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Chapter

Introduction

The quarter—finals of the European Cup football club tournament in the
1964/65 season were particularly thrilling for the players and supporters
of two teams. Both, the first leg and the second leg between the clubs
Liverpool FC and 1. FC' Kéln finished in a no—score draw. The former set of
rules, known as the Laws of the Game, did not provide for penalty shootouts.
To this end, an extra match was scheduled for the 24th of March 1965 to
take place in Rotterdam, Netherlands. Again, the score was tied at the end
of regulation time and even extra time did not change the scores. Referee
Robert Schaut had to toss a coin to determine the winning team [GWO07].

Flipping a coin is a simple and evenhanded way to break a tie rapidly,
peacefully and reliably. The outcome is either heads or tails, winners or
losers, semi—finals or elimination. When Schaut tossed a coin for the first
time, it got stuck vertically in the mud [GWO07]: neither heads nor tails, with
no immediate! winner nor loser, an undefined state in a two-state model.

Boolean logic, the underlying concept of this thesis, knows exactly two
values, true and false. A Boolean formula consists of a distinct set of
Boolean variables. Either there is an assignment to the variables such that
the formula evaluates to true, or any possible assignment to the variables
evaluates to false. Many real-world problems, or parts of these problems,
are modelled as Boolean expressions. Any Boolean expression can be trans-
formed into a standardised formula — the conjunctive normal form (CNF)
[Tse68]. Given a formula in CNF, a Satisfiability (SAT) solver may return
an assignment to the variables of the formula that satisfies all constraints.
Or it may prove that the given formula cannot be satisfied by any possible
assignment.

!Liverpool FC won thanks to a second toss of the coin.



2 Introduction

The problem to decide whether a Boolean formula in CNF is satisfi-
able is known to be NP—complete [Coo71|. Thus, no efficient algorithm is
known that allows for every formula to be solved in reasonable time. Most
researchers are convinced that no such poly—time algorithm exists. How-
ever, Davis, a renowned researcher in the field of SAT, is unconvinced, as
he states in the Preface of the Handbook of Satisfiability |[BHvMWO09|. The
basic algorithm he published in 1960 [DP60, DLL62]| can still be identified
in state—of-the—art SAT solvers.

Nevertheless, SAT solving is applied successfully in several domains. An
early application was within the domain of planning [KS92|. The success-
ful application of SAT to planning problems influenced the development of
bounded model checking [BCCZ99, BHVYMWO09|. Along with equivalence
checking [KK97, KPKGO02|, this is a basic concept for hardware verifica-
tion, one of the most famous applications of SAT technology. Concrete
applications and evaluations for practical hardware verification problems are
publicly available [Vel02]. The consequent extension to software verification
using SAT technology has already been made [CKLO04, IYG108]. Moreover,
configuration problems can be analysed and verified with the help of SAT
solvers, such as the verification of automotive product configuration [SKKO03].
A relatively recent application of SAT technology is within the field of bioin-
formatics [LMS06]|. Several applications of SAT are presented and analysed
by Marques-Silva [MS08| and are exhaustively discussed in the Handbook of
Satisfiability [BHvMWO09).

Despite the success of SAT solvers for many real-world SAT problems,
many SAT instances cannot be solved even after several hours of computa-
tion time. The result of a SAT solver may be something like Unknown or
Timeout for these infeasible problems. Therefore, solving Boolean formulae
in practice has three possible outcomes. This is the point where Boolean
logic meets reality and where practical SAT solving does not adhere to the
two-state model.

Modern SAT solvers are not able to prove that n + 1 pigeons cannot be
put into n distinct pigeonholes even for small input sizes. However, the use
of solvers that apply extended resolution |[Hual0, AKS10| may improve on
this kind of formula in the future [Coo76]. Another example where SAT
technology evidently failed in the recent past is the Eternity II puzzle, de-
picted in Figure 1.1: 256 square pieces with different patterns at each edge
have to be placed on a 16 x 16 grid. A solution to the puzzle matches all
patterns of adjacent edges. The first valid solution would have been re-
warded with $2,000,000. Different SAT formulations to solve the puzzle
were presented [HeuO8b, BFMP09|. However, the puzzle was not solved by
any technique within three and a half years and the competition has since



been discontinued. The author of this thesis spent several months on the
attempt to tackle the problem with the use of SAT technology.

Both examples are so—called
crafted problems that are devel-
oped to be extremely difficult. A
choice to put a particular pigeon
into some hole or to place a piece
onto a position on the grid may
not be found to be faulty until
all the possibilities for all the re-
maining items have been explored.
To improve SAT solving for dif-
ferent domains, the SAT commu-
nity distinguishes between three
different kinds of instances [Sat11]:
crafted benchmarks, randomly cre-
ated benchmarks and benchmarks
that model real-world application

Figure 1.1: The Eternity II puzzle
was published by Monckton, and was

problems.  The latter type of marketed by Tomy UK Ltd.
benchmark is the main objective of

this thesis.

The predominant approach for tackling SAT instances from real-world
applications is conflict—driven SAT solving with clause learning (CDCL).
The algorithm goes back to 1960 [DP60, DLL62| and has been improved
considerably since then [MS99, MMZ*01, ES03, Bie08b|. The ongoing im-
provement of the CDCL procedure using real-world benchmarks demon-
strates the concept of Algorithm Engineering?. The close interplay of the
design, the analysis, implementation and experimental evaluation of practi-
cable algorithms allows for the optimisation of an algorithm for particular
applications. Nowadays, state-of-the—art CDCL solvers are highly tuned
and several parameters have been determined carefully.

As a consequence of tuning, modern CDCL solvers are highly sensitive
to minor changes of parameters. Audemard and Simon address the ques-
tion whether the practical improvement of a CDCL solver may sometimes
originate from a side—effect rather than from the technique [ASO08|. Put dif-
ferently, some promising approaches may produce bad experimental results
that arise from some incompatibilities with unknown side—effects rather than
by the approach itself. This issue evidently complicates the evaluation of
SAT approaches in practice.

2http://www.algorithm-engineering.de
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4 Introduction

A corroborative example is presented in Figure 1.2. The well known CDCL
solver MiniSat [ES03, ES12] maintains a heap to store heuristic information
for variables. We modified the behaviour of the heap in MiniSat2.2 solely
for the case when two variables have equal values. A point (z,y) in the plot
indicates that x instances can be solved when the time per instance is limited
to y seconds. Thus the more to the right the curve is, the more successful
the solver is.

The single-line modifications for a seemingly marginal issue already ex-
hibit quite an impact. When MiniSat is run without preprocessing (Figure
1.2 a), the original heap implementation performs best for almost all time
limits. However, the stable version of the heap performs much better when
preprocessing is also applied.

Single-line heap modification of MiniSat (core version) Single-line heap modification of MiniSat (simp version)
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Figure 1.2: The sensitivity of conflict—driven SAT solvers. The two
plots show the effect of single-line modifications to the MiniSat2.2
heap (a: pure CDCL, b: with preprocessing). Instances are taken
from the SAT-Race 2010. These modifications are revisited in
Section 2.2.5.

This work explores SAT solving techniques that go beyond small changes
to the predominant CDCL approach. Whilst this work starts with techniques
that are close to state—of—the—art CDCL solving, it goes further, and explores
and evaluates some rather uncommon ideas. The general purpose is to widen
the range of instances for which SAT solvers may compute a result in rea-
sonable time. In the following, we give a brief overview of the chapters of
this thesis.



Basic definitions and concepts are introduced in Chapter 2. The approach
of CDCL is explained in great detail, which will be referred to in subsequent
chapters. Moreover, the most common heuristics of state—of-the—art SAT
solvers are described.

Chapter 3 presents some extensions that can be incorporated into CDCL
solvers. The first part of the chapter introduces a novel improvement of
the data structure to represent clauses within a CDCL solver. The re-
mainder of this chapter studies the enhancement of simplification techniques
for SAT formulae. The underlying techniques are asymmetric branching
[HS07, PHSO08] and hyper—binary resolution as proposed by Bacchus et al.
[Bac02a, BW03] and later improved by Biere |Bie09a|. Simplification is
predominantly applied as preprocessing before the actual CDCL algorithm
starts [SP04, EB05|. Moreover, some modern solvers also apply simplifica-
tion techniques in between CDCL, known as inprocessing |Bie09b, Biell].
We propose an algorithm to improve the quality of both techniques, and eval-
uate its application for preprocessing and inprocessing. Some of the material
in this chapter has already been published [KK11c, KK11b|, though only a
rough outline of the simplification algorithm is given in these publications.

A crucial part of conflict—driven SAT solving is the so—called Boolean
constraint propagation of assignments. Any clause that has only one literal
left implies an assignment of the corresponding variable. While the CDCL
algorithm only considers the case where one literal is left, in Chapter 4 we
extend Boolean constraint propagation to more general cases where any num-
ber of literals may be left. The technique is based on the general concept
of hyper-resolution that was introduced by Robinson [Rob83|. Two differ-
ent implementations are evaluated to study the tradeoff between speed and
quality. The second approach extends the concept of dominators that was
suggested by Biere [Bie09a| and transfers it to our extension of Boolean con-
straint propagation. The main points of this chapter are also presented in
[KK11a).

We further depart from the standard CDCL algorithm by exploring the
alternative DMRP solving approach in Chapter 5. Decision making with
reference points (DMRP) was introduced by Goldberg |Gol08a|. Compared
to the CDCL algorithm the DMRP approach requires more information for
SAT solving. Consequently, more effort has to be spent on maintaining the
underlying data structures. We present an efficient implementation for the
increased requirements of the DMRP algorithm. Moreover, we suggest a
hybrid approach that is competitive to pure CDCL solving. The work pre-
sented in this chapter has also been published in [Kot10a).



6 Introduction

All the techniques and approaches presented in this thesis have been com-
bined within one SAT solver. Chapter 6 presents the implementation of our
parallel solver, SArTagnan, with a high degree of information sharing among
different threads. More complex techniques are justified by the benefits of
having several solvers running in parallel. The concept and architecture of
SArTagnan have been published in [KK11lc, KK11b|.

While the author was working in the field of SAT solving, various SAT—
related projects have arisen over the last years. Some are related to co—
supervised student research projects; others were preliminary ideas that
gradually turned into exciting projects. Chapter 7 briefly sketches some
of these projects without claim to completeness. Finally, the contributions
of the thesis are summarised in Chapter 8.



Chapter

Preliminaries

The satisfiability (SAT) problem has been studied by different research com-
munities. Some communities are more focused on theoretical analysis of
the NP—complete SAT problem [Coo71|. Bounds on the complexity to solve
SAT or subproblems of SAT have been steadily improved. Bounds for both,
deterministic and probabilistic algorithms have been proven [Sch99, PS04,
PS07, KS10, KKS08a]. Furthermore, there are several restricted classes of
the SAT problem where satisfiability can be decided in polynomial time,
such as Horn—formulae or 2-SAT [FG03, APT79|.

On the other hand, SAT has been analysed from a practical point of view.
Several real-world problems are modelled as SAT problems and are then
computed with the help of efficient SAT solvers. Problems originated from
hardware and software verification [BCCZ99, Sht01, Vel02, IYG™08], auto-
motive product configuration [SKKO03] and bioinformatics [MS08] are success-
fully tackled by state—of-the—art SAT solvers. The Handbook of Satisfiability
[BHVYMWO09] gives an overview of several aspects and applications of SAT.
In different areas, different notations are frequently used. This chapter de-
fines the basic notation used in this work and introduces the most relevant
concepts. Some additional definitions and algorithms will be introduced
within later chapters. For basic concepts from graph theory and algorithms
we refer the reader to comprehensive textbooks such as [CLRSO01].

2.1 Boolean Formulae and Satisfiability

The SAT problem is a decision problem that examines Boolean expressions.
A Boolean expression consists of Boolean variables; the operations conjunc-
tion (AND, A), disjunction (OR, V), and negation (NOT, —); constants true
and false; and parentheses. Further Boolean operations can be derived, e.g.
exclusive or (XOR, @), implication (—) and equality (+»). Given a Boolean
expression the SAT problem asks whether an assignment to the variables
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exists such that the expression evaluates to true. The ground—breaking
work by Davis and Putnam [DP60] started to consider Boolean formulae
in conjunctive normal form (CNF), to which any Boolean expression can be
transformed.

2.1.1 Conjunctive normal form

A formula F in CNF is a set of clauses that are connected as conjunctions.
Let V be the set of Boolean variables of F. A clause C' € F is a disjunction of
|C| literals, whereas each literal is either a variable or its negation. A clause
C is called unit if it contains only one literal (|C| = 1), binary if |C| = 2 and
ternary if |C| = 3. We refer to the subset of clauses Fo C F that contains
all unit and binary clauses of F as Fo = {C € F : |C| < 2}.

To access a literal within a clause C' € F, we use square brackets. Thus
C[k] yields the k-th literal in C' whereas 0 < k < |C]. A literal is said to have
negative polarity if it is a negation of a variable (7;) and to have positive
polarity when it is not negated (v;). Double negation of a variable yields the
variable itself: 7; = v; V 1; € V. Note that some researchers use the term
phase as a synonym for the polarity of a variable.

We distinguish between a variable itself, v;, and the corresponding liter-
als, \; and \;. This allows for a more generic access of a particular literal in a
clause C. We may write \; <— C[k] to access the k-th literal of C even if it is
unclear or unimportant whether the literal occurs with positive or negative
polarity. A; may thus represent v; or its negation ;. The complementary
literal, \;, represents 7; or v; respectively. Consequently, double negation of
a literal is the literal itself: \; = );. The set of all literals £ contains all
variables in positive and negative polarity: £ = {\;, \; : v; € V}. Note that
the subscript (j) of a literal A; is never used to denote the position of the
literal within any clause.

An assignment function is a function A — {false,true} that assigns

Boolean values to all variables of A C V. We define a partial assignment T
as a set of assignment tuples (v;,b), where v; € A CV and b € {false, true}.
Obeying the rule of an assignment function, a variable v; can be contained
in at most one assignment tuple in 7. An assignment is complete if it assigns
Boolean values to all variables in V, i.e. A =V in the assignment function;
accordingly, 7 contains an assignment tuple for all variables.
Assigning a Boolean value b € {false,true} to a variable v;, extends the
partial assignment 7 to 7 U {(v;,b)}. If b is true, we also say that literal \;
is assigned. Consequently, the partial assignment 7 is extended to 7 U A;.
Analogously, for b = false, the literal /\7 is assigned and 7 is extended to
TUM;.
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In the context of partial assignments, a clause C' € F can be partitioned
into three disjoint subsets. The set T.(C) = {\; € C : \; € 7} indicates the
subset of literals within C' that are true by the current partial assignment 7.
The set F-(C) = {)\; € C : \j € 7} is the subset of literals of C' that are
falsified (assigned the complementary value) by the partial assignment 7.
Finally, the set U-(C) = {C'\ {T-(C) UF-(C)}} is the subset of the literals
of C' whose corresponding variables are not assigned in 7.

Clause C' is satisfied under 7 iff T, (C) # 0, and it is falsified under
7 iff F.(C) = C (T.(C) = U(C) = 0)!. A clause C is unit under 7 iff
[U-(C)| =1 and |F-(C)| = |C| — 1, and binary under 7 iff [U-(C)| = 2 and
IF-(C)| = |C| —2 (T+(C) = 0 in both cases). A complete assignment that
satisfies all clauses of F is called a model for F. A formula is satisfiable iff
at least one model exists; it is unsatisfiable if no such assignment exists.

In some applications of SAT, unsatisfiable formulae may be further anal-
ysed to determine a so—called minimal unsatisfiable core. An unsatisfiable
core for a formula F is a subset of its clauses F,, € F that is unsatisfiable.
If F, is a minimal unsatisfiable core, the removal of any clause C € F,, will
yield a satisfiable instance, F,,\ C. The computation of minimal unsatisfiable
cores is revisited in Section 7.5.

2.1.2 Resolution

The resolution rule in Boolean logic is an inference rule that allows for
the creation of a new valid clause [Rob65, Rob79]. It requires two clauses,
C1,Cy € F, that contain a complementary literal. Let C7 = (\; V A) and
Co = (\; V B), where A and B are a disjunction of some literals in £. The
resolution on the variable v; is formally written:

(A VA),(\; V B)
(AV B) '

The derived clause (A V B) is called the resolvent of C; and C3 on the
variable ;. If A and B contain a pair of complementary literals, then (AV B)
is a tautology, i.e. it is satisfied for any assignment of variables.

The resolution rule is refutation complete: A formula F is unsatisfiable
iff the empty clause can be derived by resolution. Moreover, the rule of
resolution allows for the ezistential quantification of any variable v € V.
Let Kp, K,, € F be the sets K, = {C € F: A\, € C}and K,, = {C € F:
Ar € C}. Let Ky contain all clauses that can be derived by the resolution
on variable v, with any pair of clauses C, € K, (), € K,,. The formula F is

We use iff as an abbreviation for if and only if.
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equisatisfiable to the formula F' = FU Ky \ {KC, UK, } in which variable vy
is not contained. Thus F is satisfiable if and only if F’ is satisfiable.

2.2 Conflict—Driven Solving with Clause Learning

SAT solvers can generally be categorised into two distinct types, namely
complete and incomplete solvers. Given a formula F in CNF, both kinds
of solvers may compute a satisfying assignment for F. However, complete
solvers can also prove unsatisfiability for formulae that cannot be satisfied
by any assignment to the variables in V.

Incomplete solvers are mostly local search approaches [SKC93|, which
have been shown to be especially successful for satisfiable random SAT in-
stances [Sat1l]. Solving SAT with local search is beyond the scope of this
work and we refer the reader to Hoos et al. [Hoo98, HS04] and Kautz et
al. (Chapter 6 in [BHvMWO09]). Complete solvers are based on the DPLL
algorithm [DP60, DLL62|, which may be classified as a branch-and-bound
algorithm. State—of-the—art solvers are predominantly variants of CDCL
that is an extension of the original DPLL algorithm [MSS99|. Both algo-
rithms are introduced in this section. The effects of different modifications
to the original algorithm are studied by Katebi et al. [KSMS11].

2.2.1 The DPLL algorithm

The often cited DPLL algorithm is the basis of today’s SAT solving algo-
rithms. The elementary rules are introduced in [DP60| and are outlined be-
low (using the established names). In [DLL62|, the third rule given below was
replaced by the fourth rule to cope with memory restrictions [BHvMWO09.

e By the unit clause rule, any clause (\;) € F allows for the following
simplification: remove all clauses that contain the literal A; and remove
the literal A\; from any clause it is contained in.

e The pure literal rule can be applied whenever there is a literal A\; that
does not occur in the formula F, i.e. none of the clauses in F contains
A;. In that case, all clauses that contain )\; can be removed from F.

e A variable v; and all the clauses it is contained in can be eliminated
when all deducible resolvents on this variable are added to the formula.
The concept of existential quantification has been described earlier in
Section 2.1.2.

e The splitting or branching rule recursively chooses a variable v4 and
examines both subproblems F U (A\g) and F U (Ag).
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2.2.2 Boolean constraint propagation

The main ingredient of a modern SAT solver is the so—called Boolean con-
straint propagation (BCP). For CDCL solvers, this is equal to unit propa-
gation and goes back to the first rule of the DPLL algorithm mentioned in
Section 2.2.1.

A crucial issue for the efficient implementation of unit propagation in
CDCL solvers is the application of the two watched literals scheme, whose
efficiency was impressively demonstrated by the success of the Chaff solver
[MMZ*01]. To detect whether a clause C is unit under the partial assignment
T, it is sufficient to watch two literals of the clause. With this, each literal
Ai € L holds a watcher list that contains all clauses where A; is one of the
two watched literals. If the complementary literal ); is assigned (7 < TUN\;),
the watcher list of \; is traversed to detect those clauses that become unit or
falsified by the assignment of \;. To apply the two watched literals scheme,
we assume that no clause contains duplicate literals. Moreover, tautological
clauses that contain a literal and its complement are assumed to be removed.
Algorithm 2.1 sketches the complete process of unit propagation.

Boolean constraint propagation expects an unassigned literal to be as-
signed in the partial assignment 7. Nevertheless, the two cases when literal
Aq or its complement are already assigned are handled at the beginning of
Algorithm 2.1 (line 4 et seq.). In the first case, nothing is left to be done;
however, the latter case conflicts with the unit clause (A\y).

The assignment is applied in line 6 and the literal is enqueued into @ for
subsequent propagation. A crucial issue of CDCL solvers is to store a reason
for each assignment. This is essential for conflict analysis and was proposed
by Marques-Silva and Sakallah in the GRASP algorithm (Generic seaRch Al-
gorithm for the Satisfiability Problem) [MSS96, MSS99]. The reason for an
assignment Ay is accessed by the function rsn(\). It may be a clause C' that
is unit under the current partial assignment 7 and thus forces the assignment
of the remaining literal A\;. In that case, C is also called the asserting clause
for Ag. If the assignment is not forced by a unit clause, the reason is empty
(0). Since the assignment of )\, is supplied externally, rsn(\,) is set to O
in line 8. Moreover, for each assignment, the current decision level is stored
by the function level. The decision level represents the number of decisions
in the current branch. This value is constant for one call to the function BCP.

As long as there are some new assignments that have not been propa-
gated, the next assigned literal, \; € 7, is chosen from the queue @ in line
11. In the subsequent propagation, the watcher list of the complementary
literal \, is traversed. As described above, this list contains all clauses where

Aq is one of the two watched literals.
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Algorithm 2.1: Boolean constraint propagation
Require Literal A, to be assigned
Return Conflicting clause or 0K if no conflict arises

Function BCP (\,)
4 if A\, € 7 then return 0K

if A\, € 7 then return ()\,) | conflicting unit clause
6 T TUN | assign variable
Q <+ { A} | queue of assignments to propagate
8 rsn(\,) <O | no reason for assignment

level(y,) < current decision level
while Q # () do

11 Ag < Q.dequeue() | next literal to propagate
Wy < watched0f (\,) | clauses with watched )\,
foreach C* € W5 do

14 \p < otherWatched(C*, \,)

15 if A\, € 7 then continue

if 3N\, € U (C*)UTH(C*)\ {\p} then
17 Wg Wz \ C* | link new watched
| Wi+ W, uC*
else if \, ¢ 7 then
20 (Q).enqueue(\,) | further unit propagation
T+ TUN,

22 rsn()\,) « C* | reason for assignment

| level(w,) < current decision level

24 else return C* | conflicting clause

L return OK

For each clause C* in the watcher list of A, the other watched literal
is accessed as A, in line 14. Van Gelder proposed to keep the two watched
literals at the front of each clause [Gel02]. On one hand, this requires the in-
ternal order of literals to be rearranged whenever one of the watched literals
is interchanged. On the other hand, it allows for constant and simple access
to both watched literals. In Section 3.1, we propose a further improvement
of this issue.

If the other watched literal, \,, is assigned in 7 (line 15), the clause is
already satisfied under 7 and the loop continues with the next clause. Note
that this applies for the bulk of inspected clauses in practice. Therefore,
efficient implementations of Boolean constraint propagation take advantage
of this fact and implement an additional caching mechanism described by
Chu et al. [CHS09].
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If the clause C* is not immediately detected as being satisfied by 7, it has
to be inspected in depth. More precisely, it is checked to ascertain whether
there is another literal, A\; in C*, which is either true under the partial as-
signment 7 or not yet affected by 7. If this is the case, A\ can become a
new watched literal of C* together with A,. Thus, in line 17, C* is moved
into the watched list of A;. Obviously, any new watched literal Ap must be
distinct from literal A\, in order to have two different watched literals.

If there is no other literal that can become a watched literal for C*,
clause C* is either unit under 7 or it is falsified by 7. The latter case is
handled in line 24 and C* is returned as a conflicting clause for the partial
assignment 7. Conflict analysis takes over at this point, as will be described
in Section 2.2.4. If, on the other hand, A, is the only literal in clause C*
that is not falsified by 7, another implication is detected. Thus, literal A, is
enqueued to initiate further unit propagation in line 20 and is assigned in 7
subsequently. At this point, C* is the asserting clause for the assignment of
Ap, which is stored by the function rsn()\,) in line 22. Moreover, the cur-
rent number of decisions is also stored by the function level(r,) analogously.

For a set of assignments K C 7 that implies the assignment of A, by
the application of unit propagation, we write K —— Ap for short. If the
implication is deduced by the propagation of binary clauses (i.e. clauses of
Fa), we write K —2» \, for short.

In Chapter 4, we present an enhancement of Boolean constraint propa-
gation. The approach presented in that chapter does not necessarily require
a clause to be unit in order to detect implied assignments.

2.2.3 From DPLL to CDCL

Since the introduction of the original DPLL approach, several heuristics and
improvements have come and gone. Algorithm 2.2 lists the most impor-
tant issues of the CDCL algorithm. Details of the subroutines are explained
further below and the most common heuristics are presented in Section 2.2.5.

The partial assignment 7 is initialised to contain all unit clauses of the
given formula F. Moreover, these assignments are propagated in line 5 by
the BCP procedure presented in Section 2.2.2. The CDCL algorithm searches
for an assignment of the variables that satisfies all clauses in F. For the
satisfiable formulae, all variables are assigned even if a small subset of vari-
ables is sufficient to satisfy all clauses. In line 8, the loop continues until the
partial assignment 7 is a complete assignment. In line 9, a decision heuristic
is applied to decide an assignment for a currently unassigned variable. Deci-
sion heuristics are examined in more detail in Section 2.2.5. The assignment



14 Preliminaries

Algorithm 2.2: Outline of the CDCL approach
Require Formula F in CNF
Return Sat or UnSat
Function CDCL (F)

T+ 0 | 7 is current partial assignment
5 forall (\;) € F do
C + BCP()\i)
| if C' # OK then return UnSat
8 while |7| <|V| do
9 Ap ¢ chooseNextDecision(V \ 7)
10 C < BCP()\)
11 while C # 0K do
12 C* < analyseConflict(C)
13 if C* = () then return UnSat
14 F <+ FUCr
15 Ag < Ag € C* : level(y,) > level(yy) V A\, € C*
16 T < backjump(C*)
17 C < BCP()\;)
18 | rsn()g) « C*
return Sat assignment 7 satisfies F

is applied and propagated in line 10 by the previously presented Algorithm
2.1. If a conflict arises within Boolean constraint propagation, the conflicting
clause is analysed within the loop starting at line 11.

In line 12, the function analyseConflict generates a learnt clause C*,
a so—called lemma. This technique is explained in detail in Section 2.2.4.
However, the following three properties are important here:

e The conflicting clause C' contains at least two literals, A\, and Ay, whose
complementary literals (A, and ) are assigned at the current decision
level. Let us assume that only one literal A, € C' is falsified at the
current decision level. In that case, C' would have been an asserting
clause for the assignment of A\, after a previous decision. If C' had no
literals from the current decision level, it would have been a conflicting
clause at an earlier level in the search.

e The lemma C* is certain to contain at most one literal \;, whose
complement )\, was assigned at the current decision level. It may also
be the empty clause, which means that formula F is unsatisfiable, as
it is handled in line 13. Otherwise, literal )\, is chosen in line 15.

e The generated lemma is falsified by the current partial assignment 7.
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The lemma C* is learnt by adding it to the formula F in line 14. In most
CDCL solvers, lemmas are marked as redundant clauses. This allows the set
of learnt clauses to be reduced from time to time, when the formula contains
too many constraints (see Section 2.2.5).

The function backjump(C*), invoked in line 16, undoes some assignments
and removes them from 7. More precisely, the first d decisions (together with
their implied assignments) are kept in 7, such that C* becomes unit under 7.
Hence, C* becomes an asserting clause for A4 at level d. Thus, after jumping
back to level d, literal )\, is assigned and propagated in line 17, and C* is
stored as the asserting clause in line 18. Note that if C* is a unit clause, all
decisions are undone and the algorithm jumps back to level zero. Again, if
a conflict arises within BCP, the conflicting clause is analysed by continuing
in line 11.

2.2.4 Clause learning

The motivation for clause learning in CDCL solvers, as proposed by Marques-
Silva [MS99], is twofold. A generated lemma reflects a sequence of branching
decisions that led to a contradiction within search. Adding a lemma to the
formula may thus prevent the solver from running into the same conflict in
a different branch. Secondly, the generated lemma enables the solver to go
back to a previous decision level (line 16 of Algorithm 2.2). The search may
jump back over some irrelevant decisions and thereby avoids following some
branches where no solution can be found. In Section 2.2.3, three properties
regarding conflicting clauses and learnt lemmas are listed. Algorithm 2.3
presents the procedure to meet the listed demands.

Algorithm 2.3 takes a clause C” that is falsified under the current par-
tial assignment 7. As explained above, C’ has at least two literals that are
falsified at the current decision level d. In line 5, the first version of the
generated lemma is initialised to contain all literals of C’ that are not fal-
sified at decision level zero. Assignments that are made at level zero will
not be changed during the search anymore. Thus the first rule of the DPLL
procedure, presented in Section 2.2.1, is applied to omit these literals in the
generated lemma. Note, however, that literals from level zero cannot simply
be omitted when SAT solving is applied to compute minimal unsatisfiable
cores as presented in Section 7.5.

The final lemma C* has to contain at most one literal from the current
decision level. Unless C* is the empty clause, it contains exactly one such
literal. The crucial idea at lemma generation is to replace literals from the
current decision level by using the corresponding asserting clauses for resolu-
tion. This idea is applied within the loop starting at line 6 of Algorithm 2.3.
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Algorithm 2.3: Analyse conflict and generate lemma
Require Conflicting clause C' € F with F(C") = C’
Return Generated lemma C*

Function analyseConflict (C')
d < current decision level

C* + {\; € C': level(y;) > 0} | generated lemma
while true do

if FUIP then
D« {\i € C* : level(y;) = d}
L if |D| < 2 then return C*

else
11 L D « {\; € C* : rsn(\;) # O}
12 if D =0 then return C*
13 Ap < Ap € D : v, most recent assignment
14 Cp <+ {A\i € rsn(},) : level(y;) > 0} | reason for ),
15 C*+ C*UC, \ {\p UM} | resolvent of C* and C,

The appropriate literals are replaced in reverse order to how they were as-
signed during the search.

Modern solvers apply the first unit implication point (FUIP) scheme for
generating learnt clauses [MMZ101]. The FUIP method generates a lemma
that is close to the conflict. When variables are used for resolution in reverse
order to how they were assigned, this is the first clause that contains only
one literal assigned at the current decision level. A clear and efficient imple-
mentation of the FUIP scheme is presented and explained by Ryan [Rya04].

In line 8, the application of the FUIP scheme considers all literals of the
current version of C* that are assigned at the current decision level. If there
are less than two such literals, C* represents the FUIP and the clause is
returned in line 9. The next literal A, to be replaced in C* is chosen in line
13. To replace literals in reverse order, this is the one in D that was assigned
most recently. Recall that A, is falsified by the partial assignment 7. Hence,
we have )\7, € 7. Let us assume that the assignment of Tp was implied by
unit propagation. In that case, an asserting clause C,, = rsn()\,) was stored
in line 22 of Algorithm 2.1. For the same reason as above, only the literals

of C) that are not falsified at level zero are considered (line 14).

In line 15, resolution on variable v}, is applied by using the asserting
clause €} and the current version of C*. The new version of C* is set to the
resolvent of this resolution operation. At this point, the following properties
can be observed:
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e The assignment )\, was implied by unit propagation when all other
literals of C), were already falsified. Thus, all literals that replace A, in
C* by the resolution operation were assigned prior to the assignment

of /\7).

e )\, can never be added to C* again at a later iteration of the loop.
This is because the literals are replaced in reverse order to the order in
which the assignments were made. Thus the algorithm moves strictly
backwards regarding the order of assignments.

e [t can safely be assumed that the assignment of A, was an implication.
Let us assume the contrary: that it was a decision at level d. Con-
sequently, it is the first assignment at this level. Hence, it is the last
assignment that is reached in reverse order, and thus the only literal
in D. In that case, C* would have been returned in line 9.

e A unit implication point will always be found. The algorithm can
replace, at most, the literals that were implied at the current decision
level d. The loop will terminate when C* contains only the decision
variable that instituted level d at the latest.

e Each version of C* contains only the literals falsified by 7. This is
ensured at the beginning of the function. All literals that are added
by the union with C, \ A, in line 15 are also falsified by .

The FUIP scheme is widely applied in modern SAT solvers. However,
we use a more general procedure in Section 3.2. A different learning scheme
may create a learnt clause that consists purely of decision variables [MSS99].
This is realised when Algorithm 2.3 implements the else branch in line 11.
The set D of literals that are supposed to be replaced in C* is initialised
accordingly. D contains all literals of the current lemma C* whose comple-
ment is not assigned by a decision, i.e. that have an asserting clause. If D
is empty, the function analyseConflict returns the generated lemma C*
in line 12. Even though the latter scheme is rarely applied, the idea can be
used to minimise learnt clauses [SB09, ES12].

To explore the process of generating learnt clauses and to study sev-
eral properties related to learning, we have implemented the tool CoPAn
(Conflict Pattern Analysis). This tool is briefly described and illustrated in
Section 7.1. As well as performing in—depth analysis of properties, CoPAn
can also visualise two different kinds of graphs related to learning and allow
the user to explore them interactively. One kind of graph is the so—called
implication graph [MSS99).
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In this directed graph, each assigned variable (literal) is represented by one
vertex. Vertices that represent decisions have no incoming edges. The ver-
tex that represents the assignment \; with asserting reason C; = rsn()\;)
has |C;| — 1 incoming edges. There is one incoming edge for each assign-
ment that falsifies a literal in C;. More precisely, there is a directed edge
(Ak, A\;) in the implication graph iff Ay € C; and A\, # );. The procedure
analyseConflict (see Algorithm 2.3) starts at a conflicting assignment and
traverses the edges backwards in the graph. A learnt clause represents a cut
through the implication graph.

2.2.5 Heuristics

Heuristics constitute a crucial part for state—of-the—art SAT solvers. Small
modifications of a heuristic may lead to major differences in the behaviour
of a solver. We distinguish three different areas where heuristics are applied.

Decision heuristics

Different decision heuristics for branching have been studied extensively.
Marques-Silva evaluated the most successful heuristics developed up to 1999
[MS99]. The proposed two watched literals scheme of Moskewicz et al.
[MMZ"01] entails the need for a different decision heuristic. This is because
pure CDCL solvers maintain only a small amount of information about the
actual solving state. As mentioned above, the solver does not know which
clauses are satisfied by a partial assignment 7. Only the reverse case is de-
tected, when a clause is falsified by 7. However, complex decision heuristics
require more knowledge about the state of a search. To this end, the engi-
neers of the Chaff solver proposed the Variable State Independent Decaying
Sum (VSIDS) heuristic for decision making [MMZ"01]. The idea of the
VSIDS heuristic is to prefer the variables that contributed to the most re-
cent conflicts for branching. The original idea can be summarised by the
following three rules:

e Store an activity value for each literal to record how often it was in-
volved in a conflict. When a conflict arises, the activity values of all
contributing literals are increased.

e Consider all unassigned variables for decision making. Among these,
choose the literal with the highest activity value.

e Divide all activity values by a constant from time to time. With this, a
contribution to more distant conflicts becomes less relevant compared
to the contribution to recent conflicts.
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The heuristic has been modified by Eén and Soérensson in MiniSat to store
activity values for variables instead of literals [ES03]. In the first versions of
MiniSat, a decision variable has always been assigned to false. Moreover,
a heap is implemented to easily access the variable with the highest activ-
ity for the next decision. When a conflict arises, the activity values of the
following variables are increased: All variables in the generated lemma and
all variables that are resolved by the function analyseConflict in line 13
of Algorithm 2.3.

Modern SAT solvers mostly apply phase saving to assign a value to a
decision variable. The technique, suggested by Pipatsrisawat and Darwiche
[PD07a, PD07b|, caches the assigned value of each variable when it is unas-
signed during backtracking. When a variable is chosen as decision variable it
is assigned to the previously cached value. In many state—of-the—art solvers,
almost 100% of the decisions are made by using the VSIDS heuristic. A
small percentage of decisions may choose a variable at random. This forces
the solver to look into different areas that may have been neglected so far.

Look—ahead solvers utilise still other techniques for the process of deci-
sion making. These kind of solvers are very successful on crafted and random
unsatisfiable benchmarks. For an overview on look—ahead solvers and solv-
ing techniques we refer the reader to the work of Heule [Heu08a).

In Chapter 5, we will explore a decision strategy for real-world SAT prob-
lems that is completely different from the VSIDS heuristic. The approach
that was introduced by Goldberg [Gol08a| requires more knowledge of the
state of a SAT solver. We present an efficient implementation and a hybrid
approach that competes with state—of-the—art CDCL solvers.

Restarts

Even though the VSIDS heuristic helps a solver to focus on critical con-
straints of the formula, a solver may get stuck in a part of the search tree.
Therefore, restarts are performed frequently. A restart forces the solver to
jump back to decision level zero and start over again. Most solvers keep
the set of learnt clauses and do not change the activity values of variables
for the next start. However, it is up to the search heuristic to reinitialise
activity values or remove some learnt clauses at certain restarts. The bene-
fits of restarts differ for different kinds of formulae. Industrial formulae may
often benefit from frequent restarts, whereas, for crafted instances, restarts
may often harm the performance of a solver. However, in general, it is hard
to predict which restart policy should be applied to particular families of
instances |[HuaO7a).
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Static restarts are mostly based on the number of conflicts. For each start
of a CDCL search, a maximal number of conflicts mec is fixed in advance. This
number mc may be modified for each restart. Common techniques multiply
an initial number of maximal restarts by a constant value after each restart
|[ES03]. This technique is referred to as geometric restarts. Other solvers
add a constant value to mec for each restart or do not modify the value at
all [Rya04]. A successful static strategy uses the Luby sequence [LSZ93|. Tt
aims to share the available runtime almost equally among different restart
strategies. Luby restarts are used and explained in more detail in Section 5.3.

The concept of dynamic restarts was introduced by Biere [Bie0O8a|. The
maximal number of conflicts for one start is still fixed in advance. After
most starts, the value is increased. However, after some restarts, the value
mc is reset to an initial value that slightly increases itself. Unlike purely
static strategies, a restart may be skipped when the heuristic assesses the
solver to be agile enough.

The approaches of Sinz and Iser [SI09], and Audemard and Simon [AS09]
go even further, and trigger restarts dynamically. A restart is performed
when the heuristic considers current progress to be much worse than the
average progress. Different criteria can be applied to estimate the progress
of the solver, such as the average quality of learnt clauses.

Garbage collection

CDCL solving learns a new clause after each conflict. This is required to
assert the implied assignment after backjumping, and it may prevent the
solver from searching in areas where no solution can be found. However, an
increase in the number of clauses slows down Boolean constraint propaga-
tion. Therefore the set of learnt clauses has to be reduced frequently. For
this reason, learnt clauses are marked as being redundant and can safely be
removed from the set of clauses. In this context, heuristics have to decide
the following issues:

e The quality of clauses has to be estimated in order to decide which
clauses are worse than others and need to be removed from the clause
database. A good solution is to store activities for learnt clauses analo-
gously to the VSIDS heuristic. A clause’s activity is increased whenever
it is involved in a conflict and all activity values are divided by a con-
stant from time to time. The SAT solver Glucose [AS09, AS12| uses
the literals blocks distance (LBD) for each learnt clause C*. The LBD
value is defined as the number of different decision levels of the liter-
als in C*. The smaller a clause’s LBD value, the better its estimated
quality.
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e How many clauses should be kept at garbage collection? Most solvers
remove half of the set of learnt clauses and keep the other half. The
half to which each clause belongs depends on the estimation of quality,
i.e. a clause’s activity or its LBD value.

e How often should garbage collection be applied? As for restarts, an
initial value for the number of learnt clauses (or conflicts) is fixed.
MiniSat sets the initial value to one third of the number of clauses in
the formula. The value is increased geometrically after each garbage
collection. In contrast, Glucose applies aggressive clause deletion and
initialises the total number of learnt clauses to 20,000, or fewer if the
formula is very small. The value is incremented by 500 after each
garbage collection [AS09].

Other heuristics may revive previously removed learnt clauses [ALMS11].
A similar idea is also applied when an unsatisfiable core of a formula is min-
imised and several SAT problems are solved consecutively [Nad10].

In the Introduction, an example is used to demonstrate how sensitive
a SAT solver may react to small changes in the heuristic. Now that the
most common CDCL heuristics have been presented, their modifications can
be explained in more detail. Modifications affect the process of percolat-
ing an element in the activity heap down from the root. A variable to be
percolated down may be exchanged with the child node that has the higher
activity value. Three different versions are considered in Figure 1.2. The
original MiniSat implementation stops percolating down when the appropri-
ate child node has a smaller or equal activity value. The first modification is
inert and does not stop percolating down before the child node has a strictly
smaller activity value. The second modification keeps the heap stable. When
the topmost variable is removed from the heap, the deepest variable is moved
to the top and is percolated down. At this point, inert percolation is applied
to get the variable as deep as possible. All other percolation operations (e.g.
reinserting elements at backjumping) remain unchanged.

In general, finding the proper choice of heuristic values is a time—consuming
task. The interaction of different heuristics makes things even more difficult.
For example, the frequent application of restarts performs much better if
the phase saving heuristic is also applied. There may be quite some ap-
proaches and solving techniques that have not yet established themselves in
state—of-the—art solvers due to a poor choice of heuristics (see also [AS08|).






Chapter

Modular Extensions to CDCL

The use of SAT solving for industrial applications and real-world scenar-
ios that are encoded as SAT problems has greatly stimulated the improve-
ment of solving technology. In the early 1990s, the best method to tackle
industrial instances and those translated from scheduling problems [KS92]|
was local search [SKC93|. The idea of combining search and resolution,
as introduced by the GRASP algorithm [MSS96]|, entails a significant im-
provement for solving real-world SAT problems. The efficient implementa-
tion of the GRASP-based procedure [MMZ"01] is commonly referred to as
CDCL solving. State—of—the—art solvers for industrial and application SAT
instances are based on the CDCL procedure. However, CDCL has constantly
been improved over the last years. Most of the effective improvements have
been achieved by small changes compared to the first CDCL solver Chaff
[MMZ*01], such as:

e Activities for variables instead of activities for literals [ES03],

e A heap data structure for branching decisions [ES03],

Different kinds of restarts [LSZ93, Bie08b, Hua07a],

Phase saving of variables [PD07a],

Estimation of a clause’s quality [AS09],
e Cache—conscious data structures [CHS09].

In this chapter, two approaches for extending the classical CDCL solving
are presented. In the first (Section 3.1), a simple but effective improvement
to the two watched literals scheme is described. The improvement is based
on an evident compression of the data structure to store clauses within a
SAT solver. Moreover, the presented data structure allows a faster detection
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of the second watched literal, when a clause is accessed during unit propa-
gation. Both arguments improve the speed of BCP and were crucial for the
performance of our solver MoUsSaka in the MUS competition 2011 [Sat11].

In the second part of the chapter, an extension to the so—called sim-
plification technique of asymmetric branching is introduced. Since the im-
plementation of PrecoSAT [Bie09b], several solvers frequently simplify the
set of clauses in between solving. This so—called inprocessing makes sim-
plification techniques even more important and motivates further improve-
ment of simplification, regarding both speed and quality. However, the tun-
ing of a SAT solver can become more difficult, since the number of pa-
rameters for the proper application of inprocessing increases significantly.
Section 3.2 describes an approach to improve the quality of asymmetric
branching and in Section 3.3, the algorithm is extended by hyper—binary
resolution [Bac02a, Bie09a|. The presented extensions to CDCL are evalu-
ated in Section 3.4 and are briefly summarised in Section 3.5.

3.1 Speeding up Unit Propagation

Any clause of a SAT formula in CNF is basically a static set of literals.
However, in practice, the literals of a clause have different roles that change
permanently during the solving process. Most state—of-the—art SAT solvers
implement the two watched literals scheme [MMZ*01] following the method
suggested by Van Gelder [Gel02]. The two watched literals of a clause are
always placed in the first two positions of the array of literals. This idea
allows for a clear and simple maintenance of the watched literals scheme
without any extra information within a clause. As mentioned in Section
2.2.2, the literals have to be reordered whenever one of the watched literals
is exchanged. In this section, we present an enhancement of the two watched
literals scheme to speed up unit propagation. The improvement is based on
a reduction of required memory and, in particular, a reduction of memory
accesses during BCP.

The concept has proven its usefulness in our MUS solver, briefly described
in Section 7.5, where the speed of unit propagation is seminal due to thou-
sands of consecutive calls of mostly easy SAT formulae. A slight modification
of this concept is also beneficial for the implementation of physical clause
sharing in multithreaded SAT solving (see Chapter 6 or [KK11lc, KK11b]).
To handle literals more easily, let the function ID : £ — N map any literal
to an integer value and let its inverse operation 7D~! map an integer back
to a literal. Without loss of generality we assume the image set of I D to be
a consecutive set of numbers in the range [0,2 * [V]). The improvement is
based on the following observation:
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Property 1. Whenever a clause C' € F is addressed by the basic CDCL
algorithm, at least one of the two watched literals of C is known.

In the basic CDCL algorithm (see Algorithm 2.2), there are three main
functions where clauses are actually touched:

1. Boolean constraint propagation (BCP),
2. Cleaning the set of clauses, and
3. Conflict analysis.

1. During BCP, the literals that became false by the current partial
assignment 7 are examined. Their watcher lists are traversed to check for
clauses that are unit or falsified by the assignment 7. Hence, when traversing
the watcher list of literal \;, all clauses that are accessed have A; as one of
their watched literals.

2. Cleaning the set of clauses can also be done by traversing the watcher
lists of all literals. Ome possible realisation is sketched in Algorithm 3.1.
Analogously to BCP, when cleaning the clauses watched by a literal \;, each
clause that is accessed has \; as one of its watched literals.

3. In conflict analysis, the implication graph [MSS99| is traversed back-
wards. Any clause C that becomes unit by a partial assignment 7 during
BCP causes the remaining literal \; to be assigned to true. In doing so, C' is
stored as an asserting clause (or reason) for the assignment of \;. Moreover,
A; is one of the two watched literals of C' when C' is stored as the asserting
clause for the assignment. If C' is traversed during conflict analysis, it will
only be accessed as an asserting clause for the assignment A;. Thus one
watched literal of C' is known. With Property 1, the following corollary can
be stated.

Corollary 3.1.1. The information of the two watched literals A\, and Ay of
a clause Cy can be saved by one value X (Cop) := ID()\,) XOR ID(\,).

Algorithm 3.1 iterates over all literals in increasing order. In doing so,
each clause is accessed twice. The actual test to check whether a clause will
be kept or deleted is done when the clause is touched for the first time (line
12). If the application of some criteria (LBD value, activity, clause size) by
the procedure testRemoveCls decides to remove a particular clause C*, the
appropriate XOR value is set to zero. This marks the clause for the traversal
of the second watched literal. The use of zero is based on the fact that an
XO0R operation where one operand equals zero will always return the other
operand (lines 9 and 13).
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Algorithm 3.1: Garbage collection with the XOR—-watchers
Require Formula F;
Function garbageCollection (F)

for i+ 0to2x|V|—1do

N\ < ID7L(3)
W), < watched0f()\;) | clauses with watched literal \;
foreach C* € W, do
k < X(C*) xor i | XOR value X(C*) for C*
r < false | remove clause or not
9 if £ =1 then
L destruct clause | C* is marked (X(C*)=0)
T < true
12 else if i < k and testRemoveCls (C*) then
13 X(C*)«+0 | mark clause for second watcher
T < true
| if r = true then remove reference to C* from W),

In the process of accessing a clause C, one watched literal A, is al-
ways known. With Corollary 3.1.1, the other watched literal is given by
A = ID7}(X(C) X0R ID(),)). This idea is similar to the concept of static
graphs [NZ02|, where edges are only accessed via one of their incident ver-
tices. Thus, the two watched literals of a clause C' can be replaced by one
value X (C') without any loss of information. Our solvers SApperloT and
MoUsSaka use this technique to represent any clause C' with |C| > 2 literals
by (|C| — 1)x sizeof(literal) bytes. One obvious benefit of this idea is the
total reduction of required memory. Having up to one or even more than
one million clauses within an industrial SAT instance means that megabytes
of main memory may be saved. In conflict—driven SAT solving, the num-
ber of clauses usually increases during the solving process, so a reduction in
memory used per clause clearly reveals its effectiveness. Permanent access
to many different clauses during unit propagation constitutes random access
of non-local data. Non—local access may be particularly unfavourable when
present—day computer architecture is based on local caching schemes. The
reduction of clause sizes can help to improve the cache performance of a SAT
solver.

Figure 3.1 depicts the architecture of clauses that apply Corollary 3.1.1.
Each clause is referenced by its two watched literals. Therefore, the informa-
tion about the watched literals of the clause can be compressed to the XOR
value of these literals. To avoid storing the absolute size of a clause, each
literal field holds one bit to indicate if the current literal is the last literal of
a clause.
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Figure 3.1: XOR—implementation of watched literals.

The application of Corollary 3.1.1 for parallel SAT solvers will be dis-
cussed in Chapter 6. When sharing the literals of one clause among several
solving threads, it has to be borne in mind that the watched literals may
differ in each solving thread. The realisation of the two watched literals
scheme by this XOR—-watchers approach can be incorporated to any CDCL
solver. However, it requires the modification of some internal functionality.

The simplification algorithm presented in the next section exhibits the
characteristic of a module. It can be applied in between different executions
of the search procedure of a SAT solver without the need to change the
internals of the solver in use.

3.2 The Strength of Asymmetric Branching

SAT instances stemming from real-world applications (e.g. industrial in-
stances) are often transformed into CNF by using the so—called Tseitin trans-
formation [Tse68, BHvMWO09|. This approach introduces new variables that
are set to be equivalent to a subtree of the original Boolean formula. When
chosen properly, the generated CNF formula is significantly smaller than
repeatedly reusing the entire subformula. Moreover, application instances
often contain several redundant constraints that may be added on purpose
or as a consequence of the applied transformation. For this reason, it can
often be beneficial for a solver’s performance to modify a formula before the
actual solving process. With the aim of making a modified formula easier
to solve, the modification is referred to as simplification, even though it is
not always obvious which modifications are actually beneficial for the solver
being used.
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Simplification of SAT formulae is now applied by most state—of-the-art
SAT solvers, to a certain extent. Since the implementation of inprocessing in
PrecoSAT |Bie09b]|, simplification techniques have experienced a renaissance
after the success of MiniSat [ES03] had boosted the engineering of clear, small
solvers, as solver names like PicoSat [BieO8b] and TiniSat [Hua07b] indicate.
Proper simplification has mainly been applied in preprocessing [SP04, EB05].
Applying simplification techniques frequently in between CDCL searches al-
lows for the additional use of learnt information. For many SAT instances,
the performance and power of the solver can clearly be increased, as the
success of PrecoSAT and Lingeling [Biell] shows. This motivates the inves-
tigation and improvement of simplification techniques. However, choosing
suitable configurations for solving, inprocessing and the interaction between
both is a complex task. Furthermore, in parallel portfolio solvers, simplifi-
cation can be applied concurrently, as described in Chapter 6.

In this section, an algorithm is presented that improves the quality of
asymmetric branching, a simple but yet efficient simplification technique. To
this end, relevant simplification techniques are briefly explained in Section
3.2.1. Subsequently, different variations of asymmetric branching are shown.
A major drawback of asymmetric branching motivates an extension of the
original algorithm and places greater demands on its quality. This issue is
addressed in Section 3.2.2 and its complexity is analysed in Section 3.2.3. In
Section 3.3, the algorithm is further extended.

3.2.1 Related work

Several simplification techniques for CNF formulae have been proposed and
are applied successfully in practice. This section only presents the techniques
that are relevant to our extension of asymmetric branching. We refer the
reader to the original work for different techniques (e.g. [Bra0l, BW03, SP04,
Bra04, EB05, DDD*05, FGMS07, PHS08, ABH'08, JBH10, HIB11]).

Subsumption and self-subsuming resolution

Some constraints within an industrial SAT instance are obviously redun-
dant. If the literals of a clause (' constitute a subset of the literals of
another clause C), then Cj is said to subsume C),. Clearly, any model of
the formula has to satisfy the constraint Cj, C C),, and will thus also satisfy
the weaker constraint Cj,. Hence any subsumed clause can be removed from
the clause database. The number of subsumed clauses often increases after
some variables are eliminated by existential quantification. And, vice versa,
the removal of redundant clauses may allow for existential quantification of
a variable without increasing the total number of literals in the formula.
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This kind of simplification was introduced by Subbarayan and Pradhan
[SP04] and is implemented efficiently in the SatELite preprocessor [EBO05]
and follow—up implementations |Ziel0].

Related to the concept of subsumption is the idea of self-subsuming res-
olution. Consider the following two clauses that have one clashing literal,
i.e. a variable with different polarities: C; = (A V \;) and Cy = (B V \,).
By resolution, the clause C; = (A V B) can be deduced. Now consider the
special case that all literals of B are also contained in A, such that B C A.
In that case, the literals contained in C, are exactly those of A, and thus,
C; subsumes C7. Note that C, does not need to be contained in the clause
database. The detection of self-subsuming resolution allows for the removal
of literal A, from clause Cy to implicitly replace Cy by C,.

Even though both techniques can be implemented efficiently, it requires
the use of complete occurrence lists for literals or variables [EBO05]. For a
variable, an occurrence list contains all clauses where that variable occurs
in. The implementation of the two watched literals scheme makes this kind
of information obsolete for pure CDCL solvers. However, there are some
approaches for detecting some cases of subsumption during CDCL search
and conflict analysis [DDD*05, HS09, HJS10].

Simplification using propagation

Most simplification techniques, such as those presented above, require some
extra data structures and the implementation of advanced procedures. In
particular, the need for occurrence lists of variables entails the maintenance
of an additional data structure. On the contrary, the application of asym-
metric branching does not require a CDCL solver to offer additional features.
Asymmetric branching considers a given clause, which will be referred to as
C# throughout the chapter. For all literals of C#, the opposite values are
assigned and propagated. Depending on the outcome, C# may be tightened
or detected to be redundant.

In Algorithm 3.2 the idea is outlined. All literals that can be removed
from C# are collected in D (line 4) and the clause is tightened when the
function returns (line 10). Each literal of \, = C#[i] is processed obeying
the given order (line 6). If A\, is already assigned to its opposite value by
the current partial assignment 7 (line 7), then A, can be removed from C7.
This can intuitively be explained by the argument below.

Let us assume there is a model 7 that satisfies C# and the model con-
tains C#[i] = \,. Hence C7 is satisfied by a literal \, € 7 with )\, €
{C#\ \p}. If, on the other hand the model contains \,, then at least one
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literal A\, = C#[j],j < i is also in the model, because the assignment of
C#[0] A C#[1] A ... A C#[i — 1] implies the assignment of the literal \,,
which contradicts the assumption. Thus, in both cases, (C# \ {)\,}) is sat-
isfied by A4.

A more formal explanation uses the asserting clause C), for the assignment
of literal A, . As in lemma generation, the reason C, can be modified to
an asserting clause C}, = (Ap V K) that only contains literal A, and some
(negated) decisions. This is done by recursively using the asserting clauses
for resolution for all implied literals (see Section 2.2.4 and [MSS96]). Clearly,
K is a subset of C# \ {)\,}, because all decisions in asymmetric branching
are chosen from C# with opposite polarity (for A, € C#, the decision is \,).
With this, resolution of clauses C# and C}, results in clause (C#\{),}), and
thus A, can be removed from C# by self-subsuming resolution.

Algorithm 3.2: Asymmetric branching

Require Clause C# to be tightened
Return If conflict, and a set of literals that can be removed from C7#
Function asymBranch (C7)
4 | D+
for i < 0 to |C#| — 1 do
Ap  C#Ji]
if \, € 7 then D+ DU{)\,}
else if BCP()\,) is conflicting then
9 | return < conflict, DU {C#[j]:i < j < |C#|} >

10 | return < ok,D >

Asymmetric branching may also produce a conflicting assignment, as in
line 9 of Algorithm 3.2. If a conflict arises, three different actions may be
taken:

(i) As in lemma generation, the conflicting clause C, can be transformed
into a clause C”, that entirely consists of some negated decisions. Hence
C! subsumes C# and allows for the reduction of C# to the literals of C".

(ii) Without analysing the conflict and generating the lemma C., it is clear
that a conflict (arising in line 9) can only depend on the decisions that
have already been made and thus the clause C” = (C#[0] V...V C#]i])
can be learnt directly. C# can be reduced to the literals of C”.

(iii) O is redundant with the current set of constraints since other clauses
prohibit C# from being unsatisfied by any model of the formula. C#
can safely be removed from the formula.
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Consider the following example: C# = (A; VA2 VA3V A4 V X5),Cy =
()\1 V Ao \/)\7(5), Cy = ()\2\/)\4 \/)\77)7 Cs = ()\1 V 4 \/)\78) and Cy = (A6\/A7\//\8).
When the opposite literals of C# are propagated as ordered in the clause, the
assignments of A\; and o imply the assignment \g due to clause Cy. After
the assignment of A3 and )4, two more assignments, A7 and \g, are implied
due to clauses Co and Cs. At this point, clause Cy is detected as conflicting
with the current partial assignment. Now C# may be removed (option iii)
from the clause set, or C7 may be reduced to (A; V A2 V A3V Ay), since the
decisions that negate the first four literals of C# are sufficient to cause a con-
flict (option ii). When analysing the conflict, the clause C. = (A1 V A2 V \4)
is created and thus C# can be reduced to C". (option i).

Now consider the example above with the modified clause Cy = (A5 V
Xé V A7 V Ag). As above, the propagation of decisions A, A2, A3 and Mg
implies the assignments \g, A7, A3 and A5 due to clauses Cy, Cy, C3 and Cj.
In the last iteration of Algorithm 3.2, the condition in line 7 is fulfilled since
A5 has already been assigned. The asserting clause of assignment A5, clause
Cy, can be transformed to C) = A5 V A1 V Aa V A\ by recursive resolution
with asserting clauses. The resolution of the clauses C# and C/ deduces
clause C' = (A1 V A2 V A3 V Ag), which subsumes C#. Hence literal A5 can
be removed from C# by self-subsuming resolution with C.

The technique of asymmetric branching has been studied under different
names and in different SAT-related communities. Some approaches for using
Boolean constraint propagation to simplify an instance have been proposed
by Le Berre [BerO1]. For a chosen variable v;, both assignments v; < true
and v; < false are propagated. By analysing the consequences of both as-
signments (e.g. the intersection of {\; —»}N{\; —>}), new unit clauses may
be deduced. Analogously, the idea is applied to deduce binary clauses when
two variables are chosen. This idea is also used as a branching heuristic by
Darras et al. [DDD105].

In the preprocessing of MiniSat2.0 [ES03, EB05, ES12] asymmetric branch-
ing is applied in a basic manner. However, the application of this technique
is switched off by default. Han and Somenzi studied asymmetric branching
under the name distillation in a more general context [HS07|. One major
issue is the combination of distillation for several clauses to reduce the over-
head of unit propagation. For that purpose, clauses are stored in a trie data
structure [AHUS83|. The solvers PrecoSAT and Lingeling [Biell| also use
the idea of distillation to a certain extent. Piette et al. apply asymmetric
branching within the preprocessor ReVivAl [PHS08|, where the technique is
referred to as vivification of clauses. The work is based on a study of Four-
drinoy et al. [FGMSO07], where all clauses are removed for which asymmetric
branching causes a conflict (see option iii above). The more general concept
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of vivification used in ReVivAl [PHSO08] considers the drawback of removing
redundant clauses for CDCL solvers. When a conflict arises during vivifi-
cation of some clause C#, a lemma is created by using the FUIP scheme
[ZMMMO1]. If the generated lemma subsumes C#, the clause is tightened
accordingly. Otherwise C7 is tightened according to the decisions made (see
option ii above).

The improved algorithm for asymmetric branching presented in Section
3.2.2 considers alternative reasons for unit propagation. This is related to the
concept of inverse arcs presented by Audemard et al. [ABH'08| to improve
backjumping after conflict analysis in CDCL solving. Our approach uses the
idea of alternative reasons in a more general way.

3.2.2 Disregarding the order of propagation

The common applications of asymmetric branching (distillation and vivifi-
cation) have a major drawback. The detection of self-subsuming resolution
strongly depends on the order in which literals of the input clause C# are
propagated. Furthermore, the generation of conflict clauses also depends on
the order of decisions. Consider the following example with three clauses:
C# = (A1 VA2V A3V \y) is the input clause that ought to be tightened. There
are also the clauses C7 = (A1 V A5) and Cy = (Ay V A\q V A5). Assume that
the literals of C# are processed as ordered within C#. In particular, the
assignments A1, A2, A3 and A4 are propagated. Due to Cs, unit propagation
will also assign literal As. With C being fulfilled, C# will not be tightened.
However, if the literals of C# are processed in reverse order, the assignments
A4 and Ay imply two more assignments within unit propagation: A5 by Cy
and subsequently A\; by Cy. As described in the previous section, asymmet-
ric branching detects that clause C’ = (A1 V A2 V \4) can be generated by
resolution. The resolvent of C’ and C# over variable v subsumes C#, and
thus literal A\; can be removed from C#. In the remainder of this work,
the extension of asymmetric branching that is independent of the order of
propagation is referred to as AB™*.

A crucial point for the entire computation is the fact that in asymmetric
branching, the number of decisions is bounded in advance. The proposed
algorithm to disregard the order of propagation in asymmetric branching
consists of three major parts. Algorithm 3.3 outlines the first part, where
literals are propagated in some order and additional information is collected
for the subsequent parts. In the second part, listed in Algorithms 3.4 and
3.5, information is filtered and prepared for the last part. Algorithm 3.6
finally computes the consequences of asymmetric branching for any order of
propagation. Algorithms 3.7 and 3.8 combine the different parts. Below, all
algorithms are explained in detail.
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Propagation with a bounded number of decisions

At the beginning (from line 2) of Algorithm 3.3, some global variables are
initialised. 7 holds the partial assignments. Rsns(v) keeps the reason for the
assignment of variable v and, moreover, all clauses that could be the reason
for the assignment of v, if a different propagation order was chosen. The set
Confl keeps all conflicting clauses during propagation.

Algorithm 3.3: BCP for asymmetric branching, disregarding the order
Require Clause C# € F to be tightened

2 7+ | partial assignment
Rsns(v) <~ 0V wveV | alternative reason clauses
Confl < () | conflicting clauses
Function asymBCP (C7)

Q<+ 0 | literal’s queue to propagate

7 for i + 0 to |C#| — 1 do

N < C#[i]
Q.enqueue(),) | propagate new assignment
T TUN, | assign opposite literal
11 RBS (1) + 2¢ | init bitset of variable
while Q # () do

14 Ag < Q.dequeue() | next literal to propagate

Wy < watched0f()\,) | clauses with watched )\,
foreach C* € W5\ C# do

17 \p < otherWatched(C*,\,)

if A\, € 7 then
19 | Rsns(vp) < Rsns(y,) UC*
else if 3 A\, € U-(C*) UT,(C*) \ {\,} then
21 Wg  Wg\ C* | link new watched
| Wk — Wk ucCcH
else if )\, ¢ 7 then
24 ().enqueue(\y) | unit propagation
T TUN,
Rsns(vp) < C*
27 | BBS(1p) <= U a,eqoe\n, ) BBS (k)
else if C* ¢ Confl then

29 r < U yecRBS(vk)

Confl < Confl U < C*,r > | keep conflict
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The first loop between lines 7 and 11 assigns the opposite value for all lit-
erals of the input clause C#. In addition to reason clauses, each assigned
variable v stores a bitset RBS(v) (Reasons Bit Set) that creates an efficient
and compressed way to trace back the reasons to the input clause C#. The
application of bitsets uses the fact that, unlike common search in CDCL, the
number of decisions is bounded by |C#| right from the beginning. In line
11, the assignment of each variable is related to one particular bit. All sub-
sequent assignments will be a consequence of some of these initial decisions
and their bitsets will thus be the union of some initial bitsets.

Starting from line 14, all implied assignments are propagated in the usual
way. The main loop inspects each clause C* within the list W5, that keeps
all clauses where literal /\TJ is one of the two watched literals. The second
watched literal is referred to as A, in each inner loop pass (line 17).

If the other watched literal A, is true, C* does not require further at-
tention for this propagation. However, in line 19, C* is kept as a possible
alternative reason for the assignment A\, € 7. C* does not necessarily have
to be unit under 7 at this stage of propagation, though, it may become unit
under the possibly growing 7 and must thus not be missed. To this end,
Algorithm 3.4 will inspect C* again when propagation is complete. This
constitutes a major difference to the application of inverse arcs in [ABH108].

If there is another free literal Ay (i.e. unassigned or true) that is dif-
ferent from A,, then A\j can become the new watched literal of C* together
with X, (line 21), and C* is processed. If this is not possible, C* is either
unit or conflicting. If C* is unit under 7, then A, is not yet assigned and
unit propagation forces A, to be assigned (line 24) with the reason clause
C*. In addition to common BCP, the reason for the assignment of A, is also
expressed by the bitset RBS(v) in line 27. It is initialised as the union of the
RBS values of all other literals in C* (bitwise OR). With this, the i-th bit in
RBS(1p) is set if the initial assignment C#[i] contributes to the assignment
of A\, in any way.

If none of these cases apply, C* is a conflicting clause where all literals
are false. Analogously to line 27 when C* is unit, in line 29, the bitset
r indicates the reason why C* is conflicting. Unlike an assignment reason,
a conflict reason has to take the union of the RBS values of all literals in
C*. The set Confl stores a tuple of the conflicting clause together with the
conflict reason. Note that each conflicting clause is touched twice, once for
each watched literal, since propagation does not terminate when a conflict
arises.
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Filter relevant information

During the propagation of assignments, as presented in Algorithm 3.3, the
process collects clauses that may constitute an alternative reason for an
assignment within 7. However, during propagation, it cannot be decided
whether or not a clause will be unit under the final partial assignment 7. To
this end, these clauses are inspected after propagation. Furthermore, some
assignments may have been made, that are neither relevant to any conflict
nor are they relevant to any alternative reason for a variable of C#.

Algorithm 3.4 is basically a depth—first search procedure that traverses
the graph of reason clauses backwards. Unlike the implication graph, as de-
scribed in Section 2.2.4, alternative reason clauses are also considered. A set
of already handled (and hence important) variables and a set of important
clauses are given as parameters. A tuple of the extended sets is returned.
Traversal is started from a given variable v, if it has not already been handled
(line 6). In line 8, each possible reason C for the assignment of variable v,
is inspected. At first, the process tests whether C' is unit under the partial
assignment 7 (line 9) — if all literals of C' but one are false. If C is not
a valid alternative reason for v, it is removed from Rsns(vp) and the next
clause is processed. If C' is a valid reason (asserting the assignment of v,),
it is added to the set R¢ in line 11.

Algorithm 3.4: Compute relevant variables and valid reasons

Require Preceding execution of asymBCP (C#), start variable v,
Return Set of relevant variables and relevant clauses

Ry «+ 0 | relevant variables
Ro 0 | relevant clause reasons

Function getRelevant (v, Ry, R¢)
6 if v, € Ry then return < Ry, R¢ >

Ry + Ry U Vp
forall C' € Rsns(r,) do

if |F-(C)| #|C| —1 then
| Rsns(vp) < Rsns(v) \ C; continue
11 Re +— RoUC
12 b < initBitset () | reason by this clause
forall v, # v, : Ay € C do
14 b < bitsetAddVar (vg,b)
15 L < Ry,Rc >~< Ry,Rc > U getRelevant (v, Ry, Rc)
16 | bitsetFinish (v,b)

| return < Ry, Rc >
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Algorithm 3.5: Compute new bitset for a reason clause
Function initBitset ()
L return 0

Function bitsetAddVar (v, 1)
| return r U RBS(v,)

Function bitsetFinish (v, 1)
| RBS(vp) <~ RBS(vp) N1

Some functionality of the remaining algorithm is outsourced to Algo-
rithm 3.5. This may appear over—the-top at first sight, but in doing so, the
relevant functionality can be reused and modified in Section 3.3. For the
validated alternative reason clause C', an additional bitset b is computed,
which expresses this reason in a compressed way (lines 12 and 14). This is
analogous to Algorithm 3.3 in line 27: b is the union of all RBS values of the
falsified literals of C. In addition, in line 15, a recursive function call for
each such variable of C' is made.

A crucial part of the whole computation lies in calling the function
bitsetFinish in line 16. The RBS value of variable v, is intersected (bitwise
AND) with the computed value b. Thus some bits that were set before may
be cleared. The intuition is that the reasons bitset of a variable v, is used
to indicate those assignments of the variables of C# that are indispensable
for the assignment of v,. If a variable has alternative reasons, the intersec-
tion of its RBS value only keeps those bits that mark a dependency on the
assignments of the variables of C# that exist in all alternative reason clauses.

Consider a simple example with three clauses C7* = (A1 V A2 V A3 V \y),
Cp = (M VA2V ) and Co = (Aa V Ay V A5). When the opposite literals
of C# are propagated in order, the RBS value of variable vs is initialised to
20 + 21 = (0011) in line 27 of Algorithm 3.3 due to C;. The alternative
reason by Co depends on the assignments Ay and A4, and generates the value
2! 4+ 23 = (1010) in lines 12 and 14 of Algorithm 3.4. The intersection
operation invoked in line 16 sets RBS(v5) = (0010), since the assignments Ay
and )4 are not required simultaneously for the assignment of \5. However,
a single computation for an RBS value of a variable may not be sufficient to
get rid of all assignments of C# that are not required simultaneously. This
issue will be tackled below, as shown in Algorithm 3.6.

Mandatory assignments of C#

The algorithm presented above creates a set of relevant variables Ry and
a set of relevant clauses Rc. More precisely, for any variable v, € Ry, all
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clauses that can be a reason for the assignment of v, are contained in R¢.
In particular, Rsns(v,) keeps all these clauses that have all but one literal
assigned false by the partial assignment 7. The sets Rsns(1,) and Rsns(vy)
are disjoint for any pair of variables v,,v, € Ry,vp # v4. As in lemma
generation of CDCL solvers, any asserting clause for the assignment A, al-
lows for a resolution operation with clauses containing literal A, [MSS96].
In CDCL learning schemes, this fact is used to resolve the literals of a con-
flicting clause until only one assignment of the current decision level is left
(FUIP). However, this procedure can be continued until a conflicting clause
only contains decision variables [MSS96| (see Algorithm 2.3).

The example above shows that an assignment of a variable v, € Ry does
not generally require all initial assignments of the opposite literals of C#. In
terms of lemma generation, this is because using alternative reason clauses
for an assignment may generate different lemmas.

For any implied assignment A\, consider all reason clauses F;, C Rc. Let
.7-'(; contain all clauses that can be generated, analogously to lemma genera-
tion, by using reason clauses from R, such that each clause in ]-"é contains
literal A\, and decision variables only. Let A, be a literal of C#. We call
the initial decision )\7, mandatory for the assignment ), if every clause in ]-"é
contains literal \,,.

Algorithm 3.6 pursues the idea of differentiating the initial decisions be-
tween those that are mandatory and those that are not simultaneously re-
quired for a particular variable assignment. This is realised by the use of
RBS bitsets, as already mentioned above. However, a crucial point is that
reducing the set of mandatory assignments for one variable may reduce the
set for further variables. Algorithm 3.6 reduces the set of mandatory assign-
ments until a fixpoint.

Besides the sets Ry and R, Algorithm 3.6 takes the bitset rem as a pa-
rameter to indicate the literals of C# that are of interest for this call to the
function compMandatory. Let M"¢™ C C# be the literals indicated by rem.
For any variable v, € Ry, let My™ C M"™ be the set of assignments of
literals in M"™ that are mandatory for the assignment of variable v,. The
function compMandatory minimises these mandatory assignments for each
variable in Ry with respect to M"®™. When the function returns, the bitset
RBS(v,) N rem indicates the set M) for each variable v, in Ry .

In line 6, the set P is initialised to hold those variables whose relevant
RBS value does not contain the entire set rem. The queue @ of clauses to
be handled is initialised with all clauses that contain at least one variable
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of P (line 7). The while loop (line 8) continues as long as () contains any
clause C'. Clause C contains exactly one literal A, that is true by the par-
tial assignment 7 (line 10). Let rel be the relevant bits of its current RBS
value (line 11). If all relevant bits are cleared in line 12, variable v, does
not contain any mandatory literals of M; RBS(v,) is thus already minimal
for the current run. Between lines 13 and 16, the RBS value for variable v,
is updated as in Algorithm 3.4. Due to the intersection of bitsets within the
function bitsetFinish (Algorithm 3.5), invoked in line 16, the RBS value
can only be a subset of its previous value. If there is any update of the RBS
value regarding the relevant bits (line 17), then v, may cause an update for
other clauses. This may apply for any reason clause that contains literal .
Thus in line 18, all these clauses are enqueued into Q.

Algorithm 3.6: Compute mandatory literals

Require Bitset 0 < rem < 2‘0#|, and preceding executions of:
asymBCP (C*) and < Ry, Rc >+ getRelevant (v, Ry, R¢)
Result Bitset RBS(1,) N rem indicates the mandatory assignments
Mpem for each variable v, € Ry.

Function compMandatory (rem, Ry, Rc¢)

P+ {v, € Ry : (RBS(1,) N rem) # rem} | start vars
Q<+ {CeRc:3N,€C,y, € P} | clauses queue
while Q # 0 do

C < @Q.dequeue()

10 Ao € TA(C) | C € Rsns(y,) asserting for A\,
11 rel < RBS(v,) N rem | relevant bits
12 if rel = 0 then continue

13 b < initBitset ()

forall A\, € C, \; # A\, do
| b< DbitsetAddVar (v,,b)

16 bitsetFinish (v, b)
17 if rel # (RBS(v,) N rem) then
18 | Q+ QU{C,€Rc: N, €C,}

Greedy tightening of C#

Algorithm 3.7 lists the procedure for tightening the given clause C# directly.
The notion of direct tightening indicates that conflicts during propagation
are not considered at all. Those literals A, of C# whose initial decision
assignment \, can also be generated as an implication of other initial assign-
ments are found.



3.2. The Strength of Asymmetric Branching 39

Algorithm 3.7: Direct tightening

Require Clause C# to be tightened

Return Minimised clause with a subset of literals of C#

Function directTightening (C7)
asymBCP (C7)
5 forall v € 7 do RBS_bkp(r) < RBS(v)
all + 21671 — 1 | complete bitset
D+ 0 | deleted literals from C#
8 < Ry, Rc >+ allRelevant (C*)

10 for i < 0 to |C#| — 1 do

11 compMandatory (2, Ry, R¢)
Ay < C7Ji
13 if RBS(v,) = 0 then
D <+ DU, remove literal
15 L all < resetRemove (2¢,all)

16 | return C#\ D

17 Function allRelevant (C)
Ry «+ 0 | relevant variables
Ro 0 | relevant clauses
forall \, € C' do
| < Ry,Rc >+<Ry,Rc> U getRelevant (v, Ry, Rc)

| return < Ry, Rc >

23 Function resetRemove (rem,all)

all <= all N —rem

forall v, € Ry do

26 if (RBS_bkp(r,) N rem) # 0 then RBS_bkp(v,) < all

27 L RBS(v,;) <— RBS_bkp(v/,) | reset bitsets

L return all

More formally, 3 4 = )TP, whereas A = {\, # Tp : A\, € C*}. Hence,
there is an alternative reason clause C' = (\, V K) € Rsns(v,) whose literals
A, € K can all be resolved to be replaced by some literals of {C#\\,}. With
this, self-subsuming resolution allows for the removal of literal \, from C#.

After propagating the opposite values of literals in C#, the original RBS
values are backed up (line 5). The bitset all is the union of all bitsets used.
The sets of relevant clauses and variables are initialised (line 8) by calling
the procedure getRelevant (Algorithm 3.4) for all variables of C*# (done by
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the function allRelevant in line 17). All literals of C# are then processed
separately (line 10) and the function compMandatory is invoked with the bit-
set indicating only one literal A, = C#[i] in the i-th step (line 11). Note that
in the RBS value of v, the i-th bit is set at most (see Algorithm 3.3). If the
RBS (1) value is cleared (line 13), then the assignment ), can be expressed
by an alternative reason using only literals of C#. In this case, Ap can be
removed from C# at the end (line 16).

The removal of a literal invalidates the RBS values, for which reason they are
reset in line 15. Any subsequent removal of another literal must not treat
literal A, as being contained in C# anymore. However, some RBS values may
already have been reduced due to an intersection operation with a bitset
containing 2°.

The function resetRemove (line 23) resets the RBS values to the original
values that have been saved before (line 27). For those RBS values where an
invalid bit is set, the value is replaced by the union of all valid bits (line 26).
Note that the RBS value for each literal that is still contained in C* is reset
to the unique value 2¢. This allows for a valid update of the relevant RBS
values by another call to the function compMandatory.

Unlike Algorithm 3.7, the procedure listed in Algorithm 3.8 also con-
siders conflicting clauses for tightening C#. After the initialisation, as in
Algorithm 3.7, the conflict clause C* with the smallest conflict reason r
is selected (line 6). If the conflict reason does not require all literals of C#
then C# can already be reduced to the literals indicated by r (line 8). Unlike
directTightening, all variables of all conflict clauses (line 13) are relevant
variables in the following procedure.

As for directTightening, the literals of C# are handled separately
(line 16), and indirectTightening is only tried if the literal under consid-
eration has not been removed (line 18). Basically, in line 20, for all conflict
clauses, the conflict reason is recomputed. If the new conflict reason does
not require all initial assignments of C# (line 22), C# can be tightened.
In line 23, exactly one literal is chosen (its indicating bit respectively) to
be removed from C#. Note that even if the difference between the bitsets
all and rem contains more than two bits, only one literal must be removed
at a time, since the removal of one literal may change the dependencies of
the conflict reason. Moreover, it could happen that the recomputed conflict
reason is reduced but still contains the bit 2° under consideration. For this
reason, the algorithm safely chooses any bit of the difference in line 23 and
removes the corresponding literal in line 25.
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Algorithm 3.8: Indirect tightening

13

16

18

20

22
23

25

Require Clause C7 to be tightened and Confl # ()
Return Minimised clause with a subset of literals of C#
Function indirectTightening (C¥)

| as first four lines in Algorithm 3.7

<C*,r> < < C,r>€Confl: |r| minimal
| take conflict with smallest reason
rem < all N —r | remove these literals
if rem # 0 then
all < resetRemove (rem,all)
L D « literals € C# indicated by rem

< Ry, Rc >+ allRelevant (C#)

forall C' € Confl do
| <Ry,Rc> < < Ry,Rc >U allRelevant (C)

for i < 0 to |C*#| — 1 do

| as in Algorithm 3.7
if A\, € D then continue | already removed
forall < C,r > € Confl do

cone <  ccRBS(vg)

rem <— all N —cone | difference
if rem # 0 then
rem « 28 : (rem N 2F) = 2F | any one bit

all < resetRemove (rem, all)
D < literal € C*# indicated by rem

| return C#\ D

3.2.3 Correctness and complexity

In this subsection, the correctness of the presented approach where the order
of propagation is disregarded in asymmetric branching is proven. Moreover,
the greedy removal of literals is justified.

Property 2. The partial assignment T is independent of the propagation
order of the variables of C*#.

The DPLL branching algorithm [DLL62| uses Property 2. With CDCL

solving, however, the order of propagation becomes important since different
reason clauses for implied assignments may be used.
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Lemma 3.2.1. For every assigned literal, A\, € T the set Rsns(vp) contains
all clauses of the formula F that are unit under the partial assignment T and
contain literal \p,.

More formally: Rsns(vp) = {C € F: A\ € T,(C)A N €TV M € {C\ Np}}.

Proof. Let 7 be the partial assignment generated by asymmetric branching
with Algorithm 3.3, and let A\, € 7 be any assigned literal. Let C' = (A, V K)
be any clause of the formula where K is a disjunction of literals that are
all false under 7. C has two watched literals, one of which was set to
Ap, when the second-last assignment M © A\ € K was propagated, at the
latest. As soon as one watched literal is set to \,, the propagation of the
other watched literal keeps C' as alternative reason clause for v, in line 19 of
Algorithm 3.3. O

For the following lemmas, it is important to notice that not all possible
reductions are compatible with each other and can thus not be applied simul-
taneously. Due to the greedy behaviour of Algorithm 3.7 and Algorithm 3.8
some reductions may no longer be possible when particular literals have been
removed previously. Consider the example with clauses C# = (A; V A2V A3),
Cp = (M1 VA2V A3) and Cy = (A2 V A1V A3). If literal \; is removed from C#
by self-subsuming resolution with clause C, no further reductions are pos-
sible. Alternatively, literal Ao could be removed from C# by self-subsuming
resolution with clause Cs. But the reductions are not compatible and cannot
be applied simultaneously.

Lemma 3.2.2. Assume an order of literals in C# exists, such that the ap-
plication of asymmetric branching removes literal A\, € C# by an implied
assignment X, in line 7 of Algorithm 3.2. Literal X\, is removed from C# by
directTightening (Algorithm 3.7) unless another literal of C* is removed,
which is required for self-subsuming resolution to remove literal \,.

Proof. Let T be the partial assignment generated by Algorithm 3.2 and let R
be the set of reason clauses that allows the generation of clause C’ = ()\,VK),
where K is a disjunction of literals of C# \ {)\,}. Due to Property 2, the
partial assignment generated by Algorithm 3.3 is equal to 7 and due to
Lemma 3.2.1, all reasons R are found by Algorithm 3.3. Since Algorithm
3.4 is called recursively for the variable v, in line 8 of Algorithm 3.7, Rc
contains all clauses of R. Let )\, be the i-th literal of clause C# as supplied
to Algorithm 3.7. For all RBS values of variables of K C C# the i-th bit is
not set, due to the initialisation of RBS values in line 11 of Algorithm 3.3.
Note that this also applies if a literal of C# \ {K U \,} was removed and
the bitsets of variables were reset by the function resetRemove in line 15 of
Algorithm 3.7.
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When Algorithm 3.6 is invoked with bitset 2¢, in line 11 of Algorithm 3.7,
the i-th bit is cleared for all variables that have a clause of R as alternative
reason. Eventually, the i-th bit is cleared for the variable v, and literal A,
is removed from C7 in line 13 of Algorithm 3.7. O

Lemma 3.2.3. If an order of literals in C* exists, such that the applica-
tion of asymmetric branching removes literals D C C# due to a conflicting
clause C, in line 9 of Algorithm 3.2 then literals D are removed from C# by
Algorithm 3.8 unless another literal of {C* \ D} is removed.

Proof. The proof is analogous to the proof of Lemma 3.2.2. Let 7 be the
partial assignment generated by Algorithm 3.2, and let R be the set of rea-
son clauses that are used to generate the lemma C’. C C7# starting from C,.
We assume D = {C# \ C’} as presented in Section 3.2.1. Due to Property
2, the partial assignment generated by Algorithm 3.3 is equal to 7, which
implies that C. is also found as a conflicting clause by Algorithm 3.3. Due to
Lemma 3.2.1, all reasons R are found by Algorithm 3.3. Since Algorithm 3.4
is applied recursively for all variables of C, in line 13 of Algorithm 3.8, R¢
contains all clauses of R. Let d be the disjunction of the initial RBS values
of literals in D C C#. For all RBS values of variables of C’ none of the bits
of d is set, due to the initialisation of RBS values in line 11 of Algorithm 3.3.
As above, this also applies if a literal of D was removed from C# and the
bitsets of variables were reset by the function resetRemove.

When Algorithm 3.6 is invoked with one bit b C d by Algorithm 3.8, bit b
is successively cleared for all variables that have a clause of R as alternative
reason. In particular, bit b is cleared for all variables of C. € Confl. In
line 25 of Algorithm 3.8, one literal of D can be removed from C# unless an
incompatible reduction has been done before. O

Corollary 3.2.4. With indirectTightening, the consequence of asymmet-
ric branching AB* that disregards the order of propagation can be computed
unless incompatible reductions are made.

With Lemma 3.2.2 and Lemma 3.2.3, Algorithm 3.8 can tighten a given
clause C#, as it can be done by any propagation order with asymmetric
branching of C# unless incompatible reductions are made.

Corollary 3.2.5. For a given clause C#, let Minimal AB be the problem
to compute a minimal set of the literals of C* to which C* can be tightened
by the application of asymmetric branching AB*. The Minimal AB problem
can be computed in polynomial time.

With Corollary 3.2.4, all compatible reductions of clause C# are applied.
When the main algorithm terminates, all compatible reductions of C# are
made. Algorithm 3.4 is basically a depth—first search procedure and can be
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bounded by |Ry|+ |R¢c|. In Algorithm 3.6, the RBS value for one variable is
never increased. In particular, Algorithm 3.6 is always called with a bitset
where only one bit 2 is set, so each variable can only modify its RBS value
once. Thus each clause can only change the RBS value of its asserted literal
once. The implementation can be improved by choosing one responsible
variable within each clause € Rc , whose RBS value contains the bit 2.
When the RBS value is changed for a variable v,, only the clauses for which
vy is responsible have to be put into the queue @ in line 18 of Algorithm
3.6. With this, the inspection of each clause C' in lines 13 to 16 requires
each literal of C' to be touched once at most. Hence, one invocation of
Algorithm 3.6 is linear in the number of literals of Rc. Since Algorithm 3.6
is called |C#| times at most (once for each initial bit), the entire computation
runs in polynomial time. Clearly, the unit propagation for |C#| decisions in
Algorithm 3.3 also runs in polynomial time.

Tightening to minimum size

The presented algorithms do not claim to tighten a given clause C# to the
minimum size that could be achieved by considering all the possibilities of
asymmetric branching. This is justified by the fact that finding the minimum
subset of literals is NP—hard. Moreover, it is already NP-hard to reduce a
given clause to its minimum if only self-subsuming resolution is applied.

Corollary 3.2.6. AB* of clause C* finds all clauses that subsume C* and
all clauses that tighten C# by self-subsuming resolution, provided that no
incompatible reductions are made previously.

Proof. Any clause Cy C C# generates a conflict by the application of com-
mon asymmetric branching (Section 3.2.1) and thus the detection of sub-
suming clauses is obvious. As described in Section 3.2.1, any clause C, that
allows the application of self-subsuming resolution for C# has the following
properties: C, = (), V K), where K is a disjunction of the literals of C#
and )\, € C# \ {K}. If common asymmetric branching assigns the opposite
values of all literals in K, the assignment ), is implied due to clause Ci.
Literal I can be removed from C# by Algorithm 3.2 in line 7. With Corol-
lary 3.2.4, literal A\, is removed from C# if no other incompatible reduction
is made. O

Lemma 3.2.7. Let SelfSub be the problem of tightening a given clause by
the application of self-subsuming resolution. Let MinSel f Sub be the variant
of SelfSub that tightens a given clause to minimum size. MinSel fSub is
NP-hard.

Lemma 3.2.7 can be proven by the reduction Maz1S <pq, MinSel fSub,
where MaxIS is the Maximum Independent Set problem. MaxIS is a graph
theoretical problem, and an independent set IS in an undirected graph
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G = (Vg, Eg) is a subset of vertices I C Vi, such that each edge in Eg
has, at most, one endpoint in /. Thus no pair of vertices in [ is adjacent. A
maximum independent set I* is an independent set that contains the great-
est number of vertices possible, such that there is: [I*| > |I| VI of G. MaxIS
is NP-hard for () # I* # Vg [GJ79].

For some given undirected graph G = (Vg, E¢) the problem MaxIS of
finding a maximum independent set of vertices of G can be transformed into
a problem of minimum self-subsuming resolution MinSel fSubg with |V|
variables and |Viz| 41 clauses. Without loss of generality, G does not contain
self-loops, i.e. edges with the same source and target vertex.

For each vertex i of Vi, one variable \; is introduced for MinSel f Subg.
Let C% = (A VA2 V.. -V Alvg|) be the clause to be tightened, which contains
all variables with positive polarity. In addition, each vertex ¢ € Vg intro-
duces one clause C; = (\; V ;), where q; is the disjunction of the (positive)
literals of vertices in A; and A; denotes the set of corresponding vertices
adjacent to ¢ in G. Hence literal \; is contained in clause C; if and only if
an edge 1, j € Eqg exists in G. Note that v; is the only variable with negative
polarity in C;. Moreover, C; cannot contain ); since G has no self-loops,
i.e. edges (i,7). A small example of a graph and the corresponding clause
set is shown in Figure 3.2.

c# = {)\1\/)\2\/)\3\/>\4\/)\5\/)\6\/)\7}
Ch {A VA2V AL}

A Cy {Xa VA1V A3V A5}
2] EI

{)\73\/)\2V)\4\//\6}

Cy {T4V)\1V)\3VA6VA7}

‘ G = Dsviavig)

ﬂ Cs {)\76\/)\3\//\4\//\5\/)\7}
Cy = {)\7\/)\4\/)\6}

Figure 3.2: Transformation of Independent Set to self-subsuming
resolution

The transformation is clearly polynomial. It remains to be proven that
any solution of 1.5 can be transformed into a solution for Sel f Subg and wvice
Versa.

1S = SelfSubg: Let I be any given independent set for G. We define
H = {Vi \ I} as the complementary vertex set! of I. In the transformed

!'Note that H is a Vertex Cover for G.
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Sel fSub problem, C# can be tightened stepwise to C’, where a literal ); is
in C" if and only if vertex i € H. Where necessary, we refer to the different
versions of C# as C’# D C# D...D C#‘ =C".

For any vertex i € I, consider clause C; = ()\; V a;) as defined above. By
the definition of an independent set, all adjacent vertices to 4, i.e. ver-
tices in A;, are elements of H. More formally, we have A; € H and
A; NI = 0. Consequently, all literals in a; are contained in C’, and thus we
have a; C C' C CZ?E V 0 < k < |I|. The resolution of the two clauses C,fé
and C; deduces the resolvent C? that contains all literals of CZ# except for

literal ;. Hence C* subsumes C;:E and literal \; can be removed from C#
by self-subsuming resolution.

Vertices of I can be handled in arbitrary order to tighten clause C# step by
step to C’. One step for any vertex j € I is independent of all other steps
since the resolution operation requires only the literals of a; C C” that are

contained in all versions C’if 0 <k <

Sel fSubg = IS: Let C% be tightened to clause C'. Let R = {C# \ C'} be
the literals that are removed by the application of self-subsuming resolution.
Hence several resolution operations are performed to resolve clause C’. In
the corresponding I.S problem, I is an independent set, where I contains
exactly the vertices corresponding to the variables in R. We assume the
contrary, that there are two vertices 7,5 € I that are adjacent in G. Thus
the literals A;, A; are removed from C#. To remove ); (or );) from C# by
self-subsuming resolution, the clause C; (or Cj) has to be used for resolu-
tion, since literal \; (or /\7) has only one occurrence with negative polarity.
W.l.o.g. we assume J; is removed from clause Cl# first, in step k, and A; is
removed later in step | (k <[ < |I]) .

For the removal of A;, the clauses C’l# and C; = ()\; V o) are resolved
to C7. Since i and j are adjacent in G, we have \; € a;. Accordingly,

\; is contained in CY but is not contained in C#, since it was removed in
Clil ) Cl# . With C7 ¢ C#, self-subsuming resolution cannot be applied

to remove literal \; from Cl# .

Corollary 3.2.8. It is NP-hard to tighten a clause to its minimum size by
the application of asymmetric branching that disregards the order of propa-
gation.

Corollary 3.2.8 follows directly from Lemma 3.2.7 and the fact that self-
subsuming resolution is covered by the modification of asymmetric branching
presented here.
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3.3 Supplementary Hyper—Binary Resolution

Removing a literal from any clause of a Boolean formula in CNF cannot
decrease its deductive power [HS07|. As mentioned in Section 3.2.1, simpli-
fication techniques may allow redundant clauses to be removed. Moreover,
simplification may also add redundant clauses, as this is also done by CDCL
solving when conflict analysis generates a new clause. These simplifications
have to be applied carefully, since it is not obvious whether the modified for-
mula is easier or even harder to solve for a particular SAT solving algorithm.

The idea of hyper—binary resolution allows for the generation of redun-
dant binary clauses. Since the method for detecting hyper—binary resolu-
tion uses a slight modification of unit propagation, it can be incorporated
into CDCL solving, and, in particular, it can be applied within asymmetric
branching. For example, this is applied in distillation of clauses within some
solvers implemented by Biere |Bie09b, Biell|.

In general, increasing the number of binary clauses can be beneficial for
several other simplification techniques, such as equivalence reasoning, where
strongly connected components in the binary implication graph are replaced
by one representative literal. Moreover, the simplification techniques pre-
sented by Brafman and Heule et al. [Bra04, HM04, HJB11| and the ap-
proach suggested in Chapter 4 benefit from having a large amount of binary
clauses. Furthermore, added binary clauses may increase the power of unit
propagation and thus they may improve the power of asymmetric branching.

In Section 3.3.1, the concept of hyper—binary resolution is presented.
Thereafter, hyper—binary resolution is incorporated into the algorithms pre-
sented in the previous sections. Despite the benefit of additional binary
clauses in other simplification techniques and propagation, they may also
slow down Boolean constraint propagation. For this reason, all binary clauses
that are added by hyper—binary resolution are marked as special redundant
clauses so that the SAT solver can decide whether to use or ignore these
clauses for CDCL search.

3.3.1 Related work

The concept of hyper—binary resolution was introduced by Bacchus and Win-
ter [BWO03] and goes back to Robinson [Rob83]. Consider the following ex-
ample with n + 1 clauses: Cp = (Az VA1 V A2 V...V A,) and the binary
clauses C1 = (A\y VA1), C2 = (A\y V A2), ..., Cp, = (A\y V \y,). One resolution
of Cp with C; deduces the clause C' = (Az V Ay V A2 V...V \y,). Thereafter,
C’ can be tightened to C"” = (A, V A;) by using the clauses C5 ...C), for
self-subsuming resolution. C” can be added to the formula as a redundant
binary clause. In special cases, A\, may be equal to \;, which allows for the
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deduction of a unit clause C” = ()\,). The example becomes less obvious
if we allow for binary relations that are not explicitly given by one binary
clause but by a set of binary clauses. If we replace clause Cy from above
with two clauses Coq = (A, V Xg) and Cy, = (Ay V A.), hyper-binary res-
olution can still generate clause C” if implicit binary relations are considered.

Based on the work of Gershman and Strichman [GS05], the idea of lazy
hyper—binary resolution was introduced by Biere [Bie09a| to apply hyper—
binary resolution on—the—fly and efficiently during unit propagation within
search. Unit propagation has to be extended in three ways:

e For any assigned literal \,, all binary clauses that contain literal )\77
are propagated first. Clauses containing more than two literals are
propagated, but not before propagation of the binary clauses of all the
assigned literals is finished.

e Each assignment )\, keeps a so—called dominator dom(v,). For any
assignment that is implied during the propagation of binary clauses,
the dominator is equal to the assignment that first initiated the prop-
agation. By default, the dominator of an assignment is equal to the
assigned literal itself.

e If a clause ), which has more than two literals, becomes the asserting
clause for an assignment ), it is checked whether all literals of {C)\ A, }
have the same dominator )\,. If this applies, a binary clause (A, V A;)
is added.

Consider the clauses Cy ... C,, from the example above and assume that
literal )Ty is assigned by a decision. Its dominator is the literal )Ty itself.
Propagation of the binary clauses implies the assignments —=2 Aj A ... A An,
due to the clauses C ...C,. Each assignment gets the same dominator /\TJ
After the propagation of binary clauses, literal A\, is assigned due to clause
Cp. Since all literals in Cp \ {\;} have the same dominator )\, the binary

clause (A; V Ay) = (Az V ) = C” is added.

3.3.2 Asymmetric branching and hyper—binary resolution

As described in Section 3.3.1, dominator variables can be used to detect
the possibility of hyper—binary resolution. However, an unfavourable or-
der of propagation in asymmetric branching may miss some possibilities of
adding new binary clauses. Consider the following example with the clauses
C# = ()\1 V A V )\3),C1 = ()\1 V )\5),02 = ()\2 vV )\6)703 = ()\5 V Xg V )\7)
and Cy = (A2 V \5). When propagating the opposite literals of C# in the
given order, literal A5 is set by C; with the dominator A1, literal \g is set by
Cy with the dominator Ay and literal A7 is set by C3 where the dominator
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is \7 itself. If, however, Ao was propagated before A1, the use of dominators
would detect a hyper-binary resolution: A5 is now assigned by C4 with the
dominator g, literal Ag is assigned by C5 also with the dominator Ao. Literal
A7 is assigned by C3 with the dominator o since the assignments A5 and \g
both have the dominator Ao. Thus the binary clause (A2 V A7) = (A2 V A7)
can be added.

Because in asymmetric branching, the number of decision variables is
bounded in advance, the dominators can be expressed as bitsets that indicate
the decision variables, analogous to reasons in Section 3.2.2. Unlike normal
dominators, the dominator bitsets only represent the decision variables. By
dismissing the order of propagation for the RBS values, the dominator bitsets
can also be adapted. This allows for a better detection of hyper—binary res-
olution. In this section, the idea of dominators is incorporated into the AB*
computation. The algorithms presented in the previous section are adapted
to meet the requirements of enabling hyper—binary resolution. At first, bi-
nary clauses have to be propagated before other clauses.

Algorithm 3.9 modifies Algorithm 3.3. Since binary clauses have to be
propagated before other clauses, two propagation queues are initialised in
line 4. When a literal is enqueued for propagation, it is always put into
both queues (lines 7 and 20). As for the RBS values, the dominator bitsets
DBS are initialised with one unique bit for each literal of C# in line 10. In
line 13, binary clauses are propagated separately as listed in Algorithm 3.10.
The first two if—cases of the inner loop until line 19 are equal to those in
Algorithm 3.3. If unit propagation implies an assignment for an unassigned
variable, the DBS is computed analogously to the use of a single dominator,
i.e. as the intersection of the DBS values of all falsified literals of C* (line 24).
The function addHyperBinary invoked in line 25 adds new binary clauses if
the DBS value is not zero.

As for the case of unit clauses, a dominator bitset can be computed for
conflicting clauses. The intersection of all DBS values of the variables in C*
is computed in line 27. If this value is not zero, there is at least one initial
assignment that implies the assignment of all literals of C*. In that case, a
unit clause can be added which is mimicked in the pseudo—code by setting
the second literal of a generated binary clause to false (line 28). If a unit
clause can be added in line 28, C# is subsumed by that clause and asym-
metric branching terminates early.

The invoked function addHyperBinary in line 32 checks if the given dom-
inator bitset indicates clauses to be added (line 33). For each dominator that
is set within the given bitset in line 35, a binary clause is added to F.
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Algorithm 3.9: Asymmetric branching with hyper—binary resolution.

4

10

13

19
20

24
25

27
28

32
33

35

Require Clause C7# € F to be tightened
7 < (; Confl + 0; Rsns(v) «+~ OV v ey | see Algorithm 3.3
Function asymBCP (C7)

Q<+ 0;B+10 | two queues to propagate
for i < 0 to |C#| — 1 do
A + C7]i]
B.enqueue()\,); Q.enqueue()\,) | propagate separately
T < TU)Tq | assign opposite literal
RBS(v,) ¢ 2° | init bitset for reasons
DBS(v,) + 2¢ | init bitset for dominators

while Q # () do

Q@ < Q UbcpBins(B) | binaries first
Ag < Q.dequeue() | next literal to propagate
Wy < watched0£(),) | clauses with watched )\,

foreach C* € {W;\ C#} :|C*| > 2 do

\p < otherWatched(C*, \,)

| first two if cases as in Algorithm 3.3
else if \, ¢ 7 then

B.enqueue()\,); Q.enqueue(),) | separate BCP
T+ TUN,

Rsns(vp)  C*

RBS(vp) < U 1, (0,1 BBS (V)

DBS(vp) <= [ rpefc\a,1PBS (V&)

| addHyperBinary (C#, \,,DBS(v))

Ise if C* & Confl then

e
d < \,ec-DBS(vk) | has dominators?
if addHyperBinary (C#,false,d) then
L return | unit clauses subsume C7
r < U x,ec-RBS(v)
| Confl < Confl U (C*,r) | keep conflict

Function addHyperBinary (C7#, X\, mask)

if mask = 0 then return false
for i + 0 to |C#| — 1 do
if (2! N mask) # 0 then
L F « FU(C#[i],\) | add binary clauses

L return true
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Algorithm 3.10: Propagate binaries separately
Require Queue of literals to be propagated
Return A queue of literals to be propagated using non—binary clauses
Function bcpBins (B)

4 Q + 0;
while B # 0 do
6 Mg < B.dequeue() | next literal to be propagated
W5 < getBinariesWith(\,) | binaries (g, *)

foreach C* € {W;\ C#} do

\p < otherWatched(C*, \,)
if A, € 7 then
Rsns(vp) < Rsns(vp) U C*
12 DBS(1) < DBS(1;,) U DBS(v4)
13
15 else if \, € 7 then
L | as conflict case in Algorithm 3.9
else
18 B.enqueue(),); QQ.enqueue(),) | separate BCP
T TUN
Rsns(vp) + C*
21 RBS(1) < RBS(v4)
DBS(v) < DBS(v4)

| return Q)

The preferential propagation of binary clauses is outlined in Algorithm
3.10. The set @ (line 4) keeps the implied assignments that have to be
returned to the main propagation routine. In line 6, the next literal to prop-
agate is taken from the binary propagation queue. If the other literal A, of
a propagated binary clause C* is already assigned true, the DBS value for
vp is unified with the dominator bitset of this propagation to allow different
dominators for the assignment of A, (line 12). In line 13, the RBS value may
be adapted immediately. A literal A, may then be removed from C7 in the
subsequent line. However, these two lines are optional and a removal would
be detected and applied later (in line 13 within directTightening).

For conflicting clauses (line 15), the treatment is equal to the one in
Algorithm 3.9. If an assignment is implied, the literal has to be added into
both propagation queues (line 18). The two bitsets for a newly assigned
variable, RBS and DBS, are both set as equal to the implying assignment of
Ag as shown in line 21.
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Algorithm 3.11: Adaption of Algorithm 3.5 for hyper—binary resolution

Function initBitset ()
2 L return < 0,2‘0#‘ —-1>
Function bitsetAddVar (v, < r,d >)
7 <— 1 U RBS(1)
5 | d<« dnDBS(y,)
| return <r,d >
Function bitsetFinish (v, < r,d >)
8 new <— d N —DBS(vp) | new dominator bits
DBS(1) < DBS(1p,) U d
10 if DBS(vp) # 0 then
11 if [DBS(vp)| > 1 then r < 0
12 L else r < r N DBS(vp)
13 RBS(vp) < RBS(vp) N 1
14 addHyperBinary (C#, \, € 7, new) | add binary clauses

Whenever an alternative reason clause is processed in Algorithm 3.4 and
Algorithm 3.6, the bitset RBS is updated. The update is done by three func-
tions listed in Algorithm 3.5. To meet the requirements for hyper—binary
resolution their functionality has to be modified, as shown in Algorithm 3.11.

The RBS values for the falsified literals of one reason clause are always
unified, since an assignment asserted by that clause depends on each of the
indicated assignments. However, the DBS values are intersected since a dom-
inator is only valid if all falsified literals have a common dominator. Thus
in line 5 of Algorithm 3.11, the DBS values are intersected and are therefore
initialised to the complete bitset in line 2.

After all literals of a reason clause are processed, the dominator bits that
are not set in the current DBS value are determined in line 8, before the DBS
value is extended. If the DBS value contains at least one dominator, it can be
used to reduce the RBS value for that variable (line 10). If the assignment of
vp is solely implied by two different initial assignments (line 11), then v, has
no mandatory assignments. If the assignment of 1, has one dominator (line
12) then this initial assignment can be the only mandatory assignment for v,,.
Compared to the computation in Section 3.2, the use of dominator bitsets
to reduce the reason bitsets does not induce other RBS values. However, it
speeds up the reduction of RBS values. In line 13, the RBS value is finally
reduced to the mandatory assignments for this stage. New binary clauses
(ApVx) are created for all new dominator bits in line 14 by calling the function
listed in Algorithm 3.9, whereas ), is the assigned literal of variable v,.
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3.4 Evaluation

In the following section, we evaluate the different approaches that are pre-
sented in this chapter. For the evaluation of any algorithm, it is desirable
to measure only those effects that are directly related to the evaluated tech-
nique. For this reason, test runs with different solver configurations are
generally performed by changing only one parameter under consideration.
However, there are some parameters that may have several side—effects. Con-
sider the application of preprocessing. Besides the simplification of a SAT
instance many preprocessing approaches may implicitly change the order in
which variables, literals or clauses are added to the solver. As already illus-
trated in the Introduction, such minor changes in the proceedings of a SAT
solver may have significant effects.

All evaluations are based on a solid, pure CDCL implementation using C++.
This is basically the CDCL part of our solver SApperloT without special
tweaks. In doing so, we attempt to keep the side—effects caused by other
solving techniques as small as possible. The solver applies the VSIDS heuris-
tic with phase saving for decision making with no degree of randomness.
Moreover, it applies the Glucose restart policy and uses LBD values for the
estimation of clause’s quality, as described in Section 2.2.5. Other features
of Glucose, such as the additional conflict minimisation using binary clauses,
are not applied.

3.4.1 The XOR—watchers implementation

In Section 3.1, we introduced the XOR—watchers scheme to speed up unit
propagation in SAT solving. We apply this technique in all CDCL-based
solving modules of the actual versions of our solvers SApperloT (after ver-
sion 2010), SArTagnan and MoUsSaka. Note that the first two solvers utilise
additional solving techniques, which are described in more detail in Chapter
5 and Chapter 6. Moreover, for the parallel solver SArTagnan, the XOR—
watchers scheme had to be modified, which is also described in Chapter 6.

To evaluate the effect of the suggested technique, tests have been run
on all 614 industrial instances of the SAT competitions of 2007 and 2009
[Sat11] and the SAT-Races of 2008 and 2010 [Sat10]. Figure 3.3 presents
the result by using a so—called cactus plot, as used in the Introduction. A
point (z,y) in the plot indicates that z instances can be solved when the
time per instance is limited to y seconds.

The XOR-watchers implementation is represented by the green curve. The
common watched literals implementation, where the two watched literals
correspond to the first two literals in the clause [Gel02], is represented by
the red curve. For more than 650 seconds, the green curve is clearly more to
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Figure 3.3: Comparison of the watched literals implementation on
614 benchmarks

the right than the red curve. This indicates the better performance of the
X0R—watchers implementation, since it solves considerably more instances
than the common watched literals implementation within the same amount
of time. With a time bound below 650 seconds, no effect is observable. This
may be due to the increasing number of learnt clauses when the solver runs
for a longer time. On average, the solver configuration that used the X0R—
watchers implementation allocated one MB less memory. In Section 6.3, we
revisit Figure 3.3 when analysing the modified data structure for parallel
solvers.

3.4.2 Asymmetric branching with hyper—binary resolution

In Section 3.2, we present an approach that extends the application of asym-
metric branching to be independent of the order of propagation (AB*). In
addition, in Section 3.3, the application of hyper—binary resolution is incor-
porated into the approach.

In the following, we analyse the effect of both techniques with several dif-
ferent configurations. We study the presented approaches in combination
with other common simplification techniques, such as subsumption, self—
subsuming resolution and variable elimination as described in Section 3.2.1
(cf. |SP04, EBO5, ZielO]). Moreover, we apply equivalence reasoning, as
presented by Brafman [Bra01], where each occurrence of literal \; (or \;)

is replaced by literal \; (or A;) if both binary implications \; —2» \; and
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N 2 )TJ hold. This technique depends on the binary clauses of a formula
and is thus interesting to use in combination with hyper—binary resolution.
The computation of equivalent literals is revisited in Chapter 4. Note that
AB* is only applied when no other simplification is possible. All tests are
performed for the 300 instances of the application (or industrial) category
of the SAT competition 2011 [Sat11]. However, most presented plots depict
the results for only a subset of instances to emphasise relevant issues. We
analyse the presented approaches in terms of quality by considering different
aspects. Moreover, their impact on the total runtime of our CDCL solver is
evaluated. We distinguish between the application in preprocessing and the
more frequent application in inprocessing (in between CDCL searches).

Reduction of literals

Figure 3.4 compares the tightening of clauses by the application of asymmet-
ric branching AB* for different configurations of preprocessing. Each config-
uration is represented by one plotted curve. The y—axis indicates the average
number of literals that are removed by the execution of indirectTightening
for one clause, C# (cf. Algorithm 3.8). For each configuration, the instances
are ordered by their y values such that all curves decrease monotonically.
Thus a point (x,y) in the plot indicates the number of instances x for which
at least y literals are removed on average.

We distinguish four parameters for each configuration. The first parame-
ter, cs < n, states the maximal clause size (c¢s = number of literals) for which
AB* is applied. The second parameter indicates whether all simplification
techniques are applied (all) or only AB* and equivalence reasoning (ab +
er). This distinction is interesting because neither indirectTightening nor
equivalence reasoning require occurrence lists of variables or literals. If dfit
is stated as the third parameter, input clauses are considered by default.
Otherwise, clauses are only considered if they are modified by another sim-
plification technique. Finally, the fourth parameter indicates if hyper—binary
resolution is applied additionally (hb), as presented in Section 3.3.

We start by observing the first configuration (red plot), where only
clauses with less than 13 literals are considered for AB*. As expected, it
removes the least number of literals on average. Clearly, the removal of liter-
als from longer clauses seems more likely, but may probably have less effect
on the solving process of the formula. The tightening achieved for this con-
figuration seems quite small. The curve indicates that for 50 of 300 instances
only every fifth call of indirectTightening, at least, is successful. How-
ever, recall that AB* is only invoked after all other simplification techniques
applied to the full. Moreover, the removal of one literal by AB* may trigger
the application of other simplification techniques.
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Figure 3.4: Reduction of literals by asymmetric branching A B*

Now consider the next two configurations (green and blue). They differ
only in the application of other simplification techniques. The second of
these configurations, where only AB* and equivalence reasoning are applied,
exhibits the clearly better effect of asymmetric branching. The difference
of these two configurations demonstrates how many literals are removed by
self-subsuming resolution that could also be detected by AB*. However,
since the application of self-subsuming resolution is less costly than asym-
metric branching, its application is preferred.

The third and fourth configurations (blue and magenta) differ in their
additional application of hyper—binary resolution. The benefit for AB* when
hyper—binary clauses are added on—the—fly is significant. Note that both con-
figurations only apply AB* and equivalence reasoning. If other simplification
techniques are also applied, the benefit of adding hyper—binary clauses is less
observable for AB*. This is because other simplification techniques, such as
subsumption and self-subsuming resolution, obtain greater benefits from the
added binary clauses.

The last two configurations (cyan and orange) apply AB* for long clauses.
The interesting issue is the default treatment of clauses. The last configura-
tion applies AB* only for clauses that have already been simplified by other
techniques. The effect is significant and shows that different heuristics on the
choice of clauses that are considered by AB* exhibit significantly different
behaviour.
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The fifth and first configurations (cyan and red) only differ in the size of the
clauses considered by AB*. It is worth mentioning that the more extensive
removal of literals (cyan) goes along with an increase in the average runtime
by a factor of five, compared to the first configuration.

Different parts of AB*

In Section 3.2, three main parts of AB* are distinguished, which are repre-
sented by the functions asymBCP, getRelevant and compMandatory (Algo-
rithms 3.3, 3.4 and 3.6). Moreover, we distinguish between direct and indi-
rect tightening in Algorithm 3.7 and Algorithm 3.8. The incorporation of
hyper—binary resolution requires the separate propagation of binary clauses,
as explained in Section 3.3.
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Figure 3.5: Relation of different parts of AB*

Figure 3.5 and Figure 3.6 compare these different parts of the AB* ap-
proach in terms of their contribution to tightening and runtime for one pre-
processor configuration that applies hyper—binary resolution. Figure 3.5 dis-
tinguishes four parts of AB* at which the tightening of a clause may be
detected: The propagation of binary clauses (line 13 of Algorithm 3.10), the
inspection of conflict reasons after propagation is completed (line 6 of Algo-
rithm 3.8), direct tightening (Algorithm 3.7) and indirect tightening (from
line 18 of Algorithm 3.8). The average number of literals removed per in-
spected clause is shown on the y—axis. The contributions of the four parts
of AB* are stacked. Each x value represents one SAT instance. Thus, for a
SAT instance represented by x;, the vertical line [; at position x; depicts how
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many literals are removed by binary propagation (the intersection of [; with
the red curve), how many literals are additionally removed by choosing the
smallest conflict (the intersection of I; with the green curve) and so on. All
instances are ordered by the total number of literals removed (black curve).

For the first 100 instances (according to the order) depicted in Figure
3.5, it is clearly observable that most literals can be removed by the prop-
agation of binary clauses. A much smaller number of literals are removed
by considering the smallest conflict reason (distance between the green and
red curves) and direct tightening (distance between the orange and green
curves). The application of indirect tightening (distance between the black
and orange curves) has only a very small effect. However, the propagation
of binary clauses benefits from the application of hyper—binary resolution in
the minimisation parts.

Figure 3.6 compares the runtime of four different parts within AB* for the
same configuration as Figure 3.5: The propagation of binary (red curve) and
non-binary (green curve) clauses, the execution of getRelevant (Algorithm
3.4, blue curve) and the remaining minimisation (black curve). Analogous
to Figure 3.5, each = value represents one SAT instance and the curves are
stacked. The y—axis shows the runtime in relation to the complete simpli-

fication. Instances are plotted in decreasing order of their relative runtime
for AB*.
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Figure 3.6: Relative runtime for different parts of AB*
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The depicted plot zooms in on the first 130 instances with the highest
relative runtime. For most of these instances, the propagation of binary
clauses requires the least runtime. This is opposed to the removal of literals.
The propagation of non—binary clauses increases the runtime significantly.
This effect is also due to having separate watcher lists for binary clauses.
As already mentioned above, it has to be considered that the propagation
of binary clauses benefits from hyper—binary resolution, which is applied in
the remaining parts. The black curve also indicates that for 10% of the
instances (30 of 300), the application of AB* requires more than 90% of
the total runtime. Figures 3.5 and 3.6 motivate a better differentiation for
different SAT instances. This includes the selection of clauses for which A B*
is applied at all and, moreover, to what extent AB* is applied for each clause.

Hyper—binary resolution in AB*

The influence of hyper—binary resolution can be observed in Figure 3.4. In
Figure 3.7, we consider the effect of hyper—binary resolution in more detail
for different configurations. The y—axis indicates the average number of
binary clauses that could be added for each clause C# that was inspected by
AB*. A configuration is represented by one plotted curve. A point (z,y) in
the plot indicates that for x SAT instances, at least y binary clauses could
be added per run of AB*. The plot zooms in on the first 100 instances and
is split into two pieces to apply different scales on the y—axes. The four
configurations can be distinguished by three parameters.
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Figure 3.7: Hyper—binary resolution per run of AB*
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The parameter cs < n states the maximal clause size for which AB* may be
applied. The last parameter indicates if simplification is applied as prepro-
cessing only (pre) or also in between CDCL searches (inp). If inprocessing
is applied, the second parameter states whether learnt clauses are also con-
sidered for AB* (Irnt).

For all configurations, the number of added binary clauses is quite high
for at least 50 of 300 tested instances. Consider the first two configurations
(red and green), which only differ in the maximal clause length. The con-
figuration that applies AB* for clauses with less than nine literals exhibits
a clearly higher application of hyper—binary resolution. This is opposed to
the removal of literals per inspected clause, as depicted in Figure 3.4. The
third and fourth configurations (blue and magenta) apply all simplification
techniques within preprocessing and inprocessing. They only differ in the
treatment of learnt clauses. However, the additional application of AB* for
learnt clauses does not cause an observable effect for hyper—binary resolu-
tion. A reason for the similar behaviour of both configurations is due to the
restriction of the clause size c¢s < 11. Many learnt clauses have more than
11 literals. However, on average, AB* still inspects around 20,000 clauses
(=~ 14%) more when comparing the third to the fourth configuration.

For the instances in the left—hand plot of Figure 3.7, the number of added
binary clauses is surprisingly high for all configurations. Most of these in-
stances stem from the domain of planning and are translated into SAT by
using the approach of Rintanen et al. [RHN06|. Consider the planning in-
stance grid-strips-grid-y-4.025 with 2,464,339 clauses. The set of clauses
can basically be subdivided into 2,420,825 binary clauses (=~ 98.2%) and
39,450 clauses that contain at least ten literals (= 1.6%). The application
of AB* within the third configuration (blue) adds 11,182,130 new binary
clauses. Since AB* is invoked for 7143 clauses the achieved ratio is 1565.
Even though the entire simplification reduces the set of clauses by more than
98%, solving is faster for this instance if no simplification is applied at all.

The sheer amount of binary clauses that may be added by AB* sug-
gests a particular marking of these hyper—binary clauses. This allows the
CDCL solver to optionally ignore such clauses. However, the mark has to
be removed if a hyper—binary clause is used for another simplification. This
applies, for example, whenever a non—redundant clause is found to be sub-
sumed by a hyper—binary clause. It is remarkable that in most configurations,
more than 20% of the binary clauses that are added during AB* are even-
tually upgraded for 40 of 300 instances. This indicates that the application
of hyper—binary resolution can be useful for other simplification techniques.
Note that the percentage of upgraded binary clauses does not reflect the
benefits for unit propagation.



3.4. Evaluation 61

Figure 3.8 illustrates the impact of 50 ——
hyper-binary resolution within AB* on 45 hyper bin =
equivalence reasoning. A point (x,y) in = no hyper bin —<—
the plot indicates that for x of 300 in- % 35
stances, at least y percent of variables g 30
could be replaced by equivalence reason- % 25
ing. Two configurations for preprocess- g 20 X
ing are compared, which apply equiv- uérj 15 )%"X(
alence reasoning and AB* only. They 10 P
only differ in the additional applica-
tion of hyper—binary resolution. For 0 0 20 40 60 80 100 120
these configurations the effect of hyper— Number of instances
binary resolution for equivalence reason-
ing is clearly observable. Note, how- Figure 3‘8:_ AB” and equiva-
ever, that variable elimination can often lence reasoning

achieve a much more extensive removal
of variables.

Runtime comparison

To evaluate the effect of AB* on the total runtime of a SAT solver, we have
run several different configurations on the 300 benchmarks. We have already
pointed out that a good choice of the clauses that are inspected by AB* can
show significant differences. This can also be observed in the performance
of different configurations. The best configurations apply AB* in between
CDCL searches (at inprocessing) but not within preprocessing. This can be
explained by the fact that within preprocessing, it is not clear which clauses
may be important constraints for the solver. At inprocessing, this is differ-
ent. We implemented the following heuristic: As described in Section 2.2.5,
modern CDCL solvers apply the phase saving heuristic that caches the pre-
viously assigned value for each variable. A decision variable will always be
assigned to its cached value. The cached values can be interpreted as com-
plete assignment (cf. [Kotl0a, ALMS11]). Consequently, there are clauses
that are falsified by this (implicit) assignment or satisfied by only a few liter-
als. These clauses exhibit important constraints for the solver since they are
likely to be conflicting in subsequent searches. At inprocessing, only these
clauses are inspected by AB* in order to tighten important constraints. The
restriction to clauses that are falsified by the implicit assignment turned out
to be the best. By using this selective heuristic for AB*, it is even better to
consider both original and learnt clauses.

Figure 3.9 compares three configurations with pure CDCL solving. A
point (x,y) in the cactus plot indicates that x instances can be solved within
y seconds per instance. On the one hand, the presented configurations are
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comparable to pure CDCL. On the other hand, no significant improvement
can be observed for the complete set of benchmarks. All three configurations
apply AB* with the described clause selection heuristic for original and learnt
clauses. The parameter inp = n indicates that simplification is frequently
applied after n-|F| conflicts in a CDCL search. The second parameter states
whether hyper—binary clauses are considered within CDCL. A configuration
may use all hyper—binary clauses for BCP (use hb) or ignore them within
CDCL (ignore hb). In both cases, hyper—binary clauses are always stored for
subsequent inprocessing. Surprisingly, using all hyper—binary clauses within
CDCL does not obviously harm the solver for the tested configurations.

As mentioned above, we implemented the AB* technique on top of a
pure CDCL solver. This allows for a specific evaluation of AB*. However,
according to the results of the SAT competition 2011 [Sat11], highly opti-
mised state—of-the—art solvers clearly perform better on the complete set
of benchmarks. The optimisation of AB* is difficult and time-consuming,
since its application within preprocessing and inprocessing entails hundreds
of possible options that have to be adjusted and optimised.

The improvement of AB* on specific domains of SAT instances looks
promising. Kullmann provides a set of benchmarks that encode key discov-
ery problems (Advanced Encryption Standard I (AES) benchmarks). Pure
CDCL could only solve two of these instances, whereas the application of
AB* solves four AES benchmarks in less than 2000 seconds.
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3.5 Summary

In this chapter, we presented extensions to the conflict—driven SAT solving
algorithm with clause learning. CDCL is the predominant solving technique
for SAT instances that stem from industrial and other real-world applica-
tions. The technique is implemented in most state—of-the—art SAT solvers
and has been highly optimised within the last decade.

The first presented extension addresses the data structure for storing
clauses within a solver. The underlying idea uses the fact that for any clause
that is accessed by a CDCL search, one of the two watched literals is al-
ways known. This allows for a XOR compression of the two watched literals.
Considering that industrial SAT instances consist of thousands or sometimes
even millions of clauses, the overall compression is considerable with regard
to memory consumption and runtime. The effect is evaluated in Section 3.4.

The second extension studies the application of asymmetric branching
[PHS08, HS07|. We explain why the success of this simplification technique
depends on the order in which literals of a clause are examined. We in-
troduce an approach AB* to overcome this issue and present the relevant
algorithms in detail. Moreover, we prove that it is NP-hard to reduce a
clause to minimum size by the application of AB*.

We further extend the presented approach by incorporating the applica-
tion of hyper—binary resolution [Bac02a, Bie09a]. Several aspects of AB* are
evaluated in Section 3.4. Even when using AB* after all other simplification
techniques are finished, a considered clause may often be tightened further.
In Chapter 8, we indicate some directions for future research that are related
to AB* and simplification in general.






Chapter

Beyond Unit Propagation

The tremendous improvement in SAT solving has made SAT solvers a core
engine for many real-world applications. Deliberate engineering of the origi-
nal CDCL algorithm has enhanced state—of-the—art solvers and enabled them
to tackle huge and difficult SAT problems. Different types of solvers have
been engineered for different types of SAT instances (i.e. real-world, ran-
dom, handmade). Solvers for real-world applications make the small amount
of effort spent on decision making worthwhile, as they can perform searches
very rapidly and, in particular, propagate assignments quickly.

The main ingredient of any conflict—driven SAT solver is clearly a fast
implementation of BCP. For the bulk of SAT instances, more than 80%
of the runtime is spent on unit propagation [MMZ*01, Kot10a]. On the
other hand, relatively little computational effort is spent on choosing deci-
sion variables. This constitutes ongoing research to improve the speed of
BCP [MMZ"01, Bie08b, CHS09]. For CDCL based SAT solvers, BCP cor-
responds exactly to unit propagation. If all literals of a clause C € F but
one are falsified by an assignment 7, the remaining literal A is asserted to be
true (see Section 2.2.2).

The fundamental unit propagation technique has now been highly opti-
mised [CHS09| and nearly exploited for further speedups. Solver engineering
has recently taken the line of making improvements at other stages of solv-
ing. As mentioned in the previous chapter, simplification techniques may
not only be applied within preprocessing but also in so—called inprocessing
in between searches |Bie09a, Bie09b]. Moreover, conflict analysis has been
further improved in different ways [ABH*08, HS09, PD10].

In this work, also published in [KK11a|, we are aiming for further im-
provements in propagation from a different angle. Our motivation is to
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increase the number of implications that follow from one decision. As shown
by Williams et al. [WGS03a|, many industrial SAT instances may only re-
quire a very small set of variables that are chosen as decision variables. The
difficulty is to find such a set of variables [Int03, DGS07, KKS08b]. How-
ever, an increase in the average number of implications that are caused by
one decision comes along with an even smaller set of variables that have to
be chosen as decision variables. Moreover, a smaller number of decisions and
a greater number of implications may reduce the dependency on felicitous
branching decisions.

The approach here focuses on clauses that are not unit under the par-
tial assignment 7 but may still be used to deduce further assignments by an
enhanced version of BCP. It might be the case that the set of unassigned
literals U-(C') of clause C' has a common implication \,. If so, A, can be
propagated even though C' is not unit. In this process, we utilise all binary
clauses of a formula to check whether some literals have common implica-
tions. Consider clause C' = (A1 V Ay V A3 V \4) and the partial assignment
7 = {1, A2}. Obviously, one of the two literals, A3 or A4, has to be assigned
in order to satisfy clause C'. If there are additional binary clauses, such as
C1 = (A3VXg),C2 = (M VAs5) and C3 = (A5V \g), any of the assignments \;
and Ao implies the assignment A\g by unit propagation. However, this may
happen after several other decisions. An improved version of BCP could
assign A¢ immediately.

In this chapter, we present two approaches to enhancing the widely ap-
plied unit propagation technique by the idea explained above. We propose
efficient ways to utilise more reasoning in the main component of current
SAT solvers, so as to improve the power of BCP. Following the concept of
algorithm engineering, the implementation of the first approach motivates
the cost—efficient second approach, even though quality decreases. The chap-
ter is organised as follows. In the next section, related work regarding the
utilisation of binary clauses is presented. Section 4.2 explains the idea of
enhanced propagation in more detail and presents two approaches on how
to realise such propagation. In Section 4.3, both approaches are evaluated.

4.1 Related work

The application of more advanced reasoning in SAT solving has been stud-
ied in several different contexts [GT93, Bac02b]. The so—called look-ahead
solvers [LA97, Heu08a, BHvYMWO09| aim to improve the quality of branching
decisions and thus to guide the solver’s search. One of the basic ideas is
to propagate both assignments of a variable v, before a decision on v, is
finally made. In doing so, further reductions may be applied to the formula
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[LA97, HMO04|. As described in Section 3.2.1, this idea can also be applied
in preprocessing to learn unit or binary clauses [Ber01]. Look-ahead solvers
are particularly successful for handmade and unsatisfiable random instances
[Sat11]. Our approach differs in this respect, and unit propagation itself is
extended rather than the decision process.

Recent work [ABH™08, PD10, HS09] improves on the quality of clause
learning. Pipatsrisawat and Darwiche focus on some particular missed im-
plications that are not caught by unit propagation [PD10]. Conflict analysis
is modified to learn some additional clauses in order to improve the quality
of subsequent propagation. Our approach aims to tackle the missed impli-
cations already at each propagation step.

Our extension of unit propagation is eminently based on the set of binary
clauses in a formula. The special treatment of binary clauses is studied in sev-
eral works [GT93, Bra0l, ZS02, Bac02a, BW03, GS05]. Bacchus introduces
the concept of hyper—binary resolution in combination with the computation
of the complete binary closure. Applying his approach after each decision at
each level of the search captures the implications generated by our approach.
However, this turns out to be too time consuming for today’s SAT problems.
See Section 3.3.1 for a more detailed description of hyper—binary resolution,
and Section 3.3.2 for an exhaustive and effective application of the technique.

The preprocessor 2-SIMPLIFY |Bra0Ol, Bra04| considers the binary impli-
cation graph! (BIG) for preprocessing. As well as using some techniques
such as the detection of equal variables, the method inspects non—binary
clauses to check whether the literals of a clause imply a common assign-
ment. This is based on the concept of hyper—resolution that goes back to
Robinson [Rob83| and constitutes a special case of hyper—binary resolution,
as presented by Bacchus et al. [Bac02a, BW03]. However, in 2-SIMPLIFY
the complete binary closure is created [Bra01|, whereas the implementations
proposed by Baccchus [Bac02a| and Biere [Bie09a| are more efficient.

4.2 Enhancing BCP

In this chapter, we aim to improve BCP in terms of the number of im-
plications that can be derived from one decision. This is contrary to one
common focus in the literature on how to improve the speed of unit propa-
gation [MMZ101, CHS09]. In particular, since the implementation of Chaff
[MMZ*01] and MiniSat [ES03], much effort has been spent to speed up
unit propagation. For many industrial SAT instances poor decisions dur-

!Note that the general term "implication graph" is ambiguous within different research
works in the area of SAT solving. The binary implication graph is not completely related
to the implication graph used in CDCL solving (see Section 2.2.4).
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ing CDCL can be compensated by very fast unit propagation. Likewise,
sophisticated reasoning is deferred in favour of simple but fast unit propaga-
tion. In this section, we introduce two ideas for extending classical BCP. An
evaluation and comparison of both implementations is given in Section 4.3.

4.2.1 General observations on clauses and implications

In classical unit propagation, any clause C; € F can imply the value for at
most one variable. As described in Section 2.2.2 this applies if all literals of
C; but one are falsified by a partial assignment 7 of the variables. However,
it may happen that C; does not have to become unit until the value of a
variable can be implied. This goes along with the fact that C; may directly
imply values for more than one variable. Consider the following example:
Given a clause C5 = (A1 VA2 VA3V A1V A5) and a partial assignment 7 such
that A\g, \s € 7. Apparently, unit propagation cannot be applied for clause
C5 since there is more than one literal unassigned in Cs. Let us also assume
there are the binary clauses shown in Figure 4.1 (a).

Ci = (Tlv )\6)

Cy = (E\/ A6) e 6
C3=(A3V A7)

Cy = ()\76\/ A7) o o e e

(a) (b)

Figure 4.1: Implication graph induced by binary clauses (BIG)

As already stated above, binary clauses constitute a special constraint
in CNF. Any binary clause can be understood as two implications. By ap-
plying the idea of unit propagation, one can claim that if one of the two
literals is false, the value of the other variable is implied. This constitutes
a BIG as used by Aspvall et al. [APT79] to solve 2-CNF formulae. Each
variable v, € V in the formula is represented by two vertices, p and p, in the
graph, one for the state of v, being true (p) and the second for the state of
vp being false (p). Each binary clause (A, V A;) induces two directed edges
(» — q),(@ — p) as shown in Figure 4.1 (b). With this, a BIG contains
complementary components that may be connected or not.

Consider clause C5 from above. We know that one of the three literals
A1, A9 and A3 has to fulfil C5 since the others are falsified under 7. Consid-
ering the BIG, all three literals (A1, A2 and A3) imply literal A7, since there
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is a chain of implications (a path) from all three vertices 1,2,3 to 7, and
thus (A1 V A2 V A3) —2 A7. Hence, the partial assignment 7 implies the
assignment \7, 7 220 A7, We generalise the idea in the following definition.

Definition 1. Let C* € F be a clause that is not satisfied by the partial
assignment T, so T.(C*) = 0. An unassigned literal \; ¢ T (also \; & T) is
called an inevitable assignment if U-(C*) =2 \;. In other words, each literal
in U-(C*) implies the assignment X\; by the propagation of binary clauses
€ Fo.

In this example, clause Cj is the triggering clause C* whose literals can be
split into the two sets F-(C*) and U,(C*). As defined in Section 2.1, F-(C*)
contains all literals that are falsified by the partial assignment 7 (A4, A5) and
U,(C*) contains those for which the variables are unassigned (A, A2, A3).
Clearly, a triggering clause C* can never contain a literal that is true under
7 and thus T,(C*) = 0. Moreover, [U,(C*)| > 1 since |U;(C*)| = 1 consti-
tutes the specification of common unit propagation. The clauses C*, where
an implication U, (C*) =2 A, can be deduced without any falsified liter-
als (F-(C*) = 0), can be detected by preprocessing techniques that utilise
hyper—resolution [Bra0l, BW03]|.

In the next two subsections (4.2.2 and 4.2.3), we present two ideas on how
to recognise the potential for inevitable implications more or less efficiently.
In Section 4.2.4, we describe how to incorporate such implications within a
CDCL SAT solver. The general course of actions for detecting an inevitable
implication during BCP can be summarised by the following four steps:

1. Restrict the set of all clauses F to a reasonable subset Fp C F, which
will be considered as triggering clauses (4.2.5).

2. Detect a clause C* € Fp in the formula that may be used to trigger
inevitable implications (Sections 4.2.2 and 4.2.3).

3. Determine at least one inevitable implication triggered by C*'. It may
be more than one implicant or none if the previous step allows for false
positives (4.2.4).

4. Apply the additional implication without elementary changes in the
data structure (4.2.4).

Detecting cases of inevitable implications allows for further implications
that are beyond unit propagation. However, BCP is a highly critical part in
CDCL solving and therefore requires fast execution.
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4.2.2 A matrix—based approach

To enhance BCP as described above, the algorithm has to determine if all
unassigned variables of a given clause have some common implication. This
is equal to a reachability problem in the BIG. Additional computation, e.g.
breadth—first search, during BCP is beyond question. Clearly, an adjacency
matrix of vertices (i.e. literals) could allow for very rapid computation.
However, industrial SAT problems can have up to 10 million variables, which
clearly makes a quadratic matrix infeasible. To cope with a high number
of literals by allowing random matrix access, we formulate the following

property:

Property 3. Given a directed acyclic graph G = (Vg, Eq), two vertices
a,b € Vg reach a common vertez iff a sink s € Vg and two paths (a — s)
and (b — s) exist. A sink is any vertex without outgoing edges.

We denote the set of all sinks in G as o C V. With Property 3, reach-
ability information is only required for pairs of vertices a, s € Vi where one
vertex is a sink (s € o) and the other is an inner vertex (a € Vg \ o). Recall
that a path (a — s) € G represents a binary implication \q —2 .

Although Property 3 is evident, in practice, this already drastically re-
duces the size of a reachability matrix (cf. Section 4.3). Moreover, for real—
world SAT problems, the BIG often decomposes into several (disconnected)
components 7; € V. Hence, the functionality of the adjacency matrix can
be achieved by holding several independent n; X s; matrices, with j being
the index, s; the number of sinks and n; the number of inner vertices of
the j-th component ;. We refer to the component in which a literal A,
is represented as 7y(\p). An example of a reachability matrix is given in
Figure 4.3 (a). Note that the indices of sinks and inner nodes are consis-
tently assigned within each component.

Property 3 requires an acyclic directed graph. The removal of strongly
connected components (SCCs) can be combined with equivalence reasoning.
Literals belonging to the same SCC are identical and can be replaced by one
representative literal as described by Brafman [Bra0l|. Thus by computing
SCCs, the algorithm detects equivalent literals and, furthermore, achieves
the requirements of Property 3. In general, two vertices i and i that rep-
resent the states true and false for variable v; € V in the formula F may
be contained in two different components. However, it is also possible that
i and i are contained in the same component v; for some variable v;. This
does not contradict to the fact that «; is not strongly connected. See Figure
4.2 for an example.
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Figure 4.2: Connected components in the BIG. The binary clauses
C1,Cy and (3 build a BIG where the two vertices of one variable
(representing true/ false) are placed in different components (black
solid edges). Adding clause Cy causes two more edges (red dashes)
that connect the two components. The resulting component is not
strongly connected and does not have any directly contradicting path,
such as \; implying A;.

First and foremost, the aim of the matrices is to predict whether or not
a set V/, C Vg of vertices reaches a common vertex. At first, it is not im-
portant to exactly know the sink that can be reached when starting from
vertices in V(5. Moreover, the matrices are only consulted to provide answers
into one direction (e.g. "Do some vertices have a common successor?") but
not the other way around ("Is a sink reached by some particular inner ver-
tices?"). This allows for further lossless compression of a reachability matrix
by Property 4.

Property 4. Let N(v) be the adjacent vertices of v € Vg. If any inner
verter v € Vg \ o reaches ezactly the same sinks as one of its successors
w € N(v) then v can adopt the reachability information of w. We call v an
epigone of w.

In particular, with Property 4, any epigone v of w can be reduced: if w
is a sink then v becomes a sink with the same sink ID as w. Otherwise, v
becomes an inner vertex sharing the same column as w in the reachability
matrix. In Figure 4.3 the compression of a reachability matrix is shown by
an example. In the uncompressed version (a) on the left, the inner vertex
(octagon) with ID 3 reaches only sink 1. As an epigone of sink 1, the inner
vertex 3 can be treated as equal and can thus be compressed as depicted in
Figure 4.3 (b).

This reduction is applied iteratively. The inner vertices 4 and 5 in the
uncompressed version are both epigones of the inner vertex with ID 2 and
can thus be treated as equal to 2 (see Figure 4.3 (b) — (c)). This detects
the inner vertex 7 as an epigone of 2, since all its neighbours are epigones of
2, and hence it only reaches the same sinks as the inner vertex 2 does.
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inner vertices inner

sinks|] | 12|34 |56 |7 sinks| | 1 | 2
1 X | X|x|x X 1 X

2| x|x X | x| x|x 2| x|x

3| x|x X | x| X|X 3| x|x

(a) uncompressed (d) compressed

Figure 4.3: Sink matrix of one component. Inner vertices are drawn
as orange octagons; sinks are drawn as light blue ellipses. In (d), the
complete compression of the matrix by reduction of epigone vertices
is given. Epigone vertices have transparent fill colours.
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The complete reduction is depicted in Figure 4.3 (d). Thus the com-
pressed reachability matrix reduces from seven to two columns (Figure 4.3).
The compression algorithm is a modified depth—first search procedure, start-
ing from the sinks up the DAG to its roots. It is outlined in Algorithm 4.1.

Algorithm 4.1: Create a compressed reachability matrix

Require Connected subgraph v of the (directed) BIG without
strongly connected (sub)components

Return Compressed reachability matrix M., for

Function compress ()

foreach v € V,, do sinkId(v) < innerId(v) < oo

4 P« {veV, : outdeg(v) = 0}

M, +0 | at most |P| rows and < |V,|—|P| columns
c+—1r+20 | index for columns and rows
7 foreach v € P do sinkId(v) < r; ++r

8 while P #V, do

9 v < choose one from {v € {V, \ P} : targets(v) C P}
10 column(v) < 0 | new empty matrix column
foreach w € targets(v) do
12 if sinkId(w) # oo then
| bit(column(v),sinkId(w)) 1
else
15 | column(v) < column(v) U column(w)
if only one bit k is set in column(v) then
17 L sinkId(v) < k | v is an epigone of sink k
else if 3 w € targets(v) : column(v) = column(w) then
19 L innerId(v) < innerId(w) | v is epigone of w
else
21 M, < M, U column(v) | append column(v) to M,
innerId(v) « ¢; ++c¢
23 | P+ PU{v}

return M,

The function compress listed in Algorithm 4.1 expects a connected sub-
component v of the BIG as input with V,, C Vi vertices and E, C Eq edges.
We assume v to be a directed acyclic graph, since equivalence reasoning has
replaced all SCCs. In line 4, the set P is initialised with all sinks of the
component (vertices with outdegree 0) and holds all vertices that have al-
ready been processed. The compressed matrix M, that will be returned has
one row for each sink and thus |P| rows in total. The number of columns
depends on the number of epigones found but is limited by the number of
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inner vertices |V,| — |P|. The sink IDs are assigned consecutively in line 7;
all other sink IDs are invalid (c0).

The main loop in line 8 handles all unprocessed vertices. An unprocessed
vertex v is chosen (line 9) such that all its adjacent target vertices are already
finished. Since 7 is connected and acyclic, there is always such a vertex un-
less P = V,. In line 10, a new empty column is created that may or may not
be appended to the resulting matrix M,. Subsequently, all adjacent target
vertices w of v are inspected. Where w is a sink or an epigone of a sink with
ID k, the k-th bit is set in the new column (line 12). Otherwise, if w is an
inner vertex the two columns are unified in line 15.

At this point, the compression checks are applied. If only one bit is set in
the new column, then v is initialised to be an epigone of w (line 17) and the
column is abolished. Note that at least one bit is set in column(v), since v is
not a sink itself. If column(v) is equal to some other column of a target vertex
w of v then v becomes an epigone of w and references column(w) (line 19).
If all columns of the matrix M, were always considered at this point, a pos-
sibly better compression of M., could be achieved at the expense of runtime.
However, checking the adjacent vertices of v can be incorporated efficiently
into the initialisation of column(v) in lines 12 and 15. In both cases, it can be
checked within the (union) operation whether column(v) is actually changed
or if v reaches the same sinks as w. Finally, if no compression is possible,
column(v) is appended to the matrix M, in line 21. In the end, vertex v is
marked to be processed in line 23.

In practice, the reachability matrices can further be compressed by omit-
ting leading and ending blank entries in each column. Two additional integers
can give the range for each column. We only apply this for a column if the
overhead of the additional integers does not exceed the saving of memory.

Utilising components and matrices

Considering the primal function of a reachability matrix, a given clause C
has to be investigated with respect to an inevitable implication. More pre-
cisely, C can be split into the two sets of literals F,(C') and U-(C) of false or
unassigned literals under the present partial assignment 7 respectively. The
pivotal question is whether C' may be used to trigger an implied assignment
that is beyond unit propagation.

At first stage, all literals in U, (C') have to belong to the same component.
Otherwise, there is no chance of finding a common implication that can be
reached by paths from all literals of U, (C'). Secondly, the reachability matrix
of the corresponding component can be utilised to check whether all literals
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in U;(C) reach at least one common sink. The worst case for this check may
require an almost complete comparison of [U;(C)| columns of the matrix.
However, if one literal in U, (C) is a sink itself, the worst case scenario reduces
to [U-(C)| bit operations. Due to the compression of matrices many literals
are marked as sinks in practice. Thus it is very likely to have one sink
within a large set U;(C). Note that the matrix may still be misleading, since
it may happen that all common successors are already assigned. This issue
is discussed in Section 4.2.4.

Maintenance of reachability matrices

Before the initialisation of the solver, the vertex of each literal \; is assigned
to its own component y(\;). Whenever a binary clause (\; V ;) is added, the

two components (\;) and (), of the related vertices are merged if they are
different. Analogously, the two complementary components v(\;) and ()
may be merged. A merge can be done in constant time by holding a first
and last vertex for each component. The affected components are marked as
being "dirty". Dirty components are updated periodically. Therefore, newly
created SCCs are removed as described above. Subsequently, a new matrix is
computed which requires one depth—first search execution on this component
as listed in Algorithm 4.1. Note that components may also be split when
vertices are removed from the graph. This applies whenever a unit clause
has been learnt. Out—of-date information about the reachability of variables
may generate incorrect information about inevitable implications. However,
this is caught by the computation for an explicit inevitable implicant as
described in Section 4.2.4.

4.2.3 A convenient alternative

The reachability matrix approach constitutes a feasible way to enhance the
widely used unit propagation. However, the maintenance of components
and their matrices requires considerable computational effort. Moreover,
the compression factor varies for different instances. In this subsection, we
present an alternative method that approximates the reachability matrix in
a practical sense but considerably outperforms the previous approach.

The basic idea is to cache reachability information on—the—fly while usual
unit propagation is performed. Whenever a variable v; is assigned a value
b € {true, false}, all unit implications that are caused by binary clauses are
propagated first. In this step, values are assigned to exactly those variables
v; whose corresponding vertices j or j are successors of i (if b = true) or i (if
b = false) in the BIG. Due to the way how edges are created in the BIG we
know that whenever there is a path from vertex i to j, there is also a path
from j to vertex i. Hence, when the unit propagation of binary clauses starts
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from ); (i.e. vertex i), we initialise a sink-tag with opposite polarity ;. For
each literal \; —2 Aj (i.e. vertex j) that is implied, we mark the opposite
vertex j with the current sink-tag. In doing so, all vertices in the graph that
have a path to vertex i are marked with the corresponding sink-tag to store
the implication )\7 20N

The idea of sink—tags extends the concept of binary dominators intro-
duced by Biere for lazy hyper—binary resolution |Bie09a, Bac02a, BWO03].
However, dominators are attached to variables instead of literals. See Sec-
tion 3.3.1 for a more detailed description of hyper—binary resolution.

Algorithm 4.2 outlines the procedure for propagating binary clauses im-
mediately after assigning a variable value during a search. Figure 4.4 illus-
trates this approach for one example. Assume the following binary clauses
are given: C7 = ()\73\/ )\1), Cy = ()\75\/ )\3), C3 = ()\76\/ )\5) and Cy = ()\77\/>\5)
When assigning literal A; (i.e. the value false to variable v1), the propaga-
tion of binary clauses implies the assignment A\; —= X3 by clause Cj. In
doing so, the solver gets to know that an assignment of A3 implies the assign-
ment A3 ELEN A1 due to the characteristic of binary clauses. This information
is detected on—the—fly during propagation and is stored as reachability in-
formation for literal A3 by setting its sink—tag to Aq.

With the assignment of A3, clause Cy asserts the assignment Az 2, s
and thereby detects a path from vertex 1 to vertex 5. At the same time,
the solver gets to know that there is also a path from vertex 5 to vertex
1 (via vertex 3), and thus detects the implication A5 220 N3 22\ since
propagation started with literal A\; and only binary clauses are considered
so far. Hence, literal \s stores the sink-tag A;. The assignments A\g and
A7 asserted by clauses C3 and C; detect the implications \g LN A1 and
A7 —25 A1 analogously. The sink—tags for A\g and A7 keep this information.

The left—-hand side of Figure 4.4 shows the propagation of binary clauses
using the clauses of the example above. The propagation detects a subtree of
the BIG. On the right—hand side of Figure 4.4, the reachability information
for the BIG is depicted. The propagation of A\; assigns sink-tag A to the
vertices shown in the right graph.

At a later point in solving, the question may arise whether literals A\g and
A7 have a common binary implication, i.e. whether vertices 6 and 7 have a
common successor in the BIG. The sink-tags would indicate the implications
6 22, A1 and A7 ELENSYE However, when asking about a common successor
of vertices 7 and 8, the sink—tag approach would miss the common successor
unless the sink-tags are changed by unit propagation starting from Ay or Ay.
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Clearly, the sink-tag approach only caches one possible target that can
be reached by a vertex. Furthermore, the target does not necessarily have
to be a real sink. It may be any vertex in the graph. As a consequence, this
approach does not require the removal or detection of SCCs. Note, that the
sink-tag A; for a literal ); is stored in the hope that it will be useful at a later
point in the search, when \; is unassigned by a different partial assignment.
However, it can additionally be used to detect hyper—binary resolution as
described by Biere [Bie09a| and explained in Section 3.3.1.

¢

(a) Unit propagation of binary clauses (b) Sink-tags set during BCP

Figure 4.4: The left graph shows the implications of normal unit
propagation of binary clauses when assigning literal A\;. During prop-
agation, the sink—tag A; can be set in the BIG for all literals that are
complementary to the literals reached by propagation.

Algorithm 4.2 formalises the procedure of assigning sink-tags during
propagation, as described above. Given a literal A\, to be assigned, the
function propagates all binary implications immediately. In line 6, the sink—
tag T is initialised to the complement of the propagated literal, Tp' As long
as there are literals to be propagated, the next literal A\, is dequeued in line
8. The complement of each propagated literal is assigned a possibly new
sink-tag value in line 10. This is because the implication A, SLEN Aq also
indicates the existence of the implication )‘Tz RLieN )\7, = T. This information
may be used at a later point in solving.

Each binary clause containing literal /\7q is considered for propagation in
line 11. If a conflict arises in line 12, the function returns an empty set and
the unit clause () can be learnt outside. If \; is unassigned (line 13), the
current binary clause asserts the assignment )\, and continues propagation.

In line 16, the non—empty set R of all propagated literals is returned.



78 Beyond Unit Propagation

Algorithm 4.2: Assignment of a variable and caching of sink-tags

Require Literal )\, that has to become true, partial assignment 7
Return A set of literals R that are assigned or ) if a conflict arises
Function assign (\,)

T TUN, | assign literal A,
Q<+ {\} | initialise queue
6 T+ Ny | initialise sink-tag
while @ # () do
8 Ag < Q.dequeue() | remove next element of ()
R — RUM\,; | resulting set of assigned literals
10 sinkTag()\;) « T | set sink-tag for )\,
11 foreach . : (A, V \) € F2 do
12 if \; € 7 then return () | conflicting
13 if A\ € 7 then
L T TUN assign literal A
Q<+ QUM
16 | return R | R#( contains at least )\,

Utilising sink—tags in BCP

Sink—tags can be utilised in a similar way to components and reachability
matrices. However, sink-tags represent and replace both components and
bits in a reachability matrix. We observe the following property:

Property 5. Whenever unit propagation is completed, the sink—tag A; of
an unassigned literal \; & T (and also \j & T) can never be falsified by the
current partial assignment 7. We have \; € T.

Proof. Assume the contrary, that A; € 7 and ); is a sink-tag for an unas-
signed literal A;. Since literal A; is unassigned, we have \; € 7 and \; & 7.
Due to the initialisation of sink-tags, there is a binary implication A; 2\,
and due to the nature of binary clauses, there is also an implication \; —2
)Tj. Thus 7 22 /\7 causes )\7 € 7 and contradicts the assumption. O

Note that a valid sink—tag \; of an unassigned literal may be true by the
partial assignment and thus A; € 7 is not contradictory.

To check whether a clause C' with a set of unassigned literals U-(C') may
trigger some inevitable implications, the sink—tags of the literals in U (C') are
consulted. If all literals in U;(C) have the same sink-tag \;, an inevitable
implication U,(C') ELCNDY may be found. We differentiate three approaches:
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Optimistic: The state of the sink-tag \; is not considered. If A; is
assigned in 7, the algorithm still applies a breadth—first search to find
common binary implications of the unassigned literals in U, (C).

Pessimistic: The breadth-first search (see Section 4.2.4) for common
binary implications of the unassigned literals is only applied if the
sink—tag A; is unassigned.

Lazy € pessimistic: If the sink—tag A; is unassigned, it is taken as
the only common implication of the unassigned literals in U;(C'). This
option may dismiss valuable information. On the other hand, there is
no need for an additional breadth—first search.

The effect of the different heuristic approaches is evaluated in Section 4.3.

4.2.4 Inevitable implications with CDCL

Identifying the possibility for an inevitable implication during SAT solving,
however, is an important part of allowing for an extension of common unit
propagation. When using components and reachability matrices and the
sink—tag approach, both approaches, may indicate an inevitable implication
that is not valid or useless at the current state of the solver. This may be
due to out—of-date information of components (see Section 4.2.2) or simply a
result of partial assignments that are not considered by the BIG. An example
is given in Table 4.5.

Partial assignment: T = A, A2, A3
Candidate clause for inevitable implication: C* = (AgV A5V A1V A2)
Binary clauses: C; = (A1V A3)
Cy = (E V Aﬁ)
C3 = (X6VA3)

Table 4.5: Inevitable implications as redundant clauses

Clause C* in Table 4.5 may be detected by any of the approaches de-
scribed here to trigger an inevitable implication. The partial assignment 7
splits C* into F-(C*) = A1, A2 and U, (C*) = Mg, A5. All literals in U (C*)
reach a common sink A3 in the BIG. However, v3 is already assigned the value
true. Thus the information about further implications is redundant. When-
ever the possibility for an inevitable implication is indicated for a particular
clause, an additional breadth-first search in the BIG is required to find
common non-redundant implications. Even for the pessimistic sink—tag ap-
proach where a non—redundant implication is already available, the breadth—
first search may be applied additionally. This is because the breadth—first
search often reveals several different inevitable implications at once. Only
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the lazy pessimistic heuristic omits the breadth—first search and one impli-
cation is detected for a triggering clause.

Once a non-redundant inevitable implication is known, it is desirable
to apply the enhanced propagation without elementary changes in the data
structures. Therefore a few resolution steps are applied to generate a new
clause which is unit under the current partial assignment 7 and hence al-
lows for normal unit propagation. The created clause may be treated as
temporary clause and may be removed by the next execution of the garbage
collector.

In order to clarify the idea, consider the clause C5 = (A1 VA2V A3V ALV A5)
from the example in Section 4.2.1, and the binary clauses C1 = (A1 V \g),
Co = A2V g), O3 =(A3V A7) and Cy = (A6 V A7) (see Figure 4.1). When
the method has detected that the partial assignment 7 with 7 = X5, A4 al-
lows for an inevitable implication of A7, an additional clause C{ is created
via resolution, as in hyper-resolution (see Section 3.3.1 and [Bac02al). The
resolution steps are analogous to the path in the implication graph. Resolv-
ing clauses C5 and Cy on variable v results in clause (Ag VA2 VA3V A4V As5).
Further resolutions with clauses Cy,C3 and C4 finally deduce clause Cf =
()\7 Y.V, )\5)

By construction, Cf contains at most one unassigned literal. However,
it may happen that C} is already fulfilled as described in Table 4.5. Of
course, this can be checked before the actual creation of C%. On the other
hand, according to Property 5, it can never happen that all literals in Cj
are falsified by 7 when C} is not created before common unit propagation
is completed. The following lemma formalises the realisation of inevitable
propagation.

Lemma 4.2.1. Given the partial assignment 7, if a clause C* triggers an
inevitable assignment \; € T, a new clause C* = (\; V F-(C*)) can be re-
solved. Clause C*' is unit under T and asserts the assignment \; by common
unit propagation.

Proof. By Definition 1, clause C* is not satisfied by 7, i.e. T.(C*) = (). Due
to the inevitable assignment \; with clause C*, for each literal \; € U-(C*),
the implication \; —=» X; holds. Thus, the binary clause C; = (\; U ;)
is implicitly given. Moreover, for each literal \; € U-(C*), clause C* can
be resolved with the implicit binary clause C;. This deduces clause c* =
(\i VF-(C*)). By definition, literal \; ¢ 7 is unassigned and we also have
i € 7 due to Property 5. Given that all literals in F.(C*) are falsified by
7, clause C*' is unit under the partial assignment 7 and thus asserts the

assignment \;. O
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With both approaches, it may happen that, given a clause C5 = (A VA2V
A3V A4V A5) and an assignment 7 with 7 = A, A5, the remaining literals share
one common implication. Unlike the example that uses the binary clauses
from Figure 4.1, consider the binary clauses C; = (A1 V Xg), Co = (A2 V Xg)
and Cg = (A V A3). Now the common implication of all unassigned literals
U,(C5) is equal to one of the literals in U-(C5), namely A3. Both literals A
and Ag imply A\3. With Lemma 4.2.1, the inevitable assignment A3 is realised
by deducing the additional clause C% = (A3 V A4 V As5). In this special case,
the deduced clause Cf subsumes the triggering clause C5 and therefore con-
stitutes a harder constraint than C5. Since C{ is a valid constraint, we can
simply remove the literals A1 and As from C5 and thus prune the search space.

Corollary 4.2.2. Given the partial assignment 7, if a clause C* triggers
an inevitable assignment \; and we have \; € U (C*), then all literals in

U (C*)\ {\i} can be removed from C*.

Corollary 4.2.2 follows from Lemma 4.2.1 and the fact that C* = (\; V
F-(C*)) subsumes C*, since \; € C* and obviously F(C*) C C*. The recog-
nition of this kind of subsumption comes without any extra computational
effort. Table 4.7 in the next section indicates that these subsumptions are
found quite frequently.

4.2.5 Putting it all together

In the previous sections of this chapter, it has been shown how different
components of enhancing unit propagation can be realised separately. In
this section, the single components are assembled in one approach. At first,
we discuss the remaining issue, namely how to choose clauses to be checked
for their ability to trigger an inevitable assignment.

Candidates for inevitable assignments

In general, new inevitable assignments may be possible whenever the par-
tial assignment 7 is changed by the solver. Hence, for a complete appli-
cation of enhanced propagation, any assignment or decision of a variable
vi < b (b € {true, false}) would entail a check of all clauses where v; is
contained with opposite polarity —b. Furthermore, this would require two
lists to be held for each variable with all clauses the variable occurs in. With
the learning of additional clauses in any CDCL solver, such lists tend to be-
come extremely long. Considering that the average length of learnt clauses
increases for long solver runs, the additional memory and the time overhead
to traverse such lists requires too many resources.

A convenient compromise is to use the data structure that is available in
a CDCL solver anyway. During normal BCP, each clause has two watched
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literals [MMZ101]. Whenever a literal ); is falsified, each clause C' where
A; is one of the watched literals is inspected to check whether it is unit un-
der 7. If, for a clause C' € F, another unassigned or true literal A\, € C
can be found, )\, takes over to watch C. Otherwise C' is unit under the cur-
rent assignment 7 and unit propagation applies, as described in Section 2.2.2.

At this point, we enhance normal unit propagation. For an inspected
clause C that is not yet fulfilled by the partial assignment 7, we check whether
the remaining unassigned literals € U;(C') belong to the same component, or
if the unassigned literals have the same sink-tag, depending on the underly-
ing approach (4.2.2, 4.2.3). For early detection of conflicts, unit propagation
is finished until those clauses are finally checked for triggering inevitable as-
signments.

Algorithm 4.3 outlines the interaction of the separate fragments. Unlike
usual unit propagation, there is an extra queue E for enhanced propagation
(line 5). Queue @ with literals to propagate is always handled before E (line
7). For the next literal A\, to be propagated, the list of clauses where )Tq is
one watched literal (line 9 et seq.) is traversed. For each inspected clause
C*, A, indicates the other watched literal (line 11). If clause C* is already
satisfied by A,, the algorithm continues with the next clause (line 12). If
there is another literal A\ in C* that is either true or still unassigned, A

becomes the new watched literal for C* in line 14.

In line 16, clause C* is tested to see whether it may be a candidate for
an inevitable assignment. First of all, C* must not be satisfied by 7, i.e.
T.(C*) = (. Depending on the implemented approach (matrix—based, as
described in Section 4.2.2, or based on sink-tags as in Section 4.2.3), it is
tested to see whether U,(C*) may have some common implication. If all
literals in U, (C*) seem to have a common sink, C* is put into F for a later
inspection.

If clause C* is unit under 7, literal ), is assigned in line 19 and enqueued
for propagation. If a conflict arises within the function assign, the resulting
set P is empty and the unit clause (\,) is returned as a conflicting clause in
the next line, in order to learn the unit clause (\,) outside. Note that if the
sink—tag approach is implemented, some sink—tags are updated within the
function assign, as described in Algorithm 4.2. As in standard BCP, if all
literals in the clause C* are falsified by 7 (line 21) a conflict has been found

and C* is returned.

If unit propagation is completed, Algorithm 4.3 checks for inevitable as-
signments. If queue F is not empty and the next clause C* in E is not yet
satisfied by 7 (line 22), then clause C* is inspected again. Note that even
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Algorithm 4.3: Enhanced propagation in CDCL
Require Partial assignment 7, literal A\ to be propagated
Return A conflicting clause for 7 or ) if propagation was successful
Function enhancedBCP (\;)

Q <+ {\s} | BCP queue
5 E+ 0 | candidate clauses for enhanced propagation
while Q # 0 or E # () do
7 while @ # () do
Ag ¢ Q.dequeue() | next literal to propagate
9 W; < watched0f()\,) | clauses with watched )\,
foreach C* € W5 do
11 A\p < otherWatched(C*, \,)
12 if A\, € 7 then break | consider next in Wy
if 3\, € U (C*)UT(C*) \ {\,} then
14 Wi+ WL uC* | link new watched
Wq — Wq\ c*
16 if C* may trigger an inevitable assignment then
| E«~ EUC* | Sections 4.2.2, 4.2.3
else if \, ¢ 7 then
19 P < assign ()\,) | assign literal
| if P # 0 then Q <+~ QU P else return (1))
21 else return C* | C* is conflict
22 if E£0AT,(C*)=0:C* + E.dequeue() then
23 S < common sinks of literals in U, (C*) | BFS or lazy
foreach )\; € S do
25 F + FU (N VF(CY)) | add new clause
26 if \; € U;(C*) then mark C* as subsumed
27 P < assign (\;) | assign literal

if P+ () then Q + QUP else return (\;)

return ()

though it may be ensured that T.(C*) = () before C* is enqueued into F in
line 16, a subsequent assignment may satisfy C* in the meantime. In line 23,
the common sinks of the unassigned literals in U, (C*) are computed. Except
for the lazy sink—tag heuristic where S contains only the sink—tag this is done
by applying a breadth—first search. Recall that the fast checks, which either
use the reachability matrix or sink—tags, have been applied in line 16 before
the clause was actually enqueued. As described in Section 4.2.4, for all in-
evitable implications, a new clause is C’ created (line 25). By default, C’ is
marked as redundant and can be removed by later garbage collection. If a
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newly generated clause C’ subsumes the original clause C*, C* is marked as
redundant in line 26. If C* is not already redundant, the subsuming clause
C’ has to become non-redundant to avoid losing constraints. The inevitable
implication \; is enqueued and assigned in line 27, analogous to line 19.

To realise inevitable implications, additional clauses are created, as de-
scribed in Section 4.2.4 and shown in line 25 of Algorithm 4.3. This is
done to allow for normal conflict analysis, where any implied assignment is
expected to have an asserting clause. To avoid the creation of additional
clauses, normal conflict analysis could also be adapted to allow for different
kinds of asserting clauses. Another approach could aim to create all possible
clauses in a preprocessing step, in order to catch all inevitable assignments.
However, this could cause the creation of several redundant clauses that are
never used for propagation. Recall that the clauses that have to be created
are not restricted in any way. In particular, a clause is not only added if the
resolvent is a binary clause, as applies in hyper—binary resolution.

4.3 Evaluation

The previous section describes an idea for how to enhance classical unit
propagation by the application of inevitable assignments. In Section 4.3.1, we
evaluate the two different approaches of using a matrix or sink—tags to detect
inevitable assignments during BCP. Afterwards, the different heuristics of the
sink—tag approach are examined in more detail.

4.3.1 Matrix versus sink—tag approach

The following comparison between the matrix approach and the sink-tag
approach is based on tests that were performed on about 500 benchmarks
of the SAT-Race 2008 and the industrial track of the SAT competitions
of 2007 and 2009 [Satll, Sat10]. Trivial instances that can be solved by
preprocessing were removed. The average number of variables per instance
is 115,500. The different solver versions are all based on the CDCL part of
our SAT solver SApperloT without preprocessing.

Qualitative improvement by inevitable implications

The concept of inevitable implications aims for the improvement of BCP.
Consequently, the extension of propagation should go along with an increased
number of implications that can be deduced from one decision. Figure 4.6
(a) compares the effect of enhanced propagation on the average number of
decisions that have to be made to solve an instance. The plot depicts four
different configurations: The leftmost bar represents the application of nor-
mal unit propagation within CDCL solving. On average, more than 950,000
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decisions are required to solve an instance. Using the matrix approach to
detect inevitable implications during BCP produces a much smaller average
number of required decisions to solve an instance, as illustrated by the sec-
ond bar. The application of the sink—tag approach also reduces the average
number of decisions compared to the application of pure unit propagation.
However, both the optimistic and the pessimistic sink-tag heuristic (the third
and fourth bars of Figure 4.6 (a)) require clearly more decisions on average
than the matrix approach. The different sink—tag heuristics are compared
in more detail in Section 4.3.2.
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Figure 4.6: The effect of unit propagation alone, the matrix ap-
proach, optimistic sink—tags and pessimistic sink—tags on decisions
and propagations

The plot in Figure 4.6 (b) illustrates the power of BCP in terms of the
average number of propagations that can be deduced by one decision. The
number of propagations includes both the number of unit propagations and
the number of inevitable implications. The matrix approach (second bar)
clearly exhibits the greatest number of propagations per decision when aver-
aging over all instances. The application of sink—tags (third and fourth bars)
shows an improvement over unit propagation (first bar) but is far behind the
matrix approach.

Table 4.7 compares different aspects of the matrix and sink-tag ap-
proaches. Moreover, we distinguish between the optimistic and the pes-
simistic heuristic of the sink—tag approach. The average and the maximal
values that are listed for each configuration and aspect consider all solved
instances.
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g max g max g ‘

matrix opt. sink—tags pess. sink—tags

max

inev. /dec. [%] 63 1582 34 1341 7

inevitable impl. || 135,780 | 2,788,834 | 81,902 | 1,782,459 | 25,981 | 1,275,854

226

binaries 16,816 235,042 9100 152,728 219
units 101 2722 147 4386 1

generated | BCP|

subsume %] 9.6 70.9 5 96.7 8.1

long || 118,862 | 2,788,834 | 72,654 | 1,755,513 | 25,761 | 1,275,854

6238
247

subsume 14,038 496,460 701 18,340 640 28,780

100

Table 4.7: Enhanced propagation and the creation of clauses

The first row indicates the number of inevitable implications that were de-
tected to solve an instance. The second row relates the number of inevitable
implications to the number of decisions needed to solve an instance. For
both aspects, the matrix approach clearly outperforms the sink—tag heuris-
tics. On average, an inevitable implication was detected for more than 63%
of the decisions. Recall that in all approaches, inevitable implications are
only applied when unit propagation has finished. Therefore, each detection
of an inevitable implication can be seen as a saved decision in a search.
The subsequent rows state the number of generated clauses needed to realise
the extension of BCP, as described in Section 4.2.4. Most created clauses
have more than two literals (long clauses in the third row). However, the
number of binary clauses created (fourth row) is not negligible. In Section
4.2.4, we point out that a clause that triggers an inevitable implication may
be subsumed by the generated clause. The last two rows of Table 4.7 in-
dicate the frequency of the creation of subsuming clauses. Remarkably, on
average, at least 5% of the generated clauses are detected as subsuming their
triggering clause. In the matrix approach, this applies to almost 10% of the
clauses on average.

For the matrix approach, there are some more interesting issues. For each
instance, we measured the biggest matrix that was created for a component.
On average, this biggest matrix required 870.64 MB without applying Prop-
erty 4. The application of Property 4 achieves a reduction to an average size
of 502.47 MB.

Comparing the runtime of both approaches

Even though the matrix approach clearly outperforms the sink—tag approach
in terms of quality, it has a drawback in the costly maintenance of its com-
ponents and matrices. The cactus plot in Figure 4.8 compares the runtime
of both approaches. Each plotted curve represents the performance of one
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Figure 4.8: Runtime comparison of four configurations

solver configuration. For each configuration, the solved instances are sorted
by their runtime in ascending order. Thus, = instances can be solved when
the runtime per instance is restricted to y seconds. Note that the plot zooms
in on the subset of about 500 instances that could be solved within the time
bound of 1200 seconds.

Given the same amount of time, the matrix approach (black curve) clearly
solves the least number of instances. Due to the cheaper computation of
sink—tags, the alternative approach performs much better. However, the
optimistic sink-tag heuristic (orange) cannot compete to standard CDCL
(blue). For the pessimistic heuristic (red), it pays to extend propagation
only when a valid common successor definitely exists (i.e. unassigned vari-
ables that have a common unassigned sink—tag A; (1; € 7) have at least
one common and valid implication )\;). It clearly solves more instances than
standard CDCL with pure unit propagation.

On average, the maintenance of a matrix required 989 depth—first search
computations. However, for some instances, the maintenance of the ma-
trix required between 40% and 80% of the total runtime. Even though the
improvement in the quality of BCP is clearly observable for the matrix ap-
proach, the sink—tag approach is more attractive when it comes to runtime.
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4.3.2 Heuristics of the sink—tag approach

The previous evaluation put its focus on the comparison between the matrix
and the sink-tag approach. In the following, we study the three different
heuristics of the sink—tag approach, optimistic, pessimistic, and lazy and
pessimistic (lazy for short). All tests are based on the set of 300 SAT bench-
marks from the SAT competition 2011 [Sat11].

Quality of different heuristics

To evaluate the quality of the different sink—tag heuristics, we analyse differ-
ent aspects of their application at different decision levels. This is motivated
by the fact that all heuristics consider the binary clauses of the formula.
The higher the decision level, the more variables assigned by the partial as-
signment 7 and the more binary clauses that are likely to be satisfied by 7.
Moreover, the application of a heuristic could easily be restricted to a certain
range of decision levels.
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Figure 4.9: Sink-tag heuristics at different decision levels

Figure 4.9 compares the application of the sink-tag heuristics at different
decision levels. Decision levels are grouped together, where the group size
increases for higher decision levels. Each heuristic is represented by a bar
for each group of decision levels. The y—axis indicates the number of clauses
whose inspection triggered at least one inevitable implication. If a clause
triggered several inevitable implications simultaneously (cf. Algorithm 4.3
from line 23), it is counted only once in this plot.
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It is clearly visible that the optimistic heuristic (orange bar) detects the
most clauses that trigger inevitable implications, independent of the depth
of the search. Moreover, all sink—tag heuristics detect inevitable implications
even at higher decision levels. An interesting observation is the difference
between the lazy and the pessimistic heuristics. For several decision levels,
the lazy heuristic exhibits a higher number than the pessimistic heuristic.
The difference between the heuristics reflect the costs of computing all in-
evitable implications for one triggering clause. To this end, the pessimistic
heuristic additionally applies a breadth—first search, which is skipped by the
lazy heuristic. In turn, the number of inspected clauses decreases compared
to the lazy heuristic due to the effort spent on the breadth—first search. The
effect is distinctly recognisable for higher decision levels.
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Figure 4.10: Sink-tag heuristics at different decision levels without
separate propagation of binary clauses

In Section 4.2.3, we describe how sink-tags are set during the propa-
gation of binary clauses. To enable sink—tags to be used for both, the de-
tection of inevitable implications and for lazy hyper—binary resolution, all
binary clauses are propagated first. This is required for the application of
lazy hyper—binary resolution |Bie09a]. However, for the pure application of
inevitable implications, this is not necessarily required, even though more
sink—tags may be set when all binary clauses are propagated first. Figure
4.10 is set out like Figure 4.9 and illustrates the detection of inevitable im-
plications without the separate propagation of binary clauses. Note that
the solver configurations depicted in Figure 4.9 propagate binary clauses
first but do not apply lazy hyper—binary resolution. Thus the comparison
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of Figures 4.10 and 4.9 illustrates the effect of propagating binary clauses
separately on the detection of inevitable implications. It is evident that, on
average, inevitable implications are detected more often at almost all levels.
The effect is surprisingly high, especially since the sink-tags are updated
more frequently when binary clauses are propagated first. The optimistic
heuristic improves considerably for the higher decision levels in particular.
Furthermore, the superiority of the lazy heuristic compared to the pessimistic
heuristic is observable at almost all decision levels.

Expenses for better quality

The detection of inevitable implications by the optimistic sink—tag heuristic
is clearly superior to the pessimistic and the lazy heuristics. However, its
application is also more costly in terms of superfluous computations. Fig-
ure 4.11 compares the success of the optimistic heuristic to the number of
superfluous computations. The plotted values are based on the solver con-
figuration that does not propagate binary clauses separately (represented by
the orange bar in Figure 4.10).
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Figure 4.11: Success and failures with optimistic sink-tags

Figure 4.11 uses the grouping of decision levels on the x—axis, as in Figure
4.10, but applies a different scale on the y—axis. The orange bar indicates
the number of successful inspections of a clause for which at least one in-
evitable implication was computed. It is averaged over all solved instances.
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The black bar indicates the number of expensive superfluous computations
per decision level. In particular, these are the cases where a breadth—first
search was applied but no inevitable implication was possible (i.e. S = ()
after the BFS in line 23 of Algorithm 4.3). Recall that this may only happen
for the optimistic heuristic. The pessimistic heuristic applies BFS only if the
sink—tag itself is unassigned and is thus known to be a common implication.
The maroon bar states the average number of cheaper superfluous computa-
tions. A clause that was enqueued as triggering clause during BCP is found
to be satisfied when unit propagation is completed (line 22 of Algorithm 4.3).
This case may occur for all sink—tag heuristics but is much less costly than
a superfluous BFS computation.

Figure 4.11 shows that cheap failures happen most frequently at most
decision levels. However, all sink—tag heuristics have to cope with this over-
head, since inevitable implications are not applied before unit propagation
is completed. Certainly, the expensive failures are much more critical. The
plot indicates that these superfluous computations occur almost as often as
the cheap failures. The number of cases where the breadth—first search is
successful (orange bar) is considerably smaller. For many levels, more than
four out of five BFS computations are superfluous. It is surprising that the
failure rate is particularly high at low decision levels. Recall that a successful
BFS computation may, however, compute several inevitable implications.
Figure 4.10 illustrates that the optimistic heuristic detects more than double
the number of inevitable implications than the other heuristics at many deci-
sion levels. However, it has to compensate for the high number of expensive
superfluous computations to be convincing in terms of runtime.

Inevitable implications and generated clauses

In the previous analyses, each successful inspection of a clause is counted
only once. However, the optimistic and the pessimistic sink—tag heuristics
may find several inevitable implications for one triggering clause. On av-
erage, the optimistic sink—tag heuristic computes 10.7 and the pessimistic
sink—tag heuristic computes seven inevitable implications for one triggering
clause. Obviously, the lazy heuristic applies exactly one inevitable implica-
tion per triggering clause.

Figure 4.12 considers the application of inevitable implications and the
corresponding generation of clauses to realise these implications, as described
in Section 4.2.4. As in Figure 4.10, each sink—tag heuristic is represented by
one bar. The values are based on the same solver configurations as used in
Figure 4.10, where binary clauses are not propagated separately. The z—axis
groups different sizes of clauses. A bar at x with a height of y indicates that,
on average, y clauses with size x were created by the corresponding heuristic.
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Figure 4.12: Average number and size of clauses to realise inevitable
implications

As indicated by the previous analyses, the optimistic sink—tag heuris-
tic detects most clauses that trigger at least one inevitable implication. As
Figure 4.12 illustrates, it also deduces the greatest number of inevitable im-
plications and thus creates the most extra clauses. It is observable that
remarkably many long clauses are created, especially compared to the lazy
heuristic. On the one hand, the importance of a clause can rarely be mea-
sured solely by its number of literals. On the other hand, creating a high
number of long clauses may harm the solver in terms of resource require-
ments. The clearly observable differences between the pessimistic and the
lazy heuristics reflect the number of inevitable implications that are applied
for one triggering clause by the pessimistic heuristic.

Enhanced propagation

The detection of inevitable implications may increase the average number
of implications that can be deduced by one decision. In Section 4.3.1, we
studied the effect of the matrix approach and the sink—tag approach on the
average number of propagations per decision. Figure 4.13 analyses the effect
for different configurations and sink—tag heuristics.

The plot is divided into two parts to allow for different scales on the y—axis,
which indicates the number of implications per decision. Each solver config-
uration is represented by one curve. A point (z,y) in the plot states that,
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for z instances, at least y implications can be deduced by one decision. To
make the differences visible, the plots zoom in on the first 80 of 300 instances.

Figure 4.13 distinguishes between six different solver configurations. The
black and the blue curves represent the pure application of unit propagation
in CDCL. In the latter configuration (blue), binary clauses are propagated
separately before longer clauses are considered for unit propagation. The
next three configurations (maroon, red and orange) represent the three sink—
tag heuristics (optimistic, pessimistic and lazy) without the separate propa-
gation of binary clauses. The last configuration (purple) represents the lazy
sink—tag heuristic where binary clauses are propagated separately.
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Figure 4.13: Average number of propagations per decision for dif-
ferent configurations and sink-tag heuristics

Both configurations that apply the lazy sink-tag heuristic indicate a high
number of propagations per decision. However, the separate propagation of
binary clauses exhibits comparably small values for most of the first 25 in-
stances but improves for the later instances (purple). The pure application of
unit propagation rarely produces the most propagations per decision, though
the optimistic and the pessimistic sink—tag heuristics are often worse.

The plots illustrate that there is no configuration that is superior to all other
configurations on the entire benchmark set. However, differences in the plots
are not negligible since, on average, they apply for each decision during a
search. At some points, the best configuration deduces 200 more implications
per decision than the worst configuration at that point. In particular, the
advantage of the lazy heuristic over the pessimistic heuristic has to be con-
sidered. Even though the latter deduces clearly more inevitable implications
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(cf. Figure 4.12), the lazy heuristic detects more clauses that trigger an in-
evitable implication (cf. Figure 4.10). After all, the lazy heuristic seems to
be more powerful due to its faster application.

Runtime

We finally compare the runtime for the application of the different sink—tag
heuristics. Figure 4.14 depicts a cactus plot of the same solver configurations
that are used in Figure 4.13. The plot omits the instances that have not been
solved within a timeout of 8000 seconds.

We tested several different configurations for the three sink—tag heuristics. In
particular, we restricted the application of the sink—tag heuristics to certain
decision levels. As mentioned at the beginning, all solver configurations do
not apply additional inprocessing techniques or special optimisation, in order
to focus on the presented techniques themselves and to keep the number of
side—effects low.
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Figure 4.14: Runtime of different heuristics

Overall, the lazy sink—tag heuristics clearly perform best. As Figure
4.14 indicates, the final success is independent of whether binary clauses are
propagated separately or not. It is observable that the application of the
lazy sink—tag heuristic can clearly improve solving. The pure application of
unit propagation (black and blue curves) solves fewer instances for almost all
time bounds. Ultimately, the lazy heuristic solves six more instances when
each solver is allowed to run for 8000 seconds per instance.
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4.4 Summary

Boolean constraint propagation is one of the most critical parts in modern
SAT solvers. BCP is equal to unit propagation for almost all state—of-the—
art conflict—driven SAT solvers that focus on industrial SAT instances. Most
of the runtime for solving an instance is spent on unit propagation.

In this chapter, we proposed an enhancement of classical unit propagation.
Unlike unit propagation, a clause may imply an assignment of a variable
even though it does not have to be unit under the partial assignment 7. We
call an assignment inevitable if all unassigned literals of a clause, which is
not satisfied under 7, eventually imply that assignment.

To detect some inevitable implications, we considered the set of binary
clauses of a formula. In this chapter, we presented two different approaches
for detecting inevitable implications. Both approaches were explained in de-
tail and were evaluated in Section 4.3. The first approach uses a compressed
reachability matrix to detect inevitable implications. It is more thorough
than the second approach that stores so—called sink—tags during the propa-
gation of binary clauses. These sink—tags can then be used at a later point
in search to detect inevitable implications.

The practical evaluation has shown that the first approach is clearly bet-

ter in terms of quality whilst the latter approach is superior in terms of
runtime and resource requirements.
We proposed three different heuristics for the sink—tag approach and anal-
ysed their implementations in greater detail. Ultimately, the most superfi-
cial heuristic, which we call the lazy sink-tag heuristic, turned out to be the
most efficient. Its application clearly improves on the pure application of
unit propagation.

The concept of inevitable implications is revisited in Chapter 8, where
we conclude the work on the enhancement of unit propagation and give some
directions for future research.






Chapter

SAT Solving with Reference Points

Conflict—driven SAT solving has proven to be very successful on a wide range
of benchmarks. In particular, instances that originate from real-world appli-
cations which are modelled as SAT problems are primarily tackled by CDCL
solvers (Section 2.2). Many problems, ranging from hardware and software
verification [Vel02, IYG108], planning [KS92] and automotive product con-
figuration [KS00| to haplotype inference in bioinformatics [LMS06] use a
state—of—the—art CDCL solver as back—end technology.

Due to the success of CDCL solvers within these areas and the continuous
improvements in CDCL implementations [Sat11], a smaller portion of SAT
research addresses the question whether a different solving technique can
beat CDCL in its main discipline. As already pointed out at the beginning of
Chapter 3, small modifications of CDCL are often far more effective in prac-
tice than complicated and costly changes to the conflict—driven approach.
However, there are approaches that motivate more in—depth reasoning to
guide SAT solver searches. Certainly, more reasoning often requires more
information and comes along with more complex data structures. In many
cases, this may cause strong concepts to be inapplicable in practice.

In contrast to the predominant CDCL technique, Goldberg suggested a
new SAT solving approach [Gol08a, GolO8b| that operates on complete as-
signments of the variables of a CNF formula. Unlike conflict—driven solving,
decisions for branching are based on the set of clauses that are falsified by
the assignment. The algorithm is therefore called Decision Making with a
Reference Point (DMRP). The concept of DMRP connects some aspects of
local search heuristics with branching and backtracking searches.

Using a complete assignment — a so—called reference point — for deci-
sion making demands more information during the search and hence involves
the maintenance of more complex data structures. Therefore the DMRP ap-
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proach has not managed to match state—of-the—art SAT solvers in industrial
applications. In [Kot10a], the DMRP algorithm is analysed from a practical
point of view, and we present an implementation that utilises a suitable data
structure to realise the DMRP approach in practice. The effect and quality
of decisions is comparable to CDCL solving. Moreover, we show how DMRP
can be combined with CDCL solving to compete with the performance of
state—of-the—art solvers and even improve on some families of industrial in-
stances.

This chapter is organised as follows: In Section 5.1, we describe previous
work in the domain of reference points and DMRP solving. Section 5.2 ex-
amines the DMRP approach from a practical point of view and we present
a competitive implementation for this approach. In Section 5.3, we com-
bine CDCL and DMRP to create a new hybrid approach. An experimental
evaluation is presented in Section 5.4.

5.1 Related Work

In this chapter, two different SAT solving approaches are used. The state—
of-the—art conflict-driven solving approach (CDCL) and the more recent
DMRP approach that operates on complete assignments.

CDCL is based on the GRASP algorithm [MSS99|, which extends the
original DPLL branch—and-bound procedure [DP60, DLL62| by the idea
of learning from conflicting assignments. Moreover, conflicts are analysed to
jump over parts of the search space that would cause further conflicts. There
are several improvements to the original algorithm. In particular, the two
watched literals scheme and the VSIDS (see Section 2.2.5) variable selection
heuristic [MMZ101] allow for a fast execution of unit propagation, since the
maintenance of the required data structure can be implemented efficiently.
For a detailed description of conflict—driven solving, we refer the reader to
Section 2.2.

Complete assignments

Goldberg has analysed the properties and use of complete variable assign-
ments in several works. A complete assignment to the variables of a formula
F is called a point and is referred to as P throughout this chapter.
Goldberg introduces the notion of stable point sets [Gol02]. In this context,
the neighbourhood of a point is considered. This is done with the aim of
restricting the number of points that have to be inspected in order to find a
model for F or to prove unsatisfiability.
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The neighbourhood of a point P is related to clauses that are falsified
by P. In order to do so, the set of all possible points € {false,true}|v| of
a formula F is divided into the set of points S that constitute a model for
F and the remaining points Ur that falsify at least one clause of F, such
that Sy U Ur = {false,true}V! and Sz N Ur = 0. Consider a clause Cp
that is falsified by P € Ur , i.e. none of the literals of Cp is contained
in P. The 1-neighbourhood of P defines a set of points 1Nb(P,Cp) with
respect to clause C'p. A point P’ is in the 1-neighbourhood 1Nb(P,Cp) of
P if P and P’ differ in exactly one variable value and Cp is satisfied by
P’. If point P’ satisfies all clauses of F, then P’ € S constitutes a model
for F. Otherwise, there is at least one clause Cps that is falsified by P’ € Ur.

To generate a completed set of points, the neighbourhood relationship is
extended further. A transport function g : Ur — F maps each point P € Ur
to one particular clause C'p that is falsified by the point P. The neighbour-
hood N (Py) of a point Py € Ur with respect to the transport function g can
now be created transitively. For each point, P; € N(Pp) the 1-neighbourhood
of P; with respect to clause g(P;), INb(P;, g(P;)), is merged into N(Py).
More formally, the set of points N(Pp) is referred to as being stable with
respect to the transport function g if INb(P;, g(Pi)) € N(Po) ¥V P; € N(Po)
and if N(Py) C Ugr.

A crucial proposition in [Gol02] is that the existence of a stable point set
of formula F proves the unsatisfiability of F. By exploring the neighbour-
hood of a chosen point, either a model is found or a stable set of points is
constituted, which, in turn proves unsatisfiability. Note that we have only
roughly outlined the basic idea here, with a modified notation to some ex-
tent, and we refer the reader to the original work [Gol02, Gol05] for a detailed
description.

Decision making with a reference point

The DMRP approach extends the idea of complete assignments. A set of
different points is inspected by a branching algorithm. When using a com-
plete assignment to guide the search for a satisfying model of the formula F,
the complete assignment is called a reference point. The DMRP approach
and some previous ideas have been proposed by Goldberg in several works
|Gol06, Gol08a, Gol08b|. Even though DMRP uses BCP with backtracking
and learning from conflicting assignments, it is not a simple variant of CDCL.
A crucial difference from CDCL solvers is the ubiquitous existence and use of
a reference point. The algorithm aims to modify the current reference point
P to P’ in order to satisfy a clause under consideration. Furthermore, it
is important that all clauses satisfied by P remain satisfied by the modified
reference point P’.
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Algorithm 5.1: Outline of the DMRP approach
Require Formula F in CNF, a reference point P and any two
timeout criteria 77 and T5
Return A reference point that satisfies F, UnSat or Unknown.
Function solveDMRP (F,P,T1,T5)

4 M+ {CeF : C falsified by P}

while =77 do

if M =0 then return P

Cy < remove any clause from M

P’ + dmrpTryModifyPoint(F \ M, Cy, P, T5)

if P/ = UnSat then

L return UnSat

11 else if P’ = Unknown then

L M+~ MU{Cp} | try another clause

© w0 N o

13 else
P+ P! | adapt reference point
M+ {C e F : C falsified by P}

L return Unknown

Algorithm 5.1 gives an overview of the DMRP search, though our nota-
tion varies from the original notation of Goldberg [Gol08a|. In line 4, the
set of clauses M that are falsified by the given point is initialised. The algo-
rithm searches for a modification of the point that satisfies all clauses of F. If
such a point is found within the given time, it is returned as a model in line 6.

In line 7, a clause Cj is chosen from the set of currently falsified clauses
M. In doing so, Cy becomes the basis for the next search. One invocation in
line 8 of the DMRP subsolver (listed in Algorithm 5.2) considers the subfor-
mula F \ M. It aims to find a modified reference point P’ that satisfies all
clauses in the subformula F \ M together with Cj. It may happen that the
empty clause is learnt (line 9) or that the search within the DMRP subsolver
times out (line 11). The latter case causes the surrounding algorithm to call
the DMRP subsolver with another falsified clause in the next pass of the loop.

Note that a modified reference point P’ may have an arbitrary Hamming
distance to the previous point P. However, the stepwise modification of P
within the function dmrpTryModifyPoint considers different points that dif-
fer only in one variable assignment between two consecutive steps. If a point
P’ is found by the DMRP subsolver, P is replaced (in line 13) and set M is
adapted accordingly.



5.1. Related Work 101

Algorithm 5.2: Subroutine to search for a better reference point
Require Subformula F, a clause C that shall be satisfied by a
modification of the current point P, and a timeout criteria T’
Return A modification of P that satisfies F U C' , or UnSat if the
empty clause is learnt, or Unknown if 7" is exceeded
Function dmrpTryModifyPoint (F,C,P,T)

4 P+ P, D<«+{C}
while =T do
6 if D = () then return P, | valid modification of P
7 C <« choose any clause from D
8 Ag < choose flip candidate A\, € C | with restriction
9 < res, Py >4 bcpWithPoint(F, Ay, Pt)
while res = Conflict do

11 Ima < analyseConflict(F,res)

if Ima = () then return UnSat
13 P, < backtrackResetPoint(F,lma)
14 < res, Py >« learnAndPropagate(F,lma, P;)
15 | D+ {CeF : C falsified by P;}

L return Unknown

Algorithm 5.2 constitutes the elementary part of the DMRP approach.
A given reference point has to be modified to satisfy the given set of clauses
F U C. Different points are explored by selecting one literal of the current
point to be flipped. This has quite some similarity to local search approaches.
However, it is crucial that the search for the modified point is applied in such
a way that the algorithm may eventually detect that the given set of clauses
cannot be satisfied. On the contrary, this does not apply in common local
search algorithms.

The search is organised in a branching procedure that allows for back-
tracking to former states. This is realised by using a trail where different
temporarily modified versions of points P; are implicitly stored. The stack
D holds all clauses of FUC that are falsified by the current temporary point
Py (line 4). If a temporary point Py satisfies all clauses in FUC), it is a valid
new point and is returned in line 6. Otherwise, a clause C that is falsified
by the temporary point P; is chosen by a heuristic in line 7. Based on this
clause C, a literal \; € C'is selected to be flipped within the next temporary
point in line 8. A proposed heuristic chooses )\, from among the literals
in C, such that the assignment P; \ {A\;} U {\;} (where the value of v, is
flipped) satisfies a maximal number of clauses in D. A literal A\, € C' is only
considered for flipping if it has not been already flipped within the current
trail. This avoids arbitrary flipping of variable values back and forth, and
will be explained in more detail in the next section.
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In line 9, the consequences of changing the value of variable v, are prop-
agated. This may imply the modification of further variable values. If a
conflict arises during propagation, it is analysed in line 11 and a lemma Ima
is created. If the empty clause is learnt, it is not possible to modify P to sat-
isfy all given clauses. Otherwise, the lemma is used to backtrack to a former
point in search (line 13). This resets the temporary point P; to a previous
state, which also implicitly resets the trail. The lemma is finally added to F
in line 14 and the consequences are propagated. Finally, in line 15, the stack
D is adapted according to the new temporary point P;. Different aspects of
the algorithm and implementation details are handled in the next section.

Boundary points

The concept of boundary points was also introduced by Goldberg [Gol09]
and analyses another perspective of points and the ability to prove unsatis-
fiability by the use of point sets. Goldberg and Manolios suggest a template
procedure for using boundary points in SAT solving [GM10|. As in DMRP,
for a given point P, we consider the set of clauses Mp C F that are falsified
by P. The clause set Mp # 0 is called a A\;—boundary point if there is a
literal A; that is contained in every clause of Mp.

If there is such a \;—boundary point for point P then obviously P contains
literal \;. Moreover, the modified point P’ = P\ A\; U \; that flips the value
for variable v; satisfies all clauses in Mp. Furthermore, consider the set of
clauses Mps that are falsified by the new point P’. If Mp/ is empty, a model
of F is found. Otherwise, Mps constitutes a \;~boundary point, since we
have Mp N Mp = () and thus )\; is contained in every clause of Mp/. With
this, a A;,—boundary point is either one flip (of variable v;) away from a model
of the formula or it has a so—called twin boundary point. This observation
shows a way of eliminating boundary points.

For the following, we assume formula F to be unsatisfiable. Consider a

point P with a A\;~boundary point and its twin, a \;~boundary point for P’.
The sets Mp N Mp: = @ are disjoint and non—empty. Choosing one clause
from each set C € Mp and C’' € Mp: allows for a resolution of C' and C’
on variable v;. The resolvent is neither contained in Mp nor in Mp/, and
thus eliminates both points.
It can be further proven that adding the resolvents of a resolution proof even-
tually eliminates all boundary points. Moreover, if an unsatisfiable formula
F has a A;—boundary point, then any resolution proof (that F is unsatisfi-
able) has a resolution on variable v; [Gol09|. Since the main focus of this
chapter is on DMRP solving, we do not go deeper into the details of boundary
point theory.
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5.2 A closer look at DMRP

This section analyses the DMRP approach, especially the search routine
listed in Algorithm 5.2, from a practical point of view. A crucial part ad-
dresses the fact that branching decisions are based on the set of clauses
that are falsified by a current point P;. It requires the solver to know this
set of clauses. This could be realised analogously to the implementation
of local search approaches [SLM92, Fuk04] where the solver keeps track of
clauses that change their state from satisfied to falsified and wice versa,
whenever the value of a variable changes. However, for any variable v, this
requires the solver to know all clauses where literal \; (or ;) occurs. Since
the introduction of the two watched literals scheme [MMZ*01], most CDCL
solvers do not maintain complete occurrence lists of variables or literals.

In this section, we present a data structure that allows for a fast computa-
tion of the most frequently required information in the DMRP approach by
simultaneously avoiding the maintenance of complete occurrence lists.

5.2.1 Different states of variables

In CDCL solvers, each variable v, € V can actually have three values:
val(vg) € {true, false, unknown}. In general, any variable whose value
is known has either been chosen as decision variable or its value is implied
by BCP. To undo decisions and their implications both types of assignments
(decisions and implications) are placed on a stack (often called a trail) in the
order they are assigned [ES03, BieO8b].

In the DMRP algorithm, we introduce two different kinds of values ex-

pressed by the functions pval and tval. The DMRP algorithm maintains a
reference point P which is an assignment of all the variables in the formula.
Hence, for any variable v, in the formula, the reference point P either con-
tains A, (v, = true) or its negation, A\, (v, = false). For a variable v,
we refer to its value in P as pval(vy) € {true, false}. The second kind of
value, tval(vy), is used to state a temporary modification of pval(vy). The
default of tval(v,) € {true, false,ref} is ref, which indicates that the cor-
responding variable is not affected by the current temporary modification of
the reference point P;, and hence the value given by pval(v,) is valid. During
the search for a modification of P; to P; (Algorithm 5.2) that reduces the
set of falsified clauses M to M’ C M, the temporary value tval(vy) # ref
hides pval(vy) for any variable v.
We use similar shortcuts as used for partial assignments (see Section 2.1).
For any variable v,, we say that pval(\,) is true if pval(vy) = true and
pval(N,) is true if pval(v,) = false, and analogously for tval(v,). More-
over, we have tval(\;) = ref iff tval(v,) = ref. Hence, we have A\, € P; iff
tval(Ng) is true, or tval(Ag) = ref and pval(N,;) = true.
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5.2.2 Clauses satisfied by the reference point

In addition to standard SAT solving, the algorithm has to maintain a ref-
erence point P. Obviously, if all clauses in F are satisfied by the reference
point P, the algorithm has found a model for the formula. Hence, for the
remainder of this section, we assume the set of clauses M, which contains
all clauses falsified by P, to be non—empty.

After some initialisation of P, the set M can be computed by simply
traversing the set of all clauses F. However, while the algorithm tries to
modify P in order to satisfy more clauses of M, we have to keep track of
the clauses in F \ M that become temporarily falsified by a temporarily
modified reference point P;. These clauses are put onto a stack D, which
is described further below. The first matter is how to compute the clauses
that are falsified by a modification of the reference point.

Similar to the concept of watched literals [MMZT01], for each clause C
in F\ M, we choose one literal A, € C,\; € P; to take responsibility for
C regarding its satisfiability by the current point P;. By definition, for any
clause in F \ M, at least one such literal A, € C has to exist with A\, € P;.
We refer to the set of clauses for which a literal \; is responsible as R(),).
Let us assume that literal A\, € P; is not temporarily modified. Thus, we
have tval(vy) = ref and pval(vy) = true. If the value of variable v, is
flipped to modify P; to P}, tval(v,) becomes false to indicate A, € P;. This
requires all clauses in R(),) to be traversed. For each clause C' € R()\;), a
new literal from the modified reference point P; has to be found that takes
responsibility for C. Note that, in addition to the responsibilities regarding
the reference point, there are also two literals per clause that watch this
clause in the sense of the usual two watched literals scheme [MMZ*01]. This
is necessary to notice whenever a temporary modification (tval) generates a
unit clause or completely falsifies a clause C', such that no further decisions
to modify P, can satisfy C. Let the set of clauses that are watched by a
literal \; be W (). We examine the different cases in more detail below.

The complete procedure of assigning a temporary value to a variable is
outlined in Algorithm 5.3. The following explanation references the respec-
tive parts of Algorithm 5.3. Whenever the value of a variable is changed
while searching for a modified reference point P; (tval is changed), we have
to take care of both W(\,) and R(),) of the corresponding literal A, that
became false by tval (i.e. tval()\;) became true). When examining W (\,)
(line 4), the usual four cases as in CDCL may happen for any affected clause
C that is watched by )\, and some other literal \,, € C. For these cases,

only the values of tval play a role:
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W.1

W.2

C is already satisfied by the appropriate temporary assignment of the
other watched literal \,, (line 6).

Another literal A\; € {C \ A,} with tval(\;) # false can watch C
(line 7). Note that this step does not consider whether C' is satisfied
by the point P;. Assume that C is falsified by P;. If at least two
literals in C' are not temporarily modified, a later decision on C' could
then be made to satisfy C' by another modification of Py.

All other literals in {C'\ A\, } are falsified with respect to P;. Hence,
clause C' is unit regarding the temporary modifications by tval, and
tval(\y) has to be set to true to satisfy C' (line 11).

If, in the second case above, tval(\,) is already set to false, a conflict-
ing assignment is generated and the algorithm jumps back to resolve
the conflict (line 10).

In addition, the DMRP algorithm has to detect the clauses that are no
longer satisfied by the modified point P;. Each clause C of R()\;) for a literal
Ag whose value tval(v,) changes has to be inspected. The following update
is done after the list W (\,) has been examined successfully.

R.1

R.2

R.3

If tval(vy) equals pval(vy), nothing has to be done. This case may
apply when tval()\g) is implied by unit propagation, as in case W.3
above (line 13).

tval(vy) differs from pval(vy) and another literal in C' can be found to
take responsibility for C'. This might be any literal A\; € C with A; €
P/. This applies if tval(\;) = true (R.2.1), or if tval()\;) = ref and
pval(Aj) = true (R.2.2). In the latter case (from line 17), C'is removed
from R(\4) and put into R(\;), since A; can take responsibility for C'
even if the temporary modification is undone.

If, in the first case (line 15), tval(\;) = true, C remains in R(\,) since
tval();) was obviously assigned before the current change in the value
of vy in the reference point. C' is satisfied by the modified point Py
unless the temporary assignment of v; (and v4) is undone.

tval(vg) differs from pval(v,) but no other literal \; € C satisfies C
under the current temporary point P;. In that case, C' is put on the
stack D, which keeps track of all clauses that are falsified by the cur-
rent temporary reference point (line 20). Note that since W()\,) is
examined first, there are at least two literals A\;, \; € C for which
tval(N;) = tval(A;) = ref and pval(X;) = pval(N;) = false. If this
does not hold, one of the cases W.3, W.4 or R.2 will apply. At a later
point in the search, Algorithm 5.2 may choose one of these literals in
line 8 as the basis for a decision.
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Algorithm 5.3: Update data structure
Require A variable v, € V where tval(v,) has been changed from ref

to b € {true, false}. W.l.o.g. we assume that tval()\,) = true.
Return a conflicting clause C or 0K if no conflicts arise

Function onChangeOfVariableTVal (\,)

4 forall C' € W(\;) do
Aw ¢ otherWatched(C, \y)
if tval(\y) = true then continue | w.1
if 3\ € C: tval(\j) # false N Xj # X\, then
W(A;) < W) u{C} | link new watched
W(Ag) < W(A) \{C} | W.2
10 else if tval(\y) = false then return C | W.4
11 | else tval(\y) < true | W.3
13 if tval(vy) = pval(v,) then return 0K | R.1
forall C' € R()\;) do
15 if 3 \; € C :tval(\;) = true then
L continue | R.2.1
17 else if 3 \; € C: tval(\;) =ref Apval()j) = true then
R(Aq) < R(A) \ {C}
R()\j) < R(\j) U{C} | R.2.2
20 | else push C'at D | R.3
L return OK

Note that this implementation allows for backtracking without any up-

dates of the sets R();) of any literal A\;. The responsibility list R()\;) has
to be examined only when the tval(y,) of a variable v, changes its value
from ref to true or false, but not for the opposite case, which applies for
backtracking. Moreover, the data structure is sound in the sense that no
clause that gets falsified by P will be missed.
Regarding the implementation of responsibility lists, a further aspect can
be considered. For a literal Ay € L, the list R()\;) is only meaningful if
pval(Ag) = true. To save memory, responsibility lists can thus be associated
to variables in practice.

5.2.3 Keeping track of temporarily falsified clauses

While trying to modify a reference point P; to P/, with the aim of reducing
the set of falsified clauses from M to M’ C M, a data structure D is used.
D stores those clauses that get falsified by a temporary reference point P.
In Section 5.2.2, we described the procedure for and conditions of adding
clauses to D. In this section, the design of the data structure D is presented.
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Three main demands have to be met, whereas the third issue is addressed in
Section 5.2.4 and is only mentioned briefly here:

e Backjumping over parts of the temporary modification (due to a con-
flict — see case W.4) has to be very fast with the least possible overhead
to update D.

e Clauses that are falsified by the current point P; have to be found in
reasonable time without having to traverse the clause’s literals at each
look—up in the data structure.

e When a temporarily falsified clause C' is chosen from D by the decision
procedure in line 7 of Algorithm 5.2, the algorithm aims to satisfy
clause C' by another modification of the reference point. Let the set
Ac = {N\ € C : tval(N\;) = ref} contain those literals of C' whose
value in P, may possibly be modified to satisfy C'. Due to the watched
literals scheme (as stated in case R.3 above), we have |[A¢| > 2. The
data structure has to allow for the computation of the applied heuristic
regarding which literal to choose from A¢. Originally, this is the literal
A¢q € Ac, which is contained in most of the clauses in D.

Fast backjumping

The overall data structure is depicted in Figure 5.1. Since the first issue
above is fundamental, we use a stack to realise D, which has one entry pLg
for each decision level d. Each entry basically points to a set of clauses Ly
that are falsified by the current point P; at this level. In addition, each
clause set Ly has a flag that indicates if the referred clauses still have to be
considered as belonging to D.

This allows for very fast backjumping. For each level d we jump back, the
corresponding flag in Ly is set to false, the set of clauses in Ly is deleted and
pLg is popped from the stack. This means a negligible overhead compared to
backjumping in CDCL solving. Note that an entry pLg that is removed from
the stack does not completely destroy the referenced set Ly. Importantly, this
allows other data to still refer to Ly. Invalid references may be updated lazily
later on. Frequent garbage collection destroys invalid clause sets L/, unless
they are referenced by some other object. Another important advantage of
this implementation will become even more evident below.

Finding clauses falsified by P;

To find the clauses in D that still have to be satisfied by further modifications
of the current point P, all valid clause sets Ly have to be traversed. These
are exactly the sets Ly that are referenced by the entries pLg of the stack

(0 <d < |D)).
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Figure 5.1: Basic data structure for storing falsified clauses

We do not remove any satisfied clause C' from any set Ly that is still flagged
as being valid. Otherwise, this would effectively require us to put such clauses
back into Ly whenever the satisfying modification to C' is undone. Instead,
we also keep a literal for each clause in Ly as a kind of representative. Thus,
any entry in Ly (besides the flag) is a tuple which consists of a clause C' and
one representative literal A\, € C'. In the following, a tuple is wrapped into
an object of type LC =< A\, C >.

At some point during a search, a clause C that is referred to by some set Ly
may be detected as being satisfied by the temporary point P; by a literal A, €
C, A\ € P; (equivalently tval(\,) = true). In that case, A\, € C becomes the
representative literal for C'. We define the concept of representative literals
more formally below:

Definition 2. For any clause C a literal A, € C is called a representative
literal if the following holds: A\, € Py = C' is satisfied by Py.

The procedure getFalsified is listed in Algorithm 5.4. The search for a
falsified clause starts at the position where the previous call to the function
found a falsified clause. If a conflict arises between two consecutive calls of
the function, the stored position d is invalid and is reset to d = oo during
conflict analysis. For this reason, d and ¢ may have to be changed in line 5.
To find clauses in D that are still falsified by the current point P, the stack
D is traversed from its top to its bottom. This prefers the most recently
added clauses for decisions, as it is motivated by the success of the BerkMin
solver |[GNO7].

The first clause that is found to be falsified by P, is taken as the basis for
the next branching decision. In line 8, ¢ is decremented to access the next
element LC =< A\, C > at position c of the clause list Ly. If the represen-
tative literal A, is set in the current point P (line 10), clause C is satisfied
and the algorithm continues with the next clause without actually touching
C. Otherwise, the literals of clause C' have to be inspected by the procedure
isSatisfied invoked in line 11. If a literal A, € C can be found that satisfies
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Algorithm 5.4: Find next clause falsified by P
Require Current reference point Py, stack D, the level d and index ¢
into Ly where the last clause was found
Return The level d in D and the index into Ly where the next
falsified clause is located, or < 0o, 00 > if all clauses are satisfied by P
Function getFalsified (P, D,d,c)

if D =0 then return < oo, co >
5 if d > |D| then d < |D| — 1; ¢ <+ |Lg| | d was reset
while true do
while ¢ > 0 do
8 c+c—1 | decrement first
< Ar, C >4 Ly|c] | element at index ¢ in L4
10 if A\, € P; then continue
11 Ag < isSatisfied (P, C)
if \; # 0 then
13 L Lilc] =< Ay, C > | set representative
14 else return < d,c > | falsified clause found
15 if d =0 then return < co,c0 > | all satisfied
d<«d—1; c<+ |Lg| | continue with next level

18 Function isSatisfied (P, C)

foreach )\, € C' do
| if A\, € P; then return )\,

| return 0

C' with respect to P;, the representative literal can be set appropriately (in
line 13) and the next clause is checked. If C' is not satisfied by the reference
point, a falsified clause is found for the next decision and the algorithm re-
turns a reference in line 14. If all clauses of one level have been handled, the
next level is chosen. If no level is left, the algorithm returns < co,c0 > in
line 15 to indicate that all clauses in D are satisfied by the reference point Px.

A crucial issue within the search for a falsified clause in D is the use of
representative literals. The state of the representative literal is always tested,
before the entire clause is inspected. On the one hand, this ensures that a
satisfied clause is not inspected twice unless a conflict causes a modification
of the point that makes this necessary (when the assignment to the particular
representative literal is undone). On the other hand, significant changes of
P; to the satisfiability state of any clause are not missed. The latter issue
would require extra maintenance if only Boolean flags were used to mark
satisfied clauses instead of representative literals.
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5.2.4 Computation of the MakeCount of variables

Given a clause C* that is falsified under the current point P, the heuristic
has to compute the literal of Ac+ = {A\; € C* : twal(\y) = ref}, which
satisfies most of the clauses in D (or, optionally, D U M) when the value of
vq is flipped in P;. To compute the so—called MakeCount of a variable, we
extend the data structure of Figure 5.1.

The extended data structure allows for a lazy computation of the Make-
Count of a variable. It is depicted in Figure 5.2 and is organised as follows:
Each variable v; that is not yet affected by the temporary modification of the
reference point P; (tval(v;) = ref) is associated with a list ; of elements
of type M. An element M represents a clause in D that can be satisfied by
flipping the current value of v; in the point P;. We refer to the k-th element
of list ; as M;[k]. Due to the laziness of the data structure, it might be that
an element is out—of-date. More precisely, each element M;[k] (representing
some clause C’) in the list Q; of variable v; consists of two fields: The first
field references the set Ly of clauses in D, which C is contained in. Note
that Ly can still be referenced from the list €2; even if the reference to Ly is
removed from D within backjumping. The second field is an index into Lg4
that indicates the particular clause C’ (i.e. the respective element LC') that
can be satisfied by flipping the value of v; in P.

Whenever case R.3 from above applies for a clause C, stack D is ex-
tended by C. The procedure is outlined in Algorithm 5.5. A pointer to C
and some representing literal A, € C are wrapped into an object LC in line
4 of Algorithm 5.5. This data is appended to the set of clauses Ly, which
is referenced from the topmost entry of the stack D (line 6). At this point,
we also add an entry M to the MakeCount lists €2; of variables v; which can
be chosen to satisfy C' later on. These are the variables for which A\; € Ac.
This is done by the loop in line 8.

Stack
|
8
[=%
=
2
=
=

M1 I M2 I M3 I M

Make list of variahle v1 Lk

M1 I M2 I M.

Make list of variable v2 - — index only
- ~

v
M1 I M2 q M3 IJ M.

Make list of variable v3 e

Figure 5.2: Computation of the MakeCount of variables. Extension
of Figure 5.1.
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Algorithm 5.5: Push falsified clause on the stack
Require Clause C' that has to be pushed on D.
Function pushStack (C)

d<« |D| -1 | recent decision level
4 LC +~< C[0],C > | wrap clause with representative

¢ < |Lg| | next position for LC in L4
6 Lyc] < LC | add clause to D at level d

M < Lg,c> | wrap reference for MakeCount lists
8 foreach )\; € C do

| if twal(N;) =ref then Q; QUM

When computing the valid MakeCount from the possibly out—of-date
information, different cases may appear:

M.1 It might be that an element M;[k] refers to a clause that has been
removed from D. In that case, the flag of the structure L, that is ref-
erenced by M;[k] has been invalidated during backtracking. Hence, this
case can be realised immediately and M;[k] may be deleted from €;.

In the following cases, it is ensured that the clause referenced by an el-
ement M;[k] is still contained in D. We refer to the referenced clause as
Cg, and the respective structure LCy . and assume that the referenced
clause is added at Lg[c] by Algorithm 5.5 in line 6.

M.2 We first assume Cy to be satisfied by a modification of the point P;.
Recall, that what we actually get from M;[k] is a reference to LCy,
which wraps the clause Cy . and a representing literal A, of Cy.. We
can distinguish between two cases:

M.2.1 Uy, might have been considered by the procedure getFalsified
in Algorithm 5.4 to find falsified clauses in D. In this case, the
representative literal A\, has been set so that by checking the state
of A, in P;, we know that Cy . is satisfied and we have finished.

M.2.2 If Cy. has not been considered by Algorithm 5.4 yet, the satis-
fiability state of the clause has to be computed by inspecting its
literals. Given that Cy . is satisfiable under P;, a literal A, € Cy
that satisfies Cy . will be found and will be made the representa-
tive literal for this clause in LCy .. This allows for a fast detection
of the satisfiability of Cy . later on and will relieve Algorithm 5.4
from checking all literals of Cy .. The representative literal ensures
that for each temporary point Py, there is, at most, one traver-
sal through all literals of a clause to recognise that this clause is
satisfied by P.
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M.3 If C is falsified by the current point P, this is recognised by a check
of all literals in Cy .

Algorithm 5.6: Compute the MakeCount of a variable
Require Current point P;, variable v;, minimum MakeCount m
Return MakeCount of v; if it is at least m
Function makeCount0f (P, v;, m)

u < | €] | number of unchecked elements in ();
n<+ 0 | falsified clauses in ();
foreach < Lg,c> € Q; do
if n+u < m then return 0 | m cannot be reached
u—u—1 | one remaining element less
if L, is invalid then
10 L Q; + Q\ < Lg,c> | remove invalid element
continue
< Ap, C >4 Lyc] | get referenced element LC
13 if A\, € P; then continue
14 Ag < isSatisfied (P, C) | Algorithm 5.4 line 18
if \; # 0 then
16 L Lilc] << A\, C > | set representative
17 else n<+n+1; | one more falsified
L return n

Algorithm 5.6 sketches the cases listed above. To compute the Make-
Count of a given variable v;, each element of the MakeCount list €2; has to
be inspected (line 6). For practical applications, the computed value is only
of interest if it exceeds a minimum value m. In line 7, this issue is used
to terminate early if the required minimum MakeCount m can no longer be
reached.

If case M.1 applies and the referenced set of clauses Ly is no longer valid,
this clause is removed from the MakeCount list €2; in line 10. The represen-
tative literal of a clause C may already indicate that C is satisfied by P, as
described in case M.2.1 and shown in line 13. The inspection of the literals
of C in line 14 may detect that the clause is satisfied by P; and case M.2.2
applies. The representative literal can then be set appropriately in line 16.
Otherwise, one more falsified clause is counted in line 17.

The realisation of the set D and the data structure to compute Make-
Counts of variables follows the idea of maintaining data structures lazily.
This avoids the storage of complete occurrence lists for literals. MakeCount
lists do not require any update operations on backjumping. Even though
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indices in M become undefined when the referenced set L is cleared during
backjumping, this is not problematic, since an index is only used after Ly
is asserted as still being valid by its flag. The fast propagation and back-
jumping is clearly realised at the expense of the costly detection of falsified
clauses in case M.3. This fact can be observed in Algorithm 5.6 in line 14
when calling the function isSatisfied, where, at worst, all literals have to
be inspected.

Algorithm 5.7: Compute variables with the best MakeCount
Require Current point P;, clause C
Return Set of variables in C with the best MakeCount
Function bestVars (P, C)

m <+ 0 | best MakeCount

R+ | variables with best MakeCount
6 foreach )\; € C do
7 if tval(\;) # ref then continue

x < makeCount0f (P, v;, m)
9 if x >m then R+« {v;}; m+ | better than all
10 else if © =m then R+ RU{y;} | equal candidate
L return R

As in Algorithm 5.6, the size of a list {; of a variable v; gives an upper

bound €2; on the valid MakeCount of ;. The computation of a MakeCount
can terminate early if a minimum value cannot be reached anymore (line
7 of Algorithm 5.6). This issue can be used when the variable v; with the
highest MakeCount has to be found within a set of candidates. Algorithm
5.7 describes the procedure of finding a set of variables from a given clause
C that have the highest MakeCounts. The best flip candidate, as required in
line 8 of Algorithm 5.2, can be chosen among the set of candidates returned
by Algorithm 5.7.
For a given clause C', Algorithm 5.7 inspects all literals of the set A¢ (lines 6
and 7). Depending on the computed MakeCount, a variable may replace all
collected variables in line 9 or extend the set of variables that have an equal
MakeCount in line 10. The requirement for the minimum MakeCount m
can be utilised even better when the variables v; are inspected in decreasing
order (in line 6) with respect to the size of the MakeCount lists ;.

Better detection of falsified clauses

The computation of the MakeCount of a variable and the procedure of find-
ing falsified clauses in D, as presented above, have to face the costs associated
with fast unit propagation and backjumping. This is desirable for the fol-
lowing reason:
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For industrial SAT benchmarks, one decision may imply many other assign-
ments by unit propagation. For some benchmarks, the average number of
implications by unit propagation per decision ranges up to thousands. More-
over, undoing decisions after conflict analysis requires all implied assignments
to be undone. Higher costs for decision making may be compensated by fast
propagation and backjumping.

Nevertheless, in order to use more features in a DMRP search, such as
the elimination of boundary points, more information is required during the
search. In this regard, we first analyse the main drawbacks of Algorithm 5.4
and Algorithm 5.6, and present a modification of the data structure depicted
in Figure 5.2.

Within both procedures for finding the next falsified clause in D (Al-
gorithm 5.4) and computing the valid MakeCount of a variable (Algorithm
5.6), the representative literal A, of the clause C' may indicate that the con-
sidered clause is satisfied by the current reference point P;. However, the
converse argument of Definition 2 is not valid. For this reason, all literals of
C have to be inspected by the subroutine isSatisfied if A, & P;.

Making representative literals more meaningful

In order to avoid the invocation of the subroutine isSatisfied to ensure
that a clause is falsified by the current reference point, we define a stronger
concept of representative literals:

Definition 3. For any clause C, a representative literal A\, € C is called
liable if the following holds: ). € Py < C' is satisfied by P;.

Obviously, if it can be ensured that all representative literals are liable,
any call to the function isSatisfied in Algorithm 5.4 and Algorithm 5.6 is
superfluous. With this, accessing the referenced clause in both algorithms
is superfluous as well. The literals of a referenced clause are only accessed
when the clause is known to be falsified by P; and is chosen for a decision
during the search in line 7 of Algorithm 5.2.

We examine the process of DMRP for one clause by the following short
example. Consider the initial reference point P = {\i, A2, A3, A4, ...} and
clause C = (A1 V A2 V A3V \g). We assume that at decision level d;, the
point is changed to P; = {\1, A2, A3, g, . ..}. Algorithm 5.3 will detect that
C is falsified by the temporary point P; and puts a reference to C' into
D (with representative literal A1), as described in Algorithm 5.5. In par-
ticular, the MakeCount lists €21, and €4 of variables v,v3 and v4 are
extended by one entry (we assume that tval(v) = ref for these variables).
Assume that at a later decision di > d;, the point is temporarily modified to
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Pr = {1, A2, A3, Ay, ...}. Now C is satisfied by Py, but this is not realised
immediately. Another decision at level d,, > di may modify the point to
P = {1, A2, A3, Mg, ...} If, at alevel d,, > d,n, the clause C is inspected by
the subroutine isSatisfied(C) (see Algorithm 5.4, line 18), the represen-
tative literal will be set to A3. Unless the search jumps back below level d,,
the representative literal A3 will always indicate that clause C' is satisfied by
the point. However, if the search jumps back to a level d; with d, < d; < d,y,
clause C' is still satisfied by literal A4 but the representative literal A3 ¢ P;
cannot indicate this. Clearly, choosing A4 as representative for C' would have
been a better choice.

An obvious solution for overcoming a bad choice for the representative
literal could modify the function isSatisfied in line 18 of Algorithm 5.4
to always inspect all literals and return the satisfying literal with the low-
est decision level as the representative, if one exists. Therefore, consider
that literal A4 (instead of A3) is chosen as representative at level d,, and
the search will continue. Unless the search jumps back below level dj, the
representative literal will indicate that C' is satisfied by the point. Assume
that conflict analysis causes to jump back to level d; with d; < d; < dy.
Clause C' is falsified again by the point P;. Assume a decision at a higher
level dy > d; will then modify the point to Py = {A1, A2, A3, A4, ...}. With
this, clause C' is satisfied by P, but the representative literal A4 does not
indicate this. Hence, a better choice for the representative literal may avoid
some invocations of the function isSatisfied but is still not liable. These
observations motivate the following property.

Property 6. Assume that for any satisfied clause C that was put into D at
level dj, the representative literal \j € C' is certain to be at the lowest possible
decision level dy, such that C' is satisfied by P; but not by any point Py at
level dj < dj, < d;. By this assurance, the representative literal is liable.

As long as the assignments of level d; are not undone, literal A; is in the
modified reference point and clearly indicates that clause C is satisfied. If,
on the other hand, the search jumps back to a level below d;, the reference
to C is invalidated during backjumping. If the search jumps back to a level
dy, with d; < dj, < dj, clause C is falsified by Py, and literal \; € Py.

To ensure Property 6, the representative literals can be set whenever a new
assignment is made. Algorithm 5.8 lists the procedure that has to be called
after unit propagation for all freshly assigned literals.

Algorithm 5.8 uses the fact that the MakeCount list €); of a variable
v; contains all clauses that can be satisfied by an assignment tval(v;) <
pval(v;). For a newly assigned variable v;, all elements in ; are inspected
in line 3. As in Algorithm 5.6, the iteration over €2; can optionally be used
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Algorithm 5.8: Mark satisfied clauses
Require Current point P, recently assigned literal \; € Py
Function markSatisfied (P, \;)

3 foreach < Lg,c> € ; do
if L4 is tnvalid then
5 L Q; < Q\ < Lg, ¢ >; | remove invalid element
else
<A, C >4 Ly | get referenced element LC
8 if \. € P; then
L Lglc] << X, C > | set representative

to remove invalid entries in line 5. In line 8, it is crucial to change the rep-
resentative literal only if the current one is not set in the point P;. Invoking
Algorithm 5.8 for all freshly assigned variables ensures that the representative
literal of any clause has the lowest possible decision level. With Property 6,
the representative literals are liable and any call to the function isSatisfied
in Algorithm 5.4 and Algorithm 5.6 is superfluous.

As already mentioned above, this allows a faster execution of Algorithm
5.4 to obtain falsified clauses in D, and of Algorithm 5.7 to compute the best
MakeCount. The backjumping procedure during a search does not have to
be adapted. However, this is realised at the expense of unit propagation. In
Section 5.3.2; this computation of the MakeCount is used to allow for the
elimination of boundary points within a DMRP search.

5.2.5 Learning

A DMRP search aims to modify the reference point to one that falsifies fewer
clauses of the formula. Based on some falsified clauses, decisions are made
about changing a variable’s value in the current point. If a trail of decisions
leads to a conflict, where some previous assignments in the trail are contra-
dictory, the conflict is analysed as in CDCL. This is mentioned in case W.4
and listed in line 11 of Algorithm 5.2. Related to conflict analysis and learn-
ing, two aspects have to be considered for the DMRP approach. Both issues
are particularly important for the invariants within the implementation of
the DMRP approach.

L.1 Whenever a unit clause C' = ()\,) is learnt, the search jumps back to
decision level 0 within a DMRP search (line 13 of Algorithm 5.2), as-
signs A, in the temporary point P; and propagates all implications of
this assignment. These forced assignments may imply that the tempo-
rary P, differs from the initial valid point P.
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If this applies in line 14 of Algorithm 5.2, P; is returned immediately
to modify the valid point permanently in the invoking function. This
modification of P to P’ (in line 13 of Algorithm 5.1) exhibits a major
difference from previously described modifications: The set of clauses
M’ falsified by P’ does not necessarily have to be a subset of M —
the set of clauses falsified by the previous reference point P.

L.2 For any learnt lemma C*, with |C*| > 1 that is generated when a
conflict is analysed, the data structure has to be updated properly. In
particular, C* has to be linked to obey the invariants of M and D. We
prove the following property.

Property 7. Let Algorithm 5.2 be invoked with clause Cy falsified by the
currently valid reference point P. Assume that clause Cy is the only clause
in the set F\ MU{Cy} that is falsified by P. With this, any lemma generated
by the function analyseConflict (in line 11 of Algorithm 5.2) contains at
least one literal Ay with Ay € P (pval(Ay) = true). With this, the generated
lemma cannot belong to the current set M.

Proof. We prove Property 7 by the construction of learnt lemmas within con-
flict analysis, as described in Section 2.2.4. The function dmrpTryModifyPoint
presented in Algorithm 5.2 considers the clause set 7\ MU{Cy}. A modifi-
cation of the valid reference point P is sought that satisfies all clauses in this
set, particularly Cyp, which is the only clause in the given set that is falsified
by P. By definition, any clause C; in the set F \ M is satisfied by P and
contains at least one literal A\, € C; that is assigned in the point A\, € P
(equivalently pval(\g) = true).

Clause Cj is the base for the topmost decision in line 7 of Algorithm 5.2
since, by assumption, it is the only falsified clause in D. Hence, Cj is
satisfied by the first modification of the point P; and cannot be asserting
for a later assignment of a variable. When the search runs into a conflict,
there is a conflicting clause C. # Cp that has all literals assigned as false

(tval(Ng) = true ¥ Aq € C.).

As described in Section 2.2.4, the lemma C* is generated by recursively
resolving variables (that are not decisions) from the conflicting clause C. by
using the asserting clauses. C. is the first version (C§ = C.) of the generated
lemma C*. Given that C. € F\ M, there is at least one literal A\, € Cjj that
is assigned in the valid point P (pval(N\;) = true, Ay € P). Let A\, be one
literal € CF with A, € P. If any literal A\, € C*, A\, # A, is resolved from
C7, the resolvent C7, | still contains literal A\, € P. If, on the other hand, A,
is resolved by the use of the asserting clause C, # Cp for the assignment A,
clause C,, obviously contains literal A\, & P. Since C, is contained in the set
F \ M, there has to be a literal A\; € C; that is in the valid point P. With
As € P, we have \; # )\7q and the new resolvent C7, | contains literal A\s € P.
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By induction, the final lemma C* contains at least one literal that is in P.
Hence C* is satisfied by P and does not belong to the set M. O

The issue presented in L.1 mentions the fact that a unit clause that may
be learnt within Algorithm 5.2 can permanently modify the reference point
P. This does not contradict the proven Property 7. Consider the follow-
ing example: Let the reference point be P = {A1, A2, A3, Ay, A5, Ag . ..}. The
formula contains the clauses Co = (A1 V A2 V A3), C1 = (A1 V A4 V Xg) and
Co = (A1 V A5V Xg). We also have Cy € M and C;,Co ¢ M. Algorithm 5.2
is called with clause Cj.

Assume that eventually, the unit clause (A\3) is learnt. This is possible with
Property 7 since (\3) contains one literal of P. The reference point P is not
modified and thus the search continues. Assume that the unit clause (\2) is
learnt. Again, this is consistent with Property 7. However, Cy becomes a unit
itself and implies the assignment of A; at level 0. The valid reference point P
has to be modified, and therefore Algorithm 5.2 returns, as described in L.1.
By the modification of the reference point to P = {1, A2, A3, A1, A5, A - - -},
both clauses C and Cy are falsified by P and hence belong to M. In return,
Cy will remain satisfied by any later point, unless F is proven to be unsat-

isfiable.

In the second issue, L.2, linking learnt non—unit clauses into the data
structure during one execution of the function dmrpTryModifyPoint is re-
alised based on the following property.

Property 8. Let Algorithm 5.2 be invoked with clause Cy being falsified by
the currently valid reference point P. Any generated lemma contains at least
one literal in P.

Property 8 follows immediately from Property 7 since the precondition,

namely that Cp is the only clause falsified by P, is ensured at invocation.
Moreover, whenever the search continues after a conflict arises and a lemma
is added to the formula F, the precondition of Property 7 is ensured again.
Any generated lemma C* with |C*| > 1 can be linked into D by choosing
the literal Ay € C*, A; € P which was assigned at the highest decision level d
(i.e. most recently). By Property 8, at least one such literal A has to exist.
Literal A4 takes responsibility for C*: R(\s) < R(\s) U {C*}.
The functions backtrackResetPoint and learnAndPropagate in lines 13
and 14 of Algorithm 5.2 determine a new temporary point P. If A\s ¢ Py,
the lemma C* is also appended to the list Ly that is referenced by the stack
D for decision level d and is considered for the MakeCounts as described in
the previous section. These two actions ensure a proper update of the entire
data structure and no more special treatments are needed.
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5.3 Combining DMRP and CDCL in a Hybrid Solver

In Algorithm 5.1, we assume that the initial reference point is given from
outside. In the original paper [Gol08a|, reference points are chosen at ran-
dom and the process attempts to modify them by a call to the function
solveDMRP. If no result can be computed within a certain amount of time
(i.e. a number of conflicts) solveDMRP will be invoked with a new initial
point. This is similar to local search restarts but with the difference that
the DMRP algorithm itself carefully considers how to modify a reference
point. However, the choice of the initial point is crucial for the algorithm as
presented in Section 5.4.

As already mentioned in Section 2.2.5, CDCL solvers perform restarts quite
frequently. At a restart, the activity values of variables or literals are kept
and a subset of the learnt clauses is carried along for the next start. However,
the current partial assignment (all literals in the trail) is almost completely
rejected, even though phase saving [PD07a| keeps some information. This
motivates a hybrid approach that alternates between the CDCL and the
DMRP algorithms. The DMRP approach offers the convenient possibility
of taking a closer look at the drawbacks of a partial assignment before it is
rejected. It may focus on the clauses falsified under the assignment that is
given by the cached values of the phase saving heuristic.

The implementation that is shown in Algorithm 5.9 combines both ap-
proaches by the use of the Luby et al. restart strategy [LSZ93|, which has
proven itself successful in both theory and practice. The Luby strategy as-
sumes that an algorithm does not have any external information and thus
does not know when it is best to perform a restart. In that case, the available
computation time is shared almost equally among different restart strategies
|[LSZ93]. The function maxConflictCount in Algorithm 5.9 returns the num-
ber of conflicts for the next run due to the Luby strategy. This number is
the product of a constant factor f and the next number of the sequence
(1,1,2,1,1,2,4,1,1,2,4,8,1,...) (see [LSZ93| for details).

The function chooseAlgo decides on which algorithm to use for the next run.
On average, we achieved the best results when running the DMRP algorithm
exactly for the smallest conflict limit (when ¢l = f).

Since the DMRP algorithm requires a reference point, i.e. an assignment
to all variables, the last partial assignment of the CDCL solver has to be
extended to a complete assignment (extendPartialAssignmToRefPoint).
This is done by continuing the previous CDCL search with the last par-
tial assignment. However, within this execution, only binary clauses are
considered during the search until all variables are assigned a value. This
assignment constitutes the initial reference point for the DMRP algorithm.
In this phase, the solver may also realise that the formula is unsatisfiable.
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Algorithm 5.9: The hybrid approach
Require Formula F in CNF
Return Sat, UnSat or Unknown

Function solveHybrid (F)
last < CDCL, res < Unknown

while res = Unknown do
cl < maxConflictCount() | use Luby strategy
algo < chooseAlgo(cl) | apply CDCL or DMRP ?
if algo = DMRP then
if last = CDCL then
L < res, P >+« extendPartialAssignmToRefPoint()
if res = UnSat then return res
res < solveDMRP(F, P, cl, cl)
else res « solveCDCL(F,cl)
| last < algo
L return res

For the case where the partial assignment is empty (e.g. at the start of the
algorithm), this function simply computes a reference point that satisfies all
binary clauses. Taking care of binary clauses at first is also motivated by the
work of Zheng and Stuckey [ZS02] and Bacchus |[Bac02b|, where the idea of
primarily focusing on binary clauses has improved solving for some families
of instances. This also guarantees an additional invariant for our data struc-
ture, specifically that a binary clause can neither be contained in the set M
nor in the stack D.

5.3.1 Adjustments for the hybrid approach

In addition to standard CDCL solving, each clause of the formula is assigned
an activity value that is set to zero at the beginning. Whenever a clause is
involved in a conflict (i.e. if it is used for resolution during the generation of
a lemma) its activity value is increased. In some solvers (e.g. [ES03]), this
technique is commonly used to clear the clause database of inactive learnt
clauses periodically. Our hybrid solver maintains an activity value for every
clause.

The activity value of a clause is taken into account when the next clause
from the set M has to be chosen (line 7 of Algorithm 5.1) to be handled
by the function dmrpTryModifyPoint. Clauses with high activity values
are preferred for the next attempt at modifying the current reference point.
However, if the call to dmrpTryModifyPoint times out for a chosen clause
C, other clauses with high activity are preferred for the next invocation of
Algorithm 5.2.
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In contrast to the original DMRP algorithm, the conflict limit (time-
out) for the function solveDMRP depends on the success of its subroutine
dmrpTryModifyPoint in line 8 of Algorithm 5.1. If the current reference
point P can be improved, the initial conflict limit is reset. The solver also
differs in the computation of the MakeCount of a variable. The MakeCount
of a variable may consider only the clauses currently in D to get the great-
est level of local improvement. Optionally, all clauses in D U M may be
considered to make decisions more globally. For variables that have the
same MakeCount, ties can be broken in favour of different issues, which is
explained in more detail in Section 5.4.

5.3.2 Using boundary points

The concept of boundary points was also introduced by Goldberg [Gol09] and
is briefly described in Section 5.1. Goldberg and Manolios propose a com-
plete template algorithm that uses boundary points for SAT solving [GM10].
We do not aim to apply the complete procedure but instead use the concept
of boundary points within DMRP.

Consider the DMRP algorithm using the MakeCount of variables for de-

cision making. Thus in line 8 of Algorithm 5.2, the maximal MakeCount of
all literals in the chosen clause C' is computed. If there is a literal A\, € C
that is contained in all clauses that are falsified by the temporary point P,
the condition of a A\j-boundary is nearly fulfilled.
Clearly, a flip of the value of variable v, produces a temporary point P; that
satisfies all previously falsified clauses. Moreover, it may not falsify new
clauses. In that case, the function dmrpTryModifyPoint returns the found
point P/ and we have finished. If, on the other hand, some new clauses are
falsified by P;, both points P; and P; constitute twin boundary points. The
sets of falsified clauses M and M’ both contain at least one clause. By
choosing one clause from each of the sets M and M’, the boundary point
can be eliminated by resolution on variable v4. A heuristic could choose the
most active clause from each set. The elimination of boundary points is a
reasonable option according to the propositions in [Gol09|, some of which
are mentioned in Section 5.1.

The most crucial issue is to detect whether a literal A\, is contained in
all clauses falsified by the point P;, as required above. This can be realised
by simple counting if the alternative approach of marking falsified clauses is
used, as presented in Section 5.2.4. A DMRP search can keep an additional
counter o for the number of actually falsified clauses in D. Whenever a clause
is put into D by Algorithm 5.5, the counter o is increased. On the other
hand, if the function markSatisfied detects the satisfaction of a previously
falsified clause (Algorithm 5.8, line 8 et seq.), the counter o is decreased. To
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allow for inexpensive backjumps to previous states in the search, the counter
has to be backed up for each decision level d before a new decision is made
(04 < o). A backjump to level d can thus simply reset the counter o < oy.
If the valid MakeCount for a variable v,, computed by Algorithm 5.6, is
equal to o, all falsified clauses must contain variable v,. As described above,
the subsequent flip of variable v, may yield a Aj-boundary point that can
then be eliminated.

5.4 Evaluation

In this section, we study the performance of the DMRP approach using
industrial SAT benchmarks. The first part considers the pure application
of DMRP. The subsequent part analyses the hybridisation of DMRP and
CDCL, as described in Section 5.3.

5.4.1 Reference points and boundary points

We illustrate the progress of an entire DMRP run for one SAT instance
in Figure 5.3. In order to fit the entire progress into one plot, we chose
the rather easy instance cmu-bmc-barrel6.cnf with 2306 variables and 8931
clauses from the application of bounded model checking [BCCZ99]. The il-
lustrated configuration of the DMRP algorithm requires 13, 335 decisions to
prove the formula to be unsatisfiable. The plot depicts several properties
and is organised as follows:

The x—axis reflects the progress of solving. A vertical line through a point
(x4, 0) illustrates the state of the solver after z; decisions. The red line states
the number of original clauses (not learnt clauses) that are falsified by the
current reference point P. The light grey line states the number of original
clauses falsified by the temporary point P;. The values of both lines are re-
lated to the y—axis on the left—hand side. To state the depth of the search at
the same time, a second y—scale is used, which is printed on the right—hand
side. The current decision level is depicted by the purple line in the upper
part of the plot. Finally, a blue point is printed whenever a boundary point
was found and eliminated.

The beginning of the search procedure is typical for the DMRP approach.
The initial reference point falsifies a relatively high number of clauses: The
red line starts at (0, 793) and decreases rapidly within the first few decisions.
After 69 decisions, there are 158 clauses; after 726 decisions, there are less
than 20 clauses that are falsified by the point.

A closer look at the lower left corner of the plot shows that the temporary
point sometimes exhibits smaller values than the reference point. This is due
to a strategy of the solver that we introduced for the following reason. We
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observed that highly frequent but minor modifications of the reference point
often produce a big computational overhead (from line 13 in solveDMRP, Al-
gorithm 5.1). In these cases, it turned out to be more effective to modify
the reference point not immediately but after a delay of one decision in the
search. This bundles many small modifications into one bigger modification
of the reference point, particularly after the initialisation of a new point that
is then improved steadily. However, not all improvements of the reference
point are detected by one decision. As the upper part of the plot indicates,
the decision level reaches a depth of 84 at one stage to find an improvement
of the reference point. Overall, the depth of the search is quite low, since
the instance is rather easy to solve.
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Figure 5.3: Progress of DMRP on the benchmark cmu-bmc-barrel6
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After 1200 decisions, the reference point falsifies only very few clauses
(less than 10). Henceforward, many boundary points are found on-the—fly,
as described in Section 5.3.2. The blue points in the plot state that there are
some phases in the search where several boundary points are eliminated. In
total, 1957 boundary points are eliminated during the entire solving process.
It is clearly visible in the plot that the reference point deteriorates from time
to time. This happens whenever the solver learns a unit clause, which forces
a modification of the reference point. Moreover, the elimination of a bound-
ary point creates a new clause that is also considered by the grey and the
red curves in the plot.

The latter case is visible when several boundary points are eliminated in
a sequence of decisions. From decision 6870 to decision 7060, the number
of clauses falsified by the reference point increases from 22 to 212. In each
step, a boundary point is eliminated and the effect is clearly visible by the
slope of the red curve.

An interesting issue is the behaviour of the grey curve, even though it is
impossible to follow it exactly. Between decision 11,000 and decision 12, 000,
the reference point falsifies only a few clauses (3) while the temporary point
falsifies several clauses (up to 883). This is characteristic of the DMRP pro-
cedure, especially for harder instances as search progresses. At the same
time, for the plotted instance, the decision levels are quite small as indicated
by the purple curve. In the end, 2418 modifications of the reference point
are required before the empty clause is learnt.

The application of DMRP, as presented above, indicates a high number of
boundary point eliminations. However, there are also many instances where
no boundary point is eliminated during the search process. Note that we do
not search for boundary points in particular within DMRP but only elimi-
nate them if they are detected on—the—fly. Figure 5.4 depicts the elimination
of boundary points for five DMRP configurations. These configurations dif-
fer in some parameter settings, such as the probability for random decisions
and the selection strategy for decision clauses. However, the specific differ-
ences are not important here. The numbers are based on the results for 140
benchmarks of the SAT competition 2011, which were solved by at least one
of the plotted configurations. The left-hand plot states the total number
of boundary point eliminations and the right—hand plot relates this number
to the number of decisions needed to solve an instance. On the z—axes, in-
stances are sorted by their corresponding values in descending order. Hence
a point (x,y) in the plot (a) states that for x instances, at least y boundary
points were eliminated. In plot (b), (z,y) states that for = instances, the
average number of eliminations per decision is at least y/1000. Both y—axes
use a logarithmic scale.
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Figure 5.4: Boundary point elimination within DMRP

Clearly, there are some instances where many boundary points were
found on-the-fly and could be eliminated. Plot (a) indicates that there
are 20 benchmarks for which the best configuration eliminated more than
100 boundary points. Moreover, the right-hand plot indicates that for 20
benchmarks, a boundary point was eliminated at least every 1000th decision
by the best configuration. However, considering that both plots zoom in on
the best 60 instances, the overall application of boundary point elimination
is fairly low. Moreover, this does not justify the alternative computation of
MakeCounts, to count the total number of clauses that are falsified by the
temporary point at each decision level (see Section 5.3.2).

5.4.2 Runtime comparison

For the evaluation presented in the remainder of this chapter, we ran our
solver for all industrial (application) benchmarks of the SAT competitions
and the SAT-Races of the years 2006-2009 [Sat10, Satll]. By removing
trivial instances, which can be solved by the preprocessor, the benchmark
set contains 564 instances. Each instance was preprocessed in advance and
the timeout for each solver run was set to 1200 seconds. As a reference and
to validate the results, we have run our CDCL solver SApperloT using the
Luby restart strategy (without DMRP) and MiniSat2.0 [ES03, ES12].

Figure 5.5 depicts a cactus plot to compare the runtime of several differ-
ent solver configurations. It illustrates the results of different configurations
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of the hybrid approach. Furthermore, two configurations apply the DMRP
procedure alone. The configurations differ in the following regards, which
are related to the details of decision making: As mentioned above, the Make-
Count of a variable may consider all clauses in DUM (global) or only clauses
in D (local). If two variables have the same MakeCount, ties are broken in
favour of the variable v; that:

(act) has the highest activity value, similar to the VSIDS heuristic [MMZ*01].

(bc) has the smallest set R(v) (cf. Section 5.2.2). This can be seen as
a simple approximation of the BreakCount of a variable. Unlike the
MakeCount, the BreakCount of a variable v; states the number of
clauses that are falsified by a flip of the value of variable v;.

(dc) was chosen least often for DMRP decisions. This avoids always flipping
the same variables back and forth in different calls to solveDMRP.
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Figure 5.5: Comparison of DMRP, CDCL and their hybrid

Figure 5.5 clearly shows that pure DMRP solving cannot compete with
CDCL solving. Both the global (olive green) and the local (orange) DMRP
configurations solve around 224 of 564 instances within 1200 seconds. The
initial reference points are always chosen at random. Timeouts for the search
on one reference point (one call to solveDMRP) follow the Luby sequence
|[LSZ93]. Both plotted DMRP configurations keep well behind MiniSat2.0
(brown). Note that MiniSat2.0 neither uses the Luby restart strategy nor
applies phase saving (cf. Section 2.2.5). These are the two main reasons why
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it exhibits a much worse performance than our implementation of the CDCL
procedure (red).

The hybridisation of DMRP and CDCL, as described in Section 5.3,
outperforms both the pure DMRP and the pure CDCL solvers. All hybrid
configurations indicate quite similar results. However, the two configurations
(black, blue) that compute the MakeCount locally seem to be ahead for most
time bounds. For the time bound of 1200 seconds, the blue configuration is
able to solve the greatest number of instances. It is interesting to observe
that using the activity of variables to break ties does not achieve the best
results. It turns out that it is better to prefer variables that were flipped
least often at the current call of solveDMRP.
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Figure 5.6: Results for satisfiable and unsatisfiable instances

The cactus plot in Figure 5.5 gives a good overview of the overall success
of our hybrid approach. However, it is worth analysing the performance of
the hybrid solver in more detail. Figure 5.6 distinguishes between satisfiable
and unsatisfiable benchmarks. For each solver configuration, the number of
solved satisfiable (unsatisfiable) instances is indicated by the green (brown)
bar. The hybrid configurations are differentiated by three parameters: the
first parameter states whether the MakeCount is computed locally or glob-
ally. The second parameter indicates the heuristic to break ties for variables
with equal MakeCount. The last parameter rn states that in n percent of
all decisions, a variable is chosen at random from a falsified clause. The
presented values are based on the solver without the application of prepro-
cessing.
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Surprisingly, pure CDCL solving outperforms all hybrid configurations
when only the satisfiable instances are considered. It solves one satisfiable
instance more (176) than the two best hybrid configurations (175). In turn,
the success of the hybrid approach is only due to the unsatisfiable instances.
The leftmost hybrid configuration (loc,dc,72) solves 11 more unsatisfiable
instances than the CDCL solver. However, the success on the unsatisfiable
benchmarks is not achieved with only that configuration. All hybrid config-
urations solve clearly more unsatisfiable instances than the CDCL solver.

Our conjecture about this phenomenon is that DMRP generates some

important conflict clauses. When the CDCL solver reaches the (current)
maximum number of conflicts, it delivers work to the DMRP solver. DMRP
starts by extending the last partial assignment 7 of the CDCL solver to a
complete assignment that constitutes the initial reference point P. In doing
s0, it focuses on a nearby part of the search space. When analysing this
part, it purposely examines the clauses M that are falsified by P. In CDCL
solving, these clauses in M can become conflicting clauses if decisions similar
to the values in P are made. Up to a certain point, phase saving will do
precisely this after a normal CDCL restart. However, DMRP immediately
considers clauses in M for search and resolution.
Even though the hybrid implementation beats the pure CDCL solver on the
entire benchmark set, the CDCL part of the hybrid solver returned the result
for the greatest number of instances. On average, the result was returned by
the DMRP part for only 6% of all instances. However, this does not reduce
the contribution of the DMRP part, as the success of the hybridisation over
pure CDCL solving indicates.

A further differentiation of results is presented in Table 5.7. The bench-
mark set can be categorised into families of different instances, based on the
submitters of the instances or the encoded application. The first column of
the table lists the benchmark family and the number of instances it con-
tains. Subsequent columns differentiate several hybrid solver configurations,
whereas the naming of parameters is the same as in the figures above. An
entry in the table states the number of instances of a certain benchmark
family that are solved by the corresponding solver configuration. The high-
est number in each row is printed in bold.

Table 5.7 presents the results for around half of the benchmark fami-
lies. The number of solved instances per benchmark family varies by a small
number for most solver configurations. There is no configuration that is best
throughout all families. However, for domain—specific solving, it may be
worth finding a proper configuration. The table indicates that there are also
families of instances for which pure CDCL seems to be most successful, such
as the Manol-pipe and Gss instances.
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CDCL local MakeCount global MakeCount
Instances # dc,r2 | de,rd | be,rd | act,r2 | de,r2 | act,r2 | de,rl
9dlx _vliw 11 2 5 4 4 4 4 4 4
AproVE 34 26 27 25 26 27 26 27 26
Dspam 10 8 10 10 10 10 10 10 10
Gss 23 7 5 6 5 5 4 5 5
IBM 38 34 31 31 32 34 32 30 32
Manol-pipe 59 53 51 51 52 52 52 52 51
Max min 15 7 7 8 8 8 7 8 8
Narai 4 3 4 4 3 4 3 3 3
Partial 20 4 5 8 9 4 5 7 8
Post 15 6 7 8 7 6 7 8 6
Q__query 20 20 20 19 19 20 19 19 19
Simon 12 10 10 9 9 9 9 10 11
Total 20 13 14 13 13 13 13 13 13
Velev pipe 23 16 21 21 21 21 21 21 21
Velev vliw 14 8 11 10 10 10 10 11 10

Table 5.7: Performance for different families of instances

On the other hand, the results for
the hardware verification instances
of Velev are remarkable. Fig-
ure 5.8 depicts the cactus plot for
the subset of 53 Velev instances
in our benchmark set. The two
plotted hybrid configurations corre-
spond to the solvers that are listed
in the third (loc,dc,m2) and the
eighth (glob,act,r2) column of Ta-
ble 5.7. The cactus plot illus-
trates the clear advance of both
hybrid configurations using these
families of instances. In total,
eight more instances are solved by
the hybrid approach than by pure
CDCL.
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In this chapter, we studied the application of the DMRP SAT solving ap-
proach. The idea of using a reference point for decision making in SAT
solving has been proposed by Goldberg [Gol08a, Gol08b|. A reference point
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constitutes a complete assignment to the variables of the formula. At any
time in a search, the solver distinguishes between those clauses that are
satisfied by the reference point and those clauses that are falsified by the
point. The solver aims to reduce the set of falsified clauses by modifications
of the reference point. Unlike a greedy strategy, none of the clauses that are
satisfied by a reference point must be falsified by a subsequently modified
reference point. To this end, the DMRP approach requires more information
during the search than the conflict—driven SAT solving algorithm.

We presented a data structure to implement the DMRP approach in an
efficient way. Similar to the two watched literals scheme, one literal is se-
lected for each clause. That literal takes responsibility to ensure that any
clause which is satisfied by the reference point is also satisfied by a modifica-
tion of the point. Moreover, we described how the maximal MakeCount of a
variable can be computed by using this data structure. The MakeCount of
a variable v; counts all falsified clauses that become satisfied when the value
of v; is flipped in the reference point. We also studied the elimination of
boundary points within the DMRP algorithm. Unlike the solving approach
that is entirely based on the elimination of boundary points [GM10]|, our
extension to DMRP only finds and eliminates boundary points on—the—ly.

Based on our DMRP implementation, we developed a hybrid SAT solver
that combines CDCL and DMRP solving. The combination of both ap-
proaches uses the values of the variables that are stored by the phase saving
heuristic in modern CDCL solvers. These values are employed to initialise
the reference point for the DMRP algorithm. Experiments indicate that
our hybrid approach is competitive to the highly optimised state—of-the—art
CDCL solvers, and that the maintenance of complete assignments may def-
initely be an advantage.

Our solver SApperloT participated in the SAT-Race 2010 [Sat10]. It
applied the presented hybrid approach and used an additional preprocessor
implemented by Zielke [Ziel0, Kot10b]. SApperloT did not win a prize in
that competition. However, it outperformed both participating versions of
Glucose [AS12]. Glucose had won two medals in the SAT competition of the
previous year. In particular, in the competition of 2009, it had been placed
first on the set of unsatisfiable application benchmarks.

We will come back to the DMRP approach in Chapter 8 where the work
of this thesis is concluded. We will also give some ideas and directions for
future research related to the concept of reference points and DMRP solving.



Chapter

SAT Solving with Multiple Cores

In the previous chapters, several concepts and approaches related to practical
SAT solving are discussed. Alternative solving techniques are often success-
ful for some families of SAT instances but are clearly inferior to CDCL on
the average set of benchmarks. For the DMRP algorithm, a convenient hy-
brid approach is suggested in Section 5.3 to combine the predominant CDCL
technique with the powerful but more expensive DMRP algorithm. Other
techniques, such as the concept of asymmetric branching presented in Sec-
tion 3.2, can only be applied selectively since an exhaustive application is
too time—consuming. Moreover, the combination with hyper—binary resolu-
tion often generates too much redundant information. A general method to
combine simplification with CDCL solving is realised by PrecoSAT [Bie09b],
CryptoMiniSat [Soo12| and Lingeling [Biell] where simplification is applied
as preprocessing and inprocessing.

The engineering and analysis of different powerful solving and simplifi-
cation techniques motivates a combination of the presented approaches. In
the era of multi—core architectures, parallel programs may take advantage
of real concurrency. In this chapter, we present the implementation of our
multithreaded SAT solver SArTagnan. The architecture of the solver was
designed to meet the following demands:

e Alternative solving methods and simplification techniques (as in Chap-
ters 3 to 5) run in different threads and exchange valuable information.

e The application of more expensive techniques is worthwhile due to their
use for several parallel solvers.

e The facility to share data physically on multi—core architectures is used
intensely.

e The exchange of information and the sharing of data are non—blocking.



132 SAT Solving with Multiple Cores

In the presented solver, all threads are allowed to share clauses logically
and physically. However, the set of clauses in different threads is not re-
quired to be identical. Any solving thread can still decide whether it uses
a shared clause of another thread and whether it shares an own clause with
other threads. Even though data is shared among all threads, the solver
does not use any locks of the operating system or OpenMP [Opel2|. Each
solving thread can be configured to apply different search strategies. Due
to the physical sharing of clauses, any solving thread can permanently im-
prove the entire set of clauses. Moreover, all threads may benefit from the
improvement that was made by one thread.

The chapter is organised as follows. Section 6.1 addresses the paral-
lelisation of the solver. Section 6.1.1 gives an overview of state—of-the—art
approaches in parallel SAT solving. Thereafter, the most important tech-
niques for the parallelisation are presented, such as some issues regarding the
physical sharing of clauses and the communication between threads. In Sec-
tion 6.2, different search strategies of the solving threads are related to the
previous chapters. The subsequent section presents experimental results and
gives an insight into configuration details. The presented work is published
in [KK11lc, KK11b].

6.1 Parallel Solving

The engineering of practicable SAT algorithms and the intensive optimisa-
tion of SAT solvers have made the SAT problem feasible for many com-
putational real-world problems that can be transformed into SAT formu-
lae. The design of efficient data structures and optimised implementations
[MMZ*01, ES03] has been ground-breaking for the wide application of SAT
solving. In recent years, parallel SAT solving has gained in importance to
utilise the potential of multithreaded architectures. However, the paralleli-
sation of SAT solving has been an interesting research area for a long time
and different approaches to parallelise SAT have been studied.

6.1.1 Related work

A search procedure may split the entire search space into different subar-
eas that may or may not be disjoint. This approach seems to suggest itself
in SAT solving where a subset of variables can be preassigned to different
values for different parallel solving procedures. In doing so, different parts
of the search space will be explored. This divide-and—conquer approach,
which is often said to use a so—called guiding path [ZBH96], is widely used in
distributed parallel SAT solving. On multi—core architectures, the guiding
path approach can be realised by the application of dynamic work stealing.
An inactive thread requests work from any active thread. The active thread
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divides its own guiding path into two paths one of which is given to the re-
questing thread. This idea is used by solvers as pMiniSAT [CHS09|, MiraXT
[SLB05| and ySAT [FDHO5|.

On the contrary, there is the parallel SAT solving approach that does
not guide different solving processes in any way. Even when running the
same algorithm in parallel, the use of different heuristics [BSK03a, HJS09b|
and some random decisions will lead each process in different directions.
Useful information that is globally valid for each solving process may be
exchanged. Blochinger et al. proposed the idea to exchange learnt clauses
between parallel executions of the DPLL algorithm [BSK03b|. These days,
most parallel state—of-the—art SAT solvers apply this idea to a certain extent.

In the context of multithreaded SAT solving, sharing of learnt clauses is
now widely applied. However, the term sharing may be ambiguous. Most
solvers run an instance of the CDCL algorithm in each parallel thread. A
copy of any learnt clause that conforms to certain criteria is sent to the
other parallel threads [HJS09b|. Hence information is shared among par-
allel threads but a clause is not shared physically. Each thread holds its
own copy of each clause. To our knowledge, the only solvers that share a
unique clause database physically are MiraXT [SLB05, LSB07| and ySAT
[FDHO5|, whereas the latter does not share learnt clauses physically. For
more profound details we refer the reader to the related publications.

6.1.2 A basic concept for multithreading SAT

Working on shared memory architectures motivates for sharing clauses phys-
ically such that shared information (i.e. each clause) exists only once in
memory. This is motivated by the fact that the set of literals of a clause
is basically static. Moreover, sharing clauses physically allows for a bet-
ter exchange of additional information as, for example, the subsumption or
backward subsumption of clauses. We first present the basic concepts used
to exchange and share information during SAT solving. In Sections 6.1.3
and 6.1.4 we then go into more detail.

We define the number of parallel threads to be ¢. And we refer to a
particular thread as T;, where ¢ € [0,¢ — 1]. During programme execution
each thread holds a unique user mask M (T;) that is defined to be 2°. Each
data object that is shared by several threads has a bit mask usrs that in-
dicates the set of users of this object. The value of usrs can be formalised
as usrs = Yrey; M(T;), where U; is the set of threads that link to the
object O;. In general, the usrs field of an object O; is always initialised by
the creating thread before O; is visible to the other sharing threads. After
the creation of an object O;, a reference to Oj is sent to all sharing threads
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Algorithm 6.1: Release object by thread T;
Require Reference of object O. Calling thread is T;
Function releaseObject (O,T;)

inv_msk < ~ M(T;) | inverted M (T;)
repeat
curr < O.usrs | copy bit mask
rem < curr & inv_msk | remove M(T;)
until exchangeIf (O.usrs,curr,rem)
| if rem = 0 then deallocate (O)

€ U;. As soon as a thread that uses O; wants to release the object, it has to
unsubscribe as a user of O;. The last user is responsible for the destruction
of O;. The release operation is listed in Algorithm 6.1. Note that no thread
can ever add itself as a user to an already created and shared object.

The function exchangeIf(addr,assum,new)! is a typical atomic oper-
ation that replaces the content at the specified address addr by the value
new but only if the current content is equal to assum. It returns true iff
the exchange operation was successful. The application of user masks is ac-
tually very similar to the concept of semaphores that use a simple counter
initialised to the number of users. However, there is a good reason for the
user masks. For any shared object, the set of its users can be determined
easily. This turns out to be extremely useful for heuristics on the exchange
of data between several threads.

6.1.3 Physical sharing of clauses

The concept of user masks as described in the previous subsection, is used
to realise the sharing of clauses that have more than two literals. In SAT
solving, each clause basically represents a static set of literals. However,
most state—of-the—art solvers implement the two watched literals scheme
[MMZ*01] in the way it was suggested by Van Gelder |Gel02]. The two
watched literals of a clause are always placed in the first two positions of the
array of literals. Thus, the position of literals in a clause is permuted per-
manently. This idea cannot be implemented when a clause is shared, since
the two watching literals may differ in different solving threads. This also
disqualifies the XOR—watchers implementation, as it is presented in Section
3.1.

However, the ideas and results of Section 3.1 can be adapted for the

'In the GNU compiler the atomic function is provided by:
bool __ sync_bool_compare _and_ swap(addr, assume, new _val)
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shared-memory architecture. With Corollary 3.1.1, the two watched literals
Ap and A; of a clause C' can be saved by one value X(C) := ID(),) XOR
ID()\;). With this, the set of literals of a clause can be shared among sev-
eral parallel solving threads by keeping the value X'(C) of a clause C locally
for each thread. The set of literals of C' needs only to be read but never to
be written by an accessing thread. Thus, in our implementation any clause
C with more than two literals consists of the value X'(C) and a pointer to
the shared set of literals L. To realise sharing and, in particular, destruction
each set of shared literals has a user mask, as described in Section 6.1.2.

A motivation for sharing clauses in parallel SAT solving is to allow for
sharing additional important information about the state and the modifica-
tion of a clause. If the set of literals of a clause is reduced by simplification
techniques, such as self-subsuming resolution (see Section 3.2.1) or on-the-
fly clause improvement [HS09], it is desirable that any other thread may
benefit from this information.

In SArTagnan, we realise this by sending a new version of a clause to
all threads that share this clause. As soon as a new version C), is sent, the
previous version C, of the clause is marked to be redundant by setting a
particular bit flag in the clause. However, C, is still valid and can still be
used by other threads. Redundant clauses are released when a thread cleans
its set of clauses. This requires every thread to be able to communicate with
any other thread by sending and receiving messages. In this context, two
issues are crucial:

e Regard the order. A new version of a clause has always to be sent
before the previous version of this clause is marked to be redundant.
Furthermore, after the release of a redundant clause, the solver has to
check for messages from all other threads.

e Messages between threads must never be lost. A message of any sender
must be visible to all receivers immediately, so that a new version of a
clause is ensured to be visible not later than the old version is marked
to be redundant.

The realisation of the message system is presented in the next subsection.

6.1.4 Communication of threads

In this subsection, we present the implementation of lossless queues used
for the communication between threads. Moreover, receive and send oper-
ations are non—blocking. A common concept to exchange messages within
concurrent programmes uses non-blocking circular queues: sender and re-
ceiver use a shared array of fixed size n and the next writing and reading
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positions (write/read) are both visible to the sender and to the receiver of
the queue. A write operation changes the value write < write + 1 MOD n.
The increment of the read value is analogous. The queue is empty if the
values of write and read are equal. If the queue contains n — 1 elements,
a push operation to the queue will not be successful since this clears the
queue. However, this violates the soundness condition of our solver. Based
on the described concept, we present non—blocking queues that allow for a
thread—safe extension of allocated memory to ensure that write operations
are always successful. The idea is related to the technique described by
Hendler et al. [HLMSO06|. Note that concurrent data structures presented
for programming languages that use garbage collection [HS08| cannot always
be adapted for manual memory management straightforwardly.

Linking Updates

If an object is shared among different threads, the object’s data may not be
modified concurrently, since there is no way to perform the modification by
an atomic operation. A straight solution to this problem is to provide a link
to a new version within the object itself.

Algorithm 6.2: Link new version O,, as update of object O,
Require Object O, to be updated by a new version O,
Function linkUpdate (O,,O,,)

3 Op.udt + Oy | copy reference to new object version
repeat

curr < O.usrs | copy bit mask

6 udtd < curr & udt_msk | indication for an update

until exchangeIf (O.usrs,curr,udtd)

A new version O,, of an object O, is initialised before it is finally linked
as a new version in Algorithm 6.2. The procedure must only be invoked by
the owner of an object. In line 3, the link O.udt of an object is used to link
a new version of this object. Note that this link is not used as an indication
for an update. To indicate that a new version for an object exists, a special
user mask udt _msk is used (udt _msk # M (T;) for all threads), as shown
in line 6. This ensures consistency when an update is linked while another
thread releases the same object concurrently. Otherwise, a thread ¢; may be
set as a user for a new version O,, of an object O,, whereas t; releases object
O, at the time when the new version is linked. Hence ¢; will not know about
the object O, but will be registered as a user of O,. Thus the allocated
memory will never be released.
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Algorithm 6.3: Load update of object Oy by a thread T;
Require Reference of object O

Return Next version of object O if available
Function loadUpdate (O, T;)

O.udt | May link to an update, set by Algorithm 6.2
5 if — hasUpdate (O) then return O | check udt_msk
Onew — O.udt | copy reference
releaseObject (O, T;) | see Algorithm 6.1

return O,,q,

Algorithm 6.3 shows a simple procedure to load an updated version of
an object if one is available. As mentioned above, the check for an update
does not use the link of an object O.udt. In line 5, the function hasUpdate
rather checks if the bit udt msk is set in O.usrs such that all operations
related to memory are managed by atomic accesses to the bit mask O.usrs.
The presented concept is used to make a queue extendable by its writing
thread. Basically, both the reading and writing thread share the same data
array for communication.

The operation to push data to a queue is outlined in Algorithm 6.4. The
actual data stored in the queue is wrapped into an object of type DataArray,
as listed in line 1. As in circular queues, the read field is incremented by
the consuming process and the write field is incremented by the producing
thread when data is put into the queue. As mentioned above, a push oper-
ation can not be applied if the write value is equal to the read value after
the push, since this indicates that the queue is empty. To allow for non—
blocking write operations, the producing process may link a new object of
type DataArray if a normal push is not possible. For this reason, the queue
keeps two references to the wrapped DataArray, one for the consuming and
one for the producing process (line 8). Usually both refer to the same object
in memory. However, if an update is linked by the producing thread, the
consuming thread refers to a previous version until all data is consumed.

A push to the queue increments the write value in line 11 but the modi-
fied value is not stored in the object before the data is actually put into the
queue. If a normal push is not possible (line 12), a new DataArray is con-
structed in line 13. The data is put into the new array before it is linked as
an update (in line 17) and the reference to the current DataArray is released.
Line 20 handles the normal case when data can be pushed immediately.

The procedure to read data from a queue is outlined in Algorithm 6.5.
Unlike the push operation, the pop operation uses the reference C' to the
DataArray.
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Algorithm 6.4: Non—blocking push to queue

1 Class DataArray

udt | Pointer to a new version
read | next read operation in data
write | next write operation in data
size | size of data
data ... | actual data in the queue
8 | a queue has two references to objects of type DataArray:

C (consumer) , P (producer)
Require Thread T; pushes data D to queue
Function pushQueue (7}, D)

11 next w < P.write + 1 mod P.size

12 if next _w = P.read then
13 N < construct new DataArray

N.data0] < D;

N.read < 0 | next read for consumer

N.write < 1; | next write for producer

17 linkUpdate (P, N) | link new version (Algo. 6.2)
releaseObject (P, T;) | unregister for old version

L P+ N

20 else
P.data[P.write] < D;

| Pwrite < next_w;

The crucial point to notice is the double check in lines 4 and 6 whether

the referenced queue is empty. If the reading thread cannot pop any data
from the queue (in line 4), it checks for an update of the DataArray C in
line 5. If no update is available, it returns immediately.
However, if an update is available, it is not ensured that all data of the cur-
rent version of C' was actually read. Consider the following case with writing
process W and reading process R. After the check in line 4 of Algorithm
6.5 by process R, the writing process performs several consecutive pushes to
the queue until no more write operations are possible. It will thus create a
new DataArray object and link it as new version in line 17 of Algorithm 6.4.
If, for some reason, the reading process got stuck between the lines 4 and
5 of Algorithm 6.5, the check in line 5 indicates a new version of the data
array. However, there is some unread data in the DataArray object that is
still referenced by C. Even though this course of events seems unlikely it
may and does happen in practice, especially when real concurrency comes
into play.
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Algorithm 6.5: Non—blocking pop from queue
Require Thread T; reads next data D from queue
Return true if new data was read, false otherwise
Function popQueue (7}, Dyt )

while C.read = C.write do

if — hasUpdate (C) then return false
if C.read = C.write then
| C 4 loadUpdate (C,T;)

8 Doyt < C.data]C.read|
C.read < C.read + 1 mod C.size
L return true

N O Ok

If the reading process reaches line 6, it is ensured that W only operates
on newer versions of the data array since it linked an update. Hence in line
7, it is ensured that no data is missed by the reading process. The actual
read operation is finally performed in line 8.

The described queue can be extended to serve more than one reading
process. In that case, there is one reference of the data array C...C} for
each reading thread. Thus it is sufficient to have one queue for each solving
thread where it can write messages to all other threads concurrently. This
implies that all messages of one sender will be read by all other threads.
This is desired and necessary if non-redundant clauses are sent but may be
undesirable for optional information, such as learnt clauses.

For this reason, every message contains an additional recommendation.
This is basically a user mask where the users are marked, for which the
message is assumed to be interesting. Messages that contain newly learnt
clauses, do not mark any user. On the other hand, for non-redundant clauses
every user is marked. However, if a redundant (learnt) clause C, is improved
(e.g. its set of literals is reduced), a new clause C), (|C,| < |Cy]) is created
and sent to all other threads. The recommendation is set to the user mask
of C,. C), is marked as learnt if C, was learnt. Any receiver considers the
recommendation of a message for the heuristics to decide whether a clause
is imported or whether it is released immediately. Clearly, different solver or
simplification approaches may use different criteria for the import of clauses.
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6.2 Utilising various Approaches

The functionality of physical clause sharing and the lossless communication
between threads allow for heterogeneous SAT solving. The ability to share
the entire set of clauses of all threads allows for several simplification tech-
niques. This constitutes an advantage over parallel solving where each thread
has its own copy of the clause database. Every thread may benefit from a
simplification of the clause database. If, for instance, a thread reduces the set
of literals of a clause by some simplification technique it can post the result
immediately to all other threads. In general, progress made by one thread
may be beneficial for several other threads. Besides the approaches presented
in the previous chapters, our parallel solver uses some more techniques, such
as blocked clause elimination or autarky detection. These techniques are
mentioned but we refer the reader to the original publications for detailed
descriptions.

6.2.1 The simplification thread

One thread of SArTagnan is mainly dedicated to simplifying the entire
clause database. It imports most of the clauses that it receives from all
other threads. It performs basic simplification techniques as subsumption,
backward subsumption and self-subsuming resolution and aims to eliminate
variables, as it is applied by common preprocessors (see Section 3.2.1 and
[SP04, EB05|). Moreover, it eliminates blocked clauses, as suggested by
Jarvisalo et al. [JBH10]. A blocked clause constitutes a specific redundant
constraint [Kul99a, Kul99b| that can be detected by inspecting all clauses
where a particular literal occurs in. This process can be incorporated into
variable elimination. Equal variables are detected by searching for strongly
connected components in the binary implication graph [APT79, Bra0l].

Only the simplification thread is allowed to decide on variable elimina-
tion, the replacement of equal variables and the deletion of blocked clauses.
All three techniques are critical in terms of concurrent application. Granting
these simplification techniques only to one thread is a safe way to ensure the
soundness of the parallel solver. If, for instance, two threads were allowed
to perform variable elimination, one had to ensure that the concurrent elim-
ination of different variables is independent of each other. In particular, it
has to be avoided that the elimination of a variable in one thread generates
a new clause that contains a variable that is eliminated by another thread at
the same time. Clauses that are removed as blocked clauses or within vari-
able elimination are kept in an extra list 7 which can be read by any thread.
If a thread finds an assignment that satisfies all clauses it can reimport the
clauses of 77 to compute a model for the formula.
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If a variable is eliminated or detected to be equal to another variable,
new clauses are constructed and sent to all other threads. In case of variable
equality, one variable r is chosen to be representative for the set of variables
E,. that are equal to r. For each clause that contains a variable of E, a new
clause is created and sent to all threads and the original clause is marked
to be redundant. As soon as all replacements are performed a particular
message is sent to the other threads.

An important task of the simplification thread is the detection of equal
or subsuming clauses. The fact that any thread is allowed to create and
send improved versions of a clause may introduce duplicate clauses. These
duplicates are detected and removed by common subsumption checks within
the simplification thread. However, to avoid an unnecessarily large number
of duplicates, every solving thread obeys to the following rule: if a clause C,
can be improved (i.e. some literals may be removed), a new version of the
clause C), is sent to the other threads only if C, was not already marked to
be redundant.

Guided search for autarkies in the SArTagnan version 2010

An autarky is a partial variable assignment that can safely be applied to
a formula F. The resulting formula F’ is equisatisfiable to F, i.e. F' is
satisfiable iff F is. However, if F is satisfiable, the set of models for F and
F' may be different [Kul00].

The simplification thread searches for autarkies, whereas hints are given by
other threads: whenever conflict analysis within a CDCL search determines
to jump back over several decision levels, then none of these decisions con-
tributes to the conflict. At this point, a CDCL thread sends a particular
message to the simplification thread, indicating the variable assignments it
jumped over. The simplification thread may check whether a subset of these
assignments is autarkic to the entire formula. However, these checks are
performed with little priority by the simplification thread.

Extensive asymmetric branching in the SArTagnan version 2011

The concept of asymmetric branching is an effective but rather costly sim-
plification technique that can be used in different solvers, such as MiniSat
|[ES12], PrecoSAT [Bie09b|, SApperloT 2009 [Kot09] and CryptoMiniSat
[So012]. As described in Section 3.2, the common technique has the draw-
back that it depends on the order of propagation. This drawback is overcome
by using the idea proposed in Section 3.2 in a slightly modified version.
Moreover, the concept of hyper—binary resolution is incorporated into the
asymmetric branching procedure, as described in Section 3.3.
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6.2.2 DMRP threads

Decision making with a reference point is an alternative SAT solving method
proposed by Goldberg [Gol06, Gol08a]. It spends more effort on decision
making than usual CDCL solving. The DMRP algorithm holds a complete
assignment (a so—called reference point) to the variables and considers those
clauses for decision making that are falsified by the reference point. A com-
petitive implementation of the approach is presented in the previous chapter
where also some modifications of the original heuristic are analysed.

We already pointed out that clauses which are learnt during the DMRP
algorithm seem to be more valuable than clauses that are learnt during
CDCL. This motivates the sharing of clauses that are generated within the
DMRP algorithm. In our configuration, one thread solely applies DMRP
solving as described in Chapter 5. However, in the parallel context it imple-
ments a crucial modification for the initialisation of the reference point:

As in the hybrid approach presented in Section 5.3, a restricted kind
of search is applied that considers the binary clauses of the formula Fy C
F. A model for Fs constitutes the new reference point. Consequently, the
resulting reference point satisfies all binary clauses of the formula F. To
compute a model for Fy, unassigned variables are chosen iteratively. Each
variable is assigned to that polarity, which is predominant for this variable
among all other solving threads. Subsequently, unit propagation is applied
by considering the clauses in F». Note that within this process new unit
clauses may be deduced or unsatisfiability may be proven.

6.2.3 CDCL threads

Most threads of SArTagnan apply conflict—driven SAT Solving with clause
learning. The use of class and function templates allows for diverse con-
figurations in each thread. If eight or more threads are available, all but
one CDCL thread use activities for variables for the decision heuristic. One
CDCL thread uses activity values for literals, as it was applied in the original
version of Chaff [MMZ101].

All CDCL threads can be configured to apply hyper—binary resolution
|[Bac02a]. Binary dominators [Bie09a| are used to detect clauses for hyper—
binary resolution during BCP. Most threads apply on—the—fly clause im-
provement [HS09]. If a clause C' can be improved (i.e. its set of literals can
be reduced), a new clause is created and is sent to the other threads. The
message will be recommended to all users of C. Every CDCL thread ap-
plies a different restart setting. Most threads use the Luby restart strategy
[LSZ93| with different initial sizes.
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More details on the exact configuration of different solving threads are pre-
sented in Section 6.3. The technique described in Chapter 4 to extend
Boolean constraint propagation is applied in most parallel CDCL threads.
In the following, the idea is briefly recapitulated.

Extended propagation in CDCL threads

In modern SAT solvers Boolean constraint propagation is mostly equal to
unit propagation. Basically, clauses that are unit (considering the current
partial assignment) imply the corresponding value for the remaining variable.
In Chapter 4, we analyse two approaches on how to extend unit propagation
by considering clauses with more than one unassigned literal. The described
approach uses the binary implication graph to detect common implications
of some literals.

This idea clearly benefits from the fact that several binary clauses are
exchanged among the different solving threads. Particularly, the application
of hyper—binary resolution within asymmetric branching in the simplification
thread produces plenty of binary clauses. The heuristic approach that either
uses the pessimistic or optimistic sink—tags technique (see Section 4.2.3) is
applied in almost all CDCL threads.

6.2.4 Handling incoming messages

In Section 6.1 and Section 6.2.1, different types of messages are described to
send newly created clauses and notifications about simplifications. Overall,
there are the following types of messages:

e Unit and binary clauses

Shared clauses with more than two literals

Elimination of variables

e Replacement of equal variables

Any thread checks for new messages whenever its search process is at de-
cision level zero. However, the receive procedure may be also called at higher
decision levels when more than k£ conflicts happened without an application
of the receive procedure. For the most threads, k is equal to 256. Moreover,
whenever the set of clauses has been cleaned, i.e. clauses that are marked
redundant are released, incoming messages are handled subsequently. Unit
and binary clauses are always imported and binary clauses are put in their
own data structure. Messages with shared clauses contain a recommenda-
tion to indicate the receivers for which the clause may be interesting. If a
(learnt) clause C'is not recommended to a receiving thread, the receiver may
still decide to import C' by considering the following criteria:
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e The LBD of C' is smaller than f - A, where A is the maximum LBD
value of any learnt clause that survived the previous garbage collection
of learnt clauses.

e Not more than p percent of literals (or variables) of C' have an activity
value that is smaller than %, where ¥ is the current maximum activity
value of all variables.

Audemard and Simon show that the LBD value of a clause may be a
successful criterion to predict the quality of a learnt clause [AS09]. How-
ever, since the LBD value is related to a particular CDCL search, it does
not have to be meaningful for a different search procedure. Our experiments
have shown that using the second criterion, as similarly used in ManySAT
[HJS09a, HJS09b], causes a more stable behaviour of the solver. Unlike
ManySAT, we do not yet apply control-based adaption for the input crite-
ria. The values f and p are static but different in each thread.

6.3 Evaluation

In this section, we evaluate our parallel solver SArTagnan with different
configurations. The solver is implemented in C++ and uses the OpenMP
library |Opel2| for parallelisation. The first part analyses the modification
of the data structure to allow for physical clause sharing. The latter part
studies different configurations and settings for the solver framework.

Sharing clauses physically

The data structure for clauses presented in Section 6.1.3 uses an additional
indirection for clauses with more than two literals: A clause C contains the
XOR value X(C) and a link to the shared set of literals. The cactus plot in
Figure 6.1 shows the effect of the indirection to the shared set of literals on
the solver’s speed. To disregard the effects of parallelisation and simplifica-
tion techniques, only one thread is used for this analysis. Each configuration
(i.e. each curve) applies a CDCL search with equal heuristic settings. Config-
urations differ in the implementation of watched literals. Figure 6.1 extends
the evaluation that is depicted in Figure 3.3. The tests have been run on all
614 industrial instances of the SAT competitions of 2007 and 2009 [Sat11]
and the SAT-Races of 2008 and 2010 [Sat10]. As before, a point (z,y) in
the cactus plot indicates that x instances could be solved when the time per
instance is limited to y seconds.

The first configuration (red) implements the common watching scheme
keeping the two watched literals at the front of a clause [Gel02, ES03]. The
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Figure 6.1: Effect of different clause implementations

second implementation (green) uses the XOR idea to omit both watched liter-
als of a clause C' completely and replace them by the value X'(C'), as presented
in Section 3.1. Both configurations cannot be used to share clauses phys-
ically and are plotted for the sake of comparison. The third configuration
(blue) wraps a clause C' into a data structure that contains the value X'(C)
and a link to the set of literals, as described in Section 6.1.3. The fourth
implementation (magenta) also uses this idea but extends the wrapping data
structure to cache the index idzx of a literal in the clause. Whenever a new
watched literal has to be determined during BCP, the literals in clause C are
processed in the order [idz,...,|C| —1,0,...,idz — 1].

When comparing the third configuration to the first and second, the
drawback of using another indirection to access clauses is clearly observable.
However, the fourth configuration shows that the caching of one literal’s
index considerably improves the performance. Nevertheless, the drawback
of using another indirection to access clauses cannot be compensated com-
pletely, since the magenta curve is consistently left of the red curve, which
represents the common implementation of watched literals. For this reason,
physical clause sharing in parallel SAT solving has to compensate for this
drawback by taking advantage of global simplification.
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Different solver configurations

We evaluated various solver configurations using eight parallel threads. To
allow for a fair comparison using real concurrency, each run of a solver has to
request eight cores per cluster node [BWG12|. Since this often increases the
queue time of submitted jobs considerably, we reduced the set of benchmarks
to the 100 instances of the SAT-Race 2008 [Sat10]. Each solver was allowed
to run for a maximum of 1200 seconds per instance.
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Figure 6.2: Effect of heterogeneous solver threads

Figure 6.2 compares four different solver configurations in a cactus plot
and depicts an interesting issue regarding the heterogeneity of different threads.
The first solver configuration (black) applies the VSIDS decision heuristic for
variables in each parallel thread (cf. Section 2.2.5). However, the settings
for each parallel CDCL thread still differ. The second configuration (blue)
replaces one of the eight CDCL threads by one DMRP thread, using the
heuristic described in Section 6.2.2.

The improvement is clearly observable in the plot. The next solver con-
figuration (red) changes the VSIDS heuristic in one CDCL thread to use
activities for literals instead of variables. This modification causes another
clearly observable improvement. Note that the use of activity values for lit-
erals was originally proposed for the VSIDS heuristic [MMZ101]. Since the
improvements made by MiniSat, activity values are now used for variables
instead [ES03|.
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threads 1 2 3 4 5 6 7 8
main task SIMP CDCL CDCL DMRP CDCL CDCL | CDCL CDCL
» act. for: vars vars vars vars lits vars vars
.5 decay 1.05 1.05 1.05 / 1.09 1.07 1.09 1.04
4 pol. || phase | phase | phase phase / false | phase
< rand. 0.2 0.15 0.2 0.15 0.15 0.15 0.15 0.2
BUP opt. pes. opt. %) opt. opt. %) pes.
+ type || static | Luby | Luby | Luby | Luby | geo. geo. geo.
g init 100 32 64 100 16 100 100 100
g inc. 0 Luby | Luby | Luby | Luby 1.5 1.5 1.3
2
2 LBD 3/2 3/2 3/2 3/2 5/4 3/2 3/2 7/6
E act || 90 70 80 70 70 | 80 | 70 80
o bin | v | vV | vV | © | v | vV | vV |V
cls improve vV vV vV %) v Vv vV v

Table 6.3: Configuration for the SAT-Race 2010 using eight threads

Overall, the third configuration performed best on the selected bench-
mark set. On average, it solved 92 of 100 instances for repeated runs within
a time limit (wall clock time) of 1200 seconds. Interestingly, the result of
the parallel solver is rarely returned by the DMRP thread or by the CDCL
thread, which uses the activity of literals (see also Figure 6.5). However, the
benefit of using these thread configurations is clearly visible in Figure 6.2.
The fourth configuration (orange) replaces one CDCL thread of the third
configuration by another DMRP solving thread. The solver performance
with this setting clearly declines.

Table 6.3 lists the details for the best performing solver configuration,
as chosen for the SAT-Race 2010 [Kot10b, KK11c]. The first four lines in-
dicate the settings for the VSIDS heuristic (where it makes sense) and the
percentage of random decisions. The decaying factor (second line) is slightly
varied in some threads. Most threads apply phase saving (|[PD07a, PD0O7b])
to choose the polarity (third row) for decision variables. One CDCL thread
always assigns the value false to decision variables, as was done in the first
version of MiniSat [ES03].

The fifth row indicates the application of extended propagation, as ex-
plained in Chapter 4. Six of all eight solving threads apply either the pes-
simistic or the optimistic heuristic. In particular, the concept is not applied
within DMRP to avoid linking the generated clauses into the data structure
(cf. Section 5.2.4). The next three rows list the restart configurations. As the
main task of the simplification thread is not solving, a restart is performed
every 100th conflict. For this thread, each restart also triggers the exten-
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sive application of simplification techniques. Four threads apply the Luby
restart strategy [LSZ93| with a different initial frequency (see also Section
5.3). The three remaining threads use geometric restarts, where the number
of maximal conflicts for one search process is multiplied by the given value
(increment).

As described above, a learnt clause is imported by a solving thread if the
corresponding message is recommended to the thread. Moreover, a clause
may still be imported based on the estimation of its quality. The subse-
quent two rows state the threshold for the two criteria explained in Section
6.2.4. As pointed out in Section 6.2.1, the simplification thread imports most
clauses to detect duplicates and subsumptions, and to apply several other
simplification techniques. On the other hand, the DMRP solving thread im-
ports fewer clauses due to its increased effort on the maintenance of clauses.
Besides the DMRP thread all other solving threads apply lazy hyper-binary
resolution [Bie09a| (cf. Section 3.3.1) and on-the-fly clause improvement
[HS09|. By using the latter technique, the possibility to remove some literals
from a shared clause may be detected during conflict analysis.

| average | 1 2 3 4 5 6 7 8
SIMP CDCL CDCL DMRP CDCL CDCL CDCL CDCL

restarts 44 | 1501 630 214 | 2416 14 15 21

props [10)] 24.1 | 143.5 | 100.3 74.3 | 115.8 96 | 145.3 | 156.3
jumps [10) 0.4 1.9 1.2 1.4 1.7 1.1 1.3 1.5
decisions [10%] 48 | 1893 | 1203 3115 | 1747 | 1055 | 1322 | 1505
conflicts [107] 4.3 | 254.5 | 184.8 | 100.6 | 220.6 | 229.8 | 292.4 | 298.5

max level 373 | 1852 | 1723 551 | 1604 726 | 1823 | 1787

prop/conf [10%] 48.1 3.6 3.2 3.6 3.1 3.2 2.3 2.9

jump/conf 225 41 35 10 23 9 18 16

~  short 10°] || 232 | 04| 49 6.7 | 135 0.5
B long [10°] 02| 298| 839 / 93.3 | 69.6 / 25.3
selfsub 6 473 534 565 695 670

hyper—bins [10%] || 221.8 21.5 16.7 42.2 22.1 32.6 36.2 20.7

Table 6.4: Statistics for the best solver configuration

In Table 6.4, some statistics of the previously described solver configura-
tion are listed. As in Table 6.3, each thread is represented by one column.
A value in the table represents the average over the results of all solved in-
stances. If stated in the first column, the values in one row may have to be
multiplied by 103 or 10°. When comparing the values of different threads,
one has to bear in mind that the first thread spends most of its time on
simplification, not on searching.
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The first six rows give some information on common search properties.
The average number of restarts, shown in the first row, follows directly from
the restart policy. The highest number of propagations is reached by the two
CDCL threads that use variable activities and geometric restarts. The third
row indicates the average value of the total number of decision levels that
are undone within search (backjumps). The application of frequent restarts
(threads 2 and 5) causes the highest number of jumps. The comparatively
high number of decisions for the DMRP solving thread is due to the complete
assignments that are computed at each restart to initialise a new reference
point (cf. Section 6.2.2). It is remarkable that the CDCL solving thread
that uses activity values for literals (thread 6) produces a small number of
decisions.

A big difference is observable for the number of generated conflict clauses.
The rightmost thread produces almost three times more conflicts than the
DMRP solving thread. On the other hand, the fourth and sixth threads
detect conflicts at clearly lower decision levels. On average, their maximal
decision level is significantly smaller than the maximal decision levels that are
reached by the other solving threads (disregarding the simplification thread).

In the next two rows, the number of propagations and jumps is related to
the number of conflicts. Again, it is remarkable that the two threads using
DMRP and activities for literals exhibit a comparatively small number of
decision levels that are undone by each conflict.

The application of extended propagation (BUP) generates additional
clauses, as explained in Section 4.2.4. The table distinguishes between gener-
ated short clauses with two literals at most and longer clauses. The average
number of generated clauses is particularly high when the optimistic heuristic
is applied (cf. Section 4.2.3). On the other hand, the number of generated
clauses that subsume the triggering clause is rather negligible. Extended
propagation clearly benefits from the application of lazy hyper—binary reso-
lution. As listed in the last row, each thread produces several binary clauses
that are, in turn, shared among all threads.

A high degree of sharing

Sharing a lot of information among several solving threads may be beneficial
in terms of the simplification of an instance. It can be still more useful to
consider more information for heuristics, as is done by the DMRP solving
thread. On the other hand, the interchange of information exhibits a major
drawback when it comes to deterministic solving. As we already pointed out
in the first two chapters of this thesis, small modifications of a solver may
have unexpectedly big side—effects [ASO8|. This issue makes it difficult to
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evaluate a modification of a solver or an entirely new approach. For the par-
allel case, things become even more complicated, the higher the interchange
of information is. Hamadi et al. presented the first deterministic parallel
SAT solver [HJPS11]. However, this solver does not share information phys-
ically. Copies of clauses may be interchanged in designated synchronised
blocks.
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Figure 6.5: Threads returning the result

Figure 6.5 summarises the results of seven solver runs with nearly identi-
cal settings on all 100 instances of the SAT—Race 2008. For each run on the
100 instances, we stored the percentage of instances for which a particular
thread was fastest. The red bar illustrates the average value over all seven
runs. The minimal (maximal) percentage is indicated by the yellow (blue)
bar.

The plot shows that neither the simplification thread nor the DMRP
thread returns the result very often. Furthermore, the sixth thread, which
uses activity of literals, exhibits smaller values than the remaining threads.
However, this does not necessarily reflect their contribution to the solving
of an instance (cf. Figure 6.2). An interesting issue regarding Figure 6.5 is
the difference between the minimal and the maximal values. For the third
thread in particular, there was one run where it solved 21.6% of all instances.
In another run, it only returned the result for 7.6% of the same instances.
This underlines the nondeterministic behaviour of the solver.



6.3. Evaluation 151

# solved || plingeling l\fa;}" SAI; 1 SArTagnan | antom

in 1st run 78 75 72 70 67
SAT/UNSAT 23/55 | 19/56 | 18,54 18/52 | 19/48
& seconds 97.7 | 143.9 | 124.0 86.5 83.1

in 2nd run 79 74 73 70 65

in 3rd run 79 74 71 72 68

in at least 80| | 76 76 69

one run

Table 6.6: Results of parallel solvers that qualified for the second
round in the SAT-Race 2010 [Sat10]

Table 6.6 shows the results of the parallel track in the SAT-Race 2010.
The table is available at [Sat10] and lists all parallel solvers that qualified
for the second round. Due to the nondeterministic behaviour of parallel SAT
solvers, all tests in the parallel track are performed three times. The table
indicates the results for all three runs. However, only the first run was eval-
uated in the 2010 race.

In particular, the last row of the table is interesting. It states the number
of instances that are solved in at least one of the three runs. For ManySAT
and SArTagnan, the difference of this value to its best run is bigger than for
the other solvers. Besides the difference between the best and the worst run,
this can be considered as another indication for a high degree of nondeter-
minism.

Regarding the parallelisation of SAT solving, it is remarkable that the
most successful solvers share the least information among different threads.
In Table 6.6, plingeling is clearly the best solver, whereas it only interchanges
unit clauses among different threads. This may be a direct consequence of
information sharing, being it physical or logical. Another reason may be the
possibility of optimising such a parallel solver in a better way. The solving
strategy in each thread can be optimised independently and deterministically
to broaden the total set of solved instances. The success of this strategy was
impressively shown by the parallel solver ppfolio in the SAT competition
2011 [Sat11]. Five different SAT solvers are compiled to one parallel solver
without any exchange of information between the solvers [Roull]. In the
competition, ppfolio beat several other parallel solvers. This result may set
a trend for further parallelisation of SAT.
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6.4 Summary

In Chapters 3 to 5, different SAT solving approaches and techniques have
been presented and evaluated. In this chapter, we incorporated many of
these techniques into a parallel SAT solver. We distinguished two aspects
of parallel SAT solving. The first aspect is related to the physical sharing
of clauses in the solver. The second aspect is concerned with heterogeneous
SAT solving by using different solving techniques.

We first presented a design and implementation that allows for physi-
cal clause sharing in parallel SAT solving. This is contrary to most other
state—of-the—art parallel solvers that only exchange copies of some clauses
among different solving threads. Physical clause sharing and the communi-
cation between threads is used to let all threads benefit from the application
of simplification and clause minimisation techniques in any other thread.
Thereby, all communication and sharing of data is realised without the use
of operating system locks. One drawback of physical clause sharing is the
additional indirection to access the set of literals of a clause. This issue was
studied in Section 6.3.

In the second part, we discussed the incorporation of different solving
techniques in more detail and referred to the relevant work within the pre-
ceding chapters. We explained and evaluated different configurations of our
parallel solver SArTagnan. Moreover, we examined the final configuration of
the solver that participated in the SAT-Race 2010. SArTagnan could com-
pete with state—of—the—art parallel SAT solvers and was awarded the best
student solver in the parallel track.



Chapter

Related Projects

Apart from the work presented in the previous chapters, there are some
projects that are slightly beside the common thread of the thesis. Therefore,
this chapter briefly describes some projects! that are related to SAT in dif-
ferent ways.

Understanding and analysing the success and behaviour of SAT solving
techniques is still an open challenge in SAT research. In Section 7.1, we
present the tool CoPAn that allows for a deep analysis of several aspects
related to learning within CDCL SAT solvers. On the Computer Science
Day in Tiibingen, the Algorithmik group? demonstrated an interactive tool
to embed planar graphs onto grids. For some graphs even the presenters
could not agree on the embeddability of the graph. Section 7.2 presents the
work that was subsequently launched to prove facts.

SAT solving has established itself in many different areas often related
to verification or configuration problems. The Symbolisches Rechnen group?
has a long lasting cooperation with the automotive industry to verify prod-
uct configuration. Section 7.3 summarises some results of our collaboration.
The introduction of the concept of backdoors for SAT instances opened new
and interesting perspectives for theoretical and practical research related to
SAT. Section 7.4 sketches two approaches in the context of backdoors.

In 2011 the SAT competition provided two new tracks on the minimisa-
tion of unsatisfiable subsets (MUS). Previous achievements [Kot09, Kot10b]
motivated the submission of a MUS solver that finished third in the clause
based MUS computation. Section 7.5 gives an overview of the main aspects
of the implementation.

! The projects in Sect. 7.1,7.3 and 7.4 were part of the StrAIEnSATs proposal [KK13]
2 Wilhelm-Schickard-Institut, Universitit Tiibingen
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7.1 Conflict Pattern Analysis

Though the vast success of the CDCL approach to SAT solving [MSS99,
ZMMMO1, ES03]| is well documented, it is incomprehensible why small changes
in the choice of parameters may cause significantly different behaviour of the
solver. With the tool CoPAn (Conflict Pattern Analysis) we provide a per-
spective to find an answer for the question about subtle differences between
successful and rather poor solver runs [KZSK12, Seil0]. CoPAn allows for an
in—depth analysis of conflicts and the associated process of producing learnt
clauses. The analysis requires common proof logging output of the systems
and uses efficient external data structures to cope with a big amount of
logged data.

Taking a closer look at the inside of learning within CDCL is motivated
by the high contribution of learning to a solver’s efficiency [KSMS11|. On one
hand, new measures are proposed to estimate the quality of learnt clauses
based on the observation of CDCL solvers on industrial instances [AS09].
On the other hand, it is very promising to turn away from these static
measures that cause a definitive elimination of clauses and focus on a dy-
namic handling of learnt clauses [ALMS11]. Therefore, changes within con-
flict analysis can lead to a considerable speedup of the solving process (see
[SB09, AS09, HJS10]).
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Figure 7.1: Main view of the CoPAn GUI



7.1. Conflict Pattern Analysis 155

Patterns in clause learning

In contrast to any generic learning scheme we focus on different resolution
trees that are applied to learn new clauses. At first CoPAn allows for visualis-
ing the resolution trees that were logged by a CDCL solver (Figure 7.1). The
main focus, however, is put on the patterns that can be observed in the res-
olution trees of different conflicts rather than pure visualisation. Unlike the
implication graph, as it is described by Marques-Silva et al. [MSS99, SB09],
we consider a resolution graph (tree) that contains one node for each clause
contributing to the conflict. For each resolution operation an edge is drawn.
In CoPAn, we consider the resolution graph with additional edges, a so—
called clashing graph. An edge between two nodes (clauses) is drawn iff
they share exactly one clashing literal (see [Kul04]). The decision to focus
on clashing graphs rather than on common implication graphs is based on
its direct relation to resolution. Isomorphic subpatterns in different clashing
graphs are likely to allow for similar resolution operations.

Features of CoPAn

One of the most advanced features in CoPAn is the search and filter func-
tionality that goes along with resolution patterns. Any resolution pattern
that is shown in the main window can be used to filter all conflicts of a
solver’s run. This allows a user to search for conflicts that exhibit similar
resolution patterns even if the pattern under consideration only constitutes
a subgraph of another learning operation.

A typical task could be to search for significantly common properties
among conflicts with isomorphic resolution pattern. Properties of clauses
may be attributes, such as backjumping distance [MSS99], activity [MMZ™01,
ES03] and LBD value [AS09] but also user—defined properties. The most im-
portant features of CoPAn can be summarised as follows:

e Search for isomorphic resolution patterns - within one instance or
within a selection of several instances

e Subsumption checks of (subsets of) clauses
e Specification of user—defined properties that can be linked to clauses

e GUI to visualise conflicts, to explore the effect of various filters and to
trace learning and proofs interactively

e Preprocessing of logged data to build efficient data structures and in-
dices for further examinations

e Batch processing to analyse sets of instances in unattended mode
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7.2 Using SAT for a Graph Problem — GridFit

There are many problems in graph theory that allow for a translation into
SAT [Hoo98, Vel07, GSM10]. It is also a common approach to generate
so—called crafted instances for benchmarking. In [KK10]|, we present a SAT
encoding to tackle the following graph problem for small graphs. Especially
for research purposes it may be useful to certainly answer this question for
a particular setting.

For a given planar graph G = (V, E) (as in Figure 7.2) and a rectangle of
size h X w we ask, whether there exists a planar straight-line embedding of
G onto the grid—points of the rectangle. For this NP-hard problem [KWO07]
some powerful heuristics have been developed to minimise the area of an
embedding of a given graph [KWO07, Kru07|. Moreover, for particular families
of graphs upper and lower bounds on the area have been proven [FPOS§]|.
However, in the general case it is not possible to ensure whether there exists
an embedding onto a rectangle that preserves a particular area restriction.

Figure 7.2: The depicted graph contains 24 vertices and is planar,
i.e. it can be embedded without edge crossings. As on the Computer
Science Day in Tiibingen the question may arise whether it is possible
to find an embedding for this graph onto a rectangle with 6 x 4 grid
points.

The planar embeddability of a graph onto a given rectangle can be for-
mulated as a SAT problem. The output of a solver for such a SAT encoding
can be translated back straightforwardly. If the solver proves unsatisfiability,
the existence of an area preserving embedding is disproved. If, on the other
hand, the solver proves satisfiability, the computed model can be translated
back into a valid embedding. The tool GridFit takes a graph and a grid
specification as input and invokes a particularly tuned SAT solver for the
transformed problem. If existing, it returns a valid embedding.
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(1)
@)

®

Figure 7.3: Embedding the graph onto a 4 x 6 rectangle is impossi-
ble and can be disproved by the solver. However, for a 5 x 5 rectangle
the depicted solution is computed.

SAT encoding and solver modification

Choosing a proper encoding may often be crucial for the feasibility to solve
the underlying problem. In [KK10], we present one encoding that is basically
composed of the following two parts:

(i) Vertices have to be matched to grid positions.

(ii) A computed embedding has to be planar.

For a proper matching of vertices to grid positions it has to be ensured
that any vertex of the graph is placed on at least one grid position and sec-
ondly any grid position holds at most one vertex. To make part (i) more
efficient, we modified our SAT solver to additionally support cardinality con-
straints. To enforce a planar embedding, additional variables are used that
represent the existence of straight—line connections between any two grid po-
sitions. Constraints are added to prohibit the coexistence of any two crossing
straight—lines. This also reduces the number of symmetric constraints.

Experiments have shown, that the SAT approach has difficulties to deal
with larger graphs in general. However, significant speedups can often be
achieved for special classes of graphs. Particularly interesting in the context
of minimal grid embeddings are the results for nested triangle graphs (see

[FPOS]).
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7.3 Application for Automotive Industry

The application of SAT technology has proven its usefulness for industrial
applications. Many verification and configuration applications use a SAT
solver as back—end technology [Vel02, Vel04, BP08, MS08, ABL110, VG11].
The cooperation with the car manufacturer Daimler [SKKO03] is one of the
pillars of the project StrAIEnSATs [KK13|. Theoretical approaches and im-
plementations for the formal verification of the constructability of cars can
be evaluated in real practice.

Boolean logic meets practice

Comprehensive work has been done [SKKO03]| to allow for the direct utilisation
of formal methods to the applications in the field of automotive product
configuration. To this end, all constraints regarding the configuration of an
automobile are expressed as a single Boolean formula, a so—called POF3.
Every solution of the POF corresponds to one possible car configuration.
By using the formal approach, conclusions can be drawn about cars that are
not required to have ever been constructed before. In general, all cars that
can be configured and constructed according to the POF may be considered
and analysed. For example, the following questions about the bill of materials
can be modelled and solved as satisfiability problems:

e Are the constraints for a particular part of the bill of materials com-
patible with the POF?

e Are there any automobiles for which several alternative parts are or-
dered at the same time?

e Are there any automobiles where parts may be lacking?

The solver that was used in practice until 2008 implemented all satis-
fiability checks without a transformation into CNF |Kai03|. However, the
increase of complexity of the resulting SAT problems caused the solver to
exceed the timeout of 30 seconds for some instances. Based on our SAT
solver [Kot09] we implemented a more efficient solver engine tailored to the
particular needs of the application at Daimler. The main features of the
plain CNF solver can be summarised as follows:

e In difference to the non—CNF solver, the input formula is transformed
into CNF. The Tseitin transformation [Tse68| is modified to limit the
total number of additional variables. As long as the resulting CNF
encoding does not exceed a given size, expansion is applied for the
translation into CNF.

3Product Overview Formula
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e Due to the kind of queries of the practical application two resulting
formulae Fy and F; may often have the following properties: F} =
Fo A Fs, whereas Fy contains only a few additional constraints. The
transformation to CNF can incorporate this fact and generate formulae
Fy and FY that only differ in a small set of clauses. As a consequence,
after solving F{j, the set of learnt clauses and heuristic information (e.g.
activity values of variables) are kept by the solver. This knowledge can
be reused to solve F}'. Consequently, learning is realised beyond the
scope of one single instance.

Evaluation

The modified solver engine was evaluated in a joint work with Matthias
Sauter. Figure 7.4 compares the runtime of the two solving approaches
(CNF and non-CNF) for different series of cars. The higher the complexity
of a formula the less significant are the costs for the transformation into CNF'.

The queries for the Daimler series C906 induce 162,000 SAT instances
that have to be tested. While the non—-CNF solver required 39,678 seconds
for the overall computation (& : 0.25 seconds per instance), our modified
solver reduces the time remarkably by more than 90 percent. All computa-
tions are completed after 3,078 seconds (& : 0.02 seconds per instance).
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Figure 7.4: Runtime comparison of the two solvers for complete
constructability checks of different series of cars.
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7.4 Structure in SAT Instances — Backdoors

There is a strong belief in different SAT communities that real-world SAT
instances are structured in some way. Several properties can be speci-
fied in which randomly generated instances differ from industrial instances
[NLBD*04, XHLB07]. This fact encourages the development of domain spe-
cific solvers, as the results of the SAT competitions clearly show [Satll].
Based on structural information portfolio SAT solvers may then choose a
proper solver for a particular domain [XHHLBO0S8|. Despite the recent suc-
cess of portfolio solvers it is still an open and challenging task to predict
the hardness of an instance in advance. The related question of estimating
the progress during solving is still open, although many advances have been
published recently [HWO08|.

The concept of backdoors was introduced in 2003 to measure and cat-
egorise the hardness of SAT instances [WGS03a, WGS03b|. Basically, a
subset of variables B C V of a formula F' is a backdoor to solve F' if the sat-
isfiability of F' can be decided within a time-bound that is only exponential
in B. In the seminal paper [WGS03a], the authors give examples of ex-
tremely small backdoors for industrial SAT instances. Hence, the idea was
taken up by different SAT communities and enhanced in many directions
[Int03, Sze05, SS07, DGS07, DGS09]. In [Kot07]|, we explore and analyse
different aspects related to backdoors. Further improvements and advances
are published in [KKS08a, KKS08b].

Backdoors in theory

In [KKS08al, we improve a theoretical bound for an NP-hard subclass of
3-SAT, first presented in [Kot07|. The considered class 2*-CNF is defined
as a subclass of 3-SAT with the restriction that any clause C' with |C| = 3
must only contain negative literals.

To decide whether an instance of class 2*-CNF is satisfiable is NP—
complete [Kot07]. Algorithm 7.1 shows a procedure to solve instances of this
class by using two different kinds of backdoors. Unlike the common applica-
tion of backdoors, this algorithm also uses the absence of backdoors of a par-
ticular size. The complexity of the algorithm is bounded by O(1.427™ - p(n))
where p(n) is polynomial. This bound is slightly better than the bound
0(1.4423™) to solve the more general class of mixed Horn formulae (MHF)
[PS07]. At the time of publication, the fastest deterministic algorithm to
solve 3-SAT was bounded by O(1.473") [BK04|, meanwhile it has been im-
proved to 0(1.439™) |[KS10].
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Algorithm 7.1: A backdoor—driven 2*-CNF solver

Function bdSolve (F)
¢ < logy 151(2.0755) ~ 0.513

CT « {(xiVz;) € F: x;,x; positive}
Choose minimum BT C V, such that VC € CT J 2, € BT :2; € C
if [BY| <c-[V] then
| return Solve F by using the Horn-backdoor B+
C™ «—{(@r VT VTj) € F: Tp,T;,T; negative}
Choose minimum B~ C V, such that VC e C~ dx; € B~ :7; € C
if |[B7| < (1—¢)-|V| then
| return Solve F' by using the binary—backdoor B~
L return F' Unsatisfiable

Given a formula F' of class 2*-CNF, the algorithm focuses on the set
of binary clauses C" that contain positive literals only. If a Vertex Cover
Bt of at most ¢ - |V| variables can be found such that all clauses in Ct
are covered, then BT constitutes a Horn-backdoor. In that case, F' can
be solved by checking all 2lB* assignments for the variables in BT. For
any such assignment the remaining formula will be a polynomially decidable
Horn formula. If no such backdoor exists, the algorithm checks analogously
if there is a 3-Hitting Set B~ with at most (1 — ¢) - [V| variables to cover all
ternary clauses with only negative literals C'~. If existent, B~ constitutes a
binary—backdoor. If none of these two size restricted backdoors exist, then F
has to be unsatisfiable since C™ and C~ cannot be satisfied simultaneously.
With a proper choice of constant ¢ and the application of FPT algorithms
[Nie02, WahO7] for the Vertex Cover and the 3-Hitting Set computation, the
worst case upper bound can be guaranteed.

Backdoors in practice

The work presented in [KKS08b]|, deals with backdoors with regard to Re-
nameable Horn subformulae. The requirements to rename the variables of
a given formula F' to make it a Horn formula are modelled as a directed
graph. This graph constitutes the binary implication graph of Aspvall et
al. |APT79] of the constraints to decide whether a formula is Renameable
Horn [Lew78|. Based on the so—called dependency graph we present two
algorithms that remove a possibly small number of variables B to make the
graph acyclic. A result of these algorithms gives a renaming of the vari-
ables V \ B. Furthermore, B constitutes a Horn-backdoor for the renamed
formula. The algorithms allow for the computation of small backdoors for
some industrial SAT instances within reasonable time. Unlike the first re-
sults by Williams et al. [WGS03a|, the presented algorithms do not require
a complete solution of the given formula.
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7.5 Minimal Unsatisfiable Subsets

The transformation of a real-world problem into SAT can often be a con-
venient way to solve the problem. However, due to the nature of SAT the
result of a standard solver will at first be Boolean. For a satisfiable instance,
a found model may be reasonably retransformed into the original problem.
On the other hand, if a solver detects unsatisfiability, this may only indi-
cate the existence of a failure in the original application. If so, it may be
indispensable to narrow down the set of clauses to an unsatisfiable core to
possibly eliminate a failure in the input formula.

Given an unsatisfiable instance, a MUS solver computes a minimal un-
satisfiable subset of clauses (MUS, or MUC for Minimal Unsatisfiable Core)
that is still unsatisfiable. Hence the removal of any clause of a MUS results
in a satisfiable instance. Minimal sets can also be defined on a higher level
where each clause belongs to a group or category of clauses that represent a
logical unit (e.g. a hardware module) of the original problem. Minimality is
then related to groups of clauses.

A basic algorithm

Surprisingly, a very basic approach to minimise unsatisfiable cores turns out
to exhibit the currently best performance. The idea is formally described by
Nadel [Nad10]. We only sketch the procedure for clause-based MUSes here.
An unsatisfiable set of clauses U is minimised by iteratively testing each
clause C; of Y. The initially empty set M holds the clauses that are def-
initely known to be in the minimal set. If 7; = M UU \ C; is satisfiable,
then C; is required for unsatisfiability and will thus be put into M. If, on
the other hand, 7; is proven to be unsatisfiable, then the empty clause was
eventually learnt by the solver. Analysing the proof trace of the solver allows
for removing all clauses from U that did not contribute to learning the empty
clause. Obviously, at least C; can be removed from U. As soon as U gets
empty, M constitutes a MUS.

The minimisation is based on the modification of clauses and the use of
so—called selector variables. Each non-unit clause C; = {l, V...V [,} of
the original formula is extended by a fresh variable such that C} = {s; V
lz V...V l,}. By default, all selector variables are assumed (i.e. decided
at level 0) to be false so that we have C; = C] for all clauses. When
analysing the proof trace after an unsatisfiable result, the selector variables
allow for the identification of assumptions that contributed to the proven
result. Secondly, the clause set 7; can be built easily by temporarily setting
the selector variable s; to true.



7.5. Minimal Unsatisfiable Subsets 163

Tuning the MUS computation

In order to prove the minimality of an unsatisfiable core the approach de-
scribed above requires a SAT solver to solve at least | M| different formulae.
Many of these formulae are easy and can be solved quickly. The success of
MoUsSaka [Kot11] in the MUS competition 2011 [Sat11] is rather based on
its data structure than on extraordinary MUS heuristics.

Clause extension

In addition to the XOR—watchers scheme described in Section 3.1, the imple-
mentation of clauses is adapted to the demands for proof tracing and MUS
computations. Each non—unit clause contains at least one variable that is
false at level zero — most of the time. Learnt clauses may contain several
such literals. This motivates the partition of clauses into fixed literals that
are only used for conflict analysis and other literals.

The implementation shown in Figure 7.5 extends the one of Figure 3.1
by using an extra bit to mark the end of unfixed literals within a clause.
Unit propagation only needs to check literals up to this partition mark. Fre-
quently, after k calls of the SAT solver the next k selector variables are
scheduled. This requires to abolish all partition marks within clauses where
a scheduled selector would be invisible for BCP.

10 watches:
11 watches:

foorn | 2 1 B 1 o« Tk ] |(nj
)\

xor of two watched literals current last bit absolute last bit

Figure 7.5: Partitioning of literals (extension to Figure 3.1)

Cleaning and simplification

After some tests of selector variables there are many variables (at least the
tested selectors) whose state is finally fixed and will not be changed in later
minimisation iterations. Using this fact simplification can make the formula
much smaller and often easier for later calls of the solver. Furthermore,
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experiments have shown that it is eminently valuable to apply pure literal
elimination, i.e. the value of variables that only occur in at most one polarity
can be fixed. Since a CDCL-based SAT solver has to assign all variables to
detect satisfiability for a formula, even trivially satisfiable inputs 7; require
the assignment and unassignment of all unfixed variables. Thus fixing as
many variables as possible is worthwhile. Frequent simplifications of the
formula can be used to rearrange the partition marks of clauses.

Variable activity

The commonly applied VSIDS heuristic [MMZ"01] uses activity scores for
unfixed variables [ES03|. During solving variables with high scores are chosen
for decisions. Analogously, we increment the activity value of a fixed variable
whenever it is involved in a conflict. In contrast to VSIDS, a low activity
score is preferred when minimisation chooses a selector variable from U for
the next clause set 7;. This is motivated by the fact that a selector variable
s; with low activity shows a minor contribution to recent conflicts. Thus,
the actual set of learnt clauses may be useful to prove unsatisfiability for the
set 7; (where s; is irrelevant) with little effort.

Quick tests

For many temporary clause sets 7;, the solver requires only a few conflicts
to return a result. If a selector variable s; is tested for the first time and
too many conflicts arise during solving, the solver quits and the test of s; is
postponed until quick tests have been conducted for all selector variables. It
may also happen that the complete (i.e. the second) test is never performed.
This applies if s; is determined to be irrelevant by the proof analysis after
an unsatisfiability result for another set 7;.



Chapter

Conclusion

In this thesis, we studied different methods and techniques to solve instances
of the Satisfiability problem. We particularly focused on SAT instances that
encode real-world applications. For this kind of instances, conflict—driven
solving constitutes the method of choice and its implementations have been
highly optimised within the last 15 years. The motivation of this work was to
elaborate on rather uncommon methods that go beyond predominant solving
techniques.

Results of the thesis

In Chapter 3, we suggested an improvement of the implementation of the
two watched literals scheme that is applied in most state—of-the—art SAT
solvers. The idea is based on the observation that a clause is solely accessed
by one of its two watched literals during the search. This allows for an XOR
compression of the two watched literals, which, in turn reduces the resource
requirements of the solver. In the remainder of this chapter, we analysed the
simplification of SAT instances by the application of asymmetric branching.
Asymmetric branching allows for the tightening of clauses (removal of lit-
erals of a clause) and constitutes a powerful technique in terms of quality.
We proposed an algorithm to enhance the technique by making its appli-
cation independent of the order of literals in a clause. In this context, we
proved that it is NP—hard to compute an optimal tightening of a clause. We
further described how hyper—binary resolution can be incorporated in the
enhanced algorithm, as this is done for common asymmetric branching. We
evaluated the practical application of the presented approach by considering
several different aspects. Although the quality of tightening can clearly be
improved, the technique has to be applied selectively to keep the computa-
tional effort acceptable.
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A fast execution of Boolean constraint propagation (BCP) is utterly es-
sential for state-of-the—art SAT solvers. Many improvements have been
proposed and engineered to improve BCP in terms of runtime. In contrast
to this, we studied the improvement of BCP in terms of quality in Chapter 4.
More precisely, we proposed an idea on how to enhance BCP by considering
clauses for propagation that are not required to be unit under the partial
assignment. We presented two main approaches to put the theoretical idea
into practice. Thereupon, we suggested different heuristics to improve the
enhancement of propagation. We analysed the quality as well as the compu-
tational effort for both approaches and the proposed heuristics. Ultimately,
the most superficial heuristic proved itself to be the most efficient in practice.
It clearly outperforms the pure application of unit propagation within BCP.

In Chapter 5, we moved further away from CDCL SAT solving. We exam-
ined an approach proposed by Goldberg [Gol08a] to use a so—called reference
point for decision making (DMRP). A reference point is basically a complete
assignment to the variables of the formula. Any decision is based on the set of
clauses that are falsified by the reference point. As a consequence, the solver
has to maintain more information during the search. We presented a data
structure and an efficient implementation of the DMRP algorithm. More-
over, we proposed different heuristics for the practical application of DMRP.
Particularly, we suggested the hybridisation of DMRP and CDCL solving.
While the pure application of our DMRP implementation cannot compete
with CDCL, the hybrid approach exhibits a considerable improvement over
pure CDCL solving. Furthermore, the evaluation of different solver config-
urations indicated a significant improvement for particular families of SAT
instances.

We incorporated most of the presented techniques into a multithreaded
SAT solver. In the spirit of this thesis, we used a rather uncommon im-
plementation of the solver. Our parallel solver SArTagnan shares clauses
logically and physically. Most parallel SAT solvers enable the logical shar-
ing of clauses but keep different copies of the same clause in memory. In
Chapter 6, we described the implementation of SArTagnan with a focus on
avoiding mutex—locks by simultaneously sharing data among several threads.
The extensive sharing of data offers the advantage of easily exchanging valu-
able information, such as the tightening of a clause. On the other hand, the
performance of the solver for one instance is likely to vary in different runs.
This nondeterminism makes it difficult to optimise the solver in practice.

In the area of practical SAT solving, international competitions are or-
ganised to evaluate solvers and new solving approaches reasonably and trans-
parently [Sat11l, Sat10]|. While working on this thesis, we implemented sev-
eral solving methods and different kinds of solvers. The first version of our
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sequential solver SApperloT has won a silver medal in the SAT competition
of 2009. Our parallel solver SArTagnan, which we described in Chapter 6,
was awarded the best student solver in the parallel track within the SAT—
Race of 2010. In the SAT competition of 2011, a MUS (minimal unsatisfiable
subsets) track was offered for the first time. We briefly described the main
ideas of our MUS solver MoUsSaka in Section 7.5. The solver is based on
SApperloT and finished third in the plain MUS track. Its success is also
based on the improved data structure which uses the XOR compression, as
described in Section 3.1.

Directions for future work

In Section 3.4, we suggested a heuristic to apply our asymmetric branching
variant AB* for a subset of clauses in between CDCL searches. Values of
variables that are stored by the phase saving heuristic [PD07a| are inter-
preted as a complete assignment. Clauses that are falsified by this implicit
assignment are likely to be hard constraints for the solver. The restriction of
costly simplification to the set of these hard clauses improved the overall per-
formance for the application of AB*. Further heuristics may choose other
reasonable subsets of clauses for which asymmetric branching or AB* are
applied. As the techniques are very powerful in terms of quality (removal
of literals), the higher computational costs may be worthwhile, when the
considered constraints are known to be important for the solver. Particu-
larly, the application of simplification techniques in between CDCL searches
(inprocessing) may use different properties to estimate the importance of a
clause.

The suggested extension of BCP (Chapter 4) considers the set of binary
clauses of a formula to detect implied assignments. In particular, the binary
implications of all unassigned literals of a clause are inspected. If a variable
assignment is implied by all unassigned literals of a clause, the assignment
can be applied immediately. The evaluation indicates that there are many
of these inevitable implications. The presented methods only consider the
binary clauses of a formula. However, during a search there are plenty of
clauses that are binary under the current partial assignment. These clauses
extend the binary implications at the current decision level in the search. It
would be interesting to study the impact of these (temporary) binary impli-
cations. Especially for hard instances, when search goes deep and reaches
high decision levels, a further improvement of BCP could turn to account, as
it might help the solver to escape from these states of the search more quickly.

The presented implementation of DMRP has proven to be useful when
applied reasonably. The combination of DMRP and CDCL to a hybrid
solver as well as the application of DMRP within parallel solving improved
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the performance of the solvers. We see a promising application of DMRP in
the context of MUS solving. Marques-Silva et el. presented the (recursive)
model rotation technique to speed up MUS computation [MSL11, BMS11].
Basically, if an assignment 7 was found that satisfies all but one clauses of
the formula, model rotation aims to find further assignments (close to 7)
that also satisfy all but one clauses. For each assignment 7/ that is found
to satisfy F \ C’, the solver knows that C” has to be contained in the min-
imal unsatisfiable formula. However, this kind of search, which is based on
a complete assignment, is thoroughly applied by the DMRP approach. A
careful adaption of a DMRP implementation for the application within a
MUS solver has therefore a good chance to outperform (recursive) model
rotation.

We are convinced that studying and engineering advanced SAT solving
methods constitutes an important issue for practical SAT research. The
number of applications where SAT is used as backend technology still keeps
on increasing. Solving techniques that are successful on instances of partic-
ular applications may thus gain even more importance in the future.
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