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Zusammenfassung

Daten in Form von Graphen spielen in immer mehr Bereichen der Wissenschaft und der
Wirtschaft eine Rolle, wie in der Analyse sozialer Netzwerke, in der Molekularbiologie,
in der Chemie, in der Computervision und in der Programmverifikation. Um diese
Daten zu nutzen, braucht man Methoden zur Datenanalyse und zum Maschinenlernen,
die in der Lage sind, grofle Datenmengen effizient zu verarbeiten. Um die Algorithmen
des Maschinenlernens erfolgreich auf Graphen anzuwenden, bendtigt man Verfahren,
um Graphen effizient vergleichen oder reprasentieren zu kénnen. Standardlésungen fiir
diese Probleme sind entweder NP-schwer, nicht expressiv genug, oder schwierig auf das
jeweilige Problem anzuwenden.

Graphkerne haben im letzten Jahrzehnt im Bereich Maschinenlernen viel Aufmerk-
samkeit auf sich gezogen, da sie einen vielversprechenden Losungsansatz fiir die oben-
genannten Probleme darstellen. Trotz signifikanter Fortschritte im Bereich der Graph-
kerne in den letzten Jahren reichen bekannte Graphkerne nicht fiir die gegenwartigen
Anforderungen im Maschinenlernen aus, wenn die zu untersuchenden Graphen sehr grof3
oder gelabelt sind. Selbst die effizientesten Kerne erfordern eine Laufzeit von O(n?), um
ein Paar Graphen mit n Knoten zu vergleichen oder um Knoten- und Kantenlabels zu
berticksichtigen. Unser wichtigstes Ziel in dieser Dissertation ist daher die Entwicklung
effizienter und expressiver Kerne fiir das Maschinenlernen auf Graphen.

Zuerst konzentrieren wir uns auf die Entwicklung allgemeiner Graphkerne, die auf
Graphen mit oder ohne Labels angewendet werden kénnen. Unsere Hauptbeitriage sind
dabei die Folgenden:

Erstens beschleunigen wir die exakte Berechnung von Graphlet-Kernen von O(n*) bis
O(nd*~1) fiir ein Paar Graphen, wobei n die GréBe des Graphen ist, k die GroBe der
angewandten Graphlets, und d der maximale Grad der gegebenen Graphen.

Zweitens definieren wir einen neuen Kern fiir Graphen, den Weisfeiler-Lehman-Unter-
baumkern, der der erste Graphkern ist, der linear in der Anzahl der Kanten in dem
gegebenen Graphensatz skaliert. In unseren Experimenten auf Vergleichsdatensatzen aus
der Chemoinformatik und der Bioinformatik skaliert der Weisfeiler-Lehman-Unterbaum-
kern bis zu groflen Graphen und iibertrifft alle bekannten Graphkerne an Geschwindig-
keit mit vergleichbarer oder bessere Vorhersagegenauigkeit bei der Graphenklassifizierung.

Drittens verallgemeinen wir den Weisfeiler-Lehman-Unterbaumkern zu einer Kernfam-
ilie, die viele bekannte Graphkerne als Spezialfille beinhaltet. Diese Verallgemeinerung
ermoglicht es bekannten Graphkerne, mehr Informationen iiber die Topologie der Graphen
zu berticksichtigen.



Im letzten Teil dieser Dissertation prasentieren wir zwei Anwendungsbeispiele: Basie-
rend auf den vorherigen Beitragen schlagen wir spezialisierte Kerne fiir Pixelklassi-
fizierung in Fernerkundungsbildern und Graphkerne fiir die Vorhersage von chemischen
Verschiebungen in der strukturellen Bioinformatik vor. Unsere Kerne ermoglichen es er-
stmals, in diesen Anwendungen die reichhaltige Graphenstruktur beim Lernen zu nutzen.

Die Weisfeiler-Lehman-Kerne, die wir hier vorschlagen, ermoglichen es Graphkerne,
auf grofle und gelabelte Graphen zu skalieren. Sie erlauben die Nutzung von Graphkernen
in zahlreichen Anwendungsgebieten, die sich mit Graphen beschéftigen, dessen Grofle
und Labels mit bekannten Graphkernen vorher nicht verarbeitet werden konnten.
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Abstract

Graph-structured data are becoming more and more abundant in many fields of science
and engineering, such as social network analysis, molecular biology, chemistry, computer
vision, or program verification. To exploit these data, one needs data analysis and
machine learning methods that are able to efficiently handle large-scale graph data sets.
Successfully applying machine learning and data analysis methods to graphs requires the
ability to efficiently compare and represent graphs. Standard solutions to these problems
are either NP-hard, not expressive enough, or difficult to adapt to a problem at hand.

Graph kernels have attracted considerable interest in the machine learning community
in the last decade as a promising solution to the above-mentioned issues. Despite sig-
nificant progress in the design and improvement of graph kernels in the past few years,
existing graph kernels do not measure up to the current needs of machine learning on
large, labeled graphs: Even the most efficient existing kernels need O(n?) runtime to
compare a pair of graphs with n nodes, or cannot take into account node and edge la-
bels. Our primary goal in this thesis is the design of efficient and expressive kernels for
machine learning on graphs.

We first focus on the design of generic graph kernels that can be applied to graphs
with or without labels. Our main contributions to this end are the following:

First, we speed up the exact computation of graphlet kernels from O(n*) to O(nd*~1)
for a pair of graphs, where n is the size of the graphs, k is the size of considered graphlets,
and d is the maximum degree in the given graphs.

Second, we define a new kernel on graphs, the Weisfeiler-Lehman subtree kernel, which
is the first graph kernel scaling linearly in the number of edges in the given graph set.
In our experiments on benchmark graph data sets from chemoinformatics and bioinfor-
matics, the Weisfeiler-Lehman subtree kernel gracefully scales up to large graphs, out-
performs all existing graph kernels in speed, and yields highly competitive performance
in graph classification.

Third, we generalize the Weisfeiler-Lehman subtree kernel to a family of kernels that
includes many known graph kernels as special cases. This generalization enables existing
graph kernels to take into account more information about the graph topology, and
thereby become more expressive.

In the last part of this thesis, we present two examples of applications: Based on
our previous contributions, we propose specialized node kernels for pixel classification
in remote sensing images, and graph kernels for chemical shift prediction in structural
bioinformatics. Our kernels make it possible for the first time to take advantage of the
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rich graph structure in these applications.

The Weisfeiler-Lehman kernels we propose here now allow graph kernels to scale to
large, labeled graphs. They open the door to manifold applications of graph kernels
in numerous domains which deal with graphs whose size and attributes could not be
handled by graph kernels before.
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1. Introduction

1.1. Motivation

With the ever-accelerating development of technology, it is now possible to perform
more experiments and record more results and observations than it has been possible
ever before. Tremendous amounts of data are being collected by scientists, engineers,
companies in the hope of using them to better understand the world, to design better
technology, or to maximize customer satisfaction. To achieve these goals, one needs to be
able to infer knowledge from large amounts of data. The design and theory of algorithms
inferring general rules based on observed data is the primary subject of machine learning.

The nature of the data is arbitrary and domain-dependent: While certain types of
observations are naturally represented as numbers, vectors in an Euclidean space or
matrices, others may need more sophisticated representation depending on the inference
task at hand. For example, if we wish to infer a rule that determines the topic of a news
item based on the frequencies of individual words in it, the word frequencies in the news
item can be easily represented as a vector of the same dimensionality as the dictionary.
However, if the task is to infer a rule that determines the activity of a molecule given
its structure, we have to take into consideration the molecular structure, whose natural
representation is neither a scalar, nor an array of scalars. Molecular structures, and
many other types of data are naturally modeled with the help of graphs.

Graphs are a general, powerful and flexible means of representing objects and concepts.
A graph represents a set of relations, called edges, between elements of another set,
called nodes. Typically, nodes in a graph represent entities, and edges express relations
between the entities. For instance, a social network can be represented as a graph by
letting the set of nodes be the set of individuals in the network, and the set of edges be
the set of pairs of individuals that know each other; A molecule can be modeled as a
graph by taking the set of its atoms as nodes, and the set of pairs of atoms connected
with bonds as edges. The information contained in a graph with respect to the object
of interest can be of two sorts. On the one hand, the object may be represented as
a graph of its parts or properties linked to each other: This is the case, for instance,
if the object of interest is a molecule, and it is represented as a graph of its atoms.
On the other hand, the object of interest may be represented as a node in the graph,
thereby being characterized by its relations to other objects: This would be the case
if we were interested in individual atoms in the graph describing a molecule. Hence,
graphs offer the flexibility of representing an object both as a system described by its
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internal structure, and as a component of the environment surrounding it.
Applications involving graph representations are ubiquitous and their number has
largely increased in the last decades. We list below examples of such fields of application.

Chemoinformatics Chemistry is one of the traditional application domains of graph
representations [Gasteiger and Engel, 2003]. Finding chemical compounds with a spe-
cific property or activity is a common problem in chemistry and pharmacology. Exper-
imental screening of molecules with unknown activity is often expensive, tedious and
time-consuming. Therefore it is desirable to be able to use computational methods to
find a small set of potentially interesting candidate molecules for a given property or
activity, which will later be tested experimentally. To this end, chemical compounds are
modeled as graphs by representing atoms as vertices and bonds as edges. In this com-
putational analysis, often referred to as QSAR or QSPR (quantitative structure-activity
or structure-property relationship) analysis, a common assumption is that molecules
with similar structure have similar functional properties. The problem of measuring the
similarity of graphs is therefore a central problem in chemoinformatics.

Bioinformatics Bioinformatics is a more recent, but at least as important source of
graph-structured data [Junker and Schreiber, 2008]. Advances in technology in the last
decades have made it less expensive, difficult and time-consuming to sequence genomes,
measure gene expression levels or detect biomolecular interactions. These measurements
of various kinds give rise to various types of graph data, such as protein and gene co-
expression networks, protein-protein or protein-DNA interaction networks, regulatory
networks, metabolic networks, or protein structures. Numerous interesting questions
can be asked about these graphs, such as in which way protein structure determines
its function, how regulatory networks influence a phenotype, or whether we can predict
if two proteins interact based on their structure. Nowadays, biological graphs are of-
ten incomplete, can have complex or high-dimensional node labels, and tend to have a
low signal-to-noise ratio. For these reasons, machine learning for biological data consti-
tutes a challenging and broad application area for graph comparison and representation
methods.

Computer vision and biomedical imaging Research in image processing, analysis
and understanding, or computer vision, has been very active in the past decades. Graphs
are often used for representing images in this field. These graphs can be of different
nature, ranging from grids of pixels [e.g., Boykov and Jolly, 2001] to adjacency graphs
of regions [Rosenfeld, 1974], colors [Matas et al., 1995], or segmented parts [Harchaoui
and Bach, 2007] in an image. Graphs are also used increasingly often in biomedical
image analysis, where network structures, extracted from images as high-level models
of organs, can potentially be used in diagnostics or health monitoring [Feragen et al.,
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2011].

Program verification and testing Recently, there has been a surge of interest in
using machine learning to detect bugs or malicious behavior in software [Jiang and Su,
2007, Baskiotis and Sebag, 2008]. A large part of this research is based on the analysis
of program call graphs and control flow graphs.

Social networks Social network analysis [Wasserman and Faust, 1994, Carrington
et al., 2005] is another important application domain of machine learning on graphs.
Last years have seen a large increase in the popularity of social networking websites:
Each of these social networks is in fact a large graph. In the simplest model of a
social network, vertices represent users and links indicate a relationship between users.
However, one can also include products, news items or other entities as different types
of vertices. Common questions on social networks are, for instance, whether one can
infer interests or tastes of a person based on the information about his or her circle
of friends and acquaintances, whether two people who do not yet know each other are
likely to form bonds, or whether social networks in general have a common, quantifiable
structure.

Web data analysis The Web as a whole is a major source of large graphs. The Inter-
net itself is a large network of computers. Moreover, with more and more people using
electronic means of communication, the number and size of email exchange graphs, so-
cial networks, and instant communication networks has been constantly growing in the
last decades. As advertisement constitutes the principal source of income for internet
companies, recent years have witnessed a large increase in industrial research aimed at
understanding how to advertise to maximize individual users’ attention. A standard
approach is to identify advertisements that are popular with certain users and present
them to users with a similar profile. This similarity is often defined based on the con-
nections of the users in a communication network. Furthermore, research in targeted
advertisement often relies on the analysis of the graph of user search queries and spon-
sored advertisements, so-called query-ad click graphs [Anastasakos et al., 2009]. Another
type of click graphs, between queries and search results, arise in web search [Craswell
and Szummer, 2007].

While graphs offer a great expressivity of representation, this expressivity comes at
a price: Many operations that are trivial for simpler data structures such as arrays or
matrices, such as comparing two structures to each other, become difficult for graphs.
Even for the seemingly simple problem of deciding whether two graphs equal each other
there is no polynomial-time algorithm known [Garey and Johnson, 1979, Chapter 7].
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In machine learning, many of the most powerful techniques apply to points in Eu-
clidean spaces or require the ability to assess the similarity of points. For this reason,
the bulk of the research on graphs and machine learning tries to faithfully represent
graphs in an Euclidean or more general vector spaces. The degree of this faithfulness
may depend on the needs of a particular application. However, the design of general
representation and comparison methods for graphs that are flexible enough to be tailored
to particular applications is still essential.

1.2. Graph theory basics and notation

In this section, we summarize key concepts from graph theory and establish our notation.
Clarifying these notions and notation is necessary to follow the remainder of this thesis.
Most of our graph-theoretic terminology closely follows that of the monograph by Diestel
2010].

1.2.1. Graphs, subgraphs, isomorphism

A graph is a pair G = (V, E), where V' = {v1,v2,...,v,} is an ordered set of n vertices
(or nodes), and E C V x V is the set of edges. The size of a graph is defined as the size
of the set V', here n.

A graph G = (V, E) is said to be undirected if (v;,v;) € E implies (vj,v;) € E for
all v;,v; € V; otherwise it is directed. Although many of our techniques are applicable
to both directed and undirected graphs, for ease of exposition, we will exclusively deal
with undirected graphs in this thesis.

Any edge (v;,v;) is called a loop. In a general graph two vertices v; and v; may be
connected by more than one edge. A simple graph is a graph with no loops or multiple
edges. In this thesis we focus on simple graphs.

A simple graph can equivalently be represented by an adjacency matriz A of size n x n.
The (i, j)-th entry of A is 1 if an edge (v;,v;) exists and zero otherwise. The adjacency
matrix of an undirected graph is symmetric.

A graph can have labels on nodes and/or edges. In this thesis, we denote labeled
graphs with a triplet (V| E,{), where £ : X +— ¥ is a function assigning a label from an
alphabet ¥ to each element of the set X, which can equal V', E, or V U FE depending on
whether only nodes, only edges, or both are labeled.

Two graphs G = (V, E) and G’ = (V', E') are isomorphic (denoted by G ~ G’) if there
exists a bijective mapping f : V' — V' (called an isomorphism) such that (v;,v;) € E
if and only if (f(v:), f(v;)) € E'. If G = G, f is called an automorphism. For labeled
graphs G = (V, E,¢) and G’ = (V', E',¢'), the isomorphism (respectively, automorphism)
function also has to satisfy £(v;) = ¢'(f(v;)) for each v; € V.

A function that takes a graph as an argument is called a graph invariant if it assigns
equal values to isomorphic graphs. The number of vertices and the number of edges, for
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instance, are graph invariants.

Given graphs G = (V, E) and G' = (V', E'), we say that G’ is a subgraph of G, denoted
by G C G, if VVCVand E' C E. If G’ C G and, in addition, E’ contains all edges
(u,v) € E such that u,v € V', then we say that G’ is an induced subgraph of G and we
denote this G’ C G.

1.2.2. Neighborhood and degree

Two vertices v;,vj of G are adjacent, or neighbors, if (v;,vj) € E. The neighborhood
N (v) of a node v is the set of nodes to which v is adjacent, that is {v;|(v,v;) € E}. All
edges of the form (v,v;) € E are said to be incident with the vertex v.

Figure 1.1.: The dashed line encompasses the neighbors of node 1. The degree of node
1 is three.

The degree d(v) of a node v is the number of edges incident with v, which for a simple
graph amounts to the cardinality of N (v).

1.2.3. Paths, walks, cycles, subtrees, subtree patterns

A walk is a sequence of nodes in a graph, in which consecutive nodes are connected by
an edge. A path is a walk that consists of distinct nodes only, and a cycle is a closed
path (see Figure 1.2 for illustration).

A graph G is called connected if any two of its nodes are linked by a path in G. A
connected subgraph G’ = (V' E’) of a graph G = (V, E) is called a connected component
of G if no edge exists between any pair of nodes v € V' and v € V' \ V'. The distance
between two nodes v and v’ in G is the length of the shortest path from v to v in G, or
oo if such a path does not exist.

A (rooted) subtree is a subgraph of a graph, which has no cycles, but a designated
root node. A subtree of G can thus be seen as a connected subset of distinct nodes of
G with an underlying tree structure. The height of a subtree is the maximum distance
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Figure 1.3.: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of
nodes in the unfolded subtree pattern on the right.

between the root and any other node in the subtree. Just as the notion of walk extends
the notion of path by allowing nodes to be equal, the notion of subtrees can be extended
to subtree patterns [also called tree-walks, Bach, 2008], which can have nodes that are
equal (see Figure 1.3). These repetitions of the same node are then treated as distinct
nodes, such that the pattern is still a cycle-free tree.
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1.3. Review of graph comparison methods

The central problems that we deal with in this thesis are comparison and representation
of graphs. Let us first formally define what we exactly mean by graph comparison.

Definition 1.3.1 (Graph comparison problem) Given the set G of all possible graphs,
the problem of graph comparison is defined as finding a function

k:GxG— R,
such that k(G,G') for G,G’ € G quantifies the similarity of G and G'.

There exists extensive literature in computer science on the problem of graph com-
parison. This section reviews classical approaches to this problem.

}

Figure 1.4.: The maximum common subgraph of graphs G and G'.

1.3.1. Isomorphism-based approaches

There exist many graph similarity measures based on graph isomorphism or related
concepts such as subgraph isomorphism or the largest common subgraph. Possibly
the most natural measure of similarity of graphs is to check whether the graphs are
topologically identical, i.e., isomorphic. This gives rise to a binary similarity measure,
which equals 1 if the graphs are isomorphic, and 0 otherwise. Despite the idea of checking
graph isomorphism being so intuitive, no efficient algorithms are known for it. The graph
isomorphism problem is in NP, but has been neither proven NP-complete nor found to
be solved by a polynomial-time algorithm [Garey and Johnson, 1979, Chapter 7].
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Subgraph isomorphism checking is the analogue of graph isomorphism checking in a
setting in which the two graphs have different sizes. Unlike the graph isomorphism prob-
lem, the problem of subgraph isomorphism has been proven to be NP-complete [Garey
and Johnson, 1979, Section 3.2.1].

A slightly less restrictive measure of similarity can be defined based on the size of
the largest common subgraph in two graphs (see Figure 1.4 for illustration). However,
unfortunately the problem of finding the largest common subgraph of two graphs is
NP-hard [Garey and Johnson, 1979, Section 3.3].

oA
A A

Figure 1.5.: A sequence of node deletion, node addition and node relabeling operations
transforming the graph G into G’. Supposing that the cost of each operation
is 1, this sequence of operations is minimal and the edit distance between GG
and G’ equals 5.

1.3.2. Graph edit distances

Besides being computationally expensive or even intractable, similarity measures based
on graph isomorphism and its variants are too restrictive in the sense that graphs have
to be exactly identical or contain large identical subgraphs in order to be deemed similar
by these measures. More flexible similarity measures, based on inexact matching of
graphs, have been proposed in the literature. Graph comparison methods based on
graph edit distances [Sanfeliu and Fu, 1983, Bunke and Allermann, 1983, Messmer and
Bunke, 1998, Neuhaus and Bunke, 2005, and references therein] are a prominent example
of this class. According to these methods, two graphs G and G’ are similar if one can
be transformed into the other using a small number of simple operations such as node
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addition or deletion, edge addition or deletion, and node or edge relabeling in the case
of labeled graphs (see Figure 1.5). These operations can have different costs. The edit
distance between G and G’ is defined as the minimum cost of transforming G into G'.
Unfortunately, finding optimal costs for a particular application is a hard problem.

In summary, graph edit distances are expressive similarity measures respecting the
topology, as well as node and edge labels of graphs. Unfortunately however, they are
hard to parameterize and involve solving NP-complete problems as intermediate steps.

1.4. Review of graph representation methods

Analogously to Section 1.3, we start by defining our notion of graph representation.

Definition 1.4.1 (Graph representation problem) Given the set G of all possible
graphs, the problem of graph representation is defined as finding a function

¢:G— RP
p € N, such that ¢(G) for any G € G captures the structure of G.

Graph representation and graph comparison are related problems: Indeed, if it was
possible to efficiently and faithfully summarize any graph structure as a feature vector,
then comparing graphs would not be difficult either. This section presents three most
prominent families of approaches to graph representation. The goal of these approaches
is to efficiently compute a vector representation of the graph topology. All of these
methods can be straightforwardly used to design similarity measures for graphs.

1.4.1. Topological descriptors

Interest in vector representations for graphs was first fuelled by research in chemoin-
formatics [Gasteiger and Engel, 2003]: In this field, as we mentioned in Section 1.1, a
standard way to represent a molecule is by modeling it as a graph where nodes cor-
respond to atoms and edges to bonds. A topological descriptor (also called topological
index, connectivity index) is a number or an array of numbers, describing the topology of
a molecular graph. These vectorial descriptions for graphs are usually graph invariants,
and are used in a variety of chemoinformatics tasks as a proxy for molecular structures.
These tasks include retrieval of query structures from a large data set of molecular
graphs [Gasteiger and Engel, 2003, Chapter 6], and quantitative structure-activity and
structure-property relationship (QSAR and @QSPR) analyses, where one seeks to find
correlations between the structure of a molecule and its chemical activity or property.
Motivated by these central problems in chemoinformatics, numerous molecular descrip-
tors have been developed since the 1950s [see the textbook by Todeschini and Consonni,
2000, for an extensive reference on this subject].
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Commonly used topological descriptors include Wiener, Morgan and Zagreb indices
[Wiener, 1947, Morgan, 1965, Gutman and Trinajsti¢, 1971], which we present below.
The Wiener index [Wiener, 1947] corresponds to the sum of all shortest paths in a graph.

Definition 1.4.2 (Wiener index) Given a graph G = (V, E), the Wiener index (Wiener

number) is defined as
W(G) =YY Dy,

v, EV ’L)jEV
where D;; is the shortest path from v; to v;.

The Morgan index [Morgan, 1965] is defined via the recursive procedure below.

Definition 1.4.3 (Morgan index) Given a graph G = (V, E), the Morgan index of
order k for node v in G is defined as

1 if k=0,
My(G,v) = (1.1)
PvenN (@) Mi—1(v")  otherwise.

It is not hard to notice that the Morgan index of order k for a node v is the number of
walks of length k starting at v in G.

Definition 1.4.4 (Zagreb index) Given a graph G = (V,E), the first and second
Zagreb indices are respectively defined as

and

Z,(G)= Y dv)d),

(v )eE

where d(v) is the degree of the node v.

Note that all of these topological descriptors are graph invariants: That is, if two
graphs G and G’ are isomorphic, then their respective topological descriptors will be
identical. However, the converse is not true in general. In fact, designing a topological
descriptor whose identity for two graphs would imply isomorphism would be equivalent to
solving the graph isomorphism problem, for which there is no polynomial-time algorithm
known. Moreover, we here encounter a similar obstacle to that of finding optimal costs
for edit operations in graph edit distances: While individual descriptors may work well
for a given application, it is difficult to decide in advance which ones to pick for another
application. Given the great multitude of existing descriptors, this choice is made even
harder.

10
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1.4.2. Frequent pattern mining

Frequent pattern mining, or frequent subgraph mining, is a subfield of data mining, and
is mainly concerned with the extraction of frequent subgraphs in a set of graphs.

Graph representation using frequent pattern mining can be done as follows: During
the mining procedure, it is recorded for each selected subgraph g; how many times it
occurs in each graph G. At the end, G is represented as the vector

(CI(G)7 s Cp(G))7

where ¢;(G) denotes the number of occurrences of g; in G, and p is the number of mined
substructures.

A large part of the frequent pattern mining algorithms is based on the so-called Apriori
property [Agrawal and Srikant, 1994]. This notion stems from frequent item set mining
literature, and states that if a set of items S is frequent in a collection of item sets, then
any subset of S will also be frequent. This observation naturally extends to graphs: If a
graph H occurs frequently in a set of graphs as a substructure, then any subgraph of H
will occur at least as frequently as H. A prominent example of Apriori-based subgraph
mining approaches is the AGM algorithm [Inokuchi et al., 2000].

Pattern-growth approaches, first introduced by Han et al. [2000], constitute the other
important class of frequent subgraph mining methods. These algorithms start with
smaller patterns and extend them until they are not frequent any more. Prominent
examples of such approaches include gSpan [Yan and Han, 2002] and Gaston [Nijssen
and Kok, 2004]. In gSpan, Yan and Han [2002] introduced a lexicographic order for
labeled graphs based on depth-first search (DFS), which allows to map each graph to
a unique canonical label called the minimum DFES code. The search space of gSpan is
organized as a tree of DFS codes, where child nodes of a DFS code are obtained through
a way of extending patterns, called rightmost extension. This allows gSpan to avoid
examining the same substructures twice while searching for frequent subgraphs.

While all above-mentioned approaches serve as a pre-processing step for subsequent
machine learning tasks, there exist methods that combine pattern mining and learning.
Examples of such methods include graph classification algorithms gBoost [Saigo et al.,
2009] and CORK [Thoma et al., 2009]. gBoost is a boosting method for graph data
that uses linear programming and column generation techniques. CORK makes use of
a submodular quality criterion that allows to greedily pick frequent subgraphs and still
provide guarantees on the quality of the selected set of subgraphs. Note that the mining
module of both algorithms is derived from gSpan [Yan and Han, 2002].

Frequent subgraph mining methods have been shown to be useful in learning tasks on
graphs of limited size, such as small molecule classification. However, the major problem
with these approaches is the exponential size of the substructure search space: Despite
clever branch-and-bound and other pruning strategies used to accelerate the search, they

11
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2 3 3 2
1 n=(13245)
—_

4 5 4 5
01010 00110
10110 00101
01001 1T 1T010
1T 1T000O0 10100
00100 01 0O00O

Figure 1.6.: If we exchange the node IDs 2 and 3 in the graph on the left, the corre-
sponding adjacency matrix is reshuffled. The graph representation has to
be invariant with respect to this reshuffling.

have to enumerate all subgraphs in a graph in the worst case, which is intractable for
graphs of more than around 20 nodes.

1.4.3. Group-theoretic approaches

Group-theoretic methods offer a cardinally different way of looking at the problem of
graph representation. Algebraic approaches to graph classification have first been pro-
posed in the 1990s by Shawe-Taylor [1993], but have not received much attention until
lately. Recent approaches from this class, the skew spectrum [Kondor and Borgwardt,
2008] and the graphlet spectrum [Kondor et al., 2009] can be used to define similarity
measures on graphs that are computable in polynomial time.

Given a graph G represented by its adjacency matrix A, the goal of these approaches
is to represent G in a FEuclidean space, while retaining as much information as possible
about the graph structure. Importantly, we have to design the features in such a way that
they do not depend on the numbering of the vertices (see Figure 1.4.3 for illustration).
In other words, the features have to be permutation-invariant. This is achieved by using
results from non-commutative harmonic analysis and tools from representation theory
of S,,.

Before we start describing these approaches, let us first introduce some notation and
terminology. Let G be a graph of n vertices, represented by its adjacency matrix,
A € R"™". S, denotes the symmetric group of order n. Given a function f : S, — R,

12
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the group structure suggests defining the left—translate of f by m € S,, as f™ : S,, —
R, [(o) = f(r o).

In terms of any complete set of inequivalent irreducible representations {py}A F n of
Sy, the Fourier transform of a function f : S,, — R is defined as the sequence of matrices

fO) =" fo)palo), Ak

O'GSTL

Of the several properties of ordinary Fourier transformation inherited by such generalized
Fourier transforms, we are particularly interested in the tramslation theorem, which,
coupled with the unitarity of py(7), tells us that the matrices a(\) = f(\)- f(\), A - n,
are translation invariant.

Kondor and Borgwardt [2008] show that if we encode the adjacency matrix in the
function

fa(o) = Asn)o(n—1)s

then permuting the vertices of G by 7 transforms f4 exactly into (f4)™. In other words,
renumbering the nodes in the graph causes the corresponding f4 to “translate to the
left” by .

A common alternative to the algebraic approaches to graph representation is to char-
acterize graphs in terms of the frequency or position of certain elementary subgraphs
embedded within them. Depending on the context these small subgraphs are usually
called graphlets or motifs. In the graphlet spectrum, we [Kondor et al., 2009] extend the
function f4 to take into account such labeled graphlets (motifs) instead of just unlabeled
edges. Given a graphlet g of k < n vertices whose adjacency matrix we denote with the
same letter g and vertices {v1,...,v;} in G, the indicator

1 if 9i,j < Avi,vj V’i,j,

. (1.2)
0 otherwise,

/j,g({’l)1,...,1)k}) = {

captures whether ¢ is a subgraph of G at position {vy,...,v;}. If we replace “<” by
“="in (1.2), then the corresponding indicator ,uignd captures whether ¢ is an induced
subgraph at the same position. The fundamental observation leading to the extension
fa from the skew spectrum of graphs to taking into account larger graphlets is that fa

can be re-written as
fa(o) = pe(o(n),o(n — 1)),

where e stands for the elementary graphlet of two vertices and a single directed edge. In
other words, f4 encodes where the edge e occurs in G as a subgraph. It is straightforward
to extend this idea to larger graphlets by setting

fag(o) = pg(o(n),o(n—1),...,0(n—k+1)), (1.3)

13
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or fag(o) = uignd(a(n), o(n—1),...,0(n—k+1)), depending whether we are interested in
non-induced or induced subgraphs. Crucially, f4 , will still obey the same transformation
property as fa did: Since if pg is the indicator of the permuted adjacency matrix A™,

we have
pg (m(v1), m(v2), .. s T(0k)) = prg(v1,v2,. .. V), (1.4)
hence
:u;r(vla cee Uk) = :ug(ﬂ-_l(vl)a s ,7‘(’_1(1}]{3))7

and therefore

farg(0) = pg(n~to(n),... .77 o(n — k+1)) = fag(n'0) = (fay)"(0).  (1.5)

Being able to express a function on a reshuffled adjacency matrix as a left-translate of
the original function means that it is possible to invoke the machinery of power spectra,
skew spectra, etc., to derive graph invariants. While the graph invariants of the skew
spectrum of graphs [Kondor and Borgwardt, 2008] will be sensitive to the presence of
individual unlabeled edges in a graph, we can take into account larger, labeled subgraphs
in G in the case of the graphlet spectrum [Kondor et al., 2009]. On the other hand, the
skew spectrum is a higher-order and more expressive invariant than the power spectrum
used in the graphlet spectrum. An attractive feature of the graphlet spectrum approach
is that given a small library {g1, ..., gm } of graphlets, it is possible to compute a separate
fa,g; function for each graphlet, and then form invariants from all possible combinations
of these functions, capturing information about the relative position of different types
of subgraphs as well as different subgraphs of the same type. Since in this case second-
order invariants already yield a rich set of features, one can forgo computing higher
order, more expensive invariants, such as the skew spectrum.

It has been shown empirically, that on graphs of up to a hundred vertices the skew
and graphlet spectra for graphs have produced competitive results with the state of the
art. However, for many applications, the computation cost scaling cubically in n is still
too expensive. Moreover, the skew spectrum is restricted to unlabeled graphs, while the
graphlet spectrum can be difficult to parameterize on general labeled graphs, as one may
not know in advance which graphlets {g1,. .., gm} will suit a particular application.

1.5. Review of graph kernels

As we have seen in Sections 1.3 and 1.4, traditional graph comparison and representation
approaches either suffer from exponential runtime in the worst case, are not expressive
enough, ignore node labels, or are hard to parameterize. Graph kernels, that have
recently evolved into a rapidly developing branch of learning on structured data, try
to address all these problems. These constructs, that can be viewed as a means of
both representation and comparison, respect and exploit graph topology, but restrict

14
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themselves to substructures of graphs that allow the kernel computation in polynomial
time. Graph kernels bridge the gap between graph-structured data and a large spectrum
of machine learning algorithms called kernel methods [Scholkopf and Smola, 2002], that
include algorithms such as support vector machines, kernel regression, or kernel PCA.

Before we start to review graph kernels, we give a short introduction to kernels in
machine learning. The reader is referred to the textbooks by Scholkopf and Smola
[2002] and Shawe-Taylor and Cristianini [2004] for a complete and in-depth treatment
of kernel methods.

1.5.1. Kernels in machine learning

Informally, a (positive semidefinite) kernel is a function of two objects that quantifies
their similarity. Mathematically, it corresponds to an inner product®. In this section, we
will first introduce kernels, and later give one example of their application in machine
learning by putting them in the context of binary classification and support vector
machines.

1.5.1.1. Positive semidefinite kernels

We borrow the definition of positive semidefinite kernels from Schélkopf et al. [2004]:

Definition 1.5.1 ((Positive semidefinite) kernel) Let X' be a nonempty set. A func-
tion k: X X X — R is called a positive semidefinite kernel if and only if it is symmetric,
that is, k(z,x') = k(a',x) for any x,2’ € X, and positive semidefinite, that is,

N N
ZZCiCjk(l'i,xj) > 0
i=1 j=1
for any N € N, any choice of objects x1,...,xny € X, and any choice of real numbers

c1,...,cN €R.

Note that in machine learning literature, positive semidefinite kernels are often called
positive definite kernels or just kernels. In the remainder of this thesis, we will refer to
them as kernels.

Why are kernels interesting? A short answer is that they are interesting because they
can sometimes provide a way of efficiently computing inner products in high-dimensional
spaces, which is essential for many machine learning algorithms (we will see an example
in the next section). We explain this in more detail below.

I'Note that there exist kernels that are not positive semidefinite and that can still be useful in some
cases, for example as dissimilarity measures. They are, however, out of the scope of this thesis.
Interested readers are invited to refer to [Scholkopf and Smola, 2002, Section 2.4] for details on this
subject.
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The key property of kernels that links them with inner products is the following
[Mercer, 1909, Aronszajn, 1950, Aizerman et al., 1964]: For every positive semidefinite
kernel k : X x X + R, there exists a reproducing kernel Hilbert space? (RKHS) #H and
a mapping ¢ : X — H such that for every z,2’ € X, k(x,2') corresponds to an inner
product of ¢(z) and ¢(x'):

k(z,2') = (¢(x), p(z')).

The converse also holds: Given a nonempty set &', a reproducing kernel Hilbert space
H, and a mapping ¢ : X — H, every function k : X x X — R given by k(z,2') =
(¢(x), Pp(x")) is a positive semidefinite kernel. In machine learning, H is usually called a
feature space, ¢ the corresponding feature map, and ¢(x) the feature representation of x.

In fact, defining a feature map is a straightforward way towards defining a kernel. As
a simple example, consider X = RP for some p, H = X, and ¢ equal to identity: The
resulting

k(z,2) = (¢(), ¢(a)) = (x,2"),

which is a simple inner product, is a valid kernel, called the linear kernel. As another
simple example, let X be the set of all possible graphs, let % be R? and let ¢(G) =
(|V],|E]) for all G = (V, E) € X. The resulting function comparing graphs,

K(G.G) = (V] IED, (V'] [E'D),

is not very elaborate or expressive, but it is a valid kernel.
In the previous paragraph we gave an intuition of one way of designing a kernel
function:

1. Choose H,
2. choose ¢,
3. set k(z,2) = (¢(z), p(a')).

While a perfectly legitimate way of defining a kernel, this procedure does not bring
anything new to the computation of (¢(z),¢(z')): To compute k(x,z’), one has to
perform multiplications and a summation in H, a procedure with the time complexity
proportional to the dimensionality of 7. One important reason why kernels are popular
in machine learning is that for some kernels it is possible to compute k(z,z") without
having to perform any operation in . This property can be extremely helpful, as it
allows us to consider data representations in very high or even infinite-dimensional spaces
H. We illustrate this statement with two examples of prominent kernels, the polynomial
and the Gaussian radial basis function (RBF) kernels on RP x RP.

2For readers not familiar with the notion of RKHS: For the purposes of this section, an RKHS can be
thought of as a generalization of an Euclidean space to any, possibly infinite, number of dimensions.
For more detail please refer to Appendix A.
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Polynomial kernel This kernel is given by
k([E, I'/) - (<£L', $/> + C)d7

where d € N and ¢ > 0 are parameters. The dimensionality of the feature space cor-
responding to k equals the number of monomials of degree equal to or less than d in
p variables, which is (dzp). Consider, for example, p = 100 and d = 4: While com-
puting k(z, ') takes 202 operations in total (102 multiplications and 100 additions),
performing this computation using feature representations ¢(z) and ¢(z') would cost
2("") — 1 =2 x 4598126 — 1 = 9196251 operations. Thus, the polynomial kernel allows
us to compute an inner product in R*%8126 i 202 operations instead of more than 9
million with direct computation. This is a tremendous gain in computation time, which
becomes even more dramatic for larger values of p and d.

Gaussian RBF kernel This kernel has the form
o — a'|?

k(x,2') = exp ( Ry

), (1.6)
where o > 0. A particularity of this widely used kernel is that its corresponding RKHS is
infinite-dimensional [Schélkopf and Smola, 2002, Section 2.3]. Representing data points
in this space explicitly would be impossible, but thanks to kernels we can compute inner
products in it.

How to design positive semidefinite kernels without first choosing an explicit H and
¢? There is no simple answer to this question, however, the set of positive semidefinite
kernels possesses several closure properties that can be exploited in kernel design. We
list below some prominent examples of these properties:

e if k1 and ko are kernels, and «q, g > 0, then a1k + asks is a kernel;

o if k1, ko, ... are kernels, and k(x,2’) = limy, o0 kyn(z, 2") exists for all x, 2, then k
is a kernel;

e if k; and ko are kernels, then kiky, defined by kiko(z,2’) = ky(z, 2" )ka(z,2) is a
kernel.

For a more extensive list of closure properties we invite the reader to consult the textbook
by Scholkopf and Smola [2002, Section 13.1].

In addition to making it possible to compute inner products in very high or infinite-
dimensional spaces, kernels allow us to work with nonvectorial data [Scholkopf, 1997].
In fact, if we define a symmetric similarity measure for arbitrary objects and prove that
it is positive semidefinite, this automatically provides a vectorial representation of these
objects in the feature space.
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Let us precise the link between kernels and similarity measures: In the machine learn-
ing community in general, and in this thesis in particular, inner products are thought
of as measures of similarity. However, this intuition is not always self-evident: In fact,
the notion of similarity is more often associated with distance. If a certain notion of
distance between two objects is small, then they are similar in the sense of this notion.
Sometimes these two intuitions coincide. This is the case for the Gaussian RBF kernel
from above (1.6): it is a decreasing function of Euclidean distance, and at the same time
it is an inner product by virtue of being a kernel. More generally, it is not hard to show
that for any (positive semidefinite) kernel k£ on any X, we have:

_ ls@)II* + ll¢@N* — ll¢(x) — ¢(a")]”
2 9y

k(x,z")

where ||z|| = (z,2). As Scholkopf et al. [2004, Chapter 1] put it, k(z,z’) measures the
similarity between z and 2z’ as the opposite of the square distance between their images
#(x) and ¢(z') in the feature space, up to the terms ||¢(z)||?> and ||¢(2')||. If all points
have the same length in the feature space (||¢(x)||? is constant for all z € X), then the
kernel is simply a decreasing measure of the distance in the feature space.

To summarize the key points of this section: Being inner products by nature, kernels
can be thought of as measures of similarity. As every kernel has an associated feature
map, they can also be regarded as means of representation. For some kernels, it is
computationally intractable or impossible to make this representation in the feature
space explicit. However, it is still possible to compute the inner product in the feature
space thanks to the kernel function. Moreover, a key advantage of kernels is that they
can be defined for any type of data.

1.5.1.2. Binary classification with support vector machines

Binary classification is a fundamental problem in machine learning. It can be informally
described as follows: Given two classes of objects, infer a rule to assign a new, previously
unseen object to one of the two classes. More formally, we are given a set of pairs

($17y1)7-~7($NayN) EXXyJ

where X’ denotes just a set of objects, that we also call examples, patterns, or data points,
and Y = {—1,+1}. X can be anything from a set of living organisms, a set of climatic
conditions, or a set of protein structures to a set of real vectors of p components. For a
given x; € X, y; indicates the class that x; belongs to. The y; are usually called class
labels. The goal is to find (learn) a function f : X +— ) that can be used to predict the
class labels of unseen data examples.

The Support Vector Machine (SVM) classification algorithm takes its origins from the
1960s [Vapnik and Lerner, 1963] and was formulated in its present form in the 1990s in
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the works of Boser et al. [1992], Cortes and Vapnik [1995] and Vapnik [1995]. Support
vector machines soon gained wide recognition due to their solid statistical foundations
and the convex and well-behaved nature of their associated optimization problems. For
a technical, thorough and up-to-date treatment of SVMs we refer the reader to the
textbook by Steinwart and Christmann [2008].

The binary SVM classification problem is formulated in terms of input data of the form
(x1,Y1),---, (XN, yn) € H x{—1,+1}, where H is a reproducing kernel Hilbert space.
The change with respect to the general binary classification problem above is that the
data points x1,...,xy are elements of an RKHS and not of an arbitrary set. In fact,
without loss of generality, we can imagine every x; as some vectorial description of the
object x;. This includes the case where X is itself a reproducing kernel Hilbert space, as
we only require from X to be a nonempty set. Individual components of vectors x; are
referred to as features, or variables. The goal of the SVMs is to find a hyperplane that
separates the two classes with the largest margin, that is, the largest minimum distance
between a data point and the hyperplane (see Figure 1.7 for illustration). Mathemati-
cally, this corresponds to the following optimization problem:

o 1 2
minimize —||w||
weH,beR 2

subject to  y;((x;,w) +b) >1foralli=1,...,N.

The problem (1.7) is often solved using its Lagrangian dual:

Figure 1.7.: The red squares and the blue triangles represent the two classes to be sepa-
rated in R?, and the dashed and solid lines depict two candidate hyperplanes.
The solid hyperplane has a much larger margin compared to the dashed one.
The data points whose distance to a hyperplane equals the margin are called
the support vectors of that hyperplane.
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N L
minimize W(a) = E o — = E ;oYY (X, X;5)
acRY i=1 255

subject to a; >0 foralli=1,...,N, (1.8)

N
and Z a;y; = 0.
i=1

If the positive and negative data points are separable by a hyperplane (as they are
in Figure 1.7), or linearly separable, solving the Problem (1.7) yields the optimal hy-
perplane, similar to the solid line in Figure 1.7. However, input data are not always
linearly separable. Cortes and Vapnik [1995] proposed a soft-margin version of SVMs
that can successfully handle cases where positive and negative examples are “almost”
linearly separable (see Figure 1.8 for illustration). The primal and dual for this variant,
C-SVM, are given below.

A al .
AA.. [
n

A AA m ¥
A AA [ ]

AA |

Figure 1.8.: “Almost” linearly separable classes

1 o
minimize ollw P+ 52 &

=1 (1.9)
subject to  y;((x;,w) +b) >1—¢ foralli=1,..., N,

and & >0foralle=1,...,N.

Here, &; are the so-called slack variables, that measure how strongly the data point 7
violates the constraint of being correctly classified with the margin, y;((x;,w) +b) > 1.
The parameter C regulates the trade-off between maximizing the margin and minimizing
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the number of points that are inside the margin or misclassified.

N N
L 1
minimize W(a) = Zai - = Z iy (Xi, Xj)
acRN i=1 2

1,7=1

subject to 0 < aq; < % foralli=1,..., N, (1.10)

N
and Z a;y; = 0.
i=1

C-SVMs and a more recent soft-margin SVM called v-SVM [Scholkopf et al., 2000] solve
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Figure 1.9.: The red squares and blue triangles are two different classes. On the left, in

the original space X = R?, the two classes are not linearly separable. On
the right, the new feature representation ¢(x) = (22,23), although in the
same space H = R?, makes them separable by a hyperplane.

the problem of finding an optimal separating hyperplane while allowing a small number
of misclassified points. Nonetheless, there are cases where the data are inherently not
separable by a hyperplane: No matter which hyperplane we pick, we will misclassify a
large number of points (see Figure 1.9, (a), for illustration). In this type of cases, it is
sometimes possible to redefine the representation of data points in such a way that they
become linearly separable (Figure 1.9). To make a parallel with everyday life, changing
the representation of data is comparable with looking at a set of objects from a different
angle. As we see from Figure 1.9, it is possible to handle a highly non-linear classification
problem with a linear classification algorithm, and still take advantage of its statistical
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soundness and ability to be optimized efficiently. This is possible, provided that we
can re-represent the data in a space where they become linearly separable. Intuitively,
higher-dimensional RKHSs will be more likely to render input data linearly separable.

The key observation to make here is that the SVM dual only makes use of the input
data points Xi,...,xy in the form of inner products (see Problems (1.8) and (1.10)).
Therefore it does not matter in which space these inner products will be taken, provided
that they are valid inner products. The RKHS # can be replaced by any other RKHS H'.
This is where positive semidefinite kernels come into play: Given a kernel k: X x X —
R, we can replace every occurrence of (x;,x;) by k(x;,x;). Kernels, combined with
SVMs, make it possible to perform linear classification in spaces of very high or infinite
dimension. Moreover, as kernels can be defined for any type of data, support vector
classification can also be carried out for any type of data.

One question that arises is whether we can plug into an SVM a measure of similarity
that is not an inner product (not symmetric, not positive semidefinite or neither). While
such non-positive semidefinite kernels have already been used in machine learning (e.g.,
the so-called sigmoid kernels for points in RP), if we proceed in this way, the convexity
of the SVM optimization problem is no longer guaranteed and the Problem (1.10) may
not even have a solution [Burges, 1998].

SVMs, while an important class of methods using kernels, are only one member a
large family of learning algorithms, called kernel methods, that are able to operate on
input data in the form of inner products without requiring access to actual examples.
Examples of kernel methods include support vector regression, Gaussian processes for
regression, kernel principal component analysis and kernelized statistical independence
testing [see Hofmann et al., 2008, for a recent review of kernel algorithms].

1.5.2. Graph kernel basics

Graph kernels are instances of the family of so-called R-convolution kernels by Haussler
[1999]. R-convolution is a generic way of defining kernels on discrete compound objects
by comparing all pairs of decompositions thereof. Therefore, a new type of decomposition
of a graph results in a new graph kernel.

Given a decomposition relation R that decomposes a graph into any of its subgraphs
and the remaining part of the graph, the associated R-convolution kernel will compare
all subgraphs in two graphs. However, this all subgraphs kernel is at least as hard to
compute as deciding if graphs are isomorphic [Gértner et al., 2003]. Therefore one usually
restricts graph kernels to compare only specific types of subgraphs that are computable
in polynomial runtime.

Certain graph kernels are also generalized by rational kernels by Cortes et al. [2004],
that compare weighted automata to each other. While they generalize some prominent
graph kernels such as kernels based on random walks, they assume that the set of possible
labels on nodes and edges is finite, and therefore do not subsume kernels that take into
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account continuous labels [Vishwanathan et al., 2010].

Note that in machine learning the term graph kernel occasionally refers to a kernel
between nodes of one large graph, which we call a node kernel. Throughout this thesis,
graph kernel will denote a kernel that compares graphs to each other.

Several different graph kernels have been defined in machine learning which can be cat-
egorized into three classes: graph kernels based on walks [Kashima et al., 2003, Géartner
et al., 2003] and paths [Borgwardt and Kriegel, 2005], graph kernels based on limited-size
subgraphs [Horvéth et al., 2004], and graph kernels based on subtree patterns [Ramon
and Gértner, 2003, Mahé and Vert, 2009]. We review each of these classes below.

1.5.3. Kernels based on walks and paths

The first class, graph kernels on walks and paths, compute the number of matching
pairs of random walks (respectively, paths) in two graphs. The standard formulation of
the random walk kernel by Girtner et al. [2003] is computable in O(n%) for a pair of
graphs. However, the same problem can be stated in terms of Kronecker products that
can be exploited to bring down the runtime complexity to O(n?®) [Vishwanathan et al.,
2010]. While this constitutes an important gain in efficiency that allows to compute the
random walk kernel orders of magnitude faster, the complexity of O(n?) is still too high
for many applications. Besides computation time, random walks suffer from two more
problems: tottering [Mahé et al., 2004], and halting [Borgwardt, 2007].

The problem of tottering originates from the fact that walks, by definition, allow
for repetitions of nodes and edges. Consequently, a single shared edge can potentially
contribute infinitely many times to the kernel value between two graphs. The same can
be said of shared cycles or paths. Therefore, the kernel value between two graphs that
do not share many structural elements may be unduly inflated.

Halting is a different problem: Random walk kernels, as we have seen, count the
number of all matching pairs of walks. However, the number of walks in a graph with
at least one edge is infinite. Therefore one usually imposes a decaying factor A on the
length of walks, that down-weights longer walks. As a result, it is made possible to
compare graphs with respect to all walks, but at the expense of the kernel value being
almost exclusively determined by short walks. This problem is referred to as “halting”.

Due to the above-mentioned problems and motivated by applications, there have been
proposed numerous extensions and variants of random walk kernels: For a computer
vision application, Harchaoui and Bach [2007] have proposed a dynamic programming-
based approach to speed up the computation of the random walk kernel, but at the cost
of considering walks of fixed size. Suard et al. [2005] and Vert et al. [2009] present other
applications of random walk kernels in computer vision. Mahé et al. [2004] have proposed
extensions of marginalized graph kernels [Kashima et al., 2003] for a chemoinformatics
application: Here the authors relabel vertices of graphs using the Morgan index [Morgan,
1965] (defined in Section 1.4.1 of this thesis), which increases the specificity of labels by
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augmenting them with information on the number of walks starting at a node, and
thereby also helps reduce the runtime, as fewer vertices will match.

The shortest path kernel by Borgwardt and Kriegel [2005] compares shortest path
lengths between pairs of nodes with matching source and sink labels in two graphs. The
runtime of this kernel scales as O(n%). Ralaivola et al. [2005] propose specialized graph
kernels for chemoinformatics that are efficient to compute on small molecules with an
average degree of 2 or 3: They are based on molecular descriptors, and count labeled
paths of length p that can be retrieved by depth-first search from each vertex. To
compute a kernel on the resulting feature vectors, they use similarity measures derived
from Tanimoto and Jaccard coefficients [Fligner et al., 2002].

1.5.4. Kernels based on small subgraphs

The second class, graph kernels based on limited-size subgraphs, includes kernels based
on so-called graphlets, which represent graphs as distributions of all types of subgraphs of
size k € {3,4,5}. These kernels generally do not take into account node labels, and their
naive computation for a pair of graphs has time complexity O(n?*). Borgwardt et al.
[2007] introduced sampling schemes to approximate the graphlet distribution. Chapter 2
of this thesis discusses these kernels in detail. Cyclic pattern kernels [Horvath et al.,
2004] count pairs of matching cyclic patterns in two graphs. Computing this kernel for
a general graph is unfortunately NP-hard, however there exist special cases where the
kernel can be efficiently computed. The kernel, recently proposed by Costa and De Grave
[2010], can also be classified in this category: It counts identical pairs of rooted subgraphs
containing nodes up to a certain distance from the root, the roots of which are located
at a certain distance from each other, in two graphs.

1.5.5. Kernels based on subtree patterns

The first kernel from the third class, subtree kernels, was defined by Ramon and Géartner
[2003]. Intuitively, to compare graphs G and G’, this kernel iteratively compares all
matchings between neighbors of two nodes v from G and v’ from G’. In other words, for
all pairs of nodes v from G and v’ from G, it counts all pairs of matching substructures
in subtree patterns rooted at v and v'. This kernel is discussed in detail in Section
3.2.2 of this thesis. While taking into account expressive subtree patterns, this kernel is
unfortunately expensive to compute: The runtime complexity of the subtree kernel for
a set of N graphs is O(N2n?h 49), where n is the number of nodes, h is the maximum
height of the subtree patterns considered, and d is the maximum degree in the graph
data set.

The subtree kernels by Mahé and Vert [2009] and Bach [2008] refine the Ramon-
Gaértner kernel for applications in chemoinformatics and hand-written digit recognition.
Both Mahé and Vert [2009] and Bach [2008] propose to consider a-ary subtrees with at
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most « children per node. This restricts the set of matchings to matchings of up to «
nodes, but the runtime complexity is still exponential in this parameter a, which both
papers describe as feasible on small graphs with many distinct node labels.

1.5.6. Other graph kernels

There exist graph kernels based on graph edit distances, discussed in Section 1.3.2
[Neuhaus and Bunke, 2006, 2007]. However, they are not positive semidefinite in general.

Another type of graph similarity measures, optimal assignment kernels [Frohlich et al.,
2005], arise from finding the best match between substructures of graphs. Unfortunately,
these kernels are not positive semidefinite either [Vert, 2008].

1.5.7. Discussion

In this section, we presented an overview of the state of the art in graph kernels. Graph
kernels are an attractive research direction with a view to designing efficient graph
comparison and representation methods. First, as we pointed out in Section 1.5.1, any
positive semidefinite kernel for graphs has the form k(G, G') = (¢(G), ¢(G")), where ¢(G)
is the feature representation of GG in a reproducing kernel Hilbert space: By choosing k
(and therefore choosing ¢, or vice versa), we respond to both graph comparison and graph
representation problems given in Sections 1.3 and 1.4. Second, some kernels are able to
efficiently compute inner products in very high or infinite-dimensional spaces: This can
potentially allow us to design graph kernels that take into account rich structural and
label information contained in graphs. Third, graph kernels make it possible to apply a
large spectrum of learning algorithms to graph-structured data.

However, the potential of graph kernels has by no means been exhausted by the exist-
ing kernels for graphs. Efficiency is one of the most important issues: Notwithstanding
important achievements in speeding up random walk graph kernels, there is no graph
kernel that scales better than O(n?) for a pair of labeled graphs of n nodes. Moreover,
random walk kernels suffer from tottering and halting due to the intrinsic properties
of random walks (Section 1.5.3). Existing subtree pattern kernels are limited to small
graphs of 20-30 nodes because of their high computational cost (Section 1.5.5), and
optimal assignment kernels are not positive semidefinite (Section 1.5.6).

1.6. Contributions of this thesis

Our goal in this thesis was to design scalable kernels for efficiently comparing and rep-
resenting large, labeled graphs for machine learning on graph-structured data.

The motivation for this objective comes from numerous application domains of ma-
chine learning where graph-structured data are becoming increasingly abundant, large-
scale and diverse (see Section 1.1), and from the need for efficient graph comparison and
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representation. As we have seen in Sections 1.3 and 1.4, most of the state-of-the-art
graph comparison and representation methods are NP-hard, or lack expressivity. There
exist polynomial-time alternatives, such as some topological descriptors (Section 1.4.1)
and the algebraic approaches based on representative labeled graphlets, which we re-
cently proposed [Kondor et al., 2009, and Section 1.4.3]; However, it may be difficult to
decide which descriptors, respectively, graphlets, to use for a problem at hand. Graph
kernels are a promising research direction: Being kernels, they have the potential to effi-
ciently compare graphs in high-dimensional spaces that can accommodate large amounts
of information about graphs, and to act as a bridge between graph-structured data and a
large family of machine learning algorithms (see Section 1.5). However, as we argued in
Section 1.5.7, despite significant advances in the field in recent years [Borgwardt, 2007,
Vishwanathan et al., 2010], existing graph kernels do not fully respond to the current,
increasingly demanding needs of machine learning on graph data.

1.6.1. Efficiently counting graphlets

As we have seen in Section 1.5, recent years have witnessed important steps forward in
the design and improvement of graph kernels, including the speedup of random walk
kernels from O(n%) to O(n3) for a pair of graphs of n nodes, and the development of
shortest path, cyclic and subtree pattern kernels.

Unfortunately, none of these kernels have a better runtime than O(n?3). This runtime
is acceptable when comparing graphs of a few dozens of nodes. However, with the
proliferation of large-scale graph data in different applications (see Section 1.1), it is
becoming more and more pressing to design graph kernels that scale to large graphs of
hundreds and thousands of nodes.

Chapter 2 presents our first contribution: In this work, we compare graphs by counting
graphlets, or subgraphs with k& nodes where k € {3,4,5}. The choice of graphlets as
representative substructures is motivated by the graph reconstruction conjecture [Kelly,
1957] and recent studies arguing about their importance in bioinformatics applications
[Przulj, 2007, Milenkovic et al., 2010]. Moreover, being explicitly based on distributions
of subgraphs of fixed size, our kernels do not suffer from tottering and halting, problems
that plague the random walk kernel (see Section 1.5.3). This further strengthens our
motivation to study graphlet kernels.

Exhaustive enumeration of all graphlets being prohibitively expensive, Borgwardt
et al. [2007] have introduced a sampling scheme that significantly improved the com-
putation runtime. However, this gain in speed is achieved to the detriment of precision.
We develop another theoretically grounded speedup scheme that computes the graphlet
distribution exactly, without approximation, in O(ndk_l), where d is the maximum de-
gree of the graph. As most real-world graphs are generally sparse with low maximum
degree, our algorithms are expected to require much lower runtime than O(n%) on av-
erage. In our experimental evaluation, graphlet kernels allow us to efficiently compare
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large graphs that could not be tackled by existing graph kernels, and the exact compu-
tation of the graphlet distribution systematically leads to improved results with respect
to sampling.

1.6.2. Weisfeiler-Lehman graph kernels

While the efficient computation strategies for random walks [Vishwanathan et al., 2010]
and graphlet kernels from the previous section yield an important gain in speed for
unlabeled graphs with up to hundreds of nodes, it has been a general limitation of all
the state-of-the-art graph kernels that they scale poorly to large, labeled graphs with
more than a hundred nodes: In the worst case, none of them can scale better than O(n?).
The efficient comparison of large, labeled graphs has remained an unsolved challenge for
almost a decade.

In Chapter 3 we define a fast subtree kernel on graphs, the Weisfeiler-Lehman sub-
tree kernel, that combines scalability with the ability to deal with node labels. It is
competitive with state-of-the-art kernels on several classification benchmark data sets
in terms of accuracy, and outperforms them significantly in terms of runtime on large
graphs. This new kernel opens the door to applications of graph kernels on large graphs,
for instance, protein function prediction via detailed graph models of protein structure
on the amino acid level, or on gene networks for phenotype prediction in bioinformatics.

In Section 3.3, we generalize our subtree kernel to a family that encompasses many
previously known kernels for graphs. In Sections 3.6 and 3.7 we present two other
directions for extending the Weisfeiler-Lehman subtree kernel: The first deals with the
inexact matching of subtree patterns, and the second addresses the problem of comparing
nodes within a graph.

1.6.3. Applications in remote sensing and structural biology

For decades, graph comparison applications have been almost exclusively limited to
the comparison of small molecules in chemoinformatics because of the lack of scalable
algorithms for graph comparison and representation. Our efficient graph kernels open
the way to new applications involving the comparison of large, labeled graphs.

In Chapter 4, we present two such applications. The first application domain that
we consider is remote sensing image classification: Remote sensing images are images
of earth acquired from airborne and satellite sensors, in which pixels are usually high-
dimensional, and the task is to correctly segment the image into a thematic representa-
tion, given a low number of correctly labeled pixels. Due to the lack of methods that
can efficiently take into account the structure of the underlying large pixel graph, most
state-of-the-art classifiers for remote sensing images are spectral-based (pixel-based) and
thus do not use the intuition that neighboring pixels should tend to belong to the same
class. In Section 4.1, we propose a graph kernel-based approach that takes into account
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both spectral and spatial information of the pixels at different resolutions, and yields
competitive accuracy compared to state-of-the-art remote sensing image classification
methods.

In Section 4.2 we apply graph kernels to the problem of predicting chemical shifts based
on the protein structure. Chemical shifts are shifts in signal frequency of atomic nuclei
in the protein due to local chemical structure. They are obtained using Protein Nuclear
Magnetic Resonance (NMR) spectroscopy, and the task is to correctly assign peaks in
this spectrum of chemical shifts to the corresponding nuclei (that is, those which exhibit
these chemical shifts) in the protein. Providing good solutions to this problem would
allow us, for instance, to understand how certain drugs alter the function of certain
proteins. Most state-of-the-art methods for protein function prediction are based on
physico-chemical properties of the neighborhoods of nuclei, these neighborhoods being
defined as the amino-acid containing the nucleus and its neighboring amino-acids in the
protein sequence. However, an atom in a protein can be chemically influenced by another
atom far away according to the protein sequence, but close in the 3D structure of the
protein. In other words, while a graph representation of the local 3D structure around
a nucleus would be more natural, many existing methods use a poorer representation
based on the sequence. Other methods that do exploit the whole neighborhood of nuclei
rely on parametric models of chemical shifts which may not be precise enough. Unlike
existing approaches, we represent local chemical neighborhoods of nuclei as weighted
labeled graphs, taking into account every atom in a certain radius around the nucleus.
We hope that this ongoing work with promising preliminary results will lead to a useful
tool for predicting chemical shifts.

1.6.4. Published work appearing in this thesis

This thesis contains material, in abbreviated, modified or extended form, from several
published articles. We list these publications below, indicating the corresponding sec-
tions of this manuscript.

e N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. M. Borg-
wardt. Efficient graphlet kernels for large graph comparison. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, 2009.

Chapter 2 of this thesis is an extended version of this article.

e [. R. Kondor, N. Shervashidze, and K. M. Borgwardt. The graphlet spectrum. In
Proceedings of the International Conference on Machine Learning, pages 529-536,
2009.

Section 1.4.3 of Chapter 1 uses material from this work.

e N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs. In Pro-
ceedings of the Conference on Advances in Neural Information Processing Systems,
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pages 1660-1668, 2009.
Section 3.2 of Chapter 3 is based on the work presented in this paper.

e N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12:2539-2561, 2011.

This article gave rise to the bulk of Chapter 3 of this thesis, as well as Sections
1.5.2-1.5.6 of Chapter 1.

e G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt. Spatio-spectral remote
sensing image classification with graph kernels. IEEFE Geoscience and Remote
Sensing Letters, 7(4):741 —745, 2010.

Section 4.1 of Chapter 4 closely follows this article.

Certain parts of this thesis are based on unpublished work done in collaboration with
other researchers. Section 3.6 in Chapter 3 is based on my unpublished research with
Alexander J. Smola and Karsten M. Borgwardt. The material presented in Section 3.7
is based on unpublished work with Hyokun Yun, Alexander J. Smola and Karsten M.
Borgwardt. The ongoing work presented in Section 4.2 of Chapter 4 is being done in
collaboration with Michael Habeck.
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2. The graphlet kernels

This chapter presents our first contribution to the design of efficient graph kernels for
large graph comparison. We here represent graphs by counting graphlets, that is, sub-
graphs of k nodes where k € {3,4,5}!.

One may question the choice of graphlets as representative substructures: A natural
approach to speeding up graph kernels would have been to try to further accelerate the
computation of the random walk kernel, the existing graph kernel with the most scalable
runtime. However, random walk kernels have inherent problems of tottering and halting,
discussed in Section 1.5.3: It is not obvious how to get rid of these problems while still
considering walks as basic substructures, as they are caused by the very nature of walks.
Graphlets do not suffer from these problems as no node or edge is repeated in a graphlet.
This choice is further motivated by the graph reconstruction conjecture [Kelly, 1957],
that states that any graph of size n can be reconstructed from the set of all its subgraphs
of n — 1 nodes [Borgwardt, 2007]. We define the graphlet kernels in Section 2.1.

Exhaustive enumeration of graphlets is expensive, scaling as O(nk) where n is the
number of nodes in the graph and k the size of the graphlets. Borgwardt et al. [2007]
have proposed a sampling scheme for estimating the graphlet distribution, showing that
sampling a fixed number of graphlets suffices to bound the deviation of the empirical
estimate of the graphlet distribution from the true distribution (Section 2.2). However,
while the obtained bounds hold for any graph, the notion of deviation used in this
sampling scheme is not adequate when graphs are sparse. We here show that for graphs
of degree bounded by d, the ezact number of all graphlets of size k can be determined
in time O(nd*~1) for k € {3,4,5} (Section 2.3). Note that large, real-world graphs are
often sparse with d < n. Finally, we experimentally show that graphlet kernels allow
us to compute graph kernels on graphs of sizes that are beyond the scope of the state
of the art, and that our exact counting scheme systematically gives better performance
than sampling in graph classification (Section 2.4).

2.1. The graphlet kernel

Let G = {g1,-- ., 9n, } be the set of graphlets of size k and G be a graph of size n. Let us
define cf (G) as the number of occurrences of the graphlet g; with k£ nodes in G, that is, the

! As our main concern is efficiency, we do not consider graphlets of size k > 6 in this work. In fact, nor
have they ever been considered in the literature.
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cardinality of the set of induced subgraphs of G isomorphic to g;, {H|H C G, H ~ g;}.
Define ¢*(G) as the vector (c¥(G), ..., cflk (@)). We call (@) the k-spectrum of G. This
statistic will serve as the foundation for the graphlet kernels. Note that whenever the
value of k is clear from the context, we will omit the superscript k in ¢¥(G) and use

i
¢i(G) instead to avoid cluttering the notation.

Definition 2.1.1 (Graphlet kernel) Given k and two graphs G and G’ of sizen > k,
the graphlet kernel Ky, is defined as

Ki(G,G") = & (@) THG. (2.1)

In order to account for differences in the sizes of the graphs, which can greatly skew
the counts ck(G), we normalize the counts to vectors of frequencies. For a graph G of
size n, we set

K@) = M@,

k

and work with the following normalized variant of (2.1):
Kx(G,G') = ()" 1), (2:2)

Note that there are many other possibilities of defining a kernel using ¢*(G). Essen-
tially, c¥(Q) is a feature vector representing G by the counts of graphs of size k that
it contains. Omnce we have this representation, we can use any kernel or non-kernel
technique to learn on graphs.

Since there are (Z) subgraphs of size k in a graph, computing ¢*(G) for each graph of
size n requires O(n*) effort. Once all the c*(G) vectors are computed, then computing
(2.2) requires essentially O(1) work. In the sequel we will show how the O(n*) pre-
processing step can be made efficient.

Clearly, if G ~ G', then c*(G) = ¢*(G’). But is the reverse true? It has been shown
that when n = k+1 and n < 11, equality of k-spectra implies isomorphism [Kelly, 1957,
McKay, 1997]. For n > 11, it is still a conjecture whether a graph of size n can be
reconstructed from its subgraphs of size n — 1.

Note that while the term graphlet kernel was originally used by Borgwardt [2007] in
the same sense as we do in this thesis, more recently it has also been employed to denote
a kernel comparing nodes in a network using counts of connected graphlets adjacent with
a node [Vacic et al., 2010].

2.2. Sampling graphlets

We here detail the sampling approach to the estimation of graphlet distributions, pro-
posed by Borgwardt et al. [2007].
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To compute the graphlet kernel exactly, one needs to count all graphlets of size k in the
input graphs. A graph with n nodes has (Z) = O(n*) graphlets, whose straightforward
enumeration may be expensive. Sampling is an extensively studied technique for esti-
mating distributions. It relies on the fact that if a sufficient number of random samples
is drawn, then the underlying distribution can be well approximated by the empirical
distribution. The number of samples necessary to guarantee with a certain confidence
that the empirical distribution will not deviate from the true distribution more than a
given ¢ is called the sample complexity.

Subgraph sampling methods for graphs have been widely studied before in the bioinfor-
matics literature [Kashtan et al., 2004, Wernicke, 2005, Przulj, 2007]. These approaches
are unfortunately not satisfactory, as they are ad hoc and do not provide any guarantees
on the divergence between the empirical and the true distributions. Borgwardt et al.
[2007] derive sample complexity bounds for estimating graphlet distributions by adapt-
ing results by Weissman et al. [2003], who proved distribution-dependent bounds for the
¢1 deviation between the true and the empirical distributions.

2.2.1. Bounding the sample complexity

Let A denote the finite set {1,2,...,a}, where a € N. For two probability distributions
P and @ on A, the ¢; distance between P and @ is defined as

1P = Qll =Y |P(i) — Q). (2.3)
=1

Let X" = X1,..., X,, be independent identically distributed random variables drawn
from some distribution P (denoted as X; ~ P). The empirical estimate of P is defined
as

Prn(i) = — S 6(X; =)

where i € A, and §(-) denotes the indicator function: 6(X; = ¢) equals 1 if X; =4 and
0 otherwise.

Weissman et al. [2003] prove the theorem below (Theorem 2.2.1), which, by Corollary
2.2.2, allows us to determine the number of samples that is sufficient for the probability
of the ¢; distance being larger than a given € to be smaller than a given §.

Theorem 2.2.1 Let P be a probability distribution on the finite set A ={1,...,a}. Let
X™ = X1,..., X, be independent identically distributed random variables distributed
according to P. Let Pxm be the empirical distribution on A. Then, for all € > 0,

Pr {||P ~ Py > e} < (2 — 2)e~me(mP)E /4 (2.4)
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where w(P) = glgaﬁmin(P(A), 1—p(A)), and for p € [0,1/2), ¢(p) = ﬁ log(%).

The next corollary follows from Theorem 2.2.1.

Corollary 2.2.2 Let P be a probability distribution on the finite set A = {1,...,a}.
Let X = {X;}L,, with X; ~ P. For a given e >0 and § > 0,

_— {2 (a log(2) + log (é))w (2.5)

€2

samples suffice to ensure that Pr {HP — Pxmll1 > e} < 4.

Borgwardt et al. [2007] apply Corollary 2.2.2 to graphlet distribution estimation by
setting A to be the set of all graphlets of size k, m to be the number of graphlets
randomly sampled from the graph, and by assuming that they are distributed according
to an unknown distribution P. Setting m according to (2.5) ensures with confidence
1 — § that the empirical distribution Pxm will not deviate more than e from the true
distribution P (in the sense of /1 distance). An attractive feature of this approach is
that the sample complexity (2.5) does not depend on graph size, but only on the size of
graphlets we are interested in.

The number of distinct unlabeled graphlets of sizes kK = 3, 4, and 5 are respectively
nk = 4, 11, and 34 (see Figures 2.2, 2.4, and B.1). For example, if we take the case
k = 4, and fix both € and § to 0.05, then the number of samples verifying (2.5) equals
8,497. If we decrease € and § to 0.01, the number of samples grows to 244,596.

2.3. Bounded degree graphs

While sampling allows us to deal with graphs on which the exhaustive enumeration of
all graphlets is infeasible, in pratice, there is a large fraction of graphs on which exact
counting can be performed efficiently: the class of graphs with a bounded degree d.

There is another important reason why it is interesting to exactly count graphlets
instead of sampling them: As we mostly deal with sparse graphs in real-world applica-
tions, the larger the graphs grow, the sparser they become and the more the number
of graphlets with no edges is expected to dominate the number of graphlets of all other
types. This leads to greatly skewed graphlet distributions. In these cases, the ¢; devia-
tion is no more an accurate measure of the quality of the empirical distribution, as the
frequencies of connected graphlets are too small compared to the frequencies of discon-
nected graphlets. To account for this, one may strongly decrease the values of € and §
to encourage the accurate estimation of the proportions of connected graphlets. This, in
turn, results in greater sample complexity, which means that sampling can potentially
take even longer than exact counting of graphlets.
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LR D

Figure 2.1.: Connected graphlets of size k € {3,4,5} which do not contain a path of
length k£ — 1.

In other words, while the graph size does not directly influence the sample complex-
ity (2.5), it does indirectly affect the number of samples needed to accurately estimate
the graphlet distribution, as the parameters ¢ and d that are precise enough for flat-
ter graphlet distributions in small graphs do not suffice to accurately approximate the
skewed graphlet distributions in large graphs. We empirically study this effect in our
experiments in Section 2.4.2.

We present two algorithms for efficiently counting graphlets in graphs of low degree:
one for counting all connected graphlets, and one for counting all graphlets.

2.3.1. Enumerating all connected graphlets

We assume that our graphs are given in standard adjacency list representation. As a
preprocessing step, we construct a data structure that supports edge existence verifica-
tion in time O(1). Given vertices u and v, the data structure checks whether (u,v) € E.
We may either use the adjacency matrix or a hashing scheme [Mehlhorn and Sanders,
2008, Chapter 4]. Observe that the adjacency matrix can be constructed in time O(|E|)
if one uses an implicit initialization scheme [Mehlhorn and Sanders, 2008, Exercise 3.16].
With such a data structure one can determine which graphlet is induced by a path of
length k in time O(k?).

Theorem 2.3.1 Let G be a graph, and let d denote its maximum degree. Then all
connected graphlets of G of size k € {3,4,5} can be enumerated in O(nd*~') time.

Proof We assume that given k£ nodes in a graph, we can look up the graphlet they form
in constant time. Graphlets of size k can be divided into two classes: graphlets that
contain a simple path of length k — 1, and graphlets that do not contain such a path.
By a simple depth first search (DFS), all paths of length k — 1 originating from a
node v can be enumerated in O(d*~') time. Counting the graphlets of size k induced
by these paths requires O(dkil) effort; the overall complexity for a graph with n nodes
is therefore O(nd*~1). Note that the same graphlet may be induced by more than one
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Figure 2.2.: All graphlets of size 3.

path of length £ — 1, and hence may be counted multiple times. To account for this, we
need to divide the final counts by the number of paths of length & — 1 per graphlet.

The connected graphlets that do not contain a path of length £ — 1 can also be
enumerated efficiently for k € {3,4,5}. For k = 3, there is no connected graphlet that
does not contain at least one path of length 2.

For k = 4, there is only one connected graphlet that does not contain a path of length
3 (see I in Figure 2.1). Let us call this graphlet a 3-star. Let d; denote the degree of node
v;. We look up the (Cél) neighbor triplets of v;, and check if they induce the graphlet we
are interested in. The time complexity per node is O(d?), and for the entire graph is
O(nd?).

For k = 5, there are 3 connected graphlets with no path of length 4 (see II to IV
in Figure 2.1). To compute the frequency of their occurrence we note that all contain
the 3-star as a subgraph. So we first enumerate all occurrences of the 3-star, and then
check the neighbors of each node in the 3-star to see whether they induce the graphlets
in question. This step has a complexity of O(d) per graphlet, bringing the overall com-
plexity of the method to O(nd*), as claimed. [ |

2.3.2. Counting all graphlets

Here we show that all graphlets of size 3, 4 and 5 can be counted efficiently in graphs
with a bounded degree.

Theorem 2.3.2 Let G be a graph, and let d denote its maximum degree. For a fized
node vy in G, we can count all subgraphs of size 3, 4, and 5 containing vy in time O(d?),

O(d?®), and O(d*) respectively.
Proof Let us first consider counting graphlets of size 3. Modulo isomorphism there

are 4 types of such graphlets (see Figure 2.2). We first count subgraphs with at least
one edge and then obtain the number of graphlets with no edge, ¢3(G), by subtracting
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A} (G) +c3(G) 4+ c3(G) from (%), which is the number of all triplets of nodes in the graph.
In the following, we will systematically omit the superscript of ¢f(G) whenever the value
of k is clear from the context.

For each pair of nodes (v1,v2) connected by an edge, we have to distinguish four
cases for the third node vs: vs € N(v1) N N(ve), v3 € N(v1) \ (N(v2) U{va}), vs €
N (v2) \ (N (v1) U{v1}), vg & N(vi) UN(v2).

It is easy to see that the subgraph spanned by v1, vo and v3 in the first case corresponds
to the graphlet with 3 edges, in the second and third cases it corresponds to the graphlet
with 2 edges, and in the fourth to the graphlet with 1 edge. The pseudocode for this
procedure is given in Algorithm 1, illustrated by Figure 2.3.

Algorithm 1 Count graphlets of 3 nodes in a graph G = (V, E)

1: CZ(G) +— 0,7 € {1,2 3}

2: for all edges (vi,v2) € E (illustrated by black nodes in Figure 2.3) do

3 c1(G) = c1(G) + [N (v1) NN (v2)| > red nodes

4 (Q) + c2(Q) + [ N(v1) \ (N (v2) U {va})] > green nodes

5: CQ(G) +— c2(G) + | N(v2) \ (N (v1) U{w1})] > green nodes

6:  c3(G) = c3(G) + (n— | N(v1) UN (v2)]) > white nodes

T: end for

8: c1(GQ) + c1(G)/6 > as g1 has 3 undirected edges
9: c2(Q) + 2(G)/4 > as g2 has 2 undirected edges
10: ¢c3(G) + c3(G)/2 > as gs has 1 undirected edge
11: c4(G) < (3) = [c1(G) + c2(G) + ¢3(G)]

Figure 2.3.: Counting graphlets of size 3.

Enumerating all pairs of edges originating at v; is a O(d) effort. For each pair (vy, v2),
determining the cardinality of the sets N(v1) N N (v2), N(v1) \ (N(v2) U {vz}) and
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Figure 2.4.: All graphlets of size 4.

N(v2) \ (M(v1) U{v1}) has O(d) time complexity as well. As to the cardinality of the
set V'\ (M(v1) UN(v2)), it can be easily computed by observing that it is equal to
n — | N(v1) UN(v2)]. This leads to the overall complexity of O(d?).

Note that counting graphlets in the proposed way would imply counting them twice
as many times as the number of edges they contain. To deal with this, we need to divide
the final counts by twice the number of edges per graphlet.

We now consider graphlets of size 4.

Modulo isomorphism there are 11 graphlets of size 4 (see Figure 2.4). As in the
previous case, we will first count all graphlets which contain at least one edge.

Assume we want to count subgraphs containing an edge (vi,v3). As before, for vy
there are | N (v1)| choices and for each pair (v1,v2) we have 4 cases for the third node
v3: v3 € N(v1) NN (v2), v3 € N(v1) \ (N (v2) U {va}), vz € N(v2) \ (M(v1) U{v1}), and
U3 §é N(vl) UN(UQ).

vs from the first three cases can be enumerated in O(d). And for each triplet (v, ve, v3)
we can count subgraphs of size 4 containing this triplet in O(d), as we can compute
cardinalities of all intersections of NV (v1), N (v2) and N (v3) in O(d).

As to vs in the fourth case, there are 2 types of graphlets which arise in this case and
do not arise in previous cases: graphlets gg and g19. For fixed v; and v it is possible to
obtain the number of graphlets of type g9 by counting the number of edges not adjacent
to any of the nodes v € N(v1) UN (v2). This quantity is equal to m 4+ 1 — | N (v1)| —
| N (vg)| — K, where m is the number of edges in the graph which can be precomputed,
| NV (v1)] + | N (v2)] — 1 is the number of edges adjacent to v or vy and K is the number
of edges adjacent to nodes in (N (v1) UN (v2))\ {v1,v2}. The latter equals to the number
of previously counted graphlets with the same vy and ve, where vs and v4 are connected
(i.e., where vg € N (v3)). Once co(G) is computed, we obtain ¢19(G) by subtracting co(G)
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from ("_‘N (v12)UN @21} which is the number of pairs of nodes outside A(v1) U N (v2).
The fourth case does not increase the runtime complexity of previous cases and remains
O(d3) per v;.

At last, c11(G) = (1) — 212, i(G).

Note that, as in the case of graphlets with 3 nodes, we will count each graphlet at least
twice as many times as the number of edges it contains. Additionally, in case v3 and v4 are
both neighbors of v1 or vg (that is, all configurations except v4 € N (v3)\ (N (v1)UN (v2))),
the graphlet spanned by these four nodes will be counted twice per fixed (vq,v2). To
avoid this, we divide the counts of these graphlets by 2.

For the proof for graphlets of size 5, please refer to Appendix B.

’ data set H size \ classes \ # nodes \ # edges ‘
MUTAG 188 | 2 (125 vs. 63) 17.7 38.9
PTC 344 | 2 (192 vs. 152) 26.7 50.7
ENZYMES 600 | 6 (100 each) 32.6 124.3
D&D 1178 | 2 (691 vs. 587) 284.4 1921.6

Table 2.1.: Statistics on used data sets.

2.4. Experiments

To evaluate our approaches, we perform two sets of experiments. First we compare the
graphlet kernel to other state-of-the-art graph kernels on unlabeled graph benchmark
data sets (Section 2.4.1). Next, we experimentally verify our argument from Section 2.3
that the sampling approach of Borgwardt et al. [2007] suffers in sparse graphs (Section
2.4.2).

2.4.1. Graph classification

We here evaluate the performance of the graphlet kernel and compare it with state-
of-the-art graph kernels in terms of runtime, scalability, and prediction accuracy. Our
baseline comparison methods are the classic random walk kernel of Gartner et al. [2003],
Kashima et al. [2004] and Vishwanathan et al. [2010], that counts common walks in two
graphs, and the shortest path kernel of Borgwardt and Kriegel [2005], that compares
shortest path lengths in two graphs. Both these kernels work on generic graphs, and are
shown to perform competitively in their respective publications. For the random walk
kernel we uniformly set the decay factor A = 10~%. For the shortest path kernel we used
the Dirac  kernel to compare shortest-path distances.
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Figure 2.5.: Prediction accuracy on unlabeled graph classification benchmark data sets.
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RW and SP denote the random walk and the shortest path kernels. GK Ak
all and GK Ck respectively denote the graphlet kernel with exact counting
of all and only connected graphlets. GK Ak m denotes the graphlet kernel
computed using m samples of size k graphlets. We here only report results
for kernels whose computation took less than 24 hours.
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Figure 2.6.: CPU runtime for kernel computation on unlabeled graph classification
benchmark data sets (implemented in Matlab). The color codes in each
of these plots are the same as in the corresponding plots in Figure 2.5.
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Data sets We perform experiments on three different well-known, publicly available
data sets, namely MUTAG, PTC, and ENZYMES. We also test our kernels on a large
protein function prediction data set from Dobson and Doig [2003], which we will refer
to as D&D. Table 2.1 provides a summary of data sets used in our experiments.

Experimental setup We test different variants of graphlet kernels by varying the
graphlet sizes k € {3,4,5}, the types of graphlets we consider (connected vs. all), and
the sample size for sampling-based kernels (different values of precision, €, and confidence,
J).

To compute the 3-graphlet kernel based on sampling, we drew samples of 1016 graphlets
(corresponding to € = 0.1, § = 0.1), 1154 graphlets (e = 0.1, § = 0.05), 4061 graphlets
(e = 0.05, § = 0.1) and 4615 graphlets (¢ = 0.05, 6 = 0.05). Analogously, for kernels
based on graphlets of size 4 and 5 we used four sample sizes according to the same values
of € and §: {1986, 2125, 7942, 8497} and {5174, 5313, 20696, 21251}, respectively.

We use a binary C-Support Vector Machine (SVM) to evaluate the accuracy in graph
classification yielded by our kernels. We perform 10-fold cross validation, and for each
fold we independently tune the value of C, the SVM regularization parameter, by consid-
ering the training data from that fold. This process is averaged over 10 random splits of
the data. We report classification accuracies and runtimes for kernel matrix computation
in Figures 2.5 and 2.6.

Results On MUTAG, PTC and ENZYMES, modeled as unlabeled graphs, graphlet
kernels based on exactly counting all graphlets reached the highest accuracy. On D&D
it is either the graphlet kernel counting all graphlets or the one counting connected
graphlets that achieve the best accuracy. Graphlet kernels based on sampling yield
systematically worse but comparable results. The classification accuracies they reach
are comparable to that of the shortest path kernel on MUTAG and ENZYMES and
better on PTC. In all cases, all graphlet kernels comprehensively outperform random
walk kernels.

In terms of runtime, 4 and 5-node graphlet sampling and 5-node graphlet counting are
expensive and slower than the shortest path and the random walk kernels on small data
sets such as MUTAG and PTC. As graph size increases (ENZYMES), graphlet sampling
gets more competitive: Sampling 1986 and 2125 graphlets of size 4 on ENZYMES is
already faster than computing shortest path and random walk kernels. On D&D, none
of the latter kernels finishes computation within 24 hours, nor does the counting of all
5-node graphlets. The graphlet kernels based on sampling manage to compute kernel
matrices on D&D in less than 2 hours and 7 minutes for 5-node graphlets.

Kernels based on counting graphlets in bounded degree graphs are fast to compute
for MUTAG, PTC, ENZYMES, but less so for D&D. This is due to the fact that the
first three data sets have a much lower maximum degree than D&D. In terms of accu-
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racy, on PTC and D&D they are comparable with other kernels, while on MUTAG and
ENZYMES they perform worse. Disconnected graphlets seem to be essential for correct
classification on these data sets.

We note in the passing that even though our graphlet kernels do not exploit any
domain knowledge and operate on simple unlabeled graph models of proteins, on the
D&D data set the classification accuracy they obtain is comparable with published work
that uses heavily annotated vector or graph models of proteins [Dobson and Doig, 2003,
Borgwardt et al., 2005].

2.4.2. Sparse graphs and ¢, deviation

In this section, we empirically study the behavior of the sampling approach from Section
2.2 with respect to the sparsity of graphs. Our hypothesis is that the estimation quality
of the distribution of connected graphlets decreases as graphs become sparse, even if the
¢1 deviation of the empirical distribution from the true distribution is guaranteed with
high confidence to be smaller than a given e independently from the size of the graphs.

Experimental setup We assessed the ¢; distances between the empirical and true
graphlet distributions (on all and on only connected graphlets) on randomly generated
graphs of different density levels. For a graph of size n, its density is defined as the
number of edges of the graph divided by n(n — 1)/2. We varied the graph density
parameter ¢ in {0.05,0.1,...,0.5}. For each value of ¢, we generated 10 random graphs
of density ¢, each of size 100. For graphlet sizes k = 3 and 4, we evaluated the true
and empirical graphlet distributions on these graphs. The empirical distributions were
estimated with the sample size corresponding to ¢ = 0.1 and § = 0.1, that is, 1016 and
1986 for k = 3 and k = 4 respectively.

The true and empirical distributions on connected graphlets were obtained by renor-
malizing the components corresponding to connected graphlets in the complete graphlet
distributions.

For each value of graph density ¢, we report the mean and the standard deviation of the
10 ¢; distances corresponding to 10 graphs with density c¢. We present our experimental
results in Figure 2.7.

Results First, we observe that both for £ = 3 and k = 4, the overall ¢; deviation is
well under e = 0.1 no matter how sparse the graphs are. This agrees with the theory
discussed in Section 2.2. However, when we consider the distributions restricted to only
connected graphlets, we clearly see a deterioration in the distribution approximation
quality as graphs become sparse. This deterioration is significantly more dramatic with
larger graphlets. In the case of graphlets of size 4, we see that for sparse graphs the /4
deviation between the empirical and true distributions on connected graphlets can be
more than 20 times worse compared to the overall deviation.
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Figure 2.7.: The quality of empirical distributions on all graphlets and on connected

graphlets.

In the light of these observations, we can reinterpret the experimental results in Figure
2.5 from the previous section. In all three plots in Figure 2.5, for data sets MUTAG,
PTC, and ENZYMES we observe that classification accuracy improves with the sample
However, on D&D we see almost no difference in classification accuracy when
considering different sample sizes. This is likely to be caused by the sparsity of the large

size.
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graphs in D&D: In fact, the average density of graphs in MUTAG, PTC and ENZYMES
is of 0.14, 0.12 and 0.16 respectively, while it only amounts to 0.03 in D&D.

To summarize, the sampling approach presented in Section 2.2 is well suited for graphs
that are sufficiently dense for ¢ distance to be an appropriate quality measure of the
empirical distribution of graphlets. However, most large real-world graphs are too sparse
for this condition to hold. In contrast, the exact counting approach that we propose is
most efficient when the graphs are sparse. Therefore these two approaches can be viewed
as complementary to each other.

2.5. Summary

In this chapter, we proposed efficiently computable kernels for unlabeled graphs, based
on counting subgraphs of limited size (or graphlets) in a graph. Straightforward enumer-
ation of graphlets being prohibitively expensive, Borgwardt et al. [2007] had proposed
a sampling scheme to approximate graphlet distributions with a given precision and
confidence. We here presented efficient algorithms for exactly counting graphlets. We
experimentally showed that when graphs are sparse, the measure of precision used by
Borgwardt et al. [2007] does not capture well the approximation quality of the distribu-
tion of connected graphlets. Our new algorithms for exact counting, in contrast, exploit
the sparsity of graphs.

In our graph classification experiments, graphlet kernels scale to large graphs that
could not be tackled by existing kernels for unlabeled graphs, and yield competitive
classification accuracy with the state of the art. Our methods for representing unlabeled
graphs with their graphlet distributions are not limited to being used in graph kernels,
but can be applied in a variety of problems in learning on graph-structured data. A
challenge for future research would be to take into account node and edge labels of
graphs when counting graphlets.

45






3. Weisfeiler-Lehman kernels

Chapter 2 presented efficient sampling and counting schemes for graphlets, which enable
us to compare large unlabeled graphs. However, it is not straightforward to extend them
to labeled graphs, especially when the label alphabet is large. In fact, for a given label
alphabet ¥, the number of graphlets of size k is O(ni|X|*), where ny is the number
of distinct unlabeled graphlets of size k. In addition, when sampling labeled graphlets,
the sampling complexity will depend on a quantity in O(ng|%|¥) instead of ng, which
may result in prohibitive runtimes if we require reasonable guarantees on the quality of
the empirical distribution, and if £ > 3. To sum up, we believe that labeled graphlet
comparison is tractable for small alphabets of labels and small k£ such as £ = 3. For
larger graphlets, it may only be feasible for small label alphabets. As we discussed in
Section 1.5.7, nor are other graph kernels able to exploit label information and scale up
to large graphs at the same time.

In this chapter, we develop a fast subtree kernel that scales up to large, labeled graphs
(Section 3.2). It uses ideas from the Weisfeiler-Lehman test of isomorphism [Weisfeiler
and Lehman, 1968], that we introduce in Section 3.1. The computational complexity of
our subtree kernel is linear in the number of edges and does not depend on the alphabet
size. We study the link of our proposed kernel with the classic subtree kernel by Ramon
and Gértner [2003] in Section 3.2.3. In Sections 3.3 and 3.4 we present a generalization
of our subtree kernel that includes all graph kernels that consider node labels, and some
of its instances. In Section 3.5 we experimentally compare our new kernel with the state
of the art graph kernels. We present two extensions of our fast subtree kernel in Sections
3.6 and 3.7.

3.1. The Weisfeiler-Lehman test of isomorphism

Our graph kernels use concepts from the Weisfeiler-Lehman test of isomorphism [We-
isfeiler and Lehman, 1968|, more specifically its 1-dimensional variant, also known as
“naive vertex refinement”. Assume we are given two graphs G' and G’ and we would like
to test whether they are isomorphic. The 1-dimensional Weisfeiler-Lehman test proceeds
in iterations, which we index by ¢ and which comprise the steps given in Algorithm 2.
The key idea of the algorithm is to augment the node labels by the sorted set of
node labels of neighboring nodes, and compress these augmented labels into new, short
labels. These steps are then repeated until the node label sets of G and G’ differ, or
the number of iterations reaches n. See Figure 3.1, a-d, for an illustration of these steps
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(note however, that the two graphs in the figure would directly be identified as non-
isomorphic by the Weisfeiler-Lehman test, as their label sets are already different in the
beginning).

Sorting the set of multisets allows for a straightforward definition and implementation
of f for the compression of labels in step 4: we keep a counter variable for f that records
the number of distinct strings that f has compressed before. f assigns the current value
of this counter to a string if an identical string has been compressed before, but when we
encounter a new string, we increment the counter by one and f assigns its value to the
new string. The sorted order of the set of multisets guarantees that all identical strings
are mapped to the same number, because they occur in a consecutive block. However,
note that the sorting of the set of multisets is not required for defining f. Any other
injective mapping will give equivalent results. The alphabet 3 has to be sufficiently large
for f to be injective. For two graphs, |X| = 2n suffices.

The Weisfeiler-Lehman algorithm terminates after step 4 of iteration 7 if {l;(v)|v €
V1 #£ {l;(v")| v/ € V'}, that is, if the sets of newly created labels are not identical in G
and G’. The graphs are then not isomorphic. If the sets are identical after n iterations,
it means that either G and G’ are isomorphic, or the algorithm has not been able to
determine that they are not isomorphic [see Cai et al., 1992, for examples of graphs that
cannot be distinguished by this algorithm or its higher-dimensional variants]. As a side
note, we mention that the 1-dimensional Weisfeiler-Lehman algorithm has been shown
to be a valid isomorphism test for almost all graphs [Babai and Kucera, 1979].

Note that in Algorithm 2 we used the same node labeling functions ¢, lg, . . . , I, for both
G and G’ in order not to overload the notation. We will continue using this notation
throughout this chapter and assume without loss of generality that the domain of these
functions ¢, Iy, ..., I, is the set of all nodes in our data set of graphs, which corresponds
to V.UV’ in the case of Algorithm 2.

Complexity The runtime complexity of the 1-dimensional Weisfeiler-Lehman algo-
rithm with A iterations is O(hm). Defining the multisets in step 1 for all nodes is an
O(m) operation. Sorting each multiset is an O(m) operation for all nodes. This effi-
ciency can be achieved by using counting sort, which is an instance of bucket sort, due
to the limited range of the elements of the multiset. The elements of each multiset are
a subset of {f(s;(v))|v € V'}. For a fixed 4, the cardinality of this set is upper-bounded
by n, which means that we can sort all multisets in O(m) by the following procedure:
We assign the elements of all multisets to their corresponding buckets, recording which
multiset they came from. By reading through all buckets in ascending order, we can then
extract the sorted multisets for all nodes in a graph (see the pseudocode in Algorithm 3).
The runtime is O(m) as there are O(m) elements in the multisets of a graph in iteration
i. Sorting the resulting strings is of time complexity O(m) via radix sort [see Mehlhorn,
1984, Vol. 1, Section I1.2.1]. The label compression requires one pass over all strings and
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Algorithm 2 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination
o Ifi =0, set lo(v) + £(v) ! and i + 1.
e For i > 0, assign a multiset-label M;(v) to each node v in G and G’ which
consists of the multiset {l;_1(u)lu € N(v)}.
2: Sorting each multiset
e Sort elements in M;(v) in ascending order and concatenate them into a string
si(v).
e Add [;—1(v) as a prefix to s;(v) and call the resulting string s;(v).
3: Label compression
e Sort all of the strings s;(v) for all v from G and G’ in ascending order.
e Map each string s;(v) to a new compressed label, using a function f : ¥* — %
such that f(s;(v)) = f(s;(w)) if and only if s;(v) = s;(w).
4: Relabeling
e Set [;(v) := f(si(v)) for all nodes in G and G'.

their characters, that is O(m). Hence all these steps result in a total runtime of O(hm)
for h iterations.

Algorithm 3 Sorting each multiset at iteration 4
1: for all graph G do

2 for all node u in graph G do
3 for all node v in N(u) do
4 append the pair (G, u)? to bucket I;_1(v)
5 end for

6: SZ(U) — li_l(u)

7. end for

8: end for

9: for k=1— |X| do

10:  for all (G,v) in bucket k do
11: append k to s;(v) in G

12:  end for

13: end for

'For unlabeled graphs, node labels lo(v) can be initialized with letters corresponding one to one to
node degrees | N (v)].

2By G in the pair (G,u) we only mean the identifier of the graph G in the graph data set, not the
whole data structure containing its nodes and edges.
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Link with subtree patterns Note that the compressed labels [;(v) correspond to
subtree patterns of height i rooted at v (see Figure 1.3 for an illustration of subtree
patterns).

3.2. The Weisfeiler-Lehman subtree kernel

Based on the Weisfeiler-Lehman relabeling, presented in Algorithm 2, we define the
Weisfeiler-Lehman subtree kernel below.

Definition 3.2.1 Let G and G’ be graphs. Define ¥; C X as the set of letters that occur
as node labels at least once in G or G’ at the end of the i-th iteration of the Weisfeiler-
Lehman algorithm. Let X be the set of original node labels of G and G'. Assume all ¥;
are pairwise disjoint. Without loss of generality, assume that every ¥; = {oi1,. .., 0'“21.‘}
is ordered. Define a map ¢; : {G,G'} x ; — N such that ¢;(G,0;5) is the number of
occurrences of the letter o;; in the graph G.

The Weisfeiler-Lehman subtree kernel on two graphs G and G’ with h iterations is
defined as

h h h
ki(/V)Lsubt’ree (G’ G/) = <¢$/V)Lsubtree (G) ’ qb%/V)Ihsubtree (G/)> ) (3 1)

where

S, cuptree (G) = (c0(G001), -+ 0(G 00150 )s -+ (Gy Tm1)s -+ cn(G oy, ),

and

S e (@) = (c0(G,001), -, c0(Gly00s0))s - 2 n( Gy om1)s - s en(G s, )-

That is, the Weisfeiler-Lehman subtree kernel counts common original and compressed
labels in two graphs. See Figure 3.1 for an illustration.

Theorem 3.2.2 The Weisfeiler-Lehman subtree kernel on a pair of graphs G and G’
can be computed in time O(hm).

Proof This follows directly from the definition of the Weisfeiler-Lehman subtree kernel
and the runtime complexity of the Weisfeiler-Lehman test, as described in Section 3.1. B

While based on subtree patterns that, as random walks, contain repetitions of nodes
and edges, the Weisfeiler-Lehman subtree kernel is not prone to tottering thanks to the
rich structure of the subtree patterns resulting from the Weisfeiler-Lehman relabeling.
Tottering in random walk kernels stems from the following fact: Given a walk of length
i in a graph, extending it to a walk of length ¢ + 1 may cover the same subgraph that
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Ist iteration
Result of steps 1 and 2: multiset-label determination and sorting

S8 3EH

Given labeled graphs G and G’

G
b
Ist iteration 1st iteration
Result of step 3: label compression Result of step 4: relabeling

149 —— 6 3245 ——

23 —— 41135 —— 1N
235 —— 8 41235 —— 12
245 —— 9 5234 —— 13

End of the Ist iteration
Feature vector representations of G and G’

¢ (G)=21,1,1,1,20,1,01,1,0,1)

WLsubtree

(O] 5

(6D =(1,21,1,1,1,1,0,1,1,0,1, )
Counts of Counts of

original compressed
node labels node labels
M N _ (D ) N
kW Lsubtr “e(G’G )_<¢WLSL¢btree(G)’ (pWLsuhtree(G )>_1 1 :

e

Figure 3.1.: Illustration of the computation of the Weisfeiler-Lehman subtree kernel with
h =1 for two graphs. Here {1,2,...,13} € X are considered as letters. Note
that compressed labels denote subtree patterns: For instance, if a node has
label 8, this means that there is a subtree pattern of height 1 rooted at this
node, where the root has label 2 and its neighbors have labels 3 and 5.

was covered by the walk of length i 3. As the extension of a walk of length i to length
1+ 1 amounts to adding to it at most one node and one edge previously not covered

3We say that a walk (or a subtree pattern) covers a subgraph G’ = (V’, E’) of a graph G if V/ and E’
are the sets of nodes and edges contained in the walk (respectively, in the subtree pattern).
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by the walk, the probability of tottering is high when we consider walks. In the case of
the Weisfeiler-Lehman subtree kernel, tottering would be equivalent to the equality of
subgraphs covered by subtree patterns of heights ¢ and i + 1 rooted at a node v. As we
here extend subtree patterns of height i to height ¢ + 1 by considering all neighbors of
all nodes at distance i from the root, this equality can only occur if all O(d**!) of these
nodes are already covered by the subtree pattern of height i (where d is the maximum
degree of the graph). This can only happen if the longest path between v and any other
node in the connected component containing v is at most 7. To summarize, while any
walk of any length ¢ > 1 is likely to totter in any undirected graph with at least one edge,
a subtree pattern rooted at a node v will totter only if its height is not smaller than the
longest path between v and any other node in the connected component containing v.
For reasonable values of i, this is unlikely to happen often in graphs that are not mere
collections of small connected components.

3.2.1. Computing the Weisfeiler-Lehman subtree kernel on many
graphs

To compute the Weisfeiler-Lehman subtree kernel on N graphs, we propose Algorithm
3.2.1, which improves over the naive, N2-fold application of the kernel from Definition
3.2.1. We now process all N graphs simultaneously and conduct the steps given in
Algorithm 3.2.1 on each graph G in each of the h iterations.

Algorithm 4 One iteration of the Weisfeiler-Lehman subtree kernel computation on N graphs

1: Multiset-label determination
e Assign a multiset-label M;(v) to each node v in G which consists of the multiset
{li1(u)lu € N(v)}.
2: Sorting each multiset
e Sort elements in M;(v) in ascending order and concatenate them into a string
si(v).
e Add [;—1(v) as a prefix to s;(v).
3: Label compression
e Map each string s;(v) to a compressed label using a hash function f : ¥* — ¥
such that f(s;(v)) = f(si(w)) if and only if s;(v) = s;(w).
4: Relabeling
e Set [;(v) := f(s;(v)) for all nodes in G.

As before, ¥ is assumed to be sufficiently large to allow f to be injective. In the case
of N graphs and h iterations, a ¥ of size Nn(h + 1) suffices.

One way of implementing f is to sort all neighborhood strings using radix sort, as
done in step 4 in Algorithm 2. The resulting complexity of this step would be linear
in the sum of the size of the current alphabet and the total length of strings, that is

52



3.2. THE WEISFEILER-LEHMAN SUBTREE KERNEL

O(Nn+ Nm) = O(Nm). An alternative implementation of f would be by means of a
perfect hash function.

Theorem 3.2.3 For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations
on all pairs of these graphs can be computed in O(Nhm + N2hn).

Proof Naive application of the kernel from Definition 3.2.1 for computing an N x N
kernel matrix would require a runtime of O(N2hm). One can improve upon this runtime
complexity by computing gi)%)Lsubtree explicitly for each graph and only then taking
pairwise inner products.

Step 1, the multiset-label determination, still requires O(Nm). Step 2, the sorting of
the elements in each multiset, can be done via a joint bucket sort (counting sort) of all
strings, requiring O(Nn + Nm) time.

The effort of computing gb%)L subtree 00 all N graphs in h iterations is then O(Nhm),
assuming that m > n. To get all pairwise kernel values, we have to multiply all feature
vectors, which requires a runtime of O(N2hn), as each graph G has at most hn non-zero
entries in qﬁ%)L subtree(G)- In Section 3.5.1, we empirically show that the first term Nhm
dominates the overall runtime in practice. |

While our Weisfeiler-Lehman subtree kernel matches neighborhoods of nodes in a
graph exactly, one could also think of other strategies of comparing node neighbor-
hoods, and still retain the favourable runtime of our graph kernel. In research that was
published in parallel to ours, Hido and Kashima [2009] present such an alternative ker-
nel based on node neighborhoods, which uses hash functions and logical operations on
bit-representations of node labels and which also scales linearly in the number of edges.
The Morgan index [Morgan, 1965] is another way of summarizing information contained
in the neighborhood of a node, and has been used by Mahé et al. [2004] in the context
of graph kernels.

3.2.2. The Ramon-Gartner subtree kernel

The first subtree kernel on graphs was defined by Ramon and Gértner [2003]. The
Ramon-Géartner subtree kernel with subtree height h compares all pairs of nodes from
graphs G = (V, E,¢) and G' = (V', E',{) by iteratively comparing their neighborhoods:
kg (GG =3 3 kraa(v,v),
veV o' eV’
where

; N 5(6(0), L)), i h =0
RG7h(v’ v ) - )\yAvlé(é(U), 5(1}/)) ZREM(U,U’) H(w,w’)ER kRG’,h—l(w7 w/)> it h >0,
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0 is an indicator function that equals 1 if its arguments are equal, 0 otherwise, A, and
Ay are weights associated with nodes v and v/, and

M(v,v') = {R C N ) x N@)|(V(u, o), (w,0) € R:u=w <o =)
AV (u,u') € R : 0(u) = e(u'))}. (3.2)

Said differently, M (v,v’) is the set of exact matchings of subsets of the neighborhoods
of v and v'. Each element R of M(v,v’) is a set of pairs of nodes from the neighborhoods
of v € V and v/ € V' such that nodes in each pair have identical labels and no node
is contained in more than one pair. Thus, intuitively, krg iteratively considers all
matchings M (v,v") between neighbors of two identically labeled nodes v from G and
v/ from G’. Taking the parameters \, and )\, equal to a single parameter A\ results in
weighting each pattern by A raised to the power of the number of nodes in the pattern.

The runtime complexity of the subtree kernel for a pair of graphs is O(n2h4%), includ-
ing a comparison of all pairs of nodes (n?), and a pairwise comparison of all matchings
in their neighborhoods in O(4%), which is repeated in h iterations. h is a multiplicative
factor, not an exponent, since one can implement the subtree kernel via dynamic pro-
gramming, starting with k; and computing kj, from kp_;. For a data set of N graphs,
the resulting runtime complexity is then in O(N2n2h44).

3.2.3. Link to the Weisfeiler-Lehman subtree kernel

The Weisfeiler-Lehman subtree kernel can be defined in a recursive fashion which eluci-
dates its relation to the Ramon-Gartner kernel.

Theorem 3.2.4 The kernel k:?(ngg defined as

h
k’/(‘ZB:(G’ G/) = Z Z Z krec,i(vavl)a (33)

i=0 veV v'eV’
where
Erec,i(v,v") =
d(l(v), L"), ifi=0
kreei—1(v, V") maxge p(v,0) H(w,w/)eR kreci—1(w,w’), ifi>0 and M #0
0, ifi>0and M=0,

(3.4)

6 s the indicator function again, and
M(v,v') ={R CN () x N()| [R] = [N ()| = [N (V)]

A (Y(u, ), (w,w') € R:u=weu =w)A N (uu) e R:l(u) = E(u’))},
(3.5)
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is equivalent to the Weisfeiler-Lehman subtree kernel k;I(/I};)Lsubtree'

In other words, M(v,v") is the set of exact matchings of the neighborhoods of v
and v’. It is nonempty only in the case where the neighborhoods of v and v" have
exactly the same size and the multisets of labels of their neighbors {/(u)lu € N (v)}
and {¢(u')|u’ € N(v')} are identical. Note that kyeci(v,v’) only takes binary values: it
evaluates to 1 if the subtree patterns of height i rooted at v and v’ are identical, and to
0 otherwise.

Proof We prove this theorem by induction over h.
Induction initialisation h = 0:

[Zol
kl(/g)Lsubt’ree = <¢$/?/)Lsubtree(G)’ ¢$/?/)Lsubtree(G)> = Z CO(G’ Uoj)CO(G/’ UOj) =

j=1
SNl _ KO,

veV v'eV!

where Y is the initial alphabet of node labels and ¢ (G, 0¢;) is the number of occurrences

(h)

of the letter og; as a node label in G. The equality follows from the definitions of kpe

and kl(/V)Lsubtree

Induction step h — h + 1: Assume that k:(Wh)L subtree = kffég Then

r}c}jl Z Z kTeCh+1 v, v’ +ZZ Z krecz U U (36)

veV ' eV’ =0 veV v’ eV’
= (h) (h+1)
h h+1
Z chJFl G Oh+1 J)ch+1(G O-hJFLJ) + kWLsubtree = kWLsubtree’ (37)
J=1

where the equality of (3.6) and (3.7) follows from the fact that kyecpy1(v,v’) =1 if and
only if the labels and neighborhoods of v and v’ are identical, that is, if f(sp11(v)) =

f(sne1(v')). u

Theorem 3.2.4 highlights the following differences between the Weisfeiler-Lehman and
the Ramon-Gértner subtree kernels: In Equation (3.3), Weisfeiler-Lehman considers all
subtrees up to height h, whereas the Ramon-Gértner kernel looks at subtrees of exactly
height h. In Equations (3.4) and (3.5), the Weisfeiler-Lehman subtree kernel checks
whether the neighborhoods of v and v' match exactly, while the Ramon-Gértner kernel
considers all pairs of matching subsets of the neighborhoods of v and v’ in Equation (3.2).
In our experiments, we examine the empirical differences between these two kernels in
terms of runtime and prediction accuracy on classification benchmark data sets (Section
3.5.2).
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3.3. The general Weisfeiler-Lehman kernels

In this section, we define the Weisfeiler-Lehman graph sequence and the general graph
kernels based on them. We then (in Section 3.4) prove that this kernel generalizes the
Weisfeiler-Lehman subtree kernel (Section 3.2), and present two more instances of this
kernel, the Weisfeiler-Lehman edge kernel (Section 3.4.2), and the Weisfeiler-Lehman
shortest path kernel (Section 3.4.3).

In each iteration i of the Weisfeiler-Lehman algorithm (see Algorithm 2), we get a
new labeling /;(v) for all nodes v. Recall that this labeling is concordant in G and G/,
meaning that if nodes in G and G’ have identical multiset labels, and only in this case,
they will get identical new labels. Therefore, we can imagine one iteration of Weisfeiler-
Lehman relabeling as a function r((V, E,[;)) = (V, E,l;+1) that transforms all graphs in
the same manner. Note that r depends on the set of graphs that we consider.

Definition 3.3.1 Define the Weisfeiler-Lehman graph at height i of the graph G =
(V,E,£) = (V,E,ly) as the graph G; = (V, E,l;). We call the sequence of Weisfeiler-
Lehman graphs

{G07 Gi,..., Gh} = {(V7E7 lO)v (‘/7 E7l1)7 cees (‘/a E, lh)}7
where Go = G and lg = £, the Weisfeiler-Lehman sequence up to height h of G.

Gy is the original graph, G1 = r(Gy) is the graph resulting from the first relabeling, and
so on. Note that neither V, nor E ever change in this sequence, but we define it as a
sequence of graphs rather than a sequence of labeling functions for the sake of clarity of
definitions that follow.

Definition 3.3.2 Let k be any kernel for graphs, that we call the base kernel. Then the
Weisfeiler-Lehman kernel with h iterations with the base kernel k is defined as

KD (G, G') = K(Go, Gl) + k(G1,GY) + ... + k(G Gy, (3.8)

where h is the number of Weisfeiler-Lehman iterations and {Go, ..., Gr} and {Gj, ..., G} }
are the Weisfeiler-Lehman sequences of G and G’ respectively.

Theorem 3.3.3 Let the base kernel k be any positive semidefinite kernel on graphs.
Then the corresponding Weisfeiler-Lehman kernel kl(,l};)L s positive semidefinite.

Proof Let ¢ be the feature mapping corresponding to the kernel k:
k(Gi, G7) = (9(Gy), 9(GY)).-

We have ‘ . ‘ ‘
k(Gi,GY) = k(r'(G),r'(G") = (¢(r'(G)), ¢(r'(G")))-
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Let us define the feature mapping ¥(G) as ¢(r*(G)). Then we have

hence k is a kernel on G and G’ and k‘y[;)L is positive semidefinite as a sum of positive
semidefinite kernels.
|

This definition provides a framework for applying all graph kernels that take into
account categorical node labels to different levels of node-labeling of graphs, from the
original labeling to more and more fine-grained labelings for growing h. This enriches the
set of extracted features. For example, while the shortest path kernel compares shortest
path lengths between identically labeled source and sink nodes on the original graphs,
it will compare shortest path lengths between the roots of identical subtree patterns of
height 1 on Weisfeiler-Lehman graphs with h = 1.

For some base kernels one may be able to exploit the fact that the graph structure
does not change over the Weisfeiler-Lehman sequence to do some computations only
once instead of repeating it A times. One example of such a base kernel is the shortest
path kernel: As shortest path lengths in a graph G are the same as shortest path lengths
in corresponding Weisfeiler-Lehman graphs G;, we can precompute them. One should
bear in mind that for graph kernels k£ that depend on the size of the alphabet of node
labels, computing k(G;, G}) will accordingly get increasingly expensive, or, in some cases,
cheaper, as a function of growing i.

Note that it is possible to put nonnegative real weights ; on k(G;, G%), i = {0,1,...,h},
to obtain a more general definition of the Weisfeiler-Lehman kernel:

K (G, @) = apk(Go, Go) + ark(G1, GY) + . . . + ank(Gh, G).
In this case, kl(/‘]ﬁ)L will still be positive semidefinite, as a positive linear combination of
positive semidefinite kernels.

Note on computing Weisfeiler-Lehman kernels in practice In the inductive
learning setting, we compute the kernel on the training set of graphs. For any test graph
that we subsequently need to classify, we have to map it to the feature space spanned
by original and compressed labels occurred in the training set. For this purpose, we will
need to maintain record of the data structures that hold the mappings l;(v) := f(si(v))
for each iteration i and each distinct s;(v). This requires O(Nmh) memory in the worst
case.

In contrast, in the transductive setting, where the test set is already known, we can
compute the kernel matrix on the whole data set (training and test set) without having
to keep the mappings mentioned above.
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3.4. Special cases of the Weisfeiler-Lehman kernel

In this section, we present instances of the general Weisfeiler-Lehman kernel.

3.4.1. The Weisfeiler-Lehman subtree kernel

The following theorem shows that the Weisfeiler-Lehman subtree kernel (3.1) from Sec-
tion 3.2 is indeed a special case of the general Weisfeiler-Lehman kernel (3.8).

Theorem 3.4.1 Let the base kernel k be a function counting pairs of matching node

labels in two graphs:
=D IRIGONIC
veV o' eV’

where § is the Dirac kernel, that is, it is 1 when its arguments are equal and 0 otherwise.
Then kI (G, G = kD), . (G, G) for all G,G'.
Proof It is easy to notice that for each ¢ € {0,1,...,h} we have

%]

ZZ& z;CZGU” )ei(G' o).
=

veV v eV’

Adding up these sums for all i € {0,1,...,h} gives us l-cg;)L(G, G = kg;)Lsubtme(G, G). nm

3.4.2. The Weisfeiler-Lehman edge kernel

The Weisfeiler-Lehman edge kernel is another instance of the Weisfeiler-Lehman kernel
framework. In the case of graphs with unweighted edges, we consider the base kernel
that counts matching pairs of edges with identically labeled endpoints (incident nodes)
in two graphs. In other words, the base kernel is defined as

ke = (¢5(G), 0(G"),

where ¢p(G) is a vector of numbers of occurrences of pairs (a,b), a,b € X, which

represent ordered labels of endpoints of an edge in G. Denoting (a,b) and (a’,d)

the ordered labels of endpoints of edges e and €’ respectively, and § the Dirac ker-

nel, kg can equivalently be expressed as >, .5 > cp 0(a,a’)d(b,b'). If the edges are

weighted by a function w that assigns weights, the base kernel kg can be defined as

Yoecr 2erep 0(a,a)d(b,b)ky(w(e), w(e')), where k, is a kernel comparing edge weights.
Following (3.8), we have

kWL eage = kB(Go, GY) + kp(G1,GY) + ... + kp(Gh, G)).
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Note on computational complexity If the edges are not weighted or labeled, the
number of possible ed%‘e features in each iteration equals the number of distinct ordered
pairs (a, b), that is, |E REDI P easy to notice by looking at the Algorithm 2 that for
each i € {0,...,h — 1}, We have |¥;| < |¥;41|. Therefore, if we compute the edge kernel
by first explicitly computing ¢ (G) for each G in the data set, the computation will
become increasingly expensive in each iteration i of the Weisfeiler-Lehman relabeling.

If edges are weighted and we use any general kernel to compare their weights, com-
puting the feature map explicitly may not be possible or practical any more. In this
case, the kernel can be computed by comparing edges pairwise in each pair of graphs.
Assuming that the kernel on a pair of weights can be computed in O(1), this results in
O(N?m?) operations per Weisfeiler-Lehman iteration.

Computing the feature map explicitly can also become problematic if the alphabet
size gets prohibitively large. In this case, one can either compute the kernel via pairwise
comparisons of edges in each pair of graphs as above (O(N?m?) per iteration), or via the
construction of the explicit feature map for each pair of graphs separately, potentially
yielding smaller alphabets ¥; than considering the whole data set of N graphs at once.

3.4.3. The Weisfeiler-Lehman shortest path kernel

Another example of the general Weisfeiler-Lehman kernels that we consider is the Weisfeiler-
Lehman shortest path kernel. Here we use a node-labeled shortest path kernel [Borg-
wardt and Kriegel, 2005] as the base kernel.

In the particular case of graphs with unweighted edges, we consider the base kernel
ksp of the form ksp(G,G") = (¢sp(G), psp(G')), where ¢psp(G) (resp. ¢sp(G')) is a
vector whose components are numbers of occurrences of triplets of the form (a, b, p) in
G (resp. G'), where a,b € X are ordered endpoint labels of a shortest path and p € Ny
is the shortest path length.

According to (3.8), we have

k‘(/g)L shortest path — kSP(G()? GO) + kSP(Gla Gl) -t kSP(Gha Glh)

Note on computational complexity Computing shortest paths between all pairs
of nodes in a graph can be done in O(n?) using the Floyd-Warshall algorithm. Con-
sequently, for N graphs, the complexity is of O(Nn3). This step does not have to be
repeated for every Weisfeiler-Lehman iteration, as the topology of a graph does not
change along the Weisfeiler-Lehman sequence. In case edges are not weighted, shortest
paths are determined in terms of geodesic distance and path lengths are integers. Denote
the number of distinct shortest path lengths occurring in the data set of graphs as P.
Let us first consider the Dirac (J) kernel on the shortest path lengths, which means
that the similarity of two paths in two graphs equals 1 if they have exactly the same
length and identically labeled endpoints and 0 otherwise. Then, in iteration ¢ of the

59



3. WEISFEILER-LEHMAN KERNELS

Weisfeiler-Lehman relabeling, we can bound the number of features, triplets (a,b,p)
where a,b € |X;| are ordered start and end node labels and p € Ny the shortest path
length, by WP As || < |Zi41] for each i € {0,...,h — 1}, if we compute the
shortest path kernel by first explicitly computing ¢sp(G) for each G in the data set,
the computation will get increasingly expensive in each iteration, as in the case of edge
kernels (Section 3.4.2).

Similarly to the Weisfeiler-Lehman edge kernel, in a more general setting where we
do not assume that edges are unweighted and use any kernel (not necessarily the Dirac
kernel) on shortest path lengths, or if the alphabet size gets prohibitively large, comput-
ing the feature map explicitly may become impossible or difficult. In this case, we can
compute the kernel by comparing shortest path lengths pairwise in two graphs. There-
fore, the runtime of computing ksp(G;, G}) will not depend on ¢ any more. It will scale
as O(n*) for each pair of graphs as we have to compare all pairs of the O(n?) shortest
path lengths, and O(N2n?) for the whole data set.

3.4.4. Other Weisfeiler-Lehman kernels

In a similar fashion, we can plug other base graph kernels into our Weisfeiler-Lehman
graph kernel framework. As node labels are the only aspect that differentiate Weisfeiler-
Lehman graphs at different resolutions (determined by the number of iterations), a clear
requirement that the base kernel has to satisfy for the Weisfeiler-Lehman kernel to make
sense is to exploit the labels on nodes. A non-exhaustive list of possible base kernels not
mentioned in previous sections includes the labeled version of the graphlet kernel [Sher-
vashidze et al., 2009], the random walk kernel [Gértner et al., 2003, Vishwanathan et al.,
2010], and the subtree kernel by Ramon and Gértner [2003].

3.5. Experiments

In this section, we first empirically study the runtime behavior of the Weisfeiler-Lehman
subtree kernel on synthetic graphs (Section 3.5.1). Next, we compare the Weisfeiler-
Lehman subtree kernel, the Weisfeiler-Lehman edge kernel, and the Weisfeiler-Lehman
shortest path kernel to state-of-the-art graph kernels in terms of kernel computation
runtime and classification accuracy on graph benchmark data sets (Section 3.5.2).

3.5.1. Runtime behavior of Weisfeiler-Lehman subtree kernel

Methods We empirically compared the runtime behavior of our two variants of the
Weisfeiler-Lehman subtree (WL) kernel. The first variant computes kernel values pair-
wise in O(N2?hm). The second variant computes the kernel values in O(Nhm + N2hn)
on the data set simultaneously. We will refer to the former variant as the “pairwise”
WL, and the latter as “global” WL.

60



3.5. EXPERIMENTS

Experimental setup We assessed the behavior on randomly generated graphs with
respect to four parameters: data set size IV, graph size n, subtree height h and graph
density c¢. The density of an undirected graph of n nodes without self-loops is defined as
the number of its edges divided by n(n — 1)/2, the maximal number of edges. We kept
3 out of 4 parameters fixed at their default values and varied the fourth parameter. The
default values we used were 10 for NV, 100 for n, 4 for A and 0.4 for the graph density
c. In more detail, we varied N in range {10,100,1000}, n in {100,200, ...,1000}, h in
{2,4,8} and ¢ in {0.1,0.2,...,0.9}.

For each individual experiment, we generated N graphs with n nodes, and inserted
edges randomly until the number of edges reached |cn(n—1)/2|. We then computed the
pairwise and the global WL kernel on these synthetic graphs. We report CPU runtimes
in seconds in Figure 3.2, as measured in Matlab R2008a on an Apple MacPro with
3.0GHz Intel 8-Core with 16GB RAM.

Results Empirically, we observe that the pairwise kernel scales quadratically with
data set size N. Interestingly, the global kernel scales linearly with IV for the considered
range of N. The N? sparse vector multiplications that have to be performed for kernel
computation with global WL do not dominate runtime here. This result on synthetic
data indicates that the global WL kernel has attractive scalability properties for large
data sets.

When varying the number of nodes n per graph, we observe that the runtime of both
WL kernels scales quadratically with n, and the global WL is much faster than the
pairwise WL for large graphs. This agrees with the fact that our kernels scale linearly
with the number of edges per graph, m, which is 0.47“”7_1) in this experiment.

We observe a different picture for the height h of the subtree patterns. The runtime
of both kernels grows linearly with h, but the global WL is more efficient in terms of
runtime.

Varying the graph density ¢, both methods show again a linearly increasing runtime,
although the runtime of the global WL kernel is much lower than the runtime of the
pairwise WL.

Across all different graph properties, the global WL kernel from Section 3.2.1 requires
less runtime than the pairwise WL kernel from Section 3.2. Hence the global WL kernel
is the variant of our Weisfeiler-Lehman subtree kernel that we use on the following graph
classification tasks.

3.5.2. Graph classification

We compared the performance of the WL subtree kernel, the WL edge kernel and the WL
shortest path kernel to several other state-of-the-art graph kernels in terms of runtime
and classification accuracy on graph benchmark data sets.
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Figure 3.2.: Runtime in seconds for kernel matrix computation on synthetic graphs using
the pairwise (red, dashed) and the global (green, solid) computation schemes
for the Weisfeiler-Lehman subtree kernel (Default values: data set size N =
10, graph size n = 100, subtree height h = 4, graph density ¢ = 0.4).
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Data sets We employed the following data sets in our experiments: MUTAG, NCI1,
NCI109, ENZYMES and D&D. MUTAG [Debnath et al., 1991] is a data set of 188 muta-
genic aromatic and heteroaromatic nitro compounds labeled according to whether or not
they have a mutagenic effect on the Gram-negative bacterium Salmonella typhimurium.
NCI1 and NCI109 represent two balanced subsets of data sets of chemical compounds
screened for activity against non-small cell lung cancer and ovarian cancer cell lines,
respectively [Wale and Karypis, 2006, and http://pubchem.ncbi.nlm.nih.gov]. EN-
ZYMES is a data set of protein tertiary structures obtained from [Borgwardt et al.,
2005] consisting of 600 enzymes from the BRENDA enzyme database [Schomburg et al.,
2004]. In this case the task is to correctly assign each enzyme to one of the 6 EC top-level
classes. D&D is a data set of 1178 protein structures [Dobson and Doig, 2003]. Each
protein is represented by a graph, in which the nodes are amino acids and two nodes
are connected by an edge if they are less than 6 angstroms apart. The prediction task
is to classify the protein structures into enzymes and non-enzymes. Note that nodes
are labeled in all data sets. Figure 3.3 shows the distributions of node numbers, edge
numbers, and degrees in these data sets.

All of these data sets, as well as Matlab scripts for computing kernels used in our exper-
iments, can be downloaded from http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/
Nino/WL/.

Experimental setup On these data sets, we compared our Weisfeiler-Lehman sub-
tree, Weisfeiler-Lehman edge, and Weisfeiler-Lehman shortest path kernels to the Ramon-
Gartner kernel (A = 1), as well as to several state-of-the-art graph kernels for large
graphs. Due to the large number of graph kernels in the literature, we could not com-
pare to every single graph kernel, but to representative instances of the major families
of graph kernels.

From the family of kernels based on walks, we compared our new kernels to the fast
geometric random walk kernel by Vishwanathan et al. [2010] that counts common labeled
walks, and to the p-random walk kernel that compares random walks up to length p in
two graphs (a special case of random walk kernels [Kashima et al., 2003, Gértner et al.,
2003]).

From the family of kernels based on limited-size subgraphs, we chose an extension
of the graphlet kernel from Chapter 2 that counts common induced labeled connected
subgraphs of size 3.

From the family of kernels based on paths, we compared to the shortest path kernel
by Borgwardt and Kriegel [2005] that counts pairs of labeled nodes with identical shortest
path length.

Note that whenever possible, we used fast computation schemes based on explicitly
computing the feature map (similar to that in Algorithm 3.2.1) before taking the inner
product, in order to speed up kernel computation. In particular, we used this technique
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for computing shortest path and graphlet kernels. For connected 3-node graphlet kernels
it is rather intuitive to imagine the explicit feature map: First, we have only 4 types of
different graphlets with 3 nodes. Second, for each type of graphlet we can determine the
number of possible labelings of the three nodes as a function of the size of the node label
alphabet. In the case of the shortest path kernel, the explicit feature map may or may
not exist. In our experiments, as edges were not weighted, we used the number of edges
in a path as a measure of its length. Moreover, we used the Dirac kernel on shortest
path distances. This allowed us to explicitly compute the feature map corresponding to
the shortest path kernel for each graph in all data sets. We were able to compute the
explicit feature maps corresponding to the WL edge and WL shortest path up to and
including h = 3 and h = 2 respectively on all data sets except the largest one, D&D
(which also has the largest original node label alphabet), because of the large number of
compressed labels. In the case of this data set, we used the pairwise edge (resp. shortest
path) comparison scheme described in Sections 3.4.2 and 3.4.3.
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We performed 10-fold cross-validation of C-Support Vector Machine Classification
using LIBSVM [Chang and Lin, 2001], using 9 folds for training and 1 for testing.
All parameters of the SVM were optimized on the training data set only. To exclude
random effects of fold assignments, we repeated the whole experiment 10 times. We
report average prediction accuracies and standard deviations in Figure 3.4, (a).

We chose h for our Weisfeiler-Lehman subtree kernel by cross-validation on the training
data set for h € {0,1,...,10}, which means that we computed 11 different WL subtree
kernel matrices in each experiment. In the case of the WL edge and WL shortest path
kernels, h was chosen by cross-validation for h € {0,1,2,3} and h € {0, 1,2} respectively.
We reported the total runtime of these computations (not the average per kernel matrix).

Note that all kernel matrices in Figure 3.4, (b) which needed more than 3 days to be
computed on one machine were computed on a cluster by distributing different blocks of
the kernel matrix to be computed to different nodes. The reported runtime is the sum
of the runtimes required to obtain each block.

Proceeding in the same fashion as in the case of the Weisfeiler-Lehman subtree kernel,
we computed the Ramon-Gértner subtree and Weisfeiler-Lehman shortest path kernels
for h € {0,1,2} and the p-random walk kernel for p € {1,...,10}. We computed the
random walk kernel for A chosen from the set {1072,1073,...,1075} for smaller data
sets and did not observe a large variation in the resulting accuracy. For this reason and
because of the relatively high runtime needed to compute this kernel on larger data sets
(see Figure 3.4, (b)), we set A as the largest power of 10 smaller than the inverse of the
squared maximum degree in the data set.

Results In terms of runtime, the Weisfeiler-Lehman subtree kernel could easily scale
up even to graphs with thousands of nodes. On D&D, subtree-patterns of height up to
10 were computed in 11 minutes, while no other comparison method could handle this
data set in less than half an hour. The shortest path kernel, the WL edge kernel and the
WL shortest path kernel were competitive to the WL subtree kernel on smaller graphs
(MUTAG, NCI1, NCI109, ENZYMES), but on D&D their runtime degenerated to more
than 23 hours for the shortest path kernel, to 3 days for the WL edge kernel, and to
more than a year for the WL shortest path kernel. The Ramon and Gértner kernel
was computable on MUTAG in approximately 40 minutes, but it finished computation
in more than a month on ENZYMES and the computation took even longer time on
larger data sets. The random walk kernel was competitive on MUTAG and ENZYMES
in terms of runtime, but took more than a week on each of the NCI data sets and more
than a month on D&D. The fact that the random walk kernel was competitive on the
smallest of our data sets, MUTAG, is not surprising, as on this data set one could also
afford using kernels with exponential runtime, such as the all paths kernel [Gértner et al.,
2003]. The graphlet kernel was faster than our WL subtree kernel on MUTAG and the
NCI data sets, and about a factor of 3 slower on D&D. However, this efficiency came at
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a price, as the kernel based on 3-graphlets turned out to lead to poor accuracy levels on
four data sets.

On NCI1, NCI109, ENZYMES and D&D, the kernels from the Weisfeiler-Lehman
framework reached the highest accuracy. While on NCI1, NCI109, and D&D the results
of all three WL kernels were competitive with each other, on ENZYMES the WL shortest
path kernel dramatically improved over the other two WL kernels. On D&D the shortest
path and graphlet kernels yielded similarly good results, while on NCI1 and NCI109 the
Weisfeiler-Lehman subtree kernel improved by more than 8% the best accuracy attained
by other methods. On MUTAG, the WL kernels reached the third, the fourth and the
fifth best accuracy levels among all methods considered.

The labeled 3-graphlet kernel achieved low accuracy levels, except on D&D. The ran-
dom walk and the p-random walk kernels, as well as the Ramon-Géartner kernel, were
less competitive to kernels that performed the best on data sets other than MUTAG.

It is worth mentioning that in the case of WL edge and WL shortest path kernels, the
values 2 and 3 of h were almost always chosen by the cross-validation procedure, meaning
that the kernels comparing edges and shortest paths on Weisfeiler-Lehman graphs of
positive height systematically improved the accuracy of the base kernel (corresponding
to h =0).

To summarize, the WL subtree kernel turned out to be competitive in terms of runtime
on all smaller data sets, fastest on the large protein data set, and its accuracy levels were
competitive on all data sets. The WL edge kernel performed slightly better than the
WL subtree kernel on three out of five data sets in terms of accuracy. The WL shortest
path kernel achieved the highest accuracy level on two out of five data sets, and was
competitive on the remaining data sets.

3.6. Weisfeiler-Lehman kernels with approximate
matching of subgraphs

There is a central assumption in the Weisfeiler-Lehman subtree kernel which may affect
its performance in certain applications: the concept of exact matching of node neighbor-
hoods.

To explain what we mean by exact matching, consider Figure 3.1, b,c. Let us take the
example of the multiset-labels 4,1135 and 4,1235: Intuitively, they are not completely
dissimilar, as they represent subtree patterns that only differ by one leaf node, the other
three and the root being identical. However, in Figure 3.1, ¢, 4,1135 and 4,1235 are
relabeled to different short labels, 11 and 12, which means that the similarity between
4,1135 and 4,1235 will be forgotten and never be taken into account. Only identical
subtree patterns in G and G’ contribute to the similarity score of G and G’.

In application domains where edges and nodes and their labels are noisy or false
measurements occur, hardly any neighborhoods may match exactly. Therefore it seems
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attractive to define a variant of the Weisfeiler-Lehman subtree kernel that uses approx-
imate matching of subtree patterns.

In this section, we seek to define an efficient and scalable subtree kernel that allows
approximate matching of neighborhoods. One way to perform approximate matching is
to compute similarities between multisets of labels of neighbors, {l;(u)|u € N(v)} and
{li(u)|u' € N(v')} for each v € G and v' € G’ and each G and G’, before compressing the
multiset-labels. The next section presents a measure of similarity for sets, the Jaccard
coefficient, and a way of computing it efficiently using permutations of the alphabet of
labels.

3.6.1. Efficiently comparing sets and multisets

Jaccard coefficient The Jaccard coefficient [Gower, 1971] is a natural measure of
similarity for sets and is defined as follows: Given two sets A and B,

_AnB|

J(AaB) - m,

(3.9)

that is, it represents the cardinality of the intersection of the two sets over the cardinality
of the union of the two sets (see Figure 3.5 for illustration). J(A,B) is a positive

A

(a)

Figure 3.5.: The Jaccard coefficient for two examples of sets A and B.
(a): J(A,B) =2 =0.25, (b): J(4,B) =% =0.875

semidefinite kernel, as shown in a classic result by Gower [1971]. It has been generalized
into the so-called MinMax kernel for comparing molecular compounds by Ralaivola et al.
[2005].

Shingling To compute the Jaccard coefficient one needs to read all elements in A and
B once (if they are sorted). This single pass can become prohibitively expensive if A and
B are of large cardinality. To avoid this pass over all elements in A and B, we adopt an
approximation strategy following the shingling algorithm given by Gibson et al. [2005].
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Shingling was originally developed to measure the similarity of web pages [Broder et al.,
1997, Broder, 1998] and takes its name from a feature extraction technique based on
overlapping windows of words (as windows of words overlap like shingles on a roof).
While the aspect of the algorithm that we are interested in does not have anything to do
with this feature extraction scheme, we still use the name shingling to refer to it. The
key idea is, given a subset A of a universe X of elements, to generate a constant-size
fingerprint such that the two subsets A and B can be compared by simply comparing
their fingerprints [Gibson et al., 2005]. If 7 is a random permutation of the elements
in the ordered universe X from which A and B are drawn, then it follows that [Broder
et al., 2000]

: o _ |AnB|
PT{gng(a) = Ibrélélﬂ'(b)} = A0D

(3.10)

This means that the probability that the smallest elements of {m(a)|a € A} and {7 (b)|b €
B} coincide corresponds exactly to the similarity of the two sets according to the Jaccard
coefficient (see an example in Figure 3.6). Using this observation, one can sample from

A=1{1,2,3}, B={1,3,4},X={1,2,3,4}

1234 2134 3124 4123
1243 2143 3142 4132
1324 2314 3214 4213
1342 2341 3241 4231
1423 2413 3412 4312
1432 2431 3421 4321

- where the condition holds (1/2 of the cases, which equals J(A,B))

Figure 3.6.: Jaccard coefficient and permutations: The permutations of the set X that
satisfy minge 4 m(a) = minye g 7(b) from (3.10) are shaded. Their proportion
over all permutations of X is % which equals J(A, B).

the space of permutations 7 and test whether the equality mingec 4 m(a) = mingep 7(b)
holds. To this end, we define a fingerprint of a set A with respect to a permutation
m as argmin,c 4 m(a); The similarity of two sets is then estimated to be the fraction
of components in their fingerprints that are identical. This idea can be extended to
all subsets of size s of A instead of single elements of A by taking the minimum over
these after permutation, that is, taking as a fingerprint the set of s elements of A that
correspond to s smallest values in {7 (a)|a € A}. To express the dependence on s and c,
such an algorithm is referred to as a (s, ¢) shingling algorithm.
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Jaccard coefficient for multisets Now we have a measure of similarity for sets, as
well as an efficient algorithm for approximating it. However, the sets we wish to compare
in our problem, which are the sets of labels of neighbors of nodes, are in fact multisets.
In this section we extend the notion of Jaccard coefficient to multisets.

We start by defining the following extension to the indicator function. For a given set
X and a multiset A with elements from X we extend the indicator function from

1 ifxeA,
1a(z) =
A@) {0 otherwise,

to

koif k times in A
111\4/[8(1.) _ { 1I & occurs mmes 1n y

0 otherwise.

This leads to a variant of the Jaccard kernel for multisets:

Definition 3.6.1 (Multiset Jaccard Coefficient) Let X be a set and A, B multisets
of elements from X. Let us introduce the following set operations:

AUBlus = 3 max(1}5(2), 145 (x)),
zeX

|ANBlys = Y min(13%(z), 1335(x)).
zeX

Then the Multiset Jaccard coefficient is defined as

|A NnB |MS
Juvs(A, B) AU B
We now proceed to showing that Jys(A, B) corresponds to the Jaccard coefficient (3.9)
on transformed A and B and hence is a kernel.
We introduce the following transformation 7" of the arguments of Jyg: Given a set A,
T maps any element x € A occurring n times in A into the set of pairs {(z,1),...,(x,n)}
and takes the union over all x € A. It follows immediately that

AN Blys = [T(A) N T(B)| and |AU Blys = |T(A) UT(B)],

and consequently Jys(A, B) = J(T(A), T(B)). As J is a kernel, it follows that Jys is a
kernel as well.

Hence, to approximate the multiset Jaccard coefficient on the multisets A and B, we
approximate the Jaccard coefficient on the corresponding sets A* and B*, which treat
reoccurring elements from A and B as distinct characters. In practice, that means that
we need to go over the sets of neighbors of each node in the graph once in O(m) in order
to apply the transformation 7" to the multisets of labels of neighbors of nodes.
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3.6.2. Shingled Weisfeiler-Lehman subtree kernel

Now we have all ingredients to define a kernel with approximate subtree pattern match-
ing. The pseudocode for computing the shingled subtree kernel is given in Algorithm 5.
The labels are initialized as before: lo(v) = £¢(v) for all v in all graphs.

Algorithm 5 Shingled WL subtree kernel on N graphs, i-th iteration, ¢ > 0
1: Multiset-label determination
e Assign a multiset label M;(v) to each node v in G which consists of the multiset
(i1 (u)Ju € N'(v)}.
: Sorting each multiset
e Sort elements in M;(v) in ascending order and concatenate them into a string
si(v).
3: Creating fingerprints
e Permute the alphabet ¥;_; and sort the strings s;(v) accordingly.
e Remember the first s letters of each string as a fingerprint.
e Repeat this permutation ¢ times to extract ¢ fingerprints per node.
4: Label compression
e Add [;—1(v) as a prefix to s;(v) and call the resulting string s;(v).
e Map each string s;(v) to a compressed label using a hash function f : ¥* — %
: Relabeling
e Set [;(v) := f(s;(v)) for all nodes in G.

\v]

ot

The shingling Weisfeiler-Lehman (WL) subtree kernel proceeds in h iterations as the
exact WL subtree kernel. In the latter case, each of these iterations comprises the
following steps: i) for each node, record its neighbors, ii) for each node, sort its neighbors
according to their node label, iii) compress the node labels, iv) relabel and update the
kernel.

In shingling WL, we switch this order: We first update the kernel, then compress
the labels. In order to update the kernel matrix entries, we approximate the Jaccard
coefficient between the sets of neighbors of all pairs of nodes via shingling. We permute
the neighborhood strings ¢ times and then check for all pairs of nodes, whether their fin-
gerprints of s letters coincide. We next give the formal definition of the kernel computed
by Algorithm 5.

3.6.2.1. Kernel definition

(@)

Denote by 7Tji a permutation of the compressed labels of all graphs after iteration ¢ of

WL. Assume that we perform ¢ such permutations {WY), e ,ﬂgi)}. Then we can define
the following kernel on neighborhood strings which approximates the Jaccard coefficient.
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Definition 3.6.2 ((c, s)-approximating Jaccard kernel) Let ¢ denote the number
of permutations, and s the length of fingerprints that we compare. Let s;(v) be the
multiset label as in the step 2 of Algorithm 5, at the i-th iteration. Slightly abusing nota-
tion, let m(s;(v)) denote a transformation of s;(v) where all of its letters x are replaced
by w(x). Let 05 be a Dirac kernel on strings which equals 1 if the leading substrings of
length s match and 0 otherwise. Then the (c, s)-approximating Jaccard kernel is defined
as

ky(si(v),s:(0) = D 8u(m? (si(0)), 71 (5:(0))-
j=1

We can now define a corresponding graph kernel which computes the Jaccard kernel on
all pairs of nodes from two graphs:

Definition 3.6.3 (Shingling graph kernel) For two graphs G = (V, E,{) and G' =
(V',E' L) the shingling graph kernel is defined as

s(G,G") = ZZ > 6 )k (si(v), si(v")). (3.11)

i=1 veVv'eV’

h is the number of iterations of the Weisfeiler-Lehman algorithm, and § is the Dirac
kernel that equals 1 if its two arguments are identical and 0 otherwise.

Theorem 3.6.4 kg is a positive semidefinite kernel.

Proof k; is a sum over Dirac § kernels, hence it is positive semidefinite. kg is a sum
over products of a Dirac kernel and k; terms, hence kg is also positive semidefinite.
Finally, this also holds in expectation over all permutations, since again, it is a positive
linear combination of positive semidefinite kernels. |

3.6.2.2. Runtime analysis

How can we efficiently compute the shingling kernel on a data set of IV graphs? Naively,
one would compare all pairs of graphs (O(N?)), and for each of these comparisons, we
would compare all pairs of n? nodes from the two graphs, resulting in a total runtime
of O(N?n2dhc) in h iterations, for ¢ permutations and for a maximum degree of d per
graph.

However, we can drastically reduce this complexity in practice by hashing. Instead of
comparing all pairs of fingerprints, we hash the first s letters of each fingerprint after
each of the c iterations. We can then use the hash values of a graph G as a feature
vector representation of G. The shingling kernel can then be computed by taking the
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Figure 3.7.: Runtime behavior of WL on synthetic graphs as a function of data set size
(left) and graph density (right).

inner product of the feature vectors of two graphs. This reduces the runtime effort to
O(Nhme + N2hmc), where the first term is the cost for computing the feature vector
representation of each of the N graphs with m edges in h iterations and ¢ permutations.
The second term is the effort of computing the kernel matrix entries from the N? pairs
of feature vectors, which contain at most Anc non-zero entries each. As we will confirm
in our experiments, the latter step, the sparse vector multiplication does not dominate
the runtime, such that the empirical runtime scales as O(Nhmc).

3.6.3. Experiments

In our experiments, we compare the runtime and accuracy of our approximate subtree
kernel to that of the original Weisfeiler-Lehman subtree kernel on real and synthetic
data sets.

3.6.3.1. Runtime on synthetic data sets

As a first experiment, we assessed the runtime behavior of the shingling WL kernel, in
particular with respect to the data set size and the number of edges per graph.

Experimental setup We examined the runtime behavior of shingling WL on synthetic
graphs with respect to two parameters: data set size N and graph density §. The density
of an undirected graph of n nodes without self-loops is defined as the number of its edges
divided by n(n — 1)/2, the largest possible number of edges. For a fixed value of n, the
density is proportional to the number of edges.

We kept one of the two parameters fixed at its default value while varying the other.
The default values we used were N = 10 and 6 = 0.4; we varied N in range {10, 100, 1000}
and § in {0.1,0.2,...,0.9}. We set the size of the graphs n to 100, the height of the
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Data set ENZYMES | PROTEINS D&D
Number of graphs 600 1113 1178
Maximum degree 9 25 19
Average number of nodes 32.6 39.1 284.3
WL kernel (exact) Accuracy (%) || 55.004+2.98 | 74.77+1.61 | 78.54+1.31
WL kernel (exact) Runtime 0°26” 1°03” 704"
Shingling kernel (approximate) | Accuracy (%) || 57.20+1.86 | 76.57+0.69 | 81.54+1.54
Shingling kernel (approximate) Runtime 11’297 26’26 3h01'7”

Table 3.1.: Runtime and classification accuracy on three bioinformatics data sets.

subtree patterns h = 2, the number of permutations ¢ = 10, and the fingerprint size
s=1.

For each individual experiment, we generated N graphs with n nodes, and inserted
edges randomly until the number of edges reached [dn(n — 1)/2]. We then computed
the shingling WL kernel on these synthetic graphs. We report CPU runtimes in seconds
in Figure 3.7, as measured in Matlab R2008a on an Apple MacPro.

Results In Figure 3.7, we clearly observe that the shingling WL scales linearly in
the number of graphs N in the data set. As stated in Section 3.6.2.2, the empirical
runtime hence depends on the actual Weisfeiler-Lehman iterations (theoretical runtime
O(Nhmc)), not the effort of computing the kernel matrix from all feature vectors in the
end (theoretical runtime O(N2hmc)). It is also apparent that the runtime scales linearly
with graph density, and hence the number of edges, as expected from the theoretical
runtime complexity. Both these results indicate that the shingling WL kernel exhibits
attractive scalability properties.

3.6.3.2. Graph classification on real-world data sets

Next, we performed graph classification on real-world data sets from bioinformatics.

Data sets D&D is a set of 1178 protein structures [Dobson and Doig, 2003] represented
as graphs where each amino acid corresponds to a node, and an edge is drawn between
two nodes if the distance between them is less than 6 angstroms. The prediction task
is to classify the protein structures into enzymes and non-enzymes. PROTEINS is a
data set that is based on a subset of 1113 proteins from D&D. Again, each protein is
represented by a graph, but now each node is a secondary structure element of the protein
and edges represent spatial neighborhood between these elements. The prediction task
is the same as on D&D, that is, to classify the protein structures into enzymes and non-
enzymes. The graphs in ENZYMES also represent protein structures in the same form as

74



3.6. WEISFEILER-LEHMAN KERNELS WITH APPROXIMATE MATCHING OF SUBGRAPHS

in PROTEINS. ENZYMES includes 6 classes with 100 enzymes each from the top level
of the enzyme commission (EC) enzyme hierarchy. The prediction task is to correctly
predict the membership to each of these 6 classes in one-against-the-rest classification.

We provide statistics on the size, average node number and degree of these three data
sets in Table 3.1.

Experimental setup We compared the new shingling Weisfeiler-Lehman kernel to the
exact matching WL subtree kernel from Section 3.2. The default settings for fingerprint
size and number of permutations were s = 2 and ¢ = 25, respectively.

We performed 10-fold cross-validation of C-Support Vector Machine Classification,
using 9 folds for training and 1 for testing. All parameters of the SVM were optimized
on the training data set only. We optimized h € {1,...,5} for the shingling and the
approximate WL kernel by 2-fold cross-validation on the training data set. To exclude
random effects of fold assignments, we repeated the whole experiment 10 times. We
report average prediction accuracies and standard errors in Table 3.1.

Results The approximate Weisfeiler-Lehman algorithm achieves slight improvements
in accuracy over the exact Weisfeiler-Lehmann kernel on all three data sets. The largest
improvement is achieved on the largest data set, the D&D data set, where the approxi-
mate WL kernel improves accuracy by 3%.

This improvement in accuracy is accompanied by a increase in runtime which is pro-
portional to the number of permutations performed. This indicates that the exact WL
kernel is the method of choice when runtime matters most, while the approximate WL
kernel should be preferred when better accuracy is more important than computational
runtime.

Number of permutations On ENZYMES, we explore the impact of varying the
number of permutations ¢ on runtime and accuracy. We kept all other kernel parameters
fixed (s =2, h = 4) and varied ¢ in {10, 20,50,100}. We report runtimes classification
accuracies in Table 3.2.

We observe that — as expected from the theoretical runtime complexity — the runtime
grows linearly with c. The classification accuracy improves significantly when going from
¢ =10 to ¢ = 100, while ¢ = 20 and ¢ = 50 do not lead to more than slight improvements
over the accuracy reached with ten permutations.

Fingerprint size We also explored the effect of changing fingerprint size on the results
on ENZYMES. We kept all other parameters fixed (¢ = 100, h = 4), and report accuracy
and runtime in for s € {1,2,3,4} in Table 3.3.

We observe a slight increase in runtime with growing fingerprint size. The classification
accuracy reaches its maximum for s = 2 with at 57.07%, the other three fingerprint sizes
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c 10 20 50 100
Accuracy (%) || 54.56+1.07 | 55.76+0.86 | 54.67+0.79 | 57.07£0.57
Runtime 513" 8’54 20°06” 39’437

Table 3.2.: Impact of varying number of permutations ¢ on the ENZYMES data set

(s=2,h=4).
s 1 2 3 4
Accuracy (%) || 55.234+0.65 | 57.07+0.57 | 55.43+1.40 | 54.20£1.57
Runtime 3977 39'43” 40’407 40’50

Table 3.3.: Impact of varying fingerprint size s on the ENZYMES data set
(c =100, h = 4).

lead to similar results around 54%.

3.6.4. Discussion

In this section, we presented an efficient and scalable graph kernel for approximately
matching subtree patterns in two graphs. It is based upon the Weisfeiler-Lehman algo-
rithm [Weisfeiler and Lehman, 1968], the Weisfeiler-Lehman subtree kernel from Section
3.2, and the efficient shingling approximation of the Jaccard coefficient [Gower, 1971].
It allows us to compare N graphs in a runtime of O(Nhmc), where h is the number of
iterations of Weisfeiler-Lehman, m the number of edges per graph, and ¢ the number of
permutations used to approximate the Jaccard coefficient. This runtime behavior which
is linear in terms of all important kernel parameters and graph properties, enables scal-
able graph kernel computation and approximate matching, which could not be achieved
simulatenously before.

However, this efficiency comes at a cost: While we do take into account partial sim-
ilarities of neighborhood multisets before relabeling the graphs, the relabeling is still
done according to the classic Weisfeiler-Lehman scheme from Algorithm 2 in Section
3.1. Therefore, some partial similarities are already lost in the second iteration, and
even more disappear in subsequent iterations. This may be one reason why we do not
observe an important boost in the expressivity in our experiments in Section 3.6.3.

3.7. Scalable node kernels

As another direction to explore in exploiting the efficiency and expressivity of the
Weisfeiler-Lehman subtree kernel (Section 3.2), we consider using it to compare nodes

76



3.7. SCALABLE NODE KERNELS

in a network. In other words, we would like to design a node kernel based on the
Weisfeiler-Lehman subtree kernel.

Node classification in a network is a problem that has received considerable attention
over recent years. In fact, in many large networks, such as social networks or protein
interaction networks, a small number of nodes is annotated with class labels, which one
would like to propagate to the whole network, or even to another, unlabeled network.
Computational and space efficiency are key challenges in this task, as real-world networks
often consist of 106 —10? nodes. In this section, we present a new algorithm for efficiently
extracting expressive features for individual nodes in a large network, based on the
network structure and, if available, the node attributes. Its runtime is only linear in the
number of the edges.

3.7.1. Classification of nodes in a graph

Recent years have seen a rapid increase in the availability of various large networks, from
social networks to web graphs to biological networks such as protein or gene interaction
networks. When studying these networks, one central question that often arises is the
following: Can we, given a set of class-labeled nodes in a network, infer class labels of
other nodes based on the structure of the network?

There have been extensive studies addressing this question (interested reader can
refer to Bhagat et al. [2011] for a recent survey), that can be broadly divided into two
classes: The first class comprises learning algorithms exploiting the graph structure
[Chakrabarti et al., 1998, Neville and Jensen, 2000]. Here, a subset of the nodes in
the network is annotated with a class label, and this information is propagated to the
rest of the network. Note that semi-supervised classification on graphs also exploits
graph structure, however, one should make an important distinction between graph-
based semi-supervised learning, and node labeling. In semi-supervised learning setting,
usually the network is constructed based on the similarity of nodes [Zhu et al., 2003,
Zhou et al., 2004, Géartner et al., 2006, Abernethy et al., 2008, Fergus et al., 2009]; In
contrast, in the setting which we are interested in the graph is an additional feature of
the data, and having a link between two nodes does not necessarily mean that they are
similar. A general property of the algorithms of semi-supervised learning type is that
they either require a connected graph or labeled nodes in every component of the graph.
Information cannot be propagated across graphs or across connected components in a
single graph.

The second class consists of two-step procedures. They first extract node features
based on the graph structure to compute pairwise similarity scores of nodes and then use
any standard learning algorithm on these features. Node kernels, which compute kernel
values between all pairs of nodes in a graph, are instances of this second class [Smola
and Kondor, 2003, Fouss et al., 2006]. This family of methods is prone to suffering from
runtime and memory problems: Computing the features and similarity scores usually
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require at least taking powers of the adjacency matrix or the Laplacian of the graph.
These operations are cubic in the number of nodes. Storing the similarity matrix is
challenging, as it is typically a large dense matrix of size n x n for large n. This problem
can be even more severe if nodes have attributes that one would like to take into account.

Note in the passing that we distinguish “node class label” and “node attributes”, the
former being a class label of a node, the latter a feature of the node. In this section, as
in most of this thesis, “label” will usually mean the latter.

In this work, we propose a new feature generation method (or representation method
in the sense of Section 1.4) for nodes of arbitrary networks, that addresses all three of
the aforementioned problems. Namely, it can be used even for predicting labels for nodes
from an entirely unlabeled connected component; Second, it can naturally handle node
attributes, without incurring any additional computational cost; Finally, the algorithm
runs in time linear in the number of edges in the network, ensuring scalability to large
networks.

3.7.2. Technical background

In this section, we clarify notions that will help us introduce our node representation
algorithms in the next section.

As in the previous sections of this chapter, we will rely on Algorithm 2 in Section 3.1
as the basis for our new algorithms. In Sections 3.2 and 3.3 we have proposed kernels for
comparing graphs to each other based on the Weisfeiler-Lehman relabeling procedure. In
this section, in contrast, we will exploit this algorithm for efficiently extracting features
for comparing nodes in one network.

3.7.2.1. Locality sensitive hashing

In this section we recall locality sensitive hashing (LSH) [Indyk and Motwani, 1998],
which will later serve as an ingredient for designing new feature extraction algorithms
for nodes in a network. We follow the definitions given by Charikar [2002].

Definition 3.7.1 (Locality sensitive hashing) A locality sensitive hashing scheme
is a distribution on a family F of hash functions operating on a collection of objects,
such that for two objects x, v,

Prhef[h(‘r) = h(y)] = sim(:c, y)?
where sim(x,y) is some similarity function defined on the collection of objects.

If we choose a random vector r ~ N(0, I) from the multivariate Gaussian distribution,
and define the hash function h, as

() = { L f{ru) 20, (3.12)
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then for vectors u and v,

Prih,(u) = hy(v)] =1— ) (3.13)

where 6(u,v) is the angle between vectors u and v. In other words, if the angle between
two vectors is small, then with high probability they will lie on the same side of the
hyperplane defined by r [Goemans and Williamson, 1995, Charikar, 2002].

3.7.3. Weisfeiler-Lehman node feature maps

In this section we introduce two new node feature maps inspired by the Weisfeiler-
Lehman relabeling procedure from Section 3.1. Our goal is, for a network (V, E, /), to
come up with an expressive and efficiently computable feature mapping ¢(v),v € V.

3.7.3.1. Exact WL node feature map

Here we describe a natural modification of the Weisfeiler-Lehman subtree kernel to obtain
a feature mapping for individual nodes. To do this, we will simply associate with every
node its original and compressed labels in iterations {1,...,h}. The following definition
formalizes this idea.

Definition 3.7.2 (Exact WL node feature map) Define 3; C X as the set of let-
ters that occur as node labels at least once in G at the end of the i-th iteration of
the Weisfeiler-Lehman algorithm. Let Yo be the set of original node labels of G. As-
sume all ¥; are pairwise disjoint. Without loss of generality, assume that every 3; =
{oi1, ..., 04x,} is ordered. Let 0(x,y) =1 if x =y, and O otherwise, for z,y € .

The exact Weisfeiler-Lehman feature mapping for a node u in G with h iterations is
defined as:

S () = (8(Io(w), 501), -, 6l (1), Gopso))s - - - ST (1)y on1)s - - S(In (1), Oy, )-
(3.14)

h

Clearly, qngzwt(v) is binary and has only h + 1 non-zero entries, and can therefore be

stored in a memory-efficient way as a sparse array.

Runtime analysis Computing this feature vector representation for all nodes in a
network with m edges and with h iterations of the Weisfeiler-Lehman algorithm requires
a runtime of O(h m), which follows directly from the runtime of the Weisfeiler-Lehman
algorithm.
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3.7.3.2. LSH-WL node feature map

Of course, the exact WL feature map is restrictive in several aspects. In particular, it
will miss to take into account any kind of partial similarity between nodes and their
neighborhoods. Based on this feature map, one can only decide whether two nodes have
exactly matching neighborhoods of distance up to h. As soon as our knowledge of the
network is noisy or incomplete, as it is often the case in biological networks for instance,
this exact matching of neighborhoods will hardly ever occur. Even when the network
is not incomplete or noisy, neighborhoods may not match exactly due to the inherent
nature of the network. For example, in a social network, if a person a is connected to
15 architects and 10 interior designers, and b to 16 architects and 8 interior designers,
the similarity of a and b in terms of their connections is intuitively not very different
from the situation where b would also have 15 architects and 10 interior designers as
acquaintances.

To address these problems, we here introduce a more complex version of the Weisfeiler-
Lehman node feature map based on locality sensitive hashing [Indyk and Motwani, 1998,
Gionis et al., 1999, Charikar, 2002], as described in Section 3.7.2.1. First, we describe
the modified relabeling procedure (for one graph G) in Algorithm 6.

Algorithm 6 LSH-WL relabeling procedure (i-th iteration)
1: Multiset-label determination
e For i =0, set lg(v) + ¢(v) and 7 « 1.
e For i > 0, assign a multiset-label M;(v) to each node v in G which consists of
the multiset of pairs {(l;_1(v),li_1(w))|u € N(v)}. 4
2: Approximate label compression
e Compute a histogram z;(v) of node label pair frequencies in M;(v).
e Hash vectors z;(v) for all v from G to bitstrings s;(v), using LSH with k
hyperplanes (taking k small to explicitly allow potentially many collisions).
e Compress bitstrings s;(v) for all v from G to new labels, using a function
f:X* = ¥ such that f(s;(v)) = f(s;(w)) if and only if s;(v) = s;(w).
3: Relabeling
e Set [;(v) := f(si(v)) for all nodes in G.

5

More informally, the relabeling procedure in Algorithm 2 (for ¢ > 0) consists of 3
major steps, which proceed as follows:

1. For each node, form a multiset of edge labels. For instance, if a node v has label
2 and has 3 neighbors with labels 3, 3, and 2, then M;(v) = {(2,3),(2,3),(2,2)}.

4Note that here we directly incorporate the label of the root node in the multiset label.
®z;(v) is a sparse vector (c[(ci1,0i1), Mi(v)], c[(oi1, 0i2), Mi(v)], ..., c[(o45,], 0iis;))s Mi(v)]) of dimen-
sion |Xo|?, where c[a, A] counts the number of occurrences of an element a in a set A.
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2. First, form a histogram over label pairs in M;(v) for all v. The z;(v) corresponding
to v from our example would have 2 nonzero entries - the component indexed by
label pair (2,3) would equal 2, and the one indexed by (2,2) would be 1. x;(v) is
a vector in RI®* and can be hashed by LSH to a bitstring of length k. Then hash
these bitstrings to short labels.

3. Relabel the graph.

Based on the relabeling procedure given in Algorithm 2, we define the new feature
map as follows.

Definition 3.7.3 (LSH-WL node feature map) Define ¥; C X as the set of let-
ters that occur as node labels at least once in G at the end of the i-th iteration of
the Weisfeiler-Lehman algorithm. Let ¥g be the set of original node labels of G. As-
sume all ¥; are pairwise disjoint. Without loss of generality, assume that every ¥; =
{oi1,...,04x,} is ordered. Let z;(v) be defined as in Algorithm 2. Let §(x,y) = 1 if
x =1y, and 0 otherwise, for x,y € X.

The LSH-WL feature mapping for a node v in G with h iterations is defined as:

nghg'H,WL(v) _ { Ei(ll(olf;)’)»O-(jll)‘;l(v);é(lo(’l)),0'0|20|)) ZZ i 87 (315)

Note that ¢$:hs) —w(v) is either a vector of length |Xg|, or a concatenation of h vectors

with dimension |%;|? each. However, in the first case only one component of ng(th g_wr ()
is nonzero, and in the second, at most |N(v)| components of each z;(v), j € {1,...,h}

are different from zero. Therefore qﬁ(th 7w (v) is sparse and can be dealt with efficiently.

The feature vector of a node v will, for each iteration, represent the original and com-
pressed labels of v, and the histograms of labels of its neighbors over different iterations.
Like this, if we use linear SVM classification in combination with the exctracted features,
two nodes will be deemed similar if they share labels over many iterations, and when
they do share labels, their similarity will be boosted if their neighborhoods also share
many labels. The intuition behind picking a low number k& of random hyperplanes for
hashing the label histograms of neighborhoods is that we would like to be rather liberal
in compressing neighborhood histograms — if they are not the same, but similar, we still
would like to hash them to the same bucket. This intuition is reflected in the following
theorem.

Theorem 3.7.4 Let {ry,...,r} be the set of independently sampled hyperplanes, used
to locality sensitive hash node neighborhood histograms. If in the i-th iteration of Algo-

rithm 2 nodes u and v have the same label and different neighborhoods, then the probabil-
k

ity that they will have the same label in the (i+1)-th iteration equals (1 — w> ,

where 0(xz;(u), x;(v)) is the angle between the neighborhood histograms of u and v.
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Proof We have l;(u) = [;(v) and z;(u) # x;(v). From Equation (3.13) and from the r;
being independent of each other, it directly follows

Prllisa (u) = g1 (0)] = Prllry (0) = by (0)] - Prlln, (u) = by @) (3.16)
k

- (1 - 9(“(“;’ xi(””) . (3.17)

m

As z;(u) # zi(v), we have (1 — w) < 1, and therefore its powers decrease
exponentially in k.

Note that for using the feature map from Definition 3.7.3 in an inductive setting, that
is, where the test set is not known before learning, one will have to keep track of the
random hyperplanes {ry,...,r}.

Theorem 3.7.5 For a graph G of m edges, for h Weisfeiler-Lehman iterations, and for
k random hyperplanes used in the locality sensitive hashing, the LSH-WL features can
be extracted from G in O(hmk).

Proof There are two additional steps that we have to perform in the LSH-WL feature
map computation compared to the exact WL map. First, in Step 2, we have to compute
a histogram of label pairs in the neighborhood of each node. This step is linear in the
number of edges, that is, O(m). Second, in Step 3, we have to hash these histograms
via locality sensitive hashing into k bits. For computing each of these bits, we have
to compute an inner product (z;(v),r;), j € {1,...,k}. As z;(v) has non-zero entries
only for neighbors of v, we can compute these inner products for all nodes n in runtime
O(m) per bit, hence O(km) in total. Putting all these steps together, the runtime of
this modified Weisfeiler-Lehman scheme is now O(hmk). [ |

If k£ and h are constants, the complexity of O(hmk) is linear in m. If k and h are slowly
growing functions of m, it is essentially linear in m.

3.7.4. Experiments

In our experiments, we evaluate our feature extraction methods on several large networks
in terms of their runtime, and in terms of the classification accuracy that an SVM can
achieve based on these features.

Data sets We conducted experiments on three publicly available data sets. The first,
Blogosphere (downloaded from http://www-personal .umich.edu/~mejn/netdata/, col-
lected by Adamic and Glance [2005]), consists of 1,490 nodes and 16,715 undirected
edges. The nodes represent political blogs, and edges are based on the incoming and
outgoing links on these blogs around the time of the 2004 presidential election in the
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United States. The nodes have been manually labeled as belonging to the class 0 - left
or liberal, or 1 - right or conservative. The task here is to correctly classify the nodes
into these two classes, based on the network structure.

The second set of data sets comes from the DREAMS network inference challenge,
obtained from http://wiki.c2b2.columbia.edu/dream/index.php/D5c4. The goal of
this challenge is to reverse-engineer gene regulatory networks from gene expression in-
formation. The challenge consists of 4 tasks: In each task, participants are given a
microarray compendium and are asked to infer the structure of the underlying tran-
scriptional regulatory network. Our goal is different: We are interested in predicting
whether a gene is a transcription factor or not based on the transcriptional regulatory
network. We use ground truth networks from tasks for which such a ground truth is
available, that is, tasks 1, 3, and 4. The networks 1, 3, and 4 consist of 1,565 nodes and
3,996 undirected edges, 1,081 nodes and 2,055 edges, and 1,994 nodes and 3,935 edges
respectively. We obtained these data with the kind permission from Prof. H.-J. Thiesen,
Institute of Immunology, University of Rostock, Germany [Lorenz et al., 2009].

The third, Webspam-UK2007 data set, obtained from http://barcelona.research.
yahoo.net/webspam/datasets/ is based on a crawl of the .uk domain, done on May
2007. Its nodes, which represent hosts, were labeled as spam or non-spam by a group of
volunteers. The network includes 114,529 hosts out of which 6,479 are labeled, and 1.7
million undirected edges. The task is to determine whether a host is spam or non-spam
based on the network information. Note that in this task we use the totality of the
network to derive features for nodes, but we only train and predict on labeled nodes.

Methods In this section, we have introduced the exact WL node feature map in
Definition 3.7.2 (that we will call EXACT) and its extension in Definition 3.7.3 (LSH
WL). LSH WL differs from EXACT in two ways: First, we explicitly represent label
histograms of neighborhoods; Second, we deliberately use a coarse compression method
for relabeling nodes based on their neighborhoods. We examine the effect of each of
these modifications on the performance. We call the first extension EXACT+NH, and
the second EXACT+LSH. Due to the random nature of LSH, we repeat the algorithm
several times to get a reliable estimate of the quality of extracted features. The number
of repetitions is considered to be one of the parameters of the algorithm.

We also compare our algorithms with two state-of-the-art node kernels, the diffusion
kernel and the regularized Laplacian kernel [Smola and Kondor, 2003]. We could run
them on all of our data sets except Webspam, where the matrix operations exceeded
our memory and runtime resources. These similarity measures can only be applied to
large-scale graphs via special transductive classifiers as used by Géartner et al. [2006] or
Abernethy et al. [2008]. We also ran a simple baseline, a linear kernel using lines of the
adjacency matrix as feature vectors. This kernel, that we will call A2, counts the number
of neighbors two nodes share, and is a common criterion for friend recommendation used
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\ Parameter [ EXACT [EXACT+NH [ EXACT+LSH| LSHWL |
Regularization Parameter C {0.01,1,100} | {0.01,1,100} | {0.01,1,100} | {0.01,1,100}
Number of WL iterations {1,2,4,6} {1,2,4,6} {1,2,4,6} {1,2,4,6}
Number of Repeats - - {1,5,10} {1,5,10}
# Hyperplanes for Compression k - - {1,2,4} {1,2,4}

Table 3.4.: Range of parameters being considered in optimization.

Data set || DREAM5-1 | DREAM5-3 | DREAM5-4 | Blogosphere | WEBSPAM [ £, |
Diffusion || 0.92£0.00 [ 0.724+0.04 | 0.74£0.07 [ 0.96 =+ 0.00 - 0.28
Laplacian || 0.83+0.01 | 0.60£0.01 | 0.71+0.02 [ 0.96 +0.01 - 0.41

A% 170.9940.00 [ 0.83+£0.01 | 0.714£0.01 | 0.96+0.00 | 0.66+0.01 || 0.13

EXACT [[ 0.96 +0.02 | 0.90£0.06 [ 0.80+0.05 | 0.52+0.10 [ 0.50 £ 0.01 [[ 0.47
EXACT+NH || 1.00£0.01 | 0.92+0.05 [ 0.77£0.07 | 0.95+0.02 | 0.66=+0.03 || 0.03
EXACT+LSH || 1.004+0.01 | 0.91£0.05 | 0.78+0.07 | 0.9440.02 | 0.67+0.01 || 0.03
LSH WL || 1.00£0.01 [ 0.92+0.05 | 0.754+0.08 [ 0.95+£0.02 | 0.67+0.01 || 0.05

Table 3.5.: Classification performance of node feature extraction methods.

by social networking websites.

Experimental setup We performed stratified 10-fold cross-validation for C'-Support
Vector Machine (SVM) Classification, using 9 folds for training and the remaining one for
testing. All parameters including parameters for feature extraction and regularization
parameter for SVM were optimized only on the training data set. The range of feature
extraction and SVM parameters considered in the grid search is shown in Table 3.4. To
exclude random effects of fold assignments, we repeated the whole experiment 10 times.
We report average areas under the receiver operating characteristic curve (ROC AUC)
for all data sets.

We also report the CPU runtime for feature extraction in seconds. Since the runtime
of each algorithm depends on the parameters used, we chose the most time-consuming
parameter setting from the possible combinations of parameter values in Table 3.4 for
each algorithm for a fair comparison (WL iterations — 6, number of repetitions — 10,
number of hyperplanes k — 4).

Results Average areas under the ROC curve (AUC) for classification and CPU run-
times for feature extraction are given respectively in Tables 3.5 and 3.6.

In terms of classification performance, LSH WL improves over EXACT on 4 out of
5 data sets, the gain in AUC being larger than 0.15 in two cases. The average AUC
score of the LSH WL feature map is larger than that of the diffusion and regularized
Laplacian kernels on the DREAMS5 data sets. The same holds in comparison to A% on
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| Data set || DREAM5-1 | DREAMS5-3 | DREAMS5-4 | Blogosphere | WEBSPAM |

# nodes 1,565 1,081 1,994 1,490 114,529
# edges 3,996 2,055 3,935 16,715 1,688,827
Diffusion 177 7.9” 28” 10” -
Laplacian 12”7 6.0” 117 3.27 -
A? 0.02” 0.01” 0.01” 0.15” 1.0”
EXACT 0.06” 0.03” 0.06” 0.23” 25”
EXACT+NH 0.09” 0.04” 0.09” 0.46” 49”
EXACT+LSH 0.05” 0.03” 0.06” 0.11” 10”
LSH WL 0.20” 0.117 0.20” 0.42” 457

Table 3.6.: CPU runtime for feature extraction.

Webspam and all three DREAMS5 data sets.

We also report the 5 distance to the best method on each data set for each of the
seven methods used in Table 3.5. This criterion rewards methods that achieve AUC
scores close to the best result across all data sets. Our three extensions of the exact WL
are the three best performing methods according to this criterion, followed by A2. The
exact WL strongly fluctuates in its classification performance.

Interestingly, each of the two extensions of the exact-WL seem to improve classification
accuracy on their own and reach results close to or even slightly better than that of the
LSH-WL kernel. Hence they are competitive alternatives to using the LSH WL feature
map on all of these tasks, and one cannot attribute the improvement compared to the
exact WL to one or the other alone.

In terms of runtime per kernel matrix/feature map, our algorithms scale up easily to
networks with more than one hundred thousand nodes. On Webspam, feature extraction
for 6,479 nodes (while taking into account the whole network) took 10-49 seconds, while
for kernel-based methods it is even problematic to keep the kernel matrix in real memory.
A? is competitive in terms of speed with our feature extraction methods on all data sets
and has a further advantage of not needing any parameters, but its performance in
classification is significantly worse on 2 out of 5 data sets.

Among our four feature extraction schemes, it is noteworthy that the two LSH-based
random algorithms (EXACT+LSH and LSH WL) do not take longer than the two de-
terministic algorithms (EXACT and EXACT+NH), although we repeat the randomized
algorithms ten times to reduce random effects. The reason for this is the following:
In deterministic algorithms, we have to maintain the hash table of strings s;(v) for all
nodes v to relabel them. Since the number of elements stored in the table (i.e., the
size of the alphabet |¥;|) approaches n as the iteration of the algorithm increases, the
cost of maintaining the hash table grows as well. In LSH-based algorithms, however,
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we do not need to look up a hash table to relabel nodes: The random projection proce-
dure in LSH-based algorithms gives us the k-bit representation of hashed labels directly.
Such an advantage is especially useful as the graph gets larger: In the WEBSPAM data
set, the LSH-based algorithms EXACT+LSH and LSH WL are even faster than their
deterministic counterparts EXACT and EXACT+NH, despite being repeated 10 times.

3.7.5. Discussion

In this section, we have defined an algorithm for rapid feature extraction for nodes in
large networks. The algorithm has three advantages: First, it does not require the input
graph ro be connected, and can hence be applied to graphs with several components
or sets of graphs, in inductive or transductive settings. Second, it is directly applicable
to graphs with categorical node attributes, while other feature extraction methods or
similarity measures on nodes cannot take node attributes into account, or have to be
severely redesigned to acquire this ability. Third, the method is highly scalable, and
scales only linearly in the number of edges in the network.

Still, in our experiments, the feature extraction approaches presented in this section do
not systematically outperform simple baselines with a high confidence. As the features
are fast and easy to compute, an interesting question for future research will be to
investigate if they can complement and improve existing methods for learning on large
graphs.

3.8. Summary

In this chapter, we proposed the Weisfeiler-Lehman subtree kernel, the first kernel for
both labeled and unlabeled graphs whose computation scales linearly in the number
of edges in the graph data set. We then defined a general procedure for constructing
graph kernels on graphs with unlabeled or categorically labeled nodes. This definition
generalizes all existing graph kernels that deal with categorical labels on nodes. Our
kernels outperform state-of-the-art kernels in terms of runtime, even the recently devel-
oped efficient computation schemes for random walks and graphlets. Moreover, they are
highly competitive with existing graph comparison and representation methods in terms
of classification accuracy, which demonstrates their expressivity. Many applications of
machine learning on graph-structured data that could not be addressed by existing graph
kernels can now benefit from the scalability and the ability to deal with node labels of
our kernels.

We also considered two extensions of the Weisfeiler-Lehman subtree kernel, one for
approximately matching node neighborhoods, and another for comparing nodes in a
graph. Despite promising steps that we propose in the first extension, so far there
is no strong empirical evidence in favor of our proposed solution to the problem of
inexact matching of neighborhoods. It may be fruitful to approach the problem from a
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different perspective, for instance, by modifying the hash function that relabels subtree
patterns. As for the second extension, it would be interesting to study the behavior of our
proposed node feature extraction scheme on other large-scale real-world graphs, alone
or in combination with other approaches. Another exciting problem for future research
is the efficient and expressive representation and comparison of graphs with complex
labels, such as real numbers, high-dimensional vectors or strings, and real edge weights.
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4. Applications

As we have seen in Section 1.1, there exist plenty of applications of machine learning on
graph-structured data. However, in many applications, practitioners try to get round
using graphs to model data because of the insufficient efficiency or expressivity of ex-
isting graph comparison and representation methods. This is unfortunate, as in these
applications graphs are often the most natural representation of data.

In this chapter, we present applications of our previous contributions to problems from
two different domains, remote sensing and computational structural biology, that benefit
from using graphs as basic data structures. In the first case we develop an expressive
node kernel that compares pixels in an image. In the second, we design a graph kernel
that quantifies the similarity of local neighborhoods of atomic nuclei in proteins.

4.1. Node kernels for remote sensing image classification

In its most general sense, the term remote sensing refers to the acquisition of data
without direct contact with the object of interest. It is however most frequently used
to denote the acquisition and analysis of signals from earth sensed from aircraft and
satellites. This is also the meaning that we will use throughout this section. Remote
sensing images are usually acquired via multispectral or hyperspectral sensors; the size
of these images is usually large, and each pixel is high-dimensional due to the large
number of spectral channels. Remote sensing image classification refers to the following
classification problem: Given a remotely sensed image with a small number of pixels
annotated with class labels denoting different types of land cover (e.g., water, farmland,
desert, or trees), learn how to classify the remaining pixels. Classifying all pixels results
in a segmentation of the image, called the thematic map or the classification map of the
land cover captured on the image. Developing efficient algorithms that accurately classify
pixels is a crucial step towards the analysis of large amounts of available remote sensing
data. Such algorithms would allow environmental and geoscientists to better detect
spreads of pollution, better understand the dynamics of crop epidemics or vegetation
growth, or discover new water sources, to name just a few applications.

We present the current state of the art in machine learning for remote sensing image
classification in the next section. In Section 4.1.2, we present our proposed node kernel
and study its relationship to other kernels for remote sensing image classification. In
Section 4.1.3 we describe the remote sensing images that we classify in our experiments
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and empirically compare our proposed node kernel to the state-of-the-art remote sensing
image classifiers. We summarize our findings in Section 4.1.4.

4.1.1. Remote sensing image classification

Remote sensing image classification is a challenging problem. This is due to a combi-
nation of several factors, including the high dimensionality of each pixel, noise in the
data, the large number of pixels, the typically low number of annotated pixels (that is,
training examples), and the spatial interdepedence of pixel values (also called spectral
signatures or spectral responses) [Lillesand et al., 2004].

The first two factors motivate the use of robust classifiers that can deal with noise and
high dimensionality. The robustness is typically obtained via regularized classifiers that
not only try to correctly classify the training points, but also control the complexity of
the classification function, favoring simpler, more robust functions. SVMs, and more
generally kernel methods, are a prominent family of methods with these properties.
Kernel methods have been successfully used in pixel-based (spectral-based) classification,
and are among the state-of-the-art remote sensing image classifiers [Camps-Valls and
Bruzzone, 2005, 2009].

Despite the good performance of these methods with respect to previous related work,
the obtained classification maps are often very noisy. This is especially the case when
dealing with images acquired by very high resolution (VHR) sensors, or when classifying
images acquired over regions where spatial homogeneity can not be assumed (e.g., urban
areas). In fact, as we pointed out earlier, pixel values are spatially dependent: An image
is not a mere collection of independent and identically distributed (i.i.d.) pixels, as
assumed in pixel-based image classification, but it is a structured domain. Intuitively,
spatially close pixels are likely to belong to the same class. Hence, the classifier should
not solely rely on spectral features, but also take the spatial information into account.
Classifiers that use both spectral and spatial information contained in the image are
referred to as spatio-spectral classification methods.

The field of spatio-spectral image classification is very active, especially with the ad-
vent of very high resolution (VHR) sensors. Because of their high resolution, images
generated by VHR sensors require particularly robust techniques to deal with the high
correlation between spectral responses of neighboring pixels [Plaza et al., 2009]. Spatio-
spectral methods in the literature can be categorized into two basic families: feature
extraction (or preprocessing) techniques, and filtering (or post-classification) methods.
In the first case, the spectral signature of a given pixel is combined with spectral sig-
natures of its spatially neighboring pixels through window-based approaches, and the
resulting feature vectors are then classified. This class of methods includes morphologi-
cal filtering [Soille, 2003, Benediktsson et al., 2003, 2005], geometrical features [Inglada,
2007], and Markov random fields [Dubes and Jain, 1989, Jackson and Landgrebe, 2002].
These techniques yield good results in general but several critical parameters need to
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be tuned, such as the scale and the extent of the spatial relations. Moreover, the qual-
ity of the feature extraction technique may hamper the representation capabilities of
the classifier. The second class consists of approaches that essentially perform spatial
smoothing of a pixel-based classification map, and are often called post-regularization
methods. These approaches are mainly based on morphological operators, such as the
majority voting scheme [Tomas, 1980, Ton et al., 1991, Solaiman et al., 1998, Zhang,
2001]. The generally low improvement in accuracy of these methods is due to their
strong dependence on the performance of the particular classifier used and the filter
design. For these reasons, considering spectral and spatial information jointly in the
classifier training generally yields better results.

Existing spatio-spectral SVM classifiers usually perform a local spatial feature extrac-
tion. The spatial feature vector is then concatenated at a pixel level with the spectral
signature and subsequently used for classification. The main problem with this approach
is that the curse of dimensionality problem is worsened as the feature extraction process
is repeated for each spectral channel. The latter problem has been alleviated with the
introduction of composite kernels by Camps-Valls et al. [2006] which combine dedicated
kernels for the spectral and spatial information. This framework has been recently ex-
tended to deal with convex combinations of kernels through multiple kernel learning. In
both cases, however, the methodology still relies on performing an ad hoc spatial fea-
ture extraction before kernel computation, typically limited to second-order statistics or
morphological operators [Camps-Valls et al., 2008, Marconcini et al., 2009, Tuia et al.,
2010].

In the next section, we present an alternative approach for spatio-spectral classification
with SVMs which alleviates the aforementioned problems. Our approach has several
advantages over previous work: First, it takes into account higher order dependences in
the neighborhood of the pixels than just pairwise relations. Second, it computes a single
kernel that simultaneously captures both spectral and spatial similarities. Third, the
proposed kernel generalizes the composite kernel approach [Camps-Valls et al., 2006] by
computing similarities in a proper feature space. We later illustrate its performance in
multi- and hyperspectral images of different spatial and spectral resolutions.

4.1.2. Expressive spatio-spectral kernels for pixel comparison

This section presents a node kernel for comparing pixels in a remote sensing image,
represented as a graph of pixels. This well-founded approach guarantees that all relations
of spectral signatures in a spatial neighborhood, beyond pairwise sample relations, are
taken into consideration. Before we introduce our kernel, we point out the weaknesses
of existing spatio-spectral kernels.
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4.1.2.1. Limitations of existing spatio-spectral kernels

Camps-Valls et al. [2006] presented a family of various kernel-based approaches for re-
mote sensing image classification. In their work, kernels are essentially constructed
through a weighted summation of dedicated kernels on spatial and spectral features.
This approach suffers from several limitations: First, as other methods that rely on a
preprocessing step, composite kernels are limited by the quality of the feature extraction
process and thus cannot learn all higher order similarities between neighboring samples
directly. For example, using the mean or variance of the spatially neighboring pixels
as a feature for classification may be useful, yet limited as only first- and second-order
statistics are considered. Second, by merely looking at the similarity between pixels (or
between pixels and means of their neighbors), one is implicitly assuming that the neigh-
bors of two similar-enough pixels should be also similar. This is not necessarily true in
remote sensing image processing, where data may lie in complex manifolds [Bachmann
et al., 2005]. Finally, the computational cost of the method is high because a different
parameter has to be tuned for each kernel in the composition.
We propose in the next section a new kernel that addresses these limitations.

4.1.2.2. Proposed node kernel

To define our node kernel, we employ the graph-theoretic notation introduced in Section
1.2: An undirected unweighted graph G = (E,V) is comprised of its set of nodes,
V ={v1,...,v,}, and its set of edges, E C V x V. Two nodes v;,v; of G are neighbors,
if (vi,v;) € E, and the neighborhood N (v) of a node v is the set of all its neighbors, that
is {vi|(v,v;) € E}. For each v;,v; € V, (v;,v;) € E implies (vj,v;) € E. The adjacency
matrix A of G is a symmetric matrix of size n x n, where the (i, j)-th entry equals 1 if
an edge (v;, v;) exists and 0 otherwise.
A node kernel, given a graph G, is a function

k(vi,v5) = ((vi), ¢(v5)),

that takes into account the topology of the graph G. See Figure 4.1 for a simple illus-
tration of a graph and a possible feature map ¢ on its nodes.

Most prominent examples of kernels on nodes in a graph include the diffusion ker-
nel [Kondor and Lafferty, 2002], p-step random walk kernel, regularized Laplacian kernel
or inverse cosine kernel [Smola and Kondor, 2003]. These kernels are all based on the
graph Laplacian, that is, the matrix L = D — A, where A is the adjacency matrix of
the graph and D is an n x n diagonal matrix with D;; = ; A;;. The graph Laplacian
has also been used in remote sensing image classification previously [Camps-Valls et al.,
2007, Gémez-Chova et al., 2008].

The computation time of most existing node kernels scales as O(n?), where n is the
number of nodes in the graph, because it involves a multiplication or inversion of an
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Figure 4.1.: A toy graph with data points as nodes (left) and an associated example
feature map (right). Each data point is mapped into a vector containing
entries that describe both the nodes and their neighborhood relations. In
this example the mapping is explicit, but in general it can be implicit and
infinite-dimensional.

adjacency matrix or a graph Laplacian. Such a complexity is prohibitively expensive
when n is large. We here propose a scalable node kernel, which we later tailor to our
application.

Definition 4.1.1 Given a graph G and a kernel ko on its nodes (for instance, a kernel
that checks for the identity of node labels) that we call the base kernel, the recursive node
kernel of depth § is defined as

ks(v, o) = > > ksa(u ). (4.1)

ueN (v) v eN (v)

The recursive node kernel in Equation (4.1) can be specialized for image processing. In
this setting, nodes become pixels, and the notion of vicinity in the graph corresponds to
the spatial vicinity of the pixels. The proposed kernel recursively computes similarity
between nodes: At each step d, the kernel function (similarity) is computed first between
spatial neighbors, and then between the closest neighbors in the previous kernel matrix.
In this way, the kernel has a multi-scale structure depending on the so-called data struc-
tural depth parameter §. For pixels x,, and x, (recall that pixels are represented by their
spectral signature vectors), the kernel is defined as

2 2
1 «— « '
ké(xvaxv’) = R Z Z ka—l(XZwXZ )7 (42)

m=1n=1
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ko, 92% k1, 98% ko, 99% k3, 99% k4, 100%

Figure 4.2.: Illustration of the node kernel in the “two moons” toy example. Kernels
obtained for different § = {0,...,4} are represented, along with the 10-fold
cross-validation accuracy (in brackets) when using 50 training points per
class in an SVM with Gaussian RBF kernel. Increasing the depth parameter
0 gives rise to better results and smoother kernel matrices.

where x?, € 0, and x}’l/ € Qyr, Q, and Qs being spatial windows of width and height w
around the pixels x, and x,/. The base kernel kg is computed with all pairs of pixels in

Q, and Q.

Figure 4.2 illustrates the behaviour of the proposed node kernel in a 2-dimensional
toy example. The kernel matrices for different depths ks are represented, along with
the obtained 10-fold cross-validation accuracy when using 50 data points per class. The
first kernel kg represents the sample-based classification, without including neighborhood
relations. After the first iteration, a noticeable gain in accuracy is reached. The gain is
only slightly improved with more iterations as the notion of vicinity in this example is
based on Euclidean distance and is well-defined.

4.1.2.3. Relations to other remote sensing image classification methods

Our proposed method has direct connections to other kernel approaches in remote sensing
image classification. For example, it can be easily shown that if w = 1, the proposed node
kernel reduces to the spectral approach since in this case x7, = x,. It also generalizes
the cross-information kernel by Camps-Valls et al. [2006], as not only pairs of individual
pixels are considered but all neighbors in a spatial window. Moreover, our node kernel
generalizes the mean map kernel [Gémez-Chova et al., 2010]: Rather than computing
average distances, the kernel estimates higher order deviations of all neighboring data
points in the feature space. In fact, the notion of distance in our proposed method is
based not only on the labeled training points but also on their spatial neighbors: This
resembles kernel deformation methods used in semi-supervised learning, such as bagged
kernels [Tuia and Camps-Valls, 2009], Laplacian SVM [Gémez-Chova et al., 2008] or
label propagation methods [Camps-Valls et al., 2007].
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4.1.2.4. Complexity

Our proposed kernel can capture all higher order spatial relations between pixels in a
spatial neighborhood. Its main drawback is that the computational cost increases with
the window size in O(w?), which can be prohibitive for large window sizes. In practice,
however, one starts by building the largest training kernel possible and derive the lower
scales from it through properly indexing kernel entries, without needing to recompute
the whole kernel matrix. For the test phase, the computational cost is linear in the
number of test pixels. An interesting advantage is that, once the kernel is computed
(which is fast and simple for a low number of training samples), the training cost is the
same as that of the standard SVM since no additional free parameters are included as
occurred in the composite kernels framework. Finally, note that for the interesting case
of VHR images, window sizes should not be very large to efficiently deal with spatial
details.

4.1.2.5. Relation of the node kernel to the Morgan index

In this section we remark that the node kernel in Definition 4.1.1 is related to the
topological index by Morgan [1965], discussed in Section 1.4.1. To make this relation
explicit, we first reformulate the node kernel ks (4.1).

Proposition 4.1.2 If we denote as ¢g the feature map corresponding to the base kernel
ko, and define ¢5 as

$o(v) if§ =0,
95(v) = (4.3)
Dow TeN (v ¢5 1(v')  otherwise,

then ks(v,v") = {(ps(v), ds(v")) for any pair of nodes v and v' in a graph G and any
0 eN.

Proof We prove this proposition by induction over 4.
Induction initialisation 6 = 0: By definition of ¢q, ko(v,v") = (¢o(v), o (v)).
Induction step § — 0 + 1: Assume that ks(v,v") = (¢s(v), p5(v")). Then

ksi1(v,0') = Z Z ks(u,u') Z Z (s(u), ds(u'))

ueN (v) w eN(v') ueN (v) v eN(v')
=( Y dslw), D ds(u)) = (ds1(v), dss1(v))).
ueN (v) u eN(v')
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We have showed above that ¢s is the feature map corresponding to the kernel ks from
Definition 4.1.1. Observe the similarity between ¢5 (4.3) and the Morgan index (1.1,
Section 1.4.1): If we set ¢o(v) to 1 for all v in the definition of ¢5, then they are equivalent
up to notation. Thus, the feature map corresponding to our recursive node kernel (4.1)
is a generalization of the Morgan index. If the map ¢ is explicit and not prohibitively
high-dimensional, then exploiting this relation may speed up the computation of the
recursive kernel from (4.1). For a graph G = (V, E) of n nodes, this can be done by
first computing ¢s(v) for every v in O(p J|E|), where p is the dimensionality of the
feature vectors ¢o(v), and then taking the inner products in O(n?p). The complexity
of the recursive computation of ks consists of the cost of computing the kernel kg, and
O(S|EJ?), the cost of computing ki, ..., ks. Depending on the problem at hand and the
choice of kg, one or the other computation scheme may be more efficient.

4.1.3. Experiments

In this section, we empirically evaluate our new node kernel.

4.1.3.1. Data collection

We consider two different multispectral and hyperspectral images in our experiments.

e AVIRIS Indian Pines. The first experiment deals with the standard AVIRIS image
taken over North-West Indiana’s Indian Pine test site in June 1992. Discriminat-
ing among the major crops can be difficult (in particular, given the moderate
spatial resolution of 20 meters), which has made this scene a challenging bench-
mark to validate classification accuracy of hyperspectral imaging algorithms. The
calibrated data is available online (along with detailed ground-truth information)
from http://dynamo.ecn.purdue.edu/~biehl/. We used the whole scene, con-
sisting of the full 145 x 145 pixels, which contains 16 classes, ranging in size from
20 — 2468 pixels, and thus constituting a very challenging problem. Even though
20 noisy bands covering the region of water absorption are typically removed, we
decided to keep them here to assess methods for robustness to noise.

o DAISEX-1999 data set: This data set consists of labeled pixels of 6 different hy-
perspectral images (700x670 pixels) acquired with the 128-bands HyMap airborne
spectrometer during the DAISEX-99 campaign. This instrument provides 128
bands across the reflective solar wavelength region of 0.4pm-2.5pum with contigu-
ous spectral coverage (except in the atmospheric water vapour absorptions bands),
bandwidths around 16 nm, very high signal to noise ratio, and a relatively high
spatial resolution of 5m.
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Figure 4.3.: Results for different remote sensing image classification problems: (a)
AVIRIS Indian Pines, and (b) Hymap image. The overall accuracy is shown
for different amounts of training data, window sizes w, and neighborhood
depths 0 = 1 (dotted lines), § = 2 (dashed lines), and § = 3 (solid lines).

4.1.3.2. Model development and free parameter selection

We used different rates of randomly selected training samples, N = {0.1,1,3,5}%. In
all cases, we used the Gaussian RBF kernel with parameter o for the SVM classifiers.
The classifiers were trained with 10-fold cross-validation on the training set, using the
following parameters: o € {0.1,0.25,0.5,1,2,3}/N, the regularization parameter C' €
{10°,...,10%}, window size w € {3,5,7,9}, and different depths of the neighborhood
parameter, § € {1,2,3}. A one-vs-one multi-class classification scheme was adopted. We
compare three kernels for SVMs: The kernel based on the spectral signature, a contextual
kernel (CK) that uses stacked spectral and morphological features (specifically, a total
of 25 spatial features were extracted by opening and closing morphological filters from
specific bands), and our node kernel (NK). Before training, data were normalized to have
zero mean and unit variance.

4.1.3.3. Numerical comparison

Figure 4.3 shows the results for the test set formed by all labeled data in the image, for
the different images considered, and for different rates of training data, window sizes,
w, and neighboring depths, d. Several conclusions can be made: First, all node kernels,
regardless of w or §, outperform the standard spectral kernel. Second, as w increases,
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results are generally improved but they typically saturate for w ~ 7. For larger values
of w the performance is expected to decrease as the classification map would be over-
smoothed. Third, the advantage of our proposed approach is clearly noticeable in the
Indian Pines image (between 10— 15% gain in accuracy), mainly due to the high spectral
resolution and spatial homogeneity of classes. In the particular case of the HyMap high
resolution image, the gain in accuracy over the spectral SVM is between 16 — 18%.
The SVM with the contextual kernel (CK-SVM) provides better results than the node
kernel with w = 3, but with higher window sizes, our new kernel largely outperforms the
contextual kernel. Note that the kernel depth ¢ improves the results in both cases, but
the improvement mainly comes from the proper definition of the spatial extent. Classes
are spatially and spectrally homogeneous and hence incorporating complex neighboring
relations only improves results noticeably in high spatial resolution scenarios.

4.1.3.4. Statistical comparison

To further compare kernels, we have additionally performed a statistical analysis of the
differences (in the test set) between all the considered spectral and node kernels with
different w and 0. The comparison was done through the McNemar’s test [Lapin, 1998,
Foody, 2004], which is based on the standardized normal test statistic'. The test can be
used not only to assess whether statistical differences between methods exist or not, but
also to quantify the statistical gain of one classifier versus the others. The difference in
accuracy between two classifiers is said to be statistically significant if |z| > 1.96, and the
sign of z indicates which is the more accurate classifier. For the two considered images,
the test allowed us to draw several conclusions: First, there are significant statistical
differences between the spectral and spatial kernels (]z| > 20); Second, we observed
significant statistical differences between different § values (|z| > 3.1) only for the higher
spatial resolution HyMap image; Third, we found that as the rate of training examples
increases, the z-score decreases. All these conclusions match the numerical results shown
before. To summarize, in both situations, the proposed spatio-spectral node kernel is
significantly different (and in most of the cases better) than the standard kernels.

4.1.3.5. Visual comparison

Figure 4.4 shows the classification maps obtained with standard SVM and the proposed
node kernel for 1% of training samples, w = 11 and § = 3, in a representative realization.
Numerical results are confirmed by the visual inspection of the classification maps. For
the case of the AVIRIS Indian Pines scene, the supervised spectral-based SVM obtains
poor results, mainly due to the low number of training samples and high number of spec-
tral bands and classes. The node kernel dramatically improves the accuracy and also

!Computing the z-score of classifiers c1 and c2 reduces to z = (fi2 — f21)/V/fiz + J21, where fi2
represents the number of samples correctly classified by c¢; and incorrectly classified by cs.
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Figure 4.4.: RGB composition and classification maps for the best SVM, SVM with the
contextual kernel (CK-SVM), and node kernel SVM for (top) AVIRIS Indian
Pines and (bottom) HyMap images. Overall accuracy and kappa statistic
are given in brackets.

yields a more spatially regularized classification map. See for instance the high spatial
homogeneity coherence on different crop fields, such as the large soybean area in the
center (orange in the image). The same is true for class “Soybeans-notill” (in blue, east
side of the scene), which is better learned by the node kernel. Interestingly, improvement
is typically observed for spectrally very similar classes (such as “Soybeans” subclasses),
which suggests that the spatio-spectral information helps in identifying subtle, but crit-
ical differences. For the case of the HyMap image, more spatially coherent classification
maps are obtained with node kernels than with both the standard (pixel-based) and the
contextual SVM.

4.1.4. Summary

In this section, we have presented a kernel on graph nodes for spatio-spectral remote
sensing image classification. Our novel kernel considers spatial neighborhoods of all
pixels to compute pairwise similarities in a high-dimensional feature space. Our node
kernel is a powerful alternative to existing pixel comparison and representation methods
and generalizes previous approaches on kernel-based spatio-spectral classification. Since
in spatio-spectral classification one is interested in computing all possible high-order
neighborhood relations, we here proposed to directly work with the pixels embedded in
a graph-based feature space. This has the advantage of getting rid of a spatial prepro-
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cessing step, and of computing the similarity among the labeled pixels and those in their
neighborhoods at different scales. Future work will explore automatic ways of selecting
the window size, relating it to the spatial resolution of the image, and the neighborhood
depth, related to the spatial arrangement of classes in the scene.

4.2. Chemical shift prediction using graph kernels

As another application, we present our ongoing work on chemical shift prediction. Anal-
ogously to the previous section, we start by providing a brief background on chemical
shift prediction and nuclear magnetic resonance (NMR) spectroscopy for proteins.

Resonance intensity
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Figure 4.5.: A protein gives rise to a spectrum corresponding to a specific nucleus type,
here hydrogen (or sets of nuclei for multidimensional spectra). A graphic of
such a spectrum is shown on the right. Peak locations on the X axis represent
chemical shifts of hydrogen nuclei, and the corresponding values on the Y
axis depict their resonance intensities. Ideally, there should be as many
peaks as there are hydrogen nuclei in the protein, however sometimes they
overlap with each other. This problem is alleviated by multidimensional
spectra, which are most common nowadays. The graphic on the left was
generated by Michael Habeck using the UCSF Chimera package [Pettersen
et al., 2004].

4.2.1. Chemical shift prediction

Protein NMR spectrosopy is a field of structural biology concerned with the design and
development of NMR techniques that help obtain information about the structure and
dynamics of proteins [refer to Roberts and Lian, 2011, for a recent textbook on protein
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NMR]. The general procedure of protein NMR spectroscopy is organized as follows: First,
a magnetic field is applied to a sample of the protein of interest. Every nucleus in the
protein responds to this field with its resonance frequency and a certain intensity. This
results in associating the protein with a one- or multidimensional spectrum of resonance
frequencies of the nuclei in this protein. These frequencies are expressed via chemical
shifts: A chemical shift of a nucleus is defined as a shift in its resonance frequency, relative
to the resonance frequency of the same type of nucleus in the reference substance?,
and divided by the operating frequency of the spectrometer. As the frequencies of
nuclei are expressed in hertz, and the operating frequency in megahertz, chemical shifts
are expressed in parts per million, or ppm (see Figure 4.5). Thus, chemical shift is
a convenient proxy to the shift in the resonance frequency of a nucleus with respect
to the standard that does not depend on the applied magnetic field. Chemical shifts
are due to the local chemical structure of nuclei. Therefore, the chemical shift is a
function of a nucleus and its neighborhood, and can be used to obtain information
about this neighborhood. The next step in protein NMR is resonance assignment, that
is, association of peaks in the spectrum to the corresponding individual nuclei in the
protein.

Chemical shift prediction may be seen as exactly the opposite of the latter task: It
consists in predicting the shifts based on the local neighborhood of nuclei. To illustrate
why this is useful, consider the following example: Given a protein, whose structure is
already known, and a ligand, we would like to find out where the ligand binds the protein.
This is a common problem in drug design, where the ligand is a drug, the protein is a
target, and the question of interest is to find out how the drug acts on the target. Solving
the structure of the protein together with the ligand is often an expensive and tedious
task, while it is generally easy to measure its chemical shifts via NMR spectroscopy. If
we compare the spectra of the protein in its pure state and together with the ligand,
we will usually observe a slight difference (see Figure 4.6 for illustration). The chemical
shifts that will have changed will correspond to the nuclei in the amino acids that the
ligand directly affects. However, we also need to know which amino acid corresponds to
which peak in the spectrum. If we are able to reliably predict chemical shifts, then we
can align the predicted chemical shifts with the true chemical shifts, and thereby map
the chemical shifts to their corresponding locations in the protein structure. Chemical
shift prediction is useful as well in Bayesian techniques for predicting protein structure
from chemical shifts.

Several methods have been proposed that predict chemical shifts from structure. Most
prominent approaches include ProShift [Meiler, 2003], ShiftX [Neal et al., 2003], Sparta
[Shen and Bax, 2007], CamShift [Kohlhoff et al., 2009], and ShiftX2 [Han et al., 2011].
To predict the shift of a nucleus, all of these methods except ShiftX and ShiftX2 rely on
various types of information contained in the amino acid surrounding the nucleus and

2Standard chemical shifts are usually defined as the chemical shifts of tetramethylsilane (TMS).
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Figure 4.6.: On the left, a 2-dimensional spectrum corresponding to a protein in its pure
state. Dots denote intensity peaks at the intersections of frequencies on x
and y axes. On the right, the spectrum corresponding to the same protein,
but with a ligand: The new, blue peaks of the protein with the ligand largely
coincide with the old, red ones, but the differences give us information about
the location of the ligand binding site. The figure was obtained from and is
used with the kind permission of Remco Sprangers.

its neighboring amino acids according to the protein sequence. However, the chemical
shift of a nucleus can be influenced by other nuclei far away according to the sequence,
but close in the folded protein. ShiftX and ShiftX2 use information from the whole 3-
dimensional neighborhood of a nucleus, but use a physical parametric model of chemical
shifts which may not be precise enough. Moreover, none of these methods output the
variance of the prediction. Knowing how confident one is about a prediction can however
be helpful.

4.2.2. Graph kernels for neighborhoods of nuclei

Our goal in this work is to predict chemical shifts of nuclei while taking into account their
complete neighborhood, to do this is in a flexible manner without relying on a predefined
physical model, and to provide a way to quantify the uncertainty of our predictions.

In our approach, chemical shift prediction takes the form of a regression problem on
graphs. We are given a set of proteins, and in each protein there is a set of nuclei for which
the corresponding chemical shifts are available (obtained by experimental methods). The
goal is to learn a function, which for each nucleus gives its corresponding chemical shift.
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This function can then be used as a predictor for nuclei that do not have their chemical
shift assigned. It is easy to distinguish chemical shifts associated with different types of
nuclei, as their resonance frequency ranges strongly differ. Therefore predicting chemical
shifts of different types of nuclei can be considered as different problems. We describe
each nucleus of interest as a labeled graph representing its neighborhood of a certain
radius (the construction of graphs will be detailed in the next section). We then compute
a kernel between these graphs, and perform Gaussian process regression using this kernel.

Note that for applying graph kernels to the chemical shift prediction problem we
do not need more structural information than other chemical shift prediction methods.
Nonetheless, we believe that by modeling atom neighborhoods as graphs we can exploit
the available structural information better than the other methods.

4.2.2.1. Construction of graphs

The neighborhood graphs of nuclei are constructed as follows: For each atom a for which
we would like learn to predict chemical shifts, namely, atoms of type C’, Ca, Cf8, N,
Ha, and Hy, we extract all atoms within a radius of several angstréms (3-6 in our
experiments) around the nucleus. The range of values considered for the radius is based
on prior knowledge on how far-reaching the chemical interactions influencing chemical
shifts can be. The nuclei of these atoms play the role of nodes of the neighborhood
graph of a. Edges in this graph are determined by thresholding the physical distance
between nodes. They can also be designed to reflect covalent bonding between atoms.
Nodes are labeled by their corresponding atom type: ly(p) denotes the label of node p.
Moreover, in each graph, we keep track of the distances between nodes that we get from
the protein structure: d, for nuclei p and g.

4.2.2.2. Proposed graph kernel

We propose to compute the similarity between two neighborhood graphs G = (V| E) and
G’ = (V' E') via the kernel function

h
KG,G) =) wiki(G,G"),
=0

where

F(GG) = D D 6((p), Li(r) 5(1i(q), 1i(s)) Kaist(dpg, drs)-

p,qEV?2 r,5€V/2

Here ¢ is the Dirac kernel (6(z,y) = 1 if x = y and 0 otherwise), kg5 is a kernel
comparing two distances (for instance, a Gaussian RBF kernel), and [y(v) is the atom
type of the node v. Further node labeling functions, I; for ¢ = 1,..., h, are determined
by the Weisfeiler-Lehman relabeling from Section 3.1, Algorithm 2.
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4.2.2.3. Regression method

We use Gaussian process regression to learn the kernel weights w; and predict chemical
shifts. Gaussian processes for regression are a powerful kernel method that view the
function to be learned as a Gaussian distribution of as many dimensions as there are
data points, and whose covariance matrix is given by the kernel matrix between these
points [see the textbook by Rasmussen and Williams, 2005, for an extensive treatment
of Gaussian processes in machine learning]. One of the advantages of Gaussian process
regression is that its prediction for a data point is not a single number, but a one-
dimensional Gaussian distribution. If this distribution is narrow for a given data point,
then the regression model is highly confident about the predicted value for this point.
The more spread out the distribution, the less we should trust its mean as our prediction.
This key property motivates our choice of Gaussian process regression as the learning
method in this problem. As predicted chemical shifts will have to be aligned with true
chemical shifts (as discussed earlier in this section), knowing which predictions are more
likely to be accurate can facilitate this alignment.

4.2.3. Experiments

In this section, we present our preliminary experimental results on a benchmark chemical
shift prediction data set.

Data As a training set, we used 25 randomly chosen proteins from the VASCO data
set [Rieping and Vranken, 2010], available at http://www.ebi.ac.uk/pdbe-apps/nmr/
vasco/main.html. We predicted on the so-called “7 proteins” data set from Kohlhoff
et al. [2009].

Experimental setup For each type of atoms considered, we extracted neighborhood
graphs of radii of 3,4, 5 and 6 angstroms. We created edges between a pair of nodes if the
distance in angstroms between them was shorter than 1.5,1.7,2. As kg;s, we considered
the Gaussian RBF kernel (see Section 1.5.1, (1.6)) with parameter o in {276,274 ... 26},
We computed kernels for each combination of parameters, and chose the best ones for
each task (C', Ca, CB, N, Ha and Hy) by cross-validation on the training set. The
number of Weisfeiler-Lehman relabelings, h, was set to 3. To perform regression, we
used a publicly available Gaussian process toolbox for Python, developed by Stegle
et al. [2011].

Note that throughout our experiments we use secondary chemical shifts, that is, the
differences between the measured chemical shifts and the so-called random coil chemical
shifts. This is a standard normalization technique used by all chemical shift prediction
methods.
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Preliminary results A standard measure of prediction quality used for the chemical
shift prediction problem, and many regression problems in general, is the root mean
square error. If y1,...,yn are the values to be predicted, and %1, ..., yx the correspond-
ing predictions, the root mean square error is defined as

N
1 -
RMSE = N 'E_l (yi - yi)2'

We compare our results with results reported by Kohlhoff et al. [2009] on the “7
proteins” data set.

Nucleus | N | Hy | Hoe | Ca | CB | T
Our method | 3.20 | 0.55 | 0.34 | 1.29 | 1.53 | 1.20
CamsShift | 2.78 | 0.56 | 0.26 | 1.22 | 1.19 | 1.12
SPARTA | 2.66 | 0.53 | 0.26 | 1.03 | 1.07 | 1.05
ShiftX | 2.66 | 0.55 | 0.28 | 1.14 | 1.25 | 1.19

Table 4.1.: Preliminary results (RMSE) on the “7 proteins” data set

As we can see from table 4.1, the performance of our method in its present state on
the “7 proteins” data set is sometimes comparable with, but sometimes worse than the
state of the art. However, we strongly believe that the performance of our approach can
be significantly improved by taking into account more information already exploited by
other algorithms. There exist at least four types of relevant information that we can
further incorporate to improve our method: First, we have so far not considered the
covalent bonding information into our method. This information is however relevant for
chemical shift prediction and is used by most existing approaches. The same can be
said of the type of the amino acid enclosing each nucleus of interest. Moreover, it has
been shown that the chemical shift of a nucleus also depends on the type of secondary
structure containing the nucleus [see e.g., Mielke and Krishnan, 2009]. Finally, one can
also exploit structural information on the nuclei in the side chains. As all of these
features can be obtained from the protein structures, we do not need additional data to
incorporate these features into our model. It may also be helpful to predict chemical
shifts for different atom types jointly via multidimensional regression, taking advantage
of existing correlations between these tasks.

It is worth mentioning that in our experiments, the learned kernel weights w; were
systematically significantly higher for ¢ > 1 than for ¢ < 1 for all tasks except for
predicting shifts of Hy nuclei. This indicates that the Weisfeiler-Lehman relabeling is
indeed useful in this problem.

Moreover, we observed that for each of the 6 considered tasks a particular set of
parameters was systematically selected over different random splits of the data into
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Nucleus | N |Hy | Ho | Ca | CB | '
Neighborhood radius | 4 3 13,4 4 3 4
Edge threshold | 1.7 | 1.5 | 1.7 | 1.7 | 1.7 | 1.7

o of the RBF kernel [ 276 | 1 [272 [272 272 | 1

Table 4.2.: Optimal parameters of our method found by cross-validation for different
chemical shift prediction tasks

training and test sets (chosen parameters are reported in Table 4.2). We can therefore
fix these parameters for each task, which will result in a much lower memory usage for
storing kernel matrices. This saving of memory, in turn, will allow us to consider more
training data.

4.2.4. Summary

In this section, we proposed a graph kernel-based method for predicting chemical shifts
of nuclei in proteins from the local neighborhoods of these nuclei in the protein struc-
ture. In contrast with other existing approaches, we, first, take into account the complete
3-dimensional neighborhood of a nucleus in a given radius instead of focusing on infor-
mation from neighboring amino acids according to the protein sequence. Second, we do
not restrict our method to a particular physical parametric model. Third, we are able
to quantify the uncertainty of our predictions.

While our preliminary experimental results do not yet outperform the state of the
art, they are promising, as to date we have used little information in our approach
compared to existing methods. As discussed above, exploiting other types of available
information is expected to make the prediction accuracy of our method competitive with
that of existing techniques. We believe that this will be the case, and we plan to further
develop our approach in the near future.
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In this thesis, we have studied the problem of scalable graph comparison and represen-
tation for machine learning on large, labeled graphs.

The problems of graph comparison and representation have a long and rich history in
computer science research, yet traditional solutions do not suffice to address the more
and more demanding needs of current machine learning problems on graphs: They are
either not expressive enough, difficult to parameterize for a given problem, or intractable
to compute in the worst case. This is due to several factors: First of all, as we have
stressed in this thesis, graph comparison and representation are hard problems. Second,
the bulk of research in graph comparison until the end of the 20th century has been
concentrated on graph and subgraph isomorphism, less on flexible measures of graph
similarity. Moreover, the comparison and representation of large graphs had not become
truly pressing until around fifteen years ago, when the trend of data-intensive research
started and efficient machine learning algorithms were developed.

We tackle the problem of graph comparison and representation with graph kernels.
Graph kernels are an attractive choice for several reasons: First, they provide both
similarity measures and representations for graphs. Second, they have the potential
to efficiently compute expressive similarities in high-dimensional spaces. Third, they
make it possible to readily apply a wide range of machine learning algorithms to graphs.
Research on graph kernels has been an active area of study in machine learning on graph-
structured data in the last decade, resulting in significant developments in the design
of efficient and expressive graph kernels. Nonetheless, the most efficient existing graph
kernels, kernels based on random walks, scale as O(n?®) which is prohibitive for the size
of graphs in current applications of machine learning on graphs. Moreover, random walk
kernels are hindered by two problems inherent to walks, tottering and halting. Graphlet
kernels were proposed as an efficient alternative to random walk kernels that does not
suffer from these problems [Borgwardt, 2007]. They are based on the distribution of
small subgraphs of size 3, 4, and 5 in graphs. Explicit enumeration of graphlets being
computationally expensive, Borgwardt et al. [2007] proposed a sampling approach with
guarantees on the ¢; deviation of the empirical from the true distribution. This allowed
to compare graphs whose size had been an unsurmountable obstacle for the existing
graph kernels.

In Chapter 2, we argue that while the sampling approach is effective on dense graphs,
its quality criterion, the ¢; distance between the empirical and true distributions, is
not adequate for sparse graphs. In fact, in sparse graphs connected subgraphs are rare,
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and having a guarantee on the f; deviation of the entire graphlet distribution does
not mean that the distribution restricted to connected subgraphs will be accurately
approximated. We then propose efficient algorithms for exact counting of all connected
and non-connected graphlets of size up to 5. Our algorithms scale as O(nd*~1) for graphs
of size n with maximum degree d and graphlets of size k, as opposed to the complexity
of O(n*) needed for the straightforward enumeration of graphlets of size k. As our new
algorithms are most efficient for sparse graphs with d < n, exactly in the setting where
random sampling suffers, these two approaches can be regarded as complementary to
each other in efficiently comparing large graphs.

While graphlet kernels enable us to efficiently compare and represent unlabeled graphs,
the comparison and representation of large, labeled graphs remains a challenge. In the
worst case, no existing graph kernel scales better than O(n?3) for a pair of labeled graphs
of size n.

We show in Chapter 3 that it is possible to efficiently compare unlabeled or categor-
ically labeled graphs of arbitrary size: The Weisfeiler-Lehman subtree kernel that we
propose here scales linearly in the number of edges in given graphs. Note that merely
reading a graph scales in the same way. A further advantage of our kernel is that while
taking an inner product in the rich space of all subtree patterns up to a given height
in the given graph set, we are still able to get a sparse explicit representation of each
graph in the feature space. When the number of graphs is very large, such as many
thousands or more, this property proves very useful as it avoids the need of storing a
large kernel matrix which may not even fit in memory. Furthermore, we generalize the
Weisfeiler-Lehman subtree kernel to a family of kernels for graphs with categorically
labeled nodes. Our generalization makes existing graph kernels more expressive by en-
abling them to better capture the graph topology. Finally, we present two extensions
of the Weisfeiler-Lehman subtree kernel: One for flexible matching of subtree patterns,
and one for extracting topological features for comparing nodes within one large graph.

In Chapter 4, we present applications of our contributions in two different areas. First,
we propose a kernel comparing pixels for remote sensing image classification. The kernel
captures high order neighborhood relations in the input image and achieves competitive
classification accuracy on standard remote sensing image classification tasks. Next, we
present our ongoing work on using graph kernels on neighborhoods of nuclei to predict
chemical shifts of nuclei based on protein structure. Unlike many existing approaches,
our method takes into account the complete 3-dimensional neighborhood of nuclei and
compares them using a flexible similarity measure.

We believe that our contributions have the potential to prove useful in many other
applications where graph representations have not yet been considered because of the
lack of scalable graph comparison methods.

108



5.1. GRAPH COMPARISON AND REPRESENTATION

We conclude this thesis with an outlook into further research in scalable machine
learning on graphs. We start by presenting potential extensions of the contributions of
this thesis (Section 5.1), and subsequently discuss some new directions in learning on
graph data (Section 5.2).

5.1. Graph comparison and representation

Inexact matching of subtree patterns The first natural research direction that
we have already started exploring in this thesis is graph comparison via inexact match-
ing of subtree patterns while retaining the attractive, linear runtime of the Weisfeiler-
Lehman subtree kernel. Solving this problem would benefit application fields where
graphs tend to be noisy or incomplete, or too large for node neighborhoods to match ex-
actly. Many graph problems in molecular biology fall into this category [see e.g., Reguly
et al., 2006]. As the exact matching of subtree patterns plays a key role in the efficiency
of the Weisfeiler-Lehman algorithm, this problem is indeed challenging. We proposed
an efficient solution, based on approximating the Jaccard coefficient between the sets of
labels of neighbors of nodes. However, we did not observe significant improvement over
the standard Weisfeiler-Lehman subtree kernel on benchmark graph classification tasks,
even when using exact instead of approximate Jaccard coefficients. One reason for this
may be the fact that we continue using the standard Weisfeiler-Lehman relabeling from
Algorithm 2 in Section 3.1. A strategy that may prove useful is to learn a non-perfect
hash function for subtree patterns appropriate for a problem at hand, and use it instead.
There exist several recent efficient methods for learning hash functions [e.g., Baluja and
Covell, 2008, Kulis and Darrell, 2009] that could be considered to this end.

Complex node and edge labels A related, but different problem is that of efficiently
comparing graphs with complex labels on nodes or edges. By complex labels we mean,
for instance, real numbers, vectors, or strings. Even discrete labels can be regarded as
complex, if they are not categorical: For example, if labels correspond to ratings on some
discrete scale, then 4 and 5 resemble each other more than 2 and 5. Currently, comparing
a pair of this type of graphs in the simplest and least expressive fashion already results
in more than quadratic runtime in the number of nodes. Many applications would
benefit from efficient solutions to these problems. For instance, document classification
in semantic learning, where a document is represented as a graph, node labels are words,
edge labels describe relations between words, and there exists structure on both word
and edge label dictionaries [Rettinger et al., 2012]; or biological network analysis, where
nodes are often labeled with many different types of information [Lee et al., 2008]. As
we now have efficient methods for comparing and representing graphs with categorical
labels, one way to address continuous node and edge labels would be to first cluster
them into categorical labels while retaining as much information as possible. To achieve
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this goal, one could explore recently developed discretization algorithms in data mining
[e.g., Sugiyama and Yamamoto, 2011]. If labels constitute p-dimensional vectors of
categorical variables, one can learn different kernels for each component and combine
them, for instance, by multiple kernel learning [Lanckriet et al., 2004].

Moreover, we deem interesting several questions regarding learning on graph-structured
data in general. We present them in the next section.

5.2. Feature selection on graphs

In data analysis methods for experimental sciences, the question of interpretability is
often important. As an example, consider classifying molecules into mutagenic and non-
mutagenic groups in chemoinformatics: Here, it often does not suffice to predict that a
given molecule should be mutagenic, but it is as important to identify the (preferably
small number of) substructures of the molecule that make it likely to be so. Algorithms
that seek to select a subset of relevant variables to predict an output variable are called
feature selection methods [Guyon and Elisseeff, 2003]. An important special case of the
feature selection problem arises in the setting where features are combined linearly and
one seeks to predict the output variable using only a small subset of features. This
setting is referred to as sparse linear modeling. Sparsity, or parsimony, is a principle
stating that when comparing different hypotheses that explain an event equally well, one
should favor the one making the least assumptions, in other words, the simplest one. For
example, if we find that the prediction of mutagenicity of molecules can be done equally
accurately whether we consider all substructures of molecules or only a small subset of
them, then according to the principle of parsimony we should predict using the small
subset of substructures.

Feature selection on graphs is not a new problem. Most methods in the field of
pattern mining, discussed in Section 1.4.2, are in fact concerned with the discovery of
interpretable substructures that are relevant in one learning task or another. Sparsity in
feature selection on graphs has also been explicitly addressed, for instance, in gBoost by
[Saigo et al., 2009], or in our work prior to this thesis [Shervashidze and Tsuda, 2008].

Compound subgraphs One interesting problem in learning on graph-structured data
is feature selection on graphs by considering relations between subgraphs. As we have
seen in this thesis, most representation methods for graphs in machine learning rely
on particular types of substructures, such as random walks or subtree patterns. When
performing feature selection for graph classification, a graph is represented (explicitly
or implicitly) as a bag of these substructures, and the learning algorithm then tries to
find substructures that are important in predicting the variable of interest. The fact
that these substructures often overlap is usually not taken into account by the learning
algorithm. From the interpretability point of view and according to the principle of
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parsimony, it would be desirable to be able to consider the relations between the variables
and encourage the learning algorithm to select few groups of features forming larger
substructures rather than many small substructures without any relation to each other.

Structured sparse learning with graphs This is a particular instance of a more
general problem: Consider a learning problem where variables (features) are represented
by vertices in a graph whose edges describe relations between variables. To predict the
variable of interest (output variable), we would like to select a small number of groups
of variables forming connected subgraphs in the given graph, without specifying the
candidate groups in advance. This problem is part of the structured sparsity framework
[Jenatton et al., 2011], and is unfortunately intractable in its most general form [Mairal
and Yu, 2011]. Its special cases include the setting where the graph between variables
is a chain graph, or a grid. While efficient optimization algorithms were developed
for special cases where groups are sets of consecutive variables in a vector, rectangular
patterns in a grid [Jacob et al., 2009, Jenatton et al., 2011], or paths in a directed acyclic
graph [Mairal and Yu, 2011}, it is still unclear how to efficiently select features using a
sparsity-inducing norm over more general connected subgraphs of a general graph. As
a first step, one could consider using efficient enumeration schemes for different classes
of subgraphs developed in the field of graph kernels, and in particular in this thesis, to
approach this problem.

Solving this problem would be of both theoretical and practical interest: In terms of
theory, an efficient optimization scheme for general graphs would unify the optimization
techniques and theory developed for chains, grids and paths [Jacob et al., 2009, Jenatton
et al., 2011, Mairal and Yu, 2011]. In terms of practical applications, this would, for
instance, allow to detect gene pathways involved in a phenotype, given a gene network,
gene expression levels and the phenotype for several individuals.
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A. Reproducing kernel Hilbert spaces

This appendix is meant to clarify the notion of reproducing kernel Hilbert spaces step
by step using basic definitions in algebra and functional analysis. We assume that the
reader is familiar with vector spaces and notions such as basis, span and dimension. The
material given here is based on the textbooks by Schélkopf and Smola [2002] and Young
[1988].

Reproducing kernel Hilbert spaces are Hilbert spaces, and Hilbert spaces are complete
inner product spaces: To define completeness and inner product space, we first need to
clarify some more basic notions. We start this section by introducing bilinear forms,
norms and inner products.

Definition A.0.1 (Bilinear form) A bilinear form on a vector space H is a function
Q:HxH—R
such that for all z,x', 2" € H and all ¢,d € R, we have
Q(cx + '), 2") = cQ(z,2") + Q2 2"),

Q(:Uv (Cl‘, + Cl$”)) = CQ(ZE7 1‘,) + C/Q(ZL‘, 1‘”).
If Q also satisfies
Q(ZIZ‘, 1‘,) = Q(xla $)

for all x,x' € H, it is called symmetric.

Definition A.0.2 (Inner product (dot product)) A dot product on a vector space
H is a symmetric bilinear form,

() HxH—R,

that is strictly positive definite, that is, for all x € H, (z,x) >0, and {(x,z) = 0 only for
z = 0.

Definition A.0.3 (Norm) A function ||.|| : H — R that for all z,2' € H and c € R
satisfies
|z +2/|| < [l + [|2]],

[lexl|] = cf|l,
|zl >0 if © # 0,

1s called a norm on H.
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Definition A.0.4 (Normed space) A normed space is a vector space endowed with a
norm.

We can now introduce an inner product space.

Definition A.0.5 (Inner product space) An inner product space (or pre-Hilbert
space) is a vector space endowed with an inner product. Any inner product defines

a corresponding norm via
|zl = v/ (2, ),
therefore any inner product space is also a normed space.

To define the notion of completeness, we need definitions of metric space, Cauchy
sequence and its convergence.

Definition A.0.6 (Metric space) A metric space (M,d) is a set M with a metric
d: M x M — R such that

d(xz,z") >0,

d(z,2)=0& x =2,
d(z,2') = d(2, z),

d(z,2") < d(z,2") + d(z', 2")

Note that any normed space H is also a metric space, if we define d(z, ') as ||z — /||
for all z, 2" € H.

Definition A.0.7 (Cauchy sequence, completeness, dense subset) Let (M,d) be
a metric space. A sequence (xy)ren in M is a Cauchy sequence if, for every e > 0, there
exists an integer ko such that k,l > ko implies that d(zy, x;) < €.

A Cauchy sequence is said to converge to a point x € M if d(zk,x) = 0 as k — oo.

A metric space (M,d) is complete if all Cauchy sequences in M converge to a point
m M.

A subset of M, M', is called dense in M, if every element in M is a limit of a Cauchy
sequence in M'. Equivalently, M is the completion of the set M’'.

Definition A.0.8 (Hilbert space) A Hilbert space is a complete inner product space.

Now we can finally turn our attention to reproducing kernel Hilbert spaces. Scholkopf
and Smola [2002] define them as follows:

Definition A.0.9 (Reproducing kernel Hilbert space) Let X' be a nonempty set
and H a Hilbert space of functions f : X — R. Then H is called a reproducing kernel
Hilbert space endowed with an inner product {.,.) and the norm ||f|| = \/{f, f) if there
exists a function k : X x X — R with properties:
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1. k has the reproducing property, that is,

(f,k(x,.)) = f(x) for all f € H;

In particular,

(k(z,.), k(z',.)).

2. k spans H, i.e., H is the completion of the space spanned by {k(zx,.)|z € X'}.
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B. Counting all graphlets of size 5

In this appendix, we prove the Theorem 2.3.2 for graphlets of size 5.

Theorem Let G be a graph, and let d denote its mazimum degree. For a fixed node vy
in G, we can count all subgraphs of size 5 containing vy in time O(d*).

Proof There are 34 graphlets of 5 nodes modulo isomorphism (see Figure B.1).

Theorem 2.3.1 shows how to count connected graphlets of 5 nodes. The size distribu-
tion of the connected components of the non-connected graphlets on five nodes is (4,1),
(3,2), (3,1,1), (2,2,1), (2,1,1,1) or (1,1,1,1,1) (see g22 — g34 in Figure B.1). We will
consider these cases in this order.

Let {v1,v2,v3,v4} be the four nodes of a connected graphlet of size 4. Such graphlets
can be enumerated in O(nd®). For each such graphlet U, V(v;) is the set of nodes
where the fifth node is not allowed to come from. The cardinality of this set can be
determined in O(d) time.

Let us now consider graphlets with a connected component of size 3 (graphlets gog —
g31). Let {v1,v2,v3} be the three nodes in this component. The connected graphlets of
size 3 can be enumerated in O(nd?). Let S be the set of nodes U?_; N'(v;), and E(S) the
set of edges {(u,v) € Elu € S or v € S or both}. There are O(d) nodes in S, and O(d?)
edges in E(S). The fourth and fifth nodes have to be chosen from V' \ S. If we denote
m the total number of edges in G, we will obtain a graphlet with connected component
size distribution (3,2) in m — |E(S)| cases, and (3,1,1) in ("_2‘5‘) — (m — |E(S)]|) cases.
|E(S)| can be obtained in O(d?), making the overall complexity for counting graphlets
g2s — g31 O(nd*).

We now turn to graphlets with the connected component distribution (2,2, 1), (2, 3),
or (2,1,1,1). Graphlets gag, g29, g32 and g33 fall into this category. Let e = (v1,v2) be
the 2-node connected component (i.e., edge) of such a graphlet. For an edge e = (v1,v2),
we let S, be the set N (v1) UN(vg), and E(Se) the set of edges with at least one
endpoint in S.. Observe that for a given edge e, the numbers of occurrences of graphlets
of type gog, g29, g32 or gs3 containing the edge e sums to (IV:}S'). We have showed
in the previous paragraph how to count the occurrences of graphlets consisting of two
connected components of sizes 2 and 3 (graphlets gog and gog9). We will show here how
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B. COUNTING ALL GRAPHLETS OF SIZE 5
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Figure B.1.: All graphlets of size 5.

to count graphlets of type g32, and get the number of graphlets of type gs3 by
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cs3(G) = <” _3|Se|> — [e28(G) + 29(G) + 2¢32(G)].
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Note that c32(G) has to be subtracted twice as g3 has two isolated edges. Given an
edge e, we need to choose the remaining three nodes in V' \ Se. If we knew for each
edge € = (v3,v4) € E \ E(S.) the cardinality of the set S’, = (N (v3) UN(v4)) \ Se
(number of nodes in the neighborhood of v3 and wv4 in the graph induced by nodes in
V'\ Se), we could obtain the number of graphlets of type gs2 containing e by the sum
D eerm B (M — |S%,]). This quantity can be obtained in the following fashion: First,
for each integer ¢ < 2d — 1 precompute the number m. of edges e’ such that |S./| = c.
This can be done in O(nd?) time. For each edge e = (v1,v9), iterate over edges ¢’ in
E(Se) and set myg,|. to mg, — 1. For e, we can choose another edge outside S and
an isolated node in V' \ S, in

2d—1

Z Mee(n —|Se| — c)
c=2

different ways. At last, we set
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