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Introduction

The subject of the present thesis are varieties with a torus action of complexity one,
i.e. algebraic varieties X with an algebraic torus T acting effectively on them, where
dim(7") = dim(X) — 1. These varieties are shortly called complexity-one T-varieties. A
first aim is to provide a combinatorial description for such varieties which generalizes the
convex geometrical description of toric varieties by lattice fans. The main focus lies on the
application of this theory to classification problems on complexity-one T-varieties, where
special attention is paid to Fano varieties, i.e. projective varieties with ample anticanonical
divisor.

In algebraic geometry, toric varieties are a well known example for the use of combina-
torial methods. The first formal definition of a (smooth) toric variety was given in 1970
by Demazure [18]. This paper already includes a convex geometrical description of toric
varieties by fans. From the end of the seventies on, the theory of toric varieties expanded
rapidly, see for example Danilov [17]|, Oda [42, 43|, Fulton [22] and Cox/Little/Schenk
[16]. Combinatorial methods were also successfully developed for larger classes of va-
rieties. Kempf, Knudsen, Mumford and Saint-Donat studied in [36] toroidal varieties
and extended the convex geometrical language to this more general setup; in this book
complexity-one T-varieties appeared as special cases. This was the first time they were
described by combinatorial data. Besides [36], the work [45] of Orlik and Wagreich is one
of the first publications about complexity-one T-varieties. They discussed the special case
of KK*-surfaces and developed a combinatorial description of their structure by weighted
graphs. More recently, Altmann and Hausen studied in [3] varieties with torus action by
polyhedral divisors, which give especially in case of complexity-one T-varieties a simple
description of these varieties. The approach of the present thesis relies on the Cox ring.
Hausen and Siiff determined the Cox ring of a given rational normal complete variety
with a torus action of complexity one in terms of the action, see [29]. Such Cox rings are
finitely generated and admit a simple presentation by trinomial relations. This provides
new aspects and possibilities for a combinatorial approach to complexity-one T-varieties
and is the starting point of this thesis. We present a systematical description of rational
complexity-one T-varieties in terms of certain matrices A and P and a collection ® of
polyhedral cones. Parts of these results have been published in [28, Section 1] and [27].

Motivated by the classification of toric Fano varieties, initiated by Batyrev [8], we apply
our combinatorial approach to Fano varieties with a torus action of complexity one. The
main focus lies on effective bounds and concrete classifications.

A first example class are Fano K*-surfaces, so called del Pezzo K*-surfaces. Our combina-
torial approach differs from the work of Alekseev/Nikulin [2] and Nakayama [40] based on
classical surface geometry. For Gorenstein log del Pezzo IK*-surfaces we obtain a complete
classification, see Theorems 5.25, 5.26, 5.27 and 5.28. Moreover, due to the methods, we
list the Cox rings of all these surfaces. This complements results of Derenthal [19] for the
case of hypersurface Cox rings and Hausen/Siifs [51, 29|, who settled the case of Picard
number one and two by other methods.
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An essential case are Fano varieties of Picard number one. Nadel provided in [39] a
general effective bound on the degree (—K,)" of smooth Fano varieties depending on the
dimension n. Once a degree bound is known, a result of Kollar [37] gives effective bounds
for the number of different deformation types of smooth Fano varieties. In [35] Kasprzyk
studies toric varieties with Picard number one, so called (fake) weighted projective spaces
and provided boundedness conditions for the weights in the terminal and canonical case.

For Q-factorial complexity-one T-varieties of Picard number one, we obtain in Theorem
6.10 explicit bounds for the number of possible deformation types depending on the
dimension and the Picard index, which is the index of the Picard group in the divisor class
group. As a consequence, Theorem 6.12 provides the following results on the asymptotical
behavior of the number §(d, ) of different deformation types of Q-factorial d-dimensional
complexity-one Fano varieties with Picard number one and Picard index p. For fixed
dy € Z~y and fixed pg € Z~q, we have

3(do,p) ~ p* and 6(d, o) ~ d™,

with constants A > 1 and B > 3 arbitrarily small. The explicit bounds are used to
produce classifications for fixed dimension and Picard index. In the Theorems 6.18, 6.23,
6.24 and 6.26 we exemplarily list surfaces up to Picard index 6, threefolds for Picard index
1 and 2 and fourfolds with Picard index 1. In all cases we list the Cox rings explicitly.
These results are published in |28, Sections 2 and 3| and [30].

In 1970 Demazure studied the automorphism group of smooth complete toric varieties
and described the roots in terms of fans, see [18]. Later Cox generalized the results in
[15] to the simplicial case. In [41] Nill provided effective combinatorial criteria for the
automorphism group of a complete toric variety to be reductive. More recently, Arzhant-
sev, Hausen, Liendo and myself described the automorphism group of a complexity-one
T-variety by combinatorial data, see [6]. We use this approach for the study of almost ho-
mogeneous complexity-one T-varieties, i.e. their automorphism group acts with an open
orbit. In Proposition 7.7 almost homogeneous IK*-surfaces are described explicitly. As a
consequence, we classify in Corollary 7.12 all log-terminal non-toric almost homogeneous
K*-surfaces with exactly one singularity and Picard number one up to Gorenstein index
5. It turns out, that all of them are Fano. These results are published in |6, Sections
6]. In Theorem 7.22 we determine all almost homogeneous complexity-one T-varieties of
dimension three with Picard number one and reductive automorphism group. All these
varieties turn out to be Fano. These results are published in [6, Section §|.

The present thesis is divided into seven chapters. We now give a brief summary of each
chapter.

The first chapter is a short summary of basic notations and statements about Cox rings
and bunched rings given in [9] and [25], see also [5] and [26]. Each bunched ring is the
Cox ring of a Q-factorial normal variety that can be obtained by a standard construction
as a good quotient of an open subset of the spectrum of this ring. A short overview of
the geometrical properties of such varieties in terms of their Cox ring and their convex
geometrical meaning is given.
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Chapter 2 is dedicated to complexity-one T-varieties, i.e. algebraic varieties X with an
effective action of an algebraic torus 7' of dimension dim(X) — 1, and their Cox rings
which are factorially graded rings of complexity one. We describe factorially graded
rings in terms of generators and relations and determine the Cox rings among them.
The combinatorial language of P-matrices will be introduced. It is comparable to the
convex geometrical description of toric varieties by fans. Parts of this chapter are already
published in [27] and [28, Section 1].

Chapter 3 is dedicated to the resolution of singularities of complexity-one T-varieties. A
canonical resolution of singularities is discussed. We make use of the fact that complexity-
one T-varieties come canonically embedded into toric varieties. This allows working with
toric ambient modifications, see [25]. A similar construction based on polyhedral divisors
was introduced by Liendo and Siifs in [38|. The behavior of the anticanonical class —Kx
of a complexity-one T-variety under toric ambient modifications is discussed.

In chapter 4 we discuss complexity-one T-varieties of dimension two, in other words
K*-surfaces. We give a survey of their geometry and determine all types of Cox rings of
combinatorially minimal K*-surfaces, i.e. IK*-surfaces without contractible prime divisors.
Furthermore, we compute intersection numbers and affiliate conditions for IK*-surfaces to
be Fano. Finally, we introduce the anticanonical complex for log-terminal K*-surfaces,
a convex geometrical object which is comparable to the lattice polytope describing toric
Fano varieties. The anticanonical complex is used to describe the singularities and the
Gorenstein index of log-terminal Fano K*-surfaces.

Chapter 5 is dedicated to log del Pezzo K*-surfaces, i.e. log-terminal Fano K*-surfaces.
The main result is a complete classification list of all non-toric Gorenstein log del Pezzo
K*-surfaces. In order to achieve this aim we describe the Gorenstein index of a IK*-surface
combinatorially in terms of their P-matrix and anticanonical complex and consider the
equivariant geometry of del Pezzo IK*-surfaces. As a consequence, we obtain explicit
bounds, which enables us to classify all non-toric Gorenstein log del Pezzo IK*-surfaces by
indicating their Cox rings and Cl(X)-gradings.

In chapter 6 we provide effective bounds and classification results for rational Q-factorial
Fano varieties with a complexity-one torus action and Picard number one depending on
the invariants dimension and Picard index. Concretely, we list all surfaces up to Picard
index 6, threefolds for Picard index 1 and 2 and fourfolds with Picard index 1. Most of
the results of this chapter is already published in [28] and [30].

Chapter 7 is dedicated to classification problems on almost homogeneous complexity-
one T-varieties, i.e. their automorphism group Aut(X) acts with an open orbit. By
introducing Demazure P-roots we obtain a combinatorial approach for the automorphism
group of such varieties, describing the roots of Aut(X). The Demazure P-roots turn out
to be lattice points of certain polytopes. This convex geometrical description is used for
classification problems on almost homogeneous complexity-one T-varieties of dimension
two and three. Concretely, we provide a complete list of all log-terminal non-toric almost
homogeneous K*-surfaces with exactly one singularity and Picard number one up to
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Gorenstein index 5. Furthermore, we determine almost homogeneous complexity-one
threefolds with Picard number one and reductive automorphism group. These results are

published in [6].



1 Cox rings and bunched ring formalism

This chapter is a short summary of basic notations and statements about Cox rings and
bunched rings given in [9] and [25], see also [5] and [26].

Throughout the whole thesis K is an algebraically closed field of characteristic zero.

1.1 Cox rings and factorially graded rings

First, we recall basic definitions and notions on divisors of normal algebraic varieties and
divisorial sheaves. A prime divisor in X is an irreducible hypersurface D C X. The
prime divisors generate a free abelian group WDiv(X), the group of Weil divisors on X.
We call a divisor D € WDiv(X) effective if D = a1 Dy + ... + a,D,, with prime divisors
D; and a; € Z> for all 1 <i <n and we write D > 0. Let IK(X) be the field of rational
functions on X. To every f € IK(X)* we define a principal divisor

div(f) == Y  ordp(f)D € WDiv(X),

D prime

where ordp(f) is the vanishing order of f at D. The group of principal divisors is denoted
by PDiv(X) and the group of divisors being principal near a point z € X is denoted by
PDiv(X, z). The divisor class group Cl(X) is defined as the quotient of WDiv(X') modulo
principal divisors PDiv(X). Analogously, we define the local divisor class group Cl(X, z)
of X in x as the quotient of WDiv(X') modulo PDiv(X, z). Note that there is a canonical
map 7,: Cl(X) — CI(X,z). Divisors being locally principal for every x € X are called
Cartier divisors and the group of these divisors is denoted by CDiv(X). The Picard group
Pic(X) of X is the quotient of CDiv(X) modulo principal divisors. It is given as

Pic(X) = () ker(m,) C CI(X).

zeX

A point z € X is called Q-factorial, if near x for every Weil divisor some multiple is
principal and x € X is called factorial, if near x every Weil divisor is principal. The
variety X is called (Q-)factorial if all points z € X are (Q-)factorial. For any open subset
U C X, we define a restriction map

DNU ifDNU#0,

WDiv(X) — WDiv(U), D +— Dy =
0 else.

To every Weil divisor D on X we associate a divisorial sheaf Ox (D) of Ox-modules. For
any open U C X, we set

(U, 0x(D)) = {f e K(X)* (div(f) + D)y >0} U {0}.
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The sheaf of divisorial algebras associated to a finitely generated subgroup X' C WDiv(X)
is defined as
S =S, Sp = 0x(D).
DeK
The multiplication in S is given by multiplying homogeneous sections in the field of
rational functions IK(X). Note that for fi € I'(U,Ox(D;)) and fy € I'(U, Ox(Ds)) we
have fl : fg S F(U, OX(Dl + Dg))

Now, we turn to Cox sheaves and Cox rings. We assume X to be a normal variety with only
constant globally invertible functions, i.e. I'(X, O*) = K*, and finitely generated divisor
class group Cl(X). Note that I'(X, O*) = K* is satisfied, for example, if X is complete.
Choose a subgroup K < WDiv(X) such that the canonical map ¢: K — CI(X), D+~ [D]
is surjective, and let K° C K be the kernel of ¢, i.e. K = K NPDiv(X). The idea is to
identify Ox(D) and Ox(D’) if D' = D +div(h), i.e. D' — D € K°. For this purpose we
choose a character y: K° — K(X)* with div(x(E)) = E for all E € K°. We consider
the sheaf of divisorial algebras S associated to K. Let Z be the sheaf of ideals of S
locally generated by the sections 1 — x(E), where 1 is locally of degree zero, E runs
through K° and x(E) is homogeneous of degree —F, i.e. for every open U C X we have
1 —x(E)eI'(U,S) and x(F) € I'(U,S_g). This sheaf of ideals is given by

L(U,I) = {f eT(U,8); f= Y he(l—x(E)) locally, where hy € T(U, 5)} :

EeK©

Definition 1.1. The Cox sheaf associated to K and y is the quotient sheaf R := §/Z
together with the Cl(X)-grading

R = @ Rip, Rp = EB Spr |

[D]eCI(X) D'ec™([D])

where m: § — R denotes the projection. Note that R is a quasicoherent sheaf of Cl(X)-
graded Ox-algebras. The Cox ring

R(X) = I'(X,R) = P TI'(X,0x(D))
[D]eCL(X)

is the ring of global sections of the Cox sheaf R. Note that if Cl(X) is torsion free, then
the Cox sheaf can be defined in a simpler way by setting Rip] := Sp = Ox(D). If the
Cox ring R(X) is finitely generated, the variety X is called a Mori Dream Space (MDS).

The next step is to recall the relation between quasitorus actions and graded algebras. A
quasitorus, also called a diagonalizable group, is an affine algebraic group H whose algebra
of regular functions I'(H, O) is generated as a IK-vector space by the characters x € X(H),
where a character of H is a morphism y: H — IK*. A torus is a connected quasitorus.
We denote by T" := (IK*)" the standard n-torus. Each quasitorus is isomorphic to a
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direct product of a torus and a finite abelian group. There is a one-to-one correspondence
between quasitori and finitely generated abelian groups given by H +— X(H) and K
Spec(K[K]), respectively. Furthermore, there is a contravariant functor being essentially
inverse from the category of finitely generated K-graded affine algebras to the category of
affine varieties with a quasitorus action. We shortly recall the basic constructions needed
for this correspondence. Let H be a quasitorus acting on an affine variety X. Then the
algebra I'(X, O) becomes X (H)-graded by

[(X,0) = P I(X.0), (X O0) = {feT(X,0); f(h-z)=x(h)f(x)}.

XEX(H)

Conversely, let K be a finitely generated abelian group and let R be a finitely generated
K-graded affine algebra. Set X := Spec(R) and let fi,..., f. be generators of R with
fi € Ry, ie. deg(f;) = w; and f;(h-x) = x"(h)fi(x) for all h € H, v € X. Then we
have a closed embedding

7_>]KT7 SC'—)(fl(SC),...,fTCL')),

and X C K" is invariant under the diagonal action of the quasitorus H = Spec(K[K])
given by the characters x"¢, i.e.

h-x = (x**(h)x1,...,x""(h)z,).

Now, let H be a quasitorus acting on a prevariety X. Then one defines the ring of
mvariants

OX) = {fecOX); f(h-z)= f(z) forallz € X, h € H}.

A morphism 7: X — Y is called a good quotient for the H-action if the following holds:

(i) 7: X — Y is affine and H-invariant, i.e. 7 is constant along the orbits.

(ii) The pullback 7*: O(Y) — (m.O(X))! is an isomorphism.

A good quotient 7: X — Y is called a geometric quotient if it separates the orbits, i.e.
the fibers coincide exactly with the H-orbits.

Good quotients map closed invariant subsets to closed sets and separate disjoint closed
invariant sets. Moreover, in each fiber, there is exactly one closed H-orbit and each orbit
which is contained in the fiber has this closed orbit in its closure. In particular, the
quotient space is unique up to isomorphy. We denote it by X // H.

In the next part of this chapter we consider the geometrical object that corresponds to
the algebraic concept of a Cox sheaf. Let X be a Q-factorial normal variety or a Mori



8 1.2 Bunched rings

Dream Space with Cox sheaf R. Then the Cox sheaf R is locally of finite type and we
have the following situation:

JH
X

Specy(R) = X C X := Spec(R(X))

The affine variety X comes with the action of the quasitorus H := Spec(K[C1(X)]) which
is given by the C1(X)-grading of R. The relative spectrum X = Specy (R) is an open H-
invariant subset of X, i.e. quasiaffine, and the map py: X — X defined by the H-action
is a good quotient. Note, that if X is Q-factorial, the quotient is always geometric.

Definition 1.2. In the situation above we call X the total coordinate space, H the char-
acteristic quasitorus and X the characteristic space.

All varieties sharing the same divisor class group K and finitely generated Cox ring
R occur as good quotients of suitable open subsets of X = Spec(R) by the action of
H = Spec(K[K]). An open invariant subset U C X is called a good H-set if it admits a
good quotient U — U J/ H.

An important concept used in this work is the following homogeneous version of a unique
factorization domain.

Definition 1.3. Let K be an abelian group and let R be a finitely generated normal
algebra R = @, . Rw- A homogeneous non-zero non-unit f € R is K-prime if f | gh
with homogeneous g, h € R implies f | g or f | h. Furthermore, R is called factorially
(K -)graded if every homogeneous non-zero non-unit of R is a product of K-primes.

For torsion free K, the properties factorial and factorially graded are equivalent [4], but
for a K with torsion the latter is more general, as we will see in Example 2.9. The
main reason for introducing such rings in this work is that Cox rings of complete normal
varieties are factorially graded, compare [5].

Theorem 1.4. Let X be a complete normal variety. Then its Coz ring R(X) is factorially
Cl(X)-graded. Moreover, if CI(X) is torsion free, then R(X) is factorial.

1.2 Bunched rings

The content of this section is a short summary of the theory of bunched rings given in [25].
Bunched rings are essential to combine the algebraic situation described in the previous
section with convex geometrical methods.

The setting is as follows. Let K be a finitely generated abelian group and consider a
finitely generated factorially K-graded affine K-algebra

R = PR

weK
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with K-prime homogeneous generators fi,..., f, € R. Then H = Spec(K[K]) acts on
the affine variety X = Spec(R). For each abelian group L we define the rational vector
space Lq := L ®z Q and for w € L we write again w for the element w ® 1 € Lq.

Definition 1.5. The weight cone of a K-graded algebra R is the convex polyhedral cone
wy = w(R) = cone(w € K; R, #{0}) C Kq.

Furthermore, for every x € X := Spec(R) we define its orbit cone as the convex polyhedral
cone
w, = cone(w € K; f(x) #0 for some f € R,) C wy.

In particular, each orbit cone w, is generated by the degrees of those generators f; satis-

fying fi(z) # 0.

Definition 1.6. Let K be a finitely generated abelian group and let R be a factorially
K-graded affine algebra with R* = K*. Moreover, let § = (fi,..., f.) be a system of
pairwise non-associated K-prime generators for R.

(i) The projected cone associated to § is (F A K,v), where E := 7", the homomor-
phism @Q: F' — K sends the canonical basis vector e; to w; := deg(f;) and v C Eq
is the convex cone generated by eq,...,e,.

(ii) The K-grading of R is called almost free if for every facet 79 < 7 the image Q(y0NE)
generates the abelian group K.

(iii) We call 79 < 7 an F-face if the product over all f; with e; € 7y is not contained

in \/(fj; e; € 70) € R. Geometrically, this means that there is an element x € X
such that e; € 7y if and only if f;(z) # 0.

(iv) Let I's :== {Q(10); 7 =< 7 §-face} denote the collection of projected §-faces. An
§-bunch is a non-empty subset ¢ C I'y such that

(a) 77 N 75 # 0 holds for any two 7,72 € @,
(b) if 77 C 7° holds for i, € ® and 7 € I'z, then 7 € ® holds,
(c) for every facet o € 7, the image Q(v) belongs to ®.

Note that @ consists of orbit cones of the action of H = Spec(KK[K]) on X = Spec(R).
Moreover, the generator system § gives rise to a diagonal H-action on K" defined by
the characters x*',...,x" . This action induces an H-equivariant closed embedding
X = Spec(R) C K". We have K[T,...,T,] 2 K[E N~] and K" is the affine toric
variety corresponding to the cone § := ~V.

A toric variety is a normal variety Z with a torus action T"x Z — Z and a base point

zo € Z such that the orbit map t +— t- zy is an open embedding. There is a combinatorial
description of toric varieties via fans. A fan is a finite collection A of pointed polyhedral
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cones in a rational vector space such that any two A\;, Ay € A intersect in a common face
and for A € A also every face of A belongs to A. If we do not require the cones to be
pointed, then A is called a quasifan. If Z is an affine toric variety, the corresponding fan
simplifies to a convex polyhedral cone. For a detailed background on toric varieties, see
[16] for example.

Remark 1.7. For any face vy =< 7, we define 7 := ¢ N §, where § = 7. Then 7, is an
S-face if and only if the toric orbit T" - z5, C K" corresponding to the face 0y < § meets
X.

Definition 1.8. A bunched ring is a triple (R, §, ®), where R is an almost freely factorially
K-graded affine K-algebra such that R* = IK* holds, § is a system of pairwise non-
associated K-prime generators for R and ¢ is an §-bunch.

Construction 1.9. Let (R, §, ®) be a bunched ring and let (E 4 K, ~) be its projected
cone. We define the collection of relevant §-faces and the covering collection as

rlv(®) = {7 = 7; 70 S-face with Q(yo) € P},
cov(®) = {70 € rlv(®); 7y minimal}.

The projected cone (F YK ,7) defines a grading on R given by deg(f;) = Q(e;). Consider
the associated action of H := Spec(IKK[K]) on X := Spec(R). For an §-face 7o, we define
X, = Yﬁu,_,ﬁw for some w = (uy,...,u,) € ;-

We define the open subset

X =XRr3%9 = |J X,= U X, =X

YoErlv(P) ~YoEcov(P)
The H-action on X admits a good quotient
X = X(R,3 ®) = X(R3F ®) JH.

We denote the quotient map by p: X — X. The quotient X is a normal variety of
dimension dim(X) = dim(R) — dim(K¢q) with

I'X,0") =K, Cl(X)=K andCoxring R(X)=R.

In this situation, the affine variety X is the total coordinate space and X the characteristic
space. Furthermore, the affine open subsets X, C X for 7, € rlv(®) are H-saturated

and their images X, := p(X,,) € X form an affine cover of X. Note that every member
fi € § defines a prime divisor D% = p(V (X, f;)) on X.

By means of the following two constructions, we assign to every normal variety X =
X(R,§,®) a toric variety Z such that X is naturally embedded into Z.
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Construction 1.10 (Cox construction). Let Z be a toric variety arising from a fan ¥ in
a lattice N and let the primitive generators vy,...,v, € N of the rays of X generate Ng
as a vector space. Set I' := 7" and consider P: I' — N, f; — v;, where f1,..., f, are the
canonical basis vectors of F'. We define a fan ¥ in Fg, consisting of faces of the positive
orthant § C F', by R
Y = {6 =20; P(g) Co for some o € ¥}.

The fan 3 defines an open toric subvariety Z of Z = Spec(IK[6¥ N E]), where E = F*.
Note that all rays cone(fi),...,cone(f,) of the positive orthant belong to 5. Hence, we

have N B
['(Z,0)=T1(Z,0)=K[6'NE]
since Z has a small complement in Z The map P sends cones of 5} onto cones of ¥ and

consequently induces a morphism p: Z — Z of toric varieties, a so called Cox construction.

Construction 1.11 (Canonical toric embedding). Let (R,§, ®) be a bunched ring with
homogeneous generators § := (fi,..., f.) and consider the associated projected cone

(E %K ,7). Set M :=ker(Q). Then we have the following exact sequences,

Q

0 K E<Lm 0

where L := ker(P), K := F/im(P*) and P* is the dual map of P. Furthermore, we can
define a polynomial bunched ring (R',§’, ®') where

R = K[TIy,...,T,], deg(T;) = deg(fy), ¥ = (T1,...,T}),

and @’ consists of all projected faces Q (7o) with 7° C Q(~p)° for some 7 € ®. This induces
a commutative diagram,

Z

U
N
N

X
JH

JH

%
-
B

“i

where X := Spec(R), Z := Spec(R') = K" and ¢: X — Z is a closed embedding of the
varieties X and Z associated to the bunched rings (R, §, ®) and (R',§, ®’), respectively.
The fans 3 and X in Fgq corresponding to the toric varieties 7 and Z are given by

= {09 2 0; 6o < 5 for some vy € Env(®)}, = {P(); 7 € Env(®)},
where

Env(®) := {7 27 1 =70 and Q(11)° € Q(70)° for some v, € 1lv(P)}
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and v = v5- N J for 6 = «V. Consequently, X is the quotient fan of S and p: 77 ,
arising from P: F — N, defines a Cox construction. Let D% be the Tz-invariant prime

divisors of Z, where Tz denotes the big torus of Z. Then we have by construction
*(DYy) = D% = p(V(X, f;)) and furthermore ¢*: C1(Z) — C1(X) is an isomorphism. The
toric orbits Z, = T - 2z, of Z intersecting X are precisely the orbits corresponding to the
cones o = P(7) for vy € rlv(®), i.e. there is a canonical bijection between the relevant
faces of X and the orbits of the toric variety Z. This induces a decomposition into locally
closed strata

X = |J X0 X=X, = X0Z, =0 (Zpwp)).

Yo
Yo€Erlv(P)

We call Z the minimal toric ambient variety of X. Note that, in general, the toric variety
Z is not complete, even if X is. We also say that ® is Gale dual to 3.

We give a short overview about how the sequence

Q

0 MR K 0

can be interpreted geometrically. By construction, M is the lattice of characters X(7)
where T is the torus corresponding to the toric ambient variety Z. The characters
X" are the rational functions on Z. That means that we have M = PDiv(Z). Along
the open toric orbit, all Weil divisors of Z are principal. Hence, every Weil divisor is
linearly equivalent to a Tz-invariant one. This gives F = WDiv(Z) = WDiv'%(Z7), where
WDiv’%4(Z) denotes the Ty-invariant Weil divisors. The isomorphism is explicitly given
by
e (e, fi)D1+ ...+ e, fr)D,

with D; := Ty - z,, and p; := cone(v;) for the columns v; of P. Furthermore, we obtain
M = PDiv’%(Z) and K = CI(Z). On the other hand we have by construction K =
X(H) where H := Spec(K[K]) and E = X(T) where T := Spec(K[E]) is the big torus
corresponding to the toric varieties Z = K*™™ and Z , respectively.

X(H) X(T) X(Tz)
s W N e
N | 7

Cl(Z) <— WDiv'%(Z) < PDiv’%(Z)

The last part of this section is dedicated to normal projective varieties X (R, §, ) arising
from bunched rings.
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Definition 1.12. Let R be a finitely generated K-graded algebra, H := Spec(K[K]) and
X = Spec(R). For w € wx we define the GIT-cone of w as

AMw) = ﬂ We,

xGY,wEw:n

where w, denotes the orbit cone of = € X. Note that A(w) is always polyhedral. The
collection A(X, H) = {Aw); w € wx} of all GIT-cones is a quasifan in Kq having wy as
its support. It is called the GIT-(quasi)fan of X.

Each w € wy defines an associated set X**(w) C X of semistable points which is given by
XS(w) := {r€X; wew,}
= {zeX; Mw) Cw,}
= {z € X; f(z) # 0 for some f € R, where n >0}

- U =

0#f€Rnw

Given a GIT-cone A € A(X, H) and any weight w € \° we define X*()\) := X%(w).
Note that X*(w) is the set of semistable points associated to the linearization of the

trivial bundle given by the character x*. For every A € A(X, H) there is a good quotient
X3 (w) — X*(w) J/ H for the action of H on the open set X**(w) C X.

Construction 1.13. Let K be a finitely generated abelian group and let R be a factorially
K-graded affine algebra with R* = K*. Further let § = (f1,..., f.) be a system of pairwise
non-associated K-prime generators of R. Consider the GIT-fan A(X, H) = {\(w); w €
wx} of R. Every GIT-chamber A = A(w) € A(X, H) defines a bunched ring (R, §, ®),
where @ is given by

D = D) = B(w) = fwns N Cull
Consequently, every GIT-cone A defines a variety
X(R,§,w) = X(R§,¢(w)) = X(RT,2N) = X(RT,N),
and X (R,§,\) is given as the good quotient X*(\) / H.
Theorem 1.14. Fach variety X = X(R,§,\) is a normal projective variety with
dim(X) = dim(R) — dim(Kq), I'X,0") =K,

and there is an isomorphism Cl(X) — K sending [D] to deg(f;). The quotient map
p: X — X is a characteristic space and the Cox ring R(X) is isomorphic to R.
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Definition 1.15. Let R be a factorially K-graded algebra and let (£ A K,~) be its
projected cone. We define the moving cone of R and X = Spec(R) respectively as

Mov(R) := Mov(X) := ﬂ Q).

7o facet of ~

Theorem 1.16. All normal projective varieties with a finitely generated Cox ring are
isomorphic to some X(R,§, \) with A\NMov(R)° # 0 and A € A(X, H).

In general the minimal toric ambient variety Z of a variety X (R, §,®) is not complete.
The toric GIT-fan A(Z, H) refines A(X, H) and every n € A(Z, H) with n° C A\° defines
a projective completion Z(R',§',n) of Z, where R’ = K[T},...,T,] and §' = (T3,...,T}).
Recall that a toric variety is complete if and only if the associated fan ¥ in the lattice NV
is complete, i.e. the support of X is the whole vector space Ng.

1.3 Geometry

In this section we will give a short overview about geometrical properties of a variety
X(R,§,®) and their convex geometrical meaning, compare |9, Section 7| and [25, Section
4]. We describe the Picard group as well as effective, movable, semiample and ample
divisors.

Theorem 1.17. Consider a relevant §-face vy € 1lv(®) and a point v € X.,,. Then we
have a commutative diagram

Cl(X) Cl(X, )

&1 [u

K —— K/Q(lin(3) N E) .

In particular, the local divisor class groups are constant along X,, where vy € rlv(®).
Moreover, the Picard group of X is given by

Pic(X) == () Q(in(y)NE).

~Yo€Ecov(P)

Theorem 1.18. Consider a relevant §-face vy € 1lv(®) and a point v € X,,. Then the
following statements hold.

(i) The point x is factorial if and only if Q(lin(y) N E) = K.
(ii) The point x is Q-factorial if and only if Q(~o) is of full dimension.

In particular, X is Q-factorial if and only if ® consists of only fulldimensional cones. If
X is smooth, then every factorial point of X is smooth.



1 COX RINGS AND BUNCHED RING FORMALISM 15

Now we want to describe effective, movable, semiample and ample divisors in terms of
the Cox ring. Let X be a normal complete variety with finitely generated Cox ring R(X).
A divisor D € WDiv(X) is called effective if its multiplicities are all non-negative, i.e.
D = a;Dy + ...a,.D, with primitive divisors D; and a; > 0. All classes [D] of effective
divisors build a convex cone, the so called effective cone Eff(X). We have [D] € Eff(X)
if and only if [D] € wy, i.e. there is a 0 # f € I'(X,Ox(nD)) for some n > 0. If
S = (f1,..., fr) is a system of homogeneous generators of the Cox ring R(X), then the
effective cone is generated by the degrees deg(f;).

The support of a Weil divisor D € WDiv(X) is defined as

supp(D) = Supp< Z aiDi> = U D;.

; prime a;#0

For a divisor D € WDiv(X) and a section f € I'(X, Ox(D)) we define the D-divisor as
divp(f) := div(f)+ D. The base locus and the stable base locus of a divisor D are defined
as

Bs(D) := ﬂ supp(divp(f)), sBs(D) = ﬂ Bs(nD).

fET(X,0x (D)) ne€Z>,

A divisor D € WDiv(X) is called movable if its stable base locus is of codimension at
least two in X. The mowving cone Mov(X) is the convex cone generated by the classes of
movable divisors. A divisor D € WDiv(X) is called semiample if its stable base locus is
empty and a divisor D € WDiv(X) is called ample if X is covered by affine sets

Xnp,g i= X \ supp(nD + div(f))

for some n € Z>,, where f € I'(X, O(nD)). The semiample cone SAmple(X) and ample
cone Ample(X) are generated by all classes of semiample and ample divisors, respectively.

Theorem 1.19. In the divisor class group K = CI(X) we have the following descriptions
of effective, movable, semiample and ample divisors:

BAE(X) = Q(), Mov(X) = () Qo)
Yo facet of v
SAmple(X) = ﬂT, Ample(X) = ﬂTO.

TED TED
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2 Complexity-one T-varieties

This chapter is dedicated to complexity-one T-varieties, i.e. varieties X with an effective
action of a torus 7" of dimension dim(X) — 1, and their Cox rings which are factorially
graded rings of complexity one. A combinatorial language will be introduced comparable
to the convex geometrical description of toric varieties by fans. Parts of this chapter are
already published in [27] and |28, Section 1].

2.1 Factorially graded rings of complexity one

In this section we present a construction of factorially K-graded algebras of complexity
one. We describe these algebras in terms of generators and relations.

Definition 2.1. Let K be a finitely generated abelian group and R = @, .- R, a finitely
generated normal graded K-algebra.

(i) We say that R has an effective K-grading of complexity one if all the w € K with
R, # 0 generate K and K is of rank dim(R) — 1.

(ii) We call the K-grading pointed if Ry = K holds.

(iii) Let {f1,..., f-} be a system of homogeneous generators of R. Then we call the K-
grading almost free if K is generated by any r — 1 of the degrees of the generators

deg(fi).

Construction 2.2. For » > 1, we fix integers ng,...,n, € Zsy, m € Z>o and set
n:=mny+...+n,. Let A= (ag,...,a,) be a sequence of vectors a; = (b;, ¢;) in K? such
that any pair (a;, ar) with k # 4 is linearly independent and let I; = (I;1,. .., lin,) € Zo™,
0 < <, be tuples of positive integers. These data define a (r x (n 4+ m))-matrix

—lp Iy 0 ... 0
—lyp 0 Iy ... 0O
Py = (Ly,0), where Lo = L ) .
—lyg 0 0 ... I

We consider the polynomial ring K[T;;, S] in the variables T;; and S, where 0 < ¢ <
r, 1<j7<mn;and 1 <k <m. For every 0 <i < r, define a monomial

Th = Th T e KTy, Sl.

7 in;

Moreover, for any two indices 0 < 1,5 <r, set ;; := det(a;, a;) = bic; — bc; and for any
three indices 0 < i < j < k < r define a trinomial

Gigre = apTl + anTy + ayTy € K[Ty, Sil.
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We define a grading of K[T};, Sx] by an abelian group Ky such that all the g; ;x become
homogeneous of the same degree. For this, consider the linear map Fy: ' — N, given
by the matrix Py = (Lo, 0) and let Py* be the dual map, given by the transpose of F.
Set Ky := Z"™™/im(P,") and let Qq: Z"™™ — Kj be the projection. This defines a
Ky-grading on K[T};, S| given by

deg(Ty) = Qoleiy), deg(Sk) = Qoler),

where e;;, e, € Z"™™ are the canonical basis vectors. By construction all g, ;; are
homogeneous of the same degree. Hence, we obtain a Ky-graded factor algebra

R(A, PO) = ]K[E],Sk] / <gi,j7k; 0<i< j <k < T).

We say that (A, Fy) is sincere if r > 2 and n;l;; > 1 for all 4,5 hold. This ensures that
there exist in fact relations g; ; and none of these relations contains a linear term. Note
that for » = 1 we obtain the diagonal complexity-one gradings of the polynomial ring
K[T};, Sk]. Furthermore, the matrix Fy is called gradiator matriz.

Lemma 2.3. In the setting of Construction 2.2, the identities
Gikl = Okl Gijk T ik * Gjk,l and 9ijgl = Qi Gijk T Qg Gkl

hold for any 0 <1 < j < k <l <r. In particular, every trinomial g; i, where 0 <1 <
J < k <ris contained in the ideal (g;it1i+2; 0 <i <1 —2).

Proof. The identities are easily obtained by direct computation. We may assume a; =
(1,0) and ax, = (0,1). The other points are given by a; = (a;,a:2) and a; = (a1, aj2).

Consequently, we obtain aj; = 1, ap = a1, @ = —a4e, g = —ap; and aj; = agp. This
gives
li l; lk lj lk ll
k- Gigk + ik Gikr = am(aply + apTy + T ) + aw(oaaTy + ay Tk + apT)')

= Oék;zTili + (apov; + Oéikalj)T]ik + CYilell
= apTl + (anaip — apan)TF + agT)
= ikl
i+ Gigk+ g+ Giwa = gy + Ty + ayTi) + ci(an Ty + T + g}
= Odjﬂ}li + (Oéjlcwﬂ' + ozl-jakl)T;j + OéijTlll
= Oéleili + (anasn — a12ai1)T/ik + Oéz‘jTlll
= Gijl-

The supplement then follows by repeated application of these identities. O

Lemma 2.3 allows us to present the rings R(A, Fy) in the following form:

R(A, Fy) = K[Tij, Sk] / (Giivrir2; 0 < i <1 —2)
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We denote the points of K" as tuples z = (z;;, 2;) according to the variables T;; and

S, and we set o
X = V(K"™; go,...,Gr_2).

Once we know that R(A, Py) is reduced we have X = Spec(R(A, P,)). Furthermore, set
t? = ti’f = ti;”; and consider the homomorphism
tll tlr
™™ — T", (tij tr) — <7},”.,{l)
ty ty
0 0
and its kernel Hy which is isomorphic to Spec(IK[Ko]). This quasitorus acts as a subgroup
of T™™ on IK"*™ and X is invariant under this action by construction.

Proposition 2.4. For every pair (A, Fy) as in Construction 2.2, the ring R(A, Py) is an
integral normal complete intersection of dimension

dim(R(A, Py)) = n+m—r+1, n o= ng+...+n,.
Furthermore the Ky-grading is pointed, effective and of complexity one.

Lemma 2.5. In the notation of Construction 2.2 and Proposition 2.4 let z € X, where

X = V(K™ go,...,Gr2). IfTV(z) = T;j(z) =0 for0<i<j<r, then Tj*(z) =0
holds for 0 < k <r.

Proof. If i < k < j holds, then, according to Lemma 2.3, we have g; ;(z) = 0, which
implies 7}*(2) = 0. The cases k < i and j < k are obtained similarly. O

Proof of Proposition 2.4. Set X := V(K"*™; go,...,g,_2), where g; := g;+112. Then we
have to show that X is a connected complete intersection with at most normal singular-
ities. In order to see that X is connected, set ¢ := [1n: ][]l and ¢;; == Kni_lli_jl. Then
X C K™ is invariant under the K*-action given by

tez = (92,20, Zm)

and the point 0 € K"*™ lies in the closure of any orbit IK* - 2 C X, z € X, which implies
connectedness. To proceed, consider the Jacobian .J, of ¢ := (go, ..., ¢,—2). According to
Serre’s criterion (see |20, Section 11]), we have to show that the set of points of z € X,
with J,(2) not of full rank, is of codimension at least two in X. Note that the Jacobian
is of the shape (J,,0) with a zero block of size (r — 1) x m corresponding to the variables
S1,..., 5, and

doo 001 do2 O 0
0 411 012 613 O

0 67"—37'—3 57"—37'—2 5r—3r—1 0
0 0 57"—27’—2 67"—27“—1 67"—27"




20 2.1 Factorially graded rings of complexity one

where d; is a nonzero multiple of the gradient ¢, := grad TZZ Consider z € X with Jy(2)
not of full rank. Then §;(z) = 0 = 0x(2) holds with some 0 < i < k < r. This implies
zij = 0 = 2 for some 1 < j < mn; and 1 <[ < ny. Thus, we have Tll(z) =0= T,i’“(z)
Lemma 2.5 gives T!*(z) = 0, for all 0 < s < r. Thus, some coordinate z,; must vanish for
every 0 < s < r. This shows that z belongs to a closed subset of X having codimension
at least two in X. Hence, R(A, P,) is an integral normal complete intersection with

dim(R(4, R)) = n+m—r+1 = dim(ker(P)) + 1.

Effectivity of the Ky-grading is given by construction, because the degrees deg(7;;) =
Qo(ei;) generate K. This implies that the K(-grading is of complexity one. Now consider
the action of the quasitorus Hy := Spec K[Kj] on K"*™ given by the Ky-grading. Note
that Hy C T™*™ is the kernel of the homomorphism of tori

tll tlr
™ — TT, (tl],tk) — (Tl,,L) .

tlo tlo

0 0

The set X C K"t of common zeros of all the Gii+1,i+2 18 Ho-invariant and thus it is
invariant under the one-parameter subgroup of Hy given by

K* — Hy, t — (t%,t,...,1), Cii n; 'l 1anHlkm

Since all (;; are positive, any orbit of this one-parameter subgroup in K"+ has the origin
in its closure. Consequently, every Hy-invariant function on X is constant. This shows

R(A, Py)o = K. Hence, the grading is pointed. H

Lemma 2.6. In the situation of Construction 2.2, the variable T;; defines a prime ideal in
R(A, Py) if and only if the numbers gcd(lg1, . . ., lkn, ), where k # i, are pairwise coprime.

Proof. We treat exemplarily Tp;. Using Lemma 2.3, we see that the ideal of relations of
R(A, Py) can be presented as follows:

(gsst1s+2; 0<s<1r—2) = (goss+1; 1 <s<r—1)

Thus, the ideal (Ty1) € R(A, B) is prime if and only if the following binomial ideal is
prime:

a = (a0l + 0T 1< s <r—1) C K[Ty; (4,4) # (0,1)]

Set I; := (i1, -, lin;). Then the ideal a is prime if and only if the following family can be
complemented to a lattice basis

(I1,—15,0,...,0), ..., (0,...,0,0,_1,—1,).

This in turn is equivalent to the statement that the numbers ged(lgi, .. ., lkn, ), Where
1 < k < r, are pairwise coprime. O
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We say that a Weil divisor on X is Hy-prime if it is non-zero, has only multiplicities zero or
one and the group Hy permutes transitively the prime components with multiplicity one.
Note that the divisor div(f) of a homogeneous function f € R(A, Py) on X is Hy-prime
if and only if f is Ky-prime [25, Prop. 3.2].

Proposition 2.7. Let the variables T;; be regarded as regular functions on the affine

variety X = Spec(R(A, P)).

(i) The divisors of the Ty; on X are Hy-prime and pairwise different. In particular, the
T;; define pairwise non-associated Ko-prime elements in R(A, ).

(ii) If the ring R(A, Py) is factorial and n;l;; > 1 holds, then the divisor of Ty; on X is

even prime.

Proof. For (i), we exemplarily show that the divisor of Ty; is Ho-prime. First note that
by Lemma 2.3 the zero set V(X; Ty;) is described in IK"* by the equations
Ty = 0,  agoTh +ap Tl =0, 1<s<r-—1. (1)

Let h € S denote the product of all T;; with (i,7) # (0,1). Then, in K}™™, the above
equations are equivalent to

l
Olgiq T's

T01:0, —s—‘r—olsjl:l, 1§S§7"—1
CYOST‘S—&—I

Now, choose a point z € K™ satisfying these equations. Then zy; is the only vanishing
coordinate of z. Any other such point is of the form

Is _ 4ls
(0, to2202, - - - trn, Zrn, ) ty €Kty =t 1<s<r—1

Setting to; i= tga® - - -ta,i?)”‘) t1, we obtain an element t = (t;;) € Hy such that the above
point equals t-z. This consideration shows

V(Yh, T01> = HQ'Z.

Using Lemma 2.5, we see that V(X ; Ty, T;;) is of codimension at least two in X whenever
(4,7) # (0,1). This allows to conclude

V(Y, T()l) = H()'Z.

Thus, to obtain that Tp; defines an Hy-prime divisor on X, we only need that the equa-
tions (1) define a radical ideal. This in turn follows from the fact that their Jacobian at
the point z € V(X;Tp) is of full rank.

To verify (ii), let R(A, %) be factorial. Assume that the divisor of T}; is not prime. Then
we have T;; = hy - - - hy with prime elements h; € R(A, Fy). Consider their decomposition
into homogeneous parts

b= .
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Plugging this into the product h; - - - hy shows that deg(7};) is a positive combination of
some deg(Ty;) with (k,1) # (i,7). Thus, there is a vector (cy) € ker(Qo) C Z"™™ with
¢;j = 1 and ¢y < 0 whenever (k,1) # (i,7). Since, ker(Q)p) is spanned by the rows of P,
we must have n; =1 and [;; = 1, a contradiction to our assumptions. O

Theorem 2.8. Let (A, Fy) be as introduced in Construction 2.2. Then the following
statements hold.

(i) The algebra R(A, Py) is factorially Ko-graded and the Kq-grading is effective, pointed
and of complexity one.

(11) The variables T;; and Sy define a system of pairwise non-associated Ko-prime gen-
erators of R(A, Fy).

(111) Suppose that (A, Py) is sincere. Then R(A, Fy) is factorial if and only if the group
Ky is torsion free, i.e. the numbers ; := ged(ly, . .., lin,) are pairwise coprime.

Proof. The first two assertions are almost proven by Proposition 2.4 and Proposition 2.7.
The Ky-factoriality still has to be proven. In the next section we will realize R(A, Fp) as
Cox ring, see Proposition 2.16. Hence, R(A, P,) is factorially graded, compare [25].

We prove (iii). If K is torsion free, then Ky-factoriality of R(A, Fy) implies factoriality.
Conversely, if R(A, Fy) is factorial, then the generators T;; are prime by Proposition 2.7.

Furthermore, by Lemma 2.6 the numbers ged(l;1,...,li,,) are pairwise coprime. This
implies that the rows of P, generate a primitive sublattice of Z"*™ and thus K is torsion
free. ]

In the following example we consider a factorially graded algebra which is not factorial.
Note that K is torsion free if and only if the numbers ¢; := ged(l;1, . . ., lin,) are pairwise
coprime.

Example 2.9. Set r =2, ng=n1 =no =1, log = l11 = lo1 = 2 and let A consist of the
vectors (1,0), (1,1) and (0,1). Then the matrix

-2 20

-2 0 2
describes the map Py: Z3 — 7Z2. Thus, the grading group is Ko = Z ® 7Z/27. & 7./ 2.
Concretely, this grading can be realized as

deg(TOl) = (1,6, 6), deg(TH) = (]_,T,G), deg(Tgl) = (1,6, T)

The associated algebra R(A, P,) is factorially Ky-graded but not factorial. It is explicitly
given by

R(A,Py) = K[Toy, Tu, T (T — Tty + T51).
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Now we will consider an extended version of Construction 2.2 by coarsening the K-
grading as follows.

Construction 2.10. For r > 1, we fix integers ng,...,n, € Zsg, m € Z>p and 0 < s <
n+m + r, where n :=ng + ...+ n,. As input data we have a sequence A = (ay,...,a,)
of vectors a; = (b;, ¢;) in IK? such that any pair (a;, a;) with k # i is linearly independent
and an integral block matrix P of size (r + s) x (n + m) whose columns are pairwise
different primitive vectors generating the vector space Q" as a cone:

_ (Ly ©
P (30

where L is defined by tuples [; = (l;1,...,li,) as in Construction 2.2, d is an integral
(s X n)-matrix, and d’ is an integral (s x m)-matrix. Let P* denote the transpose of P
and define K := Z"*™ /im(P*). We consider the projection @: Z"*™ — K and obtain a
K-grading of K|[T;;, S| by setting
deg(Ti;) = wi; = Qei;), deg(Sk) = w, = Qleg).
By construction the trinomials g; are K-homogeneous of the same degree
vy = 10111)01 + ...+ l(mowom) = ... = lrlwﬂ + ..+ lmrwrm.

Furthermore, we obtain the following K-graded factor ring

R(A,P) = KI[T};,Sk]/{g:;0 <i <r—2).

The rings R(A, P) and R(A, Py) coincide as rings, but they are not isomorphic as graded
rings since the Ky-grading is finer than the K-grading. Consider the down grading map
K — K, which is the canonical inclusion. We have the following commutative diagram
with exact sequences:

0
l
| ]
0 T Fy Zn+mQ*O>KOH-O

i H i

0 Zr+s VARSI gu—
= Q
! !
0

By the snake lemma we can identify the direct factor Z* of Z"** with the kernel of the
downgrading map K — K. Furthermore, let T', Hy and H denote the quasitori of the
abelian groups Z°, Ky and K. Then we have T'= Hy/H.
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Remark 2.11. The condition that the numbers ¢; = ged(l;1, . . ., lin,) are pairwise coprime
is necessary for K to be torsion free. But it is not sufficient. See for example
-7 -1 5 0
P=1{(-7T -1 0 2
—4 -1 1 1

The group K is torsion free if and only if P: Z"*™ — 75 is surjective.

Definition 2.12. If (A, P) is sincere, i.e. r > 2 holds and for every 0 < i < r and
1 < j <n; we have n;l;; > 1, then the ring R(A, P) is called minimally represented.

This property ensures that the relations are really counting which means that there are
no linear terms (ommitting redundant generators) and that the relations are trinomials.
In particular, if (A, P) is sincere, then R(A, P) is not polynomial.

2.2 Varieties with a complexity-one torus action

In this chapter we will construct varieties whose Cox rings are of the form R(A, P). It
turns out that these rings describe complexity-one T-varieties.

Definition 2.13. Let X be a variety with an effective action of a torus T of complexity
one, i.e. dim(7") = dim(X) — 1. Then X is called a complezxity-one T-variety.

Assume that X is a rational Q-factorial complete normal complexity-one T-variety. Note
that in case of a complexity-one T-variety, the property of X being rational is equivalent
to the condition that the divisor class group CI(X) is finitely generated, see [29, Section
5|. We will obtain X as a subvariety of a toric variety Z and the construction of Z is
performed in terms of fans.

Construction 2.14. Let (A, P) be data as in Construction 2.10. Consider the lattice

Fo @@ en e sn s

i=0 j=1

Let A be the fan in F having the rays p;; and pj through the basis vectors f;; and f as
its maximal cones. Let P be a matrix as defined in Construction 2.10 with P, as defined
in Construction 2.2 and suppose that the columns of P are primitive, pairwise different
and generate Ng as a cone, where N := Z"+5. With N, := Z", we have the projection
B: N — Ny onto the first r coordinates and the matrices P and F, define linear maps
P: F— N and Fy: F — Ny, respectively.

Let A be the fan in N with the rays g;; := P(0;;) and g, := P(p)) as its maximal cones.
The ray g;; through the ij-th column of F is given in terms of the canonical basis vectors
Vi,...,0, in Ny =7 as

0ij = Qsov;, 1<i<r, 00j = —Qso(v1+...4+v,).
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For fixed 4, all g;; are equal to each other. We list them nevertheless all separately in a
system of fans A having the zero cone as the common gluing data; see [1] for the formal
definition of this concept. Finally, we have the fan Ay in Z" with the rays Q>ov; and
—Q>0(v1 + ... +v,) as its maximal cones.

The toric variety Y associated to A has SpecK[E] & T™™ as its acting torus, where
E' is the dual lattice of F. The fan A in N defines a toric variety Y and the system of
fans A defines a toric prevariety Y The toric prime divisors corresponding to the rays
0ij, Ok € A 0ij, 0k € A and p;; € A are denoted as

ﬁij; D, CY, Dij, Dy, CY, lN)z’j cv.
The toric variety associated to Ag is the open subset IPQ) C PP, of the projective space
obtained by removing all toric orbits of codimension at least two. The maps P and F
define toric morphisms 7: Y =Y and R Y Y. Moreover, B: N — Ny defines a toric
morphism 5: Y — Y and the identity Z" — Z" defines a toric morphism & : Y — PV,
These morphisms fit into the commutative diagram

Y i Y
Y
Py

Note that x: Y — P is a local isomorphism which, for fixed ¢, identifies all the divisors
DZ] with1 < j <mn;. Let H C T""™™ and Hy C T""™ be the kernels of the toric morphisms

7Y =Y and o : Y — Y respectively.

Proposition 2.15. In the above notation, the following statements hold.

(i) With Yy :=Y \ (DyU...UD,,), the restriction 7o: Yo — Y is a geometric quotient
for the action of Hy on Yy.

(i) The quasitorus H acts freely on Y andm: Y =Y is the geometric quotient for this
action.
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(111) The factor group T := Hy/H is isomorphic to T* and it acts canonically on'Y .

(iv) The T-action on Y has infinite isotropy groups along Ds,...,D,, and isotropy
groups of order l;; along D;;.

(v) With Yy :=Y \ (DyU...UD,,), the restriction 3: Yy — Y is a geometric quotient
for the action of T on'Y .

Proof. The fact that m: SA/O — Y and m: Y — Y are geometric quotients is due to
known characterizations of these notions in terms of (systems of) fans, see e.g. [1]. As a
consequence, also 5: Yy — Y is a geometric quotient for the induced action of T'= Hy/H.

We verify the remaining part of (ii). According to [5, Prop. 11.1.4.2], the isotropy group
of H = ker(m) at a distinguished point y; € Y has character group isomorphic to

ker(P) Nling(p) @ (P(ling(p)) N N)/P(ling(o) N F).

By the choice of d and d’, the map P sends the primitive generators of the rays of A to
the primitive generators of the rays of A. Thus we obtain that the isotropy of y;, and
Y5, are all trivial.

We turn to (iii). With the dual lattices M of N and M, of Ny, we obtain the character
groups of H and H, and the factor group Hy/H as

X(H) = E/P*(M),  X(Hy) = E/P"(My),  X(Ho/H) = P*(M)/P"(My).
By definition of the matrices P and Py, we have P*(M)/P*(M) = 7Z°. This implies
T = T* as claimed.

To see (iv), first note that the group T equals ker(5) and hence corresponds to the
sublattice ker(B) C Z"**. Thus, the isotropy group T}, for the distinguished point y, € Y’
corresponding to ¢ € A has character group isomorphic to

ker(B) Nling(o) @ (B(ling(e)) N No)/Blling(o) N V).

Consequently, for ¢ = g the isotropy group 7, is infinite and for ¢ = g;; it is of order
lij- ]

Now we come to the construction of the embedded variety. Let 6 C Fg be the orthant
generated by the basis vectors f;; and f;. The associated affine toric variety Z = K"*™
is the spectrum of the polynomial ring

KIENGY] = K[T};, S 0<i<r, 1<j<n;,1<k<m).

Moreover, Z contains Y as an open toric subvariety and the complement Z \ Y is the
union of all toric orbits of codimension at least two. We obtain an Hy-invariant subvariety

X = V(gijr1442 0<i<r—2) C Z.
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Proposition 2.16. Set X := X NY. Consider the images X' := W()A() CY and C :=
BX)CY.

(1) X' CY is a normal closed T-invariant s+ 1 dimensional variety, C' C Y is a closed
non-separated curve and k(C) C P, is a line.

(it) The intersection Ci; == X' N D;; with the toric divisor D;; CY is a single T-orbit
with isotropy group of order l;;.

(11i) The intersection Cy := X' N Dy, with the toric divisor Dy CY is a smooth rational
prime divisor consisting of points with infinite T-isotropy.

(iv) For every point x € X' not belonging to some C;; or to some Cy, the isotropy group
T, s trivial.

(v) The variety X' satisfies T'(X', O) = K, its divisor class group and Cox ring are
given by
Cl(X") ¢ K, R(X") = R(A,P).
Furthermore, the variables T;; and Sy define pairwise non-associated K -prime ele-

ments in R(A, P).

vi) There is a T-equivariant completion X' C X with a Q-factorial projective variet
q p proj )

X such that R(X) = R(X') holds.

Proof. By the definition of Py and Ho, the closed subvariety X CZis invariant under the
action of Hy. In particular, X is H-invariant and thus the image X' := 7T(X ) under the
quotient map is closed as well. Moreover, the dimension of X’ equals d1m(X JH)=s+1.
Analogously we obtain closedness of C' = 7T0(X ). The image x(C) = /i(ﬂ'[)(X )) is given in
P, by the equations
Oéiji -+ Ckkin + OéijUk =0

with the variables Uy, ..., U, on P, corresponding to the toric divisors given by the rays
Q>ov; and —Q>o(vo + ... + v,—1) of A. To see this, use that pulling back the above

equations via ko gives the defining equations for X. Consequently, x(C') is a projective
line. This shows (i).

We turn to (ii). According to Proposition 2.7, the intersection XnD; ij 1s a single Hy-orbit.
Since 7: X — X'isa geometric quotient for the H-action, we conclude that C;; = 7T(D )
is a single T-orbit. Moreover, since H acts freely, the isotropy group of G = Hy/H along
C;; equals that of H, along lA?Z-j which, by Proposition 2.15 (iv), is of order [;;.

For (iii) first note that the restrictions 8: D, — Y are isomorphisms onto the acting
torus of Y. Moreover, the restricting x gives an isomorphism of the acting tori of Y and
P,. Consequently, S maps C} isomorphically onto the intersection of the line C' with the
acting torus of P,. Thus, C} is a smooth rational curve. Proposition 2.15 (iv) ensures
that C}, consists of fixed points. Assertion (iv) is clear.
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We prove (v). From Proposition 2.4 we infer I'(X, O)# = K which implies (X', 0) = K.
The next step is to establish a surjection K — Cl(X’), where K = E/P*(M) is the
character group of H. Consider the push forward m, from the H-invariant Weil divisors
on X to the Weil divisors on X’ sending D to 7T(D). For every w € K, we fix a w-
homogeneous rational function f,, € K(X’) and define a map

p: K — ClI(X'), w = [mdiv(fy)]

One directly checks that this does not depend on the choice of the f,, and thus is a well
defined homomorphism. In order to see that it is surjective, note that due to Proposi-
tion 2.4, we obtain Cj; as m,div(7T;;) and Cj, as m,.div(7T;). The claim then follows from
the observation that removing all C;; and Cj from X’ leaves the set X’ N T"** which is
isomorphic to V' x T" with a proper open subset V' C k(C') and hence has trivial divisor
class group.

Now [29, Theorem 1.3] shows that the Cox ring of X’ is R(A, P) with the Cl(X’)-grading
given by deg(7;;) = [Cy;] and deg(Si) = [Cy]. Consequently, R(A, P) is factorially C1(X')-
graded and thus also the finer K-grading is factorial. Since H acts freely on X , wWe can
conclude Cl(X') = K.

Finally, we construct a completion of X’ C X as wanted in (vi). Choose any simplicial
projective fan ¥ in N having the same rays as A, see [44, Corollary 3.8]. The associated
toric variety Z is projective and it is the good quotient of an open toric subset Z7cCc7Z
by the action of H. The closure X of X’ in Z is projective and, as the good quotient of
the normal variety X N Z it is normal. By Proposition 2.7, the complement X \ X’ is of
codimension at least two, which gives R(X) = R(X’). From |25, Cor. 4.13| we infer that
X is Q-factorial. O]

Remark 2.17. We may realize any given R(A, P) as a subring of the Cox ring of a

surface: For every l; = (l;1,...,lin,) choose a tuple d; = (d;1, .. .,d,) of positive integers
with ng(li]’, d”) =1 and dil/lil <. < dznz/lznz Then take

o Ly 0 0
Po= ( d 1 -1 ) '
Theorem 2.18. In the notation of Construction 2.10, the following holds.

(a) The algebra R(A, P) is factorially K-graded and the K-grading is almost free, ef-
fective and pointed. Moreover, T;;, S define pairwise non-associated K -prime gen-
erators.

(b) The K-graded algebra R(A, P) is the Cox ring of a Q-factorial rational projective
variety with a complexity one torus action.

Proof. These statements are a direct consequence of Proposition 2.16. O
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Note that, if K is torsion free, then K-factoriality of R(A, P) implies factoriality, see [4,
Theorem 4.2|. The converse, however, is not true. There are K-graded factorial algebras
R(A, P) with non torsion free K, see Remark 2.11.

Theorem 2.19. Let X be a normal rational complete variety with a torus action of
complezity one. Then the Cox ring of X is isomorphic as a graded ring to some R(A, P)
with a K-grading as in Construction 2.10.

Proof. According to |29, Theorem 1.3], the Cox ring R(X) is isomorphic to a ring R(A, P)
with a grading by K := Cl(X) such that the variables T;; and Sj are homogeneous. In

particular, X is the quotient by the action of H = Spec K[K] on an open subset X of
X = V(G142 0<i<r—2) C Z.

For r < 2, the variety X is toric. We may assume that 7" acts as a subtorus of the big
torus and the assertion follows by standard toric geometry. So, let » > 2. By construction,
the Ky-grading of R(A, P) and R(A, Fy) respectively, is the finest possible such that all
variables T;; and Sy, are homogeneous. Consequently, we have exact sequences of abelian
groups fitting into a commutative diagram.

0 2)
0 0 K
|
0 My B s Ky ——0
0 M F——sK——>0
|
M/My——=0——0
0

In particular we extract from this the following two commutative triangles, where the
second one is obtained by dualizing the first one.

E M F P N (3)

. S

My No
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We claim that the kernel K is free. Consider Hy := Spec(KK[Ko]) and the isotropy group
Hy" C Hj of a general point Z(i, j) € X NV (T};). Then we have exact sequences

1

1<;H0/H0ij HO H(]ij

)

0 — Ko(i,j) — Ko — Ko/Ko(i,5) —=0,

where the second one arises from the first one by passing to the character groups. Note
that the subgroup Ky(i,j) C Ky is given by

Ko(i,j) = ling(degTw; (k1) # (i,7)) + ling(deg T,; 1 < p < m). (4)

Now [29, Theorem 1.3] tells us that each variable T;; defines a K-prime element in R(X)
and thus its divisor is H-prime. Consequently, Hy/HH," is connected and has a free
character group B B

X(H()/HHOU) = K(Z,j) = KnN K()(Z,j)
Mimicking equation (4), we define a subgroup K (i,7) C K fitting into a commutative net
of exact sequences

0 0 0 (5)

0 —= K(i, j) K K/K(i,j) —=0
0 — Ko(i,j) — Ko — Ko/Ko(i,7) —=0

0—— K(i, ) K K/K(i,j) —=0

0 0 0

By general properties of Cox rings [25, Prop. 2.2] we must have K/K(i,j) = 0 and thus
we conclude

K/K(i.j) = Ko/Koli.j) = Z/1Z. (6)
Consider again z(7,5) € V(T3;) N X, set (i, j) := px(2(i,j)) and let T denote the torus

acting on X. Then |29, Prop. 2.6] and its proof provides a commutative diagram

|

> H;

ij

TN

Ti )

1
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where H = Hy/H and ﬁij = Hy/HHy"”. Using (6) and passing to the character groups
we arrive at a commutative diagram

0—= K(i,j) K 7.)1;;Z.—0

.

with exact rows. As seen before, the group K (i,7) is free abelian. Consequently, also K
must be free abelian.

Now the snake lemma tells us that M /M, is free as well. In particular, the first vertical
sequence of (2) splits. Thus, we obtain the desired matrix presentation of P from rewriting
the second commutative triangle of (3) as

P No® N/ME

N

]

Construction 2.20. Let (A, P) be data as in Construction 2.10 and consider the as-
sociated K-graded ring R := R(A, P). Let § be a system of generators of R consisting

of the variables T;; and S;. This data defines a projected cone (E A K,~), where ~
is the positive orthant in E := Z"™™ generated by the canonical basis vectors e;;, ej
and K = E/im(P*). The map Q: F — K is the projection. Every §-bunch & de-
fines a bunched ring (R,§,®). The K-grading defines an H := Spec(K[K])-action on
X := X(A, P) := Spec(R) and according to Construction 1.9 the varieties

X = X(A,P,®) = X(R3 ®) and X := X(A P,®) = X(R,3, D),

where X = X /H. The action of Hy := Spec(KK[Ko)) on X leaves X invariant and induces
consequently an effective complexity-one action of the torus T := Hy/H = Spec(K|[Z*])
on X. Note that T is the stabilizer of X under the action of Hy. Since every chamber A
of the GIT-fan is defining an §-bunch ®(\), we can also define

X(A,P,)\) = X(A, P,®(N).

The variety X := X(A, P,\) is a normal projective variety with dim(X) = dim(R) —
dim(Kq) = s + 1 and I'(X, O*) = K*. By construction, R is the Cox ring of X and

~

m: X — X is a characteristic space for X. There is an isomorphism K — CIl(X) sending
the variables Tj; and Sy to the divisors DY = n(V(X,T};)) and D% = n(V(X,T})) in X.
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Definition 2.21. Let X = X (A, P, ®) a complexity-one T-variety. Then P is called the
P-matriz of X.

Theorem 2.22. Let X be an n-dimensional projective normal rational variety with an
effective action of an (n — 1)-dimensional torus T. Then X is equivariantly isomorphic
to a complexity-one T-variety arising from data (A, P) as in Construction 2.20.

Proof. This theorem is a direct consequence of Theorem 2.19. ]

2.3 Normal form of complexity-one T-varieties

This section describes isomorphisms of complexity-one T-varieties X = X (A, P,®) in
terms of the defining data (A, P, ®). For this purpose we introduce normal forms for the
defining matrix P as well as for the graded ring R(A, P).

Definition 2.23. We call an elementary row or column operation of the matrix P ad-
mussible if it is one of the following:

(i) Switch two columns inside a block v;1, ... Vi, .

(ii) Switch two whole column blocks vy, ..., v, and vjy,. .. s Ujn, -

)
)
(iii) Add multiples of the upper r rows to one of the last s rows.
(iv) Any elementary row operation among the last s rows.

)

(v) Switch two columns inside the d’ block.

We will see that operations of type (iii) and (iv) do not change the ring R(A, P) whereas
(i), (ii) and (v) cause switches of the involved variables that do not affect the isomorphy

type of R(A, P).

Definition 2.24. Two pairs (A, P) and (A’, P') as introduced in Construction 2.10 are
said to be isomorphic if

A=B-A-D and P=S-P-U

with a matrix B € GL(2, K), a diagonal matrix D € GL(r 4+ 1, K), a unimodular matrix
S causing admissible matrix operations of type (iii) and (iv) and a permutation matrix U
built from permutation blocks of sizes ny, ..., n,, m causing admissible matrix operations
of type (i), (ii) and (v). We call two matrices A and A’ isomorphic if A = B-A-D as
above.

Remark 2.25. The vectors a; € K?\ {0} define points in Py with fixed given coordinates.
Consequently, applying the matrix D on A is kind of a scaling and just means that the
coordinates of the points a; do change. The matrix B represents an automorphism of
K%\ {0} which can be interpreted as automorphism of P; and can hence even be chosen

out of SL(2, K). Note that we need the images of three points of P to fix an automorphism
of IPl .
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Definition 2.26. In the situation of Construction 2.10 the matrix A is called standard
if the relations of a ring R(A, P) have the following form,

go = T+ TP + Ty

g = NI TS 4T
ga = /\2712[2 + T?l)s + )\1Ti4
gs = )\3T§3 + Ti4 + )\2T5l5

gros = MosTy 5 + T3 + AT
G = Ao T2+ T 4 N\ gT

where 1, A1, ..., \,_o € K* are pairwisely different. Note that \; # 1 is due to the fact
that (a;, ay) is linearly independent whenever i # k.

Lemma 2.27. FEvery matriz A is isomorphic to a unique standard matriz.

Proof. By applying a suitable matrix B, the first three points ag, a; and a, can be mapped
to scalar multiples of the points (1,0), (0,1) and (—1,—1). By scaling these coordinates
by an appropriate diagonal matrix D we can achieve a; = (1,0), ¢} = (0,1) and a), =

(—1,—1). Furthermore, we can choose D in such a way that the points as, ..., a, are send
to points aj, ..., al satisfying det(a; 2,a;) = 1 for all 3 < i <r — 2, i.e. the coefficient of
the second monomial of each relation equals one. O

Corollary 2.28. Two matrices A and A’ are isomorphic if and only if they have the same
standard matriz.

Proposition 2.29. Let R(A, P) be a graded ring and let 1, Ay, ..., \,—o € IK* be pairwisely
different. Then R(A, P) is isomorphic to a ring K[T};, Sk]/(go, - - ., gr—2) with relations of
the following form:

w = T T T
g = NI+ T+ T
;o= T+ T4 T

Grog = Mo T2+ T 4+ T

Proof. By Lemma 2.27 we may assume A to be standard. Applying ring homomorphisms
we have two further possibilities to simplify the coefficients of the relations gy, ..., g,_o.
Firstly, we can send variables T;; to scalar multiples ¢;;T;; with ¢;; € IK*. Secondly, we can
multiply a whole relation with an element of IK* which is not changing the ideal generated
by the relations. These operations are sufficient to obtain the desired coefficients. O]
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Remark 2.30. In general, the ring K[T;;, Sk|/{(go, - - ., gr—2) defined in Proposition 2.29
is not an R(A, P)-ring, but for r < 3 it is.

Example 2.31. Consider the points ap = (1,1), a; = (0,1), as = (—1,2) a3 = (1,3),
as = (1,2) and a5 = (1, —1). Then we obtain

-0 0 0 00
0 1. 0 0 00
-3 0 10 =111 1 0 0 -+ 0 00

— . 3
B-A-D (—11)(112 2—1) 00 0 —% 00
00 0 0 10
0o 0o 0 o0 01

_(10—11—%—
11 -1 -2 1

D | = [0

)«

where the matrix A’ is standard. Then the relations are of the form
g = Téo + Tlll + T2l2

)
o= ST+ T+ Ty

1 5)

ga = —ZTQZZ + TéS + gTi‘l
9 . 1

g3 = 1_6Té5 + Ty — 1 e

Now apply the ring homomorphism sending Ty +— % % - Ty and T5 — lﬁ/ —1—52 -Ts and

multiply the last relation with g Then we have

Jo = T+ T + T

)
o= ST T T

1
go = _ZTle + Té3 ‘l‘ Ti4

15,4 l l
g3 = 1_6 33+T44+T55-

We recall the notion of a graded ring homomorphism. Let R and R’ be graded rings with
grading groups K and K’ respectively. Then (p, @) is called a graded ring homomorphism
if p: R — R’ is a ring homomorphism and ¢: K — K’ is a group homomorphism such
that p(R,) C R, is satisfied for all w € K.

Proposition 2.32. Let (A, P) and (A’, P") be given as in Construction 2.10 and consider
the associated graded rings R(A, P) and R(A’, P"). Then (A, P) is isomorphic to (A', P')
if and only if R(A, P) and R(A’, P'") are isomorphic as graded rings.
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Proof. Let us assume that (A, P) is isomorphic to (A’, P’). Then we have A= B- A D.
Applying the matrix B on A maps each point a; to B(a;). The coefficients of the relations
of R(A, P) are given by «;; = det(a;, a;) and the coefficients of the relations of R(B- A, P)
are given by §;; = (B(a;), B(a;)) = det(B) - o;;. Consequently, we obtain

R(A,P) = K[T;;,Sk]/{9:; 0<i<r—2)
= KIT;;, Sk]/(det(B) - g;; 0 < i <r—2)

The scaling matrix D = diag(dp, ..., d,) maps each point a; to d; - a;. Hence, the coeffi-
cients of the relations of R(A- D, P) are given by d;; = d;d;c;; and the matrix D induces
a ring isomorphism

di1di1di 2T for j =1

R(A,P) — R(A-D,P), T;; — { , ,

T, for j #£1
where d_; := 1. Consequently, R(A, P) is isomorphic to R(A’, P) for A’ = B-A- D and
it is sufficient to consider the rings R(A, P) and R(A, P') with a standard matrix A. The
condition P’ = S - P - U induces an automorphism K[7Tj;, Si] — KI[T};, S;] sending the
variables Tj;, Sy to Tj;, S} according to the rules given in Definition 2.24. The matrix U
permutes the blocks indexed from 0 to r of the matrix P and allows that variables within
one block are permuted. The unimodular matrix S satisfying the conditions of Definition
2.24 leaves the ring invariant and respects the grading of R(A, P). Consequently, we
obtain

R(A, P)

K[Tij, Si]/{9:,0 <0 <7 —2)
KT}, Si]/{gi,0 <i <7 —2)
R(A,P').

I

Now let us assume that ¢*: R(A’, P') — R(A, P) is an isomorphism with A" and A in
standard form and set X := Spec(R(A, P)) as well as X := Spec(R(A’, P')). Then the
maximal K- and Kj-gradings of R(A, P) and R(A’, P') (defined by the gradiator matrices

Py and P}) induce maximal torus actions on X and X' by the tori Ty := Spec(K[Ko))
and T}, := Spec(K[K(]), respectively. The isomorphism 4,0* defines an affine equivariant
isomorphism ¢: XX Consider an open set X =X (w) C X where w € Mov(X).
Let Xo denote the open subset of X consisting of all points = € X with finite isotropy,
ie. d1m(T0x) = 0. Since ¢ is an isomorphism, the set X(’) = gp(XO) contains all points
3 D, Ex on X.

By choice of X we have prlme d1v1sors Dw =Xn D” and Ek = XnN E),. Analogously,

2/ € X' with finite isotropy. The variables T, Sk represent prlme divisors D

E of X and prime divisors D E’ of X. Furthermore, we

we have prime divisors D, i

157
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obtain the following commutative diagram:

Xo X}
//TOJ/ J///Té
Xo/Ty X/ T,

P, = P,

The lower downward arrows are separation maps sending multiplied points to one point
and the relations ¢; and ¢} to linear relations on P;. Consequently, we have a linear
automorphism p: P; — Py, ie p € GL(2,K)/K* = PGL(1) = PSL(1). Every such p
comes from a matrix B € GL(2, K) deﬁning an automorphism of K2, Tt sends A to A’
such that p(a;) = aj This 1mphes n; = nj Consequently, the map ¢ sends the set of

prime divisors {DU, Ek} on X and {D”,

way that any tower D, i« 18 sent to some tower D]* Since [;; = [Ty 5ij| holds, we conclude

E,Q} on X’ bijectively into each other in such a

that, inside one tower, Dzy is mapped to D ; if and only if l;; = [j,;, holds. The prime

divisors with infinite isotropy Ek are sent to E’ These conditions correspond exactly to
matrices U as described in Definition 2.24. Note that applying D from the right side to
A does not change the points a; in Py since the homogeneous coordinates of a point a;
are only multiplied by a scalar of IK*. Moreover, applying S from the left side to P does
not change the ring R(A, P). O

Corollary 2.33. Let R(A, P) and R(A’, P’) be the Cox rings of two non toric complexity-
one varieties X = X (A, P,\) and X' = X(A', P', X)) with acting tori T and T' and let
K and K' denote the associated grading groups. Then the following three statements are
equivalent:

(i) R(A,P)= R(A", P') and there is a graded isomorphism (p,®) such that p(\) = X.
(i) X(A, P,\) = X (A, P, N) as complezity-one varieties.
(111)) X (A, P,\) = X (A, P',XN) as algebraic varieties.

Proof. The first and the second statement are equivalent by [9, Corollary 6.8]. From [6,
Theorem 5.5] we infer that the automorphism groups Aut(X) and Aut(X’) of X and X’
are linear algebraic groups with maximal torus 7" and T”, respectively. Let ¢: X — X’
be an isomorphism. Then the T-action on X defines a ¢(T)-action on X’. Since ¢(7T)
is conjugated to T” this implies that X and X’ are even equivariantly isomorphic (as
complexity-one varieties). O

Given data (A, P) fixes X = X (A, P, ®) up to small birational equivalence, depending on
the §-bunch ®. In order to fix X up to isomorphy one has to fix ®, which means fixing an
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interior GIT-chamber of the moving cone in K. The anticanonical class wy = [-Kx] € K
is not affected by small birational modifications. Since R(A, P) is a complete intersection
we infer from |9, Proposition 8.5] that

roon; m

wx = Qlew) = 33 Qley) + Do Qle) Y desla)

i=0 j=1 k=1
Anyway, if X satisfies some special properties, then (A, P) defines a unique variety X.

Definition 2.34. We call X a Fano variety if its anticanonical class wx is ample. Fur-
thermore, X is of Picard number n € Z if rk(Pic(X)) = n.

If X is a Fano variety, then (A, P) fixes X already up to isomorphy, since the anticanonical
chamber is uniquely determined and given by A(wx) and we have X = X (A, P, \(wx)).
Furthermore, if X has Picard number one, then there is only one fulldimensional chamber
in the moving cone, which is the moving cone itself, i.e. the positive orthant in Kq = Q.
Consequently, in this case the variety X is also uniquely determined, Fano or not. If X is
a projective surface with finitely generated Cox ring, then Ample(X) = Mov(X)® holds.
In particular, we have X = X (A, P, \(w)) for an arbitrary w € Mov(X)°. Consequently,
for varieties satisfying one of these properties the notation X (A, P) is justified.

Corollary 2.35. Let (A, P) and (A, P') be data defining projective varieties X (A, P) and
X(A', P that are of dimension two or Fano varieties or varieties with Picard number
one. Then the following statements are equivalent.

(i) X(A,P)= X(A', P") as complexity-one varieties.
(i) X(A, P) = X (A", P") as algebraic varieties.
(111)) R(A,P)= R(A', P') as graded rings.

Corollary 2.36. Let X = X (A, P) be a K*-surface, i.e. s = 1. Then we can find a
matriz P’ such that X (A, P) is isomorphic to X (A, P') and P’ satisfies
dij  dy;
Nog >Ny > ... >Ny, lin, >din, >0 and A e hy
i g
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3 Resolution of complexity-one T-varieties

This chapter is dedicated to the resolution of singularities of complexity-one T-varieties.
We will discuss a canonical way of resolving a complexity-one T-variety X by toric mod-
ifications of its minimal toric ambient variety Z, so-called toric ambient modifications.
The last section of this chapter is dedicated to discrepancies of such modifications.

3.1 Toric ambient modifications

As seen in Construction 1.11 each variety X = X (R, §, ®) comes with a natural embed-
ding into a toric ambient variety. Consequently, it suggests itself to use toric resolution
theory to resolve their singularities. We briefly recall the concept of toric ambient modi-
fications, see |25, Sections 5 and 6.

Consider a complexity-one T-variety X = X (A, P,®) and its canonical toric embedding
X C Z and denote the fan associated to Z by X. Let ¢ € ¥ be generated by some
columns of the matrix P. We consider a primitive lattice vector v, € ¢°. Then we can
find non-negative integers a;;, ax and me, € Z~ with ged(a;j, ag, moo) = 1 such that

r
MooVo E § a’Z]UZ]+§ AUk,

1=0 j=1

and o = cone(v;j, vg; a;; # 0,a; # 0). The ray Qs¢ - v subdivides the cone 0. We
call m, the index of this subdivision. Let ¥’ be the fan that we obtain by the stellar
subdivision of o at vy and denote the associated toric variety by Z'. Consider the Cox
constructions P': 3/ — ¥ and P: 5. — Y. The fans 5, and 3 lie in the lattices

F= é@Ze”@@Zek and F' = F @ Ze,

=0 j=1

and consist of faces of the positive orthants in F' and F’ respectively. The projection
maps are given by

P: F — N, e;; — v;j, € — U, P': F' = N, e;j — vj, € Uk, €oo > Vno.

Furthermore, we have the following lattice homomorphisms:

G: F' — F, e;> e, ex— e, oo — E Za”ew—l—Zakek,

i=0 j=1 =
G': F' - F', e ey, ep > €, oo > Mooloo,
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fitting in a commutative diagram:

F/
2N
F’ F
v |
N = N

The homomorphism G defines maps of fans Y 5 S and & — 3, where Y and T are
the fans of faces of the positive orthants in F” and F' respectively. The stellar subdivision
Y/ — ¥ defines a toric modification 7: 2/ — Z. Let E C Z' be the exceptional divisor
and denote the strict transform of X under this modification by X' := 771(X). We
call m: Z' — Z a neat ambient modification for X’ C 7' and X C Z if X N7(F) is of
codimension at least two in X. If this is the case, then we set Y := 7 _1(7/) and we have
commutative diagrams

A ! 7 X ’ X
A 7 X’ X
p’i/H’ Pl/H p’J{/H’ PJ//H
7' A X' X

where 7: Z' — Z properly contracts an invariant prime divisor, p and p’ are geometric
quotients of quasitorus actions, where H := ker(p) and H' = ker(p), 7: 7' — 7 is the
quotient for a KK*-action and 7': 7' — 7 is the quotient of an action of the group C,,__
of m-th roots.

Let X be a Q-factorial projective variety with finitely generated Cox ring. We call a
class [D] € CI(X) combinatorially contractible if it generates an extremal ray of the
effective cone of X and, for some representative D and all n > 0, the vector spaces
['(X,O(nD)) are of dimension one. Furthermore, X is called combinatorially minimal if
it has no combinatorially contractible divisor classes. By |25, Theorem 6.2| all Q-factorial
projective varieties with finitely generated Cox ring arise from combinatorially minimal
ones by toric ambient modifications and small birational transformations. Furthermore,
[25, Corollary 6.8] states that all Q-factorial projective varieties with finitely generated
Cox ring are combinatorially minimal if and only if Eff(X) = Mov(X) holds.

Let X' = X (A, P,®) be a complexity-one T-variety with minimal toric ambient variety
Z'" and consider the weights w;; := deg(T;;) and uy := deg(Sk). We call a weight w €
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{wij, u} exceptional, if Q>ow is an extremal ray of Eff(X’) and there is no other weight
w; j, ug contained in Q>ow. Consider the prime divisors D;;, Ej of X' corresponding to
the variables T;; and S;, and let D, be one of them. Furthermore, let wy be the degree of
the corresponding variable in K = Cl(X’). In this setting we can formulate the Gale dual
description of toric ambient modifications in K. The following statements are equivalent:

(i) There is a neat toric ambient modification 7: 7" — Z for X' C Z" and X C Z
contracting the divisor Dy, where X = m(X’).

(ii) The weight wy, € K is exceptional and w), € A holds for all fulldimensional cham-
bers A € A(X) having a common facet with X' := SAmple(X’). Here w?, denotes
the class of wy, in K = K/K', where K' is the torsion part of K.

3.2 Resolution via weak tropicalisation

In this section we introduce a canonical resolution for complexity-one T-varieties. It uses
the concept of weak tropical resolutions as defined in |[7].

Let X be a complexity-one T-variety. A resolution of singularities for X is a morphism
7: X' — X such that X’ is smooth, 7 is proper, and the restriction 7: 7 (Xeq) — Xyeg
is an isomorphism, where X,¢, denotes the set of non-singular points.

Consider a complexity-one T-variety X = X(A, P,®) and its minimal toric ambient
variety Z with associated fan 3. There are two reasons for X having singularities. Firstly,
X inherits singularities from its minimal toric ambient variety Z. Consider a point x €
Xy = X, with 7y € 1lv(®) and 0 = P(;) € 3. If o is not regular, then Z is singular
along Z, and X has a quotient singularity in 2. Note that we have Qlin(y)NE) # K in
this situation. Secondly, we obtain X as good quotient p: X — X with an open subset
X CcX. Every T € X defines a point x € X by = := p(Z). We call X quasismooth if
X is smooth. If X is not quasismooth, then there is a singular point = € 770 defining a
singular point € X, and X, := p~!(X,,) describes the singular locus above x. These
singularities can be detected by the Jacobian matrix of the relations gy, ..., g._2. Note,
that these singularities can be factorial. Certainly, there are also singularities existing
because of both reasons.

Construction 3.1. Let X = X (A, P,®) be a variety with complexity-one torus action
and let Z be the minimal toric ambient variety of X and ¥ its fan. Set

00 = cone(—e; — ... —e,), 0; = cone(e;) CZ", 1<i<r,

where ey, ..., e, are the canonical basis vectors in Z". Let trop(X) be the quasifan con-
sisting of all cones of the form p; x Q® living in Z"**. These cones are also called arms
of trop(X). The lineality space of trop(X), which is denoted by lin(trop(X)), is exactly
{0} x Q°. We define

¥ o= Y(A,P®) = XnNtrop(X) = {oNT; 0 €%, 7€ trop(X)}
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as the coarsest common refinement of the two fans ¥ and trop(X). In particular ¥’ is a
refinement of X and consequently defines a toric morphism Z' — Z arising from a map
of fans ¥’ — ¥. Let X’ be the proper transform of X under this modification, i.e. the
closure of X NT""¢ in Z’. The restriction X’ — X is called the weak tropical resolution
of X. And we call X weakly tropical if ' = 3 holds. We obtain X’ = X (A, P’, ®’) where
the columns of P’ are the primitive generators of ¥’ and &’ is dual to >'.

Remark 3.2. The quasi-fan trop(X) is the tropical variety of the closed subvariety X N7y
in the sense of [52], where T denotes the torus of the minimal toric ambient variety Z.

Definition 3.3. Let X = X (A, P, ®) be a complexity-one T-variety. Then we have two
types of F-faces vy < 7y corresponding to cones o = P(v;) € X where v§ = v- N+,

(i) The basis vectors e;; ¢ 7y do all belong to one block, i.e. they have all the same
index 0 < ¢ < r. In this case, the cone P(7]) is of the form

cone(Vijy, - -+, Vijs Vkys - - - » Uky)

and we call ¢ = P(q93) a tower cone. Note that vy,...,v, are contained in
lin(trop(X)) by definition.

(ii) For each 0 <14 < r there is at least one 1 < j; < n; such that e;;, ¢ 7. This means
that for each 0 < ¢ < r there is at least one 1 < j; < n; such that v;;, € P(v;). In
this situation o = P(~) is called a big cone. Furthermore, we call a cone o € %
elementary big if for each 0 < ¢ < r there is exactly one 1 < j; < n; such that
vy, € 0, Le. it is of the form cone(vy,, ..., v, ) for one choice (jo,...,Jj,) € Z"™
where 1 < 7; < n;.

Remark 3.4. Elementary big cones are exactly those cones such that its rays are the only
faces being tower cones. In particular, the fan >’ of Construction 3.1 does not contain
big cones because it is supported by trop(X).

Lemma 3.5. Let o' € ¥\ ¥. Then ¢ C lin(trop(X)) and ¢ is contained in the relative
interior of an elementary big cone.

Proof. By definition of trop(X) and the matrix P a cone o0 = P(7) of ¥ is supported
by trop(X), i.e. o C [trop(X)], if and only if it is a tower cone. To be more precise
each arm g; x Q° of trop(X) supports precisely those cones of ¥ which satisfy o =
P(vy) = cone(vyj,, ..., v;5,). This gives ¢’ C lin(trop(X)). The only cones that intersect
lin(trop(X)) non-trivially are big cones P(v{). By Definition 3.3 all rays ¢’ € ¥’ \ ¥ are
contained in the relative interior of an elementary big cone. O]

Lemma 3.6. Let 0 = cone(vy,y, ..., vj,) be an elementary big cone. Then o contains
exactly one primitive lattice vector v € lin(trop(X)) in its relative interior. Moreover, the
primitve vector v generates a ray o € 3\ X.
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Proof. Assume v € ¢°. Then we have v = ayvy;, + ... + a, v, With a; € Q=¢. The first
r coordinates of v have to be zero. This fixes the coefficients a; up to a common scalar
multiple. ]

Lemma 3.7. In the situation of Construction 3.1 the variety X' is a complexity-one T -
variety X (A, P',®") such that P' = (P,d') holds, where d’' consists of vectors lying in the
lineality space of trop(X).

Proof. We denote the primitive vectors of all rays ¢ € ¥'\ ¥ by v,. From Lemma 3.5 we
infer that v, € lin(trop(X)) holds. Hence, adding all vectors vy to P we obtain a matrix
P’ defining a complexity-one T-variety X' = X (A, P/, ®') where @' is dual to ¥'. ]

Lemma 3.8. Let X = X(A,P,®) be a complezity-one T-variety with minimal toric
ambient variety Z and associated fan Y which does not contain big cones. Then the
following statements hold.

(i) X is quasismooth.

(1) X is smooth if and only if Z is smooth.

Proof. To verify assertion (i) we have to consider the Jacobian J, of ¢ := (go, ..., gr—2)-
It is given by

doo Oo1 do2 O 0
0 411 012 d13 O

0 57‘—37"—3 57"—37‘—2 57"—37‘—1 0
0 0 57”—27"—2 51”—27"—1 61”—27”

where d;; is a nonzero multiple of the gradient J; := grad Tll Let us assume there is a
7 € X with J,(Z) not of full rank. Then &;(Z) = 0 = 8;(%) holds with some 0 < i < k < r.
This implies Z;; = 0 = Zj; for some 1 < j < n;, and 1 < [ < ny. Thus, we have
TH(Z) = 0 = T*(Z). Lemma 2.5 gives T'(Z) = 0, for all 0 < s < 7. Thus, some
coordinate Ty must vanish for every 0 < s < r. Since there are no big cones in ¥ there
are no points 7 € X of this shape. Hence, X is smooth. Assertion (ii) follows from (i)
and |25, Corollary 4.13]. O

Lemma 3.9. Let X = X (A, P,®) be a complexity-one T-variety and Z its minimal toric
ambient variety with associated fan ¥. Consider a cone o € X which is supported by
trop(X), that means o C |trop(X)|. Then X, = Z, N X is an open subset of the affine
toric variety Z (o) corresponding to the lattice cone o C lin(o) N N.
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Proof. Assume that o is supported by the r-th arm of trop(X). The projection
P77

onto the first 7 coordinates maps the cone o in Z"** onto the ray o, in Z". This induces a
toric morphism 7 : Z, — Y, where Y, C P, denotes the affine toric variety corresponding
to the ray o, in 77", ie. Y, = T"! x K. Under this projection X, is sent to C' N'Y,,
where C' is a projective line intersecting each toric prime divisor V(U;) of P, in exactly
one point. Note, that Uy, ..., U, denote the homogeneous coordinates of P,.. The curve
C' is parametrized on Y, by

c:K—T1xK, te (ci(t), ... coq(t),t)

with suitably chosen ¢; € K[T]. Consider the T-equivariant morphism

1 1
: Xy = 2y, = ——, . .., ——————, t(x) ] - 2.
‘ (e o)
Let F, := A(KK*) be the closure of the image of the one-parameter group A,: K* — T
corresponding to the primitive generator of the ray o,.. Then m (¢(x)) = A.(t(x)) holds
and we have ¢(X,) = 7, '(F") where F is obtained by removing all points A,.(t) € V(Uj;),
i # r,off F.. All in all , we have a commutative diagram

X, — o(X,) C Z(o)

TR

cny,— - f C F,.,

r

and p(X,) = 7 '(F!) is a m-saturated open subset of the affine toric variety Z(o) =
7' (F,) corresponding to the convex lattice cone ¢ in lin(a) N N. O

Theorem 3.10. Let X = X (A, P,®) be a complexity-one T-variety and let Z be the min-
imal toric ambient variety with associated fan Y. Then a T-invariant desingularization
X" — X is obtained as follows:

(a) Determine the fan ¥’ := ¥/(A, P,®) and compute a regqular subdivision 3" of ¥,
This leads to a map of fans X" — 3.

(b) Let Z" — Z be the toric morphism defined by X" — % and let X" be the closure of
X NT" in Z". Then the restriction X" — X is the searched desingularization.

In particular X" is smooth and of the form X" = X (A, P", ®") where the columns of P”
are the primitive generators of X" and ®" is Gale dual to 3.
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Proof. The first step is given by the weak tropical resolution X’ — X. Afterwards by
Lemma 3.9 the variety X' is locally toric, i.e it is covered by open subsets of toric varieties
X/ with fans ). These fans live in the i-th arm of trop(X) which is defined by g; x Q°.
Any regular subdivision of ¥’ provides a regular subdivision of ;. Consequently, X" is
smooth. O

Remark 3.11. The resolution procedure of Theorem 3.10 provides an easy way for com-
puting the Cox ring of the resolution X” of a complexity-one T-variety X = X (A, P, ®).
In order to obtain the matrix P” the primitive generators of all rays in X"\ ¥ are added
to the matrix P in such a way that the special form of the matrix is maintained, i.e.

/"o LO 0
)

for appropriate matrices Lo, d and d’ (compare 2.10). In particular, the Cox ring R(X")
of the resolution X" is given by R(A, P").

The relations of the Cox ring are not affected by the weak tropicalisation X’ — X. We
just add some variables S} corresponding to invariant prime divisor with infinite isotropy.
Note that lin(trop(X)) equals the vector subspace generated by the lattice of the one-
parameter subgroups of the torus 7. Furthermore, the weak tropicalisation eliminates
all factorial singularities, i.e. X’ has only quotient singularities coming from the toric
ambient variety Z’.

Example 3.12. Let X = X (A, P) be the K*-surface arising from the data

-1 -1 1 10
P=|-1 -1 0 02}, A:(é(l]j).
-1 0 -1 0 1
Then the Cox ring of X is given by K[T};]/(To1To2 + T11T12 + T4) and we have

¥ = {cone(vor, V11, va1), cone(voz, via, var ), cone(vi, vig); 0 < i < 2},
trop(X) = cone(ey, £es) U cone(ey, £e3) U cone(—e; — e, te3).

We obtain the weak tropicalisation X’ by drawing in rays along v* = (0,0,1) and v~ =
(0,0,—1). Consequently, we have

Y = Y A trop(X) = {cone(vi, v ), cone(viy, vT), cone(vi, vi); 0 < i < 2}

Resolving the two singular cones cone(vg, v™) and cone(vyy, v~ ) of ¥’ by drawing in rays
along the elements of the Hilbert basis v9o = (0,1,1) and ve3 = (0,1,0) we obtain the
resolution X” = X (A, P”) with the following P-matrix and Cox ring:

1 -1 1 10000 0
P=1|-1-10902110 0],
-1 0 -101101 -1

R(X") = K[T;;, 51, 2]/ {(ToaToe + TiiT2 + T221T22T23>-
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3.3 Discrepancies

In this chapter we analyze the behavior of the anticanonical class —Kx of a complexity-
one T-variety under toric ambient modifications.

Definition 3.13. Let X be a normal Q-factorial variety, and consider a resolution
m: X' — X of X. We write

KX/ = W*(KX) + ZaiEi,

where FE; are the exceptional divisors. Then the coefficients a; € Q are called the discrep-
ancies of .

Lemma 3.14. Consider a toric ambient modification w: X' — X for complexity-one T -
and T -varieties X C Z and X' C Z' with minimal toric ambient varieties Z and Z' and
let R(X) and R(X') be their K and K'-graded Coz rings, respectively. Let D, be the
exceptional divisor represented by wl_ in the divisor class group Cl(X') = K'. Then we

have
r—2

r—2
Kx — " (Kx) = d-wl,+ Y degy(g)) — 7> degyc(g:)).
i=0 =0

where go, . . ., gr—a are the relations of the Cox ring R(X) and g}, ..., g._o are the relations
of the Cox ring R(X') and d denotes the toric discrepancy of w, i.e. d-wl, = Kz —7*(Kz).

Proof. By Proposition 2.4 the Cox rings R(X) and R(X') are complete intersections.
Hence, by using the concrete formula for the anticanonical divisor proven in [9, Proposition
8.5], we obtain by an easy computation

r—2

Kxi = Kz + ) degg(g)
=0
r—2
= d-wl + 7 (Kz)+ ) _ deg(g))
=0
r—2 r—2
= d-wl, + 7" (Kx — ) deg(g:)) + Y degy(g))
1=0 1=0
r—2 r—2
= d-wl, + 7 (Kx) =7 () degge(g:)) + D deg(g))-
=0 i=0

]

Proposition 3.15. In the situation of Lemma 3.14 consider the exceptional divisor D,
and its divisor class wl_ in Cl(X') as well as the associated primitive vector v, where

T

n; m
MooVoo = E E az’jUz‘j—i‘E AUk,
k=1

i=0 j=1
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with non-negative integers a;j,a satisfying ged(aij,ar) = 1, me € Zso and vy €
cone(v;;, ug; a;; # 0,a; # 0)°. Then we have

oM a+ > ag—m
KZ’_W*(KZ) _ ZZ—DZ]—]. 1] Zk—l k oo U)éo

Moo

and
S0 Do G Doy @k — Mee — D1 Ko L

o0 )

KX/ - 7T* (KX) =
Moo
where ky; denotes the minimal degree of the decomposition g; ‘= gi,,+. . .+ gk,,, in homoge-
neous components concerning the grading given by the modification w, i.e. deg, (T};) = a;j;,
deg, (Sk) = ax.

Proof. The modification 7 defined by the exceptional divisor D., induces the following
lattice homomorphisms

G FE— E,7 €5 —r €44 + Ajj€Co0, €k 7 €k + aroo,
G": E' = E', e eij, € €p,y oo > Meoloo-

In particular, 7 induces a pullback map 7*: F — E’ where G* = G"™ o *. Note that
E = WDiv!(Z) and E' = WDiv' (Z'). The map 7* defines a map C1(Z) — CI1(Z') which
is also denoted by 7*. We extend these maps to the corresponding rational vector spaces
and obtain

a; Qij

Qi) = 7 (wy) = Q’(eij)+mj Qe) = wij + i,

Qo)) = 7 (w) = Qen) + EQ(ex) = u+ Ewl

[o.¢] (o)
This gives
T ng m T ng m
KZI—W*(Kz):—E E ng—g uy, —wlh, — 7 —E E wij—g U,
i=0 j=1 k=1 i=0 j=1 k=1
r n; m
o / / /
= 22wy D — vl
i=0 j=1 k=1
r ng m r ng a m a
7, k
o GOSN DI Dimed Dl K
J o
=0 j=1 k=1 =0 j=1 k=1
T ng a m a
ij k
= —w_+ E g L+ E — | wl,
m
i=0 j=1 ' =1

> iz Z;%:l Qij + D ey @k — Moo !
Moo
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For the second part of the statement we first note that the g,.-parts of the polynomi-
als g; remain untouched under the modification, i.e. gy, = g,’ml_. Furthermore we have
degr(g9i) = degy (gk,,) since gy,. consists of monomials of g;. This gives

degr:(g;) — 7" (degg(g:)) = degyi(gr,,) — 7 (degg (gro,))

ko,
= degg (9201.) — degg (92:01.) T w,
ko
= 0y
Moo

The previous statement together with Lemma 3.14 proves the assertion. Note that, since
Cl(X) = Cl(Z) holds, we can naturally consider the pull back map 7*: Cl(X) — CI(X").
m

Corollary 3.16. The toric discrepancy Kz —n*(Kz) is always greater or equal to Kx —
" (Kx) .

Definition 3.17. Let X be a normal (Q-factorial) variety, the canonical class Kx Q-
Cartier and ¢: X' — X a resolution of X. We consider

Kx = ¢"(Kx)+ Z a; E;,

where F; are the exceptional divisors and a; € QQ. The singularities of X are called

e terminal, if a; > 0 for all 4,
e canonical, if a; > 0 for all 4,
e [og-terminal, if a; > —1 for all 7,

e log-canonical, if a; > —1 for all 4,

e-log-terminal, if a; > —1 + ¢ for all 7, where 0 < e < 1,

e c-log-canonical, if a; > —1 + ¢ for all 7, where 0 < & < 1.

We call the variety X terminal (canonical, (e-)log-terminal, (e-)log-canonical) if all sin-
gularities are so.

Corollary 3.18. Let X be a complexity-one T-variety and X C Z its minimal toric
embedding. If X is terminal/canonical/log-terminal/e-log-terminal then Z is terminal/
canonical/log-terminal /e-log-terminal.

Proposition 3.19. Let X = X(A, P,®) be a log-terminal complexity-one T -variety and
X' its weak tropicalisation. Then, for each choice (jo, ..., Jjr), 1 < ji < n;, such that there
is a ray ¢ € X'\ X with vy € cone(vy,y, ..., v,.)° the following inequality holds:

T
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Proof. We resolve the complexity-one T-variety X as described in Theorem 3.10. There-
fore consider the fan

¥ = YNntrop(X) = {oNtrop(X); o € X}

and a tuple (jo, ..., Jjr) with 1 < j; < n;, such that there is a ray ¢’ € ¥'\ ¥ with primitive

o N o
generator vy € cone(vg,y, ..., v, )°. Then vy can be represented as positive combination
T
My Vg = E i Vi,
=0
where m is chosen such that a;;, ..., a;; are integers and ged(my,ag o, ---arj.) = 1.

The ray ¢ corresponds to a variable Sy not occurring in the Cox ring relations of X'.
Consequently, we obtain
lCm(lojO, . 7l7’jr)

;i :

Using Proposition 3.15, the discrepancy of the modification defined by the stellar subdi-
vision along ¢’ can be calculated explicitly by

]_ " lcml '07"'7lr47‘
' (Z (OJl o) —my — (r— 2)1Cm(l0j07-‘-al7’jr)> .

m™m
4 i=0 7%

Aij; =

i

If X is log-terminal, this expression has to be greater than —1 which is equivalent to the

condition
.

Zli > r—1.

i=0 i

]

Example 3.20. Let X = X (A, P) be a log-terminal complexity-one T-variety satisfying
r = 2. Then leollj1 + loj0l2j2 + l1j1l2j2 > l0j0l1j1 leQ or equivalently
! + L + L > 1
lojo — lji  l2js
holds for all choices (jo, j1, j2) with cone(vyjy, v1j,,v2j,) € X and (loiy, b4y, l2i,) is a platonic
triple, i.e. a triple of the following form:

e (1,z,y), where z,y > 1
e (2,2,z), where x > 2
e (2,3,3), (2,3,4), (2,3,5)

Corollary 3.21. Let X = X (A, P) be a log-terminal complexity-one T-variety with r > 2
and cone(vgjy, - - ., Uy, ) € X such that lo;, > ... > l;.. Thenls, = ... =15, =1 holds
and (lojy, l1j,, l2j,) is a platonic triple.
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Proof. Assume l;;, # 1 for all 0 < i < r. Then 1/l;;, < 1/2 holds and consequently by
Proposition 3.19 we obtain

r+1 1
> — > r—-1
2 1=0 lmz
This implies » + 1 > 2r — 2 and hence r < 3. O

Let Xo = X (Ao, Po, ®y) be a Q-factorial complexity-one T-variety and Z, its minimal
toric ambient variety with fan 3. Let Xy,...,%, be refinements of ¥ arising from >
by doing stellar subdivisions of a cone oy € ¥ successively. That means, that we have
rays o1, ...,0p, With primitive generators v,, and cones o; € 3J; such that v, , € o and
oiv1 C o; for all 0 <7 < n—1. Then we have toric ambient modifications m;: X;,1 — X;
with Q-factorial complexity-one T-varieties Xy, ..., X,, such that

Tn—1

X, 5 X, = . = X1 3 X,.

We set k; := mpo...om;, 0 <7 <n—1. Let Kx, be the canonical divisor class of X;. Then
there is an n € IN and a linear form v € M = N* = Z"* such that n - (Kx,) = x" on
Xooy = Xo N Zy,, where o9 = Py(75). Hence, we can find an element uy € Mg = M ® Q

such that
Kx, = > (uo,vi;)Dij + > (uo, vi)Ey.
irj k
Since X, is Q-factorial, so are Xi,...,X,,. We consider the relevant §-faces vi,..., v,
with o; = P;(7;). Then we can find uy,...,u, such that, locally on X, = Xj,., we have

Kx, = Z<u57vij>Dij + Z<US,W>EI<;, 1<s<n.

,] k

Now we describe the behavior of the anticanonical divisor —Kx, under the toric ambient
modifications x; in terms of discrepancies.

Proposition 3.22. In the situation above we have for 1 <i<mn
KXi - ’%:(KXo) = (<u1,1}91> - <u0? U91>>D91 +.o.F ((ul’ U.Qi> - <u07 U9i>)DQi'

Proof. For an arbitrary toric ambient modification 7: X’ — X we have commutative

diagrams
F’ E'
2N 7N
F’ F E' E
v |» »| |

N M M
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where the second one is obtained by dualizing the first one; compare section 1 of this
chapter. These diagrams extend to diagrams of the corresponding vector spaces. Hence,
the toric modifications k; leave Mg untouched and we have r;,(ug) = up. In particular,
k*(Kx,) is still represented by ug on X, for each o; C 0. For each v;;, vj, that is contained
in both o; and oy we have (u;, v;;) = (ug,vi;) and (w;, vx) = (ug, vi) respectively. This
states the assertion. O

Example 3.23 (Example 3.12 continued). We consider the two elementary big cones
o = cone(vgg, V12, V92) and o~ = cone(vg, v11,v21). Locally on X,+ and X,- the an-
ticanonical divisor can be represented by the linear forms u™ = (1,—1,3) and u~ =
(0,1, —1) respectively. Note that we have

<U+,?J()2> = 0 = l02 — ]_, <U+7’U12> = 1, <U,+,1121> = ]_,

(u 1) =0=1lpn =1, (u,vn)=1, (u,vy)=1

We denote the exceptional divisors corresponding to the primitive vectors v* = (0,0, £1),
voy = (0,1,1) and vy = (0,1,0) by D%, Dyy and Doz respectively. Hence, the discrepan-
cies Kxn — m*(Kx) of the resolution 7: X” — X are given by

(<U+,U+> - 1)D+ + (<u+,v22> - 1)D22 + (<U_,’U_> - 1)D_ + ((U_, U32> - 1)D23
= 2D + Doy +0- D™ +0- Dos.
In particular, X is canonical. Note that, locally on X” with ¢ € X", the anticanonical

divisor Kx~ is given by a linear form u, having value 1 for all primitive column vectors
of P” generating o.
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4 [K*-surfaces

In this chapter we investigate complexity-one T-varieties of dimension two, so called K*-
surfaces. We will give a survey of their geometry and determine all types of Cox rings
of combinatorially minimal K*-surfaces, i.e. surfaces without contractible prime divisors.
Furthermore, we compute intersection numbers and affiliate conditions for K*-surfaces to
be Fano. Finally, we introduce the anticanonical complex for log-terminal K*-surfaces, a
convex geometrical tool which can be used to describe their singularities.

4.1 P-Matrices for K*-surfaces

In this chapter we are concerned with K*-surfaces. The special case of dimension two
simplifies the approach for varieties with torus action of complexity one considerably. It
is not necessary to work with the concept of bunches, as presented in chapter 1. There
is only one representative of a small birational class since there is only one single ample
chamber SAmple(X) = Mov(X) defining one single bunch and hence one single unique
surface. Consequently, in case of surfaces, we can use the notation X = X (A, P). We
briefly recall the basic steps needed for the construction of X (A, P).

Construction 4.1. We start with a set A of r + 1 pairwise linearly independent points
a; € K? and an integer (n +m) X (r + 1)-matrix of the form

—lo 4y 0 ... 0 O
—lp 0 [y 0 0
P = S . s
—ly 0 O I, 0
dy dy dy ... d, d
where n ;= n; + ... +n, and 0 < m < 2. The entries of the matrix P are vectors

L= (L, lin), di i== (di, ..., dip;) and d' is either empty or equals 1, —1 or (1,—1).
Recall that the columns v;;, vy, where 0 < 7 <7, 1 < j < n;and 1 < k < m, are
primitive, pairwise different and generate Q"' as a cone. We denote (0,...,0,1) by v™
and (0,...,0,—1) by v~. Furthermore, the columns of P are ordered in such a way that
the following conditions hold for all 0 < i < r (compare Corollary 2.36):

=

. d.
s o> 2 and Ly, > d, > 0.
lini lil

We construct the minimal toric ambient variety Z by defining the maximal cones of the
corresponding fan ¥ in N := Z"*!. Furthermore, we define a fan ¥ in

r n;

F =Pz ezl =72,

i=0 j=1
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such that P: Z"™ — 7' e, v+ v, eF — vF

d’" we distinguish four types of P-matrices.

maps S to Y. According to the form of

Type 1: Assume, that d’ is empty, i.e. m = 0. Then the maximal cones of ¥ are

+
o = cone(Ving,s .-y Urn,),
o~ = cone(viy,. .., V0),
Tij = COIle(Uij,Uij+1) for
The maximal cones of ¥ are
~r
g = cone(einy, .-, Ern,)s
o~ = cone(ey,...,e1),
T,j = cone(e;;,e;+1)  for

0<i<r, 1 <5 <n,.

0<i<nr 1<) <n,.

Type 2: Assume, that m = 1 and d = 1. Then the maximal cones of ¥ are

o~ = cone(vi,...,Vr1),
+ o + .
o, = cone(v", Vin,) for
Tij = CODG(UU,UU_H) for
The maximal cones of ¥/ are

o~ = cone(eyy,...,em1),
~r +

o, = cone(e”,ei,) for
7,; = cone(e;;,e;41)  for

0<2<,
0<1<r, 1 <7 <n;.

0<2<,
0<i<r, 1 <5 <n,.

Type 3: Assume that m = 1 and d = —1. Then the maximal cones of ¥ are

+ o
o = cone(Ving,s -y Urn,),
o, = cone(v_,v;) for
7,5 ‘= cone(v;;,v;j11) for

The maximal cones of ¥/ are

~+
o = cone(einy,s .- Ern,)s
o, = cone(e ,e;) for
Tij = Cone(eij,eijﬂ) for

Type 4: Assume that d' = (1,—1), i.e. m = 2.

Uj_ = Cone(v+7vini)’
o; = cone(v_,v;) for
T;; = cone(v;, v;jy1)  for

0<2<,
0<i<r, 1 <5 < ny.

0<e<r,
0<i<r, 1 <5 <n;.

Then the maximal cones of X are

0<i<r 1<k<m,
0<:i<r, 1<) <n,.
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The maximal cones of X' are

o = cone(e’, e,),
o, = cone(e ,e;yq) for 0<i<r 1<k<m,
T;j = cone(e;;,e;41) for 0<i<r 1<j<n,.

We denote the minimal toric ambient variety corresponding to the fan ¥ by Z and the
toric variety corresponding to X by Z. Then P induces a toric morphism n: 7 — Z
representing the Cox Construction.

Let P*: M — FE be the dual map of P: F' — N and consider the exact sequence

0 K< E<~ M 0,

where E := F* M := N* K := E/im(P*) and @ is given by the kernel of P*. For
a;,a; € A we define «;; := det(a;, a;). Then the data (A, P) defines trinomials

Gi = Qg+ i T + 0 1,45,
where T} := TV - Ty, Consider the polynomial ring

By setting deg(7;;) := Q(e;;), deg(Sk) := Q(ex) we obtain a grading of this ring such that
the trinomials g; are homogeneous. This grading defines an action of the quasitorus

H := Spec(K[K]) = ker(n)
on K" leaving the vanishing set X := V(g;; 0 < i < r — 2) invariant. The map

7 7 — 7 is the geometric quotient of this action and the restriction on X = Z N X
defines also a geometric quotient X — X.

-

<)

-

JH
) g

NTN)
T

We obtain a projective surface X := X // H neatly embedded into the (minimal) toric
variety Z with divisor class group and Cox ring

Cl(X) = K, R(X) = KI[Ti;, ] /(g:; 0 <i <r—2).

By construction, there is an effective IK*-action on Z, given by the one-parameter subgroup
(0,...,0,1) € N =@ Z"! which leaves X = X (A, P) invariant. This induces a [K*-action
on X.
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Proof. The general construction of complexity-one T-varieties has already been discussed
in chapter 2 and 3. We show how the K*-action is established in the special situation
of K*-surfaces. The trinomials g, ..., g,_o are homogeneous concerning an even finer
grading as that one given by (). Consider the gradiator matrix

=l | 0 0
—ly O L, 0

set Ko 1= E/im(F}) and let @)y be the kernel of Fy. Then the Kj-grading given by
deg(T;;) = Qolesj), deg(Sk) = Qolex) defines an Hy = Spec(K[Kj])-action on K™
leaving X invariant. Taking the quotient by the H = Spec(IK[K])-action establishes an
Hy/H = K*-action on K"*™. Set I := lg,, -+ lyn,.. Then the IK*-action is given by the
one-parameter subgroup corresponding to the vector

It It

7t = (0,...,0 .,0,...,0,—.0,...,0) € Z""™

) ) .
lOno lrnr

having the last entry of each block equal to [ /l;, for 0 < i < r and all other entries
equal to zero. Applying the matrix P gives

P(E*)=(0,...,0,a), where a =

This vector defines the one-parameter subgroup
A K= T e (1,...,1,8)

inducing a K*-action on the last coordinate 0 x ... x 0 x Z in N = Z""!. Note that
we obtain effectivity by considering the primitive lattice vector (0,...,0,1). That means
that the acting torus IK* is represented by the lattice generated by (0,...,0,1) € N. O

Example 4.2. Consider the K*-surface X = X (A, P) given by the following data:

-3 -1 30
P=|-3 -10 2], A:(é?j).
—4 -1 2 1

Then we have m = 0, ng = 2, n; = no = 1 and the minimal toric ambient variety Z of the
resulting K*-surface X is given by a fan of type 1. The one-parameter groups defining
the K*-action on K* and X are given by

7zt = (0,6,2,3) and P(z')=(0,0,1), respectively.

Now we will discuss some geometrical aspects of IK*-surfaces. Therefore, the following
definition is needed.



4 K*-SURFACES 57

Definition 4.3. A fixed point of a normal K*-surface is called

o clliptic if it is isolated and lies in the closure of infinitely many orbits,
e hyperbolic if it is isolated and lies in the closure of two orbits,
e parabolic if it belongs to a fixed point curve and lies in the closure of exactly one

orbit.

Example 4.4. Consider the IK*-surface X = X (A, P) given by the following data:

-1 -1 200
P=|-1-1020], A:((l)(l)j),
-2 -1 111

i.e. we have m = 1, ng = 2 and ny = ny = 1. The K*-surface X has one elliptic fixed
point corresponding to the cone o~ = cone(vgy, v11, Va1 ), one hyperbolic fixed point corre-

sponding to the cone 7y, = cone(vg, vo2) and a parabolic fixed point curve corresponding
to vt =(0,0,1).

These three types of fixed points are the only possible fixed points that can occur in case
of IK*-surfaces. Furthermore, every normal IK*-surface X has got a sink '™ and a source
F~. They are defined by the general orbits of the IK*-surface in the following way: There
is an open subset U C X such that

limy oo t-z € F" and limy,gt-xz € F~

for all x € U. Both, sink and source can either be an elliptic fixed point or a curve of
parabolic fixed points isomorphic to IP;. The latter case is equivalent to the existence of
a divisor with infinite isotropy corresponding to a variable Sy not occurring in the Cox
ring relations.

Proposition 4.5. According to the type of P there are four possibilities concerning the
geometry of the sink and the source:

(1) If P is of type 1, then both the source F~ and the sink FT are elliptic fived points.
We call this kind of surface of type (ell,ell).

(2) If P is of type 2, then the source F~ is an elliptic fized point and the sink F7 is
a parabolic fixed point curve isomorphic to Py. We call this kind of surface of type

(par,ell).

(3) If P is of type 3, then the sink FT is an elliptic fixred point and the source F~ is
a parabolic fixed point curve isomorphic to P1. We call this kind of surface of type

(ell,par).
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(4) If P is of type 4, then both the source F'~ and the sink Ft* are parabolic fixed point
curves isomorphic to Py. We call this kind of surface of type (par,par).

Besides F'* and F~ and the general orbits there are special orbits corresponding to the
K*-invariant prime divisors of X. These are the orbits with non trivial finite isotropy
and they correspond to the rays g;;, o generated by the columns v;;,v* of the matrix
P. The next proposition summarizes some geometrical aspects of these orbits. For this
purpose we briefly recall the notion of cotangent representations.

Let K be the isotropy group of z € X under the K*-action of X. We consider the tangent
space T, X of x. Furthermore, let T,¢; be the differential of

o X = X, o' —t-2.
Then we can define a representation of K} on 7,.X by
t-v = zPt -

This representation is called the tangent representation of K on T, X. The dual repre-
sentation is called the cotangent representation.

Proposition 4.6. Let X = X (A, P) be a K*-surface and let D;; and E* be the invariant
prime diwisors corresponding to the rays o;; and ot generated by the columns Vij, v,
Then the following statements hold:

(i) The divisors E* have infinite isotropy and the exponents lij are the orders of the
isotropy groups IKp, for all points in D;;.

(1t) The pair (d;;,0) is representing the weight of the cotangent representation of the
isotropy group K7 at x;; € Dy;.

Proof. Assertion (i) is a special case of Proposition 2.15. We prove (ii). Let D;; be a
K*-invariant divisor of X and consider the associated ray g;; = Q> - v;;. We can simplify
the situation by a locally toric consideration within the i-th block, compare Lemma 3.9.
Set vy := (l;,d;;) and v := (0,1). Then 0" represents the one-parameter group which
induces the IK*-action. Since [;; and d;; are coprime, we find a,b € Z with al;; + bd;; = 1.
Consequently, by applying the matrix

a b
b= (‘dz‘j lz’j)

we obtain Bv;; = (1,0) and the K*-action corresponds to the vector (b,/;;). This means,
the KK*-action on K? is now given by

t-(z,w) = (t°2, t"w).
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and we have D;; = 0 x K. In particular, the order of the isotropy group of D;; is given
by [l;; since the [;;-th elementary units act trivially on the second component. The action
of the isotropy group transversal to the tangent space is given by

C'(Z,’LU) = (Cb'z7w>'

The cotangent representation is given by

¢ (z,w) = (" zw0) .

In particular, we have b = d;jl (mod [;;) and (d;;,0) is the weight of the cotangent repre-
sentation. O

Any other fixed point besides the sink and the source is hyperbolic. Such fixed points
occur within one block. For x € X/ the isotropy group is given by

K* =lin(6) NN C N,

where 0 := P(73) € ¥. In particular, x is a fixed point of the K*-action if and only if
Q- v Clin(o).

All in all, we have the following four possibilities for the orbit decomposition of K*-
surfaces:

(ell,ell) (par ell) (ell,par) (par,par)
o« T o« T _ F*

Now we consider the resolution of singularities of IK*-surfaces. There are two reasons for
the existence of singularities. First, there can be (factorial) singularities coming from
the total coordinate space X and surviving the quotient process, i.e. the locus X, lying
above the singularity x € X, is not regular. Note that these singularities can easily be
found by computing the Jacobian matrix of the Cox ring relations. Second, there can be
singularities coming from the toric ambient variety Z, e.g. there is a cone ¢ € ¥ that is
not regular and X inherits the corresponding singularity from Z. It is also possible that
a singularity exists because of both reasons.

Proposition 4.7. Let X be a IK*-surface arising from a matriz P and suppose that d' is
empty or equals —1. Then the following statements are equivalent:

(i) The upper elliptic fixed point is smooth.



60 4.1 P-Matrices for IK*-surfaces

(ii) The following two conditions hold:

(a) det(o™) = det(vong, - - -, Upn,) = £1,
(b) lin, =1 for some 0 <i <r.

Note that the analogous statement holds for a lower elliptic fixed point.

Proof. The conditions for X not having a singularity in the upper elliptic fixed point
coming from the toric ambient variety is equivalent to the condition that o™ is regular
which in turn is equivalent to the condition that the determinant of the generators of o™
is 1. Computing the Jacobian of the defining relations gives

sl Ty T T 0

J = :

T

0 # 4, T T, T
The point 7 € X ,+ C X having all in;-coordinates T;n, equal to 0 and all other coordinates
equal to 1 defines the elliptic fixed point 2z € X corresponding to the cone o™, i.e. p(T) = .
This point z is a singularity coming from the singular locus X ,+ if and only if T}, occurs
within every non trivial entry of the Jacobian. This on the other hand is equivalent to
the condition that every exponent l;,, satisfies l;,,, # 1. O

Remark 4.8. The determinants of the two elementary big cones oF satisfy

T d;n, [~ d,
(—1)"det(c") = —and (<1)det(o7) = —
i—0 in; —0 71
where It = lop, -+ Iy, and [~ = lpy - - - ;1. Furthermore, the columns of P are oriented in

such a way that (—1)"det(c™) is always positive and (—1)"det(c ™) is always negative.

There is a canonical way of resolving singularities of IK*-surfaces (compare 3.10). The
maximal cones of trop(X) are given by the cones g; := cone(e;, £e,.1) for 1 <i < r and
0o := cone(eg, e,,1) where ey := —e; — ... —e, in Z""!. In particular, the lineality space
of X is generated by +e,,;.
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For the weak tropicalisation we have to blow up the two elliptic fixed points (if they
exist). That means, we subdivide the cones ¢ and 0~ by drawing lines along +e,.,;. This
subdivision corresponds to a refinement of the fan 3 which is given by ¥/ := X Ntrop(X).
After this step we are in a locally toric situation, i.e. there are only singularities left
coming from the toric ambient variety Z’ corresponding to the fan ¥'. Consequently, we
can resolve all singular cones by adding rays along the elements of the Hilbert basis.

Example 4.9. We continue Example 4.4. This IK*-surface has the Cox ring
R(X) = K[To, Toz, Tur, Tor, S1l/(TonToo + T + T5))

and two singularities corresponding to the cones 0~ and o5 = cone(v',vy;). Following
the canonical resolution process we end up with the smooth surface X having P-matrix
and Cox ring

N -1 -120000 0
P=|-1-102110 0],
2 -1 11011 -1

R(X) = K[To1, Toa, Ti1, Tor, Taz, Toz, S1, Sal /(TorToa + T + Ty ToaTos).

Example 4.10. Consider the K*-surface X = X (A, P) given by the data

-1 -1 1 100
-1 -1 0 0 20 10 -1 —1
P=1-1 -1 0 002 A_(Ol—lc)’
-1 0 -1011

where ¢ € K* \ {—1}. Then R(X) is given by K[To1, To, T11, T12, To1, T31]/{g0, g1) with
90 = ToaToo +TuTi + T3 and g = AT+ T35 + T3,

where A := —1—c. Following the canonical resolution process we end up with the smooth
surface X having P-matrix and Cox ring

-1 -1 1 10000O0O0O0 O
5 -1 -1 002110O0O0O0 O

-1 -1 000002110 0}

-1 0 -1011011O01 -1

R<X) = K[T()laT027T117T127T217T227T237T317T327T337517SQ]/<907g1>7

where go = To1Toe + 1117112 + T221T22T23 and g1 = AN111/T12 + T221T22T23 + T3?1T32T33-

This canonical resolution is in general not the minimal resolution of the IK*-surface.
There are possibly (—1)-curves, e.g. curves with self-intersection number —1, that can
be smoothly contracted (Castel-Nuovo).
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Example 4.11. Consider the K*-surface X = X (A, P) given by the data

-1 =21 20
P=|-1-200 3], A:(é(l)j).
-1 -1 01 1

This surface has two singularities corresponding to the two elementary big cones ot and
0~ . The canonical resolution leads to the P-matrix

N -1 -2 -1 12100000
P=[-1-2-100032110 0
-1 -1 001111101

In this case the curve corresponding to v~ = (0,0, —1) can be smoothly contracted.

Hence, by deleting the last column of P we end up with the minimal resolution X’ of X
with Cox ring

R(X,) = ]K[TOL T027 T037 Tll; Tl?a Tl?n T217 T227 T23a T24a Sl]/<90>7
Where go = T01T022T03 —|— T11T122T13 + T231T222T23T24.
The canonical resolution of singularities of K*-surfaces leads exactly to the resolution

graph that was introduced by Orlik and Wagreich, see [45]. To each smooth IK*-surface
without elliptic fixed points they relate a graph of the following form:

Thereby F'" and F~ represent parabolic fixed point curves. The other circles describe
invariant prime divisors D;; that can be contracted. Two of these divisors are connected
by an edge if and only if they intersect and have a common fixed point. The numbers
—b; are the self-intersection numbers of the invariant prime divisors. Note that one can
read off the isotropy orders [;; of this graph. They are given as the numerators of the
corresponding canceled continued fraction

(3

bl bZQ - 1 .

Y
by

Furthermore, set Xy := X \ {F",F~} and a; := F™ N D;;. Then we get a canonical
morphism ¢: Xo/K* — F* such that ¢ ™'(a;) = {ai1,...,an,}, where a;; denotes the
non trivial I{*-orbit of D;;. Compare |29, Section 5.
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4.2 Combinatorially minimal K*-surfaces

This section is dedicated to combinatorially minimal K*-surfaces, i.e. IK*-surfaces, that
do not have contractible invariant prime divisors. We prove that there are only three
types of relations that can occur in the Cox ring of a combinatorially minimal non-toric
[K*-surface. Note that in the toric case the only combinatorially minimal surfaces are fake
weighted projective spaces of dimension two, corresponding to fans with three rays, and
P, x P;.

Lemma 4.12. Let X be a non-toric IK*-surface with two elliptic fized points. Then X
can be contracted to a KK*-surface satisfying n; < 2 for all 0 < i <.

Proof. 1t is sufficient to consider the situation within one block. All invariant divisors D;;
corresponding to rays g;; = Q>ov;; that fulfill 1 # j # n,; can obviously be contracted.

Uz’ni

Vi1

O

Lemma 4.13. Let X be a non-toric K*-surface with only one elliptic fixed point. Then
X can be contracted to a IK*-surface satisfying n; =1 for all 0 <1 < r.

Proof. Let X be a IK*-surface with a parabolic fixed point curve F*. Then all invariant
divisors D;; corresponding to rays g;; = Q>ov;; with j # 1 can be contracted. O

Lemma 4.14. Let X be a non-toric K*-surface with two elliptic fized points satisfying
n; =2 for all 0 <i <r. Then X s contractible.

Proof. For the given situation we have rk(Cl(X)) =2(r+1) —(r—1) —2=r+1 and
n = 2(r + 1). Furthermore, the effective cone has to be fulldimensional and thus has
at least r + 1 extremal rays. Suppose the surface is not contractible, that is all weights
w;j € K are not exceptional. Then there are exactly two weights lying on each of these
extremal rays. The weight deg(gg) is contained in the relative interior of every cone
cone(w;, w;s). Consequently, for each 0 < ¢ <r we find a 0 < j < r with ¢ # j such that
cone(w;y, wip) = cone(wji, wj2) holds. In particular, these four weights lie in the same
plane. Hence, we conclude

2r+1)—4  r+3

rk(Cl(X)) = 2+ 7 = —

a contradiction to rk(Cl(X)) =r + 1 for r > 2. O



64 4.2 Combinatorially minimal IK*-surfaces

Lemma 4.15. Let X be a non-toric IK*-surface with two elliptic fixed points satisfying
n; =2 for j <sandn; =1 for j > s where 3 < s <r. Then X is contractible.

Proof. If n; = 2 holds, then the weights w;, w; generate a cone that contains deg(go)
in its relative interior. Furthermore, all weights w;; with n; = 1 are lying on the ray

Q>0 - deg(go). We have rk(Cl(X)) = 2(s+1)+r—s—(r—1) —2 = s+ 1. Thus,
analogously to the proof of Lemma 4.14 we obtain the assertion. O]

Definition 4.16. We call a K*-surface X combinatorially minimal if there is no invariant
prime divisor that can be contracted.

Remark 4.17. A Q-factorial projective surface with finitely generated Cox ring is com-
binatorially minimal if and only if its effective cone and its moving cone coincide, see |25,
Corollary 6.8/6.9.

Proposition 4.18. Let X be a non-toric combinatorially minimal IK*-surface. Then its
Cozx ring has one of the following forms:

o KTy, Th1, o1, ..., Ti1,51)/{g0,- - -, gr), where tk(CL(X)) =1 and

_ mlor 11 l21 _ li1 lit1,1 liyo1 .

o K[To1,To2, Th1, .., Tr1]/{g0,- -, 9r), where tk(Cl(X)) =1 and

)

g0 = TTIE + T 4 TR, go=* T 4Tl 4Tl for 1<i<r—2
L] ]K[T(n, T027 T117 7—1127 T217 . 7TT1]/<90; ce ;gr>7 where rk(Cl(X)) =2 and

_ rplo1lo2 l11li2 lo1 _ 111l l21 l31
9o = To7 Ty + 111115 + 1ot g1 = #1110y + #1571 + +T57,

l; lit1,1 lit2,1 .
gi = *Li" + L0y + T, for 2<i<r—2.

Proof. If tk(Cl(X)) = 1 holds, then there are no contractible divisors. The statements of
Lemma 4.12, 4.13, 4.14, and 4.15 complete the proof. O

Example 4.19 shows that the third case in Proposition 4.18 really occurs.

Example 4.19. Let X be the Fano K*-surface with Cox ring R(X) = K[T]/(go), where
go = T Toa + T4 Ty + T3, whose P-matrix and grading matrix @) are given by

-2 -1 210
P2 ao0) waa- (02000
-3 -1 111

Then X is not contractible, since the effective cone coincides with the moving cone.
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4.3 Intersection Theory

In this section we want to apply toric intersection theory on complexity-one T-varieties
and we will give concrete formulas for the intersection numbers of two invariant prime
divisors of a K*-surface.

First we shortly recall some basic facts about toric intersection theory (compare [5, Prop
1.2.8]). Let Z be a toric variety (of dimension r+1). Then the intersection number of r+1
pairwise different invariant prime divisors D}, ..., Dt* of Z can be computed in terms
of the associated fan . Let g1, ..., 0,41 be the rays corresponding to the invariant prime
divisors and vy, . . ., v, their primitive generators. Consider the cone o = cone(vy, ..., v,).
Then the intersection number of these r + 1 divisors in Z is given as

DL...pril _ GaEy Ho €D
z s 0 ifo¢s’

where det(o) = det(vy,...,v,). Note that the absolute value of the determinant det(o)
is the index of the sublattice spanned by the generators vq,...,v, in the lattice N N
lin(vy, ..., v,).

Let X = X(A, P,®) be a complexity-one T-variety of dimension d and Z its minimal
toric ambient variety. Since X is a complete intersection, toric intersection theory suffices
to calculate intersection numbers of X. The intersection number of d invariant prime
divisors D} --- D% of X is given by the toric intersection number of

D% ce D% : Ddeg(go) T Ddeg(gr72)7

where D% = D,NX, fori=1,...,d. Note that |5, Proposition 4.2.11| provides a possibil-
ity to calculate intersection numbers in the divisor class group K = CI(X) by computing
the index of the sublattice which is given by the weights which are “complementary” with
regard to the generators of o.

Now, consider a K*-surface X = X (A, P) arising from a matrix P, where P is given
as introduced in 4.1. Let D;; € X be the prime divisors corresponding to the rays g;;
generated by the columns v;; of the matrix P. Analogously, we denote the corresponding
toric prime divisors of the minimal toric ambient variety Z as D7, where D;; = D7 N X.
Furthermore, let F'* and F~ be the divisors corresponding to parabolic fixed point curves
(if existing).

Proposition 4.20. The intersection number of two different prime divisors D;; and Dy,
of X can be computed as follows:

(Z) Let Dij N Dkl = @ Then Dij . Dkl = O

(it) Let D;; and D;j+1 be two adjacent divisors lying in the same block. Then they
intersect in a hyperbolic fized point and
1

lijdijr — lijradi

Djj - Dij1 =
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(iii) Two divisors D;; and Dy, that lie in different blocks and intersect in an elliptic fived
point satisfy either j =1=1 or j =n; and | = ny.

(a) If n; # 1 orng # 1 or if X has only one elliptic fizved point then

1 1
Dy Dy = ————— and Dim ) Dlmk =

, roodin v djn
lzllkl ijo i1 lmllkznk ijo ljnj.
J

(b) If n; = ny =1 holds and X has two elliptic fized points then

1 1

din

Di1 - Dy = Din, * Dy, = r N T
) J . T 451
lznilknk Zj:o ljnj i1kl ZJZO lj1

() A divisor D;; that intersects a parabolic fized point curve F* or F~ satisfies j =1

or j =mn; and
1

1
Dil‘Fizl_ and Dzan+:
il

lini
Proof. Case (i) is obvious. If we are in situation (ii), then we can locally restrict to
the toric situation and use toric intersection theory (see 3.9). Two adjacent divisors D;;

and D;;.1 intersect in a hyperbolic fixed point corresponding to the cone cone(v;;, vjj+1)
generated by the corresponding rays p;; = Q>¢ - vi; and pjj11 = Q>0 - Vijt1.

Dijia Pij
_> <
D; Pij+1

Note that we chose P such that [;;d;j+1 — l;j+1d;; > 0 holds. By setting v;; = (;;, d;;) and
i}\ijJrl = (lij+1, dij+1) we obtain
1 1

Dy; - Diivq = =
J 1j+1 ~ ’
|det (Vij, Viji1)| Lijdijr1 — lijradi

For case (iii) we assume that D;; and Dy intersect in an elliptic fixed point. Then all
divisors D;; with 0 < j < r intersect in this elliptic fixed point.

Dy - Dy

DW/DH

Since all relations of the Cox ring are homogeneous with the same degree we have
deg(gl) = l01D01 4+ ...+ lOnoDOno = ... = lrlDrl 4+ ...+ lanDrnr

for 0 <7 <r — 2. Using the fact that the intersection number of two divisors that do not
intersect is zero we obtain the following intersection numbers:
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(a) If n; # 1 or ng # 1 or if X has only one elliptic fixed point, then

Dy - Dy = DiZ1 : DkZl ) Ddeg(go) T Ddeg(grfz)
= D4 -Df - [[ 1aD%4 + D4 - DA - ] Uim, D7,

ik ik
= [[w]IIPA
jEik  j=0
(b) If n; = ny, = 1 holds and X has two elliptic fixed points, then

D1 - Dy = DiZ1 : Dlgl ) Ddeg(go) T Ddeg(grfz)
=D} -Df - [] 1uDsi+ D4 - D - [ lin, D,

ik ik
T T
Z z
= 1Lt lloh+ 11 tn 1127
jFik =0 JFiLk 3=0
We set [~ :=lg; - - - ,1. The toric intersection number D -- - DZ is given by the absolute

value of the inverse determinant of the cone o~ corresponding to the lower elliptic fixed
point. By 4.8 we obtain

r

-1
djl-
D§---D% = (—Z > ) :

j=0

which implies the assertion. Analogously, we proceed to obtain the intersection number
Dy, - Din, by considering the cone ot and I 1= lou, « -+ Ly, -

To prove assertion (iv) we locally restrict once more to the toric situation. Exemplarily,
we compute the intersection number D;; - F'~.

Dy

Pi1
- - <
F= Qs0-(0,...,0,—1)

By setting v;1 1= (l;1,d;1) and v~ := (0, —1) we obtain

1
lin’
O

The precedent proposition allows us now to compute the self-intersection numbers of the
invariant divisors D;; and F' +,
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Proposition 4.21. Let X be a IK*-surface. The self-intersection numbers of the invariant
prime divisors can be computed as follows:

(i) If n; =1, then

’_—2 - T if X is of type (par,ell),
>0 ey
— - if X is of type (ell,par),
D = D2 = 5 =0 Ty
’ 1 1 . .
o — if X is of type (ell,ell),
BTt B TioTy
. 0 if X is of type (par,par).

(i) If n; # 1 and 1 < j < n;, then

lij—1dije1 — lij1dij—

D% = — )
“ (lijfldij - lijdijfl)aijdijJrl - lij+1dij)

(11i) If n; # 1 and X is of type (ell,ell) or (par,ell), then

2 _ 1 - lig
" 1 Z;:o % Lit(Lindig — Liadiy)

If n; # 1 and X s of type (ell,par) or (par,par), then

li2

lil (lildi2 - li2di1> '

2 _
Dil__

() If n; # 1 and X is of type (ellell) or (ell,par), then

2 _ 1 . li,ni—l
ng; di . .
ooy 9 i (Slingdiny + linading)
in; 7=0 lj”j

Ifn; # 1 and X is of type (par,ell) or (par,par), then

2 _ li,nifl

i T lini(_linidi,ni—l + liv”i_ldmi) '

(v) If F* resp. F~ is a parabolic fixed point curve, then

FJF-FJF:—idmifr resp. F‘-F‘zidﬂl.

= i gl
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Proof. Using the homogeneity conditions for the Cox ring relations we obtain

1 Nk n;
Dy = » gzkkam—Z_;lisDis

S .
s#J

for an arbitrary k # 4. In situation (i) we have n; = 1. Hence, we may assume that there
is always one n; # 1 whenever X is of type (ell,ell). This leads to the following cases:

1 (&
D} = Dj, = Diy -7 (Zlkkam>
il m=1

llk,_llDil - Dia if X is of type (par,ell) ,
= %D“ * Dy, if X is of type (ell,par),
Ui Dyt Dy + %Dy - Dy, if X s of type (ellell) |
0 if X is of type (par,par) .

Using the results of Proposition 4.20 gives the assertions.

For assertions (ii)-(vi) we assume n; # 1. We first consider the case 1 < j < n;. The
homogeneity condition together with Proposition 4.20 gives

1 Nk U2
Dy; E‘(mz_l liom Dion, — Z lisDis)
- s#i
1
= r(Dij (=lij—1Dij—1 = lijr1Diji1))

ij

2
D?

L I
= - %Dij *Dij1 — %Dij  Dij
1) )
B lij—1 B lij41
Lij(lijadiy — ligdij—1)  Lij(lijdije — lijadi)
lij—1dijs1 — lij1dij—1
(lij—1diy — lijdij—1) (Lijdijr — Lijadiy)

Now, we compute the self-intersection numbers of D;; and D;,,. As before we can use the
homogeneity conditions and then apply Proposition 4.20:

1 Nk n;
D% = Di - (S lonDim — > lisDis

_ ll’j_—llDﬂ - Dy — Z—f 1D if X is of type (par,ell) or (ellell)
—Z—fDil - Djo if X is of type (ell,par) or (par,par)
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n n;—1
Dz'Qni = Dznz : li(zk lkkam - Z lisDis)
in; m=1 s=1

lini

%Dmi - Dy, — li’"rleiDi’m_l if X is of type (ell,par) or (ell,ell)
—lll”—l_le  Dipi1 if X is of type (par,ell) or (par,par)
The last statement can be easily derived from the fact that C1(X) = Z""™ /im(P*) and

the degrees of the variables T;; and Sy represent the kernel of P. Thus, taking the
corresponding divisor classes and multiplying them with the last row of P we obtain

T

ZidijDij—F_+F+:o.

i=0 j=1

Note that '~ and F'™ do not intersect. Now, we can compute the self-intersection numbers

directly in the divisor class group by using the “complementary indices”, see [5, Proposition
4.2.11].

We obtain

Fi'Fi :d01D01'F7+...+dT1DT1'F7

d01 drl
= + ...+
Hi;«éo ln Hisﬁr lix
B r dilli
= 7
and analogously
F*-F" = —(dongDone - F* + ...+ dpp, Dy, - F)
dOno d”'n'r
= 0 4
Hi7,50 lmZ Hi;ér linz‘
L " di, I
i=0 i

]

Example 4.22 (Example 4.11 continued). Having all these formulas we can compute the
self-intersection numbers of the exceptional divisors of the resolution in Example 4.11.
One easily checks, that (F~)? = —1 holds for the canonical resolution. Contracting this
(—1)-curve we obtain the minimal resolution and the following self-intersection numbers:

Dgs - D%2 - D;2 - Dgzz - D§4 - (F+)2 = —2.
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4.4 Kleiman condition for ampleness

In this chapter we will give concrete formulas for the intersection numbers of the anti-
canonical divisor with the prime divisors D;; and F'* of a IK*-surface X. These intersection
numbers can be used as basis for concrete conditions for X to be Fano.

Remark 4.23 (Kleiman’s criteria for ampleness). Let D be a divisor of a normal complete
variety of dimension two. Then D is ample if and only if D -C' > 0 for all effective curves

C.

Proposition 4.24. Let —Kx be the anticanonical divisor of a (non-toric) IK*-surface
X = X(A, P) and set vy; = (Lij, d;j) and vF := (0,%1). Then the following statements
hold:

(i) Let F* be parabolic fized point curves. Then —Kx - F™ > 0 resp. —Kx - F~ >0
holds if and only if

le T—l)—Z% resp. Zl r—l)—z
i=0 ' i=0 *

in; - in;
i i=0 i

(i) Let n; #1 and 1 < j <n; . Then —Kx - D;; > 0 if and only if

det(@,j_l,@»’j)+det(@,j,@,j+1) > det(@,j_l,@,jﬂ).

(1ii) Let n; # 1 and j = 1. If X is of type (ell,ell) or (parell), then —Kx - D;; > 0 if
and only if
1

lﬂ

Z —1
lzleQ - lZQd’Ll Z l (T ) )

and if X is of type (ell,par) or (par,par), then —Kx - D;; > 0 if and only if

det(ﬁ,@\ﬂ) + det(@l,@g) > det(?,@;g) .

(w) Let n; # 1 and j = n,;. If X is of type (ell,ell) or (ell,par), then —Kx - D;; > 0 if
and only if
lin' - linvfl - djn' 4 1
e D gy y L
=0 lini

lini—ldini - linidini—l =0 l]’rl,]
and if X is of type (par,ell) or (par,par), then —Kx - D;; > 0 if and only if

det(@ml,ﬁ*) + det<i)\i,ni71;ij\ini) > det(@-,m,l, W) .
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(v) Let n; = 1. If X is of type (par,ell), then —Kx - D;j; > 0 if and only if

If X is of type (ell,par), then —Kx - Dy > 0 if and only if

r

Z —Z

(r—1)
—0 ]TLJ lknk

If X is of type (ellell), then —Kx - Dy > 0 if and only if

ZO j::( lm r—l) > Zl <Zlknk (r—l)) )

If X is of type (par,par), then —Kx - D;y > 0 is always satisfied.

Proof. Using the results of the last section we can prove the statements above. For
assertion (i) we have

—Kyx-F~ = (ZZiDij +Ft 4+ F —(r— 1)ZozojDoj> P~
j=1

i=0 j=1

— + Z Dzl F T — 1)[01D01 F

:Zz

Ky -FT = _del—i_i 1 —(r—1).
i=0

lini i=0 l'ml

-1
lzl (r ) 7

(i) If n; # 1 and 1 < j < n;, then the intersection number —Kx - D;; is given by the
following term (where s # 1):

(ZZZDZJ+F++F__(T_1)ZsllstS]) Dz]
j=

=0 j=1

= Dij1- Dij + D?j + Dij1Di;

_ 1 lij—1

ljadiy — lgdigo L(Loady — Ldigq)
Lij+1 1

Lij(lijdij 1 — lijpadig) " lijdijir — lijradi
ligdij = Lgadig + ljoadyy — lidig + Lijpadig—1 — lij—1dij
B (lij—1dij — lijdij—1) (lijdij1 — lijrdis)
_det(v; 51, Ui ;) + det (Ui, Vi jy1) — det (Vi -1, Ui jr1)
N det(V; j_1,0;5) - det(Vij, Vi js1) .
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Note that all these determinants are positive. Thus, —Kx - D;; > 0 gives the following
inequality:
det(vij-1, i) + det (i, Vijn) > det(vi—1,0ij41)

Now we will prove assertions (iii) and (iv). Assume n; # 1 and j = 1 or j = n;. If X is of
type (ell,ell) or (par,ell), then (for one s # k) the intersection number —Kx - D;; is given
by

Z Dy Dyy + D Do — (r — 1)ls1Ds1 Dy
k=0

If X is of type (ell,par) or(par,par) we obtain
—Kx Dy = Dy~ Dy + DD+ F~ - Dy.

Analogously, the intersection number —Kx - D;,,, is given by

Z Dszknk + DiniDini—l - (T - 1)lsnstnsDini
k=0

if X is of type (ell,par) or (ell,ell) and if X is of type (par,ell) or (par,par), we obtain
Din, - Din, + Din,Din,—1 + F* - Dyy,,.

Now assume that X is of type (ell,ell) or (par,ell). Then we have

—Kx-D;; = Z DiDyy + Dy Dy — (r — 1)lsaDs1 Dy

k=0
1 Ly 1 1
- _ — — —+
2 Z;:o % lir(lindig — liodin) ; Ll ijo ‘i%l lindiz — liodi
1
+ (T — 1)l31 .

rodj
lsllil Zj:O l]_ll
r r dj
(= Yhoo gy + (r = 1))Uandia = lndin) + (ln = 1i2) 325 75
it Y5 P (lidia — lindin) '

If X is of type (ell,par) or (ell,ell) we obtain analogously

r r djnj
(koo 7 = (0 = D) inimrdin, = liniling—1) + (lini = lini—1) 250 72

-

lin, Z;ZO ﬁ(linifldim — lin,din;—1)

Since det (U1, Vi) > 0,det(Vpn,—1,Vin;) > 0, (—1)"det(c™) > 0, (—1)"det(c™) < 0 and
lir, lin, > 0 hold, assertion (ii) follows.
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Now assume that X is of type (ell,par) or (par,par). Then we have

—Kx Dy = Dy Dy + DD+ F~ - Dy
B Lo 1 1
T Talndn —lad) | ladn —ledn T
=g+l + landig — lipdi
lir(lindiz — lipdi1)
_det(vV™,v51) + det(Vi1, Vi) — det (v, Vi)
N det(v—,v;1) - det(vy1, Vo) '

Analogously, we obtain

—ling—1 + lin, + lin,—1din; — lin,din,—1
ling—1(lini—1din; — lin,din,—1)

_det(Vi,, U7) 4 det (U pn,—1, Vi, ) — det (Vi n,—1,07)

- det(Vin,, ) - det (Vi n,—1, Vin;) '

_KX : D'ml =

Since all these determinants are positive, we obtain the inequalities
det (ﬁ, 6@1) + det(i)\“, 6@) > det (f, 6@)

and
det(i}\mz,iﬁ) + det(@,ni_l, i/\”%) > det(@,ni_l, @4’)

(v) Assume n; = 1 and hence j = 1 = n;. Then —Kx - D;; is given by the following
formulas (where s # 7). If X is of type (par,ell), then

—Kx-Din = ZDilel + F* - Dy — (r—1)lqDg Dy,

k=0
and if X is of type (ell,par), then
—Kx Dy = Z Di1 Dy, + F~ - Diy — (r — 1)lsn, Dsn, Dix.
k=0
If X is of type (ell,ell), then we can always choose ns # 1 and we obtain
—Kx-Djy = ZDilel + Z D Dy, — (r — 1)(ls1Ds1Diy + lsp, Dsn, Dit).

If X is of type (par,par), then

—Kx Dy = Diy-Dy+F~-Djy+F*-Dy.
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Assume that X is of type (par,ell). Then we obtain

—Kx-Dj = Z Dy Dy + F* - Dy — (r — 1)l Dy Dy
k=0

1 1 1
= "7 ") ————-+t—+(-1):
15> 50 7]—1 ; lirlia Zj 0 7]—11 lin lin Z] 0 zﬂ

_Zzzoﬁ (T_1)+Z] 011
lin Yo 72

and since l;; > 0 and (—1)"det(c~) < 0, the assertion follows.

Assume that X is of type (ell,par). Then we obtain analogously to the previous case

~Kx-Dji = Y DDy, + F~ - Dy = (r = 1), Dan, Dt
k=0

1 1 1 1
S o)

. —

2 T J l; . T4

L Zj:o [im) i Linli Ej —0 l]n il lin Z]:O T

r 1
Zk:l lkny, (7“ 1) + ijo ljnj
o din.

L r Ing

7l Z]:() ljnj

Assume that X is of type (ell,ell). Then

—Kx-Dj; = Z D;1 Dy + Z D1 Dy + Z D;1 Dy,
nE=1 nEF#l ng#l

(71 )( leleil + lsnstnsDﬂ)

T

_ —+Z L

din .

r jn

k=0 lllkl Z] =0 l o k=0 lzn,lknk § :j=0 I .
nj

1 1
-(r=0|- + v din,
Ll Y5mg P il IS oy
1 ~ 1 1 —~ 1
- (N ) e (T e
ling 2 =0 Ty (M Liony lin Yo 7 \4zy it

)
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and since (—1)"det(c™) > 0, (—1)"det(c~) < 0 and l;; = l;,,, we obtain the inequality

ZOJJZJJ(ZZM r—l) >Zoz (lemk (r—1)>.

Finally, assume that X is of type (par,par). Then

2
—KX'DH :Dil'Di1+F_'Di1+F+'Di1:l_ and
il
—Kx - Din, :Dmi'Dmi+F_'Dmi+F+'DmiZl—

In particular, we always have —Kx - D;; > 0 and —Kx - D;,, > 0 since l;1, l;, > 0. O

Corollary 4.25. If X is a Fano K*-surface having an index 0 < ¢ < r such that [;; =1
holds for all 1 < 57 < n;, then n; < 2 holds. If X is non-toric, then n; = 2 holds.

Proof. This follows directly from Proposition 4.24, since for 1 < j < n; we have

“Kx-Dy = dijy1 — dij + dij — dij—1 + dij—1 — dija _ 0

(dij — dij—1)(dijr — dij)

Proposition 4.24 can be used to describe Fano IK*-surfaces X = X (A, P). The inequalities
give concrete conditions for the P-matrix of the surface. Note that it is sufficient to check
these conditions only for prime divisors whose divisor classes define extremal rays of the
effective cone in ClI(X). If X is a K*-surface satisfying rk(Cl1(X)) = 1 then it even suffices
to check the condition for only one divisor.

4.5 The anticanonical complex for K*-surfaces

For toric varieties, there is a one-to-one correspondence between toric Fano varieties and
convex lattice polytopes, i.e. polytopes whose vertices are lattice points. The polytope
is given by the convex hull of the prime generators of the rays of the fan associated to
the toric variety. We will call this polytope the toric anticanonical polytope. This convex
geometrical approach can also be used to describe singularity types of toric Fano varieties.
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The following correspondences hold:

{ toric Fano varieties } { convex lattice polytopes }

I

{ terminal toric Fano varieties } { convex lattice polytopes,
s.th. zero and its vertices
are the only lattice points in it }
{ canonical toric Fano varieties } ~«— { convex lattice polytopes,
s.th. zero is the only interior
lattice point in it}
{ e-log-terminal toric Fano varieties } = +— { convex lattice polytopes C,
s.th. zero is the only interior

lattice point in € - C' }
The aim for this chapter is to find a similar convex geometrical object for log-terminal
K*-surfaces that are Fano.

Proposition 4.26. Let X = X(A, P,®) be a Fano variety with complexity-one torus
action and SAmple(X) = Mov(X). Then the minimal toric ambient variety Z of X has

a toric Fano completion Z.

Proof. Let X be a Fano variety with complexity-one torus action and SAmple(X) =
Mov(X). Then ® = ®(Mov(X)) holds and the Cox ring R(X) has the form

R(X) = K[Tij; 0<i <7, 1 <5 <n[S1,..., 5] / (Giirrir2; 0 <0 < —2).

Let the Cl(X)-grading of R(X) be given by the degrees w;; := deg(T;;) for 0 <i <r, 1 <
Jj < n; and ug := deg(Sk) for 1 < k < m. Then the relations gy, .. ., g,_2 have all the same
degree deg(go) concerning this grading. Furthermore, we consider the homomorphism

Q: 7" — CUX), ey — wyj, ep — U,
where n = ng + ...+ n,. By Theorem 1.19 the moving cone of X is given by

Mov(X) = Q(v01) N ... NQ(Yrn,) NQ(11) N ... N Q(Y),

where
Vij = cone(€o, .., Cijy- -y Crnpy €1y- s Em) and
Ve = CONE(€01, .-+, €y €lyvnyChynnnyCm)

denote the facets of the positive orthant v in Q"*™. Let Z be the minimal toric ambient
variety of X. Then the anticanonical divisor class of Z is given by

T m
Wy = E E wij—l— E ug .-
k=1

=0 J=1
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By [9, Proposition 8.5], the anticanonical divisor class of X is given by wx = wz — (r —
1) deg(go) which gives

wy = wx + (r—1)deg(go).
Since X is Fano, we have wx € Ample(X) = SAmple(X)°. We will show that deg(go)
lies in SAmple(X). Therefore we consider the first relation

l l l
go=TE - -Tyre 4 Thr T TR T

Ong Iny 2ng

Then we have

no
ZZOjMOj = deg(go) and deg(go) € cone(wor, ..., won,) =: 0o.
j=1

Since 09 C ;5 for 1 <i <r, 1 <j <n;and gy C y, for 1 <k < m, we know that deg(go)
is contained in each +;; with ¢ # 0 and ~; respectively. Now consider 7y; for 1 < j < ny.
Then for the second monomial we get analogously deg(gy) € cone(wyy, ..., wiy,,) = o1.
Since 01 C 7y, we have deg(go) € vo; for 1 < j < ng. All in all this implies that deg(go)
lies in SAmple(X). In particular we obtain

wy = wx + (r—1)deg(go) € Ample(X) = Ample(Z2).

Now let Z be the completion of Z satisfying Ample(X) = Ample(Z). Then we have
wyz = wy. In particular Z is Fano. O

Corollary 4.27. Let X be a Fano K*-surface arising from data (A, P) and let Z be its
minimal toric ambient variety. Then Z admits a small Fano completion.

Proof. The Cox ring of a normal complete surface X with finitely generated divisor class
group is finitely generated if and only if Mov(X) = SAmple(X) holds and this cone is
polytopal. In our situation, X is Q-factorial and projective and has particularly finitely
generated Cox ring. Thus, the assertion follows by Proposition 4.26. O

Concretely, in terms of the GIT fan, the existence of a toric ambient Fano variety 7 means
that the anticanonical divisor class of wz lies in the same chamber of the moving cone as
the anticanonical divisor class of X, namely in the ample chamber of X.

The following example shows that for higher dimensions the analogous statement of 4.27
does not hold.
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Example 4.28. Let X = X(A, P,®) be a three-dimensional complexity-one T-variety
with Cox ring

R(X) = K[T017T117T217 Sla 527 S3]/<T[§)1 + T131 + T221>

and corresponding P- and grading matrix

-5 30 0 0 0
~5 02 0 0 0 00 01 1 1
P=1la11 10 1| Q:(610150—1—1)'
-5 30 0 1 -1

Furthermore, let & = ®(\) with A = cone(uy, uz) be the associated bunch. Then we have

3 0 3
wx = Wor + wiy + Wwa + Uy + Uy +uz — deg(f) = 59) ~l30) = (4

and thus wy € Ample(X) = cone(uy,us)®. Anyway, for the toric anticanonical divisor
class of any toric ambient variety Z we have

3
Wz = Wop + Wi + W + U + U + Uz = (29);

and consequently wy ¢ Ample(X). Since Ample(Z) C Ample(X) holds, the given variety
X can not be embedded into a toric ambient variety that is Fano.

Definition 4.29. Let X be a Q-factorial Fano IK*-surface arising from data (A, P). Then
we call X a del Pezzo surface. A log del Pezzo surface is a del Pezzo surface X having
only log-terminal singularities.

By Corollary 4.27 we find for every del Pezzo surface X = X (A, P) a three-dimensional
toric ambient variety that is Fano. In this situation the toric anticanonical polytope is

given by the convex hull of the primitive column vectors v;; and v* of P, where v* =

(0,...,0,%1).

Now we want to introduce a convex geometrical object for IK*-surfaces which is comparable
to the toric anticanonical polytope. For this purpose some preparation is needed.

Lemma 4.30. Consider the two elementary big cones ot = cone(vongs - - -, Vpn,) and
o~ = cone(vgy,...,v1) and set 1T = oy lpm,, 17 = lor--+ L. For 0 < i < r let
uf = (ufi, .. i) € Mg = Q1 and ui = (ug, ..., uj,,) € Mg = Q! be the linear

forms satisfying

A Fitk [ ifi#k
B [ A DI/ SUE 2 1 S Q)| Ry
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Then for 1 < k < r the linear forms are given by

1 4 I I*dy
+ . mn
uh = g | 2o T iy — i)+ (r = D
Zi:(} - i —o kngbing kn
ins J#k
. T (de —d —(r—1 T djn; ori =k
i Sio ( 358 Tonglomy (imy = o) = (1 = 1) 20 52 )
u, = i
lk 1 Sy I (djn, —d )—l—(—l)% fori #k
s l+‘iini ]J;(])e lknk ljnj N kny, r lknk or 1t
=0 lini

ur,, = 1 ( ~ (r 1)l+>
il T o o —(r— :
2ico Tt \k=0 i

and analogously

T - +
- 1zfdi1 =0 zklll 1( 31 di1) + (r — l)l ljlkl) fori#k
=0 1;q #k J
- 1 . -
Uipyy = S ar <Z——(T—1)l )
Ei:o lix ' k=0 I
Furthermore, the linear forms £ = (£ ... t},,) and = = (17, ,t7,,) in Mq satisfying

(tT vin,) =1 and (t7,v;1) =1 for all 0 < i < r are given by

+ 1 SN A
b = r Tdi, Lo 1 (djnj - dknk) for1 <k <,
Zi:o 7 =0 kniting
'L7L/L' j#k
t+ _ 1 - l+
r+1 = 1din. : y
Z::O llni i 0 llnz
and
1 " -
b = & 14 Z ——(dj1 — dp1) forl1<k<r+1,
Zi:o i1 ! ;;% lklljl
_ 1 U
tr—l—l = —
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Proof. We will prove the assertion exemplarily for u; and we will write v;, [; and d;

instead of vy, l;; and d;y. Set I~ :=1ly---I,. First we will prove (uy,vo) =1 — .
1~ d,
l‘ ’ <u0 7U0>
=0 v
- Tl [T lyd " 1=d
= > | X —d) — (=) S — (r— 1)l do
k=1 =0 kb k 7=0 J
Ik

Il
|
3
(]
o~~~
=L
)
—
S
|
QU
o
N~—
|
3
—~] ™~
=7
—
S8
o
|
oY
o
S~—
|
—~
=
|
-
~
(]
o~~~
—| =L
> | O
U
Bl

k=1 j=1 lk j k=1 k=1
J7#k
"1 d, e 1)l—lod0
, l lo
7=0
! [~ dy - I=d; - I=dp - I=dy [ dy
=0- — — —(r—1)I1 —_ —_t —
0 I Z L (r )lo Z I l; lo
k=1 k=0 =1

—a-r- S
k=1

Now we will show that (ug,v;) = 1 holds for all i # 0. Without loss of generality we may
assume ¢ = 1.

"~ d, SN I"hd, ~~17d ~
g o) = D0 = d) (= ) Y (= )
=0 ¢ ]];(i J j=0 I
“ld;, Rld < <1d
IR R PSS
=0 7=0 ]:0
J#1 J#1
g
=

The next step is to show that (u;,v;) = 1 —; holds for all i # 0. Without loss of
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generality we may assume ¢ = 1.

~d; , _ S ~IThd; = 1"dy _
(g, ) :ZE(dj—dl)—(r—l)Z ] +) ) —(r=1I"d,

i=0 j=0 j=0 j=0
J#1 J#1
e i d I d 1 d
=2 2t ey
j=o0 J 3=0 j=0 J j=0 7
J#1 J#1
— [7d;
= (=) S Y
, l;
Jj=1

Now we prove that (u; ,v;) =1 holds for 4,5 # 0 and i # j. We assume ¢ = 1 and j = 2.

~d; Il Ilydy = 17d
> {urv) Z 2d —dy) + (r =)= Y (= D)l d
i=0 ! ]#2 2 j=0 7
o ld K Udy Uy
- Zz——_ ot
j=0 §j=0 J j=0 J
J#2 J#2

Finally we complete the proof by showing that (u;,v9) = 1 holds, where we once more
may assume ¢ = 1.
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So far, we have proven the assertions for u . To prove the remaining parts of the lemma

we restrict again exemplarily to t~. First we show that (¢~ vy) = 1 holds.
" l_dz o [~ lo l_do
(t7,v9) = — —d
2., {t”, vo) Z JXO: k)
J7#k
- lidjlo - [~ dy
- _ do — d.) —
k=1 =0
B Z I~ dy,
i

The last thing to show is that we have (t7,v;) =1 for all ¢ # 0. We may assume i = 1.

! lidl _ - =l - [~ dy
- (t = —(d; — d
. lz < 7U1> Z lll] ( J 1) Z lj
=0 j=0 7=0
J#1
o ld Ud U d
a Z lj Z l] +~ lj
7=0 Jj=0 ]:0
#1 #1
B - [~d;
Jj=0 lj
O
The vectors vg1, ..., v and Uongs - - - » Urn, Tespectively are linearly independent. Conse-

quently, each hnear form u € Mg = Q"' defines a unique affine hypersurface H, + in
Nq = Mg given by the equation (u £.2) —1 = 0. Note that vy € H, - and vy, € H +

if and only if k& # 4. Furthermore, the linear forms ¢+ and ¢~ define afﬁne hypersurfaces
H* and H~, which are given by the equations (t*,z) — 1 = 0. The r + 1 points v;; and
Vin, are contained in Ht and H~ respectively, they even generate them.

Lemma 4.31. The intersection point of the hypersurface H* defined by t* with the ray
Q>0 - e,41 and the intersection point of the hypersurface H~ defined by t~ with the ray

Q>0 - (—e,11) are given by

+ 4.

S S, e

= . _ i=0 "1,

v = 0,..,0, =7 and v, = |0,...,0, ——2—|.
20T, I

Proof. This follows directly from Lemma 4.30. O]



84 4.5 The anticanonical complex for IK*-surfaces

Now we want to determine the intersection of the r + 1 affine hypersurfaces H ,+ and H -
respectively. For this purpose, we set

v i, _

Zi: & 7‘”7 [—di

vf =10,...,0, — o 0 tim and v, = (0,...,0, = XZDZO L .
S~ (r— DI ST (1)l

i=0 ;1
Lemma 4.32. If X is log-terminal, then vE is not contained in H* and the intersection
of the r + 1 affine hypersurfaces H + and H - is given by

mHu_+ = {v} and ﬂHu_— = {v.}, respectively.

Proof. We consider exemplarily the r+1 hypersurfaces H,-. By Lemma 4.30 the point v
is contained in each hypersurface H, - and thus, it is also contained in their intersection.
If X is log-terminal, then by Proposition 3.19 the following inequality holds:

T

[
Y ——(r+1lI">0
=
Consequently, v, is not contained in the affine space generated by vy, ..., v, which is
denoted by H™, and we can write H - = v, + lin(vj; —v_,j # 4) for all 0 < i < r.
Since vg1,...,v,q1 and v, are in general position and v,y ¢ H,- we conclude that the
hypersurfaces H,- intersect in exactly one point, namely v_ . O

7

Definition 4.33. Let X = X (A, P) be a log-terminal IK*-surface. Then we define the
anticanonical polytope Ax of X as the convex hull of all columns of P and v if F* is an
elliptic fixed point. Furthermore we define the anticanonical complex of X as

A% = Ax Ntrop(X).

Notation 4.34. The anticanonical complex of a [K*-surface consists of r + 1 purely two-
dimensional arms corresponding to the blocks of the matrix P and the arms of trop(X)
respectively. We denote these arms by A%, 0 < ¢ < r. If we restrict our considerations
to one single arm A%, the situation can be simplified by considering the projected arm

121\3(2 := pr,(A%,), where
pT;: ZT—H - ZQ: (xla sy Ty xr—i-l) = ('Z'ia xr+l)‘

Remark 4.35. If X is a log-terminal IK*-surface with an upper or lower elliptic fixed point
F# corresponding to o*, then the intersection point vF is a vertex of the anticanonical
complex.

Example 4.36. Consider R := K[Toy, Tog, T11, Ton |/ (Tor Ti, + T2, + T4 ) with the Z-grading
given by the weights 3,1,2,3. Then R is the Cox ring of a (unique) surface X C P; 543.
Furthermore, trop(X) and the anticanonical polytope are given in Q* by

trop(X) = cone(ey, £e3) U cone(eq, £e3) U cone(—e; — ey, £e3),
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Ax = conv((—1,-1,-1), (-3,-3,-2), (3,0,1), (0,2,1), (0,0,1), (0,0,—1/5)),

where e; € Q? is the i-th canonical basis vector and all points listed in the description of
Ax are in fact vertices. The anticanonical complex AS = Ax N trop(X) is supported by
trop(X) and thus it is two-dimensional.

Example 4.37. Let X = X (A, P) be the K*-surface with

-1 2 0
P=1-1-10 2 . R(X) = K[To, Toa, Thy, Tor, S1) /(T Toa + T2, + Toy).
-1 1 1

— o O

Then X has a parabolic fixed point curve F'* and an elliptic fixed point F~. The anti-
canonical polytope is given by

Ay = conv((—1,-1,-1), (=1,-1,-2), (2,0,1), (0,2,1), (0,0,1), (0,0, —1)).

Example 4.38. Let X be the K*-surface with

-1 -1 1 1 0 00

P _ -1 -1 0 0 1 10 7
-1 -1 0 0 0 0 2
0 1 -10 -1 01

R(X) = ]K[Tm, To2, Th1, T2, To1, Too, T31]/<90,g1>,
with gy = To1Too + T11Ti2 + To1Tae and g1 = AT11Tio + To1To + T for one A € K*. Then

we have

trop(X) = cone(ey, tey) U cone(es, tey) U cone(es, £ey) U cone(—e; — es — e3,tey),

Ay = conv((—1,-1,-1,0), (=1,-1,-1,1), (3,0,1), (0,1,0,0), (0,1,0,—1),
(0,0,1,0), (0,0,1,—1), (0,0,0,—1), (0,0,0, 1)).

Lemma 4.39. Let v = (v, 12) and y = (y1,y2) be two linear independent vectors in Q2.
Then the area of the parallelogram Py, spanned by zero and these two vectors is given by
|det(z, y)|.

Proof. We consider the rectangle with the vertices (z1+1,0), (0, xa+y2), (£1+y1, Ta+y2)
and zero.
T4y
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Without loss of generality we may assume that the angle £(x,y) is positive oriented.
Then det(z,y) > 0 holds and the area of the parallelogram P,, can be easily computed
by

1 1
Any = (v1+y1) (w2 +y2) — 2+ 5(% +y1)as —2- 5(% +y2)yn
= x1Ys — Toy; = det(z,y).
]

Lemma 4.40. Let x and y be two linear independent vectors in Q* and z € cone(z,y)°.
Denote the polytope generated by these three points and zero by Py,.. Then x, y, z and
zero are vertices of Py, if and only if |det(x, 2)| + |det(y, 2)| > |det(z,y)|.

Y z

0

Proof. It is obvious that z, y and zero are vertices of P,,.. Furthermore, 2 is a vertex of
Py, if and only if Ap,, + Ap,, > Ap,,. By Lemma 4.39 the assertion follows. O

Lemma 4.41. Let X = X (A, P) be a log del Pezzo KX*-surface. Then all primitive column
vectors vy; and v= (if existing) of P are vertices of the anticanonical complexr A%.

Proof. Let X = X (A, P) be alog del Pezzo K*-surface. Then all conditions of Proposition
4.24 have to be satisfied. By Lemma 4.40 condition 4.24(ii) is equivalent to the condition
that all v;; for j # ¢ and j # n; are vertices of A%. First assume that F't resp. F'~ is an
elliptic fixed point. We treat exemplarily the case of F~. Then by 4.24(iii) the following
inequality holds:

T R Y T R,

lindiz — lindiy s Lir = Lir
We claim that this condition is equivalent to the condition that v;; is a vertex of A%.
Consider the vectors Uy = (l;1,d;1), Uiz = (L2, di2) and v, = pr;(v. ). By applying Lemma
4.40 we obtain that v;; is a vertex of 121\3( if and only if det(v,,v;1) + det(v;,051) >
det (v, ,V;2). Concretely, we obtain the inequality

T l_djl r l_djl
2 i=0 T;1 2i=0 1

T +lndip — lipdin > —lin- ——F= .
ijo llj_l —(r=1i" ijo llj_l — (r—=1)—

Since X is log-terminal, the denominators are positive. Hence, we end up with condition
4.24(iii). Analogously, we can proceed with F'* and v;,, using 4.24(iv). Now assume that
F* or F~ is a parabolic fixed point curve. (Note that not both of them can be parabolic
fixed point curves.) By Proposition 4.26 the log del Pezzo IK*-surface X can be embedded

Uy -



4 K*-SURFACES 87

into a toric Fano variety. The vertices of the corresponding toric Fano polytope are the
columns of the P-matrix P of X. Hence the columns v resp. v~ as well as v;; and v,
are vertices of the anticanonical complex A%. Note that the conditions 4.24(iii) and (iv)
yield also directly that v;; and v;,, are vertices of A% in this case. O

Corollary 4.42. Let X be a log del Pezzo K*-surface. Then each arm A%, as well as
the projected arm A%, is a convex polytope with vertices v;j, vE, vE and pr;(vy;), pr;(vE),

pr;(vE) respectively.

Remark 4.43. If X is a del Pezzo K*-surface, then the anticanonical complex is locally
bounded by hypersurfaces defined by the anticanonical divisor —Kx. For each two-
dimensional tower cone o € X, we find a linear form u, € Mg such that —Kx is locally
represented by u,. Let H,_ be the hypersurface in Ng defined by (u,,z) —1 = 0 and
let H,, be the half space defined by the inequation (u,,z) — 1 < 0. Then ¢ N trop(X) N
ﬁ]ug defines a polytope of AS. Note that in this situation the linear form wu, is not

uniquely determined. For the two elementary big cones 0% we have r + 1 unique linear
forms uZ,...,uF representing locally —Kx, compare 4.30. Let H + be the associated

hypersurfaces and ﬁu¢ the corresponding half spaces in Ng defined by (u,z) — 1 < 0.

Then by o N trop(X) N ﬁa we obtain 7 + 1 polytopes of AS. In particular, there is a
one-to-one correspondence between the cones of ¥ N trop(X) and the polytopes of A%.

Example 4.44 (Dy). Consider the IK*-surface given by the P-matrix

-1 =21 2 00
P=1-1-2001 2],
-1 -1 01 01

with Cox ring IK[TOl, T027 T117 T127 T217 TQQ}/<T01TO22 + T11T122 + T21T222>. The fan X of the
minimal toric ambient variety is given by the maximal cones

e = {1y 1= cone(vor, voz), 1 1= cone(viy, v12), T2 1= cone(vay, vaz), 0, 0 }.

The following linear forms define bounding hypersurfaces for the anticanonical polytope:

u, = (1,-1,-1) u, = (1,1,-2) ug = (0,0,1)
Ury = (1717_1) ’U/; = (0717_2) ’U/f = (_17071)
Uy, = (_1717_1) u2_ = (1707_2) Ug_ = (07_171)

The anticanonical complex is given by trop(X) N Ax where

1
AX = conv (UOM Vo2, V11, V12, V21, V22, (O, O, 1)7 (07 07 _5)) .

The following example shows that neither the Fano property does imply log-terminality
nor the other way around. Hence, both properties have to be required independently.
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Example 4.45. Consider the two P-matrices

-7 =1 5 0 -3 -1 -2 5 0
P =1|-7T-10 2/, P =|-3 -1 =2 0 2
-8 -1 3 1 -4 0 1 11

The K*-surface defined by P; is not log-terminal but Fano (see 6.18) and the K*-surface
defined by P, is log-terminal but not Fano. The grading matrix of P; is given by

2 2 125
@ = (1 11 4 0 0)‘
The anticanonical divisor class wy, = (2,—6) is obviously not contained in the ample
cone Ample(X,) = cone((1,0),(2,1))°.

Lemma 4.46. Let X be a K*-surface and consider a stellar subdivision of a cone o € ¥,
occurring within the canonical resolution of X, given by the exceptional ray o and its
primitive generator v, € 0°. Then the discrepancy of the associated modification is given
by (us,v,) — 1.

Proof. This follows directly from Proposition 3.22. O

Lemma 4.47. In the situation of Lemma 4.46 let v, be the intersection point of Qo - v,
with the hypersurface H,, defined by (uy,x) —1=0. Then

el
A

(Ug,vp) — 1

Proof. By assumption we have (uq,v,) = 1. Since u, is a linear form, the assertion follows

from Lemma 4.46 and the theorem on intersecting lines. O]
ll<u0, ) =1
Ui ' eUp
(D

The anticanonical complex gives information about the canonical resolution of singular
log del Pezzo IK*-surfaces. We can determine the singularity type of X by means of the
anticanonical complex.
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Theorem 4.48. Let X be a log del Pezzo KK*-surface. Then the following statements
hold:

(a) X has at most e-log terminal singularities if and only if 0 is the only lattice point
in the relative interior of € - A%.

(b) X has at most canonical singularities if and only if 0 is the only lattice point in the
relative interior of A%.

(¢) X has at most terminal singularities if and only if 0 and the primitive generators
are the only lattice points of A% .

Proof. The assertions follow by Lemma 4.47 and Lemma 4.46. m

The subsequent construction of two-dimensional P-complexes is a first and raw trial for
the definition of a category of convex geometrical objects being in one-to-one correspon-
dence to log del Pezzo K*-surfaces.

Construction 4.49 (Two-dimensional P-complex). Consider the cones

To = cone(—e; — ... —ep, ter41),
71 = cone(ey, +e,41),
7, = cone(e,, £e,41),

and let A be the fan in Q"' generated by the maximal cones 79,...,7,. A polytopal
complex C'is called a two-dimensional P-complex if the following conditions are satisfied:

(i) C is supported by A, i.e. C' C |A]|.
(ii) C is complete in the sense that it cannot be enlarged without adding new vertices.

(iii) The vertices of C' coincide with the vertices of the anticanonical complex A% of a
log del Pezzo K*-surface X = X (A, P).

Corollary 4.50. For the category of log del Pezzo IKK*-surfaces the following correspon-
dences hold:

{log del Pezzo K*-surfaces} +— {2-dim. P-complezes}
{terminal del Pezzo IK*-surfaces} «— {2-dim. P-complezes, s.th. zero and its
vertices are the only lattice points in it}
{canonical del Pezzo IK*-surfaces} «— {2-dim. P-complezes, s.th. zero is

the only interior lattice point}
{e-log-terminal del Pezzo K*-surfaces} <— {2-dim. P-complexes C, s.th. zero is

the only interior lattice point in € - C'}
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Remark 4.51. The concept of the anticanonical complex can be generalized to com-
plexity-one Fano T-varieties in general. This is work in progress together with Jiirgen
Hausen and Benjamin Bechtold.
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5 Del Pezzo K*-surfaces

This chapter is dedicated to del Pezzo K*-surfaces, i.e. I{*-surfaces that are Fano. The
main result is a complete classification list of all non-toric log-terminal Gorenstein del
Pezzo KK*-surfaces. To achieve this aim we describe the Gorenstein index of a IK*-surface
in terms of their P-matrix and anticanonical complex and consider the special geometry
of del Pezzo IK*-surfaces. Finally, we will give explicit bounds needed for the classification
results.

5.1 Del Pezzo and Gorenstein K*-surfaces

In this section we will describe the Gorenstein index of a del Pezzo K*-surface in terms
of its P-matrix and its anticanonical complex. Furthermore, we will prove some basic
statements about the geometry of del Pezzo K*-surfaces.

Recall that a del Pezzo surface is a complete algebraic surface X over K such that the
anticanonical divisor class —Kx is ample. A log del Pezzo surface is a del Pezzo surface
X having only log-terminal singularities. Furthermore, the degree of a del Pezzo surface
is defined as the self-intersection number of the anticanonical divisor dx = (—Kx)?.

Definition 5.1. A variety X has Gorenstein index 1(X) = a if a is the minimal positive
integer such that a - (—Kx) € Pic(X). Furthermore, X is said to be Gorenstein if the
Gorenstein index is one, i.e. the anticanonical divisor is Cartier.

We want to describe the Gorenstein index by means of P-matrices. It turns out that the
Gorenstein index requires some divisibility conditions to be satisfied:

Proposition 5.2. Let X = X(A, P) be a K*-surface and let Z be its minimal toric
ambient variety with associated fan Y. Then X has Gorenstein index a if and only if a
is the smallest integer such that the following conditions are satisfied depending on the
cones o € X

(i) Let 0 = 1;;. Then
Lijdijr1 — Lijadiy | a(dijo1 — dij) and lLijdijo1 — lijady; | a(liy — lij4a).
(ii) Let o = o or o =o; . Then

Lin, | a(din, —1) and la | a(dy+ 1)  respectively.

(iii) Let o0 = o*. Then

.y )
;Zdz a((r—l)l—z l—>,

iid a (T—l)id —I—ZL(dA—d) fork=1 r
n ll i lk; k o lkll 1 k — Lyt ’

where (1,1;,d;) is either (I7,la,da) or (17, L, din,) for 17 :=loy -1l and It =

l(]ng o lrn,«-



92 5.1 Del Pezzo and Gorenstein IK*-surfaces

Proof. Let X be a K*-surface arising from a matrix P and let Z be its minimal toric
ambient variety with corresponding fan . For each cone o € ¥, the anticanonical divisor
is locally given by a linear form wu, € Mg. Let the primitive generators of o be the
columns of a matrix A,. Then A, is a submatrix of P satisfying

—(r—=1Dlp+1,1,...,1 if 0 = ot
AZ'UUZGX = ( (T )0+ y Ly 5 ) ?O’ g ..
(1771) lfJ:TijorU:O'i

The K*-surface X has Gorenstein index a if and only if a is the smallest integer such that
a - U, is an integer linear form for all o € X.

We can explicitly compute the linear form by u, = (AL)ex. For the tower cones 7;; =
cone(v;j, v;41) we can locally restrict to the two-dimensional toric variety corresponding to
the cone 7;; (compare Lemma 3.9). By considering the projected generators v;; = (1,5, d;;)
and U;;11 = (Lij41,dij+1) in Q* we obtain

1 ] (dij—‘rl _d13> ) (1) _ (Ul)
lijdijor — lijad; \—lijrr Ly 1 U2

Hence, the linear form a - u,,; is integral if and only if

lijdij+1 - lij+1dij | a - (dij+1 - dz’j) and lijdz'j—i-l - lij+1dij | a- (lij - lz‘j+1).

For the cones aii we can proceed analogously with & = (0,41). Hence, we obtain the
conditions
lini | a(dml — 1) and lﬂ ’ a(dﬂ + 1)

Now we will have a look at the elementary big cones o® corresponding to elliptic fixed

points. Let A, be the submatrix of P having all generators of ¢ = o* as its columns. Let
(1,1;,d;) be (I7,1;1,din) or (I7, L, din,). We compute a general formula for the inverse of
this matrix. Then

l l l l

ondt  Tppde o

Y ohd g —d -

i#1 Tl Iily 2 Ll =" I

l . . : .

AL 1 . l2l1d1
T Yot ‘
i=0 1; "

1 d . —;d l

le—yly 1 : [ Pt S M

Lt g —t g 3 g L

lrl1 1 lrl,,',1 r—1 i7£7" lilr v lT

The linear form a - u, is integral if and only if the following conditions are satisfied:

det(A,) = ;di a ((r DY ;)
i=0 i=0
~ 1

det(A,) = l-di a ((r - Didk + Zlkil(dz - dk)> fork=1,...,r.
) itk 7

=0
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Remark 5.3. Comparing the Gorenstein conditions to the linear forms u, given in 4.30
one easily detects that X has Gorenstein index a if and only if a - u, is an integer linear
form.

Lemma 5.4. Assume that X is a log-terminal complexity-one Fano variety of Gorenstein
index a. Then X 1is %—log-canom’cal, i.e. the discrepancies are greater or equal to —1 + %

Proof. Let X be a log-terminal Fano variety of Gorenstein index a, i.e. a is the smallest
integer such that a- Kx is Cartier. Consider a toric ambient modification 7: X — X with
exceptional divisor D and the associated pullback 7*: C1(X) — CI(X). Then 7*(a-Kx) =
a - 7 (Kx) is integral. The discrepancy is given by K — 7*(Kx) = a - D. This implies
a -« € 7. In particular, o has to be greater or equal to —1 + % Consequently, X is
%—log—canonical. O]

Corollary 5.5. Let X be a Gorenstein log del Pezzo IK*-surface. Then X is canonical.

Corollary 5.6. Let X = X(A,P) be a log del Pezzo K*-surface of Gorenstein index
1(X) = a. Then the anticanonical complex AS satisfies

1
SAYTNN = {0},

Lemma 5.7. Let X = X (A, P) be a non-toric IK*-surface. Then the following inequalities
cannot be satisfied simultaneously:

Zr:% > (7"—1)—215[i and idz—n < —(r—1)+i
i=0 i=0 M i=0 i=0

1
— i1 Lin, '

lini

Proof. First note, that P is given in such a form that d;;l;;41 < d;j11l;; holds for all
1 < j < mn;. In particular we have d;1l;,, < din,l;1. Now consider the second inequality
which implies

N PN |

—(r—1) >

L

and hence, by adding r 4+ 1 on both sides, we obtain

: dzm - lznz_l

in;

Now we will prove that
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holds, where [x] denotes the smallest integer bigger than the rational number x. We may

. din, . . .
write — = q; + ?’Z‘ where a; is an integer and 0 < b; < [;;,,. Consequently, we have

l’L’I’L,L' l’Lnl

bi i — 1 b — 1
T = 1y

> 1

Y

which gives the assertion. Analogously, one obtains for the first inequality

" d; 11
—2<;ﬁ+; !

lia

and

. dil d Zl_l
|5 2 LRt

din, > “ , we obtain all in all

Using the fact that we always have

llnl

T

znl ng 1 d dznl : dini
2> gt zz[ |2

lm m- - lm in
i i =0 —o i
din — dj iy — 1
a Zl a ;{HJ - izoa—i_; lin e

Since the surface X is not toric, we have » > 2. Furthermore, we know that the columns
v;; of P are pairwisely different and primitive, which implies ged(l;1,d;1) = 1 as well as
ged(lin,, din,) = 1. This gives

(][] = o1
i=0 lmL lil

Together with the integer property this is a contradiction to

o3 [e] |8 s

i=0 lin

]

Lemma 5.8. Let X be a non-toric Gorenstein log del Pezzo IK*-surface with two elliptic
fixed points. Then the following inequalities hold:

Z%gi_ ‘1.—(7«—1), Zl ;——i— (r—1).

lzl

Furthermore, at least one of them holds equality, i.e. vi =vt orv, =v~.
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Proof. Let X be a K*-surface and consider the elementary big cones o& associated to the

elliptic fixed points. We subdivide these two cones by drawing in rays along v = e,,1 and
v™ = —e,4q respectively. Set kT := lem(longs - - -5 lrn,) and k= = lem(log, ..., l1). Then,
by Proposition 3.15, the discrepancies of the associated toric ambient modifications are
given by

'm, dzn
. Zl =0 lm —k- Zz =0 I, - (T‘ - 1) k E::() ﬁ - E::() zm_l - (1” - 1)
Disc,+ = - ; dml

k- Zi:O l::: Z::O li.”i‘

and

k d; 1 d;
vt d; - d; ’
—k- Z::O lill - Zf:o zz_ll
From Corollary 5.5 we infer that X is canonical. Hence, these discrepancies have to be
greater or equal to zero. Since the denominators are positive in both cases, we obtain the
following inequalities:

T s

: 1 .
dmz_(r_l) >0 and Z—+Z%—(r—1) > 0.

lznz i—0 mi i—0 lil —0 lil

As seen in Lemma 5.7 the strict inequality of both terms leads to a contradiction. Thus,
we must have equality in one case. This implies v = v or v, =v™. ]

Proposition 5.9. Fvery non-toric del Pezzo IK*-surface has at least one elliptic fized
point.

Proof. Assume that X is a non-toric Fano K*-surface with two parabolic fixed point
curves F* and F~. Then Kleiman’s condition for ampleness of the anticanonical divisor
class gives —Kx - F™ > 0 and —Kx - F~ > 0. With Proposition 4.24 we obtain the two
inequalities

d 1 ing
z;lﬂ T_l)_Z;E and Zl —(r—1) —I—Z

mg lmz
By Lemma 5.7 these two inequalities cannot be satisfied simultaneously. O]

Proposition 5.10. Every non-toric del Pezzo K*-surface has a singular elliptic fized
point. In particular, there are no smooth non-toric del Pezzo IK*-surfaces.

Proof. Let X be a smooth non-toric Fano K*-surface. Then the discrepancies of every
modification are greater than zero. In particular this holds for the discrepancies occurring
for the modification that we obtain by subdividing an elementary big cone oF via v*.
Hence, if X has two elliptic fixed points, we obtain the following inequalities:

" d Lt

Ziz— (r— 1)1 le < —(r =1+

lzl i—0 lmi i=0 in;
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If X has only one elliptic fixed point, say F* and one parabolic fixed point curve F~,
then the first inequality can be replaced by the inequality given by the Fano condition
F~ - (=Kx) > 0. We infer from Proposition 4.24 that it is also given by

Z—l’ (r—1)I Zl

— lzl
Hence, we end up with the same inequalities. The case that X has two parabolic fixed
point curves cannot occur, see Proposition 5.9. By Lemma 5.8 we know that these two
inequalities cannot be satisfied simultaneously, a contradiction to the smoothness of X.

Furthermore, we can conclude that there is always one elliptic fixed point which is singular.
O

Observation 5.11. In case of dimension two, Gorenstein and terminality imply smooth-
ness. Consequently, non-toric Gorenstein del Pezzo IK*-surfaces cannot be terminal.

5.2 Effective bounds for Gorenstein del Pezzo [K*-surfaces

We intend to classify Gorenstein log del Pezzo surfaces with a IK*-action. For this purpose
we will give explicit bounds for the number of Cox ring relations, the Picard number, i.e.
the rank of the divisor class group, and finally for all entries l;;, d;; of possible P-matrices.

Proposition 5.12. Let X = X(A, P) be a non-toric log-terminal K*-surface of Goren-
stein indezx 1(X) = a with two elliptic fived points. Then r < 4-a — 1. In particular, the
number of relations of the Cox ring is bounded by 4 - a — 2.

Proof. By Lemma 5.4 we know that the discrepancies of the two elementary big cones o*

have to be greater or equal to —1 + é Consequently, for o we obtain

T s

1 dml 1 din,
N L)
1=0 o 1=0 K 1=0 B
and thus
Ie~dip 1
—(r—1) > = L — .
=0 4 =0 4
For o~ we obtain analogously
Ie—dip — 1
—(r=1) > —=y 2L _N"—
(r ) 2 a “ i1 — [,
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For x € Q let [x] be the smallest integer greater than x and |z| the greatest integer
smaller than z. Adding r + 1 to both sides of the inequalities yields

d dmZ d lznz -1

2 > 1 iy
I Lin,

lin, — 1

SHES

= lin,

1 = [din, 1 din, 1 din 1 | da
M S T M 9l ]

lz‘ni

T

> é(Z%Jer_l“) > %Z%Jrzl_l“ > -2,
i=0 b =0 i=0 b =0

lil lil

With the above estimate we conclude

oo s (8][4 <+
a a = \| lin, lin

7

and thus r < 4aq — 1 as claimed. O

Proposition 5.13. Let X = X (A, P) be a non-toric log del Pezzo IK*-surface of Goren-
stein index (X)) = a with one parabolic fixed point curve. Thenr < 4-a—1. In particular,
the number of relations of the Cox ring is bounded by 4 - a — 2.

Proof. Assume that X has a parabolic fixed point curve F*. The argument is similar
to the argument used in the proof of Proposition 5.12. We just replace the Gorenstein
condition for the upper elliptic fixed point by the Fano condition (—Ky) - F* > 0, which

is given by
i=0

compare Proposition 4.24. In particular, for every a € Zi~o we have

R I B e S D Dk
i=0 i=0 ™M i=0 i=0

1 " din,

—(r—=1) > 0,

lim i=0 lznl

Hence, we can use exactly the same estimate as in the proof of Proposition 5.12 which
verifies the assertion. O

Corollary 5.14. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface.
Then its Cox ring has at most two relations.

An important convex geometrical result which turned out to be useful for log-terminal
Gorenstein del Pezzo K*-surfaces is the following theorem of Schicho, [49, Theorem 2|:

Theorem 5.15. (Schicho’ s Theorem). Let B be a two-dimensional lattice polytope with
no interior lattice points. Then, up to unimodular transformation, B is one of the follow-
mg:

conv((0,0), (n,0),(m,1),(0,1)), conv((0,0),(2,0),(0,2)).
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Proposition 5.16. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface.
Then n; < 2 holds for all 0 < i <1 and the rank rk(Cl(X)) of the divisor class group of
X is bounded by 5. Furthermore, the number of singularities is bounded by 10.

Proof. By Lemma 5.8 we know that one of the vertices v}, v of the anticanonical complex
is a lattice point, i.e. we have v} = vt = e, or v; = v~ = —e,4;. Since X is Fano
and Gorenstein, all the primitive generators v;; are vertices of the anticanonical complex
A% and there are no lattice points in the relative interior of AS. By Schicho’s Theorem
we know that each arm of AS lying within one block can have maximal four vertices.
Without loss of generality we assume one of them to be v~. Furthermore, we may assume
that one vertex is either v or zero. Consequently, we have n; < 2. Moreover, by Corollary
5.14, the number of Cox ring relations is bounded by two. The rank of the class group is
given by

4, if X has two elliptic fixed points,

rk(Cl(X)) = n+m—(r—1)—2§{

5, if X has one elliptic fixed point.

Note that m < 1 holds since X is Fano. Since there are at most two maximal tower cones
for each 0 < i < r < 3 and at most two big cones oF, the number of relevant maximal
cones in the fan ¥ of the toric ambient variety Z is bounded by 10. O

Proposition 5.17. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface
with a parabolic fixed point curve F* and an elliptic fived point F~. Then (n; = 1 and
li =2) or (n;y=2 and l;; = l;x = 1) hold for each 0 <i <.

Proof. First note that Proposition 5.16 gives the restriction n; = 1 or n; = 2. By Propo-
sition 4.24 we obtain for F'* the Fano condition

Z lzn,

in; lmZ

(r—1) and consequently Z » Z » + (r—1).

Note that the last equality follows from Corollary 5.8 and the fact that log-terminality and
Gorenstein property imply canonical singularities. According to the proof of Proposition
5.10 we have a (canonical) singularity in the lower elliptic fixed point. Consequently, we
have to subdivide the lower elementary big cone ¢~ along v~. Furthermore, we conclude
that v, = v~ is an integral vertex of AS. Note that v = o' is an integral vertex
since F'* is a parabolic fixed point curve. If X is Gorenstein, then the lattice polytope
conv(v™, v, v;1) does not contain inner lattice points. First we consider the case n; = 1.
Without loss of generality we can assume [;; > 2 and [;; > d;; > 0.

vt (2,1)
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Consequently, conv((0,1),(0,—1),(2,1)) is the only possibility for a polytope without
inner lattice points. Otherwise (1,1) or (1,0) would be contained in the interior. Now we
have a look at the second case n; = 2. We restrict ourselves again to the situation within
one arm. The upper ray v;s is contractible.

v Vi2
(O, OMUH

Since X is Gorenstein, there are no points on the line between v* and v;; after the
contraction of v;. In dimension two, terminality and Gorenstein imply smoothness. Con-
sequently, we obtain det(v",v;) = 1 and thus [;; = 1 and d;; < 0 since

d.

dip < -2 < 1.

Lia
Now consider the second ray. The Gorenstein property gives ;s | dio — 1 where lo > dip >
0. Thus, we obtain l; = 1 (and dj» = 0) or d;z = 1. Assume d;5 = 1. The Gorenstein
property for the cone cone(v;1, v;2) gives the condition

lildiZ - liZdil = 1- liQdil ‘ 1 - dil = di2 - dil-

Since d;; < 0, we have 1 — l;5d;;1 > 1 — d;; > 0 and the divisibility condition can only be
satisfied for l15 = 1 or for d;; = 0. In the latter case Schicho’s Theorem gives [;, < 2. But
for l;5 = 2 the primitive vector v;; = (l;1,d;1) cannot be a vertex of A, which contradicts
the Fano condition. O

Lemma 5.18. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface with
two elliptic fized points such that P has standard form. If X has a singularity in the lower
elliptic fixed point F~ and satisfies n; = 2 for an index 0 < i <r, then l;p = 1 holds.

Proof. Without loss of generality we may assume ¢ # 0 and we can consider the primitive
vectors ;1 = (L1, din) and U = (lig, dje) such that ldia < lipdiy and lyg > dop > 0. Then
U2 1s contained in cone((1,1),(1,0)). Assume that /;, > 2 holds and recall that the sin-
gularity in F'~ implies that (0, —1) is a vertex of the subcomplex 23(1 of the anticanonical
complex that we obtain by restricting on the projected i-th arm. If [, < d;u—1, then (1,0)
is an interior point of fA1§(, a contradiction to the Gorenstein condition. If l;5 = djn — 1,
then we must set [;; := d;; — 1 to avoid that (1,0) is an interior point of Eg( But this is
a contradiction to the (Fano) condition that ¥;; is a vertex of 23(2 O

Lemma 5.19. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface with
two elliptic fized points and a singularity in the lower elliptic fixed point F~ and let P be
in standard form. If n; = 1, then l;; = diy + 1 holds for all i # 0 and if n; = 2, then
li =1 ord;y = —1 holds for all i # 0.
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Proof. We have 1, = (0,—1), since F~ is singular. Consider v;; = (l;1,d;1) with 1;; >
d;; > 0. The assumption n; = 1 implies ;; > 2 and d;; > 0. For all pairs (l;1, d;1) with
lin # di1 + 1, the point (1,0) is contained in the relative interior of ;13{1, a contradiction
to the Gorenstein condition. Now assume n; = 2. Then by Lemma 5.18 we have [;» = 1.
Since (1, —1) may not be an interior point of A\S(i, the assertion follows. O

Proposition 5.20. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface
with two elliptic fized points. Then the exponents l;; are bounded by 6.

Proof. Since X is Gorenstein, we may assume r < 3, compare Corollary 5.14. The
Fano property of X allows us to work with the anticanonical complex. Without loss of
generality we can assume v, = —e,;1, i.e. X has a singularity in the lower elliptic fixed
point F~. Furthermore, we know that

i Fdin, >0 and Er: Fda

= lins = I

hold and that the log-terminality condition for o* gives

r + r —
: —(r=1I">0 and Zl——(r—l)l_>0.

=0 i o ln

The last coordinate of the upper vertex v} of the anticanonical complex is given by

l+dini
0< 5 —— <L
im0 lins (r =1

By Proposition 5.16 we may also assume that n; < 2 holds for all 0 < ¢ < r. And since
we have two elliptic fixed points, there is at least one block with n; = 2. We go through
all possible cases:

(1): Let r=2o0orr =3 and n;, =2 for all 0 < i <r. Then l; =1 for 0 < i < r and

dip = 0 for 1 < i < r. The (r 4+ 1)-th coordinate of the vertex v is positive but not

greater than 1. This gives 0 < dp2/2 < 1 and thus dpe = 1 or dpo = 2. In particular,
1

vy = ep41 or vf = je,41. This in turn implies /;; < 3 for 0 < ¢ < 3, otherwise (1,0) resp.

(—=1,0) or (—1,1) would be interior points of Eg(

(2): Let ng =landn; =2for1 <i¢ <7r. Thenly =1landdy =0forl1 <i<r
and lp; > 2. Furthermore, we know that (—1)"det(c%) = do; > 0. For the (r + 1)-th
coordinate of v} we obtain

do1
l01 + 1

Furthermore, the Gorenstein condition for the upper elliptic fixed point says that dy; is a
divisor of lp; + 1, thus dp; < lp; + 1. Since v, = —e,41, we know that dyp; > lp; — 1 holds.
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Since dg; and [y, are coprime, there are two possibilitiesA left. If do; = lg1 + 1, then [y > 2
since otherwise (—1,1) would be an interior point of A% . For lpy = 2 and do; = 3 we
obtain v = —e, 1. If dyy = lpy — 1, then loy — 1| los + 1 which implies lp; < 3. If [y; = 2
and dg; = 1, then v = %€r+1 and if lp; = 3 and do; = 2, then v = %erﬂ. All in all this
implies [;; <3 for 1 <i <.

(3): Let ng=n; =1land n; =2for 2 <i<r. Thenl;p = 1 and d;jz = 0 for 2 < i < r and
l11 = di1 + 1. Furthermore doili1 + lp1l11 — lo1 > 0 is a divisor of lg; + [11. In particular,
we have

dorlin + lonhin —lon < log + lig-

This implies do; < 1. Since ly; > 2, we can conclude (dp; = 1 and lp; = 2) or (dp; = —1).
Otherwise (—1,0) and (—1, —1) respectively would be an interior point of E_CXO. In the
first case we obtain directly l1; < 2. So, assume dyp; = —1. We want to avoid that
(—1,0) is contained in the relative interior of the polytope spanned by (lp1, —1), v} and
v, = (0,—1). For that purpose we compute the intersection point of the line spanned by
(lo1,—1) and ] with the horizontal 0-level and require it to be greater than —1. The

slope of this line can be computed by
—1 loily — 1 1 lo1l 1 [
( 11 Tt lo1tan o1+1> _ o borbn L 11

lor + 11 lo_l VS P R A
Hence, the intersection point is given by
—li +loilin — ln 11
r = 0,
l01 + l11 lOl + lll

and we require

i+ lor = loln

I

which is equivalent to 2l1; 4+ lpy — lo1li1 > 0. Let lpy = 2. Then this inequality is
always fulfilled. But since —ln + l()l(lu — 1) = —lu + 2([11 — 1) = lll — 2 1is a divisor of
l11 4+ lor = l11 + 2, we obtain [y; € {3,4,6}. For lp; = 3 the inequality gives l;; < 3. For
loy = 4 we obtain [1; < 2 and thus lp; > 5 can be excluded since this would imply /1; < 1.
The smallest value for the last coordinate of v is given by 1/5. Consequently, we obtain
l11§5f0r2§2§7"

(4): For r =3, let n; = 1 for 0 <4 < 2 and n3 = 2 and assume lo; > I3 > ly; > 2. Then
we have [33 = 1 and d3o = 0 as well as [1; = dy; + 1 and [y = do; + 1. Putting this in the
condition

> —1

dorli1la1ls + diilorlarlse + darlorliilse + daa2loilinlor > 0
we obtain
dorli1lar + 2lo1li1ley — lorlor — lorlin > 0.
The log-terminality condition gives
— 2lorliilarlze + lotlinlar + lotlinlse + lorlarlse + lilarlsn
= —lorliilor + loala1 + lorlor + lialoy
> 0.
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This condition is fulfilled if and only if (ly1,l11,l21) is a platonic triple, i.e. it is of the form
(lo1,2,2), (3,3,2), (4,3,2) or (5,3,2). Since X is Gorenstein the following divisibility
condition has to be satisfied:

d01l11l21 + 2l01l11l21 - l01l21 - lOllll | _l01l11l21 + lOllll + l01l21 + l11l21

Hence we have to go through all the cases mentioned above:

If (lo1, L1, l21) = (lo1,2,2), then 4dy; + 8loy — 4lp1 = 4do1 + 4lpy > 0 has to be a divisor
of —4lpy + 4 + 4lp1 = 4. We can conclude do; +lpg = 1 and hence lpy = 2 and do; = —1,
otherwise (—1,—1) would be an interior point of A%, . Since (4-(—1)+4-2)/4 =1 we
conclude 7 = (0,1). Now we consider the lower elliptic fixed point. Since v, = —e,11,
we obtain the condition

dorliilaalsy + diiloilarlsy + darloilinlsr + dsiloilinlon
—2lo1li1la1l31 + lorlinlar + lorlinlsy + lorlailsy + Liilailsy
Al + Al + 4z + 8d3
N —1613; + 8 + 1214,

Az +8dy _q
4y +8
Consequently, we have d3; = —l3; which implies d3; = —1 and l3; = 1, since l3; and d3;

are coprime.

If (lo1, 111, 0l01) = (3,3,2), then 6dg; + 36 — 6 — 9 = 6do; + 21 > 0 has to be a divisor of
—184+9+ 6+ 6 = 3. Since 6dy; + 21 # 1 we conclude 6dy; + 21 = 3 and hence dy; = —3,
a contradiction to the condition ged(lpr, dor) = 1.

If (lo1,l11,101) = (4,3,2), then 6dy; + 48 — 8 — 12 = 6dy; + 28 > 0 has to be a divisor of
—24 412 + 6 + 8 = 2, which is not possible.

If (o1, l11,021) = (5,3,2), then 6dy; + 60 — 10 — 15 = 6dp; + 35 > 0 has to be a divisor of
—30+ 15+ 10 + 6 = 1, which is not possible. ]

Corollary 5.21. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface.
Then all exponents are bounded by l;; < 6.

Remark 5.22. We shortly recall some bounding statements that are used in the proof
of the next proposition. Let X = X (A, P) be a non-toric log del Pezzo IK*-surface. Then
the following inequality is always satisfied (see proof of Lemma 5.7):

T

M S I M

i=0 ini = Lln

Furthermore, we may assume that F'~ is a singular elliptic fixed point which implies

+ (r—1)I Zl

r

=0 g



5 DEL PEZZO K*-SURFACES 103

If F'* is an elliptic fixed point, then the following inequality holds and if F'" is an parabolic
fixed point curve, then equality is even excluded.

T l+

" dip,
—(r=1I" > Zl—’ > 0
=0

=0

Proposition 5.23. Let X = X (A, P) be a non-toric Gorenstein log del Pezzo IK*-surface.
Then the entries d;; of the matriz P are bounded by |d;;| < 6.

Proof. We have to check all possible cases and use the statements of Remark 5.22. Set

D+ — Z dmiﬁ" D — Z dlll_ '

pr g =

First we assume that X has a parabolic fixed point curve F* and an elliptic fixed point
F~. Then we have [;; = 2 for n; = 1 and [;; = 1 for n, = 2. Hence, we have the following
cases subject to n = (ng,...,n,):

e n=(1,1,1):
Then we have [;; =2 for : = 0,1,2 and d;; = 1 for ¢« = 1,2. Using Remark 5.22 we
obtain D™ =4dy +4+4=4dy +8=8 -4 —4 — 4 = —4 and thus dy; = —3.

e n=(1,1,1,1):
Then we have [;; = 2 for ¢ = 0,1,2,3 and d;; = 1 for ¢ = 1,2,3 and consequently
D™ =8dy +8+8+8=2-16 -8 -8 -8 —8 =0, a contradiction.

e n=(211):
Then l()l = 102 =1andl; = 2, diq =1 for i = 1,2 and D~ = 4d01 + 4 = —4 which
implies do; = —2 and consequently —2 < dgy < 0 since DV = 4dy, + 4 < 4.

e n=1(2,1,1,1):
Then lg; = lpp = 1 and [;; = 2 for © = 1,2, d;; = 1. Hence, we have D™ =
8oy +4+44+4=2-8—-—8—4—4—4 = —4 which implies dy; = —4 and thus
dop > —4. DT = 8dgy +4 +4+4 < 4 gives dyy < —1.

o n=(221):
Then l;; =l = 1 for i = 0,1 and ly; = 2 as well as dio = 0 and dy; = 1. So we
have D™ = 2dy; + 2d11 +1 = —3 and Dt = 2dp2 + 1 < 3 which implies doo < 1.
Since d01 + dll = —2 and d()l, dll S 0, we obtain —2 S d()l, d11 S 0.

e n=1(2,211):
Then l31 = l21 = 2, d31 = d21 =1 as well as l()l = lOQ = lll = l12 =1 and d12 = 0,
dyy < 0. We have DT = 4dgs + 2 + 2 < 4 and thus dypy < 0 and dy; < 0. Since
D™ =4dy +4d1 + 2+ 2 = —4, we have dy; +d;; = —2 and thus —2 < dyy,d;1 < 0.
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e n=1(2,22):
Then we have l;; = ljs = 1 and dis = does = 0 as well as DT = dy, < 2 and
D™ = d01 + d11 + d21 = —2. This implies 0 Z d01, dlla d21 Z —2.

e n=1(2,221):
Then l;; =l = 1 for i = 0,1,2 and l3; = 2 which implies d3; = 1 and dgs = d12 =0
and thus di1,ds; < 0. Since DT = 2dy, + 1 < 3, we obtain dgy < 0. Furthermore,
we have 2dy, + 2dy1 + 2dy1 + 1 = —3 which implies dy; + di1 + doy = —2 where
d()l, dn, doy < 0, a contradiction.

e n=(2222):
Then we obtain analogously to the previous case d13 = dyy = d3s = 0and 0 < dgp < 2
and thus d01 <0 and dll; dgl, d21 < 0 which is a contradiction to d01 +d11 +d21 +d21 =
—2.

Now we consider the case of X having two elliptic fixed points. Analogously, we have to
go through all cases as before using the inequalities of Remark 5.22. Note that for ¢ # 0
we always have

din. din.
0 < dip < 6, {mz-‘zl and \‘%J:O.

Furthermore, we will use the fact, that if n; = 2, we can assume [, = 1 and that if
d;1 # —1 holds for 7 # 0, we have [;; = 1, compare Lemma 5.18.

e n=1(2,1,1):

Then we have 2 > dyps + 1+ 1 > 0 and thus we obtain —2 < dgs < 0. Furthermore,
we have

d,

—2< {EJ +0+0 < 0.

lox
If lp1 = 1 holds, we obtain —2 < dy; < 0 and if [p; > 1 we obtain 0 > do; >
—lpy — 1 > —7 since lp; < 6 and the polytope conv(vg;, vz, v~ ) does not have inner
points.

o n=(211,1)
Analogously to the case before, we have 2 > dpy +1+ 1+ 1 > 0 and thus —3 <
dpp < —laswellas -2 <dy +0+0+0<0iflgy =1and 0 > dy; > —lp1 —1 > —7
otherwise.

o n=(2,21):
Here we have 2 > dypgs + 0+ 1 > 0 and thus —1 < dp; < 1. We infer from Remark

5.22 that
0~ {@J+{@J > 9
lOl lll
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holds. Furthermore, we have %1 < % < 1 which gives dy; < 5. Since dy; < 0 and

L@J < 0, we have the possibilities

lo1
{@J =0or {@J = —1  which implies {@J =—1lor {@J = -2
l01 l01 l11 lll

and dy; > —5. If [1; # 1, then dy; = —1 and if [1; = 1, we obtain dy; > —2.

e n=(2211):
Analogously to the case before, we obtain 2 > dyps + 0+ 14+ 1 > 0 and thus

—2 < dpy < 0 which 1mphes dop > —b and dy; > —2.

o n=1(2272):
Here we have 2 > dys > 0 and

0 > @Jﬂ@Jﬂ@J S
o1 I lo1

Since dq1, ds; < 0 holds, we have

{@ < —1 and {@J < -1

L1 | lon | —

which implies |dp1/lo1] > 0 and in particular dyp; > 0. Furthermore, we have
d()l/lgl < 2 and thus

d d;

0< {EJ < 1 which implies {JJ > -2

01 li1
for ¢ = 1,2 and consequently d;; > —2 and dy; > —2 for [;; = 1 and l5; = 1
respectively (otherwise we have d;; = —1 anyway). Now consider the point (—1,1)
which is not contained in the relative interior of conv(vgi,vge,v™). This implies

d()l/l[)l S 1 and thus dOl S lOl < 6.

e n=(2,221):
Here we have 2 > dgs + 1 > 0 and thus 1 > dp; > —1 which implies [l%l < 1. Al
other arguments run analogously since the following condition still holds:

® N = (2727272)'

Here we have 2 > dypz > 0 and

d, d d d
i el Bl R iR el
ln I l21 [31
where |d;1/lii] < 0 for i = 1,2,3. This implies |dp1/lo1] > 1 and in particular
do1 > 0. On the other hand we know that dy;/lp; < 2, so equality has to be

satisfied. Consider again the point (—1,1). This gives do1/lp1 < 1 and thus dy; < 5.
Since |d;1 /11| > —1 for i = 1,2,3 we obtain d;; > —5.

]



106 5.3 Classification results for Gorenstein log del Pezzo KK*-surfaces

5.3 Classification results for Gorenstein log del Pezzo K*-surfaces

In this section we state the complete list of all non-toric Gorenstein log del Pezzo K*-
surfaces by indicating their Cox rings and Cl(X)-gradings. Furthermore, we list their
P-matrices as well as their degree (—Kx)? and their singularity type. Note that Hendrik
Siiss classified them already up to Picard number two by other methods, see [51| and his
dissertation.

By Corollary 5.5 we know that Gorenstein log del Pezzo K*-surfaces are canonical. In
dimension two the canonical singularities are exactly the so called AD E-singularities
which are defined as follows.

Definition 5.24. The ADE-classification is the complete list of simply laced Dynkin
diagrams, which is the following:

E6>—A—L—<

S

We call a singularity an ADFE-singularity if its resolution-curve is an ADFE-curve. This
means that its irreducible components are all (—2)-curves. Two of these components
can intersect only once and they intersect transversally. The intersection graph of such a
curve corresponds to one of the Dynkin-graphs above, where the points are the irreducible
components. They share a common edge if and only if they intersect.

Now we will use the explicit bounds on the number of relations r and the parameters /;; and
d;j that we found in the last section to generate the complete list of all non-toric Gorenstein
del Pezzo K*surfaces. We will write them down by means of their Cox rings. Note that
a IK*-surface is uniquely determined by its Cox ring. Furthermore, the singularity type
S(X), the degree dx = (—Kx)? and the Picard index p = [C1(X) : Pic(X)] of the surfaces
are specified.
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Theorem 5.25. Let X be a non-toric Gorenstein log del Pezzo IK*-surface of Picard
number one. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (wy, ..., w,) Cl(X) S(X) dx p
K[T1, Ty, Ty, S1] / (T2 + T2 + T2) (iééé) 7.6 7)22 & T)2 D34, 2 4
KT,....Ty] | (T, + T3+ T2 (F53d) 7 ® 7/A7 243A; 2 4
]K[Tl,. .,T4] / <TT2—|—T —|—T3> (1532) 7 A4 5) 5)
KT,....Ty] | (T, + T3+ 1) (733%) 7Z7/27Z AsA; 3 6
KT,....Ty] | (L + T3+ T3F)  (313%) 7Z®7/37 AsAy 2 6
]K[Tl,...,T4] / <T2T2+T2+T3> (1432) Z D5 4 4
KT,....Ty] | (TP, +T§+ T (3221) 7727 DgAy 2 4
KT,....,Ty] J (TP, + T3+ T7) (F13d) 7 ®7/37 EgAy 1 3
]K[Tl,. .,T4] / <T3T2—|—T2—|—T3> (1332) 7 E6 3 3
KT,....Ty] | (TP, + T§ + T} (§531) 7Z7/27Z E:Ar 1 2
K[T,...,Ty] | Tty + T2+ T3) (1232) Z E; 2 2
K[Th,...,Ty] | (TPTo+ T2 4+T3) (1132) Z Ey 1 1
T\ To+T24TE, 11111
[T, T /() (55%%8) 767226 7)27 2D, 1 4
Possible P-matrices for the Gorenstein del Pezzo surfaces with Picard number one are
-2 2 00 -1 -1 2 0 -1 -1 2 0
Ppasa,=(—-2 0 2 0, Poagaa=|—-1 —-10 2], Py,=|-1 -1 0 3},
-3 1 11 -2 0 11 -2 -1 11
-1 -1 2 0 -1 -1 3 0 -2 -1 2 0
Poay=|-1 -1 0 4|, Pgu,=(|-1 -1 0 3|, Pp,=|—-2 -1 0 3],
-2 -1 1 3 -1 0 11 -3 -1 1 2
-2 =1 2 0 -2 -1 30 -3 -1 2 0
Ppga,=|—-2 -1 0 4], Pga,=|—-2 -1 0 3], Pgg=[-3 -1 0 3],
-3 -1 1 3 -3 -1 2 2 -4 -1 1 2
-3 -1 2 0 -4 -1 2 0 -5 —1 2 0
Ppa=1-3 -1 0 4], Pp,=|-4 -1 0 3], Pg=|-5 -1 0 3],
-4 -1 1 3 -5 -1 1 2 -6 -1 1 2
-1 -1

L

|

i
—_— O O N
— O N O
— NN OO
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Theorem 5.26. Let X be a non-toric Gorenstein log del Pezzo IK*-surface of Picard
number two. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (w1, ..., w,) ClX)  S(X) dx
K[T),..., Ty, S)] / (T\Ts + T2 + T2) %—ﬁéi) 7° G T)27 A2A, 3
K[Ty,....Ts] | (WL +T3Ty+T5) (413 50) z? 24,4, 3
K[Ty,...,Ts] | (T, + TsTy + T2)  (13132) 72 Ay 6
K[Ty,...,Ts] | (LT + TsTy + T3) (12 121 72 AAy A4
K[Ty,...,Ts) | (T + T3Ty +T7)  (§3122%) Vi As 5
K[Ty,...,Ts) /| (T + T2T, +T3) (421453 7? A A 3
K[Ty,...,Ts) | (T, + T3T, +T2) (L2385 2) 7 Ay 4
K[Ty,...,Ts] | (T?T + T2Ty + T2) (4212 2) ik D, 4
]K[Tlv- ,T5] / <T2T2 +T2T4 +T3> (}1 % % 32(1) 77 Ds A, 2
K[Th,....,Ts] | (BT + 3T +T2)  (H162%2%) z? Ds 3
K[Ty,...,Ts] | (T3T, + T3Ty + T2) (41314 2) 72 By 2
K[Ty,..., T) | (i) (s11200) Z2oz/2Z 245 2

Possible P-matrices for the Gorenstein del Pezzo surfaces with Picard number two are

-1 -1 2 0 0 -1 -1 1 10
Pagoa, = | -1 -1 0 2 0], Poga, = | -1 -1 0 2],
-2 -1 111 -1 1 -1 01
-1 -1 1 10 -1 -1 1 10
Py = [-1 -1 0 0 2], Pau, = | -1 -1 0 0 3],
-1 0 -1 01 -1 0 -1 0 2
-1 -1 2 10 -1 -1 2 10
Py = [-1 -1 0 0 2], Paa, = (=1 -1 0 0 3],
-1 0 -1 01 -1 0 -1 0 2
-1 -1 3 10 -2 -1 2 10
PA4 = -1 -1 0 0 2 5 PD4 = -2 -1 0 0 2 )
-1 0 -1 01 -1 0 -1 01
-2 -1 2 10 -3 -1 2 1 0
Pooa, = | -2 =1 0 0 3], Po. = =3 -1 0 0 2],
-1 0 -1 0 2 -1 0 -1 01
4 1 3 10 1 -1 1 100
-1 -1 0 0 2 0
Pe, = | -3 -1 0 0 2], Poa, =
oy 1 -1 0 00 2
-1 0 -1 0 1 1
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Theorem 5.27. Let X be a non-toric Gorenstein log del Pezzo IK*-surface of Picard
number three. Then its Cox ring R(X) is one of the graded rings in the following table.

R(X) (wr, ..., w,) ClX) S(X) dx
K[, ..., Ts,S1] / (TiTy + TyTy + T2) (i :1% ﬁléé%) 73 A A, 4
K[TY, ..., Ts] | (TiTy + TyTy + TsTy) ((%)éi)i 5 i) 73 34, 4
K[T, ..., Ts] | (T\Ts + TyTy + T5Tp) ((1) i _ﬁié) 75 A, 6
K[, ..., Ts] | (T\Ts + T5Ty + T2Ts) (i i) _‘ﬁéé) 7F A, 5
K[T}, ..., Ts] | (T\Ts + T2Ty + T2Ty) (éﬁjl g i) 75 Ay 4
KIT, .. T /(TP + T3+ T80 (qioida)  z8 by 3
KTy, ..., Ty | (e e (f)l 01 -1 %1(%)%) 7P 24, 3

Possible P-matrices for the Gorenstein del Pezzo surfaces with Picard number three are

-1 -1 1 100 -1 -1 1 1 0 0
Pua, = |-1 =1 0 0 2 0], Py = |-1 -1 0 0 1 1},
-1 0 —-101 1 0 2 —-10 -1 0
-1 -1 1 1 0 0 -1 -1 1 1 0 0
Py, = |-1 -1 0 0 1 1], Py =|-1 -1 0 0 2 1],
0 1 —-10 —1 0 0 1 —-10 —-10
-1 -1 2 1 0 0 -2 -1 2 1 0 0
Py, =|-1 -1 0 0 2 1], Pp,=1-2 -1 0 0 2 1],
0 1 —-10 —1 0 1 1 —-10 -10
-1 -1 1 1 0 00
poo_ -1 -1 001 10
242 7 21 -1 0 0 0 0 2
0 1 —-10 -1 0 1

Theorem 5.28. Let X be a non-toric Gorenstein log del Pezzo IK*-surface of Picard
number four. Then its Cox ring R(X) is one of the graded rings in the following table.

11 11111

K[Th,..., T, S1] / (T + T3Ty + T5Ts) ((1) T 0 %%8) z* A5
1-1-11000
1 111 1 111

K[TL,... T | (B0 (BHAAHY) 2 2a 4
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Possible P-matrices for the Gorenstein del Pezzo surfaces with Picard number four are

-1 -1 1 1 0 0 0 0

-1 -1 1 1 0 00 -1 -1 0 0 1 1 0 0
Poy=|-1 -1 001 10 PBa=|_1 1 ¢ 0 0 0 1 1
0O 1 —-10 -1 01 1 2 -1 0 -1 0 =1 0

Remark 5.29. Toric Gorenstein del Pezzo surfaces are completely classified by reflexive
polytopes in Q?, i.e. lattice polytopes containing only 0 in their relative interior. Up to
unimodular transformations, there are exactly 16 such polytopes, see [48].

Example 5.30. We will resolve exemplarily the Dj-surface X = X (A, P) of Picard
number two given by

-2 -1 2 10
Pp, = -2 -1 0 0 2| and R(X) = K[Ty]/{T3Toe + T} Tiz + Ti).
-1 0 -1 01

In order to obtain the weak tropicalisation we have two add rays along (0,0,+1). Then
we resolve locally the remaining (toric) singularities by adding rays along (—1,—1, —1),
(1,0,—1) and (0, 1,0). This resolution is not minimal since the ray Q- (0,0, 1) corresponds
to the (—1)-curve F'*. Contracting this curve we obtain the minimal resolution X’ =
X (A, P') with Cox ring K[T};, S1]/(T5 ToaTos + T3 T12T13 + T3, T22) and P-matrix

-2 -1 -1 2 1 1 00 0
P=(-2-1-1 0 0 0 21 0
-1 0 -1 -1 0 -1 1 0 -1

Remark 5.31. Consider the two D,-surfaces with Picard number two and three. By
reordering the variables and applying admissible transformations we obtain the Cox rings

R(X1) = K[Ty,...,Ts) {(TiT3 + T5TF + TsTg),
R(XQ) = ]K[Tb e 7T5]/<T1T22 + T3T42 + T52>7

and the following two P-matrices:

-1 =21 2 00 -1 =21 2 0
P =1-1-2001 2 and Pr=1-1 -2 00 2
-1 -1 0101 -1 -1 0 11

Then we obtain X5 out of X; by contracting the column wvq;:

0 1 -1 0
Il = 10 +-1|+1]2
0 0 -1 1

In particular, the Fano condition is respected by this modification. Note that we can
also find such representations in case of the Ay, Ay, A3 and Fg-surfaces which occur with
different Picard numbers.
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We conclude this chapter with two infinite series of log-terminal del Pezzo K*-surfaces
with arbitrary high Gorenstein index and Picard number.

Example 5.32. Let m = 0 and r > 2 as well as n; = 2 and [;; = 1 for 0 < ¢ < 7,
1 < j <mny, and consider the following ((r 4+ 1) x 2(r + 1))-matrix:

-1 -1 1 1 0 0 ... 0 0
-1 -1 0 0 1 1 :
P=1: : = = . 0 0
-1 -1 0 0 ... 0O 0 1 1
0 r —1 0 ... —1 0 —-1 0

This matrix defines a log-terminal IK*-surface X with two elliptic fixed points whose Cox
ring has n = 2(r 4+ 1) variables and r — 1 relations gq,. .., g,_2, Where g; = *T;1T;s +
*Tit11 51,2 + *Tip01Ti422. Consequently, we have

k(CU(X)) = n—(r—1)—2 = 2(r+1)—(r—1)—2 = r+1.
The anticanonical complex A% is given by the intersection trop(X) N Ax, where

Ax = conv(v;y, v, v 073 0<i<7r) and vf = <0, o ,O,:I:g) .
In particular, all vectors v;1,v;2 are vertices of A%, which implies that X is Fano. The
surface X has three singularities corresponding to the two elementary big cones o and
T = (vo1,v02). By Proposition 5.2, we know that X has Gorenstein index ¢(X) = a if
and only if r divides a - 2. Hence we have ¢(X) = r if r is odd and «(X) = /2 if r is
even. And indeed for r = 2 we obtain the only possible Gorenstein surface of that type,
compare Theorem 5.27.

Example 5.33. Let m = 1 and r > 2 as well as n;, = 2 and [;; = 1 for 0 <7 < r,
1 < j < ny, and consider the following ((r 4+ 1) x (2(r 4+ 1) + 1))-matrix:
—1 —1 11 00 ... 0 00
-1 -1 00 11 N
P = : S -
-1 -1 0 0 ... 0
0O r—1 -1 0 —1

=)
O = O
— o O

0
0 —
This matrix defines a log-terminal IK*-surface X with one elliptic fixed point and one
parabolic fixed point curve whose Cox ring has n +m = 2(r 4+ 1) 4+ 1 variables and r — 1
relations go, . .., gr—2, where g; = *T;1Tio + xTi 11T 12 + ¥ T4 21T 0,2. Consequently, we
have

k(Cl(X)) = n+m—-—(r—1)—2 =2r+1)+1—-(r—1)—-2 = r+2.
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The anticanonical complex A% is given by the intersection trop(X) N Ax, where

Ax = conv (v, Vo, v 0,3 0<i<r) and v, =(0,...,0,—7r).
In particular, all vectors v;;,v;2 are vertices of A5, which implies that X is Fano. By
Proposition 5.2, we know that X has Gorenstein index «(X) = «a if and only if r divides
a-2. Hence we have «(X) = rif r is odd and «(X) = /2 if r is even. And indeed for r = 2
we obtain the only possible Gorenstein surface of that type, compare Theorem 5.28.
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6 Complexity-one Fano 7T-varieties with Picard number
one

In this chapter we provide effective bounds and classification results for rational Q-
factorial Fano varieties with a complexity-one torus action and Picard number one de-
pending on the invariants dimension and Picard index. The results of this chapter are
already published in |28, Sections 2 and 3] and [30].

6.1 Divisor class group and Picard group

Let X be a variety with a complexity-one torus action and let Pic(X) be its Picard group.
The Picard index of X is defined as the index p := [Cl(X) : Pic(X)] of the Picard group
in the divisor class group Cl(X) of X. Furthermore, the Picard number denotes the rank
of the Picard group Pic(X). Note that in case of Q-factorial (rational) varieties this is
always the rank of the divisor class group Cl(X).

For this chapter we assume X to have Picard number one. Then the divisor class group
is of the form
Cl(X) = ClIX)" & CUX) ¢ Za ClX)",

where C1(X)! denotes the torsion part of C1(X) and C1(X)? = CI(X)/CI(X)!. We briefly
recall the situation of the constructions 2.10 and 2.20 in this special case. There is a matrix
P and a sequence A satisfying all assumptions of 2.10 such that CI(X) = Z"™™ /im(P*)
and the positively Cl(X)-graded ring R(A, P) = K[T};, Sk|/{(g:;; 0 <1 <1 —2) is the Cox
ring of X. The grading of R(A, P) is given by

deg(T};) = w;;, 0<i<r1<j<n,, deg(Sk) = ug, 1<k<m,

where w;;, uy € Z~o® C1(X)". Note that any n+m — 1 of these degrees generate Cl(X)
as a group. The Cl(X)-grading defines a diagonal action of H := Spec K[K]| on K"*™.
By construction

X = V(g;0<i<r—2) = SpecR(A, P)
is invariant under this H-action. The open set K"\ {0} allows a geometric quotient of
this H-action which is denoted by p: K"*™\ {0} — Z’, where the toric variety Z’ is a fake
weighted projective space in the sense of [35]. In the special case of Picard number one,

each §-face is relevant. Hence, we have a geometric quotient p: X — X of the embedded
open subset X := X \ {0} on X.

X K™\ {0}
Lo

In this setting X has dimension dim(X) = n+m —r and the torus of X is given by the
stabilizer of X under the action of the maximal torus 7" of Z'.
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Furthermore, X is uniquely determined by its Cox ring (as Cl(X)-graded ring), since
® = {Q>¢} is the only possible §-bunch. This justifies the notion X = X (A, P).

As already mentioned, in the toric situation, these varieties correspond to the fake
weighted projective spaces as defined in [35] and the Cox ring is polynomial. In gen-
eral, X is a well-formed complete intersection in a fake weighted projective space. If the
divisor class group CI(X) is torsion free then X is a well-formed complete intersection in
a weighted projective space in the sense of [31].

Every element w € C1(X) can be written as w = w® +w® where w® € Z and w' € Cl(X)".
Furthermore, every T = (7;;,7;) € X C K" defines a point = € X by z := p(Z);
the points = € X are called Cox coordinates of z. We denote the set of all weights
corresponding to a non-zero coordinate of T by

Wf = {wij; fij # O} U {’U,k; fk # O}

Proposition 6.1. Let X = X(A, P) be a Q-factorial complete normal variety of dimen-
ston d with complexity-one torus action and Picard number one and set ; := deg(g;),
0 <i <r. Then the following statements hold:

(i) For any T € X, the local divisor class group CA(X,z) of x := p(T) is finite and
ged(w®; w € W) always divides the order of this group. If CI(X) = 7Z, then
|ICI(X, x)| = ged(w; w € Wz) holds.

(ii) The Picard group Pic(X) is free and the Picard index is given by
[CI(X) : Pic(X)] = lemgex(ged(w?®; w € Wy)) - |CL(X).

In particular |CI(X)!| is a divisor of [CI(X) : Pic(X)] and we have |[CI(X)!| <
[C1(X) : Pic(X)].

(iii) Let —Kx € CI(X) be the anticanonical class and dx = (—Kx)? its self-intersection
number. Then

_KX - Zzw”‘i‘zuk—z%a

=0 j=1
’78 7792
(;]le”+zuk ZVZ) IT:- OH] 1w [T, up - [CLX)H

(iv) The variety X is Fano if and only if the following inequality holds:

(r — 1) deg(go)" Zdeg gi)° ZZU}” +Zuk.

=0 j=1
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Proof. Let %(i, ) resp. Z(k) be a point in X, where the ij-th resp. (n + k)-th entry
equals 1 and all others are 0. Consider the minimal toric ambient variety Z satisfying
Cl(X) = CI(Z) and Pic(X) = Pic(Z). By choice Z(i, j) resp. Z(k) is a toric fixed point
which is equivalent to the existence of a full dimensional cone in the fan ¥;. Consequently,
by [21, Theorem VII. 2.16| the Picard group Pic(Z) is free, and so is Pic(X). According
to 1.17, see also |25, Corollary 4.9], we obtain

Pic(X) = ()(w; weWz) = [’ weWs),

zeX zeX

where the last isomorphy follows from the fact that Pic(X) is free. This proves assertions
(i) and (ii). The formula for —Kx as well as statement (iv) are special cases of |25,
Proposition 4.15 and Corollary 4.16]. Since X is embedded into a toric variety Z of
dimension n+m—1 with Cl(Z) = Cl(X) we will use toric intersection theory to determine
(—Kx)?=(—Kx)"" . Fixing a pair (s,t) with 0 < s <r, 1 <t < n, we first compute
the self-intersection number of the 1-class. By [5, Construction III 3.3.4] we obtain

1
[ D = o
(3,5)#(s,t) [CI(Z) : <wst>]
1

wg; - [CUZ)|
= H wy; H uf) - 1t
()#(st) k=1

This implies
1

[T- oH] 1“’ [Tz wi - ICU2)|

With this result we can compute (—Kx)"™™~" by using again toric intersection theory.

]ln-l—m—l o

r n+m—r
(= Kx)™m = ZZ@U” +Zuk Z%) Yo Yo

=0 j=1
r n+m-—r

- Zzwl]+zuk Z'YZ> fygfyr ) ]ln-‘rm 1
1=0 j=1
: ’ 78 .. .70_2

= ;lewz] +Zuk 271> H;:O ;‘1:1 w% .HZZZI ug . |C1(Z)t|

]

Corollary 6.2. Let X be a Q-factorial complete normal variety with complexity-one torus
action and Picard number one. If X is locally factorial, then the divisor class group C1(X)
is free.
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The following example shows that one can use Proposition 6.1(iv) to create series of Fano
varieties by altering the torsion part of the divisor class group CI(X):

Example 6.3. Set lo; = 7, log = 1, l1; = 5 and Iy = 2 as well as w); = 1, wl, = 3,
wl;, = 2 and w9, = 5. These data define one single Cox ring relation of the form gy =
TiToo + TP, + T3, Since we have

w81+w82+w?1+w31 =11 > 10 = deg(go)o,

one can use these data to create Cox rings of Fano varieties. We provide some possible
Cl(X)-gradings, given by the matrices ); and the associated P-matrices P;, defining del
Pezzo K*-surfaces with fixed grading in the free part of the divisor class group and varying
torsion part of the class group CI(X)":

-7 =150
Qi = (1 3 2 5), P =1|-7 -10 2], Cl(X,) =7;
-8 -1 3 1
L3 9 5 -7 -1 50
Qs = (6 51 T>’ P,=| -7 =10 2|, CliXy) =ZeZ/3Z;
-10 -1 4 1
L3 9 5 -7 -1 50
Qs = (§ 13 §>, Pa=|-7 -10 2], Cl(X3) =Z D Z/)IZ:;
-9 0 21
L3 9 5 -7 -1 50
Q) = (6 19 6)’ P,=|-7 —-10 2|, CQCUXy=Za7Z/11Z;
-1 0 31
L3 9 s -7 -1 50
Qs = (6 51 g), P, =|-7 -1 0 2], ClIX;5)=Zc7Z/13Z;
-13 0 4 1
L3 9 s -7 -1 50
—4 -3 4 1

Note that in this situation not every group of the form Z @& Z/kZ, k € N, can be
realized as a divisor class group.

In Example 6.3 the numbers ¢; := ged(li, ..., lin,) are pairwise coprime, namely ¢y =
1, /1 = 2 and ¢, = 5. This in an essential requirement for varieties with a free divisor
class group Cl(X). Example 6.3 also shows that this is not sufficient to ensure that
CIl(X) has no torsion. If the numbers ¢; are not pairwise coprime, then there is always
non trivial torsion in the divisor class group as the following lemma shows, whereas the
reversed implication does not hold.

Lemma 6.4. Set (; := ged(li1, ..., Lin;). Then all numbers ged ({5, ¢;), where 0 <i # j <
r, divide |C1(X)!| and the Picard index p. In particular this holds for lem;z;(ged(4;, (;)).
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Proof. The divisor class group Cl(X) is isomorphic to Z"*™ /im(P*) where P* is dual to
P: 7™ — 7t =1 given by a matrix of the form

—ly L 0 0

P = ,
~lp 0 ... [ 0
do dy ... d, d

with I; = (Lo, - . ., lin,) and some integral block matrices d; and d’. Consequently, |C1(X)?|
is the product of all elementary divisors of P which implies that ged(¢o,¢;) divides
|ICI(X)f|. By an elementary row transformation we obtain the analogous result for
ged(l;,¢;), where 0 < 4,5 < r, i # j. Since |CI(X)!| divides the Picard index p, the
assertion follows. ]

Corollary 6.5. Let C1(X) be free. Then the numbers {; = ged(l;, ..., lin,) are coprime.

Example 6.6. Consider the surface X with Cox ring R(X) = K[To1, To1, Th1, T12]/{(9)
where g = T# Tos + T + T3, (surface number 7 of 6.18). Then we have p = 3 and the
P-matrix as well as the grading matrix are given by

-2 =1 3 0
P=1[-2 -10 3], Q:(
-3 -1 2 2
with Cl(X) = Z x Z/37Z. For x € X, with 7 = cone(vgy, vo2) we have a trivial local class
group. For xz € X,+ with 0~ = cone(vgy, v11,v91) Or 07 = cone(vgz, V11, V1), We have

Cl(X,z) = Z/3Z.

Remark 6.7. One can even prove that lemo<j<, ([ [;; ged(4;, £5)) divides |C1(X)'|. This
is due to the fact that the product of the first n elementary divisors of P equals the
greatest common divisor of all (n x n)-minors of P. Consider for example the surface X
with Cox ring K[Tyy, Th1, To1, S1]/{g) and g = T +T# +T% (surface number 10 in 6.18).
In this case we have u = 4 and the P-matrix as well as the grading matrix are given by

Sl =

11
12

[

—2.2 00 1111
P=(-2020|, 0=|T1T10
-3 111 0110

and we obtain CI(X,z) & Z/27 x 7./27 if © € X,- with 0~ = cone(vg, v11,v21). Note
that C1(X) = Z x Z/27. x Z./27.. In particular, the torsion part of the divisor class group
is not cyclic.

6.2 Effective bounds

Since normal complete rational Fano varieties with a complexity-one torus action are
uniquely determined by their Cox rings, one can classify these varieties via their Cox
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rings. In this section we will state effective bounds on the parameters ;;, wy;, u) and

r for the special case of Picard number one, depending on the invariants dimension and
Picard index. These can be used to compute concrete classification lists, which is done
in the next section.

Toric varieties with Picard number one correspond to fake weighted projective spaces as
defined in [35] and the Cox ring is polynomial. In case of a free divisor class group one gets
the well known weighted projective spaces. Particularly, these toric varieties are all Fano.
Hence, we concentrate on non-toric (Fano) varieties with complexity-one torus action and
Picard number one and show that for fixed dimension d and fixed Picard index p there
are only finitely many possibilities for the corresponding Cox ring.

First we consider the case ng = ... = n, = 1, that means each relation g; of the Cox
ring R(X) depends only on three variables. Then we have n = r + 1 and consequently
m = d — 1. Furthermore, we may write T; instead of T;; and w; instead of w;;. In this
setting, we obtain the following bounds for the numbers of possible varieties X (Fano or
not).

Proposition 6.8. For any pair (d, u) € 72, there is, up to deformation equivalence, only
a finite number of complete d-dimensional varieties with Picard number one, Picard index

[CI(X) : Pic(X)] = p and Coz ring of the form

K[To, ..., Ty, Sty ) /AT + ain T + i Tl 0 < i <r —2).
In this situation we have r < p + &(pu) — 1 where (p) denotes the number of primes
smaller than p. Moreover, for w9 € Z~o and u} € Zi~q, where 0 < i <r, 1 <k <m, and
the exponents l; one has

0 0
Li<p, —w <p, w <o

Proof. Consider the total coordinate space X C K™+ and the quotient p: X = X as
well as the points Z(k) € X having the (r + k)-th coordinate one and all others zero.
Set z(k) := p(Z(k)). Then ) divides the order of the local class group CI(X,z(k)). In
particular, we have u < p.

For each 0 < ¢ < r, fix a point ¥(i) = (¥y,---,Y,,0,...,0) in X such that y, = 0 and
y; # 0 for i # j, and set y; := p(7(i)). Then we obtain

ged(wy, j #14) | |CUX, y(4))].

By Lemma 6.4 we have lem;;(ged(l;,1;)) | |CI(X)!|. Now consider I; such that I, =
lemyzi(ged(ls, ;) - 1. Then the homogeneity condition lyw) = ljw) gives Ij | w) for all
j # i and consequently I | ged(w, j # 4). Since l; = Ij-lemjs;(ged(l;, I;)) we can conclude
l[; < p by using the formula

[CI(X) : Pic(X)] = lemgex(ged(w®; w € Wy)) - |CI(X)Y|
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of Proposition 6.1(ii). Since the I/ are pairwise coprime, we obtain Ij---I. | 4° and
lo---1. | u, where 74° := deg(go)° = Liw}. From lyw] = [;u) we deduce that

0 0 0 0 0
L wy o wgeeewi g ged(wg, ., wig)
li=lo—5 = lo—3 I U oy = M
i wy - Wy ged(wg, - -, wy)

where 1 < n; < u. In particular, the last fraction is smaller than p. All in all this gives

WO — W eedluguw?) ged(wy, ..., wl_,) god(ul )
O ged(wd, w?) ged(w, wl,wy) T ged(wy,. .., wd_;) 055 Hr—1
S Iurfl = NT-

Analogously, we obtain the boundedness for all w?. Now let ¢ be the number of all [

being greater than one. Since all I}, 0 < i < r, are coprime, ¢ is bounded by &(u), i.e.
the number of primes smaller than u. To avoid the toric case we assume [; # 1 for all
0 < i < r. Consequently, if [ = 1, then there is at least one 0 < j < r such that
ged(l;, 1) > 1. Since ged(l;,1;) divides p, we get r + 1 — g < p as a rough bound. All in
all obtain get r+1 = r+1—q+q < p+E&(n). O

Let X be a normal complete rational variety coming with a complexity-one torus action
of T'. Consider the T-invariant open subset X consisting of all points x € X having finite
isotropy group. According to [50, Corollary 3| there is a geometric quotient q: Xy — Xo/T
such that X /T is irreducible and normal, but possibly not separated. The property of the
orbit space Xy/T being separated is reflected in the Cox ring relations by the condition
that each monomial depends on only one variable, e.g. surface number 3 in Theorem 6.18;
see [29, Theorem 1.2]. Geometrically, this means that every orbit is contained in the
closure of either exactly one maximal orbit or of infinitely many maximal orbits. For such
varieties we have the following general finiteness statement:

Theorem 6.9. The number of d-dimensional normal complete rational varieties of Picard
number one with a complexity-one torus action of T and Picard index p such that Xo/T
is separated is finite.

Proof. Let X be a variety as required in the assertion. Then each monomial of the Cox
ring relations depends on only one variable, i.e. n; = 1 for 0 < i < r; for details see |29,
Theorem 1.2]. Consequently, Proposition 6.8 provides bounds for the discrete data such
as the non torsion parts of the weights w% and u), the exponents /;; and the number of
Cox ring relations r. Since |C1(X)*| < p holds, the number of possibilities for the torsion
part of the grading is also restricted which implies the assertion. O]

Theorem 6.10. Let X = X (A, P) be a complezity-one Fano variety with Picard number
one. Fiz the dimension d = dim(X) = m + n + r and the Picard index p = [C1(X) :
Pic(X)]. Then the number of Cox ring relations r, the free part of the degree of the
relations 7°, the weights w?j, uy and the exponents l?j where 0 < i <r, 1 <j<n,; and
1 <k <m, are bounded. In particular, the following effective bounds hold:

up < p for1<k<m and |CUX)" < p.
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Moreover, the handling of the remaining data can be organized in five cases, where &(x)
denotes the number of primes smaller than x.

(1)

(i)

(iii)

(i)

(v)

Letr=0o0rr=1. Thenn+m <d+ 1 holds and one has the bounds

w?j < pu for0<i<randl<j<n,.

The Picard index is given by

po= lem(wy,up; 0<i<r,1<j<n;,1<k<m)-|ClX)|.

Letr > 2 andng=1. Thenr < u+&p)—1,n=r+1and m =d—1 hold and
one has

wh < ply da | p for0<i<r, A% <ot
The Picard index is given by
po= lem(ged;(wyy; i # j),up; 0 <i<r1<k<m)-|CIX)".

Letr >2,ng>ny =1andlyy > ... >l > 2. Thenr < p+ £(6du) — 1 and
ng +m = d hold and one has the bounds

wdy, .. wd, <, lo, - s lon, < 6dp, 7P < 6dp,

Ong —

wd, < 2du, wy, < 3du, wh, Iy < 6dpy for1<i<r.

The Picard index is given by

po= lem(wgy, ged(wyy, ... why),ugs 1< j <ng,1 <k <m)-|CIX)"].

Letngy >mng =1 andlyy > ... > 11 > 2. Thenr < p+E&2(d+ 1)p) — 1 and
no+ni1+m=d+1 hold and one has the bounds

w?j < u fori=0,1and1<j<mny, wy, < (d+ 1)y,

P, w?j,lij < 2(d+1Dp for0<i<r and1l<j<n,.

The Picard index is given by

po= lem(wy,up; 0<i<1,1<j<n;, 1 <k<m)-|CIX)"|.
Let ny > 1 and let s be the mazimal number with ng > 1. Assume lgi11 > ... >
l;y > 2. Then we have s < d, r < p+&((d+2)p)+d—1 and ng+...+ns+m =d+s
and the bounds

w < p, for0<i<s, 40 < (d+2)u,

w?j,lij < (d+2)p for0<i<randl<j<mn,.

The Picard index is given by

po= lem(wy,up; 0<i<s,1<j<n;1<k<m)-|CIX).

Note that assertion (i) and (ii) do not require the Fano condition.
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The remaining part of this chapter is devoted to the proofs of the main statements of this
chapter. To prove Theorem 6.10 we need the following essential lemma.

Lemma 6.11. Consider the ring K[T;;; 0 <1 <2, 1 < j < n[Sh,...,Sk/(g), where
ng > ny > ng > 1 holds and let K be a finitely genemted abelian group of the form
K = 7 @ K with torsion part K. Suppose that g is homogeneous with respect to the
K-grading of K| ,],Sk] given by deg Ty = wi; = wiy +wj; € K with w); € Zso and

deg Sk =: up = ul + ut, € K with u} € Z~o, and assume

deg(g ZZ@U” + Zu

=0 j=1

Let u € Zi~1, assume w?j < p whenever n; > 1,1 < j < n; and ug <pforl <k<m
and set d == ng+mny+no+m—2. Depending on the shape of g, one obtains the following
bounds.

(i) Suppose that g = noT3* - - T, fomg + T 4o T2 with ng > 1 and coefficients n; € K*

Ong

holds. If we have l1; > lo1 > 2 and ged(lyy,la1) | p, then

wly < 2dp, wh < 3dp, la, o1, deg(9)° < 6dp.
[f lll = lQ]_ Z 2, then
lll ;w?1 7l21 7w(2]1 7deg<g)0 S L.

(ii) Suppose that g = neT3" - - LT +m T - LTiim 1, T2 with ny > 1 and coefficients

Ono 1Iny

n; € K* holds and we have lyy > 2. Then
wy < (d+ 1), deg(9)” < 2(d+ Dp.

Proof. We prove (i). Set for short ¢ := (ng + m)u = dp. Then, using homogeneity of g
and the assumed inequality, we obtain

=0 j=1

First have a look at the case [, > Iy > 2. Plugging this into the above inequalities,
we arrive at 2w, < ¢+ w9, and wd; < ¢+ w};. We conclude w? < 2¢ and w9, < 3c.

Consequently, we obtain
deg(9)? < c+w}; +uwd, < 6c=6du.
If we have [j; = Iy, the homogeneity condition l1;w?; = lyjw}; gives us w?; = wd;. Thus

we have ged(wd;, wd,) = w? = w9, | u and by assumption ged(ly1,lo1) = log = l11 | p.
Consequently, I11,w?),lo, w9, deg(g)° < p holds.
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We prove (ii). Here we set ¢ := (ng +n; + m)u = (d+ 1)u. Then the assumed inequality
gives

loywd, = deg(yg ZZU}”-‘FZU +wd, < c+uwd.

=0 j=1

Since we assumed lo; > 2, we conclude wd; < ¢. This in turn gives us deg(g)® < 2¢. [

Proof of Theorem 6.10. As before, we denote by X C K™™ the total coordinate space
and we consider the quotient p: X — X.

We first discuss the case that X is a toric variety. Then the Cox ring is a polynomial ring,
R(X) =IK[Si,...,Su]. Foreach 1 <k < m, consider the point T(k) € X having the k-th
coordinate one and all others zero and set (k) := p(Z(k)). Then, by Proposition 6.1, the
order of the local class group C1(X, z(k)) is divisible by u. Together with Proposition

6.1(ii) we obtain u) < u for 1 < k < m and |Cl(X)?| < u which settles assertion (i).

Now we treat the non-toric case, which means » > 2. Note that we have n > 3. The case
ng = 1 is done in Proposition 6.8, which proves assertion (ii). Hence, we are left with
nog > 1. For every i with n; > 1 and every 1 < j < n;, there is the point Z(i, j) € X with
ij-coordinate Tj; equal to one and all others equal to zero, and thus we have the point
x(i,7) == p(@(i,7)) € X. Moreover, for every 1 < k < m, we have the point (k) € X
having the k-coordinate Si equal to one and all others zero; we set z(k) := p(Z(k)).
Proposition 6.1 provides the bounds

w?jg,u, up < p for mn;>1,0<i<r 1<j<n;,1<k<m. (7)

Let 0 < s < r be the maximal number with ng > 1. Then g, is the last polynomial
such that each of its three monomials depends on more than one variable. For any ¢ > s,
we have the “cut ring”

Rt = [ Z]?Sk] / <907"->gt72>

where 0 <7 < t,1 <75 < n;, 1 <k < m and the relations g; depend on only three
variables as soon as i > s holds. For the free part of the degree 7° of the relations we
have

(r=17" = (t=17" + (r—1t)°
(t— 1)’70 + ey, 1w,?+11—|— co T Ly
N Zu

=0 j=1
t

m
_ 0 0 0 0
= E E Wi; + Wypgq+ .o+ wy + E Uy .
i=1

i=0 j=1
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Note that the inequality is derived from the Fano condition of Proposition 6.1(iv). Since
liiw?, > wf holds in particular for ¢t + 1 < i < r, we derive from this the inequality

t n; m
e (e e ) o

i=0 j=1

To obtain the bounds in assertions (iii) and (iv), we consider the cut ring R; with t = 2 and
apply Lemma 6.11 and Proposition 6.1; note that we have d = ng+mny +mn,+m —2 for the
dimension d = dim(X') and that ly; > 2 is due to the fact that X is non-toric. The bounds
wi), Ly < 6dp for 3 < i < r in assertion (iii) follow from 7 < 6dp. Similarly w;,l;; <
2(d+ Dp for 0 < i <r, 1 <j<mn;in assertion (iv) follow from 7° < 2(d + 1)u. We still
have to prove the restriction for the number of relations, which means bounding r. Recall
from Lemma 6.4 the definition ¢; := ged(l;1, . . ., lin,) and set ¢; = lemo<jzi<,(ged (45, £5)) 0.
Then £, ..., 0. are coprime. For i > 1 we have n; = 1. Thus, analogously to the proof of
Proposition 6.8, we obtain r +1=r+1— ¢+ q < p+ £(6du), where ¢ is the number of
¢; that are greater than one and satisfy n; = 1. For the bound in assertion (iv) the same

argument yields r + 1 =r+1—q¢+q¢ < u+£2(d+ 1)u).

To obtain the bounds in assertion (v), we consider the cut ring R; with ¢ = s. Using
n; = 1 for i > ¢t 4+ 1 and applying the inequalities (7) and (8), we can derive an upper
bound for the degree of the relation as follows:

d+t

We have w;l;; < 7° for any 0 < ¢ < 7 and any 1 < j < n;, which implies that all w],
and [;; are bounded by (d 4 2)u. Since ng, ...,ns_; > 1 holds, the number s is bounded
by s = 2s— (s —1)—1 < d. Consequently, we obtainr+1=r+1—-s—qg+s+q <
pw~+E((d+ 2)p) + d, where g is defined as above.

Finally, we have to express the Picard index p in terms of the free part of the weights w?j,
u? and the torsion part C1(X)! as claimed in the assertions. This is a direct application
of the formula of Proposition 6.1. O

As a consequence we obtain restricting statements about the number §(d, u) of different
deformation types of Q-factorial d-dimensional Fano varieties with a complexity-one torus
action, Picard number one and Picard index . In the toric situation 6(d, 1) is bounded
above by udQ. For the non-toric case we get the following asymptotic results:

Theorem 6.12. For fized d € Z~q, the number §(d, 1) is asymptotically bounded above
by ,uA“2 for a constant A > 1 arbitrarily small, and for fived p € Zi~q, it is asymptotically
bounded above by dP¢ with a constant B > 3 arbitrarily small.

Proof. Theorem 6.10 provides bounds for the exponents and the number of relations as
well as for the free part of the weights and the torsion part of CI(X). Since we have
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|C1(X)!| < p the possibilities for the torsion part of the weights are also restricted. One
computes that the number §(d, p) of different deformation types is bounded above by

Mu2+3u+§(u)2+§(6du)+5d(6 d M)2u+2§(6dp)+3d—2

which leads to the results of Theorem 6.12. O

We conclude the section with discussing some aspects of the not necessarily Fano varieties
of Proposition 6.8. First we consider varieties with a free divisor class group satisfying
ng =...=mn, = 1 and thus rings R of the form

l; l; lito, .
K[To, ..., T, 51, .., Sl [ iy + aiiroTi ' + i 1055 0 <i <r —2).

Since C1(X) is free, we will write w;;, ux € CI(X) instead of wy);, uy.

Proposition 6.13. Suppose that the ring R as above is the Cox ring of a non-toric variety
X with CI(X) = 7Z. Then m > 1 and p = [C(X) : Pic(X)] > 30. Moreover, if X is a
surface, then m =1 and w; = 17 y---1,.

Proof. The homogeneity condition [;w; = [;w; together with the condition ged(l;, ;) =1
for 0 < i # 7 < r, which ensures a free divisor class group, gives us [; | gcd(w?; Jj#i).
Moreover, every set of m + r weights w; has to generate the class group 7, so they must
have greatest common divisor one. Since X is non-toric, I; > 2 holds and we obtain
m > 1. To proceed, we infer ly---1. | p and ly-- -1, | degg; from Proposition 6.1. As a
consequence, the minimal value for p and deg g; is obviously 2 - 3 -5 = 30. Note that if
X is a surface we have m = 1 and ged(w;;0 < ¢ < r) = 1. Thus, Liw; = ljw; gives us
deggi =lo--- 1, and w; = ;7 g--1,. O

The bound [C1(X) : Pic(X)] > 30 given in the above proposition is even sharp; the surface
discussed below realizes it.

Example 6.14. Consider X with R(X) = K[Ty, Ty, Ty, S1]/{g) with g = TZ + T} + Ty
and the grading

deg(Ty) = 15, deg(Ty) = 10, deg(Ty) = 6, deg(S)) = L.

Then we have ged(15,10) = 5, ged(15,6) = 3 and ged(10,6) = 2 and therefore [C1(X) :
Pic(X)] = 30. Further X is Fano because of

deg(g) = 30 < 32 = deg(Tp) + deg(T7) + deg(T3) + deg(5h).

Finally, we present a couple of examples showing that there are also non-Fano varieties
with a complexity one torus action having divisor class group Z and maximal orbit space
P;.
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Example 6.15. Consider X with R(X) = K[Ty, Ty, T, S1]/{g) with g = T2 + T? + Ty
and the grading

deg(TO) = 21, deg(Tl) = ]_4, deg(Tg) = 67 deg(Sl) = 1.

Then we have ged(21,14) = 7, ged(21,6) = 3 and ged(14,6) = 2 and therefore [C1(X) :
Pic(X)] = 42. Moreover, X is not Fano, because its canonical class Ky is trivial

Kx = deg(g) — deg(1p) — deg(11) — deg(1>) — deg(S1) = 0.

Example 6.16. Consider X with R(X) = K[Ty, T}, T», S1]/{g) with g = T¢ + T} + T}!
and the grading

deg(To) = 33, deg(Ty) = 22, deg(Ty) = 6, deg(S;) = 1.

Then we have ged(22,33) = 11, ged(33,6) = 3 and ged(22,6) = 2 and therefore [C1(X) :
Pic(X)] = 66. The canonical class x of X is even ample:

Kx = deg(g) — deg(Ty) — deg(T1) — deg(Ts) — deg(S;) = 4.
The following example shows that the Fano assumption is essential for the finiteness

results in Theorem 6.10.

Remark 6.17. For any pair p, ¢ of coprime positive integers, we obtain a locally factorial
K*-surface X (p,q) with C1(X) = Z and Cox ring

R(X(p,q)) = K[Ttn, Toe, T, T5] / (9), g = TnTh '+ T{ + 1%

the Cl(X)-grading is given by deg(Ty;) = deg(Tp2) = 1, deg(71) = p and deg(T) = ¢
Note that deg(g) = pq holds and for p,q > 3, the canonical class Kx satisfies

Kx = deg(g) — deg(To1) — deg(To2) — deg(T1) — deg(T2) = pg—2—-p—q > 0.

6.3 Classification results

In the subsequent theorems we list non-toric complexity-one Fano T-varieties with Picard
number one. The Cox rings are described in terms of generators and relations and we
specify the Cl(X)-grading by giving the degrees of the generators. Additionally, we list
the degree of the Fano varieties dx := (—Kx)? and the Gorenstein index ¢(X), i.e. the
smallest positive integer such that ¢(X) - Kx is Cartier.
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Theorem 6.18. Let X be a non-toric Fano surface with an effective IK*-action such that
rk(Cl(X)) = 1 and [CI(X) : Pic(X)] < 6 hold. Then its Cox ring is precisely one of the
following:

[CI(X) : Pic(X)] = 1

No. R(X) (wy,...,wy) dx ClI(X) LX)
1 KM,...,T/OT3+ T3+ T8 (1,1,2,3) 1 Z 1

[CI(X) : Pic(X)] = 2

No. R(X) (wy,...,wy) dx Cl(X) L(X)
2 K[T,...,TW/{(T}Te+ T3 +T7) (1,2,2,3) 2 Z 1
5 K[T,...,TW/(hT3+ Ty +TF)  (5512) 1 7.97,)27. 1

[CI(X) : Pic(X)] = 3

No. R(X) (wy,...,wy) dx ClI(X) L(X)
4 K[T,...,T)/(TPTy+ T3 + T (1,3,2,3) 3 7 1
5 K[T,...,T)/(TT3+ Ty +T2) (1,3,2,5) 1/3 7 3
6 K,..., T/ (TWT+Ty+TF (1,3,2,5) 1/3 Z 3
7 K[T,..., T/ (T3 + T3 +TF)  (1135) 1 7.97,)37. 1
[CL(X) : Pic(X)] = 4
No. R(X) (wr, ..., wy) dx C1(X) L(X)
8§ K[Ty,..., Ty /(T}y + T3+ T2 (1,4,2,3) 4 7 1
9 K[T,...,.Ty|/{(TPTo+T5 +T7) (1,4,2,5) 1 Z 2
10 K[Ty, Ty, Ty, Sy T2 + T2 + T2) (%ﬁé) 2 Z®T2LOT)2T 1
11 KT,..., T/ +Ti+T7)  (1358) 2 YASYNEY) 1
12 KT,..., /(TP + T+ T8 (133%) 2 7.07)27. 1
18 K[,..., W/ (T3 + TS+ T7)  (2253) 1 7.07/27 2
14 KT T3 (%%ié) | ZaZ/22e7)27 1
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[CI(X) : Pic(X)] = 5

No. R(X) (wr,...,wy) dx Cl(X) 1(X)
15 KT,..., T /(T + T3 +T2) (1,5,2,3) 5 Z 1
16 K[Ty,...,T)/{(T?Ty + T3 +T2) (1,5,2,5) 9/5 Z 5
17 K[Ty,...,T)/{T?Ty + T3 +T2) (1,5,2,7) 1/5 Z 5
18 K[Ty,..., T /{(TITo + T4 +T5) (1,5,3,4) 1/5 Z 5
[C1(X) : Pic(X)] =6
No. R(X) (wq,...,wy) dx ClI(X) 1(X)
19 K[Ty,...,T) /(T}y + T3 +T2) (1,6,2,5) 8/3 7 3
20 K[Ty,...,Ty)/(TeTy +T] + T3 (1,6,2,7) 2/3 7 3
21 K[T,..., T /{TSTy + T4+ T3 (1,6,3,4)  2/3 7 3
22 K[Ti,...,Ty)/{T?Te + T3 +T7) (1,3,4,6) 2/3 Z 3
23 K[, T, T3, 5 /(TP + T3 + T3 (2231) 2/3 7 ®7/3Z 3
24 K[I,...,W/(0L+T;+ T3 (1235) 2 7@ 7/3Z 1
25 K[T,..., /(L + T+ T (212)) 3 7 ® 7/27 1
26 K[Th,..., /(T3 + T3 +T5) (3141) 1/3 7.0 7/27 3

where (X ) denotes the Gorenstein index, dx = (—Kx)?* and the parameter \ occurring
in the second relation of surface number 14 can be any element of IK*\ {1}. Furthermore,
the Cox rings listed above are pairwise non-isomorphic as graded rings.

Remark 6.19. Gorenstein surfaces are well known to have ADE-singularities which
are in particular canonical. Consequently, the surfaces of number 1 to 4 and 10 to
12, as well as 7, 8, 14, 15, 24 and 25 are canonical. Furthermore, in [51] all log-
terminal del Pezzo K*-surfaces of Gorenstein index up to 3 are classified. These are
exactly those surfaces whose maximal exponents of the monomials form a platonic triple
(L kD), (2,2,k), (2,3,3), (2,3,4) and (2,3,5). Comparing the surfaces listed in [51,
Theorems 4.9, 4.10| with the table above shows that the numbers 6, 9, 16 to 22 and 26
are not log-terminal. The resolution of these surfaces can be explicitly computed by using
the canonical resolution of 3.10.

The varieties listed so far might suggest that we always obtain only one relation in the
Cox ring if C1(X) is torsion free, i.e. C1(X) = Z. We discuss now some examples, showing
that for a Picard index big enough, we need in general more than one relation.
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Example 6.20. This is an example of a Fano K*-surface X with Cl(X) = Z such that
the Cox ring R(X) needs two relations. Consider the Z-graded ring

R = ]K[TOh To2, 11,75, T3]/<90= 91>7

where the degrees of Ty, Too, 11, 1o, Ts are 29,1,6,10, 15, respectively, and the relations
9o, g1 are given by

go = TonToo +T7 + Ty | g1 = Ny + T35 + T3 .
Then R is the Cox ring of a Fano K*-surface. Note that the Picard index is given by
[CI(X) : Pic(X)] = lem(29, 1) = 29.
Proposition 6.21. Let X be a non-toric Fano surface with an effective IK*-action such

that C1(X) = Z and [C1(X) : Pic(X)] < 29 hold. Then the Coz ring of X is of the form
R(X) = K[To, Too, Tr, ) (TR Ty + 11 + 13°).

Proof. The Cox ring R(X) is given by a ring R(A, P) as in 2.10 and, in the notation used
there, we have ng+...+n,+m = 2+r. This leaves us with the possibilities ngo =m =1
and ng = 2, m = 0. In the first case, Proposition 6.13 tells us that the Picard index of X
is at least 30.

Consider the case ng = 2 and m = 0. Then, the Cox ring R(X) is K[To1, T2, 11, - - ., T}
divided by relations

G =THTY +TH + T,  gi = QiprivaTl + Qupo Ti + i T,
where 1 < i <r — 2. We have to show that » = 2 holds. Set p = [CI(X) : Pic(X)] and
let v € Z denote the degree of the relations. Then we have v = w;l; for 1 < i < r, where
w; = deg T;. With wy; := deg Tpy;, Proposition 6.1 gives us

(7”-1)"}/ < Wo1 + Wo2 + Wy + ...+ Wy

We claim that wgy, and wgy are coprime. Otherwise they have a common prime divisor
p. This p divides v = l;w;. Since [y, ..., [, are pairwise coprime, p divides at least r — 1
of the weights wy, ..., w,. This contradicts the Cox ring condition that any r + 1 of the
r + 2 weights generate the class group Z. Thus, wy; and wpy are coprime and we obtain

p > lem(wor, wo2) = Wor - Wo2 > Wor + Woe — L.

Now assume that r > 3 holds. Then we conclude
1 1 1
27 < wor + wee +wi +wy +ws < M+1+’Y(l—+l—+l—)-
1 b2 3
Since the numbers [; are pairwise coprime, we obtain l; > 5, I > 3 and [3 > 2. Moreover,
liw; = ljw; implies [; | w; and hence l1l3l3 | v. Thus, we have v > 30. Plugging this in
the above inequality gives
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The Fano assumption is essential in this result; if we omit it, we may even construct
locally factorial surfaces with a Cox ring that needs more than one relation.

Example 6.22. This is an example of a locally factorial K*-surface X with Cl(X) = Z
such that the Cox ring R(X) needs two relations. Consider the Z-graded ring

R = ]K[TOI,TOZaT117T217T31]/<90791>7

where the degrees of Ty, Tho, Th1, 151,131 are 1,1, 6,10, 15, respectively, and the relations
Jo, g1 are given by

g = THTE + T3, + T3, g1 o= MY+ T5 + T3

Then R is the Cox ring of a non Fano K*-surface X of Picard index one, i.e. X is locally
factorial.

Theorem 6.23. Let X be a three-dimensional locally factorial non-toric Fano variety
with an effective two torus action such that C1(X) is of rank one. Then its Cox ring is
precisely one of the following.

No. R(X) (wy,...,ws) (—Kx)* CI(X)
1 K[Ty,...,Ts) /| (TP + T3 + T%) (1,1,2,3,1) 8 Z
2 K(Ty,....Ts) | (LT + TP+ T2)  (1,1,1,2,3) 8 Z
3 K[T\,....Ts) | (T5T3 + T + 72)  (1,1,1,2,3) 8 Z
4 K[Ty,...,Ts) /| (VT + T5Ty +T2)  (1,1,1,1,1) 54 Z
5 K[Ty,...,Ts) / (NT? + T5TF +T2)  (1,1,1,1,1) 24 Z
6 K[Ty,...,T5] /| (TWT3 + T3T3 + Ty (1,1,1,1,1) 4 Z
7 K[Ty,...,Ts) / (WT$ +T3T3 +T2)  (1,1,1,1,2) 16 Z
8 K[Ty,...,Ts) / (WT9 +T5Tp +T2)  (1,1,1,1,3) 2 Z
9 K[Ty,...,Ts) / (VTP + T3T3 +T2)  (1,1,1,1,3) 2 Z

The singular threefolds listed in this theorem are rational degenerations of smooth Fano
threefolds from [32]. The (smooth) general Fano threefolds of the corresponding families
are non-rational see [24| for no. 1-3, [11] for no. 5, [34] for no. 6, [54, 53] for no. 7 and [33]
for no. 8-9. Even if one allows certain mild singularities, one still has non-rationality in
some cases, see 23], [12, 47], [13], [10].
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Theorem 6.24. Let X be a three-dimensional non-toric Fano variety with an effective
two torus action such that Cl(X) is of rank one and [Cl(X) : Pic(X)] = 2 holds. Then
its Cox ring is precisely one of the following.

No. R(X) (wi,...,ws) dx  CUX)  uX)
1 K[, ..., Ts) (T} + T35 +T2) (1,2,2,3, 1) 27/2 Z 2
2 K[Ty,...,Ts)(TiTS + Ty + T2 (1,2,2,5,1) 1/2 Z 2
3 K[Ty,...,Ts|/(T3Ty + T35 + T2) (1,2,2,5,1) 1/2 7 2
4 K[T,..., T5) (T + T + T3) (1,2,2,3,2) 16 Z 1
5  K[Ty,...,Ts]/(T}TS + T3 +T?) (1,2,2,5,2) 2 Z 1
6  K[Tv,... Ts)/(T¥T, +T5 +T3) (1,2,2,5,2) 2 Z 1
7 K,...,Ts)/(TVT) + T35 + T2) (1,1,2,3,2) 27/2 Z 2
8§  K[Th,...,Ts|/(TWT) + T3 +T3) (1,1,2,5,2) 1/2 Z 2
9  K[I,...,Ts)/(T¥T] + T3 +T?) (1,1,2,5,2) 1/2 Z 2
10 K[Ty,...,Ts|/{(TVT3* + T3 + T?2) (1,1,4,6,1) 1/2 Z 2
11 K[Ty,..., Ts){(TPT] + T3 + T3 (1,1,4,6,1) 1/2 Z 2
12 KT,...,.T5|/ (W' + T3+ T7)  (1,1,4,6,2) 2 Z 1
13 K[Ty,...,Ts)/{TPTY + T3 +T?2) (1,1,4,6,2) 2 Z 1
14 K[, ..., Ts) /(TS + T3 +T3) (1,2,4,6,1) 2 v/ 1
15 K[Ty,...,Ts| /(T + T3 + T2 (1,2,4,6,1) 2 Z 1
16  K[Ty,...,Ts|/(TWT3 + T3 + T3) (2,2,2,3,1) 16 Z 1
17 K[Ty,...,Ts|/(T'T4 + Ty + T?) (2,2,2,5,1) 2 Z 1
18 K[y, ..., Ts)/(T?TS + T3 + T3) (2,2,2,5,1) 2 Z 1
19 KTy, ..., Ts|(T\T} + TsTy + T2)  (1,1,1,2,1)  81/2 Z 2
20  K[Ty,...,Ts)/(TVT3 + 13T+ T2)  (1,1,1,2,1)  5/2 Z 2
21 K[Ty,...,T5)/(T?T$ + T3T? +T9)  (1,1,1,2,1)  5/2 Z 2
22  K[Ty,...,Ts) (VT3 + T2Ty + T¢)  (1,1,1,2,1) 16 Z 1
23  K[Ty,...,Ts)/(TE + T3y +T2)  (1,1,1,2,1)  5/2 Z 2
24 KTy, ..., Ts)/(T¥T3 + T3Ty +T9)  (1,1,1,2,1)  5/2 Z 2
25  K[Ty,...,Ts)/(VT3 + T2Ty +T2) (1,1,1,2,2) 27 Z 2
26 K[Ty,...,Ts)/(TVT3 + T2TF+T28)  (1,1,1,2,2)  3/2 Z 2
27  K[Ty,...,Ts)/(TVT3 + TiTy + T2)  (1,1,1,2,2)  3/2 Z 2




6 COMPLEXITY-ONE FANO T-VARIETIES WITH PICARD NUMBER ONE 131

28  K[Ty,...,Ts)(T?Ty + 4Ty + T3)  (1,1,1,2,2)  3/2 Z 2
29  K[Ty,...,Ts)/(T5 + T¢Ty +T2)  (1,1,1,2,3) 8 Z 1
30  K[Ty,...,Ts)/(T3T3 + TiTy +T2) (1,1,1,2,3) 8 Z 1
81 K[Ty,...,Ts|/(TVT] +T3T3 +T2) (1,1,1,2,4) 1 Z 2
82  K[Ty,...,Ts)/{(TPTs + T3T3 + T2)  (1,1,1,2,4) 1 Z 2
88 K[Ty,...,T5) /(T +TST, + T2y  (1,1,1,2,4) 1 Z 2
84 K[Ty,...,Ts|/(TPTs + TSTy +T2)  (1,1,1,2,4) 1 Z 2
85  K[Ty,...,Ts|/(NT3 + TyTy + Ty (1,1,2,2,1) 27 Z 2
86  K[Ty,...,Ts)/(WT9 +T5TF +T9)  (1,1,2,2,1)  3/2 Z 2
87 K[Ty,...,Ts)/(NT3 + TyTy + T2y (1,1,2,2,2) 16 Z 1
38  K[Ty,...,Ts|/(NTy + TsT2 +T3)  (1,1,2,2,2) 6 Z 1
89  K[Ty,...,T5)/{(TPTS + 3T+ T3)  (1,1,2,2,2) 6 Z 1
40 K[Ty,...,Ts) /(T35 + 15T + T2y (1,1,2,2,3)  27/2 Z 1
41 K[y, ..., Ts) (T35 + T5T3 + T2)  (1,1,2,2,4) 32 Z 1
42 KT,...,T5)(TWTy + T3TF + T2)  (1,1,2,2,3) 4 7 2
48 K[, ..., Ts)/(WTY + TsT; +T2)  (1,1,2,2,4) 32 Z 1
44 K[Ty,...,Ts|/{TNTY + TsT) +T2)  (1,1,2,2,5)  1/2 Z 2
45 KT, ..., Ts)(TWT9 + T2T5 +T2)  (1,1,2,2,5)  1/2 Z 2
46 K[Ty,...,Ts)/(T¥Ty +T5T¢ +T2)  (1,1,2,2,5) 1/2 Z 2
47 K[, ..., Ts) /(T3 + T2T3 + T2) (1,1,2,2,5) 1/2 Z 2
48 K[, ..., Ts)(TPT9 + TsTf + T2y (1,1,2,2,5)  1/2 Z 2
49 K[Ty,...,Ts|/{T?Ty + T3T3 + T2) (1,1,2,2,5) 1/2 Z 2
50  K[Ty,...,Ts|/(TWTy + TsTy +T3)  (1,2,1,2,1) 48 Z 1
51 K[Ty,...,Ts|/(T?Ty + T2T, + T4)  (1,2,1,2,1) 27 Z 2
52 K[Ty,...,Ts|/(T2 + T3T2 +T2)  (1,2,1,2,1) 10 Z 1
53  K[Ty,...,Ts|/(T2 + ST, +T2)  (1,2,1,2,1) 10 z 1
54 K[Ty,...,Ts|(T3Ty + TSTy +T2)  (1,2,1,2,1) 10 Z 1
55  K[T,...,Ts|/{T¢Ty + TET, + TS (1,2,1,2,1)  3/2 Z 2
56  K[Ty,...,Ts)/(T?Ty + T2Ty +T2) (1,2,1,2,2) 32 Z 1
57 K[T,...,Ts)/(T?*T3 + TiTy +T3) (1,2,1,2,2) 6 Z 1
58  K[Ty,...,Ts|/(TiTy + TiT, + T2)  (1,2,1,2,2) 6 Z 1
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59  K[Ty,...,Ts|/{TiTy + TiT, +T2)  (1,2,1,2,3)  27/2 Z 2
60 K[Ty,...,Ts]/(T?T3 +T2T3 +T2) (1,2,1,2,4) 4 Z 1
61 K[Ty,...,Ts|/(T?T3 +T3Ty + T2) (1,2,1,2,4) 4 Z 1
62 K[Tv,...,Ts) (TS, + TSTy + T2)  (1,2,1,2,4) 4 Z 1
63  K[Ty,...,Ts|/(T}T3 + TiT3 + T2)  (1,2,1,2,5)  1/2 Z 2
64 K[Tv,... Ts)/(T¥T, + TiTP +T2)  (1,2,1,2,5)  1/2 Z 2
65 K[T,...,Ts| /(T8 + TSTy + T2)  (1,2,1,2,5)  1/2 Z 2
66 K[Tv,...,Ts)/(T¢h + T3Ty + T) - (1,2,2,2,1) 32 Z 1
67 K[T,...,Ts) /(T}y + 3T + TS  (1,2,2,2,1) 6 Z 1
68 K[Ty,...,Ts|/(T{Ty + T5T7 + T2)  (1,2,2,2,3) 16 Z 1
69 K[Tv,...,Ts) (T} + TsTE +T2)  (1,2,2,2,5) 2 Z 1
0 K[Ty,..., Ts)/(TYT3 + TiT3 +T2)  (1,2,2,2,5) 2 Z 1
71 K[, ..., Ts) (TP + TsTh + 12y (1,2,2,2,5) 2 Z 1
72 K[, ..., Ts) (T8 + T3 + T2)  (1,2,2,2,5) 2 Z 1
78 K[T,...,Ts) /(LT + T +T2)  (1,1,1,4,6)  1/2 Z 2
74 K,..., Ts) /[ (OT53T) + T + 12y (1,1,1,4,6)  1/2 Z 2
75 K,..., Ts) /(OTSTS + T + 12y (1,1,1,4,6)  1/2 Z 2
%6 KT,...,T5)/(IsTy + T; + T2)  (1,1,1,4,6)  1/2 Z 2
77 KT,..., 5| /(LTSTS + T; +T2)  (1,1,1,4,6)  1/2 Z 2
78 KT,..., Ts)/(TPT3T] + T3 + T2)  (1,1,1,4,6)  1/2 Z 2
79 K[T,...,Ts)/(TYT9T5 + T3 + T2)  (1,1,1,4,6)  1/2 Z 2
80 K[Tv,....Ts|/(TPT3T) + TP+ T2)  (1,1,1,4,6)  1/2 Z 2
81 K[T,...,T5)/ (LT + T+ T2 (1,1,2,2,3) 27/2 Z 2
82  K[Ti,...,Ts| /(T3 + T3 +T2)  (1,1,2,2,3)  27/2 Z 2
83  K[Ty,...,Ts)/(T?T2T3 + T+ T2 (1,1,2,2,3) 27/2 7 2
84 K[Ty,...,T5| /(T3 + T + T2)  (1,1,2,2,5)  1/2 Z 2
85  K,..., T/ (NTST; + T+ T2)  (1,1,2,2,5)  1/2 Z 2
86 K[Tu,..., Ts)/(I5T; + T+ T3)  (1,1,2,2,5)  1/2 Z 2
87 K[T,...,T5|/(WI3Ts+ Ty +T2)  (1,1,2,2,5) 1/2 Z 2
88  K[Ty,...,T5) (TPT3T5 + T +12) (1,1,2,2,5) 1/2 Z 2
89  K[Ty,...,Ts|(TPTSTs + TP+ T2)  (1,1,2,2,5) 1/2 Z 2
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90 K[T,....T5)/(T¥T3T2 + T + T2)  (1,1,2,2,5)  1/2 Z 2
91 K[Ty,...,Ts|(T}T5T5 + T7 + T2)  (1,1,2,2,5)  1/2 7 2
92  K[T,....Ts| /(YT + T+ T2)  (1,1,2,2,5)  1/2 Z 2
93  K[Ty,...,Ts|/(TNT,T5 + T3 +T2)  (1,1,2,4,6) 2 Z 1
94 K[I,....Ts)/(WT3Ty + T+ T2y (1,1,2,4,6) 2 Z 1
95 K[I,....Ts)/(IST; + TR+ T2y (1,1,2,4,6) 2 Z 1
96  K[Th,....Ts|/(DT3T? + T2+ T2) (1,1,2,4,6) 2 Z 1
97 K[I,....T5)/(TSTs + T3 + T2)  (1,1,2,4,6) 2 Z 1
98 K[T,...,Ts|/(TPTYTS + TP+ T2)  (1,1,2,4,6) 2 Z 1
99  K[Ty,...,Ts| (TS + T3+ T2)  (1,1,2,4,6) 2 Z 1
100 KTy, ..., Ts)(TPT5T2 + T3 +T2) (1,1,2,4,6) 2 Z 1
101 K[Ty,....Ts) (TS Ts + T3+ T2)  (1,1,2,4,6) 2 Z 1
102 K[Th,...,Ts) {(TYTSTs + T3 + T2y (1,1,2,4,6) 2 Z 1
1058 K[, ..., Ts)(TPT5Ts + T3 + T2)  (1,1,2,4,6) 2 Z 1
104 K[Ty,...,T5| (T3 + T; +T2)  (1,2,2,2,3) 16 Z 1
105 K[Ty,...,Ts|/(TY LTy + T+ 12)  (1,2,2,2,5) 2 Z 1
106 K[Ty,...,Ts|/(TV LTy + T+ 12)  (1,2,2,2,5) 2 Z 1
107 KTy, ..., Ts)(TSTyTs + TP +T2)  (1,2,2,2,5) 2 Z 1
108 K[Ty,...,Ts)/{(T\Ty + T2 + T2) (11333) 21 Z97/27 1
109 K[Ty,...,Ts)/(T\T$ + T3 + T} (53351) 8 Z®Z/2Z 2
110 K[Ty,...,Ts|/(TVT3 + T2 + T}) (5521%) 8 Z&7Z/27 1
111 KTy, ..., Ts| /(TS + T2 + T}) (58211) 8 Z®7Z)2Z 2
112 K[Ty,...,Ts|/(TWT5 + T2 + TY) (55311) 1 Ze7/2Z 1
118 K[Ty,...,Ts|/(TWT5 + T2 + TY) (553351) 1 ZoZ/22 1
114 KTy, ..., Ts)/(T¢T) + T2 +T3) (53321 4 ZeZ/2Z 1
115 K[Ty,...,Ts|/(T?T¢ + T2 +T3) (5132%) 4 7727 1
116 K[Ty,...,Ts|/(TVT5 4+ T35 + T2) (11231 4 ZeL]2Z 2
117 KTy, ..,T5]/(T +TITE+T2)  (55113) 8 Z®Z/2Z 2
118 K[Ty,....Ts| /(T3 + T3TE +T2)  (1141)) 2 7727 1
119 ]K[Tl,...,T5]/(T + T +T2)  (55112) 1 ZoZ/22Z 1
120 K[Ty,...,Ts) /(LT3 + T30+ T2)  (§:543) 1 ZeZ/2Z 1
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121 K[, ... Ts) (T3 + T3T3 + T2)  (§5113) 1 ZoZ/2Z 2
122 K[T,... T /(T3 + T3T3 +12)  (51553) 1 ZeZ/22 2
123 K[, ... Ts) (T8 + T5Ty +T2)  (55113) 1 ZeZ/2Z 2
124 K[,... T5) (T3 + T5Ta +T2)  (5146453) 1 ZeZ/2Z 2
125 K[, ... Ts) /(D + TsTy+ T2)  (§5111) 21 Z®Z/27. 2
126 K[Ty,....Ts) /(T + 5T+ T2) - (581718) 21 Z97/2Z 1
127 K[, ... Ts) /(TS + T+ T8 (§161h) 12 ZoZ/2Z 1
128 K[Ty,...,Ts) /(T3 + TsTP + T4 (11555) 2 Z®Z/22 2
129 K[T,... . Ts) /(TS + T3+ T2 (58171%) 2 7727 1
130 K[Ty,...,Ts)/(INTs + T3T3 +T2)  (§5112) 8§ Z®Z)27 2
181 K[, ... Ts) /(LT3 + TTE + T2 (§5112) 8§ Z&®7Z/27 2
152 K[, ..., Ts) /(T + 3T + T2)  (§5113) 1 ZoZ/2Z 1
138 KTy, .,T5]/<TT5+T3T5+T2> (55113) 1 ZeZ/2Z 2
134 K[Iy,...,Ts) /(LT + T3T3 + T2 (§5+13) 1 ZoZ/2Z 1
135 K[Iy,...,Ts) /(TS + T5T +T2)  (§5143) 1 ZeZ/2Z 2
136 K[Tv,....Ts) /(DT + T+ T28)  (§512¢) 8 Z&Z/2Z 2
137 K[, ... Ts) /(DT + T+ T2 (55631) 8§ Z&7Z/27 1
138 K[Ty,... . Ts) /(DT + T+ T2 (§5131) 8§ Z®Z/27 1
139 K[y, ..., Ts) /(LT + T+ T9)  (§5124) 1 ZeZ/2Z 1
140 K[y, ... Ts) /(DT + T+ T8 (55181) 1 Ze7/2Z 1
41 K[, ... T (TET + TR+ T9) (51530 1 ZoZ/2Z 1
142 K[Ty,... T/ (OWI3T3 + TR +TF)  (571551) 1 Ze7/2Z 1
143 K[, ... Ts)/(DT3T3 + TR+ T2)  (15123) 4 ZeZ/2Z 1
144 K[,... T /(DT + T+ T2 (55123) 4 ZOL]2Z 2
Ty To+T5Ty+T2
145 K[T1, .. Tel /{3y e yrs ) (ss1118) 16 zZez/222 2

where (X)) denotes the Gorenstein index, dx = (—Kx)? and the parameter \ occuring in
the second relation of surface number 145 can be any element of K* \ {1}. Furthermore,
the Cox rings listed above are pairwise non-isomorphic as graded rings.

The varieties no. 2,3 and 25, 26 are rational degenerations of quasismooth varieties from
the list in [31]. In [14] the non-rationality of a general (quasismooth) element of the
corresponding family was proved.
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For non-toric Fano threefolds X with an effective 2-torus action and Cl(X) = Z, the
classifications 6.23 and 6.24 show that for Picard indices one and two we only obtain
hypersurfaces as Cox rings. The following example shows that this stops at Picard index
three.

Example 6.25. This is an example of a Fano threefold X with Cl1(X) = Z and a 2-torus
action such that the Cox ring R(X) needs two relations. Consider

R = ]K[Tm, To2, T11, T2, To, T31]/<90, 91>

where the degrees of Ty, Toe, T11, T2, 151, T3, are 1,1, 3, 3,2, 3, respectively, and the rela-
tions are given by

go = T(;r)lTOZ + T1iT + T231, g1 = VATVATES T231 + T321'

Then R is the Cox ring of a Fano threefold with a 2-torus action. Note that the Picard
index is given by
[CI(X) : Pic(X)] = lem(1,1,3,3) = 3.

Finally, we turn to locally factorial Fano fourfolds. Here we observe more than one relation
in the Cox ring even in the locally factorial case.

Theorem 6.26. Let X be a four-dimensional locally factorial non-toric Fano variety with
an effective three torus action. Then its Cox ring is precisely one of the following.

No. R(X) (wy, ..., ws) (—Kx)*
1 KTy, ..., Te)/(TWTy + T3 + T%) (1,1,2,3,1,1) 81
2 K[Ty,...,Te){(TATY + T2 + T3) (1,1,2,5,1,1) 1
8 K[T,... Ts)/(T¥TY + T2+ T7) (1,1,2,5,1,1) 1
4 K[Ty,... T /(T Td + T3 4 T2) (1,1,1,2,3,1) 81
5  K[Ty,..., Ts)/(T\T2T$ + T3 + T2) (1,1,1,2,3,1) 81
6  K[Ty,...,Ts)/(TVT,TS + Tp + T2) (1,1,1,2,5,1) 1
7 K[, ..., T /(WT2T] 4+ T + T2) (1,1,1,2,5,1) 1
8  K[Ty,...,Ts)/{TLT3TS + T + T2) (1,1,1,2,5,1) 1
9 KTy, ..., Ts|/(WTyTs + Ty + T2) (1,1,1,2,5,1) 1
10 K[Ty,...,Ts){TETSTY + TP + T2) (1,1,1,2,5,1) 1
11 KTy, ..., T (TPT3T + T2 + T2) (1,1,1,2,5,1) 1
12 KT, ..., Ts) /(T\Ty + TsTy + T2) (1,1,1,1,1,1) 512
13 K[Ty,...,Ts)/{TyT2 + T5T7 + T3) (1,1,1,1,1,1) 243
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14 K[Ty,...,Ts)/{(TVT3 + 15T + T2) (1,1,1,1,1,1) 64
15 K[Ty,...,Ts)/(TWTy + T + T2) (1,1,1,1,1,1) 5
16  K[Ty,...,Ts)/{(TyTyd + T2T} + T2) (1,1,1,1,1,1) 5
17 KT, ..., Te) (T?TS + T3T3 4 T2) (1,1,1,1,1,1) 5
18 K[Ty,...,Ts)/{(TVT3 + T5T3 + T2) (1,1,1,1,2,1) 162
19 KTy, ...,Te)(T\T5 + TsT) + T3) (1,1,1,1,2,1) 3
20 K[Ty,...,Ts)/(TWT5 + TET} + T3) (1,1,1,1,2,1) 3
21 K[Ty,...,Te)(TNT5 + TsT + T2) (1,1,1,1,3,1) 32
22 K[Ty,..., Ts)/ (VTS + T3TE + T2) (1,1,1,1,3,1) 32
283 Kﬁh.ymmTTUJy”+W> (1,1,1,1,4,1) 2
24 K[Ty,..., Ts)/(TWT] + TST? + T2) (1,1,1,1,4,1) 2
25  K[Ty,...,Te){(T?Ty + T3T) + T2) (1,1,1,1,4,1) 2
26 K[Ty,...,Ts)/(NTT5T + T3 +T2)  (1,1,1,1,2,3) 81
27 K[T,...,Ts)/(DLTITE + T2+ 1¢)  (1,1,1,1,2,3) 81
28  K[,...,Te)/(NLTT, + T2+ 1¢) (1,1,1,1,2,5) 1
29  K[Ti,...,Te)/(VLT3Ty + TP + Tg)  (1,1,1,1,2,5) 1
30 K[Ty,...,Te)/(LT3T; + TP + Tg)  (1,1,1,1,2,5) 1
31 K[Ty,...,Tg|/(WLT{T + T2 +T2)  (1,1,1,1,2,5) 1
32  K,... Te)/(WT3T3T) + TP + 1)  (1,1,1,1,2,5) 1
38 K,... Te)/(NT3T3TH+ TP + 1) (1,1,1,1,2,5) 1
34 K[Ty,....Te)/(GTST3TE + TP + 12y (1,1,1,1,2,5) 1
35  K,... Te)/{(TPTE3T3TE + T2+ T¢)  (1,1,1,1,2,5) 1
36 KT, ... Ts) /(W Ts + TyT2 +T3)  (1,1,1,1,1,1) 243
37 K[Ty,...,Te)/(NTT? + T,73 +TF) (1,1,1,1,1,1) 64
38  K[Ty,...,Tg)/(NTT3 + T,T¢ +T5) (1,1,1,1,1,1) 5
39  K[Ty,...,Ts)(T'T,T3 + T3 + Tg)  (1,1,1,1,1,1) 5
40 K[Ty,..., Te)(TVT2T2 + TyT¢ +T9)  (1,1,1,1,1,1) 5
41 KTy, ..., Te)(T\T3TE + T213 + T2y (1,1,1,1,1,1) 5
42 K[Ty,..., Te|/(WLT + LT3+ T2)  (1,1,1,1,1,2) 162
48 K[T,... T /(NTwT{ + T, +T3)  (1,1,1,1,1,2) 3
44 KT, ... T /(NTTy + TATE+713)  (1,1,1,1,1,2) 3
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45 K[Ty,..., T /{WT3T3 + TyT2 + T3 (1,1,1,1,1,2) 3
46 K[Ty,..., Te|/{TWT3T3 + T3Td +T3)  (1,1,1,1,1,2) 3
47 K[T,..., Te){(T¥T2T2 + T\ + T3)  (1,1,1,1,1,2) 3
48  K[T,...,Te)/(NT3T3 + 3T+ T2) (1,1,1,1,1,3) 32
49  K[T,..., Te)/(NT3T3 + TyT2 +T2)  (1,1,1,1,1,3) 32
50 K[Ty,... Ts| /(DT +T3T8 +T3)  (1,1,1,1,1,3) 32
51 K[Ty,...,Ts| (VT4 + TyT2 +T2)  (1,1,1,1,1,3) 32
52  K[I,...,Te)/(NTyTS + T,T +T2) (1,1,1,1,1,4) 2
58  K[T,...,Te) /(TS + T3 +T2) (1,1,1,1,1,4) 2
54 K[Ty,...,Te)/(NT3TY + TyTY +T2)  (1,1,1,1,1,4) 2
55  K[Ty,...,Ts)/(WT2Ty + T3TP +T3)  (1,1,1,1,1,4) 2
56  K[Ty,... Te)/(NTSTH + TyTY +T2)  (1,1,1,1,1,4) 2
57 K[T,...,Ts)/(WT3Ty + T3P +12)  (1,1,1,1,1,4) 2
58  K[Ty,...,Ts)/(TPT3TS + TyTY +12)  (1,1,1,1,1,4) 2
59  K[Ty,...,Te)/(TYT3TE + T3TP +T2) (1,1,1,1,1,4) 2
60 K[Tn,...,Te)/{T\To + T3Ty + T5Ts)  (1,1,1,1,1,1) 512
61 K[T,...,Ts)/(T'Ty + T3T7 + T:7¢)  (1,1,1,1,1,1) 243
62 K[T,...,Ts|/(VT5$ + TsT5 + T513)  (1,1,1,1,1,1) 64
65 K[Ty,...,Ts|/(WT5S + TsT3 + T212)  (1,1,1,1,1,1) 64
6/ K[Tn,... Te)/([\Ty+ TsTf + 5T (1,1,1,1,1,1) 5
65 K[T,...,Te)/(I\Ty + TsTf + T2T¢)  (1,1,1,1,1,1) 5
66 K[Ty,...,Ts)/(WTy + TiT} + 1273y  (1,1,1,1,1,1) 5
67 K[Ti,...,Ts)/(T*T3 + T2T3 + T2T3) (1,1,1,1,1,1) 5
68 ﬂ{uq,“.,J}L/<7}g§§f%§§fﬁ§’> (1,1,1,1,1,1,1) 324
69 Kﬁbuwﬂv<ﬂgﬂw%%¥> (1,1,1,1,1,1,1) 9

N3T24+T5TE+T3

where in the last two rows of the table the parameter \ can be any element from K*\ {1}.

Furthermore, the Cox rings listed above are pairwise non-isomorphic as graded rings.

By the result of [46], the singular quintics of this list are rational degenerations of smooth
non-rational Fano fourfolds.
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Proof of Theorems 6.18, 6.23, 6.24 and 6.26. For fixed d and p Theorem 6.10 bounds the
number of possible data [;;, w?j, u?, belonging to Fano varieties. We identify all these
constellations by a computer based algorithm. Since |C1(X)!| < p holds, there is only a
finite number of possibilities for the torsion part of the weights that we have to check. By

this procedure we receive the tables of 6.18, 6.23, 6.24 and 6.26.

We claim that any two of the listed Cox rings do not describe varieties that are isomorphic
to each other. Two minimal systems of homogeneous generators of the Cox ring contain
(up to reordering) the same free parts of generator degrees w?j, u? € Z. Consequently,
they are invariant under isomorphy. Furthermore the exponents l;; > 1 represent the
orders of all finite non-trivial isotropy groups of one-codimensional orbits of the action T’
on X; see [29, Theorem 1.3]. Moreover, since none of the listed Cox rings is polynomial,
the varieties are all non-toric. This implies that every complexity-one action is maximal
and consequently can be assigned to a maximal torus in Aut(X). Note that Aut(X) is also
acting effectively on X. Since the maximal tori of Aut(X) are all conjugated, the varieties
with complexity-one torus action are isomorphic if and only if they are T-equivariantly
isomorphic. Thus, running through the exponents /;; we see that any two of the varieties
listed in Theorem 6.18, 6.23 and 6.26 are not isomorphic.

In case of Theorem 6.24 there is some more work to do. There are non-isomorphic
threefolds varying only in the torsion part of the weights, see for example number 2, 3
and 4. In these cases, comparing the torsion parts of the gradings shows that it is not
possible to install a C1(X)-graded ring isomorphism between the Cox rings of two different
threefolds.

As an example we consider the threefolds number 2 and 3: Let D, be a prime divisor,
representing deg(73) € C1(X) and let E; be a prime divisor, representing deg(S;) € Cl(X)
. Then D, has isotropy group of order I, = 3 and F; has infinite isotropy. In case of
threefold number 2 the term Dy — E; represents a non-trivial torsion element whereas in
case of threefold number 3 it is the zero element in Cl(X). Thus, these two varieties are
not isomorphic. Analogously, we proceed with all other cases to obtain finally the list of
Theorem 6.24.

Finally, we apply [25, Corollary 4.9] to compute the Gorenstein index ¢(X) for all listed
varieties, i.e. we have to find the smallest integer ¢(X) such that «(X) - Kx is contained
in all local divisor class groups C1(X, z); see also Proposition 6.1. O
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7 Almost homogeneous complexity-one T'-varieties

This chapter is dedicated to classification problems of almost homogeneous complexity-
one T-varieties, i.e. complexity-one T-varieties X whose automorphism group Aut(X)
acts with an open orbit. By introducing Demazure P-roots, we obtain a combinatorial
approach to the automorphism group of such varieties, describing the roots of Aut(X).
The Demazure P-roots turn out to be lattice points of certain polytopes. This convex
geometrical approach will be used for classification problems on almost homogeneous
complexity-one T-varieties of dimension two and three. Concretely, we provide a com-
plete list of all log-terminal non-toric almost homogeneous K*-surfaces with exactly one
singularity and Picard number one up to Gorenstein index five. Furthermore, we describe
almost homogeneous complexity-one threefolds with Picard number one and reductive
automorphism group. These results are published in [6, Sections 6 and §]

7.1 The automorphism group of complexity-one 7T-varieties and
Demazure P-roots

Round 1970 Demazure studied the automorphism group of smooth complete toric vari-
eties. Later Cox generalized the results to the simplicial case. The aim of this section
is to recall a description of the automorphism group of a complexity-one T-variety by
combinatorial data from [6]. A useful notion in this context are Demazure P-roots. The
statements of this section appeared in [6] where one can also find their proofs.

By [6, Theorem 5.5| the automorphism group Aut(X) of a normal complete rational
(non-toric) variety X with an effective torus action of complexity one is a linear algebraic
group. Thus, we first recall some basic definitions and facts for linear algebraic groups.
Let G be a linear algebraic group with maximal torus T'. The adjoint representation Ad
of G is the representation of G in the tangent space T.(G) (which is isomorphic to the
Lie algebra G of (i), given by

G — GL(T.(G)), g+ Ad(g) =d(Int g),

where Int ¢ is given by the inner automorphism z — gzg~!. The group G is acting on
T.(G) by this representation and hence, so is T. We call an element 0 # v € T,(G) an
eigenvector if there is a character x* € X(T') such that ¢ - v = x“(t)v for all t € T. In
this situation y is called an eigenvalue of the adjoint representation. They are also called
the weights of the representation. We have

T.(G) = PVe = P Ve = vaPVe,

x*eX(T) 0#w

where the sets V,, = {v € T.(G); t-v = x"(t)v Vt € T} denote the eigenspaces associated
to the character defined by the weight w € X(7') and Vi = T.(7"). The non-zero weights
of the adjoint representation Ad are called the roots of G. Linear algebraic groups are
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generated by their maximal tori and the one parameter subgroups corresponding to the
roots. For each root x* we define T,, = (ker(x"))° and Z,, = Zg(Ty). Then U,, the
set of all unipotent elements of Z,,, is a connected T-stable (with respect to conjugation)
subgroup and there is a one-parameter subgroup A, : G, — U, C G.

Definition 7.1. Let P be a matrix as defined in Construction 2.10. Furthermore, let
Vij, v € N = Z"** denote the columns of P and let M = N* = Z"*° be the dual lattice
of N.

(i) A wvertical Demazure P-root is a tuple (u, ky) with a linear form u € M and an index
1 < ko < m satisfying

(u,v;5) > 0 foralli,j
(u,vg) > 0 for all k # ko

(u,vg,) = —1

(ii) A horizontal Demazure P-root is a tuple (u, ig, i1, C') with a linear form u € M, two

indices ig # 11 with 0 <ip,4; <, and a sequence C' = (cg,...,¢,) with 1 < ¢; <n;
such that
li, = 1 forall i+ i,
0, iig il
(1, vi) = { Ton
_]-7 1 =11,
lij, 1 # 10,01, J # G
<U,U7;j> 2 07 1= i07i17 j # C;
07 1= Z.Ov .] = Ci,
(u,vg) > 0 for all k.

The Z#-part of a Demazure P-root k = (u, ko) or kK = (u,1g,11,C) is the tuple ay of the
last s coordinates of the linear form u € M. We simply call it P-root.

Remark 7.2. Demazure P-roots are given by integral points of certain polytopes in Mg
defined by the equations and inequations of Definition 7.1. These polytopes are called
root polytopes. In general they can be described as follows:
(i) For a given index 1 < k < m we consider the vector ¢ = ({;j, (x) € Z"™ satisfying
Gj=0forallij, (,:=0forallk, (g :=-1
and the affine subspace
n = {u/ € MQ ’ (u',vk0> = —1} - MQ.

Then the vertical Demazure P-roots k = (u, ko) are given by the integral points of
the polytope
B(ko) == {u' €n|Pv >(} C Mg.



7 ALMOST HOMOGENEOUS COMPLEXITY-ONE T-VARIETIES 141

(ii) For any two indices 1 < ig,i; < 7, 9 # i1, and any sequence C' = (co, ..., ¢,) with
1 < ¢; < n; such that [, =1 for all ¢ # ig,4; we set

lija Z.7é7;077;17 j?écl
CZJ = _17 1= 7;17 j =¢

0 else
(o =0 foralll1<k<m

and we define the affine subspace
n = {u' € Mg; (W, vie;) =0, (', v, ) = =1} € Mg,

Then the horizontal Demazure P-roots k = (u,ig,i1,C) are given by the integral
points of the polytope

Bl(ig,i1,C) == {u' €n| Pv >} C M.

Example 7.3 (Del Pezzo surface Eg). Consider the Eg-singular del Pezzo surface X with
Cox l"il'lg R(X) = ]K[T()l, TQQ, TH, TQl]/(TOlT(?Z + T131 + T221> given by the P-matrix

~1 -3 3 0
P=|(-1-302
1 -2 1 1

There are no vertical Demazure P-roots since m = (0 holds. But there is a horizontal
Demazure P-root k(u,ig,i1,C) given by

u=(-1,-2,3), do=1 i =2 C=(1,1,1),

and it turns out that this is the only one. The P-root of « is the last coordinate us = 3
of w.

Theorem 7.4. (See [6, Theorem 5.5]). Let X be a (non-toric) complexity-one T-variety
arising from sincere data (A, P) as seen in Construction 2.20. Then the following state-
ments hold:

(i) The automorphism group Aut(X) is a linear algebraic group with mazimal torus T .

(1) Under the canonical identification X(T') = Z°, the roots of Aut(X) with respect to
T are precisely the P-roots.

Geometrically, the vertical P-roots correspond to those root subgroups whose orbits are
contained in the closure of generic torus orbits. These P-roots are defined by generators
Sk of the Cox ring not occurring in the Cox ring relations (as in the toric situation).
The horizontal P-roots, on the other hand, correspond to those root subgroups whose
orbits are transversal to generic torus orbits. In this context, the relations between the
generators of the Cox ring do play an important role.
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7.2 Almost homogeneous surfaces

This section is dedicated to rational IK*-surfaces having horizontal Demazure P-roots and
Picard number one. We will give general formulas for the Demazure P-roots. Further-
more, we concentrate on log-terminal IK*-surfaces of that type having only one singularity.
As a result, we list all such surfaces up to Gorenstein index five.

Definition 7.5. A variety is called almost homogeneous if its automorphism group acts
with an open orbit.

Theorem 7.6. (See [6, Theorem 6.1]). Let X be a non-toric normal complete rational
complexity-one T-variety arising from sincere data (A, P) and let R(X) = R(A, P) be its
Cozx ring. Then the following statements are equivalent:

(i) The variety X is almost homogeneous.

(ii) There exists a horizontal Demazure P-root.

Moreover, if one of these statements holds, then the number of relations of R(A, P) is
bounded by
r—1 < dim(X) 4 rk(Cl(X)) —m — 2.

Let X be a normal complete rational IK*-surface. Then X is isomorphic to some X (A, P)
as in Construction 2.20. We assume that X has Picard number one. The following
proposition determines possible Demazure P-roots in this setting.

Proposition 7.7. Consider integers log > 1, l11 > loy > 2 and dgy, doo, di1, do1 such that
the following matriz has pairwise different primitive columns generating Q® as a convex
cone:

—1 _l02 lll 0
P = —1 —log 0 l21
dOl d02 dll d21

Moreover, assume that P is positive in the sense that det(Py;) > 0 holds, where Py, is the
3 X 3-matrixz obtained from P by deleting the first column. Then the possible horizontal
Demazure P-roots are

(i) k = (u,1,2,(1,1,1)), where u = (dmoz + d21l2°‘1+1 ,—d%zalﬂ ,a) with an integer o

satisfying
log lll

o1 | doyar + 1, — < a < — )
2 | doy doo — loado: lordyy + Lindor + dorlinloy

1) if lpp = 1: K = (u where u = (dpa + — o) with an
(i) if loy = 1 (u,1,2,(2,1,1)), wh (d dpjatl _dyatl ) ith

l21 lo1
integer « satisfying

111 < 1

l dora + 1, — < S 0,
21 | dn lyrdyy + Lidoy + doalyyla do1 — dos
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(i) Kk = (u,2,1,(1,1,1)), where u = <—%,d01a+ %,a) with an integer o

satisfying
log l21

l1 | dpia + 1, — < a < — )
| du do2 — lp2dor lordyy + li1doy + doiliilag

l11

() if lop = 1: k = (u,2,1,(2,1,1)), where u = <—M , doocv + %,a) with an
integer « satisfying

la1 < o 1

La | dia +1, — <a< ——
u | du lordyy + lyday + dolilo do1 — dos

Note that under these assumptions the P-roots are always positive.

Proof. In the situation of (i), evaluating the general linear form u = (u,us,u3) on the
columns of P gives the following conditions for a Demazure P-root:

(U, vo1) = —uy — ug + uzdp; = 0, (U, vo1) = Uglay + ugdey = —1,

(u, vo2) = —urlos — usloz + usdoz > loa, (u,v11) = wrlyy + ugdyy > 0.

Resolving the equations for uy, uy gives

w = EWd L nd oy = T
l21 l21

Plugging these results into the inequalities one obtains the desired roots with a = us.

Note that the assumption det(FPp;) > 0 implies doa — lpadpr > 0 and det(Pog) = do1l11l21 +

do1liy + dy1la; < 0. Furthermore, the condition ly; | dojor + 1 ensures that w; and uy are

integers.

In case (ii), under the assumption lpo = 1, we get the following conditions for a Demazure
P-root:

(U, v92) = —uy — us + ugdp = 0, (u,va1) = Uglyy + usdey = —1,

(U, v01) = —uy — ug + usdpy > 1, (u,v11) = urlyy + ugdiy > 0.
Resolving the equations for uq, us gives

1+ usd 1+ usd
uy = M + U3d02 and Uy = —¢
l21 l21
Plugging these results into the inequalities one analogously obtains the desired roots with
a = uz. Once more we use the assumption det(FPy;) = doali1lo1 + dorlin + diile; > 0 to
transform the inequalities and the condition lg; | doja + 1 to ensure that u; and uy are
integers.
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The other cases are treated analogously by switching iy and ¢; which means switching the
roles of vy; and vy1. Consequently, in case (iii) we obtain the conditions

(u,v01) = —uy — ug + usdp; = 0, (U, v91) = wrlyy + usdy; = —1,
(u, vo2) = —urlos — usloz + usdoz > loo, (u,v11) = uslay + ugdey > 0,
which gives
1 d 1 d
lll lll

and the desired roots. In case (iv) we obtain
(u,v02) = —uy — ug + ugdoy = 0, (u,v11) = wilyy +uzdy = —1,

(w,v01) = —ug — uz + ugdor > 1, (U, va1) = Uglayy + ugday > 0,
and consequently,

1 3d 1 d
l11 lll

which finally completes the proof. n

Corollary 7.8. The non-toric almost homogeneous normal complete rational IK*-surfaces
X of Picard number one are precisely the ones arising from data

A:H jﬂ P=| -1 —lp 0 Iy
dO]. d02 d].l d21

as in Proposition 7.7 allowing an integer o according to one of the Conditions (i) to (iv)
of Proposition 7.7. In particular, the Cox ring of X is given as

R(X) = K[Tor, Too, Tir, Toa) | (Tn T3 + T + To2t)

with the grading by Z*/im(P*). Moreover, the anticanonical divisor of X is ample, i.e.
X is a del Pezzo surface.

Proof. As any surface with finitely generated Cox ring, X is Q-factorial. Since X has
Picard number one, the divisor class group Cl(X) is of rank one. Now take a minimal
presentation R(X) = R(A, P) of the Cox ring. Then, according to Theorem 7.6, we
have m = 0 and there is exactly one relation in R(A, P). Thus, P is a (3 x 4)- matrix.
Moreover, Theorem 7.6 says that there is a horizontal Demazure P-root. Consequently,
one of the exponents lyp; and lgps must equal one, say lp;. Fixing a suitable order for the
last two variables we ensure l; > l;. Passing to the KK*-action ¢! - x instead of ¢ - z, if
necessary, we achieve that P is positive in the sense of Proposition 7.7.
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Let us see why X is a del Pezzo surface. Denote by P;; the matrix obtained from P by
deleting the column v;;. Then, in CI(X)° = CI(X)/CL(X)" = Z, the weights wj; of T};
are given up to a positive factor 5 as

(W), Wy, w, wd,) B(det(Poy), —det(Poa), det(Pry), —det(Py1)) , where
det(FPor) = dozliilor + dirloolin + dologlis,
—det(Po2) = —(doilinlor + diilin + dorlhn),
det(Pi1) = doiloalar — doalon,
—det(Py) = —(dolozli — dozli1).

Note that w, wly, w?, wd; > 0. According to [5, Prop. I11.3.4.1], the class of the an-
ticanonical divisor in CI(X)? is given as the sum over all w% minus the degree of the
relation

_KX = /B(det(P01> - det(Pog) + det(P11> - det(Pgl) - (det(POl) — logdet(P()Q)))
= ﬁ(—det(ng)(—l()Q + 1) + det(PH) — det(P21>).

The surface X is Fano if and only if —Kx > 0 holds. Consequently, the factor 3 can
be omitted. Now we will use the inequalities on [;;,d;; implied by the existence of an
integer « as in Proposition 7.7. In the cases (ii) and (iv) we have lopo = 1 which implies
—Kx = det(Py1) —det(Py;) > 0. The inequalities in case (i) and (iii) give lpo < —det(Pa)
and lpy < det(Py;) and hence —Kx > —det(FPps) +det(Py1) > 0 and —Kyx > —det(Py2) —
det(Ps;) > 0, respectively. O

We turn to the case of X having precisely one singular point. Note that by Proposition
5.10 this singular point has to be an elliptic fixed point. The situation then is a lot simpler
since the divisibility conditions (i) to (iv) of Proposition 7.7 disappear.

Construction 7.9 (K*-surfaces with one singularity). Consider a triple (lg,ly,[2) of in-
tegers satisfying the following conditions:

lo > 1, lh > 1l > 2, lo < lllg, ng(ll,lg) = 1.

Let (dy,dy) be the (unique) pair of integers with dyls + doly = —1 and 0 < dy < [l and
consider the data

-1 =y L 0
A:Hjﬂ P=1|-1-ly 0 I
0 1 di dy

Then the associated ring R(ly,l1,l5) := R(A, P) is graded by Z*/im(P*) = Z, and is
explicitly given by

R(lo, 1y, 1) = K[, To, Ty, Tl /(T + T + Tp2),
deg(Tl) = lllg — l()7 deg(Tg) = 1, deg(Tg) = lg, deg(T4) = ll.
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Proposition 7.10. For the K*-surface X = X(lo,l1,13) with Cox ring R(ly,l1,ls), the
following statements hold:

(i) X is non-toric and we have Cl(X) = Z.
(ii) X comes with precisely one singularity.
(111) X is a del Pezzo surface if and only if lo < Iy + ls + 1 holds.

(iv) X is almost homogeneous if and only if ly < Iy holds.

Moreover, any normal complete rational non-toric IK*-surface of Picard number one with
precisely one singularity is isomorphic to some X (lo, 1, 13).

Proof. First note that X = X(ly,l;,1) is obtained as in Construction 7.9. The group
H = K* acts on K* by

toz = (thtelog toy 225 1 2),

the total coordinate space X := V(T Ti 4+ Ti* 4+ T!?) is invariant under this action and
we have

X = X\ {0}, X = X/K*.
Thus, ClI(X) = Z holds and since the Cox ring R(X) = R(ly,l1,(2) is not a polynomial

ring, X is non-toric.

Using [5, Prop. I11.3.1.5], we show that the set of singular points of X consists of the
image 29 € X of the point (1,0,0,0) € X under the quotient map X — X. If ljlo—1y > 1
holds, then the local divisor class group

CI(X,ZEQ) = Z/(lllg—lo)z

is non-trivial and thus zo € X is singular. If [l — Iy = 1 holds, then we have [y > 1
and therefore (1,0,0,0) € X. Hence, xy € X is singular. Since all other local divisor
class groups of X are trivial and, moreover, all singular points of X lie in the orbit
K*-(1,0,0,0), we conclude that zq € X is the only singular point.

According to [5, Prop. 111.3.4.1], the anticanonical class of X is l; + Iy + 1 — lp. This
proves (iii). Finally, for (iv), we infer from Proposition 7.7 that existence of a horizontal
Demazure P-root is equivalent to existence of an integer o with [y < o < [y which in turn
is equivalent to [y < [;.

We come to the supplement. The surface X arises from a ring R(A, P), where we may
assume that R(A, P) is minimally presented. The first task is to show that n =4, m =0
and r = 2 hold. We have

n+m—(r—1) = dim(X)+rk(Cl(X)) = 3.
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Any relation g; involving only three variables gives rise to a singularity in the source and
a singularity in the sink of the IK*-action. We conclude that at most two of the monomials
occurring in the relations may depend only on one variable. Thus, the above equation
shows that n =4, m = 0 and r = 2 hold.

We may assume that the defining equation is of the form T('Te9? + Ti1' + Ti2'. Again,
since one of the two elliptic fixed points must be smooth, we can conclude that one l,
equals one, say ly;. Now it is a direct consequence of the description of the local divisor
class groups given in [5, Prop. I11.3.1.5] that a KK*-surface with precisely one singularity
arises from a matrix P as in the assertion. [

Now we are interested in the log-terminal varieties of the form X (lo,l,l5). Recall, that a
singularity is log-terminal if all its resolutions have discrepancies greater than —1. Over C,
the log-terminal surface singularities are precisely the quotient singularities by subgroups
of GLy(C). The Gorenstein index of X is the minimal positive integer +(X) such that
1(X) times the canonical divisor Ky is Cartier.

Corollary 7.11. Assume that X = X (ly,1,13) is log-terminal. Then we have the follow-
ing three cases:

(i) The surface X is almost homogeneous.
(i1) The singularity of X is of type Ex.

(i1i) The singularity of X is of type Es.

Moreover, for the almost homogeneous surfaces X = X(ly,ls,13) of Gorenstein index
1(X) = a, we have

(i) (lo,l1, 1) = (1,11, 1) with the bounds I, < l; < 8a® + 3a,
(i1) (lo,l1,12) = (2,11,2) with the bound l; < 4a,

(iii) (o, 11, 1s) = (3,3,2), (2,4,3), (2,5,3), (3,5,2).

Proof. The surface X (ly,11,l2) has only one singularity, occurring in the upper elliptic
fixed point. We consider the canonical resolution of X (ly,l;,l5) as presented in Theorem
3.10. In the tropical resolution step we have discrepancy greater than —1 if and only if

lolllg < loll + lolQ + lllg.

Thus, the allowed (o, 1, ls) must be platonic triples (compare Example 3.20) and we are
left with

<1allal2)7 (27l172)7 (37372)7 (27473)7 (27573)7 (37572)7 (47372)7 (57372>
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The last two give the surfaces with singularities F7, Fg and in all other cases, the
resulting surface is almost homogeneous by Proposition 7.10. Furthermore X (ly, [, ()
has Gorenstein index a if and only if aKx lies in the Picard group. According to [5,
Cor. II1.3.1.6], this is equivalent to the fact that l;ly — [y divides a - (I; +ls + 1 — ).
The bounds then follow by the subsequent elementary estimations. First we consider the
case (lop,l1,1l) = (1,11,13). Then the following equivalences hold with a suitable positive
integer b € Zq:

lllg—]_ | a(l1+l2+1—1) < b(lllg—l) = a(ll—l—lg)

—_ b =2 + : + b
A
l b
— bly—a = a2+ —.
L
In particular, bl, — a is a positive integer. Since we assumed [y, [, > 1 and l; > 5, we have
3 3 1 1 b 2
b = b1-2) < b(1—-—) < b = 242 <<y,

4 = "4 4 R P P M

lily

and hence [, < %a as well as b < %a. All in all, we obtain

and consequently

Now, we assume (lg,l1,l5) = (2,11,2). Then we have the following equivalences for a
positive integer b € Zi~q:

2, -2 | a(lh+1) <= b2l —2) = a(l; +1)
<— 2bly —al; = 2b+a
2b+a
20 —a
Since 2b 4+ a > 0 and l; > 2, we obtain 2b —a > 1 and thus 2b > a + 1 as well as
2b + a > 4b — 2a, which gives 2b < 3a. All in all, we can conclude I; < 2b+a < 4a. [

= | =

Corollary 7.12. The following tables list the triples (lo,l1,ls) together with roots of
Aut(X) for the log-terminal almost homogeneous complete rational K*-surfaces X =
X (lo, U1, la) with precisely one singularity up to Gorenstein index 1(X) = 5.

1uX) =1 uX) = 2 u(X) = 3

(1,3,2): {1,2,3Y | (1,7,3): {1,3,4,7} | (2,7.2):1{2,3,5,7}
(2,3,2) : {2,3) (1,13,4) : {1,4,5,9,13}
(3,3,2) : {3} (1,8,5) : {3,5,8)
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(X) = 4 X) =5
(2,5,2): 12,3,5} (2,11,2): {2,3,5,7,9, 11}
(1,21,5) : {1,5,6,11,16,21} | (1,13,7) : {2,6,13}
(2,4,3) : {3,4}
(1,17,3) : {2,3,5,8,11, 14,17}
(1,31,6) : {1,6,7,13,19, 25,31}
(1,18,7) : {4,7,11,18}

We conclude this section with a series of almost homogeneous log-terminal K*-surfaces
having one singularity with a Djs-like resolution graph.

Example 7.13. Let p > 3 be an odd element of Z and consider the following matrices:

-1 -2 p 0

P=1[-1-2 0 2|, Q= @2-212p).
0 1 =zt -1
They define a K*-surface X with Cox ring R(X) = IK[T()l, T027 T117 Tgl]/<T01T022 —FTiDl —|—T221>
and Cl(X) = Z and the Cl(X)-grading of R(X) is given by (). Note that the columns
of P are always primitive since ged(p, ;%1) = 1 holds. This can easily be seen by the
following argument. Assume that there exists an element a € Z-q such that
p—1

p=ax and 5 =W

for suitably chosen =,y € Z-y. Then we have

and thus 2py = pxr — x implies that p divides x. Consequently, we obtain a = 1. The
K*-surface X has exactly one singularity in the upper elliptic fixed point corresponding
to the cone ot = cone(vgg, v11,v91). Furthermore, we have

—Kx = 20—241+2+4p—2p = p+1 > 0.

In particular, X is Fano. For the degree of X, i.e. the self-intersection number of — Ky,
one has ( ¢ ( ¢
p+1 p+1
(~Kx) = gt gy = LE
2p(2p — 2) 2p — 2

Now, we want to determine the Gorenstein index. Since X has only one singularity, only
the upper elementary big cone ot corresponding to this singularity is interesting. The
determinant of this cone is 2p — 2. Hence, the Gorenstein index is given by

2p — 2
ged(2p —2,p+1)

uX) =

= lem(2p — 2,p+1).
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In order to compute the horizontal Demazure P-roots of X we use the results (i) and (iii)
of Proposition 7.7. According to case (i), all integers a satisfying 2 < o < pand 2 | —a+1
are P-roots. Hence, all odd integers 3 < x < p give horizontal P-roots. According to
case (iii), all integers « satisfying 2 < o < p and p | ”%104 + 1 are P-roots. It is sufficient
to consider all  that are even. Then « is a P-root if and only if p divides 1 — &, where
a < p. Consequently, we obtain exactly one more P-root, namely 2. Hence the set of

horizontal Demazure P-roots is given by
Roots(X) = {2} U{3 < a <p; a € Z-( odd}.

As already mentioned, the surface X has exactly one singularity corresponding to the
upper elliptic fixed point. Following the canonical resolution procedure of Theorem 3.10
and contracting (—1)-curves afterwards we obtain a Ds-like resolution graph. The first
resolution step is given by the stellar subdivision of o given by

0 ) P 0
p—1)-10l=p-|—2|+2-1 0 | +p-(2
1 1 p=1 1

2

Note that we can skip the stellar subdivision of the lower elementary cone ¢~ correspond-
ing to the lower elliptic fixed point since this is a smooth point. Using the formula for
the discrepancy of Proposition 3.15 we obtain

: —(p—3)
D = — 7> —1.

In particular X, is log-terminal. The remaining toric modifications arise from stellar
subdivisions by rays along vo3 = (—1,—1,1), vee = (0,1,0) and v3 = (1,0,1), v12 =
(2,0,1). Note that they are independent of the choice of p.

D03

D12 D13 T+

D22

We will give a short proof for that. Consider the cone o = cone((0,1), (p, 25%)). Then
the Hilbert basis of ¢ is given by

i) = {on. 006255},

It is obvious that (1,1) and (2,1) are elements of H(o). Since

0 1\ 12\ 2 p _
det (1 1) = 1, det (1 1) =1 and det (1 p%l) = —1,
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the Hilbert basis has the asserted form. Consequently, the Cox ring R(X ) of the resolution
X is given by K|[T; vis S1)/(To1Toa* Tos + T T Ths + Ty The) and X = X(A4, P) holds, where

- 1 -2 -1 p 21 0 00
P=1|-1-2-1 0 00 2 10

0 1 1 2111 -10

—_

In case of p = 3 we have the canonical Ds-singularity. For p > 3 the resolution graph
remains the same, but the intersection numbers of the exceptional divisors are growing.
By using the formulas of Proposition 4.21 we obtain

+1
(F*)? =Di3=Dgy= D3 =2 and Di,= _pT-

7.3 Semisimple P-roots

A linear algebraic group is called semisimple if it has only trivial closed connected solvable
normal subgroups. Each linear algebraic group has a maximal connected solvable normal
subgroup H such that G/H is semisimple. This quotient is the semisimple part of G
and it is denoted by G*. The unit component R(G) = H° is called the radical of G.
Furthermore, we define the unipotent radical R,(G) as the set of all unipotent elements
of R(G). Note that G* is uniquely determined up to conjugacy by elements of the
unipotent radical R,(G). With these notions we can reformulate the definition of a
semisimple group: A linear algebraic group is called semisimple if its radical R(G) is
trivial and a linear algebraic group is called reductive if its unipotent radical R,(G) is
trivial.

If G is semisimple, then its roots ®¢ C Xg(7') with respect to a given maximal torus T
form a root system. This means that for every a € &5 one has

(I)G N ]RO& = {:l:Oé}, Sa(ég) = <Dg,

where s,: Xg(T) — Xg(T') denotes the reflection through the hyperplane o perpendic-
ular to o with respect to a given scalar product on Xg (7). For our purpose the following
root systems are important:

Ay = {ei—ej; 1<ij<n+1i#j} € R,
By = {Fey, Feq, £(e1 +e2), £(e; —e2)} C R

We turn to varieties with a complexity-one torus action. Consider data (A, P) as in
Construction 2.10 and the resulting ring R(A, P). Recall that R(A, P) is equipped with
a Ky-grading and a coarser K-grading. The grading group Ky splits as

K, = ngrtG%Kém, where KJ™' = (degg, (Sk)), Kgmr 1= (degy, (T35)),

and K§** = Z™ is freely generated by degg, (S1),...,degg, (Sn). Moreover, the direct
factor Z* of the column space Z"* of P is identified via Qg o P* with the kernel of the
downgrading map Ky — K, compare Construction 2.10.
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Definition 7.14. Let (A, P) be data as in Construction 2.10 such that the associated ring
R(A, P) is minimally presented and write «,, for the P-root, i.e. the Z*-part associated
to the Demazure P-root k.

(a) We call a P-root «, semisimple if —a,, = a, holds for some Demazure P-root r/,
i.e. —qy 1s a P-root.

(b) We call a semisimple P-root a,, vertical if a,, € KJ®" and horizontal if o, € K}
holds.

(c) We write @55, ®%™ and @ for the set of semisimple, vertical semisimple and
horizontal semisimple P-roots in R?, respectively.

The main result about the semisimple roots of a complexity-one T-variety X given in [6]
is the following theorem.

Theorem 7.15. (Sece |6, Theorem 7.2|). Let A, P be as in Construction 2.10 such that
R(A, P) is minimally presented and let X be a (non-toric) variety with a complexity-one
torus action T x X — X arising from data (A, P) according to Construction 2.20. Then
the following statements hold:

(i) @V Ot and %5 are root systems with 55 = GRT D OWT and O is the root system
with respect to T of the semisimple part Aut(X)®.

(ii) For p € K denote by m, the number of variables Sy with degy(Sk) = p. Then

Pyt @Amp—b Z(mp_ 1) < dim(X) - L

peEK peEK

(iii) Let ®Wr #£ (). Then r = 2 holds, and, after suitably renumbering the variables one
has

(a) TonToy + TiTio + T2, wor = wyy and woy = wio,
(b) TorToz + T + T2, wo = weg = wi1,

for the defining relation of R(A, P) and the degrees w;; = degy (T;;) of the variables.

(iv) In the above case (iii)(a), there are the following possibilities for the root system
(I)Els‘or‘.

o Ifloy+ ...+ loy, > 3 holds, then

phor _ AL DA, wor = Wee = Wi = Wi,
P = .
Ay, otherwise.
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o [fny =2 and ly; = lyo =1 hold, then

As, Wo1 = Wp2 = W11 = Wi = W1 = W22,
Phor A,, Wo1 = Wil = War, Wz = Wiz = Waz, Wo1 7# Wo2,
Pro=

AL @A, wer = wer = Wi = War, Wor 7 Wat, Wor 7 Waz,

Ay, otherwise.

(v) In the above case (iii)(b), there are the following possibilities for the root system
(I)I;_)or..

o Ifly + ...+ 1oy, > 3 holds, then

b = A,
o Ifny =1 and ly; = 2 hold, then

Phor _ AL © AL, wer = wer = Wi = Wa,
P - .
Ay, otherwise.

o [fny =2 and ly; = lyo =1 hold, then

phor — By, wo1 = we = w11 = way = waa,
P Ay, otherwise.

We will prove some lemmas that contribute to the proof of this theorem and which are

needed in the next section for classification issues.

Let X be a complexity-one T-variety, arising from a matrix P, having a pair of semisimple
roots ap € P, Then we infer from [6, Lemma 7.7] that r = 2 holds. After reordering
lo, 11 and [ the following two cases can occur:

e We have ng = ny = 2 and lp; = lpo = l11 = 12 = 1 and for any pair of Demazure
P-roots uy associated to o one has ij =i, = 2.

e We have ng = 1, lp1 = 2 and ny = 2, l;; = l1o = 1 and for any pair of Demazure
P-roots ug associated to ay one has if =iy = 2.

In particular, for a given pair ax € ®%7, all associated pairs of Demazure P-roots share
the same iy = if = iy. This allows us to speak about the distinguished index ig of
o4 € (I)}]lgor.

We briefly recall which elementary row and column operations of the matrix P are called
admissible (compare Definition 2.23):

(i) Switch two columns inside a block v;1, .. ., Vi,
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(ii) Switch two whole column blocks vj1, . .. Vin, and vj1, ..., Vjn,.
(iii) Add multiples of the upper r rows the one of the last s rows.
(iv) Any elementary row operation among the last s rows.

(v) Switch two columns inside the d’ block.

Lemma 7.16. Let ng = ny = 2 and lpy = lpo = l11 = lio = 1. If there exists a pair
ay € % with distinguished index iy = 2, then P can be transformed by admissible
operations, without moving the ns-block, into the form

-1 -11 1 0 0
~1 =10 0 & 0
-1 00 1 0 0
0 00 d, d d

P = : (9)

where the lower line is a matriz of size (s — 1) x (n + m). Conversely, if P is of the
above shape, then as = (£1,0) € ®%T has distinguished index iy = 2. Moreover, up to
admissible operations of type (iii) and (iv), situation (9) is equivalent to

degg(Tor) = degg(T12), degg(Toz) = degg(Tn).
Proof. Fix an associated pair k. = (u*,2,i7,Cy) of Demazure P-roots. Renumbering

the variables, we first achieve i{ = 1 and C; = (1,1, 1). Adding suitable multiples of the
top two rows of P to the lower s rows brings P into the form

-1 -1 1 1 0 0
P = -1 -1 0 0 I O
0 d02 0 d12 d2 d

Now we explicitly go through the defining conditions of the Demazure P-root k. with
ut o= (uf,ug,an), where ufcZ, if =1, C, = (1,1,1).

This gives the following root conditions:

(u™,vp1) = uf = -1,
(u, vo2) = —uy + (o, dog) = (s, doa) > 1,
(ut,v) = uf +u2 =0,
(u™ o) = uf <a+,d12> =—14 (ag,di2) >0
(uh, va) = lyjug + {ay,daj) >0,
(ut vg) = (a+,d’) > 0.
Consequently, u3 = 1 and (a,dy;) > —lp; hold. Since a_ = —ay, we obtain (a_, dgs) <

—1, (a_,dy2) < —1 and (a_,dy;) < ly;. For u~ we obtain independently of the choice of
C_ the condition

0 < (u™,dyy) = lpjuy + {a—, doj) < lajuy + by,



7 ALMOST HOMOGENEOUS COMPLEXITY-ONE T-VARIETIES 155

and consequently u, > —1. Now, we have to go through all possible cases for 7; and
C_ = (Co, C1, CQ).

We assume i1 = 1. If ¢y = 1, then

(u™,v91) = —uy —uy =0
(U™, v02) = —uy —uy + (o, do2) = (-, do2) > 1,
a contradiction to (a_,dp) < —1. If ¢y = 1, then (u",v11) = vy = —1 and (u",vi2) =

uy; + (a—,dy2) = —1 + (a_,dy2) > 0 must hold, a contradiction to (a_,dy2) < —1. For
co = ¢; = 2 we have

(U™, vo1) = —uy —uy > 1,

(U™, vp2) = —uy —uy + (a—,dp2) =0,
(u™, o) = uy >0,

(U™, v12) = uy + (o, dip) = —1

Adding (u™,vge) and (u~,v12) gives —uy; — 2 > —uy + (a_,do) + {(a_,d12) = —1 and
thus u, < —1. Consequently, u, = —1 holds. Putting this into the first inequality we
obtain u; < 0 and together with the third inequality u; = 0.

Now, we assume i; = 0. If ¢; = 1, then (u™,v11) = u; = 0and (u™,v12) = uy +{a_,d12) =
(a—,dy2) > 1, a contradiction to (a_,djg) < —1. If ¢g = 1, then (v, vp) = —u; —uy =
—1 and (u",v02) = —u; —uy + (a_,dp) = —1 + (a_,d1z) > 0, a contradiction to
(a_,dga) < —1. For ¢y = ¢; = 2, we have

(U™, vo1) = —uy —uy >0,

(U™, v2) = —uy —uy + (a_,dp2) = —1,
(u™,v1) =uy > 1,

(u™,v12) = uy + (o, dia) = 0.

Adding (u™,vge) and (u~,v12) gives —uy; — 2 > —uy + (a_,dp) + (a_,dp) = —1 and
thus u; < —1. Consequently, u, = —1 holds. Putting this into the first inequality we
obtain u; < 1 which implies together with the third inequality that u; = 1 holds. Thus,
we are left with the two possibilities

uw o= (1,-1,—ay), iy = 0, c. = (2,2,1),
u = (0,—-1,—ay), i = 1, C. = (2,2,1).
In both cases, we obtain
(g, doz) = (g, diz) = 1,

<Oé+,d2j> = —lgj for j = 1, ..., N,

(ap,di)y =0for j=1,...,m.
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Now choose any invertible (s x s)-matrix with a, as its first row and apply it from the
left to P. Then the third row of P looks as follows:

(0101 <l O]

Adding suitable multiples of the third row to the last s — 1 rows and adding the second
to the third row brings P into the desired form. The remaining statements are directly
checked. O

Lemma 7.17. Let ng =1, lgy = 2 and ny = 2, ly1 = l1o = 1. Then there is at most one
pair ax € OWT with distinguished index iy = 2. If there is one, then P can be brought by
admissible operations, without moving the ns-block, into the form

211 0 0
=200 1, 0
P=1 1010 0 (10)

ds, 0 0 dy d,
where the lower line is a matriz of size (s — 1) X (n + m). Conversely, if P is of the

above shape, then ar = (£1,0) € ®%r has distinguished index ig = 2. Moreover, up to
admissible operations of type (iii) and (iv), situation (10) is equivalent to

degK(Tm) = degK(Tn) = degK(T12).

Proof. This is a similar computation as in the previous lemma. Clearly, we may assume
Cy = (1,1,1) and by suitable row operations, we bring P into the form

-2 1 1 0 0
P = -2 0 0 I O
dpn 0 dyp dy d

Now enter the defining conditions of a Demazure P-root .y with u™ = (uf,us, ). Since
+

19 = 2 holds, we have i]” =i, = 0. Hence,
(u ve) = —2uf — 2uy + (o, doy) = —1,
(u™,v) =uf =0,
(U v12) = uf + (a4, di2) > 1,
(u™, vgj) = ug by + (g, dag) = 0,
(u™, vp) = {ay,d}) > 0.
Note that the root conditions are independent of the choice of ¢y. If ¢; = 1, we obtain
the inequality (u~,v12) = (a_,dy2) = —(ut,v12) > 1, a contradiction to (o, ,djs) > 1.
Consequently, ¢; = 2 must hold and we have the following root conditions.

IS

(u_ U01> = —2U1_ — 2u2_ + <Oé_,d01> = —1,

(u™,v11) = uy

(u™,v19) = uy <Oé_,d12> 0,
(U™, va5) = uy <oz_,d2]> >0
(U™, vp) = <a d’}
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Adding (u™,ve1) and (u~,vp;) we obtain —2u; — 2u; — 2ug = —2 and hence u; =
—uy —ug +1 > 1 which gives u; +uy < 0. Adding (u™,vq;) and (u™,vq;) we obtain
(uy +ud)lar > 0 and hence uy +ug > 0. Consequently, uj = u; must hold which implies
uy = 1. All in all we end up with u] = 0 and

()é+,d01> = 211,; — 1,
12) = 17

(
(
<Oé+, d2j> = —U;lgj for ] = 1, ..., Na,
(

U

Ay,

U

at,dy) =0for j=1,...,m.

+

Analogously to the proof of Lemma 7.16, this enables us to bring P via suitable row
operations into the desired form. Again, the remaining statements are directly seen. [J

Lemma 7.18. Let 1 < ki < ky < m and denote by f € Z"™ the vector with fn-i—kg: =71
and all other entries zero. Then the following statements are equivalent.

(i) There exists a pair o of vertical semisimple roots corresponding to the indices ka—L.

(i) The vector f can be realized as the (r + 1)-th row of P by applying only admissible
operations of type (iit) and (iv).

(iii) The variables Sy+ and Sy- have the same degree with respect to the Cl(X)-grading.

Proof. To prove that (i) implies (i), let x* = (u*,k3) be a pair of Demazure P-roots

associated to a*. Then we have (uF,v5) > 0 for all 0 < ¢ < r,1 < j < n; and
(ut vp) > 0forall 1 <k <m, k# ki, as well as (U, v-) 2 0, (", v+) = —1 and
(u™,v+) 2 0, (u™,v=) = —1. We define u := ut +u~ and conclude (u,v;;) > 0 for all

0<i<r1<j<n;and (u,vp) >0forall 1 <k <m, k# k3. Since a™ = a~ and the
first s coordinates of every column vy are zero, we obtain

<u,vk0+> = <u+7vk8L> + (uf,vkoﬁ = <u+7vk8L> - <u+7vk8L> =0
and analogously
<uvvk5> = <u+’vka> + <U_avkg> = _<U_7ng> + <u_7vk5> =0,
which yields (u,v;;) > 0forall 0 <i<r,1<j<n;and (u,v5) >0 forall<k<m.

Furthermore, we know that the columns of P are generating Q""* as a cone. This implies
u =0 and thus v~ = —u*. Consequently, we conclude

(uF vi) =0 foralli,j, (uT,u) =0 forallk# ki,

<u+7vk6"> = _17 <u+7vk0_> =1L
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Now, write u™ = (uf,a™) with the Z*-part a* and let o be a ((s — 1) x s)-matrix
complementing the row o™ to a unimodular matrix. Then applying the block matrix

E. 0
uf ot |,
0 o

where F,. is the r-dimensional identity matrix, from the left to P describes admissible
operations of type (iii) and (iv) realizing the vector f as the (r+1)-th row of the resulting
matrix P.

Now assume that f is the (7 + 1)-th row of P and consider u* € Z* with u;"; = &1 and
all other entries zero. Then the Z*-parts o of the vertical Demazure P-roots (u*, k)
are representing a pair of semisimple roots. This shows the implication from (ii) to (i).

Since P is the kernel of the grading matrix @, it is obvious that (ii) implies (iii).

In the last step we will prove that (iii) implies (ii). Therefore assume that Sys and
Sy; have the same Cl(X)-degree. This is equivalent to Q(ekg) = Q(ekg) and thus to
Q(e — €,+) = 0 which means that f = e,- — ¢+ is an element of the kernel of @ and
consequently is contained in the lattice generated by the rows of P. Since f is a linear
combination of the rows of P, there exists a linear form u such that

w(vij) =0, u(vg) =0 for k # kat, u(vkar) = -1, u(vkg) =1.

Applying the block matrix of the same form as above from the left to P yields statement
(i). O

7.4 Almost homogeneous 3-folds with reductive automorphism
group

A linear algebraic group G is called reductive if the radical of the connected unit compo-
nent GG° is an algebraic torus. Equivalently, one can require the unipotent radical of G°
to be trivial. The automorphism group of a complexity-one T-variety is reductive if and
only if its roots build a root system, i.e. X has only semisimple roots. Hence, one can use
the description of semisimple roots to classify complexity-one T-varieties with reductive
automorphism group. The aim of this chapter is to describe all three-dimensional almost
homogeneous complexity-one T-varieties with reductive automorphism group and Picard
number one.

Proposition 7.19. Let X be a three-dimensional non-toric complete normal rational
variety. Suppose that X s almost homogeneous under an action of a reductive group and
there is an effective action of a two-dimensional torus on X. Then the Cox ring of X 1is
given as R(X) = R(A, P) with a matriz P according to the following cases.
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1 -11 1 0 0
B 1 10 01, 0
(4) o= -1 00 1 0 0]
0 00 dy d
T2 11 0 0
3 B 200 I, 0
(i) Po= 101 0 0
[ diy 0 0 dy d

In both cases, m < 2 holds; this means that the d.-part can be either empty, equal to £1
or equal to (£1,F1).

Proof. Clearly, we may assume that we are in the situation of Theorem 7.15. Since X is
non-toric but almost homogeneous, there must be a semisimple horizontal P-root. Thus,
Lemmas 7.16 and 7.17 show that after admissible operations, P is of the desired shape. [

Lemma 7.20. Letz = (1,a), y = (1,b) and z = (c,b) be points in Q*. Then the following
statements are equivalent.

(i) The simplex conv(z,y, z) contains an integral point.

(i) There is an integer d with min(a,b) < d < max(a,b).

Proof. Clearly, (ii) implies (i). So let ¢ = (¢1,¢2) be an integral point in conv(zx,y, z).
Then its second coordinate satisfies min(a, b) < g < max(a,b).

max(a, b}

mina.0)] =

1 2 ¢

]

Lemma 7.21. Let X be an almost homogeneous three-dimensional complexity-one T -
variety with Picard number one and reductive automorphism group. Then X has no
vertical semisimple P-roots.

Proof. Since X is almost homogeneous, it has at least one pair of semisimple horizontal
Demazure P-roots. Hence, by Theorem 7.15 we have r = 2 and ng > 2. Since rk(C1(X)) =
1 holds, we obtain m < 1 which contradicts the existence of a pair of semisimple vertical
Demazure P-roots. O
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Theorem 7.22. Let X be a Q-factorial three-dimensional complete normal variety of
Picard number one. Suppose that Aut(X) is reductive, has a maximal torus of dimension
two and acts with an open orbit on X. Then X is a rational Fano variety and, up to
1somorphy, X arises from a matrix P of one of the following. Additionally, we give the
free part of the Cox ring grading up to a multiple 5 € Zi~y:

-1 -1 1 1 0
. o -1 -1 0 0 121 d21
(i) P = 1 0 0 1 ' E loy > 1, dip > 2, _d12—1<l2l<_d21’
0 0 0 d12 dQl
5@0 = (—da1,do + lordya, doy + la1dya, —day, dy2).
-2 11 0 0
» -2 0 0 I l
(ii) P = 22 Do lay > 1, 2day > —doilag, —2dy > doila,

-1 01 0 0
dor 0 0 dar do

BQO = (l21d22 - 122d21’ l21d22 - l22d217 121d22 - l22d217 2d22+ d01l227_2d21 - d01l21>‘

-2 11 0 0
(i) P = =2 0 0 1 |y lag > 1, dao > daylag + g2,
-1 01 0 0 ’ 2d22 > —d()llgg, —2d21 > d01,
dop 0 0 dy dy
or
-2 11 0 0
-2 00 1 1
P = 101 0 82 , log > 1, 2dag > —doilaa, 1 — 2dy > doy,

dot 0 0 dy do
BQ° = (dos — laadoy, doy — lyadoy, doy — lyady, 2 + doylaz, —2da1 — don).

-2 1100 -1 -1 11 0
NS R R
-1 0010 0 0 01 —1
BQ° = (1,1,1,1,1).
-2 11 0 0
(v) P = :? 8 (1) %1 8 ;o 1<y < —2dy < 2y,
1 00 dy 1

ﬁQO = (l217 l217 l21> 27 _2d21 - 121)-

Conversely, each of the above listed matrices defines a Q-factorial rational almost homoge-
neous Fano variety with reductive automorphism group having a two-dimensional maximal
torus.
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Proof. First note that up to a common multiple 5 € Z, the weight vectors wy;, uj of

Q" can be easily computed by minors of P. They are the determinants of the matrices
P;; and P, resulting from P by deleting the column v;; and vy, respectively. Without loss
of generality, we may assume them to be positive. From Proposition 7.19 we infer the
possible forms of the matrix P. In Lemma 7.16 and Lemma 7.17 we proved that every such
variety X has at least one pair of semisimple roots, namely aq. = (£1,0). The Demazure
P-roots (uy,ug, oy, aip) € Z* are the lattice points of the root polytope. It is given by the
five conditions for Demazure P-roots, splitting into two equations and three inequations.
We can resolve the equations for u; and uy. Then the P-roots a = (aq,az) are given
by the lattice points of a polytope in Z? defined by the three remaining inequations.
With help of computer routines we determine the possible vertices of this polytope and
conditions ensuring the polytope not to be empty. Thereby, we deduce conditions to
exclude all roots that are not semisimple.

(1) First we consider the situation l01 = loz =11 =lix =1 and ly; > 1 with di3 > 0 and
0 < —do < l91dys. Every choice of
(io,i1) € {(0,2),(2,0),(1,2),(2,1)} and C € {(1,1,1),(1,2,1),(1,1,2),(1,2,2)}

can cause possible roots. If (ig,i1) = (2,1) or (ip,41) = (2,0) and C = (1, 1,1), the root
polytope coincides with the integral point (1,0). If (ig,41) = (2,1) or (ig,71) = (2,0) and
C' = (2,2,1), the root polytope coincides with the integral point (—1,0). Hence, there
are twelve remaining cases that have to be considered:

(1) For (ig,i1) = (0,2) and C' = (1,1,1) we have the vertices

day + dy log —1 ) (421 +di2 1 ) < 1 )
B = , CB = (P2 B = (0 ).
! (d21 + la1dia doy + lardyo ? day day ’ da;

and the condition for a non-empty root polytope

doy +di2 > 0.

This condition is equivalent to

Iy — 1 1
- < — < 1.
day + l21d12 da

In particular (£1,0) is not contained in the root polytope. Since we want to refer to
Lemma 7.20 we apply the unimodular transformation

(1 —dyy 1
U—( ) 1).

The vertices F, E5 and E3 are sent to the coordinates

121 —1 1 d12 1
B) = (1,21 ) - (1.-L1 By oo (%2 1Y
U( 1) ( 7d21 T l21d12> ) U( 2) ( ) d21) ) U( 3) ( d21’ d21)
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Consequently, there are integral points in the root polytope if and only if

1 logy — 1

do1 doy + lordiy —
The condition dy; = —1 implies the second condition. The integral points of the modified
polytope are given by (z,1) with di3 > x > 1. Consequently, the lattice points of the
root polytope lie between (1 — djo,1) and (1,1). Since the two root equations are given
by (u,v11) = u; = 0 and (u, v1) = usly; + asds; = —1, we obtain Demazure P-roots by
setting u; = us = 0. Consequently, the existence of Demazure P-roots is equivalent to
the condition dsy = —1.

(2) For (ig,i1) = (0,2) and C' = (1,2, 1) we have the vertices

B = (_lzldu + doy — dio _ 1 > - (_l21d12 +doy — dyg 1oy — 1)
do1 + lordia 7 dog +lndia )’ doy " dy )

1
Es = 07 — Y 1 7 ]
’ ( day + 121d12)

and the condition for a non-empty root polytope

lordig +doy — dig < 0.

This condition is equivalent to

by —1 1

0 > -
dyy  — doy + ladis

> —1.

In particular, (£1,0) is not contained in the root polytope. Since we want to use Lemma
7.20, we first have to apply the unimodular transformation

(1 dy
o= o)

which then gives us the new vertices

1 log1 — 1
UE) = (-1,—— |, U(Ey) = (-1, ,
(1) < da1 + 121d12) (E2) ( doy )

d12 1
U(E;) = | — ,— .
(Es) < doy + lo1dia”  day + 121d12)

Consequently, the root polytope contains integral points if and only if

1 Iy — 1
- = -1 and -1 < )
da1 + lo1dyo T dy

Since the first condition already implies the second one, we can restrict to the single
condition
doy + la1dig = 1.
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The lattice points in the modified polytope are given by (—z,—1) with 1 < z < d,.
Consequently, the lattice points in the root polytope lie between (—1 4 djs,—1) and
(0, —1). The two root equations are given by (u, via) = u; + a1 +asdips = 0 and (u, vy1) =
usgloy + aedy; = —1. Hence, (o, as) can be completed to Demazure P-roots by uy =
—di9. This implies that the existence of Demazure P-roots is equivalent to the condition
do1 + lordip = 1.

(3) For (ig,i1) = (0,2) and C' = (2,1,1) we have the vertices

doy + dio log —1 ) (dm + dys 1 ) ( 1 )
Ey = ) ) Ey, = T Es = 07 I B
! (d21 Flyrdyy doy + Indyy )" don dor )" 0 doy

and the condition for a non-empty root polytope

Thus, this case is equivalent to case (1).

(4) For (ig,41) = (0,2) and C' = (2,2, 1) we have the vertices

B = (_l21d12 +dn —din 1 ) L = (_l21d12 +dy —diz oy — 1)
dot +lndis ' doy + landin )’ day T ody ’

1
E = 07 - 1 71 )
’ ( day + 521d12>

and the condition for a non-empty root polytope

lordig +doy — di2 < 0.

Thus, this case is equivalent to case (2).

(5) For (ig,41) = (1,2) and C = (1,1, 1), we have the vertices

o) B (i)
E, = 17 ) Ey, = 17 Y 1 7 ]
' < do1 ? da1 + l1di2

B — ( dy2 B 1 >
’ dor + loidiy’  dog + lndin )’

and the condition for a non-empty root polytope

lordya +doy — diz < 0.

Thus, this case is equivalent to case (2). Note that the two root equations are given by
(u,v91) = —up — ug — ap = 0 and (u, v91) = uslyy + aodsy = —1.

(6) For (ig,41) = (1,2) and C' = (1,2, 1) we have the vertices

) B ()
E, = ]-7 ) Ey, = 17 T
! ( da 2 da1 + lo1dio

B — ( dy2 B 1 >
’ doy + lordys’  doy +loydin )’
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and the condition for a non-empty root polytope
lordy + doy — dyp < 0.

Thus, this case is equivalent to case (5) and (2).

(7) For (ig,i1) = (1,2) and C' = (2,1, 1) we have the vertices

1 l?l —1 ) (d12 1 )
By = (-1,——), B = (-1,—2"—), B = (2 -——),
' ( d21> 2 ( da1 + lo1dyo ’ do1”  dau

and the condition for a non-empty root polytope

Thus this case is equivalent to case (1). Note that the two root equations are given by
<U, UH> = —U1 — Uy = 0 and <U,U21> = UQlQl + Oégdgl = —1.

(8) For (ip,i1) = (1,2) and C' = (2,2, 1) we get the vertices

1 121 —1 ) (d12 1 )
By = (-1,-——), B = (-1,—2"——), B = (2 -—),
' ( d21> 2 ( da1 + lo1dyo ’ do1”  dau

and the condition for a non-empty root polytope

Thus, this case is equivalent to case (7) and (1).

(9) For (ip,i1) = (2,0) and C' = (1,2, 1) we have the vertices

da lo1 ) ( 2 ) ( lo1 )
Ey=| - y T ) Ey = 17 -5 > E3 = ]-7 5 7 4 |
! ( do1 + lordia”  doy + l21dy2 ? dy2 ’ doy + lo1dy

and the condition for a non-empty root polytope

2da1 + lnndiz < 0.

This condition is equivalent to

2 loy
Sl O
dy2 day + la1d12

Consequently, there is an integral point contained in the root polytope if and only if there
exists an integer = satisfying

- <z < ——.
day + lo1dya di2
Note that the two root equations are given by (u,vp1) = —u; — ug — uz = —1 and

(u,v12) = u3 + a1 + asdiz = 0. Hence, lattice points of the root polytope can always be
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completed to Demazure P-roots. All in all, there is a P-root different from (+1,0) if and
only if one of the following two conditions are satisfied:

dio =1, lo1 +2dy; <0 or diz >2, loy(diz — 1)+ dy <0.

(10) For (ig,41) = (2,0) and C' = (2,1, 1) we have the vertices

doy + lo1dyo loy ) ( 2 ) ( loy )
IS R Ey, = _17 5 > Es = _]-7 -5 >
! ( dQl d21 2 d12 ’ d21

and the condition for a non-empty root polytope
This condition is equivalent to
2 l21
= < —=
diz doy

Consequently, there are integral points in the root polytope if and only if there is an

integer x satisfying
2 I
< <

— T -
dyos — T dy

Note that the two root equations are given by (u,v11) = u; = 0 and (u, vog) = —uj —ug =
—1. Hence, lattice points of the root polytope can always be completed to Demazure
P-roots. All in all, there is a P-root different from (£1,0) if and only if the following
conditions are satisfied:

dig =1, 0< Iy +2dy; or 2<dyy, 0=<1dy + lo.

(11) For (ig,41) = (2,1) and C' = (1,2, 1) we have the vertices

lo1 ) ( 2 ) ( da lo1 )
b = 17 T 1 g ] Ey = 17 > Es = - s ;
! ( doy + la1dyo 2 dy2 ° do1 + lordia”  doy + l21dy2

and the condition for a non-empty root polytope

Thus, this case is equivalent to case (9).

(12) For (ig,41) = (2,1) and C' = (2,1, 1) we get the vertices

loy ) ( 2 ) <d21 + lo1dy2 lo1 )
E, = _17 T ) Ey, = _]-7 N ) Ey = T
! ( doy ? dr ’ do doy

and the condition for a non-empty root polytope
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Thus, this case is equivalent to case (10). Note that the two root equations are given by
(u,v11) = u; = —1 and (u, vge) = —u; — ug = 0.

Finally, we have to put all the conditions together. There is a vertical Demazure P-root
not equal to (£1,0) if and only if one of the following conditions is satisfied:

do; = —1

do1 + la1dip =1

dio = 1,151 +2dy <0

dig > 2, loy(dig — 1) +doy <0
dip = 1,151 +2dy >0

diz > 2, dy + 13 >0

(
(
(
(
(
(

Note that conditions (3) and (5) are equivalent to dj; = 1 and that conditions (4) and
(6) can not be satisfied simultaneously since —ly; < da; < —la1(dy2 — 1) implies dio = 1.
Negating all the conditions and taking the positivity of the weights into account we obtain
that to avoid vertical Demazure P-root not equal to (£1,0) all of the following conditions
have to be satisfied:

dy < —1 (1)

doy + lo1diz > 1 (2')

dip > 1 (3)

lo1(di2 — 1) +doy >0 (4"
doy + 121 <0 (5)

Note that (4’) implies (2’). Finally, we can deduce the conditions of assertion (i).

So far, we described all varieties having no other roots but (4+1,0). The computations,
that we made so far can also be used to describe those cases, where we have more than
one pair of semistable roots. One easily checks that there is only one possible choice for
the parameters, namely dy; = —1, dyo = 1 and ly; = 2. Then we have the P-roots (£1,0),
(0,£1), (£1,F1) and (£1,F2), and the P-matrix is given by

-1 -1 11 0
-1 -1 0 0 2
-1 0 01 O
0 0 01 -1

(ii) Now, we assume I3 = ljg = 1, loy,loe > 1 and lp; = 2. First note that this implies
Wip = Wig = Wpy > Way, Was. S0 the conditions for all weights to be positive are

lorday — laaday > 2dog 4+ doilae > 0 and  la1dag — loaday > —2day — dpiley > 0.

Since ly1,lag > 1, we have to check eight cases given by all possible choices of (ig, i) €
{(0,2),(2,0)} and C' € {(1,1,1),(1,2,1),(1,1,2),(1,2,2)}. If (ip,71) = (2,0) and C =
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(1,1,1) or C = (1,1,2), the root polytope consists only of the integral point (1,0).
Furthermore, if (ip,7;) = (2,0) and C' = (1,2,1) or C' = (1,2,2), the root polytope
consists only of the integral point (—1,0). So we are left with the following four cases:

(1) For (ig,i1) = (0,2) and C' = (1,1,1), we have the vertices

l21 -2 ) ( l22 )
E,=\l,—4———5|, B =|1l,————F+—,
! ( 2d21 — d01l21 2 l21d22 - l22d21

( 2dys + do1loo lao )

By = :
’ l21d22 - l22d21 l21d22 - l22d21

and the condition for a non-empty root polytope
—la1dag + laadoy + 2das + doilae > 0.

This condition is satisfied if and only if
log — 2 S l2o
2do1 + doilor — lardag — laaday

which is only satisfied if l5; = 1, a contradiction to l5; > 1. Thus, in this case there are
no P-roots.

(2) For (ig,41) = (0,2) and C' = (1,2, 1) we have the vertices

> 0,

log — 2 ) ( lag >
E, = _17 ) E, = _]-) )
' ( 2dy; — doilon ? Iorday — loada
B = (_ 2daa + do1la2 loo >
lo1dag — laaday lordas — loadsy )’

and the condition for a non-empty root polytope
—la1dag + loaday + 2das + dpilae > 0.

Consequently, this case can be treated analogously to case (1).

(3) For (ig,41) = (0,2) and C' = (1,1, 2) we have the vertices

l22 — 2 ) ( l21 )
E, = |1l,———— |, Ey, = (1, ’
! ( 2dao + do1lao ? —lo1dag + lyody
< 2d91 + dp1lo1 lo1 >

lpday — loaday larday — lopda

Elz

and the condition for a non-empty root polytope
lordag — laaday + 2day + dpile; < 0.

This condition is satisfied if and only if

lgg -2 l21

L — )
2d22+d01l22 - l21d22_l22d21
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which is only satisfied, if oo = 1, a contradiction to lyo > 1. Thus, in this case there are
no P-roots.

(4) For (ig,i1) = (0,2) and C' = (1,2,2) we have the vertices

log — 2 ) ( loy )
E, = _17 a7 . 9 1 > Ey, = _17 )
! ( 2dag + doila 2 —la1dag + laaday
( 2da1 + dorlan B loy )
lordag — loaday”  lordag — laaday )

E, =

and the condition for a non-empty root polytope
lo1da — lpadar + 2da1 + doprlyr < 0.

Consequently, this case can be treated analogously to case (3).

Summarized, there are no P-roots but (£1,0). Hence, we only have to ensure that the
weights are positive, which gives the assertion.

(iii) Now, we assume that ls; = 1 and lys > 1. The positivity conditions for the weights
are
2d22 > —d(]llzz, —2d21 > d01 and d22 > l22d21.

Note that the first two inequalities imply the last one. We have to go through all pos-
sibilities (g, 4,) € {(0,1), (1,0),(0,2),(2,0)} and C € {(1,1,1), (1,2,1),(1,1,2), (1,2,2)}.
So we have to check 16 cases. Note that the cases (ip,7;) = (0,1),C = (1,1,2) and
(10,71) = (0,1), C' = (1,2,2) as well as (ig,71) = (1,0), C' = (1,1,2) and (ip,4;) = (1,0),
C' = (1,2,2) can not occur since we assumed [y > 1. Furthermore, if (ig,7;) = (2,0) and
C' = (1,1,1) or C = (1,1,2), the root polytope only consists of the integral point (1,0)
and if (ip,7;) = (2,0) and C' = (1,2,1) or C' = (1,2,2) it consists only of the integral
point (—1,0). So we are left with the following eight cases:

(1) For (ig,41) = (0,1) and C' = (1,1, 1), we have the vertices

2day + dorla2 lao ) ( loo ) ( 1 )
E, = 5 5 E, = 17 ) E3 = ]-a - 5
' < doz — laadar  dog — loaday ) doz — lpsday ) 7" 2dy1 + do

and the conditions for a non-empty root polytope

dag + l2ada1 + do1laz > 0.
The non-emptiness condition is fulfilled if and only if

1 > 122
2da1 + do1 ~ dag — laaday

Consequently by Lemma 7.20 there is an integral point inside the root polytope if and
only if there is an integer = satisfying

0< ——WMW<r < —— <1
dag — laaday 2do1 + do
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The root equations are given by (u,v91) = us + asdy; = 0 and (u,v11) = uy = —1. Thus,
the existence of P-roots not equal to (+1,0) is equivalent to the conditions

2da1 + dor = —1, laa < dag — laaday.

(2) For (ig,41) = (0,1) and C' = (1,2, 1) we have the vertices
2day + doylao lao ) ( loo )
E, = - ) ) By, = _17 - 1 7 ]>
! ( dag — laadar  dag — laaday ? dag — laada;

1
By = (-1 ———
3 ( ’ 2d21+d01)’

and the condition for a non-empty root polytope

dao + laador + dprlag > 0.

Consequently, this case can be treated analogously to case (1).

(3) For (ig,i1) = (0,2) and C' = (1,1,1) we have the vertices

1 loo > (2d22 + dploo loo >
Ei=|1l,——————— ) Ey=(1,—=— ) By = : ;
! ( 2d21+d01) ? < dyy — lpodyy )77 dyy — lygday " day — logdy

and the condition for a non-empty root polytope

dag + laaday + doilae > 0.

Consequently, this case can be treated analogously to case (1).

(4) For (ig,i1) = (0,2) and C' = (1,2, 1) we have the vertices

1 l22 )
By = (-l,——— ) E=(-1,—2 ),
! ( 2d21 + d()l) 2 ( d22 - l22d21

B o_ (_2d22+d01l22 lao )
’ dys — lagday  doy — lyadsy )

and the condition for a non-empty root polytope
dao + laadar + doilaa > 0.

Consequently, this case can be also treated analogously to case (1).

(5) For (ig,i1) = (0,2) and C' = (1, 1,2) we have the vertices

loy — 2 ) ( 1 )
Ey=\lLo0707—5F) E=(L,—F7F—F]),
! ( 2d22 + d()llzg 2 d22 - l22d21

B — (_ 2dy1 +dor 1 )
’ dyy — laadyy day — lyadsy )
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and the condition for a non-empty root polytope
—day + l2adyy — 2dyy — doy > 0.

The non-emptiness condition is full-filled if and only if

_ 1 S log — 2
dog — loaday — 2das + dorlas

Since day — lgads > 0, this is only satisfied for Iy = 1 which we have excluded.

(6) For (ig,i1) = (0,2) and C' = (1,2,2) we have the vertices

log — 2 ) ( 1 )
E — _]_, E - _]-, - 9
! ( 2dy9 + doilag ? dag — loady
( 2da1 + do; 1 )
E3 - y )
dag — laaday ™ dag — laadyy

and the condition for a non-empty root polytope
—dag + laada — 2dy1 — do1 2> 0.

Consequently, this case can be treated analogously to case (5).

(7) For (ig,41) = (1,0) and C' = (1, 1,1) we have the vertices

B, = (d22 + laaday + doilao l29 >
dag — laadyy “dyy — logday )’

B — ( dag + laada + doilaz l22 )
2 — - )

d22 - l22d21 ’ d22 - l22d21

1
By = (0,-— ),
’ ( 2d21+d01)

and the condition for a non-empty root polytope
daa + laadar + do1laa > 0.

The root polytope is not empty if and only if

l22 < _ 1
dog — logdyy = 2dy +do1

Now, we are applying the following unimodular transformation

. 1—2d21—d01
o ().
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The vertices Fq, E5 and E3 are sent to

lao dag + 3laadar + 2do1la2 lao
B = (1,—2 B = (-
U(E) < " dyy — lz2d21> . UlBy) < dag — loady " doyy — 522d21> ’

1
E) = (1,————— ).
U(Es) <’ 2d21+d01)

Hence, we use Lemma 7.20 which says that there is an integral point inside the root
polytope different from (41, 0) if and only if there is an integer = satisfying

l22 1
- R G S —
dag — laadoy 2dyy + doy

If this is fulfilled, then the lattice point in the modified polytope is (1,1) and the lattice
point in the root polytope is (a1, as) = (1 + 2ds; + do1,1). Consequently, we obtain the
same conditions as in case (1):

2dayy +dy = —1 lag < dag — laady;.

Anyway, here, the existence of a Demazure P-root additionally requires an integer condi-
tion to be satisfied since the two root equations are (u,va1) = ug + agday; = 0, (u,vp1) =
—2uy — 2us — ay + asdy; = —1. The pair (ay, o) can be completed to a Demazure P-root
if and only if oy — asdyy — 1 = 1 + 2dgy + do1 + doy — 1 = 2dy; + 2dy; is even, which is
always the case.

(8) For (ip,i1) = (1,0) and C' = (1,2, 1) we have the vertices

B — (d22 + lpaday + do1lao L2 )
1 — 9 )
daz — laadoy daz — laadoy

B, = (_d22 + laday + do1lao Lo )
dag — laady Tdyy — lyaday )

1
By = 07 - 57 . 7 1>
° ( 2dy; + d01)

and the condition for a non-empty root polytope

dag + laadoy + doilae > 0.

Consequently, we get the same results as in case (7).

Finally we have to summarize all the cases and to negate the conditions for existence of
a P-roots. There are no other P-roots but (+1,0) if and only if

1 < —=2dy; — dor, 0 < 2dag + doila

or
dag — laaday — loe < 0, 0 < 2dgg + doila2, 0 < —2da; — dpy.
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Furthermore, one easily checks that the only P-roots that could occur in this case are
(—1,1), (1,1) and (0,1). In particular, they are not semisimple.

(iv) If l57 = 1, then by adding suitably often the second row to the last row, we may
assume do; = 0. This implies dg; = des = 1 and hence we obtain the matrix

P =

1

N DN
OO O
O = O =
—_— O = O
OO = O

One easily computes that this threefold has exactly four pairs of semisimple P-roots,
namely (£1,0), (0,£1), (£1,41) and (F1,+1). Note that the two matrices of the asser-
tion are defining isomorphic threefolds.

(v) Finally, we assume m = 1, lo; = 2, ;3 = l1o = 1 and l3; > 0. To ensure positivity
of the weights we require —2dy; — ly1dp; > 0. Since we have a free variable S) there can
both exist, vertical and horizontal Demazure roots. For the horizontal case there are only
four cases to check. Consider i = (2,0). For C' = (1,1, 1) the root polytope consists only
of the point (1,0) and for C = (1,2,1) it consists of (—1,0). If we have i = (0,2) and
C' = (1,1,1), then the vertices are

Iy, — 2 9
o =\1,—), E, = (10), E3 = (—,0
! ( 2dy1 + 121d01) 2 ( ) ’ (l21 )

and the condition for a non-empty root polytope is given by

l21—_2 > 0.

2d21 + la1dm
Since —2dy; — la1dyy > 0, this yields ly; < 2. Since X is not toric, we have ly; > 2 and
thus ly; = 2. Consequently (1,0) is the only possible root. In case of i = (0,2) and

C' = (1,2,1) analogous argumentation leads to the result that (—1,0) is the only possible
root.

Now we consider the situation for vertical Demazure roots. The conditions for a vertical

Demazure root z = [21, 29, 23, 24] are as follows:

<27U1 = 24 = _17
= —221—22’2—23+Z4d01 Z O,

)
)
Z,Un> =2z = 0,
)
)

\.l\z

S
()
=

= a1tz 20,
= 22121+d212’4 Z 0.

(
(
(
(z,v91

First note that these conditions are fulfilled if and only if they are fulfilled by a vector
[0, 22,0, —1]. Consequently, the conditions can be simplified to

d 1
2l < zg < ——dp;.
21 2
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Since the weight deg(S;) = —2ds; — la1dp; is positive by assumption, so is the difference
of the two bounds which is given by

Since we have m = 1 there are no semisimple vertical roots. Thus, we have to exclude the
existence of vertical roots. In particular, dy; has to be odd. By suitably often adding the
second row to the last row we can achieve dy; = 1. Furthermore, negating (*) we obtain
the condition ly; > —ds;. Together with the positivity condition —2ds; — l31 > 0 and the
assumption ly; > 1 we receive the statement of (v). O

Corollary 7.23 (of Theorem 7.15). Let X be a non-toric complexity-one variety arising
from data (A, P) as in Theorem 7.15. If X has Picard number one and satisfies %" + (),
then X is Fano. In particular, all varieties of Theorem 7.22 are Fano.

Proof. In this situation the anticanonical class wyx in C1(X) is given by

Wx = wi; + u — (r — 1)deg(go
>y Z (90)-

1=0 j=1
By Theorem 7.15(iii) » = 2 holds and we have to distinguish two cases:
(1) go = TorToe + T Tz + TQlQ with wy; = w1 and wey = wio,

(11) do = T01T02 + T121 =+ TQIQ Wlth Wp1 = Wp2 = W1q1-

Consequently, we obtain

n2
(7) wx = 2wor + 2wp + Z Waj + Z U, — Wo1 — Wo2
j=1 k=1

:w01+w02+iw2j+2uk > 0,

j=1 k=1

ng m no m
(ZZ) Wwx = 3w01+2w2j+2uk—2w01:w01+2w2j+2uk>O,
j=1 k=1 j=1 k=1

which implies that X is Fano in both cases. O
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Example 7.24. The following series of P-matrices defines non-toric almost homogeneous
complexity-one threefolds with at least d > 1 different Demazure P-roots.

-1 -1 1 1 0
-1 =100 2

Py = -1 0 01 0
0 0 0 d —2d+1

For C' = (1,2,1) and ig = 0, i; = 2 we obtain the following root polytope whose integral
points are P-roots:

d—1 1
A = conv ([d_1,—1],[0,—1], —2d+1’—2d+1])‘

In particular, we obtain at least d different roots
0,—1],[1,-1],...,[d —1,-1],
and the corresponding linear forms have the form
u = [ug,ug,us,ug) = [d—us, —d,uz,—1] with wuz € {0,...,d—1}.

Explicitly, we have
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Deutsche Zusammenfassung

Das Thema der vorliegenden Arbeit sind Varietdten mit Toruswirkung der Komplexi-
tat 1, das heifst, algebraische Varietdten X mit einer effektiven Wirkung eines alge-
braischen Torus der Dimension dim(7") = dim(X) — 1. Diese Varietdten werden auch
kurz Komplexitéit-Eins-T-Varietdten genannt. Es wird eine kombinatorische Beschreibung
solcher Varietdten eingefiihrt, welche die konvexgeometrische Beschreibung torischer Va-
rietdten durch Féacher verallgemeinert. Der Schwerpunkt dieser Arbeit liegt dabei in der
Anwendung dieser Theorie auf Klassifikationsprobleme fiir Komplexitat-Eins-T-Varieté-
ten. Besondere Bedeutung kommt hierbei Fanovarietdten zu, das heifst Varietdten mit
amplem antikanonischen Divisor.

In der algebraischen Geometrie sind torische Varietdten ein bekanntes Beispiel fiir den
Einsatz kombinatorischer Methoden. Die Struktur dieser Varietédten wird durch deren
Verbindung zu Gitterfichern auf anschauliche Art und Weise wiedergegeben. Im Jahr
1970 wurden (glatte) torische Varietéten zum ersten Mal von Demazure formal definiert
[18]. Diese Arbeit beinhaltet bereits eine konvexgeometrische Beschreibung torischer Va-
rietdten durch Fécher. Die Theorie torischer Varietdten entwickelte sich ab Ende der 70er
Jahre rasch weiter. Als einige Beispiele seien an dieser Stelle Danilov [17], Oda [42, 43],
Fulton [22] und Cox/Little/Schenk [16] genannt. Kombinatorische Methoden wurden
auch fiir groflere Klassen von Varietdten erfolgreich eingesetzt. Kempf, Knudsen, Mum-
ford und Saint-Donat befassten sich in [36] mit toroidalen Varietdten, und erweiterten
die konvexgeometrische Sprache auf diese allgemeinere Situation. In diesem Buch treten
Komplexitit-Eins-T-Varietdten als Spezialfille auf und werden zum ersten Mal durch
kombinatorische Daten beschrieben. Neben [36] ist die Arbeit [45] von Orlik und Wagre-
ich eine der ersten Publikationen iiber Komplexitét-Eins-T-Varietéiten. Sie diskutierten
den Spezialfall von IK*-Flachen und entwickelten eine kombinatorische Beschreibung deren
Struktur durch gewichtete Graphen. In neuerer Forschung beschrieben Altmann und
Hausen in [3| Varietdten mit Toruswirkung durch polyedrische Divisoren. Dies liefert ins-
besondere im Fall von Komplexitat-Eins-T-Varietdten eine recht einfache Beschreibung
dieser Varietdten. Der Ansatz der vorliegenden Arbeit basiert auf Coxringen. Hausen
und Siifs bestimmten den Coxring einer gegebenen rationalen vollstdndigen Varietédt mit
Toruswirkung der Komplexitit 1 mittels deren Wirkung, siehe [29]. Solche Coxringe sind
endlich erzeugt und erlauben eine einfache Darstellung durch trinomiale Gleichungen.
Dies liefert neue Ansitze fiir einen kombinatorischen Zugang zu Komplexitat-Eins-T-
Varietédten und ist der Ausgangspunkt dieser Doktorarbeit. Wir fiihren eine systema-
tische Konstruktion fiir Komplexitat-Eins-7-Varietdten mittels bestimmter ganzzahliger
Matrizen A und P und einer Kollektion ® von polyedrischen Kegeln ein. Diese Resultate
wurden teilweise in |28, Kapitel 1] und [27] veréffentlicht.

Motiviert durch die Klassifikation torischer Fanovarietdten, deren Beginn auf Batyrev
zuriick geht [8], wenden wir den kombinatorischen Ansatz auf Fanovarietdten der Kom-
plexitdt 1 an. Der Schwerpunkt der vorliegenden Arbeit liegt auf effektiven Schranken
und konkreten Klassifikationen.



Eine erste Beispielklasse sind Fano-IK*-Flachen, sogenannte del-Pezzo-IK*-Flachen. Der
in dieser Arbeit verwendete kombinatorische Ansatz unterscheidet sich von den Arbeiten
von Alekseev/Nikulin [2] und Nakayama [40], welche auf klassischer Fléchengeometrie
basieren. In den Theoremen 5.25, 5.26, 5.27 und 5.28 erhalten wir eine vollstandige Klas-
sifikation von Gorenstein-log-del-Pezzo-IK*-Flichen. Die verwendeten Methoden liefern
dariiber hinaus die Coxringe all dieser Fliachen. Dies erginzt Ergebnisse von Derenthal
[19] fiir Coxringe im Hyperflachenfall und Hausen/Siift [27], welche die Fille Picardzahl
1 und 2 mit anderen Methoden behandelten.

Fanovarietdten mit Picardzahl 1 sind von besonderer Bedeutung. Nadel gibt in [39] eine
effektive Schranke fiir den Grad (—K,)" einer glatten Fanovarietét an, welche von der
Dimension n abhéngig ist. Sind Gradschranken bekannt, so liefert Kollar in [37] effektive
Schranken fiir die Anzahl unterschiedlicher Deformationstypen glatter Fanovarietédten. In
[35] studiert Kasprzyk torische Varietdten mit Picardzahl 1, so genannte ,,(fake) weighted
projective spaces® und liefert im terminalen und kanonischen Fall Beschrinktheitsbe-
dingungen fiir deren Gewichte.

In Theorem 6.10 erhalten wir explizite Schranken fiir die Anzahl méglicher Deformations-
typen Q-faktorieller Komplexitéit-Eins-T-Varietdten mit Picardzahl 1 in Abhéngigkeit
der Dimension und des Picardindex, das heift des Index der Picardgruppe in der Di-
visorenklassengruppe. Als Konsequenz liefert Theorem 6.12 die folgenden Ergebnisse
fiir das asymptotische Verhalten der Anzahl §(d, ) unterschiedlicher Deformationstypen
Q-faktorieller d-dimensionaler Komplexitéat-Eins-T-Varietdten mit Picardzahl 1 und Pi-
cardindex p. Fiir festes dy € Zi~o und festes pg € Z~( erhalten wir

8(do,p) ~ p™ und  8(d, pg) ~ dP¢

mit beliebig kleinen Konstanten A > 1 und B > 3. bezichungsweise dy abhingig sind.
Mittels der expliziten Schranken erhalten wir Klassifikationen fiir feste Dimension und
festen Picardindex. In den Theoremen 6.18, 6.23, 6.24 und 6.26 geben wir exemplarisch
alle zweidimensionalen Varietdten bis Picardindex 6, alle dreidimensionalen Varietaten
mit Picardindex 1 und 2 und alle vierdimensionalen Varietdten mit Picardindex 1 an. In
allen Féllen werden die Coxringe explizit aufgefiihrt. Diese Ergebnisse sind in |28, Kapitel
2 und 3| und [30] veroffentlicht.

Im Jahr 1970 studierte Demazure die Automorphismengruppen glatter vollstdndiger to-
rischer Varietédten und beschrieb die Wurzeln mittels Fécher, siehe [18]. Spéter verallge-
meinerte Cox diese Ergebnisse in [15] fiir den simplizialen Fall. In [41] liefert Nill effek-
tive kombinatorische Kriterien fiir die Reduktivitdt von Automorphismengruppen voll-
standiger torischer Varietdten. In neuerer Forschung beschreiben Arzhantsev, Hausen,
Liendo und Herppich die Automorphismengruppen von Komplexitét-Eins-T-Varietédten
durch kombinatorische Daten, siehe [6]. Wir verwenden diesen Ansatz fiir das Studium
fast-homogener Komplexitit-Eins-T-Varietdten, das heifft deren Automorphismengrup-
pen wirken mit einer offenen Bahn. In Proposition 7.7 werden fast-homogene K*-Flache
explizit beschrieben. Als Folge davon klassifizieren wir in Korollar 7.12 alle log-terminalen
nicht torischen fast-homogenen K*-Flichen mit exakt einer Singularitdt und Picardzahl



1 bis Gorensteinindex 5. Es stellt sich heraus, dass alle diese Flachen Fano sind. Diese
Ergebnisse sind veroffentlicht in |6, Kapitel 6]. In Theorem 7.22 bestimmen wir alle
dreidimensionalen fast-homogenen Komplexitét-Eins-T-Varietdten mit Picardzahl 1 und
reduktiver Automorphismengruppe. Alle diese Varietiten sind ebenfalls Fano. Diese
Ergebnisse sind in [6, Kapitel 8] veroffentlicht.

Die vorliegende Arbeit hat sieben Kapitel, welche nun jeweils kurz zusammengefasst wer-
den.

Das erste Kapitel ist eine kurze Zusammenfassung grundlegender Bezeichnungen und Aus-
sagen iiber Coxringe und gestraufte Ringe, welche den Arbeiten [9] und [25] entnommen
sind, siehe auch [5] und [26]. Jeder gestraufste Ring ist der Coxring einer Q-factoriellen
normalen Varietét, welche wir durch eine Standardkonstruktion als guten Quotienten einer
offenen Menge des Spektrums des Rings erhalten. Dariiber hinaus werden geometrische
Eigenschaften solcher Varietiten mittels ihrer Coxringe formuliert und deren konvexge-
ometrische Bedeutung besprochen.

Kapitel 2 ist Komplexitéat-Eins-T-Varietaten gewidmet, das heifst algebraischen Varieta-
ten X mit einer effektiven Wirkung eines Torus 7" der Dimension dim(X) — 1, sowie deren
Coxringen, welche faktoriell graduierte Ringe der Komplexitéat 1 sind. Wir beschreiben
die Coxringe mittels Erzeugern und Relationen und fiihren die kombinatorische Sprache
der P-Matrizen ein. Diese ist vergleichbar mit der konvexgeometrischen Beschreibung fiir
torische Varietédten durch Fécher. Teile dieses Kapitels sind bereits veroffentlicht in [27]
und |28, Kapitel 1].

In Kapitel 3 widmen wir uns der Singularitdtenauflosung von Komplexitét-Eins-T-Va-
rietdten. Wir diskutieren eine kanonische Weise, Singularitdten solcher Varietéten auf-
zulosen. Da Komplexitat-Eins-T-Varietaten auf kanonische Weise in torische Varietiten
eingebettet sind, werden torische umgebende Modifikationen fiir die Auflésung verwendet,
siche dazu [25]. Wir untersuchen das Verhalten der antikanonischen Klasse —Kx einer
Komplexitét-Eins-T-Varietit unter torischen umgebenden Modifikationen. Eine &hnliche
Konstruktion basierend auf polyedrischen Divisoren wird von Liendo und Sif in [38]
vorgestellt.

In Kapitel 4 betrachten wir Komplexitit-Eins-T-Varietaten der Dimension 2, so genan-
nte K*-Flidchen. Wir geben einen Uberblick iiber ihre Geometrie und bestimmen alle
Typen von Coxringen kombinatorisch minimaler IK*-Flachen, das heifit IK*-Flachen ohne
kontrahierbare Primdivisoren. Des Weiteren berechnen wir Schnittzahlen invarianter Kur-
ven und leiten daraus Fanobedingungen fiir IK*-Flachen ab. Schlieklich fithren wir den
antikanonischen Komplex fiir log-terminale IK*-Fléachen ein, ein konvexgeometrisches Ob-
jekt, das vergleichbar ist mit Gitterpolytopen, die torische Fanovarietéiten beschreiben.
Mit Hilfe des antikanonischen Komplexes lassen sich Singularitdten und Gorensteinindex
log-terminaler Fano-IK*-Flachen konvexgeometrisch beschreiben.

In Kapitel 5 befassen wir uns mit log-del-Pezzo-IK*-Fléchen, das heifst mit log-terminalen
Fano-IK*-Flachen. Das Hauptergebnis ist eine vollstdndige Klassifikation aller nicht to-
rischen Gorenstein-del-Pezzo-IK*-Flachen. Um diese zu erhalten, beschreiben wir den



Gorensteinindex einer K*-Flache kombinatorisch mittels ihrer P-Matrix und ihres an-
tikanonischen Komplexes und betrachten die spezielle Geometrie von del-Pezzo-IK*-Fla-
chen. Als Folgerung erhalten wir explizite Schranken, welche die Klassifikation aller
nicht torischer log-del-Pezzo-IK*-Flidchen ermdglicht, wobei deren Coxringe und CIl(X)-
Graduierungen konkret angegeben werden.

In Kapiel 6 erhalten wir effektive Schranken und Klassifikationsergebnisse fiir rationale
Q-faktorielle Fanovarietdten mit einer Toruswirkung der Komplexitdt 1 und Picardzahl
1 in Abhéngigkeit von den Invarianten Dimension und Picardindex. Konkret geben wir
alle zweidimensionalen Varietdten bis Picardindex 6, alle dreidimensionalen Varietdten
mit Picardindex 1 und 2 und alle vierdimensionalen Varietdten mit Picardindex 1 an. Die
Ergebnisse dieses Kapitels sind bereits in in [28] und [30] verdffentlicht.

In Kapitel 7 behandeln wir Klassifikationsprobleme fast-homogener Komplexitét-Eins-
T-Varietiten, das heift, deren Automorphismengruppe Aut(X) wirkt mit einer offe-
nen Bahn. Durch das Einfiihren von Demazure- P-Wurzeln erhalten wir einen kombina-
torischen Ansatz fiir die Automorphismengruppe solcher Varietiten, welcher die Wurzeln
von Aut(X) beschreibt. Die Demazure- P-Wurzeln sind Gitterpunkte bestimmter Poly-
tope. Diese konvexgeometrische Beschreibung wird fiir Klassifikationsprobleme fast-ho-
mogener Komplexitit-Eins-T-Varietdten der Dimension 2 und 3 verwendet. Konkret
werden vollstdndige Listen aller log-terminalen nicht torischen fast-homogenen IK*-Fl&-
chen mit genau einer Singularitdt und Picardzahl 1 bis Gorensteinindex 5 angegeben.
Aufterdem bestimmen wir alle fast-homogenen dreidimensionalen Komplexitat-Eins-T-
Varietaten mit reduktiver Automorphismengruppe. Diese Ergebnisse sind in [6] verof-
fentlicht.
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