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Abstract	
  

This thesis introduces two methodological advances in studying the large-scale 

organization of spontaneous activity of the human brain and in addition provides a 

translation of these methods to the clinical realm.  

First, a generic, data-driven framework for identifying alterations in brain wide 

functional connectivity is presented and tested in a patient population suffering from 

multiple sclerosis. A correlation between fMRI derived measures of functional 

connectivity and behavior is established. In the face of a strong cognitive decline and 

the severe disintegration of the central white matter, specific networks increased their 

functional connectivity. This observation challenges the prevailing view on how 

functional connectivity indicates the integrity of brain networks and holds important 

implications for resting state fMRI investigations of brain diseases as well as 

theoretical and modeling studies of large-scale cortical dynamics. In addition, the 

observed correlation between behavior and connectivity has a high relevance for 

medical settings as it may potentially serve as an objective proxy and biomarker for 

the degree of impact of multiple sclerosis on functional processing and brain network 

organization. 

Second, a novel method for measuring functional connectivity based on noninvasive 

electrophysiological data (M/EEG) is established. The method overcomes a 

fundamental problem for deriving measures of interaction from noninvasive 

electrophysiological data by a novel technique of phase orthogonalized power 

correlation. By applying the method to MEG recordings of spontaneous brain activity 

in a large cohort of healthy participants, a characterization of the large-scale 

organization of spontaneous neuronal oscillatory activity could be provided. 

Spontaneous fluctuations of oscillatory activity are spatially organized into frequency 

dependent and functionally specific correlation structures. Thus, the method provides 

a new tool for understanding large-scale brain organization based on neuronal 

oscillatory activity.  

The combined application of both methods to MEG recordings of spontaneous brain 

activity of a group of congenitally blind participants further highlights the strong 

potential of the approaches by demonstrating specific alterations in the organization 

of spontaneous oscillatory neuronal activity in the blind. Occipital areas of the blind 

are found to exhibit known oscillatory signatures of active functional processing. The 
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phase of slow oscillatory processes (delta range ~2 Hz) predicted the amplitude of 

faster rhythms (gamma range ~90 Hz). In addition the formerly visual areas of the 

blind exhibited frequency specific connectivity (beta range ~25 Hz) with prefrontal 

sites. These findings suggest that formerly visual areas serve non-visual processing 

during unconstrained mental activity in the blind and that a specific occipito-prefrontal 

pathway may underlie the reintegration of the occipital processing resources into 

cortical networks. 

Overall, the application of the two novel methods to clinical populations demonstrates 

the unique access that spontaneous brain activity provides to pathophysiological 

principles of brain organization. The advances described in this thesis bridge 

methodological and conceptual gaps in the study of spontaneous activity of the 

human brain. 

 

Introduction	
  

Some of the most considerable advances in cognitive neuroscience and especially in 

the field of systems level neurophysiology arose from the use of specific sensory 

stimulation paradigms (Hubel and Wiesel, 1962). Treating the brain as a passive 

device while controlling external parameters of sensory stimulation allowed studying 

the functional response properties of neurons and their networks and, thus, 

establishing a link between physical parameters of the environment and neural 

activity. With the advent of modern neuro-imaging methods such as functional 

magnetic resonance imaging (fMRI), this powerful approach has been extended and 

refined to include increasingly complex cognitive manipulations that now are 

invaluable for mapping higher cognitive functioning on to human brain structure 

(Friston et al., 2007).  

For a long time, the tacit assumption behind the use of stimulation and cognitive task 

paradigms has been that the variability in the evoked neural responses as well as the 

activity, which is present in neural networks without any external input, is mere noise 

and does not represent a meaningful component of brain activity (Raichle, 2010). 

Accordingly, inference about neural processing and the dynamics of networks has 

only been made after extensive averaging across repeated presentations of the 

stimulation. This procedure aimed to even out any nuisance variability not associated 
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to the question of interest and effectively eliminated the impact of ongoing activity 

fluctuations. 

A conceptually younger approach considers spontaneously occurring fluctuations of 

brain activity as an important contributor to neural processing and brain functioning 

(Arieli et al., 1996). This view posits brainwork to involve constantly active and 

ongoing processes, which compose a core feature of neural processing by predicting 

and modulating sensory input and evoked activity (Engel et al., 2001). Driven by such 

a framework of an active brain and backed by the insight that the brain is indeed 

given a major portion of the body's energy resources for maintaining ongoing 

processes and activity (Shulman et al., 2004), the study of spontaneous brain activity 

has risen to unprecedented heights within the past decade. One of the key 

observations in neuro-imaging has hereby been that the spontaneous fluctuations of 

the blood oxygen level dependent (BOLD) signal are correlated between left and 

right somatomotor and medial premotor structures while subjects lay silently and 

awake (in a resting state) in the MRI scanner (Biswal et al., 1995). This finding 

showed that spontaneous activity levels that are accessible noninvasively are not 

random noise but are actually organized in a functionally specific manner. This 

seminal work unlocked a new and fruitful road of neuro-imaging investigations by 

providing a measure of functional connectivity (correlated brain activity) based on the 

brain's intrinsic activity. The approach of measuring correlations in spontaneous brain 

activity (functional connectivity MRI, fcMRI) allowed for unveiling the large-scale 

organization of the brain into constituent functional networks and for imaging entire 

brain networks without the bias of specific task paradigms and their associated 

processing demands (Fox and Raichle, 2007).  

With modern neuro-imaging methods spontaneous brain activity can readily be 

obtained even in severely compromised patient populations. In addition, investigating 

changes in functional connectivity allows for studying the network organization in 

contrast to isolated brain regions in response to pathological processes. Thus, the 

resting state dynamics of the brain holds an outstanding promise for potential 

biomarkers of diseases and possibly represents a key level of description for 

characterizing pathophysiological processes (He et al., 2007; Greicius, 2008; Zhang 

and Raichle, 2010). However, approaches for measuring and analyzing human brain 

network organization from spontaneous brain activity are still in their infancy and 
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unequivocal ways of translating the methods to clinical populations are not yet 

realized.  

One of the main hurdles in identifying disease related alterations of brain wide 

intrinsic functional connectivity as measured with fMRI arises from the huge search 

space. A common fMRI volume contains about 65,000 brain voxels (3 mm3 isotropic), 

resulting in more than 2 billion pair wise connections. When no strong a priori 

hypotheses about the functional networks that are involved can be made, substantial 

challenges are presented by analyzing the entire search space in a computationally 

efficient manner while perusing sensitivity for physiological changes and a 

conservative segregation of spurious effects (Fox and Greicius, 2010). This is further 

highlighted by the fact that even when strong a priori assumptions are justified, the 

specificity of detected changes cannot be assessed. Any effect may arise in the 

context of or even be secondary to other far more important alterations that simply 

are out of the focus of analysis. Thus, generic frameworks for analyzing global 

changes of functional connectivity are of outstanding interest but have not yet been 

established. 

Another area of growing interest for investigating brain organization and pathology 

based on spontaneous brain activity results from the fact the major developments in 

the field have been limited to fMRI and, thus, an indirect, hemodynamic measure of 

mass brain activity. Despite its indisputable relevance and superior spatial resolution, 

the relation between the BOLD signal and true neuronal activity is complex and 

generally ambiguous (Logothetis, 2008). Approaches for the study of ongoing activity 

patterns based on noninvasive electrophysiological measurements of neuronal 

activity, such as magneto- and electroencephalography (M/EEG) are largely lacking. 

To date the large-scale organization of spontaneous neuronal activity is virtually 

unknown. The major hindrance for such advances is represented by the limited 

spatial resolution of the noninvasive electrophysiological measurement techniques. 

Separating true neuronal interactions (such as correlations in activity) from trivial 

correlations that result from the identical signal component contributing to several 

sensors or sources is the major challenge for neuroelectric imaging of brain networks 

(Schoffelen and Gross, 2009; Brookes et al., 2011; Hipp et al., 2011). Thus, 

approaches that tackle these problems and provide a handle on the spatial 

structuring of spontaneous brain activity as measured by noninvasive 
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electrophysiological measurement techniques would represent a highly significant 

advance. 

Overall, it can well be said that the study of spontaneous brain activity has 

transformed into one of the most promising avenues of neuro-imaging investigation. 

However, important methodological advances and conceptual steps are still needed 

to further build on and unfold this potentially invaluable access to human brain 

organization and function. 

The	
  scope	
  of	
  this	
  thesis	
  

The work described in this thesis aims at creating new approaches for studying 

intrinsic functional connectivity, which address important shortcomings of the current 

state of the art. The overarching goal is to achieve a translation of these methods to 

patient populations and to hereby take significant steps towards uncovering and 

understanding pathophysiological processes.  

Specifically, two methodological advances are introduced. First, a generic analysis 

framework is presented, which offers a powerful, data-driven procedure for studying 

brain wide alterations of functional connectivity. Second, a novel method that allows 

for imaging functional connectivity and brain networks based on noninvasive 

electrophysiological measurements of neuronal activity (M/EEG) is established. The 

application of these methods to patient populations (multiple sclerosis, congenital 

blindness) shows the potential of these approaches and demonstrates that 

spontaneous brain activity provides unique insight into brain organization and 

pathology.  

The thesis comprises three manuscripts. The first manuscript (M1) describes the 

data driven procedure for studying global alterations in functional connectivity along 

with its application to a patient population suffering from multiple sclerosis. The 

second manuscript (M2) describes the novel method for imaging intrinsic functional 

connectivity based on M/EEG. The third manuscript (M3) constitutes the synthesis of 

the two approaches and describes the combined application of both methods to a 

group of subjects suffering from congenital blindness.  

An important aspect of this thesis is that beyond the ambition to provide 

methodological innovations, each part, in its core, aims at revealing physiological or 

pathophysiological principles by means of these innovations. 
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Summary	
  of	
  publications	
  

M1:	
   Increased	
   functional	
   connectivity	
   indicates	
   the	
   severity	
   of	
   cognitive	
  

impairment	
  in	
  multiple	
  sclerosis	
  

Multiple sclerosis is a chronic, inflammatory and neurodegenerative disease of the 

central nervous system (CNS) and a main cause of neurological impairment (such as 

motor, autonomic, cognitive, neuropsychiatric) in young adulthood. Despite the high 

prevalence of the disease and the profound socioeconomic burden, there is still little 

known about how these behavioral impairments, which occur commonly and early in 

the disease course, relate to structural and functional alterations of the brain. This 

study investigated the relationship between the severity of cognitive impairment and 

brain wide alterations of anatomical and intrinsic functional connectivity. 

Sixteen patients suffering from early stages of multiple sclerosis and 16 individually 

matched healthy control participants were included in the study. The analyses 

comprised three steps. First, the structure of the prevailing cognitive impairment was 

characterized and subsequently the accompanying structural and functional 

alterations of the CNS as measured by magnetic resonance imaging were 

investigated. A new, data-driven procedure to study alterations of brain wide 

functional connectivity hereby built the centerpiece of the analyses.  

The patients exhibited a salient pattern of cognitive impairment taking the form of a 

general factor. This indicated that, instead of individual and heterogeneous patterns 

of impairment, the patients mainly differed in the general bandwidth of cognitive 

processes and suggested a widespread and broad impact of the disease on brain 

networks. Congruent with these observations, the analysis of the structural 

parameters that are associated with this type of cognitive decline revealed that the 

level of this strong cognitive impairment was highly correlated with a loss of integrity 

of the central white matter in a widespread and diffuse manner. In order to study the 

changes in intrinsic functional connectivity associated with the cognitive impairment a 

new, data-driven procedure was applied to resting state fMRI data. For each voxel 

the amount of correlations with the strong cognitive impairment within its global 

intrinsic functional connectivity was quantified and statistically tested against an 

empirical distribution of the hypothesis of no effect, which was obtained by a random 

permutation procedure. This approach identified a distributed set of cortical regions 
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to exhibit significant modulation of their connectivity. A post hoc analysis of the 

involved functional networks and type of modulation revealed that the strong 

cognitive impairment was correlated with increased functional connectivity within 

distinct networks, including the default mode network as a central target of these 

modulations. Thus, despite the strong behavioral decline and a marked disintegration 

of the central white matter, networks increased their functional connectivity. 

These results seemingly contradict the common view on the association of functional 

connectivity with both the processing capacity of networks as well as their structural 

integrity. Increased functional connectivity is usually taken as a direct proxy for 

improved functioning and behavior. Thus, these findings challenge the prevailing 

view and suggest a complex and diverging relation of functional and structural 

connectivity in regard to behavior in early multiple sclerosis. Overall this study 

provides a new, generic framework for analyzing alterations in functional connectivity. 

Beyond this, it holds important conceptual implications for investigations of intrinsic 

functional connectivity in brain diseases as well as theoretical and modeling studies 

of large-scale cortical dynamics.    

 

M2:	
   Large-­‐scale	
   cortical	
   correlation	
   structure	
   of	
   spontaneous	
   oscillatory	
  

activity	
  

The brain's wiring represents a key puzzle for understanding neural processing. The 

analysis of the spontaneous covariance of the BOLD signal as a measure of large-

scale functional connectivity has provided unprecedented access to important 

organizing principles of connectivity in the CNS. However, the BOLD signal is an 

indirect measure of neuronal mass activity and the large-scale organization of 

spontaneous neuronal activity is largely unknown. A major problem in deriving true 

connectivity from noninvasive electrophysiological data (M/EEG) is the limited spatial 

resolution of the measurement techniques, leading to spurious connectivity due to 

identical signal components contributing to several sites.  

This study describes a new method for deriving functional connectivity from M/EEG 

data based on the correlation of band limited signal power. Importantly, a novel 

technique of phase orthogonalization tackles the overwhelming problem of spuriously 

correlated source estimates and allows for deriving a well-defined measure of 
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interaction that is insensitive to these noise interactions. Based on MEG recordings in 

43 healthy subjects this study observed highly structured, frequency dependent, 

large-scale correlation patterns in spontaneous oscillatory neuronal activity. Distinct 

hub structures dominating the global connectivity emerged in the theta (4-8 Hz) and 

alpha to beta (8-32 Hz) as well as low gamma (~45 Hz) range in medial temporal 

lobe structures, lateral parietal and somatomotor cortices. Beyond these globally 

dominating patterns, functionally specific correlation structures were found that 

reflected known patterns of functional networks as seen in task activations, such as 

interhemispheric connectivity patterns between sensory homologue areas or 

extended fronto-parietal networks. Thus, spontaneous, neuronal, oscillatory activity is 

spatially organized in a functionally specific and frequency dependent manner across 

the human brain.   

This study provides a major methodological improvement and important empirical 

advances for understanding the large-scale organizational principles of the human 

brain. These steps open up a new road for investigating healthy and diseased human 

brain connectivity based on noninvasive electrophysiological data. 

 

M3:	
   Intrinsic	
   local	
   and	
   long-­‐range	
   couplings	
   in	
   oscillatory	
   activity	
   of	
   blind	
  

visual	
  cortex	
  

Congenital blindness represents a condition of severe sensory deprivation during 

CNS development. Strikingly, the computational resources offered by occipital areas 

get reintegrated into cortical networks and serve non-visual processing in the blind. 

The blind visual cortex exhibits activations upon stimulation of other sensory 

modalities as well as cognitive demands and is thought to contribute to a range of 

higher cognitive processes. The associated changes in the structural and functional 

architecture of the CNS represent a remarkable example of cortical plasticity.   

This study investigated the reorganization of spontaneous oscillatory neuronal 

activity in a group of 11 congenitally blind participants and individually matched 

controls. Based on recordings of resting state MEG, the changes of spontaneous 

oscillatory neuronal activity were studied using the novel method for imaging MEG 

power correlations as a measure of functional connectivity, as presented in 

manuscript M2. Changes in spontaneous oscillatory activity were investigated on two 
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levels of analysis: a local, visual as well as global, whole brain level. For the latter the 

data-driven procedure to identify alterations of global connectivity, presented in 

manuscript M1, was applied.  

Visual areas exhibited power correlations in the delta (~2 Hz) and gamma (~90 Hz) 

range that were absent in sighted controls. The phase of the delta oscillation 

predicted the amplitude of the gamma oscillation. Visual areas of sighted controls 

exhibited an entirely different pattern of oscillatory activity in which alpha (~10 Hz) 

range processes dominated. Here, a 10 Hz oscillation predicted the amplitude of a 

low gamma (~40 Hz) oscillation. Interestingly, the absolute level of visual alpha 

activity (10 Hz signal power) was strongly reduced in the blind, while the visual alpha 

connectivity (power correlations) was on a comparable level to the sighted. In 

addition, the increased delta and gamma range connectivity in blind visual cortex was 

not reflected in an increased signal power over occipital sites. Thus, signal power 

and power correlations showed a double dissociation, suggesting the two measures 

to capture complementary, non-redundant information about the organization of 

oscillatory neuronal activity. Alpha range activity has been associated to processes of 

functional inhibition, while delta and gamma range processes and specifically their 

interaction have been identified as signatures of active processing in visual cortex of 

the sighted. Thus, the change from alpha dominated processes to an oscillatory 

profile in which delta and gamma processes prevail is consistent with an elevated 

level of functional processing in occipital cortex during rest in the blind. 

For studying the changes of spontaneous oscillatory activity in the blind on a whole 

brain level the data driven procedure for identifying alterations in functional 

connectivity was applied. For a grid of ~3,000 voxels the amount of global 

connectivity differences between the sighted and blind was quantified and statistically 

tested against an empirical distribution of the hypothesis of no difference, which was 

obtained by a random permutation procedure. By repeating the procedure for a range 

of different carrier frequencies this procedure revealed which frequencies contain 

information about the groups in their global connectivity structure. This identified the 

beta (~25 Hz) range to exhibit global power correlation patterns, which dissociated 

the blind from the sighted. A post hoc analysis revealed that an extended network of 

frontal regions had increased beta connectivity with visual areas in the blind. Beta 

range oscillations are thought to especially underlie integrative processes. Thus, 

these findings may suggest specific frontal to visual beta range connectivity to 
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underlie the reintegration of the occipital resources into the functionally intact but 

reorganized cortical processing networks in the blind.   

Overall this study finds specific alterations of spontaneous oscillatory neuronal 

activity in the blind on a local visual as well as whole brain level. Blind visual areas 

exhibited oscillatory signatures that are known to occur in the sighted during 

processing demands, suggesting that blind visual areas have an elevated level of 

functional processing during rest and may thus contribute to unconstrained mental 

activity. In addition a specific frontal pathway emerged in the beta range that may 

indicate that visual areas get integrated into a larger network in the blind to contribute 

their computational resources to cortical processing. The methodological innovations 

introduced in the manuscripts M1/M2 were central for arriving at these findings. 

 

Discussion	
  

Within the past decades spontaneous brain activity has been the subject of intense 

investigations with a broad range of neuroscientific tools and across a likewise broad 

range of spatial levels of investigation (Arieli et al., 1996; Tsodyks et al., 1999; Fox 

and Raichle, 2007; Plenz and Thiagarajan, 2007). With the advent of resting state 

functional connectivity MRI (Biswal et al., 1995), which uses correlations in 

spontaneous fluctuations of the BOLD signal as a measure of functional connectivity, 

the noninvasive neuro-imaging approach to spontaneous brain activity has become 

an especially fruitful road for understanding the large-scale functional organization of 

the human brain. The recording conditions are well replicable and put minimal 

demands on subjects: the most widely used protocol for recording such data simply 

requires the subjects to silently fixate their view on a visually presented cross and 

stay awake. Next to the potential clinical relevance implied by these circumstances 

(He et al., 2007; Zhang and Raichle, 2010), the ease of recording and power behind 

analyzing spontaneous brain activity even resulted in the promising vista that 

functional connectivity MRI may even lead to the first discovery science of human 

brain function. Here, the analysis of large datasets shared across research institutes 

may result in unprecedented and novel insight into healthy and diseased human 

brain function (Biswal et al., 2010).   

Despite these highly promising prospects there are however still several 

methodological as well as conceptual shortcomings of the current state of the art. 
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This thesis provided two methodological innovations that bridge existing gaps and 

described the translation of these methods to clinical populations. In what follows the 

novelty of each of the two methods will first be described before the conceptual 

impact of their application is highlighted. 

First, a generic approach for identifying alterations of functional connectivity 

estimated from neuro-imaging data such as fMRI or M/EEG is presented (M1/M3). 

The core advance of the method is that it allows for identifying functional networks, 

which are associated with a certain property of interest (such as a behavioral 

parameter or experimental groups of subjects), in a data-driven way. When studying 

alterations in functional connectivity the data driven assessment of the complete, 

global regime is indeed of special importance for several reasons. Common 

approaches so far often either preselect a few sites (seeds) or specific functional 

networks identified by analysis approaches such as independent component analysis 

(ICA) for then further investigating modulations of functional connectivity (Fox and 

Greicius, 2010). This introduces strong hypotheses about the networks and brain 

regions that are involved and often renders interpretations of the presence or 

absence of modulations in connectivity difficult. Any effect could be unspecific and 

secondary to other effects that are not detected by this reduction of the analysis onto 

a small fraction of the entire covariance structure. By the same token, the changes in 

functional connectivity within isolated networks - be it increases or decreases - is 

often marginally interpretable as more complex effects involving across network 

interactions or effects that are common to several functional networks are not taken 

into consideration. This is an unfortunate shortcoming as these more distributed 

properties of network behavior likely play a pivotal role in the pathophysiology of 

brain networks (Corbetta, 2010). Thus, the simultaneous assessment of the global 

correlation structure is important when trying to understand modulations in functional 

connectivity in terms of specificity and true extent. The procedures described in this 

thesis provide a way of identifying connectivity effects in global connectivity graphs 

(containing all pairwise connections between spatial locations such as voxels, 

sensors, source locations).  

Based on fMRI resting state data a correlation between cognitive decline due to 

multiple sclerosis and functional network behavior could be established 

demonstrating the power of the approach (M1). Surprisingly, specific networks 

increased their functional connectivity despite a strong reduction of the structural 
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integrity of the interconnecting white matter and a severe cognitive decline. These 

observations challenge the prevailing view on how the structural integrity of cortical 

networks and their processing capacity is reflected in spontaneous couplings of 

activity and suggest a complex relation between structural and functional 

connectivity. Further, these findings underline the importance of understanding how 

structural connectivity relates to correlations in activity of distant brain regions when 

making inferences about the association of functional connectivity and behavior.  

In another step the method was applied to MEG derived connectivity graphs of a 

group of congenitally blind subjects (M3). As MEG has a high temporal resolution, 

the approach was extended to incorporate a mapping of global connectivity 

structures that are informative about the difference between the blind and sighted 

onto the underlying frequency range of the neuronal dynamics. Two frequency 

ranges emerged in which the whole brain connectivity showed high discriminative 

power between the blind and sighted: the delta (~2 Hz) and beta range (~25 Hz). 

While the delta range was specifically predictive about the groups for occipital brain 

regions, the beta range also incorporated a highly structured and extended network 

of prefrontal brain regions. Together these results highlight the generic nature of the 

analysis method, being sensitive to alterations in functional connectivity estimated 

from distinct imaging modalities such as fMRI and MEG. 

Second, a new technique for deriving estimates of functional connectivity from 

noninvasive electrophysiological data such as M/EEG was presented. This technique 

uses correlations in spontaneous fluctuations of source reconstructed, frequency 

resolved signal power of neuronal population activity as a measure of functional 

connectivity. The major advance of the novel technique is that it allows for deriving 

estimates of functional connectivity that are not confounded by the trivial correlations, 

which result from the limited spatial resolution of the measurement techniques 

(Schoffelen and Gross, 2009). Before correlating the power time courses between 

two regions, the signals are orthogonalized, removing any signal part that is identical 

in phase (and thus likely confounded due to the quasi instantaneous propagation of 

electromagnetic fields) between the two timecourses. Using this technique to derive 

frequency resolved estimates of functional connectivity within a grid covering the 

whole brain, a characterization of the large-scale spatial structuring of spontaneous 

oscillatory neuronal activity was provided. The main finding of the study (M2) was 

that oscillatory neuronal activity exhibits a functionally specific, frequency dependent 
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correlation structure. Next to the application of the method to a large cohort of 

healthy subjects, the method was also applied to MEG recordings of a group of 

congenitally blind subjects (M3). Here, characteristic differences in oscillatory activity 

between the blind and sighted were found. Interestingly, a double dissociation 

between power and power correlation effects was found. While alpha (~10 Hz) power 

was strongly reduced over occipital sites in the blind, alpha connectivity within visual 

areas was on comparable levels in the blind and sighted. Vice versa, the blind visual 

areas exhibited connectivity in the delta (~2 Hz) and gamma (~90 Hz) range, which 

was not mirrored in increased signal power for these frequencies. These findings 

indicate that the bivariate measure resolves additional and complementary 

information about the organization of spontaneous oscillatory activity, not present in 

the plain strength of oscillatory activity.  

Overall, the results obtained with the new method for imaging functional connectivity 

from M/EEG, demonstrate that spontaneous electrophysiological signal fluctuations 

exhibit a rich and frequency dependent spatial structure that is sensitive to 

pathological alterations of brain organization. This method thus opens up a novel 

road for investigating human brain connectivity in health as well as diseases. 

In sum, this thesis described two new approaches for studying human brain 

connectivity based on spontaneous brain activity and provided evidence for their 

potential in studying pathological cases of 'rewiring' in multiple sclerosis and 

congential blindness.  

Conclusion	
  

Spontaneous brain activity has the potential for providing invaluable access to the 

organization and functioning of the healthy and diseased human brain. The 

developments and findings provided in this thesis constitute significant steps for 

unfolding this potential by bridging methodological and conceptual gaps in the current 

state of the art. 
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Abstract	
  in	
  German	
  (Zusammenfassung)	
  

Diese Thesis führt zwei methodische Fortschritte für die Erforschung der hirnweiten 

Organisation neuronaler Spontanaktivität im Menschen ein und leistet eine 

Übertragung dieser Methoden in den klinischen Bereich. 

Zunächst wird ein generisches, datengetriebenes Prozedere zur Identifizierung von 

Veränderungen hirnweiter intrinsischer funktioneller Konnektivität vorgestellt und in 

einer Patientenpopulation mit Multipler Sklerose getestet. Mit Hilfe der neuen Technik 

konnte eine Korrelation zwischen fMRT-basierten Maßen der funktionellen 

Konnektivität und Verhalten etabliert werden. Trotz starker kognitiver 

Beeinträchtigungen und der schwerwiegenden Zersetzung der zentralnervösen 

weißen Substanz, erhöhten spezifische Netzwerke ihre funktionelle Konnektivität. 

Diese Beobachtung hinterfragt die vorherrschende Ansicht, wie funktionelle 

Konnektivität die Integrität von Hirnnetzwerken anzeigt und hat wichtige 

Implikationen für Ruhe-fMRT Untersuchungen von Hirnerkrankungen sowie für 

theoretische und Modellierungsstudien kortikaler Aktivitätsdynamik. Darüber hinaus 

hat die beobachtete Korrelation zwischen Verhalten und Konnektivität eine hohe 

Relevanz für den medizinischen Bereich, da diese möglicherweise als Biomarker für 

den Grad der Auswirkungen der Multiplen Sklerose auf die funktionelle Verarbeitung 

und Netzwerk-Organisation im Gehirn dienen kann. 

Des Weiteren wird eine neuartige Methode zur Messung funktioneller Konnektivität 

basierend auf nicht-invasiven, elektrophysiologischen Daten wie Magneto - 

Elektroenzephalographie (M/EEG) eingeführt. Kernfortschritt der Methode ist die 

Überwindung eines fundamentalen Problems für das Messen echter 

Hirninteraktionen von M/EEG Daten durch eine neue Technik der 

Phasenorthogonalisierung. Durch die Anwendung dieser Methode auf MEG-

Aufnahmen von Spontanaktivität einer großen Kohorte von gesunden Probanden 

wurde eine Charakterisierung der hirnweiten Organisation spontaner, neuronaler 

Oszillationen erreicht. Spontane Fluktuationen oszillatorischer Aktivität sind räumlich 

in frequenzabhängige und funktional spezifische Korrelationsstrukturen organisiert. 

Diese Methode stellt ein neues Werkzeug dar, das ein Verständnis der hirnweiten 

Organisation neuronaler oszillatorischer Aktivität erlaubt. 

Zuletzt untermauert die kombinierte Anwendung der beiden Methoden auf MEG-

Aufnahmen spontaner Hirnaktivität einer Gruppe geburtsblinder Teilnehmer das 
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Potenzial der Ansätze durch den Nachweis spezifischer Veränderungen in der 

Organisation von spontaner oszillatorischer Aktivität der Blinden. Okzipitale 

Hirnbereiche der Blinden besaßen bekannte oszillatorische Signaturen aktiver 

funktioneller Verarbeitung bei denen die Phase langsamer oszillatorischer Prozesse 

(delta Bereich ~2 Hz) die Amplitude schnellerer Rhythmen (gamma Bereich ~90 Hz) 

bestimmte. Zusätzlich besaßen diese eigentlich visuell arbeitenden Gehirnbereiche 

frequenzspezifische Konnektivität (beta Bereich ~25 Hz) mit prefrontalen Arealen. 

Diese Befunde legen nahe, dass normalerweise visuell arbeitende Gehirnbereiche in 

den Blinden freier mentaler Aktivität dienen könnten und spezifische occipito-frontale 

Konnektivität der Reintegration dieser Resourcen in kortikale Netzwerke unterliegt. 

Insgesamt demonstriert die Anwendung der zwei neuen Methoden auf Daten von 

klinischen Populationen, dass spontane Hirnaktivität einen einzigartigen Zugriff auf 

pathophysiologische Prinzipien der Hirnorganisation zulässt. Die Fortschritte, welche 

in dieser Thesis beschrieben sind überbrücken methodische und konzeptionelle 

Lücken im Studium der Spontanaktivität des menschlichen Gehirns. 
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Correlations in spontaneous brain activity provide powerful ac-
cess to large-scale organizational principles of the CNS. However,
making inferences about cognitive processes requires a detailed
understanding of the link between these couplings and the
structural integrity of the CNS. We studied the impact of multiple
sclerosis, which leads to the severe disintegration of the central
white matter, on functional connectivity patterns in spontaneous
cortical activity. Using a data driven approach based on the
strength of a salient pattern of cognitive pathology, we identified
distinct networks that exhibit increases in functional connectivity
despite the presence of strong and diffuse reductions of the central
white-matter integrity. The default mode network emerged as a
core target of these connectivity modulations, showing enhanced
functional coupling in bilateral inferior parietal cortex, posterior
cingulate, and medial prefrontal cortex. These findings imply
a complex and diverging relation of anatomical and functional
connectivity in early multiple sclerosis and, thus, add an impor-
tant observation for understanding how cognitive abilities and
CNS integrity may be reflected in the intrinsic covariance of
functional signals.

resting state | BOLD fMRI | diffusion tensor imaging | fractional
anisotropy | neurological

Understanding how disease processes affect functional inter-
actions in the CNS is a core challenge of neuroscience re-

search. fMRI connectivity has become an important tool for
revealing large-scale network interactions by analyzing correla-
tions in intrinsic fluctuations of the BOLD signal (1). This method
is sensitive to plastic as well as developmental changes of the
functional architecture (2–5), and has successfully linked specific
cognitive syndromes to the pathology of distinct functional sys-
tems (e.g., spatial neglect after stroke, different forms of
dementias, and healthy aging) (6–8). The structural wiring of the
brain plays an essential role in shaping the spatial patterns of
functional interactions (9, 10). However, the activity correlations
are not fully determined by the anatomical connections and, thus,
provide complementary information about network organization
(11). Especially in the context of neurological damage, the func-
tional covariance structure may document pathological effects
well beyond focal damage, indicating the complex changes of
interactions that occur in distributed networks (12–14). Com-
monly, the coupling strength of spontaneous brain activity is
thought to be a direct proxy for the functioning of brain networks,
with stronger interactions also reflecting a stronger computa-
tional capacity (15, 16).
In this study we have investigated how cognitive pathology due

to neurological damage in multiple sclerosis (MS) is reflected
in changes of structural and functional connectivity. Compared
with other CNS pathologies, MS stands out due to the prominent
involvement of the central white matter. During the disease
process, the immune system exerts inflammatory insults to neu-
ronal myelination and axonal integrity (17). These processes
may lead to the loss of functional cofluctuations (18), especially
in late and severe stages of the disease (19), reminiscent of a

scenario of complete disconnection as in the extreme case of
corpus callosotomy (20). Surprisingly, however, recent studies
also report increased functional connectivity in earlier stages of
the disease (21–23). This raises the question of how cognitive
impairment that occurs as an early and prominent consequence
of MS (24) may relate to changes of functional connectivity. A
challenging aspect of the cognitive decline is the weak associa-
tion between specific lesion parameters, such as the location of
T2-visible plaques and circumscribed cognitive abilities (25, 26).
It is becoming increasingly clear that subtle, nonfocal white
matter damage (as assessed by, e.g., diffusion-weighted imaging)
plays a crucial role in determining the presence and extent of
cognitive impairment (27–30). Thus, the manner in which the
disease affects cognition is likely not a collection of random and
focal disturbances, but has widespread structural and functional
consequences as an important pathological element (31).
In a group of early stage patients, we found the cognitive pa-

thology to exhibit a salient multivariate pattern, a general factor.
Further, we found this pattern of impairment to be related to the
widespread integrity of the central white matter. Finally, by means
of a data driven approach, we identified the default mode network
to be central to strong modulations of functional connectivity by
the severity of the cognitive pathology. Strikingly, the reduction
in cognitive ability and widespread anatomical connectivity was
associated with increased functional connectivity. These results
reveal a dissociation of changes in functional and anatomical
connectivity in relation to cognitive ability and add an important
empirical observation for understanding how fMRI connectivity
may index the integrity of cortical circuits. Our findings hold
significant implications for resting state investigations of brain
diseases as well as theoretical and modeling studies of large-scale
cortical dynamics.

Results
Cognitive Efficiency. To assess the presence and structure of cog-
nitive impairment, we quantified the performance of 16 patients
in the early stages of MS (Table S1) and individually matched
controls in a set of neuropsychological tests. All tests were stan-
dard tools used in clinical and research settings and together
probed a broad range of different sensory, cognitive, and output
modalities. Fig. 1A summarizes the test results for all patients,
sorted such that the patient with the worst performance appears
at the top and the test accumulating the most negative perfor-
mance appears to the left. Three important features of the overall
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pattern of cognitive pathology in the sample emerged. First, the
cognitive impairment exhibited a considerable variability, with
some patients showing only mild deficits and other patients being
more severely affected. Second, some tests were particularly
sensitive in uncovering negative performance early, suggesting
that they tap into functions, which are especially prone to the
disease process. And third, with increasing severity of the pa-
thology, the impairment appeared to broaden across tests, suc-
cessively spanning a wider range of tested modalities. Thus,
instead of multiple, more-specific patterns of impairment, the
patients mainly differed in the general bandwidth of cognitive
processes, leading to the emergence of a general factor of cog-
nitive pathology. To quantify and further analyze this pattern, we
applied principal component analysis (PCA) to the behavioral
performance of patients and healthy controls.
The first principal component of the test battery explained

>50% of the total behavioral variance observed; it was the only
pattern discernible from Gaussian noise (P < 10−16), and robust
to overfitting effects (Fig. S1 B and C). Importantly, all weights
of the component had the same sign, again indicating the main
feature of a general factor, i.e., the positive correlation of test
performance across subjects. To give an idea of how each of the
tests contributed to the component, Fig. 1B shows the test names
scaled by the first component’s eigenvector (loadings). The tests
with a high impact (trail making, paced auditory serial addition
test, and verbal fluency) had an emphasis on executive functions,
speed of processing, and cognitive flexibility, and presumably
require the dynamic integration of information in large-scale
networks (32). The level of this general factor, hereafter referred
to as cognitive efficiency, separated the patient and control
group (Fig. 1C). The patient group showed a significant decrease
in cognitive efficiency (difference from zero: t test, P = 9.63 ×
10−4; group difference: paired t test, P = 9.24 × 10−4). The
healthy control group did not differ from the norm level of
cognitive efficiency (t test, P = 0.101). A classification into

patients and controls based on cognitive efficiency yielded a
sensitivity of up to 81% while maintaining full specificity (Fig.
S1D). Fatigue or depression could be excluded to confound the
results, as none of the patients was found to show symptoms of
depression (Table S1). and the level of cognitive efficiency was
unrelated to any metric of the Modified Fatigue Impact Scale
(33) (Fig. S1E).
Taken together, we find cognitive impairment to be a prevail-

ing feature in early stages of MS. The impairment exhibited
a salient pattern across patients in the form of a general factor,
suggestive of widespread network dysfunctions. In the following
we investigated how this behavioral decline manifested itself in
structural and functional changes of the CNS.

Structural Damage. To evaluate the structural damage that
underlies the observed behavioral impairment, we quantified the
relation of cognitive efficiency to several anatomical parameters.
For each participant we obtained estimates of the volume of the
peripheral gray matter and ventricular cerebrospinal fluid from
the structural scans. The volumes of these structures are sensitive
markers of atrophy processes. Additionally, we derived maps of
fractional anisotropy and mean diffusivity from the diffusion-
weighted imaging data. These diffusion parameters indicate the
integrity of highly organized tissue, such as the white matter, and
allow for an assessment of even subtle disturbances. The stron-
gest association was found within the diffusion parameters.
Cognitive efficiency strongly correlated with a distributed pattern
of fractional anisotropy (Fig. 2A) in the corpus callosum and
immediately surrounding structures (see Fig. S2 for mean dif-
fusivity). The atrophy markers did show a considerably weaker
relation (Fig. 2B). Indeed, the diffusion tensor parameters kept
significant predictive power on the level of cognitive efficiency,
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even when removing the most extreme patients from the analysis
or performing the analysis only within the patient group (Fig.
S2). These results suggest the level of cognitive efficiency to
strongly relate to structural damage as reflected in a broadly
distributed pattern of reduced white matter integrity.

Functional Connectivity Modulations. We studied the changes in
functional connectivity that are related to cognitive efficiency
with a data-driven procedure (Fig. 3A and Materials and Meth-
ods). First, we derived measures of connectivity based on the
covariation of BOLD time series between ∼40,000 voxels that
span the cortex for each participant. Then, we quantified the
behavioral modulation of functional connectivity by correlating
the strength of each connection with cognitive efficiency across
participants. We used random permutation statistics to identify
voxels that had a modulation in connectivity (see Fig. 3A, Fig. S3,
and SI Materials and Methods for a detailed description of the
method). This procedure identified distributed sets of voxels
[n = 447, P < 0.05, false discovery rate (FDR) corrected] that
exhibited significant modulation (Fig. 3B). The largest clusters of
behavioral modulation localized to bilateral inferior parietal
cortices as well as to midline structures in the posterior cingulate
and medial frontal cortex (Table S2). Importantly, the procedure
did not make any assumptions about specific functional networks
or whether connectivity increases or decreases contribute to the
modulation. In other words, these regions changed their connec-
tivity, but the spatial patterns of these connectivity changes, as well
as the direction in which the connectivity was changed (increase or
decrease), remained unresolved by this first analysis step.
The spatial patterns underlying the behavioral modulation can

be revealed from the individual modulation profiles of each of
the identified voxels. The modulation profile contains the global
increases and decreases of connectivity with cognitive efficiency.
First, we analyzed whether the 447 modulation profiles exhibited
similarity across voxels. Indeed, the similarity matrix revealed
a strong dominance by one underlying pattern (Fig. 4A). Two
groups of voxels emerged that were characterized by a highly

similar modulation profile within the group and an inverted
pattern between the groups. We then derived the underlying
dominant spatial pattern of modulation as the first principal
component of the modulation profiles (Fig. 4B). This dominant
spatial pattern explained 40.4% of the total modulation variance
and comprised two functional networks: (i) the default mode
network (DMN; negative values) and (ii) areas implicated in
the deployment of attention and cognitive control, hereafter
referred to as the control network (CN; positive values) (34).
The networks’ opposite sign indicated that the major connec-
tivity modulation was a concurrent increase of connectivity to
one network and a decrease of connectivity to the other. We then
further analyzed the strength with which each of the 447 voxels
expressed this dominant pattern of modulation (Fig. 4C). Ren-
dering the loadings of the dominant modulation pattern on the
cortical surface again revealed the two groups of voxels, which
exhibited the pattern in an inverted way. The larger group was
located in the bilateral parietal cortices, posterior cingulate
cortex, and medial prefrontal cortex. These structures spatially
overlapped with core parts of the DMN. The positive loadings
of these regions showed them to exhibit the modulation pattern
as depicted in Fig. 4B. Connectivity was shifted toward the DMN
in cognitively less-efficient participants (anticorrelation), whereas
it was shifted toward the CN in cognitively efficient participants
(positive correlation). The smaller cluster exhibited the same
pattern of modulation, but connectivity was shifted in the opposite
way between the networks (negative loadings). These structures,
spatially corresponding to parts of the CN, showed a connectivity
shift toward the CN in cognitively less-efficient participants, and
a connectivity shift toward the DMN in cognitively efficient par-
ticipants. Thus, the spatially distributed modulations of functional
connectivity involved two major functional networks, the DMN
and CN. The nature of the modulations was a shift of connec-
tivity toward the spatially corresponding network in cognitively
less-efficient participants and, at the same time, away from the
other network.
An increase in BOLD time-course correlations (connectivity)

could reflect a change from moderately positive to highly positive
correlation values in the patients, but also a change from strong
anticorrelation toward less anticorrelation. The important dif-
ference between these scenarios cannot be revealed from the
modulation alone. In a last step, we thus went back to the first
level of analysis and mapped the actual range of connectivity that
was underlying the modulations. To this end we constructed a
connectivity graph between the two groups of identified regions
(Fig. 4C) and the two networks of the dominant spatial modu-
lation pattern (Fig. 4B and SI Materials and Methods). We then
derived the average within- and across-network connectivity. The
within-network connectivity increased toward more positive
correlation values in the patients (Fig. 4 D and E). For both
groups the average within-network connectivity was significantly
positive (DMN: patient group, t test, P = 8.5 × 10−5, control
group, t test, P = 7 × 10−7; CN: patient group, t test, P = 2.6 ×
10−6, control group, t test, P < 1 × 10−7), with the patient group
showing a higher connectivity (DMN: paired t test, P = 0.035;
CN: paired t test, P = 0.022). The finding that the control group
exhibited positive connectivity suggested that the identified regions
were loosely associated with the networks in the healthy condition
and became integrated more strongly in the patient group.
The two networks involved in these modulations have pre-

viously been shown to exhibit an intrinsically anticorrelated re-
lationship during rest (35) as well as in task situations (36). In
agreement with these findings, for both networks the increased
connectivity was accompanied by a more marked anticorrelation
with the other network. The average across-network correlations
were negative for both groups (Fig. 4F; patient group t test, P =
0.0017, control group t test, P = 7 × 10−4), with the patients
exhibiting stronger anticorrelations (paired t test, P = 0.037).
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Note that the statistics shown in Fig. 4 D–F are not independent
from the procedure, which identified the effect. The existence of
group differences in the connectivity data underscores the ro-
bustness of the effect but had to be expected from the nature of
the behavioral parameter. The focus of analysis here was the
range of actual connectivity that is spanned by the modulations.
To control whether the two most extreme cases in the patient
group could have driven these results alone, we performed
control analyses without them (Fig. S4C). Both the association of
connectivity with behavior as well as the group differences were
present when omitting these patients. Additional control analy-
ses regarding the preprocessing of the fMRI data and head
movement levels are detailed in SI Materials and Methods.
Taken together, the pathological loss of cognitive efficiency

was associated with a gain of functional connectivity among core
parts of the default mode network as well as a control network.
These effects distinguished the groups and got stronger as the
cognitive impairment and thus structural damage worsened.

Discussion
We have investigated the relation of a salient, pathological
pattern in behavior to the covariance structure of spontaneous
brain activity in patients with early stage MS. At the heart of our
observations lies the divergent role of anatomical and functional
connectivity measures in indexing the level of cognitive ability.
Functional connectivity within two networks increased in the
face of a concomitant reduction of anatomical connectivity and
a decline in cognitive efficiency. This finding seemingly contra-
dicts the predominant view of how functional connectivity in-
dexes the integrity of the underlying circuits. A gain in shared
variance of the BOLD fluctuations is often interpreted as a gain
in functional interactions between the brain regions. Conversely,
a pathological loss of function is thought to be reflected in a loss
of cofluctuations in dedicated brain systems. This view has been
supported by numerous studies across diverse neurological con-
ditions, such as stroke (6, 37), traumatic brain injury (38), Alz-
heimer’s disease (39), vegetative state and coma (40), callosotomy
(20), and the decline in healthy aging (8), raising the question of
what may be different in the case of MS.
Several of our observations suggest that a main distinct feature

of the pathology may be the diffuse and distributed impact MS

has on white matter integrity and CNS networks. First, the be-
havioral parameter, which was used to identify the connectivity
modulations, exhibited a notable multivariate structure. The
appearance of a general factor suggests a loss of resources,
which are required to support a sufficient bandwidth of cognitive
processes, conjointly affecting otherwise more distinct cognitive
domains (Fig. S1F). Second, we find the strongest association
between the level of cognitive efficiency and structural measures
in a spatially widespread pattern of white matter integrity. And
third, the increased connectivity was present in networks implied
in different cognitive functions, such as cognitive control of ex-
ternal (41, 42) and internal information (34, 36, 43–45). These
networks are commonly recruited across a wide variety of cog-
nitive tasks, and require the coordinated flow of information
across a wide expanse of cortex, supported by long-range fiber
tracts. Thus, all aspects of our analyses coherently point to a dif-
fuse and widespread impact of the disease on CNS functioning.
With these considerations in mind, there may be two major

lines of argument for assigning physiological significance to the
increased functional connectivity. First, cortical plasticity pro-
cesses may be central to our results. A well-replicated finding in
task activation studies is that patients in various stages of the
disease will show an enhanced recruitment of task-relevant areas
(46–49). These effects specifically involve an extension of the
activation patterns to additional and functionally related brain
areas. Such results are commonly interpreted as indicating an
increased neural effort in cortical computation due to the pres-
ence of structural damage. Our observations could thus reflect
the traces of these repetitive and increased coactivations, with
the functional connectivity tracking the statistical history of
coactivation in cortical circuits. A number of recent studies in
healthy subjects have documented the strengthening of func-
tional connectivity with training-induced improvement in func-
tions in multiple domains, including the motor (2), visual (3), and
mnemonic system (4). Thus, increased functional connectivity
could provide a compensatory mechanism that, through Hebbian
plasticity, limits the consequences of neurological damage and
helps to maintain a viable level of computational capacity.
However, this putative compensatory function does not agree
well with the negative relationship between functional connec-
tivity and cognitive abilities as reported here. Enhanced plasticity
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might, in principle, also be maladaptive and directly contribute
to the worsening of cognitive functions.
An alternative explanation would be that the reduction in

white matter integrity may have led to a loss of diversity in large-
scale cortical dynamics. The finding of widespread structural
disturbances suggests that the pathological process may have
strongly reduced the anatomical basis for functional interactions
in a diffuse manner. Instead of specific connectivity being lost
completely, the identified regions of modulation might hereby
have lost flexibility in their functional interactions. With pro-
gressing severity, the regions would be unable to gear up to more
variable states and thus more frequently participate in prevalent
global patterns of activity (DMN, CN), which would result in
stronger apparent connectivity on long time-scales resulting from
the more rigid and less-differentiated patterns of functional
connectivity. Such a loss-of-diversity account also fits well with
reduced cognitive efficiency as the major neuropsychological
consequence, suggesting that less-diverse patterns of functional
connectivity may be a correlate of the reduced bandwidth of
cognitive processes. These arguments share conceptual similarity
with the process of dedifferentiation during aging, in which
cognitive representations such as receptive fields get gradually
less specific and more broadly tuned (50, 51). Increased func-
tional connectivity reflecting a loss of diversity in interactions
may indeed be a phenomenon common to pathologies in which
a diffuse reduction, but not the absence, of anatomical connec-
tivity is a prevalent feature. Recent converging lines of theoret-
ical work further support this view. Here the functional dynamics
are seen as an exploration of possible states upon a static
structural scaffold (52). The hypothesis of a loss of possible
interactions within this scaffold naturally reconciles the seem-
ingly divergent role of anatomical and functional connectivity in
indexing the level of cognitive ability. However, given the avail-
able data, these considerations so far remain hypothetical. Our
observations call for theoretical studies addressing the effects
of gradual and diffuse, instead of complete and focal, ablations
in the cortical connectivity regime on the organization of the
unfolding functional dynamics.
Overall, our findings show an association of increased func-

tional connectivity in distinct systems with decreased cognitive
ability in MS. These observations were made without assump-
tions regarding specific brain systems and by means of a careful
consideration of the prevailing cognitive impairment. The func-
tional connectivity analysis was entirely data driven and based on
the hypothesis that the behavioral parameter derived from the
neuropsychological testing is informative about individual CNS
integrity. Our approach took advantage of the strong patholog-
ical variability in the patient data, which may render mean-based
approaches such as group comparisons insensitive, and thus
represents a valuable procedure in revealing pathophysiological
principles in functional imaging data. Our findings extend recent
observations, which have been made using independent com-
ponent analysis, of spontaneous brain activity in MS. These
studies have reported on increased synchronization measures of
network patterns in different stages of the disease (21–23), but
the exact relation to individual behavioral status had remained
unclear. Changes of functional networks and their large-scale

dynamics may provide a key level of description for under-
standing how MS affects the CNS. Future studies will be needed
to characterize the stage of white matter disintegration that
marks the transition from increased functional connectivity to
reductions in coupling and the eventual complete absence of
cofluctuations (18–23). Our findings suggest that incorporating
subtle estimates of the individual behavioral state in addition to
contrasts between clinically defined groups is an important ele-
ment when investigating the impact of MS on brain networks.

Materials and Methods
A detailed description of the applied methods is given in SI Materials and
Methods. In the following we give a brief account of our procedures.

Study Design. Sixteen early stage MS patients and 16 healthy controls
matched for age, sex, and education participated in the experiments (SI
Materials and Methods and Table S1). Each participant completed three
experimental stages within 1–4 successive days: (i) neuropsychological ex-
amination with a battery of self-evaluation and cognitive measures; (ii) 20-
min recording of magnetencephalography (275-channel CTF MEG System)
during silent fixation; and (iii) MRI session, with a recording of ∼20 min
BOLD signal during silent fixation and high-resolution anatomical as well as
diffusion-weighted images. The local ethics committee approved the study,
and each study participant gave informed consent before taking part in the
experiments. All experiments were conducted according to the Declaration
of Helsinki.

Data Analysis. The analysis of the behavioral data was performed on 10
cognitive measures, which were extracted from themore demanding parts of
the tests. The raw scores were normalized with the appropriate normative
data of a healthy population, matching the individual participants in age and
education. The behavioral parameter “cognitive efficiency” was then esti-
mated as the first principal component of the resulting performance matrix
containing all normalized test results of all participants. The analysis of the
structural damage was done using FSL (http://www.fmrib.ox.ac.uk/fsl/) (53).
The diffusion tensor parameters were estimated with the diffusion-
weighted imaging tools as documented in the initial steps of TBSS (http://
www.fmrib.ox.ac.uk/fsl/tbss/index.html) (54). Statistical analyses were per-
formed within a standard-space white matter mask (FMRIB58_FA skeleton
thresholded at 0.2), shown as a black underlay in Fig. 2A and Fig. S2A. The
tissue volumes (normalized for individual head size) were calculated using
SIENAX (55). The global modulation of functional connectivity by the level of
cognitive efficiency was calculated after standard preprocessing procedures
of the functional data. In short, for each voxel, the behavioral modulation of
functional connectivity was calculated as the number of significant (P = 0.01,
uncorrected) group-level correlations that occurred between its global
connectivity pattern and the level of cognitive efficiency. For assessing the
statistical significance of the modulations, the procedure was repeated 100×
while randomly permuting the behavioral parameter. A normal distribution
was fitted to these resamples to derive an empirical distribution for the null
hypothesis of no connectivity modulation with cognitive efficiency. This
distribution was used to derive z-scores (subtraction of mean and division by
the SD) and P values. We corrected for multiple statistical testing by con-
trolling for the FDR (56).
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Study Participants. Sixteen patients (13 female and 3 male, 23–46 y
old, mean age: 35.3) and 16 healthy controls (13 female, 3 male,
23–49 y old, mean age: 33.6) participated in the experiments.
Inclusion criteria for the patients were the diagnosis of either
a clinically isolated syndrome suggestive of multiple sclerosis
(MS) or definite MS (1), an Expanded Disability Status Scale
(EDSS) (2) score <4 (excluding motor disabilities), and <4 y of
disease duration. All patients were relapse-free and had ceased
relapse-related cortisone treatment at least 3 mo before the start
of the experiments. All control participants were matched to the
patients individually for sex, age, and school education. Table S1
provides a list with further demographic and clinical information
for all patients.

Neuropsychological Examination. All neuropsychological exami-
nations were carefully conducted according to published guide-
lines, using an identical setup and procedure for each participant
in a soundproofed room. Each examination began with ques-
tionnaires and self-evaluation measures: Demographic Informa-
tion Questionnaire, Edinburgh Handedness Inventory (3),
Modified Fatigue Impact Scale (4), and Hospital Anxiety and
Depression Scale (HADS) (5). Subsequently, each participant
performed a set of neuropsychological tests, probing a range of
different cognitive modalities: Paced Auditory Serial Addition
Test (6, 7), Symbol Digit Modalities Test (8), Trail Making Test
(9), Digitspan (10), Verbal Intelligence Test “Mehrfachwort-
schatztest-B” (11), Controlled Oral Word Association Test with
the letters B, A, S, N, and the word category “supermarket.”
Additionally, each participant performed on the following subt-
ests of the test battery of attentional performance (12): alertness,
covert shifts of attention, cross modal integration, flexibility
and incompatibility. These tests represent reaction time-based
measurements of cognitive functioning, including several classic
task-paradigm components, such as spatial attention cueing, set
shifting, and the Simon effect.

MRI. All scans were done on a 3T Siemens MAGNETOM Trio
Scanner. Functional images were acquired using an echo planar
imaging sequence in the axial plane [repetition time (TR) = 2 s,
echo time (TE) = 25 ms, flip angle (FA) = 80°, voxel size = 4 ×
4 × 4 mm3, matrix = 64 × 52, field of view = 256 × 208 mm2, 36
slices for whole-brain coverage]. These resting-state runs included
606 frames corresponding to ∼20 min in which the participants
were told to silently fixate their view on a visually presented cross
and stay awake. The following additional sequences were re-
corded: (i) T1-weighted image, using a coronal magnetization-
prepared rapid gradient echo sequence (MPRAGE; TR = 2.3 s,
TE = 2.98 ms, FA = 9°, inversion time (TI) = 1,100 ms, voxel
size = 1 × 1 × 1 mm3); (ii) T2-weighted image, using a fast-spin
echo sequence in the axial plane (TR = 6 s, TE = 91 ms, FA =
120°, slice thickness = 4 mm, field of view = 220 mm, 0.7 × 0.7
mm in-plane resolution, 25 slices); (iii) diffusion-weighted echo
planar imaging sequence (TR = 17,200 ms, TE = 115 ms, FA=
90°, TI = 2,400 ms, b = 1,000 mm2/s, 24 noncolinear directions,
three averages, 45 slices, voxel size = 2 × 2 × 2 mm3).

Software and Visualization. If not indicated otherwise, data anal-
yses were done in MATLAB (MathWorks) using custom-written
software. The diffusion tensor parameters were displayed on
mosaic slices of the atlas brain (MNI152) with the mask used for
statistical analyses as a black underlay. For visualizing the fMRI

results, we projected the data on the inflated surface of the
Population-Average, Landmark-, and Surface-Based (PALS)
atlas (13).

Behavioral Analysis. The analysis of the behavioral data was
confined to a subset of 10 neuropsychological test measures,
including the cognitively more challenging subpart of each test.
The abbreviations used to index the test names in the figures refer
to the following test metrics: Trail Making, Trail Making Test Part
B; Pac. Aud. Ser. Add, Paced Auditory Serial Addition Test in
the 2-s version; verbal fluency, average performance on the letters
B, A, S, and N of the Controlled Oral Word Association Test;
flexibility, reaction time on a set shifting task [flexibility, subtest
of the Test Battery of Attentional Performance (TAP)]; alertness,
reaction time on a target detection task (alertness, subtest of
the TAP); Symb. Dig. Mod., Symbol Digit Modalities Test; in-
compatibility, reaction time in a Simon task on incompatible trials
(incompatibility, subtest of the TAP); spat. att., reaction time in
a Posner paradigm on invalid cue trials (covert shifts of attention,
subtest of the TAP); dig. span. fwd., longest digit span forward;
dig. span bwd., longest digit span backward.
Before further analysis, the raw test results were transformed

into deviations from the corresponding age and education norm
of each test for each participant. The behavioral parameter
cognitive efficiency was then estimated as the first principle
component of the test performance covariance matrix. To control
for possible overfitting effects within the small data set, we made
several analyses using a leave-one-out cross-validation (LOOCV)
procedure (Fig. S1 B and C). Here, the principal component
analysis (PCA) was repeated once for each participant. In each
round, one dataset (test data set) was left out of the analysis,
deriving the components’ eigenvector (weights) only from the
remaining data (training data set). Afterward, the left-out data
were projected onto the derived weights. This procedure resulted
in one estimate of the components’ explained variance per par-
ticipant, without the specific data of any participant directly
contributing to the components’ structure. Fig. S1 B and C re-
port the average LOOCV estimates of the components’ values
across participants. Sensitivity and specificity were evaluated for
a binary classification into patients and controls based on the
level of cognitive efficiency (Fig. S1D). Sensitivity reflects the
true positive rate (fraction of correctly identified patients),
whereas specificity reflects the true negative rate (fraction of
correctly identified healthy controls).

fMRI Preprocessing. The functional data were realigned within
scanning runs to correct for head motion using an eight-pa-
rameter (rigid body plus in-plane stretch) cross-modal registra-
tion. Differences in the acquisition time of each slice within a
frame were compensated for by sync interpolation. A whole-brain
normalization factor was applied to correct for changes in signal
intensity between runs (mode of 1,000). For each subject, an atlas
transformation was computed on the basis of the first frame of
each functional run, the T2-weighted and MPRAGE structural
images to the atlas representative target using a 12-parameter
general affine transformation. Functional data were interpolated
to 3-mm3 voxels in atlas space. The atlas representative MPRAGE
target brain (711-2C) was produced by mutual coregistration
(12-parameter affine transformations) of images obtained in six
young and six older subjects. In preparation for functional con-
nectivity analysis, data were passed through several additional pre-
processing steps: (i) spatial smoothing (6-mm FWHM Gaussian
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blur); (ii) temporal filtering retaining frequencies in the 0.009- to
0.08-Hz band; and (iii) removal of several sources of spurious
variance unlikely to reflect spatially specific functional correlations
through linear regression: (a) six parameters obtained by rigid-
body correction of head motion, (b) the whole-brain signal aver-
aged over a fixed region in atlas space, (c) the signal from a ven-
tricular region of interest, (d) the signal from a region centered in
the white matter ; and (e) the first derivatives of all regressors.
These additional preprocessing steps help to separate true from
spurious sources of signal variance and have been shown to result
in a substantial improvement in the accessibility of functional
networks in resting-state fMRI data (14, 15). All preprocessing
steps were performed using in-house software. Before the actual
analysis, the first five frames of the functional data were removed
to allow settlement of the signal. For one control subject (C03),
only the first 330 frames (11 min) of the functional data could be
used for analysis due to excessive movement artifacts toward the
end of the recording.

Control Analyses. To assess whether the preprocessing of the
functional data or movement levels might have had confounding
effects on the results, we carried out several control analyses. The
removal of a global signal influences the presence of anti-
correlations in the data (15) and calls into question the physio-
logical origin of the across networks effect. We thus repeated the
connectivity analysis without regression of the global signal and
found all connectivity effects to still persist (correlation with
cognitive efficiency, DMN connectivity: r = −0.65, P = 4 × 10−5;
CN connectivity: r = −0.66, P = 4 × 10−5; across-network con-
nectivity: r = 0.58, 4.9 × 10−4). To further assess whether the
removal of any of the noise regressors’ variance might have had
a confounding effect for our analyses, we tested whether the
amount of variance that each regressor removed from the BOLD
data of each participant was associated with either cognitive
efficiency or the connectivity across subjects. There were no
significant correlations (Pearson’s r, all P > 0.1).
We assessed the levels of head movement during the resting-

state recordings by calculating the peak-to-peak excursion (PE)
and rms for each of six head-movement parameters (three
translational, three rotational) (16). Before calculating the
metrics, the rotational head-movement levels were transformed
from degrees into the most conservative worst-case millimeter
rotational movements by multiplying with 72.6 mm, the geo-
metric mean of the maximal extents of the standard space’s brain
mask. The maximal movement components across the six pa-
rameters within each subject are reported here. The movement
levels were 2.03 ± 1.03 mm (PE) and 0.45 ± 0.24 mm (rms) for
the patients and 1.72 ± 0.92 mm (PE) and 0.47 ± 0.31 mm (rms)
for the healthy controls, not significantly differing between the
groups (t tests, PE: P = 0.38, rms: P = 0.85). None of the

movement parameters were correlated with cognitive efficiency
(all P > 0.17). Thus, neither the preprocessing nor differences in
the levels of gross head movement had confounding effects on
the results.

Modulation of Functional Connectivity. We restricted the analyses
to voxels within a standard-space brainmask, which resided within
6 mm Euclidian distance of the standard-space target brain’s
cortical surface (13). In a first step, the global connectivity matrix
of these voxels was calculated for each participant. In this matrix
each entry represents the correlation of two voxels’ BOLD time
series. Before passing these matrices to further analysis, all val-
ues were Fisher’s z-transformed. To quantify the modulation of
connectivity by the level of cognitive efficiency, the group-level
correlation of the connectivity strength between any two voxels
with cognitive efficiency was calculated. This calculation resulted
in a matrix of global connectivity modulations with each row
representing the modulation profile (increases and decreases in
functional connectivity) of a given voxel. We derived the raw
modulation for each voxel as the sum across all columns (or
rows) of this modulation matrix after statistical thresholding. All
results were obtained with a threshold that corresponded to an
uncorrected α-level of P = 0.01. Changing this threshold within
reasonable ranges (P = 0.05 to P = 0.001) yielded highly similar
results. We then performed permutation statistics on the raw
modulation by repeating the entire procedure 100× while ran-
domly permuting the behavioral parameter on each round. A
normal distribution was fitted to these resamples to derive an
empirical distribution for the null hypothesis of no connectivity
modulation with cognitive efficiency. This distribution was used
to derive z-scores (subtraction of mean and division by the SD)
and P values.
We extracted the dominant pattern of the connectivity modu-

lations (Fig. 4B) as the first principal component of all modula-
tion profiles identified in the procedure described above. To map
the actual range of connectivity that was indicated by the mod-
ulations (Fig. 4 D–F and Fig. S4C), we constructed for each
participant a connectivity graph based on these PCA results. The
graph contained the voxels belonging to the top 5% of negative
(DMN) or positive values (CN) of the dominant modulation
pattern (Fig. S4 A and B) as well as those voxels whose loadings of
this pattern ranked within the top 50% of negative or positive
values. Thus, the resulting graph contained four voxel groups: the
two networks of the dominant spatial pattern of modulations
(DMN, CN) and the two voxel clusters, which exhibited this
pattern of modulation in an inverted way (Fig. 4C). We excluded
any voxel that occurred in more than one of these groups. First,
the graphs were Fisher’s z-transformed, then we derived the within-
and across-network connectivity as the average connectivity be-
tween the corresponding voxel groups for each participant.
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Table S1. Clinical and demographic information of all patients

Patient no. Age Sex
School

education, y Diagnosis
Disease duration,

y/mo EDSS Medication
HADS depression

status HADS anxiety status

P01 23 Female 10 RRMS 1.75/21 0 Copaxone Normal Normal
P02 30 Female 13 CIS 0.5/6 2 — Normal Positive
P03 34 Male 10 MS 1.25/15 0 — Normal Normal
P04 41 Female 10 RRMS 1.83/22 3 — Normal Ambiguous
P05 36 Male 10 RRMS 1.5/18 1.5 — Normal Ambiguous
P06 29 Female 10 RRMS 3/36 2 Copaxone Normal Normal
P07 45 Female 13 RRMS 2.08/25 2 — Normal Normal
P08 36 Female 12 RRMS 2.67/32 1 Copaxone Normal Normal
P09 36 Female 13 RRMS 2.17/26 3 Rebif Normal Ambiguous
P10 25 Female 10 RRMS 2.33/28 0 Mitoxanthrone Ambiguous Positive
P11 39 Female 10 RRMS 3.66/44 2 Copaxone Normal Positive
P12 46 Female 12 CIS 2.17/26 2 Copaxone Normal Normal
P13 41 Male 10 RRMS 1.16/14 2.5 Avonex Ambiguous Normal
P14 43 Female 13 RRMS 1.75/21 3.5 — Normal Normal
P15 29 Female 12 MS 3.66/44 0 — Normal Normal
P16 32 Female 13 RRMS 1.75/21 0 — Normal Ambiguous
Mean 35.3 11.31 2.03/24.93 1.53
Median 36 11 1.95/23.5 2
SD 6.9 1.40 0.86/10.29 1.21

CIS, clinically isolated syndrome; RRMS, relapsing-remitting MS.

Table S2. Average coordinates of the 10 largest clusters
exhibiting significant (P < 0.05, false discovery rate-corrected)
modulation

Cluster size, voxels Anatomical label X Y Z

53 BA 23 5.83 −53.97 16.44
50 BA 39 −44.1 −70.68 18.72
37 BA 10 −3.4 60.2 0.12
21 BA 39 40.28 −67.5 19.92
18 BA 39 50 −63.83 9.66
18 BA 10 −27.16 57.66 −1
14 BA 40 51.21 −44.57 30.64
13 BA 31 −10.84 −44.88 27.11
13 BA 24 −3.46 29.19 6.8
12 BA 45 38.25 27.75 5.5

Data from Fig. 3B.
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As a measure of functional connectivity, the co-variation of sponta-
neous hemodynamic signals has revealed fundamental insights into 
the large-scale functional organization of the human brain1,2. Blood 
oxygen level–dependent functional magnetic resonance imaging 
(BOLD fMRI) has provided consistent evidence for correlated fluc-
tuations of spontaneous neuronal activity in highly structured net-
works of brain regions3–9. The gross spatial correlation structure that 
constitutes these networks is highly robust and often studied during 
resting fixation. Furthermore, the correlation structure also reflects 
task demands8,10, the subjects’ conscious state11, and psychiatric and 
neurological disorders12,13.

However, an important limitation of the available fMRI studies 
is that hemodynamic signals only provide an indirect measure of 
neuronal activity14–16. In contrast, electroencephalography (EEG) 
and magnetoencephalography (MEG) directly measure the elec-
trophysiological activity of interest. Furthermore, with their high 
temporal resolution, these electrophysiological measures sample the 
rich temporal dynamics of neuronal population activity. These tem-
poral dynamics entail neuronal oscillations that, with their specific 
frequencies, reflect the biophysical properties of different local and 
large-scale network interactions17–19. Thus, connectivity measures 
based on specific spectral components of neuronal population activity 
may provide qualitatively new insights into the circuit mechanisms 
underlying the large-scale organization of brain activity19. However, 
little is known about the brain-wide correlation of such frequency-
specific neuronal population signals. To characterize the brain-wide 
correlation structure of oscillatory power, we developed a new analy-
sis approach for investigating large-scale functional connectivity that 
overcomes current methodological limitations in EEG and MEG. We 
applied this approach to MEG recordings of healthy human subjects 
during resting fixation.

RESULTS
We recorded MEG from 43 subjects that were instructed to fixate 
a centrally presented cross (average duration, ~500 s). We applied 
time-frequency transformation and linear ‘beamforming’ to the MEG 
data to derive temporally, spectrally and spatially resolved estimates 
of neuronal population activity. The temporal evolution of spectral 
power (power envelope) in different brain regions around a given 
carrier frequency served as the signal for our correlation analysis20 
(Fig. 1a). Notably, the correlation between power envelopes that we 
investigated should not be confused with measures of the phase rela-
tion between the underlying signals, such as coherence19,21–23.

It is difficult to investigate the relationship between neuronal popu-
lation signals from EEG and MEG because of notable methodological 
problems19,23–25. As a result of the limited spatial resolution of EEG 
and MEG, even distant sensors or source estimates can be sensitive 
to the same neuronal sources. In source space, this translates into a 
trivial spatial interaction pattern that drops off with distance from any 
reference location. Figure 1b illustrates this problem for the power 
envelope correlation between a reference location in the left somato-
sensory cortex and the rest of the brain. The spatial correlation pattern 
is dominated by an unstructured decay from the reference site that is 
caused by the fact that source estimates close to the reference location 
are sensitive to the same true sources as the reference estimate. This 
spurious correlation pattern is problematic, as it masks the physio
logical correlation structures of interest. To overcome this problem, 
we developed a new analysis approach for studying functional con-
nectivity based on power envelope correlations.

Power envelope correlation between orthogonalized signals
Electrical and magnetic neuronal signals are measured virtually instan-
taneously at different sensors. Thus, signal components that reflect the 
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Large-scale cortical correlation structure of 
spontaneous oscillatory activity
Joerg F Hipp1,2, David J Hawellek1, Maurizio Corbetta3, Markus Siegel2 & Andreas K Engel1

Little is known about the brain-wide correlation of electrophysiological signals. We found that spontaneous oscillatory neuronal 
activity exhibited frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that 
discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures.  
We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography. 
Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation 
patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta 
frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for 
higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in 
frequency-specific power envelope correlations.
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same source at two different sensors (or source estimates) are char-
acterized by an identical phase24. In contrast, for many cases, signals 
from different neuronal populations can be thought of as having a 
variable phase relation. We exploited this difference to discount the 
spurious correlation pattern caused by the limited spatial resolution 
of MEG. For each pair of signals, time window and carrier frequency, 
we removed the signal components that shared the same phase before 
computing the signals’ power estimates. In other words, we orthogo-
nalized the signals before deriving their power envelopes. As a mea
sure of interaction, we then computed the linear correlation between 
these power envelopes. This procedure ensures that the signals do not 
share the trivial correlation in power resulting from the methodologi-
cal problems described above (see Online Methods, Supplementary 
Data and Supplementary Figs. 1 and 2). Applying this approach to 
the above example had a strong effect. The pattern that dominated 
the plain correlation vanished, which revealed residual correlation of 
much smaller magnitude (Fig. 1c). This residual spatial correlation 
pattern was highly structured and extended to distant cortical areas 
(Fig. 1d). Correlation was strongest to the vicinity of the reference and 
to the homologous somatosensory cortex in the other hemisphere.

We next derived the correlation between all 2,925 locations on a 
regular three-dimensional grid covering the entire brain. The average 
correlation was significantly higher than zero for all carrier frequen-
cies from 2 to 128 Hz (t test, P < 0.05, false discovery rate (FDR) 
corrected). The average correlation was strongest in the alpha to 
beta frequency range (r = 0.069 ± 0.060, mean ± s.d. at 16 Hz) with 
about 90% of positive correlations. To identify spatial structure in 
the correlation, we statistically tested for correlation higher than 
the average correlation across the brain. As a starting point, we 
followed up on the introductory example and analyzed interhemi-
spheric correlation between homologous early sensory areas across  
different modalities.

Interhemispheric correlation of homologous sensory areas
A fundamental property of human brain anatomy is that most homol-
ogous areas in the two hemispheres are anatomically connected. 
Accordingly, fMRI studies1,26, intracranial recordings27 and MEG stud-
ies28,29 have found that homologous sensory areas exhibit correlated 
spontaneous activity. Consequently, we expected to find a related pattern 
for power envelope correlations using our new analysis approach.
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(a) Illustration of spectrally resolved power 
envelopes for one exemplary carrier frequency 
f (that is, center frequency of the bandpass 
filter). The gray sinusoidal lines represent 
bandpass-filtered neuronal signals estimated 
at two source locations. The corresponding 
blue and red lines, the amplitude envelopes, 
quantify the evolution of the signal amplitude 
at a slower timescale. We used the logarithm 
of the squared amplitude envelopes (power 
envelopes) for correlation analyses. (b) Plain 
power envelope correlation between the left somatosensory cortex (white circle) and the rest of the brain at a carrier frequency of 16 Hz. The correlation 
values are overlaid on cortical slices intersecting the seed location. L, left. (c) Power envelope correlation between orthogonalized signals from the left 
somatosensory cortex (white circle) and the rest of the brain at a carrier frequency of 16 Hz. Note that the color scale is identical to that used in b.  
(d) Data are presented as in c, but scaled to the minimal and maximal correlation value that occurs.
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Figure 2  Power envelope correlations  
between orthogonalized spontaneous signals 
from homologous early sensory areas.  
(a) Correlation between the auditory cortices 
(red), the somatosensory cortices (Somat.) 
(yellow) and the visual cortices (blue) resolved 
for carrier frequency. Colored bands indicate 
the s.e.m. across subjects. Spatial specificity is 
tested by comparison to the average correlation 
with the rest of the brain (one-tailed t test, 
XP < 0.05, *P < 0.01; see Supplementary 
Fig. 3a,b for a control analyses with different 
spectral smoothing). (b–d) Spatial distribution 
of the correlation between the left auditory 
(b), somatosensory (c) and visual (d) cortices 
and the rest of the brain. Correlation values 
are statistically masked (one-tailed t test for 
correlation > average correlation with the rest of 
the brain, P < 0.05, FDR corrected for number 
of voxel). White circles indicate the location of 
the reference site and the crosses indicate the 
mirrored location in the other hemisphere.  
Ant., anterior; L, left; R, right. (e) Correlation 
between homologous sensory areas as a function 
of the carrier frequency and the co-variation frequency (center frequency of the bandpass applied to the power envelopes before computing correlation on 
the second level). Note that the highest co-variation frequency is limited by the underlying carrier frequency (diagonal dashed line). The values are averaged 
across sensory modalities and subjects and are statistically masked (one-tailed t test for correlation > average correlation to the rest of the brain, P < 0.05, 
FDR corrected for the number of carrier and co-variation frequencies; see Supplementary Fig. 3c,d for control analyses with different spectral parameters).
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We focused on bilateral early auditory, visual and somatosensory 
cortices and investigated a broad range of different carrier frequencies 
(Fig. 2a). In all three sensory systems, we found the strongest correla-
tion in the alpha to beta carrier frequency range (8–32 Hz). The analysis 
of the brain-wide correlation at 16 Hz, the center of this frequency 
range, revealed that the correlation between homologous sensory cor-
tices was spatially specific (one-sided t test for correlation > average  
correlation, P < 0.05, FDR corrected; Fig. 2b–d). The strongest correla-
tions were expressed to areas in direct proximity of the reference locations  
and to the homologous cortex in the contralateral hemisphere.

We spectrally resolved the power envelope correlation (co-variation  
frequency; Fig. 2e) to assess its temporal scale. The correlation 
between homologous areas was significantly increased in a broad, 
low co-variation frequency range from 0.032 Hz (the lowest frequency 
analyzed) to above 1 Hz (one-sided t test for correlation > average 
correlation, P < 0.05, FDR corrected). Thus, modulation of signal 
power on the timescale of several seconds drove the correlation of 
spontaneous activity between sensory areas. These findings were 
insensitive to specific parameters of spectral analyses. We varied the 
spectral smoothing of the carrier and the co-variation frequencies and 
obtained similar results (Supplementary Fig. 3). In summary, our 

analysis approach revealed that spontaneous oscillatory population 
activity in different homologous early sensory cortices was correlated 
on a slow timescale in a spatially and spectrally specific manner.

Spatially specific correlation of higher order cortices
We next extended our analysis beyond early sensory regions and 
investigated how functional relations of higher order cortices are 
reflected in power correlations. We characterized correlation maps 
of a higher visual area, a higher sensory-motor area and a prefrontal 
associative area for a 16-Hz carrier frequency. The middle tempo-
ral area (MT+) is part of the dorsal visual pathway. Indeed, correla-
tion with left and right MT+ peaked in the homologous area in the 
contralateral hemisphere and in the dorsal visual pathway along the 
intraparietal sulcus (one-sided t test for correlation > average cor-
relation, P < 0.05, FDR corrected; Fig. 3a,b). Correlation with the 
supplementary motor area (SMA), which is part of the sensory-motor 
cortex involved in planning of movements, peaked in frontal regions 
that are compatible with the frontal eye fields and other regions in 
the parietal cortex (one-sided t test for correlation > average correla-
tion, P < 0.05, FDR corrected; Fig. 3c). Also the medial prefrontal 
cortex (MPFC), a higher order associative area, exhibited spatially 
well-confined and symmetric correlation patterns (one-sided t test for 
correlation > average correlation, P < 0.05, FDR corrected; Fig. 3d). 
Correlation with MPFC peaked in bilateral dorsal prefrontal cortex 
(DPFC) and bilateral lateral parietal cortex (LPC).

The differences between the correlation patterns of these refer-
ence sites indicate that power envelope correlations can reveal distinct 
functional networks. However, the different correlation patterns also 
shared similar features. In particular, most reference sites showed 
a high correlation with parietal areas. This raised the question of 
whether specific areas such as the parietal cortex might have a par-
ticularly prominent role in the global patterning of power envelope 
correlations. We studied the correlation of power envelopes across the 
full cortico-cortical space to address this question.

Global correlation structure
We derived the full connectivity matrix between 2,925 sources (nodes) 
that covered the brain in a regular three-dimensional grid. We defined 
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Figure 3  Correlation maps for selected locations at a carrier frequency of  
16 Hz. Correlation maps are statistically masked (voxel-wise one-sided t test for 
correlation > average correlation to the rest of the brain, P < 0.05, FDR corrected 
for the number of voxels). The white circles indicate the approximate location 
of the seeds. The values underneath the seed labels indicate the minimal (min) 
and maximal (max) correlation in the statistical mask. (a,b) Left and right MT+. 
The homologous area in the other hemisphere and the intraparietal sulci are 
depicted by dashed lines. (c) SMA. (d) MPFC. Post., posterior.
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Figure 4  Graph-theoretical analysis of the global correlation structure 
of band-limited neuronal signals. (a) Spectrally resolved degree. The 
dashed line indicates the significance threshold (1.01%, P = 0.05, 
corrected for the number of nodes). (b) Degree at a carrier frequency  
of 16 Hz resolved in cortical space (LPC). The color scale is adjusted  
to the maximal and minimal degree that occurred. (c) Spectrally  
resolved number of nodes with significantly increased betweenness 
compared with the average betweenness value (voxel-wise permutation 
test for betweenness > average betweenness, corrected for the  
number of nodes, P < 0.05). (d) Betweenness at a carrier frequency  
of 16 Hz resolved in cortical space. Betweenness is statistically masked 
at two levels (permutation test, corrected for the number of nodes,  
P < 0.05, saturated color scale; permutation test, P < 0.05, uncorrected,  
desaturated color scale). The color scale is adjusted to the maximal and 
minimal betweenness in the statistical mask. (e) Spectrally resolved 
number of normalized betweenness nodes defined analogously to c.  
(f) Normalized betweenness at a carrier frequency of 16 Hz resolved in 
cortical space analogously to d.
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a connection if the correlation between the orthogonalized signals of 
two sources was significantly higher than the average correlation of 
these sources to the rest of the brain (one-sided t test, P < 0.01). We 
used graph-theoretical measures to quantify basic properties of the 
connectivity matrix30. The number of connections (termed degree) 
was highest for the alpha and beta carrier-frequency range (8–32 Hz),  
where it reached ~25% of all possible connections (Fig. 4a). 
The spatial distribution of the degree for this carrier-frequency 
range was characterized by a global anterior-to-posterior increase  
(Fig. 4b). Besides this strong gradient, the degree distribution peaked 

prominently in bilateral LPC with connections to ~85% of all sources 
(MNI coordinates: left, [−39, −54, 32]; right, [46, −45, 39]).

The prominent role of LPC was further supported by its high level 
of betweenness. Betweenness quantifies the number of all possible 
shortest paths in a network a given node participates in. It therefore 
complements degree as a measure that quantifies a node’s impor-
tance for mediating connectivity between other nodes, that is, it’s  
‘hubness’. For carrier frequencies in the alpha to beta frequency range  
(8–32 Hz), the number of significant betweenness nodes (permuta-
tion test, P < 0.05, corrected) and the spatial betweenness distribution 
qualitatively resembled the degree (Fig. 4c,d), with prominent maxima 
in bilateral LPC.

High degree favors high betweenness. Nodes with many connections 
are more likely to support the shortest paths between many other nodes. 
To account for this bias, we computed normalized betweenness, that 
is, the betweenness corrected for betweenness that occurs in random 
networks with the same degree. The number of voxels with significant 
normalized betweenness peaked sharply at 16 Hz (permutation test,  
P < 0.05, corrected; Fig. 4e). In addition to LPC, this procedure 
exposed hubs in medial and bilateral dorsal prefrontal cortex (MNI 
coordinates: MPFC, [10, 60, 10]; left DPFC, [−40, 30, 50]; right DPFC, 
[30, 20, 30]) and bilateral temporal cortex (TMPC; MNI coordinates: 
left, [−50, −40, −10]; right, [60, −20, 0]; Fig. 4f ).
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Figure 5  Correlation maps for identified hubs at a carrier frequency  
of 16 Hz. Correlation maps are statistically masked (voxel-wise one-sided  
t test for correlation > average correlation to the rest of the brain,  
P < 0.05, FDR corrected for the number of voxels). The white circles 
indicate the approximate location of the hub that was used as reference 
for the correlation analysis. The dashed lines indicate the locations of the 
other hubs. The values underneath the seed labels indicate the minimal 
and maximal correlation in the statistical mask. (a,b) Left and right LPC. 
(c,d) Left and right DPFC. (e,f) Left and right TMPC.
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The pattern of connectivity at 16 Hz differed between the LPC, 
MPFC, DPFC and TMPC. The high degree of bilateral LPC was driven 
by a widespread correlation with large parts of the brain (t test for cor-
relation > average correlation, P < 0.05, FDR corrected; Fig. 5a,b). The 
correlation was strongest to the vicinity of the LPC and to the LPC in 
the other hemisphere. In contrast, the hubs in bilateral MPFC, DPFC 
and TMPC were characterized by sparser connectivity (Figs. 3d and 
5c–f). Notably, most of the hub sites showed mutual peaks in the spatial 
correlation patterns. Thus, the LPC, MPFC, DPFC and TMPC were not 
diffusely connected, but formed an interconnected network.

Global correlation structure varies with carrier frequency
The above analyses focused on a carrier frequency of 16 Hz. To inves-
tigate whether the global correlation structure varies across carrier 
frequencies, we performed a two-way analysis of variance of the car-
rier frequency–dependent connectivity (4–45 Hz) with the factors 
carrier frequency and cortical location. Indeed, degree and between-
ness showed significant main and interaction effects (degree: main 
effect carrier frequency, F7 = 4.88 × 104, P = 0; main effect location, 
F2924 = 102, P = 0; interaction, F7,2924 = 9.88, P = 0; betweenness: main 
effect carrier frequency, F7 = 203, P = 5.15 × 10−302; main effect loca-
tion, F2924 = 8.29, P = 0; interaction, F7,2924 = 1.12, P = 8.01 × 10−31). 
Thus, degree and betweenness were not only spatially inhomogene-
ous, but the spatial patterning of connectivity also depended on the 
underlying carrier frequency.

The frequency-dependent degree revealed three prominent  
patterns of connectivity (Fig. 6). In the theta range (4–6 Hz), we 
found the highest degree in the medial temporal lobe (MTL, MNI 
coordinates, left, [−20, −40, −10]; right, [40, −40, 0]). Consistent with 
the above results, for frequencies in the alpha to beta frequency range 
(8–23 Hz), LPC showed the highest degree. In the low gamma fre-
quency range (32–45 Hz), we found the highest degree in sensorimo-
tor cortex (MNI coordinates, left, [−40, −40, 60]; right, [40, −30, 50]). 
These results were consistent with the patterns that we found for the 
frequency-dependent betweenness (Supplementary Fig. 4). In sum-
mary, the graph-theoretical analysis of global connectivity revealed 
spatially symmetric connectivity structure and localized hubs that 
depended on the underlying carrier frequency.

DISCUSSION
Here we introduce a new analysis approach for characterizing brain-
wide functional connectivity based on power envelope correlation that 
overcomes limitations resulting from the limited spatial resolution of 
electrophysiological measures. Applying this approach to MEG, we 
provide a spectrally resolved characterization of the global organiza-
tion of spontaneous electrophysiological signals in the human brain. 
The correlation of band-limited neuronal population activity showed 
prominent hubs that were largely symmetric across hemispheres and 
depended on the underlying carrier frequency.

Power envelope correlations between orthogonalized signals
Central for our findings was the new analysis approach for esti-
mating power envelope correlations on the basis of orthogonal-
ized signals. We applied this approach to MEG source estimates of  
spontaneous activity fluctuations of the resting human brain. 
However, because the underlying physical principles hold for both 
magnetic and electric fields, this approach should be similarly 
powerful for the analysis of EEG data. Furthermore, our approach 
is not limited to the analysis of spontaneous activity, but may also 
provide new insights into task-related functional connectivity. In 
general, the approach can be applied to any set of simultaneous  

electrophysiological signals to derive an index for functional  
connectivity, which may be relevant for biomedical applications.

The combination of EEG or MEG with our analysis approach 
complements electrocorticogram (ECoG) recordings, which have a 
higher spatial resolution and signal-to-noise ratio, but are limited to 
a few focal sites and studies of the diseased brain27,31,32. In fact, our 
analysis approach may also help in the investigation of correlations 
between signals from nearby ECoG or microelectrode recordings that 
may also be affected by spurious correlations resulting from limited 
spatial resolution.

The applied analysis approach can provide a full connectivity 
matrix, which allows for studying brain-wide correlation using 
graph-theoretical methods. It is straightforward to apply this analysis 
approach to contrasting groups of subjects or experimental condi-
tions. The orthogonalization approach may also be combined with 
multivariate methods such as independent component analysis (ICA) 
to identify networks of areas with correlated power envelopes29. 
Furthermore, nonlinear or directed measures of interaction may also 
be applied to the power envelopes of orthogonalized signals.

The global correlation depends on the carrier frequency
We found that the global correlation of spontaneous activity peaked 
for carrier frequencies in the alpha to beta range with prominent 
hubs in the LPC and secondary hubs in PFC and TMPC. These hubs 
resemble the hub structures reported for spontaneous hemodynamic 
signals8. We found that all of these hubs were not diffusely connected, 
but were strongly correlated with each other as a global network.  
This network structure is compatible with the spatial pattern extracted 
from spontaneous MEG power fluctuations in the alpha to beta band 
using ICA29. The identified network overlaps with two networks 
in the correlation of hemodynamic signals: the default mode net-
work2,3,33, which comprises areas typically deactivated during tasks, 
and the control network5,7, which has been implicated in executive 
functions. Besides this global structure, for the same alpha to beta 
carrier-frequency range, our analysis revealed spatially distinct corre-
lations between functionally related sensory and associative cortices. 
These results substantiate converging evidence from MEG28,29,34–36 
and EEG37–39 of the resting brain that suggest a prominent correlation 
of oscillatory power in particular in the alpha to beta frequency range. 
Thus, correlation of alpha to beta activity may be a generic signature 
of intrinsic neuronal interactions.

In addition to the prominent effects in the alpha to beta band, we 
found spatially specific correlation structure of spontaneous activity 
for a wide range of carrier frequencies from the theta to the gamma 
band (4–45 Hz). In the theta frequency range (4–6 Hz), the MTL con-
stituted a global hub. Theta-band oscillations are a prominent feature 
of neuronal dynamics in the MTL. They seem to be tightly related to 
memory processes and are phase-coupled to neuronal activity in other 
cortical regions40–42. In addition, studies of fMRI connectivity have 
identified mnemonic networks that involve the MTL4,6. Consistent 
with these findings, our results suggest that the MTL is central to the 
brain-wide co-variation of spontaneous theta-band activity.

Timescale of power envelope correlations
Consistent with other MEG28,35,36 and intracranial recordings27,43, 
we found that correlations of oscillatory power were driven by slow 
co-variations in a broad frequency range below 0.1 Hz. Similarly, 
hemodynamic correlations are dominated by frequencies below  
0.1 Hz26. These slow co-fluctuations may arise from intrinsic cortical  
dynamics44 and subcortical or neuromodulatory inputs18,19,43,45. 
The slow timescale of power envelope correlations contrasts with the 
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millisecond timescale of neuronal signaling itself. Power envelope 
correlations likely reflect the consequence of signaling rather than act-
ing as a mechanism that controls the signaling on a fast timescale.

Relation to local neuronal activity
In the raw EEG or MEG of awake humans, alpha and beta oscil-
lations are the most prominent rhythms. One could speculate that 
the strong correlations in the alpha and beta frequency range simply 
reflect the better signal-to-noise ratio of these prominent local signals. 
However, differences in the spatial characteristics argue against this 
explanation. Local alpha and beta oscillations appear to be widespread 
across occipital, parietal and central areas (Supplementary Fig. 5). 
This pattern differs substantially from the global hub structure that 
we identified in this frequency range based on power envelope cor-
relations (Fig. 6). In addition, for other frequencies, the hub structure 
differs substantially from the spatial distribution of local signal power. 
Thus, the strength of local oscillatory processes and their brain-wide 
spatial correlation are dissociated. Consequently, the correlation of 
signal power may provide complementary information to local signal 
power that could be exploited in future applications.

Relation to fMRI
EEG and MEG allow for separating neuronal activity into oscillatory 
components that reflect the biophysical properties of different local 
and large-scale network processes17–19. In contrast, fMRI provides a 
compound measure of the joint metabolic cost of different network 
processes and of non-neuronal processes14–16,18. This compound 
nature of the hemodynamic signal is reflected in its correlation with 
oscillatory neuronal activity across a broad range of frequencies 
during stimulation46–48 and at rest37–39,45,49. Thus, the correlation 
structure of electrophysiological and hemodynamic signals should 
share similarities. Indeed, the patterning and the timescale of electro
physiological signal correlation that we found showed substantial 
similarities with fMRI connectivity (see above).

However, despite these similarities, the spatial structure of power 
envelope correlations also exhibited differences to hemodynamic 
correlation. In particular, hemodynamic correlation is characterized 
by prominent hubs in the posterior midline2,8,33, which were largely 
absent in the electrophysiological connectivity that we observed and 
in networks extracted from MEG using ICA29. This apparent dis-
crepancy may reflect the different nature of electrophysiological and 
hemodynamic signals. Furthermore, it should be taken into account 
that source estimates from EEG and MEG may have a spatially 
inhomogeneous sensitivity, which might result in an attenuation of  
deep sources.

Power envelope correlation in the gamma frequency range
Neuronal oscillations in the gamma frequency range have been found 
in various experimental contrasts and may be a generic signature of 
local cortical activity18,22. A growing number of combined electro
physiology and fMRI studies have linked hemodynamic signals to 
neuronal activity, particularly in the gamma band45,46,48–50. These 
findings suggest that resting state functional connectivity observed 
using fMRI2 may manifest in the correlation of oscillatory activity 
in the gamma frequency range. This notion is supported by invasive 
ECoG studies that found long-range power correlation in this fre-
quency range27,31.

In contrast, we did not find prominent global correlation in the 
gamma frequency range. This seemingly unexpected finding may 
relate to different issues. First, the source of variance that drives the 
neuronal signals likely has a profound influence18. Sensory stimulation  

effectively drives cortical gamma-band activity18,46 that can be 
measured with EEG and MEG21,23,48. In contrast, during rest, gamma-
band fluctuations may be much smaller and the global correlation 
may be dominated by alpha to beta band activity. Second, the spatial 
sampling of recorded signals is likely to be important. Compared with 
intracranial electrodes, EEG and MEG average over larger populations 
of neurons. As a consequence, EEG and MEG may be particularly 
sensitive to spectral components with a broader spatial coherence, 
whereas intracranial measures may be more sensitive to locally 
coherent rhythms. Non-invasive and invasive measures may therefore 
emphasize signals with different spatial and spectral characteristics.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
MEG recording. MEG was continuously recorded with a 275-channel whole-
head system (Omega 2000, CTF Systems) in a magnetically shielded room. The 
electro-oculogram was recorded simultaneously for off-line artifact rejection. 
The head position relative to the MEG sensors was measured continuously 
using a set of head localization coils (nasion, left and right ears). MEG signals 
were low-pass filtered online (cutoff = 300 Hz) and recorded with a sampling 
rate of 1,200 Hz.

Subjects and experimental procedure. Subjects (n = 43, age = 25.5 ± 3.5 years, 
mean ± s.d., 21 females) fixated a cross projected centrally onto a back projection 
screen with an LCD projector (Sanyo Pro Xtrax PLC-XP51) from outside the 
magnetically shielded room. Subjects were instructed to continuously maintain 
fixation (duration = 505 ± 115 s, mean ± s.d., range = 360–620 s). The study was 
conducted in accordance with the Declaration of Helsinki and informed consent 
was obtained from all participants before the recordings.

Preprocessing and artifact rejection. The data were high-pass filtered offline 
(cut-off = 0.5 Hz, Butterworth, fourth order) and artifactual data (eye movements, 
strong muscle activity) were rejected on the basis of visual inspection (13.4 ± 
7.6%, mean ± s.d.; range = 2.1–39.5%). For the analysis of spectral components 
above 32 Hz, we performed additional cleaning to account for muscular artifacts. 
The data were high-pass filtered (30 Hz, Butterworth, fourth order), ICA was 
computed and artifactual components related to muscular activity were rejected 
from the data (7 ± 3.8, mean ± s.d.; range = 1–16).

Analysis software. All data analyses were performed in Matlab (MathWorks) 
using custom scripts and open source toolboxes: Fieldtrip51 (http://www.
ru.nl/fcdonders/fieldtrip/), SPM2 (http://www.fil.ion.ucl.ac.uk/spm/), Brain 
Connectivity Toolbox30 (http://www.brain-connectivity-toolbox.net/).

Spectral analysis. We derived spectral estimates using Morlet’s wavelets52 
w(t,f) 

w t f e et
t t i ft( , ) ( ) / /= − − −s p s p1 2 2 2 2 2

Here, f is the center frequency (carrier frequency) and σt is the temporal s.d. The 
time-frequency estimate X(t,f ) of a signal x(t) was then computed by convolu-
tion with w(t,f ) 

X t f x t w t f( , ) ( ) ( , )= ∗

We chose a spectral band-width of 1/2 octave (corresponding to f/σf  ~5.83; σf , 
spectral s.d.) and spaced the center frequencies logarithmically according to the 
exponentiation of the base 2 with exponents ranging from 1 to 7 in steps of 1/4. 
We derived spectral estimates in successive half-overlapping temporal windows 
that covered ±3σt. For time points at which the convolution kernel overlapped 
with sections marked as artifacts (see preprocessing), the data were discarded.

Source locations and physical forward model. For source analyses, we used 
three different source configurations defined in MNI space. For correlation 
maps of selected reference locations, spatial normalization of correlation values 
for statistical testing (see below) and the all-to-all analysis, we used a regular 
three-dimensional grid that covered the whole brain (1-cm spacing, 2,925 source 
locations; for co-variation frequency analyses we used 2-cm spacing, 369 source 
locations). For the correlation analysis between homologous sensory areas, we 
defined bilateral sensory locations in MNI space. The coordinates of the sen-
sory regions were identified by a meta-analysis of fMRI literature using the  
BrainMap.org resources53 (auditory cortex ([−54, −22, 10], [52, −24, 12]),  
somatosensory cortex ([−42, −26, 54], [38, −32, 48]), visual cortex ([−20,  
−86, 18], [16, −80, 26]). Locations of interest derived from fMRI correlation  
literature3 for seed correlation analyses: l/r MT+ ([−47, −69, −3], [54, −63, −8]), 
MPFC ([−3, 39, −2]) and SMA ([−2, 1, 51]).

For source analysis, we constructed individual physical forward models 
(leadfields). We affine-transformed source locations into individual head space 
using the participants’ individual T1-weighted structural MRI and aligned 
the MEG sensors to the head geometry on the basis of three fiducial points 
(nasion, and left and right ear, registered during the MEG acquisition by three 

head localization coils). To derive the physical relation between sources and  
sensors, we employed a single-shell model54.

Source analysis. We used adaptive linear spatial filtering (beamforming)23,55,56 
to estimate the spectral amplitude and phase of neuronal signals at the source 
level. For each frequency f and source location r, three orthogonal filters  
(Â = [A1, A2, A3]; one for each spatial dimension) were computed that pass activ-
ity from location r with unit gain while maximally suppressing activity from all 
other sources 

ˆ ( , ) ( ) ( ) ( ) ( ) ( )A r f L r C f L r L r C fT T=  
− − −

real real
1 1 1

Here, L(r) is a matrix whose columns are the leadfields of three orthogonal dipoles 
at source location r, Creal denotes the real part of the complex cross-spectral-
density matrix for the sensor level data at frequency f and T indicates the matrix 
transpose. We linearly combined the three filters to a single filter pointing in the 
direction of maximal variance, that is, the dominant dipole orientation. To this 
end, the filters were weighted with the first eigenvectors’ elements (the eigenvec-
tor with the largest eigenvalue of the real part of the cross-spectral-density matrix 
at the source location r) 

v r f v r f v r f v r f Eig A r f C f A r f( , ) [ ( , ), ( , ), ( , )] ( , ) ( ) ( ,= =1 2 3 1 real ))*T( )ˆ ˆ

 A r f v r f A r f v r f A r f v r f A r f( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )= + +1 1 2 2 3 3

To derive the complex source estimates, the complex frequency domain data 
were then multiplied with the real-valued filter 

X r t f A r f X t fsource sensor( , , ) ( , ) ( , )=

Here, Xsensor(t,f) is the frequency domain representation of the sensor level 
data at time t and frequency f, and Xsource(r,t,f) is the corresponding source sig-
nal at location r. To account for the spatial bias of the beamforming solution 
when investigating signal power (Supplementary Fig. 5), we jointly normal-
ized the three leadfields for each source location by division with the sum of all  
squared values.

Power envelope correlation between orthogonalized signals. Here we pro-
vide a brief account of the applied method. Please see Supplementary Data 
and Supplementary Figures 1 and 2 for additional information and numerical 
simulations on this approach.

We assessed neuronal interactions by quantifying correlations between power 
envelopes19,20,57,58. To this end, we squared the absolute values of the complex 
spectral estimates and applied a logarithmic transform to render the power sta-
tistics more normal. We then computed Pearson’s linear correlation between the 
resulting power envelopes from two different locations.

To discount spurious correlations caused by the limited spatial resolution of 
source estimates, we orthogonalized any two time series of band-limited activity 
before computing their power envelopes. We performed this operation in the 
frequency domain. We defined the complex signal Y(t,f) orthogonalized to the 
complex signal X(t,f) (see Supplementary Fig. 1) 

Y t f Y t f X t f
X t fX⊥ =







( , ) ( , ) ( , ) *

( , )
imag

The orthogonalization can be done in two directions (X to Y, Y to X). We 
computed power envelope correlations for both directions of orthogonalized 
time-series and averaged the values for subsequent analysis. We performed the 
orthogonalization time point by time point, which requires no assumption about 
stationarity of the signals’ relation beyond the length of the carrier-frequency 
dependent analysis window. Discounting the non-orthogonal signal compo-
nents leads to an underestimation of true correlation by a factor of ~0.577. This 
factor was accounted for when reporting correlation values between orthogo-
nalized signals.

Spectrally resolved correlation of power envelopes (second level analysis). 
To resolve the correlation between two orthogonalized signals in frequency  
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(co-variation frequency), we applied spectral analysis to the power envelopes 
with an approach equivalent to using Morlet’s wavelets. We chose a spectral 
bandwidth of 0.95 octaves (f/σf ~3.15) and spaced the center frequencies log-
arithmically according to the exponentiation of the base 10 with exponents 
ranging from −1.5 in steps of 0.1 to 1/6 of the carrier frequency. We derived 
spectral estimates in successive half-overlapping temporal windows that cov-
ered ±3σt. From these complex numbers, we derived the coherency between 
power envelopes and took the real part of coherency as the frequency-specific 
measure of correlation.

Power envelopes were interrupted by periods of missing data resulting from 
artifacts such as eye blinks or strong muscle activity. Thus, the convolution with 
Morlet’s wavelets as described above was not feasible and we employed a spectral 
estimate approach that could cope with missing data. For discrete signals, time 
domain and frequency domain representations are linearly related 

x BX X B x= =, ( )inv

Here, x is the time domain representation, X is the frequency domain repre-
sentation and B is the Fourier basis (that is, family of orthogonal complex sinu-
soids). For data with invalid temporal sections, B is rank deficient. In this case, 
we derived the spectral estimate employing the pseudo inverse. 

X v B x= pin ( )

As a windowing function, we used a Gaussian taper such that if no data was 
missing, the approach was identical to using Morlet’s wavelets. Data sections with 
more than 50% missing data were discarded from the analysis.

Statistical analysis of correlation structure and definition of connections. 
Across a broad range of frequencies, power envelope correlations between 
orthogonalized signals had a positive offset, that is, the brain-wide correlation 
was consistently larger than zero. To focus on the spatial correlation structure, 
we used Student’s t-tests and identified correlation higher than the average 
correlation to all locations on a three-dimensional grid covering the brain. 
We corrected for multiple comparisons by controlling the FDR. Please note 
that this statistic depends on the sources across which the average correlation 
is estimated.

For the analysis of the global correlation structure, no particular reference 
location exists. For this case, the correlation between any two sites can statisti-
cally be compared to the brain-wide correlation of either one of the two sites. 
We established a symmetric connectivity measure by defining a connection to 
be present if statistics for either one of the two possible normalizations reached 
significance (we accounted for two tests by Bonferroni correction, Pthreshold =  
0.01/2). This resulted in a symmetric connection matrix that was used for 
subsequent graph-theoretical analyses. The symmetrization allowed for fully 
connected nodes; in other words, there could be more than 50% connections  
(for example, see Fig. 4b).

Graph-theoretical analysis. We used graph-theoretical measures30 to quantify 
basic properties of global connectivity. We employed three measures highlighting 
different aspects of the global correlation 

Degree is represented as

D
N

ai ij
j

=
− ∑1
1

Here, Di is the degree at location i, and aij is the connection (0 for no connection, 
1 for a connection) between locations i and j, and N is the total number of con-
nections. The total degree is the average of the degree at all locations.

Betweenness is represented as

B
N N

i
i

hj

hjh j
h j h i j i

=
− −

≠ ≠ ≠

∑1
1 2( )( )

( )

,
, ,

r
r

Here, Bi is the betweenness at location i, ρhj is the number of shortest paths 
between h and j, and ρhj(i) is the number of shortest paths between h and j that 
passes through i.

The normalized betweenness is represented as

BN
B B

B
i

i i

i
= −mean

sd

rand

rand
( )

( )

Here, BNi is the normalized betweenness at location i derived from the between-
ness Bi and the mean and s.d. of a set of betweenness values Bi

rand (20 resamples) 
from connection matrices with identical degree but randomized connectivity59. 
Thus, normalized betweenness accounts for the betweenness that occurs in a 
random network with identical degree.

Statistical analysis of graph-theoretical measures. We performed random 
effects statistics to assess the modulation of graph-theoretical measures. We first 
derived single subject estimates of graph-theoretical measures using a jackknif-
ing procedure. For each subject i of N subjects, we derived a robust jackknife 
resample Ri by averaging graph-theoretical measures from connectivity matrices 
based on all, but this subject and one other subject at a time. From these jackknife 
resamples, we computed single subject estimates Gi

G R N Ri j i
j

N
= − −

=
∑ ( )1
1

This corresponds to pseudo-values without bias correction. Based on these 
estimates, we performed the following random-effects statistics.

To assess the spatial patterning of graph-theoretical measures, we employed 
random permutation statistics. We generated an empirical null hypothesis distri-
bution for no spatial patterns by randomly permuting source locations for each 
subject and then computing the average across subjects (10,000 resamples). We 
selected only the largest value across the entire space of each resample to account 
for multiple testing. To assess the modulation of graph-theoretical measures with 
the factors carrier frequency and spatial location and their interaction, we per-
formed a two-way analysis of variance.

Illustration of results. To illustrate the spatial distribution of correlation and 
graph-theoretical measures, we projected the quantities onto the cortical surface 
from the population-average, landmark- and surface-based atlas60, or alternatively 
as an overlay on brain slices of the SPM99/2 template brain. We used different 
statistical masks as explained in the corresponding figure legends.
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Supplementary Data 

Here, we provide additional information on how to estimate power-envelope correlations 

between orthogonalized signals. First, we elaborate on the core part of our analysis approach, 

the orthogonalization of signals. Then, we provide numerical simulations that illustrate properties 

of the approach. 

Orthogonalization 

The key step of the analysis approach is to orthogonalize two signals before deriving their power 

envelopes for correlation analysis. This procedure ensures that the signals do not share the 

trivial co-variability in power due to measuring the same sources while preserving co-variation 

related to measuring different sources. 

Using ordinary least squares, the instantaneous linear relation between two signals in the 

frequency domain can be derived as follows: Let X(t,f) and Y(t,f) be the frequency domain 

representation of two time series x and y, where t and t’ are the time points of the center of the 

windows for spectral analysis and f is the frequency of interest (see Spectral Analysis in the 

Online Methods). Then, the part of a complex time series Y that can instantaneous and linearly 

be predicted from X, i.e. Y||X, is: 

|ܻ|௑ሺݐ, ݂ሻ ൌ ܽ௑,௒ሺ݂, ܶሻܺሺݐ, ݂ሻ ൌ ݈ܽ݁ݎ ቆ
∑ ܺሺݐᇱ, ݂ሻܻሺݐᇱ, ݂ሻ∗௧ᇲ∈்

∑ ܺሺݐᇱ, ݂ሻܺሺݐᇱ, ݂ሻ∗௧ᇲ∈்
ቇܺሺݐ, ݂ሻ 

Where aX,Y is the regression coefficient that describes the instantaneous linear relation between 

X and Y that is estimated from data in the time interval T, * is the complex conjugate, and real( ) 

is the real part of a complex number. The signal Y orthogonalized to the signal X, i.e. YX(t,f), can 

be derived by subtracting the parallel signal component: 

ܻୄ ௑ሺݐ, ݂ሻ ൌ ܻሺݐ, ݂ሻ െ |ܻ|௑ሺݐ, ݂ሻ 

The orthogonalization can similarly be performed in the time domain where it generalizes to 

broadband signals. 

Of practical importance is the selection of the time interval T to derive the regression coefficient. 

The interval can range from the entire dataset to just a single time window. Within this time 

interval, the signals’ relation should be constant. If such stationarity is fulfilled, longer time 

intervals provide more robust estimates and may lead to a superior sensitivity of the method. 

However without stationarity, the orthogonalization may be incomplete. The dynamics of the 
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instantaneous relation between EEG and MEG signals is influenced by various factors. Neuronal 

interaction may vary over time. Artifactual signals like muscle activity are waxing and waning in 

time. In the MEG system, the subjects’ head can move relative to the sensors, which changes 

the statistical relation between signals. Since the time-constants of these non-stationarities are 

unknown, we chose the shortest time interval possible, i.e. a single window around time t. In 

other words, we performed the orthogonalization independently for each analysis window. In this 

case, the sum over t’ in the above formula for YX(t,f) vanishes: 

ܻୄ ௑ሺݐ, ݂ሻ ൌ ܻሺݐ, ݂ሻ െ ݈ܽ݁ݎ ቆ
ܺሺݐ, ݂ሻܻሺݐ, ݂ሻ∗

|ܺሺݐ, ݂ሻ|ଶ
ቇܺሺݐ, ݂ሻ ൌ ܻሺݐ, ݂ሻ െ ݈ܽ݁ݎ ቆ

ܺሺݐ, ݂ሻ
|ܺሺݐ, ݂ሻ|

ܻሺݐ, ݂ሻ∗ቇ
ܺሺݐ, ݂ሻ
|ܺሺݐ, ݂ሻ|

 

Thus, YX(t,f) is the difference between Y(t,f) and the part of Y(t,f) that points into the direction of 

X(t,f) (see Supplementary Fig. 1b). Transformation yields the form presented in the Online 

Methods: 

ܻୄ ௑ሺݐ, ݂ሻ ൌ ݅݉ܽ݃ ቆܻሺݐ, ݂ሻ
ܺሺݐ, ݂ሻ∗

|ܺሺݐ, ݂ሻ|
ቇ ݁̂ୄ௑ሺݐ, ݂ሻ 

݁̂ୄ௑ሺݐ, ݂ሻ ൌ
݅ܺሺݐ, ݂ሻ
|ܺሺݐ, ݂ሻ|

 

Where * is the complex conjugate, imag( ) is the imaginary part of a complex number, and êX(t,f) 

is a complex number of unit length pointing orthogonal to the direction of X in clock-vise 

direction. In other words, êX(t,f) describes the orientation in the complex plane. Since êX(t,f) 

does not contribute to the power envelope, we ignored it in the Online Methods for simplicity. 
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Properties of Power-Envelope Correlation Between Orthogonalized Signals 

We used numerical simulations to quantitatively study the properties of power-envelope 

correlation between orthogonalized signals. In particular, we addressed the following questions: 

(1) Does the power-envelope correlation between orthogonalized signals vanish if no ‘true’ 

correlation exists? (2) Does the power-envelope correlation between orthogonalized signals 

detect ‘true’ correlations between sources, and if so, is the magnitude of the estimate affected by 

the orthogonalization? (3) Does the presence of coherence, i.e. of a systematic relation between 

the signals on the fine temporal scale, influence power-envelope correlation estimates between 

orthogonalized signals?  

Signals for Numerical Simulations. As a model of frequency transformed physiological 

signals, we generated complex random numbers with Rayleigh distributed amplitude and 

random phase. This corresponds to the frequency transform of Gaussian noise in the time-

domain. Although this signal model is very general, the conclusions drawn from the present 

simulations are limited to this model.  

We constructed two signals with correlated power envelopes: The first signal was defined as a 

series of random complex numbers (see above). The second signal was constructed as a 

weighted sum of the first signal and another series of random complex numbers (weight signal 1 

= c; weight random = 1–c2; c, coherence). This resulted in two complex time-series with 

coherence c. The power-envelope correlation between two signals generated this way is 

monotonically related to their coherence (see Supplementary Fig. 2f, inlay). Thus, we adjusted 

coherence to specify the power-envelope correlation. To create signals with anti-correlated 

power envelopes, we constructed the second time series as a weighted sum of a modified 

version of the first signal and another series of random complex numbers. The modification was 

to map the amplitude values into the range of 0 to 1 using the cumulative Rayleigh distribution, 

subtract the remapped values from 1, and back-transform the values to amplitude space. In 

other words, we ‘mirrored’ the envelope of the signal. This operation resulted in negative power-

envelope correlations between the constructed signals. Analogous to the case of positive 

correlation, the strength of correlation was specified by adjusting the coherence parameter. For 

the simulations we either took the generated signal pairs, or randomized the phase of one of the 

signals. 

Insensitivity to Spurious Correlation. We performed three simulations with different numbers 

and spatial configurations of independent (and thus uncorrelated) sources (number of sources: 

Nature Neuroscience: doi:10.1038/nn.3101



 

5 
 

3, 5, and 15) to investigate how the orthogonalization approach discounts spurious correlations. 

For each simulation, we derived measurements at two sensors that were defined as mixtures of 

the true sources (the sensors can also be thought of as reconstructed sources). The mixing 

simulated the limited spatial resolution of EEG and MEG, where several ‘true’ sources contribute 

to the signal of a given sensor (or reconstructed source). For the sensors, we computed plain 

power-envelope correlations and power-envelope correlation between orthogonalized signals. 

We started with a simple configuration of 3 uncorrelated sources. Two sources contributed 

strongly to one of the sensors, while not influencing the other sensor. Additionally, there was a 

central uncorrelated source, influencing both sensors (mixing matrix: w = [1, 1, 0; 0, 1, 1]). We 

repeatedly estimated the plain and orthogonalized power-envelope correlations (number of 

samples: 200, number of resamples: 1000). The plain correlation was systematically increased 

although none of the underlying sources was correlated (Supplementary Fig. 2a, blue, r = 

0.165 ± 0.069, mean ± s.d., t-test, P < 10–14). This correlation reflects the two sensors measuring 

the same central source. The magnitude of this spurious correlation depends on the sensors’ 

sensitivity to the same sources. In contrast, the orthogonalized power-envelope correlation did 

not differ significantly from 0 (Supplementary Fig. 2a, red, r = 0.001 ± 0.060, mean ± s.d., t-test, 

P > 0.05). We repeated the simulation for two other source arrangements of increasing 

complexity (Supplementary Fig. 2b; mixing matrix w = [1, 1, 0, 1.25, 0.75; 0, 1, 1, 0.75, 1.25]; 

plain correlation, r = 0.345 ± 0.065, mean ± s.d., t-test, P < 10–14; orthogonalized correlation, r = 

–0.001 ± 0.061, mean ± s.d., t-test, P > 0.05; Supplementary Fig. 2c; mixing matrix 15 x 2 

random numbers; plain correlation, r = 0.231 ± 0.068, mean ± s.d., t-test, P < 10–14; 

orthogonalized correlation, r = 0.000 ± 0.060, mean ± s.d., t-test, P > 0.05). For all source 

configurations, the orthogonalization approach rendered power-envelope correlations insensitive 

to spurious correlations. 

Sensitivity to true correlation. To investigate the sensitivity of the orthogonalization approach 

to true correlations, we simulated signals with a defined correlation of 0.5 and derived power-

envelope correlation estimates for plain and orthogonalized signals for different sample sizes 

(Supplementary Fig. 2d, sample sizes: 50, 100, 200, 400; 10,000 repetitions). The 

orthogonalized power-envelope correlations had approximately half the size of the plain 

correlation values, while the variance of the estimate was comparable to the plain correlation 

and became smaller for larger sample sizes. To quantify the reduction in correlation estimate, 

we varied the strength of correlation between amplitudes. The relation between the defined 

(true) correlation coefficient and the orthogonalized correlation was linear with a slope of 0.577 
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(Supplementary Fig. 2e). Consequently, the true correlation coefficient could be recovered by 

multiplication of the orthogonalized correlation value with 1.73.  

The Influence of Systematic Phase Relations. The above simulations were performed with 

random phase relations between sources. What happens if this assumption is violated? The 

effect depends on the strength of phase synchronization and on the phase lag between the 

signals. If the phase lag of the carrier oscillations is 0, the estimated power-power correlation will 

be reduced. If the phase lag is 90 degree, the power-power correlation estimate will be identical 

to the true correlation, but higher compared to signals with random phase relation. The effect 

size depends on the strength of phase synchronization. This effect is illustrated in 

Supplementary Figure 2f that shows simulations with signals of different degrees of coherence 

(and corresponding levels of correlation, see inset) and different phase lags. Thus, phase-

coherence between signals can modulate the power-envelope correlation estimate of 

orthogonalized signals, but importantly, phase-coherence cannot induce spurious measures of 

power-envelope correlations.  

In summary, simulations confirm the viability of the approach to estimate power-envelope 

correlations between orthogonalized signals. In the absence of phase-coherence and for normal 

amplitude distributions, the approach provides a measure that is insensitive to spurious 

correlation and allows for estimating the true correlation. Strong phase-coherence may modulate 

the estimate but will not introduce spurious correlation if no true power correlation exists.  
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Supplementary Figures 

 

 

Supplementary Figure 1. Correlation between power envelopes of orthogonalized signals. (a) Illustration 

of power envelopes for one exemplary carrier frequency f (i.e. center frequency of the band-pass filter). 

The red and blue sinusoidal lines represent band-pass filtered neuronal signals estimated at two source 

locations. The corresponding blue and red lines – the power envelopes – quantify the evolution of the 

amplitudes at a slower time-scale. The green sinusoidal line depicts to the blue signal orthogonalized with 

respect to the red signal. The red power envelope and the green power envelope of the orthogonalized 

signal are then used for correlation analysis. (b) Graphical illustration of the orthogonalization of two 

complex signals as shown in a. The inset depicts the two band-pass filtered signals y(t) and x(t) around 

time t that are analyzed in the complex domain: The signal Y(t,f) is orthogonalized in the complex plane 

with respect to X(t,f). This results in a positive number |YX(t,f)| which is then squared and log-transformed, 

and correlated with |X(t,f)|. 
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Supplementary Figure 2. Properties of power-envelope correlation between orthogonalized signals. See 

Supplementary Data for a detailed description. (a–c) Simulations of independent sources with different 

spatial configurations and two sensors that measure a mixture of the sources’ activities. a: w = [1, 1, 0; 0, 

1, 1], b: w = [1, 1, 0, 1.25, 0.75; 0, 1, 1, 0.75, 1.25], c: 15 random weights for each measurement. The 

figures show the distribution of correlation values of 1000 random resamples (red: power-envelope 

correlation of orthogonalized signals, blue: plain power-envelope correlation; 200 samples). (d) Simulation 

of two signals with random phase relation and a defined power-envelope correlation of 0.5. Distribution of 

estimated correlation values for different samples sizes (50, 100, 200, and 400; red: power-envelope 

correlation or orthogonalized signals; blue: plain power-envelope correlation). (e) Relation of ‘true’ 

correlation and orthogonalized power-envelope correlation for signals with random phase relation. (f) 

Power-envelope correlations between two orthogonalized signals with varying degrees of coherence and 

different phase lags (phase lags: [1:7]/16). Inset: relation between coherence and power envelope 

correlation that was used for this simulation. 
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Supplementary Figure 3. Variation of parameters for spectral analyses. (a,b) Correlation between the 

auditory cortices (red), the somatosensory cortices (yellow), and the visual cortices (blue) resolved for 

carrier frequency. The analyses are identical to the one reported in Figure 2a, but with different carrier-

frequency smoothing (a, f = 0.25 oct, f/f ~ 11.6; b, f = 0.75 oct, f/f ~ 3.93; as opposed to f = 0.5 oct, 

f/f ~ 5.83 in the main text). The results are largely invariant to the variation of the carrier frequency 

smoothing parameter. Less frequency smoothing revealed more distinct correlation structure but at the 

cost of reduced effect strength. For less frequency smoothing, the correlation between visual areas 

showed distinct peaks for alpha and beta carrier frequencies. (c,d) Correlation between homologous 

sensory areas as a function of the carrier- and the co-variation frequencies. The analyses are identical to 

the analysis reported in Figure 2e, but with different co-variation frequency smoothing (c, f = 0.7 oct, f/f 

~ 4.20; d, f = 1.5 oct, f/f ~ 2.09; as opposed to f = 0.95 oct, f/f ~ 3.15). The correlation for increased 

and decreased frequency smoothing is very similar to the results reported in Figure 2e. The effect 

strength increased with increased frequency smoothing. 
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Supplementary Figure 4. Spatial patterning of degree as a function of the carrier frequency. Degree 

values are statistically masked (voxel-wise permutation test for betweenness > average betweenness, 

corrected for number of nodes, P < 0.05, saturated color scale; P < 0.05, uncorrected, desaturated color 

scale). The color scale is adjusted to the minimal and maximal values within the statistical mask. 

Subcortical areas are masked dark gray. 
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Supplementary Figure 5. Spatial patterning of local signal power as a function of the carrier frequency. 

Subcortical areas are masked dark gray. Local signal power and the hubs in the global correlation as 

quantified by graph theoretical measures differ substantially. The dashed lines depict sites with high 

betweenness (see Fig. 6). 
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Abstract 

As a consequence of severe sensory deprivation in congenital blindness the brain undergoes 

dramatic plastic changes. Areas, which predominantly process visual information in the sighted, 

are recruited for non-visual tasks in the blind. Here we studied changes in neuronal dynamics 

that reflect these plastic processes in MEG recordings during rest. In a group of congenitally 

blind participants, we found visual cortical areas to exhibit power-power correlations in the delta 

(~2 Hz) and gamma (~90 Hz) range that were absent in matched, sighted controls. These two 

rhythms were related to one another: The phase of the delta oscillation predicted the amplitude 

of the gamma oscillation. Phase-amplitude relations the alpha (~10 Hz) to low gamma (~ 40 Hz) 

range along with the strong alpha power over occipital sites that emerged as dominating 

features of the sighted controls were strongly reduced in the blind. Furthermore we identified an 

extended network of prefrontal regions whose intrinsic signal power correlated with visual areas 

in the beta frequency range (~25 Hz).  

In summary, we show oscillatory neuronal signatures in the visual cortex of the blind during rest 

that resemble activity in the visual cortex of sighted individuals during visual processing. 

Additionally, we identify specific prefrontal areas to exhibit beta range functional connectivity with 

occipital regions in the blind. These findings may suggest that the visual cortex of the blind 

serves non-visual processing in unconstrained mental activity and that a prefrontal pathway may 

underlie the reintegration of these resources into cortical processing. 
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Introduction 

In congenital blindness brain areas, which usually develop to process visual information, 

undergo a remodeling of their structural and functional properties to gain an entirely different 

response profile and processing characteristic (Bavelier and Neville, 2002; Merabet and 

Pascual-Leone, 2010). While the structural extent of occipital brain regions appears to be 

reduced in terms of their volume and surface (Noppeney et al., 2005; Jiang et al., 2009; Park et 

al., 2009; Leporé et al., 2010) as well as their thalamic embedding (Shimony et al., 2006), these 

areas exhibit elevated levels of metabolic demands as measured with PET (Veraart et al., 1990). 

Furtermore, the activity level of blind visual cortex exhibits striking modulation upon stimulation 

of other sensory modalities as well as cognitive demands (Schepers et al., in press; Rösler et al., 

1993; Sadato et al., 1996; Büchel et al., 1998; Röder et al., 1999, 2002; Amedi et al., 2003; 

Gougoux et al., 2005; Collignon et al., 2009, 2011; Bedny et al., 2011), often occurring in a 

functionally specific manner and even following subtle cognitive manipulations such as priming. 

This, together with the observation that the interference with occipital activity may cause a loss 

of performance in specific tasks in the blind (Cohen et al., 1997; Amedi et al., 2004), suggests 

that the computational resources of the formerly visual areas are newly integrated into an intact 

but functionally reorganized cortical processing.   

Here we investigated changes of spontaneous, oscillatory neuronal activity in the congenitally 

blind. Oscillatory activity is a ubiquitous phenomenon in the dynamics of neuronal populations 

(Buzsáki and Draguhn, 2004; Donner and Siegel, 2011) and is intimately linked to a range of 

cognitive phenomena and fundamental aspects of the physiology of nervous computations 

(Buzsaki, 2006). Yet, the information that these signals hold about the reorganization of the 

circuitry in the blind remains largely unexplored. We used task free, resting MEG data and 

source analysis to study couplings in intrinsic oscillatory activity on a local (visual cortex) as well 

as global (whole brain) level. In the blind, visual areas exhibited power-power correlations in the 
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delta (~2 Hz) and gamma (~90 Hz) range where the phase of the delta oscillations predicted the 

gamma amplitude. These relations were absent in the sighted, where visual areas instead 

exhibited alpha range dominated processes, with a ~10 Hz oscillation predicting the amplitude of 

slow gamma (~40 Hz). In addition, we employed a data driven procedure based on power 

correlations to identify specific correlation patterns that dissociated the blind from the sighted. A 

pattern of functional connectivity emerged in the beta (~25 Hz) range showing visual areas to be 

embedded into a network with prefrontal regions. Overall our results provide novel evidence for 

an association of visual areas with specific prefrontal sites in the blind together with signatures of 

active visual processing during rest. These results suggest that the processing resources of 

occipital areas are used for non-visual functions during unconstrained mental activity and may 

be integrated into functional cortical processing an via specific prefrontal brain regions. 
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Materials & Methods 

Participants 

Eleven congenitally blind participants (6 female; age 35.5 ± 9.5 years, mean ± SD, range 23 - 48 

years) and eleven control participants matched in age, gender, handedness and education (age 

34.4 ± 7.4 years, mean ± SD) participated in this study and received monetary compensation for 

their participation. The causes of blindness included retinopathy of prematurity (6), genetic 

defects (2), oxygen deficiency at birth (1), a distorted optic nerve (1) and retinoblastoma (1). 

Four of the congenitally blind participants had very weak residual light perception. All 

participants had normal hearing and had no history of neurological or psychiatric illness. 

Approval of the local ethics committee for this study was obtained and the study was conducted 

in accordance with the Declaration of Helsinki. Informed consent was obtained from all 

participants prior to the recordings. 

 

Data acquisition & preprocessing 

MEG (275 channel, Omega 2000, CTF Systems Inc., Port Coquitlam, Canada) was recorded 

continuously for 5 min during silent wakefulness before the start of another experiment 

(Schepers et al., in press). The electro-oculogram (EOG) and electro-cardiogram (ECG) were 

recorded simultaneously and the head position relative to the MEG sensors was measured 

continuously using a set of head localization coils (nasion, left and right ears). The blind and 

sighted participants were blindfolded during the recording period. For three sighted controls no 

such resting recordings were made. Corresponding data of matching controls was taken from a 

different experiment and these recordings were done during silent fixation without blindfold. One 

MEG sensor was deactivated for all recordings (MLF21), while during the three replaced control 

recordings one additional channel was deactivated (2xMRO11 and 1xMRP44). The MEG signals 

were low-pass filtered online (cuttoff: 300 Hz) and recorded with 1200 Hz. Offline, the data were 

high-pass filtered (cuttoff: 0.5 Hz, Butterworth filter, filter order of 4) and resampled to 600 Hz. 
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Line noise was removed by subtracting the 50, 100, 150 and 200 Hz Fourier components. To 

suppress artifacts, the whole recording period was decomposed using independent component 

analysis (Hyvärinen, 1999). Selection of artifactual components was based on careful visual 

inspection of the 100 components explaining most signal variance. A component was only 

treated as artifact (e.g. eye related, muscle, heart) when the conjunction of the topography, 

power spectrum and time course was clearly conclusive. The data was then remixed, not 

retaining artifacutal components. 

 

Data analysis 

All analyses were done in Matlab (MathWorks, Natick, MA) using custom scripts as well as the 

open source toolboxes Fieldtrip (http://www.ru.nl/fcdonders/fieldtrip (Oostenveld et al., 2011)) 

and SPM (http://www.fil.ion.ucl.ac.uk/spm). For displaying results on the cortical surface we 

projected the data onto the data on the inflated surface of the Population-Average, Landmark 

and Surface-based (PALS) Atlas (Van Essen, 2005). We corrected the whole brain maps for 

multiple comparisons by controlling the false discovery rate (FDR) (Benjamini and Hochberg, 

1995). 

The sensor level power spectra were derived using fast Fourier transforms of hanning windowed 

10s time windows, which were shifted half overlapping through the data. The spectra were 

averaged across all data points and channels, which were available for all recordings and then 

interpolated to a logarithmic scale. 

All bivariate measures (power to power and phase to amplitude couplings) were calculated after 

source projecting the MEG data with adaptive, linear, spatial filters (Van Veen et al., 1997; Gross 

et al., 2001) to predefined source locations. Individual physical forward models were constructed 

by applying an affine transform (based on individual T1 MRI scans) to source locations defined 

in MNI space (Colin27), bringing them into individual head space and aligning the MEG sensors 

to the head geometry based on 3 fiducial points (nasion, left and right ear, defined in the MEG 
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by the 3 head localization coils). The physical relation between the sources and sensors was 

then derived employing a single shell model (Nolte, 2003). For the global analysis a regular grid 

(1 cm spacing, 2925 source locations) spanning the entire MNI brain volume was used. Based 

on this grid we retained locations within a functional V1 mask (Nielsen, 2003) to obtain 171 

sources for the local analysis of early visual cortex. The implementation details of the 

beamformers were as follows: For each source location, 3 orthogonal filters (Â	
  =	
  [Ax,	
  Ay, Az]; one 

for each spatial dimension) were computed that pass activity from a given location with unit gain, 

while maximally suppressing activity from all other sources: Â = [L·C-1·L]-1·L·C-1. Here, L is a 

matrix whose columns are the leadfields of three orthogonal dipoles at a given source location, 

and C denotes either the real part of the complex cross-spectral-density matrix (frequency 

domain beamformer for the power correlation analyses, see below) or the covariance matrix 

(time domain beamformer, cross frequency coupling analyses) for the data and T indicates the 

matrix transpose. We then linearly combined the 3 filters to a single filter pointing in the direction 

of maximal variance, i.e. the dominant dipole orientation. To this end, the filters were weighted 

with the first eigenvectors’ elements (the eigenvector with the largest eigenvalue of the real part 

of the cross-spectral-density (covariance) matrix at the source location). To project the sensor 

data to source estimates, the data was then multiplied with the filter: Xsource = A·Xsensor.  

The power correlation analyses were done using methods described in fill detail elsewhere (Hipp 

et al., in press). In short, complex time series spanning the entire recordings were derived using 

Morlet's wavelets. These spectral estimates were used to calculate the cross-spectral density for 

calculating the beamformer. The kernels were chosen to achieve a logarithmic frequency 

spacing and smoothing (1/2 octave). A phase orthogonalization approach was applied to remove 

power components common to the time series before computing the correlations. Linear 

correlations were then calculated between the squared absolutes of the complex spectral 

estimates after a source projection and a logarithmic transform that rendered the signals more 

normal. For deriving the connectivity within the early visual areas the correlations of each 
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location were spatially normalized (subtraction of the mean correlation to the rest of the brain 

and division by the standard deviation) and all connections within the visual grid exceeding a 

value of 1.64 were counted as existing within each participant. Changing this threshold in a 

broad range of values (0.5 to 5) did not alter the results qualitatively. The global analysis was 

based on all connections present in the entire grid of 2925 source locations (Hawellek et al., 

2011). For each frequency paired t-tests for all connections (raw correlation values) were 

calculated between the blind and sighted and the number of differences exceeding an 

uncorrected threshold of p = 0.01 were counted (across the entire grid, Figure 2. For each 

source location, Figure 3). Changing the level of this threshold within reasonable ranges (p = 

0.05 to p = 0.001) did yield highly similar results. To assign significance to the global connectivity 

differences a permutation procedure was applied in which the analysis was repeated 1000x 

while randomly shuffling the group assignments between blind and sighted. This yielded an 

empirical distribution for the null hypothesis of no differences in connectivity between the groups. 

A normal distribution was fit to these resamples and the raw scores were normalized 

(subtraction of the mean, division by the standard deviation) to derive Z-scores and p values. 

The dominant difference maps were then derived as the first principal component of the average 

global difference patterns for all voxels identified as being significant in the procedure described 

above at p < 0.05, FDR corrected. 

The cross-frequency coupling between phase and amplitude was computed based on the Hilbert 

transform of band pass filtered signals (Canolty et al., 2006). The sensor level data were 

bandpass filtered into slow (1 to 15 Hz in steps of 1 Hz, bandwidth of 3 Hz) and fast (24 to 144 

Hz, bandwidth of 9 Hz) signals using 4th order Butterworth filters. Based on these filtered data 

time domain beamformers were calculated and applied to derive band-limited signals from the 

early visual areas. After Hilbert transform of the source projected data, the phase of the slower 

frequency bands was used as the imaginary part and the amplitude of the faster frequency 

bands as the real part of a new synthetic complex signal resolved in time (Canolty et al., 2006). 
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The raw coupling score was then calculated as the absolute of the average complex value 

across the entire recording session and normalized to the coupling score reported here with a 

permutation distribution (subtraction of the mean, division by the standard deviation). This 

distribution was obtained by randomly shuffling the phase and amplitude relation 100x. This 

normalization removes the positive bias due to the finite recordings and renders random effect 

statistic sensitive. After normalization the coupling scores were averaged across the visual 

source locations. 
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Results 

Intrinsic oscillations in visual cortex.  We studied intrinsic oscillatory activity of visual areas in 

11 blind and matched sighted participants. The most direct indication of a reorganization of 

oscillatory activity in the blind was a drop in the level of alpha (~10 Hz, t-test between groups for 

average power 8-12 Hz: p = 0.016) and beta range (~20 Hz, t-test between groups for average 

power 19-24 Hz: p = 0.033) oscillations over occipital MEG sensors (Fig. 1A), suggesting a loss 

or restructuring of the circuitry giving rise to these classical signatures of the resting human 

M/EEG (Kriegseis et al., 2006). However, beyond the mere strength with which these oscillations 

may be picked up from the scalp (signal power), the spatial patterns in which they occur well as 

the temporal dependencies between the different oscillations may reveal important additional 

aspects about the rewiring of visual areas in the blind. We thus further analyzed power-power 

correlations as a measure of spatial properties and phase-amplitude couplings as a measure of 

temporal relations of oscillatory activity within early visual areas.  

We computed power correlations within a grid of 171 voxels spanning the early visual cortex, 

employing a novel method that allows for assessing such functional connectivity from 

noninvasive electrophysiological data while being insensitive to the problem of sources seeing 

the same signal (Hipp et al., in press). Before computing the power correlations we removed 

from the signals those parts that shared a common phase. This procedure ensured, that any 

power components that would lead to spurious interactions between two locations did not 

contribute to the correlation.  

This analysis revealed that both, the blind and sighted exhibited comparable levels of alpha and 

beta range power correlations in visual cortex (Fig. 1B). However, the visual areas in the blind 

exhibited coordinated power fluctuations across visual areas in the delta (~2 Hz) and gamma 

(~90 Hz) range, which were absent in the sighted controls (t-tests between groups, average 

connectivity 1-3 Hz: p = 0.008; average connectivity 70-120 Hz: p = 0.032). In a next step we 
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tested whether there existed temporal relations among the oscillations in terms of cross-

frequency phase to amplitude relationships. The co-fluctuations of delta and gamma power in 

the visual areas of the blind coincided with an increased cross frequency coupling in these 

frequency ranges (Fig 1C), where the delta phase predicted the gamma amplitude in the blind 

but not the sighted (t-test between groups average cross-frequency coupling for 1-3 Hz phases 

and 70-120 Hz amplitudes: p = 0.0047). This increase in delta-gamma coupling was followed by 

a marked loss in coupling between alpha frequency phases (~10 Hz) and low gamma (~40 Hz) 

amplitude, which was a dominant feature in the sighted (t-test between groups average cross-

frequency coupling for 8-12 Hz phases and 24-54 Hz amplitudes: p = 0.023). 

Overall we found specific alterations in the intrinsic oscillations of blind visual areas. The 

absolute power of alpha and beta range processes was reduced. Along with the loss of alpha 

power went the loss of a cross frequency relation between alpha phase and low gamma 

amplitude. The blind visual areas instead exhibited co-fluctuations of delta and gamma 

oscillations for which the phase of the delta oscillation was predictive of the amplitude of the 

gamma oscillations. 

The global oscillatory architecture. We then receded from the visual focus and analyzed the 

organization of brain wide oscillatory activity with a data driven procedure based on power 

correlations. In a grid of 2925 source locations spanning the whole brain we quantified for each 

frequency the percent of all global connections, which differed between the groups at an 

uncorrected alpha level of p < 0.01 (changing the threshold to p = 0.05 or p = 0.001 yielded 

highly similar results). For assessing the statistical significance of this measure of group 

dissociation at each frequency we created a permutation distribution for the null hypothesis of no 

effect by repeating the analysis while shuffling the group labels. This procedure revealed the 

delta (~1-3 Hz) and beta (~20-34 Hz) range connectivity to dissociate between the groups on the 

global level (Fig. 2). The permutation distribution revealed highly non-uniform noise across the 
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different frequencies, which followed the overall amount of connectivity present at a given 

frequency (Hipp et al., in press), suggesting that the presence of strong physiological 

connectivity drives random differences to also occur more often. In a subsequent step we then 

further analyzed the patterns underlying the dissociation of connectivity between blind and 

sighted in the beta and delta ranges. 

Breaking down the change in global connectivity in the beta effect to the individual voxel level 

revealed an extended set of frontal regions with a large cluster of medial premotor areas as well 

as smaller clusters in temporal and occipital areas (Fig 3A., 551 voxels, p < 0.05 FDR 

corrected). The connectivity of these brain regions in the beta range could thus dissociate 

between the groups. However, this analysis did not reveal how these regions changed their 

connectivity. The detected brain regions may either show an individual pattern of global 

connectivity differences or instead one underlying pattern may dominate the effect. To assess 

the nature of the connectivity modulation within these areas we subjected the global patterns of 

all detected voxels to a principal component analysis (PCA). One global pattern of connectivity 

differences explained 54.3% of the variance in connectivity differences with a steep drop to 

subsequent components forming a flat plateau and explaining less than 5% of connectivity 

differences. Thus, the beta effect was dominated by a single pattern of connectivity differences 

(Fig. 3B). This pattern revealed a similar set of brain regions as those identified by the initial 

procedure that identified the effect (Fig. 3A) but extending to medial visual areas, posterior 

cingulate cortex and left lateralized frontal areas. In addition, the dominant pattern of connectivity 

differences exhibited a single sign, indicating that the nature of the effect was that this pattern of 

connectivity was present in one group and not in the other. For investigating how this pattern of 

connectivity differences related to the groups we calculated in a last step the average, raw 

orthogonalized correlations between the voxels found in the initial procedure (Fig. 3A) and those 

composing the dominant difference map (Fig. 3B, excluding self connections) for each 

participant (Fig 3C). Both groups exhibited significant connectivity (t-tests, blind: p = 2.3x10-4, 
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sighted: p =  4.3x10-4) with the congenitally blind exhibiting stronger connectivity (paired t-test: p 

= 0.011). Thus, visual deprivation led to stronger beta range connectivity across a distributed set 

of frontal, temporal and occipital regions. 

An analogous analysis revealed the delta range connectivity be informative about the group 

affiliation mainly in occipital areas as well as some smaller clusters in right parietal, somatomotor 

and frontal regions (Fig 3D, 115 voxels, p < 0.05). Likewise the effect was dominated by one 

major pattern of global connectivity differences, explaining 15.9% of the total variance in 

connectivity differences (Fig 3E), with the other components forming a flat plateau of less than 

4% explained variance. Similar brain regions as indicated by the effect were contained in the 

dominant map of connectivity differences, extending largely to medial and ventral visual areas 

and posterior cingulate cortex. As for the beta effect the dominant map of connectivity 

differences exhibited a single sign. The average raw correlations between the identified regions 

and the dominant map revealed the connectivity to be present in the blind (t-test: p = 2.7x10-8) 

and absent in the sighted (t-test: p = 0.52, paired t-test between the groups: p = 0.1x10-5). 

Overall we found that the global structuring of delta and beta range power fluctuations is 

different between the blind and sighted. In both frequency ranges correlation structures existed 

in the blind, which were either absent or markedly weaker in the sighted. In the beta range an 

extended network of frontal and temporal regions exhibited stronger connectivity with early 

visual areas in the blind compared to the sighted. Additionally, the blind exhibited increased 

connectivity in the delta range among occipital and ventral visual as well as somato-motor and 

frontal areas.  

 



Hawellek et al.     M 

	
   13	
  

Discussion 

We found intrinsic oscillatory neuronal population activity to exhibit characteristic differences 

between the blind and sighted.  

In the blind, alpha related processes (~10 Hz) in occipital areas were diminished in both, power 

and their phase-amplitude relation to a faster rhythm (~40Hz). These findings suggest a 

remodeling of the circuitry of alpha generators and associated processes and functions and may 

especially reflect the altered thalamocortical associations of occipital areas (Kriegseis et al., 

2006; Shimony et al., 2006; Osipova et al., 2008). Alpha range activity has been linked to 

processes of functional inhibition (Jensen and Colgin, 2007; Klimesch et al., 2007). Decreased 

inhibitory processes are well in line with an increased level of baseline activity for blind visual 

areas (Veraart et al., 1990). This view is further supported by the increased delta (~2 Hz) to 

gamma (~90 Hz) couplings in the blind. We found the co-occurence of both, local visual delta 

and gamma power co-fluctuations and a phase-amplitude relation in which the slower delta 

phase modulated the faster gamma amplitude. Recent reports highlighted the significance of 

these frequency ranges and their interaction in active visual processing, both in humans (Händel 

and Haarmeier, 2009) as well as non-human primates (Lakatos et al., 2008; Whittingstall and 

Logothetis, 2009). Thus, our observations coherently point to a shift in intrinsic oscillations in 

visual cortex from a domination of inhibitory processes to signatures that occur during active 

processing. 

Notably, the drop in power over posterior sensors for both the alpha and beta range was not 

associated to an obvious alteration in the spatial structuring within visual cortex, as the 

connectivity indexed by power co-fluctuations was on a comparable level in the blind and 

sighted. Vice versa, the increased delta and gamma range power connectivity was not 

represented by an increased power for these frequencies over posterior sensors. This double 

dissociation power and power correlation effects suggests that the bivariate measure reveals 
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additional information about circuit organization, which cannot be resolved from the mere signal 

strength (Hipp et al., in press). Similarly, the phase-amplitude couplings revealed also novel yet 

complementary insights into the organization of the blind visual cortex, such as the presence of 

the alpha to low gamma phase-amplitude relationship in the sighted. Our results, thus, suggest 

that incorporating measures of the spatiotemporal structuring of oscillatory neuronal activity (as 

e.g. power-power or phase-amplitude relations) enables a more detailed, largely non-redundant 

characterization of the organization of oscillatory neuronal activity. 

With a data driven procedure we identified global correlation structures in power fluctuations in 

the delta (~ 2Hz) and beta (~25 Hz) range, which dissociated the blind from the sighted. Two 

common themes to these correlations structures were the involvement of the visual cortex as 

well as the marked presence of the patterns only in the blind. While for the delta range especially 

the occipital cortex exhibited the increased connectivity, the increase in beta connectivity 

became most apparent in an extended set of frontal areas. The global delta effect further 

corroborates the analysis of the local connectivity analysis within visual areas and suggests that 

slow (~2 Hz) excitability fluctuations prevail in occipital brain regions during periods of 

unconstrained mental activity in the blind. A gamma range effect could not be resolved globally, 

which may relate to a very confined, local nature of the gamma power fluctuations and the 

presence of a stronger noise regime (Fig. 2). The connectivity between frontal and visual areas 

is in line with a functional magnetic resonance imaging (fMRI) investigation of the intrinsic 

connectivity of visual areas in the blind, reporting increased frontal associations (Liu et al., 

2007). Interestingly, next to medial premotor structures there was a set of left lateralized lateral 

frontal regions exhibiting the increased beta connectivity. This finding is in accord with fMRI 

studies showing an involvement and connectivity of blind visual areas with language processing 

networks (Noppeney et al., 2003; Bedny et al., 2011). The beta frequency range of the 

connectivity may suggest especially integrative functions to underlie the nature of the 

connectivity (Engel et al., 2001; Engel and Fries, 2010; Donner and Siegel, 2011). Beta range 
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phase synchrony has been identified as a potential mechanism of long-range cortico-cortical 

interaction in large-scale cortical networks (Buschman and Miller, 2007; Saalmann et al., 2007; 

Pesaran et al., 2008; Hipp et al., 2011). Thus, this long-range functional connectivity pattern may 

be an indication of the pathway with which visual brain areas are reintegrated into functional 

cortical processing in the blind.  

The task free data enabled us to study rearrangements of oscillatory neuronal activity in the 

blind without the biases of a specific cognitive task. This approach allows for an identification of 

physiologically meaningful patterns, which are inherent to the way that the blind access and use 

occipital resources and which may otherwise be obscured by the constraints and contexts of 

highly specific paradigms and task structures. While this is a great benefit of studying intrinsic 

oscillatory activity, the lack of associations with behavioral measures puts into question whether 

the correlation structures truly are of any functional significance. Future studies need to address 

this issue and test the link between the frontal to visual connectivity as well as their impact on 

behavior of the blind in detail.  

Overall we found the structuring of spontaneous oscillatory neuronal activity to be highly 

informative about the reorganization of the brain circuitry in the blind. Visual areas exhibited 

oscillatory signatures of active processing during rest as well beta range functional connectivity 

with prefrontal areas. These findings imply occipital processing resources to be used for non-

visual demands in unconstrained mental activity in the blind and further suggest specific frontal 

sites to be involved in the integration of these resources into the reorganized but functionally 

intact processing in the blind. Our results demonstrate that the rich spectral content of ongoing 

brain activity may offer a novel handle onto an important but otherwise not accessible level of 

description for the reorganization and plasticity of processing in cortical networks. 
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Legends 

Figure 1. The intrinsic oscillatory profile of visual cortex. A Power spectra over occipital 

MEG sensors (inset) for blind (red line) and sighted controls (blue line). The shadings depict the 

standard error. The line noise frequency was sparred for display purposes. The bars at the x-

axis mark frequencies for which the groups significantly differed.  B Connectivity as indexed by 

power-power correlations within a grid of voxels in early visual areas. Connections were derived 

within the individual subjects and are shown as percent of all connections maximally possible. 

The shadings depict the standard error. C Cross-frequency couplings between the phase of 

slower oscillations and the amplitude of faster oscillations within early visual cortex. The average 

coupling scores within the groups and the average difference of the coupling scores are shown 

along with the difference statistic between the groups.   

Figure 2. The global oscillatory architecture differentiates the blind from sighted. The 

number of group differences (paired t-tests, p < 0.01) across frequencies, which occur in all 

connections of a grid spanning the whole brain with 2925 source locations. The raw number of is 

given in percent of all connections possible and shown in black. A permutation distribution for 

the hypothesis of no difference between the groups is shown as grey line with the shading 

depicting one standard deviation. The bars at the x-axis mark frequencies for which the 

connectivity significantly deviates from this distribution at the alpha levels indicated. 

Figure 3. Increased beta and delta connectivity in the blind. A Source locations exhibiting a 

significant (p = 0.05, FDR corrected) global beta range connectivity difference between the blind 

and the sighted. B First principal component of the average global difference maps of all voxels 

shown in A. This dominant difference map in connectivity explained 54.3% of the total variance 

in connectivity differences. C Raw orthogonalized correlation values between the voxels shown 

in A and all voxels of the difference map shown in B. D-F Same as A-C but shown for the delta 

range. The dominant difference map explained 15.9% of the overall variance. 
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