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Zusammenfassung

Diese Doktorarbeit ist in zwei Teile aufgespaltet, die sich jeweils mit den beiden un-
gelosten Hauptfragen der QCD beschéftigt. Im ersten Teil untersuchen wir chirale Sym-
metriebrechung. Wir konzentrieren uns auf den fermionischen Anteil der QCD-Lagrange-
funktion, da die chirale Symmetrie eine Eigenschaft des Quarksektors ist. Im zweiten Teil
wenden wir uns dem Problem des Farbeinschlusses zu und berechnen das Potential zwi-
schen einem Paar unendlich schwerer Quarks aus dem sogenannten Wilsonloop. Hier
befassen wir uns mit der reinen Gluodynamik, da der Farbeinschluss im gluonischen Sek-
tor der QCD verschlisselt ist.

Der erste Teil dieser Doktorarbeit behandelt die Einbeziehung dynamischer Fermionen in
den Variationszugang zur QCD in Coulomb-Eichung. Es ist seit dreiBig Jahren bekannt,
dass ein Ansatz fiir das Quark-Vakuumwellenfunktional, der die BCS-Theorie imitiert,
obwohl auf einem qualitativen Level erfolgreich, nicht ausreicht, um das richtige MaB
an dynamischer chiraler Symmetriebrechung zu generieren, das fiir die dynamische Nu-
kleonmasse benétigt wird — der Wert des chiralen Kondensates ist um einen Faktor zwei
zu klein. Wir identifizieren den fehlenden Teil als die Kopplung der Quarks zu den trans-
versalen Gluonen. Wir verallgemeinern den BCS-Ansatz und schlieBen die Kopplung der
Quarks zum transversalen Eichfeld in das Quark-Wellenfunktional ein. Wir finden heraus,
dass diese Kopplung das chirale Kondensat wesentlich erhoht und die dynamische Masse
in den Bereich der experimentellen Daten bringt.

In Teil [l der Arbeit wenden wir uns einer Methode zu, sich dem Wilsonloop in einer
Kontinuumsformulierung zu nahern, die vor einigen Jahren flir supersymmetrische Yang-
Mills-Theorien vorgeschlagen und kiirzlich auf die QCD in Landau-Eichung angewandt
wurde. Alle planaren Leiterdiagramme, die zwei temporale Pfade des Wilsonloops ver-
binden, werden zu einer Dysongleichung summiert, die zumindest naherungsweise die
Pfadordnung beinhaltet.

Die Dysongleichung wird kritisch {iberpriift, ihr Anwendungsbereich fiir nicht-supersym-
metrische Theorien diskutiert, und auf Gluonpropagatoren in Coulomb-Eichung ange-
wandt. Wir berechnen den Wilsonloop fiir den temporalen, sowie den raumlichen Gluon-
propagator. Wir erkennen, dass die Ergebnisse fiir den raumlichen Wilsonloop qualitativ,
aber nicht quantitativ aussagekraftig sind. Wir bekommen ein statisches Quarkpotential,
das sowohl einen Coulombschen als auch eine farbeinschlieBenden Bereich aufweist; aller-
dings ist die Stringspannung, die man aus dem Anstieg des linearen Potentials extrahiert,
zu groB verglichen mit der Stringspannung, die aus der Gitter-QCD bekannt ist.






Abstract

This thesis is divided into two parts concerning the two unresolved issues of QCD. In
Part [| we investigate chiral symmetry breaking. We concentrate on the fermionic con-
tent of the QCD Lagrangian, since chiral symmetry is a property of the quark sector. In
Part Il we turn to the issue of color confinement and compute the potential between a
pair of infinitely heavy quarks from the so-called Wilson loop. Here we deal with pure
gluodynamics, since color confinement is encoded in the gluon sector of QCD.

The first part of the thesis concerns the inclusion of dynamical quarks into the vari-
ational approach to QCD in Coulomb gauge. It has been known for thirty years that an
ansatz for the quark vacuum wave functional mimicking BCS theory, although successful
on a qualitative level, is not sufficient to generate the right amount of dynamical chiral
symmetry breaking to account for the dynamical nucleon mass — the value of the chiral
condensate is by a factor of two too low. We identify the missing piece as the coupling
of the quarks to the transverse gluons. We generalize the BCS-ansatz and include the
coupling of the quarks to the transverse gauge field into the quark vacuum wave func-
tional. We find this coupling to increase the chiral condensate substantially and to bring
the dynamical mass into the region of experiment.

In Part [l we turn to a method to approach the Wilson loop in a continuum formu-
lation which has been suggested years ago for supersymmetric theories and has recently
been applied to QCD in Landau gauge. All planar ladder diagrams connecting the two
temporal paths of the Wilson loop are summed to give a Dyson equation, which, at least
in an approximate fashion, accounts for path ordering.

This Dyson equation is critically reviewed, its range of applicability in non-supersymmet-
ric gauge theories discussed and applied to Coulomb gauge gluon propagators. We com-
pute the Wilson loop for the temporal gluon propagator as well as the spatial gluon
propagator. We find for the spatial Wilson loop results which are qualitatively, but not
quantitatively, significant. We find a static quark potential which shows both a Cou-
lombic as well as a confining region; however, the string tension extracted from the slope
of the linear potential is too large compared to the string tension obtained in lattice QCD.
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Introduction

Quantum Chromodynamics (QCD) is the theory of the strong interaction. lts elementary
degrees of freedom are quarks and gluons. The subject of this thesis is the low-energy
sector of QCD, where the coupling constant becomes large and non-perturbative methods
have to be applied.

Due to asymptotic freedom a weak-coupling expansion is valid for large energies.
Perturbative QCD has been tested to successfully describe deep inelastic scattering pro-
cesses. Pedagogical introductions are given in Refs. 1] 2].

The two cornerstones of non-perturbative QCD are color confinement and chiral sym-
metry breaking. Color confinement denotes the absence of free quark states in the
physical spectrum and manifests itself in a linearly rising long-distance potential between
two infinitely heavy quarks. Chiral symmetry breaking explains for example how the large
nucleon mass is generated dynamically from the small up- and down-quark masses that
appear in the QCD Lagrangian. The underlying mechanisms of both these phenomena
and their interplay are the big unresolved challenges of QCD.

In the last decade lattice QCD as well as continuum methods — the variational
approach and Dyson-Schwinger equations — could make important progress in both
directions. A recent review on lattice QCD, Ref. [3], states that it is now possible to de-
termine the nucleon mass within 3.5% on the lattice. Despite this success, for a detailed
understanding of QCD it is equally well important to have continuum techniques at hand.
Moreover, in contrast to lattice QCD calculations, the equations which are solved in the
continuum are computationally inexpensive. Especially the small momentum region of
QCD propagators are more easily accessible in the continuum. A review on Dyson-
Schwinger results can be found in Ref. [4]. In particular the Hamiltonian formulation
of QCD in Coulomb gauge has been tested in recent years to be an efficient method in
describing the Yang-Mills sector of the theory, see Refs. [5H8].

The organization of Part [[] of the thesis is as follows: In Chapter [I] we introduce the
Hamiltonian approach to QCD and derive all quantities needed for later work. In Chapter
we present the phenomenological consequences which follow from chiral symmetry
breaking. In Chapter [3| we start our considerations on the inclusion of quarks into the
variational approach and propose a quark vacuum wave functional which includes the
interaction of quarks with transverse gluons. With this new quark wave functional and
the Gaussian ansatz of the pure Yang-Mills sector on hand, we have a powerful technique
to approach the full QCD system. We represent the quark fields in terms of a coherent
fermion basis and set up the generating functional in order to compute the correlation
functions of the theory.

In Chapters[4and 5] we compute the various energy densities. By minimizing them with
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respect to the variational kernels we get an estimate for the lowest energy eigenstate of
the system. So-called gap equations which determine the kernels appearing in the vacuum
wave functional are derived. We solve these equations analytically in the asymptotic
momentum regions and numerically in the whole momentum range. We compute the
low-energy chiral properties of the theory, like the chiral condensate and the constituent
mass, and compare their values to the experimental data.

The explicit computations are performed in the Appendices: In Appendix [A] spinor
identities are derived, in Appendix [B| the generating functional of quarks is evaluated,
and in Appendix [C] the energy densities are computed. Finally, in Appendix D] we explain
how the non-linear integral equations were solved numerically.

In Part [l of the thesis we turn to the issue of color confinement. A criterion for color
confinement is to show a linearly rising long-distance interquark potential. This corres-
ponds to demonstrating an area law for the Wilson loop. In the definition of the Wilson
loop the so-called path ordering occurs, which is a prescription of how the gauge field is
transported along a path. Path ordering in a continuum formulation is, however, difficult
to implement. Therefore no analytic calculation of the Wilson loop could be given so
far; the only reliable results come from lattice QCD.

In Chapter [6| we present a Dyson equation, which can, at least approximately, evaluate
the expectation value of the Wilson loop in a continuum framework. The only quantity
which enters this Dyson equation is the gluon propagator. The static quark potential is
easily evaluated, since the Dyson equation can be rewritten into a Schrodinger equation
to be solved for the lowest eigenvalue.

The explicit form of the Schrodinger potential as well as the numerical algorithm to
solve the Schrodinger equation for the lowest eigenvalue are presented in Appendix [E]

In the last chapter of the thesis we summarize our main findings and present an outlook
on possible forthcoming studies.



Chapter 1

Hamiltonian Approach to QCD
in Coulomb Gauge

This chapter presents a brief introduction to the Hamiltonian approach to QCD in Cou-
lomb gauge, paying special attention to the quark sector of the theory, which will be the
setting for the main part of the thesis.

In the first section, starting from the definition of the QCD Lagrangian density, we
introduce the notion of gauge freedom and the concept of gauge fixing. After deriving
the classical Hamiltonian we pass on to the quantum theory by demanding canonical
quantization rules for the field operators. In Section 2 we collect the basic definitions
and main properties of Dirac fermions. Section 3 is dedicated to Gauss’ law, which is lost
as a dynamical equation of motion during the canonical quantization procedure. After
a short comment on the Schrodinger picture in Section 4, we arrive at the final form of
the Coulomb gauge-fixed Hamiltonian in Section 5. In Section 6 we present the results
gained in the variational approach to Yang-Mills theory, which is needed as input for the
projects presented in this thesis.

1.1 Hamiltonian Formulation of QCD

Let us start with the classical Lagrangian density of Ng types of non-interacting fermion
fields,

Np

L= V() (#7.0" —m)is(x) , (1.1)

f=1

with ¢¢(z) denoting the spinor-valued fermion field carrying a flavor index f. The
Dirac conjugate field is @f = 1/)}% and m is the mass of the fermion fields. The Dirac
matrices obey the anti-commutation relation {v# 7"} = 2¢*" with the metric convention
for space-time ¢g"” = diag(1, —1,—1, —1). For later use we define the free massive Dirac
operator

D =iy,0" —m. (1.2)

We demand the flavored fermion fields to have an internal color degree of freedom and
require the action S = [ d*x L to be invariant under local rotations in color space, i.e.,
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at each space-time point a different color rotation is performed:

() = ' (z) = Qa)y(z) (1.3)
d(w) = 3§ (@) = Pa) (@) - (1.4)

The matrices 2 belong to the group SU(N¢), i.e., they are unitary and fulfill det[2] = 1.
The standard group parametrization is the exponential representation, given as )(x) =
e @T* with T being the Hermitian generators of the gauge group. The sum index a
runs over all generator elements, i.e., a = 1... N — 1 with the generators T satisfying

[T, T = if*eTe, (1.5)

where f¢ are the structure constants of the gauge group. Relation defines the
Lie algebra of the gauge group. We note that anti-Hermitian generators would avoid
the factor of 7 appearing in the exponent of the exponential representation and in the
commutation relation, Eq. . Setting the structure constants £ to zero, we recover
the Abelian theory, such as electrodynamics, with the gauge group U(1) being a simple
phase. Although it is well known that quarks come in three colors, we will always keep the
number of colors arbitrary until the last step of the calculation. The generator elements
are normalized to

1
Tr[T°T"] = 55“” : (1.6)
Let us list another important identity needed for later work,
N -1
Z(Tm)ab(Tm)bc — 5(1ch 7 CF — C , (17)
2N¢

m

with Cr denoting the quadratic Casimir invariant. Note, that here a, b run from 1 to N¢,
whereas m runs from 1 to N2 — 1. Whenever appropriate, we will distinguish between
fundamental a,b,... and adjoint m,n ... indices. In all other cases, we will use the
labels a, b, . .. for fundamental as well as adjoint color components.

The free fermion Lagrangian, Eq. , is made locally gauge invariant by replacing
the derivative 0, by the covariant derivative D, which we demand to transform as

D, — D, = Q(z)D,0(z) , (1.8)

so that D, and 9 transform in the same way. Analogously to electrodynamics we
introduce a gauge field via minimal substitution

By — Dy = 0, +igA*T* | (1.9)

'

where g is the coupling constant and A,,(r) = Af(x)T* is a matrix-valued field, known
as the gauge field, which transforms as

Au@) = 4,(z) = Q) A @ (@) - Z0)(0,2(2) (1.10)
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and assumes values in su(N¢), the algebra of the gauge group SU(N¢). The color
components A} of the gauge field are real-valued, carry a Lorentz index u = 0,...,3
and describe for the color group SU(3) eight gluons. We arrive at the gauge-invariant
Lagrangian of the form

Ng
L= —;ng;Fm’W + ) 0% (D = m)* (1.11)
f=1
where we have made explicit the color and flavor degrees of freedom and suppressed the
space-time argument. In order to make the gauge field dynamical, we have introduced

a kinetic term, where

Fl, = 0,A% — 0,A% — gf ™ AL AL (1.12)
is the Yang-Mills field strength tensor, which transforms as F}, = QF,, Q" Note, that
F,, = F¢,T* and that F, F“" = {Tr[F,, F*]. The last term on the right-hand side
of Eq. , which is the commutator of two gauge fields, makes the non-Abelian pure
gauge theory (i.e., the theory defined by the Lagrangian £, Eq. , in the absence of
fermion fields) highly non-trivial, because cubic and quartic terms in the gauge potential
appear which give rise to self-interactions of the gluons. In these self-interactions new
physical phenomena are encoded, which are not present in the Abelian theory, the most
prominent one being the confinement of color, i.e., the absence of colored objects in the
hadronic spectrum. Part[l] of the thesis deals with the issue of color confinement, which
will be analyzed by computing the potential between two static color charges.

Now the issue of gauge fixing comes into play. Considering for a moment the Abelian
U(1) theory and ignoring the fermion degrees of freedom, the Lagrangian (1.11)) can be
rewritten, using integration by parts and discarding surface terms, as a bilinear expression
in the gauge field

L %A“ (g0 — 0,0,) A” | (1.13)

with O = 00, being the d'Alembertian operator. Taking a field configuration A” which
is pure gauge A” = 0A, the operator g,,[1 — 0,0, can be shown to have zero modes

(9,,0-09,0,)0"A = (00, —0,0)A =0, (1.14)

concluding that the photon propagator, being the inverse of this operator, is singular.
Let us deepen this picture and define the generating functional of the Yang-Mills part of
QCD

- / DA, eSelltiateina, g _ / dele,  (115)

with j# the external current source, L the Lagrangian ([1.11)) without fermion fields,
and Z[j = 0] the normalization. From Z[j] expectation values can be computed in the
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standard fashion, see Ref. [9]. The integrands in Z[j] take the same value for each gauge
configuration related by a gauge transformation. This gives rise to a divergent integral
Z[j] and therefore the Green's functions of the theory cannot be evaluated.

We can resolve this problem by fixing the gauge. Let us stress that it is one of the
main advantages of lattice Quantum Field Theory that it is not necessary to fix the
gauge in order to make expectation values well definedﬂ. Gauge fixing on the lattice is
used, for instance, to compare gauge dependent quantities with continuum results.

We proceed with the Euler-Lagrange equations, which for the gluon fields divide into
the non-Abelian generalizations of Gauss' law (v = 0) and Ampere's law (v = i),

DX F = gy T, (1.16)

where we have defined the covariant derivative in the adjoint representation of the color
group

Db =570, + g™ A (1.17)

On the right-hand side of equation the color current of the quarks j%* = gipy*T %)
occurs, which can be shown to fulfill D% ;"% = (0. The equations are non-linear
in the gauge field, which is again a manifestation of the self-interaction contributions in
the QCD Lagrangian . The quark Euler-Lagrange equation is the Dirac equation
in an external field A, given as

(iv*Dy, —m)p =0. (1.18)

The next step towards the Hamiltonian formulation of QCD is to derive the conjugate
momenta

mo, 08

70 (z) = YO 0, (1.19)
m,i _ 58 _ m,i0

7 (z) = e e i (1.20)
1§ (z) = 5(55&@) = it (1.21)

so that the total Hamiltonian, defined as the Legendre transform

H= / B (5 AT + %" — L) | (1.22)

1On the lattice the gauge field and fermion measures in the functional integral are products of a finite
number of individual measures and therefore well defined.
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consists of three different parts,

H = Hg + Hp + Hgauss | (1.23)
Hg = / &’z <—%Hg7ingi + %Fm’ingl) , (1.24)
He = [ dad’y vl (@)@, 5)0'(w) (1.25)
Hows = [ A (~D2"IT + guiT™w) | (1.26)

with
h(x,y) = (—ia' 0,6 + Bmd™ + ga' A7 (z)(T™)™) §(x — y) - (1.27)

Here Hq, Eq. (1.24)), is the pure gluonic part of the Hamiltonian. Hy, Eq. (1.29)), is
the fermionic part, which includes also the interaction term coupling the quarks to the

gluons and which we refer to as single-particle Hamiltonian. In the third part Hqauss,
Eq. (1.26)), we have explicitly separated the time component of the gauge field A%, which
gives Gauss' law (1.16) when deriving the Hamiltonian equation of motion for I,

oH
SAT

In ((1.24) and ([1.26)) we have omitted space-time arguments. In we have intro-
duced the matrices o = Yoy;, 8 = 70, which fulfill {c;, o;} = §;; and defined the Dirac
matrix h(z,y), Eq. (1.27)). In (1.26]) we have performed an integration by parts in the
D-term. In addition, in all these expressions, Egs. —, we have distinguished
between fundamental indices a, b and adjoint indices m, n.

Let us, at this stage, change notation. Since no temporal vector components occur
anymore, it is not necessary to use a Minkowski metric notation any longer. We use
contravariant vector components only, which we denote, for convenience, with a sub-
script. The gauge potential in Eq. therefore changes sign (and correspondingly in
Eq. (1.17))), however, the derivative operator 0,; = %, which already contains con-
travariant vector components, gets no additional sign. For instance, the Dirac matrix

(1.27)) becomes
h(x,y) = (—i;05,6” + Bmd™ — ga; AT (z)(T™)™) §(z — y) - (1.29)

QolTE, = — (1.28)

The quantum theory is imposed by the Lagrangian (1.11)) or the Hamiltonian
and the equal-time commutation relations between the field variables. The fact that
the momentum conjugate to the scalar potential, Eq. , vanishes, is a well-known
problem of the canonical quantization of a gauge theory, which is overcome by switching
to Weyl (temporal) gauge A} = 0. The non-vanishing equal-time canonical commutation
relations for the gauge field read

A7 (), I (y)] = i0"6,;6 (2 — y) (1.30)



22 Chapter 1. Hamiltonian Approach to QCD in Coulomb Gauge

and the anti-commutation relations for the fermion fields are

{v(), 0" (y)} = 6"d(x — y) . (1.31)

During this procedure the field variables have become field operators.

1.2 Dirac Fermions

Let us turn to the fermionic part of the Weyl gauge-fixed Hamiltonian, Eq. , and
collect basic definitions and main properties of the quark fields, which we will need
throughout the thesis. Fourier-transforming the gauge-field independent part of the
single-particle Hamiltonian ([1.25)) yields

Hyp = /d?’pwm(p)h“b(p)wb(p), (1.32)

with d®p = (‘21%’))3 and the Dirac matrix h®(p) given as

R (p) = a-pd™ + Bms™ (1.33)
which is Hermitian, i.e., h'(p) = h(p). For m = 0 it fulfills the identity

with the chirality matrix 5 defined as 75 = ivyv17273. In addition, the eigenfunctions
©n, of the Dirac matrix h and of hys given as

are orthogonal, i.e., (¢n,V5%9m) = Omn, except for zero eigenvalue. This orthogonality
relation follows from the anti-commutativity of h with s, Eq. (1.34)). In Chapter [2] the
zero eigenvalues of the Dirac matrix h, Eq. , will be related to a quantity called the
chiral condensate. Relation ([1.34)) will be of central importance for this construction.

We proceed with splitting up the Dirac field into positive and negative energy com-
ponents

() = Yi(x) + 9 (x), (1.36)

which are defined with use of the orthogonal projectors to positive and negative energy
states

¥ (z) = / 0y As(@,y) v (y) (1.37)
%(a) = / Py 1 (y) As(y, ) | (138)
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where
(o 1 h(p)
A — 35 P (—y) A A =—(1+ 1.39
dwy) = [Eperen. - (12 52) . 0
with E(p) = \/p? + m}. In later considerations we will work exclusively with massless

fermlons i.e., mp = 0. The projectors are idempotent, i.e., A2 = A, orthogonal, i.e.,
AiAL =0, and complete, i.e., Ay + A =1.

In Fourier-space the positive and negative energy components can be expanded in
terms of eigenfunctions of the free Dirac Hamiltonian

vela) = [E e 3 aps)ulp ) (1.40)

3;_ 2 p, s)u(p, s)e P
d‘pmgl;lw (. s)u(p, ) , (1.41)

with the spinor solutions u and v chosen as eigenspinors of the helicity operator o - p,
Eq. (A.13)), where the matrices & = (01,09, 03) are the Pauli matrices, Eq. (A.12).
An explicit realization of the eigenvectors u,v to the massless Dirac equation is given

in Appendix [A] see Egs. (A.26), (A.28). Note that the pre-factors in Eqgs. (1.40),
(1.41)) appear due to the normalization u'(p, s)u(p, s) = vi(p, s)v(p, s) = 2E(p). The
Hermitian conjugates of the time-zero quark fields then read

2 _ZM e, (142)

s:l:l

() :/ \/7 > b(p.s)vi(p, s)eP . (1.43)
s==+1

The creation and annihilation operators a'*(p, s), a(p, s) and b™(p, s), b(p, s) fulfill the
anti-commutation relations

{a*(p,s),a"(q, 1)} = 0"045(p —q) , (1.44)
{v"(p, 5),0"(q, 1)} = 6”6.46(p— q) (1.45)

with all other anti-commutators vanishing. The bare vacuum is defined by
a’(p, s)|0) =0, b (p,s)|0) =0. (1.46)
Finally, let us state the relation between the energy projectors and the spinor solutions

1 1
Ai(p) = 2B Z u(p, s)ul(p,s),  A_(p) = 2B Z v(—p, s)v'(—p,s) .
(1.47)
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1.3 Gauss’ Law

Due to Weyl gauge Gauss' law, Eq. for v = 0, does no longer appear in the
Hamiltonian equations of motion, but degenerates to a constraint equation, which, in
order to select the (physical) gauge-invariant states, has to be fulfilled by the set of
physical states

G'x)le) =0,  G'(x) = DI (@) + gu' (@) T"¢(x) , (1.48)

where we have defined the Gauss law operator G*(x). The following relations hold (using

the commutation relations ([1.30)), (1.31))

[G%(x),G"(y)] = ig /G (x)b(x — y) (1.49)
[G" (), " (y)] = —gT™" (y)o(x — y) (1.50)
[G%(x), ITG, ; (y)] = igf*™ G ,(x)d(x —y) , (1.51)
G (), A (y)] = igf**Af(x)d(x — y) — 6ib(x — y) (1.52)

with the first commutator defining a Lie-algebra for the Gauss law operator. Notice that
in the second commutator, Eq. ((1.50), we have again used the index a for fundamental
and the index m for adjoint fields. From

[H,G%x)] = 0 (1.53)

it follows that the Gauss law operator and the Hamiltonian can be diagonalized sim-
ultaneously and a state which satisfies Gauss' law at one time, does it for all other
times.

Weyl gauge (A% = 0) does not fix the gauge completely and the Hamiltonian,
Eq. (1.23)), is still invariant under spatial (local) gauge transformations Q(z) = ¢/=*(®)7".
We now show that the fermion part of the Gauss law operator G, Eq. (1.48)), is the
generator U of time-independent gauge transformations for the quark sector, for which
we demand

Up(x)U" = Qz)(x) = ' () , (1.54)
U (Ut = i (2)Q (@) = ' (@) . (1.55)

Expanding the operator
U = exp (-i / P MT‘%/}(:E)&“(:B)) (1.56)

to first order in ¢, the relations (1.54)), can be proven using the anti-commutation
relation ([1.31)).

The Yang-Mills part of the Gauss law operator G¢, Eq. , given as D®TI?, can be
shown to generate time-independent gauge transformations for the gauge boson sector

U = exp (—i / P ﬁfbH%’i(m)sa(m)) (1.57)



1.4 Schrodinger Picture 25

fulfilling

UA(2)U = Q(x) (AZ- — gaz) Qf(x) = Al(x) , (1.58)
UTL ()U" = Q(x)le,(2)Q = I, () . (1.59)

A wave functional satisfying Gauss’ law then obeys
Ulyp) =0, (1.60)

which guarantees the gauge invariance of the wave functional with respect to time-
independent spatial gauge transformations. This last statement marks the central mean-
ing of Gauss' law: Violation of Gauss’ law corresponds to violation of gauge invariance.

1.4 Schrodinger Picture

Solving the Schrédinger equation H |¢)) = E|t)) of a given Quantum Field Theory for the
lowest eigenvalue would clarify the vacuum structure and from the correlation functions,
which would then be known, all observables could be computed. For the Abelian U(1)-
theory without coupling to matter we are able to find the exact ground state; however,
for complicated interacting theories, such as QCD, it is hard to find the exact ground
state and we will explore the vacuum structure by the variational principle.

To solve the QCD Schrodinger equation for the vacuum state we have to adopt a
certain representation for the field operators, which we denote with a hat during this
section, i.e., A% TI%, )%, ¢ie.

The basis vectors in the bosonic case are most conveniently chosen to be the eigen-
states of the gauge field operator, which corresponds to the coordinate space represent-
ation in quantum mechanics, and the eigenvalue equation reads

Al (@)|4) = Ai ()|4) . (1.61)

The conjugate momentum f[‘él Eq. 1} then acts as a derivative with respect to
the gauge field

. 9
Gal@)|A) = WVD : (1.62)

Expectation values of field operators are then evaluated according to
©l4) = [ PAviAOMWLAL, (163

which again shows the strong formal similarity of Quantum Field Theory in the Hamilto-
nian approach to ordinary quantum mechanics.
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The Schrodinger equation restricted to the purely gluonic part of the Hamiltonian
(1.24)) is represented as

/d% <_%5A;?W + EFJFJ) Y[A] = Ey[A], (1.64)

which has to be solved together with the Gauss law constraint, Eq. (1.48)), maintaining
the state )[A] = (A|) invariant under time-independent gauge transformations. Since
the potential energy in QED is quadratic in the gauge field, the eigenvalue equation
determining the QED wave functional has the same structure as the harmonic oscillator
equation and is solved by a Gaussian state, which in momentum space reads

vl e (-3 [@pawlpl ac-p) (165

where |p| is the ground state energy of non-interacting photons. This result will become
important when considering an ansatz for the Yang-Mills wave functional in the next
section.

Due to the anti-commuting nature of fermion fields, extending this picture to the quark
sector is not straightforward. In the literature several possibilities have been discussed,
for example, representing the fermion field operators as in the case of bosonic fields,

Eas. (61, (62), by

D (z) = n(x) (1.66)
Hagy )
P(x) — 5(a) (1.67)

which was proposed in Refs. [10, [11] and can easily be shown to satisfy the anti-
commutation relation . Note that n* is a anti-commuting Grassmann variable.
This representation, however, has the disadvantage that the Hermitian conjugate of n“
is given by ni® = énia' and the adjoint state is therefore not given by complex conjuga-
tion, but has a more complicated form. In Section we will suggest a different and

more convenient representation, introducing coherent fermion states as eigenfunctions

of the annihilation operators @ and b, Egs. (1.40)), (1.43).

1.5 Fixing to Coulomb Gauge

In principle, we could now work with QCD ground state wave functionals in Weyl gauge,
as has been done in particular in D = 2 + 1 dimensions for pure Yang-Mills theory
[I2]. A more convenient way is to resolve Gauss' law explicitly by fixing the residual
gauge freedom with respect to time-independent gauge transformations. We choose the
Coulomb gauge condition

A =0, (1.68)
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which eliminates the non-physical longitudinal component of the gauge potential. The
independent degrees of freedom are the transverse gauge potential and the transverse
part of the conjugate momentum, given as

Aft=tyAg, T = Il (1.69)

defined with use of the transverse projector
A A ip- ~ bi
tij(x) = /dgp (0 — pipj) €%, B = Ip| (1.70)

In addition, the non-vanishing equal-time commutation relations ([1.30)) in the subspace
of transverse fields become

(A7 (), 113" (y)] = 00"t (2)d (2 — y) . (1.71)

In the scalar product Coulomb gauge is implemented in the standard way via the
so-called Faddeev-Popov method [13]. Going over to Coulomb gauge corresponds to the
transition from cartesian to curvilinear coordinates and the determinant [J[A*] of the
Faddeev-Popov operator

(G (a,y) = (0 D")3(x —y) (1.72)

enters the scalar product in the Coulomb gauge-fixed configuration space
Wl0l6) = [ DA AHO0AY],  TIAY) =DedlGY, (173)

representing the metric in the curved configuration space. In Eq. ﬁfb is the
covariant derivative in the adjoint representation, Eq. (1.17)).

The Hamiltonian is now expressed entirely in terms of the transverse components of
the gauge field, except for the kinetic part of the Yang-Mills Hamiltonian (which appears
as the first part in Hg, Eq. ) where the momentum operator still has a longitudinal
part. Following the derivations in Refs. [14], [15], Gauss' law can explicitly be
resolved, resulting in [16]

H — HG + HC , (174)

Hg = %/d‘”’x (%Jl[AL]HiLmJ[AL]Hfm +%1 z‘sz‘j> a (1.75)
2 ~

He = %/d?’:c/d?’yj1[Al}pm(w)J[AL]Fm”(w,y)p”(y) , (1.76)

where the second term is the so-called Coulomb Hamiltonian H¢, describing the inter-
action of non-Abelian color charges with the densities

pr(@) = W) T (@) + [0 AT ()11 () = pif () + pdi () (1.77)
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through the non-Abelian Coulomb kernel
(e, y) = /d% G, 2)(~02) G (2, y) (1.78)

In the first term on the right-hand side is the matter charge of dynamical fermions
and the second part is the dynamical charge density of the gauge field. Note that this
second part is absent in an Abelian gauge theory. The operator E™ involves the Green's
function of the Faddeev-Popov kernel G~1, Eq. (L.72), twice. In the Abelian theory
Eq. becomes the ordinary Coulomb kernel, the Green's function of the Laplacian,
e, F(x,y)=1/4r|x —y|).

We work entirely in Coulomb gauge and therefore omit for the rest of the thesis the
transversality sign attached to the gauge field.

At the end of this section, let us shortly comment on the so-called Gribov problem
which occurs when quantizing non-Abelian gauge theories. For a pedagogical introduc-
tion we refer to Ref. [I7]. In Section [I.T|we have observed that gauge fixing is necessary
in the continuum to make expectation values well defined. In the Faddeev-Popov method
to implement the gauge condition Eq. ([1.68]) one has to assume that the gauge fixing
condition has precisely one unique solution [18]. However, it was discovered by Gribov,
Ref. [19], that there exist so-called gauge copies, also referred to as Gribov copies. These
are gauge fields 4; and A connected by a gauge transformation Eq. (1.10]), which satisfy
the same gauge condition,

8,4 =0=8,4, . (1.79)

These Gribov copies are connected to the existence of zero modes of the Faddeev-Popov
operator, Eq. (1.72)). In order to bypass this problem, it was proposed to restrict the
functional integral, Eq. ((1.73)), to the so-called Gribov region, defined as

Q={4:94,=0,G"">0}, (1.80)

allowing only for a positive definite Faddeev-Popov operator, Eq. (1.72). The boundary of
this region, 02, is the so-called (first) Gribov horizon. Here the Faddeev-Popov operator
has zero eigenvalue. Unfortunately, the Gribov region still contains Gribov copies [20].
An even further restriction of the functional integral is the so-called fundamental modular
region (FMR). Here one takes the absolute minimum of each gauge orbit (the set of all
gauge fields A? connected by a gauge transformation, Eq. ) i.e., of a given gauge
orbit one gauge field A;.

1.6 Variational Approach to Yang-Mills Theory in
Coulomb Gauge

In this section we collect the results obtained in Refs. 7] 21] in the variational approach
to pure Yang-Mills theory in Coulomb gauge, which will be used as input for the projects
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presented in this thesisﬂ. Two quantities are of special interest for later use, namely the
gluon propagator,

DE(p) = / @ P A% () AL(0)) | (1.81)

and the so-called non-Abelian color Coulomb potential

Ve (p) = g2 / Bz =Pz 0)) (1.82)

with the Coulomb kernel F given in Eq. . The non-Abelian color Coulomb
potential V3 is derived by replacing the quark charge densities in Eq. by static
quark-antiquark color charge sources separated by a distance |x|, and by computing
the Coulomb energy density for this charge distribution. The expectation value
(F(q,0)) is called the Coulomb propagator.

In addition, we define the ghost propagator, given as the expectation value of the
inverse Faddeev-Popov operator (|1.72))

G (p) = / Px e~ P®(GY(x,0)) . (1.83)
Moreover, we define the ghost and Coulomb form factors

1 d(p) f(p)@(p)

5ab ’ Vab p) =
P’ g ) p?

G®(p) = 5 (1.84)

measuring the deviation from their Abelian results, i.e., gd(p) = f(p) = 1.

In any variational calculation the first step is to choose a well-motivated ansatz for
the vacuum wave functional, denoted as 1)[A], which depends on one or more variational
kernels. By computing the energy density

(Wl]0) = [ DATIAI " (4) H o(4). (1.85)

and minimizing it with respect to the variational kernels entering the wave functional
one gets an estimate for the ground state energy, which is the upper bound to the true
ground state of the system.

In order to find a suitable ansatz for the Yang-Mills wave functional one uses the
fact that for the high-momentum part, due to asymptotic freedom, the Yang-Mills wave
functional is expected to approach the QED wave functional, Eq. . One therefore
suggests a Yang-Mills ground state of the form [7]

o) = (al0) = e (=3 [ @ Ap) - 0s6)

2All results in this chapter are obtained for (color) SU(2) Yang-Mills theory.
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with wg}(p) the variational kernel chosen to be a color and Lorentz scalar ie, wi(p) =

§%;;(p)w(p). The fact that the Faddeev-Popov determinant J[A], Eq. ( - enters
the wave functional is of central importance. At the Gribov horlzon 0€) the Faddeev-
Popov operator G, Eq. , has zero eigenvalue and the Faddeev-Popov determinant

JI[A], Eq. (1.73)), vanishes. The wave functional ¥[A], Eq. (1.86]), becomes strongly
peaked. This goes in hand with the conjecture that the dominant infrared configurations

lie on the Gribov horizon [22H24]. In addition, the ansatz has the technical
advantage that the Faddeev-Popov determinant in the integration measure cancels
against the Faddeev-Popov determinant in the vacuum wave functional ([1.86). The
generating functional defined as

21j) = (4] exp ( / dSpjf<p>A?<—p>) ), (187)

can be performed analytically, yielding
:Ng;/DA exp (—/d‘gpA?(p) wij (p) Aj(—p) +/d‘3pj?(p)A?(—p))
1 -a a -1,
— e (§ [ s e) ) (1.89)

Here j¢ is the gluonic source and the normalization constant N/ is fixed by the condition
(1) = 1. Evaluating the gluon propagator ([1.81)) yields

__ sa tl]<p) 3
j=0 g bm(%) o(p+aq), (1.89)

*Z[j]
37 (p)djh(q)

where we have assumed rotational invariance, i.e., w(p) = w(—p). We observe that
the gluon propagator is the inverse of the operator appearing in the exponent of the
wave functional, which is special for the ansatz and no longer holds true for
non-Gaussian wave functionals [25] and for Gaussian wave functionals with an arbitrary
power « in the exponent of the Faddeev-Popov determinant, i.e., [21]

(A7 (p)Aj(q)) = (2m)°

ol = T U Nee (-3 [ @ am e Ap) . 090

1

IR and the wave

The (inverse) gluon propagator (1.81)), now denoted as D(p) =
functional kernel w, Eq. (1.86)), obey the relation [21]

Q(p) = w(p) + (1 - 2a)x(p) , (1.91)

3 6?InJ
/d <W)A§’-(0)> , (1.92)

where

L\DI)—t

X2 (p) =
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Figure 1.1: Comparison of the gluon energy w and the ghost form factor d for the two critical
solutions 3 = 0.99 (full curve) and 8 = 0.85 (dashed curve).

is the curvature of the gauge orbit in field space and x{/(p) = 6°°t;;(p)x(p). For the
choice & = 1/2 the inverse gluon propagator €2 is then identical with the wave functional
kernel w.

In the standard procedure the energy density of the gluon part E[A] = (Hg) (with
Hg given in Eq. (1.75)) is computed and then varied with respect to the kernel w to yield
a coupled system of integral equations, found in Refs. [7], [8], determining the gluon
propagator ([1.81)), the Coulomb propagator (1.82), and the ghost propagator ([1.83).

It can be shown analytically [26] that the infrared exponents of the gluon propagator
w(p — 0) ~ p~® and ghost form factor d(p — 0) ~ p~? obey the sum rule o = 23 — 1
and have two possible solutiong’]

i) B~0.796(0.85), i) B=1.0(0.99), (1.93)

which can also be found numerically, see Fig.[1.1] The values in the brackets denote the
numerically determined values, which were obtained in Refs. [7, [8]. Both solutions have
in common that at small momenta the variational kernel w diverges and from Eq.
we can read off that the gluon propagator vanishes. Moreover, for both solutions the
ghost form factor d, Eq. ([1.84)), diverges for small momenta. For large momenta both
solutions go over into the photon energy w(p — o) ~ p, which can also be seen in
Fig. [1.7]

Before we come to discuss the form of the static non-Abelian color Coulomb potential
Ve, Eq. (1.82), within the variational approach, let us comment on this quantity. An
inequality relates the color Coulomb confinement potential V:(r), Eq. (1.82), and the

3There also exist so-called subcritical solutions [27], for which d=1(0) # 0.
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static potential extracted from the Wilson loop (see Part [Il] of the thesis), denoted as
Viv(r) and reads [28]

Vc(T) Z %’V(T) . (194)

From this inequality we can deduce that in a confining theory there always must be
a confining non-Abelian Coulomb potential Vi:(r). The slope of the linear potential,
referred to as the Coulomb string tension o, is the upper bound for the gauge invariant
string tension extracted from the expectation value of the Wilson loop, known as the
Wilsonian string tension ovw. The evaluation of the Wilsonian string tension within the
Hamiltonian approach will be subject of the second project presented in Part [[] of this
thesis. Although difficult to compute, lattice measurements for SU(2) as well as SU(3)
suggest for oc a value which is two to three times larger than the Wilsonian string
tension oy, see Refs. [23, 29H32]. In Ref. [30], calculating Ve, Eq. (1.82), directly via
Monte-Carlo simulations, a value of o¢ ~ 1.60w has been estimated. Throughout this
thesis we will use values o = (2...3)ow in order to set the scale.

Let us return to the evaluation of the color Coulomb potential in the variational
approach to QCDH. Numerical investigations show that in Eq. solution 7) is more
stable. However, the color Coulomb potential Vi:(7) extracted from (1.82) is not rising
linearly for large distances. On the other hand, solution i) in Eq. (1.93) allows for a
strictly linearly rising non-Abelian color Coulomb-potential Vi (r), Eq. , which can
be seen analytically by plugging d(p) ~ 1/p into Eq. , to give V(p — 0) ~ 1/p™.
We note that in the equation determining the Coulomb form factor f the ghost form
factor d is set to its bare value, d(p) = g, see Ref. [7].

Finally, let us compare the results for the gluon propagator obtained in the Hamiltonian
approach with lattice calculations, see Fig.[1.2] For a review of gauge fixing on the lattice
we refer to Ref. [35]. The lattice data for the kernel w can be nicely fitted by Gribov's
formula [19] over the whole momentum range

_ e M
w(p) = /P> + o (1.95)

where M is a mass scale referred to as Gribov mass, which is determined on the lattice
in Ref. [36] in terms of the Wilsonian string tension ow and has the value

Mg ~ 830 MeV ~ 2,/ov . (1.96)

In the asymptotic momentum regions the variational result using the ansatz ({1.86)) and

the lattice data agree excellently. In the mid-momentum regime, however, the lattice
data signal a more pronounced maximum. The Gaussian ansatz is extended to
non-Gaussian wave functions including up to quartic terms in the gauge field [25],

1[A]|* = exp(—S[4]),  S[A] = /wA2 +%/7<3)A3+%/7(4)A4, (1.97)

#In the functional integral approach, where Weyl gauge is not imposed, the static non-Abelian color
Coulomb potential Vi, Eq. (1.82)), is essentially the instantaneous part of the temporal gluon
propagator Doy = (AgAy), see Refs. [33] 34] and Section
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Figure 1.2: Comparison of the gluon propagator obtained on the lattice (data points) with
the variational solution for the Gaussian ansatz (dashed curve) and non-Gaussian ansatz for
the wave functional (full curve). Plot taken from Ref. [25].

suspecting that these deviation stems from ignoring the three-gluon and higher-order
vertices in the Gaussian ansatz. In fact, from Fig. one observes that with the non-
Gaussian ansatz ((1.97)) the maximum moves towards the lattice result.

Let us shortly summarize the main findings of this chapter. Starting from the defin-
ition of the QCD Lagrangian, the corresponding Hamiltonian in a Coulomb gauge fixed
scheme has been presented. We have shown that the so-called Faddeev-Popov determin-
ant, which essentially describes the Jacobian in the curved space, enters the Hamiltonian
and the scalar product. Moreover, in the construction of the Yang-Mills vacuum wave
functional it plays an important role. In the last section we have studied the pure Yang-
Mills sector and collected the most important quantities for later work, i.e., the gluon
propagator and the non-Abelian color Coulomb potential.

All these results offer a rich variety of applicationf]: for instance, the Gaussian Yang-
Mills vacuum wave functional ¢[A], Eq. , can be applied to obtain a perimeter
law in the 't Hooft loop, Ref. [40], or to show that the inverse ghost form factor d~!(p),
Eq. (1.84), has the meaning of the dielectric function of the Yang-Mills vacuum, Ref. [41].
In addition, the topological susceptibility, Ref. [42], has been successfully computed using
the Gaussian ansatz and currently the finite temperature case in pure Yang-Mills theory
is investigated, Refs. [43, [44]. Moreover, the above described formalism can be used to
extract information about lower dimensional QCD as well. The Gaussian vacuum has
been applied to Yang-Mills theory in D = 1+ 1 dimensions, Ref. [45], and in D =2+ 1

5A collection of all results gained in recent years in the Hamiltonian approach to Yang-Mills theory
can be found in Refs. [37H39].
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dimensions, Ref. [46]. However, the ultimate goal is, at last, to approach hadron physics
and to compute hadron observables from the elementary degrees of freedom, the quarks
and gluons.

In Part [l of the work we therefore extend the variational approach and include quark
fields into the ansatz for the vacuum wave functional.

In Part [l we show how the area law for spatial Wilson loops can be obtained from the
results presented in this section.

Finally, let us shortly mention other approaches to non-perturbative Yang-Mills the-
ory in Coulomb gauge. Although most work in recent years in Coulomb gauge has been
performed in the Hamiltonian approach, also the Dyson-Schwinger approach within the
first order formalism has become quite popular, Ref. [47]. In this framework the Slavnov-
Taylor identities are studied in Ref. [48]. In Ref. [49] a non-perturbative constraint on
the total color charge is derived. Heavy quarks are explored in Refs. [50-52]. A one-loop
perturbative analysis of propagators is performed in Refs. [53H55]. Besides the Dyson-
Schwinger approach, there exists another powerful functional method to explore the
non-perturbative sector, the Functional Renormalization Group, Ref. [56]. Transferring
this formalism to the Hamiltonianian formalism in Coulomb gauge, Ref. [57], flow equa-
tions for the ghost and gluon propagators are derived and solved in Ref. [58]. Moreover,
in Ref. [59] a flow equation for the static non-Abelian color Coulomb potential is presen-
ted. Another method is lattice QCD in Coulomb gauge. A key issue on the lattice in
Coulomb gauge is the renormalizability of Greeen's functions. It has been discovered
that for static correlation functions a non-perturbative renormalization procedure can
be defined, see Refs. [36, [60, 61]. Recent calculations of lattice Yang-Mills propagators
are reported in Ref. [62]. It is a remarkable fact that most results gained in all these
different approaches to Coulomb gauge QCD agree quantitatively.
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Chapter 2

Chiral Symmetry Breaking and
Dynamical Mass Generation

The aim of the first project presented in this thesis is to formulate a vacuum wave
functional for the quark sector of QCD. In this chapter we introduce the theoretical
concept which is essential for this construction: the spontaneous breakdown of chiral
symmetry. Important low-energy phenomena follow from this concept, like the small
pion masses and the non-existence of degenerate masses of parity partners.

In the first section we introduce the notion of a constituent quark mass and motivate,
in a simple physical picture, how a constituent mass evolves from a small or even vanish-
ing bare quark mass. In Section 2 we put these observations on a theoretical foundation.
Starting from the definition of a general flavor symmetry transformation, we discuss the
symmetry group of QCD and introduce chiral flavor rotations. Section 3 is devoted to
the phenomenological hints for chiral symmetry to be broken spontaneously. We then
discuss the resulting ground state properties and invoke the Goldstone theorem, which
explains the small pion masses.

2.1 Bare and Constituent Quark Masses

The masses of the lightest quark flavors my, my, and mg are small compared to the
typical QCD scale, which is of order 1 GeV, e.g., the mass of the proton. These bare
or Lagrangian quark masses are fixed in a certain renormalization scheme, for instance,
the M S scheme, and take values of about [63]

my ~ 2MeV, mp ~ 4 MeV, ms ~ 100 MeV. (2.1)

The fact that the proton mass, Mpyroton = 940 MeV, differs from the sum of the masses
of its building blocks (two up-quarks and one down-quark) by almost two orders of
magnitude, motivates the introduction of a constituent quark mass. It consists of the
bare quark mass my, with F denoting flavor, and the contribution from binding effects
of QCD. Since three constituent quarks form a nucleon, the mass of a constituent quark
is about Mconstituent = Moproton/3 = 300 MeV. Many bound-state models use this value
as input.

Starting from the bare mass m; the constituent mass Mconstituent 1S generated dy-
namically, which can be illustrated in the following way [64]: As the bare quark moves
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through the hadron, due to QCD interactions it acquires more and more mass until it
freezes out and becomes a heavy constituent quark at large distances (around 1 fm).
In momentum space we can therefore define the constituent mass as the dynamically
generated mass, denoted as M(p), at zero momentum and the current quark mass as
its limit for large momentd}

M(p — 0) = MCOnstituenta M(p — OO) = Mg . (22)

We can conclude that due to the large difference between constituent and bare quark
mass nearly the whole proton mass arises from the strong interaction. To compare, the
Higgs field, from which should follow the bare quark masses, only accounts for one or
two percent of the proton mass, Ref. [65].

Theoretically also with vanishing quark mass a non-vanishing constituent mass can
be obtained, which leads to the statement that quark mass is generated from nothing
[66]. This reveals that mass generation must be non-perturbative in nature, since in
perturbation theory the mass of a particle is proportional to its bare mass at every order
in the coupling. Hence, in order to describe the emergence of the constituent quark
mass from QCD, we clearly have to rely on non-perturbative methods. Such a method,
outlined in Chapter [T} is the variational approach to QCD in Coulomb gauge.

A puzzle, which arises at this stage, comes from the pion, composed of an up- and
a down anti-quark. Sticking to the constituent representation, we would expect a pion
mass of about Myion = 2 X Mconstituent =~ 600 MeV. However, the experimental value
is much smaller, Mo, =~ 140 MeV. We therefore have to clarify how a light composite
particle, the pion, is formed from two massive constituent quarks.

2.2 Chiral Symmetry

Considering fermion fields that carry a flavor index running from 1 to Ny, Eq. (L.1)), we
define a general symmetry transformation of the form

V(@) = /(@) = o) 23
v Ba)e e (2.4

D) = T (@)

with X,, X, being the symmetry generators in flavor space and the index a runs from
a = 1 to N2. Expanding the fermion Lagrangian, Eq. , to first order in the
parameter ¢, the invariance with respect to the general symmetry (2.3), can be
formulated as

X,D+DX,=0, (2.5)

ILet us emphasize that the non-trivial behavior of QCD under a scale transformation leads to the fact
that physical quantities become momentum dependent, which means that all quark masses become
running masses.
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with D, Eq. (1.2)), denoting the massive Dirac operator. From the general symmetry
transformations we build up N?2 vector transformations XY and N? axial-vector (chiral)
transformations X/ as

X;/ = {Ta’ ]l}a X(? = {'75Ta7/75} . (26)

We find both to be symmetries of the massless QCD action. Note that YZ gets an addi-

tional sign, i.e., YZ = {—T,,—1}. The invariance with respect to axial transformations
can directly be seen from the anti-commutativity of the massless Dirac operator with s,
i.e., {D,v5} = 0. The invariance with respect to vector transformations extends to the
case of degenerate masses my; = m. The QCD action, however, is chirally symmetric
for massless quark fields only. A mass term explicitly breaks chiral symmetry, as can be
seen by inserting the transformations X in (2.5) with D = m. Therefore, setting the
quark masses to zero, i.e., my = my, = mg = 0, is called chiral limit.

From now on, to the rest of this thesis, we deal with massless quarks only. The
symmetry group of massless QCD is

SUy(Ny) x SUA(Ny) x Uy(1) x Ua(1) . (2.7)

Noether's theorem connects a continuous symmetry with a conserved current, which
reads for the symmetry transformations quoted above

JV =yTy a=1,... N; =1 JV =9y ,a=Ni,
J;f’A =Ty ,a=1,. .. ,Ng -1 Jﬁ’A =Py sy s a = ng J (2.9)

where we identify the conserved vector currents Jﬁ’v to give isospin and baryon num-

2
ber conservation. The axial current JIJLVF’A is conserved at the classical level only. In
the quantized theory the Ua (1) symmetry is violated, leading to a non-zero operator
occurring on the right-hand side of the divergence

" (Y1) # 0. (2.10)

This so-called axial anomaly can be demonstrated in an elegant manner using the
Fujikawa method [67] which starts from the observation that the fermion measure in
the fermionic path integral is not invariant under a chiral rotatiorﬁ.

Finally, we define the orthogonal projectors P. = % on right-handed and left-

handed components

¢R = P+77Z}7 wL = P_¢ ’ (211)
such that we can decouple the massless fermion Lagrangian as
L= DYr + gD . (2.12)

2The explicit chiral Ux (1) symmetry breaking by the axial anomaly gives mass to the 7’ particle. In this
thesis we do not consider the axial anomaly, which has been already calculated in the Hamiltonian
approach in Ref. [42].
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Chiral symmetry manifests itself in the possibility to decouple the Lagrangian into a
left-handed and right-handed part, which can again be related to the fact that ~; anti-
commutes with the massless Dirac operator D or correspondingly with the Dirac Hamilto-
nian h, see Eqgs. (1.33), and the discussion which follows these equations. The
explicit chiral symmetry breaking by a mass term then leads to a mixing between left-
and right-handed components, i.e., ¥, ¢r + ¥ 1. Moreover, left- and right-handed
currents can be constructed as sum and difference of Egs. (2.8)), to give

Jr=c (I =T, (2.13)

N~ DN~

R v A
Ji== (1 + T . (2.14)
Both currents are conserved separately implying that the fermion numbers of ¢, and
g are separately conserved. In addition, we can construct left- and right-handed trans-
formations and end up with the following isomorphic symmetry groups

SUy(Ng) x SUA(Ny) x Uy (1) x Up(1) =2 SUL(Ny) X SUR(Ny) x Ur,(1) x Ugr(1) .
(2.15)

Let us emphasize that ¢z and v are eigenfunctions to the chirality matrix 5 with
eigenvalues +1, i.e.,

Y5Vr = VR, YL = —Yr . (2.16)

This observation will become important for the considerations below.

2.3 Spontaneous Breaking of Chiral Symmetry

We now motivate the fact that the axial-vector symmetry SUA(N;) is not realized in
nature. We start from the observation that left- and right-handed particles are at the
same time helicity eigenstates (in the chiral limit)

o-pYr = Yg, o-pY, = —Yg, (2.17)

where we have used the definition of the helicity matrix o - p, Eq. (A.14). Right-handed
massless fermions i) have helicity +1 and left-handed fermions 1, have helicity —1.
For massless fermions helicity eigenstates are at the same time chirality eigenstates. To
see this compare Eq. with Eq. (2.17). Acting with a parity operator a particle
with positive helicity transforms into a particle with negative helicity and vice versa.
We therefore expect hadrons to occur in nearly degenerate parity doublets, i.e., parity
partners should have nearly degenerate masses. For instance, the nucleon N and its
parity partner N* should have nearly equal masses. However, while the nucleon N
has a mass of 940 MeV, its parity partner N* is about 600 MeV heavier. Hence, no
such degeneracy occurs in the hadron spectrum. We can conclude that the ground
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state of QCD does not obey the symmetry of the action, Eq. (2.15)), i.e., axial-vector
transformations SU (Ny) are broken spontaneously.
The true vacuum of QCD, denoted as |®), is not chirally invariant:

XY £ | (2.18)

where we have used the definition ([2.6)). This argumentation can further be supported
by the fact that the flavor-singlet vacuum expectation value

(@[p|®) = (D[YpYr|P) + (DY, PR|D) (2.19)

referred to as chiral condensate, acquires a non-zero value. This non-zero expectation
value signals the mixing of left- and right-handed quarks. In this picture the QCD ground
state, being populated by quark-antiquark states, is responsible for giving mass to the
hadrons. We stress that the relation will become important in later considerations.
We speak of such a symmetry to be realized in the Nambu-Goldstone mode as opposed
to the Wigner-Weyl mode, in which the vacuum possesses the same symmetry as the
action of the system.

In the chiral limit the value of the chiral condensate is given as (Yv)) = —(235 +
15MeV)?3, Ref. [68]. In recent years lattice measurements’| could confirm this value
[70H72].

We are now able to solve the puzzle of the small pion mass. For a spontaneously broken
continuous global symmetry the Goldstone theorem applies, leading to the existence of
massless and spinless particles, the Goldstone bosons. If the broken symmetry is a vector
symmetry then the associated Goldstone particle is a massless scalar particle, whereas a
broken axial-vector symmetry leads to pseudoscalar massless particles. The number of
Goldstone particles corresponds to the number of generators of the broken symmetry,
i.e., for SUA(Ny) there are N? — 1 Goldstone particles. The eight lightest hadrons
o, 7m0 KT, KO,KO, n are therefore the pseudoscalar Goldstone bosons associated with
the eight generators of SUA(3). Since the lightest quark flavors are only approximately
massless, the Goldstone modes also acquire a small non-vanishing mass, but are still
much lighter than the other hadrons.

In the quantized theory the symmetry is broken to the remaining symmetry

SUv(N;) x Uy (1) , (2.22)

30n the lattice the quark condensate, Eq. (2.19), is given via the Banks-Casher relation [69]
(@[0/®) = — Jim_ mp(0) (220)
—00

with the spectral density p()) of the Dirac operator defined by
1
P =3 D (60 =) (2.21)

and p(0) the zero-eigenvalue density of the Dirac operator, see Eq. ((1.35)). Here V is the volume
and )\ denotes the eigenvalue of the Dirac operator.
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which is realized in nature. Since no light scalar particles appear in the spectrum,
baryon number is conserved and hadrons form multiplets of SUy/(3). Moreover, there
exists a general theorem [73], which states that in vector-like theorieﬂ vector symmetries
cannot be spontaneously broken. The independent left- and right-handed symmetries,
Eq. , are spontaneously broken to a group of simultaneous transformations

SUL(NF) X SUR(NF) = SUL+R(NF) . (223)

In the next chapter we will make use of the concepts presented in this chapter in order
to construct a vacuum wave functional for the quark sector of QCD.

4These are theories in which the gauge field only couples to vector currents, as opposed to chiral
gauge theories, in which gauge fields couple to axial-vector currents as well. A famous example for
vector-like theories is QCD and for a chiral gauge theory the U(1) x SU(2) gauge theory of the
electroweak sector.



Chapter 3

Variational Approach to the Quark
Sector of QCD

In this chapter we introduce quark fields into the variational approach to QCD in Coulomb
gauge.

In the first section we motivate the choice of BCS-like trial states containing quark-
antiquark pairs, which we generalize to include the coupling of the quarks to transverse
spatial gluons. In Section 2 we represent the quark fields in a coherent fermion basis,
and in section 3 we establish the generating functional in terms of Grassmann fields
and evaluate fermionic n-point functions. In Section 4 we discuss the evaluation of the
gluonic expectation values which, due to the presence of the quark fields, can no longer
be done exactly. Section 5 exploits the low energy chiral properties of the theory, like
the quark condensate and the constituent mass and connects the solutions obtained in
the variational approach to the quark propagator dressing functions.

All results are given in the chiral limit, but it is straightforward to reformulate the
system to non-zero quark masses.

Explicit calculations and technical details are postponed to Appendix [Bl Some of the
results presented in the following chapters have been published in Ref. [74].

3.1 Motivation

Let us start with the microscopic theory of superconductivity, the BCS theory. Below
a critical temperature electron-hole pairs, so-called Cooper pairs form and signal the
transition to the BCS phase. The ground state of a superconductor can therefore be
represented in terms of Cooper pairs [75]

IBCS) = e~ Skt Cuiaidl ) (3.1)

with Cy; denoting the amplitudes, where the variational kernels denoting the occupation
probabilities for the different single-particle states are hidden. The creation operators a'
and b' for electrons and holes are defined according to Egs. , . Varying the
BCS-Hamiltonian with respect to the variational functions results in the so-called gap
equation [75], which is a self-consistent equation for the energy gap A. The Nambu-
Jona-Lasinio model (NJL-model) transports this picture to quark physics. Cooper pairs
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become quark-antiquark pairs, the critical temperature becomes the critical coupling and
the energy gap A becomes the mass gap M [76], [77]. The first attempts to construct a
quark vacuum wave functional within QCD make use of this analogy. In the pioneering
works of Finger and Mandula [78], Yaouanc et al. [79], and Adler and Davis [80] a
BCS-like ground state is considered

|¢) = N exp [—/d‘?’pz S(p)u(p, s)o(—p,t)a™ (p, S)bT“(—pJ)] ‘0> , (32)

where Ar is the normalization, S(p) is the variational kernel, u(p,s), v(—p,t) the
spinor solutions, Eqs. (A.26)), (A.28)), and a(p, s), b™(p,t) the creation operators for
massless quarks and anti-quarks of momentum p, color a and helicities s, ¢, Egs. ((1.41)),
. The flavor index is suppressed and can straightforwardly be attached to the
creation operators. However, to the present approximation the result is independent on
the number of flavors used, so that we will drop the flavor index.

The vacuum state has zero total momentum, zero angular momentum and is a
color singlet. Employing Bogoliubov transformations generalized creation and annihila-
tion operators can be constructed, from which the expectation value of the Hamiltonian
is evaluated. After variation with respect to the variational kernel S a non-linear equation
determining S, the so-called quark gap equation is derived [78H80]. The construction
of Bogoliubov quasi-particles can be seen as a realization of the BCS formalism within
QCD.

However, this ansatz has certain limitations. Since the wave functional does not
take a coupling to transverse gluon fields into account, the part of the single-particle
Hamiltonian Hy, Eq. (1.25]), which couples the quarks to the transverse gluon fields -
the last term in Eq. ({1.29)) - cannot be accessed: the corresponding expectation value is
zero. As a consequence, chiral parameters of the theory result too small [80].

In this work we improve the BCS-type wave functional and explicitly take the
coupling to gluons into account. We suggest the following general ansatz for the quark
vacuum wave functional,

|6) = Ny exp [—/d3pd3qz K®(p, s;q,t)a"(p, S)bTb(qvt>] ’0> . (33)

where the kernel K will be specified below to consist of two parts: the BCS part,
Eq. (3.2)), and a part which couples the transverse gauge field to the quark-antiquark
pairs. For the following considerations we give the adjoint vacuum state

(8] = Nz (0] exp [— [Ea' Y K@ tp @ naes)| . (34

)

where K denotes the complex-conjugate kernel. The coordinate-space representation of

the wave functional is
0 =Moo |- [ Eadyil@itentm]p). @9
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where we have used the definitions (1.41]) and (1.42).
It is natural to consider the full QCD vacuum as a direct product of gluon and fermion
wave functionals

@) =N ([o)r @ [¥)c) (3.6)

where for the Yang-Mills vacuum |¢)¢ we use the Gaussian-type wave functional,

Eq. , and N is an overall normalization. With this ansatz, Eq. (3.6), we can,
in principle, explore the full QCD system, i.e., all parts of the Coulomb gauge-fixed
Hamiltonian, Eqs. ([1.25)),(1.75)),(1.76]), can be accessed. However, in the variational
analysis in Chapters [4] and [5] we will keep the gluon kernel fixed and vary with respect
to the quark kernels only.

3.2 Representation in Terms of Coherent Fermion
States

In principle we could follow the framework of Refs. [78| [80] and extend the BCS quasi-
particle picture by using generalized Bogoliubov transformations, which can be found in
Ref. [75]. However, we will follow here Ref. [81] and use a more elegant way introducing
coherent fermion states, which allow us to construct a generating functional in terms
of Grassmann fields and to apply the Dyson-Schwinger technique to the correlation
functions of the theory.

We start with defining coherent fermion states as eigenstates of the annihilation op-
erators

a*(p, s)|&+, &) = &4 (P, 9)6+,€7) (3.7)
ba(p75)’£+7§i> :Eia<p7 S>’£+7§i> ) (38)

with the coherent fermion states being of the form

€) = 1€4,87) = exp (/ d‘gpz $)EL(p, s) + b (p, 5)€(p, 8)}) ’0> :
(3.9)

which can be easily proven by expanding the exponential using the nilpotency condition
of Grassmann fields. The adjoint coherent state reads

(€l =l = <0‘ exp </ d*p Yy [€(p,s)a"(p, s) + E(p, )b (p, Sﬂ) )
’ (3.10)
satisfying

(la™(p, s) = (€€ (P, s) , (3.11)
(€lp'(p, s) = (€& (. s) - (3.12)
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In the basis of the coherent fermion states the vacuum wave functional (3.3) and its
adjoint ([3.4) are represented as

6l€] = (€]6) = exp / d3pd3qz (p.5:0,1) ia<p,s>§b<q,t>], (3.13)

¢*[€] = (9l€) = exp /d3qd‘3pz q.t;p,s fib(q,t)fi(p,S)] , (3.14)

with the bare vacuum being (£]0) = 1.

3.3 Generating Functional for Fermion Fields

In order to evaluate various n-point functions as derivatives with respect to fermion
sources, which we denote as 7, we define the generating functional of fermion fields by

Z[Tl] Z[77+7 77 N+, M ] N2<¢’e<n+a+77 b) (aTﬁ++ani)

) (3.15)

where all occuring indices are implicitly summed over. From this key definition we derive
a functional integral representation of the generating functional in terms of Grassmann
fields ([3.15]) using the coherent fermion basis, see Appendix . Here we quote the result

(B.7).
ZIAT, A] = N2 Det[Q[A]] 2T (3.16)

where we have used a compact matrix notation for the source terms

A (j;) | (3.17)

and the kernels Q[A] and Q71[A] are explicitly given as

Q4] — (_]1 K[A]> o ( []1+_KEJ_ [1+K@_1[f> |

KAl -1 [1+KK] K —[1+KK]
(3.18)
From the definition of the full QCD generating functional
Z1j,n) = N*(@]erdielrietn-t) ol ths) ) (319)

where A\ is the overall normalization and j; denote the bosonic sources, we then are left
with an integral over the transverse gauge field, reading

2418 = [ DATLAG(A) exp iiA] N7 Detf0fA] exp [0 [414]
(3.20)
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Lorentz indices are explicitly, and all other indices are implicitly understood. Using the
Gaussian ansatz for the Yang-Mills ground state, the Faddeev-Popov determinant
J[A], Eq. (1.73), entering the functional integral cancels. However, due to the presence
of the gauge-field dependent determinant Det[Q2[A]] and the inverse kernel Q71[A],
Eq. , the gluonic path integral can no longer be performed exactly and we have
to resort to certain approximations.

We turn to the issue of normalization. As a first approximation we demand that
(1)p =1 and (1) = 1, so that we have

N|@) = Nr|p) @ Na i) , (3.21)
with

N:2[A] = Det[Q[4], N2 = /Detfw] , (3.22)

where we have used Gaussian integration for fermion and boson fields. Below we show
that this approximation corresponds to what is called in lattice gauge theory quenched
approximation. We will clarify the physical interpretation of this approximation. When
investigating the back-reaction of fermions on the gluon sector we will have to weaken
the assumption ([3.21)) and expand the fermion determinant in powers of the gauge field.
This is currently under investigation. Note, however, that although the determinant
Det[Q2[A]] in (3.20) now cancels, the path integral over the gauge field can not be
performed exactly, due to the inverse kernel Q~[A], Eq. (3.18)). We are left with

20, AT A] = / DA exp [—Awn A, + jiA] exp [ATQAJA] . (3.23)

The approximations in order to evaluate the gluon path integral are part of Sect. [3.5

In order to clarify the meaning of Eq. , let us set the Hamiltonian approach in
correspondence with the usual Lagrangian euclidean path integral approach, in which
correlation functions of field operators are computed via

(Ol 0. 4) = 5 [ DacSW [ pyipyestisdont v Al (324

with Z = [ DA e 5614l [ Dy Dep e=5¢1¥79:4] denoting the normalization. The fermion
part of the partition function

Tp = / Dt Dipe= 51041 — Det[D] | (3.25)

yields the determinant of the (Euclidean) Dirac operator D = +,0,, referred to as
fermion determinant, and corresponds to Det[Q2[A]] in Ref. (3.20). From this it follows
that the normalization ([3.22) corresponds to setting Det[D] =1 in Eq. (3.24), which is
in lattice field theory called quenched approximation] It can be considered as the limit,

1On the lattice it means that, for instance, the quark propagator is evaluated on gauge configurations
of pure Yang-Mills theory [82]. In the Dyson-Schwinger approach unquenching is implemented by
adding a quark loop in the gluon Dyson-Schwinger equation [83].
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in which the sea quarks (i.e., quarks which are created and annihilated in the vacuum),
are infinitely heavy and cannot be generated from the vacuum, see Ref. [82]. Recent
Dyson-Schwinger studies, Ref. [84], indicate that the effect of such virtual pairs of quarks
and anti-quarks from the vacuum on hadronic observables is smalf?]

From Egs. (3.20]) and ([3.24]) we can identify

e~ = g AL |g[A]]" (3.26)
eI = |gler €, Al (3.27)
The action of the bosonic and fermionic part of the theory in coordinate space reads
SglA] = /d?’xd?’y AN x)w(x,y)A(y) , (3.28)
Selu' 0. Al = [ dady vl @A) @ )0 (w) (3:29)

For later use we separate the fermionic and gauge field part of the expectation value and
write

()= Irle, (3.30)

which means that we first of all take the expectation value in the fermion sector and
subsequently in the Yang-Mills sector.

We go ahead with identifying expectation values in the fermion sector (...)r as de-
rivatives of the sources 1. As an example we compute the expectation value (aa'). In
Eq. we identify the derivatives 7} and 7, to belong to the fermion operators a

and a', respectively. In Eq. (3.16]), or correspondingly Eq. , we identify the first
entry in Q1[A], Eq. (3.18) to belong to these derivatives. We arrive at

o 5 2[n) _ DECE
<a (p,S)ClT (qﬂf) >F — _5771(1(1),3) 5ni(q’t) 0 - ([]I—FKE ) (p,s, q,(t) )
3.31

A list of all occurring two-point functions is given in Egs. (B.10) to (B.15). We are
going to use these expectation values extensively throughout the next chapters.

In the end, we stress that (2, as well as Q7! Eq. , can be shown to be manifestly
Hermitian, see Appendix [Bl The eigenvalues come in complex conjugate pairs and the
determinants are real.

n=

3.4 Wave Functional Kernels

Up to now we have considered a general interaction kernel K, see Eq. (3.3). As already
mentioned in Section [3.1] we specify the kernel K to consist of two parts

K(A) = Ky + Ky (A) (3.32)

2Note, however, that unquenching has some impact on the intermediate momentum region of the
gluon propagator, Ref. [83], which can be related to the color screening effect of the sea quarks, as
opposed to color anti-screening, which comes from the gluon self-energy.
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with the first part K, being the BCS-part, Eq. (3.2)), and the second part K containing
the transverse gluon field. Moreover, we assume the kernels K and K to have precisely
the color- and Dirac structure of the single-particle Hamiltonian Hy, Eq. (1.25)). For the
field operators a'(p),b'(p) appearing in the vacuum wave functional, Eq. , the
single-particle Hamiltonian Hy can be expressed as

/ dewL%a:)hab(w)wi(w) -
/62‘319 a3 ’qu Z "(p, s)u'(p, 5)h™(p + @)b" (g, t)v(q,t) , (3.33)

with the Dirac matrix h(p-+q) taking into account the interaction with transverse gluons,
Eq. (1.29)), is explicitly given as

h(p+q) = Bmd(p+ q)d” — A (p+ q) (T™)™ . (3.34)

Here we ignored the kinetic part of the quarks, i.e., the first term in Eq. , which
is chirally symmetric and will not enter the variational wave functional .

The BCS part K in Eq. has the Dirac- and color structure of the mass term in
Eq. (3.34). The choice is clear: A mass term in the wave functional, Eq. (3.3), breaks
chiral symmetry, which goes in hand with the notion of dynamical symmetry breaking.
The vacuum state does not share the (chiral) symmetry of the Hamiltonian and
fulfills the condition (2.18)). With this choice the kernel K assumes the form

1

2¢/Ipl|q]

Plugging in this ansatz into Eq. (3.3)) we arrive at the BCS type wave functional ((3.2).
We refer to the dimensionless variational function S as scalar variational function. Using
the spinor relation ((A.38]), the BCS-type of wave functional (3.2) can be rewritten as
[78, B0]

K (p, s;q.t) = S(p)u'(p,s)Bv(g,t)(2m)*6(p + q)0s 6. (3.35)

|6) = Nexp [—/d?’pzss a"(p, s)b"(=p, )

(0> , (3.36)

with s denoting the helicity eigenvalue.

We proceed with determining the part K; in Eq. which couples the fermion
fields to the transverse gluon field. From the Dirac matrix h*(p + q), Eq. , we
read off the Dirac and color structure of the term coupling the quarks to the transverse
gluons. We choose the quark-gluon vertex in the wave functional to be of the forrrE]

K®(p,s;q,t) = (K™ (p,s;q,t) AT (p + q) =

= ;V(p, q)u'(p,s)a; (T™) " v(gq, ) A"(p+q).  (3.37)
2¢/Ipllq|

3In general, we could include more complex Dirac tensor structures in the ansatz for the quark-gluon
vertex. This has been done in three-dimensional QED in Landau gauge, Ref. [85], and in four-
dimensional QCD in Landau gauge, Ref. [86].
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We name the variational function V (p, q) vectorial variational function and clearly dis-
tinguish from the spinor solution v(q,t) whenever appropriate. It has dimension of in-
verse momentum, i.e., [V(p,q)] = GeV ™', see Appendix for a detailed dimensional
analysis.

The adjoint kernels are given as

1

—ba
Ky (q,t;p,s) = ———
2v/|pllq|
—ba —m\ ba m
K, (g.t;p.s) = (K; ) (g.t;p.s)A"(—q —p) =
1 . .
= ———V*(g,p)v (g, ), (T™) " u(p,s)AT(~q —p), (3.39)

~ 2y/Ipllq]

where we have used (wv)' = Du, (wy;v) = vyu, and A*(k) = A(—k).

S*(q)v'(g,t)Bu(p, s)(27)*5(q + p)dys 6™ (3.38)

3.5 Expectation Value in the Gluon Sector

As already discussed in Section , due to the presence of the inverse kernel Qfl[A},

Eq. (3.18)), the gluonic path integral (3.23)
Z[j, AT, A] = / DA exp [—AjwijA; + j; Ai exp [ATQ'[A]A] (3.40)

can not be performed exactly. As a first approximation in the gluon sector we ignore
this gauge-field dependence and evaluate the QCD generating functional as

Z[j, AT, A] = exp E / d°p ji(p)ti(p)6w " (p)j(—p) | exp [ATQT'A] | (3.41)

where we have used Eq. ([1.88). This approximation is again consistent with the quenched
approximation, i.e., we ignore the back-reaction of quarks on the Yang-Mills vacuum.
Now we assume that we have evaluated the fermionic part of a given expectation value

using Egs. (B.10)-(B.15)). Such an expectation value is, in general, of the form
(.)=(.. 0+KK)™".  )a, (3.42)

which can, due to the inverse kernels K and K not be performed according to Eq. 1}
We therefore use the following approximation to handle the gluon expectation values

(..O+KEK)™ e~ {..0+(KK)s)™".. )a. (3.43)

Hence, we replace the denominators in the expressions (B.10)-(B.15]) by their expectation
values in the gluon vacuum.

Throughout the next chapters we extensively need expectation values of the form
(KK) and (KK), which appear in the denominator of all occurring two-point functions
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(B.10)-(B.15). From the key definitions ({3.35) and (3.37)) we find

<(?K)“b (p; 514, t)> = <((F0 + 1K) (Ko + K1)™ (. s: q,t)>

= [S*(p)S(—p) + R(p)] 6(p — q)6%64 (3.44)
<(KF>ab (P, 5; 4, t)> = <((K0 + K1) (Fo +F1))ab (P, s; q,t)>
= [S(p)S*(—p) + R(p)] 6(p — q)6"0 , (3.45)

with R(p), R(p) specified below. The contributions (K¢K;) and (KoKg) can immedi-
ately be read off from the basic definition (3.35]) and (3.38). Terms of the form (K, K;)
vanish, since (A)q = 0. The contribution (KK ) is computed in Appendixto give

(using the definitions (B.30)), (B.31))

Rp)=Cr [ @'V (. aViap) DO [+ D(a-0] . (340

Rp)=Cr [ V.V (@) DO [+ D(a-0] . (47
with £ = p — q, D(€) = 1/(2w(£)) the spatial gluon propagator, Eq. (1.89)), and the
Casimir factor C = (N& — 1)/(2N¢), Eq. (1.7)), coming from the trace in color space.
We stress that the quantity R(p) will enter the definition of the chiral condensate and
the dynamical mass, see Section [3.7]

For later use we quote the derivative of with respect to the vectorial variational
function V/

/ . N — 5R(p) _ * / /
having used the definition
n __ D(e) 7. 0 A/ 0 _ /
Xk ) = Cr iy [ 1+ b £) e)] L b=k k. (3.49)

In Appendix we show that the approximation in the gluonic expectation value,
Eq. (3.43), leads to the following assumptions on the variational kernels

S(p)=S(-p), V(p.q)=V(g,p), R(p)=R(p), R(-p)=R(p). (3.50)

At the end, let us make a comment on performing the path integrals (3.20)). Instead of
taking the expectation value in the fermionic part first, we could, in principle, carry out
the bosonic integral (explicitly denoting Lorentz indices)

Z[5, A, AT] = Né/DA exp [—AfwiP AY + jrAY]

Rt Y]

/D\IJTD\IJ./\G? exp [—UTQU + UIA + ATY] | (3.51)
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and end up with a purely fermionic path integral

ij

1 —
Zlj, A, AT = / DUIDYAR exp | £ (j¢ = WIQHW) (wff) " () - WIS | x
x exp [—UTQW + A + ATT] | (3.52)

where we have used the matrix notation (B.6), explicitly separated the gauge field de-
pendent terms and used the normalization in the Yang-Mills sector. We end up
with a fermionic path integral, which again can not be performed exactly. We would
have to use an approximation scheme according to Eq. in order to evaluate the
fermion expectation values. This is somewhat more difficult, since in the expression
a term appears, which is quartic in the fermion fields.

3.6 Coordinate Space Representation

As outlined in the introduction, Section |3.1] the vacuum state can be dressed in terms of
coordinate-space fermion fields (3.5]). In this section we set the link between coordinate-
space and momentum-space kernels K. Defining the coordinate-space coherent fermion

states following ([3.7)), (3.8) by (Ref. [81])

V2 (x)[€) = €2 (x)|€) (3.53)
P(@)[€) = &(2)[€) | (3.54)

and
Zn) = ZIrs s ne, -] = N(gle(mvetnvl) o(inetvont) gy (3.55)

it is straightforward to repeat the steps from Eq. to Eq. and to derive the
generating functional following Egs. (B.4)-(B.7).

Next we express the projectors onto positive and negative energy components in co-
ordinate space according to Egs. ((1.37)), (1.38)), (1.39) and write the exponent of the
vacuum wave functional as

[ [ Evit@rt @yt v -

= / Bz / d3y / a3z / A2 (@) A (m, 2) K (2, 2)A_ (2, )¢ (y), (3.56)
where we have used /% =T A, ¢p_ = A_1)_, and correspondingly

[ [ @yt @R” @yt -

- / & / dy / 4z / B (@)A_(z, 2) K" (2, 2) A (2 90 (y) . (3.57)
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Without loss of generality we can assume the kernel to be of the form

K®(x,y) = /dSZ/d?’z’A+(a:,z)F“b(z,z’)A(z’,y), (3.58)
with the kernel I' consisting of two parts,

I(z,2) =T%(z,2') + /dgz”(I‘lm)“b(z,z’;z”)A;"(z”) , (3.59)

in agreement with Eq. (3.35) and Eq. (3.37). We can then set up the link to the
momentum space kernels, Egs. (3.35]), ([3.37)) via (with the Dirac and color structure as
discussed in Section

[z 2) = 5% [ d%pe=ps(p) . (3.60)
(Flm)ab(z7zl7z//) _ /d3p d3q ez‘p-(z—z’)eiq-(z”—z’)(]‘-\;‘n)ab(p7 Q) (361)

and obtain the interaction kernels to be of the form

Ki'(e.y) =" [ dper @ VA, p)3S(p)A-(p). (3.62)
(K™ (2, y;2) = (T™)" /d‘?’p d3q e VMEYN L (p)oV(p,p+ @A (p+q)
(3.63)
with
Ki(m,y) = / B2 K™ (@, y: 2) A7 (2) (3.64)
The adjoint kernels read
Ky (z,y) = 6 / d’pe® = YA_(p)BS*(p)A+(p) (3.65)

K?b(w7 y: Z) _ (Tm)ab /d-3p d3q eip'(m—'y)e—iQ(Z—m)A_ (p + q)az‘/* (p +q, p)A+(p) .
(3.66)

3.7 Quark Propagator and Chiral Properties

We can now, as a first application, derive the physical properties of the theory — the
constituent quark mass and the chiral condensate — in terms of the quark variational
functions. Since the constituent quark mass is defined in terms of the dressing functions
of the static quark propagator, denoted as S)(p), we first of all have to evaluate
the static quark propagator in terms of the variational functions S and V, in order to
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establish the connection between the dressing functions and the variational functions.
In the Dyson-Schwinger approach one usually derives integral equations for the dressing
functions, for an introduction to the formalism see Ref. [87]. The quark propagator thus
also serves as the link between the results obtained in the variational approach and in
the Dyson-Schwinger calculation.

We then put the notion of a constituent quark on theoretical foundations, defining
the dynamical quark mass in terms of the dressing functions of the quark propagator.
At last, we evaluate the chiral condensate (1)¢)) in terms of the dressing functions.

We emphasize that all results gained in this section become important throughout
the work, connecting the results from the variational calculation with phenomenological
predictions.

Quark Propagator

To gain insight into the formulation of the dynamical quark mass in terms of the
static quark propagatoff| we start with considering the static tree-level quark propag-
ator S®)(p). It can either be evaluated in terms of the quark fields at time zero,

9= = (o]} [r@Fw][e) (367)

and explicitly making use of the bare vacuum (|®) = |0)), or via the p°-integral of
the dynamical propagator S (py, p), which is the inverse of the Dirac operator D(p),

Eq. (1.1)), yielding

dp® dp® Y’pg — v - p + my
5(3) = / —5(4) =1 -
(p) = 7T (ro. p) 2r  p:—p? —m?

1 My 1

5 [\/m]l \/m'y p] . (3.68)
We observe that the bare static quark propagator S (p) can be decomposed into two
irreducible Lorentz tensors, the scalar mass part (1) and the vector part («-p). For chiral
fermions the scalar part vanishes, and we are left with only the vector Dirac component.
In terms of the quark propagator chiral symmetry breaking can be understood in the
following manner: A vanishing scalar part at tree-level becomes non-vanishing for the
non-perturbative propagator, thus generating the scalar mass term dynamically. The
scalar part is therefore used as an order parameter of dynamical chiral symmetry breaking,
Ref. [83].

We now work out the same calculation for the non-perturbative vacuum wave func-
tional |®), Eq. (3.6), and ask if additional Dirac components occur. We set the current

#Most recently lattice calculations of the quark propagator and the dynamical quark mass in Coulomb
gauge have been performed, Ref. [88]. It has been shown that the static lattice quark propagator
is non-perturbatively renormalizable. Moreover, it has been observed that the full four-dimensional
quark propagator has a trivial energy dependence, which allows for the definition of a quark effective
energy.
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quark mass to zero. In order to evaluate Eq. (3.67) we Fourier-decompose the chiral
quark fields, Egs. (1.40)-(1.43]), and arrive at the following momentum-space expectation
values

([a“(p,s),a"(q,t)] +[b"(p, 5),a'(q, t)] + [a*(p, 5), b (q, 1) ] + [b1(p, 5), b’ (q, 8}29,)

which are easily evaluated by means of the correlation functions (B.10)-(B.15). We
arrive at

a b _ cab 3 1— S*(p)S(p) - R(p)
([a*(p,s),a"(q,1)]) = 0"°0.(27)*5(p — q) T 5 (p)S(p) T Rlp) (3.70)
a b o sab 3 5S*(p)
([b'(p,s),a"(q,t)]) = 280, (2T) 5(p—|—q)1 5 (p)S(p) T B (3.71)
a b _ ab 3 SS(p)
<[a (p,s),b (q,t)D =200 (2m)°0(p + q)1 5 (p)S(p) + R®) (3.72)
([o"(p, s),b"(q.1)]) = 6°64(27)*S(p — q) S(p)5(p) + Rp) —1 (3.73)

14 5*(p)S(p) + R(p)

Here we have employed the anti-commuting nature of Grassmann fields, leading to the
additional factor of 2 in Egs. and (3.72). All expectation values are diagonal
in color and spin space. Employing the spinor solutions (|A.26]), (A.27|) and taking the
variational functions to be real (which will be justified in Chapter , we obtain for the
static quark propagator

(5(3))“b(m - y) zédab/d“g’p P (@—y) 5 (3.74)

[ 25(p) 1 1—52(1))—5’(11)7. 5
1+5%(p)+ R(p) 1+ 5%p) + R(p)

Like the bare quark propagator, Eq. [3.68, the dressed static quark propagator consists
of a scalar (1) and a vector Dirac component (7 - p). The expectation values ([3.70)
and lead to the vector tensor component of the static quark propagator S (p),
and the parts ([3.71), provide the scalar piece, which is also obtained at tree-level.
Setting the vector kernel in the quark vacuum wave functional to zero, i.e., V = 0,
then the gluon loop integral R, Eq. (3.46]), vanishes and the result simplifies to the
formula obtained in Ref. [80]. For free particles, i.e., setting S = 0 and V' = 0 the quark
propagator reduces to its bare form in the chiral limit.

Dynamical Mass

According to the result (3.74) two irreducible Dirac components occur for the static
quark propagator S®)(p). We therefore use two dressing functions as an ansatz for the
inverse static quark propagator

1

(S¥(p))” = B(p)1—Alp)v-p, (3.75)
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with B called scalar and A vectorial dressing function, both dimensionless. The expres-
sion is easily inverted, yielding

B(p)l + A(p)y - p
B2(p) + A%(p)

The signs of the dressing functions are chosen such that for the bare static propagator
(3.68)) the following identification holds,

S (p) = (3.76)

B(p) = ——=— | Alp) = —2— (3.77)

We define the dynamical mass as the ratio of the scalar part to the vector part

M(p) = |p| % : (3.78)

For large momenta the dynamical mass should approach the bare quark mass M (p —
00) = my, which is shown by plugging the tree-level results into (3.78). A Dyson-
Schwinger analysis in Coulomb gauge, taking into account only the instantaneous part
of the temporal gluon propagator, shows that the dressing functions A and B diverge for
small momenta, whereas the dynamical mass M approaches a finite result, Refs. [34] 89].

Comparing the static quark propagator S® (p) in terms of the variational functions
(3.74) with the result enables us to obtain the following identificationﬂ

S(p) B B(p)
1+ 5%(p) + R(p)  B%(p) + A%(p) ' (50
11— 5%p) — R(p) _ A(p) ' (3.81)

21+ S%(p) + R(p)  B2(p) + A2(p)

In terms of the variational functions the dynamically generated quark mass M, Eq. ((3.78)),
becomes

25(p)
1—-5%(p) — R(p)

M(p) = |p| (3.82)

The vectorial variational function, coupling the quarks to the transverse gluons, enters
this equation via R(p), Eq. (3.46). Neglecting the coupling of the quarks to the trans-
verse gluons V' = 0, the integral R(p) vanishes and the result simplifies to

25(p)
1-5%(p)
5For vanishing vector kernel V the relations (3.80)), (3.81)), yields the constraint A%(p) + B%(p) = 4.

However, with the vector coupling V' this constraint no longer holds true. With an additional gluon
loop integral R in the expression (|3.80))
S(p) + R(p) B(p)

5 5%(p) 1+ R(p) ~ B2(p) + A2(p) (3.79)

M(p) = |p| (3.83)

we would recover the constraint A2(p) + B2(p) = 4.
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which agrees with the formula obtained in Ref. [89].
Chiral Condensate

Finally, we consider the chiral condensate, which was introduced for a single quark
flavor in Eq. (2.19) and serves as an order parameter of chiral symmetry breaking. It
can either be expressed via the static quark propagator

(o

where the trace is taken over Dirac indices, or by Fourier-decomposing the quark field,
explicitly using the vacuum wave functional |®), Eq. (3.3). The actual computation is
straightforward and detailed in Appendix B. We quote the result

<<I>

and stress again that the result is understood in the chiral limit.
Neglecting the coupling of the quarks to the gluons, i.e., V' = 0, this expression
reduces to
<<1>

which agrees with the result in Ref. [80]. In this case the chiral condensate can be
expressed entirely in terms of the dynamical mass function M (p), Eq. (3.82)), yielding

<<D M(p)

VP +M(p)

For the case with non-vanishing vectorial kernel V', no closed expression for Eq.
in terms of the dynamical mass function M(p), Eq. (3-82)), can be found. In the limit
of the bare vacuum the gap kernels S and V' are zero and the condensate vanishes.

Let us make a comment on the form of the dynamical mass, Eq. , and the
chiral condensate, Eq. (3.85)). The vector kernel V' appears only in the denominator of
the expressions (3.82)) and (3.85). Moreover, the vector kernel V' enters the formulae
and (3.89) only indirectly via the loop integral R(p), Eq. (3-46]). This could be

a consequence of the approximation outlined in Eq. (3.43).

%“(m)w(m)’q>> = —N¢ / d*pTrp [S¥)(p)] , (3.84)

25(p)
1+ S%(p) + R(p) ’

(3.85)

@)t (@)|e) = ~Nez [ %

S(p)

H—TZ(p) , (3.86)

7@t (@)|@) = ~Ned [ %

(8

(3.87)

"(@)(@)| @) = ~Ne2 [ %







Chapter 4

Single-Particle Hamiltonian

With the new QCD vacuum wave functional, proposed in the last chapter, at hand, which
goes beyond the typical BCS-type approximation and explicitly contains the coupling of
the quark-antiquark pairs to the transverse spatial gluons, we can access all parts of the
Coulomb gauge-fixed Hamiltonian. As a first step towards a full solution we explore the
pure transverse gluon interaction in the Hamiltonian and investigate the possibility of a
vacuum state realized in the Nambu-Goldstone mode.

In the first section we derive the expectation value of the single-particle Hamiltonian,
i.e., the kinetic energy of the quarks and the interaction energy of transverse gluons
with the color current of the quarks. In Section 2 we employ the variational principle
to determine the gap equation, which we refer to as single-particle gap equation. In
Section 3 we solve the gap equation for the unknown kernels S and V' and discuss the
phenomenological implications thereof.

Much of the actual computation of this chapter, especially the evaluation of the energy
density, is performed in great detail in Appendix [C|

4.1 Energy Densities

In the chiral limit the single-particle Hamiltonian Hy, Eq. (1.25)), has the form

Hy = /dgx (—iv'(z)a - Y (z) — gv'* () - A® ()" () = Hp + Hoac
(4.1)

with Hp and Hqge denoting the gauge-field independent and gauge-field dependent
part, respectively. The coupling ¢ is referred to as the quark-gluon coupling constant
and is the only parameter of the Hamiltonian. It will be specified at the end of the
calculation. The color indices are explicitly denoted as A% = A™ (Tm)ab.

We take the expectation value of the Hamiltonian (4.1)) with respect to the QCD
vacuum wave functional |®), Eq. , for both parts separately and employ the strategy
outlined in the last chapter: First we take the expectation value in the fermionic state

|o)r, Eq. (3.3)), and subsequently in the Yang-Mills vacuum state |¢)¢, Eq. (1.86)).
Dressing the quark fields in the terms of the momentum-helicity representation,

Egs. (1.40)-(1.43)), results in the well-known expression for the kinetic energy of chiral
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quarks

= <<I>’/d‘3p!p\ > (d “(p,s) +0"(p, 5)b(p, 5 (<I>> (4.2)

leading to a trace in momentum-, spin-, and color space. The evaluation of the expecta-

tion values is straightforward. Using (B.11]), (B.13) for the fermionic and ([3.44)), (3.46))
for the gluonic part and the properties (3.50)) of the kernels, yields
<<I> a™(p, s)a"(p, s) + b"(p, s)b"(p, s) > =

S*(p)S(p) + R(p)
1+ S*(p)S(p) + R(p)

=2 Oss 5‘”’“(27r)35(p - p),

(4.3)

where the d-function is the volume of space. The kinetic energy density of interaction-
free quarks becomes

(O|Hp|®) 3 S*(p)S(p) + R(p)
By = e [ainl B (44

The result is symmetric in the variational functions S*, S and V* V, which means that
replacing S by S* or V' by VV* does not alter the energy density. The factor N comes
from the color trace and a factor of two stems from the trace in Dirac space. We underline
that for the kinetic energy density only the terms (¢!*(z )¢ (x)) and (W1 () (x))
contribute. This is different for the interaction of the transverse gluons with the color
current of the quarks, which is explicitly shown in Appendix [C.1]

We take the expectation value (Hqcce), Eqg. - decompose the Hamiltonian in
terms of its Fourier-modes and obtain two non-vanishing contributions

<<I>‘afa(p,s)bTb(q,t)A;ﬂ(k)‘cb> _ <¢‘ — ([11 +?K]‘17)ba (q,t:p, 5) ‘¢>G
(4.5)
(p.5) a'(q. NAT(R)|2) = (| — ([1+ KK &) (a.t:p.9) A7 (k)|
(4.6)

which correspond to the terms (¢ (2)4? (x)) and <¢i“(w)wi(w)> in coordinate space.
The expectation values in the gluon sector are approximated according to Eq. ([3.43)),

yielding for Eq. (4.5)

(T ) o~ o] R, AR,

The explicit computation of these expectation values is performed in Appendix [C] and
we quote the final result for the energy density of the interaction between the quarks
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and the transverse gluons

(Hooe)
0%(0)

. 3 3 V*p, +V(pa ) A~ N4 LD
=29 Nc Cp (21)° /d /d T 5 ()5 £ B D [H(p-f)(q-ﬁ)] :

with £ = p — q. The expectation value is again symmetric in the variational functions
S*,S and V*, V. In Chapter [5] we will observe that this also holds true for the Coulomb
energy density. The Casimir invariant Cr = (N — 1)/2N¢, Eq. , comes from the
trace in color space and the factor of two from the trace in Dirac space. Moreover,
we point out that the angular dependence of the integrand in Eq. is typical for
transverse fields.

As a consistency check we set the kernel V' coupling the quarks to transverse gluons
to zero, so the wave functional becomes of BCS-type and the energy density
vanishes.

4.2 Single-Particle Quark Gap Equations

Varying the expectation values of the quark kinetic energy density (4.4)) with respect to
the gap functions S(k) (and analogously for S*(k)), yields

6 (Hp) _ 5*(k)

R A e R )E

(4.9)

and with respect to the vectorial gap function V' (k, k") we obtain (employing ([3.48))

5 (Hp)

{ R (p;k, K
5V (k, k) 8%(0)

- 4Nc/d3p Pl 5 p)5(p) + Rip)
V* (k, k)X (k, k)
(1+ 5°(k)S(k) + R(k))?

— 4N || (4.10)

where we have used (3.48)), and £ = k — k'. It is interesting to note that for
the variation with respect to V (k, k'), Eq. (4.10)), the energy dispersion E(k) = |k| of
only one momentum occurs, and the denominator in also depends on only one
momentum, which will become important when solving the coupled integral equations.
Both expressions and have in common that the variational functions S* (in
Eq. (4.9)) and V* (in Eq. (4.10))) appear linearly in the numerator. Free non-interacting
fermions therefore possess the trivial solutions S(k) = S*(k) = 0 and V(k,k') =
V*(k,k') = 0. The fermion vacuum wave functional then degenerates to the bare
vacuum, i.e., |p)p = |0)F.
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Variation of the interaction part (4.8]) with respect to the scalar wave function S(k)
yields

0 (Hqac) _
55k) 33(0)

5°(k)

(14 S*(k)S(k) + R(k))?

< [ @V o)+ V@) DO [1+ (- D] -
5°(k)

(T + 5 (k)5(k) + R(R))?

—29gNc Cr

X

= -2 g NcCF

I,(k), (4.11)
with £ = k — q. After the second equality sign we have defined the loop integral
L) = [ @00V (k) + V@) DO [+ (k-@- 0] . (412)

Performing the variation of the expectation value (4.8) with respect to V' (k, k') results
in
0 (Hqaco) _
oV (k, k') 63(0)

V*(k, kX (k, k)
(1+ S*(k)S(k) + R(k))?

X(k, k)
14 S*(k)S(k) + R(k)
(4.13)

The first term, emerging from the variation of the denominator in (4.8) with respect to
V, has the same structure as the kinetic part (4.10]). It is the second term, emerging
from the variation of the nominator in with respect to I/, which establishes the non-
trivial structure. Moreover, it is a remarkable fact that the terms subsumed in X (k, k'),
Eq. , enter the second non-trivial term, which will simplify the evaluation of the
solution function a lot. Note that the Casimir invariant C'r entering has been
absorbed in the definition of X (k, k') for this term. Again, the result for the complex
conjugate variational function V* is analogous.

Now we have all ingredients to set up the coupled equations, which we refer to as
single-particle gap equations.

4.3 Solving the Single-Particle Quark Gap Equations

Since for the single-particle Hamiltonian the variations for .S and S* and V and V*
are analogous, we set in this section S = S* and V' = V*. In Chapter |5 we will show
that this assumption holds true for the Coulomb interaction Hc, Eq. (1.76]), as well.

Collecting the variations with respect to the scalar function S, Egs. and (4.11)),
we obtain the following integral equation for the variational parameter .S

S(k)
(1+ S2(k) + R(k))2

(8Nc|k| — 4 Ne Cr gL (k) = 0. (4.14)
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We note that the quark-gluon vertex V', Eq. (3.37)), is hidden in I,(k), Eq. (4.12)). The
equation admits the trivial solution S(k) = 0, which is by no means surprising: In the

case of vanishing vector kernel V' the variational equation allows for the scalar variational
function S the trivial solution only. The transverse gluon interaction does not provide
the scalar form factor with a non-trivial part. A non-trivial solution, i.e., S(k) # 0, leads
to the constraint equation

8lk| —4Crgl,(k) = 0. (4.15)
Using (4.10) and (4.13) we attain the gap equation for the vector variational function

V(k, k)X (kK
(14 S2(k) + R(k))?

X(k, K
14 S%(k)+ R(k)’
(4.16)

(8N¢|k| =49 Nc Cr 1,(k)) = —4g N¢

which, due to the right-hand side of the equation, does not possess the trivial solution
V(k, k') =0.

The pair of equations, determining the gap functions S(k) and V(k, k') finally be-
comes

S(k)
(1+S2(k) + R(k))?
vk, k) B |
(7 520k + ARy AR =9 OrLo(R)) = =0 e Ry

The term X (k, k') cancels from Eq. (4.16). Using the constraint equation (4.17)) the
left-hand side of (4.18)) vanishes. Consequently, no non-trivial solution for the scalar
variational function S # 0 exists, as long as we neglect the Coulomb interaction. The

coupled equations ([4.17)) and (4.18]) for the interacting theory (g # 0) cannot be solved
for S # 0and V' # 0. The coupled system (4.17)), (4.18)) is solved with S = 0 only, which

has important consequences on the chiral parameters of the theory. Since S appears in
the numerator of the formula for the chiral condensate , this quantity vanishes. The
same conclusion holds true for the dynamical quark mass, Eq. . We conclude, that
a purely transverse gluon interaction does not account for a dynamically generated mass
and a non-vanishing chiral condensate. This indicates that the instantaneous Coulomb
interaction must be essential for the formation of a chirally non-symmetric solution,
which will be verified in Chapter 5] This result is confirmed in a recent Functional
Renormalization Group Flow (FRG) equation calculation, Ref. [57].

Since it is not possible to solve the coupled equations and for both
variational functions non-trivially, we explore the possibility of a solution S =0,V # 0.
Setting S(k) =0 in Eq. yields the following single-particle gap equation

(2|k| —gCrl,(k)) =0, (4.17)

(4.18)

1+ R(k)

Vik, K) = — |
k) = R g Cr ()

(4.19)
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The right-hand side of the equation is independent of the momentum k’. The vector
kernel V(k,k') can therefore be simplified to V(k,k’) = V (k). The loop integrals

I,(k), Eq. (4.12), and R(k), Eq. (3.46)), become
L(k)=2V(k) I(k),  R(k) = CoV>(k)I(K) (4.20)

with
1(k:):/d3qD(z) 1+ k-0@D]. e=k-q. (4.21)

We note that the momentum k' is conjugate to the coordinate z” —z’, which can directly
be seen in Eq. (3.61). In a current investigation taking the kinetic part of the Yang-Mills
Hamiltonian, Eq. (]EI) into account, this simplification does not seem to hold true
any longer. Hence, this simplification most likely comes from taking only certain parts
of the Coulomb gauge Hamiltonian into account and ignoring, for instance, the pure
Yang-Mills part Hc, Eq. (L.75]), in the variational analysis.

Loop Integral of the Static Spatial Gluon Propagator

In principle, the gluon variational kernel w(k), which enters the Gaussian ansatz for
the Yang-Mills vacuum 1 [A], Egq. , should be varied as well. However, we ignore
the back-reaction of the gluon sector on the quark fields and take for w(k) the solution
found by minimizing the Yang-Mills vacuum energy, which is in good agreement with
the lattice data fitted by Gribov's formula (1.95). The Gribov mass Mg, Eq. (1.96),
sets the scale in the gap equation . For more details on the comparison between
variational results and lattice measurements we refer to Section [L.6]

Plugging the Gribov formula, Eq. (1.95), into the gluon loop integral I(k), Eq. (4.21)),
we find the integral to diverge for large momenta. Hence, before we proceed with solving
the single-particle gap equation, we have to find a regularization prescription to make
the integral finite in the large-momentum region.

We start with identifying the divergent terms. Taking only the UV-tail of the Gribov

formula (1.95) into account, w(k) = wyy (k) = |k|, the integral I(k), Eq. (4.21]), can

be analytically performed, yielding

1

1 2 1
2 (2m)?

Afy — gAUV k +6k2 = Iy (k) + I§C (k) (4.22)
~—

divergent

[UV(k> -

with the momentum cut-off Ayy. After the second equality sign we have identified the
divergent terms, which we omit and only take the regular part IRC(k) = %(271r)2 %/{:2 into
account.

The infrared part of the static spatial gluon propagator is incorporated as follows,

lin(k) = [ %a|D(®) - Do ()] [L+ (-8 a D] (4.23)
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Figure 4.1: Regularized loop integral with IR part (full line) and without (dashed line).

with £ = k — q. The regularized gluon loop integral writes
I(k) = Ir(k) + I (k) . (4.24)
Numerically evaluating this integral results in the following asymptotic behavior

11,

k—0: I(k) = s (4.25)
k— oo : I(k) = %(er)QékQ : (4.26)

For small momenta the gluon loop integral (k) approaches a constant, essentially the
Gribov mass squared ME. In the ultraviolet region the integral (k) behaves as k2. The
full gluon loop integral is plotted in Fig. [4.1] The scale at which the constant solution
builds up is set by the Gribov mass Mg, see Figs. [4.1] [4.2] This observation will become
important when analyzing the gap equation (4.19)).

We return to the gap equation (4.19)), plug in the result and set V(k) —
—V(k), so that we arrive at

g 1+ CEVA(R)I(K)

VR) = STk Crgv (k)1 (k) °

(4.27)

with all quantities being positive definitd] This gap equation has a very simple form
with the gap function V (k) appearing only with external momentum, which is due to

!We emphasize, that setting V (k) — —V (k) changes the sign of the vector kernel V, Eq. (3.37), in
the vacuum wave functional (3.3)), which is then given as

|(I)>1“ ~ e—aTKobT—FaTKq:AibT (428)

)
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Figure 4.2: Regularized loop integral for different Gribov mass scales M.

the simplification V(k, k') = V (k). Numerically, the integral equation (4.27) can be
rewritten as a quadratic equation and easily be solved.

Before we go ahead with studying the equation analytically and numerically, we identify
the constants which appear in the gap equation. For the Casimir invariant C, Eq. (L.7)),
we take the SU(3) value Cr = 4/3. Moreover, we replace the (running) coupling g,
which was calculated in the Hamiltonian approach in Ref. [8] from the ghost-gluon
vertex, by its infrared value g = g(k = 0) = 87 /+/3N¢c. We stress that at first sight two
scales enter the equation, the IR limit of the running coupling g(k = 0) and the Gribov
mass Mg, which appears in the loop integral I(k), Eq. (4.21)). However, it is only the
(Wilsonian) string tension, which fixes the scale and is given as /ow = 440 MeV. The
Gribov mass M is determined by the string tension, see Eq. . On the other hand,
the infrared value of the running coupling g(k = 0) is independent of the scale.

Next we analyze the properties of the gap equation in the asymptotic regions. We
start with the small momentum region, i.e., setting & — 0. We assume the gap function
V' (k) to be analytic and expand V (k) as well as I(k) around zero. We find the following
value for the vectorial solution function V at &k = 0,

11+ Crl(k — 0)V?(k —0)

Vk=0) = s —c T S ovie=0)

(4.30)

where all indices are implicitly summed. We have split up the kernel K in two parts according to
Eq. (3.32)). Starting the variational analysis with a vector kernel K7 of the form

V(p. @)l (p, s)a; (T™)" v(q, ) AT (P + q) , (4.29)

1
K{*(p,s;q,t) = ————
2V/|pllq|

we would have ended up with the gap equation 1} without changing sign.



4.3 Solving the Single-Particle Quark Gap Equations 67

/ 1
V(k—0) =+ S ETR (4.31)

where I denotes the regularized integral, Eq. . We find V(0) = +3.84765/,/ow.
The infrared value V' (0) depends on the Gribov mass M and the Casimir invariant Cp,
but is independent of the quark-gluon coupling g. We find, for the present case of a
purely transverse gluon interaction, the kernel V', coupling the quarks to the transverse
gluons, to become constant in the infrared region.

We turn to the large momentum behavior of the gap equation setting £k — oco. The
solution of the quadratic equation can be given analytically as

from which we obtain

1 (JU+GPCH) -1\ 4 11

k
Comparing the large-momentum behavior of V' with the result obtained from perturb-
ation theory [14] the single-particle gap equation yields the correct 1/k perturbative
behavior. This statement will also hold true for the full solution, i.e., with taking into
account the Coulomb energy density as well, from which we will conclude that the large-
momentum behavior of the vectorial gap function V' is driven by the transverse-gluon
interaction, see Chapter [5]

Next we present the results of the numerical evaluation of the gap equation determ-
ining V(k), Eq. (4.27)). Note that all plots are given in units of \/ow. The asymptotic
behavior , (4.32) is confirmed in the numerical evaluation. The vectorial solution
function V (k) freezes out for small momenta and vanishes as 1/k for large momenta,
see Fig. [4.3] In addition, we find that the infrared constant solution builds up around
the Gribov mass M, see Figs. , . We also investigate the dependence of the
solution function V' (k) on the coupling g, see Fig. . For decreasing g the range, in
which the infrared constant value builds up, moves to smaller momenta. However, the
infrared constant value V'(0) is independent of the coupling g, which is also observed

analytically, Eq. (4.31)).

In the end, let us summarize the main results of this chapter. Due to its very simple
form, the single-particle gap equation (4.27|) serves as a laboratory to gain insight into
the behavior of the vectorial variational function, which incorporates the effect of trans-
verse gluon fields on chiral symmetry breaking. It yields an infrared constant behavior
and the power-law decrease for large momenta which agrees with perturbation theory
[14]. We note that it is the Gribov mass Mg, Eq. , which sets the scale at which
the solution assumes the infrared plateau value.
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Figure 4.3: Upper panel: Semi-logarithmic plot of the vectorial solution function V (k) for the
single-particle gap equation . Lower Panel: Double-logarithmic plot of the vectorial
solution function V (k) with (full line) and without (dash-dotted line) the IR part of the
gluon loop integral I(k).



4.3 Solving the Single-Particle Quark Gap Equations 69

407 T T T TTTIT T T T TTTIT ‘ T \\\HL
; —— Mass=0.2
. --—= Mass=2 ]
L N I Mass =20 7
€ 20F -
> C ]
07 .......... Lt gt e b b e eeeaeas ey \ h
10° 10° 10°
o 12

102; \ \ E
C —— Mass=0.2
101? —-—— Mass=2 3
__________________ Mass =20 E
o 10°F E
' B b 7
L I ]
Z 10k E
107°F E
'37 ‘ 1 L L1l ‘ 1 L1 L1l ‘ 1 1 \\\HT

10 R

10° 10” 10°
12
k/(5W

Figure 4.4: Upper panel: Semi-logarithmic plot of vectorial solution function V (k) for different
values of the Gribov mass Mq. Lower panel: Double-logarithmic plot of vectorial solution
function V (k) for different values of the Gribov mass M.



70 Chapter 4. Single-Particle Hamiltonian

4-f T \\\HH‘ T \\\HH‘ \\\HH‘ T \\\HH‘ \\\HH‘ \\\\H%
B E
L £ E

| — g(0)=0.8377 \ E

E \ E
058 ——- 2(0) =8.377 RS 3
E 2(0) = 83.77 SNl
0:3 > - \\HHXO L1 - . \‘\\7‘!\%—2"\"\-4.-\-4.\ 4 3
10 10 10 10 10 10 10
12
k/cW
101§ T \\\HH‘ \\\HH‘ T \\\HH‘ \\\HH‘ T \\\HH‘ \\\\H%
10’ E
Q 107F 3
= -
© i
g 10_2? \\ E
- —— g(0)=0.8377
10°E --- ¢g(0)=8.377
...... 2(0) = 83.77
—47 Il \\\HHX Il \\\HHX Il \\\HHX Il \\\HHX Il \\\HHX Il \\\\H:
1043 107 10" 10 10' 107 10°
12
k/c.

Figure 4.5: Upper panel: Semi-logarithmic plot of vectorial solution function V (k) for different
values of the coupling g. Lower panel: Double-logarithmic plot of vectorial solution function
V (k) for different values of the coupling g.



Chapter 5

Coulomb Hamiltonian

After having incorporated the interaction energy of transverse gluons into the variational
calculation, which did not provide a non-vanishing chiral condensate, the next logical
step is to include the Coulomb Hamiltonian, which describes the interaction of color
charges mediated by the Coulomb kernel and which is expected to account for the main
part of the symmetry breaking.

This chapter follows the same steps as the previous chapter. After a short introduction
in Section 1, we derive the Coulomb energy density in Section 2, subsequently determine
the gap equations in Section 3 and combine the result with the single-particle pieces to
give the full coupled gap equations. In Section 4 we study the coupled system analytically
and numerically for a confining non-Abelian color Coulomb potential and compare it to
the case with vanishing quark-gluon vertex in the ansatz for the quark wave functional.
Lastly, in order to understand the role of the infrared part of the static spatial gluon
propagator for the solution functions, we compare the result to the case with a one-loop
(perturbative) gluon propagator.

The lengthy evaluation of the Coulomb energy density is placed in Appendix [C|

5.1 Introduction

Ignoring the purely gluonic contributions, the Coulomb Hamiltonian, Eq. (1.76]), can be
split up in three different parts

2

He =7 / Pady 1(@) (T) (@) ™ (@, )0 (y) (T 6'(y)  (5.)

2

+% / drdy T Alp (@) T (A)F™ (2, )¢ (y) (T") ¢ (y) (5.2)

+§ / dady ! (@) (T™)" P (@) ™ (@, y) ot (y) - (5.3)

where we have made explicit the quark charge densities p, Eq. . The gluon charge
densities are p@i(x) = f™A?(x)lI2(x), Eq. (1.77). We use the same conventions for
the color indices as in the previous chapters: To distinguish fundamental from adjoint
indices we label the fundamental fields with a, b, . .. and the adjoint fields with m,n, .. ..
The first term, Eq. , describes the interaction between quark charge densities and
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the other two terms, Eqgs. (5.2)), (5.3]), between gluon and quark charge densities, where
for the last term we have used that the quark fields commute with the Faddeev-Popov
determinant 7[A], Eq. (1.73)). Due to its four-fermion structure, the first part, Eq. (5.1)),
is assumed to be most important for studying the effect of dynamical chiral symmetry
breaking. As an approximation we concentrate on the interaction between the color
charge densities of the quarks only, Eq. . The additional contributions, Egs. (5.2)),
(5.3)), as well as taking into account the pure Yang-Mills part, Eq. (1.75), are currently,
at the time of writing the thesis, under investigation.

As a further approximation we replace the Coulomb kernel Fab, Eq. , by its
expectation value in the Yang-Mills sector

92<Fab(w7 y)>G = 5abvc(m’ y) ) (54)

with the non-Abelian color Coulomb potential V- given in Eq. . This approximation
is consistent with the quenched approximation discussed in Section [3.3] since here we
ignore the effect of the quark vacuum on the Coulomb kernel F“b, Eq. . The
Coulomb energy density is then given as

(He) = 5 [ o dyVeleyp)(0(@) (T o (@)ul“(y) (T 6'(w)) . (55)

The non-Abelian color Coulomb potential V(7)) with r = | — y/| describes the interac-
tion potential between two static color charge densities (see Section [1.6)) and it can be
split up into two parts

Vo(r) = ocr — % , (5.6)

with a long-range linear potential o¢r and a short-range Coulomb potential ag/r. The
slope of the linear potential, referred to as color Coulomb string tension o¢, sets the
scale in our approach (for more details, see the discussion after Eq. ((1.94))).

5.2 Coulomb Energy Density

The four-fermion terms appearing in the Coulomb Hamiltonian (5.1)) make the evaluation
of the energy density tedious. Here we only present some general arguments useful for
the derivation. A detailed computation of the occurring expectation values is carried out
in Appendix [C.2]

We expand the quark fields in Eq. ((5.1)) in terms of Fourier modes, Egs. ((1.40)-(1.43),
ending up with a lengthy expression, see Eq. (C.47). These sixteen contributions are

evaluated applying Wick's Theorem, which for a general four-fermion expectation value
means

(hvsvbon) = (whvs) (vhvo) = (whul) (vnvo) + ($hon) (vsvh) -
(5.7)



5.2 Coulomb Energy Density 73

We have used ¢ ~ ua + vb', Eqs. (1.40), (1.41), and a condensed index denoting
momentum, color and spin indices. Since all expectation values on the right-hand side

give a unit matrix in color space, the first term on the right-hand side vanishes due to
5 (T™)® 5ed (T™) = Tro[T™ Tre[T™] =0 . (5.8)

The second two-point expectation values in ((5.7)) vanish as well, see Egs. (B.16)]), (B.17).

Moreover, we can show that only terms with a symmetric number of fermions and anti-
fermions contribute and for all other terms the spin sums vanish, which is explicitly
demonstrated in Appendix [C.2]

We quote the final form of the Coulomb energy density

(He) 1

50) = 5J\fc(JF(zw)?’/a*“"’pd?’qvc(p—q) Y(p,q)+ Z(p.@)p-4] .  (5.9)

with the definitions

(1+S*(p)S(p) + R(p))(1 + S*(q)S

(5.11)

Both parts Y and Z (and therefore the Coulomb energy density, Eq. ) are symmetric
in the variational functions, i.e., replacing S by S* or V by V* does not alter the
quantities Y and Z. This observation holds true for all parts of the energy density,
which we have taken into account, see Egs. (4.4),(4.8). As shown in the last chapter
for the single-particle energy density, Section [4.2] due to this symmetry the variations
with respect to S and S* (or V' and V*) lead to identical gap equations and we can set

S=§, V=V, (5.12)

The second term in Z, Eq. (5.11), then cancels.

We note, that the vector kernel V' enters in Y, Eq. (5.10)), and Z, Eq. (5.11), only
indirectly via the loop integral R(p), Eq. (3.46)).

We investigate two limits: Switching off the scalar variational function, i.e., S = 0,
the part denoted as Y, Eq. (5.10)), simplifies to unity. On the other hand, setting the
vectorial gap function to zero, i.e., V = 0, the loop integral R(p), Eq. , vanishes
and the energy density reduces to its form determined in Ref. [80].

Next we perform the variations and incorporate the Coulomb interaction, Eq. ,
into the coupled system (4.17)), (4.18). We emphasize that we now work with the
variational functions S and V' to be real, Eq. (5.12).
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5.3 Full Coupled Quark Gap Equations

The variation of the energy density ((5.9)) with respect to S(k) yields

§ (Hg) 1 [(1)(14:)
SR E0 ~ 2 TR T R (5.13)
with
W [ s Volk—aq)
Ie (k) —/d q1+52(q)+R(q)x

x [S(a)(1 = 5%(k) + R(k)) - (k- @)S(k) (1 - 5*(g) - R(9)] . (5.14)

In contrast to the variation of the single-particle energy densities and with
respect to S(k), here the scalar variational function S(k) does not appear as a factor
in the numerator on the right-hand side of Eq. , but only in the integral Iél)(k),
Eq. . This has important consequences on the structure of the resulting gap
equation

4]
—(Hp + H Hc) =0 5.15
5S(k)< b+ Hoce +He) =0, (5.15)
where we have used the definitions Hp, Eq. (4.1)), and Hyce, Eq. (5.1). With the inclu-
sion of the Coulomb energy density, Eq. (5.9), the constraint equation (4.14)) becomes

a non-linear integral equation (using Egs. (4.9), (4.11)), (5.13))
1 1
50k) (k] = J0CrL(K) ) = SCrIE ) (510

We can draw the conclusion that the Coulomb interaction, Eq. (5.1)), provides the non-
trivial part for the gap function S.
For the variation of the energy density (5.9)) with respect to V'(k, k') we obtain
o (Ho) 1 V(k,EX(k,E) o

SV (k, k') 53(0) = §NCOF8 0+ 52(k) + (k)2 (k) ,

(5.17)

2 _ 3 Ve(k —q) P 2
100 = [ o PSWS@+ ) (-5 <q>R<q>>(] .
5.18

and X (k, k') defined in (3.49). However, the variation with respect to V' leads for
the Coulomb part H¢, Eq. (5.17]), to the same structure as for the kinetic part Hp,

Eq. (4.10). When ignoring the interaction with transverse gluons Hqcc, Eq. (4.13)), we
arrive at a constraint equation of the form

Vk, k) (|k:| + %(JF 13)(1@)) =0. (5.19)
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This equation together with the equation determining .S, Eq. , has the non-trivial
solution V' = 0 and S # 0. (Note that the opposite case, ignoring the Coulomb
interaction H¢, Eq. , and using the transverse gluon exchange only, i.e., Hqgc,
Eq. (4.13)), was studied in the previous chapter in Section and could be solved
with V' # 0 and S = 0.) Hence, the transverse gluon interaction Hqcc, Eq. (4.8),
more precisely the variation of the nominator term in (4.8)) with respect to V' (which is
the second part on the right-hand side of Eq. (4.13)), supplies us with the non-trivial
contribution for the gap function V.
Collecting Eq. and the variations with respect to the vector function V' (Egs. (4.10)),

(4.13), (5.17))) we arrive at the following system of coupled integral equations,

_ 3CRIE(K)
k| — 39Cpl,(k)’
; 1+ S?(k) + R(k)
20k| — gCrl (k) + 1Cr 21D (k)

S(k) (5.20)

Vik, k) = — (5.21)

where we have used the definitions R(k), Eq. , I,(k), Eq. 1) and Iél)(k),
Eq. , Iéz)(k), Eq. . As for the case of a pure transverse gluon interaction
Hqce, Eq. (8.19), the gap equation determines the variational function V to de-
pend only on one momentum, V' (k, k') = V (k), since the right-hand side of Eq.
depends on only k. As discussed in Section this is an artifact of our approxima-
tions. However, it significantly simplifies the numerical evaluation of the coupled system
Eq. (5-20), (5.21). Employing Eq. and setting V (k) — —V (k) we can rewrite

the coupled equations as

10pI (k)
S = T gV R IR (5:22)
Vik g 1+ S?%(k) + R(k) (5.23)

 2|k| + gCrV (k) I(k) + 2Cr 19 (k)

with the regularized integral (k) defined in Eq. . The meaning of the replacement
V (k) — —V (k) has already been discussed in Section [4.3] see Eq. (4.28).

Now we have all the ingredients to study the coupled system analytically and numer-
ically. We are going to observe how these two equations, Eq. and Eq. (5.23),
interact to give the solution functions S and V. A special role will be played by the
infrared part of the static spatial gluon propagator D(k), Eq..

Let us, at this point, summarize the main outcome of the variational calculation
performed in the last two chapters. The Coulomb energy density, Eq. (5.9)), is the non-
trivial part of the gap equation determining S, Eq. (5.22)), whereas the transverse gluon
interaction, Eq. (4.8), is the non-trivial piece for determining V, Eq. (5.23).

Before we go ahead with studying the coupled system in an analytical and numerical
framework, we make a short comment on strong-coupling electrodynamics.
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Strong-Coupling Electrodynamics

Quantum Electrodynamics (QED) without coupling to matter fields can be rewritten
as a system of uncoupled harmonic oscillators and solved by means of a Gaussian an-
satz, see Section [I.4] Resolving the Gauss law and switching on dynamical fermion fields
yields the Coulomb Hamiltonian of the form
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Ho= 5 [ Pyl @) ey w)) (5.24)

with F denoting the ordinary Coulomb potential, i.e., F(x,y) = 1/(4n|z — y|). In
contrast to QCD the QED color charge densities are independent of the gauge field.
Chiral symmetry is dynamically broken when the coupling exceeds a critical coupling and
the (massless) electrons become massive. Instead of o = 1/137 (with a = €?/(47)) the
ground state properties are studied with & > 1. Such a system serves as a laboratory to
investigate strong interaction phenomena in the simplest possible gauge theory, Refs. [66)
90-95].

The evaluation of expectation values works analogously to the QCD case, however,
with additional terms occurring, since terms vanishing in QCD due to the trace in color
space give non-zero contributions in QED, see Egs. (5.7)), (5.8). It is remarkable that
all these additional contributions can be summed to give a divergent term of the form

2

(How) = 54 / d*pd’q / &k Vo(k) (5(k))* (5.25)
which is independent of the variational functions and therefore just an irrelevant divergent
constant. When varying Eq. (5.25]) with respect to the variational parameters S and
V' this term vanishes and we are left with the equations (5.22)), (5.23) with the color
factors N, C'r set to unity. We can conclude, that the equations determining S and V'

in QED are the same as in QCD, Eqgs. 1' 1} Clearly, the Coulomb kernel F' in
QED has no confining piece.

5.4 Solving the Quark Gap Equations

Now we have everything in place to investigate the gap equations, Egs. (5.22) and
(5.23), analytically in the asymptotic momentum regime and numerically in the whole
momentum region. For the non-Abelian color Coulomb potential Ve, Eq. (5.6]), we take
in a first study only the confining part ocr into account, which reads in momentum
space

(5.26)

This has the advantage that we can compare our results with Ref. [80], where the gap
equation for the IV = 0 case has been solved. Moreover, the spatial gluon loop integral
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I(k), Eq. (4.21)), enters the gap equations, Egs. (5.22) and (5.23)). We will use two types
of gluon propagators D(k), Eq. (1.81)), in the loop integral I(k): the purely perturbative
gluon propagator and the full non-perturbative gluon propagator, Eq. (1.95),

111
k)= |k I(k) = Cp=——k? 27
wlk) = [kl = 1(K) = oy ok (5.27)
M¢, L
w(k) =1\/k?>+ —* = I(k)given inEq. (4.24) . (5.28)

k?

Since the Gribov mass Mg sets the scale for the non-perturbative gluon propagator,
we will often refer to Mg = 0 as the perturbative gluon propagator, Eq. (5.27) and to

M¢ # 0 as the non-perturbative gluon propagator, Eq. (5.28)).
We analyze three different situations analytically and numerically:

1. with the vector kernel V' set to zero, known as Adler-Davis gap equation

2. with the vector kernel V' switched on, but the Gribov mass M, Eq. (5.27)), set
to zero

3. with the vector kernel V' and the Gribov mass M, Eq. (5.28)), switched on.

Situation 1 takes only the BCS part in the quark vacuum wave functional ansatz,
Eq. (3.35), into account, which has already been computed in Ref. [80]. We repro-
duce this result in order to compare it to the result with non-vanishing vector kernel V/,
Eq. , and to clarify if the additional coupling V' influences the chiral properties of
the theory. Moreover, reproducing the result in Ref. [80] is a good way to check our
code and algorithm.

Situations 2 and 3 take into account either the tree-level static gluon propagator,
Eq. or the non-perturbative gluon propagator, Eq. (5.28), as input into the
gap equations. Comparing both these situations will unfold the influence of the non-
perturbative part of the spatial gluon propagator, Eq. , on chiral symmetry break-

ing.

5.4.1 Asymptotic Analysis

Before solving the gap equations, Egs. (5.22)), (5.23), by iteration, we start with an
analysis of the gap equations in the asymptotic momentum regions £ — 0 and k& — oo,

analogous to Section [4.3] First of all, we explore the asymptotics of the Coulomb
integrals Iél)(k:), Eq. , and Ig)(k), Eq. . We evaluate the angular integrals
and expand the resulting functions for small and large momenta. We note that only the
non-Abelian color Coulomb potential V, Eq. , has to be evaluated at the difference

of the two momenta k — q, which simplifies the computation a lot. We then examine
the three different settings listed above in the small and large momentum regions.
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Angular Integration

In the Coulomb integrals Ic and 1(2) 1) and 1) two types of angular integrals
occur, namely

/dSq Ve(k — q), /d3q Velk—q)k-q, (5.29)
which can be performed analytically, yielding

1 2

1
L(k = d = 5.30
(k. q) / Rk @R R (5.30)

B¢ 11 |k—
- - k' ‘ 0 (531)

1
Kk.qo)= | d _ 1
(k.q) /_1 TR 2k + @) M=) 2B | h+g

where we have ignored for simplicity the pre-factors of the non-Abelian static color
Coulomb potentlal Vo(k—q). Eq. (5.26]), and shifted the angular integrals according to
Jo dfsinf = ffl dz with z = cos . In order to make the divergent integrals at p = ¢
finite, when setting up the numerical evaluation in the next section, we are going to
introduce a regulator ¢, according to Ref. [79]. For the time being, we assume that the
integrals are properly regularized atp = q

We expand the kernels L(k,q), Eq. (| , and K(k,q), Eq. ( , around k = 0,
and end up with

2 2 4k
L(k,q) = (o O(k"), (5.32)
k* + ¢ 11 k—q
K0 = =gy T amg ™ 'k—Irq
1 3k 1k
8 k;
= —— k3 :
35+ O (5.33)

For k — 0 the leading contribution comes from the kernel L(k,q), which approaches a
constant for vanishing k. For k — oo the kernels L(k,q) and K (k,q) behave as

L(k,q) = % +0 (;6) , (5.34)
K(k,q) = % +0 (;) : (5.35)

where again the kernel L(k,q) is the leading order term, since the kernel K (k,q) ap-
proaches zero more rapidly. Both these observations will become important throughout
this section.
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1. Adler-Davis Gap Equation

Setting the coupling of the quarks to the transverse gluons to zero, V' = 0, the gap
equation determining the scalar variational function ([5.22)) simplifies to

S(@)[L — S*(k)] — S(k)[1 — S*(q)lk - ¢
1+ 52%(q)

2
Sk =% Cr [ daVelk - q) (5.36)
which is known in the literature as Coulomb gauge paring model, and which we refer to
as Adler-Davis gap equation. In Ref. [80], starting from the renormalized gap equation,
Adler and Davis found a numerical solution for the scalar kernel S with the confining
non-Abelian color Coulomb potential, Eq. ([5.26]).

This integral equationl} first derived in Ref. [78] and correctly renormalized in Ref. [80],
has been analyzed in great detail in Ref. [79], showing analytically that chirally non-
invariant solutions S for power-law potentials (0 < a < 3) exist independently of
the strength of the coupling constant. It offers many applications, for instance when
generalizing it to non-zero quark masses, Ref. [89], taking into account the Coulomb
potential, Refs. [89] 96-H98], and studying finite temperatures, Ref. [99] and finite dens-
ities, Ref. [100]. The massless pions are described within this approach by the so-called
Bethe-Salpeter equation, which follows directly from the gap equation, Ref. [I01]. Phe-
nomenological consequences from the Bethe-Salpeter equation are analyzed in Ref. [102].

The first attempts to include transverse gluons were started in Ref. [103] and taken
up in Ref. [89] using the so-called Breit approximation, which is also used in Ref. [104].
In Ref. [105] the so-called "expontential-S” method is applied to study the influence
of transverse gluons, however, without solving the underlying eigenvalue problem. The
influence of transverse gluons on chiral symmetry breaking could not be clarified until
now. This missing piece clearly goes in hand with the fact that up to now only BCS type
wave functionals, Eq. (3.2)), were used as an ansatz for the QCD vacuum and transverse
gluons could only be included in an approximate fashion.

We now recall the most important characteristics of the Adler-Davis gap equation,
Eq. , in order to compare it with the solution of the full coupled equations ((5.22)),
@, i.e., when switching on the vector coupling V' in the vacuum wave functional

33).

Let us start with the analysis for small momenta & and rewrite the gap equation ([5.36))
with use of the angular integrals (5.30)), (5.31) as a one-dimensional integral equation,

S0k = G [ o (002D 1= 0] - K)o 050
(5.37)

1The gap equation is equivalent to a rainbow-ladder Dyson-Schwinger equation, where only the
instantaneous part of the temporal gluon propagator is taken into account, see Ref. [80]. Moreover,
in a recent article, Ref. [34], it is shown how the gap equation is derived from a leading
order truncation of the quark Dyson-Schwinger equations in Coulomb gauge within the first order
formalism.
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where G = 8mocCr/(2(2m)?). Expanding S around k& = 0, the gap equation in the
small momentum region reads

[S(0) + kS (0)] k + O(K) =
G/dq QQ& (% + & + O(k )> [(1—5%(0)) — 2k5(0)S(0)] —

1+ 5%(q) q8
_ G/dq E 1;—;8 (§qﬁ + O(k:3)> (S(0) + O(k)) | (5.38)

so that for k = 0 the equation simplifies to
— 7@
O—G/ 21+52 =Sk = 0] =1e'(k = 0) [L = Sk = 0)] , (539)

which is solved for S(0) = £1. We have to keep in mind that the integral Iél)(k: — 0) on
the right-hand side of the equation is finite, when the (infrared) regulator ¢ is introduced.
This is an important result: The gap equations (5.22)), (5.23) for vanishing vector kernel
V' constrain the scalar kernel S for small momenta to approach unity.

This result has important impact on the evaluation of the constituent quark mass

M (0), defined in Eq. (3.82)). To see this, we derive the quark gap equation (/5.36) in
terms of the dynamical mass function M (p).

With use of the definition ([3.82)) we can derive the relations
M (k) _ 25(k) |k| 25(k) 1- S*(q) M (k)
K2+ M2(k)  1+S2(k) gl 1-S%(q) 1+ 5%(q) @+ M2(q)
(5.40)

and with the angular integrals (5.30) and ((5.31) the Adler-Davis gap equation ([5.36))
can be rewritten as

_ 2 M(g) g M(k)
M(k> - G/dqq <L(k7Q> q2—|—M2(q) K<k7Q)k \/m) ’ (541)

or in a quotient form as (which is particularly convenient for a numerical analysis)

G [dqq* L(k,q)M(q)lg* + M*(q)]”
1+ G [dqq? K(k,q)lq* + M?(q)]

In order to test our numerics, we are going to evaluate equation as well. We note
that it is no longer possible to express the gap equations and entirely in
terms of the dynamical mass function M(p), Eq. , when the coupling part V' of
the vacuum wave functional is taken into account.

Expanding the expression for the dynamical mass M (k), Eq. (3.82), around zero and
keeping the leading order only, the constituent quark mass M (0) and the infrared part

of the condensate wave function S are connected via
25(0) + O(k) 1

M(0) = k3= S2(0) — 2k5(0)5'(0) + O(k3) _ 5'(0) © o). (5:43)

M(k) =

1
- (5.42)
2




5.4 Solving the Quark Gap Equations 81

Consequently, the constituent mass can be read off from the slope of the scalar wave
function S at zero momentum.

We turn to the large momentum region of the variational function S(k). Since con-
densation is a low-momentum effect, we expect the gap function to vanish as £ — oo.
The condition that for large momenta the integral L(k,q), Eq. , is the leading
order term translates into

S(k — co)k = [1 — 8%(k = 00)] (5.44)

Assuming a power-law solution in the ultraviolet region, S(k) = A/k®, the gap function
S(k) vanishes as

Sk — o0) ~ — . (5.45)
Correspondingly, the mass function M (k), Eq.(3.82)), goes to zero as

1
M(k — o00) ~ —

=, (5.46)

and in general M(k — o0) ~ 1/Vi(k). Both behaviors are confirmed in the numerical
computation in Section [5.4.2l With the result ((5.45)) it can be shown that the expression
for the chiral condensate ([3.85)) is a convergent integral.

2. Gap Equation with Vector Kernel VV and with Tree-Level Gluon Propagator

At next we switch on the vector kernel V' and study the full coupled equations ((5.22]),

(5.23) with the gluon loop integral (k) given in Eq. as input, which takes only

the large momentum part of the static spatial gluon propagator ([1.95]) into account.
We explore the infrared region of the gap equation determining the scalar part S,

Eq. (5.22), rewrite it as
1

[k + gCpV (k)I(K)] S(k) = 5(JFfé”(/f) . (5.47)

and ask how the kernel V' alters the asymptotic behavior of the scalar gap function S.
We use the expansion of the Coulomb integral Iél)(k) around zero in Eq. (with the
additional loop integral R(k), Eq. (3.46), in the denominator), abbreviate I(k) = Ck?
with C' = Opéﬁé and arrive at

[k + gCpV (k = 0)CE?] S(k — 0) = 1§ (k = 0) [1 = $%(k — 0) + V2(k — 0)Ck?] .
(5.48)

Assuming that V' (k) does not diverge for small momenta we find to lowest order

0=1(k—0)[1- Sk —0)] , (5.49)
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which yields, as for the case of switching off the coupling of quarks to the transverse
gluons V' = 0, the constraint S(0) = £1. The small momentum behavior of S is
therefore governed by the Coulomb part of the interaction, Eq. and the vector
kernel V' does not alter the infrared behavior of S since the loop integral I(k), Eq. ,
using the tree-level gluon propagator as input vanishes as k2.

We turn to the integral equation for the vectorial part Eq. , which is after angular
integration given as

k+ gCrV (k)I (k) + %ong?(k)} V(k) = S[1+S0) + R(K)] . (5.50)
The small momentum behavior of V' is determined both by the infrared value of the
Coulomb-integral Ig)(k) on the left-hand side of Eq. as well as the term on the
right-hand side of Eq. (5.50]), which comes from the interaction of the quarks with the
transverse gluons, Eq. (4.8). The second term on the left-hand side of Eq. as
well as the last term on the right-hand side of Eq. , namely R(k), vanish due to
I(k — 0) ~ k*. The infrared value of the vector variational function V is therefore
determined as
9 2
Vik— o) = 23FS (EZ0) (5.51)
LOpI? (k — 0)

With the result S(k — 0) = 1 and the Coulomb integral Ig)(k — 0) becoming constant,
the vector kernel V' approaches a constant for small momenta.

Let us again take a look at the dynamical mass function M(k), Egq. . Now the
loop integral R(k), Eq. , enters its definition, which, however, vanishes as £k — 0
(under the assumption that V' does not diverge). As a result, the evaluation of the
constituent mass M (0) according to holds true.

We turn to the ultraviolet behavior of the gap functions S and V. We again start
with analyzing the gap equation for the scalar variational function (5.22) and use the
large-momentum behavior of the Coulomb integrals, Eq. , so that the loop integral

]8) (k) approaches

19k = 00) ~ (% L0 (%)) (1 S2(k) + CrVA(R)I(K)) | (5.52)

and with I(k — oo) = C'k? the gap equation reads

S(k — 00)k + gV (k — 00)Ck*S(k — o0) =
12

= §ECF (1—S*(k = o0) + CpV*(k)CK?) . (5.53)

Assuming a power-law behavior for S(k — oo) and V(k — o0) and comparing both
sides of the equation we find S(k — 0o) ~ 1/k®, which was also obtained when solving



5.4 Solving the Quark Gap Equations 83

the Adler-Davis gap equation, Eq. (5.45). Moreover, we find V (k) ~ 1/k, which is
confirmed when analyzing the gap equation for V, Eq. (5.23)), which reads

k+ g(0)V(k)I(K) + %Cﬂé”(k)] V(k) = g [1+ S%(k) + CpV2(k) (k)] , (5.54)

using the fact that the Coulomb integral 1® (k) approaches

I (k — 00) ~ (% +0 (%)) S(k) . (5.55)

We conclude that the Coulomb integral I(Cl)(k), Eq. governs the asymptotic re-
gions of the scalar gap function. However, for the ultraviolet behavior of V' the transverse
gluon interaction, Eq. is the leading piece. All these findings agree with a recent
perturbative analysis, Ref. [14].

We note that the preceding ultraviolet analysis obviously also holds true when using
the non-perturbative gluon propagator, Eq. , since it approaches the tree-level
propagator for large momenta. In the last part we therefore perform only the small

momenta analysis of the gap equations, Egs. (5.22), (5.23)), with a non-perturbative
gluon propagator, Eq. (5.28)), as input.

3. Gap Equation with Vector Kernel IV and with Non-Perturbative Gluon
Propagator

We now switch on the Gribov mass (thus take the infrared constant part of the loop

integral I, Eq. |} into account), use I(k — 0) = %#MQ and rewrite Eq. 1)

as

[k + gCpV (k — 0)I(k — 0)] S(k) =
=15 (k = 0) [1 = 8%k = 0) + CpV3(k = 0)I(k — 0)] . (5.56)

This is a quadratic equation and can be solved as

~gCrVO)10) /20 200 + 4 (100) (14 Crv0)20)

Sk —0)= 2]((;)(0)

(5.57)

Now all parts of the gap equation are combined to give the infrared value of the scalar
gap function S, which is no longer constrained to approach unity. The infrared value of
V' (k), determined from the equation ([5.23)), given as

1
k+ gCrV(k — 0)I(k — 0) + §1§>(/<; = 0)| V(k—0)=

= 2 [L+ 8%k = 0) + CpV2(k = 0)I(k - 0)] (5.58)
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is solved as

GIZ(0) £ 1/(GIZ(0))? + 44CHI(0)4(1 + S3(0))
220 1(0) ’

V(k—0)=— (5.59)

which is again infrared constant. However, in contrast to the infrared value of V' using
the perturbative gluon propagator ((5.51]), here V' is connected non-trivially with S. All
different parts of the energy density are combined to give the zero-momentum value of
the vector kernel V.

However, as a side-effect of these results, the constituent quark mass can, in prin-
ciple, no longer be extracted as the slope of the scalar wave function S'(0), Eq. (5.43).
Expanding the expression for the dynamical mass ([3.82)) around zero, we arrive at

25(k — 0) + O(k)

Mk =0) =M =50 570)+ 0 — (Rik = 0) + 0() (5.60)
and the identification M (0) = —1/57(0) only holds true if
S%(k — 0)+ CpV?*(k = 0)[(k—0)=1. (5.61)

For instance, if S approaches a value larger than unity then Eq. cannot be fulfilled
(since the loop integral I(k) > 0) and we would end up with M (k — 0) ~ —kC, with
C a constant. It will be interesting to observe, if the solution functions S and V' fulfill
Eq. and thus allow for an infrared constant quark mass A/ (0).

However, before we start with the numerical evaluation, we summarize the most im-
portant findings for the three different situations studied in this section:

1. Adler-Davis gap equation, i.e., setting V' =0

S(h—0) =1, S(k— o00) = — (5.62)

k5

2. Gap equation with perturbative spatial gluon propagator, i.e., V #£ 0, Mg =0

Sk —0)=1, S(k— o00)= % (5.63)
V(k = 0) = gf;*{ijgz : gi) V(b o0) = (5.64)
2vFiC

3. Gap equation with non-perturbative spatial gluon propagator, i.e.,V # 0, Mg # 0

Sk —0)= f(I(k = 0), IV (k = 0), V(k—=0)), S(k— o) = % (5.65)
V(k = 0) = g(I(k — 0), I2(k = 0), S(k = 0)), V(k = o0) = % (5.66)
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Switching off the vector kernel constrains the scalar gap function S to unity in the
infrared, Eq. ( , and the dynamical mass M (p), Eq. (3.82)), can be evaluated from
the slope of S around zero, Eq. - The same conclu5|on holds true for a perturbative
static spatial gluon propagator, Eq. . However, the infrared value of S becomes
a non-trivial expression of all terms appearing in the gap equation, when switching
on the infrared part of the spatial gluon propagator, Eq. . This indicates that
the infrared part of the gluon propagator is essential, in order that the solution
functions S and V start to interact. The vector kernel V, is constrained for a perturbative
gluon propagator, Eq -) by the infrared value of the scalar kernel S as well as the
Coulomb integral [ . For the non-perturbative gluon propagator, Eq. @
it becomes an expre55|on of aII parts contributing to the energy density, Eq. @

In the ultraviolet we find power-law solutions, Egs. (5.66]), with the scalar
variational kernel S being governed by the Coulomb energy, Eq. , and the vector
variational function V' driven by the transverse gluon exchange, Eq. (4.8).

5.4.2 Numerical Analysis

All quantities appearing in the coupled system, Eqs. (5.22), (5.23)), are expressed in
units of the Coulomb string tension o¢, which enters the static quark potential V¢,
Eq. . We use values ¢ = (2...3)ow with \/ow = 440 MeV the Wilson string
tension determined on the lattice (for a discussion of this quantity see Section [1.6]). The
Gribov mass Mg = 880 MeV is then determined by the Coulomb string tension o¢.
The coupling g, which is fixed as in Section at the infrared value ¢(0) calculated
in Ref. [8] from the ghost-gluon vertex, is, in contrast to «(k) at finite k, independent
of the scale. We will introduce physical units when evaluating the phenomenological
quantities, i.e., the chiral condensate (Eqﬂ) Eq. , and the dynamical mass M (k),
Eq. (3-82).

We have to regularize the kernels L(k, ¢) and K (k,q), Egs. (5.30), (5.31]), which are
both divergent for k = ¢. In order to make the integrals in the gap equations well-defined
we introduce a regulator ¢ as [79]

8moc
Ve(k Ve(k = = 5.67
(k) > Velke) = 75 (5.67)
The kernels L(k,q,a) and K (k,q,¢) then read

k+q (k —q)* + £
L(k,q, ‘ ‘ 5.68
(k. q,€) = kq52 k— * 2kq52 t {(/{%— q)? + &2 (5.68)

k2+q k—l—q 2+ +¢, [(k—q?+e?

K(k = — 1 . 5.69
(k. g¢) 2 ( k2q2€2 M= 2k2q2e2 " [(kz +q)? + 62]) (5.69)

The variational function and consequently all physical observables become ¢-dependent,
however, with setting ¢ — 0, the functions converge onto a final result

lim S(k,e) = S(k) , 61:1_r>r(1) V(k,e) =V(k). (5.70)

e—0
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We note that there are plenty of possible infrared regularizations, for a different realiza-
tion see Ref. [102].

The coupled one-dimensional integral equations which we compute numerically then
read

_ G [dq(L(k,q:€)21(q)(1 — S*(k) + CpV2 (k)1 () — K(k, q;)Z2(q)S (k)

S(k) F+ g(0)CrV (k) (k) |
(5.71)
V(k) = 9O (1 4 §2(k) + CoV2(k) I (K))
b+ g(0)CrV (R)I(k) + G [ dq(L(k.q;¢)2E1(q)S(k) + K (k, g; 6)52@)( | )
5.72
where we have used
=(q) = S(q) (5.73)

1+ 5%(q) + CrV3(q)1(q)

= v 1= 5%q) = CrV2(g)1(q)
=0 = Sy T o) (7%

The constants G = 387Cr 5.5 (in units of the string tension oc) and g(0) = 2%
then read for SU(3) and for SU(2)
SUB): G~04244, and g¢(0) ~ 8.37758, (5.75)
SU@2): G~02387, and g¢(0)~ 10.2604 . (5.76)

We mostly work with the color group N¢ = 3.

Let us again emphasize the dimensions of the gap functions. The scalar part S is
dimensionless and V' has dimension of (GeV)™!, see Appendix . We can work with
either dimensionfull V' (k) or the dimensionless quantity V (k) = V (k) /k.

The three equations, studied in the previous section in an an analytic framework, will
now be analyzed numerically.

1. Adler-Davis Gap Equation

We start with the numerical evaluation of Eq. , where the vector wave function V
is set to zero. We solve the equation for the condensate wave function S, Eq. , as
well as for the dynamical mass M, Eq. , numerically, in order to test the stability of
our numerics. Using the definition of the dynamical mass, Eq. , we can crosscheck
the solutions. We emphasize that the results derived in this subsection were already
obtained in Ref. [80].

Before turning to the evaluation of the phenomenological quantities, we list the main
numerical investigations:

1. As a first test on the asymptotic analysis, we set the kernel K(k,q;e) = 0 and
solve the gap equations for S and the dynamical mass M. The solution is plotted
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Figure 5.1: Scalar gap function S and dynamical mass M with K(k,q;e) = 0. The coupling
is set to G = 1 and the (infrared) regulator is ¢ = 1. The dashed-dotted curve indicates the
UV-power law behavior of the scalar kernel S and the dotted curve indicates the power-law
of the dynamical mass M.

in Fig.[5.1] The infrared cut-off is fixed at ¢ = 1. The value of S(0) is constrained
by the non-linear equation to be unity. For large momenta the solution function
shows the characteristic power-law behavior S(k — oo) ~ 1/k°. This confirms
that the asymptotic regions of the gap equation, Eq. (5.36]), are driven by the

integral L(k,q), Eq. (5.30).

2. When taking into account the integral kernel K (k, ¢; ¢), Eq. (5.69), we have to be
careful, since function values over a wide range of magnitudes of the momenta k
and ¢ have to be evaluated. For instance, with the outer momentum k becoming

very small (around the lower boundary k& ~ Ajg) and the loop momentum reaching
2 . My
K2 AR
become very large and lead to an oscillating behavior of the solution function for
small external momenta k. We therefore represent the function K(k,q;e) for

momenta k? < (q? + £2) around k = 0 by its Taylor series

~Y

values at the upper boundary ¢ ~ Ayy, the contributions of the form

8(e% +2¢1 )k 16(eb + 4e1¢® + 6e%¢* + 9¢°) k3 A
K(k,qe) = O(k*) . (b.77

This procedure will be performed for the coupled equation as well, i.e., with switch-
ing on the vector coupling V.

3. From a numerical point of view it is easier to solve the equation for the dynamical
mass M, Eq. (5.42). Due to the momentum k appearing on the left-hand side
of the gap equation determining S, Eq. (5.36]), we have to introduce a relaxation
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Figure 5.2: Scalar gap function S and dynamical mass M for the Adler-Davis gap equation

using the gauge group SU(3) and the infrared regulator fixed at ¢ = 0.01.

prescription in order to get a stable solution (for more details, see Appendix [ .
Such a relaxation method is not necessary for the dynamical mass equation @
Hence, the equation for S, Eq. GED converges much slower than the equation
for the dynamical mass M, Eq. (5.42).

However, both solution functions show the characteristic behavior: In the small
momentum regime the dynamical mass function M (p) freezes out and S ap-
proaches unity as predicted by the analytic calculation. Moreover, via Eq.
both results are crosschecked and confirmed to be equal. In the large momentum
regime the power-law behavior extracted from the asymptotic analysis, Eq. ,
is confirmed. The corresponding plot is shown in Fig.[5.2]

. Next, we lower the infrared-regulator ¢, see Figs. [5.3} 6.5l The number

of iteration steps to reach a stable solution increases with decreasing . Due
to numerical uncertainties we cannot approach arbitrary small values of €. The
solution functions S. converge onto a stable solution S at about ¢ ~ 1073,

We now turn to the chiral parameters of the theory, the dynamical mass (3.82)) and
the chiral condensate ([3.85)). Extracting the linear decrease of S' for small momenta

S'(0) ~

5.2 or plugging the result for S in formula (3.82) we arrive at a value for the

constituent mass of about

M(O) ~ 84 MeV AV Uc/O'W s (578)

which is, using values of the Coulomb string tension of about ¢ = (2...3)ow

M(0) ~ (120...150) MeV . (5.79)
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SU(3) plotted against the infrared regulator ¢.

Comparing with the phenomenological value M (0) ~ 300 MeV shows that even if we
use values of the string tension at the upper limit, i.e., o¢ = 30w we reach values
which are too small by a factor of (at least) two. For the gauge group SU(2) we get
M(0) =~ 63MeV /o /ow, which gives values around M (0) ~ (90 — 110) MeV.

We compute the chiral condensate via Eq. and arrive for SU(3) at

YY) ~ — (113 MeV\/UC/UW>3 : (5.80)

Using the values of o¢ quoted above yields
(W) ~ — (160...196 MeV)? (5.81)

Comparing again with the phenomenological value ()¢)) ~ —(235MeV)?, Ref. [68], we
end up with values which are consistently smaller than the experimental ones.

We can conclude that the phenomenological quantities evaluated from the Adler-Davis
gap equation are too low, indicating that some important physical components
are still missing. These shortcomings are clear: the ordinary Coulomb potential ag /7 in
Ve(r), Eq. (5.6), and most importantly the transverse gluon exchange are not accounted
for by the Adler-Davis gap equation.

2. Gap Equation with Vector Kernel VV and with Tree-Level Gluon Propagator

We turn to the coupled equations ((5.22)) (5.23]) and take the tree-level gluon propagator,
Eq. (5.27)), into account. We list the most important numerical findings:

1. To approach a convergent result we use a relaxation parameter (for details, see
Appendix @ The number of iteration steps to reach a stable solution lies in
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Figure 5.6: Variational kernels S and V' using the large momentum behavior of the static spa-
tial gluon propagator as input. Both kernels become constant for small momenta and vanish
for large momenta. The scalar solution S extends to a much larger range of magnitudes
than the vectorial solution function V.

the region of the Adler-Davis gap equation, Eq. (5.36]). Taking different starting
functions and altering the number of integration points and Chebyshev points, the
coupled system is tested to be robust.

The results for the joint solution S and V" are presented in Fig. [5.6] which confirm

the asymptotic analysis, Egs. (5.63)), (5.64). The vectorial variational function V
tends to a constant in the infrared and the scalar gap function S becomes unity.

For large momenta the power-law behavior S(k) ~ 1/k®, V ~ 1/k is obtained.

2. We lower the infrared regulator €. The value constraining the vector gap function
V' at zero momentum is related to the Coulomb integral Ig)(k:), Eq. (5.51). As

€ goes to zero, I(CQ)(k) approaches larger values, so that the infrared value of V'
becomes smaller.

3. We now compare the result for the scalar solution function S with the Adler-Davis
result, Fig. 5.7 We observe that both functions are nearly identical and also
the chiral parameters do not increase towards phenomenological values. For the

dynamical mass, Eq. (3.82)), as well as for the chiral condensate, Eq. (3.85)), the
vector coupling V' gives only negligible corrections. The values for M (0) and (1))

are therefore given in Eq. (5.78) and Eq. (5.80)).

4. Changing the value of the coupling ¢(0) fixed at the infrared value, i.e., setting
g(0) = 83.77 and ¢(0) = 0.8377 does not alter the scalar gap function S(k). The
infrared value of V' is shifted upwards with increasing g, which can be understood
from the asymptotic analysis, Eq. . We conclude that with the use of a
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Figure 5.7: Scalar variational functions S(k) with and without the coupling to transverse

gluons. The perturbative gluon propagator is used as input into the gap equations.

perturbative propagator physical values are insensitive to the infrared value of the
coupling g(0). The chiral condensate as well as the dynamical mass, dominated
by S(k), are unaffected by the change of ¢(0). This gives us a first hint that
with use of a perturbative static gluon propagator the gap functions S and V' do
not communicate: Although the vector kernel V' changes with the value of the
coupling ¢(0), the scalar gap function is unaffected.

. It is interesting to take a different pre-factor for the Coulomb integral Ig)(k),

Eq. , since it alters the infrared behavior of the vectorial part V, see Eq. (5.51]).
We use O.llg)(k) and 101((;2)(143). The solution function S is not affected by the
change of this pre-factor. The vectorial solution functions forms a decreasing
infrared constant value for increasing values of the pre-factor, which can be under-
stood in terms of the infrared analysis 1) Lowering the pre-factor of [(02) has
the same effect as increasin% g. However, what we can conclude from changing
g(0) and the pre-factor of ICQ) is that the two variational functions S and V' are
not fully coupled. We will observe that this coupling is supplied by the infrared

part of the static spatial gluon propagator, Eq. ((5.28)).

. Lowering the infrared cut-off ¢ increases the solution function S(k) in the same

manner as it does for the Adler-Davis solution. The corresponding plot is in
accordance with Fig.[5.3] The values of the solution function S(k) become slightly
larger with decreasing €, which leads to increasing values of the constituent mass.
We again reach a stable solution at € ~ 1073,

The outcome of the numerical study is at first glance rather discouraging because physical
values are not increased by the additional kernel V' in the quark vacuum wave functional,
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Eq. (3.3). Analyzing the equations for different couplings ¢(0) and different pre-factors
of ]g) Eq. , we observe that the scalar variational function S does not feel the
vectorial solution function V. In the numerical analysis of the gap equations using the
full non-perturbative gluon propagator, Eq. (5.28)), we will observe that it is the Gribov
mass M, Eq. , which plays the mediator between scalar part S and vectorial part
V" and which increases the scalar solution function S with increasing ¢(0) and decreasing
pre-factor of 12, Eq. (5.18]).

3. Gap Equation with Vector Kernel VV and with Non-Perturbative Gluon
Propagator

From the analytic framework, see Eqgs. (5.65)), (5.66) we have derived two important
insights into the coupled system, Egs. , (5.23]). First of all, with the use of the
non-perturbative gluon propagator, Eq. (5.28|), the scalar gap function S is no longer
constrained to approach unity for small momenta. Secondly, with the infrared constant
loop integral I(k), Eq. (4.23), all components appearing in the gap equations (5.22),
(5.23)) are combined to give a non-trivial relation between the infrared values of S and
V.

We now clarify these findings in a numerical evaluation and establish further insights
into the interplay between scalar and vector interaction kernels .S and V. We again list
the most important numerical findings:

1. The number of iteration steps to reach a stable solution is comparable to the
Adler-Davis solution and the solution using the perturbative gluon propagator.
Moreover, lowering the infrared cut-off ¢ we reach stable results at ¢ ~ 1073. As
in the case using the perturbative propagator, with decreasing infrared regulator ¢
the infrared value of V' becomes smaller.

2. The coupled solutions have the same characteristic features as the solutions using
the perturbative gluon propagator. Both variational functions become constant in
the infrared and show a power-law in the ultraviolet, see Fig. . The infrared
value of the vector kernel V' is enhanced in comparison to the case using the
perturbative propagator. Moreover, in comparison to the result with vanishing
quark-gluon vertex V' in the wave functional, the scalar kernel S is larger in the
mid-momentum region and the slope around zero is smaller. These two results
have crucial impact on the chiral properties of the theory. Numerical investigations
show that the mid-momentum region is closely connected to the chiral condensate,

Eq. (3.85)). The slope around unity is related to the constituent mass, Eq. ((5.60)).
The plot comparing the Adler-Davis and the new result is shown in Fig. [5.9]

3. Altering the coupling ¢g(0) to larger values, shifts the scalar gap function S to larger
values for intermediate momenta and also affects the infrared value, see Fig. [5.10]
Comparing with the result for the perturbative gluon propagator, where altering
the coupling g(0) has no effect on .S, we can conclude that the Gribov scale M,
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Figure 5.8: Variational kernels S (full curve) and V' (dashed curve) using the non-perturbative

gluon propagator as input.

Eq. (1.96)), and therefore the infrared part of the gluon propagator, Eq. (5.28)), is
essential for the interplay between the coupled equations, Egs. (5.22)), (5.23)).

. As for the case of the ierturbative iroiagator, we change the value of the pre-

factor of I, Eq. 1} in Eq. 1) The corresponding plot is shown in

Fig. . Smaller values of ]g) lead to larger values of S. At a certain value
we find S'(0) > 0 and the scalar function S forms a maximum. In this case
the dynamical mass becomes negative, see the discussion after Eq. (5.60). Note,
however, that changing the pre-factor of I(2), Eq. , has no physical meaning
and is only performed to test the coupled equations, Egs. (5.22)), (5.23). Moreover,
for smaller values of the pre-factor the infrared constant value becomes shifted away
from unity towards larger values. The value of V' becomes larger for decreasing
pre-factor, which was also true for the case using a perturbative gluon propagator.

Now we have everything in place to study the effect of these results on the phenomeno-
logical parameters of the theory. We begin with the expression for the chiral condensate,
Eq. (3.85). Compared to the Adler-Davis condensate (5.80)), with the additional quark-
gluon coupling the value for the quark condensate is shifted to

(D) = — (135 MeV\/UC/JW>3 , (5.82)

which is a 20% increase of the figure in the bracket. We observe that this increase
comes from the additional contributions in the mid-momentum regime of S, see Fig.[5.9]
Moroever, we find that the gluon loop integral R(k), Eq. , which enters the
expression Eq. , gives negligible corrections to the value of the condensate. Setting
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the scale at o¢ = (2...3)ow, we obtain physical values
() &~ — (191...234 MeV)? | (5.83)

and we can conclude that the coupling of the quarks to the transverse gluons shifts the
quark condensate significantly towards the phenomenological value of about (1¢)) =
—(235MeV)3, Ref. [68].

Before we extract the dynamical mass via Eq. we note that the small-momentum
slope of the scalar variational function S is given as S’(0) =~ 3.36 as opposed to the
Adler-Davis value S’(0) =~ 5.2. We find that Eq. (5.61) approximately holds true, so
that we can evaluate the constituent mass via Eq. (5.60). We get

M =~ 132 MeV\/Gc/O'Vv, (584)

which is, compared to the Adler-Davis value, Eq. (5.78), an increase of 57%. Finally,
using the values for o quoted above we obtain

M =~ (186....230) MeV (5.85)

which shows that also for the constituent quark mass the quark-gluon coupling V' in the
quark wave functional provides an essential enhancement and leads to fairly reasonable
phenomenological values. The corresponding plot of the dynamical quark mass M (k)

with the scale fixed at o = 20w is shown in Fig. [5.12]

Let us shortly summarize the main outcome of the numerical study to the coupled
gap equations (5.22)), (5.23). First of all, we evaluated the gap equation with vanishing
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Figure 5.10: Scalar variational kernel S for different values of the coupling g(0) of quarks to
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vector kernel V' = 0, known as Adler-Davis gap equation. We found the scalar vari-
ational function S to agree with the result obtained in Ref. [80]. However, with setting
the scale at the Coulomb string tension o¢ the physical values are slightly larger than
in Ref. [80], where the scale is set at Vow = 350 MeV. Nevertheless, the low energy
chiral properties of the theory come out significantly too small. We then turned to the
coupled system with non-vanishing vector kernel V. We could demonstrate that the
small momentum part of the static spatial gluon propagator, Eq. , has a special
role. It couples the gap functions S and V' non-trivially. In comparison to the result
with vanishing vector kernel the scalar kernel S becomes larger in the mid-momentum
regime and the slope around unity is smaller. We could show that these features lead
to increasing phenomenological values. The effect of the additional vector kernel V'
is in the range between 20 — 60%. For the chiral condensate we come into the right
region of experiment. For the dynamical quark mass there is still a certain contribution
missing, which can result from neglecting certain parts of the Hamiltonian in the
variational analysis. These additional contributions are currently under investigation.
Moreover, to make more accurate predictions on the low energy properties of the theory,
a more precise lattice measurement of the Coulomb string tension o¢ is required.
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Chapter 6

Wilson Loop from a Dyson Equation

The second part of the thesis concerns another distinctive property of QCD: the con-
finement of color, i.e., the phenomenon that in the hadron spectrum only color-singlet
combinations, the hadrons, of color non-singlet objects, the quarks, appear. The poten-
tial between two static quark sources keeps rising linearly as one tries to isolate a single
quark. Via the expectation value of the so-called Wilson loop the static quark-antiquark
potential can be accessed. The Wilson loop, being the path-ordered exponential of a
gauge field transported along a closed loop, serves as an order parameter of confine-
ment. In a confining theory, the inter-quark potential extracted from the Wilson loop
gives an area law, signalling that the interaction energy between the static sources is
rising linearly. Nearly all information about the Wilson loop in non-perturbative QCD
so far comes from the lattice. The computation of the Wilson loop in a continuum
formulation is difficult due to the path ordering prescription, which enters the definition
of the Wilson loop. One missing piece in the variational approach to Yang-Mills theory
is to show the emergence of the area law from the Wilson loop.

A way to attempt the Wilson loop in the continuum comes from a Dyson equation,
originally proposed in the context of supersymmetric theories and recently applied to
Yang-Mills theory in Landau gauge. In this work we critically analyze this equation and
apply it to Coulomb gauge Yang-Mills theory. We emphasize that in this part of the
thesis we switch off the quark fields and work with pure gluodynamics.

In Section 1 we report on the Wilson loop, give a detailed description of path ordering,
prove the gauge invariance of the Wilson loop and show how to extract the static quark-
antiquark potential. In Section 2 we present the derivation of the Dyson-type integral
equation, which sums all planar ladder diagrams and only needs the gluon propagator
as its input. We discuss the approximations involved and work out its limitations. In
Section 3 we apply the formalism to the temporal Wilson loop in Coulomb gauge. In
Section 4 we show how to extract the static quark potential from the Dyson equation
by solving a one-dimensional Schrodinger equation for the lowest eigenvalue. In Section
5 we calculate the spatial Wilson loop with the gluon propagator obtained from the
variational approach to Yang-Mills theory as input.

An explicit realization of the paths along the Wilson loop as well as the computation
of the gluon propagator contracted with the temporal paths is performed in Appendix
[E} the numerical technique used throughout this chapter is also presented there.

The results presented in this chapter are published in Ref. [I06] and a summary of
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these results can be found in Ref. [107].

6.1 Introduction

In Chapter [1] after Eq. we have shortly raised the issue of color confinement: In
the pure gluonic part of the QCD Lagrangian, Eq. (1.11)), cubic and quartic terms in the
gauge field A} appear, which give rise to self-interactions of the gluons. It is commonly
accepted that confinement is a consequence of this non-Abelian nature of the gauge
interaction.

Let us, in order to clarify this picture, compare the field lines which connect a pair of
opposite charges in the non-Abelian and Abelian case. In QED the field lines connecting
the static color sources are allowed to spread. In QCD, however, the field lines are
believed to be concentrated within a narrow string, Ref. [I12]. The potential between
these color sources increases with the separation and at infinite distance one would need
an infinite amount of energy to pull two quarks apart. In the full theory with dynamical
quark fields the energy stored in the string would grow until the creation of quark-
antiquark pairs is energetically favorable. This phenomenon is known as string breaking,
Ref. [108], which can be observed on the lattice, see Refs. [3, [109-111].

Let us return to the pure Yang-Mills sector of QCD and formulate a criterion for
confinement: Every theory of confinement should be able to explain the linearly rising
potential between two static color sources [108].

We show how this quark-antiquark potential can be extracted by studying the Wilson
loop, denoted as W(C) In Euclidean space-time the Wilson loop is defined by

w(e) = diTrP exp ig%d:v“A“(x) , Au(z) = Aj(x)T . (6.1)
t c

Here dg is the dimension of the representation of the gauge group and gives N for the
fundamental representation of SU(N¢). The quantity P denotes path ordering along
this loop which will be described in detail below. The line integral in W(C) Eq. , is
carried out along a closed loop C, which is most conveniently taken to be of rectangular
shape of length T" and width L. The expectation value of this Wilson loop is then defined
as

_ [DA,W(C)e 5
N [ DA, =5

W(T; L) = (W(C)) (6.2)

The path ordering prescription P is defined as follows [112]: consider a path C with
starting point = and divide the path into n infinitesimal segments. The intermediate
points are =1, X2, ... Tp_1, ATy = Ty — Ty—1 and xg is identified with the starting point
and endpoint z. On each of the infinitesimal paths the exponential can be approximated
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by the first term in the Taylor series. Then the expression Eq. (6.1)) reads

W(e) = iﬂ i (14 ig A, e0) (o1 — 20)] (1 ig Ay (1) (o — 20 )|
(6.3)

which is a product of non-commuting expressions. The path ordering P renders an
evaluation of the Wilson loop in a continuum formulation of QCD complicated. In the
Abelian case, however, path ordering is irrelevant. This last statement will become
important below, when constructing the Dyson equation for the Wilson loop in Section
6.2

Let us shortly report on the evaluation of the Wilson loop on the Iatticdf]. On the
lattice the algebra-valued gauge fields A, are replaced by the group-valued link variables
U,. The link variables U,, connect two space-time points on the lattice. The path ordered
exponential is then just the product of link variables along a path connecting the
lattice sites

we) =T | I] V)| . (6.4)

(n.p)ec

with n denoting the lattice sites. The most reliable evidence about the static inter-quark
potential comes from lattice simulations, Ref. [113].

Before we come to discuss the connection of the Wilson loop with the static quark
potential, let us discuss the properties of a Wilson loop under a gauge transformation.
We define the so-called gauge transporter

W(x,y) =P exp ig/ dz,A,(x)

Yy

, (6.5)

which connects two points z and y on the curve C,, and can be seen as the continuum
analogue to the lattice link variable U,. It has the following property under a gauge

transformation, Eqs. (1.3)), ((1.4),
W(z,y) = W'(z,y) = Q)W (z,y)Q(y) . (6.6)
A quark-antiquark pair has the transformation property

B@)ly) = 0 (@) (y) = D@)Q (@) QAy)v(y) | (6.7)

which can easily be verified with the use of Egs. (1.3)), (1.4). From this it follows that
E(y)/ﬂvf(y7a:)w(a:) is gauge invariant, which will be used below. Moreover, it is easy to
see that the gauge rotations for a product of gauge transporters cancel for all but for
the end-points
Q)W (2, 21) QF (1) Q1) Wz, 21)Q (1) . ... (6.8)
—_—

1

!For a pedagogical introduction to lattice QCD we refer to Ref. [82].
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Taking now the trace of a closed loop the matrices €2 cancel against each other. The
Wilson loop, being the trace of the parallel transporter along a closed contour C, is then
gauge invariant. The static quark potential derived from the behavior of the Wilson loop
for large Euclidean times is therefore gauge invariant, too.

We come to discuss how to extract the quark-antiquark potential from the Wilson
loop, W(C) Eq. . For the discussion we use the temporal gauge Ay = 0, where the
temporal gauge transporters become trivial. We consider the following quantity [114]

Q(t) = (0,)W (0, R, 1)(R, 1) , (6.9)
which can be interpreted as the creation operator of a state with an infinitely heavy
quark at position 0 and an infinitely heavy anti-quark at position R at time t. The
gauge transporter W, Eq. , ensures gauge invariance of this quantity. We are
interested in the quantity Q(7)Q(0). Computing the expectation value of this quantity
for full QCD the quark fields can be integrated out, since quark loops can be neglected
for infinitely heavy quarks. The quark fields in the expression therefore do not have
any influence and the expectation value of QT(T)Q(0) essentially becomes the Wilson
loop average [114]

(@UT)Q0)) ~ W(T, L) . (6.10)
We take the expectation value of the correlation function in pure gluodynamics,
Q1)) = [ DA Q! T)Q(0) -

—Z@W ) Qe = 3 QD e
(6.11)

Here we have expressed the correlator as a sum over eigenstates of the Hamiltonian
operator. The Yang-Mills vacuum is denoted as |¢), the excitation energy of the energy
eigenstate |n) as E,. We observe that for large times T' the expectation value
is dominated by the lowest eigenvalue Ej. The behavior of the Wilson loop W (C),
Eq. (6.1)), for large Euclidean times T' then is given as

(W(C) —» e B®, (6.12)

where Fy(L) is the interaction energy of the static quark-antiquark pair separated by
the distance L, known as static quark potential Viy(L) and sometimes referred to as
Wilsonian potential. The energy of a quark-antiquark pair separated by a distance L is
therefore computed as

Eo(L) = Viy(L) = — lim %mW(c» . (6.13)

T—o0
At the present state of the art the inter-quark potential can only be determined in the
lattice framework. In the next section we derive an equation where, at least in an
approximate fashion, the Wilson loop can be computed using analytic methodsE].

2In a recent article, Ref. [I15], the temporal Wilson loop in the continuum Hamiltonian approach is
computed without resorting to the Dyson equation.
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6.2 Derivation of the Dyson Equation

We now discuss in Euclidean space-time a Dyson-type integral equation, first derived in
supersymmetric theories Refs. [116], [117]. Recently this equation has been applied to
Yang-Mills theory in Landau gauge, Ref. [118].

We start from the observation that to leading order perturbation theory, i.e., at weak
coupling g < 1, the gluonic part of the QCD Lagrangian can be written as

1
L= —JFL "~ L= ——A“( )D,, 6" A (z) + O(g) | (6.14)

with the kernel Dljyl = 0,,.1—0,0,. This formula has already been derived in Eq. .
In the weak-coupling limit the Yang-Mills part of the action Si[A] becomes of Gaussian
type. However, from the discussion which follows Eq. - we know that in the present
form the Wilson loop average (W(C Eq. . cannot be performed, since the inverse
of D;wl does not exist. To give expectation values a meaning we have to fix the gauge.
This gauge fixing is implicitly understood in the next equations. For weak coupling g
the path ordering prescription P in Eq. can be ignored and the expectation value
of the Wilson loop reads

(W(C)) = E%Tr /DA exp ——/d%AZ w}Aa—kigj{dquZ(x)T”‘
c
(6.15)
Using the abbreviation
Ju(z) = ig/dsﬂé(m —s)T%, (6.16)

the Gaussian integration in Eq. (6.15) can be performed immediately and we obtain
(W) = —Tr {exp ( /d4 /d4y J*(2) Dy (2, )6 T (y ))1 =
= exXp |:——CFI(C :| y (617)

where, after gauge fixing, D,, is the Green's function of the operator D;yl After the
second equality sign we have used the definition

€)= §duy §duDulen). (6.15)
C C

and evaluated the color trace with use of Eq. (L.7). The quadratic Casimir invariant C'r
appears in the final form of the equation. Equation ((6.17)) can be understood as the
line element dx,, interacting with the line element dy, through the perturbative gluon
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propagator D,,. As an example we now take Feynman gauge, where the inverse gluon
kernel in Eq. (6.14) reads D,; = d,,[] and the gluon propagator

1 1

Dw(xZ) = T g2 g2

(6.19)

Consider now a rectangular contour C with temporal extent 7" and spatial extent L. We
evaluate a graph where two different temporal paths interact, which for a large temporal
extension 1" of the Wilson loop should be the leading graph. Moreover, we ignore the
diagrams where the gluon lines run along the same temporal path. Using

Dyn(a(s) — (t) = —ﬁﬁa - —ﬁﬁ(s  (620)

the integral I(C), Eq. (6.18)), is evaluated as
2 (7 T 1
[ C == d d VD v y = ——QF d dt— =
©) 74%7{@/ 2, Y) 47?2/0 3/0 L2+ (s —t)?
c c

1 (T T 1 T2
= (Z arctan [Z} — éln [1 + ﬁ]) ; (6.21)

where we have used

7{ dz, f Ay Dy (2, y) — / ds . (s) / dt iy () Do ((2(s) —2(8)) . (6.22)

Here z,(s),x,(t) denote parameterizations of the paths on the rectangular loop, for
more details see Appendix . We evaluate the behavior of Eq. (6.21]) for large temporal
extents 7" and end up with [112] 119]

(W(C)) = exp [—%2@1(0)] = exp [%T #(T, L)} , (6.23)

where we have used Eq. (6.21]) and defined

AT, L) = % (arctan H _ %m {1 + Z—ED | (6.24)

For the limit 7" — oo we have f(T, L) — 1, Ref. [112], and therefore

2
(W(C)) — etrzl = =W (6.25)
T—00
This result comes with no surprise: In the weak-coupling case the interaction is governed
y perturbative one-gluon exchange and the Wilsonian potential Viy (L), Eq. (6.13), is
b bati I h d the Wilsoni ial Viv(L), Eq. (6.13), i

the usual Coulomb potential.
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A

t t =
Figure 6.1: Trapezoidal Wilson loop with temporal extents S and T and spatial extent L.

We now proceed with deriving the Dyson equation for the Wilson loop. We consider
trapezoidal Wilson loops, with two temporal extents S and T, separated by a distance
L, see Fig.[6.1] We expand the Wilson loop average in Eq. (6.17), to order g and get

2
W(S,T;L) =1+ % 7{ dz,, ]{ dy, Dy (7, y) . (6.26)
C C

In order to extract the Wilsonian potential we are interested in large temporal extensions

S, T > L of the trapezoidal loop. Under the assumption that S —T" does not exceed the
order of L the leading contributions clearly come from the diagrams shown in Fig. [6.2p,
i.e., the gluon line connecting the two temporal paths, which was also assumed in the
previous calculation. Note that again the diagram where the gluon line runs along the
same temporal path is ignored. Moreover, we neglect the contribution from sets of
interacting lines. From the 16 contributions in the line integral I(C), Eq. , we
therefore end up with only two remaining integrals. To arrive at a Dyson-type equation,
we now sum up all ladder diagrams with the gluon exchange connecting the temporal
paths, diagrammatically shown in Fig.[6.3p. The recursion relation is analytically given
as [116, 117]

S T
W(S,T:L) = 1+ g*Chr /0 ds /0 dtD ((2(s) — s(1)) W(s,:1),  (627)

where

D ((x(s) = 2(1))°) = @, () Dpw (w(s), (1)) &5 (¢) (6.28)

and xj(s) denotes a parametrization of the two temporal paths of the Wilson loop. We
refer to Appendix [E] for an explicit realization of these paths for the trapezoidal loop.
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(a) (b) (©)

Figure 6.2: Diagrams contributing (a) and diagrams ignored (b), (c) in the Dyson equation

-

i

. I

(b)

Figure 6.3: Graphical illustration to the summation of the ladder diagrams (a) and the Dyson
equation (b).

After summation of the ladder diagrams the Dyson equation can now be applied to a
non-perturbative gluon propagator D, as well. A graphical illustration of the Dyson
equation is given in Fig. [6.3p.

Before we proceed with applying this equation to Coulomb gauge gluon propag-
ators we come to discuss its limitations:

1. Since we only include diagrams with gluon lines connecting the temporal paths,

the Dyson equation (6.27)) is restricted to strongly asymmetric loops consisting
of two opposite long temporal paths S,7" and two opposite short spatial paths.
Otherwise it does not make sense to include one pair of paths, Fig. in the
integral while neglecting the integrals of the other pair of paths (Fig. [6.2p)
and their ladders. Therefore, the Dyson equation is restricted to spatial
distances L < S,T. As a consequence, the limit L — oo cannot be accessed.

Let us turn to the boundary conditions of the integral equation ([6.27]). Setting
one of the two temporal paths to zero, the trapezoidal loop degenerates to a
triangle-shaped loop and the Dyson equation reads

W(S,T=0;L)=1, W(S=0T;L)=1. (6.29)

However, this boundary condition is in general not fulfilled for triangle-shaped
contours. Moreover, such boundary conditions contradict one of the fundamental
assumptions in the derivation of the Dyson equation : The temporal exten-
sions S and T" must be much larger than the spatial extent L.
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T:O T:S

(a) (b)

Figure 6.4: (a) Triangle and (b) rectangular shaped contours representing the Wilson loop
W(S,T=0;L) and W(S,T = S;L).

3. In the Dyson equation the gauge group SU(N¢) enters only via the quad-
ratic Casimir invariant Cr. It is argued [108| 120} I2I] and observed in lattice
simulations [122H124] that the potential between the static quark sources Viy (L),
Eq. (6.13)), is proportional to the value of the quadratic Casimir operator CF,
Eq. (1.7)), only in an intermediate distance regime. This phenomenon is known as
the so-called Casimir-scaling hypothesis, Ref. [125]. Since the only remnant of the
gauge group in the Dyson equation is the Casimir invariant C'p, it should
show strict Casimir scaling for the whole distance range. We can therefore con-
clude, that the Dyson equation can be applied to an intermediate distance
regime L only.

4. Another limitation concerns gauge invariance. The left-hand side of the Dyson
equation is clearly gauge invariant, as shown in Eq. (6.8). However, on
the right-hand side a gauge dependent quantity, namely the gluon propagator
D,,, occurs. Consequently, it is expected that the Dyson equation yields
different results for different gauges. This observation is confirmed by comparing
the Coulomb and Landau gauge results.

5. Besides gauge invariance, the Wilson loop is also renormalization group invariant.
However, the gluon propagator on the right-hand side of the Dyson equation (6.27))
is not, except for the temporal Wilson loop, which will be considered below.

From all the above listed limitations and approximations we can conclude that the Dyson
equation is only applicable to strongly asymmetric loops with the length scale L
restricted from above to intermediate distances. This will be confirmed in Section [6.5]
by a numerical evaluation. We now discuss a special case, where the Dyson equation
is exact and yields the correct result.
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6.3 Temporal Wilson Loop in Coulomb Gauge

A remarkable property of Coulomb gauge, not shared by any Lorenz gauge, is that the
time component of the gauge field Ay is invariant under renormalization, Ref. [126],

gAY = g, 4. (6.30)

Here the superscripts denote unrenormalized (0) and renormalized () quantities. As a
consequence the temporal gluon propagator

(gAY (2)gAY(y)) = ¢*Doo(z —y) = —6Ve(z — y)o(2° — y°) + P**(x — y) (6.31)

is renormalization group invariant. Here we have decomposed the temporal gluon propag-
ator into two parts [33]: The first part is the instantaneous non-Abelian Coulomb poten-
tial Vo (x — y) which describes anti-screening of color charges and has been discussed in
detail in Section . The second part P(x—v) is the so-called vacuum polarization term,
which describes ordinary screening. This second part is assumed to lower the Coulomb
string tension o towards the Wilson string tension ow. The non-Abelian color Coulomb
potential Vo (x — y) is computed in the Hamiltonian approach according to Eq. .
It consists of a long-range, linearly rising potential and a short-range Coulomb potential,

Eq. (.9).

Ve(L) = ocL - —. (6.32)

We now ignore the screening part in Eq. and plug in the instantaneous part of the
gluon propagator Dyo(x — y) into the Dyson equation (6.27). Apparently, we expect to
end up with a potential which rises linearly with o¢r, which is now explicitly worked out.
Due to the d-function appearing in the first part of the temporal propagator, Eq. (6.31)),
we have to apply the Dyson equation to a rectangular shaped Wilson loop. We
have

W(S=T,T;L)=W(T;L) , (6.33)

for which the Dyson equation (|6.27)) reduces to
T
W(T:L) = 1 — CrVio(L) / AWt L) . (6.34)
0

We note that for rectangular loops, i.e., S = T, neighboring edges do not interact, since
in this case dx,dy, = 0. Therefore processes shown in Fig. vanish identically.
Equation ([6.34)) can be converted into the differential equation

d
d—TW(T; L) =—-CpVe(L)W(T, L) (6.35)

with the boundary condition

W(T=0,L)=1, (6.36)
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which is, contrary to the boundary condition of the general case (6.29)), indeed the
correct one: The area enclosed by the loop vanishes for 7' = 0. Equation ([6.35)) can be
solved analytically and yields

W(T; L) =exp (—CpVe(L)T) , (6.37)

which is the expected result for large temporal Wilson loops. We thus have correctly
obtained an area law. It is clear why in this case the Dyson equation produces
the correct result. First of all, the boundary condition (6.36)) is exact for the rectangular
Wilson loop. Moreover, processes shown in Fig. vanish for rectangular loops. In
addition, the processes shown in Fig. [6.2b, which connect the two spatial paths, and
which are neglected in the Dyson equation do not exist for an instantaneous
propagator. Next we show how to extract the static quark potential Viy (L) for a general
trapezoidal Wilson loop.

6.4 Extracting the Static Quark Potential

We now show that the Dyson equation ([6.27)) can be reduced to a one-dimensional
Schrédinger equation, Refs. [116] [117], and the Wilsonian potential Viy(L), Eq. (6.13),
can be extracted from its ground state energy.

First of all, we differentiate (|6.27]) with respect to the temporal extensions S and T,
which yields the following differential equation

OPW(S,T; L)
089T

We have used the parametrization of the temporal paths with (z(S) — z(T))* = L* +
(S —1T)? Eq. (E.4). We introduce the following dimensionless variables

= ¢@?Cp D(L* + (S —T)> ) W(S,T; L) . (6.38)

S—-T S+T
r=—7 R = I (6.39)
With use of the relations
g 10 0 g 1[0 0
%‘Z(E*@)’ ﬁ‘f(ﬁ‘%)’ (6.40)
the differential operator in Eq. (6.38)) becomes
0? 1 [0 0?
9SoT ~ 12 (ﬁ - a_) - (6.41)

One can then show that the Dyson equation, Eq. (6.38)), is separable in the variables R
and r [116), 117]

1 <82 02

(o m) W(rR) = PCrDLA(1+1) W R) . (642)
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Here we have used the notation W (r, R) = W(S,T;L). With the following ansatz,
Refs. [116) 117],

W(r,R) = @u(r)c, exp(QR/2), (6.43)

the differential equation (|6.42) can be rewritten as

0 o2
5 ] el = LPCED( ) ). (6.44)
which is a one-dimensional Schrodinger equation of the form
d> 02
U alr) =~ (). (6.45)
with the Schrodinger potential given as
U(r; L) = —L*¢*CpD(L*(1 +1?)) . (6.46)

The constants ¢, in the ansatz (6.43]) have to be chosen such that the boundary condition
(6.29) is fulfilled. In the new variables r and R the boundary condition ([6.29) reads

W(r=RR) =W(r=-RR)=1. (6.47)

From Eq. we find that the Schrodinger potential is symmetric, i.e., U(r) = U(—r).
In the new variables » and R approaching large Euclidean times means setting r = 0
and R — oo. For fixed r and large R the dominant contribution in the sum, Eq. ,
clearly comes from the largest eigenvalue €2,,. From the condition » = 0 it follows
that the largest eigenfunction ¢,, in Eq. has no nodes, i.e., ©,(0) # 0. Since the
ground state eigenfunction ¢ (r) has no nodes it is the dominant contribution. Plugging
in this result into the ansatz the large-T" behavior of the Wilson loop corresponds
to

QR

W(R — 00,7 — 0) ~ @o(r — 0)e 2 . (6.48)

Hence, to extract the static quark potential Viy(L), Eq. , we have to find the
lowest eigenvalue (L) of the Schrédinger equation (6.45]). An area law for the Wilson
loop for large separations S = T > L requires

V(L) = — lim llnl/V(S,T: S;L) = (L) + const. . (6.49)

T—oo T L

Consequently, in order to extract the static quark potential Viy(L) from the Dyson
equation ([6.27) we have to solve the Schrodinger equation for its ground state
as a function of L. From the discussions in Section [6.2] we expect that the procedure
is applicable to separations L not too large. How this limitation manifests itself in the
numerical evaluation of the ground state energy of the Schrodinger equation (6.45)) will
explicitly be seen below.



6.5 Spatial Wilson Loop in Coulomb Gauge 113

i — L=0.1 fm
’\ \ “ ..... L:02 fm 1
Vb --- L=0.3 fm
05\ 1 - L=04fm| 4
N -~ L=0.5 fm
3
=
-}

Figure 6.5: The Schrodinger potential U(r; L), Eq. , for several spatial distances L.

6.5 Spatial Wilson Loop in Coulomb Gauge

We now apply the above formalism to the results obtained in the variational approach
to QCD. In this procedure the temporal extents S, T become spatial extents: In the
Hamiltonian approach the spatial Wilson loop is more easily derived, since for the tem-
poral Wilson loop we would need to know the time evolution of the Yang-Mills vacuum
wave functional [¢), Eq. (1.86)). We use as input the spatial gluon propagator defined
in the Hamiltonian approach, Eq. (1.81]), which can nicely be expressed by the Gribov
formula, Eq. . In Appendixwe show, however, that the large momentum part of
the gluon propagator leads to an ultraviolet divergent expression for D((x(s) — z(t))?),
see Eq. . To overcome this problem we introduce the so-called anomalous dimen-
sion of the gluon propagator, denoted as . It is an additional term in the ultraviolet
region of the gluon propagator [127]

1

p(1+7[5]) (620

D(p) ~

Hence, the exponent ~ of an additional logarithmic term in the ultraviolet part of the
gluon propagator is the anomalous dimension. The quantity p denotes some renormaliz-
ation scale. Note that the anomalous dimension escapes the lattice calculation as well as
the variational approach. On the lattice an anomalous dimension is difficult to observe.
In the variational approach, however, it probably escapes due to the Gaussian ansatz in
the wave functional. In Ref. [127] it has been analyzed with use of the ghost Dyson-
Schwinger equation. In our analysis the only necessity to take the anomalous dimension
into account is to make the divergent expression, Eq. , UV finite. The anomalous
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Figure 6.6: The Wilsonian quark potential Viy (L) obtained from the non-perturbative gluon
propagator and the perturbative potential Vpyrr(L) obtained from the ultraviolet

part of the gluon propagator .

dimension -y modifies the kernel w in the Yang-Mills vacuum, Eq. (1.95)), as

w@):%ﬂ (1eom () + 2 6.51)

Here the anomalous dimension is given by v = % Ref. [127]. A parameter a depending

on the Gribov mass scale Mg, Eq. , enters the gluon kernel w. Since in our
case the anomalous dimension enters only to make the integral UV-convergent,
we will use a small value of @ = 0.1. Moreover, the infrared behavior of the gluon
propagator is independent of the anomalous dimension ~ and therefore also the long-
range part of the Wilson loop should be unaffected. This has been confirmed in a
numerical evaluation. Fig. shows the potential U(r; L), Eq. (6.46)), calculated from
the static propagator in Coulomb gauge with w(k) given by Eq. for various spatial
distances L. The potential U(r; L) has the form of a double well centered at r = 0.
The dip in the potential, necessary for the formation of a bound state, flattens as L
increases and vanishes for L > 0.5 fm. The bound state disappears for L =~ 0.35 fm.
The Wilson potential Viy(L), Egq. , can then no longer be extracted from the
“ground state energy” y(L). This limits the use of the Schrodinger equation (6.45))
to an intermediate distance regime. We emphasize that already when discussing the
limitations of the Dyson equation (|6.27)) we drew the conclusion that this equation is
only applicable to intermediate distances.

The ground state eigenvalue Qy(L) is computed numerically with use of the so-called
shooting method, a widely used method to solve one-dimensional Schrodinger equations
for arbitrary potentials. It is described in Appendix and evaluates the Schrodinger
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Figure 6.7: Subtraction of the perturbative potential Vpgrr(L) from the non-perturbative
potential Viy/(L).

equation (|6.45) according to

v —4Ey

A+ 2By = Ul)po =0, Vag(I) = —Y—

(6.52)
Although the resulting string tension could be used to fix the scale, we here fix the scale
a priori. This has the advantage that we can check the reliability of the result by simply
comparing the string tension which we obtain with the input string tension. We use as
input the string tension obtained on the lattice, \/ow = 440 MeV. It enters the gluon
kernel w, Eq. (6.51]), and therefore the Schrodinger potential U(r; L), Eq. (6.46]).

Let us turn to the results for the Wilsonian potential Viy(L), Fig.[6.6] It clearly shows
the two regions: the Coulombic region up to 0.15 fm and a linear rising potential, up to
the limit at 0.35 fm. We also compute the static quark potential Vpygr (L) with only the
ultraviolet part of the gluon propagatorﬂ (again with taking into account the anomalous
term) which is given as

Weerr (D) = p <1 +aln” MLG) , (6.53)

and observe that it only has a Coulombic behavior, as predicted by the analytic frame-
work, Eq. (6.23)). Both potentials Viy (L) and Vpyrr(L) are plotted in Fig.[6.6] Moreover,
in Fig. we subtract the perturbative potential Vpprr(L) from the non-perturbative
potential Viy(L) and observe an excellent linear behavior in the intermediate distance

3We also analyzed so-called decoupling solutions for the non-perturbative gluon propagator. Here the
gluon propagator tends to a constant for small momenta. We observed that the Wilsonian potential
Vi (L), Eq. (6.13), for such propagators only shows a Coulombic region.



116 Chapter 6. Wilson Loop from a Dyson Equation

regime. Note that for small distances, up to 0.1 fm, the subtraction shows numerical
inaccuracies. From the fit

Vw(L) = Ve (L) = ¢+ owl | (6.54)
we can extract the string tension, yielding
ow ~ (600 MeV)? . (6.55)

Comparing the string tension to its input value of ow = (440 MeV)? we end up with a
value which is too large.

We can conclude that the results obtained from the Dyson equation are not
quantitatively significant. However, on a qualitative level, the results give the correct
physical picture. We find the Wilsonian potential to have a Coulombic region as well as
a strictly linearly rising region, see Fig.[6.6] This long-range linear behavior can be seen
quite impressively after subtracting the perturbative part, see Fig. [6.7]



Conclusions and Outlook

In this thesis two projects were presented, each one covering one of the two main features
of non-perturbative QCD: chiral symmetry breaking and color confinement.

In the first part of this thesis we investigated chiral symmetry breaking and were able
to include quark fields into the variational approach to QCD. We could make important
progress on the thirty-year old problem of the phenomenological quantities, which are
too low in Coulomb gauge [103].

We started our considerations with a brief introduction to the Hamiltonian approach
in Chapter [I We collected the main results gained in recent years within the variational
approach to pure Yang-Mills theory, with the most prominent ones being the spatial
gluon propagator and the static non-Abelian color Coulomb potential.

In Chapter [2| a short discussion of spontaneous chiral symmetry breaking in QCD
followed and we introduced the phenomenological quantities, which we later on computed
by means of a variational calculation: the chiral condensate, which is the order parameter
of chiral symmetry breaking, and the constituent quark mass, which is the dynamical
quark mass at zero momentum.

In Chapter [3| we identified the missing piece in past studies of quarks in Coulomb
gauge QCD: the interaction of quarks with transverse gluons. We generalized the BCS-
like quark vacuum wave functional ansatz of Finger and Mandula, Ref. [78], in order
to include the interaction of quarks with transverse gluons. Combining this quark wave
functional with the Gaussian wave functional of pure Yang-Mills theory proposed in
Ref. [7], we gained a powerful technique to approach the full QCD system by means of
a variational calculation. The Finger-Mandula wave functional, Ref. [78], is limited in
its applicability to those parts of the Coulomb gauge Hamiltonian which do not depend
on the gauge field. Our ansatz, however, has no such limitations and can be used
to explore the full QCD system. Within this new approach three variational kernels
determine the different parts of QCD. The kernel in the Gaussian ansatz characterizes
the pure Yang-Mills part of the theory. The two kernels entering the quark vacuum
wave functional divide into a scalar part, which breaks chiral symmetry explicitly, and a
vectorial part, which includes the interaction of quarks with the transverse gluons. We
then, in the basis of coherent fermion states, formulated a generating functional for the
quark sector, from which all fermion two-point functions were derived. Once the quark
fields in the functional integral are integrated out, however, it is in general not possible
to integrate out the gauge field as well. We bypassed this difficulty by resorting to the
so-called quenched approximation, in which the back-reaction of the quarks on the gluon
vacuum is ignored. Lattice calculations, Ref. [128], as well as Dyson-Schwinger results,
Ref. [84], in Landau gauge indicate that the influence of unquenching on observable
quantities is small. Moreover, this approximation is in accordance with the aim of our
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first study: We want to understand the role of the vectorial part of the quark vacuum
wave functional for chiral symmetry breaking. Hence, we keep the gluon sector and thus
the kernel in the Yang-Mills Gaussian vacuum fixed.

In Chapter |4 we evaluated the so-called single-particle energy density, i.e., the energy
density of free quarks and the interaction energy of quarks with transverse gluons. On
the way towards the final form of the gap equations, we had to regulate the gluon loop
integral, in which the static spatial gluon propagator enters. We then showed that for the
gap equations with a purely transverse gluon interaction as input a non-zero solution for
both variational kernels cannot be found. We concluded that the Coulomb interaction
must be essential for chiral symmetry breaking, which was confirmed in the subsequent
chapter.

In Chapter [5 the Coulomb energy density, which is the interaction energy of two quark
charges mediated by the static non-Abelian color Coulomb potential, was derived. The
gap equations with the transverse gluon interaction as well as the Coulomb interaction
as input were set up. Taking for the non-Abelian color Coulomb potential only its
long-range linear part into account, the final gap equations could be shown to be UV-
finite. We then solved the coupled system analytically and numerically. The analytic
investigation gave us first hints about the behavior of the variational kernels for small and
large momenta: For small momenta both quark variational kernels tend to a constant,
signalling that the scalar kernel as well as the vector kernel coupling the quarks to
the transverse gluons are important for infrared physics. For large momenta the kernels
show a power-law behavior, whose exponents are in agreement with a recent perturbative
analysis, Ref. [14]. All analytic results were confirmed in a numerical investigation of
the coupled system. Moreover, we were able to show that the infrared part of the static
spatial gluon propagator is of central importance in order that the two integral equations
determining the variational kernels start to interact. We solved the gap equations for
different coupling constants as well as for different Gribov mass scales.

The results for the variational kernels then enabled us to obtain values for the chiral
condensate and the constituent quark mass. By comparing these values to the result
obtained with vanishing vector kernel, Ref. [80], we could conclude that it is indeed
the coupling of the quarks to the transverse gluons which produces an increasing chiral
condensate as well as a larger value for the constituent quark mass. However, while
for the chiral condensate we come into the range of experiment, for the dynamical
mass there is still a certain contribution missing which can result from neglecting the
ordinary Coulomb potential as well as from ignoring certain parts of the Coulomb gauge
Hamiltonian.

In the various Appendices we performed the explicit calculations: In Appendix [A] we
computed, with the use of helicity eigenstates, the explicit spinor solutions for massless
fermions. In Appendix [B| we showed how to integrate out the quark fields in the QCD
generating functional. We derived several restrictions for the wave functional kernels
and determined the dimension of these kernels. In Appendix [C] we calculated the energy
densities of the Coulomb gauge-fixed Hamiltonian and in Appendix [D] we presented the
algorithm how to solve numerically non-linear integral equations.

Most of the results gained in Part [[| of this thesis have already been published in [74]
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and a summary can be found in [44].

All these results are very encouraging and call for further studies with use of this new
QCD vacuum wave functional. There is enough room for extending the investigations
in several directions. Clearly, the next step should be to take the parts of the Coulomb
gauge-fixed Hamiltonian into account which have been neglected so far. These contri-
butions are the kinetic gluon energy and the parts of the Coulomb Hamiltonian, where
quark sources interact with gluon sources. Although these contributions are considered
to be subleading, they could increase the constituent quark mass, which is so far about
100 MeV too small. Moreover, it is an interesting question if with these additional contri-
butions the vector kernel in the quark vacuum wave functional starts to depend on both
external momenta. Preliminary results indicate that this is indeed the case. An import-
ant source of uncertainty are the approximations used to compute the gluon expectation
values. In order to test and get further insights into these approximations a recently
proposed Dyson-Schwinger technique in the Hamiltonian approach, Ref. [25], which was
only applied to the pure Yang-Mills sector so far, should be applied to the quark sector as
well. The ordinary Coulomb potential should be included into the quark gap equations.
Current investigations show that this results in logarithmically UV-divergent expressions,
which have to be correctly renormalized, for instance, by adding counter-terms to the
Hamiltonian. Another question concerns the form of the vector kernel in the quark wave
functional: How would additional Dirac tensor components affect the phenomenological
values? Clearly, the final step should be to evaluate the full QCD system, i.e., varying
the energy densities with respect to all variational kernels. To approach realistic QCD,
we should include finite quark masses as well. Moreover, for hadron phenomenology the
pion form factor is an essential ingredient. With only the BCS kind wave functional it
is too small by a factor of five, Ref. [80]. Since the coupling of quarks to transverse
gluons in the quark vacuum wave functional increases the chiral condensate as well as
the dynamical mass towards the experimental values, such an increase is also suspec-
ted for the pion form factor. Furthermore, in recent years much effort was spent into
exploring new numerical methods for solving Coulomb gauge quark Dyson-Schwinger
equations, especially to handle the infrared divergent static non-Abelian color Coulomb
potential, Ref. [129]. From a numerical point of view it would be interesting to apply
these methods to the integral equations presented in this work.

Another important line of QCD research explores the QCD phase diagram. Con-
sequently, an extension of the framework to finite temperatures and finite densities is
desirable. Since the wave functional suggested in this work couples the quarks to the
transverse gluon fields, it is expected to be a good quantity to test the interplay between
confinement and chiral symmetry breaking. In addition, our results may be of import-
ance for investigations beyond QCD, for instance, technicolor theories. The techniques
developed in this work could also be applied to non-QCD theories, like graphene descrip-
tion, which has most recently become popular, Ref. [130].

Let us turn to the project presented in Part [l of this thesis. Its aim was to calcu-
late the expectation value of the Wilson loop in the variational approach to QCD. The
Wilson loop is related to the static quark-antiquark potential and therefore an order
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parameter for confinement. However, the continuum evaluation of the Wilson loop has
been rendered difficult so far, due to the path ordering problem. We applied a method,
which has been proposed for Wilson loops in the context of supersymmetric Yang-Mills
theories, see Refs. [116], [117].

In Section [6.1] we defined the Wilson loop and discussed the problem of path ordering.
We set the link to lattice QCD and argued why the Wilson loop is more easily accessible
on the lattice. We proved gauge invariance of the Wilson loop and derived the relation
between the static quark potential and the Wilson loop average.

In Section we briefly sketched the derivation of the Dyson equation: Starting
from a weak-coupling expansion a recursion relation for a trapezoidal Wilson loop is
derived, which sums all planar ladder diagrams in which gluon lines interact between the
temporal paths. This equation is fully determined by the gluon propagator. However,
in this procedure diagrams are neglected and assumptions on the form of the Wilson
loops are made. We critically analyzed this Dyson equation. Among other limitations
we showed that the boundary conditions can in general not be fulfilled. Moreover, we
argued that the Dyson equation can be applied only to an intermediate distance regime.

In Section [6.3| we applied this Dyson equation to the instantaneous part of the temporal
gluon propagator in Coulomb gauge. We showed the area law with the string tension
being the Coulomb string tension.

In Section [6.4] we outlined how to derive the static quark potential from solving a
one-dimensional Schrodinger equation for the lowest eigenvalue.

In Section [6.5] we applied the formalism to the spatial Wilson loop in 3+ 1 dimensions
in Coulomb gauge. We used the spatial gluon propagator obtained in the variational
approach and on the lattice as input. We ended up with a static quark potential,
which shows the characteristic short-range Coulomb potential and the long-range linear
confinement potential. When subtracting the perturbative potential a strictly linearly
rising confinement potential was obtained. However, on a quantitative level, the string
tension extracted from this confinement potential was found to be much larger than the
string tension obtained on the lattice.

In Appendix [E| we obtained an explicit parametrization of the temporal paths of the
trapezoidal Wilson loop and derived an expression for the gluon propagator contracted
with the temporal paths. We explained the so-called shooting method, from which the
energy eigenvalues for general one-dimensional Schrodinger potentials can be obtained
numerically.

This project has been published in Ref. [106] and a summary was given in Ref. [107].
Most recently, the temporal Wilson loop using the Hamiltonian approach to Yang-Mills
theory has also been explored in Ref. [115].



Appendix A

Explicit Spinor Solutions

In this Appendix we give an explicit realization of eigenvectors to the massless Dirac
equation, which are used for computing the various energy densities in Appendix [C|

In Section 1 we derive, starting from the free massless Dirac equation, the defining
eigenvalue equations for positive and negative energy eigenvalues. In Section 2 we
introduce the helicity operator and solve the corresponding helicity eigenvalue equation.
In Section 3 we give an explicit realization of the spinor solutions with use of these helicity
eigenvectors. Finally, we list useful properties and relations of the spinor solutions.

A.1 Eigenvalue Equations

We set the scene in Minkowski space and use the standard Dirac representation for the
Dirac matrices, which can be found in Ref. [9]. We start from the free Dirac equation
for massless fermion fields (Eq. (1.18]) with setting A, = 0 and m = 0)

"0, () = 0, (A.1)
and take the time derivative to the right-hand side of the equation
' Oip(x) = =iy’ () . (A.2)
With the following ansatz
Y(x,t) = w(p,s)e P* (A.3)

where s is an additional parameter, which will which will be introduced below, we can
rewrite Eq. (A.2)) as the eigenvalue equation for massless fermions (using «; = (37;)

a-pw(p,s) = E(p)w(p,s) . (A4)

In matrix language the eigenvalue equation ((A.4) reads

(2% ) nus) = @), (A5)

g;

which could be decoupled into separate equations for the left- and the right-handed
particles, called the Weyl equations.
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Solving the characteristic polynomial we get

E(p) = *[p|, (A.6)

and denote the two eigenfunctions leading to positive energy |p| as u(p, s), whereas the
eigensolutions with negative energy —|p| are referred to as v(—p, s). The parameter s

introduced in Eq. (A.3)) takes the values £1. The equation Eq. (A.4) can therefore split
up into
a-pu(—p,s) = —E(p)v(-p,s). (A.8)

Since u(p, s) and v(—p, s) are eigenfunctions of the same matrix belonging to different
eigenvalues, they must be orthogonal:

ul(p, s)v(—p,s) = 0, (A.9)
vl (=p, s)u(p,s) = 0. (A.10)

We identify the spinors u(—p, s) and v(p, s) which solve the eigenvalue equations (A.7)),
(A.8) with opposite momentum.

A.2 Helicity Spinors

Now we turn to the quantum number s, which was introduced in expression (A.3)). It is
related to the helicity operator 3 - p, with the matrix ¥; defined as

5 ("i 0 ) , (A11)

0 o;

and o; being the Pauli matrices

e (V) e (V) me (D) s

Since the helicity operator commutes with the Dirac matrix, i.e., [¥ - p,a - p] = 0,
it represents a conserved observable. We therefore use the eigenvectors of the helicity
operator to specify the spinor solutions. Note that employing the helicity basis is only

one possible way to represent the Dirac spinors u and v, Egs. (A.7)), (A.8) . We solve
the following eigenvalue equation

o ﬁ 5(]97 S) =S §(p7 S) ) (A13)

with the unit vector in p-direction, i.e., p = p/|p|. The matrix o - p is explicitly given
as

. . . R pP3 D1 —ip2
O-p=01p1+09ps+o = . o . , A.14
b 1P1 22 3P3 ( D1+ ips — s ) ( )
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with the characteristic polynomial
detfo -p—A] = N2 —p> =)~ 1. (A.15)

Hence, the two helicity eigenmodes are s = £1. The eigenvectors £(p, s) in Eq. ((A.13))
are given as

14 ps —p1 + ip2
1) =N . o , 1) =N R , A.16
with the normalization

2(1+ p3)

We also identify the eigenvalue equation with opposite momentum
—0 - ﬁ 5(_1)7 S) =S 5(_p7 3) ) (A]'S)

and identify £(—p, 1) with negative helicity and {(—p, —1) with positive helicity. Finally,
we list some properties of the helicity solutions

' (p,s)E(p,t) = dat (A.19)
€p.9)E(ps) = 5 (1+50p) (A20)

> ips)Ei(ps) =1, (A.21)
S s s)elps) = 5 (Ato-p)~(--p) =op.  (A22)

s

Moreover, the following identities are useful for later applications:

&'(p,s)o-gé(p,s) = sp-q, (A.23)
> sél(p,s)o-gé(p.s) = 2p- 4., (A.24)
> &lp,s)o - é(ps) = 0. (A.25)

A.3 Dirac Spinors

Now we have all the ingredients to build up solution vectors to the eigenvalue equations

(A7), (A.8). One possible solution to (A.7) is given as
wos) = VI (G obe )=V (R ) L ma

o-p)ép, s
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and the eigenvector v(—p, s), which solves Eq. reads
e (o -p)é(p; s) s¢(p, s) >
vepes) = VIl (2R )~ (R
For the equations (A.7)), with opposite momentum, we then have the solutions
wtps) =Vl (580 ) oo = VIl (B ) )

We summarize important relations for the Dirac spinors, which are of special interest for
deriving the energy densities in Appendix [C|

1. The normalization condition for the spinors is:
W) u(pt) = [ (€095 o) (7)) = olplaa, (A29)

.9 op.t) = Ipl (56 (-p.s €' p.s) (52 ) = olpla
(A.30)

Due to this normalization the pre-factor /2|p| enters the Fourier-decomposition

formulae, Eqs. (1.40])-(1.43)).

2. The following spinor products vanish for massless fields:
ap,s)u(p.1) = pl (€' (p.5), ~5 €' (p,5)) ( N ) =0, (A3Y)
olp.s)o(p.) = [ (s € Cp) € p0) (G0 ) =00 (a2

For massive spinor solutions, these relations would give +2mJd;.

3. We evaluate several spin sums, from which follow the relations (1.47) between the

spinor solutions, Egs. (A.26])-(/A.28), and the projection operators Ay, Eq. (1.39),

projecting to positive and negative energy states
> i) p.s) =l 3 ( ) ) (' (D, ), —s ' (p.5)) =
_ gT pv ) —Sf(p, S)gT(pr) ) _
= Ipl Z < S€p, )&l (p,s) —&(p,s)ET(ps) )

_ ( \pl —a-p) _
o-p —|p|
=1pl-~-p, (A.33)
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and with opposite momentum

> u(—p,s)ua(-p,s) = lpl+v-p. (A.34)

s

From these relations we can read off the corresponding relations using the eigen-
vectors v(p, s):

> w(p,s)o(p,s) = lpl—v-p, (A.35)

S

> v(=p.s)o(-p,s) = Ipl+7-p. (A.36)

S

4. We show a relation, in which a gamma matrix ; appears between a spinor product:

a(p. s)yu(p.s) = |p| (€'(p. 5), —s¢'(—p. 9)) ( —0" g ) ( fég’tz) ) i

= sp&i(p,s)o’é(p.t) + tp&l(—p,s)é(—p,t) =

5. We list a relation, which is used to evaluate Eq. (3.36) from Eq. (3.2)):

o) ol-p.) = [pl (€1p.9) ~s€(p.9) (L4 ) ~2elplon (a3e)

wlps)u(—p.) = 1ol (56 p.0) €p9) ([001) ) =2ebplaa (A39)

6. Finally, we discuss a typical sum of spin products which occurs when evaluating
the Coulomb energy density (H¢), Eq. -

Zu P, ul(g, t)u(p,s). (A.40)
With use of Eq. we evaluate
> ulgt)ul(g,t) = llg|+ - q. (A.41)
t
We proceed with
. Juta. 0 . 10(p5) =

=Y _ul(p,s)lglulp,s) + Y u(p,s)y - qu(p, s) =

=4|q|lp| +4q-p, (A.42)

where in the second step we have rewritten the spinor products so, that we can

use the identity (A.37)).






Appendix B

Quark Wave Functional - Explicit
Calculations

In this appendix we explicitly present the computations which were quoted in Chapter [3]
namely the evaluation of the fermion generating functional (Section 1), the computation
of the gluon loop integral (Section 2), the derivation of the restrictions on the variational
kernels (Section 3) and the evaluation of the chiral condensate (Section 4). In Section
5 we determine the dimensions of the variational kernels.

B.1 Evaluating the Generating Functional

In this part of the Appendix we present the derivation of Eq. from the key definition
of the fermion generating functional following Ref. [8I]. Summing over repeated
color and spin indices and integrating over repeated momentum arguments is implicitly
understood, e.g.,

fe= [a Y € o o). (B.1)

Recalling the definition of the generating functional

Zl0] = 2l s ] = NR(gle(rer ) ot

) (B.2)

and employing the closure relation of coherent fermion states

1= /du(ﬁ)!@@! = /D&D&Dil?ﬁ* exp €16 — &€ 16l (B3)
the generating functional in the basis of coherent states reads

Zln) = Wi [ du€)6"(©o€) exp [+ €] exp [€10 +€7] =

= NG / D€' DE, DE_DE" exp| €16, — £ €]x

xexp [~ELKE — & KE exp & +n-& + &+ &7 . (BA4)
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We rewrite the exponent in a compact form introducing the matrix notation
exp [—E1E, —EKE —EKE +E1E +En, —En_+ni& —nE] =

exp [— (&) (% _K]l ) ( ét ) +(£1,¢) ( _77;_ ) + (n, —n?) (
and define

o (EEY w () a (). e

The generating functional is then easily evaluated applying standard Gaussian integrals
for Grassmann fields, yielding

Z[??] = |NF(A)|2 /D\IJTD\IJ exp [—\IJTQ\II +UTA & AT\IJ] _
= |Nr(A)|? Det[Q(A)] exp [ATQ'[A]A] . (B.7)

The normalization is fixed by requiring |[Nr(A)|> Det[Q] = 1, see Eq. (3.22). Explicitly
inverting the matrix € yields

. KK KK| 'K
o= < [F:FK]L? [—]I[J]E+F]K]_1 ) ’ (B:8)

and the generating functional can be expressed as
* -1 * > —1 =
Zn) = exp (m [1+KK] ny—n" [1+KK] Kny
— []l—i—KE_lKn,—nf 1 +FK]_177,> . (B.9)

We recall that K means the complex-conjugated kernel.
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We list all occurring fermion two-point functions:
0*Zn]
o3 (p, s) 0% (g, t) In=o

(" (p.s)a"(q,0) )r = = (0 + KK osia.0).

(B.10)
(a(p.s)a"(q.1))r = ([t + KE] " Kf)ba (@.:p.s) (B.11)
(b(p,s)b™(q,t) )p = _577“_(1758)25[2]2{’@ D Lo = ([]l + EK}_1>M (q,t;p,s),
(B.12)
(01 (p. )t (a.1))r = ([1+ KK] ‘TK)“’ (p.siq.t), (B.13)
(aTa(p’ s)bTb(q,t) )P = 5771(29,65)265[2]*b(q,t) o — <[]1 +FKT17>% (@.tip.5).
(B.14)
{(a®(p, s)b°(q,t))p = 5771&(;8?([;37]5((1 D o <[]1 —l—KT > (p,s;q,t) .
(B.15)

We note that for the expectations values (B.11]) and (B.13)) the anti-commutation rela-
tions ([1.44)) and (|1.45]) were used. Expectation values of the form

6*Z[n]
a'(p, s)b°(q,t — =0, B.16
(2 e = = Sy ot (@.1) o (810
as well as
0*Z[n]
a'(p, s)a™(q,t))p = — =0, B.17
(a"(p,s)a"(q,t))r S (P 5) O (@ 1) Ino (B.17)
vanish.

We turn to several properties of the matrices €2, Eq. (B.6]), and 7!, Eq. (B.8)). The
matrix €, Eq. is obviously Hermitian. For the matrix Q~!, Eq. (B.8)), hermiticity
is shown using the relations

1 +qu—1 K =[K(K)" +K)} _ [(®) +K}_1 _
= [(1+KK)(K)™" ]_ ~ K [1+KK]™ (B.18)
M+KK| ' K=K [1+KK] ", (B.19)

where in the denominator the kernels X and K change order. These relations become
especially important when evaluating the expectation value in the gluon sector, see
Section [B.2l We note that in general KK # KK.

At next we compute the normalization ;2 = Det[()]. From

(DetQ)” = Det(1 + KK)Det(1 + KK) , (B.20)
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and using that there is an overall symmetry between the particles and anti-particles we
conclude

Ni2(A) = DetQ = Det(1 + KK) = Det(1 + KK) . (B.21)

Limiting the ansatz ((3.3)) to be of BCS type the fermion normalization becomes

Det[Q] = [ (1 + 5*(p)) , (B.22)

p7s7a’

which has been derived in Ref. [80] by means of Bogoliubov-transformations.

B.2 Gluon Loop Integral

At next we explicitly derlve the formulae ), (3.47) from the definitions (3.44),
(3.49). Using the ansatz and ( - for the adjoint kernel of the gauge-field

dependent part of the vacuum wave functional, Eq. (3.3)), the expectation values in the
gluonic sector become (using Eq. (1.89)))

<(?1K1)“b (p,S;q7t)>G =
b 3 SV : 1
_ 525 — q)Cr /Cz kV RV (k,P) 5o =5 Tl

<<K1F1)ab (p’S;q’t)>G -
ab 3 3 : : :
= §°(2m)*5(p — q)Cr /d kV(p k)V" (k. p) 20(p + k) 4lpllk] "

X Zt” p+k)Li(p,s;k, )F}(k,u;p,t), (B.24)

where we have abbreviated
Lilp,s1q,1) = u(p, s)viv(a,t) - (B.25)
The spinor sums in (B.23) and (B.24)) coincide
(—p — T . T .
> tij(—p — k)Tl(p, sk, u)T;(k,u; p, t th p+k)Li(p, s; k, u)lj(k, u; p, t) .

(B.26)

Explicitly we find

+k)i(p+k);
th’j<_p - k) F}<p75;kau)rj(k7u;pa t) = 40y (|p|’k| - (p ) (p )] pikj) .

(p+ k)
(B.27)
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The expectation values therefore read

(B (psiq.1)) | = 0"0,(2m)0(p — @)Crx

3, 1w 1 (p+E)(p+k); pi kj
X /d‘ kV*(p, k)V(k,p)m (1 Sy WW) ., (B.28)

<(K171)“” (p, 5.4, t)>G — §5,,(27)25(p — q)C

3 \ ptk)ilp+ k) pi k
< Janvmavion ey (- TR ) - 6
We abbreviate
<(F1K1)ab (p,s;q, t)>G = §64(2m)*3(p — q)R(p) , (B.30)
(KK (p.sia.t)) = 0™8.(2m)5(p — @) R(p) (B31)
with
R(p) = C /d3qV*(p DV (. p) (1+ b= Dilp—0); i 6
" ’ T 2w(p - q) (p — q)? Ip\ q|
(B 32)
_ 3 * - (p Q) pz Q]
Rlp) = Cr /d vipa)V(e.p) 2w(p — q) (1 (p—q)? Ipl Iql(B 3)

where we have assumed translational invariance of the kernel w(p, q). The results agree
with Egs. (3.46)), (3.47). We remark that in order to make R(p) and R(p) in (B.32)
and (B.33) coincide, we have to demand

V(p,q) = Vi(q,p) . (B.34)

In the derivation below we will observe that this assumption, in general, will hold true.

B.3 Restrictions of the Variational Kernels

In Eq. (3.50]) we have quoted several assumptions. We explicitly show how some of these
assumptions arise from the requirement that the relations (B.18)), (B.19) also have to
hold true for the gluon expectation values, for instance,

(W+EK]' ) = (K[1+KK]") . (B.35)
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Let us compute the left-hand side of this equation,
_ 17—\ \ ba
<([]l —l—KK} 1K>> (q,t;p,s) =
b/ — Va
/d3q’z< [1+KK] 1> (q.t:4.8) (K0, (g8 p,) =

- (1 Ty L ‘”) .

X (S’S*(q’)5” s (2m)? 5((1’ +p)) =

_ ss'ep)
 1+5%(q)S(~q) + R(q)
We proceed with the right-hand side of

(F1 k7] 7)) g @tips) -
/dgqu K>G a.t.q,s) <[]1+KF]_1>ZQ(q’,s’;p,s)=

:/d3q’z (tS* )8% 8, (270) 5(q+q’)> X

0"6y,4(2m)* (g + p) (B.36)

1 3 I _
X (1 I S(p)S*(—p) i R(p)(sb’a(ss’s(Zﬂ-) 5(q p))

_ tS*(q) ba )3
135S (-p) 1 Ep)° 0s(27)° 0(q + p) , (B.37)

and compare both sides (B.36)) and (B.37))

sS*(—p)
1+ 5%(q)S(q) + R(q)

66, ,(27)% 0(q + p) =

_ t5*(q)
1+ S(p)S*(—p) + R(p)

Using ¢ = —p we can identify

S(q) = S(—q), S*(q)=5"(—q), R(q) = R(—q). (B.39)

Expectation values of the form

60, 4(27)*5(q +p) . (B.38)

([1+KK] " KA"(k))e = (K [1+KK| " A"Kk))q (B.40)
lead to the additional restriction

R(q) = R(q) (B.41)

from which the symmetry relation (B.34) follows.
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B.4 Dimensional Analysis of the Quark Kernels
The kernels Ky, Eq. (3.35)), and K3, Eq. (3.37)), are given as

S(p) ul(p, s)Bu(q,t)(2m)*5(p + q)6s 6 (B.42)

1
K®(p,s;q,t) = ———
st =

1
K®(p,s;q,t) = ————V(p,@)u'(p, s)os (T™)* v(q, t) A" . B.43
(p.s;q.t) NI (P, q)u'(p,s)a; (T™)" v(q,t) A" (P + q) (B.43)

The spinor solutions u(p, s),v(p, s), Egs. (A.26])-(A.28)), have the dimension
[u(p. s)] = A%, (B.44)

with A denoting the dimension of momentum.
The exponential of the vacuum wave functional ([3.3)) is given as

K= [ [a% 3 K*p.sia 00 (b5t @.0). (B.45)
s,t

Since the kernel & must be dimensionless, we can compare the dimensions on both sides
of the expression,

A" = APAPATATZA S (B.46)

using that [af(p,s)] = [b'(p,s)] = A%, see Eq. (1.40). We have denoted as z the
unknown momentum dimension of the kernel K. Hence, the kernels K, and K; have
the dimension

[Ko(p,s;q,t)] = [Ki(p,s;q,t)] = A2 (B.47)

We now identify the dimensions of the variational functions S and V. Since [0(p+q)] =
A3 we have

[Ko(p,s;q,t)] = A"AT%, (B.48)

with & now denoting the unknown dimension of S. Comparing both sides of Eq. (B.46))
we end up with

[S(p)] = A°. (B.49)

The scalar variational function S(p) is dimensionless.
We turn to the variational function V and use that [A(p)] = A2. The dimension of

the interaction kernel K7, Eq. (B.43), is

[Ki(p,s;q.t)] = AAT2, (B.50)
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with z now the dimension of V. Again, comparing both sides of Eq. (B.46)) we arrive at
V(p)] = A" (B.51)

The vector kernel V' has dimension of i mverse momentum
F|na||y, we collect the dimensions of R(p), Eq. (| , I,(p), Eq. 1) and Iél)(p)

Eq. (5.14), 12 (p), Eq. (5.18),

[I(p)] = A?, (B.52)
18 )] = IS ()] = [L(p)] = (B.53)
[R(p)] = (B.54)

B.5 Evaluating the Chiral Condensate

We evaluate the expression for the chiral condensate ([3.85]) in detail. Decomposing the
quark fields

(0" ()" ()| @) = (@ ()04 (2)|P) + (R[0° (2)y2 (2)|@) +
(@Y ()0l ()| @) + (@[ (x) v ()|®) (B.55)

and expanding in terms of Fourier modes we arrive at four different expectation values

(@07 (x)y} (@) @) =

/ #*p / R I Zup, 0" (p, s)a(q, t)e PTe | (B.56)
(B[P (x)y” (x )|<I)> =
/ a>*p / i P — ! Z o(p, s)v(q, t)b%(p, s)b'(q, t)ePTe®  (B.57)
(B[ ( )|q)> =
/ 4 / P Zup, a'*(p, )b (q, )~ PTeiTT (B 58)

(@7 (@) v (w )|<I>> =
/ #*p / P Z B(p, s)u(q, O (p, $)a"(q, )eP=e@® . (B.59)

The expectation value of the first term (B.56)) gives

(a™(p, s)a’(q,t)) = <<[]1 ™ Km_l K?)W (a.t:p, S)>G -
_ S(q)S*(q) + R(q)
1+ S(q)S*(q) + R(q)

0%0;5(2m)*0(q — p) - (B.60)
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However, in the chiral limit this contribution vanishes,
> ap,s)u(p,s) = 0, (B.61)
using Eq. (A.31). The second part has to be normal-ordered, yielding
a a N7 —l5= a
—( (@, (p.s) = (([t+ KK] 'KK) " (g.t:p.s)) =
5*(q)S(q) + R(q) 3
= 0%5(2m)°0(q — p) - B.62
[+ 5 (@S + R’ PP (B
This contribution vanishes as well,
> w(p.s)v(p,s) =0, (B.63)

s

due to Eq. (A.32). The expectation values (B.58) and (B.59)) give the non-vanishing

contributions. We compute

(a'(p, 5)b(q, 1)) = — (([1 +KK}‘1F>M (a,t:p, 3)>G _

_ tS*(q) aa )3
T TS @Sl 1 A PR

employ the spinor relation
> tu(—g,t)v(g.t) = 4lq|,
t
and obtain

<(I>Wi(w)¢a_(a:)\<b> = _NCQ/d‘Sq — S*(q)

q)S(q) + R(q)

The last contribution reads

v (p, s)a(a,t) = — (([1 + KE] " K)" (a.t:p. S)>G _

_ tS(q)
1+ 5*(q)S(q) + R(q)

3%85(27)°6(q + p) -

We use
> tv(—q,t)ulg,t) = 4lq/,
and end up with

S(q)
)S(q) + R(q)

<<I>|E‘i(m)wi(w)|<1>> = —Ne2 /dgq 1+ S*(q

Collecting the non-vanishing terms (B.66)) and (B.69)) we arrive at Eq. (3.85)).

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

(B.69)






Appendix C

Energy Densities Revisited

In this Appendix we present the explicit computation of the energy densities, which lead,
after variation with respect to the quark kernels, to the gap equations ((5.22)), (5.23). In
Section 1 we guide through the derivation of the transverse gluon energy density, i.e.,
from Eq. to Eq. (4.8)). In the second part we compute the Coulomb energy density
and finally arrive at expression . Throughout this Appendix we make extensive use
of the spinor solutions derived in Appendix [Al We take into account the properties of
the quark variational kernels derived in Appendix [B.3

C.1 Transverse Gluon Energy Density

We evaluate the expectation value of (Hggc), Eq. (4.1), describing the interaction of
quarks with transverse gluons and explicitly given as

(Hoce) = (@] [ &2 (~g""@a- A%@)@) ). (C1)

We split the Hamiltonian Hgcc, Eq. (4.1)), into four parts, expand and normal order it in
terms of its Fourier modes, Egs. ([1.40)-(1.43)), and end up with four different expectation
values

=~y [ #ril@)a- A@) i), (c2)
= g [ Ervi@)a- A@)v(@), (C3)
= g [ Prul(@)a Alw)v-(@). (C.4)
Hi= —g [ @il @) a- Al@) i (@), (C5)

Here the color indices are implicitly understood. Starting with the first term, (C.2), and
using for the fermion expectation value Eq. (B.11)), we arrive at

<a*a<p,s>ab<q,t>Az<k>>:<([1+KF]1 KK)" <q,t;p7s>Az<k>> ~(Co)

G
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We use the approximation ([3.43]) and obtain

(0 + KR KR) A)_~([1+KR] ™) (KKA), . (C.7)

G

Splitting up the kernel K into its gauge-field independent (K) and gauge-field dependent
part (K1[4]), Eq. (3.32), gives two non-vanishing contributions in the numerator of

expression ((C.7))
(KKA), = (KoK 1A), + (K1KoA),, - (C.8)

The contributions (KoKA), (K;K;A) vanish, since an odd number of gauge fields
occur. The non-vanishing contributions ((C.8)) are of the form

<[K071(q,t;p,s)}baA§(k)> -

e
= (1) S(@)V*(~q, p)%ﬂq —p+k)Qi(gp). (C.9)
<[Klfo(q,t;p, s)]™ Aﬁ(k)>G =
= (1" V(q, —p)S*(—p)%Mq —p+k)Qa(q,p), (C.10)

where we have defined

Quilap) = 3 el PITL-a tp )T shla.n) (€I
Q12(q,p) = Z; Tl (@~ PsTu(@.ti—p Julp.shuu(a.t) . (C12)

using the abbreviation I'x(p, s; q,t) = u(p, s)ykv(q,t). With the relations

tei(@ — P)ve [YolPl — v - Pl v = 2P| — 2(¢ — ) (g — P);VeDi » (C.13)
trilg — ) [-1lp| + @ - plyvi = 2|p|1 —2(¢ — p),(¢ — p), P , (C.14)

we find

1 _
Qalg,p) = > ol 4 — p)Ll(—q.t;p, s) U(p, s)viu(g,t) =

s,t

1 _ _
=D e i@ — P o(=g. hnu(p, s) u(p, s)viulg. t) =
7 4lplldl

=2 4yp1qu to(=q,1) |2lplo - Z(q/—\p)k(q/—\p)ﬂkpi] u(q,t), (C.15)

s,t
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where after the third equality sign we have used Eq. (A.33) and Eq. (C.13]). Next we
evaluate the occurring spin sums with use of Egs. (A.26)), (A.27)), yielding

Z tv'(—q,t)u(g.t) = 0, (C.16)
Z tv'(—q.t)an(g - p)yulg,t) = 0. (C.17)

We arrive at
Ma(g,p) =0, (C.18)

so that the expectation value ((C.9) vanishes. We turn to the expectation value ((C.10)
and compute ((C.12)), yielding

1 _
Q2(g,p) = Z 4IPH ‘t;m(q p)sli(q,t; —p, s)u(p, s)viu(q,t) =

= Z m tri(q — p)u(q, t)ves v(—p, s)u(p, s)vi u(q,t) =

—

=3 ma(q,w [2\p|11 —2(q— p)(a — p)oupi| ulg.t) . (C.19)

We have
> (g, tyulg,t) =0, (C.20)
> ala, owla - p)ula,t) = 0. (C.21)

so that the expectation value ((C.10]) vanishes as well:

Qa(g,p) = 0. (C.22)
Therefore, the expectation value Hy, Eq. (C.2)), is zero. We turn to the second part in
the Hamiltonian, Hs, Eq. (C.3)). Using Egs. (1.41)), (1.43) and (B.13)) yields

_ (b1 (q, )t (p, s >_—<<[11 +RK) R (@.tp.s )Al<k>>G - (C23)

where normal ordering leads to the additional minus sign. Two contributions survive
after taking the gluon expectation value (...)q, namely

<[F0K1(qat;p, S)Aﬁ(k)]ba>G -

= (Tl)ba S*(q)V(—q,p)Qw((f—Z)ip)(s(_q +p+k)Qi(q,p), (C.24)
<[F1K0<q7t;p7 S)Aé(k’)]ba>G =
= (Tl)ba V(g,—p)S(—p) (2r)° 6(—q+p+k)Qagp), (C.25)

2w(—q + p)
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where we have abbreviated

Qo1(q,p) = Tqlp| > ti(—g+p)tTi(—q.t;p,s)v(p, s)yiv(g,t),  (C.26)
s,t

Qa(q,p) = L > ti(—g+p)sTh(q,t;—p,s)0(p, s)vv(g,t) . (C27)
’ dlqllp| 4

We start with evaluating the term Qs 1(q, p), Eq. (C.26)), which reads

1 p—
Qilap) = ) mtm(—q +p)tTe(—q,t;p, s)v(p, s)yiv(g,t) =
s,t
1
s,t

>t al=a.) [2pbo — 2a = Phla =) o(at)

4|p||q|
(C.28)
where we have used Eqs. (A.35), (C.13). Performing the spin sums
Z tul( )(q — p)axv(g,t) = 0, (C.30)

the contribution €251(q,p), Eq. (C.26]), vanishes, and the expectation value (C.24)) is
zero. We proceed with (g, p), Eq. (C.27). We have

1 _
Q2(q,p) = Z 1lqllpl tei(—q + p) sT}(q. t; —p, )0(p, s)Yiv(g. t) =
s,t

=3 m tri(—q + P)u(q, )ws u(—p, s)v(p, s)viv(gq,t) =

— Z 4|qu17| v(q,t) [2\17’]1 — 2(q/—\p) (q/\p) ozkpz] v(q,t). (C.31)

Evaluating the spin sums

> w(g.t)v(g.t) =0, (C.32)

t

—

S w(a, Hawla — ploola.t) = 0, (C.33)

t

we end up with

Q22(q,p) = 0. (C.34)
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Hence, the first two parts of the Hamiltonian, H;, Eq. and H,, Eq. (IC.3]), vanish
identically. We note that this is due to the Dirac structure of the kernel V' coupling
the quarks to the transverse gluons, Eq. (3.35)), in the quark vacuum wave functional
Eq. . We go ahead with evaluating the expectation values Hj, Eq. (C.4), and H,,
Eq. (C.5). We start with the expectation value of two creation operators and the gauge

field Hs, Eq. (C.4), which reads (using Eqs. (1.41), (1.42)) and (B.14))

(al*(p, 5)b"(q, ) AL(K)) = <— ([n +FK}‘17)”“ (,t;p, ) Aﬁ(k:)>G . (C39)

and the only non-vanishing contribution writes

(KY'(at:p.5)Alk)) = (T')"V'(q Pl (g p+ R)(a.p)
1 y Uy M i G 5 QW(—q _p) 3 ) 3
(C.36)
so that we find for the energy density
<H3> 3/ 3. 13 V*((LP) 1
= gCpN¢ (21 d°pd-q Q3(q,p
() ~ 9CrNe ) T+ 5(@5(a) + Ba) " P a—g—p)
(C.37)
Here we have abbreviated
1
Q(q.p) = Y TTalp - P)T}(q.t;p, s)u(p, s)yiv(g,t) =
s,t
1
= ———t1i(—q — P)TL(a, ;p,s)Ti(p, 57, 1) . (C.38)
2 4|q||p| .

s,t

Before evaluating this term explicitly we derive the corresponding expectation value of
two annihilation operators and the gauge field, Hy, Eq. (C.5). With the use of Eq. (B.15))
it reads

ba

0 (p.5) a0 Aw) = (- ([1+ KF) ' K)” @ tpo) all)) . (€39)

G

We evaluate

(K¥(q,t;p,5)Al(K)) = (T) " V(q,p) (27)*5(g + p + k)Qu(g, p) ,

2w(q + p)
(C.40)
and arrive at
(Hy) 3 3 33 Vg, p) 1
) = NeCr 07 [ Wty B e

(C.41)
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where we have identified

1
Q = T ki I 1P, s)v(p, 0 1) =
.(q,p) e Z; ki(q + p)T(q, t; p, s)(p, s)7; u(q,t)

1
~ 4qllp| > trilg+p)Tr(gq. t;p, s)T(p,s1q.t) . (C.42)
st

The two contributions ((C.37]) and ((C.41]) can be combined since the quantities Q3(q, p),
Eq. (C.38)), and Q4(q,p), Eq. (C.42), coincide. Such quantities were already obtained

in (B.27)), with the difference that now the spin sum has to be evaluated, which leads
to an additional factor of 2:

U(a.p) = ule.p) = jr ” |Ztk1 (g +P)Ti(a,t;p, s)u(p, s)yiv(g,t) =

1 —
42 lallpl - (4 p)(a+ p),arpi| =

~ 4pllq]
=2 [1 —(q+p)la+p) qkpz] [ er(;)+<£)J2r ) %%] : (C.43)
We end up with
(Hs + Ha) s [ 43 .3 V(P9 +V(paq)
TE) gNcCr (27) /d pd°q T+ 5(¢)5(a) + R(q) X (C.44)
1 .
< ta iy (- @TO(BTa) D)

Sending g — —q we eventually obtain

(Hoac) _
6%(0)

; V*(p,q) +V(p,q) 5-0)(G- £
=29 NcCr (27)° /d / T+ 5(p)S(p) + R(p >D(£) [H(P‘e)(q'?chg)

where we have used Eq. (B.34)) and £ = p — q. This result was used in Eq. (4.8).
Hence, the non-vanishing contributions come from the expectation values H3, Eq. (C.4))
and Hy, Eq. (C.5). We again state that this is due to the form of the variational kernel

V in Eq. (3.37).

C.2 Coulomb Energy Density

In this section we explicitly compute the Coulomb energy density, leading from the basic
definition, Eq. (5.1), to the result, Eq. (5.9). The first step is to expand the quark fields
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in terms of its Fourier modes (Vo (k) = ¢*F (k) with F = (F), Eq. (1.82))

2
=< / dwd’y / @’y | a"(p,s)ul(p.s)e ™ + b (p, s)v' (p. s)eP= | (1)
s 1

J/
-~

2

J/
-~ -~

1 2
1

41p||p’||qllq|

/d?;plz Elb(p/,SI)u(p/,Sl)eipl'ai—i-f)]tb(p/,8/)U<p/,5/)€7ipl'w
/ @k F(k)e* @y

/ a*¢>" | a'(q.t)ul (g, 1)e ™ + bo(q, )l (g, t)e'?¥ | (T7)*

t e g

1 2

/dgqlz ad(q',t’)u(q ,t) iq’y +de<q ’ )U<q/’t/)eﬂ'qz_y ’

-~

t R 2

(C.46)

where we have labelled the different terms with 7 = 1, 2 and replaced the Coulomb kernel
by its expectation value in the Yang-Mills vacuum, Eq. (5.4)). Putting all terms together
yields

2
g 3. 13 3 23 7
HC——/dacdy/d d°p
2 Z 4pllp'|lgllq’] ||q|!q|

(a(p.s)u'(p.s) (T')" (P,S Ju(p', s’ e PTeP T4
b (p. 5! (p. 5) (T7)" a’(p', ' Yu(p', &' )eP=e® =+
a'*(p, s)u'(p, s) ()" b1 (p/, s Yu(p/, o) P=e =4
b (p, s)ol(p, s) (T°) " b (P, s Yo (P, s')eP e P @)

)
/ a3k F(k) / d*qd’q

t,t
(a™(q,t)ul (g, )(Tl) (g t)ulg t)e 1Y
b(g. )0 (q,1) (T) " a’(q .t )ulg', )it et
(@ u(@. ) (T)"V(d Vol Ve eve v
(. 1) (a.0) (1) D (a1 )u(d )erve ). (C47)
With the labels defined in ((C.46]) we mark the expectation values, for instance

<H1’1’1’1> ~ (aLaBaTCam , (C.48)
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where the capital letters A, B, ... denote all occurring indices. For the energy density
only expectation values with a symmetric number of fermions and anti-fermions contrib-
ute, namely

<H1717171>’ <H2727272>7 <H1717272>, <H2727171>7 <I_[2717172>7 <[_[1727271>7
<H2_1_2_1>, <H1—2—1—2> ) (C49)

For all other terms the spin sums vanish. This will be explicitly shown in the following
calculation for the terms (H1%3) with 4,7 = 1,2. All other contributions follow ana-

logoushyff]

Expectation Value (H"!11)
We start with the expectation value of four fermion operators

(He M) :g; ()" (Ti)Cd/d‘B[p,p’] /d3k /d‘?’[q, ¢ F(k)x
x> Y {a"“(p,s)d"(p,¢) a'(q, t)a (', 1)) x

ul(p, s)u(p', s)ul(q, t)u(q',t') x
x (2n)*6(k—p+p)(2m)°0(—k—q+q) . (C.51)

Here we have already evaluated the coordinate space integrals leading to the d-functions
in momentum space. The expectation value is computed applying Wick's Theorem, with
only one non-vanishing contribution (for more details see the discussion in Section

after Eq. (5.7))

(a apalap) = (al ap) (apal,) . (C.52)

The two remaining expectation values in Eq. ((C.51)) are then computed as (using the

expectation value (B.11))

(a"(p, 8)a"(q, 1)) (" (p/, & )a""(q. )

<{ﬂf§F] p.5id > <{ ILF] (p"s'Sq”f>>G= (C53)
ad 3 p)S(p) + R(p) y

e a0~ ) S e

1
17 5(9)5@) + Rlg)

From the non- vanlshlng expectatlon values the spin sums provide two different terms in l) sub-
sumed as Y (p,q), Eq. and Z(p,q), Eq. (5.11). In addition, we note that the occurring
expectation values always Iead to contrlbutlons (KK) ~ S? + R in the numerator, except for the
terms

x 8%8 4, (27)28 (p! —

(C.54)

(H' 1 7272) (P27 (HP ) () (C.50)

where only the variational function S appears in the numerator.
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and the energy reads

oy =% [0 [ [ 00T

inac ivea S (P)S(p) + R(p) 1
()" ()" 515100 + B T @S 7)™
s BBt (b 5)u(p's ) (g, Dl )%
x (2m)*5(k —p +p')(27)*5(—k — q + ¢')

x (27)°5(p — ) (27)*5 (P — q) - (C.55)

Now we perform the d-function integrals: ¢’ = p and ¢ = p’. The spin sum is computed
as

> ul(p,s)u®,s)ul (@, s )ulp.s) = 4ipllal +4p-p'. (C.56)
which has been explicitly derived in Eq. (A.42). The expectation value (H'"!!) becomes

(HGWY = % (TH* (1) / d*p, p'] / d°k F (k) x

S (D)S(p) + Rip) I )
1+ 8*(p)S(p) + R(p) 1 + S*(p')S(p') + R(p')
x (41p'|lp| +4p - p) (27)%5(k — p + p')(27)%5(—k — p' +p) .  (C.57)

We use k = p — p’ and (T%)%(T") = Tr[T*T"] = CpN¢, Eq. (1.7), and we arrive at

<H1,1,1,1> gg
W =3 N¢ Cp(27)? /JS[p,p’] F(p—p')x

S*(p)S(p) + R(p)
14 5*(p)S(p) + R(p) 1 + S*(p')S(p') + R(P')

(4|pllp'| +4(p- D)) .
(C.58)

Expectation Value (A1)

Here an anti-fermion annihilation operator b°(p, s) is sandwiched between the fermion
operators. We will observe, that this term vanishes. We begin with writing down the
Hamiltonian

g = Sy @) [ [a [atg) DI

a'(p, s)a’(p', ') b°(q, )a’ (g, t)u' (p, s)u(p', s')v (q>t) (q', 1) F(k)x
x (2n)36(k—p+p)(2m)*0(~k+q+¢) . (C.59)

We apply Wick's Theorem
(a}yapbcap) = (al,ap) (apbc) , (C.60)
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and arrive at

<a]‘a<p7 s)ad(q',t')> <6Lb(p/ S/ bc Qa > _

=<hf§Frd(nsq, > <[ i } p,s’;q,t)>G= (C.61)

_ ((W(sst/ (2m)°3(p — q') ( - R( ) )X

q)
X <5b€5s't(27r)35(p’ + q)1 - S*(q)éz(o;) R(q )> : (C.62)

so that the energy becomes

<H(1J,l,2,l> _ 2 Tz ac Tz /d3p p /di’) /d-3 q.q Z Z %

S*(p)S(p) + R(p) S(p')
) +

I+ 5 (p)S(p) + R(p) 1+ 5°(@)S(q) + Rlg) "
X Sa bt (p, s)u(p', s vl (g, )u(q', 1) x
x (2m)*5(k —p +p) (27)°0 (=K + g+ ¢') (27)*5(p — ¢')(27)*5(p + q) .
(C.63)
We evaluate the d-functions: ¢ = p and ¢ = —p’. However, the spin sum becomes
Sl (p,s)ulp', )0l (', (el ) = 0. (C64)

s,t

This is explicitly worked out using the spinor eigenstates u, Eq. (A.26), v, Eq. (A.27).
We start with

> ulp, ' = |p Z <t§1;’t ) (L' (@' 1), =0’ 1) =
(' t) (P t)EN(P 1)
'Z( DELY —telp DD, >)

o-p _|p,|]1 ) C
- / / s .65
< Pl —o-p (C.65)
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and arrive at
.o —lp'|1
;UT@’ S) ( Tp,‘p]l _(L-p|p/ >U’<p> S) =
o-p —[pl {p,s) \ _
|p|z é"T p7 85 p7 ))( ’p’|]l _o_p/> (Sg(p,S)) -
= |p| ZST p,s) (o -p)&(p.s) — |p| Z slp'| €' (p, $)¢(p, 5)
+|p!Z slp'| € (p, s Z&T p.s)o - pé(p,s) =

~0. (C.66)

This term, like all terms with an unsymmetric number of fermions and anti-fermions,
vanishes.

Expectation Value (H!1?)

Here an anti-fermion creation operator b™(q’,t') occurs instead of the annihilation op-
erator considered above in Eq. ((C.59). We start with

B2 = L 5 (TZ)“”(TZ Cd/d3Lpp /d‘3 /d3qq ZZF

x a™(p,s)a’(p',s') a™(q, t)b™(q', ') x
ul(p, s)u(p', s)ul(q,t)v(q, t')(27)° 6(k —p+p') (27)*6(—k —q — q)

(C.67)
and apply Wick's Theorem, where only one expectation value survives, namely
{a™(p, )b (g, 1)) (a" (D', 8')a’*(q, 1)) =
—-— ad be
K / / ]1 / /
- — 3 ; 7t - — P ; 7t - C-68
<{1+KK} (p.5:q )>G<{1+KK} wsan) = (c

ad 3 ! = (p)
(—6 O (2m)0(—P ~ )T 5 (8@ & R<q’>) ’

be 3 / 1
(0000 - O s TR (C.69)
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The energy density reads

(HGV'?) = 9; (T%)* (1%)" /d3p s /d‘3 /d3q q Z Z %

" 5*(p) 1 "
1+5%(q')S(q') + R(q') 1 + 5*(q)S(q) + R(q)
X Sspdgul (p, s)u(p', s')u' (g, t)v(g' 1) x
x (2m)*0(k —p+p) (21)°0(~k — g — )
x (21)°6(—p — ¢')(2m)*3(p' — q) , (C.70)
however, again the spin sum vanishes
Zu D uf(p',t)o(—p',s) = 0, (C.71)

and the contribution Hé’l’m, Eq. 1} gives zero.

Expectation Value (H!%?)
Here two creation and two annihilation operators of particles and anti-particles occur
and the term has the form

2
1,122 9 i\ ab z cd 3 3 3
HEW? = (1) (T) /d‘ 7] /d‘ /d q.q Z;x
x a'(p, s)a’(p', ') b°(q,t)b"(q', ')

ul(p,syu(p', o' (g, Do(d, ) F (k) x
x (27)*8(k —p+p') (2n)*5(~k+q—q') . (C.72)

The expectation value becomes

(a(p, s)b"(g',t')) (a"(P', 8 )b°(q, 1)) =

<{_]1+%1 ! (p, s; q’,lt’)>G <[H%]b (p’,s’;q,t)> =

G
y , , 55"(p)
_ (—5 oo (2m)°0(—p — q )1 S (q)S(q) + (q’)> )

(4
Y (5b€58/t<2w>36<p’+q>1 . S*(Z)*;((’; )) e )) | (C.73)




C.2 Coulomb Energy Density 149

Here the spin factors s and s’ occur. We get for the Hamiltonian

2

) == @) @) [ e [ [ T3 r

" S*(p) S(p')
1+ 5%(q)S(q') + R(q') 1 + S*(q)S(q) + R(q)
x 55 S dgeul (p, s)u(p', s vl (g, t)v(q, ') x
x (27)°5(k —p+p) x
x (2m)*0(—k + q+q)(27)*5(p + ¢')(27)*0(—p' —q) . (C.74)

X

We resolve the Dirac structure. The spin sum gives

> stul(p,s)u(p', v (—p', tv(—p,s) = 4pg+4p - q . (C.75)
We get
—<H5§7<(’))7 - —%QCFN0(27T)3 /dg[p,p’] F(p—p) % (C.76)
" S*(p) S(p) "
1+ 8*(p)S(p) + R(p) 1+ S*(p)S(p') + R(p')
X (4pg +4p - q) . (C.77)

Putting both non-vanishing contributions Hé’l’l’l, Eq. 1) and Hé’l’z’Q, Eq. (C.76),
together, we end up with

% % r» No (2m)° /d?’[p,p’]F(p p') (4|pllp'| +4p - P)
( ( + R(p) 1 B
S(p) + R(p) 1+ S*(p')S(p') + R(P')
S*(p) S(p'
1+ 5(p)S(p) + R(p) 1+ S*(p))S(p') + (pf))' (C.78)

All other contributions follow the same working prescription and we end up with the

result (5.9).






Appendix D

Solving Integral Equations

The every-day skills of a lattice practitioner are matrix computations, e.g., inverting huge
matrices. In continuum QCD we are mostly confronted with solving integral equations.
In Chapters [4| and [5| we have derived such integral equations, and in this Appendix we
give the prescription how to solve them by iteration.

In Section 1 we show how to discretize a general non-linear integral equation, replacing
the integration with an n-point Gaussian quadrature and the solution function with a
finite expansion in terms of Chebyshev polynomials. In Section 2 we present the iteration
scheme used for solving the integral equation and a so-called relaxation method which
enhances the convergence of the iteration process. Finally, we present the organization
of the programming code.

D.1 Discretization

The integral equations ((5.22)), (5.23)), which are solved in Chapter [5| have the general
structure

S(h) = [ 4Kk - al. S0). 5(a)) (0.)

with S(k) the solution function and K the integral kernel. The equation is non-linear,
i.e., the integral kernel depends non-linearly on the unknown solution function S. It is
a convenient feature of the gap equations (5.22), (5.23)), that the integral kernel does
not depend on the sum or difference of the solution functions, i.e., S(k 4 q). Hence,
we do not need extrapolation prescriptions for the solution function S. Moreover, the
gap equations ((5.22)), are coupled, i.e., the integral kernel K also depends on a
second unknown solution function V. However, this does not change the prescription of
how to solve such equations and we therefore present for simplicity the strategy only for
the uncoupled integral equation (D.1)).

As a first step, we go over to spherical coordinates, i.e, (q1,42,935) — (¢,0,q) and
evaluate the @-integral analytically, so that we have

1

S(k) = (QT)Q/OW d@sin@/ooo ¢ K(k,q,0,S(k),S(q)), (D.2)
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where we have assumed that the S(k) only depends on the norm of the momentum,
i.e., S(k) = S(|k|). In the gap equations (5.22)), (5.23) the integral kernel K can be
split up in

K(k,q,0,5(k),S(q)) = Ve(k,q,0)K(S(k), S(q)), (D3)

where Vi (k, g, 0) is here a general function. In the gap equations (5.22), it is
identified with the non-Abelian color Coulomb potential Vi, Eq. (5.6). The 6-integral
can be performed analytically as well, leading to Egs. , (5.31). The kernel K,
Eq. (D.3), therefore simplifies to

Vo(k, q) K(S(k), S(q)) - (D.4)

The remaining integral in Eq. , which has to be evaluated numerically, is the ¢-
integral. The integrand is evaluated at a finite set of integration points using an n-point
Gaussian quadrature formula, as implemented in Ref. [I31]. The g-integral in Eq.
is approximated by a weighted sum of these values,

=

%(%km<ﬂwﬂw», (D.5)

with ¢; the IV nodes of the orthogonal polynomial and w; the weight factors. A commonly
used set of abscissas and weights is the so-called Gauss-Legendre quadrature and is
implemented in a standard routine of Ref. [131]. It returns the abscissas g; and weights
w; of the Gauss-Legendre quadrature formula for given lower and upper limit a and b of
the integral and given order N. For the g-integration in the interval [0, cc], Eq. (D.2),
we use a logarithmic transformation

y = logq — dq = eVdy , (D.6)
so that
00 " _ Ayv . -
/"mfwaMﬂmamwA dq* Vo(k, ) R (S(k), S(g)) =
0 IR

log[Ayvy] - ~
_ /1 dye® Vo (k, ") K (S(k), S(e¥)), (D.7)

og[AIR]

with Ajg and Ayy the limits of the integration range. It is important to take care of
possible singularities in the integrand. (Note, however, that the singularity must be

integrable.) Since in our case the quantity Ve, Eq. 1} is indeed divergent at k = p,
we split the range of integration in Eq. (D.7)) into

log[AUV] log[k—e] log[k] log[ k+5 log[Auv]
log[Ag) log[Ag) log[k— 5] log log[k+¢]
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where ¢ is a small region around the singularity. In this procedure many nodes appear
in the vicinity of the singularity, which makes a high precision evaluation of the integral
in this region possible. We emphasize that in any evaluation of the integral equation,
Eq. (D.2), we have to enlarge the interval of integration [Air, Ayv] and correspondingly
the number of nodes ¢; and check that the solution function S(k) does not change by
this extension.

Up to now we have taken the loop momentum ¢ on a finite grid of Gauss-Legendre
nodes g;. Next we replace the external momentum k by a finite set of Chebyshev nodes
k;, given by

i1
i:cos(w), i=1,2,...,1. (D.9)

The Chebyshev polynomial Tj(x), defined in the interval [—1, 1] by the formula
T(k) = cos(l arccos k) | (D.10)

has [ zeroes. The function S(q) in Eq. (D.5]), which has to be evaluated in every iteration
step, is then replaced by a finite expansion in Chebyshev polynomials

L
1 .
S(g) = Y alia(g) — 5o, j=1,....N, (D.11)
=1

where Tj(g;) are the Chebyshev polynomials (D.10) evaluated at the Gauss-Legendre
nodes ¢; and ¢; the expansion coefficients. These coefficients ¢; are calculated from the
function S(g), which has to be evaluated. In Egq. we have used that Ty(gq;) =
1. The standard routines implementing the Chebyshev formula are found in
Ref. [131].

We emphasize that the sets of quadrature sample points g; and interpolation points
k; are, in general, disjoint. Formula is exact for ¢; = k;, where k; is equal to all
of the [ zeros of T;(k;). Among all approximating polynomials of the same degree the
Chebyshev approximation has the advantage that it has the smallest maximum
difference from the function to be approximated [131].

We are interested in S(k) over a wide range of magnitudes, i.e., for small momenta
(Arr ~ 1079) and large momenta (Ayy ~ 10°). We therefore make use of a logarithmic
transformation according to Eq. for the Chebyshev abscissas k;, i.e.,

Now we face a problem. The analytic results, Eq. , show that the solution function
S(k) will have a power law behavior for large momenta, ie., S(k — oo) ~ 1/k°.
However, on a logarithmic scale power laws turn into exponentials, i.e., 1/k°> — 1/(e).
The Chebyshev basis functions 7}, Eq. , are polynomials and therefore not suited
to approximate exponential behavior. To overcome this problem, we use a logarithmic
scale for the function values as well:

In S(e”) = S(e*) . (D.13)
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For this double-logarithmic solution function S power laws become linear functions and
therefore the transformed function S is well approximated by Chebyshev polynomials 7;,

Eq. (D.10). In total, the resulting dicrete analogue to Eq. (D.1)) takes the form (using
the definitions (D.4)), (D.5), (D.6)), (D.9), (D.11)), (D.12))

S(emz) — (2;)2 Z_;wje?:yj ‘7(3<6$i, eyj)jE(S(el'i)’ exp (Z ClTl—l(yj) — %Cl) > .

k=1

J/

S(e¥)
(D.14)
D.2 Iterative Procedure
The iteration scheme for the non-linear integral equation of the form (D.5)) is given by
SO) = [ dgg? Vel R (S (0), 5" V(a) (0.15)
with n — 1 and n denoting the iteration steps. Here we have used, for convenience,

continuous momenta k,q. For the convergence of the iteration process we use the
criterion

() () — g1
‘S W) =S ek, (D.16)

SO (1)

with €1, being the tolerance of the procedure, which usually takes values of about
eror = 107° — 1078, With a given start function S® (k) the program iterates the
equation (|D.15]) until a self-consistent solution S(k) via the convergence criterion ([D.16))
is achieved. Due to the asymptotic analysis of the integral equation the general shape
of the solution S(k) is known, so that a reasonably good start function S (k) can
be chosen. Here a comment is in order: If the procedure converges, then the function
S (k) is a solution function. However, from the non-convergence we cannot conclude
that there does not exist a solution S™ (k).

In order to improve the convergence of the procedure we use a so-called relaxation
method, which is for the n-th iteration step given by

rS™ (k) 4 [1 = r]S" Y (k) — S™ (k) . (D.17)

This relaxation prescription mixes the function values S~V (k) evaluated in the (n—1)-
th iteration step with the new values S™ (k) evaluated in the n-th iteration step. The
so-called adiabatic factor r lies between 0 and 1 and is varied depending on how much
the solution function changes from one step to the next. Typical values lie between
r = 0.2 — 0.5. For all integral equations evaluating S(k) such a relaxation prescription
was used, however, to solve the dynamical mass equation no such relaxation was
necessary.

Let us, in the end, collect all the steps to derive a self-consistent solution S(k) to the
equation (D.1) and present the corresponding algorithm:
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1. Initialize Chebyshev nodes k;, Eq. (D.9)), on the logarithmic scale [log Aig, log Ayy]

2. Start the iteration process:

a) For the first iteration choose a starting function on the logarithmic scale
S=0)(k), Eq. . We conveniently choose a constant starting function
S(=0)() or a function which shows the correct asymptotic behavior. For
the scalar variational function S solving the equation ([5.22)) it reads

1
1+ k5

S=0) () = (D.18)

b) For all other iterations transform the solution function S™7% (k) on a logar-

ithmic scale, Eq. (D.13)).
3. Compute Chebyshev coefficients ¢;, Eq. (D.11)), of the function S™ (k)

4. Start the integral routine using the Gaussian quadrature formula, Eq. (D.5):

Define integration range

Initialize Gauss-Legendre routine

Loop i:for the external momenta k

Loop j: for the integration momenta q
Evaluate Chebyshev fits

Compute integrands on logarithmic scale
Evaluate integral

End Loop j

End Loop 1

5. Compute the new solution function S according to Eq. (D.14) and use the
relaxation formula, Eq. (D.17) if necessary

6. Compute the tolerance according to Eq. (D.16]). If the error is smaller than the
tolerance e1o; then a self-consistent solution is achieved and the iteration process
stops. Otherwise perform the next iteration step by returning to 2.b).






Appendix E

Schrodinger Potential

The Schrodinger equation ((6.45)) with the potential U(r) given in Egq. has to
be solved for the lowest eigenvalue Qo(L) in order to extract the static quark potential
Viw(L), Eq. [0.49] The potential U(r), Eq. (6.46)), is essentially the transverse gluon
propagator in coordinate space contracted with the two temporal paths of the Wilson
loop. Below we derive this quantity for transverse gluon propagators in arbitrary dimen-
sions d.

In Section 1 we parameterize the temporal trapezoidal Wilson loop. In Section 2
we derive the expression for the contracted gluon propagator. In Section 3 we discuss
the asymptotic behavior of the contracted gluon propagator with the Gribov solution as
input. In Section 4 we present the numerical procedure to evaluate the lowest eigenvalue
of a general one-dimensional Schrodinger equation, known as the shooting method.

E.1 Parameterization of the Wilson Loop

We want to derive the quantity (6.28)), explicitly given as

D ((a(s) = 2(1))") =, (s) Dy (a(s), (1)) &} (¢) - (E.1)

We consider a planar temporal Wilson loop in the 0 — 1 plane in d dimensions. The
paths along the Wilson lines are parameterized as (see Fig.

S t
0 L

(s =01, =z@w=]01], (E.2)
0 0
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The difference vector x = ™ (s) — ™ (t) is given as

st r
-1 ~1

x(s—t) =x(r) =L 0 =1L 0 , (E.4)
0 0

where we have used the dimensionless variables 7 and R defined in Eq. (6.39). After
normalization the difference vector becomes

r
-1
. 1 0
0
We compute for later use
2
. r
(&-é)° = T (E.6)

E.2 Gluon Propagator Contracted with the Temporal
Paths

We compute the Fourier-transform of the translationally invariant transverse gluon propag-
ator

Dy, (z) = / (;ldi)d [5W—12;,L/%,,] D(k?) e*® | (E.7)

where k, = k,/vk2 and D (k?) is a function of k? = k,k, only. We can split the gluon
propagator into two parts

Dyule) = 8 () — () (€3)
with
L(z) = / (;Zﬂl;dD(kz) ey (E9)

In Eq. (E.8) we have defined I(z) = I,,(x). The quantity ,,(z) can be decomposed
in two Lorentz tensor components, namely

L) = O f1(x) + &y fo () | (E.10)
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where we have introduced the two unknown functions fi(x), fo(x) and &, = x,/vz2.
Multiplying equation ([E.10) with 4, yields

I(z) = d fi(z) + fa(z) (E.11)
and multiplying equation (E.10) with 2,2, gives
Syl @, = fi(z) + falz) . (E.12)

We abbreviate 1(x) = #, I, (z)#,. We have gained two equations (E.11)) and (E.12),
from which we can derive the unknown functions fi(x), fo(x) as
filz)(d—1) = I(x) — 2, [u(x) 2y , (E.13)
folx)(d—1) = di, 1, ()T, — I(x) . (E.14)
Plugging in the functions fi(z), fo(z) in Eq. (E.10) we get for the quantity 7, the
relation
1 — o _
1, (x) = 1 (0 [L(z) = I(z)] + 22y [dI(z) — I(2)]) , (E.15)

and for the transverse gluon propagator, Eq. (E.8),

Dy () = ﬁ(s,w [(d— 2I(x) + T(2)] - &2, [dT(x) — I(x)] . (E.16)

The propagator D, (z) is explicitly given as

o =gy e a2+ o )]

Lo % kw 7p2 A
We proceed with evaluating Eq. (E.1)) and arrive at
D(z®) = ¢, D, (%) é, = €,06,,6,1(x) —é,2,%, 6, L, (), (E.18)

We use é,9,, €, =1 and Eq. (E.6) so that we end up with

d—1
1 /(ddkd ¢ D(K?) {d (@-1%)2—1] . (E.19)

d—1141r2 27)

D(?) = — /(;er’;d e** D(k?) [(d—2)+ (wkﬂ _
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E.3 Spherical Integrals

{%iz;} - / (gjrl;:d e**D(k?) {(,;, .15&)2} (E.20)

the angular integrals are worked out in the standard fashion using spherical coordinates
in k-space and putting the d-axis of k-space parallel to 2. We define the angle between
the vectors @, k as

For the integrals

~

-k =cosf . (E.21)

The integrals over the first d — 2 angles are trivial yielding the volume of the unit sphere
S;—o in d — 1 dimensions

d—1

(d- 1)z’
= E.22
.= T =2
The integrals over the last angle yield (with substituting z = cos )
! : sin kx
dz e =2 E.23
| e S (E23)
! , in kx 4 sin kx
2gizha — 9 511 . . E.24
/_ldzz e . + 122 | 008 kx 2 (E.24)
Inserting these results into ([E.20]) we obtain
I(z) :Q(Jd/ diki=t D(k2) SR (E.25)
0 kx
I(x) =2C /OO dikt1 D) | SBEL 2 (g g — SR (E.26)
¢, kx k222 kx ’ '
where
d—1
(d— D) = (E.27)

" emr ()
E.4 Contracted Gluon Propagator in d = 3
Dimensions
For d = 3 dimensions we get in Eq.
Da?) = 5 / (;l:;g e D(1?) [1+ (xkﬂ -
L /(dgk ek D(k2) {3 (@-k>2—1] . (E.28)

214172 2m)3
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We use (E.23)), (E.24) for the integrals

- 4sinkx  4coskxr 4sinkzx
ikxz 27
/dze [1+2] = ———+ 5~ s (E.29)
» 4sinkx  12coskx  12sinkzx
ikxz 2 -
/ dze™™ [32% —1] = ———+ —55— — 35— (E-30)

and end up with

11 1 _ 4dsinkx 4coskx  4sinkx
D(a?) = /dkk% l(k)([ o — ]

22 (27)?
r2  4sinkxr 12coskxr  12sinkzx
— — . (E.31
1+ r2 [ kx + k22 k33 D (E31)

The factor 2w comes from the integration of Sy = fng. The additional factor 1/2

comes from the definition of the propagator
1
D(k) = 5&)—1(1@)‘ (E.32)

We use for the (inverse) propagator the Gribov parametrization, Eq. (1.95)), given as

k2
k) = 4|t E.
w™ (k) Y (E.33)

with M the Gribov mass scale, Eq. (1.96)). We now analyze the asymptotic regions of
the integral (E.31)). In the IR region the inverse gluon propagator behaves as

w k) ~ k. (E.34)
The leading term in the integrand of Eq. (E.31]) goes as 1/k?, so that

sin kx

- - - . A T .
which is a convergent expression, since fo Vdksinkr = % (1 — cos[Ayvz]), where Ayy
is some ultraviolet cutoff. In the UV region the inverse gluon propagator behaves as

w (k) ~ % : (E.36)

Here the leading contribution in Eq. (E.31)) comes from the term proportional to 1/k
and we have

1 sinkx
D(z*) ~ [ k*= ) E.37
@)~ R (£37)
However, the integral
Auv
/ sin kz | (E.38)
AR

is not defined for Ayy — oo. To overcome this problem we introduce for the gluon
propagator the UV anomalous dimension, see Eq. (6.51]). We point out, that this pro-
cedure only alters the UV-region, but the IR-modes are not affected.
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E.5 Shooting Method

To evaluate the lowest eigenvalue (L) in the Schrodinger equation for the
potentials U(r), Eq. (6.46)), shown in Fig. we make use of the shooting method
as implemented in Ref. [131]. The shooting method can be applied to essentially any
quantum well problem in one dimension with a symmetric potential. The basic idea is
to convert the boundary-value problem into an initial-value problem and then to solve
the latter. We review the method for a general problem of the form

d*p £

T2t (2E —V(x))p=0. (E.39)
The solution must satisfy p(z = +00) — 0. This is implemented for some finite distance
L, so that ¢(—L) = p(L) = 0. The distance L should be well away from the classical
turning point Zyym, where V(xy,m) = E. We note that it is necessary to increase this
distance L to get the higher energy levels accurately. Next we rewrite the Schrodinger

equation (E.39) as

do _ o A _

0 =¥ o= (V(z) —2E)p. (E.40)

We choose the initial conditions
o(—=L) =0, <p’(—L) =1. (E.41)

The iterative process to solve the Schrodinger equation alters the initial guess for
¢'(—L) until the solution on the right-hand side of the interval (L) = 0 is found. The
procedure is repeated with different values for the energy eigenvalue E. Note that it is
convenient to “shoot” to an intermediate point, mostly chosen to be a classical turning
point T, and then to match continuity conditions at this point. The lowest eigenvalue
is found by requiring that ¢’'(0) = 0. For the odd parity solution we have to demand the
wave function ¢ to vanish at the origin ©(0) = 0.
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