̃(k), ∂τkj ϕ̃(k)

〉
Hf

for j ∈ {1, 2}. By construction, we have Ã1 ≡ 0 as ϕ̃

is parallel along horizontal lines. Denote by Ω(k) = ∂1Ã2(k)− ∂2Ã1(k) = ∂1Ã2(k)
the curvature of the Berry connection. To get defining equations for α̃(k, γ∗), on
the one hand we differentiate equation (3.6) for j ∈ {1, 2} and ψ ∈ H̃θ ∩H1

loc(R2)
and get

∂kjψ(k − γ∗) = α̃(k, γ∗)∂kjψ(k) + (∂kj α̃(k, γ∗))ψ(k). (3.7)

On the other hand, ∂̃θkjψ must be in H̃θ, so we get

∂̃θkjψ(k − γ∗) = α̃(k, γ∗)(∂kjψ(k) + Ãj(k)ψ(k)) (3.8)

and, because ψ is in H̃θ,

∂̃θkjψ(k − γ∗) = ∂kjψ(k − γ∗) + Ãj(k − γ∗)ψ(k − γ∗)

= ∂kjψ(k − γ∗) + Ãj(k − γ∗)α̃(k, γ∗)ψ(k). (3.9)

Combining equation (3.8) and (3.9) yields

α̃(k, γ∗)(∂kjψ(k) + Ãj(k)ψ(k)) = ∂kjψ(k − γ∗) + Ãj(k − γ∗)α̃(k, γ∗)ψ(k). (3.10)

Inserting equation (3.7) into equation (3.10) yields

∂kj α̃(k, γ∗) = α̃(k, γ∗)(Ãj(k)− Ãj(k − γ∗)) for all j ∈ {1, 2}.

Hence ∂k1α̃(k, γ∗) = 0, which means that α̃ does not depend on k1, and thus

α̃(k, γ∗) = α̃(0, γ∗)e
∫ k2
0 (Ã2(k1,κ)−Ã2(k1−γ∗1 ,κ−γ∗2 ))dκ.

Now we take a closer look at the obtained two factors of α̃. Thereto, first note
that the curvature Ω must be periodic with respect to Γ∗. Let therefor be k ∈ R2

and γ∗ ∈ Γ∗. Then

Ω(k − γ∗) = ∂k1〈ϕ̃(k − γ∗), ∂k2ϕ̃(k − γ∗)〉Hf

= ∂k1(α̃(k, γ∗)∂k2α̃(k2, γ∗)) + ∂k1

(
|α̃(k, γ∗)|2Ã2(k)

)
(3.11)

= Ω(k). (3.12)
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For equation (3.11), we used the identity (3.5). In equation (3.12), we used that α̃ is
independent of k1 and thus the first summand is 0, and the fact that |α̃(k, γ∗)| ≡ 1.
This yields∫ k2

0

(Ã2(k1, κ)− Ã2(k1 − γ∗1 , κ− γ∗2))dκ =

∫ k2

0

(Ã2(k1, κ)− Ã2(k1 − γ∗1 , κ))dκ

=

∫ k2

0

∫ k1

k1−γ∗1
Ω(p, κ)dpdκ

=
γ∗1
2π

∫ k2

0

∫ 2π

0

Ω(p, κ)dpdκ

=:
γ∗1
2π

Ω(k2).

Now let
tB(−γ1∗, 0)h0 = e−iβ1τ(γ1∗)h0

and
tB(0,−γ2∗)h0 = e−iβ2τ(γ2∗)h0.

With β = (β1, β2) it holds α̃(0, γ∗) = e
i

2π
β·γ∗ . This follows by using the definition

(3.5) of α̃ and the property (3.2) of tB.
In order to get a more convenient parameter α we slightly modify the function ϕ̃
by putting

ϕ(k) := e
iθ
2π
k1k2−

k1

2π
Ω(k2)− i

2π
β·kϕ̃(k),

where θ is the Chern number of the Bloch bundle (3.1). Using the definition of ϕ,
Ω(k2 − γ∗2) = Ω(k2)− Ω(γ∗2), and Ω(γ∗2) = γ∗2iθ, we then get

α(k2, γ
∗) = 〈ϕ(k − γ∗), τ(γ∗)ϕ(k)〉Hf

= e
iθ
2π
k2γ∗1 .

�

Remark 3.3.3. In the following we will always work with

• the function ϕ, which fulfils ϕ(k − γ∗) = τ(γ∗)e−
iθ
2π
k2γ∗1ϕ(k) for all k ∈ R2

and γ∗ ∈ Γ∗,

• the Hilbert space Hθ = {ψ ∈ L2
loc(R2) : ψ(k − γ∗) = e

iθ
2π
k2γ∗1ψ(k) for all k ∈

R2 and γ∗ ∈ Γ∗} with inner product 〈ψ, φ〉Hθ =
∫
M∗

ψ(k)φ(k)dk, where dk
denotes the normalised Lebesgue measure,

• the unitary map U θ : Π0Hτ → Hθ defined by f 7→ 〈ϕ(k), f〉Hf
,
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• the operators ∂θj : H1
loc(R2) ∩ Hθ → Hθ defined by ∂θj := U θ∂τj U

θ∗ for j ∈
{1, 2}, and

• Aj := 〈ϕ(k), ∂jϕ(k)〉Hf
for j ∈ {1, 2}. In particular, we have A1(k − γ∗) =

A1(k) and A2(k − γ∗) = − iθ
2π
γ∗1 +A2(k) for all k ∈ R2 and γ∗ ∈ Γ∗.

Now we have fixed the subspace Hθ whose elements can be identified in a
natural way with the L2-sections of the non-trivial Bloch bundle. We take this
Hilbert space Hθ as the reference space on which the effective operator shall finally
operate. The normal proceeding would now be to take u0(k, r) = 〈ϕ(k−A(r))|+u⊥0
as the principal symbol of a pseudodifferential operator U ε. But as it will be
shown in the proof of the next theorem, this function does not have bounded
derivatives and is hence in no suitable symbol class. So we cannot use the methods
of [Teu03, PST03b] to construct a unitary between ΠεHτ and Hθ.
Thus we take a different approach. We first construct a unitary U ε

1 from ΠεHτ

to Π0Hτ and afterwards combine it with the map U θ. For the construction of U ε
1

we can use the usual pseudodifferential methods, because with the help of the
function ϕ from Lemma 3.3.2 we can define a suitable symbol u0(k, r) which is
τ -equivariant and thus solves the problem of the unboundedness of the derivatives
of u0.

Theorem 3.3.4. There exists a unitary operator U ε
1 : Hτ → Hτ such that

U ε
1 ΠεU ε∗

1 = Π0 (3.13)

and U ε
1 = û + O0(ε∞), where u �

∑
j≥0 ε

juj belongs to S1
τ (ε,L(Hf)) and has the

principal symbol u0(k, r) = |ϕ(k)〉 〈ϕ(k − A(r))| e−
iθ
2π
A2(r)k1 + u⊥0 (k, r).

Proof.
First we show the existence of a symbol u0(k, r) ∈ S1

τ (L(Hf)) that is a (pointwise)
unitary and fulfils

u0(k, r)π0(k, r)u∗0(k, r) = π0(k) (3.14)

and
u0(k, r)ϕ(k − A(r)) = e−

iθ
2π
A2(r)k1ϕ(k). (3.15)

Recall π0(k, r) = π0(k − A(r)). Here we see why we choose the gauge A2 ≡ 0. It
eliminates the phase in (3.15) which will facilitate further calculations.
We want to define the unitary operator using a variant of the Nagy formula. To
be able to apply the formula, we need that |〈ϕ(k), ϕ(k − A(r))〉Hf

| > 0 holds.
If A ≡ 0 this is clear since 〈ϕ(k), ϕ(k)〉Hf

≡ 1. So let us first assume that the
perturbation potential A is small enough so that |〈ϕ(k), ϕ(k−A(r))〉Hf

| ≥ 1
2
holds

for all k, r ∈ R2. Then we use a slightly modified version of the Nagy formula
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to define the symbol u0. Note thereto that |〈ϕ(k), ϕ(k − A(r))〉Hf
| > 0 implies

‖π0(k)− π0(k, r)‖L(Hf)
< 1. Let

u0(k, r) := (1− (π0(k)− π0(k, r))2)−
1
2 (
〈ϕ(k−A(r)),ϕ(k)〉Hf

|〈ϕ(k−A(r)),ϕ(k)〉Hf
|e
− iθ

2π
A2(r)k1π0(k)π0(k, r)

+π⊥0 (k)π⊥0 (k, r)). (3.16)

We immediately get that u0(k, r) is a unitary and that (3.14) holds. Moreover, a
short calculation shows the correctness of (3.15): Note thereto that

(1− (π0(k)− π0(k, r))2)ϕ(k) = |〈ϕ(k − A(r)), ϕ(k)〉Hf
|2ϕ(k)

and hence

u0(k, r)ϕ(k − A(r))

= (1− (π0(k)− π0(k, r))2)−
1
2
〈ϕ(k−A(r)),ϕ(k)〉Hf

e
−
iθ
2π

A2(r)k1 〈ϕ(k),ϕ(k−A(r))〉Hf

|〈ϕ(k−A(r)),ϕ(k)〉Hf
| ϕ(k)

=
〈ϕ(k−A(r)),ϕ(k)〉Hf

〈ϕ(k),ϕ(k−A(r))〉Hf

|〈ϕ(k−A(r)),ϕ(k)〉Hf
|2 e−

iθ
2π
A2(r)k1ϕ(k)

= e−
iθ
2π
A2(r)k1ϕ(k).

Now we check the τ -equivariance of the symbol. It suffices to show that the
phase in (3.16) is periodic in k with respect to Γ∗, which follows from an ele-
mentary calculation. So u0 is a combination of τ -equivariant functions and hence
τ -equivariant. It remains to show the boundedness of the derivatives. Because of
the τ -equivariance of u0, we have to show boundedness only for (k, r) ∈M∗ ×R2.
Thereto we take a closer look at the behaviour of the derivatives of ϕ: For the
derivative in k1-direction, it can be easily seen that ‖∂1ϕ(k)‖Hf

is periodic with
respect to Γ∗ and thus bounded:

∂1ϕ(k − γ∗) = ∂1(τ(γ∗)e−
iθ
2π
k2γ∗1ϕ(k)) = τ(γ∗)e−

iθ
2π
k2γ∗1∂1ϕ(k).

For the derivative in the other direction we do not get a periodicity:

∂2ϕ(k − γ∗) = ∂2(τ(γ∗)e−
iθ
2π
k2γ∗1ϕ(k))

= τ(γ∗)(− iθ
2π
γ∗1)e−

iθ
2π
k2γ∗1ϕ(k) + τ(γ∗)e−

iθ
2π
k2γ∗1∂2ϕ(k).

So we can state that ∂2ϕ(k) has a growth which can only be controlled if we have
a bounded k1 variable. Thus we need the boundedness of the potential A1(r).
Note that this is one of the obstructions of taking A as a linear function (which
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means as a potential of a constant magnetic field). All in all, it is now clear that
〈ϕ(k − A(r)), ϕ(k)〉Hf

is bounded with all its derivatives, e.g.

sup
(k,r)∈R2×R2

|∂k2〈ϕ(k − A(r)), ϕ(k)〉Hf
|

≤ sup
(k,r)∈M∗×R2

(‖ϕ(k)‖Hf
‖∂2ϕ(k − A(r))‖Hf

+ ‖∂2ϕ(k)‖Hf
‖ϕ(k − A(r))‖Hf

)

≤ sup
k′∈BR(M∗)

‖∂2ϕ(k′)‖Hf
+ sup

k∈M∗
‖∂2ϕ(k)‖Hf

<∞,

where R = supr∈R2 |A1(r)| and BR(M∗) = {k ∈ R2 : dist(k,M∗) ≤ R}. Here we
want to emphasise that one might think that if we take the gauge A1 = 0, we could
also insert a linear potential A. But this is not possible because then, one gets

the additional phase e−
iθ
2π
A2(r)k1 which leads for example in the derivative in k1-

direction to a summand − iθ
2π
A2(r)ũ0(k, r) which is unbounded if A2 is unbounded.

Together with the boundedness of |〈ϕ(k−A(r)), ϕ(k)〉Hf
| from below, we get that

〈ϕ(k−A(r)),ϕ(k)〉Hf

|〈ϕ(k−A(r)),ϕ(k)〉Hf
| is bounded together with all its derivatives. Thus u0 is a combi-

nation of symbols in S1
τ (L(Hf)) and hence in S1

τ (L(Hf)).
Now we generalise this method to an arbitrary potential A ∈ C∞b (R2,R2). Our
idea is to define the desired unitary gradually exploiting the boundedness of A.
Thereto note that there is a δ > 0 so that for all k ∈ R2 and for all x, y ∈ R2 with
‖x‖ , ‖y‖ ≤ ‖A‖∞ it holds if ‖x− y‖ < δ then |〈ϕ(k − x), ϕ(k − y)〉Hf

| > 1
2
. The

proof is simple: If we assume the contrary this means that for every n ∈ N there
is kn ∈ M∗ (because of the periodicity of 〈ϕ(k − x), ϕ(k − y)〉Hf

) and xn, yn ∈ R2

with ‖xn‖ , ‖yn‖ ≤ ‖A‖∞, ‖xn − yn‖ <
1
n
, and |〈ϕ(kn − xn), ϕ(kn − yn)〉Hf

| ≤ 1
2
.

Applying the Theorem of Bolzano-Weierstraß we get convergent subsequences
(x′n)n → x, (y′n)n → y, and (k′n)n → k0. It must hold x = y and hence
limn→∞ |〈ϕ(kn − xn), ϕ(kn − yn)〉Hf

| = |〈ϕ(k − x), ϕ(k − x)〉Hf
| = 1 > 1

2
. Note

that this proof will not work if A is not bounded.
Now we choose m ∈ N with m >

‖A‖∞
δ

. For j ∈ {1, 2, ...m}

|〈ϕ(k − j
m
A(r)), ϕ(k − j−1

m
A(r))〉Hf

| > 1
2

holds since
∥∥ j
m
A(r)− j−1

m
A(r)

∥∥ ≤ 1
m
‖A‖∞ < δ. Thus we can define

uj(k, r)

:= (1− (π0(k − j−1
m
A(r))− π0(k − j

m
A(r)))2)−

1
2 (
〈ϕ(k− j

m
A(r)),ϕ(k− j−1

m
A(r))〉Hf

|〈ϕ(k− j
m
A(r)),ϕ(k− j−1

m
A(r))〉Hf

|
×

e−
iθA2(r)

2πm
k1π0(k − j−1

m
A(r))π0(k − j

m
A(r)) + π⊥0 (k − j−1

m
A(r))π⊥0 (k − j

m
A(r))).

Then uj ∈ S1
τ (L(Hf)), is a unitary, and fulfils

uj(k, r)π0(k − j
m
A(r))u∗j(k, r) = π0(k − j−1

m
A(r))
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and
uj(k, r)ϕ(k − j

m
A(r)) = e−

iθA2(r)
2πm

k1ϕ(k − j−1
m
A(r))

for j ∈ {1, 2, ...m}. Finally we set

u0(k, r) := u1 ◦ u2 ◦ ... ◦ um(k, r).

This is the desired symbol.

Let ũ0(k, r) := |ϕ(k)〉 〈ϕ(k − A(r))| e−
iθ
2π
A2(r)k1 . Obviously, ũ0 is a partial isometry

with initial subspace π0(k − A(r))Hf and final subspace π0(k)Hf . Now we can
proceed along the lines of the construction in [Teu03, PST03b]. Note that, although
in our case πr = π0(k) is k-dependent, the proof works as well. The only difference
is that the symbol u is in S1

τ (L(Hf)).
This means that we have to show by induction the existence of un ∈ S1

τ (L(Hf))
for n ∈ N so that with u(n) =

∑n
j=0 ε

juj it holds

u(n)]u(n)∗ = 1 +O(εn+1) = u(n)∗]u(n)

and
u(n)]π]u(n)∗ = πr +O(εn+1).

The induction starts with n = 0, where u0 fulfils obviously everything. For the
induction step n→ n+ 1 one sets (adopting the notation used in [Teu03])

un+1 := (an+1 + bn+1)u0.

It remains to show uj ∈ S1
τ (L(Hf)) for all j ∈ N. It is again clear for j = 0 as

shown above. Let us assume that it holds for all j ≤ n. Then recall

An+1 = [u(n)]u(n)∗ − 1]n+1 and an+1 = −1
2
An+1.

From the assumption it follows that u(n) and u(n)∗ are in S1
τ (L(Hf)) and thus, using

Proposition B.3.5, An+1 and hence an+1 are in S1
τ (L(Hf)). Analogously recall

Bn+1 = [w(n)]π]w(n)∗ − πr]n+1 with w(n) = u(n) + εn+1an+1u0.

Again from the assumption and the fact that an+1 ∈ S1
τ (L(Hf)), we get from

Proposition B.3.5 that w(n) ∈ S1
τ (L(Hf)) and hence Bn+1 ∈ S1

τ (L(Hf)) and thus
bn+1 = [πr, Bn+1] ∈ S1

τ (L(Hf)). All in all, we get

un+1 = (an+1 + bn+1)u0 ∈ S1
τ (L(Hf))

which concludes the proof. �
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Remark 3.3.5. One might think that if we neglect in the previous proof that we
want (3.15) to hold, we do not have to fil in the phase in the Nagy formula. Then
it seems that we could do the construction also for a linear A. But this is not true
because the boundedness of A is an essential ingredient to be able to apply the
Nagy formula in the first place.

From the construction we directly get

Theorem 3.3.6. Let h be a resummation in S1
τ (ε,L(Hf)) of the formal symbol

u]π]H]π]u∗ ∈M1
τ (ε,L(Hf)).

Then ĥ ∈ L(Hτ ), [ĥ,Π0] = O(ε∞), and

(e−iH
ε
BFt − U ε∗

1 e
−iĥtU ε

1 )Πε = O(ε∞(1 + |t|)).

Proof.
First, note that h is really in the stated symbol class S1

τ (ε,L(Hf)) since we get
from Lemma 2.5.1 that π ∈ Sw=1+k2

τ (ε,L(Hf ,H2
A0

)), which implies that H]π ∈
S
w=(1+k2)2

τ (ε,L(Hf)) = S1
τ (ε,L(Hf)) because of the τ -equivariance of the symbol

and the fact that τ(γ∗) as an operator on Hf is a unitary. Then we immediately
get h ∈ S1

τ (ε,L(Hf)). Hence it follows from Proposition B.3.6 that ĥ
τ
∈ L(Hτ ).

By construction, we have [ĥ,Π0] = O(ε∞). It remains to show the last statement:

(e−iĤ
τ
t − U ε∗

1 e
−iĥ

τ
tU ε

1 )Πε = (e−iĤ
τ
t − e−iUε∗1 ĥ

τ
Uε1 t)π̂τ +O(ε∞)

= (e−iπ̂
τ Ĥ

τ
π̂τ t − e−iUε∗1 ĥ

τ
Uε1 t)π̂τ +O(ε∞)

= O(ε∞(1 + |t|)),

where the last equality follows from the usual Duhammel argument using that the
difference of the generators is of order O(ε∞). �

Remark 3.3.7. Note that we only get [ĥ,Π0] = O(ε∞) and not exactly 0. In the
corresponding theorem for the case A0 ≡ 0, the projection πr does not depend on
k and is constant. Thus there we get from the construction

h = u]π]H]π]u∗ = πr]u]H]u
∗]πr = πr ◦ h ◦ πr,

which follows directly from the definition (B.3) of the Moyal product and the fact
that πr is independent of k and r. Then it follows from the integral formula for
the τ -quantisation that ĥ

τ
= Πrĥ

τ
Πr and thus [Πr, ĥ

τ
] = 0.

However, in our case the projection πr depends on k. Thus we cannot conclude
[Π0, ĥ

τ
] = 0 as before. Moreover, neither it holds h = π0(k)h(k, r)π0(k) nor
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Opτ (π0(k)h(k, r)π0(k)) = Π0ĥ
τ
Π0. Instead, we will later define a quantisation

OpBerry which will satisfy OpBerry(π0(k)h(k, r)π0(k)) = Π0ĥ
Berry

Π0. So this will
just cause some technical effort. And for the moment we just work with Π0ĥ

τ
Π0

which is at least O(ε∞) close to ĥ
τ
.

Remark 3.3.8. We get an operator which leaves the fibers of the Bloch bundle
almost invariant, but the symbol does not have to commute almost with π0(k).
Again this will be the case for the new quantisation OpBerry which will be intro-
duced in Chapter 4.

Now we can take
U ε := Uθ ◦ U ε

1

as the interwining unitary between Π0Hτ and Hθ and

Heff := U θΠ0ĥΠ0U θ∗

as the effective Hamiltonian operating on Hθ. But this is not yet the form of an
effective operator we are aiming for, because we want to get a description of the
effective Hamiltonian as the quantisation of a semiclassical symbol. Here we cannot
proceed along the lines of the constructions in [Teu03, PST03b], since we are not
able to construct a symbol whose quantisation is U θ. This problem arises because
the Bloch bundle is no longer trivial and thus the partial derivative with respect
to k2 of u(k, r) = 〈ϕ(k − A(r))| has a growth in k1 which cannot be controlled.
How we can get Heff as the quantisation of a semiclassical symbol will be the
content of the next two chapters. We will have to define new quantisations and
show methods how to translate one quantisation into the other one.

3.4 The corresponding results for an arbitrary
Bravais lattice Γ

For a general Bravais lattice Γ, denote the components of the generating vectors
γ1 and γ2 by γ1 = (γ1

1 , γ
1
2) and γ2 = (γ2

1 , γ
2
2) and analogously for the dual lattice

γ1∗ = (γ1∗
1 , γ

1∗
2 ) and γ2∗ = (γ2∗

1 , γ
2∗
2 ). Then it holds for the function ϕ:

Lemma 3.4.1. There is a function ϕ ∈ C∞(R2,Hf) so that for all k ∈ R2 we
have ϕ(k) ∈ P (k)Hf , ‖ϕ(k)‖Hf

= 1, and

ϕ(k − γ∗) = e−
iθ
2π
〈γ2,k〉〈γ1,γ∗〉τ(γ∗)ϕ(k) for all γ∗ ∈ Γ∗, (3.17)

where θ is the Chern number of the Bloch bundle (3.1).
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Proof.
The proof works as the proof of Lemma 3.3.2. The difference is that one has to
do the construction of ϕ̃ with respect to the basis {γ1∗, γ2∗} of Z2. This means to
take k∗j = 1

2π
〈γj, k〉 for j ∈ {1, 2} and set

ϕ̃(0, k∗2) := tB((0, k∗2), (0, 0))h0

and
ϕ̃(k∗1, k

∗
2) := tB((k∗1, k

∗
2), (0, k∗2))ϕ̃(0, k∗2).

Also the derivative ∂̃j and Ã are with respect to this basis. This yields

α(k∗, γ∗) = e2πiθak∗2 where γ∗ = aγ1∗ + bγ2∗

= e−
iθ
2π
〈γ2,k〉〈γ1,γ∗〉.

�
This means that in analogy to Remark 3.3.3 one works with

• the function ϕ, which fulfils ϕ(k − γ∗) = τ(γ∗)e−
iθ
2π
〈γ2,k〉〈γ1,γ∗〉ϕ(k) for all

k ∈ R2 and γ∗ ∈ Γ∗,

• the Hilbert spaceHθ = {ψ ∈ L2
loc(R2) : ψ(k−γ∗) = e

iθ
2π
〈γ2,k〉〈γ1,γ∗〉ψ(k) for all

k ∈ R2 and γ∗ ∈ Γ∗} with inner product 〈ψ, φ〉Hθ =
∫
M∗

ψ(k)φ(k)dk, where
dk denotes the normalised Lebesgue measure,

• the operators ∂θj : H1
loc(R2) ∩ Hθ → Hθ defined by ∂θj := U θ∂τj U

θ∗ for j ∈
{1, 2}, and

• Aj := 〈ϕ(k), ∂jϕ(k)〉Hf
for j ∈ {1, 2}. In particular, we have for j ∈ {1, 2}

that Aj(k − γ∗) = − iθ
2π
γ2
j 〈γ1, γ∗〉+Aj(k) for all k ∈ R2 and γ∗ ∈ Γ∗.

Note that now the derivatives are in the ordinary directions ∂j = ∂ej for j ∈ {1, 2}
and not any more in the directions of the generating vectors of the Bravais lattice
Γ∗.
Also the definition of the first part of the intertwining unitary has to be adapted
to the lattice:

Theorem 3.4.2. There exists a unitary operator U ε
1 : Hτ → Hτ such that

U ε
1 ΠεU ε∗

1 = Π0

and U ε
1 = û + O0(ε∞), where u �

∑
j≥0 ε

juj belongs to S1
τ (ε,L(Hf)) and has the

principal symbol u0(k, r) = |ϕ(k)〉 〈ϕ(k − A(r))| e−
iθ
2π
〈γ1,k〉〈γ2,A(r)〉 + u⊥0 (k, r).
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For the perturbation A the appropriate gauge is 〈γ2, A(r)〉 ≡ 0.
Proof.
The proof works as the proof of Theorem 3.3.4. The only difference is that the
norm of ∂1ϕ is no longer periodic, but as for ∂2ϕ this is not a problem for a bounded
perturbation A. �
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Chapter 4

The new Weyl quantisations

4.1 Motivation
The motivation for this chapter is to develop methods to express the effective
Hamiltonian U θΠ0ĥU θ∗ obtained in the previous chapter as the quantisation of a
semiclassical symbol. To this purpose, we have to take a different approach than
usually (for example in the case A0 ≡ 0). It is clear that we are going to need a
different pseudodifferential calculus than the one we have used so far. Our strategy
is to define three new pseudodifferential calculi and to prove theorems which tell
us how and for which symbols we can translate one calculus into the other. Here,
translating one calculus into the other means to compute corrections fc of a symbol
f so that

f̂(k, r)
”old quantisation“

≈ f̂c(k, r)
”new quantisation“

,

where the quantisations and the ”≈“ will be specified below in terms of an exact
definition respectively in terms of O(εn) with n ∈ N ∪ {∞}.
The first quantisation we are going to introduce is called “Berry quantisation”.
The difference to the τ -quantisation is that for a symbol f(k, r), the variable
r gets replaced by −iε∇B which is supposed to be the Berry connection. The
Berry quantisation has the advantage that the connection ∇B restricted to sec-
tions on the Bloch bundle is unitarily equivalent to the connection ∇θ on the
bundle Eθ = {(k, λ) ∈ (R2 × C)∼}, where (k, λ) ∼ (k′, λ′) :⇔ ∃γ∗ ∈ Γ∗ : k′ =

k − γ∗ and λ′ = e
iθ
2π
k2γ∗1λ. The bundle Eθ, of course, is the bundle which can be

identified with the Bloch bundle EBl in a natural way. A second advantage of the
Berry quantisation is that its symbol commutes with π0(k) pointwise if and only
if its Berry quantisation commutes with Π0.
The next quantisation we need is the θ-quantisation. This is a quantisation which
induces operators that act on Hθ for suitable symbols. Roughly speaking it re-
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places r by −iε∇θ. After that, we show how to translate U θf̂
Berry

U θ∗ into f̂θ
θ

exploiting the unitary equivalence of the connections ∇B and ∇θ.
After this, we introduce a last quantisation which we call effective quantisation
because it is the final quantisation for our effective operator Heff

!
= ĥeff

eff
. The

difference to the θ-quantisation is that r is replaced by the connection −iε∇eff
k =

−iε(∇k + (0, iθ
2π
k1)T), which is a canonical connection on the bundle Eθ because

it is the one where the curvature is just iθ
2π
. If the curvature of the bundle Eθ was

indeed iθ
2π
, it would follow from the construction of ϕ in Lemma 3.3.2 that the

connections ∇θ and ∇eff are the same. Accessorily, this connection is independent
of the function ϕ(k). Moreover, the usage of this connection makes it possible
to compare our case to the non-magnetic case A0 ≡ 0 where the Bloch bundle is
trivial. One just has to recall that a line bundle is trivial if and only if its Chern
number θ is zero, see for example [BT82]. So in this case, we get with our approach
Hθ=0

∼= L2(T2∗) and ∇eff
k = ∇k, so it just includes the case A0 ≡ 0. We will see

that we get the appropriate symbols for heff when we compute its principal and
subprincipal symbol.
Our goal is to get quantisation formulas that map suitable symbols to pseudo-
differential operators that act on sections of possibly non-trivial bundles. There
are some similar works about such quantisation maps in the literature, as in
[Pfl98a, Pfl98b, Saf98, Sha05a, Sha05b, Han10]. As opposed to the Euclidian case,
the relation between a pseudodifferential operator on sections of vector bundles
and its symbol becomes more subtle. If one just defines a corresponding pseudo-
differential calculus in local coordinates, like this is for example done in [Hör85],
one can associate a symbol to an operator which is unique only up to an error
of ε. To define a full symbol, one has to take into account the geometry of the
vector bundle. This means that instead of local coordinates, one must use a con-
nection on the vector bundle and a connection on the base space. This idea goes
back to Widom [Wid78, Wid80], who was the first to develop a complete isomor-
phism between such pseudodifferential operators and their symbols. However, he
just showed how to recover the full symbol from a pseudodifferential operator and
proved that this map is bijective, but he did not show how to get from a symbol to
the corresponding pseudodifferential operator. His work was developed further by
Pflaum [Pfl98b] and Safarov [Saf98]. In [Pfl98b], the author is the first to give a
quantisation map which maps symbols that are sections of endomorphism bundles
to operators between the sections of the corresponding bundles. In his quantisation
formulas he uses a cutoff function so that he can use the exponential map corre-
sponding to a given connection on the manifold that may not be defined globally.
A geometric symbol calculus for pseudodifferential operators between sections of
vector bundles can also be found in [Sha05a, Sha05b], where the author moreover
introduces the notion of a geometric symbol in comparison to a coordinatewise
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symbol. A semiclassical variant of this calculus can be found in [Han10]. When
we compute the correction fc of f so that f̂

τ
= f̂c

B
, one could say, using the

language of [Sha05a, Sha05b], that fc is the geometric symbol with respect to the
Berry connection of the operator f̂

τ
.

But in all these works there is no Weyl calculus. In [Saf98] and [Pfl98a], the authors
give formulas for Weyl quantisations but only for pseudodifferential operators on
manifolds and not for operators between sections of vector bundles. Additionally,
the authors only use Hörmander symbol classes, see [Hör85]. So what we are go-
ing to do is to define semiclassical Weyl calculi for more general symbol classes.
Moreover, the Berry calculus is a calculus on a bundle whose fiber is an infinite
dimensional Hilbert space. Although in our cases the exponential map will always
be defined everywhere, we use cutoff functions since we need them to get control
over the parallel transport maps corresponding to the connections on the bundles
and their derivatives. Another difference is that we will transfer the phase space
R2 × R2 to T2∗ × R2 by using periodic-like conditions for symbols and functions.
This approach is also used in [GN98] and [Teu03, PST03b].

4.2 The Berry quantisation
Let us quickly sketch the following proceeding. We start with the bundle

E ′ = R2 ×Hf with connection ∇B = P (k)∇P (k) + P⊥(k)∇P⊥(k).

Note that the property (3.2) of the parallel transport with respect to the Berry
connection still holds since besides P also P⊥ is τ -equivariant. For symbols f :

R4 → L(Hf) we then define a quantisation f̂
B
on the sections ϕ : R2 → Hf . As

already indicated, we transfer this results to the bundle

E = (R2 ×Hf)∼ with connection ∇B = P (k)∇P (k) + P⊥(k)∇P⊥(k),

where
(k, ϕ) ∼ (k′, ϕ′) :⇔ k′ = k − γ∗ and ϕ′ = τ(γ∗)ϕ.

This is done by showing that for τ -equivariant symbols f : R4 → L(Hf) the
quantisation f̂

B
maps sections ϕ : R2 → Hf of the bundle E, that are the τ -

equivariant functions, to sections of E.
Then we collect several important properties of this quantisation; among them is
the fact that if and only if a τ -equivariant symbol commutes with P (k) pointwise,
the corresponding pseudodifferential operator commutes with Π0. Hence we can
say that for those symbols we have a quantisation that is an operator between
sections of the Bloch bundle (3.1) with the connection ∇B = P (k)∇.
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At the end of this section we will show how we can correct a symbol so that
f̂
τ
≈ f̂c

B
.

Let us now start the rigorous maths and introduce the Berry quantisation.

Definition 4.2.1. A function χ ∈ C∞(R2) is called a smooth cutoff function if
suppχ is compact, χ ≡ 1 in a neigbourhood of 0, and 0 ≤ χ ≤ 1.

Throughout this chapter, we will always assume for τ -equivariant symbols that
τ is a unitary representation and τ1 = τ2 = τ .

Definition 4.2.2. Let f ∈ Sw(R4,L(Hf)) ∪ Smρ (R4,L(Hf)) and let tB(x, y) be the
parallel transport with respect to the Berry connection ∇B = Π0∇Π0 + Π0⊥∇Π0⊥

along the straight line from y to x. Let χ ∈ C∞0 (R2) be a smooth cutoff function.
Then the Berry quantisation f̂

B,χ
is defined by

(f̂
B,χ
ψ)(k) = 1

(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
ψ(y)drdy

for ψ ∈ S(R2,Hf).

Remark 4.2.3. We will see that for suitable symbols the Berry quantisation does
not depend on the cutoff up to an error of O(ε∞).

To show the well-definedness of this quantisation, we follow the usual routine:
First, we show that the quantised symbol is a continuous map from the Schwartz
space S(R2,Hf) to itself. Then we extend this mapping by duality to S ′(R2,Hf).
After that, we show that for τ -equivariant symbols the quantised symbol maps
τ -equivariant functions to τ -equivariant functions.

Proposition 4.2.4. For f ∈ Sw(R4,L(Hf)) ∪ Smρ (R4,L(Hf)), χ a smooth cutoff
function, and ψ ∈ S(R2,Hf) the integral

(f̂
B,χ
ψ)(k) = 1

(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
ψ(y)drdy

defines a continuous mapping from S(R2,Hf) to S(R2,Hf).

Proof.
For the proof, we can proceed along the standard lines, like this is for example
done in the appendix of [Teu03]. The only problem we have to overcome is that
the derivatives of the parallel transport tB are in general not bounded. To deal
with this, we have introduced the cutoff function in the definition of the Berry
quantisation. Then one can exploit the property (3.2) of tB.
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Let f ∈ Smρ (R4,L(Hf)) and δ > 0 so that suppχ ⊂ Bδ(0). First, we show that

supk∈R2

∥∥∥(f̂
B,χ
ψ)(k)

∥∥∥
Hf

<∞. From

(f̂
B,χ
ψ)(k)

= 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
ψ(y)drdy

= 1
(2πε)2

∫
R4

(
1−ε2∆y

〈r〉2

)M
e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y)drdy

= 1
(2πε)2

∫
R4

1
〈r〉2M e

i(k−y)r
ε

(
1− ε2∆y

)M
(χ(k − y)tB

(
k, k+y

2

)
f
(
k+y

2
, r
)

tB
(
k+y

2
, y
)
ψ(y))drdy (4.1)

= 1
(2πε)2

∑
|α1+...+α5|≤2M

cα1...α5

∫
R4

1
〈r〉2M e

i(k−y)r
ε ∂α1

y χ(k − y)∂α2
y t

B
(
k, k+y

2

)
(4.2)

∂α3
y f

(
k+y

2
, r
)
∂α4
y t

B
(
k+y

2
, y
)
∂α5
y ψ(y)drdy (4.3)

we get∥∥∥(f̂
B,χ
ψ)(k)

∥∥∥
Hf

≤ CM
(2πε)2

∑
|α1+α2+α3+α4+α5|≤2M

∫
R4

1
〈r〉2M |∂

α1
y χ(k − y)|

∥∥∂α2
y t

B
(
k, k+y

2

)∥∥
L(Hf)∥∥∂α3

y f
(
k+y

2
, r
)∥∥
L(Hf)

∥∥∂α4
y t

B
(
k+y

2
, y
)∥∥
L(Hf)

∥∥∂α5
y ψ(y)

∥∥
Hf

drdy

≤ C ′M sup
|k−y|≤δ

sup
|α|≤2M

∥∥∂αy tB (k, k+y
2

)∥∥
L(Hf)

· sup
|k−y|≤δ

sup
|α|≤2M

∥∥∂αy tB (k+y
2
, y
)∥∥
L(Hf)︸ ︷︷ ︸

:=C(k)

·

∑
|α|≤2M

∫
R4

1
〈r〉2M−m

∥∥∂αy ψ(y)
∥∥
Hf

drdy (4.4)

≤ C ′MC(k)
∑
|α|≤2M

∫
R2

1
〈r〉2M−mdr

∫
R2

∥∥∂αy ψ(y)
∥∥
Hf

dy

≤ C ′′MC(k) sup
|α|≤2M

‖∂αψ‖L1(R2,Hf)
.

So after the partial integration in (4.1), the occurrence of the parallel transport
maps tB and the cutoff function causes new factors of the form ∂αy t

B(k, k+y
2

) and
derivatives of the cutoff. For the cutoff, this is not a problem since the support
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stays in Bδ(0). But the derivatives of tB induce the constant C(k). We need to
show supk∈R2 C(k) <∞. Using k+y

2
= k + y−k

2
and (3.2) we get

sup
k∈R2

sup
|k−y|≤δ

sup
|α|≤2M

∥∥∂αy tB (k, k+y
2

)∥∥
L(Hf)

≤ sup
γ∗∈Γ∗

sup
k∈M∗

sup
|v|≤δ

sup
|α|≤2M

∥∥∂αv tB (k − γ∗, k − γ∗ + v
2

)∥∥
L(Hf)

= sup
k∈M∗

sup
|v|≤δ

sup
|α|≤2M

∥∥∂αv tB (k, k + v
2

)∥∥
L(Hf)

≤ C. (4.5)

Analogously one can bound the second part of C(k) using y = k + (y − k). This
yields the desired estimation.
Now we show for arbitrary α, β ∈ N2

0 that supk∈R2

∥∥∥kα∂βk (f̂
B,χ
ψ)(k)

∥∥∥
Hf

< ∞.

From

kα∂βk (f̂
B,χ
ψ)(k)

= 1
(2πε)2

∫
R4

kα

〈r〉2M e
i(k−y)r

ε
(
1− ε2∆y

)M
∂βk (χ(k − y)tB

(
k, k+y

2

)
f
(
k+y

2
, r
)

tB
(
k+y

2
, y
)
ψ(y))drdy

= 1
(2πε)2

∫
R4

(y−iε∂r)α
〈r〉2M e

i(k−y)r
ε

(
1− ε2∆y

)M
∂βk (χ(k − y)tB

(
k, k+y

2

)
f
(
k+y

2
, r
)

tB
(
k+y

2
, y
)
ψ(y))drdy (4.6)

= 1
(2πε)2

∫
R4

1
〈r〉2M e

i(k−y)r
ε (y + iε∂r)

α
(
1− ε2∆y

)M
∂βk (χ(k − y)tB

(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
ψ(y))drdy

= 1
(2πε)2

∑
α6+α7=α

∑
|α1+...+α5|≤2M

∑
α8+...+α11=β

cα6,α7cα1,α2,α3,α4,α5cα8,α9,α10,α11∫
R4

1
〈r〉2M e

i(k−y)r
ε ∂α1

y ∂
α8
k χ(k − y)∂α2

y ∂
α9
k t

B
(
k, k+y

2

)
∂α7
r ∂

α3
y ∂

α10
k f

(
k+y

2
, r
)

∂α4
y ∂

α11
k tB

(
k+y

2
, y
)
yα6∂α5

y ψ(y))drdy,

where in (4.6) we used the equality

kαe
i(k−y)r

ε = (y − iε∂r)αe
i(k−y)r

ε ,
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we get∥∥∥kα∂βk (f̂
B,χ
ψ)(k)

∥∥∥
Hf

≤ CM
∑

α6+α7=α

∑
|α1+...+α5|≤2M

∑
α8+...+α11=β

|cα6,α7cα1,α2,α3,α4,α5cα8,α9,α10,α11|∫
R4

1
〈r〉2M−m

∥∥yα6∂α5
y ψ(y)

∥∥
Hf

drdy (4.7)

≤ C ′M sup
γ≤α,|β|≤2M

∥∥yγ∂βψ∥∥
L1(R2,Hf)

.

All in all, this implies that f̂
B,χ

maps S to S. Now we use the continuity of the
embedding S(R2,Hf) ↪→ L1(R2,Hf). Let for n,m ∈ N0

‖ψ‖n,m(S(R2,Hf))
:= sup
|α|≤n,|β|≤m

sup
k∈R2

∥∥∥kα∂βkψ(k)
∥∥∥
Hf

.

Then we have shown that for arbitrary n,m ∈ N0 there exist k, l ∈ N0 such that∥∥∥f̂ B,χ
ψ
∥∥∥
n,m(S(R2,Hf))

≤ C ‖ψ‖k,l(S(R2,Hf))
, which implies that f̂

B,χ
is a continuous

map from S to S.
For symbols f ∈ Sw(R4,L(Hf)) the proof works as well, just note that in (4.4)
(and analogously in (4.7)) instead of∥∥∂α3

y f(k+y
2
, r)
∥∥
L(Hf)

≤ C〈r〉m

we must use that w is an order function and hence there is an N > 0 so that∥∥∂α3
y f(k+y

2
, r)
∥∥
L(Hf)

≤ Cw(k+y
2
, r) ≤ C ′〈r〉Nw((k+y

2
, 0))

≤ C ′′〈r〉N〈y〉Nw((k−y
2
, 0))

≤ C ′′′〈r〉N〈y〉N〈k−y
2
〉Nw(0).

This yields ∥∥∥(f̂
B,χ
ψ)(k)

∥∥∥
Hf

≤ C sup
|α|≤2M

∥∥〈·〉N∂αψ(·)
∥∥
L1(R2,Hf)

.

�
Now for f ∈ Sw(R4,L(Hf))∪Smρ (R4,L(Hf)) the mapping f̂

B,χ
can be extended

in a natural way to a continuous mapping from S ′(R2,Hf) to S ′(R2,Hf) by putting

f̂
B,χ

(T )(ψ) := T (f̂ ∗
B,χ

(ψ)) for T ∈ S ′ and ψ ∈ S.

The next step is to assure that the Berry quantisation of a τ -equivariant symbol
maps τ -equivariant functions to τ -equivariant functions.
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Proposition 4.2.5. For f ∈ Swτ (R4,L(Hf)) ∪ Smρ,τ (R4,L(Hf)) we have

f̂
B,χ
S ′τ ⊂ S ′τ .

Proof.
This can be seen following the lines of the proof of B.3 in [Teu03]. Additionally,
we have to use (3.2). Let T ∈ S ′τ and ψ ∈ S(R2,Hf). Then

Lγ∗ f̂
B,χ
T (ψ) = T (f̂ ∗

B,χ
L−γ∗ψ)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y + γ∗)drdy)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k+γ∗−y)r

ε χ(k + γ∗ − y)tB
(
k, k−γ

∗+y
2

)
f ∗
(
k−γ∗+y

2
, r
)

tB
(
k−γ∗+y

2
, y − γ∗

)
ψ(y)drdy)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k+γ∗−y)r

ε χ(k + γ∗ − y)τ(γ∗)tB
(
k + γ∗, k+γ∗+y

2

)
f ∗
(
k+γ∗+y

2
, r
)
tB
(
k+γ∗+y

2
, y
)
τ(γ∗)−1ψ(y)drdy)

= T (L−γ∗τ(γ∗)f̂ ∗
B,χ
τ(γ∗)−1ψ) = T (f̂ ∗

B,χ
τ(γ∗)−1ψ)

= τ(γ∗)f̂
B,χ
T (ψ).

�
Now we identify the symbols for which the Berry quantisation does not depend

on the cutoff up to a “small“ error:

Proposition 4.2.6. Let f ∈ Swτ (R4,L(Hf)) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r,Hf) ∩ L2(R2

r,Hf)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r,L(Hf))
≤ hα(k) with hα ∈ C(R2,R≥0).

Then the Berry quantisation of this symbol does not depend on the cutoff χ up to
an error of O(ε∞), which means that for two smooth cutoff functions χ and χ̃ it
holds

f̂
B,χ

= f̂
B,χ̃

+O(ε∞).

Proof.
This proof works analogously to the proof of Lemma 4.2.14, so we do not give
details here. One only has to note that in equation (4.8), instead of 1− χ(v), one
has to write χ− χ̃. �
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Remark 4.2.7. Note that Proposition 4.2.6 includes symbols in Smρ,τ (R4,L(Hf))
with ρ > 0.

One of the advantages of the Berry quantisation is that if we have a symbol f
satisfying [f̂

B
,Π0] = 0, the symbol itself must commute pointwise with π0(k).

Proposition 4.2.8. Let f ∈ Swτ (R4,L(Hf)) ∪ Smρ,τ (R4,L(Hf)) and χ a smooth
cutoff function. Then it holds

[f(k, r), π0(k)] = 0 ∀k ∈ R2 iff [f̂
B,χ
,Π0] = 0.

Proof.

Let T ∈ S ′τ (R2,Hf) and ψ ∈ S(R2,Hf). Note that Π0 = π̂0(k)
τ

= π̂0(k)
B,χ

.
“⇒“

f̂
B,χ

Π0T (ψ) = T (k 7→ π0(k)f̂ ∗
B,χ
ψ(k))

= T (k 7→ π0(k) 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y)drdy)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
π0(y)

ψ(y)drdy) = T (f̂ ∗
B,χ

Π0ψ)

= Π0f̂
B,χ

(T )(ψ)

because of tB(x, y)π0(y) = π0(x)tB(x, y) and the assumption that f and π0 com-
mute. So we have

f̂
B,χ

Π0 = Π0f̂
B,χ
.

”⇐“
Let g(k, r) = [f(k, r), π0(k)]. Note that from Proposition B.3.5 it follows that g is
in the same symbol class as f . Then

Π0f̂
B,χ

(T )(ψ) = T (f̂ ∗
B,χ

Π0ψ)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
π0(y)

ψ(y)drdy)

= T (k 7→ π0(k) 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y)drdy − 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
[π0

(
k+y

2

)
, f ∗

(
k+y

2
, r
)
]

tB
(
k+y

2
, y
)
ψ(y)drdy)

= f̂
B,χ

Π0(T )(ψ)− ĝ B,χ(T )(ψ),
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which yields ĝ B,χ = 0 and therefore g(k, r) ≡ 0. �

Since we will have to deal with symbols that just satisfy [f̂
B
,Π0] = O(ε∞), we

also prove the following corollary:

Corollary 4.2.9. Let f ∈ Swτ (R4,L(Hf)) ∪ Smρ,τ (R4,L(Hf)), χ a smooth cutoff
function, and n ∈ N ∪ {∞}. Then we have

f̂diag

B,χ
= f̂

B,χ
+O(εn) iff [f̂

B,χ
,Π0] = O(εn),

where fdiag(k, r) = π0(k)f(k, r)π0(k) + π0(k)⊥f(k, r)π0(k)⊥.

Proof.
Let T ∈ S ′τ (R2,Hf) and ψ ∈ S(R2,Hf).
“⇒“
Using Proposition 4.2.8, we get

f̂
B,χ

Π0 = f̂diag

B,χ
Π0 +O(εn) = Π0f̂diag

B,χ
+O(εn) = Π0f̂

B,χ
+O(εn).

Note that the key point is that [fdiag(k, r), π0(k)] = 0.
”⇐“
Adopting the notation from the previous proof, we get from the subsequent Lemma
4.2.10

ĝ B,χ = [f̂
B,χ
,Π0] = O(εn).

Since f(k, r) − fdiag(k, r) = [g(k, r), π0(k)] := h(k, r), this yields, again using
Lemma 4.2.10,

f̂
B,χ

= f̂diag

B,χ
+ ĥ

B,χ
= f̂diag

B,χ
+ ĝ B,χΠ0 − Π0ĝ B,χ = f̂diag

B,χ
+O(εn).

�

Lemma 4.2.10. Let f ∈ Swτ (R4,L(Hf)) ∪ Smρ,τ (R4,L(Hf)) and χ a smooth cutoff
function. Then it holds

f̂π0

B,χ
= f̂(k, r)

B,χ

Π0

and
π̂0f

B,χ
= Π0f̂(k, r)

B,χ

,

where (fπ0)(k, r) = f(k, r)π0(k) and (π0f)(k, r) = π0(k)f(k, r).
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Proof.
Let T ∈ S ′τ (R2,Hf) and ψ ∈ S(R2,Hf). Then

f̂π0

B,χ
(T )(ψ) = T (π̂0f ∗

B,χ
ψ)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
π0

(
k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y)drdy)

= T (k 7→ π0(k) 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ψ(y)drdy) = T (Π0f̂ ∗
B,χ

(ψ))

= f̂
B,χ

Π0(T )(ψ).

Here we used tB(k, z)π0(z) = π0(k)tB(k, z). The second statement follows quite
analogously. �

There is also a version of the Calderon-Vaillancourt theorem:

Theorem 4.2.11. Let f ∈ S1
τ (R4,L(Hf)) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r,Hf) ∩ L2(R2

r,Hf)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r,L(Hf))
≤ hα(k) with hα ∈ C(R2,R≥0).

Then
f̂

B
∈ L(Hτ ).

Proof.
For the proof see the proof of Theorem 4.2.16. �

Remark 4.2.12. The theorem above includes symbols f ∈ Sm=0
ρ,τ (R4,L(Hf)) with

ρ > 0.

Yet another advantage of the quantisation is the usual property of the Weyl
quantisation: For symbols f with f̂

B
∈ L(Hτ ) the adjoint of the quantised symbol

should be the quantisation of the pointwise adjoint of the symbol f .

Proposition 4.2.13. Let f ∈ Swτ (R4,L(Hf))∪Smρ,τ (R4,L(Hf)) with f̂
B,χ
∈ L(Hτ ).

Then
(f̂

B,χ
)∗ = f̂ ∗

B,χ
.

Proof.
For the proof we follow the line of the proof of B.7 in [Teu03]. Let ψ ∈ Hτ , φ ∈ C∞τ ,
and φ̃ = 1M∗φ. Denote by

Kf (k, y) := 1
(2πε)2

∫
R2

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

dr
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the distributional integral kernel of f̂
B,χ

regarded as an operator on S ′(R2.Hf).
From the τ -equivariance of the symbol f and property (3.2) it follows

Kf (k − γ∗, y − γ∗) = τ(γ∗)Kf (k, y)τ(γ∗)−1.

Thus, using φ̃ as a test function, we get

〈φ, f̂
B,χ
ψ〉Hτ =

∫
M∗
〈φ(k), f̂

B,χ
ψ(k)〉Hf

dk =

∫
R2

〈φ̃(k), f̂
B,χ
ψ(k)〉Hf

dk

= f̂
B,χ
ψ(φ̃) = ψ(f̂ ∗

B,χ
φ̃) =

∫
R2

〈f̂ ∗
B,χ
φ̃(k), ψ(k)〉Hf

dk

=

∫
R2

〈
∫
R2

Kf∗(k, y)φ̃(y)dy, ψ(k)〉Hf
dk =

∫
R2

〈
∫
M∗

Kf∗(k, y)φ(y)dy, ψ(k)〉Hf
dk

=

∫
M∗

∑
γ∗∈Γ∗

〈
∫
M∗

Kf∗(k + γ∗, y)φ(y)dy, ψ(k + γ∗)〉Hf
dk

=

∫
M∗

∑
γ∗∈Γ∗

〈
∫
M∗

τ(γ∗)−1Kf∗(k, y − γ∗)τ(γ∗)φ(y)dy, τ(γ∗)−1ψ(k)〉Hf
dk

=

∫
M∗

∑
γ∗∈Γ∗

〈
∫
M∗

Kf∗(k, y − γ∗)φ(y − γ∗)dy, ψ(k)〉Hf
dk

=

∫
M∗
〈
∫
R2

Kf∗(k, y)φ(y)dy, ψ(k)〉Hf
dk =

∫
M∗
〈(f̂ ∗

B,χ
φ)(k), ψ(k)〉Hf

dk

= 〈f̂ ∗
B,χ
φ, ψ〉Hτ .

Since C∞τ is dense in Hτ and f̂
B,χ

is continuous, the claim follows. �
Now we want to compare this new quantisation to the τ -quantisation. The main

idea to convert the symbols is to do a Taylor expansion of the parallel transport
maps in the formula for f̂

B,χ
. The other difference between the formulas for f̂

τ

and f̂
B,χ

is the cutoff function. Hence, to get in a better position for comparing
these quantisations, we first show that adding an arbitrary cutoff to the definition
of f̂

τ
just causes an error of order O(ε∞).

Lemma 4.2.14. Let f ∈ Swτ (R4,L(Hf)) fulfil

(∗) ∃α0 ∈ N so that for all |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r,Hf) ∩ L2(R2

r,Hf)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r,L(Hf))
≤ hα(k) with hα ∈ C(R2,R≥0).

Then with

f̂
τ,χ
ψ(k) := 1

(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)f
(
k+y

2
, r
)
ψ(y)drdy
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and χ a smooth cutoff function, it holds

f̂
τ

= f̂
τ,χ

+O(ε∞).

Proof.
Using

(1− χ(v))e
ivr
ε = (1− χ(v))

(
−ε2∆r

|v|2

)M
e
ivr
ε for M ∈ N (4.8)

and the fact that for M large enough we have ∆M
r f(k, r) ∈ L2(R2

r,L(Hf)) ∩
L1(R2

r,L(Hf)), performing a partial integration we get

f̂
τ
ψ(k)− f̂

τ,χ
ψ(k) = 1

(2πε)2

∫
R4

e
i(k−y)r

ε (1− χ(k − y))f
(
k+y

2
, r
)
ψ(y)drdy

= (−1)Mε2M

(2πε)2

∫
R4

e
i(k−y)r

ε
(1−χ(k−y))
|k−y|2M ∆M

r f
(
k+y

2
, r
)
ψ(y)drdy

= (−1)Mε2M2π
(2πε)2

∫
R2

(1−χ(k−y))
|k−y|2M F(∆Mfk+y

2

)
(
y−k
ε

)
ψ(y)dy.

Hence with the same strategy as in the proof of Theorem 4.2.16,∥∥∥f̂ τ
ψ(k)− f̂

τ,χ
ψ(k)

∥∥∥
Hf

≤ Cε2M−2

∫
R2

∥∥∥∥F(∆Mfk+y
2

)
(
y−k
ε

)∥∥∥∥
L(Hf)

‖ψ(y)‖Hf
dy

≤ C ′ε2M−1 ‖ψ‖Hτ

holds and thus ∥∥∥f̂ τ
− f̂

τ,χ
∥∥∥
L(Hτ )

≤ C ′ε2M−1.

�

Remark 4.2.15. Note that Lemma 4.2.14 includes symbols in Smρ,τ (R4,L(Hf))
with ρ > 0.

The next step is to analyse the difference between the operators f̂
τ
and f̂

B

and to show how we can connect them.

Theorem 4.2.16. Let f ∈ S1
τ (R4,L(Hf)) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 we have ∂αr f(k, r) ∈ L1(R2
r,Hf) ∩ L2(R2

r,Hf)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r,L(Hf))
≤ hα(k) with hα ∈ C(R2,R≥0),

or let f ∈ Smρ,τ (R4,L(Hf)) with ρ > 0. Then
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(i) For every N ∈ N0 there is a correction f
(N)
c in the same symbol class as f

so that

f̂
τ

= f̂
(N)
c

B

+O(εN+1).

For N ∈ N0, the correction f (N)
c of the symbol f is given by

f (N)
c (k, r) =

N∑
n=0

εnfcn(k, r),

where

fcn(k, r) =
n∑
j=0

(
i
2

)n ∑
α∈{1,2}j

∑
β∈{1,2}n−j

cα(k)∂rα1
...∂rαj∂rβ1

...∂rβn−j f(k, r)c̃β(k),

with

cα(k) = 1
j!
∂yα1

...∂yαj t
B(k, y)|y=k for α ∈ {1, 2}j and j ≥ 1,

c̃α(k) = 1
j!

(−1)j∂yα1
...∂yαj t

B(y, k)|y=k for α ∈ {1, 2}j and j ≥ 1,

cα(k) = c̃α(k) = idHf
for α ∈ {1, 2}0.

For f ∈ S1
τ (R4,L(Hf)), the correction f (N)

c fulfils (∗).
For f ∈ Smρ,τ (R4,L(Hf)), it even holds fcn ∈ Sm−nρρ,τ (R4,L(Hf)).
In particular, we have

fc0(k, r) = f(k, r)

and
fc1(k, r) = − i

2
(D(k)∇rf(k, r) +∇rf(k, r)D(k)) ,

where D(k) = ∇k −∇B
k = π⊥0 (k)∇kπ0(k) + π0(k)∇kπ

⊥
0 (k).

(ii) For every N ∈ N0 there is a correction f
(N)
c in the same symbol class as f

so that
f̂

B
= f̂

(N)
c

τ

+O(εN+1).

For N ∈ N0, the correction f (N)
c of the symbol f is given by

f (N)
c (k, r) =

N∑
n=0

εnfcn(k, r),

where

fcn(k, r) =
n∑
j=0

(
i
2

)n ∑
α∈{1,2}j

∑
β∈{1,2}n−j

cα(k)∂rα1
...∂rαj∂rβ1

...∂rβn−j f(k, r)c̃β(k),
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with

cα(k) = 1
j!
∂yα1

...∂yαj t
B(y, k)|y=k for α ∈ {1, 2}j and j ≥ 1,

c̃α(k) = 1
j!

(−1)j∂yα1
...∂yαj t

B(k, y)|y=k for α ∈ {1, 2}j and j ≥ 1,

cα(k) = c̃α(k) = idHf
for α ∈ {1, 2}0.

For f ∈ S1
τ (R4,L(Hf)), the correction f (N)

c fulfils (∗).
For f ∈ Smρ,τ (R4,L(Hf)) with ρ > 0, it even holds fcn ∈ Sm−nρρ,τ (R4,L(Hf)).
In particular, we have

fc0(k, r) = f(k, r)

and
fc1(k, r) = i

2
(D(k)∇rf(k, r) +∇rf(k, r)D(k)) ,

where D(k) = ∇k −∇B
k = π⊥0 (k)∇kπ0(k) + π0(k)∇kπ

⊥
0 (k).

Proof.
The proof is divided into six parts. In parts 1-5, we prove the theorem for symbols
f ∈ S1

τ (R4,L(Hf)) that fulfil (∗).

• In the first part, we show that f (N)
c is in the same symbol class as f and that

it fulfils (∗).

• In the second part, we compute a Taylor expansion of the parallel transport
tB(x, y) which we need for the proof and put tB(z + δ, z)f(z, r)tB(z, z − δ)
into the form we need, which mainly means arranging it after powers of δ.
Then we use this to show how the corrections f (N)

c of the symbol f emerge.

• The third step is to show that f̂
B

= f̂
(N)
c

τ

+ O(εN+1). Thereto, the main
work will be required for the estimation of the term caused by the remainder
term of the Taylor expansion. Furthermore, we will have to use the Calderon-
Vaillancourt theorem for the τ -quantisation. Up to here, we have shown

f̂
B

= f̂
(N)
c

τ

+O(εN+1).

• In the fourth part, we deduce from this result a Calderon-Vaillancourt the-
orem for the Berry quantisation, that is to say we prove Theorem 4.2.11.

• In the fifth step, we show f̂
τ

= f̂
(N)
c

B

+O(εN+1). The proof works as in part
three, so we just point out the few modifications which have to be done.

• In the sixth step, we give the modifications of the proof for symbols f ∈
Smρ,τ (R4,L(Hf)) with ρ > 0.
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Part 1.
Let f ∈ S1

τ (R4,L(Hf)) fulfil (∗). We want to verify that f (N)
c is in the same

symbol class as f and that it fulfils (∗). Thereto we show that cα respectively c̃α
are symbols in S1

τ (R4,L(Hf)): Since

cα(k − γ∗) = 1
j!
∂yα1

...∂yαj t
B(y, k − γ∗)|y=k−γ∗

= 1
j!
∂yα1

...∂yαj τ(γ∗)tB(y + γ∗, k)τ(γ∗)−1|y=k−γ∗

= 1
j!
∂yα1

...∂yαj τ(γ∗)tB(y, k)τ(γ∗)−1|y=k

= τ(γ∗)cα(k)τ(γ∗)−1,

cα is τ -equivariant, which directly induces the boundedness of cα together with all
the derivatives. The same is true for c̃α. Using Proposition B.3.5 then yields f (N)

c ∈
S1
τ (R4,L(Hf)) as a sum of products of symbols in this symbol class. Furthermore,

from the boundedness of the cα we immediately get that f (N)
c fulfils (∗).

Part 2.
The only differences between the integral formulas of the quantisations are the
cutoff function χ and the twofold occurrence of the map tB around the symbol
which is quantised. However, the appearance of the cutoff χ is not really a problem
because for the symbols considered here we can use Lemma 4.2.14. So the key idea
for the proof is to somehow ”mingle“ the map tB with the symbol f . The first naive
idea one might have is to just take tB(k, k+y

2
)f(k+y

2
, r)tB(k+y

2
, y) as a new symbol.

But this is not possible because a symbol must be a function depending only on
k+y

2
and r and not also on k. So our strategy to deal with this is to compute a

Taylor expansion of the above expression and to show that the remainder term
does only cause a small error. Let us do this more precisely:
Our idea is that k − y is ”small” because for the symbols in consideration the
quantisation does (up to an error of O(ε∞)) not depend on the cutoff, so the
support can be made small. Hence with

k+y
2

= z and δ = k−y
2

we can write
k = z + δ and y = z − δ.

The next step is straightforward: We just compute the Taylor expansion of
tB(z + δ, z) and tB(z, z − δ) to get a new symbol that just depends on k+y

2
and r:

tB(z + δ, z) =
N+1∑
j=0

1
j!

∑
α∈{1,2}j

∂yα1
...∂yαj t

B(y, z)|y=zδα1 ..δαj +RN+2(z, ξ, δ)

with

RN+2(z, ξ, δ) =
∑

α∈{1,2}N+2

1
(N+2)!

∂yα1
...∂yαN+2

tB(y, z)|y=ξδα1 ..δαN+2
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and ξ = z + tδ with t ∈ [0, 1]. For later use we define

rα(z, ξ) := 1
(N+2)!

∂yα1
...∂yαN+2

tB(y, z)|y=ξ

and get
RN+2(z, ξ, δ) =

∑
α∈{1,2}N+2

rα(z, ξ)δα1 ..δαN+2

and

tB(z + δ, z) =
N+1∑
j=0

∑
α∈{1,2}j

cα(z)δα1 ..δαj +RN+2(z, ξ, δ).

Analogously

tB(z, z − δ) =
N+1∑
j=0

1
j!

∑
α∈{1,2}j

(−1)j∂yα1
...∂yαj t

B(z, y)|y=zδα1 ..δαj + R̃N+2(z, ξ̃, δ)

with
R̃N+2(z, ξ̃, δ) =

∑
α∈{1,2}N+2

(−1)N

(N+2)!
∂yα1 ...∂yαN+2

tB(z, y)|y=ξ̃δα1 ..δαN+2

and ξ̃ = z − tδ with t ∈ [0, 1]. Again we set

r̃α(z, ξ̃) := (−1)N+2

(N+2)!
∂yα1

...∂yαN+2
tB(z, y)|y=ξ̃

and get
R̃N+2(z, ξ̃, δ) =

∑
α∈{1,2}N+2

r̃α(z, ξ̃)δα1 ..δαN+2

and

tB(z, z − δ) =
N+1∑
j=0

∑
α∈{1,2}j

c̃α(z)δα1 ..δαj + R̃N+2(z, ξ̃, δ).

Though this can be done for every N ∈ N0, for the proof we choose N ≥ α0 − 2,
which we need when we estimate the remainder terms of the expansion.
Using the Taylor expansions above, we get after arranging the summands according
to the powers of δ

tB(z + δ, z)f(z, r)tB(z, z − δ)

=
N∑
n=0

n∑
j=0

∑
α∈{1,2}j

∑
β∈{1,2}n−j

cα(z)f(z, r)c̃β(z)δα1 ...δαjδβ1 ...δβn−j

+RN+1(z, ξ, ξ̃, δ, r),
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where cα(k) and c̃α(k) are defined as above. The remainder term RN+1 can be
described more explicitly as follows:

RN+1(z, ξ, ξ̃, δ, r)

=
N+1∑
m=0

N+1∑
j=m

∑
α∈{1,2}j

∑
β∈{1,2}N+1+m−j

cα(z)f(z, r)c̃β(z)δα1 ...δαjδβ1 ...δβN+1+m−j

+
N+1∑
m=0

∑
α∈{1,2}N+2

∑
β∈{1,2}m

(rα(z, ξ)f(z, r)c̃β(z)δα1 ...δαN+2
δβ1 ...δβm

+cβ(z)f(z, r)r̃α(z, ξ̃)δα1 ...δαN+2
δβ1 ...δβm)

+
∑

α∈{1,2}N+2

∑
β∈{1,2}N+2

rα(z, ξ)f(z, r)r̃β(z, ξ̃)δα1 ...δαN+2
δβ1 ...δβN+2

.

Here we again have arranged the summands according to powers of δ, but we also
have distinguished between summands which do not include rα and r̃α, summands
which include one of them, and summands which include both (and thus are the
only coefficients of δα with |α| = 2N + 4). We will use this representation when
we estimate the remainder term in step three.
Now we show how the corrections f (N)

c are derived. Let ψ ∈ C∞τ (R2,Hf), which is
a dense subset of Hτ , and χ a smooth cutoff function. Then with δ = k−y

2

(f̂
B,χ
ψ)(k)

= 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f
(
k+y

2
, r
)
tB
(
k+y

2
, y
)
ψ(y)drdy

=
N∑
n=0

n∑
j=0

∑
α∈{1,2}j

∑
β∈{1,2}n−j

1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)cα
(
k+y

2

)
f
(
k+y

2
, r
)

c̃β
(
k+y

2

)
δα1 ...δαjδβ1 ...δβn−jψ(y)drdy

+ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)RN+1

(
k+y

2
, ξ, ξ̃, δ, r

)
ψ(y)drdy

if we can show that the remainder term in the last row,

TN+1ψ(k) := 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)RN+1

(
k+y

2
, ξ, ξ̃, δ, r

)
ψ(y)drdy,

defines a convergent integral. This will be done in step three. Here we just take

care of the first sum without the remainder term and show that it equals f̂ (N)
c

τ,χ

.
So let n ∈ {0, 1, .., N}, j ∈ {0, 1, ..n}, α ∈ {1, 2}j, and β ∈ {1, 2}n−j. We look at
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the accordant summand:

1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)cα
(
k+y

2

)
f
(
k+y

2
, r
)
c̃β
(
k+y

2

)
δα1 ...δαjδβ1 ...δβn−jψ(y)drdy

= 1
(2πε)2

(−iε
2

)n ∫
R4

(
∂rα1

...∂rαj∂rβ1
...∂rβn−j e

i(k−y)r
ε

)
χ(k − y)cα

(
k+y

2

)
f
(
k+y

2
, r
)

c̃β
(
k+y

2

)
ψ(y)drdy (4.9)

= 1
(2πε)2

(−iε
2

)n ∫
R4

(
∂rα1

...∂rαj∂rβ1
...∂rβn−j

(
(1−ε2∆y)M

〈r〉2M e
i(k−y)r

ε

))
χ(k − y)

cα
(
k+y

2

)
f
(
k+y

2
, y
)
c̃β
(
k+y

2

)
ψ(y)drdy (4.10)

= 1
(2πε)2

(−iε
2

)n
(−1)n

∫
R4

(
(1−ε2∆y)M

〈r〉2M e
i(k−y)r

ε

)
χ(k − y)cα

(
k+y

2

)
(
∂rα1

...∂rαj∂rβ1
...∂rβn−j f

(
k+y

2
, r
))
c̃β
(
k+y

2

)
ψ(y)drdy (4.11)

= 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)
(
iε
2

)n
cα
(
k+y

2

) (
∂rα1

...∂rαj∂rβ1
...∂rβn−j f

(
k+y

2
, r
))

c̃β
(
k+y

2

)
ψ(y)drdy.

In equality (4.9) we used the identity

δje
i(k−y)r

ε = −iε
2
∂rje

i(k−y)r
ε , (4.12)

and in equality (4.10) we used the identity

(1−ε2∆y)M

〈r〉2M e
i(k−y)r

ε = e
i(k−y)r

ε for M ∈ N,

which is crucial for the definition of the integral as an elliptic integral. Since
f(k, r) is bounded, the integration by parts in equality (4.11) is possible if we take
M large enough so that the boundary term of the integration by parts vanishes.
This procedure, of course, works for every summand, meaning that so far we have

f̂
B,χ
ψ(k) = f̂

(N)
c

τ,χ

ψ(k) + TN+1ψ(k)

if we assume the convergence of TN+1ψ(k). This leads us to part three, where we
will not only prove the convergence of this integral, but moreover will show that
TN+1 is of order O(εN+1).

Part 3.
We are left to show that for ψ ∈ C∞τ

TN+1ψ(k) := 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)RN+1(z, ξ, ξ̃, δ, r)ψ(y)drdy
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is convergent, defines a τ -equivariant function, and it holds

‖TN+1ψ‖Hτ ≤ CN+1ε
N+1 ‖ψ‖Hτ .

Thereto we have to take a closer look at the representation of the remainder term
RN+1 from part two. The summands of the representation where rα and r̃α do
not appear can be treated as follows: As in part two, we can perform a partial
integration using the identity (4.12) and add εN+1+m as well as the maps cα and
c̃α to ∂rα1

..∂rαj∂rβ1
..∂rβN+1+m−j

f(k, r). Then we use Propositions B.3.5 and B.3.6
and get that these summands are of order O(εN+1).
The obstruction that we cannot estimate the remaining terms of TN+1ψ(k) anal-
ogously is that the terms which include rα or r̃α do not only depend on k+y

2
and

r, but also depend on ξ respectively ξ̃. Thus we cannot treat them as symbols
and use Proposition B.3.6. Let us look at an arbitrary summand of TN+1ψ(k)
which contains rα and which we name ρ(rα, c̃β)ψ(k): For m ∈ {0, 1, ...N + 1},
α ∈ {1, 2}N+2, and β ∈ {1, 2}m we get with z = k+y

2

ρ(rα, c̃β)ψ(k)

:= 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)rα(z, ξ)f(z, r)c̃β(z)δα1 ...δαN+2
δβ1 ...δβmψ(y)drdy

= (−iε
2

)N+m+2 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)rα(z, ξ)∂rα1
...∂rαN+2

∂rβ1
...∂rβmf(z, r)

c̃β(z)ψ(y)drdy (4.13)

= (−iε
2

)N+m+2 1
2πε2

∫
R2

χ(k − y)rα(z, ξ)F(∂α1 ...∂αN+2
∂β1 ...∂βmfz)

(
y−k
ε

)
c̃β(z)ψ(y)dy.

In equality (4.13), we made the usual partial integration. F is the Fourier trans-
form in L2(R2,L(Hf)). Note that the condition N ≥ α0 − 2 assures that we have
∂rα1

...∂rαN+2
∂rβ1

...∂rβmfz(r) ∈ L2(R2
r,L(Hf)). Thus, the Hf-norm of the whole

term can be estimated by

‖ρ(rα, c̃β)ψ(k)‖Hf

≤ C1ε
N+m

∫
R2

χ(k − y) ‖rα(z, ξ)‖L(Hf)

∥∥F(∂α1 ...∂αN+2
∂β1 ...∂βmfz)

(
y−k
ε

)∥∥
L(Hf)

‖c̃β(z)‖L(Hf)
‖ψ(y)‖Hf

dy

≤ C2ε
N+m

∫
R2

∥∥F(∂α1 ...∂αN+2
∂β1 ...∂βmfz)

(
y−k
ε

)∥∥
L(Hf)

‖ψ(y)‖Hf
dy (4.14)
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because c̃β is bounded and, recalling ξ = k+y
2

+ tk−y
2

with t ∈ [0, 1],

χ(k − y)
∥∥rα(k+y

2
, ξ)
∥∥
L(Hf)

≤ c sup
k∈R2

sup
t∈[0,1]

sup
v,w∈1

2
suppχ

∥∥∥∂xα1
...∂xαN+2

tB(x, k − w)|x=k−w+tv

∥∥∥
L(Hf)

≤ c sup
γ∗∈Γ∗

sup
k∈M∗

sup
t∈[0,1]

sup
v,w∈1

2
suppχ

∥∥∥∂xα1
...∂xαN+2

tB(x, k − w − γ∗)|x=k−γ∗−w+tv

∥∥∥
L(Hf)

≤ c sup
k∈M∗

sup
t∈[0,1]

sup
v,w∈1

2
suppχ

∥∥∥τ(γ∗)∂xα1
...∂xαN+2

tB(x, k − w)|x=k−w+tvτ(γ∗)−1
∥∥∥
L(Hf)

≤ c′.

Then we insert 〈y − k〉2〈y − k〉−2 in the integral in (4.14) and use the Cauchy-
Schwarz inequality in L2(R2) to get the further estimation

‖ρ(rα, c̃β)ψ(k)‖Hf

≤ C2ε
N+m

(∫
R2

〈y − k〉−4 ‖ψ(y)‖2
Hf

dy

)1
2

× (4.15)

(∫
R2

∥∥F(∂α1 ...∂αN+2
∂β1 ...∂βmfz)

(
y−k
ε

)∥∥2

L(Hf)
〈y − k〉4dy

)1
2

. (4.16)

The integral in (4.16) is estimated as follows using the condition N ≥ α0 − 2:∫
R2

∥∥F(∂α1 ...∂αN+2
∂β1 ...∂βmfz)

(
y−k
ε

)∥∥2

L(Hf)
〈y − k〉4dy

= ε2

∫
R2

∥∥∥F(∂α1 ...∂αN+2
∂β1 ...∂βmfk+

εy
2

)(y)
∥∥∥2

L(Hf)
〈εy〉4〈y〉4〈y〉−4dy

≤ ε2

∫
R2

∥∥∥(1−∆r)(1− ε2∆r)∂rα1
..∂rαN+2

∂rβ1
..∂rβmf(k + εy

2
, r)
∥∥∥2

L1(R2
r,L(Hf))

〈y〉−4dy

≤ ε2 sup
k∈M∗

∥∥∥(1−∆r)(1− ε2∆r)∂rα1
...∂rαN+2

∂rβ1
...∂rβmf(k, r)

∥∥∥2

L1(R2
r,L(Hf))∫

R2

〈y〉−4dy

= C3ε
2.

Note that in the last inequality, we used that τ is a unitary.
The integral in (4.15) is estimated as follows: Let k = [k]− γ∗k with [k] ∈M∗ and
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γ∗k ∈ Γ∗. Then∫
R2

〈y − k〉−4 ‖ψ(y)‖2
Hf

dy =
∑
γ∗∈Γ∗

∫
M∗
〈y + γ∗ − k〉−4 ‖ψ(y + γ∗)‖2

Hf
dy

≤
∫
M∗
‖ψ(y)‖2

Hf
dy
∑
γ∗∈Γ∗

sup
y∈M∗
〈y + γ∗ − k〉−4

= ‖ψ‖2
Hτ

∑
γ∗∈Γ∗

sup
y∈M∗
〈y + γ∗ − [k] + γ∗k〉−4

= ‖ψ‖2
Hτ

∑
γ∗∈Γ∗

sup
y∈M∗
〈y + γ∗ − [k]〉−4

≤ ‖ψ‖2
Hτ

∑
γ∗∈Γ∗

sup
y∈2M∗

〈y + γ∗〉−4

≤ C4 ‖ψ‖2
Hτ .

So far we have shown

‖ρ(rα, c̃β)ψ(k)‖Hf
≤ CεN+m+1 ‖ψ‖Hτ

and hence TN+1ψ(k) is a convergent integral.
A quick computation shows that the thereby given function is τ -equivariant; note
thereto that (3.2) implies rα(z − γ∗, ξ − γ∗) = τ(γ∗)rα(z, ξ)τ(γ∗)−1. Let ψ ∈ C∞τ .
Then

ρ(rα, c̃β)ψ(k − γ∗)

=
(−iε

2

)N+m+2 1
(2πε)2

∫
R4

e
i(k−γ∗−y)r

ε χ(k − γ∗ − y)rα(k−γ
∗+y

2
, ξ)

∂rα1
...∂rαN+2

∂rβ1
...∂rβmf(k−γ

∗+y
2

, r)c̃β(k−γ
∗+y

2
)ψ(y)drdy

with ξ ∈ [k−γ
∗+y

2
, k − γ∗]

=
(−iε

2

)N+m+2 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)rα(k+y
2
− γ∗, ξ)

∂rα1
...∂rαN+2

∂rβ1
...∂rβmf(k+y

2
− γ∗, r)c̃β(k+y

2
− γ∗)ψ(y − γ∗)drdy

with ξ ∈ [k+y
2
− γ∗, k − γ∗]

=
(−iε

2

)N+m+2 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)τ(γ∗)rα(k+y
2
, ξ + γ∗)τ(γ∗)−1τ(γ∗)

∂rα1
...∂rαN+2

∂rβ1
...∂rβmf(k+y

2
, r)τ(γ∗)−1τ(γ∗)c̃β(k+y

2
)τ(γ∗)−1τ(γ∗)ψ(y)drdy

with ξ ∈ [k+y
2
− γ∗, k − γ∗]

= τ(γ∗)ρ(rα, c̃β)ψ(k).
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So now we know that ρ(rα, c̃β)ψ ∈ Hτ and finally we get

‖ρ(rα, c̃β)ψ‖Hτ =

(∫
M∗
‖ρ(rα, c̃β)ψ(k)‖2

Hf
dk

)1
2

≤ C5ε
N+m+1 ‖ψ‖Hτ ,

which suffices because C∞τ is dense in Hτ .
The other parts can be estimated in the same way, so we have proven∥∥∥∥f̂ B

− f̂ (N)
c

τ
∥∥∥∥
L(Hτ )

≤ CN+1ε
N+1.

Part 4.
Now using Theorem B.3.6, the proof of Theorem 4.2.11, the Calderon-Vaillancourt
version for the Berry quantisation, is short:

sup
ψ∈C∞τ ,‖ψ‖Hτ≤1

∥∥∥f̂ B
ψ
∥∥∥
Hτ

≤ sup
ψ∈C∞τ ,‖ψ‖Hτ≤1

∥∥∥(f̂
B
− f̂

τ
)ψ
∥∥∥
Hτ

+ sup
ψ∈C∞τ ,‖ψ‖Hτ≤1

∥∥∥f̂ τ
ψ
∥∥∥
Hτ

≤ c1ε+ c2.

Part 5.
With Theorem 4.2.11 at our disposal, we can do the proof the other way round
and show

f̂
τ

= f̂
(N)
c

B

+O(εN+1).

The proof works as in step two and three, so we just point out briefly the two basic
modifications.
In step two, we start with f̂

τ
. To compare it with f̂

B
, we insert the identity maps

tB(k, k+y
2

)tB(k+y
2
, k) and tB(y, k+y

2
)tB(k+y

2
, y) around the symbol f in the formula

for the τ -quantisation and take care of the term tB(k+y
2
, k)f(k+y

2
, r)tB(y, k+y

2
) with

the methods above. The difference is that the derivatives in the formulas for the
cα, rα, etc. are now supposed to fall in each case onto the other components.
The second difference is the occurrence of the parallel transport maps tB(k, k+y

2
)

and tB(k, k+y
2

) in the remainder terms which are estimated in step three. That
is why in this case, we need the Calderon-Vaillancourt theorem for the Berry
quantisation and not the one for the τ -quantisation. In the second estimation,
the maps tB do not cause problems because their norm equals one since they are
unitary maps.

Part 6.
Now we briefly point out the changes of the proof if we take a symbol f ∈
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Smρ,τ (R4,L(Hf)) with ρ > 0. In step one, we have already asserted that cα ∈
S1
τ (R4,L(Hf)). Since it does not depend on r, it also holds cα ∈ S0

ρ,τ (R4,L(Hf))

for every ρ > 0. Using ∂αr f ∈ S
m−|α|ρ
ρ,τ (R4,L(Hf)), we get from Proposition B.3.5

fcn ∈ Sm−nρρ,τ (R4,L(Hf)) and f (N)
c ∈ Smρ,τ (R4,L(Hf)).

In part two, nothing changes but the fact that we must do the Taylor expansions
for N > m+4

ρ
− 2 to assure that the respective derivatives of f are in L1 ∩L2 with

‖∂αr f(k, r)‖L1(R2
r,L(Hf))

≤ cα and that they are in S1
τ , which is both needed in the

estimation for the remainder term in part three. �

Remark 4.2.17. The theorem also implies the existence of a semiclassical symbol
fc �

∑
n≥0 ε

nfcn in the accordant symbol class which satisfies f̂
τ

= f̂c

B
+O(ε∞)

and the other way round. Moreover, we can also correct semiclassical symbols.
This is the content of the following corollary.

Corollary 4.2.18. Let f ∈ S1
τ (ε,L(Hf)) with f �

∑
n≥0 ε

nfn fulfil

(∗) for every n ∈ N0 there is αn ∈ N so that for |α| ≥ αn it holds ∂αr fn(k, r) ∈
L1(R2

r,Hf) ∩ L2(R2
r,Hf) for all k ∈ R2 and ‖∂αr fn(k, r)‖L1(R2

r,L(Hf))
≤ hn,α(k)

with hn,α ∈ C(R2,R≥0),

or let f ∈ Smρ,τ (ε,L(Hf)) with ρ > 0.

(i) There is a semiclassical symbol fc in the same symbol class as f so that

f̂
τ

= f̂c

B
+O(ε∞).

It holds
fc �

∑
n≥0

εngn,

where

gn =
n∑
j=0

(fj)c(n−j),

where we used the notation from Theorem 4.2.16, which means that (fj)c(n−j)
is the (n − j)th correction of the ordinary symbol fj according to Theorem
4.2.16(i).
For f ∈ S1

τ (ε,L(Hf)) the correction fc fulfils (∗).
In particular, the principal and subprincipal symbol of fc read

g0(k, r) = (fc)0(k, r) = f0(k, r)

and

g1(k, r) = (fc)1(k, r) = f1(k, r)− i
2

(D(k)∇rf0(k, r) +∇rf0(k, r)D(k)) ,

where D(k) = ∇k −∇B
k = π⊥0 (k)∇kπ0(k) + π0(k)∇kπ

⊥
0 (k).
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(ii) There is a semiclassical symbol fc in the same symbol class as f so that

f̂
B

= f̂c

τ
+O(ε∞).

It holds
fc �

∑
n≥0

εngn,

where

gn =
n∑
j=0

(fj)c(n−j),

where we used the notation from Theorem 4.2.16, which means that (fj)c(n−j)
is the (n − j)th correction of the ordinary symbol fj according to Theorem
4.2.16(ii).
For f ∈ S1

τ (ε,L(Hf)) the correction fc fulfils (∗).
In particular, the principal and subprincipal symbol of fc read

g0(k, r) = (fc)0(k, r) = f0(k, r)

and

g1(k, r) = (fc)1(k, r) = f1(k, r) + i
2

(D(k)∇rf0(k, r) +∇rf0(k, r)D(k)) ,

where D(k) = ∇k −∇B
k = π⊥0 (k)∇kπ0(k) + π0(k)∇kπ

⊥
0 (k).

Proposition 4.2.19. Let f be a symbol which satisfies the assumptions of Theorem
4.2.16 and is self-adjoint. Then also its correction fc is self-adjoint.

Proof.
Let first fc be the correction of f in the sense of Theorem 4.2.16 (i). We will just
give the proof for this case since the other case can be proven analoguosly. First
note that for α ∈ {1, 2}j and j ≥ 0 it holds

(cα(k))∗ = 1
j!

(∂yα1
...∂yαj t

B(k, y)|y=k)
∗ = 1

j!
∂yα1

...∂yαj t
B(y, k)|y=k = (−1)j c̃α(k).
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Thus we get

(f (N)
c (k, r))∗

=
N∑
n=0

n∑
j=0

(−iε
2

)n ∑
α∈{1,2}j

∑
β∈{1,2}n−j

(c̃β(k))∗∂rα1
..∂rαj∂rβ1

..∂rβn−j f(k, r)(cα(k))∗

=
N∑
n=0

n∑
j=0

(−1)n
(
iε
2

)n ∑
α∈{1,2}j

∑
β∈{1,2}n−j

(−1)n−jcβ(k)∂rα1
..∂rαj∂rβ1

..∂rβn−j f(k, r)

(−1)j c̃α(k)

=
N∑
n=0

n∑
j=0

(
iε
2

)n ∑
α∈{1,2}j

∑
β∈{1,2}n−j

cβ(k)∂rα1
...∂rαj∂rβ1

...∂rβn−j f(k, r)c̃α(k)

= f (N)
c (k, r).

�

4.3 The θ-quantisation
Now we are in a position to compute a correction fc of f so that the difference
between the τ -quantisation of f and the Berry quantisation of fc is of order O(ε∞).
The next step is to exploit the unitary equivalence of the connections ∇Berry and
∇θ = U θ∇BU θ∗ and to “absorb“ the unitary map U θ into a new quantisation,
namely the θ-quantisation Opθ. Thereto, we first introduce the θ-quantisation and
the corresponding symbols. Note that the idea for the quantisation is exactly the
same as the one for the Berry quantisation, which is to use the parallel transport
of the desired connection in the definition of the quantisation. Then we show how
the symbol has to be changed to get

U θf̂
B,χ
U θ∗ = f̂θ

θ,χ
.

The emerging pseudodifferential operator f̂θ
θ,χ

does not operate on Hτ any more
but on Hθ. Thus we also expect the accordant symbol to be in C∞(R4,C) and not
in C∞(R4,L(Hf)).

Definition 4.3.1. Let f ∈ Sw(R4,C)∪ Smρ (R4,C) and χ be a smooth cutoff func-
tion. Then for ψ ∈ S(R2,C) we define the θ-quantisation by

f̂
θ,χ
ψ(k) := 1

(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tθ (k, y) f
(
k+y

2
, r
)
ψ(y)drdy,

where tθ(x, y) is the parallel transport along the straight line from y to x with
respect to the connection ∇θ = U θ∇BU θ∗.
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Remark 4.3.2. In this case, the parallel transport map tθ appears only once in
the quantisation formula and not twice as in the Berry connection. This happens
because the symbol and the parallel transport maps are each C-valued and hence
it holds

tθ(k, k+y
2

)f(k+y
2
, r)tθ(k+y

2
, y) = tθ(k, k+y

2
)tθ(k+y

2
, y)f(k+y

2
, r) = tθ(k, y)f(k+y

2
, r).

Remark 4.3.3. We will see that for suitable symbols the θ-quantisation does not
depend on the cutoff up to an error of O(ε∞).

To show the well-definedness of this quantisation, we again follow the usual
routine as we did with the Berry quantisation: First, we show that the quantised
symbol is a continuous map from the Schwartz space S(R2) to itself. Then we
extend this mapping by duality to S ′(R2). As counterpart to the τ -equivariance
of functions in the context of the Berry connection, we need to define an operator

Vγ∗ for a multiplication with the phase e
iθ
2π
k2γ∗1 that enables us to define a space

Sθ respectively S ′θ as the set of functions respectively distributions which satisfy
Vγ∗f = Lγ∗f .

Then it can be shown that the quantisation of Γ∗-periodic symbols, which
are the correspondents of the τ -equivariant symbols in the context of the Berry
quantisation, leaves S ′θ invariant. The proofs are very similar to the ones for the
Berry quantisation, so we keep everything short.

Proposition 4.3.4. For f ∈ Sw(R4,C) ∪ Smρ (R4,C), χ a smooth cutoff function,
and ψ ∈ S(R2), the integral

(f̂
θ,χ
ψ)(k) = 1

(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tθ (k, y) f
(
k+y

2
, r
)
ψ(y)drdy

defines a continuous mapping from S(R2) to S(R2).

Proof.
The proof works as the proof of Proposition 4.2.4. One only has to consider that
to show supk∈R2 C(k) <∞ in estimation (4.5), one uses the property

tθ(k − γ∗, y − γ∗) = e
iθ
2π

(k2−y2)γ∗1 tθ(k, y), (4.17)

which is the counterpart of the property (3.2). �
Again, this mapping can be extended to a map

f̂
θ,χ

: S ′(R2)→ S ′(R2)

by putting

f̂
θ,χ

(T )(ψ) := T (f̂
θ,χ

ψ)

for ψ ∈ S(R2) and T ∈ S ′(R2).
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Definition 4.3.5. Let γ ∈ R2, ψ a function defined on R2, and T a distribution
in S ′(R2). Then

Vγψ(k) := e
iθ
2π
k2γ1ψ(k)

and
Vγ(T )(ψ) := T (V−γψ) for ψ ∈ S(R2) and T ∈ S ′(R2)

as well as
Sθ(R2) = {f ∈ S(R2) : Vγ∗f = Lγ∗f ∀γ∗ ∈ Γ∗}

and
S ′θ(R2) = {T ∈ S ′(R2) : Vγ∗T = Lγ∗T ∀γ∗ ∈ Γ∗}

and moreover

C∞θ (R2) := {f ∈ C∞(R2) : f(k − γ∗) = Vγ∗f(k) ∀γ∗ ∈ Γ∗}.

Proposition 4.3.6. For f ∈ Swτ≡1(R4,C) ∪ Smρ,τ≡1(R4,C) we have

f̂
θ,χ
S ′θ ⊂ S ′θ.

Proof.
This can be seen as in the proof of Proposition 4.2.5. Let T ∈ S ′θ and ψ ∈ S(R2).
Then

Lγ∗ f̂
θ,χ
T (ψ) = T (f̂

θ,χ

L−γ∗ψ)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tθ(k, y)f
(
k+y

2
, r
)
ψ(y + γ∗)drdy)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k+γ∗−y)r

ε χ(k + γ∗ − y)tθ (k, y − γ∗) f
(
k−γ∗+y

2
, r
)

ψ(y)drdy)

= T (k 7→ 1
(2πε)2

∫
R4

e
i(k+γ∗−y)r

ε χ(k + γ∗ − y)e
iθ
2π

(k2−y2)γ∗1 tθ(k + γ∗, y)

f
(
k+γ∗+y

2
, r
)
ψ(y)drdy)

= T (Vγ∗L−γ∗ f̂
θ,χ

V−γ∗ψ) = T (f̂
θ,χ

V−γ∗ψ)

= Vγ∗ f̂
θ,χ
T (ψ).

Here we used (4.17). �
The symbols for which the θ-quantisation does not depend on the cutoff up

to a “small“ error are again those with an improving behaviour for the derivatives
with respect to r:
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Proposition 4.3.7. Let f ∈ Swτ≡1(R4,C) fulfil

(∗) ∃α0 ∈ N so that for all |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r) ∩ L2(R2

r) for all
k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r)
≤ hα(k) with hα ∈ C(R2,R≥0).

Then the θ-quantisation of this symbol does not depend on the cutoff χ up to an
error of O(ε∞), which means that for two smooth cutoff functions χ and χ̃ it holds

f̂
θ,χ

= f̂
θ,χ̃

+O(ε∞).

Proof.
This proof is analogous to the proof of Proposition 4.2.6, so we do not give details
here. �

Remark 4.3.8. Note that Proposition 4.3.7 includes symbols f ∈ Smρ,τ (R4,C) with
ρ > 0.

We proceed by showing that also for the θ-quantisation it holds that for symbols
f with f̂

θ
∈ L(Hθ), the adjoint of the quantised symbol is the quantisation of the

pointwise adjoint of the symbol f .

Proposition 4.3.9. Let f ∈ Swτ≡1(R4,C)∪Smρ,τ≡1(R4,C) with f̂
θ,χ
∈ L(Hθ). Then

(f̂
θ,χ

)∗ = f̂
θ,χ

.

Proof.
The theorem can be proven following the line of the proof of Proposition 4.2.13.
One difference is that the distributional integral kernel Kf now fulfils

Kf (k − γ∗, y − γ∗) = e
iθ
2π

(k2−y2)γ∗1Kf (k, y), (4.18)

which follows from the Γ∗-periodicity of f and the property (4.17) of the parallel
transport with respect to ∇θ. The other difference is, of course, that we have to
take ψ ∈ Hθ and φ ∈ C∞θ . Let again φ̃ = 1M∗φ. Then, using φ̃ as a test function,
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we get

〈φ, f̂
θ,χ
ψ〉Hθ =

∫
M∗

φ(k)f̂
θ,χ
ψ(k)dk =

∫
R2

φ̃(k)f̂
θ,χ
ψ(k)dk = f̂

θ,χ
(ψ)(φ̃)

= ψ(f̂
θ,χ

φ̃) =

∫
R2

∫
R2

Kf (k, y)φ̃(y)dyψ(k)dk

=

∫
R2

∫
M∗

Kf (k, y)φ(y)dyψ(k)dk

=

∫
M∗

∑
γ∗∈Γ∗

∫
M∗

Kf (k + γ∗, y)φ(y)dyψ(k + γ∗)dk

=

∫
M∗

∑
γ∗∈Γ∗

∫
M∗

e
iθ
2π

(y2−k2)γ∗1Kf (k, y − γ∗)φ(y)dye−
iθ
2π
k2γ∗1ψ(k)dk

=

∫
M∗

∑
γ∗∈Γ∗

∫
M∗

Kf (k, y − γ∗)e
iθ
2π
y2γ∗1φ(y)dyψ(k)dk

=

∫
M∗

∑
γ∗∈Γ∗

∫
M∗

Kf (k, y − γ∗)φ(y − γ∗)dyψ(k)dk

=

∫
M∗

∫
R2

Kf (k, y)φ(y)dyψ(k)dk =

∫
M∗

(f̂
θ,χ

φ)(k)ψ(k)dk

= 〈f̂
θ,χ

φ, ψ〉Hθ .

Since C∞θ is dense in Hθ and f̂
θ,χ

is continuous, the claim follows. �
Now that we have introduced the θ-quantisation, we show how it is connected

to the Berry quantisation. It is clear that we are only interested in symbols for
which f̂

B,χ
commutes with Π0 because we want to exploit the unitary equivalence

of Π0Hτ and Hθ.

Theorem 4.3.10. Let f ∈ Swτ (R4,L(Hf))∪Smρ,τ (R4,L(Hf)) with [π0(k), f(k, r)] =
0. Then it holds

(i) fθ(k, r) := 〈ϕ(k), f(k, r)ϕ(k)〉Hf
∈ Swτ≡1(R4,C) ∪ Smρ,τ≡1(R4,C) and

(ii) U θf̂
B,χ
U θ∗ = f̂θ

θ,χ
.

Proof.
The first statement that fθ is in the accordant symbol class is a simple calcu-
lation. The periodicity follows directly since τ is a unitary representation, f is
τ -equivariant, and ϕ has the property (3.4). From the periodicity of fθ in k, we
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get the boundedness of the derivative with respect to k. The properties of the
derivatives with respect to r also follow immediately.
For the second statement, note first that Proposition 4.2.8 assures that f̂

B,χ
can

be perceived as a map from Π0Hτ to Π0Hτ . Second, note that the unitary U θ can
be perceived both as a map between functions and a map between distributions
in the usual way setting U θ(T )(ψ) = T (U θ∗ψ). The same holds true for the map
U θ∗. Hence for T ∈ S ′θ(R2) and ψ ∈ S(R2) we get

U θf̂
B,χ
U θ∗(T )(ψ) = T (U θf̂ ∗

B,χ
U θ∗ψ) = T (k 7→ 〈ϕ(k), f̂ ∗

B,χ
(ϕψ)(k)〉Hf

)

= T (k 7→ 〈ϕ(k), 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)tB
(
k, k+y

2

)
f ∗
(
k+y

2
, r
)
tB
(
k+y

2
, y
)

ϕ(y)ψ(y)drdy〉Hf
)

= T (k 7→ 〈ϕ(k), 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)ϕ(k)tθ
(
k, k+y

2

)
〈ϕ(k+y

2
), f ∗

(
k+y

2
, r
)

ϕ(k+y
2

)〉Hf
tθ
(
k+y

2
, y
)
ψ(y)drdy〉Hf

) = T (f̂θ
θ

ψ)

= f̂θ
θ
(T )(ψ).

Note that here we used the identities

tB(z, y)ϕ(y) = ϕ(z)tθ(z, y),

〈ϕ(z), f ∗ (z, r)ϕ(z)〉Hf
= 〈f (z, r)ϕ(z), ϕ(z)〉Hf

= fθ(z),

and the fact that f and π0(k) commute. �
This theorem can be generalised to semiclassical symbols.

Corollary 4.3.11. Let f ∈ Swτ (ε,L(Hf))∪Smρ,τ (ε,L(Hf)) be a semiclassical symbol
satisfying f �

∑
j≥0 ε

jfj and [π0(k), f(k, r)] = 0. Then

• fθ(k, r) = 〈ϕ(k), f(k, r)ϕ(k)〉Hf
∈ Swτ≡1(ε,C) respectively Smρ,τ≡1(ε,C) with

fθ �
∑

j≥0 ε
j(fj)θ and

• U θf̂
B
U θ∗ = f̂θ

θ
.

Proof.
For the proof, one just has to check that fθ �

∑
j≥0 ε

j(fj)θ. Let f ∈ Swτ (ε), n ∈ N,
and l ∈ N0. Then it follows from

fθ(k, r)−
n−1∑
j=0

εjfjθ(k, r) = 〈ϕ(k), (f(k, r)−
n−1∑
j=0

εjfj(k, r))ϕ(k)〉Hf
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that

sup
|α+β|≤l

sup
(k,r)∈R4

w(k, r)−1|∂αk ∂βr 1
εn

(fθ(k, r)−
n−1∑
j=0

εjfjθ(k, r))|

= sup
|α+β|≤l

sup
k∈M∗,r∈R2

sup
γ∗∈Γ∗

w(k − γ∗, r)−1 ×

|
∑

α1+α2+α3≤α

cα1α2α3〈∂α1
k ϕ(k), ∂α2

k ∂
β
r

1
εn

(f(k, r)−
n−1∑
j=0

εjfj(k, r))∂
α3
k ϕ(k)〉Hf

|

≤ C sup
|α+β|≤l

sup
k∈M∗,r∈R2

sup
γ∗∈Γ∗

w(k − γ∗, r)−1 ×∥∥∥∥∥∂αk ∂βr 1
εn

(f(k − γ∗, r)−
n−1∑
j=0

εjfj(k − γ∗, r))

∥∥∥∥∥
L(Hf)

= C sup
|α+β|≤l

sup
k∈R2,r∈R2

w(k, r)−1

∥∥∥∥∥∂αk ∂βr 1
εn

(f(k, r)−
n−1∑
j=0

εjfj(k, r))

∥∥∥∥∥
L(Hf)

≤ C ′′,

where we exploited that 〈ϕ(k), (f(k, r)−
∑n−1

j=0 ε
jfj(k, r))ϕ(k)〉Hf

is Γ∗-periodic in
k and f �

∑
j≥0 ε

jfj in Swτ . The analogous statement for f ∈ Smρ,τ can be proven
in the same way. �

Remark 4.3.12. Obviously, if f(k, r) is self-adjoint, also fθ is self-adjoint since

fθ(k, r) = 〈ϕ(k), f(k, r)ϕ(k)〉Hf
= 〈f(k, r)ϕ(k), ϕ(k)〉Hf

= 〈ϕ(k), f(k, r)ϕ(k)〉Hf

= fθ(k, r).

Theorem 4.3.13. Let f ∈ S1
τ≡1(R4,C) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r) ∩ L2(R2

r)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r)
≤ hα(k) with hα ∈ C(R2,R≥0).

Then
f̂

θ
∈ L(Hθ).

Proof.
Let ψ ∈ Hθ and note that we can perceive f as a symbol for the Berry quantisation
which fulfils the requirements of Theorem 4.3.10 and 4.2.11. Hence, we get from
Theorem 4.2.11 ∥∥∥f̂ B

U θ∗ψ
∥∥∥
Hτ
≤ C

∥∥U θ∗ψ
∥∥
Hτ
.
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Then ∥∥∥f̂ B
U θ∗ψ

∥∥∥
Hτ

=
∥∥∥U θf̂

B
U θ∗ψ

∥∥∥
Hθ

=
∥∥∥f̂θθψ∥∥∥

Hθ
=
∥∥∥f̂ θ

ψ
∥∥∥
Hθ

and ∥∥U θ∗ψ
∥∥
Hτ

= ‖ψ‖Hθ
provide the claim. �

Remark 4.3.14. The theorem above includes symbols f ∈ Sm=0
ρ,τ≡1(R4,C) with

ρ > 0.

Note that the key point that made it possible to ”translate” U θf̂
B
U θ∗ into f̂θ

θ

was that the operator f̂
B
is an operator on sections of the hermitian line bundle

EBl with connection ∇Berry (the Bloch bundle) and that the quantisation replaces
r by the connection −iε∇Berry

k . So from a geometrical point of view, we are looking
at an operator which operates on sections of an in general non-trivial line bundle
over the torus T2∗ with connection ∇Berry and curvature Ω. In [AOS94], the au-
thors consider the geometrical construction for a system under the influence of a
magnetic field with integral flux. The state space there consists of the L2-sections
of a hermitian line bundle with connection which has the magnetic field as curva-
ture. The Hamiltonian for the system is just the Bochner Laplacian.
In the second chapter of the paper (Prop.4), they show how for a hermitian line
bundle over the two-torus T2 with connection and curvature b (which they define
by b(X, Y )s := i(∇X∇Y − ∇Y∇X − ∇[X,Y ])s for X, Y smooth vectorfields and s
a smooth section of the line bundle) the Bochner Laplacian is unitarily equivalent
to a self-adjoint realisation of −(∂k1 − iak1)2 − (∂k2 − iak2)2 in L2(unit cell) with
suitable boundary conditions. This is similar to what we were looking for when
we translated U θf̂

B
U θ∗ into f̂θ

θ
, although we are interested in a much larger class

of operators and not only in the translation of the Bochner-Laplacian r̂2
Berry

with
ε = 1. But the idea is more or less the same. The difference in the definition
of the unitary is that we just took, for lack of a global trivialisation, a function
ϕ : R2 → EBl for which ϕ(k) ∈ P (k)Hf for every k ∈ R2 but ϕ(k−γ∗) 6= τ(γ∗)ϕ(k)
while the authors there took lokal trivialisations and get their boundary conditions
from the corresponding transition functions. This also reflects in the fact that we
have chosen to transfer the torus T2∗ to R2 using (quasi)-perodicities, while the
authors of the paper do not do that. So the connection between these two works
can be made in the following way:
Using the notation from [AOS94], in our case the line bundle is EBl

π−→ T2∗ with
connection ∇Berry and curvature iΩ. Possible trivialisations are (with ϕ the func-
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tion from Lemma 3.3.2)

ψ1 : V1 × C→ π−1(V1) defined by (k, λ) 7→ λϕ(k),

ψ2 : V2 × C→ π−1(V2) defined by (k, λ) 7→ λe−
iθ
2π
k1k2ϕ(k),

ψ3 : V3 × C→ π−1(V3) defined by (k, λ) 7→ λϕ(k), and
ψ4 : V4 × C→ π−1(V4) defined by (k, λ) 7→ λ χ(k)

|χ(k)|ϕ(k),

where χ(k) = (1− k1

2π
) + k1

2π
e−iθk2 , which can have zeros only at k1 = π. Then we

get for the transition functions

c12(k) = e−
iθ
2π
k1k2

and
c13(k) ≡ 1

and for the connection forms we get

a1(k) = iA1(k)dk1 + iA2(k)dk2 (4.19)

on V1 and

a2(k) = i〈e−
iθ
2π
k1k2ϕ(k), ∂k1(e−

iθ
2π
k1k2ϕ(k))〉Hf

dk1

+i〈e−
iθ
2π
k1k2ϕ(k), ∂k2(e−

iθ
2π
k1k2ϕ(k))〉Hf

dk2

= iA1(k)dk1 + iA2(k)dk2 + θ
2π
k2dk1 + θ

2π
k1dk2

on V2. In [AOS94], Proposition 4(ii), this yields the boundary conditions

ψ(2π, k2) = e−iθk2ψ(0, k2) and ψ(k1, 2π) = ψ(k1, 0).

Following their arguments, for the connection form we get from a1 − a2 = df12

with f12(k) = − θ
2π
k1k2 that

a1(2π, k2) := df12(2π, k2) + a2(2π, k2) = df12(2π, k2) + a2(0, k2)

=: df12(2π, k2) + df21(0, k2) + a1(0, k2) (4.20)

and
a1(k1, 2π) := a3(k1, 2π) = a3(k1, 0) =: a1(k1, 0). (4.21)

This yields (inserting (4.19) in (4.20))

iA1(2π, k2) = − θ
2π
k2 + θ

2π
k2 + iA1(0, k2) = iA1(0, k2)
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iA2(2π, k2) = −θ + iA2(0, k2)

and analogously from (4.21)

iA1(k1, 2π) = iA1(k1, 0)

iA2(k1, 2π) = iA2(k1, 0).

This all fits with the fact that the reference space is isomorphic to

Hθ
∼= {ψ ∈ L2(M∗) : ψ(2π, k2) = e−iθk2ψ(0, k2) and ψ(k1, 2π) = ψ(k1, 0)}

endowed with the connection

∇̃θ
k = ∇k +A,

where
A1(2π, k2) = A1(0, k2)

A2(2π, k2) = iθ +A2(0, k2)

and
A1(k1, 2π) = A1(k1, 0)

A2(k1, 2π) = A2(k1, 0).

So in our construction, the connection forms Aj(k) are directly defined on M∗,
while in [AOS94] the boundary conditions again follow from the transition func-
tions. Note that Π0Hτ is isomorphic to the space of the L2-sections of the line
bundle EBl as well as Hθ is isomorphic to the space of the L2-sections of the line
bundle Eθ.
In Chapter 3 of the paper, the authors do a magnetic Bloch-Floquet transforma-
tion on the Bochner Laplacian H of the trivial line bundle R2 ×C with curvature
b = B(x)dx1 ∧ dx2, where B is a Γ-periodic function with constant Bc ∈ 2πZ.
So this is similar to our case, where we do the same with the original unper-
turbed Hamiltonian HMB, because we could perceive B as curvature of a connec-
tion ∇MB on the trivial line bundle R2 × C with vector potential a = B

2
(−x2, x1)

and HMB−VΓ(x) as the corresponding Bochner Laplacian. But they use a different
Bloch-Floquet transformation than we. Roughly speaking, their transformation is
(Fmagn ⊗ 1), while ours is e−iky(Fmagn ⊗ 1). As already mentioned, this is the
reason that in the paper, the obtained operators H(k) have a domain which is
dependent of k, while in our case the domain of the operators stays independent of
k. Therefore in our case, the k-dependence of H(k) reflects in the representation
of Hper(k), while in the paper the representation of H(k) is independent of k. So
the characterisation in the paper of the operator

∫ ⊕
M∗

H(k)dk is not useful for our
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problem.
Moreover, there is another difference. The authors of [AOS94] transform the
Bochner Laplacian H via Bloch-Floquet transformation to get a decomposition

UHU∗ =

∫ ⊕
R2/Γ

H(k)dk.

Then they show that for every k, the operator H(k) is a self-adjoint realisation of
−(∂k1−iak1)2−(∂k2−iak2)2 in L2(unit cell) with suitable boundary conditions. So
using Proposition 4 from [AOS94], they conclude that there must be a hermitian
line bundle with connection so that the corresponding Bochner Laplacian of this
bundle is unitarily equivalent to H(k). They then use this knowledge to prove their
result that the direct integral of the Bochner Laplacians over all non-equivalent
hermitian line bundles with connection over the torus with curvature b is uni-
tarily equivalent to the unique Bochner Laplacian on the hermitian line bundle
with curvature b on its universal cover. We, in contrast, use the Bloch-Floquet
transformation to get the operator Hε as a quantised symbol. Then we derive the
effective model Heff acting on sections of EBl endowed with the Berry connection.
But then we use the characterisation given in Proposition 4 of [AOS94] to get from
this operator to an operator acting on L2(M∗) with suitable boundary conditions.
So we use this Proposition the other way round and, moreover, apply it to the
“full” operator Heff = ĥeff

eff
.

4.4 The effective quantisation
The last quantisation we want to introduce is the effective quantisation. It is the
quantisation we want to use for the effective Hamiltonian we want to compute.
Roughly speaking, this quantisation maps r 7→ −iε∇eff

k = −iε(∇k + (0, iθ
2π
k1)T),

which is also a connection on the line bundle Eθ. Moreover, the connection form
Aeff = (0, iθ

2π
k1)T is the connection form that would be achieved in the construction

in the proof of Lemma 3.3.2 if the curvature form was constant and thus Ω(k) =
iθ
2π
. The advantage over the θ-quantisation is that we can write this connection

independent from ϕ and π0. Moreover, with this connection it is easy to compare
the case without the strong magnetic field A0 with our general case A0 6= 0. In
the case A0 ≡ 0, the Bloch bundle is trivial and therefore θ = 0 since it is the
Chern number of this line bundle. Thus, our result includes the case A0 ≡ 0 and
it should be simple to read off the according result, for example when we compute
the symbols of the effective Hamiltonian. It also holds true that Hθ=0

∼= L2(T2∗).

Definition 4.4.1. Let f ∈ Sw(R4,C)∪Smρ (R4,C) and χ a smooth cutoff function.
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Then for ψ ∈ S(R2,C) we define the effective quantisation by

f̂
eff,χ

ψ(k) := 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)teff (k, y) f
(
k+y

2
, r
)
ψ(y)drdy,

where teff(x, y) is the parallel transport along the straight line from y to x with
respect to the connection ∇eff

k = ∇k + (0, iθ
2π
k1)T.

Remark 4.4.2. We will see that for suitable symbols the effective quantisation
does not depend on the cutoff up to an error of O(ε∞).

To show the well-definedness of this quantisation, we again follow the usual
routine as we did with the θ-quantisation: First, we show that the quantised
symbol is a continuous map from the Schwartz space S(R2) to itself and extend
this mapping by duality to S ′(R2). Then it can be shown that for Γ∗-periodic
symbols the quantisation leaves S ′θ invariant. The proofs are very similar to the
ones for the θ-quantisation, so we do not give details.

Proposition 4.4.3. For f ∈ Sw(R4,C) ∪ Smρ (R4,C), χ a smooth cutoff function,
and ψ ∈ S(R2), the integral

(f̂
eff,χ

ψ)(k) = 1
(2πε)2

∫
R4

e
i(k−y)r

ε χ(k − y)teff (k, y) f
(
k+y

2
, r
)
ψ(y)drdy

defines a continuous mapping from S(R2) to S(R2).

Proof.
The proof works exactly as the proof of Proposition 4.3.4. �

Again, this mapping can be extended to a map

f̂
eff,χ

: S ′(R2)→ S ′(R2)

by putting

f̂
eff,χ

(T )(ψ) := T (f̂
eff,χ

ψ)

for ψ ∈ S(R2).
Next, we show that the effective quantisation of symbols which are Γ∗-periodic

in k maps S ′θ to S ′θ.

Proposition 4.4.4. For f ∈ Swτ≡1(R4,C) ∪ Smρ,τ≡1(R4,C) we have

f̂
eff,χ

S ′θ ⊂ S ′θ.
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Proof.
Since

teff(k − γ∗, y − γ∗) = e
iθ
2π
γ∗1 (k2−y2)teff(k, y)

holds also for the connection∇eff , the proof works exactly as the one of Proposition
4.3.6. �

The symbols for which the effective quantisation does not depend on the cutoff
up to a “small“ error are again those with an improving behaviour for the deriva-
tives with respect to r:

Proposition 4.4.5. Let f ∈ Swτ≡1(R4,C) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r) ∩ L2(R2

r)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r)
≤ hα(k) with hα ∈ C(R2,R≥0).

Then the effective quantisation of this symbol does not depend on the cutoff χ up
to an error of O(ε∞), which means that for two smooth cutoff functions χ and χ̃
it holds

f̂
eff,χ

= f̂
eff,χ̃

+O(ε∞).

Proof.
The proof works exactly as the proof of Proposition 4.3.7. �

Remark 4.4.6. Note that Proposition 4.4.5 includes symbols in Smρ,τ≡1(R4,C) with
ρ > 0.

Now we again show that for symbols whose quantisation is in L(Hθ), the adjoint
of this operator is given through the quantisation of the pointwise adjoint of the
symbol.

Proposition 4.4.7. Let f ∈ Swτ≡1(R4,C)∪Smρ,τ≡1(R4,C) with f̂
eff
∈ L(Hθ). Then

(f̂
eff

)∗ = f̂
eff

.

Proof.
The proof works exactly as the proof of Proposition 4.3.9. �

The quantisation we have just introduced is, finally, the one for our effective
Hamiltonian. Thus, we need to show how we can compute corrections fc of a
symbol f so that it holds

f̂c

eff
= f̂

θ
+O(ε∞).

The method is the same as in Theorem 4.2.16 about the τ - and the Berry quanti-
sation. Therefore, again we will keep the proofs short.
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Theorem 4.4.8. Let f ∈ S1
τ≡1(R4,C) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r) ∩ L2(R2

r)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r)
≤ hα(k) with hα ∈ C(R2,R≥0),

or let f ∈ Smρ,τ (R4,C) with ρ > 0.

(i) For every N ∈ N0 there is a correction f
(N)
c in the same symbol class as f

so that

f̂
eff

= f̂
(N)
c

θ

+O(εN+1).

For N ∈ N0 the correction f (N)
c of the symbol f is given by

f (N)
c =

N∑
n=0

εnfcn(k, r),

where

fcn(k, r) =
∑

α∈N4
0, |α|=n

(
i
2

)n
(−1)α3+α4 1

α!
∂αt(k, k)∂α1+α3

r1
∂α2+α4
r2

f(k, r)

with
t(k, y) = teff(y, k)tθ(k, y).

For f ∈ S1
τ≡1(R4,C), f (N)

c fulfils (∗).
For f ∈ Smρ,τ (R4,C), it even holds fcn ∈ Sm−nρρ,τ (R4,C).
In particular, we have

fc0(k, r) = f(k, r)

and

fc1(k, r) = i
(
A1(k)∂r1f(k, r) + (A2(k)− iθ

2π
k1)∂r2f(k, r)

)
= iD(k) · ∇rf(k, r),

where D(k) = A(k)− (0, iθ
2π
k1)T.

(ii) For every N ∈ N0 there is a correction f
(N)
c in the same symbol class as f

so that

f̂
θ

= f̂
(N)
c

eff

+O(εN+1).

The corrected symbol can be computed by

f (N)
c =

N∑
n=0

εnfcn,
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where

fcn(k, r) =
∑

α∈N4
0, |α|=n

(
i
2

)n
(−1)α3+α4 1

α!
∂αt(k, k)∂α1+α3

r1
∂α2+α4
r2

f(k, r)

with
t(k, y) = teff(y, k)tθ(k, y).

For f ∈ S1
τ≡1(R4,C), f (N)

c fulfils (∗).
For f ∈ Smρ,τ (R4,C), it even holds fcn ∈ Sm−nρρ,τ (R4,C).
In particular, we have

fc0(k, r) = f(k, r)

and

fc1(k, r) = −i
(
A1(k)∂r1f(k, r) + (A2(k)− iθ

2π
k1)∂r2f(k, r)

)
= −iD(k) · ∇rf(k, r),

where D(k) = A(k)− (0, iθ
2π
k1)T.

Proof.
The idea for the above theorem is the same as in Theorem 4.2.16 and hence we
follow the line of this proof. Moreover, the case here is easier because here the
parallel transport is only multiplication with a phase. More precisely, we have

tθ(k, y) = e−
∫ 1
0 A1(y+t(k−y))dt(k1−y1)−

∫ 1
0 A2(y+t(k−y))dt(k2−y2)

and
teff(k, y) = e

iθ
4π

(y1+k1)(y2−k2).

The idea is again to insert the identity teff(k, y)teff(y, k) and use the Taylor expan-
sion of t(k, y) = teff(y, k)tθ(k, y). Let us quickly comment on the changes in each
of the parts of the proof of Theorem 4.2.16. In part one, note that for arbitrary
N ∈ N the periodicity of the corrected symbol f (N)

c with respect to Γ∗ follows from
the periodicity of t(k, y) and f . Simple calculations show that f (N)

c ∈ S1
τ≡1(R4,C)

and that it fulfils (∗).
In part two, the Taylor expansion gets simpler: With δ = k−y

2
, the nth order Taylor

polynomial of t : R4 → C is

t(z + δ, z − δ) =
n∑

α∈N4
0, |α|=0

1
α!
∂αt(k, k)δα1+α3

1 δα2+α4
2 (−1)α3+α4 .

Partial integration turns δj in iε
2
∂rj for j ∈ {1, 2}, which leads to the given formula

in the theorem.
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For the estimation of the remainder term in part three we can use Theorem 4.3.13
and prove (i). Thus in part 4, a Calderon-Vaillancourt theorem for the effective
quantisation has to be shown using (i). The rest is clear. �

The theorem can be generalised to semiclassical symbols.

Corollary 4.4.9. Let f ∈ S1
τ≡1(ε,C) with f �

∑
n≥0 ε

nfn fulfil

(∗) for every n ∈ N0 there is αn ∈ N so that for |α| ≥ αn it holds ∂αr fn(k, r)
∈ L1(R2

r) ∩ L2(R2
r) for all k ∈ R2and ‖∂αr fn(k, r)‖L1(R2

r)
≤ hn,α(k) with

hn,α ∈ C(R2,R≥0),

or let f ∈ Smρ,τ≡1(ε,C) with ρ > 0.

(i) There exists a semiclassical symbol fc in the same symbol class as f so that

f̂
eff

= f̂c

θ
+O(ε∞).

It holds
fc �

∑
n≥0

εngn,

where

gn =
n∑
j=0

(fj)c(n−j),

where we used the notation from Theorem 4.4.8, which means that (fj)c(n−j)
is the (n − j)th correction of the ordinary symbol fj according to Theorem
4.4.8(i).
For f ∈ S1

τ≡1(ε,C), the correction fc fulfils (∗).
The principal and subprincipal symbol of fc read

(fc)0(k, r) = f0(k, r)

and

(fc)1(k, r) = f1(k, r) + i
(
A1(k)∂r1f0(k, r) + (A2(k)− iθ

2π
k1)∂r2f0(k, r)

)
.

(ii) There exists a semiclassical symbol fc ∈ S1
τ≡1(ε,C) respectively Smρ,τ≡1(ε,C)

which has the same properties as f so that

f̂
θ

= f̂c

eff
+O(ε∞).

It holds
fc �

∑
n≥0

εngn,
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where

gn =
n∑
j=0

(fj)c(n−j),

where we used the notation from Theorem 4.4.8, which means that (fj)c(n−j)
is the (n − j)th correction of the ordinary symbol fj according to Theorem
4.4.8(ii).
For f ∈ S1

τ≡1(ε,C), the correction fc fulfils (∗).
The principal and subprincipal symbol of fc read

(fc)0(k, r) = f0(k, r)

and

(fc)1(k, r) = f1(k, r)− i
(
A1(k)∂r1f0(k, r) + (A2(k)− iθ

2π
k1)∂r2f0(k, r)

)
.

Proposition 4.4.10. Let f satisfy the assumptions of Theorem 4.4.8 and let
f(k, r) = f(k, r). Then fc(k, r) = fc(k, r) holds.

Proof.
Simple calculations show for j ∈ {1, 2}

∂kj t
θ(k, y)|k=y = −∂yj tθ(k, y)|k=y and ∂kj t

eff(k, y)|k=y = −∂yj teff(k, y)|k=y.

Now for α = (α1, ...α4) ∈ N4
0, let α̃j := αj+2 if j ∈ {1, 2} and α̃j := αj−2 if

j ∈ {3, 4} respectively α̃ := (α3, α4, α1, α2). Then

∂αt(k, k) = ∂α(teff(x3, x4, x1, x2)tθ(x1, x2, x3, x4))|(x1,x2,x3,x4)=(k,k)

= ∂α(teff(x1, x2, x3, x4)tθ(x3, x4, x1, x2))|(x1,x2,x3,x4)=(k,k)

= ∂α̃(teff(x3, x4, x1, x2)tθ(x1, x2, x3, x4))|(x1,x2,x3,x4)=(k,k)

=
∑
β≤α̃

(
α̃

β

)
∂α̃−βteff(x3, x4, x1, x2)∂βtθ(x1, x2, x3, x4)|(x1,x2,x3,x4)=(k,k)

=
∑
β≤α̃

(
α

β̃

)
(−1)|α|∂α−β̃teff(x3, x4, x1, x2)∂β̃tθ(x1, x2, x3, x4)|(x1,x2,x3,x4)=(k,k)

= (−1)|α|∂α(teff(x3, x4, x1, x2)tθ(x1, x2, x3, x4))|(x1,x2,x3,x4)=(k,k)

= (−1)|α|∂αt(k, k)
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and hence

f
(N)
c (k, r) =

N∑
α∈N4

0, |α|=0

(−1)|α|
(
iε
2

)|α|
(−1)α3+α4 1

α!
∂αt(k, k)∂α1+α3

r1
∂α2+α4
r2

f(k, r)

=
N∑

α∈N4
0, |α|=0

(
iε
2

)|α|
(−1)α3+α4 1

α!
∂αt(k, k)∂α1+α3

r1
∂α2+α4
r2

f(k, r)

= f (N)
c (k, r).

�
There is also a Calderon-Vaillancourt theorem for the effective quantisation.

Theorem 4.4.11. Let f ∈ S1
τ≡1(R4,C) fulfil

(∗) ∃α0 ∈ N so that for |α| ≥ α0 it holds ∂αr f(k, r) ∈ L1(R2
r) ∩ L2(R2

r)
for all k ∈ R2 and ‖∂αr f(k, r)‖L1(R2

r)
≤ hα(k) with hα ∈ C(R2,R≥0).

Then
f̂

eff
∈ L(Hθ).

Remark 4.4.12. The above theorem includes symbols f ∈ Sm=0
ρ (R4,C) with

ρ > 0.

4.5 The corresponding results for an arbitrary
Bravais lattice Γ

In this section we again comment shortly on the changes that have to be made
in case of an arbitrarily chosen Bravais lattice Γ generated by {γ1, γ2}. We again
denote the components of the generating vectors by γ1 = (γ1

1 , γ
1
2) and γ2 = (γ2

1 , γ
2
2)

and analogously for the dual lattice γ1∗ = (γ1∗
1 , γ

1∗
2 ) and γ2∗ = (γ2∗

1 , γ
2∗
2 ), as we did

in Section 3.4. There are no modifications necessary for the Berry quantisation and
corresponding theorems. This is because the Bloch bundle only depends on the
projections P (k) and not on the particular choice of the function ϕ from Lemma
3.3.2 respectively 3.4.1.
For the θ-quantisation the situation changes. The bundle in question is now the
bundle Eθ = {(k, λ) ∈ (R2,C)∼}, where the equivalence relation depends on the
phase of ϕ. This means that for our choice of ϕ with

ϕ(k − γ∗) = e−
iθ
2π
〈γ2,k〉〈γ1,γ∗〉τ(γ∗)ϕ(k) for all γ∗ ∈ Γ∗,
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the equivalence relation is

(k, λ) ∼ (k′, λ′) iff k′ = k − γ∗ and λ′ = e
iθ
2π
〈γ2,k〉〈γ1,γ∗〉λ.

Therefore, also Definition 4.3.5 has to be adapted: Now

Vγ∗ψ(k) := e
iθ
2π
〈γ2,k〉〈γ1,γ∗〉ψ(k).

The conformance of the bundle Eθ to the phase of ϕ also induces that the property
(4.17) of the parallel transport with respect to the θ-connection is now

tθ(k − γ∗, y − γ∗) = e
iθ
2π
〈γ2,k−y〉〈γ1,γ∗〉tθ(k, y). (4.22)

This has to be considered in the proof of Proposition 4.3.6 and in the proof of
Proposition 4.3.9, where the property (4.22) implies that the property (4.18) of
the distributional integral kernel Kf now is

Kf (k − γ∗, y − γ∗) = e
iθ
2π
〈γ2,k−y〉〈γ1,γ∗〉Kf (k, y). (4.23)

As the θ-quantisation, also the effective quantisation depends on the bundle Eθ
and thus we again get the corresponding modifications. The connection form is

A(k) = iθ
2π
〈γ1, k〉γ2.

Hence the parallel transport is

teff(k, y) = e
iθ
4π
〈γ1,k+y〉〈γ2,y−k〉.

Of course, the properties (4.22) and (4.23) hold for teff . Finally, we have to take
care of the modified connection ∇eff

k in the theorems for the corrections of symbols,
that is to say Theorem 4.4.8 and Corollary 4.4.9. In Theorem 4.4.8(i), we now get

fc1(k, r) = i((A1(k)− iθ
2π
〈γ1, k〉γ2

1)∂r1f(k, r) + (A2(k)− iθ
2π
〈γ1, k〉γ2

2)∂r2f(k, r))

= iD(k) · ∇rf(k, r)

where D(k) = A(k) − iθ
2π
〈γ1, k〉γ2. Analogous modifications have to be done in

Theorem 4.4.8(ii) and Corollary 4.4.9.
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Chapter 5

The effective dynamics

5.1 The effective Hamiltonian as the quantisation
of a semiclassical symbol

Now we use our new pseudodifferential calculi and their properties and relations
among each other to, finally, define our effective Hamiltonian as the quantisation
of a semiclassical symbol and thus as an operator acting on Hθ. Before we start
the rigorous maths, we give an informal overview.
The question is how to write the effective Hamiltonian Heff as a pseudodifferential
operator

Heff = U εΠεĤ
τ
ΠεU ε∗ = U θΠ0ĥ

τ
Π0U θ∗ +O(ε∞) = ĥeff

?
+O(ε∞).

The idea we are going to follow is

U θΠ0ĥ
τ
Π0U θ∗ = U θΠ0ĥc

B
Π0U θ∗ +O(ε∞) = (̂hc)θ

θ

+O(ε∞) = ĥeff

eff
+O(ε∞),

where the quantisations are

• Opτ : k 7→ k, r 7→ −iε∇τ
k and ĥ

τ
∈ L(Hτ )

• OpB : k 7→ k, r 7→ −iε∇Berry
k and ĥ

B
∈ L(Hτ )

• Opθ : k 7→ k, r 7→ −iε∇θ
k and ĥ

θ
∈ L(Hθ)

• Opeff : k 7→ k, r 7→ −iε(∇k + (0, iθ
2π
k1)T) and ĥ

eff
∈ L(Hθ).

So let us make the described procedure rigorous.
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Theorem 5.1.1. Let H0(k, r) = 1
2
(−i∇y + k − A0(y) − A(r))2 + VΓ(y) + Φ(r) ∈

Sw=1+k2

τ (R4,L(H2
A0
,Hf)), let E be an isolated band according to Definition 2.4.1,

and let Assumption 1 hold. Moreover, let the semiclassical symbol h �
∑

j≥0 ε
jhj

from Theorem 3.3.6 fulfil

(∗) for all j ≥ 1 there is αj ∈ N so that for all |α| ≥ αj we have ∂αr hj(k, r) ∈
L1(R2

r,Hf) ∩ L2(R2
r,Hf) for all k ∈ R2 and ‖∂αr hj(k, r)‖L1(R2

r,L(Hf))
≤ gj,α(k)

with gj,α ∈ C(R2).

Then there exist

(i) an orthogonal projection Πε ∈ L(Hτ ),

(ii) a unitary map U ε ∈ L(ΠεHτ ,Hθ), and

(iii) a self-adjoint operator ĥeff

eff
∈ L(Hθ)

such that
‖[Hε

BF,Π
ε]‖L(Hτ ) = O(ε∞)

and ∥∥∥(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

= O(ε∞(1 + |t|)).

The effective Hamiltonian is the effective quantisation of the symbol heff ∈
S1
τ≡1(ε,C) which can be computed to any order.

Proof.
First recallHε

BF = Ĥ
τ
with H ∈ Sw=1+k2

τ (ε,L(H2
A0
,Hf)). Let Πε be the projection

from Theorem 2.5.2. Moreover, let U ε := U θ ◦ U ε
1 with U ε

1 the unitary map from
Theorem 3.3.4 and U θ the map defined in Remark 3.3.3. Then let

h = u]π]H]π]u∗ ∈ S1
τ (ε,L(Hf))

be the symbol from Theorem 3.3.6. Now take

hc := (u]π]H]π]u∗)c ∈ S1
τ (ε,L(Hf))

as the corrected symbol according to Corollary 4.2.18(i) and let

hθ := (hc)θ = 〈ϕ(k), hc(k, r)ϕ(k)〉Hf
∈ S1

τ (ε,C).

Then we take
heff := (hθ)c ∈ S1

τ≡1(ε,C)

as the correction of hθ with respect to Corollary 4.4.9(ii). By construction, we get
using Proposition 4.2.19, Remark 4.3.12, and Proposition 4.4.10 that heff(k, r) ∈ R
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and thus from Proposition 4.4.7 that ĥeff

eff
is a self-adjoint operator in L(Hθ).

So we are left to show that
∥∥∥(e−iH

ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

= O(ε∞(1 + |t|)).
It holds

ĥeff

eff
= ĥθ

θ
+O(ε∞) = Opθ (((hc)diag)θ) +O(ε∞) (5.1)

= U θ ̂(hc)diag

B

U θ∗ +O(ε∞) = U θΠ0 ̂(hc)diag

B

U θ∗ +O(ε∞) (5.2)

= U θΠ0ĥc

B
U θ∗ +O(ε∞) (5.3)

= U θΠ0ĥ
τ
U θ∗ +O(ε∞). (5.4)

In the second transformation of equation (5.1), we used that hθ = ((hc)diag)θ
(:= 〈ϕ(k), (hc)diagϕ(k)〉Hf

), in the first transformation of (5.2) we used Theorem
4.3.10, and in (5.3) we used [ĥc

B
,Π0] = O(ε∞) and Corollary 4.2.9. Hence, (5.4)

implies

U ε∗ĥeff

eff
U ε = U ε∗

1 Π0ĥ
τ
U ε

1 +O(ε∞) = U ε∗
1 Π0U ε

1 ΠεĤ
τ
ΠεU ε∗

1 U
ε
1 +O(ε∞)

= π̂τĤ
τ
π̂τ +O(ε∞),

where we used (3.13), and thus

(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε = (e−iĤ

τ
t − e−iUε∗ĥeff

eff
Uεt)π̂τ +O(ε∞)

= (e−iπ̂
τ Ĥ

τ
π̂τ t − e−iUε∗ĥeff

eff
Uεt)π̂τ +O(ε∞)

= O(ε∞(1 + |t|)).

The last equality follows by the usual Duhammel argument exploiting that the
difference of the generators is, according to the previous discussion, of orderO(ε∞):

e−iπ̂
τ Ĥ

τ
π̂τ t − e−iUε∗ĥeff

eff
Uεt = e−iπ̂

τ Ĥ
τ
π̂τ t(1− eiπ̂τ Ĥ

τ
π̂τ te−iU

ε∗ĥeff
eff
Uεt)

= e−iπ̂
τ Ĥ

τ
π̂τ t(−i)

∫ t

0

eiπ̂
τ Ĥ

τ
π̂τ s(π̂τĤ

τ
π̂τ − U ε∗ĥeff

eff
U ε)e−iU

ε∗ĥeff
eff
Uεsds

and hence ∥∥∥(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

≤ C|t|
∥∥∥π̂τĤ τ

π̂τ − U ε∗ĥeff

eff
U ε
∥∥∥
L(Hτ )

+O(ε∞)

= O((1 + |t|)ε∞).

�
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So we have seen how we can apply our framework developed in Chapter 4
to define an effective Hamiltonian as a pseudodifferential operator. However, the
condition for the derivatives of the symbol h = u]π]H]π]u∗ is rather impractical
and unhandy. Therefore, we prove the following Lemmata to show that we can
break this assumption down to some assumptions on the potentials A and Φ of the
weakly varying perturbations. Note that since they are already smooth, bounded
together with all their derivatives, and non-periodic, the additional assumption
that the derivatives should be in L1 is not a big confinement but only a technical
detail.
So the following Lemmata will assure that h = u]π]H]π]u∗ satisfies the condition
for the derivatives with respect to r if we just put a technical condition on A and
Φ. The proofs will be more or less straightforward; one only has to keep track of
the constructions of the symbols π and u in Theorem 2.5.1 respectively Theorem
3.3.4 and use the formula (B.3) of the Moyal product.

Lemma 5.1.2. Let H0(k, r) = 1
2
(−i∇y + k − A0(y) − A(r))2 + VΓ(y) + Φ(r) =

Hper(k − A(r)) + Φ(r) ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)) with

(∗) A ∈ C∞b (R2,R2) so that |∂αr A(r)| ∈ L1(R2) for all |α| ≥ 1 and
Φ ∈ C∞b (R2,R) so that ∂αr Φ(r) ∈ L1(R2) for all |α| ≥ α0, where α0 ≥ 1.

Then for every α, β ∈ N2
0, |β| ≥ α0, and p ∈ {1, 2} there is a constant cα,β so that∥∥∂αk ∂βrH0(k, r)

∥∥
Lp(R2

r,L(H2
A0
,Hf))
≤ cα,β(1 + k2).

Proof.
For the proof, we notice that for |β| ≥ α0, ∂αk ∂βrHper(k−A(r)) is a sum which can be
estimated (using Hper(k−A(r)) ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)) and A ∈ C∞b (R2,R2))

in the L(H2
A0
,Hf)-norm by a sum of the form (1+k2)c

∑2
i=1

∑|β|
|γ|=1 |∂γrAi(r)|. Thus,

(∗) yields
∥∥∂αk ∂βrH0(k, r)

∥∥
Lp(R2

r,L(H2
A0
,Hf))
≤ cα,β(1 + k2). �

Lemma 5.1.3. Let H0(k, r) = 1
2
(−i∇y + k − A0(y) − A(r))2 + VΓ(y) + Φ(r) =

Hper(k − A(r)) + Φ(r) ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)) with

(∗) A ∈ C∞b (R2,R2) so that |∂αr A(r)| ∈ L1(R2) for all |α| ≥ 1 and
Φ ∈ C∞b (R2,R) so that ∂αr Φ(r) ∈ L1(R2) for all |α| ≥ 1.

Moreover, let π �
∑

j≥0 ε
jπj be the symbol constructed according to Theorem 2.5.1.

Then for all j ≥ 0 and for every α, β ∈ N2
0 with |β| ≥ 1, there are even polynomials

qj,α,β and q̃j,α,β so that∥∥∂αk ∂βr πj(k, r)∥∥Lp(R2
r,L(Hf ,H2

A0
)
≤ qj,α,β(k) (5.5)
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and ∥∥∂αk ∂βr πj(k, r)∥∥Lp(R2
r,L(Hf))

≤ q̃j,α,β(k) (5.6)

for p ∈ {1, 2}.

Proof.
With very similar arguments as in the proof of Lemma 5.1.2, using π0(k) ∈
Sw=1+k2

τ (R4,L(H2
A0
,Hf))∩Sw≡1

τ (R4,L(Hf)), one gets that π0(k, r) fulfils the above
conditions.
For πj with j ≥ 1 we have to take into account its construction from Lemma 2.5.1.
Since πj is defined as an integral over Rj, we first show that the Moyal resolvent
constructed in the proof of Theorem 2.5.1 fulfils that for all j ≥ 0 and α, β ∈ N2

0

with |β| ≥ 1, there are even polynomials qj,α,β and q̃j,α,β so that∥∥∂αk ∂βrRj(k, r)
∥∥
Lp(R2

r,L(Hf ,H2
A0

)
≤ qj,α,β(k)

and ∥∥∂αk ∂βrRj(k, r)
∥∥
Lp(R2

r,L(Hf))
≤ q̃j,α,β(k)

for p ∈ {1, 2}. We proceed by induction over j.
The induction starts at j = 0. Let R0(ζ, k, r) = (H0(k, r)− ζ)−1. Using

R0(ζ, z)−R0(ζ, z̃) = R(ζ, z)(H0(z)−H0(z̃))R(ζ, z̃),

we get
∂zjR0(ζ, z) = R0(ζ, z)∂zjH0(z)R0(ζ, z).

Hence, we can conclude that ∂αk ∂βrR0(ζ, k, r) must be a sum with summands of the
form R0(k, r, ζ)∂γ

1

k ∂
δ1

r H0(k, r)R0..∂
γm

k ∂δ
m

r H0(k, r)R0(k, r, ζ) with |γ1 + .. + γm| =
|α|, |δ1 + .. + δm| = |β|, and m ≤ max{|α|, |β|}. This yields, using R0(k, r, ζ) ∈
Sw=1+k2

τ (R4,L(H2
A0
,Hf))∩ Sw=1

τ (R4,L(Hf)) uniformly in ζ (which is shown in the
proof of Lemma 2.5.1), that∥∥∂αk ∂βrR0(k, r)

∥∥
Lp(R2

r,L(Hf ,H2
A0

)
≤ cα,β(1 + k2)2|α+β|+1 =: q0,α,β(k)

and ∥∥∂αk ∂βrR0(k, r)
∥∥
Lp(R2

r,L(Hf))
≤ cα,β(1 + k2)2|α+β| =: q̃0,α,β(k)

for α, β ∈ N2
0, |β| ≥ 1, and p ∈ {1, 2}.

Now we assume that the claim holds for all Rj with j ≤ n and prove it for Rn+1.
In the proof of Theorem 2.5.1, Rn+1 is constructed as

Rn+1(ζ, k, r) = −R0(ζ, k, r)En+1(ζ, k, r)
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with
En+1(ζ, k, r) = [(H0(ζ, k, r)− ζ)]R(n)(ζ, k, r)]n+1.

Now we use the formula (B.3) for the Moyal product and get

En+1(ζ, k, r)

=
∑

|α|+|β|+l=n+1, l≤n

cα,β(∂αk ∂
β
r (H0(k, r)− ζ))(∂αr ∂

β
kRl(ζ, k, r))

=
∑

|α|+|β|+l=n+1, l≤n

cα,β(∂αk ∂
β
rH0(k, r))(∂αr ∂

β
kRl(ζ, k, r)),

which yields

Rn+1(k, r, ζ)

= −
∑

|α|+|β|+l=n+1, l≤n

cα,βR0(k, r, ζ)(∂αk ∂
β
rH0(k, r))(∂αr ∂

β
kRl(ζ, k, r)).

Hence we can use the induction hypothesis and Lemma 5.1.2 to conclude that
Rn+1(ζ, k, r) has the required property.
Finally, recall the definition of πn for n ∈ N0 in the proof of Theorem 2.5.1 as

πn(k, r) := i
2π

∮
Λ(z0)

Rn(ζ, k, r)dζ on Uz0 .

This directly yields that the symbols πn(k, r) satisfy the conditions (5.5) and (5.6).
�

Lemma 5.1.4. Let H0(k, r) = 1
2
(−i∇y + k − A0(y) − A(r))2 + VΓ(y) + Φ(r) =

Hper(k − A(r)) + Φ(r) ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)) with

(∗) A ∈ C∞b (R2,R2) so that |∂αr A(r)| ∈ L1(R2) for all |α| ≥ 1 and
Φ ∈ C∞b (R2,R) so that ∂αr Φ(r) ∈ L1(R2) for all |α| ≥ 1.

Moreover, let u �
∑

j≥0 ε
juj be the symbol constructed according to Theorem 3.3.4.

Then for all j ≥ 0 and for every α, β ∈ N2
0 with |β| ≥ 1, there is an even polynomial

qj,α,β so that ∥∥∂αk ∂βr uj(k, r)∥∥Lp(R2
r,L(Hf))

≤ qj,α,β(k) (5.7)

for p ∈ {1, 2}.

Proof.
We show this by induction. For n = 0 the claim follows from the definition of
u0(k, r), see the proof of Thereom 3.3.4, and the assumptions (∗). Similar to the
proof of Lemma 5.1.2, we notice that

∥∥∂αk ∂βr u0(k, r)
∥∥
L(Hf)

can be estimated by a
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finite sum with summands looking like c
∑|β|
|γ|=1 |∂γrA1(r)|. This yields the claim

for n = 0.
If we assume ∥∥∂αk ∂βr uj(k, r)∥∥Lp(R2

r,L(Hf))
≤ qj,α,β(k) for j ≤ n,

it is quite easy to see that it also holds for un+1(k, r). We just have to recall the
definition of un+1(k, r) in the proof of Theorem 3.3.4 and verify (adopting the
notation used there) step by step that An+1 and thus an+1 and thus w(n) and w(n)∗

and, because of Lemma 5.1.3, Bn+1 and hence bn+1 satisfy (5.7) and thus so does
un+1. We always use the formula (B.3) of the Moyal product, the boundedness of
the symbols, and the fact that they fulfil (5.7). �

Lemma 5.1.5. Let H0(k, r) = 1
2
(−i∇y + k − A0(y) − A(r))2 + VΓ(y) + Φ(r) =

Hper(k − A(r)) + Φ(r) ∈ Sw=1+k2

τ (R4,L(H2
A0
,Hf)) with

(∗) A ∈ C∞b (R2,R2) so that |∂αr A(r)| ∈ L1(R2) for all |α| ≥ 1 and
Φ ∈ C∞b (R2,R) so that ∂αr Φ(r) ∈ L1(R2) for all |α| ≥ 1.

Moreover, let h �
∑

j≥0 ε
jhj be the symbol constructed according to Theorem 3.3.6.

Then for all j ≥ 0 and for every α, β ∈ N2
0 with |β| ≥ 1, there is an even polynomial

qj,α,β so that ∥∥∂αk ∂βr hj(k, r)∥∥Lp(R2
r,L(Hf))

≤ qj,α,β(k)

for p ∈ {1, 2}.

Proof.
This follows by using the Lemmata 5.1.2, 5.1.3, 5.1.4, and the formula (B.3) of the
Moyal product. �

Now we can reformulate Theorem 5.1.1 in a more convenient form.

Corollary 5.1.6. Let H0(k, r) = 1
2
(−i∇y + k − A0(y)− A(r))2 + VΓ(y) + Φ(r) ∈

Sw=1+k2

τ (R4,L(H2
A0
,Hf)), let E be an isolated band according to Definition 2.4.1,

and let Assumption 1 hold. Moreover, let |∂αr A(r)| ∈ L1(R2) for all |α| ≥ 1 and
∂αr Φ(r) ∈ L1(R2) for all |α| ≥ 1. Then there exist

(i) an orthogonal projection Πε ∈ L(Hτ ),

(ii) a unitary map U ε ∈ L(ΠεHτ ,Hθ), and

(iii) a self-adjoint operator ĥeff

eff
∈ L(Hθ)
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such that
‖[Hε

BF,Π
ε]‖L(Hτ ) = O(ε∞)

and ∥∥∥(e−iH
ε
BFt − U ε∗e−iĥeff

eff
tU ε)Πε

∥∥∥
L(Hτ )

= O(ε∞(1 + |t|)).

The effective Hamiltonian is the effective quantisation of the symbol heff ∈
S1
τ≡1(ε,C) which can be computed to any order.

Proof.
By Lemma 5.1.5, we get that the assumptions for Theorem 5.1.1 are satisfied with
αj = 1 for all j ≥ 0. �

Remark 5.1.7. Corollary 5.1.6 can be generalised to semiclassical symbols H �∑
j≥0 ε

jHj ∈ S1
τ (ε,L(H2

A0
,Hf)) with principal symbol H0 defined as above that

satisfy that for all j ≥ 1 and for every α, β ∈ N2
0 with |β| ≥ 1, there is a function

gj,α,β ∈ C(R2) so that ∥∥∂αk ∂βrHj(k, r)
∥∥
Lp(R2

r,L(Hf))
≤ gj,α,β(k)

for p ∈ {1, 2}.

5.2 The leading orders of the symbol
The next goal is to compute the principal and subprincipal symbol of the effec-
tive Hamiltonian from Theorem 5.1.1 for our case of a non-degenerate isolated
eigenvalue band E. Thereto, we look at its construction in the proof of Theo-
rem 5.1.1. Hence, we first must compute the principal and subprincipal symbol
of h = u]π]H]π]u∗. After that, we compute the principal and subprincipal sym-
bol of hc according to Corollary 4.2.18(i). By construction, these symbols com-
mute with π0(k). Then the principal and subprincipal symbol of hθ are given by
hθ0 = U θhc0U

θ∗ = 〈ϕ(k), hc0ϕ(k)〉Hf
and hθ1 = U θhc1U

θ∗ = 〈ϕ(k), hc1ϕ(k)〉Hf
. The

last step is to compute the principal and subprincipal symbol of heff as the correc-
tions of hθ according to Corollary 4.4.9(ii).
Note that we started from the pseudodifferential operator Hε

BF = H0(k, iε∇τ
k) and

not H0(k, -iε∇τ
k). For the constructions made so far, we could neglect this. But

now, when we explicitly compute symbols, we need to pay attention that in the
Weyl product and in the corrections there are some changes of signs.

Proposition 5.2.1. The subprincipal symbol of hθ from the construction in the
proof of Theorem 5.1.1 can be computed by

hθ1 = i
2
〈ϕ(k), {ũ0(k, r), Hper(k, r)− E(k, r)}e

iθ
2π
k1A2(r)ϕ(k, r)〉Hf

+i〈ϕ(k), {ũ0(k, r), E(k, r) + Φ(r)}e
iθ
2π
k1A2(r)ϕ(k, r)〉Hf

.
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Proof.
For this proof, we can first proceed along the ideas of the computation in paragraph
3.3.1 of [Teu03]. Note that we will get additional terms because the projection
π0(k), which corresponds to the projection πr in [Teu03, PST03b], is not constant,
but depends on k, and also the symbol u0 is a bit more complex. For the following
considerations keep in mind that u0(k, r) can be split up into

u0(k, r) = π0(k)u0(k, r)π0(k, r) + π⊥0 (k)u0(k, r)π⊥0 (k, r) (5.8)

= |ϕ(k)〉 〈ϕ(k − A(r))| e−
iθ
2π
A2(r)k1 + u⊥0 (k, r) (5.9)

:= ũ0(k, r) + u⊥0 (k, r). (5.10)

First, note that by construction of u we have h = u]π]H]π]u∗ = πr]u]H]u
∗]πr

where πr(k, r) = π0(k). So with h̃ := u]H]u∗ we get

h̃0(k, r) = u0(k, r)H0(k − A(r))u∗0(k, r)

= |ϕ(k)〉〈ϕ(k − A(r))| (Hper(k − A(r)) + Φ(r)) |ϕ(k − A(r))〉〈ϕ(k)|
+u⊥0 (k, r)H0(k, r)u⊥∗0 (k, r)

= (E(k − A(r)) + Φ(r))π0(k) + π⊥0 (k)u⊥0 (k, r)H0(k, r)u⊥∗0 (k, r)π⊥0 (k)

and therefore
h0(k, r) = (E(k − A(r)) + Φ(r))π0(k)

and

h1(k, r) = (πr]h̃]πr)1(k, r) = (πr]h̃)1(k, r)π0(k) + i
2
{π0(k)h̃0(k, r), π0(k)}

= π0(k)h̃1(k, r)π0(k) + i
2
{π0(k), h̃0(k, r)}π0(k) + i

2
{h0(k, r), π0(k)}

= π0(k)h̃1(k, r)π0(k) + i
2
(−∇kπ0(k)∇r(E(k − A(r)) + Φ(r))π0(k)

+∇r(E(k − A(r)) + Φ(r))π0(k)∇kπ0(k))

= π0(k)h̃1(k, r)π0(k) + i
2
∇r (E(k − A(r)) + Φ(r)) [π0(k),∇kπ0(k)].

Hence, for the corrections of the symbols we get from corollary 4.2.18(i)

hc0 = (E(k − A(r)) + Φ(r))π0(k)

and

hc1 = h1(k, r) + i
2
(D(k)∇r(E(k − A(r)) + Φ(r))π0(k) +∇r(E(k − A(r))

+Φ(r))π0(k)D(k))

= h1(k, r) + i
2
∇r(E(k − A(r)) + Φ(r))(D(k)π0(k) + π0(k)D(k))

= h1(k, r) + i
2
∇r(E(k − A(r)) + Φ(r))D(k)

= h1(k, r) + i
2
∇r(E(k − A(r)) + Φ(r))[∇kπ0(k), π0(k)]

= π0(k)h̃1(k, r)π0(k).
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Here we used

D(k) = π0(k)∇k(π
⊥
0 (k)π⊥0 (k)) + π⊥0 (k)∇k(π0(k)π0(k))

= π0(k)
(
∇kπ

⊥
0 (k)

)
π⊥0 (k) + π⊥0 (k) (∇kπ0(k))π0(k)

= −π0(k) (∇kπ0(k)) + π0(k) (∇kπ0(k))π0(k) + (∇kπ0(k))π0(k)

−π0(k) (∇kπ0(k))π0(k)

= [∇kπ0(k), π0(k)]

exploiting
∇k ◦ π0(k) = (∇kπ0(k)) + π0(k)∇k.

It remains to compute π0(k)h̃1(k, r)π0(k).
To avoid having to compute u1(k, r), which would be quite complicated, we fur-
thermore proceed along the lines of the computation in [Teu03, PST03b]. On the
one hand, we get, after Moyal-multiplying h̃ = u]H]u∗ with u from the right,
u]H = h̃]u and thus

u]H − h̃0]u = εh̃1u0 +O(ε2). (5.11)

On the other hand, we can compute the subprincipal symbol by

(u]H − h̃0]u)1 = u1H0 + u0H1 − h̃0u1 + (u0]H0)1 − (h̃0]u0)1. (5.12)

Combining equations (5.11) and(5.12) yields

h̃1 = (u]H − h̃0]u)1u
∗
0 = (u1H0 + u0H1 − h̃0u1 + (u0]H0)1 − (h̃0]u0)1)u∗0.

Having in mind the construction of u1 = (a+ b)u0 and h̃0, we get

π0(k)(u1H0u
∗
0 − h̃0u1u

∗
0)π0(k) = 0.

Since in our case also H1 ≡ 0, we just must take care of the term

π0(k)
(

(u0]H0)1 − (h̃0]u0)1

)
u∗0(k, r)π0(k)︸ ︷︷ ︸
=π0(k,r)u∗0(k,r)

.

Now we want to show that for the calculation of h1, only the part ũ0 of u0 is
relevant. Recall h̃0 = u0H0u

∗
0 and (5.8). We first split up u0 to get

π0(k){u0, H0}π0(k, r) = π0(k){ũ0, H0}π0(k, r) + π0(k){u⊥0 , H0}π0(k, r) (5.13)

and calculate

π0(k){u⊥0 , H0}π0(k, r) = −π0(k)(∇kπ
⊥
0 (k))u⊥0 (∇rH0)π0(k, r)

= π0(k)(∇kπ0(k))u⊥0 (∇rπ0(k, r))H0π0(k, r)

−π0(k)(∇kπ0(k))u⊥0 H0(∇rπ0(k, r))π0(k, r),
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where in the last step we exploited H0 = π0(k, r)H0π0(k, r) + π⊥0 (k, r)H0π
⊥
0 (k, r).

Next, we look at

π0(k){h̃0, u0}π0(k, r) = π0(k){h̃0, ũ0}π0(k, r) + π0(k){h̃0, u
⊥
0 }π0(k, r) (5.14)

and calculate

π0(k){h̃0, u
⊥
0 }π0(k, r) = π0(k)(∇rh̃0)u⊥0 (∇kπ

⊥
0 (k, r))π0(k, r) (5.15)

−π0(k)(∇kh̃0)u⊥0 (∇rπ
⊥
0 (k, r))π0(k, r)

= π0(k)h̃0∇k(π0(k))u⊥0 (∇rπ
⊥
0 (k, r))π0(k, r) (5.16)

−π0(k)(∇kπ0(k))h̃0u
⊥
0 (∇rπ

⊥
0 (k, r))π0(k, r) (5.17)

= π0(k)(∇kπ0(k))u⊥0 (∇rπ0(k, r))H0π0(k, r) (5.18)
−π0(k)(∇kπ0(k))u⊥0 H0(∇rπ0(k, r))π0(k, r) (5.19)

= π0(k){u⊥0 , H0}π0(k, r). (5.20)

In (5.15), the right hand side vanishes since π0(k)(∇rh̃0)π⊥0 (k, r) = 0. Then we
use that the off-diagonal part of h̃0 vanishes and treat the part π0(k)h̃0π0(k)

in (5.16) and π⊥0 (k)h̃0π
⊥
0 (k) in (5.17). Moreover, in (5.18) we used π0(k)h̃0 =

(E(k, r) + Φ(r))π0(k), moved the scalar part (E(k, r) + Φ(r)) to the end of the ex-
pression, and then in turn exploited (E(k, r) + Φ(r))π0(k, r) = H0(k, r)π0(k, r).
Finally, in (5.19) note that h̃0u

⊥
0 = h̃0π

⊥
0 (k, r)u0(k, r) = π⊥0 (k, r)h̃0u0(k, r) =

π⊥0 (k, r)u0(k, r)H0(k, r) = u⊥0 (k, r)H0(k, r).
All in all, we get from (5.13),(5.14), and (5.20) that

π0(k)
(
{u0, H0} − {h̃0, u0}

)
π0(k, r) = π0(k)

(
{ũ0, H0} − {h̃0, ũ0}

)
π0(k, r),

Finally note that π0(k){π⊥0 (k)h̃0π
⊥
0 (k), ũ0}π0(k, r) = 0 implies

π0(k)
(
{u0, H0} − {h̃0, u0}

)
π0(k, r) = π0(k) ({ũ0, H0} − {h0, ũ0}) π0(k, r)

and hence, as for u0, only the part π0(k)h̃0π0(k) = h0 of h̃0 is relevant for the
following calculations.
Thus, we just must compute the Poisson brackets

{ũ0(k, r), Hper(k − A(r)) + Φ(r)}

and

{(E + Φ)π0(k), ũ0} = π0(k){E + Φ, ũ0} − (E + Φ)∇kπ0(k)∇rũ0

= −π0(k){ũ0, E + Φ} − (E + Φ)(∇kπ0(k))π0(k)∇rũ0,
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where the last equality holds because of ũ0(k, r) = π0(k)ũ0(k, r). So we get

hc1 = π0(k)h̃1π0(k)

= + i
2
〈ϕ(k), {ũ0, Hper + Φ}+ {ũ0, E + Φ}ϕ(k − A(r))〉Hf

π0(k)

+ i
2
〈ϕ(k), (E + Φ)π0(k)(∇kπ0(k))π0(k)∇rũ0ϕ(k − A(r))〉Hf

π0(k)

= + i
2
〈ϕ(k), {ũ0, Hper − E}ϕ(k − A(r))〉Hf

π0(k)

+i〈ϕ(k), {ũ0, E + Φ}ϕ(k − A(r))〉Hf
π0(k)

because of π0(k)(∇kπ0(k))π0(k) = 0.
With hθ0 = 〈ϕ(k), hc0ϕ(k)〉Hf

and hθ1 = 〈ϕ(k), hc1ϕ(k)〉Hf
, the claim follows. �

Proposition 5.2.2. The symbol hθ(k, r) = hθ0(k, r) + εhθ1(k, r) +O(ε2) from the
construction in the proof of Theorem 5.1.1 is given by

hθ0(k, r) = E(k − A(r)) + Φ(r)

and

hθ1(k, r)

= iA1(k − A(r))(∂1Φ(r) + ∂2E(k − A(r))∂2A1(r))

−i(A2(k)−A2(k − A(r)))(∂2Φ(r)− ∂1E(k − A(r))∂2A1(r))

−iA1(k)∂r1(E(k − A(r)) + Φ(r))

+∂2A1(r)Re
(
i
2
〈∂1ϕ(k − A(r)), (Hper − E)(k − A(r))∂2ϕ(k − A(r))〉Hf

)
−∂2A1(r)Re

(
i
2
〈∂2ϕ(k − A(r)), (Hper − E)(k − A(r))∂1ϕ(k − A(r))〉Hf

)
.

Proof.
Bearing in mind that we have chosen the gauge A2(r) ≡ 0, we can calculate using
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Proposition 5.2.1

〈ϕ(k), {ũ0(k, r), (Hper − E)(k, r)}ϕ(k, r)〉Hf

= 〈ϕ(k),∇rũ0(k, r)∇k(Hper − E)(k − A(r))

−∇kũ0(k, r)∇r(Hper − E)(k − A(r))ϕ(k, r)〉Hf

=
2∑
j=1

(〈∂rjϕ(k − A(r)), ∂kj(Hper − E)(k − A(r))ϕ(k − A(r))〉Hf

−Aj(k)〈ϕ(k − A(r)), ∂rj(Hper − E)(k − A(r))ϕ(k − A(r))〉Hf

−〈∂kjϕ(k − A(r)), ∂rj(Hper − E)(k − A(r))ϕ(k − A(r))〉Hf
)

=
2∑
j=1

(−〈−∂k1ϕ(k − A(r))∂jA1(r), (Hper − E)(k − A(r))∂kjϕ(k − A(r))〉Hf

+〈∂kjϕ(k − A(r)), (Hper − E)(k − A(r))∂rjϕ(k − A(r))〉Hf
)

= ∂2A1(r)〈∂1ϕ(k − A(r)), (Hper − E)(k − A(r))∂2ϕ(k − A(r))〉Hf

−∂2A1(r)〈∂2ϕ(k − A(r)), (Hper − E)(k − A(r))∂1ϕ(k − A(r))〉Hf
.

Here we used the equality

〈Φ, ∂j(Hper − E)ϕ〉 = −〈Φ, (Hper − E)∂jϕ〉,

which comes from the fact that ϕ is an eigenvector of Hper with eigenvalue E
and so it holds for arbitrary Φ that 〈Φ, (Hper − E)ϕ〉 = 0 = ∂j〈Φ, (Hper − E)ϕ〉.
Moreover, note that the imaginary part of

i(∂2A1(r)〈∂1ϕ(k − A(r)), (Hper − E)(k − A(r))∂2ϕ(k − A(r))〉Hf

−∂2A1(r)〈∂2ϕ(k − A(r)), (Hper − E)(k − A(r))∂1ϕ(k − A(r))〉Hf
)

vanishes. Furthermore, it holds

〈ϕ(k), {ũ0, E + Φ}ϕ(k − A(r))〉Hf

=
2∑
j=1

〈∂rjϕ(k − A(r)), ∂kjE(k − A(r))ϕ(k − A(r))〉Hf

−
2∑
j=1

(Aj(k)〈ϕ(k − A(r)), ∂rj(E(k − A(r)) + Φ(r))ϕ(k − A(r))〉Hf

−〈∂kjϕ(k − A(r)), ∂rj(E(k − A(r)) + Φ(r))ϕ(k − A(r))〉Hf
)

= A1(k − A(r))(∂2E(k − A(r))∂2A1(r) + ∂1Φ(r))−A1(k)∂r1(E(k − A(r))

+Φ(r)) + (A2(k − A(r))−A2(k))(∂r2(E(k − A(r)) + Φ(r)).

�
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Remark 5.2.3. A formal Taylor expansion yields

Φ(iε∇k + iεA(k)) = Φ(iε∇k) + ε∇Φ(iε∇k)iA(k) + ε2...

So one could expect that the Berry connection term in the subprincipal symbol of
hθ from Theorem 5.2.2 should vanish since it is already included in the quantisa-
tion. But as we see, this only is the case if the weak perturbation A(r) ≡ 0.

Theorem 5.2.4. The principal and subprincipal symbol of heff = h0 + εh1 +O(ε2)
from Theorem 5.1.1 are given by

h0(k, r) = E(k − A(r)) + Φ(r)

and

h1(k, r)

= iA1(k − A(r))(∂1Φ(r) + ∂2E(k − A(r))∂2A1(r))

+i(A2(k − A(r))− iθ
2π
k1)(∂2Φ(r)− ∂1E(k − A(r))∂2A1(r))

+∂2A1(r)Re
(
i
2
〈∂1ϕ(k − A(r)), (Hper − E)(k − A(r))∂2ϕ(k − A(r))〉Hf

)
−∂2A1(r)Re

(
i
2
〈∂2ϕ(k − A(r)), (Hper − E)(k − A(r))∂1ϕ(k − A(r))〉Hf

)
=: (∇Φ(r)−∇E(k̃)×B(r)) · (iA1(k̃), i(A2(k̃)− iθ

2π
k1))T −B(r) · M(k̃),

where k̃ = k − A(r) and B(r) = ∂2A1.

Proof.
From Theorem 4.4.8(ii), we get

(hθ)c1(k, r) = hθ1(k, r) + i(A1(k)∂r1(E(k − A(r)) + Φ(r)) + (A2(k)− iθ
2π
k1)×

∂r2(E(k − A(r)) + Φ(r)))

= iA1(k − A(r))(∂1Φ(r) + ∂2E(k − A(r))∂2A1(r))

+i(A2(k − A(r))− iθ
2π
k1)(∂2Φ(r)− ∂1E(k − A(r))∂2A1(r)).

�

5.3 The corresponding results for an arbitrary
Bravais lattice Γ

In this section, we give the corresponding results for an arbitrary Bravais lattice Γ
generated by the vectors γ1 and γ2. As always, we denote the components of the
generating vectors by γ1 = (γ1

1 , γ
1
2) and γ2 = (γ2

1 , γ
2
2).
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In Proposition 5.2.1, one has to keep in mind the altered phase in the definition
of u0, which yields

hθ1 = i
2
〈ϕ(k), {u0(k, r), Hper(k, r)− E(k, r)}e

iθ
2π
〈γ1,k〉〈γ2,A(r)〉ϕ(k, r)〉Hf

+i〈ϕ(k), {u0(k, r), E(k, r) + Φ(r)}e
iθ
2π
〈γ1,k〉〈γ2,A(r)〉ϕ(k, r)〉Hf

.

However, this modification only has to be noted if one does not take our gauge
〈γ2, A(r)〉 ≡ 0.

The subprincipal symbol of hθ computed in Proposition 5.2.2 is then given by

hθ1(k, r) = iA1(k̃)(∂1Φ(r) + ∂2E(k̃)∂2A1(r)− ∂2E(k̃)∂1A2(r))

+iA2(k̃)(∂2Φ(r)− ∂1E(k̃)∂2A1(r) + ∂1E(k̃)∂1A2(r))

−iA1(k)∂r1(E(k̃) + Φ(r))−A2(k)∂r2(E(k̃) + Φ(r))

+(∂2A1(r)− ∂1A2(r))Re
(
i
2
〈∂1ϕ(k̃), (Hper − E)(k̃)∂2ϕ(k̃)〉Hf

)
+(∂1A2(r)− ∂2A1(r))Re

(
i
2
〈∂2ϕ(k̃), (Hper − E)(k̃)∂1ϕ(k̃)〉Hf

)
,

where k̃ = k − A(r).
Hence taking into account the modifications of Corollary 4.4.9, the subprincipal
symbol of heff is

heff1(k, r) = iA1(k̃)(∂1Φ(r) + ∂2E(k̃)∂2A1(r)− ∂2E(k̃)∂1A2(r))

+iA2(k̃)(∂2Φ(r)− ∂1E(k̃)∂2A1(r) + ∂1E(k̃)∂1A2(r))

+ θ
2π
〈γ1, k〉

(
γ2

1∂r1(E(k̃) + Φ(r)) + γ2
2∂r2(E(k̃) + Φ(r))

)
+(∂2A1(r)− ∂1A2(r))Re

(
i
2
〈∂1ϕ(k̃), (Hper − E)(k̃)∂2ϕ(k̃)〉Hf

)
+(∂1A2(r)− ∂2A1(r))Re

(
i
2
〈∂2ϕ(k̃), (Hper − E)(k̃)∂1ϕ(k̃)〉Hf

)
.

Here we need to note that from the gauge 〈A, γ2〉 = 0 we get

∂jA1γ
2
1 + ∂jA2γ

2
2 = 0 for j = 1, 2.
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This yields

γ2
1∂r1E(k − A(r)) + γ2

2∂r2E(k − A(r))

= −∂1E(k − A(r)) γ2
1∂1A1(r)︸ ︷︷ ︸

=−γ2
2∂1A2(r)

−∂2E(k − A(r))γ2
1∂1A2(r)

−∂1E(k − A(r))γ2
2∂2A1(r)− ∂2E(k − A(r)) γ2

2∂2A2(r)︸ ︷︷ ︸
=−γ2

1∂2A1(r)

= γ2
1(−∂2E(k − A(r))∂1A2(r) + ∂2E(k − A(r))∂2A1(r))

+γ2
2(∂1E(k − A(r))∂1A2(r)− ∂1E(k − A(r))∂2A1(r)).

Thus, we get for the leading orders of the symbol of the effective Hamiltonian:

Theorem 5.3.1. The principal and subprincipal symbol of the semiclassical symbol
heff = h0 + εh1 +O(ε2) from Theorem 5.1.1 are

h0(k, r) = E(k − A(r)) + Φ(r)

and

h1(k, r) = i(A1(k̃)− iθ
2π
〈γ1, k〉γ2

1)(∂1Φ(r) + ∂2E(k̃))(∂2A1(r)− ∂1A2(r))

+i(A2(k̃)− iθ
2π
〈γ1, k〉γ2

2)(∂2Φ(r)− ∂1E(k̃))(∂2A1(r)− ∂1A2(r))

+(∂2A1(r)− ∂1A2(r))Re
(
i
2
〈∂1ϕ(k̃), (Hper − E)(k̃)∂2ϕ(k̃)〉Hf

)
+(∂1A2(r)− ∂2A1(r))Re

(
i
2
〈∂2ϕ(k̃), (Hper − E)(k̃)∂1ϕ(k̃)〉Hf

)
=: (∇Φ(r)−∇E(k̃)×B(r)) · i(A(k̃)− iθ

2π
〈γ1, k〉γ2)−B(r) · M(k̃),

where k̃ = k − A(r) and B(r) = ∂1A2 − ∂2A1.

5.4 The Hofstadter model
In this section, we want to connect our results with the Hofstadter model, which
was, as the name suggests, first explored by Douglas R. Hofstadter in [Hof76].
Until today, the Hofstadter model is an object of interest for mathematical and
physical research, see for example [AJ06] and [GA03] and references therein. It is
given by the discrete magnetic Laplacian

HB =
∑
|a|=1

TBa
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acting on l2(Z2). Here for j, a ∈ Z2, the magnetic translation with respect to

the constant magnetic field B is defined by (TBa x)j = e
i
2
B(−a1j2+a2j1)xj−a. Setting

u := TB(1,0) and v := TB(0,1), we see that the Hamiltonian is of the form HB =

u + u∗ + v + v∗ and, moreover, uv = e−iBvu holds. This motivates the following,
more general definition: Let H be a Hilbert space and let U and V be some
unitary operators in L(H) that fulfil UV = e−2πiρV U with ρ ∈ R. Then we call
the operator

H = U + V + U∗ + V ∗

Hofstadter-Hamiltonian. Moreover, any operator of the form

H =
∑

n,m∈Z2

cnmU
nV m,

with complex cnm, is called Hofstadter-like Hamiltonian. Before we link this to our
results, we want to imbed it into a more general structure. For this whole section,
compare also Chapter 2.3 and 3.3.7 of [DeN10].
The main tool we need is the notion of the ”Non-Commutative Torus”, short NCT,
or “Rotation C∗-Algebra”. The NCT was first introduced by Connes [Con80] and
an detailed monograph can be found in [Boc01]. Let u and v be two abstract
elements satisfying u∗ = u−1 and v∗ = v−1 with respect to an involution ∗ and
uv = e−2πiρvu with ρ ∈ R. Then Lρ, which consists of all finite, complex linear
combinations of unvm with n,m ∈ Z, can be endowed with the norm ‖a‖ :=
supπ{‖π(a)‖L(H) : π : Lρ → L(H) is a ∗ -representation}. The unital C∗-algebra
Uρ is then defined as the completion of Lρ with respect to this norm and ρ is
called deformation parameter. One can show that the spectrum of the element
u+ u∗ + v + v∗ is the Hofstadter butterfly.
An important property of the NCT Uρ is the so-called ”surjective representation
property“: Let U and V be two unitary operators acting on a Hilbert space H
that fulfil UV = e−2πiρV U . Let moreover C∗(U, V ) be the C∗-algebra generated
by U and V in L(H). Then the surjective representation property assures that the
map π with π(u) = U and π(v) = V extends algebraically to a representation (a
∗-morphism) π : Uρ → C∗(U, V ) which is surjective.
So note that if we have an arbitrary representation like this, it is enough to show
that it is injective to conclude that it is a ∗-isomorphism. This will get important
for us because it implies that σ(π(a)) = σ(a) for all a ∈ Uρ.
Now we show how the effective Hamiltonian Heff that we have derived can be
perceived as Hofstadter-like Hamiltonian. For the weak perturbation A we take
the linear potential of a constant magnetic field with our gauge A(y) = (−by2, 0)T,
which is adapted to the choice of ϕ from Lemma 3.3.2. Moreover, we set Φ ≡ 0 so
that the full Hamiltonian now reads

Hε = 1
2
(−i∇x − A0(x)− A(εx))2 + VΓ(x)
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respectively after magnetic Bloch-Floquet transformation

Hε
BF = Ĥ0

τ
with H0(k, r) = 1

2
(−i∇y − A0(y) + k − A(r))2 + VΓ(y).

Now we assume that Theorem 5.1.1 holds also for this case and hence the lead-
ing order of the effective Hamiltonian is given by the Peierls substitution, so we
formally get as effective Hamiltonian with accurancy N0 = 1 for Hε

BF

Heff = E(k − A(iε∇eff
k )) ∈ L(Hθ) with ∇eff

k = (∂k1 , ∂k2 + iθ
2π
k1)T.

We want to show how we can perceive this effective operator as Hofstadter-like
Hamiltonian. Thereto, we first must define appropriate operators U and V in
L(Hθ). We can formally write

Heff = E(K1,K2)

where
K1 = k1 + ibε∂k2 − θ

2π
bεk1

and
K2 = k2

with domains D(K1) = H1
loc(R2) and D(K2) = L2

loc(R2). Note that it holds

[K1,K2] = iεb. (5.21)

Using those operators, we introduce the Hofstadter unitaries U := eiK1 and V :=
eiK2 . They act on Hθ as

Uψ(k) = ei(1−
θ

2π
bε)k1ψ(k1, k2 − εb)

and
V ψ(k) = eik2ψ(k).

Moreover, a short calculation shows

UV = e−iεbV U = e
−2πi

(
εb
2π

)
V U. (5.22)

To get the operator as a power series, let E(k) =
∑

n,m∈Z cn,me
ik1neik2m be the

Fourier expansion of the (2πZ)2-periodic band function E. Then, bearing in mind
(5.21), we define the ”Peierls quantisation“ of the symbol E as

Hε
eff = E(K1,K2) :=

∑
n,m∈Z

cn,me
nmiεb

2 UnV m. (5.23)
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Any operator of this form is a Hofstadter-like Hamiltonian and well-defined. If
the band function is of the form E(k) = 2 cos(k1) + 2 cos(k2), the corresponding
effective operator HHof

eff = U + U∗ + V + V ∗ is a Hofstadter Hamiltonian.
Our next goal is to show that the spectrum of the operator HHof

eff is the Hofstadter
butterfly. In the non-magnetic case case A0 ≡ 0 this is described at length in
[DeN10]. We will just sketch the relevant details for our purpose and point out
the small modification of the proofs. It is clear that the elements of the NCT
Uρ are connected with the operators on Hθ by the Hofstadter representation πHof .
This is the representation generated by πHof(u) = U and πHof(v) = V , where U
and V are the above defined Hofstadter unitaries acting on Hθ. The surjective
representation property and equation (5.22) assure that πHof : Uρ → C∗(U, V ) is a
surjective ∗-morphism. We need to show that the Hofstadter representation πHof

is a ∗-isomorphism. Hence we have to prove the following Lemma.

Lemma 5.4.1. For any ρ ∈ R, the Hofstadter representation πHof : Uρ → C∗(U, V )
is injective.

Proof.
The proof follows the line of the proof of Lemma 2.3.2 in [DeN10]. The first step
is to define the GNS representation πGNS of Uρ relative to a faithful state

∮
. The

faithfulness of the state
∮
implies the faithfulness of the representation πGNS. The

second step is to show that πGNS and πHof are unitarily equivalent, which implies
that πHof is injective.
We just sketch the first part: the state

∮
is the linear extension of the map defined

by
∮
unvm := δn,oδm,o and is faithful. Hence 〈a, b〉GNS :=

∮
a∗b defines a scalar

product on Uρ and turns it into a pre-Hilbert space whose completion is called
HGNS. The representation πGNS : Uρ → L(HGNS) is defined as follows: For a ∈ Uρ,
πGNS(a) is defined on the dense subset Uρ by πGNS(a)b := ab.
Now we go on with the second part of the proof. Let ξn,m := e2πiρnmunvm ∈ HGNS

for all n,m ∈ Z. Then the set {ξn,m : n,m ∈ Z} forms an orthonormal basis of
HGNS with

πGNS(u)ξn,m = e−2πiρmξn+1,m

πGNS(v)ξn,m = ξn,m+1.

Now let ρ := εb
2π

and ϕn,m := 1
2π
e−

iθ
2π
k1k2eik1n+ik2m. Then the set {ϕn,m : n,m ∈ Z}

forms an orthonormal basis of Hθ so that

Uϕn,m = e−2πiρmϕn+1,m

V ϕn,m = ϕn,m+1.

Hence the unitary map W : HGNS → Hθ defined by Wξn,m = ϕn,m intertwines
the representations πGNS and πHof . So the proof works almost analogously as
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the one in [DeN10], the only difference being the different choice of the basis
{ϕn,m : n,m ∈ Z} of Hθ. This choice is necessary because of the additional phase

e−
iθ
2π
bεk1 in the definition of the Hofstadter unitary U . �

We get that any Hofstadter-like operator (5.23) is realized as πHof(a) with a
self-adjoint element a in Uρ and for the spectra we have σ(πHof(a)) = σ(a). In
particular, we see that the spectrum of HHof

eff is the Hofstadter butterfly (without
colours).
So as in the non-magnetic case A0 ≡ 0, we get an effective Hamiltonian Heff given
as Peierls substitution with accurancy N0 = 1, which can be written as Heff =∑

n,m∈Z cn,me
nmiεb

2 UnV m and particularly for the form E = 2 cos(k1) + 2 cos(k2) of
the band function as HHof

eff = U + U∗ + V + V ∗, where the Hofstadter unitaries U
and V fulfil UV = e−2πiρV U . The differences to the non-magnetic case A0 ≡ 0 are
of course the reference space which is now Hθ and not L2(T2∗) any more and that
in the Peierls substitution we have to insert the non-trivial connection ∇eff

k . This
implies that the Hofstadter unitaries look differently. Now we want to relate our
results and the Hofstadter model to the Quantum Hall effect.

Remark 5.4.2. The connection with the Quantum Hall effect
The Quantum Hall effect was first discovered in 1980 by von Klitzing [vKDP80],
who was awarded the nobel price for it. Two years later, the authors of [TKNN82]
were the first to realise the coherency between the quantised values of the Hall
conductance and topological quantum numbers. A nice overview about the history
of the Quantum Hall effect and the development of its mathematical interpretation
can be found in [AOS03] and [AO08].
The mathematical model is given by the Hamiltonian

HQHE = 1
2
(−i∇x − B

2
(−x2, x1)T)2 + VΓ(x),

where B is a uniform magnetic field and VΓ is periodic with respect to the lattice
Γ ∼= Z2.
The procedure suggested in [TKNN82] is to study the Quantum Hall effect by
studying simpler, effective models. In [TKNN82], the Hamiltonian HQHE

A0
is ana-

lysed for two different limits: the limit ε → 0, which means that the magnetic
field B is weak compared to VΓ (the so-called Hofstadter-regime), and in the limit
1
ε
→ 0, which means that the magnetic field dominates all other interactions (the

so-called Harper regime). Then one uses the Kubo-formula to compute the Hall
conductance associated to spectral gaps as the Chern-number of underlying vector
bundles which are related to spectral projections of the accordant effective Hamil-
tonians. For suitable values of the adiabatic parameters these effective models
share the same spectral structure and the corresponding Chern numbers are re-
lated by a Diophantine equation sometimes referred to as ”TKNN-equations“.
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However, the paper does not provide rigorous mathematical justifications for eve-
rything, and some essential mathematical gaps have been filled only recently in
[DeN10], among them are the limit of the weak magnetic field using space-adiabatic
perturbation theory and a rigorous justification of the TKNN-equations. A nice
introduction to the coloured quantum butterflies seen as thermodynamic phase
diagrams can also be found in [Avr03].
It should now be clear that our results fit into this framework: they can be per-
ceived as a derivation of a unitarily effective model for the Hamiltonian HQHE with
a perturbed magnetic field B + δB in the limit δB → 0.
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Appendix A

Magnetic Sobolev spaces

In this paragraph, we quickly recall the definition and some properties of magnetic
Sobolev spaces as Hilbert spaces in order to establish the self-adjointness of our
Hamiltonian (2.3) on the domain H2

A0
(Rd). Proofs can be found in [Sti11] and for

a more detailed presentation of magnetic Sobolev spaces we refer the reader to
[GMS91] and [IMP07].

Definition A.0.3. Let A ∈ C∞(Rd,Rd) satisfy supx∈Rd |∂αxA(x)| ≤ cα for all
α ∈ Nd \ {0}. Then for m ∈ N0

Hm
A (Rd) := {f ∈ L2(Rd) : (−i∂x − A)αf ∈ L2(Rd) for all |α| ≤ m}

is called the mth magnetic Sobolev space. The inner product is defined by

〈f, g〉Hm
A

:=
∑
|α|≤m

〈(−i∂x − A)αf, (−i∂x − A)αg〉L2(Rd).

Proposition A.0.4. Under the above assumptions, Hm
A (Rd) is a Hilbert space with

dense subset S(Rd).

Lemma A.0.5. Let L =
∑
|α|≤2m aα(x)(−i∂x − A)α with aα ∈ C∞b (Rd,R) an

elliptic differential operator, that is to say
∑
|α|=2m aα(x)ξα ≥ c|ξ|2m for all x ∈ Rd

and ξ 6= 0.
Then the (2m)th Sobolev norm ‖ ‖H2m

A
is equivalent to the graph norm

‖ ‖L := (‖ ‖2
L2(Rd) + ‖L(·)‖2

L2(Rd))
1
2 .

Corollary A.0.6. Under the assumptions from Lemma A.0.5, we have L ∈
L(H2m

A (Rd), L2(Rd)).

Proposition A.0.7. Under the above assumptions, it holds that if L is symmetric,
the operator L : H2m

A (Rd)→ L2(Rd) is self-adjoint.
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Proposition A.0.8. Let Hε = 1
2
(−i∇x − A0(x) − A(εx))2 + VΓ(x) + Φ(εx) and

let Assumption 1 hold. Then Hε : H2
A0

(R2)→ L2(R2) is self-adjoint.

Proof.
Let H := 1

2
(−i∇x − A0)2 + VΓ, T1 := 1

2
A2(εx) + Φ(εx) and T2 := A(εx)(i∇x +

A0(x)) + i
2
(∇x · A(εx)). Then

Hε = H + T1 + T2

holds. So standard arguments show the claim, see for example [Kat66]. �
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Appendix B

Weyl calculus

In this appendix, we want to give a short derivation of the τ -quantisation following
the line of [Teu03, PST03b]. Thereto, we first sketch the operator-valued Weyl
calculus and the Weyl product. Then we show how the τ -quantisation can be
obtained by using suitable symbols and restricting to suitable functions. Another
aim of this appendix is to fix notation and state important formulas, for example
the Weyl product. For a more detailed presentation we refer the reader to [Teu03],
Appendix A and B.

B.1 Operator-valued Weyl calculus
The theory of pseudodifferential operators can be generalised to operator-valued
symbols. This is pointed out in many textbooks about the subject, for example in
[Hör85, Fol89, DS99]. We want to state the formulas and results that are important
for us. When it comes to symbol classes, we do not only use the usual Hörmander
symbol classes, see [Fol89, Hör85]. We also need the symbol classes related to
order functions that can be found for example in [DS99, Mar02].
Let in the following be

• 〈p〉 := (1 + |p|2)
1
2 ,

• H,H1,H2, and H3 separable Hilbert spaces,

• L(H1,H2) the space of continuous linear maps from H1 to H2 and L(H) :=
L(H,H).

We first introduce the notion of an order function:

Definition B.1.1. A function w : R2d → [0,∞) is called ”order function“ if there
exist constants C > 0 and N > 0 such that for every x, y ∈ R2d it holds

w(x) ≤ C〈x− y〉Nw(y).
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Now we define the spaces of symbols:

Definition B.1.2. Let m ∈ R and 0 ≤ ρ ≤ 1. Then we define the symbol class
Smρ (R2d,L(H1,H2)) by

Smρ (R2d,L(H1,H2)) := {f ∈ C∞(R2d,L(H1,H2)) : ∀α, β ∈ Nd ∃Cα,β > 0 :

sup
q∈Rd

∥∥(∂αq ∂
β
p f)(q, p)

∥∥
L(H1H2)

≤ Cα,β〈p〉m−ρ|β| ∀p ∈ Rd }.

Definition B.1.3. Let w : R2d → [0,∞) be an order function. Then the symbol
class Sw(R2d,L(H1,H2)) is defined by

Sw(R2d,L(H1,H2)) := {f ∈ C∞(R2d,L(H1,H2)) : ∀α, β ∈ Nd ∃Cα,β > 0 :∥∥(∂αq ∂
β
p f)(q, p)

∥∥
L(H1H2)

≤ Cα,βw(q, p) ∀q, p ∈ Rd }.

Remark B.1.4. The just introduced symbol classes are Fréchet spaces with re-
spect to the families of seminorms given through the respective minimal constants
Cα,β. Note also that Smρ=0 = Sw=〈p〉m .

Now we give the formula for the quantisation of the symbols.

Definition B.1.5. Let f ∈ Smρ (R2d,L(H1,H2)) ∪ Sw(R2d,L(H1,H2)) and ψ ∈
S(Rd,H1). Then the Weyl quantisation f̂ of f is given by

(f̂ ψ)(k) = 1
(2πε)d

∫
Rd
e
i(k−y)r

ε f
(
k+y

2
, r
)
ψ(y)drdy.

Proposition B.1.6. Let f ∈ Smρ (R2d,L(H1,H2)) ∪ Sw(R2d,L(H1,H2)). Then f̂
is a continuous mapping from S(Rd,H1) to S(Rd,H2).

This mapping can be extended by duality to a continuous mapping between
the respective dual spaces. Thereto we use the anti-linear inclusion S(Rd,H) ↪→
S ′(Rd,H) given by

S(Rd,H) 3 ψ 7→ Tψ ∈ S ′(Rd,H) with Tψ(ϕ) =

∫
Rd
〈ψ(x), ϕ(x)〉Hdx.

The extension of the map f̂ is, for T ∈ S ′(Rd,H1) and ϕ ∈ S(Rd,H2), given by

f̂ (T )(ϕ) := T (f̂ ∗ϕ),

where f ∗ denotes the pointwise adjoint of f .
We conclude this section with two important properties of the Weyl quantisation.
The first one identifies symbols whose quantisation is a bounded operator:

114



Theorem B.1.7. Let f ∈ Sw=1(R2d,L(H)). Then

f̂ ∈ L(L2(Rd,H)).

Remark B.1.8. Note that Sm=0
ρ (R2d,L(H)) ⊂ Sw=1(R2d,L(H)).

The second property is the usual property of the Weyl quantisation: The ad-
joint of the quantised symbol should be the quantisation of the pointwise adjoint
of the symbol.

Proposition B.1.9. Let f ∈ Smρ (R2d,L(H)) ∪ Sw(R2d,L(H)) and let moreover
f̂ ∈ L(L2(Rd,H)). Then we have (

f̂
)∗

= f̂ ∗.

B.2 Weyl product and semiclassical symbols
The most important observation about pseudodifferential operator theory is that
one can define an associative product in the space of symbols that corresponds to
the product of operators. We are going to call it the Weyl or the Moyal product.
Nevertheless, we first regard the pointwise product.

Proposition B.2.1. (i) For two symbols f ∈ Sm1
ρ (R2d,L(H2,H3)) and g ∈

Sm2
ρ (R2d,L(H1,H2)), f · g is a symbol in Sm1+m2

ρ (R2d,L(H1,H3)).

(ii) Let f ∈ Sw1(R2d,L(H2,H3)), g ∈ Sw2(R2d,L(H1,H2)). Then f ·g is a symbol
in Sw1·w2(R2d,L(H1,H3)).

Now we turn to the Weyl product. The following theorem states that for
suitable symbols, the product of to pseudodifferential operators is again a pseudo-
differential operator whose symbol is given by the Weyl product of the symbols of
the two pseudodifferential operators.

Proposition B.2.2. Let f ∈ Sm1
ρ (R2d,L(H2,H3)) and g ∈ Sm2

ρ (R2d,L(H1,H2))

or let f ∈ Sw1(R2d,L(H2,H3))and g ∈ Sw2(R2d,L(H1,H2)). Then f̂ ◦ ĝ = ĥ
with h ∈ Sm1+m2

ρ (R2d,L(H1,H3)) respectively h ∈ Sw1w2(R2d,L(H1,H3)) given by

h(q, p) = exp
(
iε
2

(∇p · ∇x −∇ξ · ∇q)
)
f(q, p)g(x, ξ)|x=q,ξ=p =: f]g.

The symbol f]g is called the ”Weyl product of the symbols f and g“.

We see from the formula that the Weyl product can be extended in orders of
ε. Hence it is convenient to introduce also semiclassical symbols which are classes
of ε-dependent symbols that are close to a power series in ε of classical symbols in
a way which will be specified below.
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Definition B.2.3. A map f : [0, ε0) → Smρ (L(H1,H2)) with ε 7→ fε is called
semiclassical symbol of order m and weight ρ if there exists a sequence {fj}j∈N
with fj ∈ Sm−jρρ (L(H1,H2)) such that for every n ∈ N we have

ε−n

(
fε −

n−1∑
j=0

εjfj

)
∈ Sm−nρρ (L(H1,H2)) (B.1)

uniformly in ε in the following sense: For any k ∈ N there exists a constant Cn,k
such that for every ε ∈ [0, ε0) one has∥∥∥∥∥fε −

n−1∑
J=0

εjfj

∥∥∥∥∥
(m−nρ)

k

≤ Cn,kε
n,

where ‖·‖mk is the kth Fréchet semi-norm in Smρ (L(H1,H2)). The space of these
semiclassical symbols is denoted by Smρ (ε,L(H1,H2)) or simply by Smρ (ε).

Analogously we define

Definition B.2.4. A map f : [0, ε0) → Sw(L(H1,H2)) with ε 7→ fε is called
semiclassical symbol if there exists a sequence {fj}j∈N with fj ∈ Sw(L(H1,H2))
such that for every n ∈ N we have

ε−n

(
fε −

n−1∑
j=0

εjfj

)
∈ Sw(L(H1,H2))

uniformly in ε in the following sense: For any k ∈ N there exists a constant Cn,k
such that for every ε ∈ [0, ε0) one has∥∥∥∥∥fε −

n−1∑
j=0

εjfj

∥∥∥∥∥
k

≤ Cn,kε
n, (B.2)

where ‖·‖k is the kth Fréchet semi-norm in Sw(L(H1,H2)). The space of these
semiclassical symbols is denoted by Sw(ε,L(H1,H2)) or simply by Sw(ε).

f0 is called the “principal symbol” and f1 is called the “subprincipal symbol” of
fε. If the condition (B.1) respectively (B.2) is fulfilled, one writes

fε �
∑
j≥0

εjfj in Smρ (ε) respectively Sw(ε)

and says that fε is asymptotically equivalent to the series
∑

j≥0 ε
jfj in Smρ (ε)

respectively Sw(ε).
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A formal power series
∑

j≥0 ε
jfj is in general not convergent. Yet it is always

the expansion of a (non-unique) symbol fε. So one can construct a formal power
series and knows a priori that there is a semiclassical symbol that is asymptotically
equivalent to it.

Proposition B.2.5. Let {fj}j∈N be a sequence such that fj ∈ Sm−jρρ respectively
fj ∈ Sw. Then there exists fε ∈ Smρ (ε) respectively Sw(ε) such that f �

∑
j≥0 ε

jfj
in Smρ respectively Sw and fε is unique up to O(ε∞). The symbol fε is called a
“resummation“ of the formal symbol

∑
j≥0 ε

jfj.

The Weyl product of two semiclassical symbols is again a semiclassical symbol
with an explicit asymptotic expansion:

Proposition B.2.6. Let

fε �
∑
j≥0

εjfj in Sm1
ρ (ε,L(H3,H2)) respectively Sw1(ε,L(H3,H2))

and

gε �
∑
j≥0

εjgj in Sm2
ρ (ε,L(H1,H2)) respectively Sw2(ε,L(H1,H2)).

Then fε]gε ∈ Sm1+m2
ρ (ε,L(H1,H3)) respectively Sw(ε,L(H1,H3)) has the asymp-

totic expansion

(fε]gε)k(q, p) =
∑

|α|+|β|+j+l=k

(−1)α

(2i)|α|+|β||α|!|β|!

(
(∂αq ∂

β
p fj)(∂

α
p ∂

β
q gl)

)
(q, p). (B.3)

The leading orders are
(fε]gε)0 = f0g0

and
(fε]gε)1 = f0g1 + f1g0 − i

2
{f0, g0},

where {·, ·} denotes the Poisson bracket.
For convenience, we also introduce spaces of formal power series.

Definition B.2.7. Let

Mm
ρ (ε,L(H1,H2)) := {

∑
j≥0

εjfj : fj ∈ Sm−jρρ (L(H1,H2))}

and
Mw(ε,L(H1,H2)) := {

∑
j≥0

εjfj : fj ∈ Sw(L(H1,H2))}.

In the context of formal power series, the product defined by (B.3) is called ”Moyal
product“ and also denoted by ].
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We conclude this section with

Definition B.2.8. Let Rε and Sε be two ε-dependent operators on H. One says
that Rε = Sε +O(ε∞) if for every n ∈ N there is a constant Cn such that

‖Rε − Sε‖L(H) ≤ Cnε
n

for all ε ∈ [0, ε0). One says that Rε is O(ε∞)-close to Sε.

Remark B.2.9. Often, the subscript ε of fε is dropped.

B.3 The τ -quantisation
In this section, we finally introduce the τ -quantisation. Our approach is to pass
from the phase space T ∗Rd = R2d to the phase space T ∗Td = Td×Rd by restricting
the calculus to (more or less) periodic symbols. This approach has also been used
in [GN98]. In our case, we deal with symbols and functions that are not exactly
periodic, but τ -equivariant with respect to a representation τ of the group of
lattice translations. This way, we get a pseudodifferential calculus for τ -equivariant
symbols and we will see that the properties of the Weyl calculus described in the
previous section carry over to the τ -calculus obtained that way.
In the following, let {γ1, ..., γd} ⊂ Rd generate the Bravais lattice

Γ := {γ ∈ Rd : γ =
d∑
j=1

λjγ
j, λj ∈ Z ∀j = 1, ...d}.

The centered fundamental cell of Γ is

M = {x ∈ Rd : x =
d∑
j=1

αjγ
j for αj ∈ [−1

2
, 1

2
]}.

τ is supposed to be a representation of Γ in L∗(H), the group of invertible elements
of L(H), that means that it is a group homomorphism

τ : Γ→ L∗(H), γ 7→ τ(γ).

When we deal with two Hilbert spaces H1 and H2, we denote by τ = (τ1, τ2) a
collection of such representations for the respective Hilbert spaces. Let moreover
Lγ be the translation by the lattice vector γ; this means that for ψ ∈ S(Rd,H) we
have Lγψ(x) = ψ(x−γ) and for a distribution T ∈ S ′(Rd,H) we have Lγ(T )(ψ) =
T (L−γψ).
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Definition B.3.1. A distribution T ∈ S ′(Rd,H) is called τ -equivariant if

LγT = τ(γ)T for all γ ∈ Γ,

where for ϕ ∈ S(Rd,H) we have τ(γ)T (ϕ) = T (τ(γ)−1ϕ). Denote by S ′τ the space
of τ -equivariant distributions. Moreover, we define the Hilbert space

L2
τ (Rd,H) := Hτ := {ψ ∈ L2

loc(Rd,H) : Lγψ = τ(γ)ψ for all γ ∈ Γ}

with inner product

〈ϕ, ψ〉Hτ =

∫
M

〈ϕ(x), ψ(x)〉Hdx,

and the space

C∞τ := {ψ ∈ C∞(Rd,H) : Lγψ = τ(γ)ψ for all γ ∈ Γ},

that is a dense subset of Hτ .

As mentioned before, we also need the notion of τ -equivariant symbols:

Definition B.3.2. A symbol fε ∈ Sw(ε,L(H1,H2)) ∪ Smρ (ε,L(H1,H2)) is called
τ -equivariant (more precisely (τ1, τ2)-equivariant) if

fε(q − γ, p) = τ2(γ)fε(q, p)τ1(γ)−1 for all γ ∈ Γ.

The symbol spaces of τ -equivariant symbols are denoted by Swτ (ε,L(H1,H2)) re-
spectively Smρ,τ (ε,L(H1,H2)).

Remark B.3.3. Note that the coefficients in the asymptotic expansion of a τ -
equivariant symbol must be as well τ -equivariant.

Now we define the quantisation of a τ -equivariant symbol. The corresponding
pseudodifferential operator should be an operator from S ′τ1(Rd,H1) to S ′τ2(Rd,H2).
As indicated above, we just take the usual Weyl quantisation of the symbol and
restrict it to τ -equivariant distributions. The only thing we need to show is that the
Weyl quantisation maps τ -equivariant distributions to τ -equivariant distributions.

Proposition B.3.4. Let f ∈ Swτ (ε,L(H1,H2)) ∪ Smρ,τ (ε,L(H1,H2)). Then

f̂ S ′τ1(Rd,H1) ⊂ S ′τ2(Rd,H2).

To emphasise the fact that we quantise τ -equivariant symbols we also write f̂
τ

instead of f̂ .
So the formula for the τ -quantisation is given by Definition B.1.5. The next obser-
vation is that the pointwise, Weyl, and Moyal products of τ -equivariant symbols
are again τ -equivariant.
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Proposition B.3.5. Let fε ∈ Sw1
τ (ε,L(H2,H3)) and g ∈ Sw2

τ (ε,L(H1,H2)). Then
fε · gε and fε]gε are in Sw1w2

τ (ε,L(H1,H3)).
Analogously it holds for fε ∈ Sm1

ρ,τ (ε,L(H2,H3)) and g ∈ Sm2
ρ,τ (ε,L(H1,H2)) that

fε · gε and fε]gε are in Sm1+m2
ρ,τ (ε,L(H1,H3)).

Note that the Weyl product is just the Weyl product introduced in Proposition
B.2.2. An analogous statement holds for the Moyal product of formal symbols.
Now we present a variant of the Calderon-Vaillancourt theorem for the Hilbert
space Hτ .

Proposition B.3.6. Let f ∈ Sw=1
τ (L(H)) and τ1 and τ2 be unitary representations

of Γ in L(H). Then
f̂

τ
∈ L(Hτ1 ,Hτ2)

and for fε ∈ Sw=1
τ (ε,L(H)) we have that supε∈[0,ε0)

∥∥∥f̂ετ∥∥∥
L(Hτ1 ,Hτ2 )

<∞.

Remark B.3.7. Note that Sm=0
ρ,τ (L(H)) ⊂ Sw=1

τ (R2d,L(H)).

The last result presented is that for a symbol f , the adjoint of f̂
τ
seen as an

operator in L(Hτ ) is the τ -quantisation of the pointwise adjoint of the symbol.

Proposition B.3.8. Let f ∈ Swτ (ε,L(H))∪Smρ,τ (ε,L(H)) with a unitary represen-
tation τ (with τ1 = τ2 = τ) and let f̂

τ
∈ L(Hτ ). Then(

f̂
τ
)∗

= f̂ ∗
τ
.
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Harper II. Mémoires de la S.M.F. 40, 1990.

[Hof76] D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in
rational and irrational magnetic fields. Phys. Rev. B, 14(6):2239-2249,
1976.

[Hör85] L. Hörmander. The Analysis of Partial Differential Operators III.
Grundlehren der mathematischen Wissenschaften. Springer, 1985.
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