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Zusammenfassung

Diese Arbeit befasst sich mit der Analyse zweier Public Key Kryptosysteme,
deren Sicherheit auf Berechnungsproblemen in endlichen Gruppen beruht.

Im ersten Fall werden logarithmische Signaturen untersucht, welches spezielle
Faktorisierungen endlicher Gruppen sind. Diese bilden die Basis für die von
Lempken, Magliveras, Stinson, van Trung und Wei entwickelten Kryptosys-
teme MST1 und MST3. Neben der Entwicklung einer rigiden Sicherheitsde�n-
tion wurde in zwei verschiedenen Gruppenfamilien untersucht, welche loga-
rithmischen Signaturen existieren und ob darunter logarithmische Signaturen
sind, die Kandidaten für sichere MST-Systeme sein könnten. In der ersten
Gruppenfamilie wurde eine einheitliche Charakterisierung sämtlicher logarith-
mischen Signaturen entwickelt mittels der gezeigt werden konnte, dass hier
kein sicheres System möglich ist. In der zweiten Gruppenfamilie wurden ver-
schiedene neue Methoden entwickelt um logarithmische Signaturen zu erzeugen
und zu untersuchen. Auch hier konnte gezeigt werden, dass mit keiner der ak-
tuell bekannten logarithmischen Signaturen ein sicheres MST-Kryptosystem
aufgebaut werden kann.

Im zweiten Fall wird das MOR-System (von Paeng et al.) in einer Erweiterung
der Gruppe GL(n, q) untersucht. Die Sicherheit von MOR basiert auf der
Schwierigkeit des diskreten Logarithmus Problems in Gruppen von inneren
Automorphismen. Es werden zwei Ciphertext-only Angri�e entwickelt, die es
ermöglichen die Sicherheit des Systems auf das Diskrete Logarithmus Problem
in endlichen Körpern zu reduzieren.
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Chapter 1

Introduction

Cryptographic techniques have become indispensable in our everyday life. Of-
ten unnoticed they secure online banking, tickets for public transportation,
contactless payment cards, mobile communication, or passports.

Several encryption schemes exist that provide di�erent security properties.
One important property of each cryptosystem is whether it is symmetric or
asymmetric. Symmetric or private key cryptosystems use the same key for
encryption and decryption. Hence this key has to be exchanged in a secure
way prior to sending a message. Symmetric techniques are rather old and date
back to the Romans (Caesar Cipher), ancient Greeks (Skytale), and Hebrew
scholars (Atbash Cipher). In contrast, asymmetric encryption was developed
more recently. In 1976, W. Di�e and M. Hellman published the paper New Di-
rections in Cryptography ([DH76]) in which they proposed the Di�e-Hellman
key exchange and the concept of asymmetric encryption. This is also known
as public key cryptography since every user of the system owns two keys: a
public key, known to anyone, to encrypt messages to this user, and a private
key, that is kept secret, to decrypt messages sent to the user. Computing
the private key from the public key should be computationally infeasible: it
requires a solution of a computational problem for which there are no e�cient
algorithms known.

One prominent example for such a problem is the discrete logarithm problem
which is de�ned as follows: Given two elements g and h of a �nite cyclic group,
�nd a natural number a such that ga = h. The number of multiplications
needed to compute the a-th power of the element g is linear in the bitlength
of g and thus e�ciently computable. But all known algorithms that compute
discrete logarithms are ine�cient.
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The discrete logarithm problem is closely connected to the security of the Di�e-
Hellman key exchange as well as the ElGamal cryptosystem (developed by T.
ElGamal in 1984, [ElG84]). In 1978 Rivest, Shamir and Adleman used the
problem of �nding the factorization of an integer as the basis for another type of
cryptosystem, the RSA cryptosystem, [RSA78]. All public key cryptosystems
currently in use are either designed via an ElGamal principle (including elliptic
curve cryptosystems) or an RSA principle. Such a limited variety makes it an
important task to study new approaches to design public key cryptosystems.
Furthermore the development of quantum computing will make both today's
well established public key cryptosystems insecure, [Sho94].

Several newly proposed cryptosystems use di�erent computational problems
that are presumed to be intractable. Among others there are for example
the braid group system by Anshel, Anshel and Goldfeld which uses the word
problem and the conjugacy problem, [AAFG01], the HFE family introduced
by Patarin which uses the di�culty of solving multivariate equations, [Pat96],
and the NTRU encryption algorithm which uses the shortest vector problem
for lattices, [HPS98]. These systems as well as every new cryptosystem has
to be analyzed intensively before it is further tested in implementation and
integration into complex software or hardware systems. Although many sys-
tems have been proposed several years ago and have been tested and analyzed,
none has gained an equal reputation to the RSA and ElGamal family. Some
do not o�er the same e�ciency, some have security �aws, and many are not
yet studied su�ciently.

In this work we study basic concepts of two recently proposed public key
cryptosystems: MST and MOR. Both systems use a group theoretic idea to
design a public key scheme. Introduced in [MSvT02], MST is based on the
notion of logarithmic signatures, which are special decompositions of �nite
groups. As its basic concept MOR [P+01b] uses the di�culty of computing
discrete logarithms in groups of inner automorphisms.

In the next chapter we give the basic notations, de�nitions and theorems fun-
damental to the mathematical and computational aspects in this work. We
introduce logarithmic signatures and the MST cryptosystem and additionally
propose a new de�nition for one-way functions from logarithmic signatures.
We conclude this chapter with a description of the MOR system as well as
inner automorphisms and semidirect products for linear groups.

There is no known method to derive secure keys for the MST cryptosystems.
Our approach in Chapter 3 is to study and characterize all logarithmic signa-
tures in �nite cyclic p -groups for a prime p. We give a complete characteriza-
tion for logarithmic signatures in these groups and develop an e�cient factoring
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algorithm that can be applied to any cyclic p -group. Furthermore this is the
�rst time that we can give the exact number of logarithmic signatures in a
group.

The structure of logarithmic signatures in elementary abelian p -groups is the
central point of Chapter 4. Logarithmic signatures of these groups are em-
ployed by the cryptosystem MST3. This system was shown to be insecure if
the keys are derived from an exact transversal logarithmic signature via certain
basic transformations, see [MSvTZ08] and also [BCM09]. A di�erent way of
generating logarithmic signatures of these groups is not known.

Therefore we focus our research on an extensive analysis of logarithmic sig-
natures in elementary abelian p -groups. First we study linear independence
between the elements of a logarithmic signature and show that they always
contain a basis that is ideally distributed among the buildings blocks of a log-
arithmic signature. Furthermore we use this result to give a complete charac-
terization of logarithmic signatures in elementary abelian 2-groups with small
building blocks. It follows a second characterization of these logarithmic sig-
natures using graphs and a polynomial-time factoring algorithm for a class of
logarithmic signatures in these groups. Then we introduce a system of certain
linear equations that can be derived from any logarithmic signature in elemen-
tary abelian p -groups and may lead to more general results of the hardness of
factoring in elementary abelian p -groups. Furthermore we develop a factoring
algorithm for logarithmic signatures with a Rédei block in each iteration of the
algorithm. We also extend this algorithm to the case in which in a constant
number of iterations only the sum of two blocks is a Rédei block. Furthermore
we construct a series of logarithmic signatures which are not factorable by the
algorithms presented in this thesis.

In Chapter 5 we consider the MOR cryptosystem that was introduced by Paeng
et al., see [P+01b, P+01a]. This ElGamal-type public key cryptosystem is
based on the intractability of the discrete logarithm problem in the group
of inner automorphisms for a non-abelian group. It was analyzed by Tobias
in [Tob03, Tob04a] and also in [Kor05, Kor08]. We consider a more general
case with a semidirect product of a general linear group and an arbitrary
abelian group of automorphisms. First we show how it is possible to compute
the components of an automorphism that is a component of the keys, thus
justifying the attacks from [Kor05, Kor08] and building the basis for further
attacks. For these we assume that computing discrete logarithms in small
extensions of �nite �elds is e�cient. In this scenario we demonstrate how to
compute a key that allows an adversary to obtain the plaintext. We show
that despite its complex structure, this group opens several possibilities for an
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attack and does not yield more security than the discrete logarithm problem
in the multiplicative group of �nite �elds.

Many people have in�uenced this thesis in various ways. I would like to thank
my advisor Prof. Peter Hauck who introduced to me the �eld of cryptology.
Thank you for your valuable advice and guidance, your active interest in my
work and ongoing support throughout the entire period in Tübingen as well
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readily became my second advisor.

Ste�, Jonas, Claudia, and Michael, I had a great time with you all with crypto-
graphic and non-scienti�c discussions and riddles, building expertise in sauces
and ice cream, and becoming a soccer expert. I would like to thank Christoph
and Andreas for extensive discussions on SAT, logarithmic signatures and one-
way functions in the theory lounge. Furthermore I would like to thank Rouven
Walter with whom I worked on the topic of Chapter 4.2 and Jan deWiljes with
whom I could discuss the problem of generating logarithmic signatures. In the
�nal stage several people at the HGI helped: Saqib by proofreading, Eike by
simply lending an o�ce, and Enrico and Mazze via valuable discussions on the
link between the shortest vector problem and factoring logarithmic signatures.

I would like to thank my family for their constant support from several hundred
kilometers away. Julia, it has been a great journey through science and life
with you. Marcel, you know and thats why I dedicate this thesis to you.

Finally I would like to thank the Evangelische Studienförderung Villigst e.V.
for supporting and enabeling this work with a grant.
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Chapter 2

Mathematical and cryptographic

background

In this chapter we give the basic notations, de�nitions and theorems fundamen-
tal to the mathematical and computational aspects in this work. We introduce
logarithmic signatures and the MST cryptosystem and additionally propose a
new de�nition for one-way functions from logarithmic signatures. We conclude
this chapter with a description of the MOR system as well as inner automor-
phisms and semidirect products for linear groups.

2.1 Notation and mathematical concepts

In our analysis we combine tools from several mathematical areas. We assume
that the reader is familiar with the basic concepts of group theory (see [KS98,
Rob82]), linear algebra (see [Fis97]), �nite �elds (see [LN94]), and graph theory
(see [BJG08]).

Notation. N denotes positive integers without zero. For a prime number p
and m ∈ N we de�ne a �nite �eld of order q = pm as Fq. For the multiplicative
group of a �nite �eld we use the notation F∗

q, where ξ is the generating element.
By |x|2 we denote the bitlength of any input x.

Groups. We consider only �nite groups. In general we use multiplicative no-
tation, but for abelian groups we use addition to indicate the group operation.
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The neutral element is eG, 0 (additive notation) or 1 (multiplicative notation).
For a subset A = {a1, . . . , an} of a group (G, ·) we set

< A > := {ai11 · . . . · ainn | i1, . . . , in = 0, 1, . . . , |G|}.

If A only contains one element a we use the notation < a > to describe the
set {eG, a1, . . . , ak−1} where k ∈ N is the order of a. Let

Z(G) = {g ∈ G|xg = gx for all x ∈ G}

represent the center of a group G and CG(x) = {g ∈ G|xg = gx} the centralizer
of an element x in G. Given a group G and a subgroup H of G, a set X such
that HX = G and |H| · |X| = |G| is called a transversal of H in G.

Let p be a prime number and m,n ∈ N, then

Zpm = {0, 1, . . . , pm − 1}

stands for the cyclic group of order pm with componentwise addition modulo
pm as the group operation. Furthermore

Zn
p = Zp × . . .× Zp︸ ︷︷ ︸

n

is the elementary abelian p -group of order pn with addition modulo p as the
group operation and neutral element 0 = (0, . . . , 0). An element of this group
is denoted by a lower case letter (i.e. v) or more speci�cally by a vector with n
positions (v(1), . . . , v(n)). Note that Zn

p is also a Zp-vectorspace. The vectors
e1, . . . , en form the canonical basis, where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)
and so on. We use the notation v(i, j) = (v(i), v(j)).

Functions. We use the notation f : M1 → M2, x 7→ f(x) to describe a
function f that maps each element x of the set M1 to an element f(x) in
M2. In Chapter 5 we work with MOR and the groups Aut(G) and Inn(G) of
automorphisms and inner automorphisms of the group G. Automorphisms are
bijective homomorphisms from G to G. For g ∈ G

Ig : G −→ G

x 7−→ gxg−1

denotes the inner automorphism induced by g. Note that G/Z(G) ∼= Inn(G).
Two elements g, h ∈ G induce the same inner automorphism if and only if
g ∈ h · Z(G).
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Linear algebra. ByGL(n, q) we denote the set of all invertible n×nmatrices
with entries from the �nite �eld Fq for a prime power q = pm (n,m ∈ N). The
entries of a n× n matrix are marked with indices (e.g. M = (mij)i,j=1,...,n). A
matrix is in row echelon form if the �rst nonzero entry from the left of a row
is always strictly to the right of the �rst nonzero entry of the row above it. A
matrix is in reduced row echelon form if it is in row echolon form, in every row
the leading coe�cient equals 1, and it is the only nonzero entry in its column.

Cryptography. Convenient references for cryptographic concepts and no-
tions, e.g. one-way function or public key cryptosystem are [Gol01, Gol04,
MvOV96].

E�ciency. In order to describe the e�ciency or complexity of an algorithm
we use the Big O notation; for reference see [Weg03]. In this context a deter-
ministic algorithm is called a polynomial-time algorithm if its running time is
bounded by a polynomial in the length of its input.

We also consider polynomially bounded Las-Vegas-algorithms. These are al-
gorithms that are allowed to make random choices of bits (randomized algo-
rithms) and whose maximal running time (on inputs of length at most n) has
an expected value (with regard to the random choices) that is polynomial in
n. We call such algorithms also probabilistic polynomial-time algorithms.

To be more precise, problems that can be solved by probabilistic polynomial-
time algorithms in our sense belong to the complexity class ZPP. ZPP stands
for "zero-error probabilistic polynomial time" and refers to the fact that ZPP
can also be characterised as consisting of those problems, for which there exists
a randomized algorithm of polynomially bounded running time that outputs
either a correct solution or a statement of failure, and the latter happens with
probability at most 1/2.

There are other complexity classes of randomized polynomial-time algorithms,
like RP or BPP, that are of no relevance for our work. We just mention that
ZPP is the smallest of these classes containing the class P of problems that can
be solved in polynomial time by a non-randomized (deterministic) algorithm.
For details we refer to [Weg03], chapter 3.

If there exists a probabilistic polynomial-time algorithm to solve a problem,
the problem is e�ciently or easy to solve. Otherwise, the problem is said to
be hard to solve, or computationally infeasible.

We refer to a computational problem P1 as polynomial-time reducible to a
problem P2 (i.e. P1 ⇒P P2) if there exists a deterministic polynomial-time
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algorithm that solves P1 and that may use an (unspeci�ed) algorithm for P2

as a subroutine.

GAP. All programs are written in GAP, a system for computational discrete
algebra, especially computational group theory. We used GAP Version 4.4.10,
see [GAPrg]. In this work all algorithms are given in GAP-style pseudo code.
We only give the code essential for the algorithms and leave out extraneous
sections.

2.2 Logarithmic signatures and the MST cryp-

tosystems

The concept of logarithmic signatures was �rst used for the symmetric cryp-
tosystem PGM by Magliveras in [Mag86]. A public key cryptosystem using
logarithmic signatures was proposed by Webb in 1991, see [Web91], and found
to be insecure by Qu and Vanstone in [QV94]. Logarithmic signatures are also
the basis for the public key cryptosystems MST1, MST2 and MST3. These
were designed in 2002 and 2009 by Magliveras, Stinson, van Trung, Lempken
and Wei, see [MSvT02, LvTMW09].

2.2.1 Logarithmic signatures

Let G be a �nite group. A logarithmic signature α of G is a sequence

α = [A1, . . . , As]

of subsets Ai ⊆ G such that for every element g of G there exists exactly one
factorization

(∗) g = a1 · a2 · . . . · as,

where ai ∈ Ai for i = 1, . . . , s. The sets Ai are called blocks. The size of a
block ist denoted by ri := |Ai|. For simplicity, we refer to the elements of
A1 ∪ . . .∪As as the elements of the logarithmic signature α. In some cases we
consider an ordering on the elements of a block, then for ki = 0, . . . , ri − 1 we
denote by aiki the (ki + 1)-th element of the block Ai. The vector (r1, . . . , rs)
is said to be the type of α and

ℓ(α) =
s∑

i=1

ri
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is the length of a logarithmic signature. By Λ(G) we denote the set of all
logarithmic signatures of a group.

From this de�nition we immediately derive some properties of logarithmic
signatures. Because of the existence and the uniqueness of the factorization
(∗) we have

s∏
i=1

ri = |G|

and thus ri divides |G| for all i. This also indicates why these sequences are
called logarithmic signatures: The logarithm function turns a product into a
sum - a logarithmic signatures provides an abbreviated representation of all
group elements that is of length r1 + . . . + rs while the group itself contains
r1 · . . . · rs elements.

If eG ∈ A1 ∩ . . . ∩ As, then we say that α is normalized. Because of the
uniqueness of the factorization we even have

∩s
i=1 Ai = {eG} for normalized

logarithmic signatures with more than one block. It is easy to see that in
abelian groups we have |Ai ∩ Aj| ≤ 1 for i ̸= j.

In [GRS03] González Vasco and Steinwandt observed that for |G| =
∏t

j=1 p
bj
j

(pj prime) there is a lower bound on the length of any logarithmic signature of
G given by

ℓ(α) ≥
t∑

j=1

bj · pj.

A logarithmic signature α is calledminimal if ℓ(α) achieves the lower bound, i.e.
every block is of prime order or of order 4. Several papers deal with the question
of the existence of minimal logarithmic signatures in �nite groups, see for
example [GRS03, SSM10]. This reasearch suggests that minimal logarithmic
signatures exist for all �nite groups.

Example 2.1. Let n ∈ N. For the cyclic group (Z2n ,+) the sequence

α = [ [0, 2n−1], [0, 2n−2], . . . , [0, 2], [0, 1] ]

is a normalized minimal logarithmic signature of type (2, . . . , 2). Computing
the factorization of an element is equivalent to computing its binary represen-
tation; for example if n = 4, then 9 = 1001 has the factorization 23+0+0+20.
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2.2.2 Tame and wild logarithmic signatures

Given a logarithmic signature and some group element we study if it is feasible
to compute the factorization of the group element. For instance, a brute
force search through all possible factorizations given by a logarithmic signature
α = [A1, . . . , As] of a group G takes |G|× (s−1) group operations in the worst
case. Such a search �nds the correct factorization for any logarithmic signature,
but it is infeasible in general.

Example 2.1 shows that for some logarithmic signatures factorizations are easy
to compute. For the MST cryptosystems it is necessary to identify logarithmic
signatures for which factorizations are infeasible to compute as well as those
with e�cient factoring algorithms. Usually, the terms tame and wild are used
to di�erentiate between logarithmic signatures for which factorizations are easy
or hard to compute, see [MSvT02, LvTMW09]. However no precise de�nition
of these terms has been given. Therefore we discuss a rigorous de�nition related
to the concept of one-way functions (as de�ned in [Gol01], p. 33).

First note that factoring with respect to a single logarithmic signature takes
constant time. Therefore when looking at the e�ciency of calculations for
logarithmic signatures, we consider families (Gn, αn) of logarithmic signatures

αn = [An
1 , . . . , A

n
sn ]

of groups Gn for n ∈ N. Furthermore we assume that

|Gn| ≤ |Gn+1|

and
αn ̸= αm for n ̸= m.

Additionally, let there be a uniform description of elements of Gn such that

|g|2 = µn for all g ∈ Gn.

Note that this yields µn ≥ log |Gn| for all n ∈ N.

We make one basic assumption: For a given family (Gn, αn) there exists a
(deterministic) polynomial-time algorithm A such that on input (a1, . . . , asn)
from An

1 × . . .×An
sn algorithm A outputs the product a1 · . . . · asn . We identify

A with the injective function which it computes.

De�nition 2.2. For n ∈ N let αn be as above. Then the family (Gn, αn)n∈N
is called wild if for every probabilistic polynomial-time algorithm A′, every
positive polynomial p and all su�ciently large n

10



pr
(
A′(gn, αn) = A−1(gn)

)
<

1

p(⌈log |Gn|⌉)

where gn denotes a random element uniformly chosen from Gn.

For a wild family of logarithmic signatures (Gn, αn)n∈N the function A de�nes
a one-way function in the sense of [Gol01]. Among the logarithmic signatures
that are not wild we identify those with e�cient factorizations for all group
elements:

De�nition 2.3. For n ∈ N let αn be a logarithmic signature of the group Gn.
Then the family (Gn, αn)n∈N is called tame if there exists an algorithm A′′

that on input gn ∈ Gn and αn computes the factorization of gn with respect
to αn in polynomial time.

tame

Λ(G)

wild

not wild

Figure 2.1: wild and tame logarithmic signatures of a group G

There are several remarks to these de�nitions:

1. The distinction between "not wild" and "tame" is new and unlike prior
de�nitions (in which these two are equal) it allows to give a precise
de�nition. A logarithmic signature that is neither tame nor wild could
be one where we can e�ciently �nd the factorization for exactly half the
group elements.

2. Any algorithm that given g and αn randomly guesses a factorization has
a success probability of 1

|Gn| . Therefore the algorithms A′ in De�nition

2.2 are allowed a slightly greater chance but still less than 1
p(⌈log |Gn|⌉) (for

any p) to �nd a factorization.
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3. A′ could additionally get n as an input to encode the group Gn such
that A′ knows Gn. But we argue that via the input αn it is ensured
that A′ knows the group Gn. We also assume that on input (a1, . . . , asn)
algorithm A knows which group operation to use.

4. Note that computing the product of sn elements, each chosen uniformly
at random from a di�erent block of αn, (i.e. apply A) is the same as
uniformly choosing a random element from Gn.

To improve readability, we usually omit the words "family of" and the groups
Gn and only use the term wild/tame logarithmic signature (αn).

Note that it is still an open question whether candidates for wild logarith-
mic signatures exist. All logarithmic signatures described in literature are
shown to be tame (see [MSvT02, LvTMW09, BCM09, SSM10, GRS03]. The
MST-cryptosystems (see Section 2.2.4) use wild as well as tame logarithmic
signatures to construct public key cryptosystems: While MST1 is based on the
existence of wild logarithmic signatures, the version MST3 uses tame logarith-
mic signatures in elementary abelian 2-groups. Therefore we are interested in
the structure of tame logarithmic signatures as well as in the question whether
there are groups for which wild logarithmic signatures might exist. In Chap-
ters 3 and 4 we study logarithmic signatures and especially the question of
the possibility of the existence of wild logarithmic signatures for cyclic and
elementary abelian p -groups.

Three parameters are of importance in our analysis: Recall that for n ∈ N the
logarithmic signature αn = [An

1 , . . . , A
n
sn ] is fully described by

|αn| =
s∑

i=1

|An
i |

elements from Gn. There might be a shorter description for certain logarithmic
signatures, but in general we would need

s∑
i=1

|An
i | · µn

bits to describe the logarithmic signature, where an element of Gn is repre-
sented by µn bits. Let

rn := max{|An
i |, . . . , |An

sn|}.
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The factoring algorithm A′ in De�ntion 2.2 takes an element of Gn and a
logarithmic signature αn for some n ∈ N as an input. The length of that input
is at most

(sn · rn + 1) · µn

bits. Therefore we propose to use the three values

sn, rn, and µn

as the parameters to measure the e�ciency of a factoring algorithm for αn.
Note that we derive the �rst two parameters from the structure of αn, the
third parameter is independent of αn and depends only on the representation
of the elements of Gn.

Remark 2.4. For n ∈ N let (αn) be a logarithmic signature in Gn. If for all
g ∈ Gn the factorization with respect to αn can be retrieved in time polynomial
in the three parameters

sn, rn, and µn,

then the family (αn)n is tame.

Example 2.5. Take the family of logarithmic signatures in the group Gn =
Z2n from Example 2.1. The three e�ciency parameters are

sn = n, rn = 2, and µn = n.

Given an element g ∈ Z2n by its binary representation (g1, . . . , gn) where gi ∈
{0, 1}, its factorization in terms of α is (g1 · 2n−1, . . . , gn · 1) which we retrieve
with at most n multiplications, thus in time linear in n. So (αn)n∈N is tame.

We see in Chapters 3 and 4 that these parameters are a good choice for mod-
eling the complexity of algorithms for factoring with respect to logarithmic
signatures.

2.2.3 On classifying logarithmic signatures

Now we address the question of how and where to �nd logarithmic signatures
which cannot be candidates for wild logarithmic signatures. We consider cer-
tain transformations of logarithmic signatures, such that factoring with respect
to the original logarithmic signature is equally e�cient as factoring with re-
spect to the transformed logarithmic signature. The idea is that a factoring
algorithm for one logarithmic signature in a certain set yields a factoring algo-
rithm for all logarithmic signatures of that set. We also describe the standard
approach to classify logarithmic signatures according to the structure of the
blocks.
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Transformations on logarithmic signatures

We consider �ve transformations of logarithmic signatures that do not change
the property of being tame or wild. We use the standard notation. Let
α = [A1, . . . , As] be a logarithmic signature of a group G. We look at trans-
formations of the blocks A1, . . . , As of α into blocks B1, . . . , Bs such that the
resulting sequence β = [B1, . . . , Bs] is again a logarithmic signature of G.

T1 Let φ be an automorphism of G, and

Bi = φ(Ai)

for i = 1, . . . , s. Then also β is a logarithmic signature. And if a1·a2·. . .·as
is a factorization of an element g ∈ G, then φ(a1) · φ(a2) · . . . · φ(as) is
the factorization of φ(g) in terms of β.

T2 Let g0, . . . , gs be elements of G, and

Bi = g−1
i−1Aigi

for i = 1, . . . , s. Then also the sequence β is a logarithmic signature of
G, called a translation of α. If g0 = gs = eG, then β is called a sandwich
of α. Note that if a1 · a2 · . . . · as is a factorization of an element g ∈ G,
then g−1

0 a1g1 ·g−1
1 a2g2 · . . . ·g−1

s−1asgs is the factorization of g−1
0 ggs in terms

of β.

Note that in abelian groups the blocks of a translation β of α are of the
form

Bi = Ai + hi

for elements h1, . . . , hs of G. And any factorization of an element g ∈ G
in terms of α immediately yields a factorization of g +

∑s
i=1 hi in terms

of β.

T3 For i = 1, . . . , s let πi be a permutation in Sri , and

Bi = [aiπi(1), . . . , aiπi(ri)]

for j = 1, . . . , ri, i.e. the elements of block Bi are a permutation of the
elements of block Ai. Then also β is a logarithmic signature. And if

a1k1 · a2k2 · . . . · asks
is a factorization of an element g ∈ G, then

a1π1(k1) · a2π2(k2) · . . . · asπs(ks)

is a factorization of g in terms of β.
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T4 Now let G be an abelian group, π a permutation in Ss, and

Bi = Aπ(i),

i.e. bij = aπ(i)j. Then the sequence β is a logarithmic signature of G,
called a block permutation of α. Note that if

a1i1 + a2i2 + . . .+ asis

is a factorization of an element g ∈ G with respect to α, then

aπ(1)i1 + aπ(2)i2 + . . .+ aπ(s)is

is the factorization of g in terms of β. Note that in non abelian groups
β might not be a logarithmic signature.

T5 For some j ∈ {1, . . . , s− 1} let

Bj = Aj · Aj+1 = [ x · y | x ∈ Aj, y ∈ Aj+1 ]

and Bi = Ai for i = 1, . . . , s − 1 and i ̸= j, j + 1. The sequence β =
[B1, . . . , Bs−1] is a logarithmic signature, derived from α by fusing two
blocks. And if a1 · a2 · . . . · as is a factorization of g ∈ G with respect to
α, then a1 · aj−1 · a · aj+2 . . . · as with a = aj · aj+1 is the factorization of
g in terms of β.

The reverse operation is called splitting.

For each of the transformations T1 to T5 we described how a factorization of
an element with respect to a logarithmic signature immediately yields a factor-
ization with respect to the transformed logarithmic signature. If we consider
these transformations for families of logarithmic signatures (αn), it is easy to
see that switching between factoring algorithms for (αn) and a transformation
of (αn) is polynomial if the transformation is known or e�ciently computable.
The same argument applies to the normalization. We propose the

De�nition 2.6. Let (αn) and (βn) be families of logarithmic signatures for
the groups Gn with the parameters rn, sn, µn for (αn). Then we say that (αn)
transformes into (βn) if (βn) is computable from (αn) via (repeated) transfor-
mations T1 to T5 in time polynomial in rn, sn, µn. Note that in this case the
number of transformations between (αn) and (βn) is limited.

The T -set of (αn) is de�ned as

T (αn) = {(βn) | βn ∈ Λ(Gn) and αn transforms into βn for all n}.
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Example 2.7. Take the logarithmic signature

αn = [[0, 2n−1], . . . , [0, 2], [0, 1]]

of the group Z2n from Example 2.1. For n > 4 let

βn = [[1, 5], [0, 1, 2, 3], [0, 8], [0, 16], . . . , [0, 2n−1]]

and γn = [[0, 1, 2, 3, . . . , 2n − 1]]. Then (βn) ∈ T (αn) and (γn) ̸∈ T (αn).

In Chapters 3 and 4 we study logarithmic signatures in cyclic and elementary-
abelian p -groups. We identify certain types of tame logarithmic signatures.
These results apply not only to the speci�c family of logarithmic signature that
is studied in those chapters but also to all families of logarithmic signatures in
the T-sets. One transformation that we use repeatedly is

De�nition 2.8. Let g0 = 1 and gi = (
∏i

j=1 aj1)
−1 for i = 1, . . . , s. By

Translating α with g0, . . . , gs we derive a logarithmic signature β, where

bi1 = g−1
i−1ai1gi = ((

i−1∏
j=1

aj1)
−1)−1ai1(

i∏
j=1

aj1)
−1 = (

i∏
j=1

aj1) · (
i∏

j=1

aj1)
−1 = 1,

i.e. the �rst element in each block is the neutral element. We say that β is the
normalization of α.

Note that in abelian groups we may normalize a logarithmic signature using the
translation Bi = Ai − ai1. Then the �rst element of each block is ai1 − ai1 = 0.

Standard classes of logarithmic signatures

There are the following classes that are standard notation: Let G be a �nite
group. We call a logarithmic signature α ∈ Λ(G) exact-transversal if there
exists a chain of subgroups

eG = G0 < G1 < . . . < Gs−1 < Gs = G

such that Ai is a transversal of Gi−1 in Gi, i.e. Gi−1Ai = Gi and |Gi−1||Ai| =
|Gi|. Note that the block A1 = G1 is a subgroup of G. The corresponding
class is denoted by E. If α is a sandwich of an exact-transversal logarithmic
signature, then α is called transversal. The class of transversal logarithmic
signatures is T.
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All other logarithmic signatures are in the class NT of non-transversal loga-
rithmic signatures. We describe two subclasses of NT. If none of the blocks
is a coset of a (non-trivial) subgroup of G, then the logarithmic signature is
an element of the class TNT of totally-non-transversal logarithmic signatures.
The class TA of totally-aperiodic logarithmic signatures contains all logarith-
mic signatures which do not even have a block that is periodic, i.e. the union
of cosets of a subgroup of G. Clearly,

TA ⊆ TNT ⊆ NT and E ⊆ T.

T

T A

T NT
E

NT

Λ(G)

Figure 2.2: Standard classes of logarithmic signatures of a group G

It is easy to see that in certain groups being exact-transversal is a tame induc-
ing property for logarithmic signatures:

Proposition 2.9. Let (αn) be a family of exact-transversal logarithmic signa-
tures. Furthermore let subgroup membership testing in Gn be possible in time
polynomial in µn. Then (αn) is tame.

Proof. For readability we omit the index n. Let

eG = G0 < G1 < . . . < Gs−1 < Gs = G

be the subgroup chain corresponding to the logarithmic signature α = [A1,
. . . , As]. Let g ∈ G. There exists exactly one factorization for g: This factor-
ization consists of a1, . . . , as where

g · a−1
s · . . . · a−1

k+1 = a1 · . . . · ak ∈ Gk

for k = 1, . . . , s− 1 and a1 · . . . · as = g. The following naive algorithm �nds a
factorization for g with respect to α:
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GAP: TransversalFactorization

Input: logSig, a logarithmic signature of G, and an element g ∈ G
Output: B, the factorization of g with respect to logSig

TransversalFactorization:=function(logSig,g)

B:=[]; h:=g;

for i in [1..Length(logSig)] do

for a in logSig[s-i+1] do

if h*Inverse(a) in G_i

then h:=h*Inverse(a);

Add(B,a);

fi;

od;

od;

return B;

end;

The algorithm is deterministic, needs O(rn · sn) rounds and in each round one
multiplications, one inversion and one subgroup membership test, which is a
running time polynomial in µn, sn and rn.

Note that it is also immediately clear that if µn, sn and rn are polynomial in
⌈log |Gn|⌉ and (αn) is a tame family of normalized exact-transversal logarith-
mic signatures, then there exists an e�cient subgroup membership test for all
subgroups Gi in Gn: g ∈ Gi only if in the factorization g = a1 · . . . · as we have
ai+1 = . . . = as = eG.

With this result in mind it seems likely that non-transversal or even totally-
non-transversal logarithmic signatures are good candidates for being wild. But
in [BGCS05] Bohli et al. show that it is easy to construct tame families of
logarithmic signatures for symmetric and alternating groups that are in the
class TNT. In Section 4.5 we give a series of tame logarithmic signatures of
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elementary abelian p-groups that are in the class TA. Thus we observe that the
classes do not give a criterion to distinguish between tame and wild logarithmic
signatures.

T

T A

T NT
E

NT

Λ(G)
tame

possibly wild

Figure 2.3: Distribution of tame logarithmic signatures among all logarithmic
signatures of a generic group G.

In fact if no e�cient algorithms for subgroup membership testing exist for
the groups Gn, then there might also be wild logarithmic signatures in those
groups that are transversal.

We have just seen that for groups with e�cient subgroup membership testing
algorithms exact-transversal logarithmic signatures are tame. We formalize
this with the following de�ntion.

De�nition 2.10. For n ∈ N let Pn be a boolean predicate that can be applied
to any logarithmic signature of the group Gn. We say that P is a tame inducing
property for Gn if all families (αn)n∈N of logarithmic signatures of (Gn) such
that

P (αn) is true for all n ∈ N

are tame.

Example 2.11. (1) Again we look at Example 2.1. For n ∈ N let Pn = "every
block is of the form [0, 2i] for 0 ≤ i ≤ n". Then we saw in Example 2.5 that P
is a tame inducing property for Z2n .

(2) In groups with e�cient subgroup membership testing, being transversal is
a tame inducing property.

To improve readability we may omit the parameter n in the following.
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2.2.4 The MST cryptosystems

Magliveras, Stinson and van Trung developed two approaches to design public
key cryptosystems, called MST1 and MST2, see [MSvT02]. While MST1 uses
logarithmic signatures, the second version of MST is based on covers, which
di�er from logarithmic signatures in that the factorization (∗) is not unique.
A third cryptosystem, MST3, was recently presented by Lempken, van Trung,
Magliveras and Wei in [LvTMW09]. It uses tame logarithmic signatures as
well as covers. Here we give an overview on setup, encryption and decryption
for the two systems that involve logarithmic signatures.

To describe the systems a certain notation is used: A logarithmic signature
induces an order on the elements of G. This is used to de�ne the following
function: Let α = [A1, . . . , As] be a logarithmic signature of type (r1, . . . , rs)
for the group G. If we consider ordered blocks, then we derive a bijection from
Z|G| to G. First we take the canonical bijection that identi�es Zr1 × . . .× Zrs

with Z|G|:

τ : Zr1 × . . .× Zrs −→ Z|G|

(k1, . . . , ks) 7−→
s∑

i=1

(
i−1∏
j=1

rj) · ki

Then α induces the function

α : Z|G| −→ G

x 7−→
s∏

i=1

aiji

where τ−1(x) = (j1, j2, . . . , js).

Note that τ and τ−1 are e�ciently computable and so is the function α. But
in order to be able to compute α−1(g) e�ciently for any element g ∈ G, the
logarithmic signatures α has to be tame.

For some arbitrary but �xed tame logarithmic signature η of G, we de�ne the
product for two logarithmic signatures: For α, β ∈ Λ(G) and x ∈ Z|G| set

α · β(x) = α(η−1(β(x)))
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Public Key Encryption Scheme MST1

In [CV06] Caranti and dalla Volta essentially proof the following: For a non-
trivial �nite group G, that is not cyclic of order a prime or the square of a
prime, every logarithmic signature of G is a product of transversal logarithmic
signatures. In [MM92] a special version of this theorem is proven. This fact is
used to build a trapdoor in the �rst potential public key cryptosystem.

Setup Alice chooses a �nite group G and generates:

(1) a tame logarithmic signature η of G

(2) k exact-transversal logarithmic signatures θ1, . . . , θk, such that α = θ1 ·
. . . · θk is a wild logarithmic signature

Alice publishes her public key (α, η), keeping θ1, . . . , θk as her private key.

Encryption If Bob wants to send a message x ∈ Z|G| to Alice, he

(i) computes c = αη−1(x) (∈ Z|G|)

(ii) sends c to Alice.

Decryption Alice knows the factorization of α and can therefore compute

x = θ−1
k · . . . · θ−1

1 (c).

In [GS02] González Vasco and Steinwandt use a partial inversion attack to show
that logarithmic signatures contained in TNT do not o�er secure instances of
MST1 in general. Furthermore in [BGCS05] they construct tame families of
logarithmic signatures for symmetric and alternating groups that are in the
class TNT. In chapters 3 and 4 we study the question if wild logarithmic
signatures exist in cyclic and elementary abelian groups.

The cryptosystem MST3 combines logarithmic signatures and covers:
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Public Key Encryption Scheme MST3

Let G be a �nite non-abelian group with nontrivial center Z such that G does
not split over Z, i.e. there is no subgroup H < G with H ∩ Z = eG such that
G = H · Z. Assume also that Z is su�ciently large so that exhaustive search
problems are computationally infeasible in Z.

Setup Alice chooses a large group G as described above and generates:

(1) a tame logarithmic signature β = [B1, . . . , Bs] := (bi,j) of type (r1, . . . , rs)
for Z

(2) a random cover α = [A1, . . . , As] := (ai,j) of the same type as β for a
certain subset J of G such that A1, . . . , As ⊆ G \ Z.

She then chooses elements t0, t1, . . . , ts ∈ G \ Z and computes:

(3) α̃ = [Ã1, Ã2, . . . , Ãs], where Ãi = t−1
i−1Aiti for i = 1, . . . , s

(4) γ = (hij) = (bij ãij).

Alice publishes her public key (α, γ), keeping (β, (t0, . . . , ts)) as her private key.

Encryption If Bob wants to send a message x ∈ Z|Z| to Alice, he

(i) computes y1 = α̃(x) and y2 = γ(x)

(ii) sends (y1, y2) to Alice.

Decryption We have y2 = γ(x)

= β̆(x)t−1
0 ᾰ(x)ts

= β̆(x)t−1
0 y1ts.

With the private key Alice can therefore compute

x = β̆−1(y2t
−1
s y−1

1 t0).
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Lempken et al. propose to use the Suzuki 2-group of order 22m (n ∈ N) for
MST3, see [Hig63, BH81]. In MST3 the �rst part of the private key is a
logarithmic signature of the center of the underlying group. The center of the
Suzuki 2-group is an elementary abelian subgroup. In [MSvTZ08] Magliveras
et al. show that the system is insecure if β is a logarithmic signatures where
each block is a subgroup. Furthermore in [BCM09] Blackburn et al. show that
MST3 is not secure if logarithmic signatures are used that are derived from
exact transversal logarithmic signatures via transformations T2 to T5.

In Chapter 4 we study logarithmic signatures for elementary abelian p -groups
for an arbitrary prime p. We give a deeper insight into their structure and
show that for p = 2 all logarithmic signatures of type (4, . . . , 4, 2, . . . , 2) are
derived from exact transversal logarithmic signatures via the transformations
T2 to T5. Hence MST3 is insecure if β does not have blocks at least of size 8.

2.3 The MOR cryptosystem

Earlier we recalled the discrete logarithm problem (DLP) which is the basis for
several cryptographic schemes. The DLP is also used in the MOR cryptosystem
which was introduced in 2001 by Paeng et al., see [P+01b]. The system's
security is based on the hardness of the discrete logarithm problem in the
group of inner automorphisms of a non-abelian group:

This group is denoted by G. It is a non-abelian �nite group with a set of
generators {γ1, . . . , γl} for l ∈ N. We assume that the representation problem
in G is e�ciently solvable, i.e. there exists a polynomial time algorithm that
computes the representation of an element of G as a product of the generating
elements.

For MOR we consider the group Inn(G) of inner automorphisms of G. The
elements of this group are of the form

Ig : G → G

x 7→ gxg−1

for g ∈ G. Note that
(Ig)

a = Iga (a ∈ N),

and that
Ig = idG ⇔ g ∈ Z(G).
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In the setting of the MOR cryptosystem the inner automorphism induced by
an element g ∈ G is represented as the set

Ig = {Ig(γi) : 1 ≤ i ≤ l},

where each Ig(γi) is again represented as a product of the γi
′s. With this

implicit representation it is possible to hide the element g inside Ig. This is
essential for MOR which is described as follows, see also [P+01b, P+01a].

Public Key Encryption Scheme: MOR

Setup Alice chooses a group G as described above. She then generates arbi-
trary elements g ∈ G\Z(G) and a ∈ N, a < ord(Ig) and computes:

(1) Iga = {Iga(γ1), . . . , Iga(γl)}

Alice publishes her public key (Ig, Iga), keeping a as her private key.

Encryption If Bob wants to send a message m ∈ G\Z(G) to Alice, he

(i) chooses an arbitrary private encryption exponent b ∈ N

(ii) computes (Iga)
b = Igab , φ = (Ig)

b and E = Igab(m)

(iii) sends (E, φ) to Alice.

Decryption Alice uses her private key a to compute

m = φ−a(E) = Ig−ab(E) = Ig−ab(Igab(m)).

It is clear that MOR is broken if we are able to compute the secret key a.
Solving a discrete logarithm problem in < Ig > for the instance (Ig, Iga) is one
way to achieve this. In Chapter 5 we describe two attacks that use a di�erent
approach.
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2.3.1 MOR based on the group GL(n, q) ×θ H

Consider the following de�nition:

De�nition 2.12. The semidirect product of two groups G and H is the set
of tuples from G × H with a multiplication de�ned via a homomorphism θ :
H → Aut(G) as

(g1, h1) · (g2, h2) = (g1θh1(g2), h1h2),

where Aut(G) is the group of automorphisms of G. It is denoted by G×θ H.

In [P+01b] Paeng et al. propose to use the semidirect product SL(2, p) ×θ

Zp as a group for an implementation of the MOR scheme. On this group
MOR has been analyzed and found insecure by Tobias and Paeng et al., see
[Tob03, Tob04a, Pae03]. Tobias describes two attacks that enable an attacker
to determine the plaintext message up to one unknown variable without com-
promising the secret key. The techniques presented in their work use two
properties:

A1 The special type of the homomorphism θ : Zp → Inn(SL(2, p)) and the
fact that the center of SL(2, p) is (almost) trivial allow an immediate
reduction of MOR on SL(2, p)×θ Zp to MOR on SL(2, p).

A2 In a MOR cryptosystem using the group SL(2, p), a ciphertext is a con-
jugate of the plaintext, and thus both texts have the same eigenvalues.
This is enough information to calculate two linear equations in the entries
of these matrices. The additional (and e�cient) computation of an ele-
ment of the centralizer of the enciphering matrix allows an adversary to
obtain a third linear equation. These equations relate the four unknown
entries of the plaintext matrix up to only one unknown variable.

In view of these attacks we proposed to analyze MOR in a more general case
for which the attacks described above do not work, see [Kor05, Kor08]. We
consider groups of the type

GL(n, q)×θ H

where q = pm is a prime power, n ∈ N>1, H is any �nite abelian group, and θ
is an e�ciently computable homomorphism of H into Aut(GL(n, q)). For our
purpose, it is su�cient to assume that group operations in the semidirect prod-
uct can be e�ciently computed and the representation problem is e�ciently
solvable.
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Remark 2.13 (Conjugation and exponentiation in semidirect products). Let
G×θH be a semidirect product, and (g, h), (m, s) ∈ G×θH. Then the inverse
of (g, h) is

(g, h)−1 =
(
θh−1(g−1), h−1

)
.

And the conjugate of (m, s) by (g, h) is

(m, s)(g,h) = (g, h)(m, s)(g, h)−1

= (g, h)(m, s)(g θh−1(g−1), h−1)

= (g θh(m), hs)(θh−1(g−1), h−1)

= (g θh(m) θhs(θh−1(g−1)), hsh−1)

= (g θh(m) θhsh−1(g−1)), hsh−1).

The a-th power of (g, h) (a ∈ N) is computed inductively as

(g, h)a = (
a−1∏
i=0

θhi(g), ha ).

By choosing a group for MOR in this way, we avoid an easy reduction as in
A1 and also the attack A2. In previous work we described attacks of this new
version of MOR in four special cases. For the analysis we simply assumed
to know a certain automorphism, θh ∈ Aut(GL(n, q)), which is part of the
encryption function, and also that θh is a basic automorphism, see De�nition
2.14. In Chapter 5 we show that it is possible to extract the components of θh
e�ciently from a public key (Ig, Iga). Furthermore we de�ne two attacks that
allow an adversary to derive a key based on solving discrete logarithms in small
extensions of Fq. This key enables the adversary to compute an Fq-multiple of
the plaintext for any message even if θh is not a basic automorphism.

2.3.2 Automorphisms of GL(n, q)

In order to analyze MOR in the group GL(n, q)×θ H, we need to know more
about the subgroup θ(H) of Aut(GL(n, q)). In Theorem 4.25 of [Kor05] we
give a detailed analysis of this group. The automorphism group of GL(n, q) is
a product of four subgroups, i.e.

Aut(GL(n, q)) = Inn(GL(n, q)) · AutC(GL(n, q))· < f > · < ct > .

We give a short overview of these four subgroups:
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Inner automorphisms By Inn(GL(n, q)) we denote the group of inner au-
tomorphisms, which is non-abelian.

Central automorphisms Let ξ be the generator of the multiplicative group
F∗
q. Set

G1 =


ξ 0

1
. . .

0 1

 .

Note that G1 and a matrix from SL(n, q) generate GL(n, q), see [Tay87].

The subgroup Autc(GL(n, q)) is the center of Aut(GL(n, q)). A central auto-
morphism φ is an automorphism of GL(n, q) such that for all A ∈ GL(n, q)

φ(A) ∈ A · Z(GL(n, q)).

For each 1 ≤ i ≤ q − 1, with in + 1 and q − 1 coprime, there exists a central
automorphism φi, such that

φi(G1) = ξi ·G1.

This property su�ciently describes all central automorphisms because a central
automorphism is trivial on SL(n, q). For k ∈ N we have

φk
i = φsi(k),

where si(k) := i
∑k−1

j=0(in+ 1)j.

Field automorphisms The group Aut(Fq) is cyclic of order m and gener-
ated by the Frobenius automorphism

f : Fq −→ Fq

x 7−→ xp.

By applying f to the entries aij of a matrix A, it induces a �eld automorphism
f ∈ Aut(GL(n, q)) via

f : GL(n, q) −→ GL(n, q)

A 7−→ (f(aij))i,j=1,...,n.

The group of all automorphisms of GL(n, q) induced by an automorphism of
Fq is denoted by < f > and of order m.
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Contragredient automorphism The involution

ct : GL(n, q) −→ GL(n, q)

A 7−→ (At)−1,

is called contragredient transformation. It generates a cyclic subgroup < ct >
of order 2 in Aut(GL(n, q)).

Note that for n = q = 2 ct = I( 0 1
1 0)

actually is an inner automorphism and for

n = 2 and q > 2 it is in Inn(GL(2, q))× AutC(GL(2, q)).

De�nition 2.14. A basic automorphism is an automorphism ofGL(n, q) which
is either an inner, a central, a �eld or the contragredient automorphism, i.e. it
is not a product of di�erent types of automorphisms of GL(n, q).

Commutativity among basic automorphisms For the attacks in Chap-
ter 5 we consider certain combinations of automorphisms. For the analysis
we need the following results on commutativity among basic automorphisms.
First note that Autc(GL(n, q)) is the center of GL(n, q) and thus central auto-
morphisms commute with all other automorphisms. Furthermore let fr ∈< f >,
then

fr(A−1) = fr(A)−1 and fr(At) = fr(A)t

for all A ∈ GL(n, q). It follows that

fr ◦ ct = ct ◦ fr.

The actual analysis of MOR on the group GL(n, q)×θH in a generalised setting
is given in Chapter 5.
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Chapter 3

Logarithmic signatures in cyclic

p -groups

In this chapter we study logarithmic signatures of �nite cyclic p-groups for
a prime p. We give a complete characterization for logarithmic signatures
in these groups. From this characterization we develop an e�cient generic
factoring algorithm. We consider �nite cyclic p-groups because these are easy
to implement, have a short bit-representation of elements, and are building
blocks of several other (non-abelian) groups, e.g. the dihedral groups.

For a prime number p and n ∈ N the �nite cyclic p -group Zpn is the set
{0, 1, . . . , pn − 1} with addition modulo pn as the group operation. In the
following we consider only additive cyclic p -groups, but the results also apply
to any multiplicatively represented cyclic p -group:

Let Gn = < gn > be any cyclic p -group of order pn (n ∈ N). Furthermore let

αn = [An
1 , . . . , A

n
sn ],

with An
i = [g0n, g

ani,2
n , . . . , g

ani,ri
n ] be an arbitrary normalized logarithmic signature

for Gn. Then the e�ciency parameters from Remark 2.4 ful�ll

rn ≥ p, µn ≥ n log p, sn ≤ n.

Therefore we consider all computations in time polynomial in p and n to be
e�cient. Note that all elements in αn are powers of gn. The Silver-Pohlig-
Hellman algorithm for computing discrete logarithms (see [PH78]) can be used
to extract all ℓ(αn) exponents of the elements of αn and receive

βn = [Bn
1 , . . . , B

n
sn ],
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with Bn
i = [0, ani,2, . . . , a

n
i,ri

], a logarithmic signature of Zpn . The running time
of the Silver-Pohlig-Hellmann algorithm depends on the smallest prime divisor
of the group order, more precisely it is O(n2 log p+

√
p) which is e�cient. There-

fore computing factorizations with respect to α is polynomial-time equivalent
to computing factorizations with respect to β. And we can focus our analysis
on the additive group Zpn .

On a standard computer, a brute force algorithm that simply runs through all
possible factorizations given by a logarithmic signature of Zpn with s blocks
needs on average 1

2
pn · (s− 1) group operations plus 1

2
pn equality tests to �nd

the correct factorization of a random element from Zpn . As group operations
and equality tests in Zpn can be done in time O(n), the complexity of the brute
force algorithm is

O(pn · n · s),
which is exponential in p.

In the following we develop a factoring algorithm that runs in polynomial time.

In the �rst section we describe a reduction sequence that can be uniquely
derived from an arbitrary logarithmic signature in any cyclic p -group. This
reduction leads to an e�cient factoring algorithm which we describe and give
test results in the second section. To improve readability we omit the index n
for logarithmic signatures and its blocks and elements.

3.1 Complete p -reduction

The group Zpn contains exactly n − 1 nontrivial subgroups. These form the
subgroup chain

{0} ≤ < pn−1 > ≤ < pn−2 > ≤ . . . ≤ < p2 > ≤ < p > ≤ Zpn .

In particular all nontrivial subgroups of Zpn contain the smallest subgroup
< pn−1 >.

Recall that a subset A of a �nite group G is called periodic if it is the union of
cosets of a subgroup H of G, i.e. A = H +M for some subset M in G and M
is called the set of periods. We deduce from Proposition 6.2.1 in [Sza04] that
in logarithmic signatures of �nite cyclic p -groups at least one block is periodic.

This leads to the following observation: If the logarithmic signature α of Zpn

is normalized, it is clear that the periodic block contains a non-trivial sub-
group. Furthermore none of the other blocks contains a subgroup. Otherwise
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two blocks would contain the unique smallest subgroup < pn−1 > which is
impossible because of the uniqueness of the factorization of a logarithmic sig-
nature. Therefore it is easy to identify the periodic block as the only block
that contains the element pn−1.

Let Ai be the periodic block of α. Then Ai is of the form

Ai = A′
i + < pn−1 > .

Note that for all a ∈ Ai and k ∈ {0, . . . , p− 1} we have

a+ k · pn−1 ∈ Ai.

Therefore we may set

A′
i = {a ∈ Ai : a < pn−1}.

By splitting Ai we derive a logarithmic signature

α′ = [A1, . . . , Ai−1, A
′
i, < pn−1 >,Ai+1, . . . , As]

of the group Zpn and of type (r1, . . . , ri−1, ri/p, p, ri+1, . . . , rs), where ri/p may
be equal to one (then A′

i = [0]).

Note that the block A′
i could also be trivial. In order to keep the notation

coherent we allow trivial blocks (in contrast to De�nition 2.2.1). Furthermore
it could also be the case that we can split o� a larger subgroup than < pn−1 >
from block Ai but for our analysis we only consider the case in which we split
o� the smallest subgroup.

Proposition 3.1. The logarithmic signature α′ is tame if and only if α is
tame.

Proof. Note that α is only one T5 transformation of α′ and we have seen in
Chapter 2 that the tameness of one of these two induces the tameness of the
other.

Consider the logarithmic signature

α′ = [A1, . . . , Ai−1, A
′
i, < pn−1 >,Ai+1, . . . , As]

of Zpn . For k ̸= i let
A′

k = Ak mod pn−1
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and consider the sequence

α1 = [A′
1, A

′
2, . . . , A

′
i−1, A

′
i, A

′
i+1, . . . , A

′
s].

All elements in α1 are smaller than pn−1 and we can view these as elements of
Zpn−1 .

Proposition 3.2. The sequence α1 is a (normalized) logarithmic signature of
Zpn−1.

Proof. We know that

A1 + . . .+ Ai−1 + A′
i + Ai+1 + . . .+ As + < pn−1 > = Zpn .

Which implies that A1 + . . . + Ai−1 + A′
i + Ai+1 + . . . + As is a transversal of

< pn−1 > in Zpn . And it follows that

A1 + . . .+ Ai−1 + A′
i + Ai+1 + . . .+ As mod pn−1 = {0, 1, 2, . . . , pn−1 − 1}.

And thus
A′

1 + . . . . . .+ A′
s = Zpn−1 .

Since also
∏s

i=j |A′
j| = pn−1, the sequence α1 de�nes a logarithmic signature of

Zpn−1 .

Now we have two logarithmic signatures: α for the group Zpn and α1 for Zpn−1 ,
where the �rst yields the second via e�cient computations:

Proposition 3.3. The logarithmic signature α1 is tame if and only if α is
tame.

Proof. We already proved that α is tame if and only if α′ is tame. Now we
consider α′ and α1. W.l.o.g. let i = 1, i.e. we consider the two logarithmic
signatures

α′ = [A′
1, < pn−1 >,A2, . . . , As]

and α1 = [A′
1, A

′
2, . . . , A

′
s]. Let g ∈ Zpn

A factorization of g in terms of α′

g = a1 + h+ a2 + . . .+ as

with a1 ∈ A′
1, aj ∈ Aj (for j = 2, . . . , s) and h ∈ < pn−1 > immediately yields

the factorization

g mod pn−1 = (a1 mod pn−1) + (a2 mod pn−1) + . . .+ (as mod pn−1)
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in terms of α1. To compute the factorization we need s modulo operations and
s− 1 group operations.

For the reverse problem: If
(a1, . . . , as)

is a factorization of g mod pn−1 in terms of α1, then

(b, b1, b2, . . . , bs)

is a factorization of g in terms of α′, where for j = 1, . . . , s

bj ∈ Aj such that bj mod pn−1 = aj.

Finally
b = (g − b1 − . . .− bs) mod pn.

All computations are e�cient: s group operations as well as at most ℓ(α′)
modulo operations and equality tests are needed.

De�nition 3.4. If α1 is derived from α via the process described above, then
we say that α1 is a p-reduction of α and write α →p α1.

The di�ering elements of a p -reduction are the elements of α1 that are not
elements of α, i.e. the elements that changed in the modulo reduction.

De�nition 3.5. For any logarithmic signature α of a cyclic p -group Zpn ,
we can apply the p -reduction and receive a polynomial-time equivalent but
shorter logarithmic signature α1 of the cyclic p -group Zpn−1 . Then n iterations
of p -reductions yield the unique complete p-reduction

α →p α1 →p α2 →p . . . →p αn,

where

• αi is some logarithmic signature of Zpn−i for i = 1, . . . , n− 1,

• αn−1 is composed of s− 1 trivial blocks and one block [0, 1, . . . , p− 1].

• αn is composed of s trivial blocks, i.e. [[0], . . . , [0]],

Note that in each p -reduction exactly one block is split and all other blocks
are reduced modulo the power of p corresponding to the subgroup that is split
o�. In the �rst round we split o� the subgroup < pn−1 > (in Zpn) from some
block that depends on the logarithmic signature. In the second round we split
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of the subgroup < pn−2 > (in Zpn−1) again from a block that depends on
the logarithmic signature, and so on. Since there is always exactly one block
per step that is periodic and therefore "splitable", the parameter indicating
which subgroup is contained in which block is an invariant of the logarithmic
signature.

De�nition 3.6. Let α = [A1, . . . , As] be a logarithmic signatures of Zpn . The
subtype of α is the n-tuple

st(α) := (k1, . . . , kn) ∈ {1, . . . , s}n

such that pn−i ∈ Aki mod pn−i+1. In other words, the p -reduction αi−1 →p αi

splits block ki. Note that each index 1, . . . , s of a block occurs exactly logp |Ai|
times in st(α).

We de�ne the plain logarithmic signature αplain = [B1, . . . , Bs] corresponding
to the subtype (k1, . . . , kn) via the blocks

Bi :=
∑
kj=i

[0, pn−j, . . . , (p− 1)pn−j]

for i = 1, . . . , s.

The di�erence between the plain logarithmic signature αplain and any other
logarithmic signature α corresponding to a �xed subtype is the following: If
we apply the p-reduction to αplain, then we split one block and the other blocks
do not change in the modulo reduction. For any other logarithmic signature
α there is always at least one element that changes in some modulo reduction
step.

To clarify the situation we give an extensive example.

Example 3.7. Our toy example is a normalized logarithmic signature α =
[A1, A2, A3] of the group Z29 with the subtype (1, 2, 2, 1, 3, 1, 3, 2, 3) where

A1 = [0, 72, 96, 232, 256, 328, 352, 488],

A2 = [0, 30, 64, 158, 192, 222, 350, 384],

A3 = [0, 19, 67, 356, 404, 423, 464, 471].

We look at the complete p-reduction for α and αplain as well as the factorization
of 71 with respect to both logarithmic signatures. In α exactly one block,
A1, contains the element 29−1 = 256 and also the subgroup [0, 256] of Z29 .

34



It is periodic of size 23. If we take the 23−1 smallest elements, i.e. A′
1 =

[0, 72, 96, 232], then we have

A1 = [0, 256] + A′
1 = [0, 256] + [0, 72, 96, 232].

Now we reduce the other blocks A2 and A3 modulo 28 = 256 and derive three
blocks

A′
1 = [0, 72, 96, 232],

A′
2 = [0, 30, 64, 158, 192, 222, 94, 128],

A′
3 = [0, 19, 67, 100, 148, 167, 208, 215],

which form the logarithmic signature α1 = [A′
1, A

′
2, A

′
3] of Z28 by Proposi-

tion 3.3. The di�ering elements are 94, 128 in the second block and 100, 148,
167, 208, 215 in the third block. Table 3.1 on page 36 illustrates the 9 iterations
of the complete p -reduction.

The plain logarithmic signature αplain = [B1, B2, B3] corresponding to the sub-
type (1, 2, 2, 1, 3, 1, 3, 2, 3) is

B1 = [0, 28] + [0, 25] + [0, 23] = [0, 8, 32, 40, 256, 264, 288, 296],

B2 = [0, 27] + [0, 26] + [0, 21] = [0, 2, 64, 66, 128, 130, 192, 194],

B3 = [0, 24] + [0, 22] + [0, 20] = [0, 1, 4, 5, 16, 17, 20, 21].

The structure of the Table 3.2 on page 37 illustrating the p -reduction for the
plain logarithmic signature is simple. There are no di�ering elements which is
characteristic for plain logarithmic signatures.

A factorization for any x =
∑8

i=0 ci2
i ∈ Z29 is simply computed as

[c8 · 28 + c5 · 25 + c3 · 23,
c7 · 27 + c6 · 26 + c1 · 21,
c4 · 24 + c2 · 22 + c0 · 20 ]

For example 71 = 64 + 4 + 2 + 1 = 0 + 66 + 5.
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st
(α

)
A

1
A

2
A

3

[
0,

72
,
96

,
23
2,

25
6,

32
8,

35
2,

48
8
]

[
0,

30
,
64

,
15
8,

19
2,

22
2,

35
0,

38
4
]

[
0,

19
,
67
,
35
6,

40
4,

42
3
,
46
4,

47
1
]

1
[
0
,
25
6
]
+

[
0,

72
,
96

,
23
2
]

[
0,

30
,
64
,
15
8,

19
2,

22
2,

94
,
12
8
]

[
0,

19
,
67
,
10
0,

14
8,

16
7
,
20
8,

21
5
]

2
[
0,

72
,
96

,
10
4
]

[
0
,
12
8
]
+

[
0,

30
,
64

,
94

]
[
0,

19
,
67
,
10
0,

20
,
39

,
80
,
87

]

2
[
0,

8,
32

,
40

]
[
0,

64
]
+

[
0
,
30

]
[
0,

19
,
3,

36
,
20
,
39

,
16
,
23

]

1
[
0,

32
]
+

[
0
,
8
]

[
0
,
30

]
[
0,

19
,
3,

4,
20
,
7
,
16
,
23

]

3
[
0
,
8
]

[
0
,
14

]
[
0
,
16

]
+

[
0,

3,
4,

7
]

1
[
0
,
8
]
+

[
0
]

[
0
,
6
]

[
0,

3,
4,

7
]

3
[
0
]

[
0
,
2
]

[
0,

4
]
+

[
0,

3
]

2
[
0
]

[
0
,
2
]
+

[
0
]

[
0,

1
]

3
[
0
]

[
0
]

[
0,

1
]
+

[
0
]

[
0
]

[
0
]

[
0
]

T
ab
le
3.
1:

T
h
is
ta
b
le
il
lu
st
ra
te
s
th
e
co
m
p
le
te

p
-r
ed
u
ct
io
n
fo
r
ou
r
to
y
ex
am

p
le
.

F
ro
m

ro
w

i
to

ro
w

i
+
1
th
e
b
lo
ck

in
d
ic
at
ed

at
th
e
le
ft
is
sp
li
t
(f
or

i
=

1,
..
.,
9)
.
T
h
e
ot
h
er
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o
b
lo
ck
s
ar
e
re
d
u
ce
d

m
o
d
u
lo

21
0
−
i .
W
e
u
n
d
er
li
n
ed

th
e
d
i�
er
in
g
el
em

en
ts
.

E
x
am

p
le

fa
ct
or
iz
at
io
n
:

T
h
e
el
em

en
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in
th
e
fa
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io
n
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=

96
+

64
+

42
3
m
o
d
51
2
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e
h
ig
h
-

li
gh
te
d
.
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st
(α

)
A

1
A

2
A

3

[
0
,
8,

32
,
40
,
25
6,

26
4,

28
8,

29
6
]

[
0,

2,
64
,
66

,
12
8,

13
0,

19
2,

19
4
]

[
0,

1,
4,

5
,
16
,
17
,
20
,
21

]

1
[
0
,
25
6
]
+

[
0,

8,
32
,
40

]
[
0,

2,
64
,
66

,
12
8,

13
0,

19
2,

19
4
]

[
0,

1,
4,

5
,
16
,
17
,
20
,
21

]

2
[
0
,
8,

32
,
40

]
[
0,

12
8
]
+

[
0,

2,
64
,
66

]
[
0,

1,
4,

5
,
16
,
17
,
20
,
21

]

2
[
0
,
8,

32
,
40

]
[
0,

64
]
+

[
0,

2
]

[
0,

1,
4,

5
,
16
,
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,
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,
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]

1
[
0
,
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]
+

[
0
,
8
]

[
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2
]

[
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1,
4,

5
,
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,
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,
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,
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]

3
[
0
,
8
]

[
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2
]

[
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]
+

[
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1,
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5
]

1
[
0
,
8
]

[
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2
]

[
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1,
4,

5
]

3
[
0
,
8
]
+

[
0
]

[
0,

2
]

[
0,

4
]
+

[
0,

1
]

2
[
0
]

[
0
,
2
]
+

[
0
]

[
0,

1
]

3
[
0
]

[
0
]

[
0
,
1
]
+

[
0
]

[
0
]

[
0
]

[
0
]
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0
+
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+
5
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d
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2
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e
h
ig
h
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d
.
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3.2 E�cient factoring algorithm

Factoring with respect to a plain logarithmic signature is simple: Given only
the subtype (k1, . . . , kn) a factorization for any

x =
n−1∑
i=0

cip
i ∈ Zpn

is computed as
s∑

i=1

∏
kj=i

cn−jp
n−j.

Here the subtype yields all the information necessary to compute factoriza-
tions.

For an arbitrary logarithmic signature α the situation is slightly di�erent as we
need to consider the di�ering elements. The logarithmic signature α yields a
unique complete p-reduction from which we compute a factorization as follows:

Any block of a logarithmic signature in cyclic p -groups is determined by the
order of splits and modulo reductions in the n steps of the complete p-reduction.
The idea for factoring runs backwards through this p -reduction. We start
with the partial factorization [f1, . . . , fs] = [0, . . . , 0] corresponding to αn. To
factorize g ∈ Zpn we set fkn = g mod p. Note that g mod p is an element of
block kn of αn−1. We lift the partial factorization to Zp2 using the inversion of
the p -reduction αn−2 →p αn−1:

(1) Only if fkn is a di�erence element we change it into the corresponding
element fkn + k · p, where k ∈ {1, . . . , p − 1} is determined by the p -
reduction.

(2) Then fkn−1 = (g − fkn) mod p2.

The partial factorization is lifted to Zp3 and further until we derive a solution in
Zpn . In each following round i all elements of the current partial factorization
that are di�ering elements are lifted from αn−i to αn−i+1 and then we set

fki = fki + (g − (f1 + . . .+ fs)) mod pi.

Note that for this process it is essential that we have access to the complete
p -reduction of α. Table 3.3 illustrates the process of factoring 71 for our toy
example (see highlighted elements in Table 3.1).
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st(α)
modulo computations and

di�ering elements
⇒

partial

factorization

α9 initialize [f1, f2, f3] ⇒ [0, 0, 0]

α8 3 71 mod 21 = 1 ⇒ [0, 0, 1]

α7
1 → 3 ⇒ [0, 0, 3]

2 (71− 3) mod 22 = 0 ⇒ [0, 0, 3]

α6
⇒ [0, 0, 3]

3 (71− 3) mod 23 = 4 ⇒ [0, 0, 7]

α5
⇒ [0, 0, 7]

1 (71− 7) mod 24 = 0 ⇒ [0, 0, 7]

α4
⇒ [0, 0, 7]

3 (71− 7) mod 25 = 0 ⇒ [0, 0, 7]

α3
7 → 39 ⇒ [0, 0, 39]

1 (71− 39) mod 26 = 32 ⇒ [32, 0, 39]

α2
32 → 96 ⇒ [96, 0, 39]

2 (71− 96− 39) mod 27 = 64 ⇒ [96, 64, 39]

α1
39 → 167 ⇒ [96, 64, 167]

2 (71− 96− 64− 167) mod 28 = 0 ⇒ [96, 64, 167]

α
167 → 423 ⇒ [96, 64, 423]

1 (71− 96− 64− 423) mod 29 = 0 ⇒ [96, 64, 423]

Table 3.3: Computing the factorization of 71 for Example 3.7 from the com-
plete p -reduction in Table 3.1.

A factoring algorithm for logarithmic signatures in Zpn that uses this idea has
two stages. The �rst stage (preprocessing) computes the complete p -reduction
including the subtype. The second stage computes the actual factorization for
any element in Zpn . Besides the subtype the only information from the p -
reduction that is necessary are those about di�ering elements, i.e. 7 changed
to 39 by 25. All other information in the complete p -reduction is redundant.
We developed two di�erent approaches to give a compact description of the
complete p -reduction:

(v1) Consider one p -reduction from αi to αi+1. Note that for p = 2 the
di�ering elements change by 2n−i. If p > 2, then the di�ering elements change
by pn−i, 2 · pn−i, . . . , or (p − 1)pn−i. We keep count on this information by
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storing the di�ering elements in one of p − 1 lists per round, i.e. if a =
a mod pn−i + k · pn−i then a is stored in list k.

In every round of a factoring algorithm we simply check whether the elements
of the current partial factorization [f1, . . . , fs] are in one of the p − 1 lists. If
fj is in list k in round i, then we lift fj to fj + k · pn−i and �nally

fkn−i
= fkn−i

+ (g − (f1 + . . .+ fs)) mod pi.

In this case we have to store n(p− 1) lists which overall contain less elements
than the n · s lists of the complete p -reduction. The Table 3.4 shows the lists
of the compact p -reduction (version v1) deduced from Table 3.1. As p = 2
there is only one list per round.

st(α) di�erence elements

1

[0, 72, 96, 232, 256, 328, 352, 488],

[0, 30, 64, 158, 192, 222, 350, 384],

[0, 19, 67, 356, 404, 423, 464, 471]

2 [94, 128, 100, 148, 167 , 208, 215]

2 [20, 39 , 80, 87, 104]

1 [3, 8, 16, 23, 32 , 36, 40]

3 [4, 7 ]

1 [14]

3 [6]

2 [2]

3 [ 1 ]

Table 3.4: v1-description of the compact p -reduction for Example 3.7. Each
row only contains the di�ering elements. The elements involved in the factor-
ization of 71 = 96 + 64 + 423 mod 512 are highlighted.

(v2) Another compact way to describe a complete p -reduction consists of p−1
lists for each block per round plus one permutation pi per round.

The elements of the lists are now the positions of the di�ering elements in their
blocks, i.e. if aj = aj mod pn−i + k · pn−i, then j is stored in list k for block
this block.

Again we start at the end of the p -reduction with the trivial partial factoriza-
tion indicating positions [1, . . . , 1]. Additionally we set a counter c := g, where
g is to be factored.
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In every round of a factoring algorithm we simply check whether the positions
in the current partial factorization [f1, . . . , fs] are in one of the p − 1 lists. If
fj is in list k of block j in round i then we subtract k · pn−i from c (j ̸= kn−i).
In a second step we set

fkn−i
= pi(fkn−i

· ((c mod pn−i+1)/pn−i + 1)).

In this case we have to store n·s·(p−1) lists which overall contain less elements
than the n · s lists of the complete p -reduction.

We illustrate the v2-description with an example and more detail. Consider
round 2 of the complete p -reduction of Example 3.7. The �rst block changes
from

[ 0, 72, 96, 232 ]

to
[ 0, 72, 96, 104 ]

with one di�ering element at position 4. The third block changes from

[ 0, 19, 67, 100, 148, 167, 208, 215 ]

to
[ 0, 19, 67, 100, 20, 39, 80, 87 ]

where the di�ering elements are at positions 5, 6, 7 and 8. The second block
[0, 30, 64, 158, 192, 222, 94, 128] splits into

[0, 128] + [0, 30, 64, 94] = [0, 30, 64, 94, 128, 158, 192, 222].

The permutation (4, 6, 8, 5, 7) describes the di�erence between those two blocks.
We have the following parameters: The counter is c := −64 and the current
partial factorization is [f1, f2, f3] = [3, 3, 6] and k9−2 = 2. First consider f1 and
f3. f1 = 3 is not a position of a di�erence element, but f3 = 6 is the position
of a di�erence element for block 3. There we set c := −64− 27 = −196. Since
now c mod 28 = 64 we set f2 = (4, 6, 8, 5, 7)(3 · (0 + 1)) = 3. Table 3.5 shows
the lists of the compact p -reduction (version v2) deduced from Table 3.1. As
p = 2 there is only one sublist per block and round.
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st(α) positions of di�erence elements permutations

[0, 72, 96, 232, 256, 328, 352, 488],

[0, 30, 64, 158, 192, 222, 350, 384],

[0, 19, 67, 356, 404, 423, 464, 471]

1 [[]], [[7, 8]], [[4, 5, 6 , 7, 8]] ()

2 [[4]], [[]], [[5, 6 , 7, 8]] (4, 6, 8, 5, 7)

2 [[2, 3 , 4]], [[]], [[3, 4, 7, 8]] ()

1 [[]], [[]], [[4, 6 ]] ()

3 [[]], [[2]], [[]] (2, 6, 4, 3)(5, 7)

1 [[]], [[2]], [[]] ()

3 [[]], [[2]], [[]] ()

2 [[]], [[]], [[ 2 ]] ()

3 [[]], [[]], [[]] ()

Table 3.5: v2-description of the compact p -reduction for Example 3.7. Each
row only contains the positions of the di�ering elements plus one permutation
for the block that splits in that round. The elements involved in the factoriza-
tion of 71 = 96 + 64 + 423 mod 512 are highlighted.

We implemented preprocessing and factoring algorithms for Zpn in GAP. There
are four versions, which can be found in the Appendix 6.1. The �rst version
v1.0 is only for p = 2 and uses the v1-compact description of the complete
p -reduction. The second version v1.1 is implemented for arbitrary primes
and also uses the v1-compact description. Version v2.0 uses the v2-compact
description of the complete p -reduction, where version v2.1 uses an improved
v2-compact description that combines all permutations corresponding to one
block.

Proposition 3.8. In Zpn the running time of the factoring algorithms using
descriptions v1 and v2 is polynomial in p, rn and n.

Proof. From the GAP-Code in the Appendix 6.1 we derive the following esti-
mates for the worst case running time of the di�erent algorithms.

42



algorithm version worst case running time

preprocessing

v1.0 O(n · (l + l2 + n · rn))
v1.1 O(n · (l + l2 + n · r2n))
v2.0 O(n · (l + l2 + n · r2n))
v2.1 O(n · (l + l2 + n · r2n) + n(p+ n · p))

factor

v1.0 O(n3 · rn)
v1.1 O(n3 · p)
v2.0 O(n2 · p+ n · rn))
v2.1 O(n2 · p+ n)

Table 3.6: Running times of the preprocessing and factoring algorithms for
logarithmic signatures in Zpn

Here l is the number of elements contained in the logarithmic signature, thus
l ≤ n · rn. With the result on Page 30 we see that independent of the repre-
sentation all running times are polynomial in p, rn and n.

It follows

Theorem 3.9. All logarithmic signatures in cyclic p-groups are tame.

The algorithms were tested on an AMD Athlon(tm) 64 X2 Dual Core Proces-
sor 3800+, 2 x 1 GHz with 2 x 512 KB RAM. Tables 3.8, 3.9, and 3.10 give an
overview on the running times of the algorithms and also compare the di�erent
implementations for p = 2, 3 and several group sizes. For these tests we com-
puted pseudo-random logarithmic signatures via pseudo-randomly choosing a
subtype and di�ering elements, see Section 6.1.

To compare to the running time of the proposed algorithms: Table 3.7 shows
the average running time for a complete search for a factorization through a
random logarithmic signature of type (4, . . . , 4) of a cyclic 2-group of order
between 220 and 232 on the same computer. This brute force search for a
factorization was only feasible for group sizes far below 2100. Table 3.9 shows
that the new algorithms need only 10 milliseconds for a factorization in groups
of size 2100 and even in groups of size 21000 a factorization can be found in less
than a second in one case of v2-algorithm.
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The di�erent running times of the v1- and v2-algorithms listed in Table 3.6
also appear in the following tables. We see that the v1-algorithms are up to
20-times faster in the preprocessing phase compared to the v2-algorithms, but
in the factoring phase the v2-algorithms are much faster by a factor of up to
90.

group size time for complete search

220 3 sec

222 12.6 sec

224 52.2 sec

226 214 sec

228 897 sec

230 61 min

232 4,17 h

240 52.6 days∗

260 0.22 m years∗

280 331 bn years∗

2100 501 tn years∗

Table 3.7: Average running times for a complete search of a logarithmic signa-
ture with blocks of size smaller than 4 for a factorization in the group Z2100.
2 to 100 samples were generated to compute each value. The values marked
with ∗ are estimates and extrapolated from the previous.
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group size Algorithm v1.0
size of larges block

22 24 26 28 210

2100
preprocessing 0,04 0,05 0,03 0,03 0,14

factor 0,01 0,01 0,01 0,01 0,02

2200
preprocessing 0,13 0,19 0,25 0,34 1

factor 0,04 0,06 0,08 0,09 0,2

2400
preprocessing 0,65 0,87 1 2,6 4,8

factor 0,41 0,51 0,61 1,1 2,8

2600
preprocessing 1,9 2 2,5 5,9 15,4

factor 1,7 1,7 2,3 5,1 17,5

2800
preprocessing 3,6 4,9 6,2 10,4 29,4

factor 4,1 4,5 5,6 13,4 41,3

21000
preprocessing 7 8,4 10,7 21,9 39,5

factor 8,4 8,9 13,5 35,9 87,5

group size Algorithm v1.0 212 214 216 218 220 222

2100
preprocessing 0,57 4,2 4,8 44,4 108,8 11 min

factor 0,07 0,33 0,37 1 2,5 10,2

Table 3.8: Preprocessing and factoring for p = 2 with v1.0. For each combi-
nation of group and largest block size there are two values. The top indicates
the average time (in seconds) needed for the preprocessing algorithm, the sec-
ond value indicates the average time (in seconds) needed to factor a random
element from the corresponding group. With the algorithm in Section 6.1.1 at
least 10 and up to 10,000 samples were generated to compute each value in
the table.
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group size Algorithm v1.0 v1.1 v2.0 v2.1

2100
preprocessing 0,04 0,02 0,02 0,02

factor 0,01 0,01 0,01 0,01

2200
preprocessing 0,13 0,06 0,1 0,12

factor 0,04 0,11 0,05 0,04

2400
preprocessing 0,65 0,45 0,69 0,86

factor 0,41 1,2 0,26 0,26

2600
preprocessing 1,9 1,1 1,8 2,2

factor 1,7 4,1 0,61 0,37

2800
preprocessing 3,6 2,5 3,9 4,5

factor 4,1 9,4 1,1 0,62

21000
preprocessing 7 4,6 7,3 8,7

factor 8,4 18,8 1,8 0,96

Table 3.9: Comparison of versions v1.0 to v2.1 of the preprocessing and fac-
toring algorithms for p = 2 and largest block of size 4. For each combination
of group and algorithm are two values. The top indicates the average time (in
seconds) needed for the preprocessing algorithm, the second value indicates
the average time (in seconds) needed to factor a random element from the
corresponding group. With the algorithm in Section 6.1.1 at least 10 and up
to 10,000 samples were generated to compute each value in the table.
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3.3 On the number of logarithmic signatures in

cyclic p -groups

The characterization of logarithmic signatures in cyclic p -groups via the com-
plete p -reduction yields a proposition on the exact number of logarithmic
signatures for these groups. In one p -reduction there are two di�erent steps.
First one block is split and then every element (except 0) in the other blocks
might be reduced by a multiple of a �xed power of p. Given the subtype it is
clear which block is split in which round of the complete p -reduction. Now we
count the possible modulo reductions.

Proposition 3.10. For the group Zpn and the subtype (k1, . . . , kn) there exist
exactly

s∏
i=1

li∏
j=1

(pp
j−1)f(i,j)

normalized logarithmic signatures, where

• s = max{ki} is the number of blocks

• li =
∑

kj=i 1 is the p-logarithm of the block size

• f(i, j) is the number of elements between the j-th and the (j + 1)-th
occurrence of i in the sequence (kn, . . . , k1) (reversed subtype). f(i, li) is
the number of elements after the last occurrence of i.

Proof. Let α be a logarithmic signature of Zpn and subtype (k1, . . . , kn). First
note that the modulo reductions in one block are independent of the structure
of the other blocks. Therefore we consider block Ai for any i ∈ {1, . . . , s}, count
the number νi of possible structures for this block induced by the subtype.

Assume that the block Ai splits in the rounds m1 to mri of the complete
p -reduction, i.e. km1 = . . . = kmri

= i.

We consider the complete p -reduction from bottom up. First Ai is the trivial
block [0]. In round mri it changes to < pn−ri > mod pmri and contains p
elements.

Up to round ri − 1 block Ai contains p− 1 non-zero elements. In each round
j of the reverse p -reduction (j = 1, . . . , n) each element changes by one of the
p elements 0, pn−j, 2pn−j, . . . , (p − 1)pn−j. Thus between round ri and ri − 1
there are (pp−1)f(i,1) possible changes.
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In round ri − 1 the size of the block increases to p2−1 non-zero elements, thus
there are (pp−1)f(i,2) possible changes.

This leads to

νi =

li∏
j=1

(pp
j−1)f(i,j)

possible blocks Ai. For the whole logarithmic signature we have

s∏
i=1

νi =
s∏

i=1

li∏
j=1

(pp
j−1)f(i,j).

For Example 3.7 we have the subtype (1, 2, 2, 1, 3, 1, 3, 2, 3) and the number of
logarithmic signatures of the same type in Z29 is

ν1 · ν2 · ν3 = (22
1−1)f(1,1)(22

2−1)f(1,2)(22
3−1)f(1,3)

· (221−1)f(2,1)(22
2−1)f(2,2)(22

3−1)f(2,3)

· (221−1)f(3,1)(22
2−1)f(3,2)(22

3−1)f(3,3)

= (21 · 26 · 20) · (24 · 20 · 27) · (21 · 23 · 228)
= 250

In this chapter we gave a full characterization of logarithmic signatures in
cyclic p -groups. By developing an e�cient factoring algorithm we showed that
all logarithmic signatures in cyclic p -groups are tame. Furthermore this is the
�rst time that we can give the exact number of logarithmic signatures in a
group.

Further research could focus on the MST3-cryptosystem which uses tame log-
arithmic signatures in the center of the underlying group.
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Chapter 4

Logarithmic signatures in

elementary abelian p -groups

In this chapter we study the structure of logarithmic signatures in elementary
abelian p -groups. Logarithmic signatures of these groups are employed by
the cryptosystem MST3. This system was shown to be insecure if the keys are
derived from an exact transversal logarithmic signature via the transformations
T1 to T5, see [MSvTZ08] and also [BCM09]. A di�erent way of generating
logarithmic signatures of these groups was not known.

Therefore we focus our research for this chapter on an extensive analysis of
logarithmic signatures in elementary abelian p -groups. In the �rst section we
study linear independence between the elements of a logarithmic signature. It
follows a partial classi�cation of logarithmic signatures in elementary abelian
2-groups and a polynomial-time factoring algorithm for a class of logarithmic
signatures in these groups. In the third section we introduce a system of
certain linear equations that can be derived from any logarithmic signature in
elementary abelian p -groups. Furthermore we consider a class of logarithmic
signatures in which we give a polynomial factoring algorithm based on this
system of linear equations.

4.1 Ideally distributed basis

In [QV94] Qu and Vanstone proved the following theorem to analyze a cryp-
tosystem using minimal logarithmic signatures proposed by Webb, see [Web91]:
Let α = [A1, . . . , An] be a logarithmic signature of Zn

p of type (p, . . . , p) and
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B := {b1, . . . , bn} a collection of n vectors such that one non-zero vector is
selected from every block, i.e. bi ∈ Ai and bi ̸= 0 for i ∈ {1, . . . , n}. Then B is
a basis of Zn

p .

The proof relies on the fact that every block is of prime order, i.e. |A1| = . . . =
|An| = p. In order to be able to analyze logarithmic signatures with blocks of
prime power order, we develop a new approach. For the logarithmic signature
α let the blocks be of order |Ai| = pti . The number of blocks, s, is smaller than
the number n of vectors in a basis of Zn

p . In order to assemble a basis from α,
we would have to choose more than one vector from some blocks - according
to the block sizes: Recall that

∑s
i=1 ti = n. So, if a block is of order pti then

we take ti vectors from this block and obtain a set of n vectors in total. The
question, whether this approach is su�cient to obtain a basis, is immediately
answered in the negative:

Example 4.1. Consider the logarithmic signature α = [A1, A2] from Z3
3 with

two blocks

A1 = [ (0, 0, 0), (1, 0, 0), (0, 1, 0) ]

A2 = [ (0, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 1),

(0, 0, 2), (1, 1, 1), (1, 1, 2), (2, 2, 1), (2, 2, 2) ]

The set {(1, 0, 0), (1, 1, 0), (2, 2, 0)} is chosen from α with a distribution 1:2
according to the block sizes, no vector is trivial, but the vectors are linearly
dependent.

4.1.1 Existence of a basis in a logarithmic signature

In this example we see that a generalization of the theorem of Qu and Vanstone
is not straightforward, and we need to determine if it is in general possible to
�nd a basis of Zn

p in a logarithmic signature and how to select the vectors for
this basis. It is not immediately clear whether there always exists a basis that
is distributed according to the block sizes, but a short proof shows that there
always exists some basis of Zn

p in α with some distribution.

Lemma 4.2. Let p be a prime, n ∈ N, and α = [A1, . . . , As] be a logarithmic
signature of the elementary abelian group Zn

p . Then there exists a basis B of
Zn

p such that
B ⊆ A1 ∪ . . . ∪ As.

We say that α contains the basis B.
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Proof. Verify that

Zn
p = A1 + . . .+ As ⊆ < A1 ∪ . . . ∪ As > ⊆ Zn

p .

Thus < A1 ∪ . . .∪As > = Zn
p and it follows that A1 ∪ . . .∪As contains a basis

of Zn
p

An algorithm that computes a basis in a logarithmic signature is polynomial in
the length ℓ(α) of the signature - as can be seen from the following algorithm
that simply runs through all elements of α and adds an element to the set B
if it is linearly independent of all elements that already are in B.

GAP: FindBasisLogSig

Input: logSig, a logarithmic signature of Zn
p , where p is prime and n ∈ N

Output: B, a basis of Zn
p contained in logSig

FindBasisLogSig:=function(logSig)

local i, a, B;

B:= [];

for i in [1..Length(logSig)] do

for a in logSig[i] do

Add(B, a);

if Rank(B) < Length(B)

then Remove(B,a);

fi;

od;

od;

return B;

end;
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4.1.2 Distribution of a basis

Because of Lemma 4.2 this algorithm outputs a basis of Zn
p contained in a

logarithmic signature α, but with a distribution that does not necessarily re�ect
the block sizes. For the logarithmic signature in Example 4.1 the algorithm
returns the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. With two vectors from the �rst
block and only one vector from the second block, it is not distributed according
to the block sizes, in a ratio 1:2. In fact, the distribution of the basis given by
the algorithm FindBasisLogSig is such that the basis contains Rank(< A1 >)
vectors from the �rst block, Rank(< A1, A2 >)−Rank(< A1 >) vectors from
the second block, and so on. If for example

Rank(< A1, . . . , As−1 >) = n,

the basis returned by this algorithm does not contain a vector from the last
block of α.

An example shows that it is not su�cient to change the algorithm such that
once log(|Ai|) vectors are collected from a block Ai it skips running through the
remaining vectors of that block: Take the logarithmic signature α = [A1, A2]
from Z4

3 with the blocks

A1 = [ (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 0, 2), (1, 0, 0, 2), (0, 1, 0, 2) ]

A2 = [ (0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 0, 1, 0),

(0, 0, 2, 0), (1, 1, 1, 0), (1, 1, 2, 0), (2, 2, 1, 0), (2, 2, 2, 0) ].

The modi�ed algorithm would return the set

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

which is not a basis.

Regarding the distribution of a basis in a logarithmic signature we now study
the questions

(1) Does there always exist a basis in a logarithmic signature that is dis-
tributed according to the block sizes?

(2) How do we �nd or compute such a basis?

In order to study this topic, we give de�nitions that describe how a basis is
distributed in a logarithmic signature.

53



De�nition 4.3. Let α be a logarithmic signature of Zn
p and let B be a basis

of Zn
p contained in α. The distribution of B with respect to α is the vector

dα(B) = ( |A1 ∩B|, . . . , |As ∩B| ) .

If
|Ai ∩B| = logp(|Ai|)

for i = 1, . . . , s, then we call B a basis of ideal distribution for α.

For the Example 4.1 we consider the basis B1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and B2 = {(1, 0, 0), (1, 1, 0), (0, 0, 1)} with the distribution

dα(B1) = (2, 1), and dα(B2) = (1, 2).

Then only B2 is a basis of ideal distribution for α.

Given any basis in a logarithmic signature α, we de�ne a measure how close
this basis is to a basis of ideal distribution for α.

De�nition 4.4. Let α be a logarithmic signature of Zn
p , let B be a basis of

Zn
p contained in α, and set ti := logp(|Ai|). The quality of B with respect to

α is the natural number that indicates the di�erence between the two vectors
dα(B) and (t1, . . . , ts), i.e.

qα(B) =
s∑

i=1

|ti − |Ai ∩B||.

We say that a basis B is better than a basis B′ with respect to α if

qα(B) < qα(B
′).

For the Example 4.1 we have

qα(B1) = |1− 2|+ |2− 1| = 2

and
qα(B2) = |1− 1|+ |2− 2| = 0.

Thus B2 is better than B1 with respect to α.

We immediately derive some properties of the quality function qα:
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Proposition 4.5. Let α be a logarithmic signature and B be a basis of Zn
p

contained in α. Then

1. qα(B) is even.

2. 0 ≤ qα(B) < 2n

3. qα(B) = 0 if and only if B is a basis of ideal distribution.

Proof. 1. Let t′i = |Ai∩B|. Recall that ti = logp(|Ai|). Since B ⊆ A1∪ . . .∪As,
we have

s∑
i=1

ti =
s∑

i=1

t′i (= n).

And therefore

ts − t′s = −
s−1∑
i=1

ti − t′i.

It follows that

qα(B) =
s−1∑
i=1

|ti − t′i|+ |ts − t′s|

=
s−1∑
i=1

|ti − t′i|+ |
s−1∑
i=1

ti − t′i|.

For integers xi ∈ Z and any m ∈ N the sum
∑m

i=1 |xi| is even if and only if
|
∑m

i=1 xi| is even. And thus it follows that qα(B) is always even.

2. 0 ≤ qα(B) is immediately clear and from the triangle inequality it follows
that qα(B) ≤ 2n. Now assume that qα(B) = 2n. Then |ti − t′i| = ti + t′i for
i = 1, . . . , s. Since t′i ≥ 0 and ti > 0, it follows that t′1 = . . . = t′s = 0 which is
a contradiction to B ⊆ A1 ∪ . . . ∪ As. Therefore qα(B) < 2n

3. qα(B) = 0 is equivalent to ti = |Ai ∩ B| for i = 1, . . . , n, which equals the
de�nition of a basis of ideal distribution.

Remark 4.6. One transformation that we will use at several points in this
chapter is the T1-transformation, i.e. changing the elements of a logarithmic
signature by applying an automorphism.. For a logarithmic signature α =
[A1, . . . , As] (of the elementary abelian group Zn

p ) and an automorphism φ (of
Zn

p ) we de�ned
φ(α) = [φ(A1), . . . , φ(As)].
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Recall that if φ and φ−1 are polynomial-time computable algorithms, then the
factorization problem for α is polynomial time equivalent to the factorization
problem for φ(α), see also Page 14.

It is clear that linear independence of elements in α implies linear independence
of elements in φ(α) and vice versa. And given a basis B = {b1, . . . , bn} of
elements in α, there always exists the automorphism φ′ that maps this basis
to the canonical basis, i.e. φ′(bi) = ei. Then the logarithmic signature φ′(α)
contains the canonical basis {e1, . . . , en}. Thus regarding the e�ciency of
factoring we may always assume that a logarithmic signature contains the
canonical basis in some distribution. Or, given a basis of a certain distribution
for α we may assume this basis is the canonical basis.

4.1.3 Existence of a basis with ideal distribution

Now we have several de�nitions at hand to describe the distribution of a basis
in a logarithmic signature. In order to motivate our approach we look at

Example 4.7. Let α be a logarithmic signature of type (4, 4, 8) from Z7
2.

We assume that we are given a basis with distribution (2, 1, 4) and used an
automorphism to set this basis to the canonical basis

B = {e1, e2, e3, e4, e5, e6, e7}.

In this example α has the three blocks

A1 = [ 0, e1, e2, (1, 1, 0, 0, 1, 0, 0) ]

A2 = [ 0, e3, (0, 0, 0, 1, 1, 0, 1), (1, 0, 1, 1, 1, 1, 1) ]

A3 = [ 0, e4, e5, e6, e7,

(0, 0, 0, 0, 1, 1, 0), (1, 0, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0) ]

The canonical basis B is not of ideal distribution for α, as qα(B) = 0+1+1 = 2.
A basis with ideal distribution for α has the distribution (2, 2, 3). So B contains
su�cient vectors from the �rst block, not enough from the second block and
too many vectors from the third block. Starting with B we would like to
exchange one of the canonical vectors from A3 for any vector from A2 such
that the resulting set B′ still is a basis of Z7

2 but with distribution (2, 2, 3). In
this case there are several possibilities: e4, e5, and e7 could be exchanged for
either (0, 0, 0, 1, 1, 0, 1) or (1, 0, 1, 1, 1, 1, 1), whereas e7 can only be exchanged
for (1, 0, 1, 1, 1, 1, 1).
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From the example we observe the general strategy for exchanging vectors in
a basis to improve its quality: Remove vectors from a block A that contains
too many vectors in the basis and add a vector from a block B that does not
have su�cient vectors in the basis via: ei ∈ A can be exchanged for any other
vector v ∈ B such that v(i) ̸= 0. This idea is used in the proof of the following
Theorem 4.9. First we give a lemma essential for the proof of the theorem.

Lemma 4.8. Let α = [A1, . . . , As] be a logarithmic signature, i1, . . . , ik ∈
{1, . . . , s}, k ≤ s, and j ∈ {1, . . . , n}. If there exists

v ∈ Ai1 + . . .+ Aik such that v(j) ̸= 0,

then there exists an element

v′ ∈ Ai1 ∪ . . . ∪ Aik such that v′(j) ̸= 0.

Proof. The equation v′(j) = 0 for all v′ ∈ Ai1 ∪ . . . ∪ Aik directly implies
v(j) = 0 for all v ∈ Ai1 + . . .+ Aik .

Theorem 4.9. Let p be a prime number, n ∈ N, and α = [A1, . . . , As] be a
logarithmic signature of the elementary abelian group Zn

p . Then there exists a
basis B of Zn

p with ideal distribution for α.

Proof. By Lemma 4.2 α contains a basis B of Zn
p . Let

ti = logp |Ai|,

and
t′i = |Ai ∩B|

for i = 1, . . . , s. Consider the quality of the basis B

qα(B) =
s∑

i=1

|ti − t′i| ≥ 0.

If qα(B) = 0, then B is a basis with ideal distribution dα(B) = (t1, . . . , ts) and
the theorem holds.

If qα(B) > 0 we show that α contains a basis B′ that is better than B, such
that

qα(B
′) = qα(B)− 2.

Without loss of generality we renumber the blocks of α such that for some
k, l ∈ {0, . . . , s} the �rst k blocks contain the right amount of basis vectors
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from B, the blocks k + 1 through l contain more basis vectors and the blocks
l + 1 to s contain less basis vectors than necessary such that B is a basis of
ideal distribution. We have

ti = t′i for i = 1, . . . , k

ti < t′i for i = k + 1, . . . , l

ti > t′i for i = l + 1, . . . , s

Furthermore due to Remark 4.6 we may assume that B is the canonical basis

B = {e1, . . . , en}

and the canonical vectors are distributed on the blocks of α in ascending order:

e1, . . . , ek′ ∈ A1 ∪ . . . ∪ Ak

ek′+1, . . . , el′ ∈ Ak+1 ∪ . . . ∪ Al

el′+1, . . . , en ∈ Al+1 ∪ . . . ∪ As

where

k′ =
k∑

i=1

ti =
k∑

i=1

t′i

and l′ =
∑l

i=1 t
′
i.

We consider two cases:

(I) t′i ̸= ti for i = 1, . . . , n.

We have k = 0. In this case the blocks of α contain either too many or not
enough vectors of B such that B is of ideal distribution for α. Combine those
blocks that contain to many vectors in

B1 = A1 + . . .+ Al,

and those that do not contain enough vectors in

B2 = Al+1 + . . .+ As.

Consider the logarithmic signature

β = [B1, B2].
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A basis of ideal distribution for α has the distribution

(t1, . . . , ts).

Therefore a basis of ideal distribution for β would have the distribution

(
l∑

i=1

ti,
s∑

i=l+1

ti).

The distribution of B with respect to β is

dβ(B) = (l′, n− l′)

because the �rst block of β contains the canonical vectors e1, . . . , el′ and the
second block contains el′+1, . . . , en. And since t′i < ti for i = 1, . . . , l

l′ <

l∑
i=1

ti

and n− l′ >
∑s

i=l+1 ti.

Now let M := < e1, . . . , el′ > ∩ B1. Then

|M | ≤ | < e1, . . . , el′ > | = pl
′
< p

∑l
i=1 ti = |B1|.

This implies that the set B1\M is not empty. Let x ∈ B1\M , then one of the
entries x(l′ + 1), . . . , x(n) is not zero. W.l.o.g. we may assume that

x(l′ + 1) ̸= 0.

Note that x is not necessarily an element of one of the blocks of α; but by
Lemma 4.8 there exists an element x′ ∈ A1 ∪ . . . ∪ Al such that

x′(l′ + 1) ̸= 0.

W.l.o.g we may assume that x′ ∈ Al and also el′+1 ∈ Al+1. (The arguments
for x′ ∈ A1, . . . , x ∈ Al−1 and el′+1 ∈ Al+2, . . . , el′+1 ∈ As are the same).

Set
B′ = {e1, . . . , el′ , x′, el′+2, . . . , en}.

Since x′(l′ + 1) ̸= 0, the set B′ is a basis of Zn
p and also B′ ⊆ A1 ∪ . . . ∪ As.

Because tl < t′l and tl+1 > t′l+1 we get

qα(B
′) = |t1−t′1|+. . .+|tl−1−t′l−1|+|tl−(t′l+1)|+|tl+1−(t′l+1−1)|+. . .+|ts−t′s|
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= qα(B)− 2,

i.e. B′ is better than B with respect to α.

(II) t′i = ti for some i ∈ {1, . . . , n}.

In this case k > 0 and l < n. From α we derive a new logarithmic signature

β = [B1, B2, B3].

with the three blocks

B1 = A1 + . . .+ Ak,

B2 = Ak+1 + . . .+ Al,

B3 = Al+1 + . . .+ As.

A basis of ideal distribution for α has the distribution (t1, . . . , ts). Therefore a
basis of ideal distribution for β would have the distribution

(
k∑

i=1

ti,
l∑

i=k+1

ti,
s∑

i=l+1

ti).

Since

e1, . . . , ek′ ∈ B1

ek′+1, . . . , el′ ∈ B2

el′+1, . . . , en ∈ B3

the distribution of B with respect to β is

dβ(B) = (k′, l′ − k′, n− l′).

And since t′i < ti for i = k + 1, . . . , l

l′ − k′ =
l∑

i=k+1

t′i <
l∑

i=k+1

ti

and also

n− l′ =
s∑

i=l+1

t′i >

s∑
i=l+1

ti.

We consider two cases
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1. There exists a vector x ∈ B2 such that

x(i) ̸= 0 for some i ∈ {l′ + 1, . . . , n}.

W.l.o.g. we may assume that

x(l′ + 1) ̸= 0.

Note that x ∈ B2 is not necessarily an element of one of the blocks of α;
but by Lemma 4.8 there exists an element

x′ ∈ Ak+1 ∪ . . . ∪ Al

such that
x′(l′ + 1) ̸= 0.

W.l.o.g we may assume that

x′ ∈ Al

and also
el′+1 ∈ Al+1.

(The arguments for x′ ∈ A1, . . . , x ∈ Al−1 and el′+1 ∈ Al+2, . . . , el′+1 ∈ As

are the same).

Set
B′ = {e1, . . . , el′ , x′, el′+2, . . . , en}.

Since x′(l′+1) ̸= 0, the set B′ is a basis of Zn
p and also B′ ⊆ A1∪ . . .∪As.

Because
tl > t′l and tl+1 < t′l+1

we get

qα(B
′) = |t1 − t′1|+ . . .+ |tl−1 − t′l−1|+ |tl − (t′l + 1)|+

|tl+1 − (t′l+1 − 1)|+ |tl+2 − t′l+2|+ . . .+ |ts − t′s|
= qα(B)− 2,

i.e. B′ is better than B with respect to α.

2. x(i) = 0 for all x ∈ B2 and all i ∈ {l′ + 1, . . . , n}.
In this case we have

B2 ⊆ < e1, . . . , el′ > .
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Since B3 only contains the canonical vectors el′+1, . . . , en, it is not possi-
ble - as in the case before - to �nd a vector in B2 that might be exchanged
for a canonical vector in B3 to yield a basis with better distribution. In-
stead of one exchange of vectors, two exchanges of vectors are necessary.
Since

| < ek′+1, . . . , el′ > | = pl
′−k′ < p

∑l
i=k+1 ti = |B2|,

there exists v ∈ B2 such that v(j) ̸= 0 for some j ∈ {1, . . . , k′}.
By Lemma 4.8 there exists an element v′ ∈ Ak+1 ∪ . . . ∪ Al such that

v′(j) ̸= 0.

W.l.o.g we may assume that

v′ ∈ Ak+1

and also
j = k′.

(The arguments for v′ ∈ Ak + 1, . . . , v′ ∈ Al−1 and j = 1, . . . , k′ − 1 are
the same). Set

B′′ = {e1, . . . , ek′−1︸ ︷︷ ︸
B1

, v′, ek′+1, . . . , el′︸ ︷︷ ︸
B2

, el′+1, . . . , en︸ ︷︷ ︸
B3

}.

Then the distribution of B′′ with respect to β is

(k′ − 1, l′ − k′ + 1, n− l′)

and di�ers from the distribution of B, but

qα(B
′′) = |

k∑
i=1

ti − (k′ − 1)|+ |
l∑

i=k+1

ti − (l′ − k′ + 1)|

+ |
s∑

i=l+1

ti − (n− l′)′|

= |
k∑

i=1

ti − k′| − 1 + |
l∑

i=k+1

ti − (l′ − k′)|+ 1

+ |
s∑

i=l+1

ti − (n− l′)′|

= qα(B),
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i.e. the quality of B′′ has not improved compared to the quality of B.

Now we look at the elements of B1: Suppose that w(k) = 0 for all w ∈ B1

and k ∈ {l′ + 1, . . . , n}. Then

B1 ⊆ < e1, . . . , el′ >

and even
B1 +B2 ⊆ < e1, . . . , el′ > .

This yields the contradiction:

|B1 +B2| ≤ | < e1, . . . , el′ > | = pl
′
< p

∑l
i=1 ti = |B1 +B2|.

Therefore there exists a vector w ∈ B1 such that

w(h) ̸= 0 for some h ∈ {l′ + 1, . . . , n},

and by Lemma 4.8 there exists a vector w′ ∈ A1 ∪ . . . ∪ Ak such that

w′(h) ̸= 0.

W.l.o.g we may assume that

w′ ∈ Ak

and also
h = l′ + 1.

(The arguments for w′ ∈ A1, . . . , w
′ ∈ Ak−1 and h = l′ + 2, . . . , n are

similar).

Set
B′ = {e1, . . . , ek′−1′ , w

′︸ ︷︷ ︸
B1

, v′, ek′+1, . . . , el′︸ ︷︷ ︸
B2

, el′+2, . . . , en︸ ︷︷ ︸
B3

}.

Since v′(k′) ̸= 0 and w′(l′ + 1) ̸= 0, the set B′ is a basis of Zn
p and also

B′ ⊆ A1 ∪ . . . ∪ As. Because

tk+1 > t′k+1 and tl+1 < t′l+1

we get

qα(B
′) = |t1 − t′1|+ . . .+ |tk−1 − t′k−1|+ |tk − (t′k − 1 + 1)|+

|tk+1 − (t′k+1 + 1)|+ |tk+2 − t′k+2|+ . . .+ |tl − t′l|+
|tl+1 − (t′l+1 − 1)|+ |tl+2 − t′l+2|+ . . .+ |ts − t′s|

= qα(B)− 2,

i.e. B′ improves B with respect to α.
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We have shown that given a basis of Zn
p in a logarithmic signature α this

is either a basis of ideal distribution or we can �nd a basis that improves the
quality of the �rst basis by 2. The quality function is always even, if its input is
a basis contained by the considered logarithmic signature, see Proposition 4.5.
Repeating the improvement process at most n times yields a basis of ideal
distribution.

With this theorem we see that there is a basic structure common to all loga-
rithmic signatures in elementary abelian p -groups. However, the theorem does
not lead immediately to a full characterization, but it will help in our analysis
of logarithmic signatures in the following sections.

Theorem 4.9 does not only answer the �rst question posed on page 53 regarding
the existence of a basis of ideal distribution for all logarithmic signatures of
elementary abelian groups. The proof of Theorem 4.9 gives the outline of an
algorithm to compute such a basis in polynomial time and this answers the
second question.

4.1.4 Normal form of a logarithmic signature

Due to Theorem 4.9 and Remark 4.6 we showed that for any logarithmic
signature α in Zn

p there exists an e�ciently computable automorphism φ such
that φ(α) contains the canonical basis with ideal distribution. It is also clear
that computing factorizations for α and φ(α) are polynomial-time equivalent.

Therefore we can restrict our further analysis to logarithmic signatures that
contain the the canonical basis with ideal distribution. We can also make
the following constraint on the order of the basis vectors in the logarithmic
signature.

De�nition 4.10. A logarithmic signature that contains the canonical basis
with ideal distribution in ascending order (i.e. ei ∈ Ak, ej ∈ Ak+1, then i < j)
is called a logarithmic signature in normal form.

Note that there might be several di�erent automorphisms that transform α
such that it contains the canonical basis with ideal distribution - depending
on the number of di�erent bases with ideal distribution for α. For example,
the logarithmic signature α in Z3

3 from Example 4.1 with the two blocks
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A1 = [ (0, 0, 0), (1, 0, 0), (0, 1, 0) ]

A2 = [ (0, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 1),

(0, 0, 2), (1, 1, 1), (1, 1, 2), (2, 2, 1), (2, 2, 2) ].

includes the bases (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 0), (1, 1, 1), (1, 1, 2)
with ideal distribution. It also contains the canonical basis, but not with ideal
distribution. The automorphism de�ned by

φ1 : e1 7→ e1, e2 7→ (2, 1, 0), e3 7→ e3

changes α into the normal form

φ1(A1) = [ (0, 0, 0), (1, 0, 0), (2, 1, 0) ]

φ1(A2) = [ (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1),

(0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2) ].

The automorphism de�ned by

φ2 : e1 7→ e1, e2 7→ (2, 2, 1), e3 7→ e2

changes α into the normal form

φ2(A1) = [ (0, 0, 0), (1, 0, 0), (2, 2, 1) ]

φ2(A2) = [ (0, 0, 0), (0, 2, 1), (0, 1, 2), (0, 1, 0),

(0, 2, 0), (0, 0, 1), (0, 1, 1), (0, 2, 2), (0, 0, 2) ].

The logarithmic signatures φ1(α) and φ2(α) both contain the canonical basis
with ideal distribution, but di�er in other elements. Thus the normal form is
not unique.

Given any logarithmic signature α in Zn
2 , where |Ai| ≤ 4, the computation of

the normal form is e�cient.

GAP: NormalFormLogSig

Input: logSig, a normalized logarithmic signature of type (4, . . . , 4, 2, . . . , 2) of
Zn

2 , where n ∈ N
Output: the normal form of logSig
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NormalFormLogSig:=function(logSig)

local i,j,Automorphism; Automorphism:=[];

for i in [1..Length(logSig)] do

if Size(logSig[i])=2) then

Append(Automorphism, logSig[i][2] );

else Append(Automorphism, logSig[i]{[2..4]} );

fi;

od;

return logSig*Inverse(Automorphism);

end;

The running time is dominated by the �nal matrix multiplication and inversion
and is therefore approximately O(n2 · s · rα).

4.2 Logarithmic signatures in Zn
2

In this section we will study logarithmic signatures of elementary abelian 2-
groups. First in a general case where we give a characterization of logarithmic
signatures via sets of linearly independent vectors. In the case where blocks
are of size less or equal to 4, we will show that it is possible to characterize
these logarithmic signatures via acyclic digraphs (with labeled vertices). It
follows that in such logarithmic signatures there is always one block that is a
subgroup. Furthermore we derive an e�cient factoring algorithm. This is joint
work with Rouven Walter.

4.2.1 A characterization via linearly independent sets

In Theorem 4.9 we saw that there are always certain sets of linearly indepen-
dent vectors in a logarithmic signature of an elementary abelian p -group. For
elementary abelian 2-groups Zn

2 we can even give a characterization of logarith-
mic signatures via the existence of certain sets of linearly independent vectors.
The following theorem will also be used in the proof of Theorem 4.15.
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Theorem 4.11. Let s, n, l ∈ N and for i = {1, . . . , s} take subsets Bi ⊆ Zn
2

with 0 ∈ Bi, and
∏s

i=1 |Bi| = 2n. Then [B1, . . . , Bs] is a logarithmic signature
if and only if all sets

B = {b1, . . . , bl} ⊂ B1 ∪ . . . ∪Bs

such that

1. 0 ̸∈ B,

2. bi ̸= bj for i ̸= j,

3. for all i = {1, . . . , s}: |B ∩Bi| ∈ {0, 1, 2}

are linearly independent.

Proof. Let [B1, . . . , Bs] be a logarithmic signature. Let B = {b1, . . . , bt} ⊂
B1∪ . . .∪Bs as given in the theorem. W.l.o.g we may assume that t = 2s. Let
bi, bs+i ∈ Bi for i = 1, . . . , s.

Suppose that the vectors of B are linearly dependent, i.e. there exist bits
l1, . . . , l2s ∈ Z2 (at least one of these equal to 1) such that

2s∑
i=1

libi = 0.

As all non-trivial vectors of Zn
2 are their own inverses, it follows that

s∑
i=1

libi =
2s∑

i=s+1

libi.

Let

ci =

{
bi, li = 1

0, li = 0

Then ci, ci+s ∈ Bi. Because of the properties 1. to 3. the sets {c1, . . . , cs} and
{cs+1, . . . , c2s} are two di�erent factorizations of the same element, which is
a contradiction to the hypothesis that [B1, . . . , Bs] is a logarithmic signature.
Therefore the three properties on the elements of B are necessary properties
of a logarithmic in an elementary abelian 2-group.

Now, let all collections of vectors with the properties 1. to 3. be linearly
independent.
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Suppose that [B1, . . . , Bs] does not de�ne a logarithmic signature of Zn
2 . Since∏s

i=1 |Bi| = 2n, there exists an element x ∈ Zn
2 with at least two di�erent

factorizations with respect to [B1, . . . , Bs] (otherwise it would be a logarithmic
signature), i.e.

x =
s∑

i=1

bi =
s∑

i=1

b′i,

where bi, b
′
i ∈ Bi. Let B = {b1, . . . , bs, b′1, . . . , b′s}. Consider the set

C = {b ∈ B|b ̸= 0, b ̸= b′}.

This set is not empty, ful�lls properties 1. to 3. and since

∑
c∈C

c =
s∑

i=1

bi + b′i = 0,

the vectors of C are linearly dependent. This is a contradiction to the assump-
tion that all collections of vectors with the properties 1. to 3. are linearly
independent. Thus [B1, . . . , Bs] is a logarithmic signature.

Comparison to Theorem 4.9: If we consider a logarithmic signature in Zn
2 with

blocks of length less or equal to 4, then the theorem above gives a generaliza-
tion: Theorem 4.9 shows the existence of a basis of ideal distribution, while
Theorem 4.11 shows that every maximal collection of vectors with properties
1. to 3. is a basis with ideal distribution.

It is not possible to get better or di�erent results by choosing three or more
vectors from one block for the set B. In Example 4.7 with

A1 = [ 0, e1, e2, (1, 1, 0, 0, 1, 0, 0) ]

A2 = [ 0, e3, (0, 0, 0, 1, 1, 0, 1), (1, 0, 1, 1, 1, 1, 1) ]

A3 = [ 0, e4, e5, e6, e7,

(0, 0, 0, 0, 1, 1, 0), (1, 0, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0) ]

we see that for example the vectors e1, e2, (1, 1, 0, 0, 1, 0, 0) and e5 are linearly
dependent, where the �rst three vectors are chosen from the same block A1.
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It is also not possible to extend this characterization of logarithmic signatures
in elementary abelian 2-groups to elementary abelian p -groups for an odd
prime p: Take the logarithmic signature α = [A1, A2] from Z4

3 with the blocks

A1 = [ (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 0, 2), (1, 0, 0, 2), (0, 1, 0, 2) ]

A2 = [ (0, 0, 0, 0), (1, 1, 0, 0), (2, 2, 0, 0), (0, 0, 1, 0),

(0, 0, 2, 0), (1, 1, 1, 0), (1, 1, 2, 0), (2, 2, 1, 0), (2, 2, 2, 0) ].

We immediately see that there are elements, both in one block, that are linearly
dependent, for example (1, 1, 0, 0) and (2, 2, 0, 0) in A2. Even if we choose only
linearly independent vectors from each block for the set B, the theorem still
does not hold: the set {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (2, 2, 1, 0)} is chosen
as in Theorem 4.11 with the additional property that vectors from the same
block are linearly independent, but the set itself is linearly dependent. So p = 2
is a necessary condition for the Theorem to hold. In fact, the property that
elements of Zn

2 are their own inverses is essential to the proof of Theorem 4.11

4.2.2 Relating logarithmic signatures to graphs

In this section we relate logarithmic signatures of Zn
2 with blocks of size less or

equal to 4 to acyclic digraphs with labeled vertices. We show that this connec-
tion leads to a characterization and a factoring algorithm for these logarithmic
signatures. The de�nition of acyclic digraphs and all graph theoretic notations
are according to [BJG08].

De�nition 4.12. A digraph or directed graph is a graph G = (V,E) with a
�nite set V of vertices and a set of arcs E ⊆ V × V . An arc is an ordered
pair of distinct vertices (u, v) ∈ E that de�nes a directed edge from vertex u
to vertex v, where u is called tail and v is called the head of (u, v).

If G does not contain parallel arcs, loops or directed cycles it is called acyclic
digraph.

For a vertex v ∈ V the in-degree is the number of arcs with head v, the
out-degree is the number of arcs with tail v.

Proposition 4.13. In an acyclic digraph there exists a vertex of in-degree zero
as well as a vertex of out-degree zero.

Proof. see [BJG08], Proposition 1.4.2.
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Let α = [A1, . . . , As] be a logarithmic signature in Zn
2 , where |Ai| ≤ 4 and

|Ai| ≥ |Aj| for i ≤ j in normal form, i.e. for some k ≤ n the blocks of α are

A1 = [ 0, e1, e2, v1 ],

A2 = [ 0, e3, e4, v2 ],
...

Ak = [ 0, e2k−1, e2k, vk ],

Ak+1 = [ 0, e2k+1 ],
...

As = [ 0, en ],

where the vectors v1, . . . , vk ∈ Zn
p are not further speci�ed. We focus on the

indeterminates v1, . . . , vk, which su�ce to characterize a logarithmic signature
of the type (4, . . . , 4, 2, . . . , 2). Therefore we may ignore the blocks of size 2
and consider only logarithmic signatures of type (4, . . . , 4).

Now we take a closer look at the indeterminates v1, . . . , vk. We observe that
two entries in each vi are connected to the two canonical vectors in the same
block Ai.

Proposition 4.14. Let α be a logarithmic signature of Zn
2 with type (4, . . . , 4)

in normal form and i ∈ {1, . . . , n}. If vi denotes the vector of block Ai that is
no canonical vector, then

vi(2i− 1) = vi(2i) = 1.

Proof. Let α be a logarithmic signature of Zn
2 with type (4, . . . , 4) in normal

form and i ∈ {1, . . . , n}. We consider the entries vi(2i − 1) and vi(2i) of the
vector vi ∈ Ai.

Suppose that vi(2i − 1) = 0 for some i ∈ {1, . . . , n}. W.l.o.g we may assume
that i = 1, i.e. v1(1) = 0. Consider the collection

C = {v1, e2︸ ︷︷ ︸
∈A1

, e3, e4︸ ︷︷ ︸
∈A2

, . . . , en−1, en︸ ︷︷ ︸
∈As

}.

Since v1(1) = 0 we have

v1 =
n∑

j=1

v1(j)ej = 0 +
n∑

j=2

v1(j)ej,
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i.e. the vectors of C are linearly dependent. This leads to a contradiction,
because by Theorem 4.11 the set C is linearly independent. Thus vi(2i−1) = 1.

With the same argument we see that vi(2i) = 1.

Propositions 4.13 and 4.14 help to give a complete characterization of the
normal form of logarithmic signatures of type (2, . . . , 2, 4, . . . , 4) in elementary
abelian 2-groups via acyclic digraphs. We state the theorem for the case where
each block is of order 4, but it is easily adapted for logarithmic signatures with
blocks of order 2 and 4.

Theorem 4.15. Let n ∈ N and α = [A1, . . . , As] be a sequence of ordered
subsets of Zn

2 of the form

A1 = [ 0, e1, e2, v1 ],

A2 = [ 0, e3, e4, v2 ],
...

Ai = [ 0, e2i−1, e2i, vi ],
...

As = [ 0, en−1, en, vs ],

for s = n
2
. The sets

V = {v1, . . . , vs} ⊆ Zn
2 .

and
E = {(vi, vj) ∈ V × V | vi ̸= vj, vi(2j − 1, 2j) ̸= (0, 0) }.

de�ne a digraph
G(α) := (V,E).

Then
α is a logarithmic signature of Zn

2

⇐⇒

G(α) is an acyclic digraph

Proof. 1. Let α be a logarithmic signature.

Suppose that G(α) is not acyclic. Then there exists a shortest (directed) cycle

C = vj1 , . . . , vjr , vj1
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of length r in G(α), with j1, . . . , jr ∈ {1, . . . , s}, and

vji ̸= vjk

for 1 ≤ i < k ≤ r.

Note that permuting the blocks of α does not change the structural properties
of G(α), especially the existence of cycles. For easier notation we may therefore
assume that the vertices in C are

C = v1, . . . , vr, v1.

It follows that
(vi, vi+1) ∈ E

for i = 1, . . . , r − 1 and also (vr, v1) ∈ E.

We look at the �rst r entries of the vectors v1, . . . , vr. Set

yi = vi(2i+ 1, 2i+ 2)

for i = 1, . . . , r − 1, and
yr = vr(1, 2).

Note that for i = 1, . . . , r
yi ̸= (0, 0).

By Proposition 4.14 we have

vi(2i− 1, 2i) = (1, 1)

for i = 1, . . . , r. Thus several entries of the vectors corresponding to the
vertices of C are known:

v1 = ( 1 1 y1(1) y1(2) ∗ ∗ . . . ∗ ∗ ∗ ∗ . . . )

v2 = ( ∗ ∗ 1 1 y2(1) y2(2) . . . ∗ ∗ ∗ ∗ . . . )

v3 = ( ∗ ∗ ∗ ∗ 1 1 . . . ∗ ∗ ∗ ∗ . . . )
...

vr−1 = ( ∗ ∗ ∗ ∗ ∗ ∗ . . . 1 1 yr−1(1) yr−1(2) . . . )

vr = ( yr(1) yr(2) ∗ ∗ ∗ ∗ . . . ∗ ∗ 1 1 . . . )
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If one of the unknown entries denoted by ∗ is not zero, then there exists a
cycle with length less than r. This would be a contradiction to the assumption
that C is the shortest cycle in G(α). Therefore all entries ∗ are zero and the
�rst 2r entries of the vectors v1, . . . , vr are �xed. We now de�ne a second set
of vectors w1 ∈ A2, w2 ∈ A3, . . . , wr−1 ∈ Ar, wr ∈ A1 via

wi =


0, if yi = (1, 1)

e2i−1, if yi = (0, 1)

e2i, if yi = (1, 0)

for i = 1, . . . , r, i.e.

w1 = ( 0 0 y1(1) y1(2) 0 0 . . . 0)

w2 = ( 0 0 0 0 y2(1) y2(2) 0 . . . 0)
...

wr−1 = ( 0 0 . . . 0 yr−1(1) yr−1(2) 0 . . . 0)

wr = ( yr(1) yr(2) 0 0 . . . 0)

where we use the notation
y = y + 1

for y ∈ Z2. Now consider the vector

x =
r∑

i=1

vi +
r∑

i=1

wi,

where v1, . . . , vr, w1, . . . , wr ∈ A1 ∪ . . . ∪ Ar. Note that

x(1, 2) = (1, 1) + (yr(1), yr(2)) + (yr(1), yr(2)) = (0, 0)

and

x(2i− 1, 2i) = (yi−1(1), yi−1(2)) + (1, 1) + (yi−1(1), yi−1(2)) = (0, 0)

for i = 2, . . . , r. Thus
x ∈ < e2r+1, . . . , en >

and there exists a linear combination

x =
n∑

i=2r+1

ciei
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for some c2r+1, . . . , cn ∈ Z2. The set of vectors

M = {v1, . . . , vr}
∪ {wi | w ̸= 0, i ∈ {1, . . . , r}}
∪ {ei | ci ̸= 0, i ∈ {2r + 1, . . . , n}}

ful�lls

1. 0 ̸∈ M

2. All listed elements of M are pairwise distinct.

3. for all i = {1, . . . , s}: |M ∩ Ai| ∈ {0, 1, 2}

Due to Theorem 4.11 M is a set of linearly independent vectors. This contra-
dicts ∑

m∈M m =
∑r

i=1 vi +
∑r

i=1,wi ̸=0wi +
∑n

i=2r+1,ci ̸=0 ei

=
∑r

i=1 vi +
∑r

i=1wi +
∑n

i=2r+1 ciei

= x+ x

= 0.

Therefore the assumption that G(α) contains a cycle is false and therefore G(α)
is acyclic.

2. Let α be a sequence as given in the premise of this theorem and let the
corresponding graph G(α) be acyclic.

We use Theorem 4.11 to show that α is a logarithmic signature. First note
that for i = 1, . . . , s we have Ai ⊆ Zn

2 with 0 ∈ Ai, and
∏s

i=1 |Ai| =
∏s

i=1 2
2 =

22s = 2n. Now we show that all sets

B = {a1, . . . , an} ⊂ A1 ∪ . . . ∪ As

such that

1. 0 ̸∈ B,

2. ai ̸= aj for i ̸= j,

3. for all i = {1, . . . , s}: |B ∩ Ai| ∈ {0, 1, 2}
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are linearly independent. It su�ces to consider only sets B of maximal size n,
because linear independence of a set B of maximal size implies linear indepen-
dence for collections of less than n vectors. Thus we assume that |B ∩Ai| = 2.

Let
B = {a1, . . . , as, a′1, . . . , a′s}

such that for i = 1, . . . , s we have ai, a
′
i ∈ Ai, ai, a

′
i ̸= 0 and a′i ̸= vi.

Case 1. If ai ̸= vi for i = 1, . . . , n, then B = {e1, . . . , en} is linearly indepen-
dent.

Case 2. There exists r ∈ {1, . . . , s} such that

aj1 = vj1 , . . . , ajr = vjr

for some j1, . . . , jr ∈ {1, . . . , s} and ai ̸= vi for all i ∈ {1, . . . , s} \ {j1, . . . , jr}.

Note that permuting the blocks of α does not change the linear dependence or
independence of B. For easier notation we may therefore assume that

B = {v1, . . . , vr, ar+1, . . . , as, a
′
1, . . . , a

′
s}

For c1, . . . , cs, c
′
1, . . . , c

′
s ∈ Z2 consider the equation

s∑
i=1

ciai +
s∑

i=1

c′ia
′
i = 0. (∗)

We consider two cases

1. ci = 1 for some i ∈ {1, . . . , r}.

2. ci = 0 for i = 1, . . . , r

1. By reordering only the �rst r blocks of α we may assume that

c1 = . . . = ck = 1

and
ck+1 = . . . = cr = 0

for some k ∈ {1, . . . , r}.

Consider the subgraph G′ of G(α) corresponding to the �rst k blocks of α

G′ = ({v1, . . . , vk}, {(vi, vj) ∈ E| i, j ≤ k}).

75



The graph G′ is acyclic because G(α) is acyclic. By Lemma 4.13 there exists
a vertex vl (1 ≤ l ≤ k) with in-degree zero. By a permutation of the blocks
A1 and Al we may assume that the vertex v1 has in-degree zero. We have

v2(1, 2) = . . . = vk(1, 2) = (0, 0).

Also
ar+1(1, 2) = . . . = as(1, 2) = (0, 0),

because ar+1, . . . , as ∈ {e2r+1, . . . , en}. With Proposition 4.14 we have

v1(1, 2) = (1, 1),

and it follows that
s∑

i=1

ciai(1, 2) = (1, 1).

Now consider the vectors a′1, . . . , a
′
s. We have

a′2(1, 2) = . . . = a′s(1, 2) = (0, 0)

because a′2, . . . , a
′
s ∈ {e3, . . . , en}. The �rst two entries in a′1 are either (1, 0)

or (0, 1). Therefore we have

(
s∑

i=1

ciai +
s∑

i=1

c′ia
′
i)(1, 2) ∈ {(0, 1), (0, 1)},

i.e. the equation (*) can not be ful�lled with ci = 1 for some i ∈ {1, . . . , r}.

2. If c1 = . . . = cr = 0, then
∑s

i=r+1 ciai +
∑s

i=1 c
′
ia

′
i = 0. Since the vectors

ar+1, . . . , as, a
′
1, . . . , a

′
s are distinct canonical vectors und thus linearly indepen-

dent, we �nd that

cr+1 = . . . = cs = c′1 = . . . , c′s = 0.

It follows that the equation (∗) can only be ful�lled for c1 = . . . = cs = c′1 =
. . . , c′s = 0 and therefore B is linearly independent. With Theorem 4.11 it
follows that α is a logarithmic signature.

Example 4.16. In the group Z10
2 we consider a logarithmic signature α =

[A1, A2, A3, A4, A5] of type (4, 4, 4, 4, 4) in normal form with the blocks

A1 = [ 0, e1, e2, (1, 1, 0, 0, 0, 0, 1, 0, 1, 1) ],

A2 = [ 0, e3, e4, (0, 1, 1, 1, 0, 0, 1, 1, 1, 0) ],

A3 = [ 0, e5, e6, (1, 0, 1, 0, 1, 1, 0, 0, 0, 0) ],

A4 = [ 0, e7, e8, (0, 0, 0, 0, 0, 0, 1, 1, 0, 1) ],

A5 = [ 0, e9, e10, (0, 0, 0, 0, 0, 0, 0, 0, 1, 1) ]
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The acyclic digraph G(α) associated to this logarithmic signature has �ve
vertices v1, . . . , v5 and there exists an arc from vi to vj if the entry 2j − 1 or
2j in the vector vi is not zero for i ̸= j, i, j = 1, . . . , 5.
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We immediately see that there is a vertex, v3, with in-degree zero and a vertex,
v5, with out-degree zero. Note that the block A5 corresponding to the vertex
v5 with out-degree zero is a subgroup. This cannot be observed just in this
example but is a general property:

Corollary 4.17. In a (normalized) logarithmic signature α of Zn
2 with blocks

of size less or equal to 4 one block is a subgroup of Zn
2 , more exactly all vertices

with out-degree zero in G(α) correspond to a block in α that is a subgroup of
Zn

2 .

Proof. Any block of size two is a subgroup. Therefore we need to consider the
case, where all blocks are of size 4. Let G(α) be the digraph corresponding
to α. By Theorem 4.15 we see that G(α) is acyclic and therefore one vertex
vi has out-degree zero for some i ∈ {1, . . . , n

2
} by Proposition 4.13. With the

de�nition of G(α) it follows that vi(2j − 1, 2j) = (0, 0) for all j ∈ {1, . . . , n
2
},

j ̸= i. By Proposition 4.14 it is vi(2i− 1, 2i) = (1, 1) and thus vi = e2i−1 + e2i.
Therefore Ai = [0, e2i−1, e2i, vi] is a subgroup of Zn

p .

With di�erent proof methods this corollary might also be found in [Sza04].

4.2.3 Factoring algorithm for block size 2 and 4

Here we use the results from the previous subsection to develop an e�cient
factoring algorithm for logarithmic signatures of elementary abelian 2-groups
with blocks of size 2 and 4. In Theorem 4.15 we saw that every such logarithmic
signature is fully described by the vectors vi from the blocks of order 4. We
combine these in a matrix that is similar but not equivalent to an adjacency
matrix:
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De�nition 4.18. For a logarithmic signature α = [A1, . . . , As] in normal form
and of type (4, . . . , 4) we de�ne the structural matrix

M(α) := ( vi(2j − 1) + 2 · vi(2j) )i,j=1,...,s .

By Proposition 4.14 we see that all diagonal elements of M(α) are equal to 3.
Corollary 4.17 shows that there exists i ∈ {1, . . . , s} such that row i is equal
to 3 · ei. Moreover we have

Corollary 4.19. Let n ∈ N and α = [A1, . . . , As] be a logarithmic signature
of type (4, . . . , 4) in normal form. Then there exists a permutation matrix P
such that P ·M(α) ·P−1 is an upper triangular matrix with diagonal elements
equal to 3.

Proof. Let α = [A1, . . . , As] be a logarithmic signature of type (4, . . . , 4) in
normal form with the corresponding structural matrix M(α). We use an in-
ductive argument on s. First if M(α) is a 1 × 1 matrix there is nothing to
prove. Now let the corollary be true for some s ∈ N. And let M(α) be an
s+1× s+1 matrix. Then by Corollary 4.17 one block of α is a subgroup and
the corresponding row i in M(α) contains only zeros except for the diagonal
entry which is 3. The matrix M ′ derived from M(α) by deleting row and
column i is an s × s matrix and also the structural matrix of a logarithmic
signature α′ with s blocks. Let Ps be the permutation matrix such that by
induction Ps · M ′ · Ps is an upper triangular matrix with diagonal elements
equal to 3. Let P be the (s+ 1)× (s+ 1) permutation matrix that permutes
i and s. Then

Ps+1 =

 Ps

0
...

0

0 . . . 0 1

 · P

is the permutation matrix that transforms M(α) into an upper triangular
matrix with diagonal elements equal to 3.

Example 4.20. We consider Example 4.16 with

M(α) :=


3 0 0 1 3

2 3 0 3 1

1 1 3 0 0

0 0 0 3 2

0 0 0 0 3

 .
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With the permutation matrix

P :=


0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


we get

P ·M(α) · P−1 =


3 1 1 0 0

0 3 2 3 1

0 0 3 1 3

0 0 0 3 2

0 0 0 0 3

 .

Note that this matrix is the structural matrix of the normal form of α with
blocks 1 and 3 exchanged, denoted by β = [A3, A2, A1, A4, A5]. And the upper
triangular form of the matrix leads to a simple factoring approach: To factor
an element x ∈ Z10

2 consider the �rst two entries of x. The �rst block of β
is the only block that contains vectors with non-zero entries in the �rst and
second position. The correct factor of x from the �rst block is the one vector
that coincides with x in the �rst two positions. Let this vector be b1. Then
the correct factor from the second block is the one vector that coincides with
x− b1 in the third and forth position and so on.

It follows an implementation of this idea:

GAP: FactorByLogSig4

Input: logSig, a normalized logarithmic signature of type (4, . . . , 4) of Zn
p ,

where n ∈ N, a vector x ∈ Zn
p

Output: Fact, the factorization vectors of x with respect to logSig

FactorByLogSig4:=function(logSig, x)

LS:=NormalFormLogSig(logSig);

S:= []; M:= []; Fact:= [];

y:= StructuralCopy(x);
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# (1) Build the structural matrix M

for i in [1..n/2] do

Add(M,[]);

for j in [1..n/2] do

if logSig[i][4]{[2*j-1,2*j]} = Z(2)*[0,0] then

M[i][j]:=0;

else M[i][j]:=1;

fi;

od;

od;

# (2) Find the permutation (matrix)

for i in [1..n/2] do

k:=PositionProperty(M,x -> Sum(x)=1);

Add(S,k);

for j in [1..n/2] do

M[j][k]:=0;

od;

od;

# (3) Compute the factors

for i in Reversed(S) do

Fact[i]:=logSig[i][IntFFE(y[2*i-1]) + 2*IntFFE(y[2*i])+1];

y:= y - Fact[i];

od;

return Fact;

end;

The running time of this algorithm is dominated by the running time O(n2 ·
s · rα) = O(n3) of NormalFormLogSig. The other parts each need time O(n2)
or less. This running stays the same if the algorithm is extended to take
logarithmic signatures with blocks of size 2 and 4. Alltogether we have

Theorem 4.21. In elemtary abelian p-groups logarithmic signatures with blocks
of size less than or equal to 4 are tame.
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4.3 Factoring logarithmic signatures in Zn
p using

linear equations

In the previous section we showed results on the structure and factorability of
certain logarithmic signatures in elementary abelian 2-groups. Here we intro-
duce a factoring approach using linear equations that applies to all logarithmic
signatures of elementary abelian p -groups. Consider the following matrix no-
tation.

De�nition 4.22. Let α be a logarithmic signature of Zn
p . The notation α =

(A1| . . . |As) refers to the augmented matrix with its columns equal to the
vectors from α, i.e.

α = (at11, a
t
12, . . . , a

t
1r1

| at21, . . . , atsrs),

where Ai = [ai1, . . . , airi ]. This is an n × ℓ(α) matrix with elements from Zn
p

and rank n. Note that always n < ℓ(α).

Example 4.23. Consider the example on page 68 of a logarithmic signature
α of type (9, 9) from Z4

3. The matrix of α is

α =


0 1 0 0 1 0 0 1 0 0 1 2 0 0 1 1 2 2

0 0 1 0 0 1 0 0 1 0 1 2 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 2

0 0 0 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0

 .

Every such matrix de�nes a system of n linear equations with ℓ(α) unknowns
that is under-determined. By Lemma 4.2 the rank of this matrix is always n.
Therefore the set of solutions is of size pℓ(α)−n. For every g ∈ Zn

p exactly one
of the solutions of the equation system

α · x = g

describes the factorization of g with respect to α. Denote this solution by xg.
Unfortunately pℓ(α)−n ≥ pp·n−n, thus a search through the set of solutions takes
at least as long as a complete search through all pn possible factorizations of
α.

Since α is a logarithmic signature, the solution vector xg is of a certain form
and there is only one such vector in the set of solutions. This vector contains
exactly s entries equal to 1 and all other entries are zero. Furthermore the
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nonzero entries are distributed such that among the entries in xg corresponding
to one block exactly one is equal to 1.

In Example 4.23 we consider the set of solutions for α · x = (1, 1, 0, 0)t. The
solution corresponding to the factorization of (1, 1, 0, 0) is

xg = (1, 0, 0, 0, 0, 0, 0, 0, 0 | 0, 1, 0, 0, 0, 0, 0, 0, 0).

Other solutions are for example

x1 = (0, 0, 0, 0, 0, 0, 0, 0, 0 | 0, 1, 0, 0, 0, 0, 0, 0, 0)

x2 = (1, 0, 0, 0, 0, 0, 0, 0, 0 | 0, 0, 2, 0, 0, 0, 0, 0, 0)
x3 = (1, 0, 0, 0, 0, 0, 0, 0, 0 | 1, 0, 1, 1, 0, 0, 0, 1, 0)
x4 = (0, 1, 1, 1, 1, 1, 1, 1, 1 | 0, 1, 0, 1, 1, 0, 0, 0, 0)

Based on this observation we modify the equation α ·x = g in order to be able
to extract xg from the solutions: For each block Ai of α we add a row that
consists of zeros except for the entries corresponding to the block, which we
set equal to 1:

Let m0 = 0 and mk =
∑k

i=1 ri for k = 1, . . . , s. Then for i = 1, . . . , s add the
row

mi∑
j=mi−1+1

ei.

Furthermore we extend g to length n + s by adding ones. We derive the
extended matrix equation

A1 | A2 | . . . | As

1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

. . .

0 . . . 0 1 . . . 1


· x =



g(1)
...

g(n)

1

...

1


Note that by adding these equations we reduce the solution vectors to such
vectors where the sum of the entries corresponding to one block always equals
1 modulo p, i.e.

mi∑
j=mi−1+1

x(j) mod p = 1.
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For Example 4.23 we have the extended matrix equation



0 1 0 0 1 0 0 1 0 0 1 2 0 0 1 1 2 2

0 0 1 0 0 1 0 0 1 0 1 2 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 2

0 0 0 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1


· xg =



1

1

0

0

1

1


Note that now the vectors x1, x2 and x4 are no longer in the set of solutions.

As the new equations are linearly independent to the equations directly de-
�ned by α, the size of the set of solutions reduces to pℓ(α)−(n+s). This is not
signi�cantly less than before, but xg now has a special property by which it
can be identi�ed among all solutions.

Proposition 4.24. Let α be a logarithmic signature of Zn
p and g ∈ Zn

p . Con-
sider the set M of solutions of the extended system of equations derived from
α · x = g. Let xg be the unique vector that corresponds to the factorization of
g with respect to α.

Then xg is of Hamming weight s and it is the unique vector in M with minimal
Hamming weight.

Proof. 1. As xg has one nonzero entry per block it is of Hamming weight s.

2. We know that
∑mi

j=mi−1+1 x(j) mod p = 1. It follows that at least one of
the entries in x corresponding to each block is nonzero. Thus every solution
vector has Hamming weight at least s.

3. Assume that y ∈ M with Hamming weight s. Thus for each block of α
there is exactly one nonzero entry in y. These can be any nonzero element in
Zp. But since

∑mi

j=mi−1+1 x(j) mod p = 1, it follows that every nonzero entry
is equal to 1. Now y de�nes a factorization of g with respect to α. As these
are unique, we have y = xg.

Therefore xg is the unique minimal vector inM with minimal Hamming weight
s.

Our idea is to �nd a polynomial link between this description of a logarithmic
signature and some computational problem that is known to be either di�cult
or e�cient to solve. Our reduction from 3SAT or the shortest vector prob-
lem to solving linear systems derived from logarithmic signatures was not yet
successful and could be focus of further research.
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4.4 Factoring for Rédei groups

In this section we develop a reduction algorithm for a class of logarithmic
signatures in Zn

p that leads to a polynomial-time factoring algorithm.

In the previous section we introduced the matrix notation for logarithmic sig-
natures in elementary abelian p -group. Note that elementary row operations
on the matrix α describe an automorphism applied to α. So we can modify
α via Gaussian elimination until we get a matrix αr in reduced row echelon
form with the result that the factoring problem for the logarithmic signatures
α and αr have the same complexity, see page 55.

It is immediately clear that the reduced row echelon form of a logarithmic
signature is unique but several di�erent logarithmic signatures may have the
same reduced row echelon form.

Example 4.25. Consider Example 4.7 of a logarithmic signature α of type
(4, 4, 8) from Z7

2. In the notation of this section we have

α =



0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0


leading to the reduced row echelon form

αr =



0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0

0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1


We make an observation: The rank of the matrix (A1|A2) is 6 and therefore
the last row of (A1, A2)

r contains only zeros. If we want to factor an element
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(∗, ∗, ∗, ∗, ∗, ∗, 1) ∈ Z7
2 with respect to αr we immediately know that only one

half of the elements of block A3 are possible factors: the vectors with last
position equal to 1.

This observation leads to the following de�nition which extends the de�nition
of the Rédei property in Chapter 9.2 of [Sza04].

De�nition 4.26. Let α = [A1, . . . , As] be a logarithmic signature and i ∈
{1, . . . , s}. A block Ai of α is called a Rédei block if

∪
j ̸=iAj does not contain

a basis of Zn
p , i.e.

Rank(A1, . . . , Ai−1, Ai+1, . . . , As) < n.

De�nition 4.27. Let m > 1 be a natural number. A �nite elementary abelian
group Zn

p is said to have the Rédei m-property, if every logarithmic signature
with m blocks has a Rédei block.

If Zn
p has the Rédei m-property for all 1 < m < n, then we say that Zn

p has
the Rédei property.

If only the logarithmic signatures of a certain class A of logarithmic signatures
have a Rédei block, then we say that Zn

p has the Rédei property for A.

Note that in [Sza04] the Rédei 2-property was studied, but without the focus
on factoring. Moreover here we are interested in logarithmic signatures with
more than two blocks such that the length ℓ(α) of the logarithmic signatures
is polynomial in n.

Finding a Rédei block is e�cient as the following pseudo-code shows.

GAP: FindRedeiBlockLogSig

Input: logSig, the n× ℓ(α) matrix of a normalized logarithmic
signature α of Zn

p

type, the type of logSig
Output: i, the index of a Rédei block of logSig

FindRedeiBlockLogSig:=function(logSig, type)

local i,Block;

for i in [1..Length(type)] do
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Block:=RemoveBlock(logSig, type, i);

if RankMat(logSig) = n then

AddBlock(logSig, Block, type, i);

else return i;

fi;

od;

end;

The running time of this algorithm is dominated by RankMat which uses
Gaussian elimination as a subroutine and needs O(n2 · ℓ(α)) operations. With
s iterations we get a rough estimation of the polynomial running time O(n2 ·
s2 · rα).

Lemma 4.28. Let α = (A1 | . . . | As) be a logarithmic signature of Zn
p with

a Rédei block Ai of size |Ai| = pti. Consider the logarithmic signature

α′ = (A1 | . . . | Ai−1 | Ai+1 | . . . | As | Ai).

Then - with a permutation of the elements in Ai - the last row of α′r is of the
form

( 0 0 0 . . . 0 0 0︸ ︷︷ ︸
ℓ(α)−pti

0 . . . 0︸ ︷︷ ︸
pti−1

1 . . . 1︸ ︷︷ ︸
pti−1

. . . p− 1 . . . p− 1︸ ︷︷ ︸
pti−1

).

Proof. Let α = (A1 | . . . | As) be a logarithmic signature of Zn
p with a Rédei

block Ai of size |Ai| = pti . W.l.o.g let i = s, i.e. α = α′. Consider the matrix

A := (A1 | . . . | As−1).

Since As is a Rédei block, we have

Rank(A) < n,

and therefore the last row of the reduced row echelon form of A contains only
zeros. Therefore the last row of αr starts with ℓ(α)− pts zeros.
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Now consider the last pts positions of the last row of

αr := (Ar
1 | . . . | Ar

s).

For x ∈ Zp let kx be the number of positions equal to x. Suppose that kx <
pts−1 for some x ∈ Zp. Then the set Ar

1 + . . .+ Ar
s contains

pt1 · . . . · pts−1 · kx < pn−1

vectors with the last position equal to x. This is a contradiction to ar being a
logarithmic signature which implies that Ar

1 + . . . + Ar
s contains exactly pn−1

vectors with the last position equal to x.

It follows that kx ≥ pts−1 for all x ∈ Zp. We have

pts = |Ar
s| =

∑
x∈Zp

kx ≥ |Zp| · pts−1 = pts

and therefore kx = pts−1 for all x, i.e. every element of Zp occurs exactly pts−1

times among the last pts elements of the last row of αr.

Proposition 4.29. Let α = (A1| . . . |As) be a logarithmic signature of Zn
p with

a Rédei block. Then the factoring problem for α is polynomial-time reducible
to the factoring problem for a logarithmic signature of Zn−1

p with s or s − 1
blocks.

Proof. Let α = (A1| . . . |As) be a logarithmic signature of Zn
p . W.l.o.g let α be

in reduced row echelon form with Rédei block As. We consider the problem of
�nding the factorization for some vector x ∈ Zn

p with respect to α under the
assumption that the factoring problem for logarithmic signatures of Zn−1

p with
s or s− 1 blocks is e�ciently solvable.

Let
A0 := [ y ∈ As | y(n) = x(n) ],

i.e. A0 is constructed from As by taking all vectors with last position equal to
x(n). By Lemma 4.28 we have |A0| = pts−1.

Note that by Lemma 4.28 the last position in all vectors from A1 to As−1 is
zero. Then the set

A1 + . . .+ As−1 + A0

is the subset of A1 + . . .+As = Zn
p that contains all pn−1 elements of Zn

p with
the last position equal to x(n). Furthermore one of the vectors of A0 is the
factor from As in the factorization of x with respect to α.
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For i = 0, 1, . . . , s− 1 let

A′
i := [ a(1, . . . , n− 1) | a ∈ Ai ],

i.e. A′
i is constructed from Ai by projection on the �rst n− 1 positions of each

vector.

If |A′
0| > 1, then

A′
1 + . . .+ A′

s−1 + A′
0

contains all pn−1 elements of Zn−1
p and

|A′
1| · . . . · |A′

s−1| · |A′
0| = pn−1.

Therefore α′′ = ( A′
1 | . . . | A′

s−1 | A′
0 ) is a logarithmic signature of Zn−1

p with
s blocks. By assumption factoring with respect to α′′ is e�cient:

Let
x(1, . . . , n− 1) = a′1 + . . .+ a′s−1 + a′0

be the factorization of x(1, . . . , n− 1) with respect to α′′, then

x = a1 + . . .+ as

is the factorization for x with respect to α, where

ai := ( a′ti | 0 ) ∈ Ai

for 1 ≤ i ≤ s− 1 and
as = ( a′t0 | x(n) ) ∈ As.

If |A′
0| = 1, then

A′
1 + . . .+ A′

s−1

contains all pn−1 elements of Zn−1
p and

|A′
1| · . . . · |A′

s−1| = pn−1.

Therefore ( A′
1 | . . . | A′

s−1 ) is a logarithmic signature of Zn−1
p with s−1 blocks.

By assumption factoring with respect to α′′ is e�cient:

Let A′
0 = {a} and let

x(1, . . . , n− 1)− a = a′1 + . . .+ a′s−1

be the factorization of x(1, . . . , n− 1)− a with respect to α′′, then

x = a1 + . . .+ as
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is the factorization for x with respect to α, where

ai := ( a′ti | 0 ) ∈ Ai

for 1 ≤ i ≤ s− 1 and
as = ( at | x(n) ) ∈ As.

The proposition shows that we can e�ciently reduce the problem of factoring
from logarithmic signatures in Zn

p to logarithmic signatures in Zn−1
p if we start

with a logarithmic signature that has a Rédei block. In case we obtain a
logarithmic signature with a Rédei block in this process, we can reduce further.
If we iterate this process and obtain a logarithmic signature with a Rédei block
in every step, then after n reduction steps we obtain the desired factorization.

It follows a pseudo-code implementation of this idea:

GAP: FactorByRedeiLogSig

Input: logSigx, the concatenation of the matrix of a partial normalized
logarithmic signature of Zn

p and a vector x
type, the type of logSig
index, an iteration counter

Output: Fact, the factorization of x w.r.t. logSig or an error message if
FindRedeiBlockLogSig returns an error in some iteration

FactorByRedeiLogSig:=function(logSigx, type, index)

local i,j,k,rb,LS,Fact,y;

# Build matrix

LS:=StructuralCopy(logSigx);

y:= StructuralCopy(x);

s:=Length(type);

# Find the Redei block

rb:=FindRedeiBlockLogSig(LogSig);

# RotateBlocks

PermutedLS(LS, (rb, s));
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Permuted(type, (rb, s));

# Compute the row echelon form

LS:=TriangulizeMat(LS);

# Delete vectors

j:=sum(type); #=Length(LS)-1;

k:=j-type[s];

DeleteColumns(LS{[j..k]}, i -> i[n] = LS[index][j+1]);

type[s]=type[s]/p;

# Test whether factorization already found

if index = 1 then

return LS;

else FactorByRedeiLogSig(LS, type, index-1);

end;

Note that the running time this algorithm is dominated by the Gaussian elimi-
nation used by FindRedeiBlockLogSig and also TriangulizeMat. Therefore we
can approximate the running time with O(n2 · s2 · rα). An example illustrates
this algorithm.

Example 4.30. Consider Example 4.25 of a logarithmic signature α of type
(4, 4, 8) from Z7

2 and the problem of �nding a factorization for the vector

x = (0, 1, 0, 1, 1, 1, 1).

We take the matrix (A1 | A2 | A3 | xt ) =

0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1

0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1

1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8


,
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where we label every column according to its occurrence in each block of α.
The rank of (A1 | A2 ) is 6, thus the third block of α is a Rédei block. We
convert this matrix to the reduced row echelon form

(A1 |A2 |A3 | xt )r =



0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1

0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1

0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8


Since the last entry in xr is 0, only the vectors 1, 3, 4 and 5 are possible factors
from the third block. Thus we can discard all columns with last entry equal
to 1 from this block. We also delete the last row and obtain a logarithmic
signature of Z6

p: 

0 1 0 0 0 0 0 0 0 1 1 0 1

0 0 1 0 0 0 0 0 0 1 0 1 1

0 0 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 1 1 1

1 2 3 4 1 2 3 4 1 3 4 6


Now the �rst block is a Rédei block. And we obtain the reduced row echelon
form (keeping the order of the blocks)

0 1 1 0 0 1 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 1 1

0 1 1 0 0 0 0 0 0 0 1 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1

1 2 3 4 1 2 3 4 1 3 4 6


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Since the last entry in the last column is 1, we can discard all columns with
last entry equal to 0 from the �rst block.

1 0 0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0 1 1 0

3 4 1 2 3 4 1 3 4 6


Now the third block is a Rédei block. And we obtain the reduced row echelon
form

1 0 0 0 0 0 0 1 0 1 1

0 0 0 1 0 0 0 1 0 1 0

0 0 0 0 1 0 0 1 0 1 1

0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1 1 0 1

3 4 1 2 3 4 1 3 4 6


−→


1 0 0 0 0 0 1 0 1

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 1 0 0

3 4 1 2 3 4 3 4



Now the second block is a Rédei block. And we obtain the reduced row echelon
form 

1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0 1

0 0 0 1 0 1 0 0 0

3 4 1 2 3 4 3 4

 −→

 1 0 0 0 0 1

0 0 0 1 0 0

3 4 3 3 4



Since the last column is (1, 0)t, we can discard vector 4 from the �rst block
and vector 3 from the third block. The process terminates with(

3 3 4
)
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Thus the factorization of x with respect to the original logarithmic signature
α is A1[3] + A2[3] + A3[4], i.e.

x =



0

1

0

1

1

1

1


=



0

1

0

0

0

0

0


+



0

0

0

1

1

0

1


+



0

0

0

0

0

1

0


.

Limit and extension of the factoring algorithm This algorithm com-
putes a correct factorization only if every step produces a logarithmic signature
with a Rédei block. Fortunately, we can extend the algorithm such that it out-
puts the correct factorization for a larger class of logarithmic signatures.

Look at the following case:

Let α = (A1, . . . , As) be a logarithmic signature of Zn
p without a Rédei block -

but with the property that Rank(A1, . . . , As−2) < n, i.e. in the last row of the
row echelon form of α the entry 1 only occurs in the entries belonging to the
last two blocks. In this case we can split the problem of �nding a factorization
into only two subproblems, of which only one has a solution.

Suppose that we want to �nd the factorization for (z1, . . . , zn−1, 0) with respect
to α. And let (α|z) be in row echelon form

z1

∗ . . . ∗ ∗ ∗ ...

zn−1

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 0

 .

We divide the last two blocks of α according to the last row of this matrix as
follows

A0
s−1 := {x ∈ As−1 | x[n] = 0}

A1
s−1 := {x ∈ As−1 | x[n] = 1}

A0
s := {x ∈ As | x[n] = 0}

A1
s := {x ∈ As | x[n] = 1}
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Since α is a logarithmic signature, there exists exactly one factorization for
z. And this factorization can be found in one and only one of the partial
logarithmic signatures

α1 = [A1, . . . , As−2, A
0
s−1, A

0
s]

and
α2 = [A1, . . . , As−2, A

1
s−1, A

1
s].

It is not clear which of the two partial logarithmic signatures contains the
correct factorization. So we have to work with both. In one case we will
obtain the desired factorization; in the other case we will get no solution.
Note that the last row of the matrices (α1|z) and (α2|z) does not contain any
further information that helps to �nd a factorization for z. Therefore we make
a projection on the �rst n− 1 entries in each column:

α′
1 = [A′

1, . . . , A
′
s−2, A

0′

s−1, A
0′

s ]

and
α′
2 = [A′

1, . . . , A
′
s−2, A

1′

s−1, A
1′

s ],

where A′ := {a(1, . . . , n− 1) | a ∈ A} for A ⊆ Zn
p .

Now we reduced the problem of �nding the factorization for z in Zn
p to the

problem of �nding a factorization for z′ = z(1, . . . , n−1) in Zn−1
p via two partial

logarithmic signatures. This works very similar to factoring with respect to
logarithmic signatures, but with the special case that in one of the two cases
we get an error message.

We simply adapt the notion of a Rédei block for the reduced partial loga-
rithmic signatures. And we take both α′

1 and α′
2 as input for the algorithm

FactorByRedeiLogSig to further reduce the problem of �nding the factoriza-
tion for z. We call this splitting process.

With this method we may extend the FactorByRedeiLogSig algorithm such
that it includes the splitting process. If the input logarithmic signature is
in an adequate form (with a Rédei block in every iteration), the algorithm
takes n iterations to compute a factorization. If there is a splitting in every
iteration, the algorithm takes 2n iterations, which would make the running
time exponential in the input parameter n. But for logarithmic signatures for
which the splitting occurs only in a constant number of steps, say k ∈ N, the
running time would increase with respect to the optimal case by the constant
factor 2k.
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4.5 Constructing non-Rédei logarithmic signa-

tures

The algorithm FactorByRedeiLogSig factors a large class of logarithmic signa-
tures in elementary abelian groups. Here we introduce a new method for manip-
ulating logarithmic signatures called selective shifts. With selective shifts we
construct a series of logarithmic signatures that are not e�ciently factorable by
this algorithm. Furthermore these logarithmic signatures are neither transver-
sal, nor periodic, i.e. they do not belong to a class of logarithmic signatures
for which other factoring algorithms are known.

For the construction we need a special operation.

De�nition 4.31. Let α = [A1, . . . , As] be a logarithmic signature of a �nite
abelian group. For some i1, . . . , ik ∈ {1, . . . , s} (k < n) let

Ai1 + . . .+ Aik

be periodic with the set of periods M (see Page 30). Take m ∈ M and add m
to some element of block Al, where l ̸= i1, . . . , ik.

This operation is called a selective shift on α.

Lemma 4.32. A selective shift on a logarithmic signature yields a logarithmic
signature.

Proof. Let α = [A1, . . . , As] be a logarithmic signature of a �nite abelian group
G. For i1, . . . , ik ∈ {1, . . . , s} (k < n) let Ai1 + . . . + Aik be periodic with the
set of periods M . Take m ∈ M and add m to some element of block Al (l ̸=
i1, . . . , ik). W.l.o.g let l = s and add m to the last element of As = [a1, . . . , ar].
Let

A′
s := [a1, . . . , ar−1, ar +m].

Note that m is also a period of the set A1 + . . .+ As−1. Then

A1 + . . .+ As−1 + A′
s

= (A1 + . . .+ As−1) + [a1, . . . , ar−1] ∪ (A1 + . . .+ As−1) + ar +m

= (A1 + . . .+ As−1) + [a1, . . . , ar−1] ∪ (A1 + . . .+ As−1) + ar

= A1 + . . .+ As−1 + As

= G

Thus [A1, . . . , As−1, A
′
s] is a logarithmic signature of G.
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We start with a logarithmic signature α = [A,B] of type (9, 6) in Z15
2 from p.

246 in [Sza04], where < A > = < B > = Z15
2 . This is the shortest known

example of a logarithmic signature without a Rédei block. Also none of the
blocks is periodic. The explicit construction can be found in the appendix on
page 132.

In this example, A contains the canonical basis e1, . . . , e15 and also the elements

e2, e1 + e2,

e3, e1 + e3,

e6, e1 + e6,

e2 + e6, e1 + e2 + e6.

The block B contains a di�erent basis of Z15
2 , which we do not consider. Now

we expand α in three steps using speci�c selective shifts:

1. Lift all elements of A and B to Z19
2 by adding four zeros to each vector.

Take a third block C =< e16, . . . , e19 > (subgroup of Z19
2 ). Then [A,B,C] is a

logarithmic signature of Z19
p .

2. Block C is a subgroup and therefore it is periodic in Z19
2 . We do eight

selective shifts on the block A

e2 → e2 + e16

e1 + e2 → e1 + e2 + e16

e3 → e3 + e17

e1 + e3 → e1 + e3 + e17

e6 → e6 + e18

e1 + e6 → e1 + e6 + e18

e2 + e6 → e2 + e6 + e19

e1 + e2 + e6 → e1 + e2 + e6 + e19

Denote the resulting block by A′. By Lemma 4.32 the sequence [A′, B, C] is a
logarithmic signature of Z19

2 . Also < A′ + B > = Z19
p and A′ + B is periodic

with period e1.

3. We make selective shifts on the block C by e1:

e16 + e17 + e18 + e19 → e16 + e17 + e18 + e19 + e1

e17 + e18 + e19 → e17 + e18 + e19 + e1
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Denote the resulting block by C ′. Again by Lemma 4.32 the sequence [A′, B, C ′]
is a logarithmic signature of Z19

2 . None of the blocks is periodic, none is a Rédei
block, neither is the logarithmic signature transversal.

Starting with the logarithmic signature α1 = [A′, B, C ′] we use an inductive
argument to create a series of logarithmic signatures of type (29, 26, 22, . . . , 22)
in Zd

2 for d = 15 + 4 · k for k ∈ N. Given the logarithmic signature αk =
[A′, B, C ′′

1 , . . . , C
′′
k−1, C

′
k] of Zd

2 in this series (|Ci| = 4), we extend this example
inductively and as follows

1. Lift the vectors in αk to Zd+4
p by adding four zeros to each vector. Add a

block Ck+1 = < ed+1, . . . , ed+4 >.

2. As Ck+1 is a subgroup it is periodic. In block C ′
k do the following selective

shifts using elements from block Ck+1

ed → ed + ed+4

ed + ed−3 → ed + ed−3 + ed+4

ed−1 → ed−1 + ed+2

ed−1 + ed−3 → ed−1 + ed−3 + ed+2

ed−2 → ed−2 + ed+1

ed−2 + ed−3 → ed−2 + ed−3 + ed+1

ed−2 + ed−1 → ed−2 + ed−1 + ed+3

ed−3 + ed−2 + ed−1 → ed−3 + ed−2 + ed−1 + ed+3

Denote the resulting block by C ′′
k . By Lemma 4.32 the sequence

[A′, B, C ′′
1 , . . . , C

′′
k−1, C

′′
k , Ck+1]

is a logarithmic signature of Zd+4
2 . The vector ed−3 is a period of A′+B+C ′′

1 +
. . .+ C ′′

k .

3. We do a selective shift in Ck+1 by ed−3:

ed+1 + ed+2 + ed+3 + e19 → e16 + e17 + e18 + e19 + e1

e17 + e18 + e19 → e17 + e18 + e19 + e1

Denote the resulting block by C ′
k+1. By Lemma 4.32 the sequence

[A′, B, C ′′
1 , . . . , C

′′
k , C

′
k+1]

is a logarithmic signature of Zd+4
2 .
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In the appendix on page 132 we give an example of this logarithmic signature
with 5 blocks. This example shows the inductive structure of the logarithmic
signature. Neither is one of the blocks periodic, nor a Rédei block, nor is
the logarithmic signature transversal. So this logarithmic signature is not
factorable with known factoring algorithms.

This shows the limits of the factoring algorithm form the previous section. As
each logarithmic signature in this series contains a lot of structure, we do not
claim that factoring with respect to these logarithmic signatures is hard.

Outlook In this chapter we studied logarithmic signatures in elementary
abelian p -groups. We showed that they always contain a basis with ideal dis-
tribution. Furthermore we used this result to give a complete characterization
of logarithmic signatures in elementary abelian 2-groups with blocks of size less
than 4. Another characterization of these logarithmic signatures using graph
theory was given. In a further section we developed a factoring algorithm for
logarithmic signatures with a Rédei block in each iteration of the algorithm.
We also extended this algorithm to the case in which in a constant number
of iterations only the sum of two blocks is a Rédei block. Furthermore we
gave an example of logarithmic signatures which are not factorable by known
algorithms.

It is still an open question whether candidates for wild logarithmic signatures
exist. These can only exist if P ̸= NP . One way to search for candidates for
wild logarithmic signatures is to �nd a computational problem that is known
to be NP -hard and also polynomial time equivalent to the factoring problem
for logarithmic signatures. A start for further research could be the extended
matrix representation presented in this chapter.
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Chapter 5

Cryptanalysis of the MOR

cryptosystem

Paeng et al. introduced the MOR cryptosystem in 2001, see [P+01b, P+01a].
This ElGamal-type public key cryptosystem is based on the intractability of
the discrete logarithm problem in the inner automorphism group Inn(G) of a
non-abelian group G.

Paeng et al. propose to use the semidirect product SL(2, p)×θ Zp as a group
for the MOR cryptosystem. But MOR on this group is insecure, as shown by
Tobias in [Tob03, Tob04b, Tob04a]. The presented attacks enable an adver-
sary to derive signi�cant parts of the plaintext or even the secret encryption
exponent. These attacks use special properties of SL(2, p) and do not work for
semidirect products of GL(n, q) by an arbitrary abelian group. However, in
[Kor05, Kor08] we presented ciphertext-only attacks for certain special cases
of such semidirect products. We showed that the security of MOR on such
groups solely depends on the di�culty of the discrete logarithm problem in
small extension �elds of Fq. However the analysis lacks generality and we as-
sumed to know the automorphism θh, which is only implicitly given with the
public keys.

In this chapter we consider the general case. First we show how it is possible to
compute the components of the automorphism θh. Thus justifying the attacks
from [Kor05, Kor08] and building the basis for further attacks. We assume
that computing discrete logarithms in small extensions of Fq is e�cient. In
this scenario we demonstrate how to compute a key that allows an adversary
to obtain (an Fq-multiple of) the plaintext. The notation in this chapter is
introduced in Section 2.3.
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5.1 Related problems and the setting of MOR

When working with MOR on the group GL(n, q) ×θ H we assume that com-
putations in GL(n, q) ×θ H are e�cient. A matrix in GL(n, q) is given by n
elements of Fq. Therefore we consider any calculation in time polynomial in n
and log q as e�cient. The e�ciency of the following three problems is closely
connected to the e�ciency of our attacks. The �rst two problems are e�ciently
solvable in our setting.

Inner automorphism problem The inner automorphism problem (IAP) is
de�ned as follows: Given a group G and an inner automorphism Ig ∈ Inn(G)
via Ig = {Ig(γi) : 1 ≤ i ≤ l}. Find h ∈ G such that Ih = Ig.

Note that a solution of the IAP is not necessarily unique. In fact we have:

Ih = Ig ⇔ h ∈ g · Z(G).

[Kor08] describes how the IAP in GL(n, q) is e�ciently solvable by solving n2

linear equations over Fq even if the inner automorphism is given only implicitly
as a black box function.

Special DLP We de�ne the special discrete logarithm problem (sDLP) in
Fq as follows: Given an element ν ∈ Fq and the generator ξ of F∗

q such that
ν = ξp

r
or ν = ξ−pr , where 1 ≤ r ≤ m. Find r and the sign of the exponent.

There are 2m ∈ O(log q) possible values for ν. An algorithm that performs
a search over all 2m values, e�ciently �nds the right exponent (i.e. in time
O(log q)):

x:= xi;

for i= 0..m-1 do

if x = nu then

return (j,+);

else if x = nu^(-1) then

return (j,-);

fi;

x := x^p;

fi;

od;
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Note that there is a single solution to this problem: Suppose that there exist
0 < t ≤ s < m such that ξp

t
= ξ−ps . Then

ξp
t+ps = 1

and q−1 = pm−1 | pt+ps. Since pt+ps < 2(q−1), it follows pm−1 = pt+ps.
Thus p|pt + ps = pm − 1 which is a contradiction.

The discrete logarithm problem with inner automorphisms Building
on the argumentation in [Kor05, Kor08] we show that the discrete logarithm
problem in Inn(GL(n, q)) is e�ciently reducible to the DLP in Fqi for certain
i ∈ {1, . . . , n}. The reduction has two steps. First the problem is reduced to
a centralized DLP by solving two instances of an IAP in GL(n, q). Here the
centralized discrete logarithm problem (cDLP) is de�ned as follows: Given a
group G, g ∈ G and h ∈ < g > ·Z(G). Find a ∈ N and z ∈ Z(G) such that
ga = zh. In a second step we reduce the cDLP in GL(n, q) to the DLP in
small extension �elds of Fq. For a detailed proof we refer to [Kor05, Kor08].

It follows that if we assume that discrete logarithms in small extension �elds
of Fq are e�ciently computable, the third problem above is also e�ciently
solvable.

Setting of MOR Now we take a closer look at the structure of a ciphertext
for MOR on GL(n, q)×θ H. For C ∈ GL(n, q) and h ∈ H let

I(C,h) ∈ Inn(GL(n, q)×θ H).

If a denotes the secret key of Alice, then the pair of inner automorphisms

(I(C,h), I(C,h)a)

is the corresponding public key. Recall that all the inner automorphisms are
given as sets of values on the generators of GL(n, q) ×θ H. An intercepted
ciphertext of Bob is of the form

(I(C,h)b , I(C,h)ab(M, s))

where b is Bobs secret key. We use the following notation for a ciphertext of a
plaintext message (M, s) ∈ GL(n, q)×θ H by

(M ′, s) = I(C,h)ab(M, s).
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Since H is abelian, the second component s of the plaintext is sent in clear
and the actual ciphertext is the matrix M ′. Due to Remark 2.13 we see that
this matrix is of the form

M ′ = pab · θhab(M) · θs(p−1
ab ) ∈ GL(n, q),

where for x ∈ N:

px :=
x−1∏
i=0

θhi(C).

With the public key of Alice we can extract useful information that is similar
to a ciphertext matrix.

De�nition 5.1. Let A ∈ GL(n, q). Given the public key of Alice, and without
knowing the secret key a, we are always able to compute the following, where
x ∈ {1, a}:

Since I(C,h)x(A, 1) = (Ipx(θhx(A)), 1), we de�ne

Ψ(x,A) := Ipx(θhx(A)).

Another de�nition will be used throughout the following analysis:

De�nition 5.2. For X, Y ∈ GL(n, q) we de�ne

X ∼= Y ⇔ X ∈ Y · Z(GL(n, q)),

and X denotes any matrix such that X ∼= X.

5.2 Extracting the partial secret key

The public keys are inner automorphisms which are not given by the de�ning
elements (C, h), (C, h)a, and (C, h)b, but as sets of values on the generators of
GL(n, q) ×θ H. Thus, neither h nor the automorphism θh is explicitly given
with the public keys.

From Section 2.3.2 we know that θh is of the form

θh = IH ◦ φi ◦ fr ◦ ct∗,

where
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• H ∈ GL(n, q) de�nes an inner automorphism

• 1 ≤ i ≤ q − 1 (gcd(in+ 1, q − 1) = 1) de�nes a central automorphism

• 1 ≤ r ≤ m de�nes a �eld automorphism

• ∗ ∈ {0, 1} indicates the use of the central automorphism.

Depending on the parameters of θh there are di�erent methods to break the
system. For example in [Kor05], it is shown how to attack MOR if θh is a basic
automorphism. There is no method known, that computes the components of
θh. Therefore, we would like to extract the parameters H, i, r, and ∗ e�ciently.
In the following we show how to compute this information using Ψ and the
partial public key I(C,h).

There are two steps. The �rst and major step �nds all parameters apart from
the matrix H. In the second step we extract a matrix CH which is actually
su�cient for attacking the system.

5.2.1 Computing the parameters i, r and ct

Recall the structure of the matrix G1 from page 27 and compute the value

Ψ(1, G1) = CHct∗(ξip
r

Gpr

1 )H−1C−1

= CH ·


α 0

β
. . .

0 β

 · (CH)−1,

where
α = ξ±(i+1)pr and β = ξ±ipr

(± = + if ∗ = 0 and ± = − if ∗ = 1). Note that α and β contain the three
parameters that indicate which central, �eld and contragredient automorphism
are the components of θh. The conjugation with the matrix CH hides α and β.
The following idea is used to extract both values: We consider the coe�cients of
the characteristic polynomial χ of this matrix which are e�ciently computable.
As these do not change under conjugation, we have

χ =
n∑

i=0

sn−ix
i,
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where

s1 = α + (n− 1)β

s2 = (n− 1)αβ +

(
n− 1

2

)
β2,

and (if n ≥ 3)

s3 =

(
n− 1

2

)
αβ2 +

(
n− 1

3

)
β3.

At �rst we consider the case that we have these three equations and all of the
binomial coe�cients are well de�ned, i.e. n ≥ 3 and p ≥ 5. We use the �rst
equation to eliminate α from the second and third equation:

s2 = (n− 1)αβ +

(
n− 1

2

)
β2

= (n− 1)(α + (n− 1)β)β −
(
n

2

)
β2

= (n− 1)s1β −
(
n

2

)
β2

s3 =

(
n− 1

2

)
αβ2 +

(
n− 1

3

)
β3

=

(
n− 1

2

)
(α + (n− 1)β)β2 − 2

(
n

3

)
β3

=

(
n− 1

2

)
s1β

2 − 2

(
n

3

)
β3

Now we rewrite the second equation to

β2 =
2

n
s1β − 2

n(n− 1)
s2

=: xβ − y
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and use it to linearize the third equation:

2

(
n

3

)
β3 =

(
n− 1

2

)
s1β

2 − s3

2

(
n

3

)
β(xβ − y) =

(
n− 1

2

)
s1(xβ − y)− s3

2

(
n

3

)
xβ2 − 2

(
n

3

)
yβ =

(
n− 1

2

)
xs1β − y

(
n− 1

2

)
s1 − s3

2

(
n

3

)
x2β − 2

(
n

3

)
xy − 2

(
n

3

)
yβ =

(
n− 1

2

)
xs1β − y

(
n− 1

2

)
s1 − s3(

2

(
n

3

)
x2 −

(
n− 1

2

)
xs1 − 2

(
n

3

)
y

)
β = 2

(
n

3

)
xy − y

(
n− 1

2

)
s1 − s3.

The expression in the parentheses on the left side of the equation evaluates to

2n(n− 1)(n− 2)4s21
3 · 2n2

− (n− 1)(n− 2)2s21
2n

− 2n(n− 1)(n− 2)2s2
3 · 2n(n− 1)

=
4(n− 1)(n− 2)s21 − 3(n− 1)(n− 2)s21 − 2n(n− 2)s2

3n

=
(n− 2)((n− 1)s21 − 2ns2)

3n
.

The right side of the above equation yields

2n(n− 1)(n− 2)2s12s2
3 · 2nn(n− 1)

− (n− 1)(n− 2)s12s2
2n(n− 1)

− s3

=
4(n− 2)s1s2 − 3(n− 2)s1s2 − 3ns3

3n

=
(n− 2)s1s2 − 3ns3

3n
.

It follows that

(n− 2)((n− 1)s21 − 2ns2)

3n
β =

(n− 2)s1s2 − 3ns3
3n

.

We derive

β =
(n− 2)s1s2 − 3ns3

(n− 2)((n− 1)s21 − 2ns2)
,

and

α = s1 − (n− 1)b = s1 −
(n− 1)((n− 2)s1s2 − 3ns3)

(n− 2)((n− 1)s21 − 2ns2)
,
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which are e�ciently computable.

Now we look at s1 and s2 in the cases in which the above operations and
transformations are critical. These six cases consider the relation between p
and n:

p, n s1 s2 see

1) n = 2 α+ β αβ 1.

αβ + β2 if n ≡ 0 (4) 2.
α+ β if n ≡ 0 (2)

αβ if n ≡ 2 (4) 6.
2) p = 2

β2 if n ≡ 1 (4) 3.
α if n ≡ 1 (2)

0 if n ≡ 3 (4) 3.

α− β if n ≡ 0 (3) −αβ + β2 2.

3) p = 3 α if n ≡ 1 (3) 0 4.

α+ β if n ≡ 2 (3) ab 6.

4) p|n α− β −αβ + β2 2.

5) p|n− 1 α 0 5.

6) p|n− 2 α+ β αβ 6.

Note that in case 2 to 6 we assume that n > 2 and in case 4 to 6 we assume
that p ≥ 5. We combine the cases for the analysis as seen in the last column.
Additionally, we look at the cases in which the values found for s1 and s2 are
not su�cient for computing α and/or β. We use a slightly modi�ed approach:
Instead of using Ψ(1, G1), we compute the value

Ψ(1,


ξ

ξ 0

1

0
. . .

1

 = CH ·


αβ

αβ 0

β2

0
. . .

β2

 · (CH)−1

with α = ξ±(i+1)pr and β = ξ±ipr (± = + if ∗ = 0 and ± = − if ∗ = 1) as
above.
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The coe�cients of the characteristic polynomial χ̃ =
∑n

i=0 ˜sn−ix
i of this matrix

are

s̃1 = 2αβ + (n− 2)β2

s̃2 = α2β2 + 2(n− 2)αβ3 +

(
n− 2

2

)
β4.

Whenever necessary we will use these equations instead of those for s1 and s2.
Now we look at the eleven cases in the table and summarize them as indicated
in the last column:

1. If n = 2, then ct ∈ Inn · Autc· < f > and w.l.o.g. we can assume that
∗ = 0. Now we want to derive the solutions α and β of the quadratic
equation x2 − s1x+ s2 = (x− α)(x− β) = 0. Since we are able to solve
the DLP, we compute the solutions x1, x2 of this equation e�ciently.
Finally, we have to decide which of the solutions equals α and which
equals β. Note that

x1x
−1
2 =

{
ξp

r
if x1 = α, x2 = β,

ξ−pr if x1 = β, x2 = α.

As we are able to solve the special DLP, we can determine α and β.

2. We have s1 = α± β and insert this into

s2 = ±αβ + β2 = −β · (α± β) = −βs1.

And thus β = − s2
s1
(Note that s1 ̸= 0). It follows that α = s1∓β = s1± s2

s1
.

3. In this case s1 = α and s2 = β2 (or s̃2 = β2). There exists 1 ≤ k ≤ q−1
2

such that s2 = ξ2k. Solving a DLP yields 2k. And thus β = ±ξk. As α
is known, it is easy to �nd out, which of the two solutions equals β.

4. As s2 is 0, we look at s̃1 and s̃2. These are

s̃1 = −αβ − β2 = −β(α + β)

and
s̃2 = (αβ)2 + αβ3 = αβ2(α + β) = −αβs̃1.

Since
α = s1,

it follows that

β = − s̃2
αs̃1

= − s̃2
s1s̃1

.
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5. Again s2 is 0, and we look at s̃1 and s̃2. These are

s̃1 = 2αβ − β2

and
s̃2 = (αβ)2 − 2αβ3.

We use the �rst equation to linearize the second:

s̃2 = α2(2αβ − s̃1)− 2αβ(2αβ − s̃1)

= 2α3β − α2s̃1 − 4α2β2 − 2αβs̃1

= 2α3β − α2s̃1 − 4α2(2αβ − s̃1) + 2αβs̃1

= 2α3β − α2s̃1 − 8α3β + 4α2s̃1 + 2αβs̃1

= −6α3β + 3α2s̃1 + 2αβs̃1

It follows that

β =
s̃2 − 3α2s̃1
2αs̃1 − 6α3

and
α = s1.

6. In these cases we want to derive the solutions α and β of the quadratic
equation x2−s1x+s2 = (x−α)(x−β) = 0. Since we are able to solve the
DLP, we compute the solutions x1, x2 of this equation e�ciently. Finally,
we have to decide which of these equals α and which equals β. We use
the determinant sn = αβn−1 and compute x1x

n−1
2 . By comparison we

decide if x1 = α and x2 = β or vice versa.

Now we computed α = ξ±(i+1)pr and β = ξ±ipr and from that we derive

αβ−1 = ξ±pr .

The sDLP algorithm extracts the parameters r and ∗ e�ciently. Finally, we
compute ±ipr as the discrete logarithm of β. Since we know ±pr, we also know
i.

Thus, we obtain three of the four parameters of the automorphism θh.
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5.2.2 Computing the parameter CH

Currently there exists no method to extract the matrix H. Here we show how
it is possible to derive a matrix CH, that also will su�ce for our analysis. We
use the notation θh = IH ◦ g, where g is the automorphism which we identi�ed
with the methods of the previous section. For any matrix A ∈ GL(n, q) we
have

Ψ(1, A) = ICH ◦ g(A).

As we know g, we can also compute all values of the inner automorphism ICH

through
Ψ(1, g−1(A)) = ICH(A).

With the IAP algorithm we compute CH e�ciently.

5.3 Two attacks on the secret key

In this section we present two ciphertext-only attacks on MOR with the group
GL(n, q) ×θ H in the case when the secret key automorphism θh is either a
product of an inner and a central automorphism or none of its components
is an inner automorphism. In each case we obtain a key å that allows an
adversary to compute an Fq-multiple of the plaintext.

5.3.1 Attack I: without inner automorphism

We consider the case that none of the components of θh is an inner automor-
phism, i.e. we have

θh = φi ◦ fr ◦ ct∗,

where we assume 1 ≤ i ≤ q − 1, 1 ≤ r ≤ m, and ∗ ∈ {0, 1} to be known with
the methods of Section 5.2. Note that we also know

v := ord(fr ◦ ct∗),

with
v ∈ O(log q).

We assume w.l.o.g. that ord(fr) = m (otherwise use m
gcd(r,m)

).
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De�nition 5.3. For x ∈ N we denote

x̄ = x mod v

and

x̂ =
x− x̄

v
,

i.e. x = x̄+ x̂v, where x̄ ≤ v.

Now we are able to compute

X :=
v−1∏
k=0

frk ◦ ctk(C).

Furthermore we de�ne

Y (x) :=
x−1∏
k=0

frk ◦ ctk(C).

We consider a special representation of the value px: On page 28 we showed
that central automorphisms commute with all other automorphism of GL(n, q)
and also that

f ◦ ct = ct ◦ f.
Note that for any x ∈ N

x− 1 = x̂+ x̂ · v − 1.

With this we have

px =
x−1∏
k=0

θhk(C)

=
x−1∏
k=0

(φi ◦ fr ◦ ct∗)k(C)

=
x−1∏
k=0

φk
i ◦ frk ◦ ctk(C)

∼=
x−1∏
k=0

frk ◦ ctk(C)

=

(
x̄−1∏
k=0

fkr ◦ ctk(C)

)
·

(
v−1∏
k=0

frk ◦ ctk(C)

)x̂

= Y (x̄) ·X x̂

In the following two steps we compute two values â and ã that will de�ne å.
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Step 1 - Compute ā

Evaluate

Ψ(a,G1) = pa · θah(G1) · p−1
a

= pa · φa
i ◦ far ◦ ct∗a(G1) · p−1

a

= pa · φa
i ◦ far(G1)

(−1)∗a · p−1
a

= pa · φa
i (G1)

(−1∗pr)a · p−1
a

= pa · (ξsi(a)G1)
(−1∗pr)a · p−1

a

= pa ·


γ

µ
. . .

µ

 · p−1
a ,

where
γ = ξ(si(a)+1)(−1∗pr)a

and
µ = ξsi(a)(−1∗pr)a .

In the same way as in Section 5.2 we are able to extract both γ and µ and can
compute

γµ−1 = ξ(−1∗pr)a .

Using the sDLP algorithm we extract ā as follows:

If ∗ = 1, the algorithm outputs ra mod m - and also the information whether
a is even or odd. Since we know r, and r is invertible mod m (gcd(r,m) = 1),
we can compute a mod m and also

a mod 2m = a mod v = ā.

If ∗ = 0, the algorithm outputs

ra mod m = ra mod v.

Since we can compute r−1 mod m, we derive a mod v = ā.

Step 2 - Compute â

Note that for every W ∈ GL(n, q)

Ψ(a,W ) = Ipa(θha(W ))

= IX â·Y (ā)(φ
a
i ◦ (fr ◦ ct∗)ā(W )).
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Since we know ā and thus Y (ā) and (fr ◦ ct∗)ā, we can compute

γ(W ) := IY (ā)−1

(
Ψ(a, (fr ◦ ct∗)−ā(W ))

)
= IX â ◦ φa

i (W ).

Using the invariance of the trace under conjugation, we can compute the inner
automorphism IX â as follows: For each W ∈ GL(n, q) there exists αW ∈ Fq

such that
γ(W ) = αW · IX â(W ),

and

trace(γ(W )) = trace(αW · IX â(W ))

= αW · trace(IX â(W )) = αW · trace(W ).

We know both W and γ(W ) and can therefore compute αW and also

IX â(W ) = α−1
W · γ(W ).

Now we know IX â . We also know IX . By solving a DLP in Inn(GL(n, q)), we
obtain ã ∈ N such that X ã ∼= X â.

With
å := ā+ ã · v

we computed a value that may be equal to a. It is at least equivalent to a in
the following sense.

Proposition 5.4. Let (I(C,h)b , (M ′, s) = I(C,h)ab(M, s)) be a ciphertext mes-
sage that was send to Alice, where M ′ = pab · θhab(M) · θs(p−1

ab ).

Then we have
p̊ab ∼= pab

and for all W ∈ GL(n, q)

θhab(W ) ∼= θhåb(W ) or θhab(W ) ∼= θhåb(ct(W )).

Proof. We have ¯̊a = ā+ ã · v = ¯̄a = ā. It follows that åb = ¯̊ab̄ = āb̄ = ab. And
thus

Y (̊ab) = Y (ab).

Furthermore we have
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åb = (ā+ ã · v)(b̄+ b̂ · v)
ab+ ( ̂̄ab̄+ āb̂+ ãb̄+ ãb̂v︸ ︷︷ ︸

âb

) · v

and

ab = (ā+ â · v)(b̄+ b̃ · v)
ab+ ( ̂̄ab̄+ āb̂+ âb̄+ âb̂v︸ ︷︷ ︸̂̊ab

) · v

Since X ã ∼= X â it follows that

X åb = Xab+( ̂̄ab̄+āb̂+ãb̄+ãb̂v)v

∼= Xab+( ̂̄ab̄+āb̂+âb̄+âb̂v)v

= Xab.

We combine these results to

p̊ab = Y (̊ab) ·X åb ∼= Y (ab) ·Xab = pab

For the automorphism θh we look at the case ∗ = 1 and āb ̸= åb separately.
We have for all W ∈ GL(n, q)

θhab(W ) = φab
i ◦ frab ◦ ctab(W )

∼= frab ◦ ctāb(W )

=

{
fr̊ab ◦ ctåb(W ) if ∗ = 0 or åb = ab mod 2

fr̊ab ◦ ctåb ◦ ct(W ) else

∼=

{
θhåb(W ) if ∗ = 0 or åb = ab mod 2

θhåb ◦ ct(W ) else

And it immediately follows:

Lemma 5.5. For the key å let

(I(C,h)b)
−å(M ′, s) = (M ′′, s).

Then either M ′′ or ct(M ′′) is an Fq-multiple of the plaintext M .
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Proof. With Proposition 5.4 we have

M ′′ = θh−åb(p−1
åb ·M ′ · θs(p̊ab))

= θh−åb(p−1
åb · pab · θhab(M) · θs(p−1

ab ) · θs(p̊ab))
∼= θh−åb(θhab(M))

∼=

{
M ∗ = 0 or åb mod 2 = ab mod 2

ct(M) else.

Lemma 5.5 and Proposition 5.4 show that the key å is su�cient for computing
an F∗

q-multiple of the plaintext of any ciphertext message in most cases. In

the case that ∗ = 1 and also ab ̸= åb mod 2, we would get the contragredient
of the plaintext ct(M) and could simply compute ct(ct(M)) = M .

5.3.2 Attack II: θ(H) ⊆ Inn(GL(n, q)) · Autc(GL(n, q))

We will now analyze MOR for

θh = IH ◦ φi,

where we assume a matrix CH and 1 ≤ i ≤ q − 1 to be known by Section 5.2.

On page 28 we showed that φi and IH commute. In this case we have for any
x ∈ N

px =
x−1∏
k=0

θhk(C)

=
x−1∏
k=0

(IH ◦ φi)
k(C)

=
x−1∏
k=0

IHk ◦ φk
i (C)

∼=
x−1∏
k=0

IHk(C)

=
x−1∏
k=0

HkCH−k

= C ·HCH−1 ·H2CH−2 · . . . ·Hx−1CH−x+1

= (CH)xH−x
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and for W ∈ GL(n, q)

θhx(W ) = IHx ◦ φx
i (W )

∼= IHx(W ).

Since we know CH we also know the inner automorphism ICH . For any matrix
W ∈ GL(n, q) we have

Ψ(a,W ) = I(CH)aH−a ◦ θah(W )

= I(CH)a ◦ φa
i (W )

In the same way as on page 112, we use Ψ to compute the inner automorphism
I(CH)a .The DLP in Inn(GL(n, q)) is e�ciently reducible to the DLP in �nite
�elds (see page 101). Since we assume that we are able to solve the latter, we
can assume to know a value å such that I(CH )̊a = ICHa and also

(CH)å ∼= (CH)a.

Proposition 5.6. Let (I(C,h)b , (M ′, s) = I(C,h)ab(M, s)) be a ciphertext mes-
sage that was send to Alice, where M ′ = pab · θhab(M) · θs(p−1

ab ).

For the key å let
(I(C,h)b)

−å(M ′, s) = (M ′′, s).

Then M ′′ is an Fq-multiple of the plaintext M .

Proof. The representation of px and θhx yield

M ′ ∼= pab θhab(M) θs(p
−1
ab )

∼= (CH)ab ·M · θs(CH−ab).

and

M ′′ ∼= (CH)−åb ·M ′ · θs(CH
åb
).

And since (CH)å ∼= (CH)a it follows that

M ′′ ∼= (CH)−åb ·M ′ · θs(CH åb)
∼= (CH)−åb(CH)ab ·M · θs(CH−ab)θs(CH åb)
∼= M.
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We showed how to compute a value å that allows an attacker, who is able to
compute discrete logarithms in certain �nite �elds, to derive an F∗

q-multiple of
the plaintext.

The complex structure of the group GL(n, q) ×θ H opens several possibilities
for an attack. And as we have seen, it does not yield more security than the
discrete logarithm problem in the multiplicative group of �nite �elds.

Our analysis shows that there is no advantage in using MOR on GL(n, q)×θH.
Further research might consider MOR on di�erent platform groups.
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Chapter 6

Appendix

6.1 Algorithms for cyclic p -groups

Here we give the GAP-Code for the four di�erent versions of the preprocessing-
ing and factoring algorithms for logarithmic signatures of �nite cyclic p-groups.

6.1.1 Sample generation

The algorithm LogSig computes a pseudorandom logarithmic signature of Zpn

with the type r = (r1, ..., rs).

LogSig:= function(r,p,n)

################ variables:

local i,j,k,pn,a,c,s,A,logSig,subtype;

a:=0; # counter

c:=1 # counter

s:=Length(r); # number of blocks

pn:=p^n; # order of the group

subtype:=[]; # subtype of output logarithmic signature

A:=[]; # plain logarithmic signature corresponding to r

logSig:=[]; # output

################# initialize LogSig
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for i in [1..n] do

A[i]:= [];

od;

for i in [1..Length(r)] do

logSig[i]:= [0];

od;

for i in [1..n] do

a:=c;

for j in [1..p-1] do

Add(A[i],a);

a:= a + c mod pn;

od;

A[i]:=Permuted(A[i],Random(SymmetricGroup(p-1)));

Add(A[i],0,1);

c:=c*p; n

od;

################# pseudorandomly choose a subtype

for i in [1..Length(r)] do

for j in [1..r[i]] do

Add(subtype, i);

od;

od;

subtype:= Permuted(subtype,Random(SymmetricGroup(n)));

#################

# Fuse two blocks and add random elements to all other blocks

c:=1;

for i in [1..n] do

c:=c*p;

logSig[subtype[i]]:= Fuse([ logSig[subtype[i]], A[i] ] );

for k in [1..Length(r)] do
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if not k = subtype[i] then

for j in [2..Length(logSig[k])] do

logSig[k][j]:= (logSig[k][j] + Random([0..(p-1)])*c) mod pn;

od;

fi;

od;

od;

return logSig;

end;

6.1.2 Version v1.0

GAP-Code for version v1.0 of the prefactoring and factoring algorithms which
is optimized for p = 2. PreprocessingLS-v1.0 returns the compact complete
p-reduction and the subtype for a logarithmic signature of Z2n .

PreprocessingLS-v1.0 := function(logSig,n)

################# variables:

local a,i,j,k,l,m, subtype, pReduction,LS;

l:=[];

subtype := [];

pReduction := [];

LS:=StructuralCopy(logSig);

a:=2^n;

#################

# initialize lists for the compact complete p-reduction

for i in [1..n] do

Add(pReduction,[]);

od;

################# 0) Monitor n p-reductions
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for i in [1..n] do

a:=a/2;

################# 1) Find periodic block

k := PositionProperty(LS, j -> a in j);

Add(subtype, k, 1);

################# 2) Reduce periodic block k

Sort(LS[k]);

j:= 1/2 * Length(LS[k]);

LS[k] := LS[k]{[1..j]};

################# 3) Reduce other blocks

# and store difference elements in "pReduction"!

for j in [1..Length(LS)] do

l := Difference( LS[j] mod a, LS[j] );

Append(pReduction[n-i+1],l);

od;

LS:= LS mod a;

od;

return [subtype, pReduction];

end;

The algorithm FactorLS-v1.0 returns the factorization of any element from
Z2n .

FactorLS-v1.0 := function(prefactoring,element)

################# initialize variables

local a,b,c,d,i,j,Fact,subtype,pReduction,Counter;

subtype:= prefactoring[1];

pReduction:=prefactoring[2];
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Fact:= [];

b:=Maximum(subtype);

Counter :=element;

c:=2^n;

d:=2;

for i in [1..b] do Add(Fact,0); od;

################# round 1 - Fusion:

a := Counter mod 2;

Fact[subtype[1]] := (Fact[subtype[1]] + a) mod c;

Counter := (Counter - a) mod c;

for i in [2..n] do

################# 1. Change difference elements

for j in [1..b] do

if (not i = j) and Fact[j] in pReduction[i]

then Fact[j] := (Fact[j] + d) mod c;

Counter := (Counter - d) mod c;

fi;

od;

d:=2*d;

################# 2. Fuse block k_{n-i}

a := Counter mod d;

Fact[subtype[i]] := (Fact[subtype[i]] + a) mod c;

Counter := (Counter - a) mod c;

od;

return Fact;

end;
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6.1.3 Version v1.1

GAP-Code for version v1.1 of the preprocessing and factoring algorithms.
PreprocessingLS-v1.1 returns the compact complete p-reduction and the
subtype

PreprocessingLS-v1.1 := function(LogSig)

################# variables:

local a,i,j,jj,k,l,m, subtype, pReduction,LS;

a:=p^n;

l:=[];

subtype := [];

pReduction := [];

LS:=StructuralCopy(LogSig);

#################

# initialize lists for the compact complete p-reduction

for i in [1..n] do

pReduction[i]:=[];

for j in [1..p-1] do

Add(pReduction[i],[]); od;od;

################# 0) Monitor n p-reductions

for i in [1..n] do

a:=a/p;

################# 1) Find periodic block

k := PositionProperty(LS, j -> a in j);

Add(subtype, k, 1);

################# 2) Reduce periodic block k

Sort(LS[k]);

j:= 1/p * Length(LS[k]);

LS[k] := LS[k]{[1..j]};
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################# 3) Reduce other blocks

# and store difference elements in sublists of "pReduction"

for j in [1..Length(LS)] do

if not j = k then

for m in [1..Length(LS[j])] do

jj:= LS[j][m] - (LS[j][m] mod a);

if jj > 0 then

Append(pReduction[n-i+1][jj/a], [LS[j][m] mod a] );

LS[j][m]:= LS[j][m] mod a;

fi;od;fi;od;

od;

return [subtype, pReduction];

end;

FactorLS-v1.1 returns the factorization of an element in Zpn .

FaktorLS-v1.1 := function(preprocessing,element)

################# initialize variables

local a,c,d,i,j,k,s,Fact,subtype,pReduction,Counter;

subtype:= preprocessing[1];

pReduction:=preprocessing[2];

Fact:= [];

s:=Maximum(subtype);

Counter :=element;

c:=p^n;

d:=p;

for i in [1..s] do Add(Fact,0); od;
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################# round 1 - Fusion:

a := Counter mod p;

Fact[subtype[1]] := a ;

Counter := (Counter - a) mod c;

for i in [2..n] do

################# 1. Change difference elements

for j in [1..s] do

k:= PositionProperty(pReduction[i], m -> Fact[j] in m); #NEW

if (not i = j) and (not k = fail) then

Fact[j] := (Fact[j] + k*d) mod c;

Counter := (Counter - k*d) mod c;

fi;

od;

d:= d*p;

################# 2. Fuse block k_{n-i}

a := Counter mod d;

Fact[subtype[i]] := (Fact[subtype[i]] + a) mod c;

Counter := (Counter - a) mod c;

od;

return Fact;

end;
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6.1.4 Version v2.0

GAP-Code for version v2.0 of the preprocessing and factoring algorithms.
PreprocessingLS-v2.0 returns the compact complete p-reduction for posi-
tions, a list of n permutations, and the subtype of a logarithmic signature in
Zpn .

PreprocessingLS_v2_0 := function(LogSig)

local a,i,j,jj,k,l,m, subtype, pReduction,LS,Permu;

a:=p^n;

l:=[];

subtype := [];

pReduction := [];

Permu:=[];

LS:=StructuralCopy(LogSig);

#################

# initialize lists for the compact complete p-reduction

for i in [1..n] do

pReduction[i]:=[];

for j in [1..Length(LS)] do

pReduction[i][j]:=[];

for k in [1..p-1] do

Add(pReduction[i][j],[]);

od;od; od;

################# 0) Monitor n p-reductions

for i in [1..n] do

a:=a/p;

################# 1) Find periodic block

k := PositionProperty(LS, j -> a in j);

Add(subtype, k, 1);

################# 2) Reduce periodic block k

Add(Permu,Sortex(LS[k])); #NEW

j:= 1/p * Length(LS[k]);
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LS[k] := LS[k]{[1..j]};

################# 3) Reduce other blocks

# and store positions of difference elements in "pReduction"!

for j in [1..Length(LS)] do

if not j = k then

for m in [1..Length(LS[j])] do

jj:= LS[j][m] - (LS[j][m] mod a);

if jj > 0 then

#NEW

Add(pReduction[n-i+1][j][jj/(p^(n-i))],

Position(LS[j],LS[j][m]) );

LS[j][m]:= LS[j][m] mod a;

fi;od;fi;od;od;

return [subtype, pReduction, Permu];

end;

FactorLS-v2.0 returns the factorization of element in Zpn .

FactorLS_v2_0 := function(preprocessing,zahl)

################# initialize variables

local a,c,pn,i,j,k,s,Fact,subtype,pReduction,

Counter,Permu,FuseCount;

subtype:= preprocessing[1];

pReduction:=preprocessing[2];

Permu:=preprocessing[3];

Fact:= [];

FuseCount:=[];

s:=Maximum(subtype);

Counter :=zahl;
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pn:=p^n;

for i in [1..s] do Add(Fact,1); od;

for i in [1..s] do Add(FuseCount,0); od;

################# round 1 - Fusion:

a := Counter mod p;

Fact[subtype[1]] := (a + 1)/Permu[n] mod pn;

Counter := (Counter - a) mod pn;

FuseCount[subtype[1]]:=FuseCount[subtype[1]] + 1;

c:=p;

for i in [2..n] do

################# 1. Change positions of difference elements

for j in [1..s] do

if not j = subtype[i] then

k:= PositionProperty(pReduction[i][j], m -> Fact[j] in m);

if not k = fail then

Counter := (Counter - k*c) mod pn;

fi;

fi;

od;

################# 2. Fuse block k_{n-i}

a := ((Counter mod (p*c))/c) mod (p*c) + 1;

Fact[subtype[i]] := (((a-1)*p^FuseCount[subtype[i]]

+ Fact[subtype[i]]) mod pn)/Permu[n+1-i];

FuseCount[subtype[i]]:=FuseCount[subtype[i]] + 1;
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Counter := (Counter - (Counter mod (p*c))) mod pn;

c:=c*p;

od;

return Fact;

end;

6.1.5 Version v2.1

GAP-Code for version v2.1 of the preprocessing and factoring algorithms.
PreFactorLS-v2.1 returns the compact complete p-reduction for positions,
a list of s permutations, and the subtype of a logarithmic signature in Zpn .

PreFactorLS_v2_1 := function(LogSig)

################# variables:

local a,i,j,jj,k,m,s,u,v,subtype,pReduction,

LS,PermCollect,Permut,FuseCount;

a:=p^n;

s:=Length(LogSig);

subtype := [];

pReduction := []; #positions of difference elements

PermCollect:=[]; #collect all permutations

Permut:=[]; #one permutation per block

FuseCount:=[]; #counts the p-reduction rounds

LS:=StructuralCopy(LogSig);

#################

# initialize lists for the compact complete p-reduction

for i in [1..n] do

pReduction[i]:=[];

for j in [1..s] do

128



pReduction[i][j]:=[];

for k in [1..p-1] do

Add(pReduction[i][j],[]);

od;od;od;

for j in [1..s] do

Add(FuseCount, 0);

Add(Permut, ());

od;

################# 0) Monitor n p-reductions

for i in [1..n] do

a:=a/p;

################# 1) Find periodic block k

k := PositionProperty(LS, j -> a in j);

Add(subtype, k);

################# 2) Reduce periodic block k

Add(PermCollect,Sortex(LS[k]));

j:= 1/p * Length(LS[k]);

LS[k] := LS[k]{[1..j]};

################# 3) Reduce other blocks

# and store positions of difference elements in "pReduction"!

for j in [1..s] do

if not j = k then

for m in [1..Length(LS[j])] do

jj:= LS[j][m] - (LS[j][m] mod a);

if jj > 0 then

Add(pReduction[n-i+1][j][jj/(p^(n-i))],

Position(LS[j],LS[j][m]));
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LS[j][m]:= LS[j][m] mod a;

fi;od;fi;od;

od;

subtype:=Reversed(subtype);

################# NEW 4) Combine permutations per block

# and permute all positions in "pReduction" accordingly

for i in [1..n] do

v:=ListPerm(Permut[subtype[i]]);

while Length(v)<p^FuseCount[subtype[i]] do

Add(v, Length(v)+1);

od;

u:=StructuralCopy(v);

for j in [1..p-1] do

Append(v, u + j*p^FuseCount[subtype[i]]);

od;

FuseCount[subtype[i]]:=FuseCount[subtype[i]] + 1;

Permut[subtype[i]]:= PermCollect[n+1-i]*PermList(v);

for j in [1..s] do

for k in [1..p-1] do

Apply(pReduction[i][j][k], x -> x^Permut[j]);

od;

od;

od;

return [subtype, pReduction, Permut];

end;
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FactorLS-v2.1 returns the factorization of an element in Zpn .

FactorLS-v2.1 := function(preprocessing,zahl)

################# initialize variables

local a,c,pn,i,j,k,s,Fact,subtype,pReduction,

Counter,Permu,FuseCount;

subtype:= preprocessing[1];

pReduction:=preprocessing[2];

Permu:=preprocessing[3];

Fact:= [];

FuseCount:=[]; # counter for blocksize

s:=Maximum(subtype); # number of blocks

Counter :=zahl;

pn:=p^n;

for i in [1..s] do

Add(Fact,1);

Add(FuseCount,0);

od;

################# round 1 - Fusion:

a := Counter mod p;

Fact[subtype[1]] := (a + 1) mod pn; #NEW

Counter := (Counter - a) mod pn;

FuseCount[subtype[1]]:=FuseCount[subtype[1]] + 1;

c:=p;

for i in [2..n] do

################# 1. Change positions of difference elements

for j in [1..s] do

if not j = subtype[i] then
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k:= PositionProperty(pReduction[i][j], m -> Fact[j] in m);

if not k = fail then

Counter := (Counter - k*c) mod pn;

fi;

fi;

od;

################# 2. Fuse block k_{n-i}

a := ((Counter mod (p*c))/c) mod (p*c) +1 ;

Fact[subtype[i]] := (((a-1)*p^FuseCount[subtype[i]]

+ Fact[subtype[i]]) mod pn);

FuseCount[subtype[i]]:=FuseCount[subtype[i]] + 1;

Counter := (Counter - (Counter mod (p*c))) mod pn;

c:=c*p;

od;

#NEW only one permutation per block

for i in [1..s] do Fact[i]:=Fact[i]/Permu[i]; od;

return Fact;

end;

6.2 Construction of a non-Rédei example

Here we give the GAP-Code for constructing a series of logarithmic signatures,
that are neither transversal, do not have a Rédei block, nor are these factorable
via the algorithm proposed in Section 4.4.
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We construct the logarithmic signature for Z15
2 from p. 246 of [Sza04], add

blocks and modify blocks using selective shifts.

GAP: Construction of a series of logarithmic signatures
Input: s, the number of blocks, s ≥ 4
Output: ls, a logarithmic signature with s blocks

### Start with the canonical basis

V:= GF(2)^19;

Bs:=Basis(V);

s:= ;

### Construction of block A

A1:=[Zero(V),Bs[1],Bs[2],Bs[3], Bs[1]+Bs[2], Bs[1]+Bs[3],

Bs[2]+Bs[3]+Bs[4], Bs[1]+Bs[2]+Bs[3]+Bs[5]];;

A2:=[Zero(V),Bs[6],Bs[7],Bs[8], Bs[6]+Bs[7], Bs[6]+Bs[8],

Bs[7]+Bs[8]+Bs[9], Bs[6]+Bs[7]+Bs[8]+Bs[10]];;

A3:=[Zero(V),Bs[11],Bs[12],Bs[13], Bs[11]+Bs[12], Bs[11]+Bs[13],

Bs[12]+Bs[13]+Bs[14], Bs[11]+Bs[12]+Bs[13]+Bs[15]];;

A:=Fuse( [ Fuse([A1,A2]) , A3]);;

### Selective Shifts in block A

A[3]:=A[3]+Bs[16];

A[5]:=A[5]+Bs[16];

A[4]:=A[4]+Bs[17];

A[6]:=A[6]+Bs[17];

A[9]:=A[9]+Bs[18];

A[10]:=A[10]+Bs[18];

A[11]:=A[11]+Bs[19];

A[13]:=A[13]+Bs[19];
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### Construction of block B

H1:=[ Zero(V), Bs[4], Bs[5], Bs[4] + Bs[5]];;

H2:=[ Zero(V), Bs[9], Bs[10], Bs[9] + Bs[10]];;

H3:=[ Zero(V), Bs[14], Bs[15], Bs[14] + Bs[15]];;

B:= Fuse([Fuse([ H1, H2 ]), H3 ]);;

### Selective Shifts in block B

B[4]:=B[4] + Bs[6];;

B[8]:=B[8] + Bs[6];;

B[12]:=B[12] + Bs[6];;

B[13]:=B[13] + Bs[11];;

B[14]:=B[14] + Bs[12];;

B[15]:=B[15] + Bs[13];;

B[16]:=B[16] + Bs[6];;

B[20]:=B[20] + Bs[7];;

B[24]:=B[24] + Bs[7];;

B[28]:=B[28] + Bs[7];;

B[29]:=B[29] + Bs[11];;

B[30]:=B[30] + Bs[12];;

B[31]:=B[31] + Bs[13];;

B[32]:=B[32] + Bs[7];;

B[36]:=B[36] + Bs[8];;

B[40]:=B[40] + Bs[8];;

B[44]:=B[44] + Bs[8];;

B[45]:=B[45] + Bs[11];;

B[46]:=B[46] + Bs[12];;

B[47]:=B[47] + Bs[13];;

B[48]:=B[48] + Bs[8];;

B[49]:=B[49] + Bs[1];;

B[50]:=B[50] + Bs[1];;

B[51]:=B[51] + Bs[1];;

B[52]:=B[52] + Bs[1];;

B[53]:=B[53] + Bs[2];;
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B[54]:=B[54] + Bs[2];;

B[55]:=B[55] + Bs[2];;

B[56]:=B[56] + Bs[2];;

B[57]:=B[57] + Bs[3];;

B[58]:=B[58] + Bs[3];;

B[59]:=B[59] + Bs[3];;

B[60]:=B[60] + Bs[3];;

B[61]:=B[61] + Bs[11];;

B[62]:=B[62] + Bs[12];;

B[63]:=B[63] + Bs[13];;

### Construction of block C

C1:=[Zero(V), Bs[16], Bs[17], Bs[16]+Bs[17]];;

C2:=[Zero(V), Bs[18], Bs[19], Bs[18]+Bs[19]];;

C:=Fuse([C1, C2]);

### Selective Shifts in block C

C[16]:=C[16]+Bs[1];

C[15]:=C[15]+Bs[1];

### Add s-3 new blocks to [A,B,C]

ls:=[A,B,C];;

d:=19;

for i in [4..s] do

Bs:=Basis(GF(2)^(d+4));

### Lift the vectors to Z_2^d+4

for x in ls do

Lift(x,d+4);

od;

### Add new block C_{k+1}
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D1:=[Zero(GF(2)^(d+4)), Bs[d+1], Bs[d+2], Bs[d+1]+Bs[d+2]];;

D2:=[Zero(GF(2)^(d+4)), Bs[d+3], Bs[d+4], Bs[d+3]+Bs[d+4]];;

ls[i]:=Fuse([D1, D2]);;

### Selective shifts on block C_k (= ls[i-1])

ls[i-1][3]:=ls[i-1][3]+Bs[d+1];;

ls[i-1][4]:=ls[i-1][4]+Bs[d+1];;

ls[i-1][5]:=ls[i-1][5]+Bs[d+2];;

ls[i-1][6]:=ls[i-1][6]+Bs[d+2];;

ls[i-1][7]:=ls[i-1][7]+Bs[d+3];;

ls[i-1][8]:=ls[i-1][8]+Bs[d+3];;

ls[i-1][9]:=ls[i-1][9]+Bs[d+4];;

ls[i-1][10]:=ls[i-1][10]+Bs[d+4];;

### Selective shifts on block C_{k+1} (= ls[i])

ls[i][16]:=ls[i][16]+Bs[d-3];;

ls[i][15]:=ls[i][15]+Bs[d-3];;

d:=d+4;

od;

### auxiliary functions

Lift:= function(set, zahl)

local L,i;

L:=set;

for i in [1..Length(set)] do

L[i]:=Concatenation(L[i], Zero(GF(2)^(zahl-Length(L[i]))));

od;

return L;

end;

Fuse:=function(list)

local i,j,wert;

wert:=[];

for i in [1..Length(list[2])] do

136



for j in [1..Length(list[1])] do

Add(wert, (list[1][j] + list[2][i]));

od;od;

return wert;

end;

As an example we give the logarithmic signature ls with s = 5 blocks that is
constructed using the above code. Each line represents a vector from GF(2)^27.
For better readability each zero is replaced by a dot.

ls[1][1, 2, ..., 13, 2^9-2, 2^9-1, 2^9] =
. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . 1 . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . 1 . . . . . . . . . .
1 1 . . . . . . . . . . . . . 1 . . . . . . . . . . .
1 . 1 . . . . . . . . . . . . . 1 . . . . . . . . . .
. 1 1 1 . . . . . . . . . . . . . . . . . . . . . . .
1 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . 1 . . . . . . . . .
1 . . . . 1 . . . . . . . . . . . 1 . . . . . . . . .
. 1 . . . 1 . . . . . . . . . . . . 1 . . . . . . . .
. . 1 . . 1 . . . . . . . . . . . . . . . . . . . . .
1 1 . . . 1 . . . . . . . . . . . . 1 . . . . . . . .
1 . 1 . . 1 1 1 . 1 1 1 1 . 1 . . . . . . . . . . . .
. 1 1 1 . 1 1 1 . 1 1 1 1 . 1 . . . . . . . . . . . .
1 1 1 . 1 1 1 1 . 1 1 1 1 . 1 . . . . . . . . . . . .

ls[2][1, 2, ..., 13, 2^6-12, 2^6-8, 2^6-4, 2^6] =
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . . . . . . . . . . . . .
. . . . 1 . . . . . . . . . . . . . . . . . . . . . .
. . . 1 1 1 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . . . . . . . . .
. . . 1 . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . 1 . . . 1 . . . . . . . . . . . . . . . . . .
. . . 1 1 1 . . 1 . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . .
. . . 1 . . . . . 1 . . . . . . . . . . . . . . . . .
. . . . 1 . . . . 1 . . . . . . . . . . . . . . . . .
. . . 1 1 1 . . . 1 . . . . . . . . . . . . . . . . .
. . . . . . . . 1 1 1 . . . . . . . . . . . . . . . .
1 . . 1 1 . . . . . . . . 1 1 . . . . . . . . . . . .
. 1 . 1 1 . . . 1 . . . . 1 1 . . . . . . . . . . . .
. . 1 1 1 . . . . 1 . . . 1 1 . . . . . . . . . . . .
. . . 1 1 . . . 1 1 . . . 1 1 . . . . . . . . . . . .

ls[3] =
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . . 1 . . 1 . . . . . . .

. . . . . . . . . . . . . . . 1 1 . . 1 . . . . . . .

. . . . . . . . . . . . . . . . . 1 . . 1 . . . . . .

. . . . . . . . . . . . . . . 1 . 1 . . 1 . . . . . .

. . . . . . . . . . . . . . . . 1 1 . . . 1 . . . . .

. . . . . . . . . . . . . . . 1 1 1 . . . 1 . . . . .

. . . . . . . . . . . . . . . . . . 1 . . . 1 . . . .

. . . . . . . . . . . . . . . 1 . . 1 . . . 1 . . . .

. . . . . . . . . . . . . . . . 1 . 1 . . . . . . . .

. . . . . . . . . . . . . . . 1 1 . 1 . . . . . . . .

. . . . . . . . . . . . . . . . . 1 1 . . . . . . . .

. . . . . . . . . . . . . . . 1 . 1 1 . . . . . . . .
1 . . . . . . . . . . . . . . . 1 1 1 . . . . . . . .
1 . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . .

ls[4] =
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . . . . . . . . . . . . 1 . . 1 . . .
. . . . . . . . . . . . . . . . . . . 1 1 . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . 1 . . 1 . .
. . . . . . . . . . . . . . . . . . . 1 . 1 . . 1 . .
. . . . . . . . . . . . . . . . . . . . 1 1 . . . 1 .
. . . . . . . . . . . . . . . . . . . 1 1 1 . . . 1 .
. . . . . . . . . . . . . . . . . . . . . . 1 . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . 1 . . . 1
. . . . . . . . . . . . . . . . . . . . 1 . 1 . . . .
. . . . . . . . . . . . . . . . . . . 1 1 . 1 . . . .
. . . . . . . . . . . . . . . . . . . . . 1 1 . . . .
. . . . . . . . . . . . . . . . . . . 1 . 1 1 . . . .
. . . . . . . . . . . . . . . 1 . . . . 1 1 1 . . . .
. . . . . . . . . . . . . . . 1 . . . 1 1 1 1 . . . .

ls[5] =
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . . . . . . . . . . 1 1 . .
. . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . . . . . . . . . . . . . . . . . . 1 . 1 .
. . . . . . . . . . . . . . . . . . . . . . . . 1 1 .
. . . . . . . . . . . . . . . . . . . . . . . 1 1 1 .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . . . . 1 . . 1
. . . . . . . . . . . . . . . . . . . . . . . . 1 . 1
. . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1
. . . . . . . . . . . . . . . . . . . . . . . . . 1 1
. . . . . . . . . . . . . . . . . . . . . . . 1 . 1 1
. . . . . . . . . . . . . . . . . . . 1 . . . . 1 1 1
. . . . . . . . . . . . . . . . . . . 1 . . . 1 1 1 1
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