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INTRODUCTION 1

Introduction

The subject of the present thesis are varieties with a torus action of complexity one,
i.e. algebraic varieties X with an algebraic torus T acting effectively on them, where
dim(T ) = dim(X) − 1. These varieties are shortly called complexity-one T -varieties. A
first aim is to provide a combinatorial description for such varieties which generalizes the
convex geometrical description of toric varieties by lattice fans. The main focus lies on the
application of this theory to classification problems on complexity-one T -varieties, where
special attention is paid to Fano varieties, i.e. projective varieties with ample anticanonical
divisor.

In algebraic geometry, toric varieties are a well known example for the use of combina-
torial methods. The first formal definition of a (smooth) toric variety was given in 1970
by Demazure [18]. This paper already includes a convex geometrical description of toric
varieties by fans. From the end of the seventies on, the theory of toric varieties expanded
rapidly, see for example Danilov [17], Oda [42, 43], Fulton [22] and Cox/Little/Schenk
[16]. Combinatorial methods were also successfully developed for larger classes of va-
rieties. Kempf, Knudsen, Mumford and Saint-Donat studied in [36] toroidal varieties
and extended the convex geometrical language to this more general setup; in this book
complexity-one T -varieties appeared as special cases. This was the first time they were
described by combinatorial data. Besides [36], the work [45] of Orlik and Wagreich is one
of the first publications about complexity-one T -varieties. They discussed the special case
of K∗-surfaces and developed a combinatorial description of their structure by weighted
graphs. More recently, Altmann and Hausen studied in [3] varieties with torus action by
polyhedral divisors, which give especially in case of complexity-one T -varieties a simple
description of these varieties. The approach of the present thesis relies on the Cox ring.
Hausen and Süß determined the Cox ring of a given rational normal complete variety
with a torus action of complexity one in terms of the action, see [29]. Such Cox rings are
finitely generated and admit a simple presentation by trinomial relations. This provides
new aspects and possibilities for a combinatorial approach to complexity-one T -varieties
and is the starting point of this thesis. We present a systematical description of rational
complexity-one T -varieties in terms of certain matrices A and P and a collection Φ of
polyhedral cones. Parts of these results have been published in [28, Section 1] and [27].

Motivated by the classification of toric Fano varieties, initiated by Batyrev [8], we apply
our combinatorial approach to Fano varieties with a torus action of complexity one. The
main focus lies on effective bounds and concrete classifications.

A first example class are Fano K∗-surfaces, so called del Pezzo K∗-surfaces. Our combina-
torial approach differs from the work of Alekseev/Nikulin [2] and Nakayama [40] based on
classical surface geometry. For Gorenstein log del Pezzo K∗-surfaces we obtain a complete
classification, see Theorems 5.25, 5.26, 5.27 and 5.28. Moreover, due to the methods, we
list the Cox rings of all these surfaces. This complements results of Derenthal [19] for the
case of hypersurface Cox rings and Hausen/Süß [51, 29], who settled the case of Picard
number one and two by other methods.
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An essential case are Fano varieties of Picard number one. Nadel provided in [39] a
general effective bound on the degree (−Kx)

n of smooth Fano varieties depending on the
dimension n. Once a degree bound is known, a result of Kóllar [37] gives effective bounds
for the number of different deformation types of smooth Fano varieties. In [35] Kasprzyk
studies toric varieties with Picard number one, so called (fake) weighted projective spaces
and provided boundedness conditions for the weights in the terminal and canonical case.

For Q-factorial complexity-one T -varieties of Picard number one, we obtain in Theorem
6.10 explicit bounds for the number of possible deformation types depending on the
dimension and the Picard index, which is the index of the Picard group in the divisor class
group. As a consequence, Theorem 6.12 provides the following results on the asymptotical
behavior of the number δ(d, µ) of different deformation types of Q-factorial d-dimensional
complexity-one Fano varieties with Picard number one and Picard index µ. For fixed
d0 ∈ Z>0 and fixed µ0 ∈ Z>0, we have

δ(d0, µ) ∼ µAµ2

and δ(d, µ0) ∼ dBd,

with constants A > 1 and B > 3 arbitrarily small. The explicit bounds are used to
produce classifications for fixed dimension and Picard index. In the Theorems 6.18, 6.23,
6.24 and 6.26 we exemplarily list surfaces up to Picard index 6, threefolds for Picard index
1 and 2 and fourfolds with Picard index 1. In all cases we list the Cox rings explicitly.
These results are published in [28, Sections 2 and 3] and [30].

In 1970 Demazure studied the automorphism group of smooth complete toric varieties
and described the roots in terms of fans, see [18]. Later Cox generalized the results in
[15] to the simplicial case. In [41] Nill provided effective combinatorial criteria for the
automorphism group of a complete toric variety to be reductive. More recently, Arzhant-
sev, Hausen, Liendo and myself described the automorphism group of a complexity-one
T -variety by combinatorial data, see [6]. We use this approach for the study of almost ho-
mogeneous complexity-one T -varieties, i.e. their automorphism group acts with an open
orbit. In Proposition 7.7 almost homogeneous K∗-surfaces are described explicitly. As a
consequence, we classify in Corollary 7.12 all log-terminal non-toric almost homogeneous
K∗-surfaces with exactly one singularity and Picard number one up to Gorenstein index
5. It turns out, that all of them are Fano. These results are published in [6, Sections
6]. In Theorem 7.22 we determine all almost homogeneous complexity-one T -varieties of
dimension three with Picard number one and reductive automorphism group. All these
varieties turn out to be Fano. These results are published in [6, Section 8].

The present thesis is divided into seven chapters. We now give a brief summary of each
chapter.

The first chapter is a short summary of basic notations and statements about Cox rings
and bunched rings given in [9] and [25], see also [5] and [26]. Each bunched ring is the
Cox ring of a Q-factorial normal variety that can be obtained by a standard construction
as a good quotient of an open subset of the spectrum of this ring. A short overview of
the geometrical properties of such varieties in terms of their Cox ring and their convex
geometrical meaning is given.
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Chapter 2 is dedicated to complexity-one T -varieties, i.e. algebraic varieties X with an
effective action of an algebraic torus T of dimension dim(X) − 1, and their Cox rings
which are factorially graded rings of complexity one. We describe factorially graded
rings in terms of generators and relations and determine the Cox rings among them.
The combinatorial language of P -matrices will be introduced. It is comparable to the
convex geometrical description of toric varieties by fans. Parts of this chapter are already
published in [27] and [28, Section 1].

Chapter 3 is dedicated to the resolution of singularities of complexity-one T -varieties. A
canonical resolution of singularities is discussed. We make use of the fact that complexity-
one T -varieties come canonically embedded into toric varieties. This allows working with
toric ambient modifications, see [25]. A similar construction based on polyhedral divisors
was introduced by Liendo and Süß in [38]. The behavior of the anticanonical class −KX

of a complexity-one T -variety under toric ambient modifications is discussed.

In chapter 4 we discuss complexity-one T -varieties of dimension two, in other words
K∗-surfaces. We give a survey of their geometry and determine all types of Cox rings of
combinatorially minimal K∗-surfaces, i.e. K∗-surfaces without contractible prime divisors.
Furthermore, we compute intersection numbers and affiliate conditions for K∗-surfaces to
be Fano. Finally, we introduce the anticanonical complex for log-terminal K∗-surfaces,
a convex geometrical object which is comparable to the lattice polytope describing toric
Fano varieties. The anticanonical complex is used to describe the singularities and the
Gorenstein index of log-terminal Fano K∗-surfaces.

Chapter 5 is dedicated to log del Pezzo K∗-surfaces, i.e. log-terminal Fano K∗-surfaces.
The main result is a complete classification list of all non-toric Gorenstein log del Pezzo
K∗-surfaces. In order to achieve this aim we describe the Gorenstein index of a K∗-surface
combinatorially in terms of their P -matrix and anticanonical complex and consider the
equivariant geometry of del Pezzo K∗-surfaces. As a consequence, we obtain explicit
bounds, which enables us to classify all non-toric Gorenstein log del Pezzo K∗-surfaces by
indicating their Cox rings and Cl(X)-gradings.

In chapter 6 we provide effective bounds and classification results for rational Q-factorial
Fano varieties with a complexity-one torus action and Picard number one depending on
the invariants dimension and Picard index. Concretely, we list all surfaces up to Picard
index 6, threefolds for Picard index 1 and 2 and fourfolds with Picard index 1. Most of
the results of this chapter is already published in [28] and [30].

Chapter 7 is dedicated to classification problems on almost homogeneous complexity-
one T -varieties, i.e. their automorphism group Aut(X) acts with an open orbit. By
introducing Demazure P -roots we obtain a combinatorial approach for the automorphism
group of such varieties, describing the roots of Aut(X). The Demazure P -roots turn out
to be lattice points of certain polytopes. This convex geometrical description is used for
classification problems on almost homogeneous complexity-one T -varieties of dimension
two and three. Concretely, we provide a complete list of all log-terminal non-toric almost
homogeneous K∗-surfaces with exactly one singularity and Picard number one up to
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Gorenstein index 5. Furthermore, we determine almost homogeneous complexity-one
threefolds with Picard number one and reductive automorphism group. These results are
published in [6].



1 Cox rings and bunched ring formalism

This chapter is a short summary of basic notations and statements about Cox rings and
bunched rings given in [9] and [25], see also [5] and [26].

Throughout the whole thesis K is an algebraically closed field of characteristic zero.

1.1 Cox rings and factorially graded rings

First, we recall basic definitions and notions on divisors of normal algebraic varieties and
divisorial sheaves. A prime divisor in X is an irreducible hypersurface D ⊆ X. The
prime divisors generate a free abelian group WDiv(X), the group of Weil divisors on X.
We call a divisor D ∈ WDiv(X) effective if D = a1D1 + . . . + anDn with prime divisors
Di and ai ∈ Z≥0 for all 1 ≤ i ≤ n and we write D ≥ 0. Let K(X) be the field of rational
functions on X. To every f ∈ K(X)∗ we define a principal divisor

div(f) :=
∑

D prime

ordD(f)D ∈ WDiv(X),

where ordD(f) is the vanishing order of f at D. The group of principal divisors is denoted
by PDiv(X) and the group of divisors being principal near a point x ∈ X is denoted by
PDiv(X, x). The divisor class group Cl(X) is defined as the quotient of WDiv(X) modulo
principal divisors PDiv(X). Analogously, we define the local divisor class group Cl(X, x)
of X in x as the quotient of WDiv(X) modulo PDiv(X, x). Note that there is a canonical
map πx : Cl(X) → Cl(X, x). Divisors being locally principal for every x ∈ X are called
Cartier divisors and the group of these divisors is denoted by CDiv(X). The Picard group
Pic(X) of X is the quotient of CDiv(X) modulo principal divisors. It is given as

Pic(X) :=
∩
x∈X

ker(πx) ⊆ Cl(X).

A point x ∈ X is called Q-factorial, if near x for every Weil divisor some multiple is
principal and x ∈ X is called factorial, if near x every Weil divisor is principal. The
variety X is called (Q-)factorial if all points x ∈ X are (Q-)factorial. For any open subset
U ⊆ X, we define a restriction map

WDiv(X)→WDiv(U), D 7→ D|U :=

{
D ∩ U if D ∩ U ̸= ∅ ,
0 else.

To every Weil divisor D on X we associate a divisorial sheaf OX(D) of OX-modules. For
any open U ⊆ X, we set

Γ(U,OX(D)) :=
{
f ∈ K(X)∗; (div(f) +D)|U ≥ 0

}
∪ {0}.
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The sheaf of divisorial algebras associated to a finitely generated subgroup K ⊆WDiv(X)
is defined as

S :=
⊕
D∈K

SD, SD := OX(D).

The multiplication in S is given by multiplying homogeneous sections in the field of
rational functions K(X). Note that for f1 ∈ Γ(U,OX(D1)) and f2 ∈ Γ(U,OX(D2)) we
have f1 · f2 ∈ Γ(U,OX(D1 +D2)).

Now, we turn to Cox sheaves and Cox rings. We assume X to be a normal variety with only
constant globally invertible functions, i.e. Γ(X,O∗) = K∗, and finitely generated divisor
class group Cl(X). Note that Γ(X,O∗) = K∗ is satisfied, for example, if X is complete.
Choose a subgroup K ≤WDiv(X) such that the canonical map c : K → Cl(X), D 7→ [D]
is surjective, and let K0 ⊆ K be the kernel of c, i.e. K0 = K ∩ PDiv(X). The idea is to
identify OX(D) and OX(D

′) if D′ = D + div(h), i.e. D′ −D ∈ K0. For this purpose we
choose a character χ : K0 → K(X)∗ with div(χ(E)) = E for all E ∈ K0. We consider
the sheaf of divisorial algebras S associated to K. Let I be the sheaf of ideals of S
locally generated by the sections 1 − χ(E), where 1 is locally of degree zero, E runs
through K0 and χ(E) is homogeneous of degree −E, i.e. for every open U ⊆ X we have
1− χ(E) ∈ Γ(U,S) and χ(E) ∈ Γ(U,S−E). This sheaf of ideals is given by

Γ(U, I) :=

{
f ∈ Γ(U,S); f =

∑
E∈K0

hE(1− χ(E)) locally, where hE ∈ Γ(U,S)

}
.

Definition 1.1. The Cox sheaf associated to K and χ is the quotient sheaf R := S/I
together with the Cl(X)-grading

R :=
⊕

[D]∈Cl(X)

R[D], R[D] := π

 ⊕
D′∈c−1([D])

SD′

 ,

where π : S → R denotes the projection. Note that R is a quasicoherent sheaf of Cl(X)-
graded OX-algebras. The Cox ring

R(X) := Γ(X,R) =
⊕

[D]∈Cl(X)

Γ(X,OX(D))

is the ring of global sections of the Cox sheaf R. Note that if Cl(X) is torsion free, then
the Cox sheaf can be defined in a simpler way by setting R[D] := SD = OX(D). If the
Cox ring R(X) is finitely generated, the variety X is called a Mori Dream Space (MDS).

The next step is to recall the relation between quasitorus actions and graded algebras. A
quasitorus , also called a diagonalizable group, is an affine algebraic group H whose algebra
of regular functions Γ(H,O) is generated as a K-vector space by the characters χ ∈ X(H),
where a character of H is a morphism χ : H → K∗. A torus is a connected quasitorus.
We denote by Tn := (K∗)n the standard n-torus. Each quasitorus is isomorphic to a
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direct product of a torus and a finite abelian group. There is a one-to-one correspondence
between quasitori and finitely generated abelian groups given by H 7→ X(H) and K 7→
Spec(K[K]), respectively. Furthermore, there is a contravariant functor being essentially
inverse from the category of finitely generated K-graded affine algebras to the category of
affine varieties with a quasitorus action. We shortly recall the basic constructions needed
for this correspondence. Let H be a quasitorus acting on an affine variety X. Then the
algebra Γ(X,O) becomes X(H)-graded by

Γ(X,O) =
⊕

χ∈X(H)

Γ(X,O)χ, Γ(X,O)χ := {f ∈ Γ(X,O); f(h · x) = χ(h)f(x)}.

Conversely, let K be a finitely generated abelian group and let R be a finitely generated
K-graded affine algebra. Set X := Spec(R) and let f1, . . . , fr be generators of R with
fi ∈ Rwi

, i.e. deg(fi) = wi and fi(h · x) = χwi(h)fi(x) for all h ∈ H, x ∈ X. Then we
have a closed embedding

X → Kr, x 7→ (f1(x), . . . , fr(x)),

and X ⊆ Kr is invariant under the diagonal action of the quasitorus H = Spec(K[K])
given by the characters χwi , i.e.

h · x := (χw1(h)x1, . . . , χ
wn(h)xn).

Now, let H be a quasitorus acting on a prevariety X. Then one defines the ring of
invariants

O(X)H := {f ∈ O(X); f(h · x) = f(x) for all x ∈ X, h ∈ H}.

A morphism π : X → Y is called a good quotient for the H-action if the following holds:

(i) π : X → Y is affine and H-invariant, i.e. π is constant along the orbits.

(ii) The pullback π∗ : O(Y )→ (π∗O(X))H is an isomorphism.

A good quotient π : X → Y is called a geometric quotient if it separates the orbits, i.e.
the fibers coincide exactly with the H-orbits.

Good quotients map closed invariant subsets to closed sets and separate disjoint closed
invariant sets. Moreover, in each fiber, there is exactly one closed H-orbit and each orbit
which is contained in the fiber has this closed orbit in its closure. In particular, the
quotient space is unique up to isomorphy. We denote it by X � H.

In the next part of this chapter we consider the geometrical object that corresponds to
the algebraic concept of a Cox sheaf. Let X be a Q-factorial normal variety or a Mori
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Dream Space with Cox sheaf R. Then the Cox sheaf R is locally of finite type and we
have the following situation:

SpecX(R) =: X̂ ⊆ X := Spec(R(X))

�H
��
X

The affine variety X comes with the action of the quasitorus H := Spec(K[Cl(X)]) which
is given by the Cl(X)-grading of R. The relative spectrum X̂ = SpecX(R) is an open H-
invariant subset of X, i.e. quasiaffine, and the map pX : X̂ → X defined by the H-action
is a good quotient. Note, that if X is Q-factorial, the quotient is always geometric.

Definition 1.2. In the situation above we call X the total coordinate space, H the char-
acteristic quasitorus and X̂ the characteristic space.

All varieties sharing the same divisor class group K and finitely generated Cox ring
R occur as good quotients of suitable open subsets of X = Spec(R) by the action of
H = Spec(K[K]). An open invariant subset U ⊆ X is called a good H-set if it admits a
good quotient U → U � H.

An important concept used in this work is the following homogeneous version of a unique
factorization domain.

Definition 1.3. Let K be an abelian group and let R be a finitely generated normal
algebra R =

⊕
w∈K Rw. A homogeneous non-zero non-unit f ∈ R is K-prime if f | gh

with homogeneous g, h ∈ R implies f | g or f | h. Furthermore, R is called factorially
(K-)graded if every homogeneous non-zero non-unit of R is a product of K-primes.

For torsion free K, the properties factorial and factorially graded are equivalent [4], but
for a K with torsion the latter is more general, as we will see in Example 2.9. The
main reason for introducing such rings in this work is that Cox rings of complete normal
varieties are factorially graded, compare [5].

Theorem 1.4. Let X be a complete normal variety. Then its Cox ring R(X) is factorially
Cl(X)-graded. Moreover, if Cl(X) is torsion free, then R(X) is factorial.

1.2 Bunched rings

The content of this section is a short summary of the theory of bunched rings given in [25].
Bunched rings are essential to combine the algebraic situation described in the previous
section with convex geometrical methods.

The setting is as follows. Let K be a finitely generated abelian group and consider a
finitely generated factorially K-graded affine K-algebra

R =
⊕
w∈K

Rw
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with K-prime homogeneous generators f1, . . . , fr ∈ R. Then H = Spec(K[K]) acts on
the affine variety X = Spec(R). For each abelian group L we define the rational vector
space LQ := L⊗Z Q and for w ∈ L we write again w for the element w ⊗ 1 ∈ LQ.

Definition 1.5. The weight cone of a K-graded algebra R is the convex polyhedral cone

ωX := ω(R) := cone (w ∈ K;Rw ̸= {0}) ⊆ KQ.

Furthermore, for every x ∈ X := Spec(R) we define its orbit cone as the convex polyhedral
cone

ωx := cone (w ∈ K; f(x) ̸= 0 for some f ∈ Rw) ⊆ ωX .

In particular, each orbit cone ωx is generated by the degrees of those generators fi satis-
fying fi(x) ̸= 0.

Definition 1.6. Let K be a finitely generated abelian group and let R be a factorially
K-graded affine algebra with R∗ = K∗. Moreover, let F = (f1, . . . , fr) be a system of
pairwise non-associated K-prime generators for R.

(i) The projected cone associated to F is (E
Q→ K, γ), where E := Zr, the homomor-

phism Q : E → K sends the canonical basis vector ei to wi := deg(fi) and γ ⊆ EQ

is the convex cone generated by e1, . . . , er.

(ii) The K-grading of R is called almost free if for every facet γ0 ⪯ γ the image Q(γ0∩E)
generates the abelian group K.

(iii) We call γ0 ⪯ γ an F-face if the product over all fi with ei ∈ γ0 is not contained
in
√
⟨fj; ej /∈ γ0⟩ ⊆ R. Geometrically, this means that there is an element x ∈ X

such that ei ∈ γ0 if and only if fi(x) ̸= 0.

(iv) Let ΓF := {Q(γ0); γ0 ⪯ γ F-face} denote the collection of projected F-faces. An
F-bunch is a non-empty subset Φ ⊆ ΓF such that

(a) τ ◦1 ∩ τ ◦2 ̸= ∅ holds for any two τ1, τ2 ∈ Φ,

(b) if τ ◦1 ⊆ τ ◦ holds for τ1 ∈ Φ and τ ∈ ΓF, then τ ∈ Φ holds,

(c) for every facet γ0 ∈ γ, the image Q(γ0) belongs to Φ.

Note that Φ consists of orbit cones of the action of H = Spec(K[K]) on X = Spec(R).
Moreover, the generator system F gives rise to a diagonal H-action on Kr defined by
the characters χw1 , . . . , χwr . This action induces an H-equivariant closed embedding
X = Spec(R) ⊆ Kr. We have K[T1, . . . , Tr] ∼= K[E ∩ γ] and Kr is the affine toric
variety corresponding to the cone δ := γ∨.

A toric variety is a normal variety Z with a torus action T × Z → Z and a base point
z0 ∈ Z such that the orbit map t 7→ t · z0 is an open embedding. There is a combinatorial
description of toric varieties via fans. A fan is a finite collection Λ of pointed polyhedral
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cones in a rational vector space such that any two λ1, λ2 ∈ Λ intersect in a common face
and for λ ∈ Λ also every face of λ belongs to Λ. If we do not require the cones to be
pointed, then Λ is called a quasifan. If Z is an affine toric variety, the corresponding fan
simplifies to a convex polyhedral cone. For a detailed background on toric varieties, see
[16] for example.

Remark 1.7. For any face γ0 ⪯ γ, we define γ∗
0 := γ⊥

0 ∩ δ, where δ = γ∨. Then γ0 is an
F-face if and only if the toric orbit Tr · zδ0 ⊆ Kr corresponding to the face δ0 ⪯ δ meets
X.

Definition 1.8. A bunched ring is a triple (R,F,Φ), where R is an almost freely factorially
K-graded affine K-algebra such that R∗ = K∗ holds, F is a system of pairwise non-
associated K-prime generators for R and Φ is an F-bunch.

Construction 1.9. Let (R,F,Φ) be a bunched ring and let (E Q→ K, γ) be its projected
cone. We define the collection of relevant F-faces and the covering collection as

rlv(Φ) := {γ0 ⪯ γ; γ0 F-face with Q(γ0) ∈ Φ},
cov(Φ) := {γ0 ∈ rlv(Φ); γ0 minimal}.

The projected cone (E Q→ K, γ) defines a grading on R given by deg(fi) = Q(ei). Consider
the associated action of H := Spec(K[K]) on X := Spec(R). For an F-face γ0, we define

Xγ0 := Xf
u1
1 ···fur

r
for some u = (u1, . . . , ur) ∈ γ◦

0 .

We define the open subset

X̂ := X̂(R,F,Φ) :=
∪

γ0∈rlv(Φ)

Xγ0 =
∪

γ0∈cov(Φ)

Xγ0 = X̂(Φ).

The H-action on X̂ admits a good quotient

X := X(R,F,Φ) := X̂(R,F,Φ) � H.

We denote the quotient map by p : X̂ → X. The quotient X is a normal variety of
dimension dim(X) = dim(R)− dim(KQ) with

Γ(X,O∗) = K∗, Cl(X) ∼= K and Cox ring R(X) ∼= R.

In this situation, the affine variety X is the total coordinate space and X̂ the characteristic
space. Furthermore, the affine open subsets Xγ0 ⊆ X̂ for γ0 ∈ rlv(Φ) are H-saturated
and their images Xγ0 := p(Xγ0) ⊆ X form an affine cover of X. Note that every member
fi ∈ F defines a prime divisor Di

X := p(V (X̂, fi)) on X.

By means of the following two constructions, we assign to every normal variety X =
X(R,F,Φ) a toric variety Z such that X is naturally embedded into Z.
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Construction 1.10 (Cox construction). Let Z be a toric variety arising from a fan Σ in
a lattice N and let the primitive generators v1, . . . , vr ∈ N of the rays of Σ generate NQ

as a vector space. Set F := Zr and consider P : F → N, fi → vi, where f1, . . . , fr are the
canonical basis vectors of F . We define a fan Σ̂ in FQ, consisting of faces of the positive
orthant δ ⊆ F , by

Σ̂ := {σ̂ ⪯ δ; P (σ̂) ⊆ σ for some σ ∈ Σ}.

The fan Σ̂ defines an open toric subvariety Ẑ of Z = Spec(K[δ∨ ∩ E]), where E := F ∗.
Note that all rays cone(f1), . . . , cone(fr) of the positive orthant belong to Σ̂. Hence, we
have

Γ(Ẑ,O) = Γ(Z,O) = K[δ∨ ∩ E]

since Ẑ has a small complement in Z. The map P sends cones of Σ̂ onto cones of Σ and
consequently induces a morphism p : Ẑ → Z of toric varieties, a so called Cox construction.

Construction 1.11 (Canonical toric embedding). Let (R,F,Φ) be a bunched ring with
homogeneous generators F := (f1, . . . , fr) and consider the associated projected cone
(E

Q→ K, γ). Set M := ker(Q). Then we have the following exact sequences,

0 // L
Q∗

// F
P // N

0 Koo E
Qoo M

P ∗
oo 0oo

where L := ker(P ), K := E/im(P ∗) and P ∗ is the dual map of P . Furthermore, we can
define a polynomial bunched ring (R′,F′,Φ′) where

R′ := K[T1, . . . , Tr], deg(Ti) := deg(fi), F′ := (T1, . . . , Tr),

and Φ′ consists of all projected faces Q(γ0) with τ ◦ ⊆ Q(γ0)
◦ for some τ ∈ Φ. This induces

a commutative diagram,

X ⊇ X̂

�H

��

// Ẑ

�H

��

⊆ Z

X ι
// Z

where X := Spec(R), Z := Spec(R′) ∼= Kr and ι : X → Z is a closed embedding of the
varieties X and Z associated to the bunched rings (R,F,Φ) and (R′,F′,Φ′), respectively.
The fans Σ̂ and Σ in FQ corresponding to the toric varieties Ẑ and Z are given by

Σ̂ := {δ0 ⪯ δ; δ0 ⪯ γ∗
0 for some γ0 ∈ Env(Φ)}, Σ := {P (γ∗

0); γ0 ∈ Env(Φ)},

where

Env(Φ) := {γ0 ⪯ γ; γ1 ⪯ γ0 and Q(γ1)
◦ ⊆ Q(γ0)

◦ for some γ1 ∈ rlv(Φ)}
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and γ∗
0 = γ⊥

0 ∩ δ for δ = γ∨. Consequently, Σ is the quotient fan of Σ̂ and p : Ẑ → Z,
arising from P : F → N , defines a Cox construction. Let Di

Z be the TZ-invariant prime
divisors of Z, where TZ denotes the big torus of Z. Then we have by construction
ι∗(Di

Z) = Di
X = p(V (X̂, fi)) and furthermore ι∗ : Cl(Z)→ Cl(X) is an isomorphism. The

toric orbits Zσ = TZ · zσ of Z intersecting X are precisely the orbits corresponding to the
cones σ := P (γ∗

0) for γ0 ∈ rlv(Φ), i.e. there is a canonical bijection between the relevant
faces of X and the orbits of the toric variety Z. This induces a decomposition into locally
closed strata

X =
∪

γ0∈rlv(Φ)

Xγ0 , Xγ0 := Xσ := X ∩ Zσ = ι−1(ZP (γ∗
0 )
).

We call Z the minimal toric ambient variety of X. Note that, in general, the toric variety
Z is not complete, even if X is. We also say that Φ is Gale dual to Σ.

We give a short overview about how the sequence

0 // M
P ∗

// E
Q // K // 0

can be interpreted geometrically. By construction, M is the lattice of characters X(TZ)
where TZ is the torus corresponding to the toric ambient variety Z. The characters
χu are the rational functions on Z. That means that we have M ∼= PDiv(Z). Along
the open toric orbit, all Weil divisors of Z are principal. Hence, every Weil divisor is
linearly equivalent to a TZ-invariant one. This gives E ∼= WDiv(Z) ∼= WDivTZ (Z), where
WDivTZ (Z) denotes the TZ-invariant Weil divisors. The isomorphism is explicitly given
by

e 7→ ⟨e, f1⟩D1 + . . .+ ⟨e, fr⟩Dr

with Di := TZ · zϱi and ϱi := cone(vi) for the columns vi of P . Furthermore, we obtain
M ∼= PDivTZ (Z) and K ∼= Cl(Z). On the other hand we have by construction K ∼=
X(H) where H := Spec(K[K]) and E ∼= X(T) where T := Spec(K[E]) is the big torus
corresponding to the toric varieties Z = Kn+m and Ẑ, respectively.

X(H)

||zz
zz
zz
zz
z

X(T)oo X(TZ)oo

0 Koo

∼=

OO

∼=
��

Eoo

∼=

OO

∼=
��

Moo

∼=

OO

∼=
��

0oo

ddJJJJJJJJJJ

zzttt
tt
tt
tt
t

Cl(Z)

aaDDDDDDDDD

WDivTZ (Z)oo PDivTZ (Z)oo

The last part of this section is dedicated to normal projective varieties X(R,F,Φ) arising
from bunched rings.
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Definition 1.12. Let R be a finitely generated K-graded algebra, H := Spec(K[K]) and
X := Spec(R). For w ∈ ωX we define the GIT-cone of w as

λ(w) :=
∩

x∈X,w∈ωx

ωx,

where ωx denotes the orbit cone of x ∈ X. Note that λ(w) is always polyhedral. The
collection Λ(X,H) = {λ(w); w ∈ ωX} of all GIT-cones is a quasifan in KQ having ωX as
its support. It is called the GIT-(quasi)fan of X.

Each w ∈ ωX defines an associated set Xss(w) ⊆ X of semistable points which is given by

Xss(w) : = {x ∈ X; w ∈ ωx}
= {x ∈ X; λ(w) ⊆ ωx}
= {x ∈ X; f(x) ̸= 0 for some f ∈ Rnw where n > 0}

=
∪

0̸=f∈Rnw

Xf .

Given a GIT-cone λ ∈ Λ(X,H) and any weight w ∈ λ◦ we define Xss(λ) := Xss(w).
Note that Xss(w) is the set of semistable points associated to the linearization of the
trivial bundle given by the character χw. For every λ ∈ Λ(X,H) there is a good quotient
Xss(w)→ Xss(w) � H for the action of H on the open set Xss(w) ⊆ X.

Construction 1.13. Let K be a finitely generated abelian group and let R be a factorially
K-graded affine algebra with R∗ = K∗. Further let F = (f1, . . . , fr) be a system of pairwise
non-associated K-prime generators of R. Consider the GIT-fan Λ(X,H) = {λ(w); w ∈
ωX} of R. Every GIT-chamber λ = λ(w) ∈ Λ(X,H) defines a bunched ring (R,F,Φ),
where Φ is given by

Φ = Φ(λ) := Φ(w) := {ωx; λ
◦ ⊆ ω◦

x}.

Consequently, every GIT-cone λ defines a variety

X(R,F, w) := X(R,F,Φ(w)) = X(R,F,Φ(λ)) =: X(R,F, λ),

and X(R,F, λ) is given as the good quotient Xss(λ) � H.

Theorem 1.14. Each variety X = X(R,F, λ) is a normal projective variety with

dim(X) = dim(R)− dim(KQ), Γ(X,O∗) = K∗,

and there is an isomorphism Cl(X) → K sending [Di
X ] to deg(fi). The quotient map

p : X̂ → X is a characteristic space and the Cox ring R(X) is isomorphic to R.
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Definition 1.15. Let R be a factorially K-graded algebra and let (E
Q→ K, γ) be its

projected cone. We define the moving cone of R and X = Spec(R) respectively as

Mov(R) := Mov(X) :=
∩

γ0 facet of γ

Q(γ0).

Theorem 1.16. All normal projective varieties with a finitely generated Cox ring are
isomorphic to some X(R,F, λ) with λ ∩Mov(R)◦ ̸= ∅ and λ ∈ Λ(X,H).

In general the minimal toric ambient variety Z of a variety X(R,F,Φ) is not complete.
The toric GIT-fan Λ(Z,H) refines Λ(X,H) and every η ∈ Λ(Z,H) with η◦ ⊆ λ◦ defines
a projective completion Z(R′,F′, η) of Z, where R′ = K[T1, . . . , Tr] and F′ = (T1, . . . , Tr).
Recall that a toric variety is complete if and only if the associated fan Σ in the lattice N
is complete, i.e. the support of Σ is the whole vector space NQ.

1.3 Geometry

In this section we will give a short overview about geometrical properties of a variety
X(R,F,Φ) and their convex geometrical meaning, compare [9, Section 7] and [25, Section
4]. We describe the Picard group as well as effective, movable, semiample and ample
divisors.

Theorem 1.17. Consider a relevant F-face γ0 ∈ rlv(Φ) and a point x ∈ Xγ0. Then we
have a commutative diagram

Cl(X)

∼=
��

// Cl(X, x)

∼=
��

K

OO

// K/Q(lin(γ0) ∩ E) .

OO

In particular, the local divisor class groups are constant along Xγ0 where γ0 ∈ rlv(Φ).
Moreover, the Picard group of X is given by

Pic(X) :=
∩

γ0∈cov(Φ)

Q(lin(γ0) ∩ E).

Theorem 1.18. Consider a relevant F-face γ0 ∈ rlv(Φ) and a point x ∈ Xγ0. Then the
following statements hold.

(i) The point x is factorial if and only if Q(lin(γ0) ∩ E) = K.

(ii) The point x is Q-factorial if and only if Q(γ0) is of full dimension.

In particular, X is Q-factorial if and only if Φ consists of only fulldimensional cones. If
X̂ is smooth, then every factorial point of X is smooth.
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Now we want to describe effective, movable, semiample and ample divisors in terms of
the Cox ring. Let X be a normal complete variety with finitely generated Cox ring R(X).
A divisor D ∈ WDiv(X) is called effective if its multiplicities are all non-negative, i.e.
D = a1D1 + . . . arDr with primitive divisors Di and ai ≥ 0. All classes [D] of effective
divisors build a convex cone, the so called effective cone Eff(X). We have [D] ∈ Eff(X)
if and only if [D] ∈ ωX , i.e. there is a 0 ̸= f ∈ Γ(X,OX(nD)) for some n > 0. If
F = (f1, . . . , fr) is a system of homogeneous generators of the Cox ring R(X), then the
effective cone is generated by the degrees deg(fi).

The support of a Weil divisor D ∈WDiv(X) is defined as

supp(D) = supp

( ∑
Di prime

aiDi

)
:=

∪
ai ̸=0

Di.

For a divisor D ∈ WDiv(X) and a section f ∈ Γ(X,OX(D)) we define the D-divisor as
divD(f) := div(f)+D. The base locus and the stable base locus of a divisor D are defined
as

Bs(D) :=
∩

f∈Γ(X,OX(D))

supp(divD(f)), sBs(D) :=
∩

n∈Z≥1

Bs(nD).

A divisor D ∈ WDiv(X) is called movable if its stable base locus is of codimension at
least two in X. The moving cone Mov(X) is the convex cone generated by the classes of
movable divisors. A divisor D ∈ WDiv(X) is called semiample if its stable base locus is
empty and a divisor D ∈WDiv(X) is called ample if X is covered by affine sets

XnD,f := X \ supp(nD + div(f))

for some n ∈ Z≥1, where f ∈ Γ(X,O(nD)). The semiample cone SAmple(X) and ample
cone Ample(X) are generated by all classes of semiample and ample divisors, respectively.

Theorem 1.19. In the divisor class group K = Cl(X) we have the following descriptions
of effective, movable, semiample and ample divisors:

Eff(X) := Q(γ), Mov(X) :=
∩

γ0 facet of γ

Q(γ0),

SAmple(X) :=
∩
τ∈Φ

τ, Ample(X) :=
∩
τ∈Φ

τ ◦.
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2 Complexity-one T -varieties

This chapter is dedicated to complexity-one T -varieties, i.e. varieties X with an effective
action of a torus T of dimension dim(X) − 1, and their Cox rings which are factorially
graded rings of complexity one. A combinatorial language will be introduced comparable
to the convex geometrical description of toric varieties by fans. Parts of this chapter are
already published in [27] and [28, Section 1].

2.1 Factorially graded rings of complexity one

In this section we present a construction of factorially K-graded algebras of complexity
one. We describe these algebras in terms of generators and relations.

Definition 2.1. Let K be a finitely generated abelian group and R =
⊕

w∈K Rw a finitely
generated normal graded K-algebra.

(i) We say that R has an effective K-grading of complexity one if all the w ∈ K with
Rw ̸= 0 generate K and K is of rank dim(R)− 1.

(ii) We call the K-grading pointed if R0 = K holds.

(iii) Let {f1, . . . , fr} be a system of homogeneous generators of R. Then we call the K-
grading almost free if K is generated by any r − 1 of the degrees of the generators
deg(fi).

Construction 2.2. For r ≥ 1, we fix integers n0, . . . , nr ∈ Z>0, m ∈ Z≥0 and set
n := n0 + . . . + nr. Let A = (a0, . . . , ar) be a sequence of vectors ai = (bi, ci) in K2 such
that any pair (ai, ak) with k ̸= i is linearly independent and let li = (li1, . . . , lini

) ∈ Z>0
ni ,

0 ≤ i ≤ r, be tuples of positive integers. These data define a (r × (n+m))-matrix

P0 = (L0, 0), where L0 =


−l0 l1 0 . . . 0
−l0 0 l2 . . . 0
...

... . . . ...
−l0 0 0 . . . lr

 .

We consider the polynomial ring K[Tij, Sk] in the variables Tij and Sk where 0 ≤ i ≤
r, 1 ≤ j ≤ ni and 1 ≤ k ≤ m. For every 0 ≤ i ≤ r, define a monomial

T li
i := T li1

i1 · · ·T
lini
ini
∈ K[Tij, Sk].

Moreover, for any two indices 0 ≤ i, j ≤ r, set αij := det(ai, aj) = bicj − bjci and for any
three indices 0 ≤ i < j < k ≤ r define a trinomial

gi,j,k := αjkT
li
i + αkiT

lj
j + αijT

lk
k ∈ K[Tij, Sk].



18 2.1 Factorially graded rings of complexity one

We define a grading of K[Tij, Sk] by an abelian group K0 such that all the gi,j,k become
homogeneous of the same degree. For this, consider the linear map P0 : F → N , given
by the matrix P0 = (L0, 0) and let P0

∗ be the dual map, given by the transpose of P0.
Set K0 := Zn+m/im(P0

∗) and let Q0 : Z
n+m → K0 be the projection. This defines a

K0-grading on K[Tij, Sk] given by

deg(Tij) := Q0(eij), deg(Sk) := Q0(ek),

where eij, ek ∈ Zn+m are the canonical basis vectors. By construction all gi,j,k are
homogeneous of the same degree. Hence, we obtain a K0-graded factor algebra

R(A,P0) := K[Tij, Sk] / ⟨gi,j,k; 0 ≤ i < j < k ≤ r⟩.

We say that (A,P0) is sincere if r ≥ 2 and nilij > 1 for all i, j hold. This ensures that
there exist in fact relations gi,j,k and none of these relations contains a linear term. Note
that for r = 1 we obtain the diagonal complexity-one gradings of the polynomial ring
K[Tij, Sk]. Furthermore, the matrix P0 is called gradiator matrix.

Lemma 2.3. In the setting of Construction 2.2, the identities

gi,k,l = αkl · gi,j,k + αik · gj,k,l and gi,j,l = αjl · gi,j,k + αij · gj,k,l

hold for any 0 ≤ i < j < k < l ≤ r. In particular, every trinomial gi,j,k, where 0 ≤ i <
j < k ≤ r is contained in the ideal ⟨gi,i+1,i+2; 0 ≤ i ≤ r − 2⟩.

Proof. The identities are easily obtained by direct computation. We may assume aj =
(1, 0) and ak = (0, 1). The other points are given by ai = (ai1, ai2) and al = (al1, al2).
Consequently, we obtain αjk = 1, αik = ai1, αij = −ai2, αkl = −al1 and αjl = al2. This
gives

αkl · gi,j,k + αik · gj,k,l = αkl(αjkT
li
i + αkiT

lj
j + αijT

lk
k ) + αik(αklT

lj
j + αljT

lk
k + αjkT

ll
l )

= αklT
li
i + (αklαij + αikαlj)T

lk
k + αikT

ll
l

= αklT
li
i + (al1ai2 − al2ai1)T

lk
k + αikT

ll
l

= gi,k,l,

αjl · gi,j,k + αij · gj,k,l = αjl(αjkT
li
i + αkiT

lj
j + αijT

lk
k ) + αij(αklT

lj
j + αljT

lk
k + αjkT

ll
l )

= αjlT
li
i + (αjlαki + αijαkl)T

lj
j + αijT

ll
l

= αjlT
li
i + (al1ai2 − al2ai1)T

lk
k + αijT

ll
l

= gi,j,l.

The supplement then follows by repeated application of these identities.

Lemma 2.3 allows us to present the rings R(A,P0) in the following form:

R(A,P0) := K[Tij, Sk] / ⟨gi,i+1,i+2; 0 ≤ i ≤ r − 2⟩
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We denote the points of Kn+m as tuples z = (zij, zk) according to the variables Tij and
Sk and we set

X := V (Kn+m; g0, . . . , gr−2).

Once we know that R(A,P0) is reduced we have X = Spec(R(A,P0)). Furthermore, set
tlii := tli1i1 · · · t

lini
ini

and consider the homomorphism

Tn+m → Tr, (tij, tk) 7→
(
tl11
tl00

, . . . ,
tlrr
tl00

)
and its kernel H0 which is isomorphic to Spec(K[K0]). This quasitorus acts as a subgroup
of Tn+m on Kn+m and X is invariant under this action by construction.

Proposition 2.4. For every pair (A,P0) as in Construction 2.2, the ring R(A,P0) is an
integral normal complete intersection of dimension

dim(R(A,P0)) = n+m− r + 1, n := n0 + . . .+ nr.

Furthermore the K0-grading is pointed, effective and of complexity one.

Lemma 2.5. In the notation of Construction 2.2 and Proposition 2.4 let z ∈ X, where
X := V (Kn+m; g0, . . . , gr−2). If T li

i (z) = T
lj
j (z) = 0 for 0 ≤ i < j ≤ r, then T lk

k (z) = 0
holds for 0 ≤ k ≤ r.

Proof. If i < k < j holds, then, according to Lemma 2.3, we have gi,k,j(z) = 0, which
implies T lk

k (z) = 0. The cases k < i and j < k are obtained similarly.

Proof of Proposition 2.4. Set X := V (Kn+m; g0, . . . , gr−2), where gi := gi,i+1,i+2. Then we
have to show that X is a connected complete intersection with at most normal singular-
ities. In order to see that X is connected, set ℓ :=

∏
ni

∏
lij and ζij := ℓn−1

i l−1
ij . Then

X ⊆ Kn+m is invariant under the K∗-action given by

t · z := (tζijzij, z1, . . . , zm)

and the point 0 ∈ Kn+m lies in the closure of any orbit K∗ · z ⊆ X, z ∈ X, which implies
connectedness. To proceed, consider the Jacobian Jg of g := (g0, . . . , gr−2). According to
Serre’s criterion (see [20, Section 11]), we have to show that the set of points of z ∈ X,
with Jg(z) not of full rank, is of codimension at least two in X. Note that the Jacobian
is of the shape (Jg, 0) with a zero block of size (r− 1)×m corresponding to the variables
S1, . . . , Sk and

Jg =



δ0 0 δ0 1 δ0 2 0 0
0 δ1 1 δ1 2 δ1 3 0

...

0 δr−3 r−3 δr−3 r−2 δr−3 r−1 0
0 0 δr−2 r−2 δr−2 r−1 δr−2 r


,
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where δti is a nonzero multiple of the gradient δi := gradT li
i . Consider z ∈ X with Jg(z)

not of full rank. Then δi(z) = 0 = δk(z) holds with some 0 ≤ i < k ≤ r. This implies
zij = 0 = zkl for some 1 ≤ j ≤ ni and 1 ≤ l ≤ nk. Thus, we have T li

i (z) = 0 = T lk
k (z).

Lemma 2.5 gives T ls
s (z) = 0, for all 0 ≤ s ≤ r. Thus, some coordinate zst must vanish for

every 0 ≤ s ≤ r. This shows that z belongs to a closed subset of X having codimension
at least two in X. Hence, R(A,P0) is an integral normal complete intersection with

dim(R(A,P0)) = n+m− r + 1 = dim(ker(P0)) + 1.

Effectivity of the K0-grading is given by construction, because the degrees deg(Tij) =
Q0(eij) generate K0. This implies that the K0-grading is of complexity one. Now consider
the action of the quasitorus H0 := SpecK[K0] on Kn+m given by the K0-grading. Note
that H0 ⊆ Tn+m is the kernel of the homomorphism of tori

Tn+m → Tr, (tij, tk) 7→
(
tl11
tl00

, . . . ,
tlrr
tl00

)
.

The set X ⊆ Kn+m of common zeros of all the gi,i+1,i+2 is H0-invariant and thus it is
invariant under the one-parameter subgroup of H0 given by

K∗ → H0, t 7→ (tζij , t, . . . , t), ζij := n−1
i l−1

ij

∏
k

nk

∏
k,m

lkm.

Since all ζij are positive, any orbit of this one-parameter subgroup in Kn+m has the origin
in its closure. Consequently, every H0-invariant function on X is constant. This shows
R(A,P0)0 = K. Hence, the grading is pointed.

Lemma 2.6. In the situation of Construction 2.2, the variable Tij defines a prime ideal in
R(A,P0) if and only if the numbers gcd(lk1, . . . , lknk

), where k ̸= i, are pairwise coprime.

Proof. We treat exemplarily T01. Using Lemma 2.3, we see that the ideal of relations of
R(A,P0) can be presented as follows:

⟨gs,s+1,s+2; 0 ≤ s ≤ r − 2⟩ = ⟨g0,s,s+1; 1 ≤ s ≤ r − 1⟩

Thus, the ideal ⟨T01⟩ ⊆ R(A,P0) is prime if and only if the following binomial ideal is
prime:

a := ⟨αs+10T
ls
s + α0sT

ls+1

s+1 ; 1 ≤ s ≤ r − 1⟩ ⊆ K[Tij; (i, j) ̸= (0, 1)]

Set li := (li1, . . . , lini
). Then the ideal a is prime if and only if the following family can be

complemented to a lattice basis

(l1,−l2, 0, . . . , 0), . . . , (0, . . . , 0, lr−1,−lr).

This in turn is equivalent to the statement that the numbers gcd(lk1, . . . , lknk
), where

1 ≤ k ≤ r, are pairwise coprime.
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We say that a Weil divisor on X is H0-prime if it is non-zero, has only multiplicities zero or
one and the group H0 permutes transitively the prime components with multiplicity one.
Note that the divisor div(f) of a homogeneous function f ∈ R(A,P0) on X is H0-prime
if and only if f is K0-prime [25, Prop. 3.2].

Proposition 2.7. Let the variables Tij be regarded as regular functions on the affine
variety X = Spec(R(A,P0)).

(i) The divisors of the Tij on X are H0-prime and pairwise different. In particular, the
Tij define pairwise non-associated K0-prime elements in R(A,P0).

(ii) If the ring R(A,P0) is factorial and nilij > 1 holds, then the divisor of Tij on X is
even prime.

Proof. For (i), we exemplarily show that the divisor of T01 is H0-prime. First note that
by Lemma 2.3 the zero set V (X;T01) is described in Kn+m by the equations

T01 = 0, αs+10T
ls
s + α0sT

ls+1

s+1 = 0, 1 ≤ s ≤ r − 1. (1)

Let h ∈ S denote the product of all Tij with (i, j) ̸= (0, 1). Then, in Kn+m
h , the above

equations are equivalent to

T01 = 0, −αs+10T
ls
s

α0sT
ls+1

s+1

= 1, 1 ≤ s ≤ r − 1.

Now, choose a point z ∈ Kn+m
h satisfying these equations. Then z01 is the only vanishing

coordinate of z. Any other such point is of the form

(0, t02z02, . . . , trnrzrnr), tij ∈ K∗, tlss = t
ls+1

s+1 , 1 ≤ s ≤ r − 1.

Setting t01 := t−l02
02 · · · t

−l0n0
0n0

tl11 , we obtain an element t = (tij) ∈ H0 such that the above
point equals t·z. This consideration shows

V (Xh;T01) = H0 ·z.

Using Lemma 2.5, we see that V (X;T01, Tij) is of codimension at least two in X whenever
(i, j) ̸= (0, 1). This allows to conclude

V (X;T01) = H0 ·z.

Thus, to obtain that T01 defines an H0-prime divisor on X, we only need that the equa-
tions (1) define a radical ideal. This in turn follows from the fact that their Jacobian at
the point z ∈ V (X;T01) is of full rank.

To verify (ii), let R(A,P0) be factorial. Assume that the divisor of Tij is not prime. Then
we have Tij = h1 · · ·hs with prime elements hl ∈ R(A,P0). Consider their decomposition
into homogeneous parts

hl =
∑
w∈K

hl,w.
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Plugging this into the product h1 · · ·hs shows that deg(Tij) is a positive combination of
some deg(Tkl) with (k, l) ̸= (i, j). Thus, there is a vector (ckl) ∈ ker(Q0) ⊆ Zn+m with
cij = 1 and ckl ≤ 0 whenever (k, l) ̸= (i, j). Since, ker(Q0) is spanned by the rows of P0,
we must have ni = 1 and lij = 1, a contradiction to our assumptions.

Theorem 2.8. Let (A,P0) be as introduced in Construction 2.2. Then the following
statements hold.

(i) The algebra R(A,P0) is factorially K0-graded and the K0-grading is effective, pointed
and of complexity one.

(ii) The variables Tij and Sk define a system of pairwise non-associated K0-prime gen-
erators of R(A,P0).

(iii) Suppose that (A,P0) is sincere. Then R(A,P0) is factorial if and only if the group
K0 is torsion free, i.e. the numbers ℓi := gcd(li1, . . . , lini

) are pairwise coprime.

Proof. The first two assertions are almost proven by Proposition 2.4 and Proposition 2.7.
The K0-factoriality still has to be proven. In the next section we will realize R(A,P0) as
Cox ring, see Proposition 2.16. Hence, R(A,P0) is factorially graded, compare [25].

We prove (iii). If K0 is torsion free, then K0-factoriality of R(A,P0) implies factoriality.
Conversely, if R(A,P0) is factorial, then the generators Tij are prime by Proposition 2.7.
Furthermore, by Lemma 2.6 the numbers gcd(li1, . . . , lini

) are pairwise coprime. This
implies that the rows of P0 generate a primitive sublattice of Zn+m and thus K0 is torsion
free.

In the following example we consider a factorially graded algebra which is not factorial.
Note that K0 is torsion free if and only if the numbers ℓi := gcd(li1, . . . , lini

) are pairwise
coprime.

Example 2.9. Set r = 2, n0 = n1 = n2 = 1, l01 = l11 = l21 = 2 and let A consist of the
vectors (1, 0), (1, 1) and (0, 1). Then the matrix(

−2 2 0
−2 0 2

)
describes the map P0 : Z

3 → Z2. Thus, the grading group is K0 = Z ⊕ Z/2Z ⊕ Z/2Z.
Concretely, this grading can be realized as

deg(T01) = (1, 0, 0), deg(T11) = (1, 1, 0), deg(T21) = (1, 0, 1).

The associated algebra R(A,P0) is factorially K0-graded but not factorial. It is explicitly
given by

R(A,P0) = K[T01, T11, T21]/⟨T 2
01 − T 2

11 + T 2
21⟩.
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Now we will consider an extended version of Construction 2.2 by coarsening the K0-
grading as follows.

Construction 2.10. For r ≥ 1, we fix integers n0, . . . , nr ∈ Z>0, m ∈ Z≥0 and 0 < s ≤
n+m+ r, where n := n0 + . . .+ nr. As input data we have a sequence A = (a0, . . . , ar)
of vectors ai = (bi, ci) in K2 such that any pair (ai, ak) with k ̸= i is linearly independent
and an integral block matrix P of size (r + s) × (n + m) whose columns are pairwise
different primitive vectors generating the vector space Qr+s as a cone:

P =

(
L0 0
d d′

)
,

where L0 is defined by tuples li = (li1, . . . , lini
) as in Construction 2.2, d is an integral

(s × n)-matrix, and d′ is an integral (s ×m)-matrix. Let P ∗ denote the transpose of P
and define K := Zn+m/im(P ∗). We consider the projection Q : Zn+m → K and obtain a
K-grading of K[Tij, Sk] by setting

deg(Tij) := wij := Q(eij), deg(Sk) := uk := Q(ek).

By construction the trinomials gi are K-homogeneous of the same degree

γ = l01w01 + . . .+ l0n0w0n0 = . . . = lr1wr1 + . . .+ lrnrwrnr .

Furthermore, we obtain the following K-graded factor ring

R(A,P ) := K[Tij, Sk]/⟨gi; 0 ≤ i ≤ r − 2⟩.

The rings R(A,P ) and R(A,P0) coincide as rings, but they are not isomorphic as graded
rings since the K0-grading is finer than the K-grading. Consider the down grading map
K → K0 which is the canonical inclusion. We have the following commutative diagram
with exact sequences:

0

��
0

��

Zs

��
0 // Zr

P ∗
0 //

��

Zn+m Q0 // K0
//

��

0

0 // Zr+s
P ∗

//

��

Zn+m
Q

// K //

��

0

Zs

��

0

0

By the snake lemma we can identify the direct factor Zs of Zr+s with the kernel of the
downgrading map K → K0. Furthermore, let T , H0 and H denote the quasitori of the
abelian groups Zs, K0 and K. Then we have T = H0/H.
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Remark 2.11. The condition that the numbers ℓi = gcd(li1, . . . , lini
) are pairwise coprime

is necessary for K to be torsion free. But it is not sufficient. See for example

P =

−7 −1 5 0
−7 −1 0 2
−4 −1 1 1

 .

The group K is torsion free if and only if P : Zn+m → Zr+s is surjective.

Definition 2.12. If (A,P ) is sincere, i.e. r ≥ 2 holds and for every 0 ≤ i ≤ r and
1 ≤ j ≤ ni we have nilij > 1, then the ring R(A,P ) is called minimally represented.

This property ensures that the relations are really counting which means that there are
no linear terms (ommitting redundant generators) and that the relations are trinomials.
In particular, if (A,P ) is sincere, then R(A,P ) is not polynomial.

2.2 Varieties with a complexity-one torus action

In this chapter we will construct varieties whose Cox rings are of the form R(A,P ). It
turns out that these rings describe complexity-one T -varieties.

Definition 2.13. Let X be a variety with an effective action of a torus T of complexity
one, i.e. dim(T ) = dim(X)− 1. Then X is called a complexity-one T -variety.

Assume that X is a rational Q-factorial complete normal complexity-one T -variety. Note
that in case of a complexity-one T -variety, the property of X being rational is equivalent
to the condition that the divisor class group Cl(X) is finitely generated, see [29, Section
5]. We will obtain X as a subvariety of a toric variety Z and the construction of Z is
performed in terms of fans.

Construction 2.14. Let (A,P ) be data as in Construction 2.10. Consider the lattice

F :=
r⊕

i=0

ni⊕
j=1

Z · fij ⊕ Z · f1 ⊕ . . .⊕ Z · fm ∼= Zn+m.

Let ∆̂ be the fan in F having the rays ϱ̂ij and ϱ̂k through the basis vectors fij and fk as
its maximal cones. Let P be a matrix as defined in Construction 2.10 with P0 as defined
in Construction 2.2 and suppose that the columns of P are primitive, pairwise different
and generate NQ as a cone, where N := Zr+s. With N0 := Zr, we have the projection
B : N → N0 onto the first r coordinates and the matrices P and P0 define linear maps
P : F → N and P0 : F → N0, respectively.

Let ∆ be the fan in N with the rays ϱij := P (ϱ̂ij) and ϱk := P (ϱ̂k) as its maximal cones.
The ray ϱ̃ij through the ij-th column of P0 is given in terms of the canonical basis vectors
v1, . . . , vr in N0 = Zr as

ϱ̃ij = Q≥0vi, 1 ≤ i ≤ r, ϱ̃0j = −Q≥0(v1 + . . .+ vr).



2 COMPLEXITY-ONE T -VARIETIES 25

For fixed i, all ϱ̃ij are equal to each other. We list them nevertheless all separately in a
system of fans ∆̃ having the zero cone as the common gluing data; see [1] for the formal
definition of this concept. Finally, we have the fan ∆0 in Zr with the rays Q≥0vi and
−Q≥0(v1 + . . .+ vr) as its maximal cones.

B

∆0

∆

The toric variety Ŷ associated to ∆̂ has SpecK[E] ∼= Tn+m as its acting torus, where
E is the dual lattice of F . The fan ∆ in N defines a toric variety Y and the system of
fans ∆̃ defines a toric prevariety Ỹ . The toric prime divisors corresponding to the rays
ϱ̂ij, ϱ̂k ∈ ∆̂, ϱij, ϱk ∈ ∆ and ϱ̃ij ∈ ∆̃, are denoted as

D̂ij, D̂k ⊆ Ŷ , Dij, Dk ⊆ Y, D̃ij ⊆ Ỹ .

The toric variety associated to ∆0 is the open subset P
(1)
r ⊆ Pr of the projective space

obtained by removing all toric orbits of codimension at least two. The maps P and P0

define toric morphisms π : Ŷ → Y and π0 : Ŷ → Ỹ . Moreover, B : N → N0 defines a toric
morphism β : Y → Ỹ and the identity Zr → Zr defines a toric morphism κ : Ỹ → P

(1)
r .

These morphisms fit into the commutative diagram

Ŷ
π //

π0
!!C

CC
CC

CC
CC

Y

β
}}{{
{{
{{
{{
{

Ỹ

κ
��

P
(1)
r .

Note that κ : Ỹ → P
(1)
r is a local isomorphism which, for fixed i, identifies all the divisors

D̃ij with 1 ≤ j ≤ ni. Let H ⊆ Tn+m and H0 ⊆ Tn+m be the kernels of the toric morphisms
π : Ŷ → Y and π0 : Ŷ → Ỹ , respectively.

Proposition 2.15. In the above notation, the following statements hold.

(i) With Ŷ0 := Ŷ \ (D̂1 ∪ . . . ∪ D̂m), the restriction π0 : Ŷ0 → Ỹ is a geometric quotient
for the action of H0 on Ŷ0.

(ii) The quasitorus H acts freely on Ŷ and π : Ŷ → Y is the geometric quotient for this
action.



26 2.2 Varieties with a complexity-one torus action

(iii) The factor group T := H0/H is isomorphic to Ts and it acts canonically on Y .

(iv) The T -action on Y has infinite isotropy groups along D1, . . . , Dm and isotropy
groups of order lij along Dij.

(v) With Y0 := Y \ (D1 ∪ . . . ∪Dm), the restriction β : Y0 → Ỹ is a geometric quotient
for the action of T on Y .

Proof. The fact that π0 : Ŷ0 → Ỹ and π : Ŷ → Y are geometric quotients is due to
known characterizations of these notions in terms of (systems of) fans, see e.g. [1]. As a
consequence, also β : Y0 → Ỹ is a geometric quotient for the induced action of T = H0/H.

We verify the remaining part of (ii). According to [5, Prop. II.1.4.2], the isotropy group
of H = ker(π) at a distinguished point yϱ̂ ∈ Ŷ has character group isomorphic to

ker(P ) ∩ linQ(ϱ̂) ⊕ (P (linQ(ϱ̂)) ∩N)/P (linQ(ϱ̂) ∩ F ).

By the choice of d and d′, the map P sends the primitive generators of the rays of ∆̂ to
the primitive generators of the rays of ∆. Thus we obtain that the isotropy of yϱ̂ij and
yϱ̂k are all trivial.

We turn to (iii). With the dual lattices M of N and M0 of N0, we obtain the character
groups of H and H0 and the factor group H0/H as

X(H) = E/P ∗(M), X(H0) = E/P ∗(M0), X(H0/H) = P ∗(M)/P ∗(M0).

By definition of the matrices P and P0, we have P ∗(M)/P ∗(M) ∼= Zs. This implies
T ∼= Ts as claimed.

To see (iv), first note that the group T equals ker(β) and hence corresponds to the
sublattice ker(B) ⊆ Zr+s. Thus, the isotropy group Tyϱ for the distinguished point yϱ ∈ Y
corresponding to ϱ ∈ ∆ has character group isomorphic to

ker(B) ∩ linQ(ϱ) ⊕ (B(linQ(ϱ)) ∩N0)/B(linQ(ϱ) ∩N).

Consequently, for ϱ = ϱk the isotropy group Tyϱ is infinite and for ϱ = ϱij it is of order
lij.

Now we come to the construction of the embedded variety. Let δ ⊆ FQ be the orthant
generated by the basis vectors fij and fk. The associated affine toric variety Z ∼= Kn+m

is the spectrum of the polynomial ring

K[E ∩ δ∨] = K[Tij, Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

Moreover, Z contains Ŷ as an open toric subvariety and the complement Z \ Ŷ is the
union of all toric orbits of codimension at least two. We obtain an H0-invariant subvariety

X := V (gi,i+1,i+2; 0 ≤ i ≤ r − 2) ⊆ Z.
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Proposition 2.16. Set X̂ := X ∩ Ŷ . Consider the images X ′ := π(X̂) ⊆ Y and C :=

β(X ′) ⊆ Ỹ .

(i) X ′ ⊆ Y is a normal closed T -invariant s+1 dimensional variety, C ⊆ Ỹ is a closed
non-separated curve and κ(C) ⊆ Pr is a line.

(ii) The intersection Cij := X ′ ∩Dij with the toric divisor Dij ⊆ Y is a single T -orbit
with isotropy group of order lij.

(iii) The intersection Ck := X ′ ∩Dk with the toric divisor Dk ⊆ Y is a smooth rational
prime divisor consisting of points with infinite T -isotropy.

(iv) For every point x ∈ X ′ not belonging to some Cij or to some Ck, the isotropy group
Tx is trivial.

(v) The variety X ′ satisfies Γ(X ′,O) = K, its divisor class group and Cox ring are
given by

Cl(X ′) ∼= K, R(X ′) ∼= R(A,P ).

Furthermore, the variables Tij and Sk define pairwise non-associated K-prime ele-
ments in R(A,P ).

(vi) There is a T -equivariant completion X ′ ⊆ X with a Q-factorial projective variety
X such that R(X) = R(X ′) holds.

Proof. By the definition of P0 and H0, the closed subvariety X ⊆ Z is invariant under the
action of H0. In particular, X̂ is H-invariant and thus the image X ′ := π(X̂) under the
quotient map is closed as well. Moreover, the dimension of X ′ equals dim(X̂/H) = s+1.
Analogously we obtain closedness of C = π0(X̂). The image κ(C) = κ(π0(X̂)) is given in
Pr by the equations

αjkUi + αkiUj + αijUk = 0

with the variables U0, . . . , Ur on Pr corresponding to the toric divisors given by the rays
Q≥0vi and −Q≥0(v0 + . . . + vr−1) of ∆̃. To see this, use that pulling back the above
equations via κ◦π0 gives the defining equations for X̂. Consequently, κ(C) is a projective
line. This shows (i).

We turn to (ii). According to Proposition 2.7, the intersection X̂∩D̂ij is a single H0-orbit.
Since π : X̂ → X ′ is a geometric quotient for the H-action, we conclude that Cij = π(D̂ij)
is a single T -orbit. Moreover, since H acts freely, the isotropy group of G = H0/H along
Cij equals that of H0 along D̂ij which, by Proposition 2.15 (iv), is of order lij.

For (iii) first note that the restrictions β : Dk → Ỹ are isomorphisms onto the acting
torus of Ỹ . Moreover, the restricting κ gives an isomorphism of the acting tori of Ỹ and
Pr. Consequently, β maps Ck isomorphically onto the intersection of the line C with the
acting torus of Pr. Thus, Ck is a smooth rational curve. Proposition 2.15 (iv) ensures
that Ck consists of fixed points. Assertion (iv) is clear.
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We prove (v). From Proposition 2.4 we infer Γ(X̂,O)H = K which implies Γ(X ′,O) = K.
The next step is to establish a surjection K → Cl(X ′), where K := E/P ∗(M) is the
character group of H. Consider the push forward π∗ from the H-invariant Weil divisors
on X̂ to the Weil divisors on X ′ sending D̂ to π(D̂). For every w ∈ K, we fix a w-
homogeneous rational function fw ∈ K(X ′) and define a map

µ : K → Cl(X ′), w 7→ [π∗div(fw)].

One directly checks that this does not depend on the choice of the fw and thus is a well
defined homomorphism. In order to see that it is surjective, note that due to Proposi-
tion 2.4, we obtain Cij as π∗div(Tij) and Ck as π∗div(Tk). The claim then follows from
the observation that removing all Cij and Ck from X ′ leaves the set X ′ ∩ Tr+s which is
isomorphic to V × Tr with a proper open subset V ⊆ κ(C) and hence has trivial divisor
class group.

Now [29, Theorem 1.3] shows that the Cox ring of X ′ is R(A,P ) with the Cl(X ′)-grading
given by deg(Tij) = [Cij] and deg(Sk) = [Ck]. Consequently, R(A,P ) is factorially Cl(X ′)-
graded and thus also the finer K-grading is factorial. Since H acts freely on X̂, we can
conclude Cl(X ′) = K.

Finally, we construct a completion of X ′ ⊆ X as wanted in (vi). Choose any simplicial
projective fan Σ in N having the same rays as ∆, see [44, Corollary 3.8]. The associated
toric variety Z is projective and it is the good quotient of an open toric subset Ẑ ⊆ Z
by the action of H. The closure X of X ′ in Z is projective and, as the good quotient of
the normal variety X ∩ Ẑ, it is normal. By Proposition 2.7, the complement X \X ′ is of
codimension at least two, which gives R(X) = R(X ′). From [25, Cor. 4.13] we infer that
X is Q-factorial.

Remark 2.17. We may realize any given R(A,P ) as a subring of the Cox ring of a
surface: For every li = (li1, . . . , lini

) choose a tuple di = (di1, . . . , dini
) of positive integers

with gcd(lij, dij) = 1 and di1/li1 < . . . < dini
/lini

. Then take

P :=

(
L0 0 0
d 1 −1

)
.

Theorem 2.18. In the notation of Construction 2.10, the following holds.

(a) The algebra R(A,P ) is factorially K-graded and the K-grading is almost free, ef-
fective and pointed. Moreover, Tij, Sk define pairwise non-associated K-prime gen-
erators.

(b) The K-graded algebra R(A,P ) is the Cox ring of a Q-factorial rational projective
variety with a complexity one torus action.

Proof. These statements are a direct consequence of Proposition 2.16.
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Note that, if K is torsion free, then K-factoriality of R(A,P ) implies factoriality, see [4,
Theorem 4.2]. The converse, however, is not true. There are K-graded factorial algebras
R(A,P ) with non torsion free K, see Remark 2.11.

Theorem 2.19. Let X be a normal rational complete variety with a torus action of
complexity one. Then the Cox ring of X is isomorphic as a graded ring to some R(A,P )
with a K-grading as in Construction 2.10.

Proof. According to [29, Theorem 1.3], the Cox ringR(X) is isomorphic to a ring R(A,P )
with a grading by K := Cl(X) such that the variables Tij and Sk are homogeneous. In
particular, X is the quotient by the action of H = SpecK[K] on an open subset X̂ of

X = V (gi,i+1,i+2; 0 ≤ i ≤ r − 2) ⊆ Z.

For r < 2, the variety X is toric. We may assume that T acts as a subtorus of the big
torus and the assertion follows by standard toric geometry. So, let r ≥ 2. By construction,
the K0-grading of R(A,P ) and R(A,P0) respectively, is the finest possible such that all
variables Tij and Sk are homogeneous. Consequently, we have exact sequences of abelian
groups fitting into a commutative diagram.

0

��

0 //

��

0 //

��

K̃

��
0 // M0

P ∗
0 //

��

E // K0
//

��

0

0 // M //

��

E //

��

K //

��

0

M/M0
//

��

0 // 0

0

(2)

In particular we extract from this the following two commutative triangles, where the
second one is obtained by dualizing the first one.

E oo
``

P ∗
0

BB
BB

BB
BB

M==

{{
{{
{{
{{

M0

F
P //

P0   A
AA

AA
AA

A N

~~}}
}}
}}
}}

N0

(3)
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We claim that the kernel K̃ is free. Consider H0 := Spec(K[K0]) and the isotropy group
H0

ij ⊆ H0 of a general point x̂(i, j) ∈ X̂ ∩ V (Tij). Then we have exact sequences

1 oo H0/H0
ij oo H0

oo H0
ij oo 1 ,

0 // K0(i, j) // K0
// K0/K0(i, j) // 0 ,

where the second one arises from the first one by passing to the character groups. Note
that the subgroup K0(i, j) ⊆ K0 is given by

K0(i, j) = linZ(deg Tkl; (k, l) ̸= (i, j)) + linZ(deg Tp; 1 ≤ p ≤ m). (4)

Now [29, Theorem 1.3] tells us that each variable Tij defines a K-prime element in R(X)
and thus its divisor is H-prime. Consequently, H0/HH0

ij is connected and has a free
character group

X(H0/HH0
ij) = K̃(i, j) := K̃ ∩K0(i, j).

Mimicking equation (4), we define a subgroup K(i, j) ⊆ K fitting into a commutative net
of exact sequences

0

��

0

��

0

��

0 // K̃(i, j) //

��

K̃ //

��

K̃/K̃(i, j) //

��

0

0 // K0(i, j) //

��

K0
//

��

K0/K0(i, j) //

��

0

0 // K(i, j) //

��

K //

��

K/K(i, j) //

��

0

0 0 0

(5)

By general properties of Cox rings [25, Prop. 2.2] we must have K/K(i, j) = 0 and thus
we conclude

K̃/K̃(i, j) = K0/K0(i, j) ∼= Z/lijZ. (6)

Consider again x̂(i, j) ∈ V (Tij) ∩ X̂, set x(i, j) := pX(x̂(i, j)) and let T denote the torus
acting on X. Then [29, Prop. 2.6] and its proof provides a commutative diagram

H̃OO ⊇ H̃ijOO
∼=

T ⊇ Tx(i,j)
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where H̃ = H0/H and H̃ij = H0/HH0
ij. Using (6) and passing to the character groups

we arrive at a commutative diagram

0 // K̃(i, j) // K̃ //

��

Z/lijZ //
OO
∼=

0

X(T ) // Z/lijZ // 0

with exact rows. As seen before, the group K̃(i, j) is free abelian. Consequently, also K̃
must be free abelian.

Now the snake lemma tells us that M/M0 is free as well. In particular, the first vertical
sequence of (2) splits. Thus, we obtain the desired matrix presentation of P from rewriting
the second commutative triangle of (3) as

F
P //

P0   B
BB

BB
BB

B N0 ⊕N/M⊥
0

xxqqq
qqq

qqq
q

N0 .

Construction 2.20. Let (A,P ) be data as in Construction 2.10 and consider the as-
sociated K-graded ring R := R(A,P ). Let F be a system of generators of R consisting
of the variables Tij and Sk. This data defines a projected cone (E

Q→ K, γ), where γ
is the positive orthant in E := Zn+m generated by the canonical basis vectors eij, ek
and K := E/im(P ∗). The map Q : E → K is the projection. Every F-bunch Φ de-
fines a bunched ring (R,F,Φ). The K-grading defines an H := Spec(K[K])-action on
X := X(A,P ) := Spec(R) and according to Construction 1.9 the varieties

X̂ := X̂(A,P,Φ) := X(R,F,Φ) and X := X(A,P,Φ) := X(R,F,Φ),

where X = X̂/H. The action of H0 := Spec(K[K0]) on X leaves X̂ invariant and induces
consequently an effective complexity-one action of the torus T := H0/H = Spec(K[Zs])
on X. Note that T is the stabilizer of X under the action of H0. Since every chamber λ
of the GIT-fan is defining an F-bunch Φ(λ), we can also define

X(A,P, λ) := X(A,P,Φ(λ)).

The variety X := X(A,P, λ) is a normal projective variety with dim(X) = dim(R) −
dim(KQ) = s + 1 and Γ(X,O∗) = K∗. By construction, R is the Cox ring of X and
π : X̂ → X is a characteristic space for X. There is an isomorphism K → Cl(X) sending
the variables Tij and Sk to the divisors Dij

X = π(V (X̂, Tij)) and Dk
X = π(V (X̂, Tk)) in X.
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Definition 2.21. Let X = X(A,P,Φ) a complexity-one T -variety. Then P is called the
P -matrix of X.

Theorem 2.22. Let X be an n-dimensional projective normal rational variety with an
effective action of an (n − 1)-dimensional torus T . Then X is equivariantly isomorphic
to a complexity-one T -variety arising from data (A,P ) as in Construction 2.20.

Proof. This theorem is a direct consequence of Theorem 2.19.

2.3 Normal form of complexity-one T -varieties

This section describes isomorphisms of complexity-one T -varieties X = X(A,P,Φ) in
terms of the defining data (A,P,Φ). For this purpose we introduce normal forms for the
defining matrix P as well as for the graded ring R(A,P ).

Definition 2.23. We call an elementary row or column operation of the matrix P ad-
missible if it is one of the following:

(i) Switch two columns inside a block vi1, . . . vini
.

(ii) Switch two whole column blocks vi1, . . . , vini
and vj1, . . . , vjnj

.

(iii) Add multiples of the upper r rows to one of the last s rows.

(iv) Any elementary row operation among the last s rows.

(v) Switch two columns inside the d′ block.

We will see that operations of type (iii) and (iv) do not change the ring R(A,P ) whereas
(i), (ii) and (v) cause switches of the involved variables that do not affect the isomorphy
type of R(A,P ).

Definition 2.24. Two pairs (A,P ) and (A′, P ′) as introduced in Construction 2.10 are
said to be isomorphic if

A′ = B · A ·D and P ′ = S · P · U

with a matrix B ∈ GL(2,K), a diagonal matrix D ∈ GL(r + 1,K), a unimodular matrix
S causing admissible matrix operations of type (iii) and (iv) and a permutation matrix U
built from permutation blocks of sizes n0, . . . , nr,m causing admissible matrix operations
of type (i), (ii) and (v). We call two matrices A and A′ isomorphic if A′ = B · A ·D as
above.

Remark 2.25. The vectors ai ∈ K2\{0} define points in P1 with fixed given coordinates.
Consequently, applying the matrix D on A is kind of a scaling and just means that the
coordinates of the points ai do change. The matrix B represents an automorphism of
K2 \ {0} which can be interpreted as automorphism of P1 and can hence even be chosen
out of SL(2,K). Note that we need the images of three points of P1 to fix an automorphism
of P1.
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Definition 2.26. In the situation of Construction 2.10 the matrix A is called standard
if the relations of a ring R(A,P ) have the following form,

g0 = T l0
0 + T l1

1 + T l2
2

g1 = λ1T
l1
1 + T l2

2 + T l3
3

g2 = λ2T
l2
2 + T l3

3 + λ1T
l4
4

g3 = λ3T
l3
3 + T l4

4 + λ2T
l5
5

...

gr−3 = λr−3T
lr−3

r−3 + T
lr−2

r−2 + λr−4T
lr−1

r−1

gr−2 = λr−2T
lr−2

r−2 + T
lr−1

r−1 + λr−3T
lr
r

where 1, λ1, . . . , λr−2 ∈ K∗ are pairwisely different. Note that λi ̸= 1 is due to the fact
that (ai, ak) is linearly independent whenever i ̸= k.

Lemma 2.27. Every matrix A is isomorphic to a unique standard matrix.

Proof. By applying a suitable matrix B, the first three points a0, a1 and a2 can be mapped
to scalar multiples of the points (1, 0), (0, 1) and (−1,−1). By scaling these coordinates
by an appropriate diagonal matrix D we can achieve a′0 = (1, 0), a′1 = (0, 1) and a′2 =
(−1,−1). Furthermore, we can choose D in such a way that the points a3, . . . , ar are send
to points a′3, . . . , a

′
r satisfying det(ai+2, ai) = 1 for all 3 ≤ i ≤ r − 2, i.e. the coefficient of

the second monomial of each relation equals one.

Corollary 2.28. Two matrices A and A′ are isomorphic if and only if they have the same
standard matrix.

Proposition 2.29. Let R(A,P ) be a graded ring and let 1, λ1, . . . , λr−2 ∈ K∗ be pairwisely
different. Then R(A,P ) is isomorphic to a ring K[Tij, Sk]/⟨g0, . . . , gr−2⟩ with relations of
the following form:

g0 = T l0
0 + T l1

1 + T l2
2

g1 = λ1T
l1
1 + T l2

2 + T l3
3

g2 = λ2T
l2
2 + T l3

3 + T l4
4

...

gr−2 = λr−2T
lr−2

r−2 + T
lr−1

r−1 + T lr
r .

Proof. By Lemma 2.27 we may assume A to be standard. Applying ring homomorphisms
we have two further possibilities to simplify the coefficients of the relations g0, . . . , gr−2.
Firstly, we can send variables Tij to scalar multiples cijTij with cij ∈ K∗. Secondly, we can
multiply a whole relation with an element of K∗ which is not changing the ideal generated
by the relations. These operations are sufficient to obtain the desired coefficients.
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Remark 2.30. In general, the ring K[Tij, Sk]/⟨g0, . . . , gr−2⟩ defined in Proposition 2.29
is not an R(A,P )-ring, but for r ≤ 3 it is.

Example 2.31. Consider the points a0 = (1, 1), a1 = (0, 1), a2 = (−1, 2) a3 = (1, 3),
a4 = (1, 2) and a5 = (1,−1). Then we obtain

B · A ·D =

(
−3 0
−1 1

)
·
(
1 0 −1 1 1 1
1 1 2 3 2 −1

)
·


−1

3
0 0 0 0 0

0 1 0 0 0 0
0 0 −1

3
0 0 0

0 0 0 −1
3

0 0
0 0 0 0 1

4
0

0 0 0 0 0 1
4


=

(
1 0 −1 1 −3

4
−3

4

1 1 −1 −2
3

1
4
−1

2

)
= A′,

where the matrix A′ is standard. Then the relations are of the form

g0 = T l0
0 + T l1

1 + T l2
2

g1 =
5

3
T l1
1 + T l2

2 + T l3
3

g2 = −1

4
T l2
2 + T l3

3 +
5

3
T l4
4

g3 =
9

16
T l3
3 + T l4

4 −
1

4
T l5
5 .

Now apply the ring homomorphism sending T4 7→ l4

√
3
5
· T4 and T5 7→ l5

√
−12

5
· T5 and

multiply the last relation with 5
3
. Then we have

g0 = T l0
0 + T l1

1 + T l2
2

g1 =
5

3
T l1
1 + T l2

2 + T l3
3

g2 = −1

4
T l2
2 + T l3

3 + T l4
4

g3 =
15

16
T l3
3 + T l4

4 + T l5
5 .

We recall the notion of a graded ring homomorphism. Let R and R′ be graded rings with
grading groups K and K ′ respectively. Then (φ, φ̃) is called a graded ring homomorphism
if φ : R → R′ is a ring homomorphism and φ̃ : K → K ′ is a group homomorphism such
that φ(Rw) ⊆ R′

φ̃(w) is satisfied for all w ∈ K.

Proposition 2.32. Let (A,P ) and (A′, P ′) be given as in Construction 2.10 and consider
the associated graded rings R(A,P ) and R(A′, P ′). Then (A,P ) is isomorphic to (A′, P ′)
if and only if R(A,P ) and R(A′, P ′) are isomorphic as graded rings.
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Proof. Let us assume that (A,P ) is isomorphic to (A′, P ′). Then we have A′ = B ·A ·D.
Applying the matrix B on A maps each point ai to B(ai). The coefficients of the relations
of R(A,P ) are given by αij = det(ai, aj) and the coefficients of the relations of R(B ·A,P )
are given by βij = (B(ai), B(aj)) = det(B) · αij. Consequently, we obtain

R(A,P ) = K[Tij, Sk]/⟨gi; 0 ≤ i ≤ r − 2⟩
= K[Tij, Sk]/⟨det(B) · gi; 0 ≤ i ≤ r − 2⟩
= R(B · A,P ).

The scaling matrix D = diag(d0, . . . , dr) maps each point ai to di · ai. Hence, the coeffi-
cients of the relations of R(A ·D,P ) are given by δij = didjαij and the matrix D induces
a ring isomorphism

R(A,P )→ R(A ·D,P ), Tij 7→

{
di−1di+1di+2Ti1 for j = 1

Tij for j ̸= 1
,

where d−1 := 1. Consequently, R(A,P ) is isomorphic to R(A′, P ) for A′ = B · A ·D and
it is sufficient to consider the rings R(A,P ) and R(A,P ′) with a standard matrix A. The
condition P ′ = S · P · U induces an automorphism K[Tij, Sk] → K[T ′

ij, S
′
k] sending the

variables Tij, Sk to T ′
ij, S

′
k according to the rules given in Definition 2.24. The matrix U

permutes the blocks indexed from 0 to r of the matrix P and allows that variables within
one block are permuted. The unimodular matrix S satisfying the conditions of Definition
2.24 leaves the ring invariant and respects the grading of R(A,P ). Consequently, we
obtain

R(A,P ) = K[Tij, Sk]/⟨gi, 0 ≤ i ≤ r − 2⟩
∼= K[T ′

ij, S
′
k]/⟨g′i, 0 ≤ i ≤ r − 2⟩

= R(A,P ′).

Now let us assume that φ∗ : R(A′, P ′) → R(A,P ) is an isomorphism with A′ and A in
standard form and set X := Spec(R(A,P )) as well as X

′
:= Spec(R(A′, P ′)). Then the

maximal K0- and K ′
0-gradings of R(A,P ) and R(A′, P ′) (defined by the gradiator matrices

P0 and P ′
0) induce maximal torus actions on X and X

′ by the tori T0 := Spec(K[K0])
and T ′

0 := Spec(K[K ′
0]), respectively. The isomorphism φ∗ defines an affine equivariant

isomorphism φ : X → X
′. Consider an open set X̂ := X

ss
(w) ⊆ X where w ∈ Mov(X).

Let X̂0 denote the open subset of X̂ consisting of all points x ∈ X̂ with finite isotropy,
i.e. dim(T0x) = 0. Since φ is an isomorphism, the set X̂ ′

0 := φ(X̂0) contains all points
x′ ∈ X̂ ′ with finite isotropy. The variables Tij, Sk represent prime divisors Dij, Ek on X.
By choice of X̂ we have prime divisors D̂ij = X̂ ∩ Dij and Êk = X̂ ∩ Ek. Analogously,
we have prime divisors D

′
ij, E

′
k of X ′ and prime divisors D̂′

ij, Ê
′
k of X̂ ′. Furthermore, we
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obtain the following commutative diagram:

X̂0
φ //

�T0

��

X̂ ′
0

�T ′
0

��

X̂0/T0

∼= //

��

X̂ ′
0/T

′
0

��
P1

∼= // P1

The lower downward arrows are separation maps sending multiplied points to one point
and the relations gi and g′i to linear relations on P1. Consequently, we have a linear
automorphism µ : P1 → P1, i.e µ ∈ GL(2,K)/K∗ = PGL(1) = PSL(1). Every such µ
comes from a matrix B ∈ GL(2,K) defining an automorphism of K2. It sends A to A′

such that µ(ai) = a′j. This implies ni = n′
j. Consequently, the map φ sends the set of

prime divisors {D̂ij, Êk} on X̂ and {D̂′
ij, Ê

′
k} on X̂ ′ bijectively into each other in such a

way that any tower D̂i∗ is sent to some tower D̂j∗. Since lij = |T0D̂ij
| holds, we conclude

that, inside one tower, D̂ij is mapped to D̂′
i′j′ if and only if lij = l′i′j′ holds. The prime

divisors with infinite isotropy Êk are sent to Ê ′
k. These conditions correspond exactly to

matrices U as described in Definition 2.24. Note that applying D from the right side to
A does not change the points ai in P1 since the homogeneous coordinates of a point ai
are only multiplied by a scalar of K∗. Moreover, applying S from the left side to P does
not change the ring R(A,P ).

Corollary 2.33. Let R(A,P ) and R(A′, P ′) be the Cox rings of two non toric complexity-
one varieties X = X(A,P, λ) and X ′ = X(A′, P ′, λ′) with acting tori T and T ′ and let
K and K ′ denote the associated grading groups. Then the following three statements are
equivalent:

(i) R(A,P ) ∼= R(A′, P ′) and there is a graded isomorphism (φ, φ̃) such that φ̃(λ) = λ′.

(ii) X(A,P, λ) ∼= X(A′, P ′, λ′) as complexity-one varieties.

(iii) X(A,P, λ) ∼= X(A′, P ′, λ′) as algebraic varieties.

Proof. The first and the second statement are equivalent by [9, Corollary 6.8]. From [6,
Theorem 5.5] we infer that the automorphism groups Aut(X) and Aut(X ′) of X and X ′

are linear algebraic groups with maximal torus T and T ′, respectively. Let φ : X → X ′

be an isomorphism. Then the T -action on X defines a φ(T )-action on X ′. Since φ(T )
is conjugated to T ′ this implies that X and X ′ are even equivariantly isomorphic (as
complexity-one varieties).

Given data (A,P ) fixes X = X(A,P,Φ) up to small birational equivalence, depending on
the F-bunch Φ. In order to fix X up to isomorphy one has to fix Φ, which means fixing an
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interior GIT-chamber of the moving cone in K. The anticanonical class wX := [−KX ] ∈ K
is not affected by small birational modifications. Since R(A,P ) is a complete intersection
we infer from [9, Proposition 8.5] that

wX = Q(ewX
) =

r∑
i=0

ni∑
j=1

Q(eij) +
m∑
k=1

Q(ek)−
r−2∑
i=0

deg(gi).

Anyway, if X satisfies some special properties, then (A,P ) defines a unique variety X.

Definition 2.34. We call X a Fano variety if its anticanonical class wX is ample. Fur-
thermore, X is of Picard number n ∈ Z>0 if rk(Pic(X)) = n.

If X is a Fano variety, then (A,P ) fixes X already up to isomorphy, since the anticanonical
chamber is uniquely determined and given by λ(wX) and we have X = X(A,P, λ(wX)).
Furthermore, if X has Picard number one, then there is only one fulldimensional chamber
in the moving cone, which is the moving cone itself, i.e. the positive orthant in KQ = Q.
Consequently, in this case the variety X is also uniquely determined, Fano or not. If X is
a projective surface with finitely generated Cox ring, then Ample(X) = Mov(X)◦ holds.
In particular, we have X = X(A,P, λ(w)) for an arbitrary w ∈ Mov(X)◦. Consequently,
for varieties satisfying one of these properties the notation X(A,P ) is justified.

Corollary 2.35. Let (A,P ) and (A′, P ′) be data defining projective varieties X(A,P ) and
X(A′, P ′) that are of dimension two or Fano varieties or varieties with Picard number
one. Then the following statements are equivalent.

(i) X(A,P ) ∼= X(A′, P ′) as complexity-one varieties.

(ii) X(A,P ) ∼= X(A′, P ′) as algebraic varieties.

(iii) R(A,P ) ∼= R(A′, P ′) as graded rings.

Corollary 2.36. Let X = X(A,P ) be a K∗-surface, i.e. s = 1. Then we can find a
matrix P ′ such that X(A,P ) is isomorphic to X(A,P ′) and P ′ satisfies

n0 ≥ n1 ≥ . . . ≥ nr, lini
> dini

≥ 0 and
dij
lij

<
dij+1

lij+1

.
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3 Resolution of complexity-one T -varieties

This chapter is dedicated to the resolution of singularities of complexity-one T -varieties.
We will discuss a canonical way of resolving a complexity-one T -variety X by toric mod-
ifications of its minimal toric ambient variety Z, so-called toric ambient modifications.
The last section of this chapter is dedicated to discrepancies of such modifications.

3.1 Toric ambient modifications

As seen in Construction 1.11 each variety X = X(R,F,Φ) comes with a natural embed-
ding into a toric ambient variety. Consequently, it suggests itself to use toric resolution
theory to resolve their singularities. We briefly recall the concept of toric ambient modi-
fications , see [25, Sections 5 and 6].

Consider a complexity-one T -variety X = X(A,P,Φ) and its canonical toric embedding
X ⊆ Z and denote the fan associated to Z by Σ. Let σ ∈ Σ be generated by some
columns of the matrix P . We consider a primitive lattice vector v∞ ∈ σ◦. Then we can
find non-negative integers aij, ak and m∞ ∈ Z>0 with gcd(aij, ak,m∞) = 1 such that

m∞v∞ =
r∑

i=0

ni∑
j=i

aijvij +
m∑
k=1

akvk,

and σ = cone(vij, vk; aij ̸= 0, ak ̸= 0). The ray Q>0 · v∞ subdivides the cone σ. We
call m∞ the index of this subdivision. Let Σ′ be the fan that we obtain by the stellar
subdivision of σ at v∞ and denote the associated toric variety by Z ′. Consider the Cox
constructions P ′ : Σ̂′ → Σ′ and P : Σ̂→ Σ. The fans Σ̂ and Σ̂′ lie in the lattices

F =
r⊕

i=0

ni⊕
j=1

Zeij ⊕
k⊕

i=1

Zek and F ′ = F ⊕ Ze∞,

and consist of faces of the positive orthants in F and F ′ respectively. The projection
maps are given by

P : F → N, eij 7→ vij, ek 7→ vk, P ′ : F ′ → N, eij 7→ vij, ek 7→ vk, e∞ 7→ v∞.

Furthermore, we have the following lattice homomorphisms:

G : F ′ → F, eij 7→ eij, ek 7→ ek, e∞ 7→
r∑

i=0

ni∑
j=1

aijeij +
m∑
k=1

akek,

G′ : F ′ → F ′, eij 7→ eij, ek 7→ ek, e∞ 7→ m∞e∞,
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fitting in a commutative diagram:

F ′

G′

~~}}
}}
}}
}} G

  A
AA

AA
AA

A

F ′

P ′

��

F

P
��

N
id

// N

The homomorphism G defines maps of fans Σ̂′ → Σ̂ and Σ
′ → Σ, where Σ

′ and Σ are
the fans of faces of the positive orthants in F ′ and F respectively. The stellar subdivision
Σ′ → Σ defines a toric modification π : Z ′ → Z. Let E ⊆ Z ′ be the exceptional divisor
and denote the strict transform of X under this modification by X ′ := π−1(X). We
call π : Z ′ → Z a neat ambient modification for X ′ ⊆ Z ′ and X ⊆ Z if X ∩ π(E) is of
codimension at least two in X. If this is the case, then we set Y ′

:= π′−1(X
′
) and we have

commutative diagrams

Z
′

π

��>
>>

>>
>>

>
π′

����
��
��
��

Y
′

π

��?
??

??
??

?
π′

��~~
~~
~~
~~

Z
′

Ẑ ′

OO

π̂

��>
>>

>>
>>

>
π̂′

����
��
��
��

Z X
′

Ŷ ′

OO

π̂

��?
??

??
??

?
π̂′

��~~
~~
~~
~~

X

Ẑ ′

OO

p′ /H′

��

Ẑ

OO

p /H
��

X̂ ′

OO

p′ /H′

��

X̂

OO

p /H
��

Z ′
π

// Z X ′
π

// X

where π : Z ′ → Z properly contracts an invariant prime divisor, p and p′ are geometric
quotients of quasitorus actions, where H := ker(p) and H ′ = ker(p′), π : Z ′ → Z is the
quotient for a K∗-action and π′ : Z

′ → Z
′ is the quotient of an action of the group Cm∞

of m∞-th roots.

Let X be a Q-factorial projective variety with finitely generated Cox ring. We call a
class [D] ∈ Cl(X) combinatorially contractible if it generates an extremal ray of the
effective cone of X and, for some representative D and all n > 0, the vector spaces
Γ(X,O(nD)) are of dimension one. Furthermore, X is called combinatorially minimal if
it has no combinatorially contractible divisor classes. By [25, Theorem 6.2] all Q-factorial
projective varieties with finitely generated Cox ring arise from combinatorially minimal
ones by toric ambient modifications and small birational transformations. Furthermore,
[25, Corollary 6.8] states that all Q-factorial projective varieties with finitely generated
Cox ring are combinatorially minimal if and only if Eff(X) = Mov(X) holds.

Let X ′ = X(A,P,Φ) be a complexity-one T -variety with minimal toric ambient variety
Z ′ and consider the weights wij := deg(Tij) and uk := deg(Sk). We call a weight w ∈
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{wij, uk} exceptional , if Q≥0w is an extremal ray of Eff(X ′) and there is no other weight
wi,j, uk contained in Q≥0w. Consider the prime divisors Dij, Ek of X ′ corresponding to
the variables Tij and Sk and let D∞ be one of them. Furthermore, let w∞ be the degree of
the corresponding variable in K ∼= Cl(X ′). In this setting we can formulate the Gale dual
description of toric ambient modifications in K. The following statements are equivalent:

(i) There is a neat toric ambient modification π : Z ′ → Z for X ′ ⊆ Z ′ and X ⊆ Z
contracting the divisor D∞, where X = π(X ′).

(ii) The weight w∞ ∈ K is exceptional and w0
∞ ∈ λ holds for all fulldimensional cham-

bers λ ∈ Λ(X) having a common facet with λ′ := SAmple(X ′). Here w0
∞ denotes

the class of w∞ in K0 = K/Kt, where Kt is the torsion part of K.

3.2 Resolution via weak tropicalisation

In this section we introduce a canonical resolution for complexity-one T -varieties. It uses
the concept of weak tropical resolutions as defined in [7].

Let X be a complexity-one T -variety. A resolution of singularities for X is a morphism
π : X ′ → X such that X ′ is smooth, π is proper, and the restriction π : π−1(Xreg)→ Xreg

is an isomorphism, where Xreg denotes the set of non-singular points.

Consider a complexity-one T -variety X = X(A,P,Φ) and its minimal toric ambient
variety Z with associated fan Σ. There are two reasons for X having singularities. Firstly,
X inherits singularities from its minimal toric ambient variety Z. Consider a point x ∈
Xγ0 = Xσ with γ0 ∈ rlv(Φ) and σ = P (γ∗

0) ∈ Σ. If σ is not regular, then Z is singular
along Zσ and X has a quotient singularity in x. Note that we have Q(lin(γ0)∩E) ̸= K in
this situation. Secondly, we obtain X as good quotient p : X̂ → X with an open subset
X̂ ⊆ X. Every x ∈ X̂ defines a point x ∈ X by x := p(x). We call X quasismooth if
X̂ is smooth. If X is not quasismooth, then there is a singular point x ∈ Xγ0 defining a
singular point x ∈ Xγ0 and Xγ0 := p−1(Xγ0) describes the singular locus above x. These
singularities can be detected by the Jacobian matrix of the relations g0, . . . , gr−2. Note,
that these singularities can be factorial. Certainly, there are also singularities existing
because of both reasons.

Construction 3.1. Let X = X(A,P,Φ) be a variety with complexity-one torus action
and let Z be the minimal toric ambient variety of X and Σ its fan. Set

ϱ0 := cone(−e1 − . . .− er), ϱi := cone(ei) ⊆ Zr, 1 ≤ i ≤ r ,

where e1, . . . , er are the canonical basis vectors in Zr. Let trop(X) be the quasifan con-
sisting of all cones of the form ϱi × Qs living in Zr+s. These cones are also called arms
of trop(X). The lineality space of trop(X), which is denoted by lin(trop(X)), is exactly
{0} ×Qs. We define

Σ′ := Σ′(A,P,Φ) := Σ ∩ trop(X) = {σ ∩ τ ; σ ∈ Σ, τ ∈ trop(X)}
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as the coarsest common refinement of the two fans Σ and trop(X). In particular Σ′ is a
refinement of Σ and consequently defines a toric morphism Z ′ → Z arising from a map
of fans Σ′ → Σ. Let X ′ be the proper transform of X under this modification, i.e. the
closure of X ∩ Tr+s in Z ′. The restriction X ′ → X is called the weak tropical resolution
of X. And we call X weakly tropical if Σ′ = Σ holds. We obtain X ′ = X(A,P ′,Φ′) where
the columns of P ′ are the primitive generators of Σ′ and Φ′ is dual to Σ′.

Remark 3.2. The quasi-fan trop(X) is the tropical variety of the closed subvariety X∩TZ

in the sense of [52], where TZ denotes the torus of the minimal toric ambient variety Z.

Definition 3.3. Let X = X(A,P,Φ) be a complexity-one T -variety. Then we have two
types of F-faces γ0 ⪯ γ corresponding to cones σ = P (γ∗

0) ∈ Σ where γ∗
0 = γ⊥

0 ∩ γ∨.

(i) The basis vectors eij /∈ γ0 do all belong to one block, i.e. they have all the same
index 0 ≤ i ≤ r. In this case, the cone P (γ∗

0) is of the form

cone(vij1 , . . . , vijs , vk1 , . . . , vkt)

and we call σ = P (γ∗
0) a tower cone. Note that v1, . . . , vm are contained in

lin(trop(X)) by definition.

(ii) For each 0 ≤ i ≤ r there is at least one 1 ≤ ji ≤ ni such that eiji /∈ γ0. This means
that for each 0 ≤ i ≤ r there is at least one 1 ≤ ji ≤ ni such that viji ∈ P (γ∗

0). In
this situation σ = P (γ∗

0) is called a big cone. Furthermore, we call a cone σ ∈ Σ
elementary big if for each 0 ≤ i ≤ r there is exactly one 1 ≤ ji ≤ ni such that
viji ∈ σ, i.e. it is of the form cone(v0j0 , . . . , vrjr) for one choice (j0, . . . , jr) ∈ Zr+1

where 1 ≤ ji ≤ ni.

Remark 3.4. Elementary big cones are exactly those cones such that its rays are the only
faces being tower cones. In particular, the fan Σ′ of Construction 3.1 does not contain
big cones because it is supported by trop(X).

Lemma 3.5. Let ϱ′ ∈ Σ′ \ Σ. Then ϱ′ ⊆ lin(trop(X)) and ϱ′ is contained in the relative
interior of an elementary big cone.

Proof. By definition of trop(X) and the matrix P a cone σ = P (γ∗
0) of Σ is supported

by trop(X), i.e. σ ⊆ |trop(X)|, if and only if it is a tower cone. To be more precise
each arm ϱi × Qs of trop(X) supports precisely those cones of Σ which satisfy σ =
P (γ∗

0) = cone(vij1 , . . . , vijs). This gives ϱ′ ⊆ lin(trop(X)). The only cones that intersect
lin(trop(X)) non-trivially are big cones P (γ∗

0). By Definition 3.3 all rays ϱ′ ∈ Σ′ \ Σ are
contained in the relative interior of an elementary big cone.

Lemma 3.6. Let σ = cone(v0j0 , . . . , vrjr) be an elementary big cone. Then σ contains
exactly one primitive lattice vector v ∈ lin(trop(X)) in its relative interior. Moreover, the
primitve vector v generates a ray ϱ′ ∈ Σ′ \ Σ.
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Proof. Assume v ∈ σ◦. Then we have v = a0v0j0 + . . . + arvrjr with ai ∈ Q>0. The first
r coordinates of v have to be zero. This fixes the coefficients ai up to a common scalar
multiple.

Lemma 3.7. In the situation of Construction 3.1 the variety X ′ is a complexity-one T -
variety X(A,P ′,Φ′) such that P ′ = (P, d′) holds, where d′ consists of vectors lying in the
lineality space of trop(X).

Proof. We denote the primitive vectors of all rays ϱ′ ∈ Σ′ \Σ by vϱ′ . From Lemma 3.5 we
infer that vϱ′ ∈ lin(trop(X)) holds. Hence, adding all vectors vϱ′ to P we obtain a matrix
P ′ defining a complexity-one T -variety X ′ = X(A,P ′,Φ′) where Φ′ is dual to Σ′.

Lemma 3.8. Let X = X(A,P,Φ) be a complexity-one T -variety with minimal toric
ambient variety Z and associated fan Σ which does not contain big cones. Then the
following statements hold.

(i) X is quasismooth.

(ii) X is smooth if and only if Z is smooth.

Proof. To verify assertion (i) we have to consider the Jacobian Jg of g := (g0, . . . , gr−2).
It is given by

Jg =



δ0 0 δ0 1 δ0 2 0 0
0 δ1 1 δ1 2 δ1 3 0

...

0 δr−3 r−3 δr−3 r−2 δr−3 r−1 0
0 0 δr−2 r−2 δr−2 r−1 δr−2 r


,

where δti is a nonzero multiple of the gradient δi := gradT li
i . Let us assume there is a

x̂ ∈ X̂ with Jg(x̂) not of full rank. Then δi(x̂) = 0 = δk(x̂) holds with some 0 ≤ i < k ≤ r.
This implies x̂ij = 0 = x̂kl for some 1 ≤ j ≤ ni and 1 ≤ l ≤ nk. Thus, we have
T li
i (x̂) = 0 = T lk

k (x̂). Lemma 2.5 gives T ls
s (x̂) = 0, for all 0 ≤ s ≤ r. Thus, some

coordinate x̂st must vanish for every 0 ≤ s ≤ r. Since there are no big cones in Σ there
are no points x̂ ∈ X̂ of this shape. Hence, X̂ is smooth. Assertion (ii) follows from (i)
and [25, Corollary 4.13].

Lemma 3.9. Let X = X(A,P,Φ) be a complexity-one T -variety and Z its minimal toric
ambient variety with associated fan Σ. Consider a cone σ ∈ Σ which is supported by
trop(X), that means σ ⊆ |trop(X)|. Then Xσ = Zσ ∩ X is an open subset of the affine
toric variety Z(σ) corresponding to the lattice cone σ ⊆ lin(σ) ∩N .
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Proof. Assume that σ is supported by the r-th arm of trop(X). The projection

P1 : Z
r+s → Zr

onto the first r coordinates maps the cone σ in Zr+s onto the ray ϱr in Zr. This induces a
toric morphism π1 : Zσ → Yr where Yr ⊆ Pr denotes the affine toric variety corresponding
to the ray ϱr in Zr, i.e. Yr

∼= Tr−1 × K. Under this projection Xσ is sent to C ∩ Yr,
where C is a projective line intersecting each toric prime divisor V (Ui) of Pr in exactly
one point. Note, that U0, . . . , Ur denote the homogeneous coordinates of Pr. The curve
C is parametrized on Yr by

c : K→ Tr−1 ×K, t 7→ (c1(t), . . . , cr−1(t), t)

with suitably chosen ci ∈ K[T ]. Consider the T -equivariant morphism

φ : Xσ → Zσ, x 7→
(

1

c1(t(x))
, . . . ,

1

cr−1(t(x))
, t(x)

)
· x.

Let Fr := λ(K∗) be the closure of the image of the one-parameter group λr : K
∗ → Tr

corresponding to the primitive generator of the ray ϱr. Then π1(φ(x)) = λr(t(x)) holds
and we have φ(Xσ) = π−1

1 (F ′
r) where F ′

r is obtained by removing all points λr(t) ∈ V (Ui),
i ̸= r, off Fr. All in all , we have a commutative diagram

Xσ

π1

��

∼= // φ(Xσ)

π1

��

⊆ Z(σ)

π1

��
C ∩ Yr

∼= // F ′
r ⊆ Fr ,

and φ(Xσ) = π−1
1 (F ′

r) is a π1-saturated open subset of the affine toric variety Z(σ) =
π−1
1 (Fr) corresponding to the convex lattice cone σ in lin(σ) ∩N .

Theorem 3.10. Let X = X(A,P,Φ) be a complexity-one T -variety and let Z be the min-
imal toric ambient variety with associated fan Σ. Then a T -invariant desingularization
X ′′ → X is obtained as follows:

(a) Determine the fan Σ′ := Σ′(A,P,Φ) and compute a regular subdivision Σ′′ of Σ′.
This leads to a map of fans Σ′′ → Σ.

(b) Let Z ′′ → Z be the toric morphism defined by Σ′′ → Σ and let X ′′ be the closure of
X ∩ Tr+s in Z ′′. Then the restriction X ′′ → X is the searched desingularization.

In particular X ′′ is smooth and of the form X ′′ = X(A,P ′′,Φ′′) where the columns of P ′′

are the primitive generators of Σ′′ and Φ′′ is Gale dual to Σ′′.
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Proof. The first step is given by the weak tropical resolution X ′ → X. Afterwards by
Lemma 3.9 the variety X ′ is locally toric, i.e it is covered by open subsets of toric varieties
X ′

i with fans Σ′
i. These fans live in the i-th arm of trop(X) which is defined by ϱi × Qs.

Any regular subdivision of Σ′ provides a regular subdivision of Σ′
i. Consequently, X ′′ is

smooth.

Remark 3.11. The resolution procedure of Theorem 3.10 provides an easy way for com-
puting the Cox ring of the resolution X ′′ of a complexity-one T -variety X = X(A,P,Φ).
In order to obtain the matrix P ′′ the primitive generators of all rays in Σ′′ \Σ are added
to the matrix P in such a way that the special form of the matrix is maintained, i.e.

P ′′ =

(
L0 0
d d′

)
for appropriate matrices L0, d and d′ (compare 2.10). In particular, the Cox ring R(X ′′)
of the resolution X ′′ is given by R(A,P ′′).

The relations of the Cox ring are not affected by the weak tropicalisation X ′ → X. We
just add some variables Sk corresponding to invariant prime divisor with infinite isotropy.
Note that lin(trop(X)) equals the vector subspace generated by the lattice of the one-
parameter subgroups of the torus T . Furthermore, the weak tropicalisation eliminates
all factorial singularities, i.e. X ′ has only quotient singularities coming from the toric
ambient variety Z ′.

Example 3.12. Let X = X(A,P ) be the K∗-surface arising from the data

P =

−1 −1 1 1 0
−1 −1 0 0 2
−1 0 −1 0 1

 , A =

(
1 0 −1
0 1 −1

)
.

Then the Cox ring of X is given by K[Tij]/⟨T01T02 + T11T12 + T 2
21⟩ and we have

Σmax = {cone(v01, v11, v21), cone(v02, v12, v21), cone(vi1, vi2); 0 ≤ i ≤ 2},
trop(X) = cone(e1,±e3) ∪ cone(e2,±e3) ∪ cone(−e1 − e2,±e3).

We obtain the weak tropicalisation X ′ by drawing in rays along v+ = (0, 0, 1) and v− =
(0, 0,−1). Consequently, we have

Σ′max = Σmax ∩ trop(X) = {cone(vi1, v−), cone(vi2, v+), cone(vi1, vi2); 0 ≤ i ≤ 2}.

Resolving the two singular cones cone(v21, v+) and cone(v21, v
−) of Σ′ by drawing in rays

along the elements of the Hilbert basis v22 = (0, 1, 1) and v23 = (0, 1, 0) we obtain the
resolution X ′′ = X(A,P ′′) with the following P -matrix and Cox ring:

P =

−1 −1 1 1 0 0 0 0 0
−1 −1 0 0 2 1 1 0 0
−1 0 −1 0 1 1 0 1 −1

 ,

R(X ′′) = K[Tij, S1, S2]/⟨T01T02 + T11T12 + T 2
21T22T23⟩.



46 3.3 Discrepancies

3.3 Discrepancies

In this chapter we analyze the behavior of the anticanonical class −KX of a complexity-
one T -variety under toric ambient modifications.

Definition 3.13. Let X be a normal Q-factorial variety, and consider a resolution
π : X ′ → X of X. We write

KX′ = π∗(KX) +
∑
i

aiEi,

where Ei are the exceptional divisors. Then the coefficients ai ∈ Q are called the discrep-
ancies of π.

Lemma 3.14. Consider a toric ambient modification π : X ′ → X for complexity-one T -
and T ′-varieties X ⊆ Z and X ′ ⊆ Z ′ with minimal toric ambient varieties Z and Z ′ and
let R(X) and R(X ′) be their K and K ′-graded Cox rings, respectively. Let D∞ be the
exceptional divisor represented by w′

∞ in the divisor class group Cl(X ′) ∼= K ′. Then we
have

KX′ − π∗(KX) = d · w′
∞ +

r−2∑
i=0

degK′(g′i)− π∗(
r−2∑
i=0

degK(gi)),

where g0, . . . , gr−2 are the relations of the Cox ring R(X) and g′0, . . . , g
′
r−2 are the relations

of the Cox ring R(X ′) and d denotes the toric discrepancy of π, i.e. d·w′
∞ = KZ′−π∗(KZ).

Proof. By Proposition 2.4 the Cox rings R(X) and R(X ′) are complete intersections.
Hence, by using the concrete formula for the anticanonical divisor proven in [9, Proposition
8.5], we obtain by an easy computation

KX′ = KZ′ +
r−2∑
i=0

degK′(g′i)

= d · w′
∞ + π∗(KZ) +

r−2∑
i=0

degK′(g′i)

= d · w′
∞ + π∗(KX −

r−2∑
i=0

degK(gi)) +
r−2∑
i=0

degK′(g′i)

= d · w′
∞ + π∗(KX)− π∗(

r−2∑
i=0

degK(gi)) +
r−2∑
i=0

degK′(g′i).

Proposition 3.15. In the situation of Lemma 3.14 consider the exceptional divisor D∞
and its divisor class w′

∞ in Cl(X ′) as well as the associated primitive vector v∞ where

m∞v∞ =
r∑

i=0

ni∑
j=1

aijvij +
m∑
k=1

akuk,
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with non-negative integers aij, ak satisfying gcd(aij, ak) = 1, m∞ ∈ Z>0 and v∞ ∈
cone(vij, uk; aij ̸= 0, ak ̸= 0)◦. Then we have

KZ′ − π∗(KZ) =

∑r
i=0

∑ni

j=1 aij +
∑m

k=1 ak −m∞

m∞
· w′

∞

and

KX′ − π∗(KX) =

∑r
i=0

∑ni

j=1 aij +
∑m

k=1 ak −m∞ −
∑r−2

i=0 k0i

m∞
· w′

∞ ,

where k0i denotes the minimal degree of the decomposition gi := gk0i+. . .+gkmi
in homoge-

neous components concerning the grading given by the modification π, i.e. degπ(Tij) = aij,
degπ(Sk) = ak.

Proof. The modification π defined by the exceptional divisor D∞ induces the following
lattice homomorphisms

G∗ : E → E ′, eij 7→ eij + aije∞, ek 7→ ek + ake∞,

G′∗ : E ′ → E ′, eij 7→ eij, ek 7→ ek, e∞ 7→ m∞e∞.

In particular, π induces a pullback map π∗ : E → E ′ where G∗ = G′∗ ◦ π∗. Note that
E ∼= WDivT (Z) and E ′ ∼= WDivT (Z ′). The map π∗ defines a map Cl(Z)→ Cl(Z ′) which
is also denoted by π∗. We extend these maps to the corresponding rational vector spaces
and obtain

π∗(Q(eij)) = π∗(wij) = Q′(eij) +
aij
m∞

Q′(e∞) = w′
ij +

aij
m∞

w′
∞,

π∗(Q(ek)) = π∗(uk) = Q′(ek) +
ak
m∞

Q′(e∞) = u′
k +

ak
m∞

w′
∞.

This gives

KZ′ − π∗(KZ) = −
r∑

i=0

ni∑
j=1

w′
ij −

m∑
k=1

u′
k − w′

∞ − π∗

(
−

r∑
i=0

ni∑
j=1

wij −
m∑
k=1

uk

)

= −
r∑

i=0

ni∑
j=1

w′
ij −

m∑
k=1

u′
k − w′

∞

−

(
−

r∑
i=0

ni∑
j=1

w′
ij −

m∑
k=1

u′
k −

(
r∑

i=0

ni∑
j=1

aij
m∞

+
m∑
k=1

ak
m∞

)
w′

∞

)

= −w′
∞ +

(
r∑

i=0

ni∑
j=1

aij
m∞

+
m∑
k=1

ak
m∞

)
w′

∞

=

∑r
i=0

∑ni

j=1 aij +
∑m

k=1 ak −m∞

m∞
· w′

∞.
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For the second part of the statement we first note that the gk0i-parts of the polynomi-
als gi remain untouched under the modification, i.e. gk0i = g′k0i . Furthermore we have
degK(gi) = degK(gk0i) since gk0i consists of monomials of gi. This gives

degK′(g′i)− π∗(degK(gi)) = degK′(g′k0i)− π∗(degK(gk0i))

= degK′(g′k0i)− degK′(g′k0i)−
k0i
m∞

w′
∞

= − k0i
m∞

w′
∞.

The previous statement together with Lemma 3.14 proves the assertion. Note that, since
Cl(X) ∼= Cl(Z) holds, we can naturally consider the pull back map π∗ : Cl(X)→ Cl(X ′).

Corollary 3.16. The toric discrepancy KZ′−π∗(KZ) is always greater or equal to KX′−
π∗(KX).

Definition 3.17. Let X be a normal (Q-factorial) variety, the canonical class KX Q-
Cartier and φ : X ′ → X a resolution of X. We consider

KX′ = φ∗(KX) +
∑
i

aiEi,

where Ei are the exceptional divisors and ai ∈ Q. The singularities of X are called

• terminal, if ai > 0 for all i,

• canonical, if ai ≥ 0 for all i,

• log-terminal, if ai > −1 for all i,

• log-canonical, if ai ≥ −1 for all i,

• ε-log-terminal, if ai > −1 + ε for all i, where 0 < ε < 1,

• ε-log-canonical, if ai ≥ −1 + ε for all i, where 0 < ε < 1.

We call the variety X terminal (canonical, (ε-)log-terminal, (ε-)log-canonical) if all sin-
gularities are so.

Corollary 3.18. Let X be a complexity-one T -variety and X ⊆ Z its minimal toric
embedding. If X is terminal/canonical/log-terminal/ε-log-terminal then Z is terminal/
canonical/log-terminal/ε-log-terminal.

Proposition 3.19. Let X = X(A,P,Φ) be a log-terminal complexity-one T -variety and
X ′ its weak tropicalisation. Then, for each choice (j0, . . . , jr), 1 ≤ ji ≤ ni, such that there
is a ray ϱ′ ∈ Σ′ \ Σ with vϱ′ ∈ cone(v0j0 , . . . , vrjr)

◦ the following inequality holds:
r∑

i=0

1

lji
> r − 1.
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Proof. We resolve the complexity-one T -variety X as described in Theorem 3.10. There-
fore consider the fan

Σ′ = Σ ∩ trop(X) = {σ ∩ trop(X); σ ∈ Σ}

and a tuple (j0, . . . , jr) with 1 ≤ ji ≤ ni, such that there is a ray ϱ′ ∈ Σ′\Σ with primitive
generator vϱ′ ∈ cone(v0j0 , . . . , vrjr)

◦. Then vϱ′ can be represented as positive combination

mϱ′vϱ′ =
r∑

i=0

aijiviji ,

where mϱ′ is chosen such that aij0 , . . . , aijr are integers and gcd(mϱ′ , a0,j0 , . . . ar,jr) = 1.
The ray ϱ′ corresponds to a variable Sk not occurring in the Cox ring relations of X ′.
Consequently, we obtain

aiji =
lcm(l0j0 , . . . , lrjr)

liji
.

Using Proposition 3.15, the discrepancy of the modification defined by the stellar subdi-
vision along ϱ′ can be calculated explicitly by

1

mϱ′
·

(
r∑

i=0

lcm(l0j0 , . . . , lrjr)

liji
−mϱ′ − (r − 2)lcm(l0j0 , . . . , lrjr)

)
.

If X is log-terminal, this expression has to be greater than −1 which is equivalent to the
condition

r∑
i=0

1

lji
> r − 1.

Example 3.20. Let X = X(A,P ) be a log-terminal complexity-one T -variety satisfying
r = 2. Then l0j0l1j1 + l0j0l2j2 + l1j1l2j2 > l0j0l1j1l2j2 or equivalently

1

l0j0
+

1

l1j1
+

1

l2j2
> 1

holds for all choices (j0, j1, j2) with cone(v0j0 , v1j1 , v2j2) ∈ Σ and (l0i0 , l1i1 , l2i2) is a platonic
triple, i.e. a triple of the following form:

• (1, x, y), where x, y ≥ 1

• (2, 2, x), where x ≥ 2

• (2, 3, 3), (2, 3, 4), (2, 3, 5)

Corollary 3.21. Let X = X(A,P ) be a log-terminal complexity-one T -variety with r ≥ 2
and cone(v0j0 , . . . , vrjr) ∈ Σ such that l0j0 ≥ . . . ≥ lrjr . Then l3j3 = . . . = lrjr = 1 holds
and (l0j0 , l1j1 , l2j2) is a platonic triple.
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Proof. Assume liji ̸= 1 for all 0 ≤ i ≤ r. Then 1/liji ≤ 1/2 holds and consequently by
Proposition 3.19 we obtain

r + 1

2
≥

r∑
i=0

1

liji
> r − 1.

This implies r + 1 > 2r − 2 and hence r < 3.

Let X0 = X(A0, P0,Φ0) be a Q-factorial complexity-one T -variety and Z0 its minimal
toric ambient variety with fan Σ0. Let Σ1, . . . ,Σn be refinements of Σ0 arising from Σ0

by doing stellar subdivisions of a cone σ0 ∈ Σ0 successively. That means, that we have
rays ϱ1, . . . , ϱn with primitive generators vϱi and cones σi ∈ Σi such that vϱi+1

∈ σ◦
i and

σi+1 ⊆ σi for all 0 ≤ i ≤ n− 1. Then we have toric ambient modifications πi : Xi+1 → Xi

with Q-factorial complexity-one T -varieties X1, . . . , Xn such that

Xn
πn−1→ Xn−1 → . . .→ X1

π0→ X0.

We set κi := π0◦ . . .◦πi, 0 ≤ i ≤ n−1. Let KX0 be the canonical divisor class of X0. Then
there is an n ∈ N and a linear form u ∈ M = N∗ ∼= Zr+s such that n · (KX0) = χu on
X0σ0

= X0 ∩ Z0σ0
where σ0 = P0(γ

∗
0). Hence, we can find an element u0 ∈MQ = M ⊗Q

such that
KX0 =

∑
i,j

⟨u0, vij⟩Dij +
∑
k

⟨u0, vk⟩Ek.

Since X0 is Q-factorial, so are X1, . . . , Xn. We consider the relevant F-faces γ1, . . . , γn
with σi = Pi(γi). Then we can find u1, . . . , un such that, locally on Xiγi = Xiσi

, we have

KXs =
∑
i,j

⟨us, vij⟩Dij +
∑
k

⟨us, vk⟩Ek, 1 ≤ s ≤ n .

Now we describe the behavior of the anticanonical divisor −KX0 under the toric ambient
modifications κi in terms of discrepancies.

Proposition 3.22. In the situation above we have for 1 ≤ i ≤ n

KXi
− κ∗

i (KX0) = (⟨u1, vϱ1⟩ − ⟨u0, vϱ1⟩)Dϱ1 + . . .+ (⟨ui, vϱi⟩ − ⟨u0, vϱi⟩)Dϱi .

Proof. For an arbitrary toric ambient modification π : X ′ → X we have commutative
diagrams

F ′

G′

~~}}
}}
}}
}} G

  A
AA

AA
AA

A

F ′

P ′

��

F

P
��

N
id

// N

E ′

E ′

G′∗
>>||||||||

E

G∗
``BBBBBBBB

M

P ′∗

OO

M
id

oo

P ∗

OO
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where the second one is obtained by dualizing the first one; compare section 1 of this
chapter. These diagrams extend to diagrams of the corresponding vector spaces. Hence,
the toric modifications κi leave MQ untouched and we have κi∗(u0) = u0. In particular,
κ∗(KX0) is still represented by u0 on Xσi

for each σi ⊆ σ0. For each vij, vk that is contained
in both σi and σ0 we have ⟨ui, vij⟩ = ⟨u0, vij⟩ and ⟨ui, vk⟩ = ⟨u0, vk⟩ respectively. This
states the assertion.

Example 3.23 (Example 3.12 continued). We consider the two elementary big cones
σ+ = cone(v02, v12, v22) and σ− = cone(v01, v11, v21). Locally on Xσ+ and Xσ− the an-
ticanonical divisor can be represented by the linear forms u+ = (1,−1, 3) and u− =
(0, 1,−1) respectively. Note that we have

⟨u+, v02⟩ = 0 = l02 − 1, ⟨u+, v12⟩ = 1, ⟨u+, v21⟩ = 1,

⟨u−, v01⟩ = 0 = l01 − 1, ⟨u−, v11⟩ = 1, ⟨u−, v21⟩ = 1.

We denote the exceptional divisors corresponding to the primitive vectors v± = (0, 0,±1),
v22 = (0, 1, 1) and v23 = (0, 1, 0) by D±, D22 and D23 respectively. Hence, the discrepan-
cies KX′′ − π∗(KX) of the resolution π : X ′′ → X are given by

(⟨u+, v+⟩ − 1)D+ + (⟨u+, v22⟩ − 1)D22 + (⟨u−, v−⟩ − 1)D− + (⟨u−, v32⟩ − 1)D23

= 2D+ +D22 + 0 ·D− + 0 ·D23.

In particular, X is canonical. Note that, locally on X ′′
σ with σ ∈ Σ′′, the anticanonical

divisor KX′′ is given by a linear form uσ having value 1 for all primitive column vectors
of P ′′ generating σ.
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4 K∗-surfaces

In this chapter we investigate complexity-one T -varieties of dimension two, so called K∗-
surfaces. We will give a survey of their geometry and determine all types of Cox rings
of combinatorially minimal K∗-surfaces, i.e. surfaces without contractible prime divisors.
Furthermore, we compute intersection numbers and affiliate conditions for K∗-surfaces to
be Fano. Finally, we introduce the anticanonical complex for log-terminal K∗-surfaces, a
convex geometrical tool which can be used to describe their singularities.

4.1 P -Matrices for K∗-surfaces

In this chapter we are concerned with K∗-surfaces. The special case of dimension two
simplifies the approach for varieties with torus action of complexity one considerably. It
is not necessary to work with the concept of bunches, as presented in chapter 1. There
is only one representative of a small birational class since there is only one single ample
chamber SAmple(X) = Mov(X) defining one single bunch and hence one single unique
surface. Consequently, in case of surfaces, we can use the notation X = X(A,P ). We
briefly recall the basic steps needed for the construction of X(A,P ).

Construction 4.1. We start with a set A of r + 1 pairwise linearly independent points
ai ∈ K2 and an integer (n+m)× (r + 1)-matrix of the form

P =


−l0 l1 0 . . . 0 0
−l0 0 l2 0 0
...

... . . . ...
−l0 0 0 lr 0
d0 d1 d2 . . . dr d′

 ,

where n := n1 + . . . + nr and 0 ≤ m ≤ 2. The entries of the matrix P are vectors
li := (li1, . . . , lini

), di := (di1, . . . , dini
) and d′ is either empty or equals 1, −1 or (1,−1).

Recall that the columns vij, vk, where 0 ≤ i ≤ r, 1 ≤ j ≤ ni and 1 ≤ k ≤ m, are
primitive, pairwise different and generate Qr+1 as a cone. We denote (0, . . . , 0, 1) by v+

and (0, . . . , 0,−1) by v−. Furthermore, the columns of P are ordered in such a way that
the following conditions hold for all 0 ≤ i ≤ r (compare Corollary 2.36):

dini

lini

> . . . >
di1
li1

and lini
> dini

≥ 0.

We construct the minimal toric ambient variety Z by defining the maximal cones of the
corresponding fan Σ in N := Zr+1. Furthermore, we define a fan Σ̂ in

F :=
r⊕

i=0

ni⊕
j=1

Z · eij ⊕ Z · e+ ⊕ Z · e− ∼= Zn+m,
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such that P : Zn+m → Zr+1, eij 7→ vij, e
± 7→ v± maps Σ̂ to Σ. According to the form of

d′ we distinguish four types of P -matrices.

Type 1: Assume, that d′ is empty, i.e. m = 0. Then the maximal cones of Σ are

σ+ := cone(v1n1 , . . . , vrnr),

σ− := cone(v11, . . . , vr1),

τij := cone(vij, vij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

The maximal cones of Σ̂ are

σ̂+ := cone(e1n1 , . . . , ernr),

σ̂− := cone(e11, . . . , er1),

τ̂ij := cone(eij, eij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

Type 2: Assume, that m = 1 and d′ = 1. Then the maximal cones of Σ are

σ− := cone(v11, . . . , vr1),

σ+
i := cone(v+, vini

) for 0 ≤ i ≤ r,

τij := cone(vij, vij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

The maximal cones of Σ′ are

σ̂− := cone(e11, . . . , er1),

σ̂+
i := cone(e+, eini

) for 0 ≤ i ≤ r,

τ̂ij := cone(eij, eij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

Type 3: Assume that m = 1 and d′ = −1. Then the maximal cones of Σ are

σ+ := cone(v1n1 , . . . , vrnr),

σ−
i := cone(v−, vi1) for 0 ≤ i ≤ r,

τij := cone(vij, vij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

The maximal cones of Σ′ are

σ̂+ := cone(e1n1 , . . . , ernr),

σ̂−
i := cone(e−, ei1) for 0 ≤ i ≤ r,

τ̂ij := cone(eij, eij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

Type 4: Assume that d′ = (1,−1), i.e. m = 2. Then the maximal cones of Σ are

σ+
i := cone(v+, vini

),

σ−
i := cone(v−, vi1) for 0 ≤ i ≤ r, 1 ≤ k ≤ m,

τij := cone(vij, vij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.
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The maximal cones of Σ′ are

σ̂+
i := cone(e+, eini

),

σ̂−
i := cone(e−, ei1) for 0 ≤ i ≤ r, 1 ≤ k ≤ m,

τ̂ij := cone(eij, eij+1) for 0 ≤ i ≤ r, 1 ≤ j < ni.

We denote the minimal toric ambient variety corresponding to the fan Σ by Z and the
toric variety corresponding to Σ̂ by Ẑ. Then P induces a toric morphism π : Ẑ → Z
representing the Cox Construction.

Let P ∗ : M → E be the dual map of P : F → N and consider the exact sequence

0 Koo E
Q

oo M
P ∗

oo 0oo ,

where E := F ∗, M := N∗, K := E/im(P ∗) and Q is given by the kernel of P ∗. For
ai, aj ∈ A we define αij := det(ai, aj). Then the data (A,P ) defines trinomials

gi := αi+1,i+2T
li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ,

where T li
i := T li1

i1 · · ·T
lini
ini

. Consider the polynomial ring

K[Tij, Sk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m].

By setting deg(Tij) := Q(eij), deg(Sk) := Q(ek) we obtain a grading of this ring such that
the trinomials gi are homogeneous. This grading defines an action of the quasitorus

H := Spec(K[K]) = ker(π)

on Kn+m leaving the vanishing set X := V (gi; 0 ≤ i ≤ r − 2) invariant. The map
π : Ẑ → Z is the geometric quotient of this action and the restriction on X̂ := Ẑ ∩ X
defines also a geometric quotient X̂ → X.

X̂ � � //

�H
��

Ẑ

�H
��

X � � // Z

We obtain a projective surface X := X̂ � H neatly embedded into the (minimal) toric
variety Z with divisor class group and Cox ring

Cl(X) = K, R(X) = K[Tij, Sk]/⟨gi; 0 ≤ i ≤ r − 2⟩.

By construction, there is an effective K∗-action on Z, given by the one-parameter subgroup
(0, . . . , 0, 1) ∈ N ∼= Zr+1, which leaves X = X(A,P ) invariant. This induces a K∗-action
on X.
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Proof. The general construction of complexity-one T -varieties has already been discussed
in chapter 2 and 3. We show how the K∗-action is established in the special situation
of K∗-surfaces. The trinomials g0, . . . , gr−2 are homogeneous concerning an even finer
grading as that one given by Q. Consider the gradiator matrix

P0 =

−l0 l1 0 0
... . . . ...
−l0 0 lr 0

 ,

set K0 := E/im(P ∗
0 ) and let Q0 be the kernel of P0. Then the K0-grading given by

deg(Tij) = Q0(eij), deg(Sk) = Q0(ek) defines an H0 := Spec(K[K0])-action on Kn+m

leaving X invariant. Taking the quotient by the H = Spec(K[K])-action establishes an
H0/H ∼= K∗-action on Kn+m. Set l+ := l0n0 · · · lrnr . Then the K∗-action is given by the
one-parameter subgroup corresponding to the vector

x+ := (0, . . . , 0,
l+

l0n0

, . . . , 0, . . . , 0,
l+

lrnr

, 0, . . . , 0) ∈ Zn+m

having the last entry of each block equal to l+/lini
for 0 ≤ i ≤ r and all other entries

equal to zero. Applying the matrix P gives

P (x+) = (0, . . . , 0, a), where a =
r∑

i=0

l+dini

lini

.

This vector defines the one-parameter subgroup

λ : K∗ → Tr+1, t 7→ (1, . . . , 1, ta)

inducing a K∗-action on the last coordinate 0 × . . . × 0 × Z in N ∼= Zr+1. Note that
we obtain effectivity by considering the primitive lattice vector (0, . . . , 0, 1). That means
that the acting torus K∗ is represented by the lattice generated by (0, . . . , 0, 1) ∈ N .

Example 4.2. Consider the K∗-surface X = X(A,P ) given by the following data:

P =

−3 −1 3 0
−3 −1 0 2
−4 −1 2 1

 , A =

(
1 0 −1
0 1 −1

)
.

Then we have m = 0, n0 = 2, n1 = n2 = 1 and the minimal toric ambient variety Z of the
resulting K∗-surface X is given by a fan of type 1. The one-parameter groups defining
the K∗-action on K4 and X are given by

x+ = (0, 6, 2, 3) and P (x+) = (0, 0, 1), respectively.

Now we will discuss some geometrical aspects of K∗-surfaces. Therefore, the following
definition is needed.
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Definition 4.3. A fixed point of a normal K∗-surface is called

• elliptic if it is isolated and lies in the closure of infinitely many orbits,

• hyperbolic if it is isolated and lies in the closure of two orbits,

• parabolic if it belongs to a fixed point curve and lies in the closure of exactly one
orbit.

Example 4.4. Consider the K∗-surface X = X(A,P ) given by the following data:

P =

−1 −1 2 0 0
−1 −1 0 2 0
−2 −1 1 1 1

 , A =

(
1 0 −1
0 1 −1

)
,

i.e. we have m = 1, n0 = 2 and n1 = n2 = 1. The K∗-surface X has one elliptic fixed
point corresponding to the cone σ− = cone(v01, v11, v21), one hyperbolic fixed point corre-
sponding to the cone τ01 = cone(v01, v02) and a parabolic fixed point curve corresponding
to v+ = (0, 0, 1).

These three types of fixed points are the only possible fixed points that can occur in case
of K∗-surfaces. Furthermore, every normal K∗-surface X has got a sink F+ and a source
F−. They are defined by the general orbits of the K∗-surface in the following way: There
is an open subset U ⊆ X such that

limt→∞ t · x ∈ F+ and limt→0 t · x ∈ F−

for all x ∈ U . Both, sink and source can either be an elliptic fixed point or a curve of
parabolic fixed points isomorphic to P1. The latter case is equivalent to the existence of
a divisor with infinite isotropy corresponding to a variable Sk not occurring in the Cox
ring relations.

Proposition 4.5. According to the type of P there are four possibilities concerning the
geometry of the sink and the source:

(1) If P is of type 1, then both the source F− and the sink F+ are elliptic fixed points.
We call this kind of surface of type (ell,ell).

(2) If P is of type 2, then the source F− is an elliptic fixed point and the sink F+ is
a parabolic fixed point curve isomorphic to P1. We call this kind of surface of type
(par,ell).

(3) If P is of type 3, then the sink F+ is an elliptic fixed point and the source F− is
a parabolic fixed point curve isomorphic to P1. We call this kind of surface of type
(ell,par).
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(4) If P is of type 4, then both the source F− and the sink F+ are parabolic fixed point
curves isomorphic to P1. We call this kind of surface of type (par,par).

Besides F+ and F− and the general orbits there are special orbits corresponding to the
K∗-invariant prime divisors of X. These are the orbits with non trivial finite isotropy
and they correspond to the rays ϱij, ϱ± generated by the columns vij, v

± of the matrix
P . The next proposition summarizes some geometrical aspects of these orbits. For this
purpose we briefly recall the notion of cotangent representations.

Let K∗
x be the isotropy group of x ∈ X under the K∗-action of X. We consider the tangent

space TxX of x. Furthermore, let Txφt be the differential of

φt : X → X, x′ 7→ t · x′.

Then we can define a representation of K∗
x on TxX by

t · v := Txφt .

This representation is called the tangent representation of K∗
x on TxX. The dual repre-

sentation is called the cotangent representation.

Proposition 4.6. Let X = X(A,P ) be a K∗-surface and let Dij and E± be the invariant
prime divisors corresponding to the rays ϱij and ϱ± generated by the columns vij, v±.
Then the following statements hold:

(i) The divisors E± have infinite isotropy and the exponents lij are the orders of the
isotropy groups K∗

Dij
for all points in Dij.

(ii) The pair (dij, 0) is representing the weight of the cotangent representation of the
isotropy group K∗

ij at xij ∈ Dij.

Proof. Assertion (i) is a special case of Proposition 2.15. We prove (ii). Let Dij be a
K∗-invariant divisor of X and consider the associated ray ϱij = Q≥0 · vij. We can simplify
the situation by a locally toric consideration within the i-th block, compare Lemma 3.9.
Set v̂ij := (lij, dij) and v̂+ := (0, 1). Then v̂+ represents the one-parameter group which
induces the K∗-action. Since lij and dij are coprime, we find a, b ∈ Z with alij + bdij = 1.
Consequently, by applying the matrix

B =

(
a b
−dij lij

)
we obtain Bv̂ij = (1, 0) and the K∗-action corresponds to the vector (b, lij). This means,
the K∗-action on K2 is now given by

t · (z, w) = (tbz, tlijw).



4 K∗-SURFACES 59

and we have Dij = 0 ×K. In particular, the order of the isotropy group of Dij is given
by lij since the lij-th elementary units act trivially on the second component. The action
of the isotropy group transversal to the tangent space is given by

ζ · (z, w) = (ζb · z, w) .

The cotangent representation is given by

ζ · (z, w) = (ζ−b · z, w) .

In particular, we have b = d−1
ij (mod lij) and (dij, 0) is the weight of the cotangent repre-

sentation.

Any other fixed point besides the sink and the source is hyperbolic. Such fixed points
occur within one block. For x ∈ Xγ0 the isotropy group is given by

K∗
x = lin(σ) ∩N ⊆ N ,

where σ := P (γ∗
0) ∈ Σ. In particular, x is a fixed point of the K∗-action if and only if

Q · v+ ⊆ lin(σ).

All in all, we have the following four possibilities for the orbit decomposition of K∗-
surfaces:
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(ell,ell) (par,ell) (ell,par) (par,par)

Now we consider the resolution of singularities of K∗-surfaces. There are two reasons for
the existence of singularities. First, there can be (factorial) singularities coming from
the total coordinate space X and surviving the quotient process, i.e. the locus Xσ lying
above the singularity x ∈ Xσ is not regular. Note that these singularities can easily be
found by computing the Jacobian matrix of the Cox ring relations. Second, there can be
singularities coming from the toric ambient variety Z, e.g. there is a cone σ ∈ Σ that is
not regular and X inherits the corresponding singularity from Z. It is also possible that
a singularity exists because of both reasons.

Proposition 4.7. Let X be a K∗-surface arising from a matrix P and suppose that d′ is
empty or equals −1. Then the following statements are equivalent:

(i) The upper elliptic fixed point is smooth.
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(ii) The following two conditions hold:

(a) det(σ+) = det(v0n0 , . . . , vrnr) = ±1,
(b) lini

= 1 for some 0 ≤ i ≤ r.

Note that the analogous statement holds for a lower elliptic fixed point.

Proof. The conditions for X not having a singularity in the upper elliptic fixed point
coming from the toric ambient variety is equivalent to the condition that σ+ is regular
which in turn is equivalent to the condition that the determinant of the generators of σ+

is ±1. Computing the Jacobian of the defining relations gives

J =

∗ l01T
l01−1
01

∏
j ̸=1 T

l0j
0j 0

. . .
0 ∗ lrnrT

lrnr−1
rnr

∏
j ̸=nj

T
lrj
rj

 .

The point x ∈ Xσ+ ⊆ X having all ini-coordinates Tini
equal to 0 and all other coordinates

equal to 1 defines the elliptic fixed point x ∈ X corresponding to the cone σ+, i.e. p(x) = x.
This point x is a singularity coming from the singular locus Xσ+ if and only if Tini

occurs
within every non trivial entry of the Jacobian. This on the other hand is equivalent to
the condition that every exponent lini

satisfies lini
̸= 1.

Remark 4.8. The determinants of the two elementary big cones σ± satisfy

(−1)rdet(σ+) =
r∑

i=0

l+dini

lini

and (−1)rdet(σ−) =
r∑

i=0

l−di1
li1

,

where l+ = l0n0 · · · lrnr and l− = l01 · · · lr1. Furthermore, the columns of P are oriented in
such a way that (−1)rdet(σ+) is always positive and (−1)rdet(σ−) is always negative.

There is a canonical way of resolving singularities of K∗-surfaces (compare 3.10). The
maximal cones of trop(X) are given by the cones ϱi := cone(ei,±er+1) for 1 ≤ i ≤ r and
ϱ0 := cone(e0,±er+1) where e0 := −e1− . . .− er in Zr+1. In particular, the lineality space
of X is generated by ±er+1.

HHH

HHH
�

��
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For the weak tropicalisation we have to blow up the two elliptic fixed points (if they
exist). That means, we subdivide the cones σ+ and σ− by drawing lines along ±er+1. This
subdivision corresponds to a refinement of the fan Σ which is given by Σ′ := Σ∩ trop(X).
After this step we are in a locally toric situation, i.e. there are only singularities left
coming from the toric ambient variety Z ′ corresponding to the fan Σ′. Consequently, we
can resolve all singular cones by adding rays along the elements of the Hilbert basis.

Example 4.9. We continue Example 4.4. This K∗-surface has the Cox ring

R(X) = K[T01, T02, T11, T21, S1]/⟨T01T02 + T 2
11 + T 2

21⟩

and two singularities corresponding to the cones σ− and σ+
2 = cone(v+, v21). Following

the canonical resolution process we end up with the smooth surface X̃ having P -matrix
and Cox ring

P̃ =

−1 −1 2 0 0 0 0 0
−1 −1 0 2 1 1 0 0
−2 −1 1 1 0 1 1 −1

 ,

R(X̃) = K[T01, T02, T11, T21, T22, T23, S1, S2]/⟨T01T02 + T 2
11 + T 2

21T22T23⟩.

Example 4.10. Consider the K∗-surface X = X(A,P ) given by the data

P =


−1 −1 1 1 0 0
−1 −1 0 0 2 0
−1 −1 0 0 0 2
−1 0 −1 0 1 1

 , A =

(
1 0 −1 −1
0 1 −1 c

)
,

where c ∈ K∗ \ {−1}. Then R(X) is given by K[T01, T02, T11, T12, T21, T31]/⟨g0, g1⟩ with

g0 = T01T02 + T11T12 + T 2
21 and g1 = λT11T12 + T 2

21 + T 2
31,

where λ := −1−c. Following the canonical resolution process we end up with the smooth
surface X̃ having P -matrix and Cox ring

P̃ =


−1 −1 1 1 0 0 0 0 0 0 0 0
−1 −1 0 0 2 1 1 0 0 0 0 0
−1 −1 0 0 0 0 0 2 1 1 0 0
−1 0 −1 0 1 1 0 1 1 0 1 −1

 ,

R(X̃) = K[T01, T02, T11, T12, T21, T22, T23, T31, T32, T33, S1, S2]/⟨g0, g1⟩ ,

where g0 = T01T02 + T11T12 + T 2
21T22T23 and g1 = λT11T12 + T 2

21T22T23 + T 2
31T32T33.

This canonical resolution is in general not the minimal resolution of the K∗-surface.
There are possibly (−1)-curves, e.g. curves with self-intersection number −1, that can
be smoothly contracted (Castel-Nuovo).
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Example 4.11. Consider the K∗-surface X = X(A,P ) given by the data

P =

−1 −2 1 2 0
−1 −2 0 0 3
−1 −1 0 1 1

 , A =

(
1 0 −1
0 1 −1

)
.

This surface has two singularities corresponding to the two elementary big cones σ+ and
σ−. The canonical resolution leads to the P -matrix

P̃ =

 −1 −2 −1 1 2 1 0 0 0 0 0 0
−1 −2 −1 0 0 0 3 2 1 1 0 0
−1 −1 0 0 1 1 1 1 1 0 1 −1

 .

In this case the curve corresponding to v− = (0, 0,−1) can be smoothly contracted.
Hence, by deleting the last column of P̃ we end up with the minimal resolution X ′ of X
with Cox ring

R(X ′) = K[T01, T02, T03, T11, T12, T13, T21, T22, T23, T24, S1]/⟨g0⟩,

where g0 = T01T
2
02T03 + T11T

2
12T13 + T 3

21T
2
22T23T24.

The canonical resolution of singularities of K∗-surfaces leads exactly to the resolution
graph that was introduced by Orlik and Wagreich, see [45]. To each smooth K∗-surface
without elliptic fixed points they relate a graph of the following form:

��
��
b+ ��

��
b−

��
��
−b01

��
��
−br1

��
��
−b02

��
��
−br2

��
��
−b0n0

��
��
−brnr

��
HH

�
�

@
@

HH
��
@

@

�
�

. . .

...
...

...

. . .

F+ F−

Thereby F+ and F− represent parabolic fixed point curves. The other circles describe
invariant prime divisors Dij that can be contracted. Two of these divisors are connected
by an edge if and only if they intersect and have a common fixed point. The numbers
−bij are the self-intersection numbers of the invariant prime divisors. Note that one can
read off the isotropy orders lij of this graph. They are given as the numerators of the
corresponding canceled continued fraction

bi1 −
1

bi2 − 1
...− 1

bi
j−1

.

Furthermore, set X0 := X \ {F+, F−} and ai := F+ ∩ Di1. Then we get a canonical
morphism φ : X0/K

∗ → F+ such that φ−1(ai) = {ai1, . . . , aini
}, where aij denotes the

non trivial K∗-orbit of Dij. Compare [29, Section 5].
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4.2 Combinatorially minimal K∗-surfaces

This section is dedicated to combinatorially minimal K∗-surfaces, i.e. K∗-surfaces, that
do not have contractible invariant prime divisors. We prove that there are only three
types of relations that can occur in the Cox ring of a combinatorially minimal non-toric
K∗-surface. Note that in the toric case the only combinatorially minimal surfaces are fake
weighted projective spaces of dimension two, corresponding to fans with three rays, and
P1 × P1.

Lemma 4.12. Let X be a non-toric K∗-surface with two elliptic fixed points. Then X
can be contracted to a K∗-surface satisfying ni ≤ 2 for all 0 ≤ i ≤ r.

Proof. It is sufficient to consider the situation within one block. All invariant divisors Dij

corresponding to rays ϱij = Q≥0vij that fulfill 1 ̸= j ̸= ni can obviously be contracted.
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Lemma 4.13. Let X be a non-toric K∗-surface with only one elliptic fixed point. Then
X can be contracted to a K∗-surface satisfying ni = 1 for all 0 ≤ i ≤ r.

Proof. Let X be a K∗-surface with a parabolic fixed point curve F+. Then all invariant
divisors Dij corresponding to rays ϱij = Q≥0vij with j ̸= 1 can be contracted.

Lemma 4.14. Let X be a non-toric K∗-surface with two elliptic fixed points satisfying
ni = 2 for all 0 ≤ i ≤ r. Then X is contractible.

Proof. For the given situation we have rk(Cl(X)) = 2(r + 1) − (r − 1) − 2 = r + 1 and
n = 2(r + 1). Furthermore, the effective cone has to be fulldimensional and thus has
at least r + 1 extremal rays. Suppose the surface is not contractible, that is all weights
wij ∈ K are not exceptional. Then there are exactly two weights lying on each of these
extremal rays. The weight deg(g0) is contained in the relative interior of every cone
cone(wi1, wi2). Consequently, for each 0 ≤ i ≤ r we find a 0 ≤ j ≤ r with i ̸= j such that
cone(wi1, wi2) = cone(wj1, wj2) holds. In particular, these four weights lie in the same
plane. Hence, we conclude

rk(Cl(X)) = 2 +
2(r + 1)− 4

4
=

r + 3

2
,

a contradiction to rk(Cl(X)) = r + 1 for r ≥ 2.
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Lemma 4.15. Let X be a non-toric K∗-surface with two elliptic fixed points satisfying
nj = 2 for j ≤ s and nj = 1 for j > s where 3 ≤ s ≤ r. Then X is contractible.

Proof. If ni = 2 holds, then the weights wi1, wi2 generate a cone that contains deg(g0)
in its relative interior. Furthermore, all weights wj1 with nj = 1 are lying on the ray
Q≥0 · deg(g0). We have rk(Cl(X)) = 2(s + 1) + r − s − (r − 1) − 2 = s + 1. Thus,
analogously to the proof of Lemma 4.14 we obtain the assertion.

Definition 4.16. We call a K∗-surface X combinatorially minimal if there is no invariant
prime divisor that can be contracted.

Remark 4.17. A Q-factorial projective surface with finitely generated Cox ring is com-
binatorially minimal if and only if its effective cone and its moving cone coincide, see [25,
Corollary 6.8/6.9].

Proposition 4.18. Let X be a non-toric combinatorially minimal K∗-surface. Then its
Cox ring has one of the following forms:

• K[T01, T11, T21, . . . , Tr1, S1]/⟨g0, . . . , gr⟩, where rk(Cl(X)) = 1 and

g0 = T l01
01 + T l11

11 + T l21
21 , gi = ∗T li1

i1 + ∗T li+1,1

i+1,1 + ∗T li+2,1

i+2,1 for 1 ≤ i ≤ r − 2.

• K[T01, T02, T11, . . . , Tr1]/⟨g0, . . . , gr⟩, where rk(Cl(X)) = 1 and

g0 = T l01
01 T

l02
02 + T l11

11 + T l21
21 , gi = ∗T li1

i1 + ∗T li+1,1

i+1,1 + ∗T li+2,1

i+2,1 for 1 ≤ i ≤ r − 2.

• K[T01, T02, T11, T12, T21, . . . , Tr1]/⟨g0, . . . , gr⟩, where rk(Cl(X)) = 2 and

g0 = T l01
01 T

l02
02 + T l11

11 T
l12
12 + T l21

21 , g1 = ∗T l11
11 T

l12
12 + ∗T l21

21 + ∗T l31
31 ,

gi = ∗T li1
i1 + ∗T li+1,1

i+1,1 + ∗T li+2,1

i+2,1 for 2 ≤ i ≤ r − 2.

Proof. If rk(Cl(X)) = 1 holds, then there are no contractible divisors. The statements of
Lemma 4.12, 4.13, 4.14, and 4.15 complete the proof.

Example 4.19 shows that the third case in Proposition 4.18 really occurs.

Example 4.19. Let X be the Fano K∗-surface with Cox ring R(X) = K[T ]/⟨g0⟩, where
g0 = T 2

01T02 + T 2
11T12 + T 2

21, whose P -matrix and grading matrix Q are given by

P =

−2 −1 2 1 0
−2 −1 0 0 2
−3 −1 1 1 1

 and Q =

(
0 2 1 0 1
1 0 0 2 1

)
.

Then X is not contractible, since the effective cone coincides with the moving cone.
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4.3 Intersection Theory

In this section we want to apply toric intersection theory on complexity-one T -varieties
and we will give concrete formulas for the intersection numbers of two invariant prime
divisors of a K∗-surface.

First we shortly recall some basic facts about toric intersection theory (compare [5, Prop
1.2.8]). Let Z be a toric variety (of dimension r+1). Then the intersection number of r+1
pairwise different invariant prime divisors D1

Z , . . . , D
r+1
Z of Z can be computed in terms

of the associated fan Σ. Let ϱ1, . . . , ϱr+1 be the rays corresponding to the invariant prime
divisors and v1, . . . , vr their primitive generators. Consider the cone σ = cone(v1, . . . , vr).
Then the intersection number of these r + 1 divisors in Z is given as

D1
Z · · ·Dr+1

Z =

{
1

|det(σ)| if σ ∈ Σ

0 if σ /∈ Σ
,

where det(σ) = det(v1, . . . , vr). Note that the absolute value of the determinant det(σ)
is the index of the sublattice spanned by the generators v1, . . . , vr in the lattice N ∩
lin(v1, . . . , vr).

Let X = X(A,P,Φ) be a complexity-one T -variety of dimension d and Z its minimal
toric ambient variety. Since X is a complete intersection, toric intersection theory suffices
to calculate intersection numbers of X. The intersection number of d invariant prime
divisors D1

X · · ·Dd
X of X is given by the toric intersection number of

D1
Z · · ·Dd

Z ·Ddeg(g0) · · ·Ddeg(gr−2),

where Di
X = Di

Z∩X, for i = 1, . . . , d. Note that [5, Proposition 4.2.11] provides a possibil-
ity to calculate intersection numbers in the divisor class group K = Cl(X) by computing
the index of the sublattice which is given by the weights which are “complementary” with
regard to the generators of σ.

Now, consider a K∗-surface X = X(A,P ) arising from a matrix P , where P is given
as introduced in 4.1. Let Dij ⊆ X be the prime divisors corresponding to the rays ϱij
generated by the columns vij of the matrix P . Analogously, we denote the corresponding
toric prime divisors of the minimal toric ambient variety Z as DZ

ij, where Dij = DZ
ij ∩X.

Furthermore, let F+ and F− be the divisors corresponding to parabolic fixed point curves
(if existing).

Proposition 4.20. The intersection number of two different prime divisors Dij and Dkl

of X can be computed as follows:

(i) Let Dij ∩Dkl = ∅. Then Dij ·Dkl = 0.

(ii) Let Dij and Dij+1 be two adjacent divisors lying in the same block. Then they
intersect in a hyperbolic fixed point and

Dij ·Dij+1 =
1

lijdij+1 − lij+1dij
.
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(iii) Two divisors Dij and Dkl that lie in different blocks and intersect in an elliptic fixed
point satisfy either j = l = 1 or j = ni and l = nk.

(a) If ni ̸= 1 or nk ̸= 1 or if X has only one elliptic fixed point then

Di1 ·Dk1 = − 1

li1lk1
∑r

j=0
dj1
lj1

and Dini
·Dknk

=
1

lini
lknk

∑r
j=0

djnj

ljnj

.

(b) If ni = nk = 1 holds and X has two elliptic fixed points then

Di1 ·Dk1 = Dini
·Dknk

=
1

lini
lknk

∑r
j=0

djnj

ljnj

− 1

li1lk1
∑r

j=0
dj1
lj1

.

(iv) A divisor Dij that intersects a parabolic fixed point curve F+ or F− satisfies j = 1
or j = ni and

Di1 · F− =
1

li1
and Dini

· F+ =
1

lini

.

Proof. Case (i) is obvious. If we are in situation (ii), then we can locally restrict to
the toric situation and use toric intersection theory (see 3.9). Two adjacent divisors Dij

and Dij+1 intersect in a hyperbolic fixed point corresponding to the cone cone(vij, vij+1)
generated by the corresponding rays ρij = Q≥0 · vij and ρij+1 = Q≥0 · vij+1.

6

6r
Dij

Dij+1

−→ ���
HHH

ρij

ρij+1

Note that we chose P such that lijdij+1− lij+1dij > 0 holds. By setting v̂ij = (lij, dij) and
v̂ij+1 = (lij+1, dij+1) we obtain

Dij ·Dij+1 =
1

|det(v̂ij, v̂ij+1)|
=

1

lijdij+1 − lij+1dij
.

For case (iii) we assume that Di1 and Dk1 intersect in an elliptic fixed point. Then all
divisors Dj1 with 0 ≤ j ≤ r intersect in this elliptic fixed point.
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D01

D11
. . . Dr−1,1

Dr1

Since all relations of the Cox ring are homogeneous with the same degree we have

deg(gi) = l01D01 + . . .+ l0n0D0n0 = . . . = lr1Dr1 + . . .+ lrnrDrnr

for 0 ≤ i ≤ r− 2. Using the fact that the intersection number of two divisors that do not
intersect is zero we obtain the following intersection numbers:
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(a) If ni ̸= 1 or nk ̸= 1 or if X has only one elliptic fixed point, then

Di1 ·Dk1 = DZ
i1 ·DZ

k1 ·Ddeg(g0) · · ·Ddeg(gr−2)

= DZ
i1 ·DZ

k1 ·
∏
j ̸=i,k

lj1D
Z
j1 +DZ

i1 ·DZ
k1 ·

∏
j ̸=i,k

ljnj
DZ

jnj

=
∏
j ̸=i,k

lj1

r∏
j=0

DZ
j1

.

(b) If ni = nk = 1 holds and X has two elliptic fixed points, then

Di1 ·Dk1 = DZ
i1 ·DZ

k1 ·Ddeg(g0) · · ·Ddeg(gr−2)

= DZ
i1 ·DZ

k1 ·
∏
j ̸=i,k

lj1D
Z
j1 +DZ

i1 ·DZ
k1 ·

∏
j ̸=i,k

ljnj
DZ

jnj

=
∏
j ̸=i,k

lj1

r∏
j=0

DZ
j1 +

∏
j ̸=i,k

ljnj

r∏
j=0

DZ
jnj

.

We set l− := l01 · · · lr1. The toric intersection number DZ
01 · · ·DZ

r1 is given by the absolute
value of the inverse determinant of the cone σ− corresponding to the lower elliptic fixed
point. By 4.8 we obtain

DZ
01 · · ·DZ

r1 =

(
−

r∑
j=0

dj1l
−

lj1

)−1

,

which implies the assertion. Analogously, we proceed to obtain the intersection number
Dini

·Dknk
by considering the cone σ+ and l+ := l0n0 · · · lrnr .

To prove assertion (iv) we locally restrict once more to the toric situation. Exemplarily,
we compute the intersection number Di1 · F−.

6r
Di1

F−
−→ ���

HHH

ρi1

Q≥0 · (0, . . . , 0,−1)

By setting v̂i1 := (li1, di1) and v̂− := (0,−1) we obtain

Di1 · F− =
1

|det(v̂i1, v̂−)|
=

1

li1
.

The precedent proposition allows us now to compute the self-intersection numbers of the
invariant divisors Dij and F±.
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Proposition 4.21. Let X be a K∗-surface. The self-intersection numbers of the invariant
prime divisors can be computed as follows:

(i) If ni = 1, then

D2
i1 = D2

ini
=



− 1

l2i1
∑r

j=0

dj1
lj1

if X is of type (par,ell),

1

l2i1
∑r

j=0

djnj
ljnj

if X is of type (ell,par),

1

l2i1
∑r

j=0

djnj
ljnj

− 1

l2i1
∑r

j=0

dj1
lj1

if X is of type (ell,ell),

0 if X is of type (par,par).

(ii) If ni ̸= 1 and 1 < j < ni, then

D2
ij = − lij−1dij+1 − lij+1dij−1

(lij−1dij − lijdij−1)(lijdij+1 − lij+1dij)
.

(iii) If ni ̸= 1 and X is of type (ell,ell) or (par,ell), then

D2
i1 = − 1

l2i1
∑r

j=0
dj1
lj1

− li2
li1(li1di2 − li2di1)

.

If ni ̸= 1 and X is of type (ell,par) or (par,par), then

D2
i1 = − li2

li1(li1di2 − li2di1)
.

(iv) If ni ̸= 1 and X is of type (ell,ell) or (ell,par), then

D2
ini

=
1

l2ini

∑r
j=0

djnj

ljnj

− li,ni−1

lini
(−lini

di,ni−1 + li,ni−1dini
)
.

If ni ̸= 1 and X is of type (par,ell) or (par,par), then

D2
ini

= − li,ni−1

lini
(−lini

di,ni−1 + li,ni−1dini
)
.

(v) If F+ resp. F− is a parabolic fixed point curve, then

F+ · F+ = −
r∑

i=0

dini
l+

lini

resp. F− · F− =
r∑

i=0

di1l
−

li1
.
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Proof. Using the homogeneity conditions for the Cox ring relations we obtain

Dij =
1

lij

 nk∑
m=1

lkmDkm −
ni∑
s=1
s̸=j

lisDis


for an arbitrary k ̸= i. In situation (i) we have ni = 1. Hence, we may assume that there
is always one nk ̸= 1 whenever X is of type (ell,ell). This leads to the following cases:

D2
i1 = D2

ini
= Di1 ·

1

li1

(
nk∑

m=1

lkmDkm

)

=


lk1
li1
Di1 ·Dk1 if X is of type (par,ell) ,

lknk

li1
Di1 ·Dknk

if X is of type (ell,par) ,
lk1
li1
Di1 ·Dk1 +

lknk

li1
Di1 ·Dknk

if X is of type (ell,ell) ,
0 if X is of type (par,par) .

Using the results of Proposition 4.20 gives the assertions.

For assertions (ii)-(vi) we assume ni ̸= 1. We first consider the case 1 < j < ni. The
homogeneity condition together with Proposition 4.20 gives

D2
ij = Dij ·

1

lij
(

nk∑
m=1

lkmDkm −
ni∑
s=1
s ̸=j

lisDis)

=
1

lij
(Dij · (−lij−1Dij−1 − lij+1Dij+1))

= − lij−1

lij
Dij ·Dij−1 −

lij+1

lij
Dij ·Dij+1

= − lij−1

lij(lij−1dij − lijdij−1)
− lij+1

lij(lijdij+1 − lij+1dij)

= − lij−1dij+1 − lij+1dij−1

(lij−1dij − lijdij−1)(lijdij+1 − lij+1dij)
.

Now, we compute the self-intersection numbers of Di1 and Dini
. As before we can use the

homogeneity conditions and then apply Proposition 4.20:

D2
i1 = Di1 ·

1

li1
(

nk∑
m=1

lkmDkm −
ni∑
s=2

lisDis)

=

{
lk1
li1
Di1 ·Dk1 − li2

li1
Di1Di2 if X is of type (par,ell) or (ell,ell)

− li2
li1
Di1 ·Di2 if X is of type (ell,par) or (par,par)
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D2
ini

= Dini
· 1

lini

(

nk∑
m=1

lkmDkm −
ni−1∑
s=1

lisDis)

=

{ lknk

lini
Dini

·Dknk
− li,ni−1

lini
Dini

Di,ni−1 if X is of type (ell,par) or (ell,ell)

− li,ni−1

lini
Dini

·Di,ni−1 if X is of type (par,ell) or (par,par)

The last statement can be easily derived from the fact that Cl(X) ∼= Zn+m/im(P ∗) and
the degrees of the variables Tij and Sk represent the kernel of P . Thus, taking the
corresponding divisor classes and multiplying them with the last row of P we obtain

r∑
i=0

ni∑
j=1

dijDij − F− + F+ = 0.

Note that F− and F+ do not intersect. Now, we can compute the self-intersection numbers
directly in the divisor class group by using the “complementary indices”, see [5, Proposition
4.2.11].

We obtain

F− · F− = d01D01 · F− + . . .+ dr1Dr1 · F−

=
d01∏
i̸=0 li1

+ . . .+
dr1∏
i̸=r li1

=
r∑

i=0

di1l
−

li1
,

and analogously

F+ · F+ = − (d0n0D0n0 · F+ + . . .+ drnrDrnr · F+)

=
d0n0∏
i̸=0 lini

+ . . .+
drnr∏
i̸=r lini

= −
r∑

i=0

dini
l+

lini

.

Example 4.22 (Example 4.11 continued). Having all these formulas we can compute the
self-intersection numbers of the exceptional divisors of the resolution in Example 4.11.
One easily checks, that (F−)2 = −1 holds for the canonical resolution. Contracting this
(−1)-curve we obtain the minimal resolution and the following self-intersection numbers:

D2
03 = D2

12 = D2
22 = D2

23 = D2
24 = (F+)2 = −2.
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4.4 Kleiman condition for ampleness

In this chapter we will give concrete formulas for the intersection numbers of the anti-
canonical divisor with the prime divisors Dij and F± of a K∗-surface X. These intersection
numbers can be used as basis for concrete conditions for X to be Fano.

Remark 4.23 (Kleiman’s criteria for ampleness). Let D be a divisor of a normal complete
variety of dimension two. Then D is ample if and only if D ·C > 0 for all effective curves
C.

Proposition 4.24. Let −KX be the anticanonical divisor of a (non-toric) K∗-surface
X = X(A,P ) and set v̂ij := (lij, dij) and v̂± := (0,±1). Then the following statements
hold:

(i) Let F± be parabolic fixed point curves. Then −KX · F+ > 0 resp. −KX · F− > 0
holds if and only if

r∑
i=0

di1
li1

> (r − 1)−
r∑

i=0

1

li1
resp. −

r∑
i=0

dini

lini

> (r − 1)−
r∑

i=0

1

lini

.

(ii) Let ni ̸= 1 and 1 < j < ni . Then −KX ·Dij > 0 if and only if

det(v̂i,j−1, v̂i,j) + det(v̂i,j, v̂i,j+1) > det(v̂i,j−1, v̂i,j+1).

(iii) Let ni ̸= 1 and j = 1. If X is of type (ell,ell) or (par,ell), then −KX · Dij > 0 if
and only if

li1 − li2
li1di2 − li2di1

·
r∑

j=0

dj1
lj1

<

r∑
j=0

1

lj1
− (r − 1) ,

and if X is of type (ell,par) or (par,par), then −KX ·Dij > 0 if and only if

det(v̂−, v̂i1) + det(v̂i1, v̂i2) > det(v̂−, v̂i2) .

(iv) Let ni ̸= 1 and j = ni. If X is of type (ell,ell) or (ell,par), then −KX ·Dij > 0 if
and only if

lini
− lini−1

lini−1dini
− lini

dini−1

·
r∑

j=0

djnj

ljnj

> (r − 1)−
r∑

j=0

1

ljnj

,

and if X is of type (par,ell) or (par,par), then −KX ·Dij > 0 if and only if

det(v̂ini
, v̂+) + det(v̂i,ni−1, v̂ini

) > det(v̂i,ni−1, v̂
+) .
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(v) Let ni = 1. If X is of type (par,ell), then −KX ·Di1 > 0 if and only if
r∑

i=0

di1
li1

< −(r − 1) +
r∑

i=0

1

li1
.

If X is of type (ell,par), then −KX ·Di1 > 0 if and only if
r∑

j=0

djnj

ljnj

> −
r∑

k=1

1

lknk

+ (r − 1) .

If X is of type (ell,ell), then −KX ·Di1 > 0 if and only if
r∑

j=0

djnj

ljnj

(
r∑

k=0

1

lk1
− (r − 1)

)
>

r∑
j=0

dj1
lj1

(
r∑

k=0

1

lknk

− (r − 1)

)
.

If X is of type (par,par), then −KX ·Di1 > 0 is always satisfied.

Proof. Using the results of the last section we can prove the statements above. For
assertion (i) we have

−KX · F− =

(
r∑

i=0

ni∑
j=1

Dij + F+ + F− − (r − 1)

n0∑
j=1

l0jD0j

)
· F−

= (F−)2 +
r∑

i=0

Di1 · F− − (r − 1)l01D01 · F−

=
r∑

i=0

di1
li1

+
r∑

i=0

1

li1
− (r − 1) ,

−KX · F+ = −
r∑

i=0

dini

lini

+
r∑

i=0

1

lini

− (r − 1) .

(ii) If ni ̸= 1 and 1 < j < ni, then the intersection number −KX · Dij is given by the
following term (where s ̸= i):(

r∑
i=0

ni∑
j=1

Dij + F+ + F− − (r − 1)
ns∑
j=1

lsjDsj

)
·Dij

= Dij−1 ·Dij +D2
ij +Dij+1Dij

=
1

lij−1dij − lijdij−1

− lij−1

lij(lij−1dij − lijdij−1)

− lij+1

lij(lijdij+1 − lij+1dij)
+

1

lijdij+1 − lij+1dij

=
lijdij+1 − lij+1dij + lij−1dij − lijdij−1 + lij+1dij−1 − lij−1dij+1

(lij−1dij − lijdij−1)(lijdij+1 − lij+1dij)

=
det(v̂i,j−1, v̂i,j) + det(v̂i,j, v̂i,j+1)− det(v̂i,j−1, v̂i,j+1)

det(v̂i,j−1, v̂i,j) · det(v̂i,j, v̂i,j+1)
.



4 K∗-SURFACES 73

Note that all these determinants are positive. Thus, −KX · Dij > 0 gives the following
inequality:

det(v̂i,j−1, v̂i,j) + det(v̂i,j, v̂i,j+1) > det(v̂i,j−1, v̂i,j+1)

Now we will prove assertions (iii) and (iv). Assume ni ̸= 1 and j = 1 or j = ni. If X is of
type (ell,ell) or (par,ell), then (for one s ̸= k) the intersection number −KX ·Di1 is given
by

r∑
k=0

Di1Dk1 +Di1Di2 − (r − 1)ls1Ds1Di1.

If X is of type (ell,par) or(par,par) we obtain

−KX ·Di1 = Di1 ·Di1 +Di1Di2 + F− ·Di1.

Analogously, the intersection number −KX ·Dini
is given by

r∑
k=0

Dini
Dknk

+Dini
Dini−1 − (r − 1)lsnsDsnsDini

if X is of type (ell,par) or (ell,ell) and if X is of type (par,ell) or (par,par), we obtain

Dini
·Dini

+Dini
Dini−1 + F+ ·Dini

.

Now assume that X is of type (ell,ell) or (par,ell). Then we have

−KX ·Di1 =
r∑

k=0

Di1Dk1 +Di1Di2 − (r − 1)ls1Ds1Di1

= − 1

l2i1
∑r

j=0
dj1
lj1

− li2
li1(li1di2 − li2di1)

−
∑
k ̸=i

1

li1lk1
∑r

j=0
dj1
lj1

+
1

li1di2 − li2di1

+ (r − 1)ls1 ·
1

ls1li1
∑r

j=0
dj1
lj1

=
(−
∑r

k=0
1
lk1

+ (r − 1))(li1di2 − li2di1) + (li1 − li2)
∑r

j=0
dj1
lj1

li1
∑r

j=0
dj1
lj1

(li1di2 − li2di1)
.

If X is of type (ell,par) or (ell,ell) we obtain analogously

−KX ·Dini
=

(
∑r

k=0
1

lknk

− (r − 1))(lini−1dini
− lini

dini−1) + (lini
− lini−1)

∑r
j=0

djnj

ljnj

lini

∑r
j=0

djnj

ljnj
(lini−1dini

− lini
dini−1)

.

Since det(v̂i1, v̂i2) > 0, det(v̂i,ni−1, v̂i,ni
) > 0, (−1)rdet(σ+) > 0, (−1)rdet(σ−) < 0 and

li1, lini
> 0 hold, assertion (ii) follows.
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Now assume that X is of type (ell,par) or (par,par). Then we have

−KX ·Di1 = Di1 ·Di1 +Di1Di2 + F− ·Di1

= − li2
li1(li1di2 − li2di1)

+
1

li1di2 − li2di1
+

1

li1

=
−li2 + li1 + li1di2 − li2di1

li1(li1di2 − li2di1)

=
det(v̂−, v̂i1) + det(v̂i1, v̂i2)− det(v̂−, v̂i2)

det(v̂−, v̂i1) · det(v̂i1, v̂i2)
.

Analogously, we obtain

−KX ·Dini
=
−lini−1 + lini

+ lini−1dini
− lini

dini−1

lini−1(lini−1dini
− lini

dini−1)

=
det(v̂ini

, v̂+) + det(v̂i,ni−1, v̂ini
)− det(v̂i,ni−1, v̂

+)

det(v̂ini
, v̂+) · det(v̂i,ni−1, v̂ini

)
.

Since all these determinants are positive, we obtain the inequalities

det(v̂−, v̂i1) + det(v̂i1, v̂i2) > det(v̂−, v̂i2)

and
det(v̂ini

, v̂+) + det(v̂i,ni−1, v̂ini
) > det(v̂i,ni−1, v̂

+).

(v) Assume ni = 1 and hence j = 1 = ni. Then −KX · Di1 is given by the following
formulas (where s ̸= i). If X is of type (par,ell), then

−KX ·Di1 =
r∑

k=0

Di1Dk1 + F+ ·Di1 − (r − 1)ls1Ds1Di1,

and if X is of type (ell,par), then

−KX ·Di1 =
r∑

k=0

Di1Dknk
+ F− ·Di1 − (r − 1)lsnsDsnsDi1.

If X is of type (ell,ell), then we can always choose ns ̸= 1 and we obtain

−KX ·Di1 =
r∑

k=0

Di1Dk1 +
∑
nk ̸=1

Di1Dknk
− (r − 1)(ls1Ds1Di1 + lsnsDsnsDi1).

If X is of type (par,par), then

−KX ·Di1 = Di1 ·Di1 + F− ·Di1 + F+ ·Di1.
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Assume that X is of type (par,ell). Then we obtain

−KX ·Di1 =
r∑

k=0

Di1Dk1 + F+ ·Di1 − (r − 1)ls1Ds1Di1

= − 1

l2i1
∑r

j=0
dj1
lj1

−
∑
k ̸=i

1

li1lk1
∑r

j=0
dj1
lj1

+
1

li1
+ (r − 1) · 1

li1
∑r

j=0
dj1
lj1

=
−
∑r

k=0
1
lk1

+ (r − 1) +
∑r

j=0
dj1
lj1

li1
∑r

j=0
dj1
lj1

= −KX ·Dini
,

and since li1 > 0 and (−1)rdet(σ−) < 0, the assertion follows.

Assume that X is of type (ell,par). Then we obtain analogously to the previous case

−KX ·Di1 =
r∑

k=0

Di1Dknk
+ F− ·Di1 − (r − 1)lsnsDsnsDi1

=
1

l2i1
∑r

j=0

djnj

ljnj

−
∑
k ̸=i

1

li1lk1
∑r

j=0

djnj

ljnj

+
1

li1
− (r − 1) · 1

li1
∑r

j=0
dj1
lj1

=

∑r
k=1

1
lknk

− (r − 1) +
∑r

j=0

djnj

ljnj

li1
∑r

j=0

djnj

ljnj

= −KX ·Dini
.

Assume that X is of type (ell,ell). Then

−KX ·Di1 =
∑
nk=1

Di1Dk1 +
∑
nk ̸=1

Di1Dk1 +
∑
nk ̸=1

Di1Dknk

− (r − 1)(ls1Ds1Di1 + lsnsDsnsDi1)

= −
r∑

k=0

1

li1lk1
∑r

j=0
dj1
lj1

+
r∑

k=0

1

lini
lknk

∑r
j=0

djnj

ljnj

− (r − 1)

− 1

li1lk1
∑r

j=0
dj1
lj1

+
1

lini
lknk

∑r
j=0

djnj

ljnj


=

1

lini

∑r
j=0

djnj

ljnj

(
r∑

k=0

1

lknk

− (r − 1)

)
− 1

li1
∑r

j=0
dj1
lj1

(
r∑

k=0

1

lk1
− (r − 1)

)
= −KX ·Dini

,
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and since (−1)rdet(σ+) > 0, (−1)rdet(σ−) < 0 and li1 = lini
, we obtain the inequality

r∑
j=0

djnj

ljnj

(
r∑

k=0

1

lk1
− (r − 1)

)
>

r∑
j=0

dj1
lj1

(
r∑

k=0

1

lknk

− (r − 1)

)
.

Finally, assume that X is of type (par,par). Then

−KX ·Di1 = Di1 ·Di1 + F− ·Di1 + F+ ·Di1 =
2

li1
and

−KX ·Dini
= Dini

·Dini
+ F− ·Dini

+ F+ ·Dini
=

2

lini

.

In particular, we always have −KX ·Di1 > 0 and −KX ·Dini
> 0 since li1, lini

> 0.

Corollary 4.25. If X is a Fano K∗-surface having an index 0 ≤ i ≤ r such that lij = 1
holds for all 1 ≤ j ≤ ni, then ni ≤ 2 holds. If X is non-toric, then ni = 2 holds.

Proof. This follows directly from Proposition 4.24, since for 1 < j < ni we have

−KX ·Dij =
dij+1 − dij + dij − dij−1 + dij−1 − dij+1

(dij − dij−1)(dij+1 − dij)
= 0.

Proposition 4.24 can be used to describe Fano K∗-surfaces X = X(A,P ). The inequalities
give concrete conditions for the P -matrix of the surface. Note that it is sufficient to check
these conditions only for prime divisors whose divisor classes define extremal rays of the
effective cone in Cl(X). If X is a K∗-surface satisfying rk(Cl(X)) = 1 then it even suffices
to check the condition for only one divisor.

4.5 The anticanonical complex for K∗-surfaces

For toric varieties, there is a one-to-one correspondence between toric Fano varieties and
convex lattice polytopes, i.e. polytopes whose vertices are lattice points. The polytope
is given by the convex hull of the prime generators of the rays of the fan associated to
the toric variety. We will call this polytope the toric anticanonical polytope. This convex
geometrical approach can also be used to describe singularity types of toric Fano varieties.
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The following correspondences hold:

{ toric Fano varieties } ←→ { convex lattice polytopes }
{ terminal toric Fano varieties } ←→ { convex lattice polytopes,

s.th. zero and its vertices
are the only lattice points in it }

{ canonical toric Fano varieties } ←→ { convex lattice polytopes,
s.th. zero is the only interior
lattice point in it}

{ ε-log-terminal toric Fano varieties } ←→ { convex lattice polytopes C,
s.th. zero is the only interior
lattice point in ε · C }

The aim for this chapter is to find a similar convex geometrical object for log-terminal
K∗-surfaces that are Fano.

Proposition 4.26. Let X = X(A,P,Φ) be a Fano variety with complexity-one torus
action and SAmple(X) = Mov(X). Then the minimal toric ambient variety Z of X has
a toric Fano completion Ẑ.

Proof. Let X be a Fano variety with complexity-one torus action and SAmple(X) =
Mov(X). Then Φ = Φ(Mov(X)) holds and the Cox ring R(X) has the form

R(X) ∼= K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni][S1, . . . , Sm] / ⟨gi,i+1,i+2; 0 ≤ i ≤ r − 2⟩.

Let the Cl(X)-grading of R(X) be given by the degrees wij := deg(Tij) for 0 ≤ i ≤ r, 1 ≤
j ≤ ni and uk := deg(Sk) for 1 ≤ k ≤ m. Then the relations g0, . . . , gr−2 have all the same
degree deg(g0) concerning this grading. Furthermore, we consider the homomorphism

Q : Zn+m → Cl(X), eij 7→ wij, ek 7→ uk,

where n = n0 + . . .+ nr. By Theorem 1.19 the moving cone of X is given by

Mov(X) = Q(γ01) ∩ . . . ∩Q(γrnr) ∩Q(γ1) ∩ . . . ∩Q(γk),

where

γij = cone(e01, . . . , êij, . . . , ernr , e1, . . . , em) and
γk = cone(e01, . . . , ernr , e1, . . . , êk, . . . , em)

denote the facets of the positive orthant γ in Qn+m. Let Z be the minimal toric ambient
variety of X. Then the anticanonical divisor class of Z is given by

wZ =
r∑

i=0

ni∑
J=1

wij +
m∑
k=1

uk.
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By [9, Proposition 8.5], the anticanonical divisor class of X is given by wX = wZ − (r −
1) deg(g0) which gives

wZ = wX + (r − 1) deg(g0).

Since X is Fano, we have wX ∈ Ample(X) = SAmple(X)◦. We will show that deg(g0)
lies in SAmple(X). Therefore we consider the first relation

g0 = T l01
01 · . . . · T

l0n0
0n0

+ T l11
11 · . . . · T

l1n1
1n1

+ T l21
21 · . . . · T

l2n2
2n2

.

Then we have
n0∑
j=1

l0jw0j = deg(g0) and deg(g0) ∈ cone(w01, . . . , w0n0) =: σ0.

Since σ0 ⊆ γij for 1 ≤ i ≤ r, 1 ≤ j ≤ ni and σ0 ⊆ γk for 1 ≤ k ≤ m, we know that deg(g0)
is contained in each γij with i ̸= 0 and γk respectively. Now consider γ0j for 1 ≤ j ≤ n0.
Then for the second monomial we get analogously deg(g0) ∈ cone(w11, . . . , w1n1) := σ1.
Since σ1 ⊆ γ0j, we have deg(g0) ∈ γ0j for 1 ≤ j ≤ n0. All in all this implies that deg(g0)
lies in SAmple(X). In particular we obtain

wZ = wX + (r − 1) deg(g0) ∈ Ample(X) = Ample(Z).

Now let Ẑ be the completion of Z satisfying Ample(X) = Ample(Ẑ). Then we have
wZ = wẐ . In particular Ẑ is Fano.

Corollary 4.27. Let X be a Fano K∗-surface arising from data (A,P ) and let Z be its
minimal toric ambient variety. Then Z admits a small Fano completion.

Proof. The Cox ring of a normal complete surface X with finitely generated divisor class
group is finitely generated if and only if Mov(X) = SAmple(X) holds and this cone is
polytopal. In our situation, X is Q-factorial and projective and has particularly finitely
generated Cox ring. Thus, the assertion follows by Proposition 4.26.

Concretely, in terms of the GIT fan, the existence of a toric ambient Fano variety Ẑ means
that the anticanonical divisor class of wẐ lies in the same chamber of the moving cone as
the anticanonical divisor class of X, namely in the ample chamber of X.
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The following example shows that for higher dimensions the analogous statement of 4.27
does not hold.
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Example 4.28. Let X = X(A,P,Φ) be a three-dimensional complexity-one T -variety
with Cox ring

R(X) = K[T01, T11, T21, S1, S2, S3]/⟨T 5
01 + T 3

11 + T 2
21⟩

and corresponding P - and grading matrix

P =


−5 3 0 0 0 0
−5 0 2 0 0 0
−4 1 1 −1 0 1
−5 3 0 0 1 −1

 , Q =

(
0 0 0 1 1 1
6 10 15 0 −1 −1

)
.

Furthermore, let Φ = Φ(λ) with λ = cone(u1, u2) be the associated bunch. Then we have

wX = w01 + w11 + w21 + u1 + u2 + u3 − deg(f) =

(
3
29

)
−
(
0
30

)
=

(
3
−1

)
and thus wX ∈ Ample(X) = cone(u1, u2)

◦. Anyway, for the toric anticanonical divisor
class of any toric ambient variety Z we have

wZ = w01 + w11 + w21 + u1 + u2 + u3 =

(
3
29

)
,

and consequently wZ /∈ Ample(X). Since Ample(Z) ⊆ Ample(X) holds, the given variety
X can not be embedded into a toric ambient variety that is Fano.

Definition 4.29. Let X be a Q-factorial Fano K∗-surface arising from data (A,P ). Then
we call X a del Pezzo surface. A log del Pezzo surface is a del Pezzo surface X having
only log-terminal singularities.

By Corollary 4.27 we find for every del Pezzo surface X = X(A,P ) a three-dimensional
toric ambient variety that is Fano. In this situation the toric anticanonical polytope is
given by the convex hull of the primitive column vectors vij and v± of P , where v± =
(0, . . . , 0,±1).
Now we want to introduce a convex geometrical object for K∗-surfaces which is comparable
to the toric anticanonical polytope. For this purpose some preparation is needed.

Lemma 4.30. Consider the two elementary big cones σ+ = cone(v0n0 , . . . , vrnr) and
σ− = cone(v01, . . . , vr1) and set l+ := l0n0 · · · lrnr , l− := l01 · · · lr1. For 0 ≤ i ≤ r let
u+
i = (u+

i1, . . . , u
+
ir+1) ∈ MQ

∼= Qr+1 and u−
i = (u−

i1, . . . , u
−
ir+1) ∈ MQ

∼= Qr+1 be the linear
forms satisfying

⟨u+
i , vknk

⟩ =

{
1 if i ̸= k

1− (r − 1)lknk
if i = k

, ⟨u−
i , vk1⟩ =

{
1 if i ̸= k

1− (r − 1)lk1 if i = k
.
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Then for 1 ≤ k ≤ r the linear forms are given by

u+
0k =

1∑r
i=0

l+dini

lini

·

 r∑
j=0

j ̸=k

l+

lknk
ljnj

(djnj
− dknk

) + (r − 1)
l+dknk

lknk



u+
ik =


1∑r

i=0

l+dini
lini

·
(∑r

j=0

j ̸=k

l+

lknk
ljnj

(djnj
− dknk

)− (r − 1)
∑r

j=0

j ̸=k

l+djnj

ljnj

)
for i = k

1∑r
i=0

l+dini
lini

·
(∑r

j=0

j ̸=k

l+

lknk
ljnj

(djnj
− dknk

) + (r − 1)
l+dknk

lknk

)
for i ̸= k

u+
ir+1 =

1∑r
i=0

l+dini

lini

·

(
r∑

k=0

l+

lknk

− (r − 1)l+

)
,

and analogously

u−
0k =

1∑r
i=0

l−di1
li1

·

 r∑
j=0

j ̸=k

l−

lk1lj1
(dj1 − dk1) + (r − 1)

l−dk1
lk1



u−
ik =


1∑r

i=0
l−di1
li1

·
(∑r

j=0

j ̸=k

l−

lk1lj1
(dj1 − dk1)− (r − 1)

∑r
j=0

j ̸=k

l−dj1
lj1

)
for i = k

1∑r
i=0

l−di1
li1

·
(∑r

j=0

j ̸=k

l−

lk1lj1
(dj1 − dk1) + (r − 1) l

+dk1
lk1

)
for i ̸= k

u−
ir+1 =

1∑r
i=0

l−di1
li1

·

(
r∑

k=0

l−

lk1
− (r − 1)l−

)
.

Furthermore, the linear forms t+ = (t+1 , . . . , t
+
r+1) and t− = (t−1 , . . . , t

−
r+1) in MQ satisfying

⟨t+, vini
⟩ = 1 and ⟨t−, vi1⟩ = 1 for all 0 ≤ i ≤ r are given by

t+k =
1∑r

i=0

l+dini

lini

·

 r∑
j=0

j ̸=k

l+

lknk
ljnj

(djnj
− dknk

)

 for 1 ≤ k ≤ r,

t+r+1 =
1∑r

i=0

l+dini

lini

·
r∑

i=0

l+

lini

,

and

t−k =
1∑r

i=0
l−di1
li1

·

 r∑
j=0

j ̸=k

l−

lk1lj1
(dj1 − dk1)

 for 1 ≤ k < r + 1,

t−r+1 =
1∑r

i=0
l−di1
li1

·
r∑

i=0

l−

li1
.
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Proof. We will prove the assertion exemplarily for u−
i and we will write vi, li and di

instead of vi1, li1 and di1. Set l− := l0 · · · lr. First we will prove ⟨u−
0 , v0⟩ = 1− l0.

r∑
i=0

l−di
li
· ⟨u−

0 , v0⟩

= −
r∑

k=1

 r∑
j=0

j ̸=k

l−l0
lklj

(dj − dk)− (r − 1)
l−l0dk
lk

+
r∑

j=0

l−d0
lj
− (r − 1)l−d0

= −
r∑

k=1

 r∑
j=1

j ̸=k

l−l0
lklj

(dj − dk)

− r∑
k=1

l−

lk
(d0 − dk)− (r − 1)

r∑
k=1

l−l0dk
lk

+
r∑

j=0

l−d0
lj
− (r − 1)

l−l0d0
l0

= 0−
r∑

k=1

l−d0
lk

+
r∑

k=1

l−dk
lk
− (r − 1)l0

r∑
k=0

l−dk
lk

+
r∑

j=1

l−d0
lj

+
l−d0
l0

= (1− (r − 1)l0)
r∑

k=1

l−dk
lk

Now we will show that ⟨u−
0 , vi⟩ = 1 holds for all i ̸= 0. Without loss of generality we may

assume i = 1.

r∑
i=0

l−di
li
· ⟨u−

0 , v1⟩ =
r∑

j=0

j ̸=1

l−l1
l1lj

(dj − d1) + (r − 1)
l−l1d1
l1

+
r∑

j=0

l−d1
lj
− (r − 1)l−d1

=
r∑

j=0

j ̸=1

l−dj
lj
−

r∑
j=0

j ̸=1

l−d1
lj

+
r∑

j=0

l−d1
lj

=
r∑

j=1

l−dj
lj

The next step is to show that ⟨u−
i , vi⟩ = 1 − li holds for all i ̸= 0. Without loss of
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generality we may assume i = 1.

r∑
i=0

l−di
li
· ⟨u−

1 , v1⟩ =
r∑

j=0

j ̸=1

l−l1
l1lj

(dj − d1)− (r − 1)
r∑

j=0

j ̸=1

l−l1dj
lj

+
r∑

j=0

l−d1
lj
− (r − 1)l−d1

=
r∑

j=0

j ̸=1

l−dj
lj
−

r∑
j=0

j ̸=1

l−d1
lj

+
r∑

j=0

l−d1
lj
− (r − 1)l1

r∑
j=0

l−dj
lj

= (1− (r − 1)l1)
r∑

j=1

l−dj
lj

Now we prove that ⟨u−
i , vj⟩ = 1 holds for i, j ̸= 0 and i ̸= j. We assume i = 1 and j = 2.

r∑
i=0

l−di
li
· ⟨u−

1 , v2⟩ =
r∑

j=0

j ̸=2

l−l2
l2lj

(dj − d2) + (r − 1)
l−l2d2
l2

+
r∑

j=0

l−d2
lj
− (r − 1)l−d2

=
r∑

j=0

j ̸=2

l−dj
lj
−

r∑
j=0

j ̸=2

l−d2
lj

+
r∑

j=0

l−d2
lj

=
r∑

j=1

l−dj
lj

Finally we complete the proof by showing that ⟨u−
i , v0⟩ = 1 holds, where we once more

may assume i = 1.

r∑
i=0

l−di
li
· ⟨u−

1 , v0⟩

= −
r∑

k=1

 r∑
j=0

j ̸=k

l−l0
lklj

(dj − dk)

+ (r − 1)
r∑

j=0

j ̸=1

l−l0dj
lj
− (r − 1)

r∑
k=2

l−l0dk
lk

+
r∑

j=0

l−d0
lj
− (r − 1)l−d0

= −
r∑

k=1

l−

lk
(d0 − dk)−

r∑
k=1

 r∑
j=1

j ̸=k

l−l0
lklj

(dj − dk)

+
r∑

j=0

l−d0
lj

= −
r∑

k=1

l−d0
lk

+
r∑

k=1

l−dk
lk
− 0 +

r∑
j=0

l−d0
lj

=
r∑

k=0

l−dk
lk
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So far, we have proven the assertions for u±
i . To prove the remaining parts of the lemma

we restrict again exemplarily to t−. First we show that ⟨t−, v0⟩ = 1 holds.

r∑
i=0

l−di
li
· ⟨t−, v0⟩ = −

r∑
k=1

 r∑
j=0

j ̸=k

l−l0
lklj

(dj − dk)

+
r∑

i=0

l−d0
lj

= −
r∑

k=1

l−djl0
l0lj

(d0 − dk)− 0 +
r∑

i=0

l−d0
lj

=
r∑

k=0

l−dk
lk

The last thing to show is that we have ⟨t−, vi⟩ = 1 for all i ̸= 0. We may assume i = 1.

r∑
i=0

l−di
li
· ⟨t−, v1⟩ =

r∑
j=0

j ̸=1

l−l1
l1lj

(dj − d1) +
r∑

j=0

l−d1
lj

=
r∑

j=0

j ̸=1

l−dj
lj
−

r∑
j=0

j ̸=1

l−d1
lj

+
r∑

j=0

l−d1
lj

=
r∑

j=0

l−dj
lj

.

The vectors v01, . . . , vr1 and v0n0 , . . . , vrnr respectively are linearly independent. Conse-
quently, each linear form u±

i ∈ MQ
∼= Qr+1 defines a unique affine hypersurface Hu±

i
in

NQ = M∗
Q given by the equation ⟨u±

i , x⟩ − 1 = 0. Note that vk1 ∈ Hu−
i

and vknk
∈ Hu+

i

if and only if k ̸= i. Furthermore, the linear forms t+ and t− define affine hypersurfaces
H+ and H−, which are given by the equations ⟨t±, x⟩ − 1 = 0. The r + 1 points vi1 and
vini

are contained in H+ and H− respectively, they even generate them.

Lemma 4.31. The intersection point of the hypersurface H+ defined by t+ with the ray
Q≥0 · er+1 and the intersection point of the hypersurface H− defined by t− with the ray
Q≥0 · (−er+1) are given by

v+t =

0, . . . , 0,

∑r
i=0

l+dini

lini∑r
i=0

l+

lini

 and v−t =

(
0, . . . , 0,

∑r
i=0

l−di1
li1∑r

i=0
l−

li1

)
.

Proof. This follows directly from Lemma 4.30.
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Now we want to determine the intersection of the r+1 affine hypersurfaces Hu+
i

and Hu−
i

respectively. For this purpose, we set

v+c :=

0, . . . , 0,

∑r
i=0

l+dini

lini∑r
i=0

l+

lini
− (r − 1)l+

 and v−c :=

(
0, . . . , 0,

∑r
i=0

l−di1
li1∑r

i=0
l−

li1
− (r − 1)l−

)
.

Lemma 4.32. If X is log-terminal, then v±c is not contained in H± and the intersection
of the r + 1 affine hypersurfaces Hu+

i
and Hu−

i
is given by∩

Hu+
i

= {v+c } and
∩

Hu−
i

= {v−c }, respectively.

Proof. We consider exemplarily the r+1 hypersurfaces Hu−
i
. By Lemma 4.30 the point v−c

is contained in each hypersurface Hu−
i

and thus, it is also contained in their intersection.
If X is log-terminal, then by Proposition 3.19 the following inequality holds:

r∑
i=0

l−

li1
− (r + 1)l− > 0

Consequently, v−c is not contained in the affine space generated by v01, . . . , vr1, which is
denoted by H−, and we can write Hu−

i
= v−c + lin(vj1 − v−c , j ̸= i) for all 0 ≤ i ≤ r.

Since v01, . . . , vr1 and v−c are in general position and vi1 /∈ Hu−
i

we conclude that the
hypersurfaces Hu−

i
intersect in exactly one point, namely v−c .

Definition 4.33. Let X = X(A,P ) be a log-terminal K∗-surface. Then we define the
anticanonical polytope AX of X as the convex hull of all columns of P and v±c if F± is an
elliptic fixed point. Furthermore we define the anticanonical complex of X as

Ac
X := AX ∩ trop(X).

Notation 4.34. The anticanonical complex of a K∗-surface consists of r+ 1 purely two-
dimensional arms corresponding to the blocks of the matrix P and the arms of trop(X)
respectively. We denote these arms by Ac

Xi
, 0 ≤ i ≤ r. If we restrict our considerations

to one single arm Ac
Xi

, the situation can be simplified by considering the projected arm
Âc

Xi
:= pri(A

c
Xi
), where

pri : Z
r+1 → Z2 : (x1, . . . , xr, xr+1) 7→ (xi, xr+1).

Remark 4.35. If X is a log-terminal K∗-surface with an upper or lower elliptic fixed point
F± corresponding to σ±, then the intersection point v±c is a vertex of the anticanonical
complex.

Example 4.36. Consider R := K[T01, T02, T11, T21]/⟨T01T
3
02+T 3

11+T 2
21⟩ with the Z-grading

given by the weights 3, 1, 2, 3. Then R is the Cox ring of a (unique) surface X ⊆ P1,3,2,3.
Furthermore, trop(X) and the anticanonical polytope are given in Q3 by

trop(X) = cone(e1,±e3) ∪ cone(e2,±e3) ∪ cone(−e1 − e2,±e3),
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AX = conv((−1,−1,−1), (−3,−3,−2), (3, 0, 1), (0, 2, 1), (0, 0, 1), (0, 0,−1/5)),

where ei ∈ Q3 is the i-th canonical basis vector and all points listed in the description of
AX are in fact vertices. The anticanonical complex Ac

X = AX ∩ trop(X) is supported by
trop(X) and thus it is two-dimensional.

Example 4.37. Let X = X(A,P ) be the K∗-surface with

P =

−1 −1 2 0 0
−1 −1 0 2 0
−2 −1 1 1 1

 , R(X) := K[T01, T02, T11, T21, S1]/⟨T01T02 + T 2
11 + T 2

21⟩.

Then X has a parabolic fixed point curve F+ and an elliptic fixed point F−. The anti-
canonical polytope is given by

AX = conv((−1,−1,−1), (−1,−1,−2), (2, 0, 1), (0, 2, 1), (0, 0, 1), (0, 0,−1)).

Example 4.38. Let X be the K∗-surface with

P =


−1 −1 1 1 0 0 0
−1 −1 0 0 1 1 0
−1 −1 0 0 0 0 2
0 1 −1 0 −1 0 1

 ,

R(X) = K[T01, T02, T11, T12, T21, T22, T31]/⟨g0, g1⟩,

with g0 = T01T02 + T11T12 + T21T22 and g1 = λT11T12 + T21T22 + T 2
31 for one λ ∈ K∗. Then

we have

trop(X) = cone(e1,±e4) ∪ cone(e2,±e4) ∪ cone(e3,±e4) ∪ cone(−e1 − e2 − e3,±e4),

AX = conv((−1,−1,−1, 0), (−1,−1,−1, 1), (3, 0, 1), (0, 1, 0, 0), (0, 1, 0,−1),
(0, 0, 1, 0), (0, 0, 1,−1), (0, 0, 0,−1), (0, 0, 0, 1)).

Lemma 4.39. Let x = (x1, x2) and y = (y1, y2) be two linear independent vectors in Q2.
Then the area of the parallelogram Pxy spanned by zero and these two vectors is given by
|det(x, y)|.

Proof. We consider the rectangle with the vertices (x1+y1, 0), (0, x2+y2), (x1+y1, x2+y2)
and zero.
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Without loss of generality we may assume that the angle ∡(x, y) is positive oriented.
Then det(x, y) > 0 holds and the area of the parallelogram Pxy can be easily computed
by

APxy = (x1 + y1)(x2 + y2)− 2 · 1
2
(x1 + y1)x2 − 2 · 1

2
(x2 + y2)y1

= x1y2 − x2y1 = det(x, y).

Lemma 4.40. Let x and y be two linear independent vectors in Q2 and z ∈ cone(x, y)◦.
Denote the polytope generated by these three points and zero by Pxyz. Then x, y, z and
zero are vertices of Pxyz if and only if |det(x, z)|+ |det(y, z)| > |det(x, y)|.
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Proof. It is obvious that x, y and zero are vertices of Pxyz. Furthermore, z is a vertex of
Pxyz if and only if APxz + APzy > APxy . By Lemma 4.39 the assertion follows.

Lemma 4.41. Let X = X(A,P ) be a log del Pezzo K∗-surface. Then all primitive column
vectors vij and v± (if existing) of P are vertices of the anticanonical complex Ac

X .

Proof. Let X = X(A,P ) be a log del Pezzo K∗-surface. Then all conditions of Proposition
4.24 have to be satisfied. By Lemma 4.40 condition 4.24(ii) is equivalent to the condition
that all vij for j ̸= i and j ̸= ni are vertices of Ac

X . First assume that F+ resp. F− is an
elliptic fixed point. We treat exemplarily the case of F−. Then by 4.24(iii) the following
inequality holds:

li1 − li2
li1di2 − li2di1

·
r∑

j=0

dj1
lj1

<
r∑

j=0

1

lj1
− (r − 1)

We claim that this condition is equivalent to the condition that vi1 is a vertex of Ac
X .

Consider the vectors v̂i1 = (li1, di1), v̂i2 = (li2, di2) and v̂−c = pri(v
−
c ). By applying Lemma

4.40 we obtain that v̂i1 is a vertex of Âc
Xi

if and only if det(v̂−c , v̂i1) + det(v̂i1, v̂i1) >
det(v̂−c , v̂i2). Concretely, we obtain the inequality

−li1 ·
∑r

j=0
l−dj1
lj1∑r

j=0
l−

lj1
− (r − 1)l−

+ li1di2 − li2di1 > −li2 ·
∑r

j=0
l−dj1
lj1∑r

j=0
l−

lj1
− (r − 1)l−

.

Since X is log-terminal, the denominators are positive. Hence, we end up with condition
4.24(iii). Analogously, we can proceed with F+ and vini

using 4.24(iv). Now assume that
F+ or F− is a parabolic fixed point curve. (Note that not both of them can be parabolic
fixed point curves.) By Proposition 4.26 the log del Pezzo K∗-surface X can be embedded
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into a toric Fano variety. The vertices of the corresponding toric Fano polytope are the
columns of the P -matrix P of X. Hence the columns v+ resp. v− as well as vi1 and vini

are vertices of the anticanonical complex Ac
X . Note that the conditions 4.24(iii) and (iv)

yield also directly that vi1 and vini
are vertices of Ac

X in this case.

Corollary 4.42. Let X be a log del Pezzo K∗-surface. Then each arm Ac
Xi

as well as
the projected arm Âc

Xi
is a convex polytope with vertices vij, v±c , v± and pri(vij), pri(v±c ),

pri(v
±) respectively.

Remark 4.43. If X is a del Pezzo K∗-surface, then the anticanonical complex is locally
bounded by hypersurfaces defined by the anticanonical divisor −KX . For each two-
dimensional tower cone σ ∈ Σ, we find a linear form uσ ∈ MQ such that −KX is locally
represented by uσ. Let Huσ be the hypersurface in NQ defined by ⟨uσ, x⟩ − 1 = 0 and
let Ĥuσ be the half space defined by the inequation ⟨uσ, x⟩ − 1 < 0. Then σ ∩ trop(X) ∩
Ĥuσ defines a polytope of Ac

X . Note that in this situation the linear form uσ is not
uniquely determined. For the two elementary big cones σ± we have r + 1 unique linear
forms u±

0 , . . . , u
±
r representing locally −KX , compare 4.30. Let Hu±

i
be the associated

hypersurfaces and Ĥu±
i

the corresponding half spaces in NQ defined by ⟨u±
i , x⟩ − 1 < 0.

Then by σ ∩ trop(X) ∩ Ĥσ we obtain r + 1 polytopes of Ac
X . In particular, there is a

one-to-one correspondence between the cones of Σ ∩ trop(X) and the polytopes of Ac
X .

Example 4.44 (D4). Consider the K∗-surface given by the P -matrix

P =

−1 −2 1 2 0 0
−1 −2 0 0 1 2
−1 −1 0 1 0 1

 ,

with Cox ring K[T01, T02, T11, T12, T21, T22]/⟨T01T
2
02 + T11T

2
12 + T21T

2
22⟩. The fan Σ of the

minimal toric ambient variety is given by the maximal cones

Σmax = {τ0 := cone(v01, v02), τ1 := cone(v11, v12), τ2 := cone(v21, v22), σ
+, σ−}.

The following linear forms define bounding hypersurfaces for the anticanonical polytope:

uτ0 = (1,−1,−1) u−
0 = (1, 1,−2) u+

0 = (0, 0, 1)

uτ1 = (1, 1,−1) u−
1 = (0, 1,−2) u+

1 = (−1, 0, 1)
uτ2 = (−1, 1,−1) u−

2 = (1, 0,−2) u+
2 = (0,−1, 1)

The anticanonical complex is given by trop(X) ∩ AX where

AX = conv

(
v01, v02, v11, v12, v21, v22, (0, 0, 1), (0, 0,−

1

2
)

)
.

The following example shows that neither the Fano property does imply log-terminality
nor the other way around. Hence, both properties have to be required independently.
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Example 4.45. Consider the two P -matrices

P1 =

−7 −1 5 0
−7 −1 0 2
−8 −1 3 1

 , P2 =

−3 −1 −2 5 0
−3 −1 −2 0 2
−4 0 1 1 1

 .

The K∗-surface defined by P1 is not log-terminal but Fano (see 6.18) and the K∗-surface
defined by P2 is log-terminal but not Fano. The grading matrix of P2 is given by

Q2 =

(
2 2 1 2 5
1 −11 4 0 0

)
.

The anticanonical divisor class wX2 = (2,−6) is obviously not contained in the ample
cone Ample(X2) = cone((1, 0), (2, 1))◦.

Lemma 4.46. Let X be a K∗-surface and consider a stellar subdivision of a cone σ ∈ Σ,
occurring within the canonical resolution of X, given by the exceptional ray ϱ and its
primitive generator vϱ ∈ σ◦. Then the discrepancy of the associated modification is given
by ⟨uσ, vϱ⟩ − 1.

Proof. This follows directly from Proposition 3.22.

Lemma 4.47. In the situation of Lemma 4.46 let v′ϱ be the intersection point of Q≥0 · vϱ
with the hypersurface Huσ defined by ⟨uσ, x⟩ − 1 = 0. Then

⟨uσ, vϱ⟩ − 1 =
∥vϱ∥
∥v′ϱ∥

− 1.

Proof. By assumption we have ⟨uσ, v
′
ϱ⟩ = 1. Since uσ is a linear form, the assertion follows

from Lemma 4.46 and the theorem on intersecting lines.
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⟨uσ, x⟩ = 1

The anticanonical complex gives information about the canonical resolution of singular
log del Pezzo K∗-surfaces. We can determine the singularity type of X by means of the
anticanonical complex.
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Theorem 4.48. Let X be a log del Pezzo K∗-surface. Then the following statements
hold:

(a) X has at most ε-log terminal singularities if and only if 0 is the only lattice point
in the relative interior of ε · Ac

X .

(b) X has at most canonical singularities if and only if 0 is the only lattice point in the
relative interior of Ac

X .

(c) X has at most terminal singularities if and only if 0 and the primitive generators
are the only lattice points of Ac

X .

Proof. The assertions follow by Lemma 4.47 and Lemma 4.46.

The subsequent construction of two-dimensional P -complexes is a first and raw trial for
the definition of a category of convex geometrical objects being in one-to-one correspon-
dence to log del Pezzo K∗-surfaces.

Construction 4.49 (Two-dimensional P -complex). Consider the cones

τ0 := cone(−e1 − . . .− er,±er+1),

τ1 := cone(e1,±er+1),

...
τr := cone(er,±er+1),

and let ∆ be the fan in Qr+1 generated by the maximal cones τ0, . . . , τr. A polytopal
complex C is called a two-dimensional P -complex if the following conditions are satisfied:

(i) C is supported by ∆, i.e. C ⊆ |∆|.

(ii) C is complete in the sense that it cannot be enlarged without adding new vertices.

(iii) The vertices of C coincide with the vertices of the anticanonical complex Ac
X of a

log del Pezzo K∗-surface X = X(A,P ).

Corollary 4.50. For the category of log del Pezzo K∗-surfaces the following correspon-
dences hold:

{log del Pezzo K∗-surfaces} ←→ {2-dim. P -complexes}
{terminal del Pezzo K∗-surfaces} ←→ {2-dim. P -complexes, s.th. zero and its

vertices are the only lattice points in it}
{canonical del Pezzo K∗-surfaces} ←→ {2-dim. P -complexes, s.th. zero is

the only interior lattice point}
{ε-log-terminal del Pezzo K∗-surfaces} ←→ {2-dim. P -complexes C, s.th. zero is

the only interior lattice point in ε · C}
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Remark 4.51. The concept of the anticanonical complex can be generalized to com-
plexity-one Fano T -varieties in general. This is work in progress together with Jürgen
Hausen and Benjamin Bechtold.
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5 Del Pezzo K∗-surfaces

This chapter is dedicated to del Pezzo K∗-surfaces, i.e. K∗-surfaces that are Fano. The
main result is a complete classification list of all non-toric log-terminal Gorenstein del
Pezzo K∗-surfaces. To achieve this aim we describe the Gorenstein index of a K∗-surface
in terms of their P -matrix and anticanonical complex and consider the special geometry
of del Pezzo K∗-surfaces. Finally, we will give explicit bounds needed for the classification
results.

5.1 Del Pezzo and Gorenstein K∗-surfaces

In this section we will describe the Gorenstein index of a del Pezzo K∗-surface in terms
of its P -matrix and its anticanonical complex. Furthermore, we will prove some basic
statements about the geometry of del Pezzo K∗-surfaces.

Recall that a del Pezzo surface is a complete algebraic surface X over K such that the
anticanonical divisor class −KX is ample. A log del Pezzo surface is a del Pezzo surface
X having only log-terminal singularities. Furthermore, the degree of a del Pezzo surface
is defined as the self-intersection number of the anticanonical divisor dX = (−KX)

2.

Definition 5.1. A variety X has Gorenstein index ι(X) = a if a is the minimal positive
integer such that a · (−KX) ∈ Pic(X). Furthermore, X is said to be Gorenstein if the
Gorenstein index is one, i.e. the anticanonical divisor is Cartier.

We want to describe the Gorenstein index by means of P -matrices. It turns out that the
Gorenstein index requires some divisibility conditions to be satisfied:

Proposition 5.2. Let X = X(A,P ) be a K∗-surface and let Z be its minimal toric
ambient variety with associated fan Σ. Then X has Gorenstein index a if and only if a
is the smallest integer such that the following conditions are satisfied depending on the
cones σ ∈ Σ:

(i) Let σ = τij. Then

lijdij+1 − lij+1dij | a(dij+1 − dij) and lijdij+1 − lij+1dij | a(lij − lij+1).

(ii) Let σ = σ+
i or σ = σ−

i . Then

lini
| a(dini

− 1) and li1 | a(di1 + 1) respectively.

(iii) Let σ = σ±. Then
r∑

i=0

l

li
di

∣∣∣∣∣ a
(
(r − 1)l −

r∑
i=0

l

li

)
,

r∑
i=0

l

li
di

∣∣∣∣∣ a
(
(r − 1)

l

lk
dk +

∑
i̸=k

l

lkli
(di − dk)

)
for k = 1, . . . , r ,

where (l, li, di) is either (l−, li1, di1) or (l+, lini
, dini

) for l− := l01 · · · lr1 and l+ :=
l0n0 · · · lrnr .
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Proof. Let X be a K∗-surface arising from a matrix P and let Z be its minimal toric
ambient variety with corresponding fan Σ. For each cone σ ∈ Σ, the anticanonical divisor
is locally given by a linear form uσ ∈ MQ. Let the primitive generators of σ be the
columns of a matrix Aσ. Then Aσ is a submatrix of P satisfying

AT
σ · uσ = eX :=

{
(−(r − 1)l0 + 1, 1, . . . , 1) if σ = σ±

(1, . . . , 1) if σ = τij or σ = σ±
i

.

The K∗-surface X has Gorenstein index a if and only if a is the smallest integer such that
a · uσ is an integer linear form for all σ ∈ Σ.

We can explicitly compute the linear form by uσ = (AT
σ )

−1eX . For the tower cones τij =
cone(vij, vij+1) we can locally restrict to the two-dimensional toric variety corresponding to
the cone τij (compare Lemma 3.9). By considering the projected generators v̂ij = (lij, dij)
and v̂ij+1 = (lij+1, dij+1) in Q2 we obtain

1

lijdij+1 − lij+1dij
·
(

dij+1 −dij
−lij+1 lij

)
·
(
1
1

)
=

(
u1

u2

)
.

Hence, the linear form a · uτij is integral if and only if

lijdij+1 − lij+1dij | a · (dij+1 − dij) and lijdij+1 − lij+1dij | a · (lij − lij+1).

For the cones σ±
i we can proceed analogously with v̂± = (0,±1). Hence, we obtain the

conditions
lini
| a(dini

− 1) and li1 | a(di1 + 1).

Now we will have a look at the elementary big cones σ± corresponding to elliptic fixed
points. Let Aσ be the submatrix of P having all generators of σ = σ± as its columns. Let
(l, li, di) be (l−, li1, di1) or (l+, lini

, dini
). We compute a general formula for the inverse of

this matrix. Then

A−1
σ =

1∑r
i=0

l
li
di
·



− l
l0l1

d1 − l
l0l2

d2 . . . − l
l0lr

dr
l
l0∑

i̸=1
l

lil1
di − l

l1l2
d2 . . . − l

l1lr
dr

l
l1

− l
l2l1

d1
. . . . . . ...

...
... . . . . . . ...

...

− l
lr−1l1

d1
. . . − l

lr−1lr
dr

l
lr−1

− l
lrl1

d1 . . . − l
lrlr−1

dr−1

∑
i ̸=r

l
lilr

di
l
lr


.

The linear form a · uσ is integral if and only if the following conditions are satisfied:

det(Aσ) =
r∑

i=0

l

li
di

∣∣∣∣∣ a
(
(r − 1)l −

r∑
i=0

l

li

)

det(Aσ) =
r∑

i=0

l

li
di

∣∣∣∣∣ a
(
(r − 1)

l

lk
dk +

∑
i̸=k

l

lkli
(di − dk)

)
for k = 1, . . . , r.
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Remark 5.3. Comparing the Gorenstein conditions to the linear forms uσ given in 4.30
one easily detects that X has Gorenstein index a if and only if a · uσ is an integer linear
form.

Lemma 5.4. Assume that X is a log-terminal complexity-one Fano variety of Gorenstein
index a. Then X is 1

a
-log-canonical, i.e. the discrepancies are greater or equal to −1 + 1

a
.

Proof. Let X be a log-terminal Fano variety of Gorenstein index a, i.e. a is the smallest
integer such that a ·KX is Cartier. Consider a toric ambient modification π : X̃ → X with
exceptional divisor D and the associated pullback π∗ : Cl(X)→ Cl(X̃). Then π∗(a·KX) =
a · π∗(KX) is integral. The discrepancy is given by KX̃ − π∗(KX) = α ·D. This implies
a · α ∈ Z. In particular, α has to be greater or equal to −1 + 1

a
. Consequently, X is

1
a
-log-canonical.

Corollary 5.5. Let X be a Gorenstein log del Pezzo K∗-surface. Then X is canonical.

Corollary 5.6. Let X = X(A,P ) be a log del Pezzo K∗-surface of Gorenstein index
ι(X) = a. Then the anticanonical complex Ac

X satisfies

1

a
Ac

X
◦ ∩N = {0}.

Lemma 5.7. Let X = X(A,P ) be a non-toric K∗-surface. Then the following inequalities
cannot be satisfied simultaneously:

r∑
i=0

di1
li1

> (r − 1)−
r∑

i=0

1

li1
and

r∑
i=0

dini

lini

< −(r − 1) +
r∑

i=0

1

lini

.

Proof. First note, that P is given in such a form that dijlij+1 < dij+1lij holds for all
1 ≤ j ≤ ni. In particular we have di1lini

< dini
li1. Now consider the second inequality

which implies

−(r − 1) >

r∑
i=0

dini

lini

−
r∑

i=0

1

lini

and hence, by adding r + 1 on both sides, we obtain

2 >

r∑
i=0

dini

lini

+
r∑

i=0

lini
− 1

lini

.

Now we will prove that

r∑
i=0

⌈
dini

lini

⌉
≤

r∑
i=0

dini

lini

+
r∑

i=0

lini
− 1

lini
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holds, where ⌈x⌉ denotes the smallest integer bigger than the rational number x. We may
write dini

lini
= ai +

bi
lini

where ai is an integer and 0 < bi < lini
. Consequently, we have

bi
lini

+
lini
− 1

lini

= 1 +
bi − 1

lini

≥ 1,

which gives the assertion. Analogously, one obtains for the first inequality

−2 <
r∑

i=0

di1
li1

+
r∑

i=0

1− li1
li1

and
r∑

i=0

⌊
di1
li1

⌋
≥

r∑
i=0

di1
li1

+
r∑

i=0

li1 − 1

li1
.

Using the fact that we always have dini

lini
≥ di1

li1
, we obtain all in all

2 >

r∑
i=0

dini

lini

+
r∑

i=0

lini
− 1

lini

≥
r∑

i=0

⌈
dini

lini

⌉
≥

r∑
i=0

dini

lini

≥
r∑

i=0

di1
li1
≥

r∑
i=0

⌊
di1
li1

⌋
≥

r∑
i=0

di1
li1

+
r∑

i=0

li1 − 1

li1
> −2.

Since the surface X is not toric, we have r ≥ 2. Furthermore, we know that the columns
vij of P are pairwisely different and primitive, which implies gcd(li1, di1) = 1 as well as
gcd(lini

, dini
) = 1. This gives

r∑
i=0

(⌈
dini

lini

⌉
−
⌊
di1
li1

⌋)
≥ r + 1 ≥ 3.

Together with the integer property this is a contradiction to

2 >

r∑
i=0

⌈
dini

lini

⌉
≥

r∑
i=0

⌊
di1
li1

⌋
> −2.

Lemma 5.8. Let X be a non-toric Gorenstein log del Pezzo K∗-surface with two elliptic
fixed points. Then the following inequalities hold:

r∑
i=0

dini

lini

≤
r∑

i=0

1

lini

− (r − 1) ,
r∑

i=0

di1
li1
≥ −

r∑
i=0

1

li1
+ (r − 1).

Furthermore, at least one of them holds equality, i.e. v+c = v+ or v−c = v−.
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Proof. Let X be a K∗-surface and consider the elementary big cones σ± associated to the
elliptic fixed points. We subdivide these two cones by drawing in rays along v+ = er+1 and
v− = −er+1 respectively. Set k+ := lcm(l0n0 , . . . , lrnr) and k− = lcm(l01, . . . , lr1). Then,
by Proposition 3.15, the discrepancies of the associated toric ambient modifications are
given by

Discv+ =

∑r
i=0

k
lini
− k ·

∑r
i=0

dini

lini
− (r − 1) · k

k ·
∑r

i=0

dini

lini

=

∑r
i=0

1
lini
−
∑r

i=0

dini

lini
− (r − 1)∑r

i=0

dini

lini

and

Discv− =

∑r
i=0

k
li1

+ k ·
∑r

i=0
di1
li1
− (r − 1) · k

−k ·
∑r

i=0
di1
li1

=

∑r
i=0

1
li1

+
∑r

i=0
di1
li1
− (r − 1)

−
∑r

i=0
di1
li1

.

From Corollary 5.5 we infer that X is canonical. Hence, these discrepancies have to be
greater or equal to zero. Since the denominators are positive in both cases, we obtain the
following inequalities:

r∑
i=0

1

lini

−
r∑

i=0

dini

lini

− (r − 1) ≥ 0 and
r∑

i=0

1

li1
+

r∑
i=0

di1
li1
− (r − 1) ≥ 0.

As seen in Lemma 5.7 the strict inequality of both terms leads to a contradiction. Thus,
we must have equality in one case. This implies v+c = v+ or v−c = v−.

Proposition 5.9. Every non-toric del Pezzo K∗-surface has at least one elliptic fixed
point.

Proof. Assume that X is a non-toric Fano K∗-surface with two parabolic fixed point
curves F+ and F−. Then Kleiman’s condition for ampleness of the anticanonical divisor
class gives −KX · F+ > 0 and −KX · F− > 0. With Proposition 4.24 we obtain the two
inequalities

r∑
i=0

di1
li1

> (r − 1)−
r∑

i=0

1

li1
and

r∑
i=0

dini

lini

< −(r − 1) +
r∑

i=0

1

lini

.

By Lemma 5.7 these two inequalities cannot be satisfied simultaneously.

Proposition 5.10. Every non-toric del Pezzo K∗-surface has a singular elliptic fixed
point. In particular, there are no smooth non-toric del Pezzo K∗-surfaces.

Proof. Let X be a smooth non-toric Fano K∗-surface. Then the discrepancies of every
modification are greater than zero. In particular this holds for the discrepancies occurring
for the modification that we obtain by subdividing an elementary big cone σ± via v±.
Hence, if X has two elliptic fixed points, we obtain the following inequalities:

r∑
i=0

di1
li1

l− > (r − 1)l− −
r∑

i=0

l−

li1
,

r∑
i=0

dini

lini

l+ < −(r − 1)l+ +
r∑

i=0

l+

lini

.
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If X has only one elliptic fixed point, say F+ and one parabolic fixed point curve F−,
then the first inequality can be replaced by the inequality given by the Fano condition
F− · (−KX) > 0. We infer from Proposition 4.24 that it is also given by

r∑
i=0

di1
li1

l− > (r − 1)l− −
r∑

i=0

l−

li1
.

Hence, we end up with the same inequalities. The case that X has two parabolic fixed
point curves cannot occur, see Proposition 5.9. By Lemma 5.8 we know that these two
inequalities cannot be satisfied simultaneously, a contradiction to the smoothness of X.
Furthermore, we can conclude that there is always one elliptic fixed point which is singular.

Observation 5.11. In case of dimension two, Gorenstein and terminality imply smooth-
ness. Consequently, non-toric Gorenstein del Pezzo K∗-surfaces cannot be terminal.

5.2 Effective bounds for Gorenstein del Pezzo K∗-surfaces

We intend to classify Gorenstein log del Pezzo surfaces with a K∗-action. For this purpose
we will give explicit bounds for the number of Cox ring relations, the Picard number, i.e.
the rank of the divisor class group, and finally for all entries lij, dij of possible P -matrices.

Proposition 5.12. Let X = X(A,P ) be a non-toric log-terminal K∗-surface of Goren-
stein index ι(X) = a with two elliptic fixed points. Then r ≤ 4 · a− 1. In particular, the
number of relations of the Cox ring is bounded by 4 · a− 2.

Proof. By Lemma 5.4 we know that the discrepancies of the two elementary big cones σ±

have to be greater or equal to −1 + 1
a
. Consequently, for σ+ we obtain

r∑
i=0

1

lini

−
r∑

i=0

dini

lini

− (r − 1) ≥ (−1 + 1

a
)

r∑
i=0

dini

lini

and thus

−(r − 1) ≥ 1

a

r∑
i=0

dini

lini

−
r∑

i=0

1

lini

.

For σ− we obtain analogously

−(r − 1) ≥ −1

a

r∑
i=0

di1
li1
−

r∑
i=0

1

li1
.
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For x ∈ Q let ⌈x⌉ be the smallest integer greater than x and ⌊x⌋ the greatest integer
smaller than x. Adding r + 1 to both sides of the inequalities yields

2 ≥ 1

a

r∑
i=0

dini

lini

+
r∑

i=0

lini
− 1

lini

≥ 1

a

(
r∑

i=0

dini

lini

+
r∑

i=0

lini
− 1

lini

)

≥ 1

a

r∑
i=0

⌈
dini

lini

⌉
≥ 1

a

r∑
i=0

dini

lini

≥ 1

a

r∑
i=0

di1
li1
≥ 1

a

r∑
i=0

⌊
di1
li1

⌋

≥ 1

a

(
r∑

i=0

di1
li1

+
r∑

i=0

1− li1
li1

)
≥ 1

a

r∑
i=0

di1
li1

+
r∑

i=0

1− li1
li1

≥ −2.

With the above estimate we conclude

1

a
(r + 1) ≤ 1

a

r∑
i=0

(⌈
dini

lini

⌉
−
⌊
di1
li1

⌋)
≤ 4

and thus r ≤ 4a− 1 as claimed.

Proposition 5.13. Let X = X(A,P ) be a non-toric log del Pezzo K∗-surface of Goren-
stein index ι(X) = a with one parabolic fixed point curve. Then r ≤ 4·a−1. In particular,
the number of relations of the Cox ring is bounded by 4 · a− 2.

Proof. Assume that X has a parabolic fixed point curve F+. The argument is similar
to the argument used in the proof of Proposition 5.12. We just replace the Gorenstein
condition for the upper elliptic fixed point by the Fano condition (−KX) ·F+ > 0, which
is given by

r∑
i=0

1

lini

−
r∑

i=0

dini

lini

− (r − 1) > 0,

compare Proposition 4.24. In particular, for every a ∈ Z>0 we have

−(r − 1) > −
r∑

i=0

1

lini

+
r∑

i=0

dini

lini

≥ −
r∑

i=0

1

lini

+
1

a

r∑
i=0

dini

lini

.

Hence, we can use exactly the same estimate as in the proof of Proposition 5.12 which
verifies the assertion.

Corollary 5.14. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface.
Then its Cox ring has at most two relations.

An important convex geometrical result which turned out to be useful for log-terminal
Gorenstein del Pezzo K∗-surfaces is the following theorem of Schicho, [49, Theorem 2]:

Theorem 5.15. (Schicho’ s Theorem). Let B be a two-dimensional lattice polytope with
no interior lattice points. Then, up to unimodular transformation, B is one of the follow-
ing:

conv((0, 0), (n, 0), (m, 1), (0, 1)), conv((0, 0), (2, 0), (0, 2)).
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Proposition 5.16. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface.
Then ni ≤ 2 holds for all 0 ≤ i ≤ r and the rank rk(Cl(X)) of the divisor class group of
X is bounded by 5. Furthermore, the number of singularities is bounded by 10.

Proof. By Lemma 5.8 we know that one of the vertices v+c , v−c of the anticanonical complex
is a lattice point, i.e. we have v+c = v+ = er+1 or v−c = v− = −er+1. Since X is Fano
and Gorenstein, all the primitive generators vij are vertices of the anticanonical complex
Ac

X and there are no lattice points in the relative interior of Ac
X . By Schicho’s Theorem

we know that each arm of Ac
X lying within one block can have maximal four vertices.

Without loss of generality we assume one of them to be v−. Furthermore, we may assume
that one vertex is either v+ or zero. Consequently, we have ni ≤ 2. Moreover, by Corollary
5.14, the number of Cox ring relations is bounded by two. The rank of the class group is
given by

rk(Cl(X)) = n+m− (r − 1)− 2 ≤

{
4, if X has two elliptic fixed points,
5, if X has one elliptic fixed point.

Note that m ≤ 1 holds since X is Fano. Since there are at most two maximal tower cones
for each 0 ≤ i ≤ r ≤ 3 and at most two big cones σ±, the number of relevant maximal
cones in the fan Σ of the toric ambient variety Z is bounded by 10.

Proposition 5.17. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface
with a parabolic fixed point curve F+ and an elliptic fixed point F−. Then (ni = 1 and
li1 = 2) or (ni = 2 and li1 = li2 = 1) hold for each 0 ≤ i ≤ r.

Proof. First note that Proposition 5.16 gives the restriction ni = 1 or ni = 2. By Propo-
sition 4.24 we obtain for F+ the Fano condition

r∑
i=0

dini

lini

<
r∑

i=0

1

lini

− (r − 1) and consequently
r∑

i=0

di1
li1

= −
r∑

i=0

1

li1
+ (r − 1).

Note that the last equality follows from Corollary 5.8 and the fact that log-terminality and
Gorenstein property imply canonical singularities. According to the proof of Proposition
5.10 we have a (canonical) singularity in the lower elliptic fixed point. Consequently, we
have to subdivide the lower elementary big cone σ− along v−. Furthermore, we conclude
that v−c = v− is an integral vertex of Ac

X . Note that v+c = v+ is an integral vertex
since F+ is a parabolic fixed point curve. If X is Gorenstein, then the lattice polytope
conv(v−, v+, vi1) does not contain inner lattice points. First we consider the case ni = 1.
Without loss of generality we can assume li1 ≥ 2 and li1 > di1 ≥ 0.

�
�
�

�
�
�

r

r r
rr
r

(0, 0)

v+

v−

(2, 1)
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Consequently, conv((0, 1), (0,−1), (2, 1)) is the only possibility for a polytope without
inner lattice points. Otherwise (1, 1) or (1, 0) would be contained in the interior. Now we
have a look at the second case ni = 2. We restrict ourselves again to the situation within
one arm. The upper ray vi2 is contractible.

�
�
�r
rr
r(0, 0)

v+ vi2

vi1

Since X is Gorenstein, there are no points on the line between v+ and vi1 after the
contraction of vi2. In dimension two, terminality and Gorenstein imply smoothness. Con-
sequently, we obtain det(v+, vi1) = 1 and thus li1 = 1 and di1 ≤ 0 since

di1 ≤
di2
li2

< 1.

Now consider the second ray. The Gorenstein property gives li2 | di2−1 where li2 > di2 ≥
0. Thus, we obtain li2 = 1 (and di2 = 0) or di2 = 1. Assume di2 = 1. The Gorenstein
property for the cone cone(vi1, vi2) gives the condition

li1di2 − li2di1 = 1− li2di1 | 1− di1 = di2 − di1.

Since di1 ≤ 0, we have 1− li2di1 ≥ 1− di1 > 0 and the divisibility condition can only be
satisfied for l12 = 1 or for di1 = 0. In the latter case Schicho’s Theorem gives li2 ≤ 2. But
for li2 = 2 the primitive vector vi1 = (li1, di1) cannot be a vertex of Ac

X , which contradicts
the Fano condition.

Lemma 5.18. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface with
two elliptic fixed points such that P has standard form. If X has a singularity in the lower
elliptic fixed point F− and satisfies ni = 2 for an index 0 ≤ i ≤ r, then li2 = 1 holds.

Proof. Without loss of generality we may assume i ̸= 0 and we can consider the primitive
vectors v̂i1 = (li1, di1) and v̂i2 = (li2, di2) such that li1di2 < li2di1 and l21 > d21 ≥ 0. Then
v̂i2 is contained in cone((1, 1), (1, 0)). Assume that li2 ≥ 2 holds and recall that the sin-
gularity in F− implies that (0,−1) is a vertex of the subcomplex Âc

Xi
of the anticanonical

complex that we obtain by restricting on the projected i-th arm. If li2 < di2−1, then (1, 0)

is an interior point of Âc
X , a contradiction to the Gorenstein condition. If li2 = di2 − 1,

then we must set li1 := di1 − 1 to avoid that (1, 0) is an interior point of Âc
X . But this is

a contradiction to the (Fano) condition that v̂i1 is a vertex of Âc
Xi

.

Lemma 5.19. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface with
two elliptic fixed points and a singularity in the lower elliptic fixed point F− and let P be
in standard form. If ni = 1, then li1 = di1 + 1 holds for all i ̸= 0 and if ni = 2, then
li1 = 1 or di1 = −1 holds for all i ̸= 0.
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Proof. We have v̂−c = (0,−1), since F− is singular. Consider v̂i1 = (li1, di1) with li1 >
di1 ≥ 0. The assumption ni = 1 implies li1 ≥ 2 and di1 > 0. For all pairs (li1, di1) with
li1 ̸= di1 + 1, the point (1, 0) is contained in the relative interior of Âc

Xi
, a contradiction

to the Gorenstein condition. Now assume ni = 2. Then by Lemma 5.18 we have li2 = 1.
Since (1,−1) may not be an interior point of Âc

Xi
, the assertion follows.

Proposition 5.20. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface
with two elliptic fixed points. Then the exponents lij are bounded by 6.

Proof. Since X is Gorenstein, we may assume r ≤ 3, compare Corollary 5.14. The
Fano property of X allows us to work with the anticanonical complex. Without loss of
generality we can assume v−c = −er+1, i.e. X has a singularity in the lower elliptic fixed
point F−. Furthermore, we know that

r∑
i=0

l+dini

lini

> 0 and
r∑

i=0

l−di1
li1

< 0

hold and that the log-terminality condition for σ± gives

r∑
i=0

l+

lini

− (r − 1)l+ > 0 and
r∑

i=0

l−

li1
− (r − 1)l− > 0.

The last coordinate of the upper vertex v+c of the anticanonical complex is given by

0 ≤

∑r
i=0

l+dini

lini∑r
i=0

l+

lini
− (r − 1)l+

≤ 1.

By Proposition 5.16 we may also assume that ni ≤ 2 holds for all 0 ≤ i ≤ r. And since
we have two elliptic fixed points, there is at least one block with ni = 2. We go through
all possible cases:

(1): Let r = 2 or r = 3 and ni = 2 for all 0 ≤ i ≤ r. Then li2 = 1 for 0 ≤ i ≤ r and
di2 = 0 for 1 ≤ i ≤ r. The (r + 1)-th coordinate of the vertex v+c is positive but not
greater than 1. This gives 0 ≤ d02/2 ≤ 1 and thus d02 = 1 or d02 = 2. In particular,
v+c = er+1 or v+c = 1

2
er+1. This in turn implies li1 < 3 for 0 ≤ i ≤ 3, otherwise (1, 0) resp.

(−1, 0) or (−1, 1) would be interior points of Âc
Xi

.

(2): Let n0 = 1 and ni = 2 for 1 ≤ i ≤ r. Then li2 = 1 and di2 = 0 for 1 ≤ i ≤ r
and l01 ≥ 2. Furthermore, we know that (−1)rdet(σ+) = d01 > 0. For the (r + 1)-th
coordinate of v+c we obtain

d01
l01 + 1

≤ 1.

Furthermore, the Gorenstein condition for the upper elliptic fixed point says that d01 is a
divisor of l01 + 1, thus d01 ≤ l01 + 1. Since v−c = −er+1, we know that d01 ≥ l01 − 1 holds.
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Since d01 and l01 are coprime, there are two possibilities left. If d01 = l01 +1, then l01 ≥ 2
since otherwise (−1, 1) would be an interior point of Âc

X0
. For l01 = 2 and d01 = 3 we

obtain v+c = −er+1. If d01 = l01 − 1, then l01 − 1 | l01 + 1 which implies l01 ≤ 3. If l01 = 2
and d01 = 1, then v+c = 1

3
er+1 and if l01 = 3 and d01 = 2, then v+c = 1

2
er+1. All in all this

implies li1 ≤ 3 for 1 ≤ i ≤ r.

(3): Let n0 = n1 = 1 and ni = 2 for 2 ≤ i ≤ r. Then li2 = 1 and di2 = 0 for 2 ≤ i ≤ r and
l11 = d11 + 1. Furthermore d01l11 + l01l11 − l01 > 0 is a divisor of l01 + l11. In particular,
we have

d01l11 + l01l11 − l01 ≤ l01 + l11.

This implies d01 ≤ 1. Since l01 ≥ 2, we can conclude (d01 = 1 and l01 = 2) or (d01 = −1).
Otherwise (−1, 0) and (−1,−1) respectively would be an interior point of Âc

X0
. In the

first case we obtain directly l11 ≤ 2. So, assume d01 = −1. We want to avoid that
(−1, 0) is contained in the relative interior of the polytope spanned by (l01,−1), v̂+c and
v̂−c = (0,−1). For that purpose we compute the intersection point of the line spanned by
(l01,−1) and v̂+c with the horizontal 0-level and require it to be greater than −1. The
slope of this line can be computed by(

−l11 + l01l11 − l01
l01 + l11

+ 1

)
· 1

l01
=

l01l11
l01 + l11

· 1

l01
=

l11
l01 + l11

.

Hence, the intersection point is given by
−l11 + l01l11 − l01

l01 + l11
+

l11
l01 + l11

x = 0,

and we require

x =
l11 + l01 − l01l11

l11
≥ −1

which is equivalent to 2l11 + l01 − l01l11 ≥ 0. Let l01 = 2. Then this inequality is
always fulfilled. But since −l11 + l01(l11 − 1) = −l11 + 2(l11 − 1) = l11 − 2 is a divisor of
l11 + l01 = l11 + 2, we obtain l11 ∈ {3, 4, 6}. For l01 = 3 the inequality gives l11 ≤ 3. For
l01 = 4 we obtain l11 ≤ 2 and thus l01 ≥ 5 can be excluded since this would imply l11 ≤ 1.
The smallest value for the last coordinate of v+c is given by 1/5. Consequently, we obtain
li1 ≤ 5 for 2 ≤ i ≤ r.

(4): For r = 3, let ni = 1 for 0 ≤ i ≤ 2 and n3 = 2 and assume l01 ≥ l11 ≥ l21 ≥ 2. Then
we have l32 = 1 and d32 = 0 as well as l11 = d11 + 1 and l21 = d21 + 1. Putting this in the
condition

d01l11l21l32 + d11l01l21l32 + d21l01l11l32 + d32l01l11l21 > 0

we obtain
d01l11l21 + 2l01l11l21 − l01l21 − l01l11 > 0.

The log-terminality condition gives

− 2l01l11l21l32 + l01l11l21 + l01l11l32 + l01l21l32 + l11l21l32

= − l01l11l21 + l01l11 + l01l21 + l11l21

> 0.
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This condition is fulfilled if and only if (l01, l11, l21) is a platonic triple, i.e. it is of the form
(l01, 2, 2), (3, 3, 2), (4, 3, 2) or (5, 3, 2). Since X is Gorenstein the following divisibility
condition has to be satisfied:

d01l11l21 + 2l01l11l21 − l01l21 − l01l11 | −l01l11l21 + l01l11 + l01l21 + l11l21

Hence we have to go through all the cases mentioned above:

If (l01, l11, l21) = (l01, 2, 2), then 4d01 + 8l01 − 4l01 = 4d01 + 4l01 > 0 has to be a divisor
of −4l01 + 4 + 4l01 = 4. We can conclude d01 + l01 = 1 and hence l01 = 2 and d01 = −1,
otherwise (−1,−1) would be an interior point of Âc

X0
. Since (4 · (−1) + 4 · 2)/4 = 1 we

conclude v̂+c = (0, 1). Now we consider the lower elliptic fixed point. Since v−c = −er+1,
we obtain the condition

d01l11l21l31 + d11l01l21l31 + d21l01l11l31 + d31l01l11l21
−2l01l11l21l31 + l01l11l21 + l01l11l31 + l01l21l31 + l11l21l31

=
−4l31 + 4l31 + 4l31 + 8d31
−16l31 + 8 + 12l31

=
4l31 + 8d31
−4l31 + 8

= −1.

Consequently, we have d31 = −l31 which implies d31 = −1 and l31 = 1, since l31 and d31
are coprime.

If (l01, l11, l21) = (3, 3, 2), then 6d01 + 36 − 6 − 9 = 6d01 + 21 > 0 has to be a divisor of
−18 + 9+ 6+ 6 = 3. Since 6d01 + 21 ̸= 1 we conclude 6d01 + 21 = 3 and hence d01 = −3,
a contradiction to the condition gcd(l01, d01) = 1.

If (l01, l11, l21) = (4, 3, 2), then 6d01 + 48 − 8 − 12 = 6d01 + 28 > 0 has to be a divisor of
−24 + 12 + 6 + 8 = 2, which is not possible.

If (l01, l11, l21) = (5, 3, 2), then 6d01 + 60− 10− 15 = 6d01 + 35 > 0 has to be a divisor of
−30 + 15 + 10 + 6 = 1, which is not possible.

Corollary 5.21. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface.
Then all exponents are bounded by lij < 6.

Remark 5.22. We shortly recall some bounding statements that are used in the proof
of the next proposition. Let X = X(A,P ) be a non-toric log del Pezzo K∗-surface. Then
the following inequality is always satisfied (see proof of Lemma 5.7):

2 ≥
r∑

i=0

⌈
dini

lini

⌉
≥

r∑
i=0

dini

lini

≥
r∑

i=0

di1
li1
≥

r∑
i=0

⌊
di1
li1

⌋
≥ −2.

Furthermore, we may assume that F− is a singular elliptic fixed point which implies

−
r∑

i=0

l−

lini

+ (r − 1)l− =
r∑

i=0

di1
li1

< 0 .
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If F+ is an elliptic fixed point, then the following inequality holds and if F+ is an parabolic
fixed point curve, then equality is even excluded.

r∑
i=0

l+

lini

− (r − 1)l+ ≥
r∑

i=0

dini

lini

> 0

Proposition 5.23. Let X = X(A,P ) be a non-toric Gorenstein log del Pezzo K∗-surface.
Then the entries dij of the matrix P are bounded by |dij| ≤ 6.

Proof. We have to check all possible cases and use the statements of Remark 5.22. Set

D+ :=
r∑

i=0

dini
l+

lini

, D− :=
r∑

i=0

di1l
−

li1
.

First we assume that X has a parabolic fixed point curve F+ and an elliptic fixed point
F−. Then we have lij = 2 for ni = 1 and lij = 1 for ni = 2. Hence, we have the following
cases subject to n = (n0, . . . , nr):

• n = (1, 1, 1):
Then we have li1 = 2 for i = 0, 1, 2 and di1 = 1 for i = 1, 2. Using Remark 5.22 we
obtain D− = 4d01 + 4 + 4 = 4d01 + 8 = 8− 4− 4− 4 = −4 and thus d01 = −3.

• n = (1, 1, 1, 1):
Then we have li1 = 2 for i = 0, 1, 2, 3 and di1 = 1 for i = 1, 2, 3 and consequently
D− = 8d01 + 8 + 8 + 8 = 2 · 16− 8− 8− 8− 8 = 0, a contradiction.

• n = (2, 1, 1):
Then l01 = l02 = 1 and li1 = 2, di1 = 1 for i = 1, 2 and D− = 4d01 + 4 = −4 which
implies d01 = −2 and consequently −2 < d02 < 0 since D+ = 4d02 + 4 < 4.

• n = (2, 1, 1, 1):
Then l01 = l02 = 1 and li1 = 2 for i = 1, 2, di1 = 1. Hence, we have D− =
8d01 + 4 + 4 + 4 = 2 · 8 − 8 − 4 − 4 − 4 = −4 which implies d01 = −4 and thus
d02 > −4. D+ = 8d02 + 4 + 4 + 4 < 4 gives d02 < −1.

• n = (2, 2, 1):
Then li1 = li2 = 1 for i = 0, 1 and l21 = 2 as well as d12 = 0 and d21 = 1. So we
have D− = 2d01 + 2d11 + 1 = −3 and D+ = 2d02 + 1 < 3 which implies d02 < 1.
Since d01 + d11 = −2 and d01, d11 ≤ 0, we obtain −2 ≤ d01, d11 ≤ 0.

• n = (2, 2, 1, 1):
Then l31 = l21 = 2, d31 = d21 = 1 as well as l01 = l02 = l11 = l12 = 1 and d12 = 0,
d11 < 0. We have D+ = 4d02 + 2 + 2 < 4 and thus d02 ≤ 0 and d01 < 0. Since
D− = 4d01+4d11+2+2 = −4, we have d01+ d11 = −2 and thus −2 ≤ d01, d11 < 0.
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• n = (2, 2, 2):
Then we have li1 = li2 = 1 and d12 = d22 = 0 as well as D+ = d02 < 2 and
D− = d01 + d11 + d21 = −2. This implies 0 ≥ d01, d11, d21 ≥ −2.

• n = (2, 2, 2, 1) :
Then li1 = li2 = 1 for i = 0, 1, 2 and l31 = 2 which implies d31 = 1 and d22 = d12 = 0
and thus d11, d21 < 0. Since D+ = 2d02 + 1 < 3, we obtain d02 ≤ 0. Furthermore,
we have 2d01 + 2d11 + 2d21 + 1 = −3 which implies d01 + d11 + d21 = −2 where
d01, d11, d21 < 0, a contradiction.

• n = (2, 2, 2, 2):
Then we obtain analogously to the previous case d12 = d22 = d32 = 0 and 0 < d02 < 2
and thus d01 ≤ 0 and d11, d21, d21 < 0 which is a contradiction to d01+d11+d21+d21 =
−2.

Now we consider the case of X having two elliptic fixed points. Analogously, we have to
go through all cases as before using the inequalities of Remark 5.22. Note that for i ̸= 0
we always have

0 ≤ di2 < 6,

⌈
dini

lini

⌉
= 1 and

⌊
dini

lini

⌋
= 0.

Furthermore, we will use the fact, that if ni = 2, we can assume li2 = 1 and that if
di1 ̸= −1 holds for i ̸= 0, we have li1 = 1, compare Lemma 5.18.

• n = (2, 1, 1):
Then we have 2 ≥ d02 + 1 + 1 > 0 and thus we obtain −2 < d02 ≤ 0. Furthermore,
we have

−2 ≤
⌊
d01
l01

⌋
+ 0 + 0 < 0.

If l01 = 1 holds, we obtain −2 ≤ d01 < 0 and if l01 > 1 we obtain 0 > d01 ≥
−l01 − 1 > −7 since l01 < 6 and the polytope conv(v01, v02, v

−) does not have inner
points.

• n = (2, 1, 1, 1):
Analogously to the case before, we have 2 ≥ d02 + 1 + 1 + 1 > 0 and thus −3 <
d02 ≤ −1 as well as −2 ≤ d01+0+0+0 < 0 if l01 = 1 and 0 > d01 ≥ −l01− 1 > −7
otherwise.

• n = (2, 2, 1):
Here we have 2 ≥ d02 + 0 + 1 > 0 and thus −1 < d02 ≤ 1. We infer from Remark
5.22 that

0 >

⌊
d01
l01

⌋
+

⌊
d11
l11

⌋
≥ −2
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holds. Furthermore, we have d01
l01

< d02
l02
≤ 1 which gives d01 < 5. Since d11 < 0 and⌊

d01
l01

⌋
≤ 0, we have the possibilities⌊
d01
l01

⌋
= 0 or

⌊
d01
l01

⌋
= −1 which implies

⌊
d11
l11

⌋
= −1 or

⌊
d11
l11

⌋
= −2

and d01 > −5. If l11 ̸= 1, then d11 = −1 and if l11 = 1, we obtain d11 ≥ −2.

• n = (2, 2, 1, 1):
Analogously to the case before, we obtain 2 ≥ d02 + 0 + 1 + 1 > 0 and thus
−2 < d02 ≤ 0 which implies d01 > −5 and d11 ≥ −2.

• n = (2, 2, 2):
Here we have 2 ≥ d02 > 0 and

0 >

⌊
d01
l01

⌋
+

⌊
d11
l11

⌋
+

⌊
d21
l21

⌋
≥ −2.

Since d11, d21 < 0 holds, we have⌊
d11
l11

⌋
≤ −1 and

⌊
d21
l21

⌋
≤ −1

which implies ⌊d01/l01⌋ ≥ 0 and in particular d01 ≥ 0. Furthermore, we have
d01/l01 < 2 and thus

0 ≤
⌊
d01
l01

⌋
≤ 1 which implies

⌊
di1
li1

⌋
≥ −2

for i = 1, 2 and consequently d11 ≥ −2 and d21 ≥ −2 for l11 = 1 and l21 = 1
respectively (otherwise we have di1 = −1 anyway). Now consider the point (−1, 1)
which is not contained in the relative interior of conv(v01, v02, v

−). This implies
d01/l01 ≤ 1 and thus d01 ≤ l01 < 6.

• n = (2, 2, 2, 1):
Here we have 2 ≥ d02 + 1 > 0 and thus 1 ≥ d02 > −1 which implies d01

l01
< 1. All

other arguments run analogously since the following condition still holds:

0 >

⌊
d01
l01

⌋
+

⌊
d11
l11

⌋
+

⌊
d21
l21

⌋
≥ −2.

• n = (2, 2, 2, 2):
Here we have 2 ≥ d02 > 0 and

0 >

⌊
d01
l01

⌋
+

⌊
d11
l11

⌋
+

⌊
d21
l21

⌋
+

⌊
d31
l31

⌋
≥ −2

where ⌊di1/li1⌋ < 0 for i = 1, 2, 3. This implies ⌊d01/l01⌋ ≥ 1 and in particular
d01 > 0. On the other hand we know that d01/l01 < 2, so equality has to be
satisfied. Consider again the point (−1, 1). This gives d01/l01 ≤ 1 and thus d01 ≤ 5.
Since ⌊di1/li1⌋ ≥ −1 for i = 1, 2, 3 we obtain di1 > −5.
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5.3 Classification results for Gorenstein log del Pezzo K∗-surfaces

In this section we state the complete list of all non-toric Gorenstein log del Pezzo K∗-
surfaces by indicating their Cox rings and Cl(X)-gradings. Furthermore, we list their
P -matrices as well as their degree (−KX)

2 and their singularity type. Note that Hendrik
Süss classified them already up to Picard number two by other methods, see [51] and his
dissertation.

By Corollary 5.5 we know that Gorenstein log del Pezzo K∗-surfaces are canonical. In
dimension two the canonical singularities are exactly the so called ADE-singularities
which are defined as follows.

Definition 5.24. The ADE-classification is the complete list of simply laced Dynkin
diagrams , which is the following:

An r r r r r

Dn �
�
�

@
@
@

r r r r
r

r
E6 r r r r r

r

E7 r r r r r r
r

E8 r r r r r r r
r

We call a singularity an ADE-singularity if its resolution-curve is an ADE-curve. This
means that its irreducible components are all (−2)-curves. Two of these components
can intersect only once and they intersect transversally. The intersection graph of such a
curve corresponds to one of the Dynkin-graphs above, where the points are the irreducible
components. They share a common edge if and only if they intersect.

Now we will use the explicit bounds on the number of relations r and the parameters lij and
dij that we found in the last section to generate the complete list of all non-toric Gorenstein
del Pezzo K∗surfaces. We will write them down by means of their Cox rings. Note that
a K∗-surface is uniquely determined by its Cox ring. Furthermore, the singularity type
S(X), the degree dX = (−KX)

2 and the Picard index µ = [Cl(X) : Pic(X)] of the surfaces
are specified.
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Theorem 5.25. Let X be a non-toric Gorenstein log del Pezzo K∗-surface of Picard
number one. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (w1, . . . , wr) Cl(X) S(X) dX µ

K[T1, T2, T3, S1] / ⟨T 2
1 + T 2

2 + T 2
3 ⟩

(
1 1 1 1
1̄ 0̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄

)
Z⊕ Z/2Z⊕ Z/2Z D43A1 2 4

K[T1, . . . , T4] / ⟨T1T2 + T 2
3 + T 2

4 ⟩ ( 1 1 1 1
1̄ 3̄ 2̄ 0̄ ) Z⊕ Z/4Z 2A3A1 2 4

K[T1, . . . , T4] / ⟨T1T2 + T 2
3 + T 3

4 ⟩ ( 1 5 3 2 ) Z A4 5 5

K[T1, . . . , T4] / ⟨T1T2 + T 2
3 + T 4

4 ⟩ ( 1 3 2 1
1̄ 1̄ 1̄ 0̄ ) Z⊕ Z/2Z A5A1 3 6

K[T1, . . . , T4] / ⟨T1T2 + T 3
3 + T 3

4 ⟩ ( 2 1 1 1
2̄ 1̄ 2̄ 0̄ ) Z⊕ Z/3Z A5A2 2 6

K[T1, . . . , T4] / ⟨T 2
1 T2 + T 2

3 + T 3
4 ⟩ ( 1 4 3 2 ) Z D5 4 4

K[T1, . . . , T4] / ⟨T 2
1 T2 + T 2

3 + T 4
4 ⟩ ( 1 2 2 1

1̄ 0̄ 1̄ 0̄ ) Z⊕ Z/2Z D6A1 2 4

K[T1, . . . , T4] / ⟨T 2
1 T2 + T 3

3 + T 3
4 ⟩ ( 1 1 1 1

1̄ 1̄ 2̄ 0̄ ) Z⊕ Z/3Z E6A2 1 3

K[T1, . . . , T4] / ⟨T 3
1 T2 + T 2

3 + T 3
4 ⟩ ( 1 3 3 2 ) Z E6 3 3

K[T1, . . . , T4] / ⟨T 3
1 T2 + T 2

3 + T 4
4 ⟩ ( 1 1 2 1

0̄ 0̄ 1̄ 1̄ ) Z⊕ Z/2Z E7A1 1 2

K[T1, . . . , T4] / ⟨T 4
1 T2 + T 2

3 + T 3
4 ⟩ ( 1 2 3 2 ) Z E7 2 2

K[T1, . . . , T4] / ⟨T 5
1 T2 + T 2

3 + T 3
4 ⟩ ( 1 1 3 2 ) Z E8 1 1

K[T1, . . . , T5] / ⟨ T1T2+T 2
3+T 2

4 ,

λT 2
3+T 2

4+T 2
5
⟩

(
1 1 1 1 1
1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄

)
Z⊕ Z/2Z⊕ Z/2Z 2D4 1 4

Possible P -matrices for the Gorenstein del Pezzo surfaces with Picard number one are

PD43A1 =

−2 2 0 0
−2 0 2 0
−3 1 1 1

, P2A3A1 =

−1 −1 2 0
−1 −1 0 2
−2 0 1 1

, PA4 =

−1 −1 2 0
−1 −1 0 3
−2 −1 1 1

,

PA5A1 =

−1 −1 2 0
−1 −1 0 4
−2 −1 1 3

, PA5A2 =

−1 −1 3 0
−1 −1 0 3
−1 0 1 1

, PD5 =

−2 −1 2 0
−2 −1 0 3
−3 −1 1 2

,

PD6A1 =

−2 −1 2 0
−2 −1 0 4
−3 −1 1 3

, PE6A2 =

−2 −1 3 0
−2 −1 0 3
−3 −1 2 2

, PE6 =

−3 −1 2 0
−3 −1 0 3
−4 −1 1 2

,

PE7A1 =

−3 −1 2 0
−3 −1 0 4
−4 −1 1 3

, PE7 =

−4 −1 2 0
−4 −1 0 3
−5 −1 1 2

, PE8 =

−5 −1 2 0
−5 −1 0 3
−6 −1 1 2

,

P2D4 =


−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2
−2 −1 1 1 1

 .
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Theorem 5.26. Let X be a non-toric Gorenstein log del Pezzo K∗-surface of Picard
number two. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (w1, . . . , wr) Cl(X) S(X) dX

K[T1, . . . , T4, S1] / ⟨T1T2 + T 2
3 + T 2

4 ⟩
(

1 1 1 1 1
1 −1 0 0 1
1̄ 1̄ 1̄ 0̄ 0̄

)
Z2 ⊕ Z/2Z A32A1 3

K[T1, . . . , T5] / ⟨T1T2 + T3T4 + T 2
5 ⟩ ( 1 1 1 1 1

−1 1 2 −2 0 ) Z2 2A2A1 3

K[T1, . . . , T5] / ⟨T1T2 + T3T4 + T 2
5 ⟩ ( 1 3 1 3 2

1 1 0 2 1 ) Z2 A2 6

K[T1, . . . , T5] / ⟨T1T2 + T3T4 + T 3
5 ⟩ ( 1 2 1 2 1

1 −1 −1 1 0 ) Z2 A1A3 4

K[T1, . . . , T5] / ⟨T1T2 + T 2
3 T4 + T 2

4 ⟩ ( 1 3 1 2 2
0 2 1 0 1 ) Z2 A3 5

K[T1, . . . , T5] / ⟨T1T2 + T 2
3 T4 + T 3

5 ⟩ ( 1 2 1 1 1
−1 1 1 −2 0 ) Z2 A4A1 3

K[T1, . . . , T5] / ⟨T1T2 + T 3
3 T4 + T 2

5 ⟩ ( 1 3 1 1 2
−1 −1 0 −2 −1 ) Z2 A4 4

K[T1, . . . , T5] / ⟨T 2
1 T2 + T 2

3 T4 + T 2
5 ⟩ ( 1 2 1 2 2

−1 0 0 −2 −1 ) Z2 D4 4

K[T1, . . . , T5] / ⟨T 2
1 T2 + T 2

3 T4 + T 3
5 ⟩ ( 1 1 1 1 1

−1 2 1 −2 0 ) Z2 D5A1 2

K[T1, . . . , T5] / ⟨T 3
1 T2 + T 2

3 T4 + T 2
5 ⟩ ( 1 1 1 2 2

−1 1 0 −2 −1 ) Z2 D5 3

K[T1, . . . , T5] / ⟨T 3
1 T2 + T 3

3 T4 + T 2
5 ⟩ ( 1 1 1 1 2

−1 1 0 −2 −1 ) Z2 E6 2

K[T1, . . . , T6] / ⟨ T1T2+T3T4+T 2
5 ,

λT3T4+T 2
5+T 2

6
⟩

(
1 1 1 1 1 1
−1 1 1 −1 0 0
0̄ 0̄ 1̄ 1̄ 1̄ 0̄

)
Z2 ⊕ Z/2Z 2A3 2

Possible P -matrices for the Gorenstein del Pezzo surfaces with Picard number two are

PA32A1 =

−1 −1 2 0 0
−1 −1 0 2 0
−2 −1 1 1 1

 , P2A2A1 =

−1 −1 1 1 0
−1 −1 0 0 2
−1 1 −1 0 1

 ,

PA2 =

−1 −1 1 1 0
−1 −1 0 0 2
−1 0 −1 0 1

 , PA1A3 =

−1 −1 1 1 0
−1 −1 0 0 3
−1 0 −1 0 2

 ,

PA3 =

−1 −1 2 1 0
−1 −1 0 0 2
−1 0 −1 0 1

 , PA4A1 =

−1 −1 2 1 0
−1 −1 0 0 3
−1 0 −1 0 2

 ,

PA4 =

−1 −1 3 1 0
−1 −1 0 0 2
−1 0 −1 0 1

 , PD4 =

−2 −1 2 1 0
−2 −1 0 0 2
−1 0 −1 0 1

 ,

PD5A1 =

−2 −1 2 1 0
−2 −1 0 0 3
−1 0 −1 0 2

 , PD5 =

−3 −1 2 1 0
−3 −1 0 0 2
−1 0 −1 0 1

 ,

PE6 =

−3 −1 3 1 0
−3 −1 0 0 2
−1 0 −1 0 1

 , P2A3 =


−1 −1 1 1 0 0
−1 −1 0 0 2 0
−1 −1 0 0 0 2
−1 0 −1 0 1 1

 .
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Theorem 5.27. Let X be a non-toric Gorenstein log del Pezzo K∗-surface of Picard
number three. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (w1, . . . , wr) Cl(X) S(X) dX

K[T1, . . . , T5, S1] / ⟨T1T2 + T3T4 + T 2
5 ⟩

(
1 1 1 1 1 1
1 −1 0 0 0 1
1 −1 −1 1 0 0

)
Z3 A1A2 4

K[T1, . . . , T6] / ⟨T1T2 + T3T4 + T5T6⟩
(

1 1 1 1 1 1
1 0 0 1 0 1
0 0 1 −1 −1 1

)
Z3 3A1 4

K[T1, . . . , T6] / ⟨T1T2 + T3T4 + T5T6⟩
(

1 2 1 2 1 2
0 1 0 1 1 0
1 −1 −1 1 0 0

)
Z3 A1 6

K[T1, . . . , T6] / ⟨T1T2 + T3T4 + T 2
5 T6⟩

(
1 2 1 2 1 1
1 0 0 1 0 1
1 −1 −1 1 0 0

)
Z3 A2 5

K[T1, . . . , T6] / ⟨T1T2 + T 2
3 T4 + T 2

5 T6⟩
(

1 2 1 1 1 1
1 0 0 1 0 1
0 1 1 −1 0 1

)
Z3 A3 4

K[T1, . . . , T6] / ⟨T 2
1 T2 + T 2

3 T4 + T 2
5 T6⟩

(
1 1 1 1 1 1
−1 1 0 −1 0 −1
0 1 1 −1 0 1

)
Z3 D4 3

K[T1, . . . , T7] / ⟨
T1T2+T3T4+T5T6,
λT3T4+T5T6+T 2

7
⟩

(
1 1 1 1 1 1 1
0 0 1 −1 −1 1 0
−1 1 1 −1 0 0 0

)
Z3 2A2 3

Possible P -matrices for the Gorenstein del Pezzo surfaces with Picard number three are

PA1A2 =

−1 −1 1 1 0 0
−1 −1 0 0 2 0
−1 0 −1 0 1 1

 , P3A1 =

−1 −1 1 1 0 0
−1 −1 0 0 1 1
0 2 −1 0 −1 0

 ,

PA1 =

−1 −1 1 1 0 0
−1 −1 0 0 1 1
0 1 −1 0 −1 0

 , PA2 =

−1 −1 1 1 0 0
−1 −1 0 0 2 1
0 1 −1 0 −1 0

 ,

PA3 =

−1 −1 2 1 0 0
−1 −1 0 0 2 1
0 1 −1 0 −1 0

 , PD4 =

−2 −1 2 1 0 0
−2 −1 0 0 2 1
1 1 −1 0 −1 0

 ,

P2A2 =


−1 −1 1 1 0 0 0
−1 −1 0 0 1 1 0
−1 −1 0 0 0 0 2
0 1 −1 0 −1 0 1

 .

Theorem 5.28. Let X be a non-toric Gorenstein log del Pezzo K∗-surface of Picard
number four. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (w1, . . . , wr) Cl(X) S(X) dX

K[T1, . . . , T6, S1] / ⟨T1T2 + T3T4 + T5T6⟩
(

1 1 1 1 1 1 1
1 0 0 1 0 1 0
0 1 0 1 1 0 0
1 −1 −1 1 0 0 0

)
Z4 A1 5

K[T1, . . . , T8] / ⟨ T1T2+T3T4+T5T6,
λT3T4+T5T6+T7T8

⟩
(

1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
0 0 1 −1 −1 1 0 0
−1 1 1 −1 0 0 0 0

)
Z4 2A1 4
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Possible P -matrices for the Gorenstein del Pezzo surfaces with Picard number four are

PA1 =

−1 −1 1 1 0 0 0
−1 −1 0 0 1 1 0
0 1 −1 0 −1 0 1

 , P2A1 =


−1 −1 1 1 0 0 0 0
−1 −1 0 0 1 1 0 0
−1 −1 0 0 0 0 1 1
1 2 −1 0 −1 0 −1 0

 .

Remark 5.29. Toric Gorenstein del Pezzo surfaces are completely classified by reflexive
polytopes in Q2, i.e. lattice polytopes containing only 0 in their relative interior. Up to
unimodular transformations, there are exactly 16 such polytopes, see [48].

Example 5.30. We will resolve exemplarily the D4-surface X = X(A,P ) of Picard
number two given by

PD4 =

−2 −1 2 1 0
−2 −1 0 0 2
−1 0 −1 0 1

 and R(X) = K[Tij]/⟨T 2
01T02 + T 2

11T12 + T 2
21⟩.

In order to obtain the weak tropicalisation we have two add rays along (0, 0,±1). Then
we resolve locally the remaining (toric) singularities by adding rays along (−1,−1,−1),
(1, 0,−1) and (0, 1, 0). This resolution is not minimal since the ray Q·(0, 0, 1) corresponds
to the (−1)-curve F+. Contracting this curve we obtain the minimal resolution X ′ =
X(A,P ′) with Cox ring K[Tij, S1]/⟨T 2

01T02T03 + T 2
11T12T13 + T 2

21T22⟩ and P -matrix

P ′ =

−2 −1 −1 2 1 1 0 0 0
−2 −1 −1 0 0 0 2 1 0
−1 0 −1 −1 0 −1 1 0 −1

 .

Remark 5.31. Consider the two D4-surfaces with Picard number two and three. By
reordering the variables and applying admissible transformations we obtain the Cox rings

R(X1) = K[T1, . . . , T6]/⟨T1T
2
2 + T3T

2
4 + T5T

2
6 ⟩,

R(X2) = K[T1, . . . , T5]/⟨T1T
2
2 + T3T

2
4 + T 2

5 ⟩,

and the following two P -matrices:

P1 =

−1 −2 1 2 0 0
−1 −2 0 0 1 2
−1 −1 0 1 0 1

 and P2 =

−1 −2 1 2 0
−1 −2 0 0 2
−1 −1 0 1 1

 .

Then we obtain X2 out of X1 by contracting the column v21:0
1
0

 =

1
0
0

+

−1−1
−1

+

0
2
1

 .

In particular, the Fano condition is respected by this modification. Note that we can
also find such representations in case of the A1, A2, A3 and E6-surfaces which occur with
different Picard numbers.



5 DEL PEZZO K∗-SURFACES 111

We conclude this chapter with two infinite series of log-terminal del Pezzo K∗-surfaces
with arbitrary high Gorenstein index and Picard number.

Example 5.32. Let m = 0 and r ≥ 2 as well as ni = 2 and lij = 1 for 0 ≤ i ≤ r,
1 ≤ j ≤ ni, and consider the following ((r + 1)× 2(r + 1))-matrix:

P =


−1 −1 1 1 0 0 . . . 0 0

−1 −1 0 0 1 1
...

...
...

...
...

... . . . 0 0
−1 −1 0 0 . . . 0 0 1 1
0 r −1 0 . . . −1 0 −1 0

 .

This matrix defines a log-terminal K∗-surface X with two elliptic fixed points whose Cox
ring has n = 2(r + 1) variables and r − 1 relations g0, . . . , gr−2, where gi = ∗Ti1Ti2 +
∗Ti+1,1Ti+1,2 + ∗Ti+2,1Ti+2,2. Consequently, we have

rk(Cl(X)) = n− (r − 1)− 2 = 2(r + 1)− (r − 1)− 2 = r + 1.

The anticanonical complex Ac
X is given by the intersection trop(X) ∩ AX , where

AX = conv(vi1, vi2, v
+
c , v

−
c ; 0 ≤ i ≤ r) and v±c =

(
0, . . . , 0,±r

2

)
.

In particular, all vectors vi1, vi2 are vertices of Ac
X , which implies that X is Fano. The

surface X has three singularities corresponding to the two elementary big cones σ± and
τ = (v01, v02). By Proposition 5.2, we know that X has Gorenstein index ι(X) = a if
and only if r divides a · 2. Hence we have ι(X) = r if r is odd and ι(X) = r/2 if r is
even. And indeed for r = 2 we obtain the only possible Gorenstein surface of that type,
compare Theorem 5.27.

Example 5.33. Let m = 1 and r ≥ 2 as well as ni = 2 and lij = 1 for 0 ≤ i ≤ r,
1 ≤ j ≤ ni, and consider the following ((r + 1)× (2(r + 1) + 1))-matrix:

P =


−1 −1 1 1 0 0 . . . 0 0 0

−1 −1 0 0 1 1
...

...
...

...
...

...
... . . . 0 0 0

−1 −1 0 0 . . . 0 0 1 1 0
0 r − 1 −1 0 . . . −1 0 −1 0 1

 .

This matrix defines a log-terminal K∗-surface X with one elliptic fixed point and one
parabolic fixed point curve whose Cox ring has n+m = 2(r + 1) + 1 variables and r − 1
relations g0, . . . , gr−2, where gi = ∗Ti1Ti2 + ∗Ti+1,1Ti+1,2 + ∗Ti+2,1Ti+2,2. Consequently, we
have

rk(Cl(X)) = n+m− (r − 1)− 2 = 2(r + 1) + 1− (r − 1)− 2 = r + 2.
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The anticanonical complex Ac
X is given by the intersection trop(X) ∩ AX , where

AX = conv(vi1, vi2, v
+, v−c ; 0 ≤ i ≤ r) and v−c = (0, . . . , 0,−r).

In particular, all vectors vi1, vi2 are vertices of Ac
X , which implies that X is Fano. By

Proposition 5.2, we know that X has Gorenstein index ι(X) = a if and only if r divides
a ·2. Hence we have ι(X) = r if r is odd and ι(X) = r/2 if r is even. And indeed for r = 2
we obtain the only possible Gorenstein surface of that type, compare Theorem 5.28.
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6 Complexity-one Fano T -varieties with Picard number
one

In this chapter we provide effective bounds and classification results for rational Q-
factorial Fano varieties with a complexity-one torus action and Picard number one de-
pending on the invariants dimension and Picard index. The results of this chapter are
already published in [28, Sections 2 and 3] and [30].

6.1 Divisor class group and Picard group

Let X be a variety with a complexity-one torus action and let Pic(X) be its Picard group.
The Picard index of X is defined as the index µ := [Cl(X) : Pic(X)] of the Picard group
in the divisor class group Cl(X) of X. Furthermore, the Picard number denotes the rank
of the Picard group Pic(X). Note that in case of Q-factorial (rational) varieties this is
always the rank of the divisor class group Cl(X).

For this chapter we assume X to have Picard number one. Then the divisor class group
is of the form

Cl(X) ∼= Cl(X)0 ⊕ Cl(X)t ∼= Z⊕ Cl(X)t,

where Cl(X)t denotes the torsion part of Cl(X) and Cl(X)0 = Cl(X)/Cl(X)t. We briefly
recall the situation of the constructions 2.10 and 2.20 in this special case. There is a matrix
P and a sequence A satisfying all assumptions of 2.10 such that Cl(X) ∼= Zn+m/im(P ∗)
and the positively Cl(X)-graded ring R(A,P ) = K[Tij, Sk]/⟨gi; 0 ≤ i ≤ r− 2⟩ is the Cox
ring of X. The grading of R(A,P ) is given by

deg(Tij) =: wij, 0 ≤ i ≤ r, 1 ≤ j ≤ ni, deg(Sk) =: uk, 1 ≤ k ≤ m,

where wij, uk ∈ Z>0⊕Cl(X)t. Note that any n+m− 1 of these degrees generate Cl(X)
as a group. The Cl(X)-grading defines a diagonal action of H := Spec K[K] on Kn+m.
By construction

X := V (gi; 0 ≤ i ≤ r − 2) = SpecR(A,P )

is invariant under this H-action. The open set Kn+m \ {0} allows a geometric quotient of
this H-action which is denoted by p : Kn+m\{0} → Z ′, where the toric variety Z ′ is a fake
weighted projective space in the sense of [35]. In the special case of Picard number one,
each F-face is relevant. Hence, we have a geometric quotient p : X̂ → X of the embedded
open subset X̂ := X \ {0} on X.

X̂

p

��

� � // Kn+m \ {0}
p

��
X � � // Z ′

In this setting X has dimension dim(X) = n+m− r and the torus of X is given by the
stabilizer of X under the action of the maximal torus T ′ of Z ′.
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Furthermore, X is uniquely determined by its Cox ring (as Cl(X)-graded ring), since
Φ = {Q≥0} is the only possible F-bunch. This justifies the notion X = X(A,P ).

As already mentioned, in the toric situation, these varieties correspond to the fake
weighted projective spaces as defined in [35] and the Cox ring is polynomial. In gen-
eral, X is a well-formed complete intersection in a fake weighted projective space. If the
divisor class group Cl(X) is torsion free then X is a well-formed complete intersection in
a weighted projective space in the sense of [31].

Every element w ∈ Cl(X) can be written as w = w0+wt where w0 ∈ Z and wt ∈ Cl(X)t.
Furthermore, every x = (xij, xk) ∈ X̂ ⊆ Kn+m defines a point x ∈ X by x := p(x);
the points x ∈ X̂ are called Cox coordinates of x. We denote the set of all weights
corresponding to a non-zero coordinate of x by

Wx := {wij; xij ̸= 0} ∪ {uk; xk ̸= 0}.

Proposition 6.1. Let X = X(A,P ) be a Q-factorial complete normal variety of dimen-
sion d with complexity-one torus action and Picard number one and set γi := deg(gi),
0 ≤ i ≤ r. Then the following statements hold:

(i) For any x ∈ X̂, the local divisor class group Cl(X, x) of x := p(x) is finite and
gcd(w0; w ∈ Wx) always divides the order of this group. If Cl(X) ∼= Z, then
|Cl(X, x)| = gcd(w;w ∈ Wx) holds.

(ii) The Picard group Pic(X) is free and the Picard index is given by

[Cl(X) : Pic(X)] = lcmx∈X(gcd(w
0; w ∈ Wx)) · |Cl(X)t|.

In particular |Cl(X)t| is a divisor of [Cl(X) : Pic(X)] and we have |Cl(X)t| ≤
[Cl(X) : Pic(X)].

(iii) Let −KX ∈ Cl(X) be the anticanonical class and dX := (−KX)
d its self-intersection

number. Then

−KX =
r∑

i=0

ni∑
j=1

wij +
m∑
k=1

uk −
r−2∑
i=0

γi,

dX =

(
r∑

i=0

ni∑
j=1

w0
ij +

m∑
k=1

u0
k −

r−2∑
i=0

γ0
i

)d
γ0
0 · · · γ0

r−2∏r
i=0

∏ni

j=1w
0
ij

∏m
k=1 u

0
k · |Cl(X)t|

.

(iv) The variety X is Fano if and only if the following inequality holds:

(r − 1) deg(g0)
0 =

r−2∑
i=0

deg(gi)
0 <

r∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
k.
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Proof. Let x(i, j) resp. x(k) be a point in X̂, where the ij-th resp. (n + k)-th entry
equals 1 and all others are 0. Consider the minimal toric ambient variety Z satisfying
Cl(X) ∼= Cl(Z) and Pic(X) ∼= Pic(Z). By choice x(i, j) resp. x(k) is a toric fixed point
which is equivalent to the existence of a full dimensional cone in the fan ΣZ . Consequently,
by [21, Theorem VII. 2.16] the Picard group Pic(Z) is free, and so is Pic(X). According
to 1.17, see also [25, Corollary 4.9], we obtain

Pic(X) =
∩
x∈X̂

⟨w; w ∈ Wx⟩ ∼=
∩
x∈X̂

⟨w0; w ∈ Wx⟩,

where the last isomorphy follows from the fact that Pic(X) is free. This proves assertions
(i) and (ii). The formula for −KX as well as statement (iv) are special cases of [25,
Proposition 4.15 and Corollary 4.16]. Since X is embedded into a toric variety Z of
dimension n+m−1 with Cl(Z) ∼= Cl(X) we will use toric intersection theory to determine
(−KX)

d = (−KX)
n+m−r. Fixing a pair (s, t) with 0 ≤ s ≤ r, 1 ≤ t ≤ ns we first compute

the self-intersection number of the 1-class. By [5, Construction III 3.3.4] we obtain

∏
(i,j) ̸=(s,t)

wij

m∏
k=1

uk =
1

[Cl(Z) : ⟨wst⟩]

=
1

w0
st · |Cl(Z)t|

=
∏

(i,j) ̸=(s,t)

w0
ij

m∏
k=1

u0
k · 1n+m−1.

This implies

1n+m−1 =
1∏r

i=0

∏ni

j=1w
0
ij

∏m
k=1 u

0
k · |Cl(Z)t|

.

With this result we can compute (−KX)
n+m−r by using again toric intersection theory.

(−KX)
n+m−r =

(
r∑

i=0

ni∑
j=1

wij +
m∑
k=1

uk −
r−2∑
i=0

γi

)n+m−r

· γ0 · · · γr−2

=

(
r∑

i=0

ni∑
j=1

w0
ij +

m∑
k=1

u0
k −

r−2∑
i=0

γ0
i

)n+m−r

· γ0
0 · · · γ0

r−2 · 1n+m−1

=

(
r∑

i=0

ni∑
j=1

w0
ij +

m∑
k=1

u0
k −

r−2∑
i=0

γ0
i

)d
γ0
0 · · · γ0

r−2∏r
i=0

∏ni

j=1w
0
ij ·
∏m

k=1 u
0
k · |Cl(Z)t|

Corollary 6.2. Let X be a Q-factorial complete normal variety with complexity-one torus
action and Picard number one. If X is locally factorial, then the divisor class group Cl(X)
is free.
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The following example shows that one can use Proposition 6.1(iv) to create series of Fano
varieties by altering the torsion part of the divisor class group Cl(X):

Example 6.3. Set l01 = 7, l02 = 1, l11 = 5 and l21 = 2 as well as w0
01 = 1, w0

02 = 3,
w0

11 = 2 and w0
21 = 5. These data define one single Cox ring relation of the form g0 =

T 7
01T02 + T 5

11 + T 2
21. Since we have

w0
01 + w0

02 + w0
11 + w0

21 = 11 > 10 = deg(g0)
0,

one can use these data to create Cox rings of Fano varieties. We provide some possible
Cl(X)-gradings, given by the matrices Qi and the associated P -matrices Pi, defining del
Pezzo K∗-surfaces with fixed grading in the free part of the divisor class group and varying
torsion part of the class group Cl(X)t:

Q1 =
(
1 3 2 5

)
, P1 =

−7 −1 5 0
−7 −1 0 2
−8 −1 3 1

 , Cl(X1) = Z;

Q2 =

(
1 3 2 5
0 2 1 1

)
, P2 =

 −7 −1 5 0
−7 −1 0 2
−10 −1 4 1

 , Cl(X2) = Z⊕ Z/3Z;

Q3 =

(
1 3 2 5
2 1 3 3

)
, P3 =

−7 −1 5 0
−7 −1 0 2
−9 0 2 1

 , Cl(X3) = Z⊕ Z/9Z;

Q4 =

(
1 3 2 5
0 1 9 6

)
, P4 =

 −7 −1 5 0
−7 −1 0 2
−11 0 3 1

 , Cl(X4) = Z⊕ Z/11Z;

Q5 =

(
1 3 2 5
0 3 11 8

)
, P5 =

 −7 −1 5 0
−7 −1 0 2
−13 0 4 1

 , Cl(X5) = Z⊕ Z/13Z;

Q6 =

(
1 3 2 5
0 7 15 12

)
, P6 =

−7 −1 5 0
−7 −1 0 2
−4 −3 4 1

 , Cl(X6) = Z⊕ Z/17Z.

Note that in this situation not every group of the form Z ⊕ Z/kZ, k ∈ N>0, can be
realized as a divisor class group.

In Example 6.3 the numbers ℓi := gcd(li1, . . . , lini
) are pairwise coprime, namely ℓ0 =

1, ℓ1 = 2 and ℓ2 = 5. This in an essential requirement for varieties with a free divisor
class group Cl(X). Example 6.3 also shows that this is not sufficient to ensure that
Cl(X) has no torsion. If the numbers ℓi are not pairwise coprime, then there is always
non trivial torsion in the divisor class group as the following lemma shows, whereas the
reversed implication does not hold.

Lemma 6.4. Set ℓi := gcd(li1, . . . , lini
). Then all numbers gcd(ℓi, ℓj), where 0 ≤ i ̸= j ≤

r, divide |Cl(X)t| and the Picard index µ. In particular this holds for lcmj ̸=i(gcd(ℓi, ℓj)).
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Proof. The divisor class group Cl(X) is isomorphic to Zn+m/im(P ∗) where P ∗ is dual to
P : Zn+m → Zn+m−1 given by a matrix of the form

P =


−l0 l1 . . . 0 0
... . . . ...
−l0 0 . . . lr 0
d0 d1 . . . dr d′

 ,

with li = (li0, . . . , lini
) and some integral block matrices di and d′. Consequently, |Cl(X)t|

is the product of all elementary divisors of P which implies that gcd(ℓ0, ℓj) divides
|Cl(X)t|. By an elementary row transformation we obtain the analogous result for
gcd(ℓi, ℓj), where 0 ≤ i, j ≤ r, i ̸= j. Since |Cl(X)t| divides the Picard index µ, the
assertion follows.

Corollary 6.5. Let Cl(X) be free. Then the numbers ℓi = gcd(li1, . . . , lini
) are coprime.

Example 6.6. Consider the surface X with Cox ring R(X) = K[T01, T01, T11, T12]/⟨g⟩
where g = T 2

01T02 + T 3
11 + T 3

21 (surface number 7 of 6.18). Then we have µ = 3 and the
P -matrix as well as the grading matrix are given by

P =

−2 −1 3 0
−2 −1 0 3
−3 −1 2 2

 , Q =

(
1 1 1 1
1 1 2 0

)
,

with Cl(X) = Z×Z/3Z. For x ∈ Xτ with τ = cone(v01, v02) we have a trivial local class
group. For x ∈ Xσ± with σ− = cone(v01, v11, v21) or σ+ = cone(v02, v11, v21), we have
Cl(X, x) ∼= Z/3Z.

Remark 6.7. One can even prove that lcm0≤j≤r(
∏

i ̸=j gcd(ℓi, ℓj)) divides |Cl(X)t|. This
is due to the fact that the product of the first n elementary divisors of P equals the
greatest common divisor of all (n× n)-minors of P . Consider for example the surface X
with Cox ring K[T01, T11, T21, S1]/⟨g⟩ and g = T 2

01+T 2
11+T 2

21 (surface number 10 in 6.18).
In this case we have µ = 4 and the P -matrix as well as the grading matrix are given by

P =

−2 2 0 0
−2 0 2 0
−3 1 1 1

 , Q =

1 1 1 1
1 1 1 0
0 1 1 0


and we obtain Cl(X, x) ∼= Z/2Z × Z/2Z if x ∈ Xσ− with σ− = cone(v01, v11, v21). Note
that Cl(X) ∼= Z×Z/2Z×Z/2Z. In particular, the torsion part of the divisor class group
is not cyclic.

6.2 Effective bounds

Since normal complete rational Fano varieties with a complexity-one torus action are
uniquely determined by their Cox rings, one can classify these varieties via their Cox
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rings. In this section we will state effective bounds on the parameters lij, w0
ij, u0

k and
r for the special case of Picard number one, depending on the invariants dimension and
Picard index. These can be used to compute concrete classification lists, which is done
in the next section.

Toric varieties with Picard number one correspond to fake weighted projective spaces as
defined in [35] and the Cox ring is polynomial. In case of a free divisor class group one gets
the well known weighted projective spaces. Particularly, these toric varieties are all Fano.
Hence, we concentrate on non-toric (Fano) varieties with complexity-one torus action and
Picard number one and show that for fixed dimension d and fixed Picard index µ there
are only finitely many possibilities for the corresponding Cox ring.

First we consider the case n0 = . . . = nr = 1, that means each relation gi of the Cox
ring R(X) depends only on three variables. Then we have n = r + 1 and consequently
m = d − 1. Furthermore, we may write Ti instead of Ti1 and wi instead of wi1. In this
setting, we obtain the following bounds for the numbers of possible varieties X (Fano or
not).

Proposition 6.8. For any pair (d, µ) ∈ Z2
>0 there is, up to deformation equivalence, only

a finite number of complete d-dimensional varieties with Picard number one, Picard index
[Cl(X) : Pic(X)] = µ and Cox ring of the form

K[T0, . . . , Tr, S1, . . . , Sm] / ⟨αiT
li
i + αi+1T

li+1

i+1 + αi+2T
li+2

i+2 ; 0 ≤ i ≤ r − 2⟩.

In this situation we have r < µ + ξ(µ) − 1 where ξ(µ) denotes the number of primes
smaller than µ. Moreover, for w0

i ∈ Z>0 and u0
k ∈ Z>0, where 0 ≤ i ≤ r, 1 ≤ k ≤ m, and

the exponents li one has

li ≤ µ, w0
i ≤ µr, u0

k ≤ µ.

Proof. Consider the total coordinate space X ⊆ Kr+1+m and the quotient p : X̂ → X as
well as the points x(k) ∈ X̂ having the (r + k)-th coordinate one and all others zero.
Set x(k) := p(x(k)). Then u0

k divides the order of the local class group Cl(X, x(k)). In
particular, we have u0

k ≤ µ.
For each 0 ≤ i ≤ r, fix a point y(i) = (y0, . . . , yr, 0, . . . , 0) in X̂ such that yi = 0 and
yj ̸= 0 for i ̸= j, and set yi := p(y(i)). Then we obtain

gcd(w0
j , j ̸= i)

∣∣∣ |Cl(X, y(i))|.

By Lemma 6.4 we have lcmj ̸=i(gcd(li, lj)) | |Cl(X)t|. Now consider l′i such that li =
lcmj ̸=i(gcd(li, lj)) · l′i. Then the homogeneity condition liw

0
i = ljw

0
j gives l′i | w0

j for all
j ̸= i and consequently l′i | gcd(w0

j , j ̸= i). Since li = l′i · lcmj ̸=i(gcd(li, lj)) we can conclude
li ≤ µ by using the formula

[Cl(X) : Pic(X)] = lcmx∈X(gcd(w
0; w ∈ Wx)) · |Cl(X)t|
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of Proposition 6.1(ii). Since the l′i are pairwise coprime, we obtain l′0 · · · l′r | γ0 and
l′0 · · · l′r | µ, where γ0 := deg(g0)

0 = liw
0
i . From liw

0
i = ljw

0
j we deduce that

li = l0
w0

0

w0
i

= l0
w0

0 · · ·w0
i−1

w0
1 · · ·w0

i

= ηi ·
gcd(w0

0, . . . , w
0
i−1)

gcd(w0
0, . . . , w

0
i )
≤ µ,

where 1 ≤ ηi ≤ µ. In particular, the last fraction is smaller than µ. All in all this gives

w0
0 =

w0
0

gcd(w0
0, w

0
1)
· gcd(w0

0, w
0
1)

gcd(w0
0, w

0
1, w

0
2)
· . . . ·

gcd(w0
0, . . . , w

0
r−2)

gcd(w0
0, . . . , w

0
r−1)
· gcd(w0

0, . . . , w
0
r−1)

≤ µr−1 · µ = µr.

Analogously, we obtain the boundedness for all w0
i . Now let q be the number of all l′i

being greater than one. Since all l′i, 0 ≤ i ≤ r, are coprime, q is bounded by ξ(µ), i.e.
the number of primes smaller than µ. To avoid the toric case we assume li ̸= 1 for all
0 ≤ i ≤ r. Consequently, if l′i = 1, then there is at least one 0 ≤ j ≤ r such that
gcd(li, lj) > 1. Since gcd(li, lj) divides µ, we get r + 1 − q < µ as a rough bound. All in
all obtain get r + 1 = r + 1− q + q < µ+ ξ(µ).

Let X be a normal complete rational variety coming with a complexity-one torus action
of T . Consider the T -invariant open subset X0 consisting of all points x ∈ X having finite
isotropy group. According to [50, Corollary 3] there is a geometric quotient q : X0 → X0/T
such that X0/T is irreducible and normal, but possibly not separated. The property of the
orbit space X0/T being separated is reflected in the Cox ring relations by the condition
that each monomial depends on only one variable, e.g. surface number 3 in Theorem 6.18;
see [29, Theorem 1.2]. Geometrically, this means that every orbit is contained in the
closure of either exactly one maximal orbit or of infinitely many maximal orbits. For such
varieties we have the following general finiteness statement:

Theorem 6.9. The number of d-dimensional normal complete rational varieties of Picard
number one with a complexity-one torus action of T and Picard index µ such that X0/T
is separated is finite.

Proof. Let X be a variety as required in the assertion. Then each monomial of the Cox
ring relations depends on only one variable, i.e. ni = 1 for 0 ≤ i ≤ r; for details see [29,
Theorem 1.2]. Consequently, Proposition 6.8 provides bounds for the discrete data such
as the non torsion parts of the weights w0

ij and u0
k, the exponents lij and the number of

Cox ring relations r. Since |Cl(X)t| ≤ µ holds, the number of possibilities for the torsion
part of the grading is also restricted which implies the assertion.

Theorem 6.10. Let X = X(A,P ) be a complexity-one Fano variety with Picard number
one. Fix the dimension d = dim(X) = m + n + r and the Picard index µ = [Cl(X) :
Pic(X)]. Then the number of Cox ring relations r, the free part of the degree of the
relations γ0, the weights w0

ij, u0
k and the exponents l0ij, where 0 ≤ i ≤ r, 1 ≤ j ≤ ni and

1 ≤ k ≤ m, are bounded. In particular, the following effective bounds hold:

u0
k ≤ µ for 1 ≤ k ≤ m and |Cl(X)t| ≤ µ.
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Moreover, the handling of the remaining data can be organized in five cases, where ξ(x)
denotes the number of primes smaller than x.

(i) Let r = 0 or r = 1. Then n+m ≤ d+ 1 holds and one has the bounds

w0
ij ≤ µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni.

The Picard index is given by

µ = lcm(w0
ij, u

0
k; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m) · |Cl(X)t|.

(ii) Let r ≥ 2 and n0 = 1. Then r ≤ µ + ξ(µ) − 1, n = r + 1 and m = d − 1 hold and
one has

w0
i1 ≤ µr, li1 | µ for 0 ≤ i ≤ r, γ0 ≤ µr+1.

The Picard index is given by

µ = lcm(gcdi(w
0
j1; i ̸= j), u0

k; 0 ≤ i ≤ r, 1 ≤ k ≤ m) · |Cl(X)t|.

(iii) Let r ≥ 2, n0 > n1 = 1 and l11 ≥ . . . ≥ lr1 ≥ 2. Then r ≤ µ + ξ(6dµ) − 1 and
n0 +m = d hold and one has the bounds

w0
01, . . . , w

0
0n0
≤ µ, l01, . . . , l0n0 ≤ 6dµ, γ0 < 6dµ,

w0
11 < 2dµ, w0

21 < 3dµ, w0
i1, li1 < 6dµ for 1 ≤ i ≤ r.

The Picard index is given by

µ = lcm(w0
0j, gcd(w

0
11, . . . , w

0
r1), u

0
k; 1 ≤ j ≤ n0, 1 ≤ k ≤ m) · |Cl(X)t|.

(iv) Let n1 > n2 = 1 and l21 ≥ . . . ≥ lr1 ≥ 2. Then r ≤ µ + ξ(2(d + 1)µ) − 1 and
n0 + n1 +m = d+ 1 hold and one has the bounds

w0
ij ≤ µ for i = 0, 1 and 1 ≤ j ≤ ni, w0

21 < (d+ 1)µ,

γ0, w0
ij, lij < 2(d+ 1)µ for 0 ≤ i ≤ r, and 1 ≤ j ≤ ni.

The Picard index is given by

µ = lcm(w0
ij, u

0
k; 0 ≤ i ≤ 1, 1 ≤ j ≤ ni, 1 ≤ k ≤ m) · |Cl(X)t|.

(v) Let n2 > 1 and let s be the maximal number with ns > 1. Assume ls+1,1 ≥ . . . ≥
lr1 ≥ 2. Then we have s ≤ d, r ≤ µ+ξ((d+2)µ)+d−1 and n0+ . . .+ns+m = d+s
and the bounds

w0
ij ≤ µ, for 0 ≤ i ≤ s, γ0 < (d+ 2)µ,

w0
ij, lij < (d+ 2)µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni.

The Picard index is given by

µ = lcm(w0
ij, u

0
k; 0 ≤ i ≤ s, 1 ≤ j ≤ ni, 1 ≤ k ≤ m) · |Cl(X)t|.

Note that assertion (i) and (ii) do not require the Fano condition.
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The remaining part of this chapter is devoted to the proofs of the main statements of this
chapter. To prove Theorem 6.10 we need the following essential lemma.

Lemma 6.11. Consider the ring K[Tij; 0 ≤ i ≤ 2, 1 ≤ j ≤ ni][S1, . . . , Sk]/⟨g⟩, where
n0 ≥ n1 ≥ n2 ≥ 1 holds and let K be a finitely generated abelian group of the form
K = Z ⊕ Kt with torsion part Kt. Suppose that g is homogeneous with respect to the
K-grading of K[Tij, Sk] given by deg Tij =: wij = w0

ij + wt
ij ∈ K with w0

ij ∈ Z>0 and
deg Sk =: uk = u0

k + ut
k ∈ K with u0

k ∈ Z>0, and assume

deg(g)0 <
2∑

i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i .

Let µ ∈ Z>1, assume w0
ij ≤ µ whenever ni > 1, 1 ≤ j ≤ ni and u0

k ≤ µ for 1 ≤ k ≤ m
and set d := n0+n1+n2+m− 2. Depending on the shape of g, one obtains the following
bounds.

(i) Suppose that g = η0T
l01
01 · · ·T

l0n0
0n0

+η1T
l11
11 +η2T

l21
21 with n0 > 1 and coefficients ηi ∈ K∗

holds. If we have l11 > l21 ≥ 2 and gcd(l11, l21) | µ, then

w0
11 < 2dµ, w0

21 < 3dµ, l22, l21, deg(g)
0 < 6dµ.

If l11 = l21 ≥ 2, then
l11 , w

0
11 , l21 , w

0
21 , deg(g)

0 ≤ µ.

(ii) Suppose that g = η0T
l01
01 · · ·T

l0n0
0n0

+η1T
l11
11 · · ·T

l1n1
1n1

+η2T
l21
21 with n1 > 1 and coefficients

ηi ∈ K∗ holds and we have l21 ≥ 2. Then

w0
21 < (d+ 1)µ, deg(g)0 < 2(d+ 1)µ.

Proof. We prove (i). Set for short c := (n0 +m)µ = dµ. Then, using homogeneity of g
and the assumed inequality, we obtain

l11w
0
11 = l21w

0
21 = deg(g)0 <

2∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i ≤ c+ w0

11 + w0
21.

First have a look at the case l11 > l21 ≥ 2. Plugging this into the above inequalities,
we arrive at 2w0

11 < c + w0
21 and w0

21 < c + w0
11. We conclude w0

11 < 2c and w0
21 < 3c.

Consequently, we obtain

deg(g)0 < c+ w0
11 + w0

21 < 6c = 6dµ.

If we have l11 = l21, the homogeneity condition l11w
0
11 = l21w

0
11 gives us w0

11 = w0
21. Thus

we have gcd(w0
11, w

0
21) = w0

11 = w0
21 | µ and by assumption gcd(l11, l21) = l21 = l11 | µ.

Consequently, l11, w0
11, l21, w

0
21, deg(g)

0 ≤ µ holds.
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We prove (ii). Here we set c := (n0 + n1 +m)µ = (d+ 1)µ. Then the assumed inequality
gives

l21w
0
21 = deg(g)0 <

1∑
i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i + w0

21 ≤ c+ w0
21.

Since we assumed l21 ≥ 2, we conclude w0
21 < c. This in turn gives us deg(g)0 < 2c.

Proof of Theorem 6.10. As before, we denote by X ⊆ Kn+m the total coordinate space
and we consider the quotient p : X̂ → X.

We first discuss the case that X is a toric variety. Then the Cox ring is a polynomial ring,
R(X) = K[S1, . . . , Sm]. For each 1 ≤ k ≤ m, consider the point x(k) ∈ X̂ having the k-th
coordinate one and all others zero and set x(k) := p(x(k)). Then, by Proposition 6.1, the
order of the local class group Cl(X, x(k)) is divisible by u0

k. Together with Proposition
6.1(ii) we obtain u0

k ≤ µ for 1 ≤ k ≤ m and |Cl(X)t| ≤ µ which settles assertion (i).

Now we treat the non-toric case, which means r ≥ 2. Note that we have n ≥ 3. The case
n0 = 1 is done in Proposition 6.8, which proves assertion (ii). Hence, we are left with
n0 > 1. For every i with ni > 1 and every 1 ≤ j ≤ ni, there is the point x(i, j) ∈ X̂ with
ij-coordinate Tij equal to one and all others equal to zero, and thus we have the point
x(i, j) := p(x(i, j)) ∈ X. Moreover, for every 1 ≤ k ≤ m, we have the point x(k) ∈ X
having the k-coordinate Sk equal to one and all others zero; we set x(k) := p(x(k)).
Proposition 6.1 provides the bounds

w0
ij ≤ µ, u0

k ≤ µ for ni > 1, 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m. (7)

Let 0 ≤ s ≤ r be the maximal number with ns > 1. Then gs−2 is the last polynomial
such that each of its three monomials depends on more than one variable. For any t ≥ s,
we have the “cut ring”

Rt := K[Tij, Sk] / ⟨g0, . . . , gt−2⟩

where 0 ≤ i ≤ t, 1 ≤ j ≤ ni, 1 ≤ k ≤ m and the relations gi depend on only three
variables as soon as i > s holds. For the free part of the degree γ0 of the relations we
have

(r − 1)γ0 = (t− 1)γ0 + (r − t)γ0

= (t− 1)γ0 + lt+1,1w
0
t+1,1 + . . .+ lr1w

0
r1

<
r∑

i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i

=
t∑

i=0

ni∑
j=1

w0
ij + w0

t+1,1 + . . .+ w0
r1 +

m∑
i=1

u0
i .
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Note that the inequality is derived from the Fano condition of Proposition 6.1(iv). Since
li1w

0
i1 > w0

i1 holds in particular for t+ 1 ≤ i ≤ r, we derive from this the inequality

γ0 <
1

t− 1

(
t∑

i=0

ni∑
j=1

w0
ij +

m∑
i=1

u0
i

)
. (8)

To obtain the bounds in assertions (iii) and (iv), we consider the cut ring Rt with t = 2 and
apply Lemma 6.11 and Proposition 6.1; note that we have d = n0+n1+n2+m−2 for the
dimension d = dim(X) and that l21 ≥ 2 is due to the fact that X is non-toric. The bounds
w0

i1, li1 < 6dµ for 3 ≤ i ≤ r in assertion (iii) follow from γ0 < 6dµ. Similarly w0
ij, lij <

2(d+ 1)µ for 0 ≤ i ≤ r, 1 ≤ j ≤ ni in assertion (iv) follow from γ0 < 2(d+ 1)µ. We still
have to prove the restriction for the number of relations, which means bounding r. Recall
from Lemma 6.4 the definition ℓi := gcd(li1, . . . , lini

) and set ℓi = lcm0≤j ̸=i≤r(gcd(ℓi, ℓj))·ℓ′i.
Then ℓ′0, . . . , ℓ

′
r are coprime. For i ≥ 1 we have ni = 1. Thus, analogously to the proof of

Proposition 6.8, we obtain r + 1 = r + 1− q + q ≤ µ+ ξ(6dµ), where q is the number of
ℓ′i that are greater than one and satisfy ni = 1. For the bound in assertion (iv) the same
argument yields r + 1 = r + 1− q + q ≤ µ+ ξ(2(d+ 1)µ).

To obtain the bounds in assertion (v), we consider the cut ring Rt with t = s. Using
ni = 1 for i ≥ t + 1 and applying the inequalities (7) and (8), we can derive an upper
bound for the degree of the relation as follows:

γ0 <
(n0 + . . .+ nt +m)µ

t− 1
=

(d+ t)µ

t− 1
≤ (d+ 2)µ.

We have w0
ijlij ≤ γ0 for any 0 ≤ i ≤ r and any 1 ≤ j ≤ ni, which implies that all w0

ij

and lij are bounded by (d + 2)µ. Since n0, . . . , ns−1 > 1 holds, the number s is bounded
by s = 2s − (s − 1) − 1 ≤ d. Consequently, we obtain r + 1 = r + 1 − s − q + s + q ≤
µ+ ξ((d+ 2)µ) + d, where q is defined as above.

Finally, we have to express the Picard index µ in terms of the free part of the weights w0
ij,

u0
k and the torsion part Cl(X)t as claimed in the assertions. This is a direct application

of the formula of Proposition 6.1.

As a consequence we obtain restricting statements about the number δ(d, µ) of different
deformation types of Q-factorial d-dimensional Fano varieties with a complexity-one torus
action, Picard number one and Picard index µ. In the toric situation δ(d, µ) is bounded
above by µd2 . For the non-toric case we get the following asymptotic results:

Theorem 6.12. For fixed d ∈ Z>0, the number δ(d, µ) is asymptotically bounded above
by µAµ2 for a constant A > 1 arbitrarily small, and for fixed µ ∈ Z>0, it is asymptotically
bounded above by dBd with a constant B > 3 arbitrarily small.

Proof. Theorem 6.10 provides bounds for the exponents and the number of relations as
well as for the free part of the weights and the torsion part of Cl(X). Since we have
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|Cl(X)t| ≤ µ the possibilities for the torsion part of the weights are also restricted. One
computes that the number δ(d, µ) of different deformation types is bounded above by

µµ2+3µ+ξ(µ)2+ξ(6dµ)+5d(6dµ)2µ+2ξ(6dµ)+3d−2

which leads to the results of Theorem 6.12.

We conclude the section with discussing some aspects of the not necessarily Fano varieties
of Proposition 6.8. First we consider varieties with a free divisor class group satisfying
n0 = . . . = nr = 1 and thus rings R of the form

K[T0, . . . , Tr, S1, . . . , Sm] / ⟨αi+1,i+2T
li
i + αi,i+2T

li+1

i+1 + αi,i+1T
li+2

i+2 ; 0 ≤ i ≤ r − 2⟩.

Since Cl(X) is free, we will write wij, uk ∈ Cl(X) instead of w0
ij, u

0
k.

Proposition 6.13. Suppose that the ring R as above is the Cox ring of a non-toric variety
X with Cl(X) = Z. Then m ≥ 1 and µ := [Cl(X) : Pic(X)] ≥ 30. Moreover, if X is a
surface, then m = 1 and wi = l−1

i l0 · · · lr.

Proof. The homogeneity condition liwi = ljwj together with the condition gcd(li, lj) = 1
for 0 ≤ i ̸= j ≤ r, which ensures a free divisor class group, gives us li | gcd(w0

j ; j ̸= i).
Moreover, every set of m+ r weights wi has to generate the class group Z, so they must
have greatest common divisor one. Since X is non-toric, li ≥ 2 holds and we obtain
m ≥ 1. To proceed, we infer l0 · · · lr | µ and l0 · · · lr | deg gi from Proposition 6.1. As a
consequence, the minimal value for µ and deg gi is obviously 2 · 3 · 5 = 30. Note that if
X is a surface we have m = 1 and gcd(wi; 0 ≤ i ≤ r) = 1. Thus, liwi = ljwj gives us
deg gi = l0 · · · lr and wi = l−1

i l0 · · · lr.

The bound [Cl(X) : Pic(X)] ≥ 30 given in the above proposition is even sharp; the surface
discussed below realizes it.

Example 6.14. Consider X with R(X) = K[T0, T1, T2, S1]/⟨g⟩ with g = T 2
0 + T 3

1 + T 5
2

and the grading

deg(T0) = 15, deg(T1) = 10, deg(T2) = 6, deg(S1) = 1.

Then we have gcd(15, 10) = 5, gcd(15, 6) = 3 and gcd(10, 6) = 2 and therefore [Cl(X) :
Pic(X)] = 30. Further X is Fano because of

deg(g) = 30 < 32 = deg(T0) + deg(T1) + deg(T2) + deg(S1).

Finally, we present a couple of examples showing that there are also non-Fano varieties
with a complexity one torus action having divisor class group Z and maximal orbit space
P1.
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Example 6.15. Consider X with R(X) = K[T0, T1, T2, S1]/⟨g⟩ with g = T 2
0 + T 3

1 + T 7
2

and the grading

deg(T0) = 21, deg(T1) = 14, deg(T2) = 6, deg(S1) = 1.

Then we have gcd(21, 14) = 7, gcd(21, 6) = 3 and gcd(14, 6) = 2 and therefore [Cl(X) :
Pic(X)] = 42. Moreover, X is not Fano, because its canonical class KX is trivial

KX = deg(g)− deg(T0)− deg(T1)− deg(T2)− deg(S1) = 0.

Example 6.16. Consider X with R(X) = K[T0, T1, T2, S1]/⟨g⟩ with g = T 2
0 + T 3

1 + T 11
2

and the grading

deg(T0) = 33, deg(T1) = 22, deg(T2) = 6, deg(S1) = 1.

Then we have gcd(22, 33) = 11, gcd(33, 6) = 3 and gcd(22, 6) = 2 and therefore [Cl(X) :
Pic(X)] = 66. The canonical class KX of X is even ample:

KX = deg(g)− deg(T0)− deg(T1)− deg(T2)− deg(S1) = 4.

The following example shows that the Fano assumption is essential for the finiteness
results in Theorem 6.10.

Remark 6.17. For any pair p, q of coprime positive integers, we obtain a locally factorial
K∗-surface X(p, q) with Cl(X) = Z and Cox ring

R(X(p, q)) = K[T01, T02, T1, T2] / ⟨g⟩, g = T01T
pq−1
02 + T q

1 + T p
2 ;

the Cl(X)-grading is given by deg(T01) = deg(T02) = 1, deg(T1) = p and deg(T2) = q.
Note that deg(g) = pq holds and for p, q ≥ 3, the canonical class KX satisfies

KX = deg(g)− deg(T01)− deg(T02)− deg(T1)− deg(T2) = pq − 2− p− q ≥ 0.

6.3 Classification results

In the subsequent theorems we list non-toric complexity-one Fano T -varieties with Picard
number one. The Cox rings are described in terms of generators and relations and we
specify the Cl(X)-grading by giving the degrees of the generators. Additionally, we list
the degree of the Fano varieties dX := (−KX)

d and the Gorenstein index ι(X), i.e. the
smallest positive integer such that ι(X) ·KX is Cartier.
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Theorem 6.18. Let X be a non-toric Fano surface with an effective K∗-action such that
rk(Cl(X)) = 1 and [Cl(X) : Pic(X)] ≤ 6 hold. Then its Cox ring is precisely one of the
following:

[Cl(X) : Pic(X)] = 1

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

1 K[T1, . . . , T4]/⟨T1T
5
2 + T 3

3 + T 2
4 ⟩ (1, 1, 2, 3) 1 Z 1

[Cl(X) : Pic(X)] = 2

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

2 K[T1, . . . , T4]/⟨T 4
1 T2 + T 3

3 + T 2
4 ⟩ (1, 2, 2, 3) 2 Z 1

3 K[T1, . . . , T4]/⟨T1T
3
2 + T 4

3 + T 2
4 ⟩

(
1 1 1 2
0 0 1 1

)
1 Z⊕Z/2Z 1

[Cl(X) : Pic(X)] = 3

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

4 K[T1, . . . , T4]/⟨T 3
1 T2 + T 3

3 + T 2
4 ⟩ (1, 3, 2, 3) 3 Z 1

5 K[T1, . . . , T4]/⟨T1T
3
2 + T 5

3 + T 2
4 ⟩ (1, 3, 2, 5) 1/3 Z 3

6 K[T1, . . . , T4]/⟨T 7
1 T2 + T 5

3 + T 2
4 ⟩ (1, 3, 2, 5) 1/3 Z 3

7 K[T1, . . . , T4]/⟨T1T
2
2 + T 3

3 + T 3
4 ⟩

(
1 1 1 1
1 1 2 0

)
1 Z⊕Z/3Z 1

[Cl(X) : Pic(X)] = 4

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

8 K[T1, . . . , T4]/⟨T 2
1 T2 + T 3

3 + T 2
4 ⟩ (1, 4, 2, 3) 4 Z 1

9 K[T1, . . . , T4]/⟨T 6
1 T2 + T 5

3 + T 2
4 ⟩ (1, 4, 2, 5) 1 Z 2

10 K[T1, T2, T3, S1]/⟨T 2
1 + T 2

2 + T 2
3 ⟩

(
1 1 1 1
1 1 0 0
0 1 1 0

)
2 Z⊕ Z/2Z⊕ Z/2Z 1

11 K[T1, . . . , T4]/⟨T1T2 + T 2
3 + T 2

4 ⟩
(
1 1 1 1
1 3 2 0

)
2 Z⊕Z/4Z 1

12 K[T1, . . . , T4]/⟨T 2
1 T2 + T 2

3 + T 4
4 ⟩

(
1 2 2 1
1 0 1 0

)
2 Z⊕Z/2Z 1

13 K[T1, . . . , T4]/⟨T1T
2
2 + T 6

3 + T 2
4 ⟩

(
2 2 1 3
0 1 0 1

)
1 Z⊕Z/2Z 2

14 K[T1, . . . , T5]/⟨ T1T2+T 2
3+T 2

4 ,

λT 2
3+T 2

4+T 2
5
⟩

(
1 1 1 1 1
1 1 0 1 0
0 0 1 1 0

)
1 Z⊕ Z/2Z⊕ Z/2Z 1
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[Cl(X) : Pic(X)] = 5

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

15 K[T1, . . . , T4]/⟨T1T2 + T 3
3 + T 2

4 ⟩ (1, 5, 2, 3) 5 Z 1

16 K[T1, . . . , T4]/⟨T 5
1 T2 + T 5

3 + T 2
4 ⟩ (1, 5, 2, 5) 9/5 Z 5

17 K[T1, . . . , T4]/⟨T 9
1 T2 + T 7

3 + T 2
4 ⟩ (1, 5, 2, 7) 1/5 Z 5

18 K[T1, . . . , T4]/⟨T 7
1 T2 + T 4

3 + T 3
4 ⟩ (1, 5, 3, 4) 1/5 Z 5

[Cl(X) : Pic(X)] = 6

No. R(X) (w1, . . . , w4) dX Cl(X) ι(X)

19 K[T1, . . . , T4]/⟨T 4
1 T2 + T 5

3 + T 2
4 ⟩ (1, 6, 2, 5) 8/3 Z 3

20 K[T1, . . . , T4]/⟨T 8
1 T2 + T 7

3 + T 2
4 ⟩ (1, 6, 2, 7) 2/3 Z 3

21 K[T1, . . . , T4]/⟨T 6
1 T2 + T 4

3 + T 3
4 ⟩ (1, 6, 3, 4) 2/3 Z 3

22 K[T1, . . . , T4]/⟨T 9
1 T2 + T 3

3 + T 2
4 ⟩ (1, 3, 4, 6) 2/3 Z 3

23 K[T1, T2, T3, S1]/⟨T 3
1 + T 3

2 + T 2
3 ⟩

(
2 2 3 1
1 2 0 0

)
2/3 Z⊕ Z/3Z 3

24 K[T1, . . . , T4]/⟨T1T2 + T 3
3 + T 3

4 ⟩
(
1 2 1 1
1 2 2 0

)
2 Z⊕ Z/3Z 1

25 K[T1, . . . , T4]/⟨T1T2 + T 2
3 + T 4

4 ⟩
(
3 1 2 1
1 1 1 0

)
3 Z⊕ Z/2Z 1

26 K[T1, . . . , T4]/⟨T1T
5
2 + T 2

3 + T 8
4 ⟩

(
3 1 4 1
1 1 1 0

)
1/3 Z⊕ Z/2Z 3

where ι(X) denotes the Gorenstein index, dX = (−KX)
2 and the parameter λ occurring

in the second relation of surface number 14 can be any element of K∗ \ {1}. Furthermore,
the Cox rings listed above are pairwise non-isomorphic as graded rings.

Remark 6.19. Gorenstein surfaces are well known to have ADE-singularities which
are in particular canonical. Consequently, the surfaces of number 1 to 4 and 10 to
12, as well as 7, 8, 14, 15, 24 and 25 are canonical. Furthermore, in [51] all log-
terminal del Pezzo K∗-surfaces of Gorenstein index up to 3 are classified. These are
exactly those surfaces whose maximal exponents of the monomials form a platonic triple
(1, k, l), (2, 2, k), (2, 3, 3), (2, 3, 4) and (2, 3, 5). Comparing the surfaces listed in [51,
Theorems 4.9, 4.10] with the table above shows that the numbers 6, 9, 16 to 22 and 26
are not log-terminal. The resolution of these surfaces can be explicitly computed by using
the canonical resolution of 3.10.

The varieties listed so far might suggest that we always obtain only one relation in the
Cox ring if Cl(X) is torsion free, i.e. Cl(X) ∼= Z. We discuss now some examples, showing
that for a Picard index big enough, we need in general more than one relation.
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Example 6.20. This is an example of a Fano K∗-surface X with Cl(X) = Z such that
the Cox ring R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T1, T2, T3]/⟨g0, g1⟩,

where the degrees of T01, T02, T1, T2, T3 are 29, 1, 6, 10, 15, respectively, and the relations
g0, g1 are given by

g0 := T01T02 + T 5
1 + T 3

2 , g1 := λT 5
1 + T 3

2 + T 2
3 .

Then R is the Cox ring of a Fano K∗-surface. Note that the Picard index is given by
[Cl(X) : Pic(X)] = lcm(29, 1) = 29.

Proposition 6.21. Let X be a non-toric Fano surface with an effective K∗-action such
that Cl(X) ∼= Z and [Cl(X) : Pic(X)] < 29 hold. Then the Cox ring of X is of the form

R(X) ∼= K[T01, T02, T1, T2]/⟨T l01
01 T

l02
02 + T l1

1 + T l2
2 ⟩.

Proof. The Cox ring R(X) is given by a ring R(A,P ) as in 2.10 and, in the notation used
there, we have n0+ . . .+nr +m = 2+ r. This leaves us with the possibilities n0 = m = 1
and n0 = 2, m = 0. In the first case, Proposition 6.13 tells us that the Picard index of X
is at least 30.

Consider the case n0 = 2 and m = 0. Then, the Cox ring R(X) is K[T01, T02, T1, . . . , Tr]
divided by relations

g0 = T l01
01 T

l02
02 + T l1

1 + T l2
2 , gi = αi+1,i+2T

li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ,

where 1 ≤ i ≤ r − 2. We have to show that r = 2 holds. Set µ := [Cl(X) : Pic(X)] and
let γ ∈ Z denote the degree of the relations. Then we have γ = wili for 1 ≤ i ≤ r, where
wi := deg Ti. With w0i := deg T0i, Proposition 6.1 gives us

(r − 1)γ < w01 + w02 + w1 + . . .+ wr.

We claim that w01 and w02 are coprime. Otherwise they have a common prime divisor
p. This p divides γ = liwi. Since l1, . . . , lr are pairwise coprime, p divides at least r − 1
of the weights w1, . . . , wr. This contradicts the Cox ring condition that any r + 1 of the
r + 2 weights generate the class group Z. Thus, w01 and w02 are coprime and we obtain

µ ≥ lcm(w01,w02) = w01 · w02 ≥ w01 + w02 − 1.

Now assume that r ≥ 3 holds. Then we conclude

2γ < w01 + w02 + w1 + w2 + w3 ≤ µ+ 1 + γ

(
1

l1
+

1

l2
+

1

l3

)
.

Since the numbers li are pairwise coprime, we obtain l1 ≥ 5, l2 ≥ 3 and l3 ≥ 2. Moreover,
liwi = ljwj implies li | wj and hence l1l2l3 | γ. Thus, we have γ ≥ 30. Plugging this in
the above inequality gives

µ ≥ γ

(
2− 1

l1
− 1

l2
− 1

l3

)
− 1 = 29.
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The Fano assumption is essential in this result; if we omit it, we may even construct
locally factorial surfaces with a Cox ring that needs more than one relation.

Example 6.22. This is an example of a locally factorial K∗-surface X with Cl(X) = Z

such that the Cox ring R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T11, T21, T31]/⟨g0, g1⟩,

where the degrees of T01, T02, T11, T21, T31 are 1, 1, 6, 10, 15, respectively, and the relations
g0, g1 are given by

g0 := T 7
01T

23
02 + T 5

11 + T 3
21, g1 := λT 5

11 + T 3
21 + T 2

31.

Then R is the Cox ring of a non Fano K∗-surface X of Picard index one, i.e. X is locally
factorial.

Theorem 6.23. Let X be a three-dimensional locally factorial non-toric Fano variety
with an effective two torus action such that Cl(X) is of rank one. Then its Cox ring is
precisely one of the following.

No. R(X) (w1, . . . , w5) (−KX)
3 Cl(X)

1 K[T1, . . . , T5] / ⟨T1T
5
2 + T 3

3 + T 2
4 ⟩ (1, 1, 2, 3, 1) 8 Z

2 K[T1, . . . , T5] / ⟨T1T2T
4
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 2, 3) 8 Z

3 K[T1, . . . , T5] / ⟨T1T
2
2 T

3
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 2, 3) 8 Z

4 K[T1, . . . , T5] / ⟨T1T2 + T3T4 + T 2
5 ⟩ (1, 1, 1, 1, 1) 54 Z

5 K[T1, . . . , T5] / ⟨T1T
2
2 + T3T

2
4 + T 3

5 ⟩ (1, 1, 1, 1, 1) 24 Z

6 K[T1, . . . , T5] / ⟨T1T
3
2 + T3T

3
4 + T 4

5 ⟩ (1, 1, 1, 1, 1) 4 Z

7 K[T1, . . . , T5] / ⟨T1T
3
2 + T3T

3
4 + T 2

5 ⟩ (1, 1, 1, 1, 2) 16 Z

8 K[T1, . . . , T5] / ⟨T1T
5
2 + T3T

5
4 + T 2

5 ⟩ (1, 1, 1, 1, 3) 2 Z

9 K[T1, . . . , T5] / ⟨T1T
5
2 + T 3

3 T
3
4 + T 2

5 ⟩ (1, 1, 1, 1, 3) 2 Z

The singular threefolds listed in this theorem are rational degenerations of smooth Fano
threefolds from [32]. The (smooth) general Fano threefolds of the corresponding families
are non-rational see [24] for no. 1-3, [11] for no. 5, [34] for no. 6, [54, 53] for no. 7 and [33]
for no. 8-9. Even if one allows certain mild singularities, one still has non-rationality in
some cases, see [23], [12, 47], [13], [10].



130 6.3 Classification results

Theorem 6.24. Let X be a three-dimensional non-toric Fano variety with an effective
two torus action such that Cl(X) is of rank one and [Cl(X) : Pic(X)] = 2 holds. Then
its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w5) dX Cl(X) ι(X)

1 K[T1, . . . , T5]/⟨T 4
1 T2 + T 3

3 + T 2
4 ⟩ (1, 2, 2, 3, 1) 27/2 Z 2

2 K[T1, . . . , T5]/⟨T 4
1 T

3
2 + T 5

3 + T 2
4 ⟩ (1, 2, 2, 5, 1) 1/2 Z 2

3 K[T1, . . . , T5]/⟨T 8
1 T2 + T 5

3 + T 2
4 ⟩ (1, 2, 2, 5, 1) 1/2 Z 2

4 K[T1, . . . , T5]/⟨T 4
1 T2 + T 3

3 + T 2
4 ⟩ (1, 2, 2, 3, 2) 16 Z 1

5 K[T1, . . . , T5]/⟨T 4
1 T

3
2 + T 5

3 + T 2
4 ⟩ (1, 2, 2, 5, 2) 2 Z 1

6 K[T1, . . . , T5]/⟨T 8
1 T2 + T 5

3 + T 2
4 ⟩ (1, 2, 2, 5, 2) 2 Z 1

7 K[T1, . . . , T5]/⟨T1T
5
2 + T 3

3 + T 2
4 ⟩ (1, 1, 2, 3, 2) 27/2 Z 2

8 K[T1, . . . , T5]/⟨T1T
9
2 + T 5

3 + T 2
4 ⟩ (1, 1, 2, 5, 2) 1/2 Z 2

9 K[T1, . . . , T5]/⟨T 3
1 T

7
2 + T 5

3 + T 2
4 ⟩ (1, 1, 2, 5, 2) 1/2 Z 2

10 K[T1, . . . , T5]/⟨T1T
11
2 + T 3

3 + T 2
4 ⟩ (1, 1, 4, 6, 1) 1/2 Z 2

11 K[T1, . . . , T5]/⟨T 5
1 T

7
2 + T 3

3 + T 2
4 ⟩ (1, 1, 4, 6, 1) 1/2 Z 2

12 K[T1, . . . , T5]/⟨T1T
11
2 + T 3

3 + T 2
4 ⟩ (1, 1, 4, 6, 2) 2 Z 1

13 K[T1, . . . , T5]/⟨T 5
1 T

7
2 + T 3

3 + T 2
4 ⟩ (1, 1, 4, 6, 2) 2 Z 1

14 K[T1, . . . , T5]/⟨T 2
1 T

5
2 + T 3

3 + T 2
4 ⟩ (1, 2, 4, 6, 1) 2 Z 1

15 K[T1, . . . , T5]/⟨T 10
1 T2 + T 3

3 + T 2
4 ⟩ (1, 2, 4, 6, 1) 2 Z 1

16 K[T1, . . . , T5]/⟨T1T
2
2 + T 3

3 + T 2
4 ⟩ (2, 2, 2, 3, 1) 16 Z 1

17 K[T1, . . . , T5]/⟨T1T
4
2 + T 5

3 + T 2
4 ⟩ (2, 2, 2, 5, 1) 2 Z 1

18 K[T1, . . . , T5]/⟨T 2
1 T

3
2 + T 5

3 + T 2
4 ⟩ (2, 2, 2, 5, 1) 2 Z 1

19 K[T1, . . . , T5]/⟨T1T
2
2 + T3T4 + T 3

5 ⟩ (1, 1, 1, 2, 1) 81/2 Z 2

20 K[T1, . . . , T5]/⟨T1T
4
2 + T3T

2
4 + T 5

5 ⟩ (1, 1, 1, 2, 1) 5/2 Z 2

21 K[T1, . . . , T5]/⟨T 2
1 T

3
2 + T3T

2
4 + T 5

5 ⟩ (1, 1, 1, 2, 1) 5/2 Z 2

22 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 T4 + T 4
5 ⟩ (1, 1, 1, 2, 1) 16 Z 1

23 K[T1, . . . , T5]/⟨T1T
4
2 + T 3

3 T4 + T 5
5 ⟩ (1, 1, 1, 2, 1) 5/2 Z 2

24 K[T1, . . . , T5]/⟨T 2
1 T

3
2 + T 3

3 T4 + T 5
5 ⟩ (1, 1, 1, 2, 1) 5/2 Z 2

25 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 T4 + T 2
5 ⟩ (1, 1, 1, 2, 2) 27 Z 2

26 K[T1, . . . , T5]/⟨T1T
5
2 + T 2

3 T
2
4 + T 3

5 ⟩ (1, 1, 1, 2, 2) 3/2 Z 2

27 K[T1, . . . , T5]/⟨T1T
5
2 + T 4

3 T4 + T 3
5 ⟩ (1, 1, 1, 2, 2) 3/2 Z 2
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28 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 4

3 T4 + T 3
5 ⟩ (1, 1, 1, 2, 2) 3/2 Z 2

29 K[T1, . . . , T5]/⟨T1T
5
2 + T 4

3 T4 + T 2
5 ⟩ (1, 1, 1, 2, 3) 8 Z 1

30 K[T1, . . . , T5]/⟨T 3
1 T

3
2 + T 4

3 T4 + T 2
5 ⟩ (1, 1, 1, 2, 3) 8 Z 1

31 K[T1, . . . , T5]/⟨T1T
7
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 1, 1, 2, 4) 1 Z 2

32 K[T1, . . . , T5]/⟨T 3
1 T

5
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 1, 1, 2, 4) 1 Z 2

33 K[T1, . . . , T5]/⟨T1T
7
2 + T 6

3 T4 + T 2
5 ⟩ (1, 1, 1, 2, 4) 1 Z 2

34 K[T1, . . . , T5]/⟨T 3
1 T

5
2 + T 6

3 T4 + T 2
5 ⟩ (1, 1, 1, 2, 4) 1 Z 2

35 K[T1, . . . , T5]/⟨T1T
3
2 + T3T4 + T 4

5 ⟩ (1, 1, 2, 2, 1) 27 Z 2

36 K[T1, . . . , T5]/⟨T1T
5
2 + T3T

2
4 + T 6

5 ⟩ (1, 1, 2, 2, 1) 3/2 Z 2

37 K[T1, . . . , T5]/⟨T1T
3
2 + T3T4 + T 2

5 ⟩ (1, 1, 2, 2, 2) 16 Z 1

38 K[T1, . . . , T5]/⟨T1T
5
2 + T3T

2
4 + T 3

5 ⟩ (1, 1, 2, 2, 2) 6 Z 1

39 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T3T

2
4 + T 3

5 ⟩ (1, 1, 2, 2, 2) 6 Z 1

40 K[T1, . . . , T5]/⟨T 3
1 T

3
2 + T3T

2
4 + T 2

5 ⟩ (1, 1, 2, 2, 3) 27/2 Z 1

41 K[T1, . . . , T5]/⟨T 3
1 T

5
2 + T3T

3
4 + T 2

5 ⟩ (1, 1, 2, 2, 4) 32 Z 1

42 K[T1, . . . , T5]/⟨T1T
5
2 + T3T

2
4 + T 2

5 ⟩ (1, 1, 2, 2, 3) 4 Z 2

43 K[T1, . . . , T5]/⟨T1T
7
2 + T3T

3
4 + T 2

5 ⟩ (1, 1, 2, 2, 4) 32 Z 1

44 K[T1, . . . , T5]/⟨T1T
9
2 + T3T

4
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

45 K[T1, . . . , T5]/⟨T1T
9
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

46 K[T1, . . . , T5]/⟨T 3
1 T

7
2 + T3T

4
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

47 K[T1, . . . , T5]/⟨T 3
1 T

7
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

48 K[T1, . . . , T5]/⟨T 5
1 T

5
2 + T3T

4
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

49 K[T1, . . . , T5]/⟨T 5
1 T

5
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

50 K[T1, . . . , T5]/⟨T1T2 + T3T4 + T 3
5 ⟩ (1, 2, 1, 2, 1) 48 Z 1

51 K[T1, . . . , T5]/⟨T 2
1 T2 + T 2

3 T4 + T 4
5 ⟩ (1, 2, 1, 2, 1) 27 Z 2

52 K[T1, . . . , T5]/⟨T1T
2
2 + T3T

2
4 + T 5

5 ⟩ (1, 2, 1, 2, 1) 10 Z 1

53 K[T1, . . . , T5]/⟨T1T
2
2 + T 3

3 T4 + T 5
5 ⟩ (1, 2, 1, 2, 1) 10 Z 1

54 K[T1, . . . , T5]/⟨T 3
1 T2 + T 3

3 T4 + T 5
5 ⟩ (1, 2, 1, 2, 1) 10 Z 1

55 K[T1, . . . , T5]/⟨T 4
1 T2 + T 4

3 T4 + T 6
5 ⟩ (1, 2, 1, 2, 1) 3/2 Z 2

56 K[T1, . . . , T5]/⟨T 2
1 T2 + T 2

3 T4 + T 2
5 ⟩ (1, 2, 1, 2, 2) 32 Z 1

57 K[T1, . . . , T5]/⟨T 2
1 T

2
2 + T 4

3 T4 + T 3
5 ⟩ (1, 2, 1, 2, 2) 6 Z 1

58 K[T1, . . . , T5]/⟨T 4
1 T2 + T 4

3 T4 + T 3
5 ⟩ (1, 2, 1, 2, 2) 6 Z 1
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59 K[T1, . . . , T5]/⟨T 4
1 T2 + T 4

3 T4 + T 2
5 ⟩ (1, 2, 1, 2, 3) 27/2 Z 2

60 K[T1, . . . , T5]/⟨T 2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 2, 1, 2, 4) 4 Z 1

61 K[T1, . . . , T5]/⟨T 2
1 T

3
2 + T 6

3 T4 + T 2
5 ⟩ (1, 2, 1, 2, 4) 4 Z 1

62 K[T1, . . . , T5]/⟨T 6
1 T2 + T 6

3 T4 + T 2
5 ⟩ (1, 2, 1, 2, 4) 4 Z 1

63 K[T1, . . . , T5]/⟨T 4
1 T

3
2 + T 4

3 T
3
4 + T 2

5 ⟩ (1, 2, 1, 2, 5) 1/2 Z 2

64 K[T1, . . . , T5]/⟨T 8
1 T2 + T 4

3 T
3
4 + T 2

5 ⟩ (1, 2, 1, 2, 5) 1/2 Z 2

65 K[T1, . . . , T5]/⟨T 8
1 T2 + T 8

3 T4 + T 2
5 ⟩ (1, 2, 1, 2, 5) 1/2 Z 2

66 K[T1, . . . , T5]/⟨T 2
1 T2 + T3T4 + T 4

5 ⟩ (1, 2, 2, 2, 1) 32 Z 1

67 K[T1, . . . , T5]/⟨T 4
1 T2 + T3T

2
4 + T 6

5 ⟩ (1, 2, 2, 2, 1) 6 Z 1

68 K[T1, . . . , T5]/⟨T 4
1 T2 + T3T

2
4 + T 2

5 ⟩ (1, 2, 2, 2, 3) 16 Z 1

69 K[T1, . . . , T5]/⟨T 4
1 T

3
2 + T3T

4
4 + T 2

5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

70 K[T1, . . . , T5]/⟨T 4
1 T

3
2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

71 K[T1, . . . , T5]/⟨T 8
1 T2 + T3T

4
4 + T 2

5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

72 K[T1, . . . , T5]/⟨T 8
1 T2 + T 2

3 T
3
4 + T 2

5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

73 K[T1, . . . , T5]/⟨T1T2T
10
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

74 K[T1, . . . , T5]/⟨T1T
2
2 T

9
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

75 K[T1, . . . , T5]/⟨T1T
3
2 T

8
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

76 K[T1, . . . , T5]/⟨T1T
4
2 T

7
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

77 K[T1, . . . , T5]/⟨T1T
5
2 T

6
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

78 K[T1, . . . , T5]/⟨T 2
1 T

3
2 T

7
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

79 K[T1, . . . , T5]/⟨T 2
1 T

5
2 T

5
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

80 K[T1, . . . , T5]/⟨T 3
1 T

4
2 T

5
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 4, 6) 1/2 Z 2

81 K[T1, . . . , T5]/⟨T1T2T
2
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 2, 3) 27/2 Z 2

82 K[T1, . . . , T5]/⟨T1T
3
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 2, 3) 27/2 Z 2

83 K[T1, . . . , T5]/⟨T 2
1 T

2
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 2, 3) 27/2 Z 2

84 K[T1, . . . , T5]/⟨T1T2T
4
3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

85 K[T1, . . . , T5]/⟨T1T
3
2 T

3
3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

86 K[T1, . . . , T5]/⟨T1T
5
2 T

2
3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

87 K[T1, . . . , T5]/⟨T1T
7
2 T3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

88 K[T1, . . . , T5]/⟨T 2
1 T

2
2 T

3
3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

89 K[T1, . . . , T5]/⟨T 2
1 T

6
2 T3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2
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90 K[T1, . . . , T5]/⟨T 3
1 T

3
2 T

2
3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

91 K[T1, . . . , T5]/⟨T 3
1 T

5
2 T3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

92 K[T1, . . . , T5]/⟨T 4
1 T

4
2 T3 + T 5

4 + T 2
5 ⟩ (1, 1, 2, 2, 5) 1/2 Z 2

93 K[T1, . . . , T5]/⟨T1T2T
5
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

94 K[T1, . . . , T5]/⟨T1T
3
2 T

4
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

95 K[T1, . . . , T5]/⟨T1T
5
2 T

3
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

96 K[T1, . . . , T5]/⟨T1T
7
2 T

2
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

97 K[T1, . . . , T5]/⟨T1T
9
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

98 K[T1, . . . , T5]/⟨T 2
1 T

4
2 T

3
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

99 K[T1, . . . , T5]/⟨T 2
1 T

8
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

100 K[T1, . . . , T5]/⟨T 3
1 T

5
2 T

2
3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

101 K[T1, . . . , T5]/⟨T 3
1 T

7
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

102 K[T1, . . . , T5]/⟨T 4
1 T

6
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

103 K[T1, . . . , T5]/⟨T 5
1 T

5
2 T3 + T 3

4 + T 2
5 ⟩ (1, 1, 2, 4, 6) 2 Z 1

104 K[T1, . . . , T5]/⟨T 2
1 T2T3 + T 3

4 + T 2
5 ⟩ (1, 2, 2, 2, 3) 16 Z 1

105 K[T1, . . . , T5]/⟨T 2
1 T2T

3
3 + T 5

4 + T 2
5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

106 K[T1, . . . , T5]/⟨T 4
1 T2T

2
3 + T 5

4 + T 2
5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

107 K[T1, . . . , T5]/⟨T 6
1 T2T3 + T 5

4 + T 2
5 ⟩ (1, 2, 2, 2, 5) 2 Z 1

108 K[T1, . . . , T5]/⟨T1T2 + T 2
3 + T 2

4 ⟩
(
1 1 1 1 1
1 1 1 0 0

)
27 Z⊕ Z/2Z 1

109 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 + T 4
4 ⟩

(
1 1 2 1 1
0 0 1 0 1

)
8 Z⊕ Z/2Z 2

110 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 + T 4
4 ⟩

(
1 1 2 1 1
0 0 1 1 0

)
8 Z⊕ Z/2Z 1

111 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 + T 4
4 ⟩

(
1 1 2 1 1
0 0 1 1 1

)
8 Z⊕ Z/2Z 2

112 K[T1, . . . , T5]/⟨T1T
5
2 + T 2

3 + T 6
4 ⟩

(
1 1 3 1 1
0 0 0 1 1

)
1 Z⊕ Z/2Z 1

113 K[T1, . . . , T5]/⟨T1T
5
2 + T 2

3 + T 6
4 ⟩

(
1 1 3 1 1
0 0 1 0 1

)
1 Z⊕ Z/2Z 1

114 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 2

3 + T 3
4 ⟩

(
1 1 3 2 1
0 0 1 0 1

)
4 Z⊕ Z/2Z 1

115 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 2

3 + T 3
4 ⟩

(
1 1 3 2 1
0 1 1 0 0

)
4 Z⊕ Z/2Z 1

116 K[T1, . . . , T5]/⟨T1T
5
2 + T 3

3 + T 2
4 ⟩

(
1 1 2 3 1
1 1 0 0 0

)
4 Z⊕ Z/2Z 2

117 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 T
2
4 + T 2

5 ⟩
(
1 1 1 1 2
0 0 1 1 1

)
8 Z⊕ Z/2Z 2

118 K[T1, . . . , T5]/⟨T1T
3
2 + T 2

3 T
2
4 + T 4

5 ⟩
(
1 1 1 1 1
1 1 0 1 0

)
2 Z⊕ Z/2Z 1

119 K[T1, . . . , T5]/⟨T1T
5
2 + T 2

3 T
4
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 0

)
1 Z⊕ Z/2Z 1

120 K[T1, . . . , T5]/⟨T1T
5
2 + T 2

3 T
4
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 0 1 1

)
1 Z⊕ Z/2Z 1
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121 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 3

3 T
3
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 1

)
1 Z⊕ Z/2Z 2

122 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 3

3 T
3
4 + T 2

5 ⟩
(
1 1 1 1 3
0 1 0 0 1

)
1 Z⊕ Z/2Z 2

123 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 5

3 T4 + T 2
5 ⟩

(
1 1 1 1 3
0 0 1 1 1

)
1 Z⊕ Z/2Z 2

124 K[T1, . . . , T5]/⟨T 2
1 T

4
2 + T 5

3 T4 + T 2
5 ⟩

(
1 1 1 1 3
0 1 0 0 1

)
1 Z⊕ Z/2Z 2

125 K[T1, . . . , T5]/⟨T1T2 + T3T4 + T 2
5 ⟩

(
1 1 1 1 1
0 0 1 1 1

)
27 Z⊕ Z/2Z 2

126 K[T1, . . . , T5]/⟨T1T2 + T3T4 + T 2
5 ⟩

(
1 1 1 1 1
0 0 1 1 0

)
27 Z⊕ Z/2Z 1

127 K[T1, . . . , T5]/⟨T1T
2
2 + T3T

2
4 + T 3

5 ⟩
(
1 1 1 1 1
0 1 0 1 0

)
12 Z⊕ Z/2Z 1

128 K[T1, . . . , T5]/⟨T1T
3
2 + T3T

3
4 + T 4

5 ⟩
(
1 1 1 1 1
1 1 0 0 0

)
2 Z⊕ Z/2Z 2

129 K[T1, . . . , T5]/⟨T1T
3
2 + T3T

3
4 + T 4

5 ⟩
(
1 1 1 1 1
0 0 1 1 0

)
2 Z⊕ Z/2Z 1

130 K[T1, . . . , T5]/⟨T1T
3
2 + T3T

3
4 + T 2

5 ⟩
(
1 1 1 1 2
0 0 1 1 0

)
8 Z⊕ Z/2Z 2

131 K[T1, . . . , T5]/⟨T1T
3
2 + T3T

3
4 + T 2

5 ⟩
(
1 1 1 1 2
0 0 1 1 1

)
8 Z⊕ Z/2Z 2

132 K[T1, . . . , T5]/⟨T1T
5
2 + T3T

5
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 0

)
1 Z⊕ Z/2Z 1

133 K[T1, . . . , T5]/⟨T1T
5
2 + T3T

5
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 1

)
1 Z⊕ Z/2Z 2

134 K[T1, . . . , T5]/⟨T1T
5
2 + T 3

3 T
3
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 0

)
1 Z⊕ Z/2Z 1

135 K[T1, . . . , T5]/⟨T1T
5
2 + T 3

3 T
3
4 + T 2

5 ⟩
(
1 1 1 1 3
0 0 1 1 1

)
1 Z⊕ Z/2Z 2

136 K[T1, . . . , T5]/⟨T1T2T
2
3 + T 2

4 + T 4
5 ⟩

(
1 1 1 2 1
0 0 1 1 0

)
8 Z⊕ Z/2Z 2

137 K[T1, . . . , T5]/⟨T1T2T
2
3 + T 2

4 + T 4
5 ⟩

(
1 1 1 2 1
0 0 0 1 1

)
8 Z⊕ Z/2Z 1

138 K[T1, . . . , T5]/⟨T1T2T
2
3 + T 2

4 + T 4
5 ⟩

(
1 1 1 2 1
0 0 1 1 1

)
8 Z⊕ Z/2Z 1

139 K[T1, . . . , T5]/⟨T1T2T
4
3 + T 2

4 + T 6
5 ⟩

(
1 1 1 3 1
0 0 1 1 0

)
1 Z⊕ Z/2Z 1

140 K[T1, . . . , T5]/⟨T1T2T
4
3 + T 2

4 + T 6
5 ⟩

(
1 1 1 3 1
0 0 1 0 1

)
1 Z⊕ Z/2Z 1

141 K[T1, . . . , T5]/⟨T1T
2
2 T

3
3 + T 2

4 + T 6
5 ⟩

(
1 1 1 3 1
0 1 0 1 0

)
1 Z⊕ Z/2Z 1

142 K[T1, . . . , T5]/⟨T1T
2
2 T

3
3 + T 2

4 + T 6
5 ⟩

(
1 1 1 3 1
0 1 0 0 1

)
1 Z⊕ Z/2Z 1

143 K[T1, . . . , T5]/⟨T1T
2
2 T

3
3 + T 3

4 + T 2
5 ⟩

(
1 1 1 2 3
1 0 1 0 0

)
4 Z⊕ Z/2Z 1

144 K[T1, . . . , T5]/⟨T1T2T
4
3 + T 3

4 + T 2
5 ⟩

(
1 1 1 2 3
0 0 1 0 1

)
4 Z⊕ Z/2Z 2

145 K[T1, . . . , T6]/⟨ T1T2+T3T4+T 2
5 ,

λT3T4+T 2
5+T 2

6
⟩

(
1 1 1 1 1 1
0 0 1 1 1 0

)
16 Z⊕ Z/2Z 2

where ι(X) denotes the Gorenstein index, dX = (−KX)
3 and the parameter λ occuring in

the second relation of surface number 145 can be any element of K∗ \ {1}. Furthermore,
the Cox rings listed above are pairwise non-isomorphic as graded rings.

The varieties no. 2,3 and 25, 26 are rational degenerations of quasismooth varieties from
the list in [31]. In [14] the non-rationality of a general (quasismooth) element of the
corresponding family was proved.



6 COMPLEXITY-ONE FANO T -VARIETIES WITH PICARD NUMBER ONE 135

For non-toric Fano threefolds X with an effective 2-torus action and Cl(X) ∼= Z, the
classifications 6.23 and 6.24 show that for Picard indices one and two we only obtain
hypersurfaces as Cox rings. The following example shows that this stops at Picard index
three.

Example 6.25. This is an example of a Fano threefold X with Cl(X) = Z and a 2-torus
action such that the Cox ring R(X) needs two relations. Consider

R = K[T01, T02, T11, T12, T21, T31]/⟨g0, g1⟩

where the degrees of T01, T02, T11, T12, T21, T31 are 1, 1, 3, 3, 2, 3, respectively, and the rela-
tions are given by

g0 = T 5
01T02 + T11T12 + T 3

21, g1 = λT11T12 + T 3
21 + T 2

31.

Then R is the Cox ring of a Fano threefold with a 2-torus action. Note that the Picard
index is given by

[Cl(X) : Pic(X)] = lcm(1, 1, 3, 3) = 3.

Finally, we turn to locally factorial Fano fourfolds. Here we observe more than one relation
in the Cox ring even in the locally factorial case.

Theorem 6.26. Let X be a four-dimensional locally factorial non-toric Fano variety with
an effective three torus action. Then its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w6) (−KX)
4

1 K[T1, . . . , T6]/⟨T1T
5
2 + T 3

3 + T 2
4 ⟩ (1, 1, 2, 3, 1, 1) 81

2 K[T1, . . . , T6]/⟨T1T
9
2 + T 2

3 + T 5
4 ⟩ (1, 1, 2, 5, 1, 1) 1

3 K[T1, . . . , T6]/⟨T 3
1 T

7
2 + T 2

3 + T 5
4 ⟩ (1, 1, 2, 5, 1, 1) 1

4 K[T1, . . . , T6]/⟨T1T2T
4
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 2, 3, 1) 81

5 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 + T 3

4 + T 2
5 ⟩ (1, 1, 1, 2, 3, 1) 81

6 K[T1, . . . , T6]/⟨T1T2T
8
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

7 K[T1, . . . , T6]/⟨T1T
2
2 T

7
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

8 K[T1, . . . , T6]/⟨T1T
3
2 T

6
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

9 K[T1, . . . , T6]/⟨T1T
4
2 T

5
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

10 K[T1, . . . , T6]/⟨T 2
1 T

3
2 T

5
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

11 K[T1, . . . , T6]/⟨T 3
1 T

3
2 T

4
3 + T 5

4 + T 2
5 ⟩ (1, 1, 1, 2, 5, 1) 1

12 K[T1, . . . , T6]/⟨T1T2 + T3T4 + T 2
5 ⟩ (1, 1, 1, 1, 1, 1) 512

13 K[T1, . . . , T6]/⟨T1T
2
2 + T3T

2
4 + T 3

5 ⟩ (1, 1, 1, 1, 1, 1) 243
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14 K[T1, . . . , T6]/⟨T1T
3
2 + T3T

3
4 + T 4

5 ⟩ (1, 1, 1, 1, 1, 1) 64

15 K[T1, . . . , T6]/⟨T1T
4
2 + T3T

4
4 + T 5

5 ⟩ (1, 1, 1, 1, 1, 1) 5

16 K[T1, . . . , T6]/⟨T1T
4
2 + T 2

3 T
3
4 + T 5

5 ⟩ (1, 1, 1, 1, 1, 1) 5

17 K[T1, . . . , T6]/⟨T 2
1 T

3
2 + T 2

3 T
3
4 + T 5

5 ⟩ (1, 1, 1, 1, 1, 1) 5

18 K[T1, . . . , T6]/⟨T1T
3
2 + T3T

3
4 + T 2

5 ⟩ (1, 1, 1, 1, 2, 1) 162

19 K[T1, . . . , T6]/⟨T1T
5
2 + T3T

5
4 + T 3

5 ⟩ (1, 1, 1, 1, 2, 1) 3

20 K[T1, . . . , T6]/⟨T1T
5
2 + T 2

3 T
4
4 + T 3

5 ⟩ (1, 1, 1, 1, 2, 1) 3

21 K[T1, . . . , T6]/⟨T1T
5
2 + T3T

5
4 + T 2

5 ⟩ (1, 1, 1, 1, 3, 1) 32

22 K[T1, . . . , T6]/⟨T1T
5
2 + T 3

3 T
3
4 + T 2

5 ⟩ (1, 1, 1, 1, 3, 1) 32

23 K[T1, . . . , T6]/⟨T1T
7
2 + T3T

7
4 + T 2

5 ⟩ (1, 1, 1, 1, 4, 1) 2

24 K[T1, . . . , T6]/⟨T1T
7
2 + T 3

3 T
5
4 + T 2

5 ⟩ (1, 1, 1, 1, 4, 1) 2

25 K[T1, . . . , T6]/⟨T 3
1 T

5
2 + T 3

3 T
5
4 + T 2

5 ⟩ (1, 1, 1, 1, 4, 1) 2

26 K[T1, . . . , T6]/⟨T1T2T3T
3
4 + T 3

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 3) 81

27 K[T1, . . . , T6]/⟨T1T2T
2
3 T

2
4 + T 3

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 3) 81

28 K[T1, . . . , T6]/⟨T1T2T3T
7
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

29 K[T1, . . . , T6]/⟨T1T2T
2
3 T

6
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

30 K[T1, . . . , T6]/⟨T1T2T
3
3 T

5
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

31 K[T1, . . . , T6]/⟨T1T2T
4
3 T

4
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

32 K[T1, . . . , T6]/⟨T1T
2
2 T

2
3 T

5
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

33 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 T

4
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

34 K[T1, . . . , T6]/⟨T1T
3
2 T

3
3 T

3
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

35 K[T1, . . . , T6]/⟨T 2
1 T

2
2 T

3
3 T

3
4 + T 5

5 + T 2
6 ⟩ (1, 1, 1, 1, 2, 5) 1

36 K[T1, . . . , T6]/⟨T1T2T3 + T4T
2
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 1) 243

37 K[T1, . . . , T6]/⟨T1T2T
2
3 + T4T

3
5 + T 4

6 ⟩ (1, 1, 1, 1, 1, 1) 64

38 K[T1, . . . , T6]/⟨T1T2T
3
3 + T4T

4
5 + T 5

6 ⟩ (1, 1, 1, 1, 1, 1) 5

39 K[T1, . . . , T6]/⟨T1T2T
3
3 + T 2

4 T
3
5 + T 5

6 ⟩ (1, 1, 1, 1, 1, 1) 5

40 K[T1, . . . , T6]/⟨T1T
2
2 T

2
3 + T4T

4
5 + T 5

6 ⟩ (1, 1, 1, 1, 1, 1) 5

41 K[T1, . . . , T6]/⟨T1T
2
2 T

2
3 + T 2

4 T
3
5 + T 5

6 ⟩ (1, 1, 1, 1, 1, 1) 5

42 K[T1, . . . , T6]/⟨T1T2T
2
3 + T4T

3
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 2) 162

43 K[T1, . . . , T6]/⟨T1T2T
4
3 + T4T

5
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 2) 3

44 K[T1, . . . , T6]/⟨T1T2T
4
3 + T 2

4 T
4
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 2) 3
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45 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 + T4T

5
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 2) 3

46 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 + T 2

4 T
4
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 2) 3

47 K[T1, . . . , T6]/⟨T 2
1 T

2
2 T

2
3 + T4T

5
5 + T 3

6 ⟩ (1, 1, 1, 1, 1, 2) 3

48 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 + T 3

4 T
3
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 3) 32

49 K[T1, . . . , T6]/⟨T1T
2
2 T

3
3 + T4T

5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 3) 32

50 K[T1, . . . , T6]/⟨T1T2T
4
3 + T 3

4 T
3
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 3) 32

51 K[T1, . . . , T6]/⟨T1T2T
4
3 + T4T

5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 3) 32

52 K[T1, . . . , T6]/⟨T1T2T
6
3 + T4T

7
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

53 K[T1, . . . , T6]/⟨T1T2T
6
3 + T 3

4 T
5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

54 K[T1, . . . , T6]/⟨T1T
2
2 T

5
3 + T4T

7
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

55 K[T1, . . . , T6]/⟨T1T
2
2 T

5
3 + T 3

4 T
5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

56 K[T1, . . . , T6]/⟨T1T
3
2 T

4
3 + T4T

7
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

57 K[T1, . . . , T6]/⟨T1T
3
2 T

4
3 + T 3

4 T
5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

58 K[T1, . . . , T6]/⟨T 2
1 T

3
2 T

3
3 + T4T

7
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

59 K[T1, . . . , T6]/⟨T 2
1 T

3
2 T

3
3 + T 3

4 T
5
5 + T 2

6 ⟩ (1, 1, 1, 1, 1, 4) 2

60 K[T1, . . . , T6]/⟨T1T2 + T3T4 + T5T6⟩ (1, 1, 1, 1, 1, 1) 512

61 K[T1, . . . , T6]/⟨T1T
2
2 + T3T

2
4 + T5T

2
6 ⟩ (1, 1, 1, 1, 1, 1) 243

62 K[T1, . . . , T6]/⟨T1T
3
2 + T3T

3
4 + T5T

3
6 ⟩ (1, 1, 1, 1, 1, 1) 64

63 K[T1, . . . , T6]/⟨T1T
3
2 + T3T

3
4 + T 2

5 T
2
6 ⟩ (1, 1, 1, 1, 1, 1) 64

64 K[T1, . . . , T6]/⟨T1T
4
2 + T3T

4
4 + T5T

4
6 ⟩ (1, 1, 1, 1, 1, 1) 5

65 K[T1, . . . , T6]/⟨T1T
4
2 + T3T

4
4 + T 2

5 T
3
6 ⟩ (1, 1, 1, 1, 1, 1) 5

66 K[T1, . . . , T6]/⟨T1T
4
2 + T 2

3 T
3
4 + T 2

5 T
3
6 ⟩ (1, 1, 1, 1, 1, 1) 5

67 K[T1, . . . , T6]/⟨T 2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 T
3
6 ⟩ (1, 1, 1, 1, 1, 1) 5

68 K[T1, . . . , T7]/
⟨

T1T2+T3T4+T5T6,
λT3T4+T5T6+T 2

7

⟩
(1, 1, 1, 1, 1, 1, 1) 324

69 K[T1, . . . , T7]/
⟨

T1T 2
2+T3T 2

4+T5T 2
6 ,

λT3T 2
4+T5T 2

6+T 3
7

⟩
(1, 1, 1, 1, 1, 1, 1) 9

where in the last two rows of the table the parameter λ can be any element from K∗ \ {1}.
Furthermore, the Cox rings listed above are pairwise non-isomorphic as graded rings.

By the result of [46], the singular quintics of this list are rational degenerations of smooth
non-rational Fano fourfolds.
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Proof of Theorems 6.18, 6.23, 6.24 and 6.26. For fixed d and µ Theorem 6.10 bounds the
number of possible data lij, w0

ij, u0
k, belonging to Fano varieties. We identify all these

constellations by a computer based algorithm. Since |Cl(X)t| ≤ µ holds, there is only a
finite number of possibilities for the torsion part of the weights that we have to check. By
this procedure we receive the tables of 6.18, 6.23, 6.24 and 6.26.

We claim that any two of the listed Cox rings do not describe varieties that are isomorphic
to each other. Two minimal systems of homogeneous generators of the Cox ring contain
(up to reordering) the same free parts of generator degrees w0

ij, u0
k ∈ Z. Consequently,

they are invariant under isomorphy. Furthermore the exponents lij > 1 represent the
orders of all finite non-trivial isotropy groups of one-codimensional orbits of the action T
on X; see [29, Theorem 1.3]. Moreover, since none of the listed Cox rings is polynomial,
the varieties are all non-toric. This implies that every complexity-one action is maximal
and consequently can be assigned to a maximal torus in Aut(X). Note that Aut(X) is also
acting effectively on X. Since the maximal tori of Aut(X) are all conjugated, the varieties
with complexity-one torus action are isomorphic if and only if they are T -equivariantly
isomorphic. Thus, running through the exponents lij we see that any two of the varieties
listed in Theorem 6.18, 6.23 and 6.26 are not isomorphic.

In case of Theorem 6.24 there is some more work to do. There are non-isomorphic
threefolds varying only in the torsion part of the weights, see for example number 2, 3
and 4. In these cases, comparing the torsion parts of the gradings shows that it is not
possible to install a Cl(X)-graded ring isomorphism between the Cox rings of two different
threefolds.

As an example we consider the threefolds number 2 and 3: Let D2 be a prime divisor,
representing deg(T2) ∈ Cl(X) and let E1 be a prime divisor, representing deg(S1) ∈ Cl(X)
. Then D2 has isotropy group of order l2 = 3 and E1 has infinite isotropy. In case of
threefold number 2 the term D2 −E1 represents a non-trivial torsion element whereas in
case of threefold number 3 it is the zero element in Cl(X). Thus, these two varieties are
not isomorphic. Analogously, we proceed with all other cases to obtain finally the list of
Theorem 6.24.

Finally, we apply [25, Corollary 4.9] to compute the Gorenstein index ι(X) for all listed
varieties, i.e. we have to find the smallest integer ι(X) such that ι(X) ·KX is contained
in all local divisor class groups Cl(X, x); see also Proposition 6.1.
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7 Almost homogeneous complexity-one T -varieties

This chapter is dedicated to classification problems of almost homogeneous complexity-
one T -varieties, i.e. complexity-one T -varieties X whose automorphism group Aut(X)
acts with an open orbit. By introducing Demazure P -roots, we obtain a combinatorial
approach to the automorphism group of such varieties, describing the roots of Aut(X).
The Demazure P -roots turn out to be lattice points of certain polytopes. This convex
geometrical approach will be used for classification problems on almost homogeneous
complexity-one T -varieties of dimension two and three. Concretely, we provide a com-
plete list of all log-terminal non-toric almost homogeneous K∗-surfaces with exactly one
singularity and Picard number one up to Gorenstein index five. Furthermore, we describe
almost homogeneous complexity-one threefolds with Picard number one and reductive
automorphism group. These results are published in [6, Sections 6 and 8]

7.1 The automorphism group of complexity-one T -varieties and
Demazure P -roots

Round 1970 Demazure studied the automorphism group of smooth complete toric vari-
eties. Later Cox generalized the results to the simplicial case. The aim of this section
is to recall a description of the automorphism group of a complexity-one T -variety by
combinatorial data from [6]. A useful notion in this context are Demazure P -roots. The
statements of this section appeared in [6] where one can also find their proofs.

By [6, Theorem 5.5] the automorphism group Aut(X) of a normal complete rational
(non-toric) variety X with an effective torus action of complexity one is a linear algebraic
group. Thus, we first recall some basic definitions and facts for linear algebraic groups.
Let G be a linear algebraic group with maximal torus T . The adjoint representation Ad
of G is the representation of G in the tangent space Te(G) (which is isomorphic to the
Lie algebra G of G), given by

G→ GL(Te(G)), g 7→ Ad(g) = d(Int g),

where Int g is given by the inner automorphism x 7→ gxg−1. The group G is acting on
Te(G) by this representation and hence, so is T . We call an element 0 ̸= v ∈ Te(G) an
eigenvector if there is a character χw ∈ X(T ) such that t · v = χw(t)v for all t ∈ T . In
this situation χ is called an eigenvalue of the adjoint representation. They are also called
the weights of the representation. We have

Te(G) =
⊕

Vw =
⊕

χw∈X(T )

Vχw = V0 ⊕
⊕
0 ̸=w

Vw ,

where the sets Vw = {v ∈ Te(G); t ·v = χw(t)v ∀t ∈ T} denote the eigenspaces associated
to the character defined by the weight w ∈ X(T ) and V0 = Te(T ). The non-zero weights
of the adjoint representation Ad are called the roots of G. Linear algebraic groups are
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generated by their maximal tori and the one parameter subgroups corresponding to the
roots. For each root χw we define Tw = (ker(χw))◦ and Zw = ZG(Tw). Then Uw, the
set of all unipotent elements of Zw, is a connected T -stable (with respect to conjugation)
subgroup and there is a one-parameter subgroup λw : Ga → Uw ⊆ G.

Definition 7.1. Let P be a matrix as defined in Construction 2.10. Furthermore, let
vij, vk ∈ N = Zr+s denote the columns of P and let M = N∗ ∼= Zr+s be the dual lattice
of N .

(i) A vertical Demazure P -root is a tuple (u, k0) with a linear form u ∈M and an index
1 ≤ k0 ≤ m satisfying

⟨u, vij⟩ ≥ 0 for all i, j
⟨u, vk⟩ ≥ 0 for all k ̸= k0

⟨u, vk0⟩ = −1

(ii) A horizontal Demazure P -root is a tuple (u, i0, i1, C) with a linear form u ∈M , two
indices i0 ̸= i1 with 0 ≤ i0, i1 ≤ r, and a sequence C = (c0, . . . , cr) with 1 ≤ ci ≤ ni

such that

lici = 1 for all i ̸= i0, i1

⟨u, vici⟩ =

{
0, i ̸= i0, i1,

−1, i = i1,

⟨u, vij⟩ ≥


lij, i ̸= i0, i1, j ̸= ci

0, i = i0, i1, j ̸= ci

0, i = i0, j = ci,

⟨u, vk⟩ ≥ 0 for all k.

The Zs-part of a Demazure P -root κ = (u, k0) or κ = (u, i0, i1, C) is the tuple ακ of the
last s coordinates of the linear form u ∈M . We simply call it P -root.

Remark 7.2. Demazure P -roots are given by integral points of certain polytopes in MQ

defined by the equations and inequations of Definition 7.1. These polytopes are called
root polytopes. In general they can be described as follows:

(i) For a given index 1 ≤ k ≤ m we consider the vector ζ = (ζij, ζk) ∈ Zn+m satisfying

ζij := 0 for all i,j, ζk := 0 for all k, ζk0 := −1

and the affine subspace

η := {u′ ∈MQ | ⟨u′, vk0⟩ = −1} ⊆ MQ.

Then the vertical Demazure P -roots κ = (u, k0) are given by the integral points of
the polytope

B(k0) := {u′ ∈ η | P ∗u′ ≥ ζ} ⊆ MQ.
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(ii) For any two indices 1 ≤ i0, i1 ≤ r, i0 ̸= i1, and any sequence C = (c0, . . . , cr) with
1 ≤ ci ≤ ni such that lici = 1 for all i ̸= i0, i1 we set

ζij :=


lij, i ̸= i0, i1, j ̸= ci

−1, i = i1, j = ci

0 else

ζk = 0 for all 1 ≤ k ≤ m

and we define the affine subspace

η := {u′ ∈MQ; ⟨u′, vici⟩ = 0, ⟨u′, vi1ci1 ⟩ = −1} ⊆ MQ.

Then the horizontal Demazure P -roots κ = (u, i0, i1, C) are given by the integral
points of the polytope

B(i0, i1, C) := {u′ ∈ η | P ∗u′ ≥ ζ} ⊆ MQ.

Example 7.3 (Del Pezzo surface E6). Consider the E6-singular del Pezzo surface X with
Cox ring R(X) = K[T01, T02, T11, T21]/⟨T01T

3
02 + T 3

11 + T 2
21⟩ given by the P -matrix

P =

−1 −3 3 0
−1 −3 0 2
−1 −2 1 1

 .

There are no vertical Demazure P -roots since m = 0 holds. But there is a horizontal
Demazure P -root κ(u, i0, i1, C) given by

u = (−1,−2, 3), i0 = 1, i1 = 2, C = (1, 1, 1),

and it turns out that this is the only one. The P -root of κ is the last coordinate u3 = 3
of u.

Theorem 7.4. (See [6, Theorem 5.5]). Let X be a (non-toric) complexity-one T -variety
arising from sincere data (A,P ) as seen in Construction 2.20. Then the following state-
ments hold:

(i) The automorphism group Aut(X) is a linear algebraic group with maximal torus T .

(ii) Under the canonical identification X(T ) = Zs, the roots of Aut(X) with respect to
T are precisely the P -roots.

Geometrically, the vertical P -roots correspond to those root subgroups whose orbits are
contained in the closure of generic torus orbits. These P -roots are defined by generators
Sk of the Cox ring not occurring in the Cox ring relations (as in the toric situation).
The horizontal P -roots, on the other hand, correspond to those root subgroups whose
orbits are transversal to generic torus orbits. In this context, the relations between the
generators of the Cox ring do play an important role.
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7.2 Almost homogeneous surfaces

This section is dedicated to rational K∗-surfaces having horizontal Demazure P -roots and
Picard number one. We will give general formulas for the Demazure P -roots. Further-
more, we concentrate on log-terminal K∗-surfaces of that type having only one singularity.
As a result, we list all such surfaces up to Gorenstein index five.

Definition 7.5. A variety is called almost homogeneous if its automorphism group acts
with an open orbit.

Theorem 7.6. (See [6, Theorem 6.1]). Let X be a non-toric normal complete rational
complexity-one T -variety arising from sincere data (A,P ) and let R(X) = R(A,P ) be its
Cox ring. Then the following statements are equivalent:

(i) The variety X is almost homogeneous.

(ii) There exists a horizontal Demazure P -root.

Moreover, if one of these statements holds, then the number of relations of R(A,P ) is
bounded by

r − 1 < dim(X) + rk(Cl(X))−m− 2.

Let X be a normal complete rational K∗-surface. Then X is isomorphic to some X(A,P )
as in Construction 2.20. We assume that X has Picard number one. The following
proposition determines possible Demazure P -roots in this setting.

Proposition 7.7. Consider integers l02 ≥ 1, l11 ≥ l21 ≥ 2 and d01, d02, d11, d21 such that
the following matrix has pairwise different primitive columns generating Q3 as a convex
cone:

P :=

 −1 −l02 l11 0
−1 −l02 0 l21
d01 d02 d11 d21

 .

Moreover, assume that P is positive in the sense that det(P01) > 0 holds, where P01 is the
3 × 3-matrix obtained from P by deleting the first column. Then the possible horizontal
Demazure P -roots are

(i) κ = (u, 1, 2, (1, 1, 1)), where u =
(
d01α+ d21α+1

l21
,−d21α+1

l21
, α
)

with an integer α

satisfying

l21 | d21α + 1,
l02

d02 − l02d01
≤ α ≤ − l11

l21d11 + l11d21 + d01l11l21
,

(ii) if l02 = 1: κ = (u, 1, 2, (2, 1, 1)), where u =
(
d02α + d21α+1

l21
,−d21α+1

l21
, α
)

with an
integer α satisfying

l21 | d21α + 1, − l11
l21d11 + l11d21 + d02l11l21

≤ α ≤ 1

d01 − d02
,
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(iii) κ = (u, 2, 1, (1, 1, 1)), where u =
(
−d11α+1

l11
, d01α + d11α+1

l11
, α
)

with an integer α

satisfying

l11 | d11α + 1,
l02

d02 − l02d01
≤ α ≤ − l21

l21d11 + l11d21 + d01l11l21
,

(iv) if l02 = 1: κ = (u, 2, 1, (2, 1, 1)), where u =
(
−d11α+1

l11
, d02α + d11α+1

l11
, α
)

with an
integer α satisfying

l11 | d11α + 1, − l21
l21d11 + l11d21 + d02l11l21

≤ α ≤ 1

d01 − d02
.

Note that under these assumptions the P -roots are always positive.

Proof. In the situation of (i), evaluating the general linear form u = (u1, u2, u3) on the
columns of P gives the following conditions for a Demazure P -root:

⟨u, v01⟩ = −u1 − u2 + u3d01 = 0, ⟨u, v21⟩ = u2l21 + u3d21 = −1,

⟨u, v02⟩ = −u1l02 − u2l02 + u3d02 ≥ l02, ⟨u, v11⟩ = u1l11 + u3d11 ≥ 0.

Resolving the equations for u1, u2 gives

u1 =
1 + u3d21

l21
+ u3d01 and u2 = −1 + u3d21

l21
.

Plugging these results into the inequalities one obtains the desired roots with α := u3.
Note that the assumption det(P01) > 0 implies d02− l02d01 > 0 and det(P02) = d01l11l21 +
d21l11 + d11l21 < 0. Furthermore, the condition l21 | d21α + 1 ensures that u1 and u2 are
integers.

In case (ii), under the assumption l02 = 1, we get the following conditions for a Demazure
P -root:

⟨u, v02⟩ = −u1 − u2 + u3d02 = 0, ⟨u, v21⟩ = u2l21 + u3d21 = −1,

⟨u, v01⟩ = −u1 − u2 + u3d01 ≥ 1, ⟨u, v11⟩ = u1l11 + u3d11 ≥ 0.

Resolving the equations for u1, u2 gives

u1 =
1 + u3d21

l21
+ u3d02 and u2 = −1 + u3d21

l21
.

Plugging these results into the inequalities one analogously obtains the desired roots with
α := u3. Once more we use the assumption det(P01) = d02l11l21 + d21l11 + d11l21 > 0 to
transform the inequalities and the condition l21 | d21α + 1 to ensure that u1 and u2 are
integers.
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The other cases are treated analogously by switching i0 and i1 which means switching the
roles of v11 and v21. Consequently, in case (iii) we obtain the conditions

⟨u, v01⟩ = −u1 − u2 + u3d01 = 0, ⟨u, v21⟩ = u1l11 + u3d11 = −1,

⟨u, v02⟩ = −u1l02 − u2l02 + u3d02 ≥ l02, ⟨u, v11⟩ = u2l21 + u3d21 ≥ 0,

which gives

u1 =
1 + u3d11

l11
+ u3d01 and u2 = −1 + u3d11

l11

and the desired roots. In case (iv) we obtain

⟨u, v02⟩ = −u1 − u2 + u3d02 = 0, ⟨u, v11⟩ = u1l11 + u3d11 = −1,

⟨u, v01⟩ = −u1 − u2 + u3d01 ≥ 1, ⟨u, v21⟩ = u2l21 + u3d21 ≥ 0,

and consequently,

u1 =
1 + u3d11

l11
+ u3d02 and u2 = −1 + u3d11

l11
,

which finally completes the proof.

Corollary 7.8. The non-toric almost homogeneous normal complete rational K∗-surfaces
X of Picard number one are precisely the ones arising from data

A =

[
0 −1 1
1 −1 0

]
, P =

 −1 −l02 l11 0
−1 −l02 0 l21
d01 d02 d11 d21


as in Proposition 7.7 allowing an integer α according to one of the Conditions (i) to (iv)
of Proposition 7.7. In particular, the Cox ring of X is given as

R(X) = K[T01, T02, T11, T21] / ⟨T01T
l02
02 + T l11

11 + T l21
21 ⟩

with the grading by Z4/im(P ∗). Moreover, the anticanonical divisor of X is ample, i.e.
X is a del Pezzo surface.

Proof. As any surface with finitely generated Cox ring, X is Q-factorial. Since X has
Picard number one, the divisor class group Cl(X) is of rank one. Now take a minimal
presentation R(X) = R(A,P ) of the Cox ring. Then, according to Theorem 7.6, we
have m = 0 and there is exactly one relation in R(A,P ). Thus, P is a (3 × 4)- matrix.
Moreover, Theorem 7.6 says that there is a horizontal Demazure P -root. Consequently,
one of the exponents l01 and l02 must equal one, say l01. Fixing a suitable order for the
last two variables we ensure l11 ≥ l21. Passing to the K∗-action t−1 · x instead of t · x, if
necessary, we achieve that P is positive in the sense of Proposition 7.7.
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Let us see why X is a del Pezzo surface. Denote by Pij the matrix obtained from P by
deleting the column vij. Then, in Cl(X)0 = Cl(X)/Cl(X)t = Z, the weights w0

ij of Tij

are given up to a positive factor β as

(w0
01, w

0
02, w

0
11, w

0
21) = β(det(P01),−det(P02), det(P11),−det(P21)) , where

det(P01) = d02l11l21 + d11l02l11 + d21l02l11,

−det(P02) = −(d01l11l21 + d11l11 + d21l11),

det(P11) = d01l02l21 − d02l21,

−det(P21) = −(d01l02l11 − d02l11).

Note that w0
01, w

0
02, w

0
11, w

0
21 > 0. According to [5, Prop. III.3.4.1], the class of the an-

ticanonical divisor in Cl(X)0 is given as the sum over all w0
ij minus the degree of the

relation

−KX = β(det(P01)− det(P02) + det(P11)− det(P21)− (det(P01)− l02det(P02)))

= β(−det(P02)(−l02 + 1) + det(P11)− det(P21)).

The surface X is Fano if and only if −KX > 0 holds. Consequently, the factor β can
be omitted. Now we will use the inequalities on lij, dij implied by the existence of an
integer α as in Proposition 7.7. In the cases (ii) and (iv) we have l02 = 1 which implies
−KX = det(P11)−det(P21) > 0. The inequalities in case (i) and (iii) give l02 ≤ −det(P21)
and l02 ≤ det(P11) and hence −KX ≥ −det(P02)+det(P11) > 0 and −KX ≥ −det(P02)−
det(P21) > 0, respectively.

We turn to the case of X having precisely one singular point. Note that by Proposition
5.10 this singular point has to be an elliptic fixed point. The situation then is a lot simpler
since the divisibility conditions (i) to (iv) of Proposition 7.7 disappear.

Construction 7.9 (K∗-surfaces with one singularity). Consider a triple (l0, l1, l2) of in-
tegers satisfying the following conditions:

l0 ≥ 1, l1 ≥ l2 ≥ 2, l0 < l1l2, gcd(l1, l2) = 1.

Let (d1, d2) be the (unique) pair of integers with d1l2 + d2l1 = −1 and 0 ≤ d2 < l2 and
consider the data

A =

[
0 −1 1
1 −1 0

]
, P =

 −1 −l0 l1 0
−1 −l0 0 l2
0 1 d1 d2

 .

Then the associated ring R(l0, l1, l2) := R(A,P ) is graded by Z4/im(P ∗) ∼= Z, and is
explicitly given by

R(l0, l1, l2) = K[T1, T2, T3, T4]/⟨T1T
l0
2 + T l1

3 + T l2
4 ⟩,

deg(T1) = l1l2 − l0, deg(T2) = 1, deg(T3) = l2, deg(T4) = l1.
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Proposition 7.10. For the K∗-surface X = X(l0, l1, l2) with Cox ring R(l0, l1, l2), the
following statements hold:

(i) X is non-toric and we have Cl(X) = Z.

(ii) X comes with precisely one singularity.

(iii) X is a del Pezzo surface if and only if l0 < l1 + l2 + 1 holds.

(iv) X is almost homogeneous if and only if l0 ≤ l1 holds.

Moreover, any normal complete rational non-toric K∗-surface of Picard number one with
precisely one singularity is isomorphic to some X(l0, l1, l2).

Proof. First note that X = X(l0, l1, l2) is obtained as in Construction 7.9. The group
H = K∗ acts on K4 by

t · z = (tl1l2−l0z1, tz2, t
l2z3, t

l1z4),

the total coordinate space X := V (T1T
l0
2 + T l1

3 + T l2
4 ) is invariant under this action and

we have
X̂ = X \ {0}, X = X̂/K∗.

Thus, Cl(X) = Z holds and since the Cox ring R(X) = R(l0, l1, l2) is not a polynomial
ring, X is non-toric.

Using [5, Prop. III.3.1.5], we show that the set of singular points of X consists of the
image x0 ∈ X of the point (1, 0, 0, 0) ∈ X̂ under the quotient map X̂ → X. If l1l2− l0 > 1
holds, then the local divisor class group

Cl(X, x0) = Z/(l1l2 − l0)Z

is non-trivial and thus x0 ∈ X is singular. If l1l2 − l0 = 1 holds, then we have l0 > 1
and therefore (1, 0, 0, 0) ∈ X̂. Hence, x0 ∈ X is singular. Since all other local divisor
class groups of X are trivial and, moreover, all singular points of X̂ lie in the orbit
K∗ · (1, 0, 0, 0), we conclude that x0 ∈ X is the only singular point.

According to [5, Prop. III.3.4.1], the anticanonical class of X is l1 + l2 + 1 − l0. This
proves (iii). Finally, for (iv), we infer from Proposition 7.7 that existence of a horizontal
Demazure P -root is equivalent to existence of an integer α with l0 ≤ α ≤ l1 which in turn
is equivalent to l0 ≤ l1.

We come to the supplement. The surface X arises from a ring R(A,P ), where we may
assume that R(A,P ) is minimally presented. The first task is to show that n = 4, m = 0
and r = 2 hold. We have

n+m− (r − 1) = dim(X) + rk(Cl(X)) = 3.
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Any relation gi involving only three variables gives rise to a singularity in the source and
a singularity in the sink of the K∗-action. We conclude that at most two of the monomials
occurring in the relations may depend only on one variable. Thus, the above equation
shows that n = 4, m = 0 and r = 2 hold.

We may assume that the defining equation is of the form T l01
01 T

l02
02 + T l11

11 + T l21
21 . Again,

since one of the two elliptic fixed points must be smooth, we can conclude that one l0j
equals one, say l01. Now it is a direct consequence of the description of the local divisor
class groups given in [5, Prop. III.3.1.5] that a K∗-surface with precisely one singularity
arises from a matrix P as in the assertion.

Now we are interested in the log-terminal varieties of the form X(l0, l1, l2). Recall, that a
singularity is log-terminal if all its resolutions have discrepancies greater than −1. Over C,
the log-terminal surface singularities are precisely the quotient singularities by subgroups
of GL2(C). The Gorenstein index of X is the minimal positive integer ı(X) such that
ı(X) times the canonical divisor KX is Cartier.

Corollary 7.11. Assume that X = X(l1, l2, l3) is log-terminal. Then we have the follow-
ing three cases:

(i) The surface X is almost homogeneous.

(ii) The singularity of X is of type E7.

(iii) The singularity of X is of type E8.

Moreover, for the almost homogeneous surfaces X = X(l1, l2, l3) of Gorenstein index
ı(X) = a, we have

(i) (l0, l1, l2) = (1, l1, l2) with the bounds l2 < l1 <
8
3
a2 + 4

3
a,

(ii) (l0, l1, l2) = (2, l1, 2) with the bound l1 < 4a,

(iii) (l0, l1, l2) = (3, 3, 2), (2, 4, 3), (2, 5, 3), (3, 5, 2).

Proof. The surface X(l0, l1, l2) has only one singularity, occurring in the upper elliptic
fixed point. We consider the canonical resolution of X(l0, l1, l2) as presented in Theorem
3.10. In the tropical resolution step we have discrepancy greater than −1 if and only if

l0l1l2 < l0l1 + l0l2 + l1l2.

Thus, the allowed (l0, l1, l2) must be platonic triples (compare Example 3.20) and we are
left with

(1, l1, l2), (2, l1, 2), (3, 3, 2), (2, 4, 3), (2, 5, 3), (3, 5, 2), (4, 3, 2), (5, 3, 2).



148 7.2 Almost homogeneous surfaces

The last two give the surfaces with singularities E7, E8 and in all other cases, the
resulting surface is almost homogeneous by Proposition 7.10. Furthermore X(l0, l1, l2)
has Gorenstein index a if and only if aKX lies in the Picard group. According to [5,
Cor. III.3.1.6], this is equivalent to the fact that l1l2 − l0 divides a · (l1 + l2 + 1 − l0).
The bounds then follow by the subsequent elementary estimations. First we consider the
case (l0, l1, l2) = (1, l1, l2). Then the following equivalences hold with a suitable positive
integer b ∈ Z>0:

l1l2 − 1 | a · (l1 + l2 + 1− 1) ⇐⇒ b(l1l2 − 1) = a(l1 + l2)

⇐⇒ b =
a

l2
+

a

l1
+

b

l1l2

⇐⇒ bl2 − a = a
l2
l1

+
b

l1
.

In particular, bl2−a is a positive integer. Since we assumed l1, l2 > 1 and l1 > l2, we have

3

4
≤ b

3

4
= b(1− 1

4
) < b(1− 1

l1l2
) ≤ b− b

l1l2
=

a

l1
+

a

l2
<

2a

l2
≤ a,

and hence l2 <
8
3
a as well as b < 4

3
a. All in all, we obtain

1 ≤ bl2 − a =
al2
l1

+
b

l1
<

1

l1
·
(
8

3
a2 +

4

3
a

)
,

and consequently

l2 < l1 <
8

3
a2 +

4

3
a.

Now, we assume (l0, l1, l2) = (2, l1, 2). Then we have the following equivalences for a
positive integer b ∈ Z>0:

2l1 − 2 | a(l1 + 1) ⇐⇒ b(2l1 − 2) = a(l1 + 1)

⇐⇒ 2bl1 − al1 = 2b+ a

⇐⇒ l1 =
2b+ a

2b− a
.

Since 2b + a ≥ 0 and l1 > 2, we obtain 2b − a ≥ 1 and thus 2b ≥ a + 1 as well as
2b+ a > 4b− 2a, which gives 2b < 3a. All in all, we can conclude l1 ≤ 2b+ a < 4a.

Corollary 7.12. The following tables list the triples (l0, l1, l2) together with roots of
Aut(X) for the log-terminal almost homogeneous complete rational K∗-surfaces X =
X(l0, l1, l2) with precisely one singularity up to Gorenstein index ı(X) = 5.

ı(X) = 1 ı(X) = 2 ı(X) = 3
(1, 3, 2) : {1, 2, 3} (1, 7, 3) : {1, 3, 4, 7} (2, 7, 2) : {2, 3, 5, 7}
(2, 3, 2) : {2, 3} (1, 13, 4) : {1, 4, 5, 9, 13}
(3, 3, 2) : {3} (1, 8, 5) : {3, 5, 8}
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ı(X) = 4 ı(X) = 5
(2, 5, 2) : {2, 3, 5} (2, 11, 2) : {2, 3, 5, 7, 9, 11}
(1, 21, 5) : {1, 5, 6, 11, 16, 21} (1, 13, 7) : {2, 6, 13}

(2, 4, 3) : {3, 4}
(1, 17, 3) : {2, 3, 5, 8, 11, 14, 17}
(1, 31, 6) : {1, 6, 7, 13, 19, 25, 31}
(1, 18, 7) : {4, 7, 11, 18}

We conclude this section with a series of almost homogeneous log-terminal K∗-surfaces
having one singularity with a D5-like resolution graph.

Example 7.13. Let p ≥ 3 be an odd element of Z and consider the following matrices:

P =

−1 −2 p 0
−1 −2 0 2
0 1 p−1

2
−1

 , Q =
(
2p− 2 1 2 p

)
.

They define a K∗-surface X with Cox ring R(X) = K[T01, T02, T11, T21]/⟨T01T
2
02+T p

11+T 2
21⟩

and Cl(X) ∼= Z and the Cl(X)-grading of R(X) is given by Q. Note that the columns
of P are always primitive since gcd(p, p−1

2
) = 1 holds. This can easily be seen by the

following argument. Assume that there exists an element a ∈ Z>0 such that

p = ax and
p− 1

2
= ay

for suitably chosen x, y ∈ Z>0. Then we have

p

x
=

p− 1

2y

and thus 2py = px − x implies that p divides x. Consequently, we obtain a = 1. The
K∗-surface X has exactly one singularity in the upper elliptic fixed point corresponding
to the cone σ+ = cone(v02, v11, v21). Furthermore, we have

−KX = 2p− 2 + 1 + 2 + p− 2p = p+ 1 > 0.

In particular, X is Fano. For the degree of X, i.e. the self-intersection number of −KX ,
one has

(−KX)
2 =

(p+ 1)2

2p(2p− 2)
· 2p =

(p+ 1)2

2p− 2
.

Now, we want to determine the Gorenstein index. Since X has only one singularity, only
the upper elementary big cone σ+ corresponding to this singularity is interesting. The
determinant of this cone is 2p− 2. Hence, the Gorenstein index is given by

ι(X) =
2p− 2

gcd(2p− 2, p+ 1)
= lcm(2p− 2, p+ 1).
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In order to compute the horizontal Demazure P -roots of X we use the results (i) and (iii)
of Proposition 7.7. According to case (i), all integers α satisfying 2 ≤ α ≤ p and 2 | −α+1
are P -roots. Hence, all odd integers 3 ≤ x ≤ p give horizontal P -roots. According to
case (iii), all integers α satisfying 2 ≤ α ≤ p and p | p−1

2
α+ 1 are P -roots. It is sufficient

to consider all α that are even. Then α is a P -root if and only if p divides 1− α
2
, where

α ≤ p. Consequently, we obtain exactly one more P -root, namely 2. Hence the set of
horizontal Demazure P -roots is given by

Roots(X) = {2} ∪ {3 ≤ α ≤ p; α ∈ Z>0 odd}.

As already mentioned, the surface X has exactly one singularity corresponding to the
upper elliptic fixed point. Following the canonical resolution procedure of Theorem 3.10
and contracting (−1)-curves afterwards we obtain a D5-like resolution graph. The first
resolution step is given by the stellar subdivision of σ+ given by

(p− 1) ·

0
0
1

 = p ·

−2−2
1

+ 2 ·

 p
0

p−1
2

+ p ·

0
2
1

 .

Note that we can skip the stellar subdivision of the lower elementary cone σ− correspond-
ing to the lower elliptic fixed point since this is a smooth point. Using the formula for
the discrepancy of Proposition 3.15 we obtain

Disc(0,0,1) =
−(p− 3)

p− 1
> −1.

In particular X, is log-terminal. The remaining toric modifications arise from stellar
subdivisions by rays along v03 = (−1,−1, 1), v22 = (0, 1, 0) and v13 = (1, 0, 1), v12 =
(2, 0, 1). Note that they are independent of the choice of p.

�
�
�

@
@
@

r r r
r

r
F+

D22

D03

D12 D13

We will give a short proof for that. Consider the cone σ = cone((0, 1), (p, p−1
2
)). Then

the Hilbert basis of σ is given by

H(σ) =

{
(0, 1), (1, 1), (2, 1), (p,

p− 1

2
)

}
.

It is obvious that (1, 1) and (2, 1) are elements of H(σ). Since

det

(
0 1
1 1

)
= 1, det

(
1 2
1 1

)
= 1 and det

(
2 p
1 p−1

2

)
= −1,
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the Hilbert basis has the asserted form. Consequently, the Cox ring R(X̂) of the resolution
X̂ is given by K[Tij, S1]/⟨T01T02

2T03+T p
11T

2
12T13+T 2

21T22⟩ and X̂ = X(A, P̂ ) holds, where

P̂ =

−1 −2 −1 p 2 1 0 0 0
−1 −2 −1 0 0 0 2 1 0
0 1 1 p−1

2
1 1 −1 0 1

 .

In case of p = 3 we have the canonical D5-singularity. For p > 3 the resolution graph
remains the same, but the intersection numbers of the exceptional divisors are growing.
By using the formulas of Proposition 4.21 we obtain

(F+)2 = D2
13 = D2

03 = D2
22 = −2 and D2

12 = −
p+ 1

2
.

7.3 Semisimple P -roots

A linear algebraic group is called semisimple if it has only trivial closed connected solvable
normal subgroups. Each linear algebraic group has a maximal connected solvable normal
subgroup H such that G/H is semisimple. This quotient is the semisimple part of G
and it is denoted by Gss. The unit component R(G) = H◦ is called the radical of G.
Furthermore, we define the unipotent radical Ru(G) as the set of all unipotent elements
of R(G). Note that Gss is uniquely determined up to conjugacy by elements of the
unipotent radical Ru(G). With these notions we can reformulate the definition of a
semisimple group: A linear algebraic group is called semisimple if its radical R(G) is
trivial and a linear algebraic group is called reductive if its unipotent radical Ru(G) is
trivial.

If G is semisimple, then its roots ΦG ⊆ XR(T ) with respect to a given maximal torus T
form a root system. This means that for every α ∈ ΦG one has

ΦG ∩Rα = {±α}, sα(ΦG) = ΦG,

where sα : XR(T )→ XR(T ) denotes the reflection through the hyperplane α∨ perpendic-
ular to α with respect to a given scalar product on XR(T ). For our purpose the following
root systems are important:

An := {ei − ej; 1 ≤ i, j ≤ n+ 1, i ̸= j} ⊆ Rn+1,

B2 := {±e1,±e2,±(e1 + e2),±(e1 − e2)} ⊆ R2.

We turn to varieties with a complexity-one torus action. Consider data (A,P ) as in
Construction 2.10 and the resulting ring R(A,P ). Recall that R(A,P ) is equipped with
a K0-grading and a coarser K-grading. The grading group K0 splits as

K0 = Kvert
0 ⊕Khor

0 , where Kvert
0 := ⟨degK0

(Sk)⟩, Khor
0 := ⟨degK0

(Tij)⟩,

and Kvert
0
∼= Zm is freely generated by degK0

(S1), . . . , degK0
(Sm). Moreover, the direct

factor Zs of the column space Zr+s of P is identified via Q0 ◦ P ∗ with the kernel of the
downgrading map K0 → K, compare Construction 2.10.
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Definition 7.14. Let (A,P ) be data as in Construction 2.10 such that the associated ring
R(A,P ) is minimally presented and write ακ for the P -root, i.e. the Zs-part associated
to the Demazure P -root κ.

(a) We call a P -root ακ semisimple if −ακ = ακ′ holds for some Demazure P -root κ′,
i.e. −αk is a P -root.

(b) We call a semisimple P -root ακ vertical if ακ ∈ Kvert
0 and horizontal if ακ ∈ Khor

0

holds.

(c) We write Φss
P , Φvert

P and Φhor
P for the set of semisimple, vertical semisimple and

horizontal semisimple P -roots in Rs, respectively.

The main result about the semisimple roots of a complexity-one T -variety X given in [6]
is the following theorem.

Theorem 7.15. (See [6, Theorem 7.2]). Let A,P be as in Construction 2.10 such that
R(A,P ) is minimally presented and let X be a (non-toric) variety with a complexity-one
torus action T ×X → X arising from data (A,P ) according to Construction 2.20. Then
the following statements hold:

(i) Φvert
P ,Φhor

P and Φss
P are root systems with Φss

P = Φvert
P ⊕Φhor

P and Φss
P is the root system

with respect to T of the semisimple part Aut(X)ss.

(ii) For p ∈ K denote by mp the number of variables Sk with degK(Sk) = p. Then

Φvert
P
∼=
⊕
p∈K

Amp−1,
∑
p∈K

(mp − 1) < dim(X)− 1.

(iii) Let Φhor
P ̸= ∅. Then r = 2 holds, and, after suitably renumbering the variables one

has

(a) T01T02 + T11T12 + T l2
2 , w01 = w11 and w02 = w12,

(b) T01T02 + T 2
11 + T l2

2 , w01 = w02 = w11,

for the defining relation of R(A,P ) and the degrees wij = degK(Tij) of the variables.

(iv) In the above case (iii)(a), there are the following possibilities for the root system
Φhor

P :

• If l21 + . . .+ l2n2 ≥ 3 holds, then

Φhor
P =

{
A1 ⊕ A1, w01 = w02 = w11 = w12,

A1, otherwise.
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• If n2 = 2 and l21 = l22 = 1 hold, then

Φhor
P =


A3, w01 = w02 = w11 = w12 = w21 = w22,

A2, w01 = w11 = w21, w02 = w12 = w22, w01 ̸= w02,

A1 ⊕ A1, w01 = w02 = w11 = w21, w01 ̸= w21, w01 ̸= w22,

A1, otherwise.

(v) In the above case (iii)(b), there are the following possibilities for the root system
Φhor

P :

• If l21 + . . .+ l2n2 ≥ 3 holds, then

Φhor
P = A1.

• If n2 = 1 and l21 = 2 hold, then

Φhor
P =

{
A1 ⊕ A1, w01 = w02 = w11 = w21,

A1, otherwise.

• If n2 = 2 and l21 = l22 = 1 hold, then

Φhor
P =

{
B2, w01 = w02 = w11 = w21 = w22,

A1, otherwise.

We will prove some lemmas that contribute to the proof of this theorem and which are
needed in the next section for classification issues.

Let X be a complexity-one T -variety, arising from a matrix P , having a pair of semisimple
roots α± ∈ Φhor

P . Then we infer from [6, Lemma 7.7] that r = 2 holds. After reordering
l0, l1 and l2 the following two cases can occur:

• We have n0 = n1 = 2 and l01 = l02 = l11 = l12 = 1 and for any pair of Demazure
P -roots u± associated to α± one has i+0 = i−0 = 2.

• We have n0 = 1, l01 = 2 and n1 = 2, l11 = l12 = 1 and for any pair of Demazure
P -roots u± associated to α± one has i+0 = i−0 = 2.

In particular, for a given pair α± ∈ Φhor
P , all associated pairs of Demazure P -roots share

the same i0 = i+0 = i−0 . This allows us to speak about the distinguished index i0 of
α± ∈ Φhor

P .

We briefly recall which elementary row and column operations of the matrix P are called
admissible (compare Definition 2.23):

(i) Switch two columns inside a block vi1, . . . , vini
.
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(ii) Switch two whole column blocks vi1, . . . vini
and vj1, . . . , vjnj

.

(iii) Add multiples of the upper r rows the one of the last s rows.

(iv) Any elementary row operation among the last s rows.

(v) Switch two columns inside the d′ block.

Lemma 7.16. Let n0 = n1 = 2 and l01 = l02 = l11 = l12 = 1. If there exists a pair
α± ∈ Φhor

P with distinguished index i0 = 2, then P can be transformed by admissible
operations, without moving the n2-block, into the form

P =


−1 −1 1 1 0 0
−1 −1 0 0 l2 0
−1 0 0 1 0 0
0 0 0 d∗12 d∗2 d′∗

 , (9)

where the lower line is a matrix of size (s − 1) × (n + m). Conversely, if P is of the
above shape, then α± = (±1, 0) ∈ Φhor

P has distinguished index i0 = 2. Moreover, up to
admissible operations of type (iii) and (iv), situation (9) is equivalent to

degK(T01) = degK(T12), degK(T02) = degK(T11).

Proof. Fix an associated pair κ± = (u±, 2, i±1 , C±) of Demazure P -roots. Renumbering
the variables, we first achieve i+1 = 1 and C+ = (1, 1, 1). Adding suitable multiples of the
top two rows of P to the lower s rows brings P into the form

P =

 −1 −1 1 1 0 0
−1 −1 0 0 l2 0
0 d02 0 d12 d2 d′

 .

Now we explicitly go through the defining conditions of the Demazure P -root κ+ with

u+ = (u+
1 , u

+
2 , α+), where u±

i ∈ Z, i+1 = 1, C+ = (1, 1, 1).

This gives the following root conditions:

⟨u+, v01⟩ = u+
1 = −1,

⟨u+, v02⟩ = −u+
1 − u+

2 + ⟨α+, d02⟩ = ⟨α+, d02⟩ ≥ 1,

⟨u+, v11⟩ = u+
1 + u+

2 = 0,

⟨u+, v12⟩ = u+
1 + ⟨α+, d12⟩ = −1 + ⟨α+, d12⟩ ≥ 0,

⟨u+, v2j⟩ = l2ju
+
2 + ⟨α+, d2j⟩ ≥ 0,

⟨u+, vk⟩ = ⟨α+, d
′
k⟩ ≥ 0.

Consequently, u+
2 = 1 and ⟨α+, d2j⟩ ≥ −l2j hold. Since α− = −α+, we obtain ⟨α−, d02⟩ ≤

−1, ⟨α−, d12⟩ ≤ −1 and ⟨α−, d2j⟩ ≤ l2j. For u− we obtain independently of the choice of
C− the condition

0 ≤ ⟨u−, d2j⟩ = l2ju
−
2 + ⟨α−, d2j⟩ ≤ l2ju

−
2 + l2j,
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and consequently u−
2 ≥ −1. Now, we have to go through all possible cases for i1 and

C− = (c0, c1, c2).

We assume i1 = 1. If c0 = 1, then

⟨u−, v01⟩ = −u−
1 − u−

2 = 0

⟨u−, v02⟩ = −u−
1 − u−

2 + ⟨α−, d02⟩ = ⟨α−, d02⟩ ≥ 1,

a contradiction to ⟨α−, d02⟩ ≤ −1. If c1 = 1, then ⟨u−, v11⟩ = u−
1 = −1 and ⟨u−, v12⟩ =

u−
1 + ⟨α−, d12⟩ = −1 + ⟨α−, d12⟩ ≥ 0 must hold, a contradiction to ⟨α−, d12⟩ ≤ −1. For

c0 = c1 = 2 we have

⟨u−, v01⟩ = −u−
1 − u−

2 ≥ 1,

⟨u−, v02⟩ = −u−
1 − u−

2 + ⟨α−, d02⟩ = 0,

⟨u−, v11⟩ = u−
1 ≥ 0,

⟨u−, v12⟩ = u−
1 + ⟨α−, d12⟩ = −1.

Adding ⟨u−, v02⟩ and ⟨u−, v12⟩ gives −u−
2 − 2 ≥ −u−

2 + ⟨α−, d02⟩ + ⟨α−, d12⟩ = −1 and
thus u−

2 ≤ −1. Consequently, u−
2 = −1 holds. Putting this into the first inequality we

obtain u−
1 ≤ 0 and together with the third inequality u−

1 = 0.

Now, we assume i1 = 0. If c1 = 1, then ⟨u−, v11⟩ = u−
1 = 0 and ⟨u−, v12⟩ = u−

1 +⟨α−, d12⟩ =
⟨α−, d12⟩ ≥ 1, a contradiction to ⟨α−, d12⟩ ≤ −1. If c0 = 1, then ⟨u−, v01⟩ = −u−

1 − u−
2 =

−1 and ⟨u−, v02⟩ = −u−
1 − u−

2 + ⟨α−, d02⟩ = −1 + ⟨α−, d12⟩ ≥ 0, a contradiction to
⟨α−, d02⟩ ≤ −1. For c0 = c1 = 2, we have

⟨u−, v01⟩ = −u−
1 − u−

2 ≥ 0,

⟨u−, v02⟩ = −u−
1 − u−

2 + ⟨α−, d02⟩ = −1,
⟨u−, v11⟩ = u−

1 ≥ 1,

⟨u−, v12⟩ = u−
1 + ⟨α−, d12⟩ = 0.

Adding ⟨u−, v02⟩ and ⟨u−, v12⟩ gives −u−
2 − 2 ≥ −u−

2 + ⟨α−, d02⟩ + ⟨α−, d12⟩ = −1 and
thus u−

2 ≤ −1. Consequently, u−
2 = −1 holds. Putting this into the first inequality we

obtain u−
1 ≤ 1 which implies together with the third inequality that u−

1 = 1 holds. Thus,
we are left with the two possibilities

u− = (1,−1,−α+), i−1 = 0, C− = (2, 2, 1),

u− = (0,−1,−α+), i−1 = 1, C− = (2, 2, 1).

In both cases, we obtain

⟨α+, d02⟩ = ⟨α+, d12⟩ = 1,

⟨α+, d2j⟩ = −l2j for j = 1, . . . , n2,

⟨α+, d
′
k⟩ = 0 for j = 1, . . . ,m.



156 7.3 Semisimple P -roots

Now choose any invertible (s × s)-matrix with α+ as its first row and apply it from the
left to P . Then the third row of P looks as follows:[

0 1 0 1 −l2 0
]

Adding suitable multiples of the third row to the last s − 1 rows and adding the second
to the third row brings P into the desired form. The remaining statements are directly
checked.
Lemma 7.17. Let n0 = 1, l01 = 2 and n2 = 2, l11 = l12 = 1. Then there is at most one
pair α± ∈ Φhor

P with distinguished index i0 = 2. If there is one, then P can be brought by
admissible operations, without moving the n2-block, into the form

P =


−2 1 1 0 0
−2 0 0 l2 0
−1 0 1 0 0
d∗01 0 0 d∗2 d′∗

 , (10)

where the lower line is a matrix of size (s − 1) × (n + m). Conversely, if P is of the
above shape, then α± = (±1, 0) ∈ Φhor

P has distinguished index i0 = 2. Moreover, up to
admissible operations of type (iii) and (iv), situation (10) is equivalent to

degK(T01) = degK(T11) = degK(T12).

Proof. This is a similar computation as in the previous lemma. Clearly, we may assume
C+ = (1, 1, 1) and by suitable row operations, we bring P into the form

P =

 −2 1 1 0 0
−2 0 0 l2 0
d01 0 d12 d2 d′

 .

Now enter the defining conditions of a Demazure P -root κ+ with u+ = (u+
1 , u

+
2 , α+). Since

i0 = 2 holds, we have i+1 = i−1 = 0. Hence,

⟨u+, v01⟩ = −2u+
1 − 2u−

2 + ⟨α+, d01⟩ = −1,
⟨u+, v11⟩ = u+

1 = 0,

⟨u+, v12⟩ = u+
1 + ⟨α+, d12⟩ ≥ 1,

⟨u+, v2j⟩ = u+
2 l2j + ⟨α+, d2j⟩ ≥ 0,

⟨u+, vk⟩ = ⟨α+, d
′
k⟩ ≥ 0.

Note that the root conditions are independent of the choice of c2. If c1 = 1, we obtain
the inequality ⟨u−, v12⟩ = ⟨α−, d12⟩ = −⟨u+, v12⟩ ≥ 1, a contradiction to ⟨α+, d12⟩ ≥ 1.
Consequently, c1 = 2 must hold and we have the following root conditions.

⟨u−, v01⟩ = −2u−
1 − 2u−

2 + ⟨α−, d01⟩ = −1,
⟨u−, v11⟩ = u−

1 ≥ 1,

⟨u−, v12⟩ = u−
1 + ⟨α−, d12⟩ = 0,

⟨u−, v2j⟩ = u−
2 l2j + ⟨α−, d2j⟩ ≥ 0,

⟨u−, vk⟩ = ⟨α−, d
′
k⟩ ≥ 0.
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Adding ⟨u+, v01⟩ and ⟨u−, v01⟩ we obtain −2u−
1 − 2u−

2 − 2u+
2 = −2 and hence u−

1 =
−u−

2 − u+
2 + 1 ≥ 1 which gives u−

2 + u+
2 ≤ 0. Adding ⟨u+, v2j⟩ and ⟨u−, v2j⟩ we obtain

(u−
2 +u+

2 )l2k ≥ 0 and hence u−
2 +u+

2 ≥ 0. Consequently, u+
2 = u−

2 must hold which implies
u−
1 = 1. All in all we end up with u+

1 = 0 and

⟨α+, d01⟩ = 2u+
2 − 1,

⟨α+, d12⟩ = 1,

⟨α+, d2j⟩ = −u+
2 l2j for j = 1, . . . , n2,

⟨α+, d
′
k⟩ = 0 for j = 1, . . . ,m.

Analogously to the proof of Lemma 7.16, this enables us to bring P via suitable row
operations into the desired form. Again, the remaining statements are directly seen.

Lemma 7.18. Let 1 ≤ k+
0 < k−

0 ≤ m and denote by f ∈ Zn+m the vector with fn+k±0
= ∓1

and all other entries zero. Then the following statements are equivalent.

(i) There exists a pair α± of vertical semisimple roots corresponding to the indices k±
0 .

(ii) The vector f can be realized as the (r + 1)-th row of P by applying only admissible
operations of type (iii) and (iv).

(iii) The variables Sk+0
and Sk−0

have the same degree with respect to the Cl(X)-grading.

Proof. To prove that (i) implies (ii), let κ± = (u±, k±
0 ) be a pair of Demazure P -roots

associated to α±. Then we have ⟨u±, vij⟩ ≥ 0 for all 0 ≤ i ≤ r, 1 ≤ j ≤ ni and
⟨u±, vk⟩ ≥ 0 for all 1 ≤ k ≤ m, k ̸= k±

0 , as well as ⟨u+, vk−0 ⟩ ≥ 0, ⟨u+, vk+0 ⟩ = −1 and
⟨u−, vk+0 ⟩ ≥ 0, ⟨u−, vk−0 ⟩ = −1. We define u := u+ + u− and conclude ⟨u, vij⟩ ≥ 0 for all
0 ≤ i ≤ r, 1 ≤ j ≤ ni and ⟨u, vk⟩ ≥ 0 for all 1 ≤ k ≤ m, k ̸= k±

0 . Since α+ = α− and the
first s coordinates of every column vk are zero, we obtain

⟨u, vk+0 ⟩ = ⟨u
+, vk+0 ⟩+ ⟨u

−, vk+0 ⟩ = ⟨u
+, vk+0 ⟩ − ⟨u

+, vk+0 ⟩ = 0

and analogously

⟨u, vk−0 ⟩ = ⟨u
+, vk−0 ⟩+ ⟨u

−, vk−0 ⟩ = −⟨u
−, vk−0 ⟩+ ⟨u

−, vk−0 ⟩ = 0,

which yields ⟨u, vij⟩ ≥ 0 for all 0 ≤ i ≤ r, 1 ≤ j ≤ ni and ⟨u, vk⟩ ≥ 0 for all 1 ≤ k ≤ m.
Furthermore, we know that the columns of P are generating Qr+s as a cone. This implies
u = 0 and thus u− = −u+. Consequently, we conclude

⟨u+, vij⟩ = 0 for all i, j, ⟨u+, vk⟩ = 0 for all k ̸= k±
0 ,

⟨u+, vk+0 ⟩ = −1, ⟨u+, vk−0 ⟩ = 1.
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Now, write u+ = (u+
1 , α

+) with the Zs-part α+ and let σ be a ((s − 1) × s)-matrix
complementing the row α+ to a unimodular matrix. Then applying the block matrixEr 0

u+
1 α+

0 σ

 ,

where Er is the r-dimensional identity matrix, from the left to P describes admissible
operations of type (iii) and (iv) realizing the vector f as the (r+1)-th row of the resulting
matrix P .

Now assume that f is the (r + 1)-th row of P and consider u± ∈ Zs with u±
r+1 = ±1 and

all other entries zero. Then the Zs-parts α± of the vertical Demazure P-roots (u±, k±
0 )

are representing a pair of semisimple roots. This shows the implication from (ii) to (i).

Since P is the kernel of the grading matrix Q, it is obvious that (ii) implies (iii).

In the last step we will prove that (iii) implies (ii). Therefore assume that Sk+0
and

Sk−0
have the same Cl(X)-degree. This is equivalent to Q(ek+0 ) = Q(ek−0 ) and thus to

Q(ek−0 − ek+0 ) = 0 which means that f = ek−0 − ek+0 is an element of the kernel of Q and
consequently is contained in the lattice generated by the rows of P . Since f is a linear
combination of the rows of P , there exists a linear form u such that

u(vij) = 0, u(vk) = 0 for k ̸= k±
0 , u(vk+0 ) = −1, u(vk−0 ) = 1.

Applying the block matrix of the same form as above from the left to P yields statement
(ii).

7.4 Almost homogeneous 3-folds with reductive automorphism
group

A linear algebraic group G is called reductive if the radical of the connected unit compo-
nent G◦ is an algebraic torus. Equivalently, one can require the unipotent radical of G◦

to be trivial. The automorphism group of a complexity-one T -variety is reductive if and
only if its roots build a root system, i.e. X has only semisimple roots. Hence, one can use
the description of semisimple roots to classify complexity-one T -varieties with reductive
automorphism group. The aim of this chapter is to describe all three-dimensional almost
homogeneous complexity-one T -varieties with reductive automorphism group and Picard
number one.

Proposition 7.19. Let X be a three-dimensional non-toric complete normal rational
variety. Suppose that X is almost homogeneous under an action of a reductive group and
there is an effective action of a two-dimensional torus on X. Then the Cox ring of X is
given as R(X) = R(A,P ) with a matrix P according to the following cases.
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(i) P =


−1 −1 1 1 0 0
−1 −1 0 0 l2 0
−1 0 0 1 0 0
0 0 0 d∗12 d∗2 d′∗

,

(ii) P =


−2 1 1 0 0
−2 0 0 l2 0
−1 0 1 0 0
d∗01 0 0 d∗2 d′∗

.

In both cases, m ≤ 2 holds; this means that the d′∗-part can be either empty, equal to ±1
or equal to (±1,∓1).

Proof. Clearly, we may assume that we are in the situation of Theorem 7.15. Since X is
non-toric but almost homogeneous, there must be a semisimple horizontal P -root. Thus,
Lemmas 7.16 and 7.17 show that after admissible operations, P is of the desired shape.

Lemma 7.20. Let x = (1, a), y = (1, b) and z = (c, b) be points in Q2. Then the following
statements are equivalent.

(i) The simplex conv(x, y, z) contains an integral point.

(ii) There is an integer d with min(a, b) ≤ d ≤ max(a, b).

Proof. Clearly, (ii) implies (i). So let q = (q1, q2) be an integral point in conv(x, y, z).
Then its second coordinate satisfies min(a, b) ≤ q2 ≤ max(a, b).

1

1 2

min(a, b)

max(a, b)

c

������r r

Lemma 7.21. Let X be an almost homogeneous three-dimensional complexity-one T -
variety with Picard number one and reductive automorphism group. Then X has no
vertical semisimple P -roots.

Proof. Since X is almost homogeneous, it has at least one pair of semisimple horizontal
Demazure P -roots. Hence, by Theorem 7.15 we have r = 2 and n0 ≥ 2. Since rk(Cl(X)) =
1 holds, we obtain m ≤ 1 which contradicts the existence of a pair of semisimple vertical
Demazure P -roots.
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Theorem 7.22. Let X be a Q-factorial three-dimensional complete normal variety of
Picard number one. Suppose that Aut(X) is reductive, has a maximal torus of dimension
two and acts with an open orbit on X. Then X is a rational Fano variety and, up to
isomorphy, X arises from a matrix P of one of the following. Additionally, we give the
free part of the Cox ring grading up to a multiple β ∈ Z>0:

(i) P =


−1 −1 1 1 0
−1 −1 0 0 l21
−1 0 0 1 0
0 0 0 d12 d21

 , l21 > 1, d12 > 2, − d21
d12 − 1

< l21 < −d21,

βQ0 = (−d21, d21 + l21d12, d21 + l21d12,−d21, d12).

(ii) P =


−2 1 1 0 0
−2 0 0 l21 l22
−1 0 1 0 0
d01 0 0 d21 d22

 , l21, l22 > 1, 2d22 > −d01l22, −2d21 > d01l21,

βQ0 = (l21d22− l22d21, l21d22− l22d21, l21d22− l22d21, 2d22+ d01l22,−2d21− d01l21).

(iii) P =


−2 1 1 0 0
−2 0 0 1 l22
−1 0 1 0 0
d01 0 0 d21 d22

 ,
l22 > 1, d22 > d21l22 + l22,
2d22 > −d01l22, −2d21 > d01,

or

P =


−2 1 1 0 0
−2 0 0 1 l22
−1 0 1 0 0
d01 0 0 d21 d22

 , l22 > 1, 2d22 > −d01l22, 1− 2d21 > d01,

βQ0 = (d22 − l22d21, d22 − l22d21, d22 − l22d21, 2d22 + d01l22,−2d21 − d01).

(iv) P =


−2 1 1 0 0
−2 0 0 1 1
−1 0 1 0 0
−1 0 0 1 0

 or P =


−1 −1 1 1 0
−1 −1 0 0 2
−1 0 0 1 0
0 0 0 1 −1

 ,

βQ0 = (1, 1, 1, 1, 1).

(v) P =


−2 1 1 0 0
−2 0 0 l21 0
−1 0 1 0 0
1 0 0 d21 1

 , 1 < l21 < −2d21 < 2l21,

βQ0 = (l21, l21, l21, 2,−2d21 − l21).

Conversely, each of the above listed matrices defines a Q-factorial rational almost homoge-
neous Fano variety with reductive automorphism group having a two-dimensional maximal
torus.
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Proof. First note that up to a common multiple β ∈ Z>0 the weight vectors w0
ij, u0

k of
Q0 can be easily computed by minors of P . They are the determinants of the matrices
Pij and Pk resulting from P by deleting the column vij and vk respectively. Without loss
of generality, we may assume them to be positive. From Proposition 7.19 we infer the
possible forms of the matrix P . In Lemma 7.16 and Lemma 7.17 we proved that every such
variety X has at least one pair of semisimple roots, namely α± = (±1, 0). The Demazure
P -roots (u1, u2, α1, α2) ∈ Z4 are the lattice points of the root polytope. It is given by the
five conditions for Demazure P -roots, splitting into two equations and three inequations.
We can resolve the equations for u1 and u2. Then the P -roots α = (α1, α2) are given
by the lattice points of a polytope in Z2 defined by the three remaining inequations.
With help of computer routines we determine the possible vertices of this polytope and
conditions ensuring the polytope not to be empty. Thereby, we deduce conditions to
exclude all roots that are not semisimple.

(i) First we consider the situation l01 = l02 = l11 = l12 = 1 and l21 > 1 with d12 > 0 and
0 < −d21 < l21d12. Every choice of

(i0, i1) ∈ {(0, 2), (2, 0), (1, 2), (2, 1)} and C ∈ {(1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 2, 2)}

can cause possible roots. If (i0, i1) = (2, 1) or (i0, i1) = (2, 0) and C = (1, 1, 1), the root
polytope coincides with the integral point (1, 0). If (i0, i1) = (2, 1) or (i0, i1) = (2, 0) and
C = (2, 2, 1), the root polytope coincides with the integral point (−1, 0). Hence, there
are twelve remaining cases that have to be considered:

(1) For (i0, i1) = (0, 2) and C = (1, 1, 1) we have the vertices

E1 =

(
d21 + d12

d21 + l21d12
,

l21 − 1

d21 + l21d12

)
, E2 =

(
d21 + d12

d21
,− 1

d21

)
, E3 =

(
0,− 1

d21

)
,

and the condition for a non-empty root polytope

d21 + d12 ≥ 0.

This condition is equivalent to

0 <
l21 − 1

d21 + l21d12
≤ − 1

d21
≤ 1.

In particular (±1, 0) is not contained in the root polytope. Since we want to refer to
Lemma 7.20 we apply the unimodular transformation

U =

(
1− d12 1

0 1

)
.

The vertices E1, E2 and E3 are sent to the coordinates

U(E1) =

(
1,

l21 − 1

d21 + l21d12

)
, U(E2) =

(
1,− 1

d21

)
, U(E3) =

(
−d12
d21

,− 1

d21

)
.
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Consequently, there are integral points in the root polytope if and only if

− 1

d21
= 1 and

l21 − 1

d21 + l21d12
≤ 1.

The condition d21 = −1 implies the second condition. The integral points of the modified
polytope are given by (x, 1) with d12 ≥ x ≥ 1. Consequently, the lattice points of the
root polytope lie between (1 − d12, 1) and (1, 1). Since the two root equations are given
by ⟨u, v11⟩ = u1 = 0 and ⟨u, v21⟩ = u2l21 + α2d21 = −1, we obtain Demazure P -roots by
setting u1 = u2 = 0. Consequently, the existence of Demazure P -roots is equivalent to
the condition d21 = −1.
(2) For (i0, i1) = (0, 2) and C = (1, 2, 1) we have the vertices

E1 =

(
− l21d12 + d21 − d12

d21 + l21d12
,− 1

d21 + l21d12

)
, E2 =

(
− l21d12 + d21 − d12

d21
,
l21 − 1

d21

)
,

E3 =

(
0,− 1

d21 + l21d12

)
,

and the condition for a non-empty root polytope

l21d12 + d21 − d12 ≤ 0.

This condition is equivalent to

0 >
l21 − 1

d21
≥ − 1

d21 + l21d12
≥ −1.

In particular, (±1, 0) is not contained in the root polytope. Since we want to use Lemma
7.20, we first have to apply the unimodular transformation

U =

(
1 d12
0 1

)
which then gives us the new vertices

U(E1) =

(
−1,− 1

d21 + l21d12

)
, U(E2) =

(
−1, l21 − 1

d21

)
,

U(E3) =

(
− d12
d21 + l21d12

,− 1

d21 + l21d12

)
.

Consequently, the root polytope contains integral points if and only if

− 1

d21 + l21d12
= −1 and − 1 ≤ l21 − 1

d21
.

Since the first condition already implies the second one, we can restrict to the single
condition

d21 + l21d12 = 1.
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The lattice points in the modified polytope are given by (−x,−1) with 1 ≤ x ≤ d12.
Consequently, the lattice points in the root polytope lie between (−1 + d12,−1) and
(0,−1). The two root equations are given by ⟨u, v12⟩ = u1+α1+α2d12 = 0 and ⟨u, v21⟩ =
u2l21 + α2d21 = −1. Hence, (α1, α2) can be completed to Demazure P -roots by u2 =
−d12. This implies that the existence of Demazure P -roots is equivalent to the condition
d21 + l21d12 = 1.

(3) For (i0, i1) = (0, 2) and C = (2, 1, 1) we have the vertices

E1 =

(
d21 + d12

d21 + l21d12
,

l21 − 1

d21 + l21d12

)
, E2 =

(
d21 + d12

d21
,− 1

d21

)
, E3 =

(
0,− 1

d21

)
,

and the condition for a non-empty root polytope

d21 + d12 ≥ 0.

Thus, this case is equivalent to case (1).

(4) For (i0, i1) = (0, 2) and C = (2, 2, 1) we have the vertices

E1 =

(
− l21d12 + d21 − d12

d21 + l21d12
,− 1

d21 + l21d12

)
, E2 =

(
− l21d12 + d21 − d12

d21
,
l21 − 1

d21

)
,

E3 =

(
0,− 1

d21 + l21d12

)
,

and the condition for a non-empty root polytope

l21d12 + d21 − d12 ≤ 0.

Thus, this case is equivalent to case (2).

(5) For (i0, i1) = (1, 2) and C = (1, 1, 1), we have the vertices

E1 =

(
1,

l21 − 1

d21

)
, E2 =

(
1,− 1

d21 + l21d12

)
,

E3 =

(
d12

d21 + l21d12
,− 1

d21 + l21d12

)
,

and the condition for a non-empty root polytope

l21d12 + d21 − d12 ≤ 0.

Thus, this case is equivalent to case (2). Note that the two root equations are given by
⟨u, v01⟩ = −u1 − u2 − α1 = 0 and ⟨u, v21⟩ = u2l21 + α2d21 = −1.
(6) For (i0, i1) = (1, 2) and C = (1, 2, 1) we have the vertices

E1 =

(
1,

l21 − 1

d21

)
, E2 =

(
1,− 1

d21 + l21d12

)
,

E3 =

(
d12

d21 + l21d12
,− 1

d21 + l21d12

)
,
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and the condition for a non-empty root polytope

l21d12 + d21 − d12 ≤ 0.

Thus, this case is equivalent to case (5) and (2).

(7) For (i0, i1) = (1, 2) and C = (2, 1, 1) we have the vertices

E1 =

(
−1,− 1

d21

)
, E2 =

(
−1, l21 − 1

d21 + l21d12

)
, E3 =

(
d12
d21

,− 1

d21

)
,

and the condition for a non-empty root polytope

d21 + d12 ≥ 0.

Thus this case is equivalent to case (1). Note that the two root equations are given by
⟨u, v11⟩ = −u1 − u2 = 0 and ⟨u, v21⟩ = u2l21 + α2d21 = −1.
(8) For (i0, i1) = (1, 2) and C = (2, 2, 1) we get the vertices

E1 =

(
−1,− 1

d21

)
, E2 =

(
−1, l21 − 1

d21 + l21d12

)
, E3 =

(
d12
d21

,− 1

d21

)
,

and the condition for a non-empty root polytope

d21 + d12 ≥ 0.

Thus, this case is equivalent to case (7) and (1).

(9) For (i0, i1) = (2, 0) and C = (1, 2, 1) we have the vertices

E1 =

(
− d21
d21 + l21d12

,− l21
d21 + l21d12

)
, E2 =

(
1,− 2

d12

)
, E3 =

(
1,− l21

d21 + l21d12

)
,

and the condition for a non-empty root polytope

2d21 + l21d12 ≤ 0.

This condition is equivalent to

− 2

d12
≥ − l21

d21 + l21d12
.

Consequently, there is an integral point contained in the root polytope if and only if there
exists an integer x satisfying

− l21
d21 + l21d12

≤ x ≤ − 2

d12
.

Note that the two root equations are given by ⟨u, v01⟩ = −u1 − u2 − u3 = −1 and
⟨u, v12⟩ = u1 + α1 + α2d12 = 0. Hence, lattice points of the root polytope can always be
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completed to Demazure P -roots. All in all, there is a P -root different from (±1, 0) if and
only if one of the following two conditions are satisfied:

d12 = 1, l21 + 2d21 ≤ 0 or d12 ≥ 2, l21(d12 − 1) + d21 ≤ 0.

(10) For (i0, i1) = (2, 0) and C = (2, 1, 1) we have the vertices

E1 =

(
d21 + l21d12

d21
,− l21

d21

)
, E2 =

(
−1, 2

d12

)
, E3 =

(
−1,− l21

d21

)
,

and the condition for a non-empty root polytope

2d21 + l21d12 ≥ 0.

This condition is equivalent to
2

d12
≤ − l21

d21
.

Consequently, there are integral points in the root polytope if and only if there is an
integer x satisfying

2

d12
≤ x ≤ − l21

d21
.

Note that the two root equations are given by ⟨u, v11⟩ = u1 = 0 and ⟨u, v02⟩ = −u1−u2 =
−1. Hence, lattice points of the root polytope can always be completed to Demazure
P -roots. All in all, there is a P -root different from (±1, 0) if and only if the following
conditions are satisfied:

d12 = 1, 0 ≤ l21 + 2d21 or 2 ≤ d12, 0 ≤ d21 + l21.

(11) For (i0, i1) = (2, 1) and C = (1, 2, 1) we have the vertices

E1 =

(
1,− l21

d21 + l21d12

)
, E2 =

(
1,− 2

d12

)
, E3 =

(
− d21
d21 + l21d12

,− l21
d21 + l21d12

)
,

and the condition for a non-empty root polytope

2d21 + l21d12 ≤ 0.

Thus, this case is equivalent to case (9).

(12) For (i0, i1) = (2, 1) and C = (2, 1, 1) we get the vertices

E1 =

(
−1,− l21

d21

)
, E2 =

(
−1, 2

d12

)
, E3 =

(
d21 + l21d12

d21
,− l21

d21

)
,

and the condition for a non-empty root polytope

2d21 + l21d12 ≥ 0.
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Thus, this case is equivalent to case (10). Note that the two root equations are given by
⟨u, v11⟩ = u1 = −1 and ⟨u, v02⟩ = −u1 − u2 = 0.

Finally, we have to put all the conditions together. There is a vertical Demazure P -root
not equal to (±1, 0) if and only if one of the following conditions is satisfied:

d21 = −1 (1)

d21 + l21d12 = 1 (2)

d12 = 1, l21 + 2d21 ≤ 0 (3)

d12 ≥ 2, l21(d12 − 1) + d21 ≤ 0 (4)

d12 = 1, l21 + 2d21 ≥ 0 (5)

d12 ≥ 2, d21 + l21 ≥ 0 (6)

Note that conditions (3) and (5) are equivalent to d12 = 1 and that conditions (4) and
(6) can not be satisfied simultaneously since −l21 ≤ d21 ≤ −l21(d12 − 1) implies d12 = 1.
Negating all the conditions and taking the positivity of the weights into account we obtain
that to avoid vertical Demazure P -root not equal to (±1, 0) all of the following conditions
have to be satisfied:

d21 < −1 (1′)

d21 + l21d12 > 1 (2′)

d12 > 1 (3′)

l21(d12 − 1) + d21 > 0 (4′)

d21 + l21 < 0 (5′)

Note that (4’) implies (2’). Finally, we can deduce the conditions of assertion (i).

So far, we described all varieties having no other roots but (±1, 0). The computations,
that we made so far can also be used to describe those cases, where we have more than
one pair of semistable roots. One easily checks that there is only one possible choice for
the parameters, namely d21 = −1, d12 = 1 and l21 = 2. Then we have the P -roots (±1, 0),
(0,±1), (±1,∓1) and (±1,∓2), and the P -matrix is given by

−1 −1 1 1 0
−1 −1 0 0 2
−1 0 0 1 0
0 0 0 1 −1

 .

(ii) Now, we assume l11 = l12 = 1, l21, l22 > 1 and l01 = 2. First note that this implies
w11 = w12 = w01 > w21, w22. So the conditions for all weights to be positive are

l21d22 − l22d21 > 2d22 + d01l22 > 0 and l21d22 − l22d21 > −2d21 − d01l21 > 0.

Since l21, l22 > 1, we have to check eight cases given by all possible choices of (i0, i1) ∈
{(0, 2), (2, 0)} and C ∈ {(1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 2, 2)}. If (i0, i1) = (2, 0) and C =
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(1, 1, 1) or C = (1, 1, 2), the root polytope consists only of the integral point (1, 0).
Furthermore, if (i0, i1) = (2, 0) and C = (1, 2, 1) or C = (1, 2, 2), the root polytope
consists only of the integral point (−1, 0). So we are left with the following four cases:

(1) For (i0, i1) = (0, 2) and C = (1, 1, 1), we have the vertices

E1 =

(
1,

l21 − 2

2d21 − d01l21

)
, E2 =

(
1,

l22
l21d22 − l22d21

)
,

E3 =

(
2d22 + d01l22
l21d22 − l22d21

,
l22

l21d22 − l22d21

)
,

and the condition for a non-empty root polytope

−l21d22 + l22d21 + 2d22 + d01l22 ≥ 0.

This condition is satisfied if and only if

l21 − 2

2d21 + d01l21
≥ l22

l21d22 − l22d21
> 0,

which is only satisfied if l21 = 1, a contradiction to l21 > 1. Thus, in this case there are
no P -roots.

(2) For (i0, i1) = (0, 2) and C = (1, 2, 1) we have the vertices

E1 =

(
−1, l21 − 2

2d21 − d01l21

)
, E2 =

(
−1, l22

l21d22 − l22d21

)
,

E1 =

(
− 2d22 + d01l22
l21d22 − l22d21

,
l22

l21d22 − l22d21

)
,

and the condition for a non-empty root polytope

−l21d22 + l22d21 + 2d22 + d01l22 ≥ 0.

Consequently, this case can be treated analogously to case (1).

(3) For (i0, i1) = (0, 2) and C = (1, 1, 2) we have the vertices

E1 =

(
1,

l22 − 2

2d22 + d01l22

)
, E2 =

(
1,

l21
−l21d22 + l22d21

)
,

E1 =

(
− 2d21 + d01l21
l21d22 − l22d21

,− l21
l21d22 − l22d21

)
,

and the condition for a non-empty root polytope

l21d22 − l22d21 + 2d21 + d01l21 ≤ 0.

This condition is satisfied if and only if

l22 − 2

2d22 + d01l22
≤ − l21

l21d22 − l22d21
< 0,
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which is only satisfied, if l22 = 1, a contradiction to l22 > 1. Thus, in this case there are
no P -roots.

(4) For (i0, i1) = (0, 2) and C = (1, 2, 2) we have the vertices

E1 =

(
−1, l22 − 2

2d22 + d01l22

)
, E2 =

(
−1, l21
−l21d22 + l22d21

)
,

E1 =

(
2d21 + d01l21
l21d22 − l22d21

,− l21
l21d22 − l22d21

)
,

and the condition for a non-empty root polytope

l21d22 − l22d21 + 2d21 + d01l21 ≤ 0.

Consequently, this case can be treated analogously to case (3).

Summarized, there are no P -roots but (±1, 0). Hence, we only have to ensure that the
weights are positive, which gives the assertion.

(iii) Now, we assume that l21 = 1 and l22 > 1. The positivity conditions for the weights
are

2d22 > −d01l22, −2d21 > d01 and d22 > l22d21.

Note that the first two inequalities imply the last one. We have to go through all pos-
sibilities (i0, i1) ∈ {(0, 1), (1, 0), (0, 2), (2, 0)} and C ∈ {(1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 2, 2)}.
So we have to check 16 cases. Note that the cases (i0, i1) = (0, 1), C = (1, 1, 2) and
(i0, i1) = (0, 1), C = (1, 2, 2) as well as (i0, i1) = (1, 0), C = (1, 1, 2) and (i0, i1) = (1, 0),
C = (1, 2, 2) can not occur since we assumed l22 > 1. Furthermore, if (i0, i1) = (2, 0) and
C = (1, 1, 1) or C = (1, 1, 2), the root polytope only consists of the integral point (1, 0)
and if (i0, i1) = (2, 0) and C = (1, 2, 1) or C = (1, 2, 2) it consists only of the integral
point (−1, 0). So we are left with the following eight cases:

(1) For (i0, i1) = (0, 1) and C = (1, 1, 1), we have the vertices

E1 =

(
2d22 + d01l22
d22 − l22d21

,
l22

d22 − l22d21

)
, E2 =

(
1,

l22
d22 − l22d21

)
, E3 =

(
1,− 1

2d21 + d01

)
,

and the conditions for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

The non-emptiness condition is fulfilled if and only if

− 1

2d21 + d01
≥ l22

d22 − l22d21
.

Consequently by Lemma 7.20 there is an integral point inside the root polytope if and
only if there is an integer x satisfying

0 ≤ l22
d22 − l22d21

≤ x ≤ − 1

2d21 + d01
≤ 1.
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The root equations are given by ⟨u, v21⟩ = u2 + α2d21 = 0 and ⟨u, v11⟩ = u1 = −1. Thus,
the existence of P -roots not equal to (±1, 0) is equivalent to the conditions

2d21 + d01 = −1, l22 ≤ d22 − l22d21.

(2) For (i0, i1) = (0, 1) and C = (1, 2, 1) we have the vertices

E1 =

(
−2d22 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
, E2 =

(
−1, l22

d22 − l22d21

)
,

E3 =

(
−1,− 1

2d21 + d01

)
,

and the condition for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

Consequently, this case can be treated analogously to case (1).

(3) For (i0, i1) = (0, 2) and C = (1, 1, 1) we have the vertices

E1 =

(
1,− 1

2d21 + d01

)
, E2 =

(
1,

l22
d22 − l22d21

)
, E3 =

(
2d22 + d01l22
d22 − l22d21

,
l22

d22 − l22d21

)
,

and the condition for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

Consequently, this case can be treated analogously to case (1).

(4) For (i0, i1) = (0, 2) and C = (1, 2, 1) we have the vertices

E1 =

(
−1,− 1

2d21 + d01

)
E2 =

(
−1, l22

d22 − l22d21

)
,

E3 =

(
−2d22 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

and the condition for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

Consequently, this case can be also treated analogously to case (1).

(5) For (i0, i1) = (0, 2) and C = (1, 1, 2) we have the vertices

E1 =

(
1,

l22 − 2

2d22 + d01l22

)
E2 =

(
1,− 1

d22 − l22d21

)
,

E3 =

(
− 2d21 + d01
d22 − l22d21

,− 1

d22 − l22d21

)
,
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and the condition for a non-empty root polytope

−d22 + l22d21 − 2d21 − d01 ≥ 0.

The non-emptiness condition is full-filled if and only if

− 1

d22 − l22d21
≥ l22 − 2

2d22 + d01l22
.

Since d22 − l22d21 > 0, this is only satisfied for l22 = 1 which we have excluded.

(6) For (i0, i1) = (0, 2) and C = (1, 2, 2) we have the vertices

E1 =

(
−1, l22 − 2

2d22 + d01l22

)
E2 =

(
−1,− 1

d22 − l22d21

)
,

E3 =

(
2d21 + d01
d22 − l22d21

,− 1

d22 − l22d21

)
,

and the condition for a non-empty root polytope

−d22 + l22d21 − 2d21 − d01 ≥ 0.

Consequently, this case can be treated analogously to case (5).

(7) For (i0, i1) = (1, 0) and C = (1, 1, 1) we have the vertices

E1 =

(
d22 + l22d21 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

E2 =

(
−d22 + l22d21 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

E3 =

(
0,− 1

2d21 + d01

)
,

and the condition for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

The root polytope is not empty if and only if

l22
d22 − l22d21

≤ − 1

2d21 + d01
.

Now, we are applying the following unimodular transformation

U =

(
1 −2d21 − d01
0 1

)
.
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The vertices E1, E2 and E3 are sent to

U(E1) =

(
1,

l22
d22 − l22d21

)
, U(E2) =

(
−d22 + 3l22d21 + 2d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

U(E3) =

(
1,− 1

2d21 + d01

)
.

Hence, we use Lemma 7.20 which says that there is an integral point inside the root
polytope different from (±1, 0) if and only if there is an integer x satisfying

l22
d22 − l22d21

≤ x ≤ − 1

2d21 + d01
.

If this is fulfilled, then the lattice point in the modified polytope is (1, 1) and the lattice
point in the root polytope is (α1, α2) = (1 + 2d21 + d01, 1). Consequently, we obtain the
same conditions as in case (1):

2d21 + d01 = −1 l22 ≤ d22 − l22d21.

Anyway, here, the existence of a Demazure P -root additionally requires an integer condi-
tion to be satisfied since the two root equations are ⟨u, v21⟩ = u2 + α2d21 = 0, ⟨u, v01⟩ =
−2u1−2u2−α1+α2d01 = −1. The pair (α1, α2) can be completed to a Demazure P -root
if and only if α1 − α2d01 − 1 = 1 + 2d01 + d01 + d01 − 1 = 2d01 + 2d01 is even, which is
always the case.

(8) For (i0, i1) = (1, 0) and C = (1, 2, 1) we have the vertices

E1 =

(
d22 + l22d21 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

E2 =

(
−d22 + l22d21 + d01l22

d22 − l22d21
,

l22
d22 − l22d21

)
,

E3 =

(
0,− 1

2d21 + d01

)
,

and the condition for a non-empty root polytope

d22 + l22d21 + d01l22 ≥ 0.

Consequently, we get the same results as in case (7).

Finally we have to summarize all the cases and to negate the conditions for existence of
a P -roots. There are no other P -roots but (±1, 0) if and only if

1 < −2d21 − d01, 0 < 2d22 + d01l22

or
d22 − l22d21 − l22 < 0, 0 < 2d22 + d01l22, 0 < −2d21 − d01.



172 7.4 Almost homogeneous 3-folds with reductive automorphism group

Furthermore, one easily checks that the only P -roots that could occur in this case are
(−1, 1), (1, 1) and (0, 1). In particular, they are not semisimple.

(iv) If l21 = 1, then by adding suitably often the second row to the last row, we may
assume d21 = 0. This implies d01 = d22 = 1 and hence we obtain the matrix

P =


−2 1 1 0 0
−2 0 0 1 1
−1 0 1 0 0
1 0 0 1 0

 .

One easily computes that this threefold has exactly four pairs of semisimple P -roots,
namely (±1, 0), (0,±1), (±1,±1) and (∓1,±1). Note that the two matrices of the asser-
tion are defining isomorphic threefolds.

(v) Finally, we assume m = 1, l01 = 2, l11 = l12 = 1 and l21 > 0. To ensure positivity
of the weights we require −2d21 − l21d01 > 0. Since we have a free variable Sk there can
both exist, vertical and horizontal Demazure roots. For the horizontal case there are only
four cases to check. Consider i = (2, 0). For C = (1, 1, 1) the root polytope consists only
of the point (1, 0) and for C = (1, 2, 1) it consists of (−1, 0). If we have i = (0, 2) and
C = (1, 1, 1), then the vertices are

E1 =

(
1,

l21 − 2

2d21 + l21d01

)
, E2 = (1, 0) , E3 =

(
2

l21
, 0

)
and the condition for a non-empty root polytope is given by

l21 − 2

2d21 + l21d01
≥ 0.

Since −2d21 − l21d01 > 0, this yields l21 ≤ 2. Since X is not toric, we have l21 ≥ 2 and
thus l21 = 2. Consequently (1, 0) is the only possible root. In case of i = (0, 2) and
C = (1, 2, 1) analogous argumentation leads to the result that (−1, 0) is the only possible
root.

Now we consider the situation for vertical Demazure roots. The conditions for a vertical
Demazure root z = [z1, z2, z3, z4] are as follows:

⟨z, v1⟩ = z4 = −1,
⟨z, v01⟩ = −2z1 − 2z2 − z3 + z4d01 ≥ 0,

⟨z, v11⟩ = z1 ≥ 0,

⟨z, v12⟩ = z1 + z3 ≥ 0,

⟨z, v21⟩ = z2l21 + d21z4 ≥ 0.

First note that these conditions are fulfilled if and only if they are fulfilled by a vector
[0, z2, 0,−1]. Consequently, the conditions can be simplified to

d21
l21
≤ z2 ≤ −

1

2
d01.
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Since the weight deg(S1) = −2d21 − l21d01 is positive by assumption, so is the difference
of the two bounds which is given by

−1

2
d01 −

d21
l21

.

Consequently, there is a vertical root if and only if d01 is even or if d01 is odd and

−1

2
d01 −

d21
l21
≥ 1

2
. (∗)

Since we have m = 1 there are no semisimple vertical roots. Thus, we have to exclude the
existence of vertical roots. In particular, d01 has to be odd. By suitably often adding the
second row to the last row we can achieve d01 = 1. Furthermore, negating (∗) we obtain
the condition l21 > −d21. Together with the positivity condition −2d21 − l21 > 0 and the
assumption l21 > 1 we receive the statement of (v).

Corollary 7.23 (of Theorem 7.15). Let X be a non-toric complexity-one variety arising
from data (A,P ) as in Theorem 7.15. If X has Picard number one and satisfies Φhor

P ̸= ∅,
then X is Fano. In particular, all varieties of Theorem 7.22 are Fano.

Proof. In this situation the anticanonical class wX in Cl(X) is given by

wX =
r∑

i=0

ni∑
j=1

wij +
m∑
k=1

uk − (r − 1)deg(g0).

By Theorem 7.15(iii) r = 2 holds and we have to distinguish two cases:

(i) g0 = T01T02 + T11T12 + T l2
2 with w01 = w11 and w02 = w12,

(ii) g0 = T01T02 + T 2
11 + T l2

2 with w01 = w02 = w11.

Consequently, we obtain

(i) wX = 2w01 + 2w02 +

n2∑
j=1

w2j +
m∑
k=1

uk − w01 − w02

= w01 + w02 +

n2∑
j=1

w2j +
m∑
k=1

uk > 0,

(ii) wX = 3w01 +

n2∑
j=1

w2j +
m∑
k=1

uk − 2w01 = w01 +

n2∑
j=1

w2j +
m∑
k=1

uk > 0,

which implies that X is Fano in both cases.
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Example 7.24. The following series of P -matrices defines non-toric almost homogeneous
complexity-one threefolds with at least d ≥ 1 different Demazure P -roots.

Pd :=


−1 −1 1 1 0
−1 −1 0 0 2
−1 0 0 1 0
0 0 0 d −2d+ 1


For C = (1, 2, 1) and i0 = 0, i1 = 2 we obtain the following root polytope whose integral
points are P -roots:

A := conv

(
[d− 1,−1], [0,−1],

[
d− 1

−2d+ 1
,

1

−2d+ 1

])
.

In particular, we obtain at least d different roots

[0,−1], [1,−1], . . . , [d− 1,−1],

and the corresponding linear forms have the form

u = [u1, u2, u3, u4] = [d− u3,−d, u3,−1] with u3 ∈ {0, . . . , d− 1}.

Explicitly, we have

⟨u, v01⟩ = −d+ u3 + d12 − u3 = 0 ≥ 0,

⟨u, v02⟩ = u3 ≥ 0,

⟨u, v11⟩ = d− u3 ≥ 1,

⟨u, v12⟩ = 0,

⟨u, v21⟩ = −1.
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log del Pezzo surface, 79, 91, 106
log-canonical, 48
log-terminal, 48, 79, 91, 127, 147

minimal toric ambient variety, 12
minimally represented, 24
Mori Dream Space, 6
moving cone, 14, 15

orbit cone, 9

parabolic fixed point curve, 57
Picard group, 5, 14, 114
Picard index, 113
Picard number, 113
platonic triple, 49, 127, 148
projected cone, 9

quasifan, 10
quasismooth, 41
quasitorus, 6

quasitorus action, 7

radical, 151
relevant F-faces, 10
resolution of singularities, 41
root polytope, 140
roots, 139

Schicho’s Theorem, 97
self-intersection number, 68
semiample cone, 15
semistable points, 13
sheaf of divisorial algebras, 6
sincere, 18
sink, 57
source, 57
subdivision, 39
support, 15

tangent representation, 58
terminal, 48
toric variety, 9
torus, 6
total coordinate space, 8
tower cone, 42

unipotent radical, 151

weak tropical resolution, 42
weakly tropical, 42
weight cone, 9
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Deutsche Zusammenfassung

Das Thema der vorliegenden Arbeit sind Varietäten mit Toruswirkung der Komplexi-
tät 1, das heißt, algebraische Varietäten X mit einer effektiven Wirkung eines alge-
braischen Torus der Dimension dim(T ) = dim(X) − 1. Diese Varietäten werden auch
kurz Komplexität-Eins-T -Varietäten genannt. Es wird eine kombinatorische Beschreibung
solcher Varietäten eingeführt, welche die konvexgeometrische Beschreibung torischer Va-
rietäten durch Fächer verallgemeinert. Der Schwerpunkt dieser Arbeit liegt dabei in der
Anwendung dieser Theorie auf Klassifikationsprobleme für Komplexität-Eins-T -Varietä-
ten. Besondere Bedeutung kommt hierbei Fanovarietäten zu, das heißt Varietäten mit
amplem antikanonischen Divisor.

In der algebraischen Geometrie sind torische Varietäten ein bekanntes Beispiel für den
Einsatz kombinatorischer Methoden. Die Struktur dieser Varietäten wird durch deren
Verbindung zu Gitterfächern auf anschauliche Art und Weise wiedergegeben. Im Jahr
1970 wurden (glatte) torische Varietäten zum ersten Mal von Demazure formal definiert
[18]. Diese Arbeit beinhaltet bereits eine konvexgeometrische Beschreibung torischer Va-
rietäten durch Fächer. Die Theorie torischer Varietäten entwickelte sich ab Ende der 70er
Jahre rasch weiter. Als einige Beispiele seien an dieser Stelle Danilov [17], Oda [42, 43],
Fulton [22] und Cox/Little/Schenk [16] genannt. Kombinatorische Methoden wurden
auch für größere Klassen von Varietäten erfolgreich eingesetzt. Kempf, Knudsen, Mum-
ford und Saint-Donat befassten sich in [36] mit toroidalen Varietäten, und erweiterten
die konvexgeometrische Sprache auf diese allgemeinere Situation. In diesem Buch treten
Komplexität-Eins-T -Varietäten als Spezialfälle auf und werden zum ersten Mal durch
kombinatorische Daten beschrieben. Neben [36] ist die Arbeit [45] von Orlik und Wagre-
ich eine der ersten Publikationen über Komplexität-Eins-T -Varietäten. Sie diskutierten
den Spezialfall von K∗-Flächen und entwickelten eine kombinatorische Beschreibung deren
Struktur durch gewichtete Graphen. In neuerer Forschung beschrieben Altmann und
Hausen in [3] Varietäten mit Toruswirkung durch polyedrische Divisoren. Dies liefert ins-
besondere im Fall von Komplexität-Eins-T -Varietäten eine recht einfache Beschreibung
dieser Varietäten. Der Ansatz der vorliegenden Arbeit basiert auf Coxringen. Hausen
und Süß bestimmten den Coxring einer gegebenen rationalen vollständigen Varietät mit
Toruswirkung der Komplexität 1 mittels deren Wirkung, siehe [29]. Solche Coxringe sind
endlich erzeugt und erlauben eine einfache Darstellung durch trinomiale Gleichungen.
Dies liefert neue Ansätze für einen kombinatorischen Zugang zu Komplexität-Eins-T -
Varietäten und ist der Ausgangspunkt dieser Doktorarbeit. Wir führen eine systema-
tische Konstruktion für Komplexität-Eins-T -Varietäten mittels bestimmter ganzzahliger
Matrizen A und P und einer Kollektion Φ von polyedrischen Kegeln ein. Diese Resultate
wurden teilweise in [28, Kapitel 1] und [27] veröffentlicht.

Motiviert durch die Klassifikation torischer Fanovarietäten, deren Beginn auf Batyrev
zurück geht [8], wenden wir den kombinatorischen Ansatz auf Fanovarietäten der Kom-
plexität 1 an. Der Schwerpunkt der vorliegenden Arbeit liegt auf effektiven Schranken
und konkreten Klassifikationen.



Eine erste Beispielklasse sind Fano-K∗-Flächen, sogenannte del-Pezzo-K∗-Flächen. Der
in dieser Arbeit verwendete kombinatorische Ansatz unterscheidet sich von den Arbeiten
von Alekseev/Nikulin [2] und Nakayama [40], welche auf klassischer Flächengeometrie
basieren. In den Theoremen 5.25, 5.26, 5.27 und 5.28 erhalten wir eine vollständige Klas-
sifikation von Gorenstein-log-del-Pezzo-K∗-Flächen. Die verwendeten Methoden liefern
darüber hinaus die Coxringe all dieser Flächen. Dies ergänzt Ergebnisse von Derenthal
[19] für Coxringe im Hyperflächenfall und Hausen/Süß [27], welche die Fälle Picardzahl
1 und 2 mit anderen Methoden behandelten.

Fanovarietäten mit Picardzahl 1 sind von besonderer Bedeutung. Nadel gibt in [39] eine
effektive Schranke für den Grad (−Kx)

n einer glatten Fanovarietät an, welche von der
Dimension n abhängig ist. Sind Gradschranken bekannt, so liefert Kóllar in [37] effektive
Schranken für die Anzahl unterschiedlicher Deformationstypen glatter Fanovarietäten. In
[35] studiert Kasprzyk torische Varietäten mit Picardzahl 1, so genannte „(fake) weighted
projective spaces“ und liefert im terminalen und kanonischen Fall Beschränktheitsbe-
dingungen für deren Gewichte.

In Theorem 6.10 erhalten wir explizite Schranken für die Anzahl möglicher Deformations-
typen Q-faktorieller Komplexität-Eins-T -Varietäten mit Picardzahl 1 in Abhängigkeit
der Dimension und des Picardindex, das heißt des Index der Picardgruppe in der Di-
visorenklassengruppe. Als Konsequenz liefert Theorem 6.12 die folgenden Ergebnisse
für das asymptotische Verhalten der Anzahl δ(d, µ) unterschiedlicher Deformationstypen
Q-faktorieller d-dimensionaler Komplexität-Eins-T -Varietäten mit Picardzahl 1 und Pi-
cardindex µ. Für festes d0 ∈ Z>0 und festes µ0 ∈ Z>0 erhalten wir

δ(d0, µ) ∼ µAµ2

und δ(d, µ0) ∼ dBd

mit beliebig kleinen Konstanten A > 1 und B > 3. beziehungsweise d0 abhängig sind.
Mittels der expliziten Schranken erhalten wir Klassifikationen für feste Dimension und
festen Picardindex. In den Theoremen 6.18, 6.23, 6.24 und 6.26 geben wir exemplarisch
alle zweidimensionalen Varietäten bis Picardindex 6, alle dreidimensionalen Varietäten
mit Picardindex 1 und 2 und alle vierdimensionalen Varietäten mit Picardindex 1 an. In
allen Fällen werden die Coxringe explizit aufgeführt. Diese Ergebnisse sind in [28, Kapitel
2 und 3] und [30] veröffentlicht.

Im Jahr 1970 studierte Demazure die Automorphismengruppen glatter vollständiger to-
rischer Varietäten und beschrieb die Wurzeln mittels Fächer, siehe [18]. Später verallge-
meinerte Cox diese Ergebnisse in [15] für den simplizialen Fall. In [41] liefert Nill effek-
tive kombinatorische Kriterien für die Reduktivität von Automorphismengruppen voll-
ständiger torischer Varietäten. In neuerer Forschung beschreiben Arzhantsev, Hausen,
Liendo und Herppich die Automorphismengruppen von Komplexität-Eins-T -Varietäten
durch kombinatorische Daten, siehe [6]. Wir verwenden diesen Ansatz für das Studium
fast-homogener Komplexität-Eins-T -Varietäten, das heißt deren Automorphismengrup-
pen wirken mit einer offenen Bahn. In Proposition 7.7 werden fast-homogene K∗-Fläche
explizit beschrieben. Als Folge davon klassifizieren wir in Korollar 7.12 alle log-terminalen
nicht torischen fast-homogenen K∗-Flächen mit exakt einer Singularität und Picardzahl



1 bis Gorensteinindex 5. Es stellt sich heraus, dass alle diese Flächen Fano sind. Diese
Ergebnisse sind veröffentlicht in [6, Kapitel 6]. In Theorem 7.22 bestimmen wir alle
dreidimensionalen fast-homogenen Komplexität-Eins-T -Varietäten mit Picardzahl 1 und
reduktiver Automorphismengruppe. Alle diese Varietäten sind ebenfalls Fano. Diese
Ergebnisse sind in [6, Kapitel 8] veröffentlicht.

Die vorliegende Arbeit hat sieben Kapitel, welche nun jeweils kurz zusammengefasst wer-
den.

Das erste Kapitel ist eine kurze Zusammenfassung grundlegender Bezeichnungen und Aus-
sagen über Coxringe und gestraußte Ringe, welche den Arbeiten [9] und [25] entnommen
sind, siehe auch [5] und [26]. Jeder gestraußte Ring ist der Coxring einer Q-factoriellen
normalen Varietät, welche wir durch eine Standardkonstruktion als guten Quotienten einer
offenen Menge des Spektrums des Rings erhalten. Darüber hinaus werden geometrische
Eigenschaften solcher Varietäten mittels ihrer Coxringe formuliert und deren konvexge-
ometrische Bedeutung besprochen.

Kapitel 2 ist Komplexität-Eins-T -Varietäten gewidmet, das heißt algebraischen Varietä-
ten X mit einer effektiven Wirkung eines Torus T der Dimension dim(X)−1, sowie deren
Coxringen, welche faktoriell graduierte Ringe der Komplexität 1 sind. Wir beschreiben
die Coxringe mittels Erzeugern und Relationen und führen die kombinatorische Sprache
der P -Matrizen ein. Diese ist vergleichbar mit der konvexgeometrischen Beschreibung für
torische Varietäten durch Fächer. Teile dieses Kapitels sind bereits veröffentlicht in [27]
und [28, Kapitel 1].

In Kapitel 3 widmen wir uns der Singularitätenauflösung von Komplexität-Eins-T -Va-
rietäten. Wir diskutieren eine kanonische Weise, Singularitäten solcher Varietäten auf-
zulösen. Da Komplexität-Eins-T -Varietäten auf kanonische Weise in torische Varietäten
eingebettet sind, werden torische umgebende Modifikationen für die Auflösung verwendet,
siehe dazu [25]. Wir untersuchen das Verhalten der antikanonischen Klasse −KX einer
Komplexität-Eins-T -Varietät unter torischen umgebenden Modifikationen. Eine ähnliche
Konstruktion basierend auf polyedrischen Divisoren wird von Liendo und Süß in [38]
vorgestellt.

In Kapitel 4 betrachten wir Komplexität-Eins-T -Varietäten der Dimension 2, so genan-
nte K∗-Flächen. Wir geben einen Überblick über ihre Geometrie und bestimmen alle
Typen von Coxringen kombinatorisch minimaler K∗-Flächen, das heißt K∗-Flächen ohne
kontrahierbare Primdivisoren. Des Weiteren berechnen wir Schnittzahlen invarianter Kur-
ven und leiten daraus Fanobedingungen für K∗-Flächen ab. Schließlich führen wir den
antikanonischen Komplex für log-terminale K∗-Flächen ein, ein konvexgeometrisches Ob-
jekt, das vergleichbar ist mit Gitterpolytopen, die torische Fanovarietäten beschreiben.
Mit Hilfe des antikanonischen Komplexes lassen sich Singularitäten und Gorensteinindex
log-terminaler Fano-K∗-Flächen konvexgeometrisch beschreiben.

In Kapitel 5 befassen wir uns mit log-del-Pezzo-K∗-Flächen, das heißt mit log-terminalen
Fano-K∗-Flächen. Das Hauptergebnis ist eine vollständige Klassifikation aller nicht to-
rischen Gorenstein-del-Pezzo-K∗-Flächen. Um diese zu erhalten, beschreiben wir den



Gorensteinindex einer K∗-Fläche kombinatorisch mittels ihrer P -Matrix und ihres an-
tikanonischen Komplexes und betrachten die spezielle Geometrie von del-Pezzo-K∗-Flä-
chen. Als Folgerung erhalten wir explizite Schranken, welche die Klassifikation aller
nicht torischer log-del-Pezzo-K∗-Flächen ermöglicht, wobei deren Coxringe und Cl(X)-
Graduierungen konkret angegeben werden.

In Kapiel 6 erhalten wir effektive Schranken und Klassifikationsergebnisse für rationale
Q-faktorielle Fanovarietäten mit einer Toruswirkung der Komplexität 1 und Picardzahl
1 in Abhängigkeit von den Invarianten Dimension und Picardindex. Konkret geben wir
alle zweidimensionalen Varietäten bis Picardindex 6, alle dreidimensionalen Varietäten
mit Picardindex 1 und 2 und alle vierdimensionalen Varietäten mit Picardindex 1 an. Die
Ergebnisse dieses Kapitels sind bereits in in [28] und [30] veröffentlicht.

In Kapitel 7 behandeln wir Klassifikationsprobleme fast-homogener Komplexität-Eins-
T -Varietäten, das heißt, deren Automorphismengruppe Aut(X) wirkt mit einer offe-
nen Bahn. Durch das Einführen von Demazure-P -Wurzeln erhalten wir einen kombina-
torischen Ansatz für die Automorphismengruppe solcher Varietäten, welcher die Wurzeln
von Aut(X) beschreibt. Die Demazure-P -Wurzeln sind Gitterpunkte bestimmter Poly-
tope. Diese konvexgeometrische Beschreibung wird für Klassifikationsprobleme fast-ho-
mogener Komplexität-Eins-T -Varietäten der Dimension 2 und 3 verwendet. Konkret
werden vollständige Listen aller log-terminalen nicht torischen fast-homogenen K∗-Flä-
chen mit genau einer Singularität und Picardzahl 1 bis Gorensteinindex 5 angegeben.
Außerdem bestimmen wir alle fast-homogenen dreidimensionalen Komplexität-Eins-T -
Varietäten mit reduktiver Automorphismengruppe. Diese Ergebnisse sind in [6] veröf-
fentlicht.
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