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Introduction

We investigate conformally immersed tori in S3 which are critical
points of the Willmore functional under variations preserving the con-
formal type of the torus. These tori are called constrained Willmore.
Examples of such tori are constant mean curvature (CMC) tori in a
space form and Willmore tori, the later are critical for the Willmore
functional with respect to all variations by immersions. Until now no
examples of constrained Willmore tori are known which are not CMC
tori in a space form or Willmore tori. In order to construct exam-
ples we restrict ourselves to immersions with a 1−parameter group
of Möbius symmetries. Such tori are called equivariant. The Euler-
Lagrange equation of constrained Willmore tori is an elliptic partial
differential equation. By restricting to equivariant tori we reduce this
partial differential equation to an ordinary differential equation.

First examples of equivariant Willmore tori were constructed in [P].
The Willmore Hopf tori are the preimages of closed elastic curves on S2

under the Hopf fibration. The conformal type of the torus is given by
the length and enclosed area of the curve on S2. Thus variations pre-
serving the conformal type of the torus must preserve the length and
enclosed area of the corresponding curve. Further equivariant Will-
more tori were classified in [FP]. Another class of examples are the
Delaunay tori, which are obtained by rotating elastic curves in the up-
per half plane, viewed as the hyperbolic plane H2, around the x−axis.
These tori are CMC in a space form as shown in [B]. Elastic curves in
S2 and H2 are constructed in [LS].

Bohle [B] showed that all constrained Willmore tori are of finite
type. This means that a certain Riemann surface associated to the
conformally immersed torus, its spectral curve, has finite genus. This
fact makes it possible to solve the Euler-Lagrange equation of con-
strained Willmore tori by Riemann theta functions.

In the first chapter we introduce the basic elements of the quater-
nionic theory for surfaces into S4 following [BuFLPP]. Further, we
discuss the lightcone model of the n−sphere and the invariants of sur-
face theory in this setup. Moreover, the Weierstrass elliptic functions
are defined and some of their properties that are needed in the last
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2 INTRODUCTION

chapter are discussed.

The second chapter deals with general properties of equivariant
constrained Willmore tori. We show that every equivariant torus can
be interpreted as the preimage of a curve under a certain Riemannian
submersion from the round S3 onto S2. The parametrization of the
surface given by this construction can be chosen to be conformal and
the invariants of the surface can be expressed in terms of the invariants
of the curve and of the submersion. We compute the Euler-Lagrange
equation for the constrained Willmore problem and define an associ-
ated family of constrained Willmore surfaces.

We introduce the spectral curve Σ of a general conformally im-
mersed torus f : T 2 → S3 in the third chapter. We call f a finite gap
immersion, if Σ has finite genus. To the spectral curve one can asso-
ciate a kernel bundle Lx → Σ for every x ∈ T 2. It is shown in [BoPP]
that for a fixed x0 ∈ T 2 the map

Ψ : T 2 → Jac(Σ) x 7→ LxL−1
x0

is a group homomorphism. The immersion can be reconstructed from
the spectral curve and Ψ(T 2). We call an immersion simple if it is
uniquely determined by these data. An example where this is not the
case is given in chapter 5.

As examples of for finite gap immersions we discuss the spectral
curves of CMC and constrained Willmore tori in S3. Following [H],
[PS] and [BoB] we show that the spectral curves of CMC tori are hy-
perelliptic and by [B] the spectral curves of constrained Willmore tori
are either hyperelliptic or given by a 4−fold covering of CP 1. We show
that if the spectral curve of a simple constrained Willmore torus is hy-
perelliptic then the torus is CMC in a space form under some further
restrictions. Further, we show that simple tori of spectral genus 1 are
equivariant. If the spectral genus is 2 we show that simple constrained
Willmore tori are either equivariant CMC in a space form.

In the fourth chapter we compute the spectral curve for an equi-
variant torus which are not necessarily constrained Willmore. It turns
out that a finite gap solution have a hyperelliptic spectral curve. This
spectral curve has two symmetries which yield reality conditions for
the conformal Hopf differential of the torus. In analogy to equivari-
ant harmonic tori into the 2−sphere it has been conjectured that all
equivariant constrained Willmore tori have spectral genus 1, since the
known examples are given in terms of elliptic functions. We show that
this is not true. Rather, all equivariant and conformally immersed tori
of spectral genus 1 are CMC in some 3−dimensional space form. More-
over they are associated to a Delaunay cylinder which is a surface of
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revolution having constant mean curvature in a space form. Further-
more we show that constrained Willmore Hopf tori, which have never
constant mean curvature unless they are homogenous, have spectral
genus 2. In fact all equivariant and conformally immersed tori with
spectral genus 2 are constrained Willmore, if they are non-isothermic.
These tori lie all in the associated family of constrained Willmore Hopf
cylinders. All other equivariant and constrained Willmore tori have
spectral genus 3.

The last chapter deals with the construction of constrained elastic
curves in S2 and H2 with periodic curvatures. Closed curves in H2

and S2 yield tori of revolution and Hopf tori, respectively. The Euler-
Lagrange equation for constrained Willmore tori reduces to the Euler-
Lagrange equation for constrained elastic curves. As shown in chapter
4 all equivariant constrained Willmore tori of spectral genus ≤ 2 are
associated to cylinders build out of these curves. If the curve closes
we obtain a torus. Thus we compute the closing condition for the
curves and the Willmore energy of the corresponding tori. We end
by showing that there exists generically a 1− dimensional space of
Whitham deformations, i.e., deformations changing the spectral curve,
preserving these closing conditions.





CHAPTER I

Basics

1. Quaternionic Theory

Quaternionic holomorphic theory was developed to investigate sur-
faces in S3 and S4. Here we collect some of the basic constructions
which are used in the thesis. We refer to [BuFLPP] for further read-
ing.

1.1. Quaternions. The Hamiltonian quaternions H are defined
as the unitary associative R-algebra generated by i, j and k with

i2 = j2 = k2 = −1

and ij = −ji.

H can be canonically identified with R4 as a real vector space. The
product on H is not commutative and every non-zero element has a
multiplicative inverse. Thus H is a skew-field and a 4− dimensional
Division algebra over R. An element a ∈ H is given by

a = a0 + a1i+ a2j+ a3k, al ∈ R.

The real part of a is Re(a) = a0 and the imaginary part is Im(a) =
a1i + a2j + a3k. We define ā := Re(a) − Im(a) to be the conjugate.
Then a = −ā if and only if a ∈ ImH. The space of purely imaginary
quaternions ImH can be identified with R3. The quaternions inherit
the standard metric from R4:

< a, b >R4= Re(ab̄).

Further, the quaternionic product restricted to ImH is given by

a · b = a× b − < a, b >R3 ,

where ”×” is the vector product of R3. Thus the multiplication of a, b ∈
ImH is anti-commutative if and only if a ⊥ b as vectors in R3.

After fixing an imaginary unit i, with i2 = −1, the quaternions can
be identified with C2. Then H splits into the direct sum of two complex
vector spaces H = span{1, i} ⊕ span{1, i}⊥. There is no canonical
choice of such a unit but a whole S2 of such choices.

Lemma. Let a, b ∈ H. Then
(i) a · b = b · a if and only if the imaginary parts of both are linearly

5



6 I. BASICS

dependent, i.e. if a commutes with b then a ∈ spanR{1, b};
(ii) a2 = −1 if and only if |a|2 = 1 and a ∈ ImH.

Nevertheless, the vector spaces H and C2 are usually identified
by choosing i to be the left multiplication with the quaternionic i. We
obtainH = C⊕Cj. If not explicitely stated we will fix this identification
of H and C2 for the rest of the thesis. Another common way to identify
H with C2 is to let i be the right multiplication by i. Then we have
H = C⊕ jC.

1.2. The Lie Group S3. Since H ∼= R4 the set of unit length
quaternions defines the 3−sphere. Let a ∈ S3 and consider the right
multiplication by a

Ra : H→ H, Ra(x) = xa.

Identifying H with C2 there exist a1, a2 ∈ C with a = a1+a2j. Then
the map R̃a : C2 → C2 induced by Ra is given by the SU(2)−matrix

A =

(
a1 −ā2

a2 ā1

)
with:

R̃a

(
x1

x2

)
= A

(
x1

x2

)
.

The map S3 → SU(2) : a 7→ A is a bijective group homomorphism.
The Lie algebra of SU(2) can be identified with ImH which is the
tangent space of S3 at 1. The Lie bracket for a, b ∈ ImH is given by

[a, b] = 2a× b,

which is the anti-commuting part of the quaternionic product.

The well known fact that SU(2) is a double covering of SO(3)
translates into out setting as follows: for a ∈ S3 consider the map

ga : H→ H, x 7→ axa−1.

This R−linear map leaves ImH invariant and is length preserving.
Thus ga|ImH is an element of SO(3). Conversely, every element of
SO(3) can be obtained this way. Therefore the map

π : S3 → SO(3), a 7→ ga

yields the 2 : 1 covering map from S3 ∼= SU(2) to SO(3).

1.3. Quaternionic Vector Spaces. A quaternionic vector space
V is a 4n dimensional real vector space on which H acts from the righ-
tas scalar multiplication. Due to the lack of a canonical isomorphism
between H and C2 it is advantageous to consider an additional com-
plex structure on V compatible with the quaternionic structure. This
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enables us to treat V as a complex vector space as well. In other words,
we fix J ∈ EndH(V ) such that J2 = −Id and define

(x+ iy)v := vx+ (Jv)y, x, y ∈ R.

The pair (V, J) is called a complex quaternionic vector space. Such
a vector space splits into the ±i− eigenspaces of J as every element
v ∈ V can be written as v = 1

2
(v − Jvi) + 1

2
(v + Jvi). Obviously the

first term is an element of the i− eigenspace and the second term an
element of the (−i)− eigenspace of J. Thus we have V = V+⊕V− with

V+ = {v ∈ V | Jv = vi} and V− = {v ∈ V |Jv = −vi}.

These eigenspaces are complex vector spaces with respect to J and
right multiplication of j defines an complex isomorphism between V+

and V−.

Remark. This splitting of complex quaternionic vector spaces gen-
eralizes the splitting of H = C⊕Cj by choosing J to be the left mul-
tiplication with the quaternionic i.

1.4. The Quaternionic Projective Space. The n−dimensional
quaternionic projective space HP n is defined, analogously to the real or
complex case, to be the space of quaternionic lines in the quaternionic
vector space Hn+1. For surface theory in S4 the only interesting case is
n = 1. Therefore we restrict ourselves to HP 1 here. The general case
works analogously.

The space HP 1 is defined to be the space of quaternionic lines in
H2. We have a canonical projection

π : H2 \ {0} → HP 1, x 7→ [x] = xH.

The manifold structure is given by affine coordinates for HP 1 de-
fined on the open sets U1 = HP 1 \ {[1, 0]} and U2 = HP 1 \ {[0, 1]}. On
these open sets we define diffeomorphisms

g1 : U1 → H : [x, y] 7→ xy−1

and

g2 : U2 → H : [x, y] 7→ yx−1.

The transition function g2 ◦ g−1
1 is given by x 7→ x−1.

It is easy to show that HP 1 is diffeomorphic to S4. Let < ., . >
denote the standard hermitian metric on H2 ∼= C4. At any point x ∈
H2 \ {0} we denote by (v)N the projection of v ∈ H2 to (xH)⊥. Let
v, w ∈ H2. Then the Fubini-Study metric of HP 1 at a point [x] ∈ HP 1

is given by

< dxπ(v), dxπ(w) >HP 1= 1
<x,x>

Re(< (v)N , (w)N >).
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With respect to this metric HP 1 has constant curvature 4 and is iso-
metric to the round S4.

We need to have a nice description of the tangent space TlHP
1.

It is easy to show that ker(dxπ)= lH, x ∈ l and dxλπ(vλ) = dxπ(v).
Therefore we have a isomorphism

dxπ : H2/l→ TlHP
1, l = π(x).

This isomorphism depends on the choice of x. To eliminate this depen-
dence consider the space Hom(l,H2/l). An element of this space F ∈
Hom(l,H2/l) is fully determined by its valued at an arbitrary x ∈ l.
Thus Hom(l,H2/l) is isomorphic to H2/l and the isomorphism

Hom(l,H2/l)→ TlHP
1, F 7→ dxπ(F (x))

is well defined and independent of the choice of x ∈ l.

1.5. Quaternionic Line Bundles.

Definition. A quaternionic vector bundle V of rank n is a real
vector bundle of rank 4n together with a fiber- preserving action of H
from the right such that the fibers become quaternionic vector spaces.

A complex quaternionic vector bundle is a pair (V, J) consisting of a
quaternionic vector bundle and a complex structure J on V, compatible
with the quaternionic structure, i.e., J ∈ Γ(EndH(V )), with J2 = −Id.

Remark. The fibers of any complex quaternionic vector bundle V
are complex quaternionic vector spaces. Thus V decomposes into the
direct sum of two complex vector bundles

V+ = {v ∈ V |Jv = vi} and V− = {v ∈ V |Jv = −vi}.

Though EndH(V ) is not a quaternionic vector bundle itself, it is still
a real vector bundle and can be decomposed into two complex vector
bundles given by the J−linear and the J−anti-linear endomorphisms.
We denote these by End+(V ) and End−(V ), respectively.

We restrict ourselves now to quaternionic line bundles. The first
observation is:

Lemma. Let L be a quaternionic line bundle over a Riemann Sur-
face. Then it is isomorphic to the trivial H−bundle.

Proof. By the transversality theorem there exist a section which
intersects the zero-section transversally. As the dimension of the total
space is 6, the codimension of any section is 4. Thus a transverse section
cannot intersect the zero section at all. But then it is a trivializing
section of the line bundle. �
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1.6. Conformal Immersions into S3.

Lemma. Let M be a Riemann surface. Then there exist a one-to-
one correspondence between quaternionic line subbundles
L ⊂ V := M ×H2 and maps f : M → HP 1 ∼= S4.

Proof. Let T := {(x, l)|l ∈ HP 1 and x ∈ l} be the tautological
bundle of HP 1. To any f : M → HP 1 one can assign the line bundle
f ∗T ⊂ V. Conversely, to a line bundle L ⊂ M ×H2 define the map f
by f(x) = Lx ∈ HP 1. �

Instead of dealing with maps f : M → S3, we consider quaternionic
line bundles. Since the target space of the maps we are interested in
is S3 ⊂ H, f(x) ∈ U1 = HP 1 \ [1, 0], for all x ∈ M. This yields that a
trivializing section of L is given by x ∈M 7→ (f(x), 1) ∈ (f ∗T )x.

The more convenient line bundle for our proposes is the quotient
bundle V/L. The fiber of this bundle is pointwise defined to be the
quotient of H2 by Lp. Let πL denote the projection from V to V/L. For
maps into S3 the sections given by πL(1, 0) and πL(0, 1) are trivializing
sections of V/L. Moreover the map f can be reconstructed as the
quotient of these sections since

πL(1, 0)f + πL(0, 1) = πL(f, 1) = 0.

A related bundle to V/L is the dual bundle L−1. Let α and β be
the dual basis of the constant sections (1, 0) and (0, 1) of V . Then
the restriction of α and β to L are sections in L−1. If f maps to S3,
then both sections α and β are non-vanishing. Further we have in
this case that L−1 is isomorphic to V/L. The isomorphism is given by
α 7→ πL(1, 0).

For ψ ∈ Γ(L) we have dψ : T (M) → H2. Let πL denote the pro-
jection from V to V/L. Then πL(dψ) is a map from T (M) to THP 1.
Further for λ : M → H we get

πL(d(ψλ)) = πL((dψ)λ+ ψ(dλ)) = πL(dψ)λ.

Thus the map ψ → πL(dψ) is tensorial and we can define the following:

Definition. Let f : M → S3, L the associated line bundle and
ψ ∈ Γ(L) a trivializing section. The differential δ of L is the element
of Ω1Hom(L, V/L) given by ψ 7→ δ(ψ) = πL(dψ) for ψ ∈ Γ(L).

By definition the map f : M → HP 1 corresponding to the line
bundle L is immersed, i.e., df is injective, if and only if δ is injective.

Since we want to study conformal immersions from T 2 to S3, we
give a quaternionic definition of conformality, see [BuFLPP]. This
definition is shown to coincide with the usual one in case of immersions.
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1.7. Definition. Let (M,J) be a Riemann surface. A map
f : M → H is conformal, if there exists N,R : M → ImH with
N2 = R2 = −1 such that

df ◦ J = ∗df = Ndf = −dfR.

Remark. If f is an immersion, i.e., df is injective at every point,
it is sufficient to claim the existence of either N or R. If furthermore
the target space of f is SU(2) = S3 = {v ∈ H||v|2 = 1} then N and R
are the right and left translation of the normal vector of f to the Lie
algebra of S3, which is ImH.

The following lemma shows that conformal maps in the quaternionic
setup are well-defined.

1.8. Lemma. (Fundamental Lemma)
Let U ⊂ H be a real subspace of dimension 2. Then there exist
N,R ∈ H such that

1. N2 = R2 = −1,

2. NU = U = UR,

3. U = {x ∈ H|NxR = x}.
The pair (N, R) is unique up to sign and there is only one such pair
compatible to a fixed orientation of U. For any pair N and R the sets

U := {x ∈ H|NxR = x}, U⊥ = {x ∈ H|NxR = −x}
are orthogonal real subspaces of dimension 2.

The proof of the lemma can be found in [BuFLPP].

Remark. Let (M,J) be a Riemann surface and f : M → H be
a conformal immersion with normal vectors N and R. Further let
z = x+ iy be a conformal coordinate on M. Then we have locally

df = λdx+Nλdy = λdx− λRdy,
for a quaternionic valued function λ. This yields N = df(JX)df(X)−1,
for all X ∈ Γ(TM)

A more common way to define a conformal immersion is to require
f to be angle preserving, i.e.,

|df(X)|2 = |df(JX)|2 and < df(X), df(JX) >R4= 0, for X ∈ Γ(TM).

Since the tangent space of f is real 2−dimensional at every point, there
is a N ∈ ImH with N2 = −1 such that the left multiplication with N
preserves the tangent space. We have

< df(X), Ndf(X) >R4 = Re(df(X)Ndf(X)) = |df(X)|2Re(N) = 0

and |df(X)| = |N ||df(X)| = |Ndf(X)|.
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Thus Ndf(X) = ±df(JX) = ± ∗ df(X) and both definitions for con-
formal immersion coincides.

1.9. Quaternionic Holomorphic Structures. Let M be a Rie-
mann surface and let K and K̄ be its canonical and anti-canonical
bundle. Further let V be a complex quaternionic vector bundle over
M with complex structure J. Define

KV := K ⊗C V = {ω ∈ Ω1(E)| ∗ ω = Jω},
K̄V := K̄ ⊗C V = {ω ∈ Ω1(V )| ∗ ω = −Jω}.

1.10. Definition. A quaternionic linear map D : Γ(V )→ Γ(K̄V )
is called a holomorphic structure, if for all ψ ∈ Γ(V ) and λ : M → H

we have

D(ψλ) = (Dψ) · λ+
1

2
(ψdλ+ Jψ ∗ dλ).

Example. Let (L, J) be a complex quaternionic line bundle, and
let ψ ∈ Γ(L) be a nowhere vanishing section. Then every other section
ϕ of L is given by ϕ = ψλ for a quaternionic valued function λ. Via
Leibniz rule the holomorphic structure is uniquely determined by its
value for ψ. Thus there exist a unique holomorphic structure on L for
which ψ is holomorphic. In particular we obtain a unique holomor-
phic structure on V/L for which the sections πL(1, 0) and πL([0, 1) are
holomorphic, if f is conformal. Analogously for the bundle L−1.

Unlike the complex case a holomorphic structure on E does not
commute with the complex structure J on E in general. We get rather
a decomposition into a J−linear and a J−anti linear part which we
denote by ∂̄ = 1

2
(D − JDJ) and Q = 1

2
(D + JDJ). In contrast to ∂̄,

the Hopf field Q is not a first order differential operator but a section
in K̄End−(L) and is called the Hopf field of D.

Let (L,J) be a complex quaternionic line bundle. Because quater-
nionic line bundles are always trivial, there exist a non vanishing section
ψ ∈ Γ(L). Then there exist a unique quaternionic holomorphic struc-
ture D such that ψ is holomorphic. As L has rank 1, there exists a
quaternionic valued function N with Jψ = ψN with N2 = −1. The
Hopf field Q is tensorial thus it is fully determined by the value of
Q(ψ). And we obtain

4Q(ψ) = 2(D + JDJ)(ψ) = 2JDJ(ψ)

= 2JD(ψN) = 2J(ψdN)′′

= 2(ψNdN)′′ = ψ(NdN + ∗dN).

(1.10.1)

Analogously to holomorphic structures we can define an anti-holomor-
phic structure for complex quaternionic vector bundles.
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1.11. Definition. A quaternionic linear map D̄ : Γ(V )→ Γ(KV )
is called an anti-holomorphic structure, if for all ψ ∈ Γ(V ) and λ :
M → H we have

D̄(ψλ) = (D̄ψ) · λ+
1

2
(ψdλ− Jψ ∗ dλ).

Like holomorphic structures an anti-holomorphic structure splits
into the J−commuting part ∂ and the J−anti-commuting part A.
Again A is tensorial and is called Hopf field of D̄.

Example. Let (V, J) be a complex quaternionic vector bundle,
and ∇ be a connection on V. Then ∇ splits into ∇ = ∇′ +∇′′, where
∇′′ = 1

2
(∇+ J ∗∇) is a holomorphic structure and ∇′ = 1

2
(∇− J ∗∇)

is an anti-holomorphic structure on V .

1.12. The Mean Curvature Sphere Congruence. For a sur-
face f : M → S4 the conformal Gauß map or mean curvature sphere
congruence assigns to every point x ∈M the unique 2−sphere through
f(x) with the same tangent space at f(x) and the same mean curva-
ture vector there. We want to define the conformal Gauß map in the
quaternionic setting. The first step is to identify the space of 2−spheres
in S4 = HP 1. Let

Z := {S ∈ End H2|S2 = −1},

and for a fixed S ∈ Z let

S ′ := {l ∈ HP 1|Sl = l}.

Lemma. (1) For a given S ∈ Z the set S ′ is a 2-sphere in S4,
i.e., it corresponds to a real 2-plane in H = R4 in a suitable
affine coordinate.

(2) Given a 2-sphere A in S4 there exist a S ∈ Z, unique up to
sign, such that the corresponding S ′ equals A.

(3) Z is the set of oriented 2-spheres in S4.

Next we want to define the conformal Gauß map for a conformal
immersion f : M → S4. Let L ⊂M ×H2 be the corresponding quater-
nionic line bundle. By the previous lemma the conformal Gauß map
of f is equivalent to the choice of a special complex structure S on
V = M ×H2. Further let ∇ be the trivial connection on V. Then we
can define a holomorphic structure on V with respect to S by D = ∇′′,
and like in the last section we denote by Q the corresponding Hopf
field, i.e., the S−anti-commuting part of D.

Theorem. Let f be a conformal immersion into S4 and let L ⊂ V
be the quaternionic line bundle associated to f. Then there exists a
unique complex structure S : M → End(H2) on the bundle V such that

SL ⊂ L, dSL ⊂ L, Q|L = 0.
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Remark. It is easy to show that the first property says that at
each point x ∈ M the sphere Sx goes through Lx, the second means
that the tangent space of the sphere Sx and the surface coincides at
f(x), and the third property ensures that both sphere and surface have
the same mean curvature there.

Since S is a complex structure on V , the trivial connection ∇ of
(V, S) splits into ∇ = ∇′+∇′′, where ∇′ is an anti-holomorphic struc-
ture and ∇′′ is a holomorphic structure on V. The S anti-commuting
parts of ∇′ and ∇′′, i.e., the Hopf fields of ∇, are denoted by A and Q,
respectively. We can express A and Q in terms of S.

1.13. Lemma. The Hopf fields A and Q are given by

4A = SdS + ∗dS and 4Q = SdS − ∗dS.

Proof. We have 2∇′ = ∇ − J ∗ ∇ and 2∇′′ = ∇ + J ∗ ∇. Let
ψ : M → H2. Then (∇S)ψ is given by

(∇S)ψ = ∇(Sψ)− S∇(ψ)

= (∂ + A)Sψ + (∂̄ +Q)Sψ + S(∂ + A)ψ + S(∂̄ +Q)ψ

= ASψ +QSψ − SAψ − SQψ
= −2S(A+Q)ψ

= 2(∗Q− ∗A)ψ

Thus we obtain

SdS = 2(A+Q) and ∗ dS = 2(A−Q).

This proves the statement.
�

To a given conformal immersion in S3 ⊂ H we can associate two
quaternionic line bundles L and V/L. As already discussed in section
(1.5) we have that (f, 1) is a trivializing section of L and πL(1, 0) and
πL(0, 1) are both trivializing sections for V/L. In V/L the original map
can be reconstructed as the ratio of these trivializing sections. Fur-
thermore the constant sections (1, 0) and (0, 1) of V are parallel with
respect to the trivial connection ∇ on V . To L there exist a canonical
complex structure S on V given by its mean curvature sphere con-
gruence. Because SL ⊂ L and dSL ⊂ L the projection of S to V/L,
denoted by J = πLS, is well defined and is a complex structure on V/L.
Thus the holomorphic structure on V/L given by DV/L = πL∇′′ is also
well defined. With respect to DV/L the quaternionic linear independent
sections πL(1, 0) and πL(0, 1) are holomorphic. It turns out that the
dimension of the space of holomorphic sections of DV/L, which is at
least 2, is an important invariant of f.
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In the coordinates V = span
H
{(f, 1), (1, 0)} the mean curvature

sphere congruence S is computed to be

(1.13.1) S =

(
−R Hf
0 N

)
,

where H is the mean curvature function and N and R are the left and
the right normal vectors of the surface. Thus we obtain on V/L that
SπL(1, 0) = πL(1, 0)N and the formula in (1.10.1) gives:

(1.13.2) QπL(1, 0) = πL(1, 0)(NdN + ∗dN).

1.14. Surfaces in S3. Let (., .) be the indefinite inner product on
V = H2 given by

(v, w) := v̄1w2 + v̄2w1.

Then the set of isotropic lines (l, l) = 0 defines a S3 ⊂ HP 1. The
i−anti-commuting part of this inner product defines a symplectic struc-
ture on C4 ∼= H2. Given the basis (1, 0) and (0, 1) of H2 and an endo-

morphism B =

(
a b
c d

)
, its adjoint map with respect to (., .) is given

by B∗ =

(
d̄ b̄
c̄ ā

)
.

Since (., .) is non-degenerated it defines a isomorphism between V
and V ∗. For an immersion f : M → S3 let L⊥ ⊂ V ∗ denote the anni-
hilator bundle of L, i.e., (L,L⊥) = 0. Obviously L⊥ = L for surfaces in
S3. Further the following lemma holds.

Lemma. Let S⊥ denote the mean curvature sphere congruence of
L⊥. Then S⊥ = S∗.

Proposition. Let L ⊂ V = M×H2 be a quaternionic line bundle.
The corresponding map is a surface in S3 if and only if S∗ = S.

The proof can be found in [BuFLPP]

1.15. Proposition. For surfaces in S3 we have the following for-
mulas for the Hopf fields

A∗ = −Q and Q∗ = −A.

Proof. By Lemma (1.13) we have

4A∗ = (SdS + ∗dS)∗.

Since S = S∗ for maps into S3, we obtain

4A∗ = dSS + ∗dS = −SdS + ∗dS = −Q.

Then the equation (A∗)∗ = A yields Q∗ = −A. �
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1.16. The Weierstrass Representation.

1.17. Definition. Let (L, J) and (L̃, J̃) be complex quaternionic
line bundles over a Riemann surface M . A pairing between these bun-
dles is a R−linear and point wise non-degenerate map

(., .) : L̃× L→ T ∗M ⊗R H

satisfying

(ψλ, ϕµ) = λ̄(ψ, ϕ)µ

and

∗(ψ, ϕ) = (Jψ, ϕ) = (ψ, Jϕ),

for sections ψ ∈ Γ(L̃), ϕ ∈ Γ(L) and quaternionic valued functions λ
and µ.

If such a map exist, then the bundles are called paired. Obviously,
the pairing does depend on the order of the bundles appearing in the
definition.

Example. Let (L, J) be a complex quaternionic line bundle. Then
L and the bundle KL−1 with the induced complex structure are paired
by evaluation, i.e.,

(., .) : KL−1 × L→ T ∗M ⊗R H, (ω, ψ) = ω(ψ).

1.18. Proposition. Let L̃ and L be paired complex quaternionic
line bundles. Then L̃ ∼= KL−1 as complex quaternionic line bundles.

Proof. Let (., .) denote the pairing between L and L̃. The map
i : L̃→ KL−1 ϕ→ (ϕ, .) is a well defined isomorphism. �

1.19. Definition. Let L̃ and L be two paired complex quater-
nionic bundles with holomorphic structures D̃ and D. The holomorphic
structures are called compatible with respect to the pairing (., .), if the
following equation holds for all sections ϕ ∈ Γ(L̃) and ψ ∈ Γ(L).

d(ϕ, ψ) = (D̃ϕ ∧ ψ) + (ϕ ∧Dψ).

Here d denotes the exterior derivative, and the wedge products are
defined as follows:

(D̃ϕ ∧ ψ)(X, Y ) = (D̃ϕ(X), ψ)(Y )− (D̃ϕ(Y ), ψ)(X)

(ϕ ∧Dψ)(X, Y ) = (ϕ,Dψ(X))(Y )− (ϕ,Dψ(Y ))(X).

1.20. Lemma. Let KL−1 and L be complex quaternionic vector
bundles and Let D be a holomorphic structure on L. Then there is a
unique holomorphic structure D̃ on KL−1 such that the holomorphic
structures are compatible with respect to the pairing.
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Proof. Let ϕ and ψ be trivializing sections in KL−1 and L, re-
spectively. The holomorphic structures D and D̃ are compatible if and
only if

(1.20.1) (D̃ϕ ∧ ψ) = d(ϕ, ψ)− ϕ ∧Dψ.
Since K̄K ∼= Λ2(M,C) by dz̄⊗dz → dz̄∧dz we have D̃ϕ∧ψ = (D̃ϕ, ψ),
where we evaluate the L−1 part of D̃ϕ at ψ. By formula (1.20.1) and
by linearity D̃ϕ is fully determined by the value (D̃ϕ, ψ). Thus D̃ is
unique. �

1.21. Theorem. Weierstrass Representation
Let M be a Riemann surface and f : M → H be a conformal immersion.
Then there are paired holomorphic bundles KL−1 and L with pairing
(., .) and compatible holomorphic structures D an D̃, such that there
are holomorphic sections ϕ ∈ Γ(KL−1) and ψ ∈ Γ(L) with

(ϕ, ψ) = df.

This equation is called the Weierstrass representation of f. The bundles
and sections are unique up to isomophisms of the bundles as holomor-
phic quaternionic line bundles.

Proof. We proof the existence of such a representation first. Let
f : M → H be a conformal immersion. Consider the associated line
bundle L = f ∗T , where T is the tautological bundle of HP 1. A trivi-
alizing section of L is given by ψ = (f, 1). The vectors (1, 0) and (0, 1)
are a basis of H2. Let α, β be the corresponding dual basis. The
restriction of α and β on L defines sections on the dual bundle L−1.
We denotes these sections by αL and βL ∈ Γ(L−1). We want to show
that the sections ϕ := βLdf̄ ∈ Γ(KL−1) and ψ := (f, 1) ∈ Γ(L) are
holomorphic sections. Obviously we have

(ϕ, ψ) = df.

Since ψ is nowhere vanishing, it defines a holomorphic structure on
L by

Dψ = 0.

We have to prove that ϕ = βLdf̄ is a holomorphic section of KL−1

with respect to the induced holomorphic structure D̃ given by Lemma
(1.20). Since βL(ψ) = 1, and Dψ = 0 we get

0 = d(df) = d(βL(df̄), ψ) = (D̃ϕ ∧ ψ)

thus D̃ϕ = 0.

Let S denote the conformal Gauß map of f. Then S induces a complex
structure S̃ on KL−1. We have

(S̃(βLdf̄), ψ) = ∗df = Ndf = (−(βLdf̄)N,ψ) = (βL ∗ df̄ , ψ).

This shows that βLdf̄ ∈ Γ(KL−1).
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To proof the uniqueness up to isomorphisms let L̂ and KL̂−1 be
other bundles satisfying the conditions above, i.e., there are holomor-
phic sections ϕ̂ ∈ KL̂−1 and ψ̂ ∈ L̂ with

(ϕ̂, ψ̂) = df.

Let D̂ be the holomorphic structure on L̂. Since f is an immersion and
ψ is a trivializing section of L, we express any section h in Γ(L) as
h = ψλ, where λ is a quaternionic function. Define a linear map

I : Γ(L)→ Γ(L̂), h = ψλ 7→ ψ̃λ.

Obviously I is a quaternionic linear isomorphism. The complex struc-
tures on L and L̂ are given by the conformal Gauß map S. Thus we
have

Sψ = −ψR and Ŝψ̂ = −ψ̂R,
and I is compatible with the complex structures. It remains to show
that I commutes with the holomorphic structures. This follows by

I(Dh) = I((ψdλ)′′) = (ψ̃dλ)′′ = D̂(I(h)).

�

1.22. Corollary. Let f be a conformal immersion of a Riemann
surface into S3 then the paired bundles KL−1 and L are isomorphic as
holomorphic bundles.

Proof. According to the theorem above, there are bundles KL−1,
L and sections ϕ ∈ Γ(KL−1) and ψ ∈ Γ(L) with (ϕ, ψ) = df, such that
the bundles and sections are unique up to isomorphism. For ϕ̃ := ϕf
we obtain (ϕ̃, ψ) = f̄df. Further let ψ̃ = ψf̄ . The map −(., .) defines
also a pairing between KL−1 and L. Since f maps into S3 we get

f̄df = −f̄df. Thus

−(ϕ̃, ψ̃) = df.

By uniqueness the bundles L and KL−1 are isomorphic. Under
this isomorphism the holomorphic section ψ of L is mapped to the
holomorphic section ϕ̃ of KL−1. Thus the holomorphic structure of
KL−1 induced by the isomorphism is not the one compatible with the
pairing (., .). �

1.23. Corollary. Let f : M → S3 and let L be the corresponding
quaternionic line bundle. We can split L into the ±i eigenspaces of the
mean curvature sphere congruence S, i.e.,

L = E ⊕ Ej

for a complex line bundle E over M. Then E is a spin bundle of M.
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Proof. For surfaces in S3 the bundles L and KL−1 are holomor-
phic isomorphic. The section ψ is mapped to ϕ̃ = ϕf by this isomor-
phism. By construction

Sψ = −ψR and Sϕ̃ = −ϕ̃R
Therefore the splittings of L and KL−1 into complex bundles are com-
patible. Since KL−1 = KE−1 ⊕KE−1 we get KE−1 ∼= E as complex
holomorphic bundles. And because W−1⊗W = C, this yields K = E2

as complex holomorphic line bundles. �

1.24. Corollary. Let f : M → S3, V/L the corresponding quotient
bundle and let πL denote the projection from V to V/L. Again we can
split V/L = E ⊕ Ej, where E is the i−eigenspace of the the complex
structure J = πLS, induced by the conformal Gauß map. Then E−1 is
a spin bundle of M.

Proof. For surfaces in S3 the bundles V/L and L−1 are isomor-
phic as holomorphic line bundles. The isomorphism is determined by
mapping the nowhere vanishing holomorphic section πL(1, 0) of V/L
to the nowhere vanishing holomorphic section α of L−1. The statement
follows then from Corollary (1.23). �

2. The Lightcone Model

Another tool to study conformal maps into Sn uses the lightcone
model of the conformal Sn. The following is taken from [BuPP] and
[B2].

Consider Rn+1,1 together with the Lorenz inner product

< w,w >= −w2
0 +

n+1∑
i=1

w2
i .

The lightcone in Rn+1,1 is defined to be L := {w | < w,w >= 0}. We
obtain a conformal diffeomorphism between the conformal Sn and the
projectivized lightcone P(L) by

x ∈ Sn 7→ [(1, x)] ∈ P(L).

The group of Möbius transformations of Sn is then given by the iden-
tity component of O(n + 1, 1)+ acting isometrically on Rn+1,1, where
+ denotes the component of O(n+1, 1) preserving the future lightcone.

All n−dimensional space forms can be obtained by a similar con-
struction, namely as intersections of L with some hyperplane in Rn+1,1.
Take a nonzero w0 ∈ Rn+1,1 and define

Sw0 = {w ∈ L| < w,w0 > +1 = 0}.
The metric which Sw0 inherits from Rn+1,1 can be computed to be pos-
itive definite and of constant curvature − < w0, w0 >. For the round
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n−sphere choose w0 with − < w0, w0 >= 1. In the following we denote
this vector by e0.

We want to derive the conformal invariants of a surface in S3 which
determine it up to conformal transformations. For this we want to de-
fine the mean curvature sphere congruence in this set up. As in the
quaternionic case this is a map which assigns to every point of the
surface the unique oriented 2−sphere through that point with com-
mon tangent space and mean curvature vector. The space of round
m−spheres in the lightcone model of Sn is given by all possible decom-
positions of the form

Rn+1,1 = W ⊕W⊥,

where W is a m−dimensional subspace of Rn+1,1 such that W⊥ is
spacelike. The m−dimensional sphere is then obtained by Se0 ∩W.

2.1. Lemma. The mean curvature vector of the m−sphere
Se0 ∩W at a point w ∈ Se0 ∩W is

Hw = −e⊥0 − < e⊥0 , e
⊥
0 > w,

where w = wT +w⊥ denotes the decomposition of a vector with respect
to W ⊕W⊥.

Proof. The mean curvature vector of a submanifold M is defined
to be the trace of second fundamental form:

II(X, Y ) = (∇XY )⊥,

where X, Y are tangential vector fields of M and ∇ is the Levi-Civita
connection of the ambient space. The tangent space of Se0 at x0 is
Tx0Se0 = span{x0, e0}⊥ and the Levi- Civita connection on Se0 is given
by

∇XY = dXY+ < dXY, x0 > ẽ0+ < dXY, ẽ0 > x0,

where ẽ0 = e0 + 1
2
< e0, e0 > x0. The tangent and normal bundle of the

manifold M = Se0 ∩W are

Tx0M = Tx0Se0 ∩W, Nx0M = Tx0Se0 ∩W⊥.

Now we take a orthonormal basis X1, ..., Xm of Tx0M and extend the
basis to tangential vector fields on M by

X̃i = Xi+ < Xi, x > w(x)+ < Xi, w(x) > x,

with w(x) = eT0 + 1
2
< eT0 , e

T
0 > x. Then

dXiXi = eT0 + < eT0 , e
T
0 > x0,

and thus using the formula for the Levi-Civita connection we get

∇XiXi|w = −e⊥0 − < e⊥0 , e
⊥
0 > w,

which is independent of i. �
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Now consider a conformal immersion f : M → S3 from a Riemann
surface M into the round S3, i.e., we choose w0 = e0 and n = 3. Like
in the quaternionic case we can associate a line subbundle

L ⊂M ×R4,1 =: V, Lx = Rf(x)

to f. Again we have ϕ = (1, f) as trivializing section of L, which is
called the Euclidean lift of f. Any other trivializing section is given by
ϕλ, with λ : M → R \ {0}. The change of the induced metric caused
by the multiplication with λ can be computed to be |dϕλ)|2 = |dϕ|2λ2.
Thus one can always choose a scaling of ϕ with

|dψ|2 = |dz|2,
where z is a holomorphic coordinate on M. This section is given by
ψ = e−u(1, f) and is called the normalized lift of f, where e2u is the
conformal factor of f.

Lemma. Let f : M → S3 be a conformal immersion and let ϕ =
(1, f) be its Euclidean lift. The mean curvature sphere congruence at
x ∈ M is the 2−sphere associated to the 4−dimensional Minkowski
space Wx ⊂ R4,1 given by

Wx = span{ϕ(x), dϕx, ϕz̄z(x)}.

Proof. First, at every point x ∈ M the vector space Wx is a 4−
dimensional Minkowski space since

< ϕ(x), ϕz̄z(x) >= − < ϕz(x), ϕz̄(x) > < 0.

Therefore Se0 ∩Wx defines a 2− sphere. Secondly, the tangent spaces
of the immersion and the sphere obviously coincides. It remains to
show that also the mean curvature vector at p coincides. The mean
curvature of W is given by the formula (2.1). A short computation
shows e⊥0 = e0 − aϕ− bϕz̄z, with a = H2 − 3 and b = 2e−2u. Using the
formula for the Levi-Civita connection, the mean curvature vector of
the immersion is

H = 2e−2uϕz̄z + 2e−2u < ϕz̄z, ϕ > ẽ0 + 2e−2u < ϕz̄z, ẽ0 > ϕ.

Then the equalities

< ϕz̄z, ϕ >= − < ϕz̄, ϕz >= −1
2
e2u

< ϕz̄z, ẽ0 >=< ϕz̄z, e0 − 1
2
ϕ >= 1

4
e2u

yield

H = 2e−2uϕz̄z − e0 + ϕ,

which is exactly the mean curvature vector of W. �

It is obvious that W is independent of all choices (lift and holomor-
phic coordinate) and is thus a conformal invariant.



2. THE LIGHTCONE MODEL 21

We denote by W⊥ the orthogonal complement of W in V . The
bundle W⊥ is called the Möbius normal bundle. By definition the
metric restricted to it is positive definite. The connection D on W⊥

given by the orthogonal projection of the trivial connection on V is
called the normal connection. For surfaces in S3 ⊂ R4 the metrical
normal bundle ⊥f is trivial. The isomorphism between this normal
bundle and the Möbius normal bundle W⊥ is given by

(2.1.1) n ∈⊥f 7→ < H, n > ϕ+ (0, n) =: n̂ ∈ W⊥.

The section n̂ has constant length 1 and gives trivialization of the bun-
dle W⊥.

In order to facilitate calculations we complexify V and choose an-
other basis for WC := W ⊗C. Let ψ be the normalized lift of f. Then
there is a unique section ψ̂ ∈ Γ(WC) with

< ψ̂, ψ̂ >= 0, < ψ̂, ψ >= −1, < ψ̂, dψ >= 0.

Further (ψ, ψz, ψz̄, ψ̂, n̂) is a frame for V ⊗C, to which we always refer
to in the following. Since ψzz is orthogonal to ψ, ψz and ψz̄, there exist
complex functions c and q with

(2.1.2) ψzz +
c

2
ψ = qn̂.

This is an inhomogenous Hill’s equation and the quantities c and q are
Möbius invariants of the immersion f, which are called the Schwarzian
derivative and the conformal Hopf differential, respectively. In fact
they build a full set of invariants, i.e., two immersions having the same
c and q are Möbius equivalent, see [BuPP].

In the case at hand the Schwarzian derivative and the conformal
Hopf differential are complex valued functions. Given two such func-
tions one can ask whether there exist a surface in S3 with these in-
variants. In order to get a surface we need integrability conditions for
c and q, the so called Gauß−Codazzi equations. The frame equations
are

ψzz = − c
2
ψ + qn̂

ψz̄z = −|q|2ψ +
1

2
ψ̂

ψ̂z = −2|q|2 − cψz̄ + 2qz

n̂z = 2qz̄ψ − 2qψz̄.
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The Gauß-Codazzi equations are then obtained as the commutativity
of the second derivatives of the frame. We obtain

cz̄ = 4|q|2z + 2q̄zq − 2q̄qz

Im
(
qz̄z̄ +

c̄

2
q
)

= 0.

In particular, if q only depends on 1 parameter, then c also only depends
one one parameter. We can express these Möbius geometric invariants
also in terms of the metrical ones. The isomorphism in (2.1.1) gives

qn̂ = Hqϕ+ (0, qn̂),

where H is the mean curvature function of the surface. The induced
metric of the immersion is:

|df |2 = e2u|dz|2.
Further, the normalized lift is defined to be ψ = (1, f)e−u. Inserting all
this into (2.1.2), we get

q = II
(
∂
∂z
, ∂
∂z

)
e−u(2.1.3)

c =< H, II
(
∂
∂z
, ∂
∂z

)
> +uzz − (uz)

2.(2.1.4)

Theorem. Let U ⊂ C be a simply connected open set, and let c
and q be two functions on U satisfying the Gauß-Codazzi equations for
surfaces in S3. Then there exist a conformal immersion f : U → S3,
unique up to Möbius transformations of S3, with Schwarzian derivative
c and conformal Hopf differential q.

3. Weierstrass Elliptic Functions

We state in the following the properties of the Weierstrass elliptic
functions needed in chapter V. For further reading we refer to [AS],
where all the proofs can be found.

The Weierstrass elliptic functions are made to investigate all holo-
morphic maps from a torus into CP 1. It is well known that every com-
pact Riemann surface of genus 1 is biholomorphic to a flat torus, i.e., to
C/Γ, where Γ := {2nω1 +2mω2| 2ω1, 2ω2 ∈ C real linear independent}
is a lattice in C. Without loss of generality one can always fix 2ω1 to
be real. The Weierstrass ℘−function on a torus C/Γ is a special holo-
morphic map of degree 2 to CP 1 = C ∪ {∞}. Explicitly it is defined
as:

℘(z) = 1
z2

+
∑

(m,n)∈Z2\{(0,0)}

(
1

(z+m2ω1+n2ω2)2
− 1

(m2ω1+n2ω2)2

)
.

The ℘ function is even, holomorphic and doubly periodic, i.e., well de-
fined on the torus. The only pole is at z = 0 mod Γ with order 2. It
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can be shown that all holomorphic maps from the torus to C∪ {∞} is
rational in ℘ and its derivative ℘′.

The Weierstrass ℘-function satisfies a differential equation that re-
alizes every conformal torus as an elliptic curve. Let C/Γ be a torus
and Γ the lattice generated by 2ω1 and 2ω2. Define a polynomial of
degree 3 by P3 = 4x3 − g2x− g3 with

g2 = 60
∑

(m,n)∈Z2\{(0,0)}

(2mω1 + 2nω2)−4

and

g3 = 140
∑

(m,n)∈Z2\{(0,0)}

(2mω1 + 2nω2)−6.

Then the Weierstrass ℘−function on C/Γ satisfies

(3.0.5) (℘′)2 = P3(℘).

If 2ω1 and 2ω2 are real linear independent, then the polynomial P3

has only simple roots. The constants g2 and g3 are called the lat-
tice invariants of Γ. The map z 7→ (℘′(z), ℘(z)) is a group homomor-
phism between (C/Γ,+) and the elliptic curve E given by the equation
y2 = P3(x). The elliptic involution z 7→ −z is given in this picture by
(x, y) 7→ (x,−y).

On the other hand, given g2 and g3 with g2
3 − 27g3

2 6= 0, the polyno-
mial P3 has only simple roots and there exist a lattice Γ such that the
solution to the equation (3.0.5) is a ℘-function on the torus C/Γ. We
are interested in the case where both lattice invariants are real. Then
all coefficients of the Taylor series of ℘ are real. Thus in addition to
the elliptic involution we get another symmetry of the curve

(3.0.6) ℘̄(z) = ℘(z̄).

Other important invariants of the ℘-function are the half periods
ω1 and ω2 and ω3 = ω1 + ω2 of Γ. Because the function ℘′ is odd and
periodic we get for the half periods

℘′(ωi) = ℘′(−ωi + 2ωi) = −℘′(ωi) = 0.

Thus ℘(ωi) are roots of P3. For real lattice invariants g2 and g3 the
3 roots of P3 are either all real or we have a real root and a pair of
complex conjugate roots. Together with the symmetry given by (3.0.6)
we obtain that the lattice Γ is either rectangular or its double covering
is rectangular.

If Γ is rectangular then the polynomial P3 has three real roots. We
denote them by e1,e2 and e3. The roots of P3 are the branch points
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of the double covering defined by ℘. Without loss of generality we can
assume

e1 > e2 > e3,

with ℘(ωi) = ei. Further, we can show ω1 ∈ R, ω2 ∈ iR and ω3 =
ω1 + ω2 for the half periods ωi.

The case that only the double covering of C/Γ is rectangular corre-
sponds to the case where P3 has only one real and two complex conju-
gate roots. In this case we denote by ω1 the half period corresponding
to the real root of P3. For the other half periods we have: ω̄2 = ω3 and
ω1 = ω2 + ω3. In particular we obtain iω1 = ω1 mod Γ.

The set of z ∈ C for which ℘(z) is real valued can be determined
with the two symmetries of ℘, i.e., the property that ℘ is even and
with equation (3.0.6): if P3 has three real root we have that ℘(z) is
real valued if and only if z lies on the following lines:

R+ Γ, iR+ Γ, iR+ ω1 + Γ, R+ ω3 + Γ.

In the second case we have that ℘(z) is real if and only if z lies on
the lines R+ Γ and iR+ Γ.

For the proposes of the thesis it is necessary to consider two further
functions related to the ℘−function and some of their properties.

3.0.1. The Weierstrass ζ-Function. The Weierstrass ζ-function is
defined to be the function with

ζ ′ = −℘ and lim
z→0

ζ(z)z = 1.

It is an odd function with a simple pole at z = 0 mod Γ. The ζ function
is no longer periodic, rather one has

ζ(z + 2ωi) = ζ(z) + 2ηi,

where ηi := ζ(ωi).

In the case of real lattice invariants g2 and g3 all coefficients of the
power series representation of ζ are real. Thus ζ|R is a real function
and in particular η1 is real. Further, the following formulas are valid:

ω2η1 − ω1η2 = 1
2
πi,

and for x+ y + z = 0,

(ζ(x) + ζ(y) + ζ(z))2 = ℘(x) + ℘(y) + ℘(z).
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3.0.2. The Weierstrass σ−Function. The Weierstrass σ−function
is given by a further logarithmic integration of the ζ-function. We
have

σ′

σ
= ζ and σ(0) = 0.

All other zeros of σ lie in Γ. Because ζ has additive monodromy with
respect to Γ, the monodromy of σ is multiplicative is given by

σ(z + 2ωi) = −e2ηi(z+ωi)σ(z).





CHAPTER II

Equivariant Constrained Willmore Tori

4. The Willmore Energy

4.1. Definition. Let M be a compact surface and (S3, g) be a
3−dimensional sphere with some metric g. Further let f : M → (S3, g)
be an immersion. The Willmore energy of f is defined to be

W(f) =

∫
M

(H2 + K̄)dA,

where H is the mean curvature of f in (S3, g), K̄ is the sectional cur-
vature of the tangent plane with respect to g and dA is volume form
for the induced metric f ∗g.

A conformal immersion f : M → (S3, g) is called Willmore, if it
is a critical point of the Willmore energy W under all variations by
immersions. A conformal immersion is called constrained Willmore, if
it is a critical point of W under conformal variations, see [BoPetP]
and [KS].

Example. Minimal immersions are Willmore and constant mean
curvature (CMC) immerisons into a space form are constrained Will-
more.

An important property of the Willmore energy is its invariance un-
der conformal changes of the metric of the ambient space, see [W].
Note that not only the value of the functional is conformally invariant,
but the integrand itself is. Thus, it is reasonable to consider immer-
sions into (S3, g), where g lies in the conformal class of the round metric.

The physical interpretation of the Willmore energy is the bending
energy of the surface. In case g is the round metric on S3 the Willmore
energy of f reduces to

W (f) =

∫
M

(H2 + 1)dA.

Let κ1 and κ2 be the principal curvatures of f in the round S3 and K
be its Gaußian curvature. By Gauß- Bonnet

∫
M
KdA is a topological

invariant. We obtain

W (f) =

∫
M

(H2 + 1)dA =

∫
M

1
4
(κ1 − κ2)2dA+

∫
M

KdA.

27
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Thus restricted to a given topological type of M the Willmore func-
tional measures the roundness of the immersion.

For the rest of the thesis we restrict ourselves to the case where
M = T 2 is a 2−Torus. Since we want to consider constrained Will-
more tori, it is necessary to fix the conformal structure of the torus.
Every conformal torus is biholomorphic to the torus C/Γ, where Γ ⊂ C
is a lattice. This lattice Γ encodes the conformal structure of the torus.
Thus conformal variations are those variations preserving the genera-
tors of Γ.

The Willmore conjecture states that the minimum of the Willmore
energy restricted to the class of immersed tori is attained at 2π2. Fur-
ther, if an immersion f has Willmore energy 2π2, then it is a Möbius
transformation of the Clifford torus given by

fCliff : [0, 2π]× [0, 2π]→ S3 ⊂ C2, (ϕ, θ) 7→ 1√
2
(eiϕ, eiθ).

A related conjecture is the Lawson conjecture. It states that the
Clifford torus is the only embedded minimal torus in S3. Very recently
both conjectures were proven. The Willmore conjecture by Marquez
[MN] and Neves and the Lawson conjecture by Brendle [Br].

Here a selection of important results towards the Willmore conjec-
ture: An estimate by Li and Yau [LY] shows that the Willmore energy
of non embedded tori is ≥ 8π. Thus it is only necessary to confirm the
Willmore conjecture for embedded tori. Leon Simon [S] proved that
the minimum of the Willmore energy in the class of tori is attained and
that the minimizer is in fact a Willmore torus, i.e., it is a critical point
of the Willmore functional under all variations by immersions. Ros [R]
and Topping [T] have independently proven that tori with antipodal
symmetry obeys the Willmore conjecture.

More interesting for the integrable systems approach to the Will-
more conjecture is the quaternionic Plücker formula proven in [BuFLPP].
It gives a lower bound for the Willmore energy depending on the dimen-
sion of the space of holomorphic sections of V/L, which is the quotient
bundle associated to the immersion, see chapter I. To a conformally im-
mersed torus of constant mean curvature we can associate a Riemann
surface, the spectral curve. As a corollary of the Plücker formula we
get for CMC tori a lower bound for the Willmore energy depending on
the genus g of its spectral curve. Thus CMC tori with Willmore energy
below 8π have spectral genus at most 3. Embedded minimal tori have
spectral genus g ≤ 6, since they have Willmore energy W ≤ 16π by a
theorem of [CW].
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5. Equivariant Maps into the 3−sphere and Seifert Fiber
Spaces

We want to investigate conformal immersions f : T 2 → S3 into the
round sphere, which are simple enough to have an explicit description
but still provide interesting examples. In this context simple means to
have a 1−parameter family of symmetries.

Definition. A map f : T 2 → S3 is called R−equivariant if there
exist group homomorphisms

M : R→ Möb(S3), t 7→Mt,

M̃ : R→ {conformal transformations of T 2}, t 7→ M̃t,

such that

f ◦ M̃t = Mt ◦ f, for all t.

Here Möb(S3) is the group of Möbiustransformations of S3.

5.1. Conformal Transformations of T 2. The conformal trans-
formations of the torus T 2 = C/Γ is the subgroup of the conformal
transformations of C, compatible with the lattice. Conformal transfor-
mations of C are given by

M̃(z) = az + b, with a, b ∈ C.

M̃ is compatible with the lattice if and only if aΓ = Γ. We are
interested in 1−parameter groups of conformal transformations of T 2.
The set of a ∈ C with aΓ = Γ is discrete, thus a must be constant for
every 1−parameter group. Further the map t 7→ M̃t is by definition a
group homomorphism, i.e.,

M̃s+t = M̃s ◦ M̃t

therefore we obtain a = 1 and b(t) = tb0.Hence all possible 1−parameter
groups of conformal transformations of T 2 are given by translations
along some line determined by a non zero b0 ∈ C, i.e.,

M̃t(z) = z + tb0.

There are two cases to distinguish. The first case is that we have
tb0 /∈ Γ for all t ∈ R. Then the set {M̃t(0), t ∈ R} is dense in C/Γ.
Equivariant tori with respect to such M̃ are given by Möbius trans-
formations of a point in S3. Such tori are called homogenous tori and
are the product of two circles. We exclude this case from our further
considerations.

In the second case we have that there is a t0 ∈ R with t0b0 ∈ Γ.
Such 1−parameter groups are periodic. We get the following lemma.
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Lemma. Let t0 := min {t ∈ R+ \ 0 | tz0 ∈ Γ} and let γ1 := t0z0.
Then there exist a γ2 ∈ Γ such that

span
Z
(γ1, γ2) = Γ.

Proof. Let ω1 and ω2 be the generators of the lattice Γ. The lattice
vector γ1 is then given by γ1 = kω1 + lω2, k, l ∈ Z. Since t0 is the
minimum t such that tz0 ∈ Γ, we get γ1 = t0z0 is the lattice vector
with the smallest possible absolute value of this form. Therefore k
and l are coprime and there exist a, b ∈ Z with with ak + bl = 1. Let
γ2 := bω1 − aω2. Then we obtain ω1 = lγ2 + aγ1 and ω2 = −kγ2 + bγ1.
Hence span

Z
{γ1, γ2} = span

Z
{ω1, ω2} = Γ. �

We can rotate the whole picture by eiϕ such that eiϕz0 ∈ R. By
the lemma Γ is generated by γ1 = t0e

iϕz0 ∈ R and γ2. That means we
can fix both z0 = 1 and one generator of the lattice Γ to be real at the
same time without loss of generality.

5.2. Periodic 1−Parameter groups of Möb(S3). Now we turn
to the Möbius transformations of S3. Let M̃ be a periodic 1−parameter
group of conformal transformations of T 2 and let f : T 2 → S3 be an
equivariant map with respect to M̃, i.e., there exist a 1−parameter
group M of Möbius transformations of S3 such that

(5.2.1) f ◦ M̃ = M ◦ f.
Because we restrict ourselves to the case that M̃ is periodic, every group
M satisfying (5.2.1) for some map f must also be periodic. It turns out
that for every such periodic 1−parameter group M of Möb(S3) there
exist a unique round metric on the conformal S3 on which M acts via
isometries. Thus we can restrict ourselves to the case where f maps to
the round sphere.

Proposition. Let f : T 2 → S3 be an equivariant map and M̃ be a
periodic 1−parameter group of conformal transformations of T 2. Then
a 1−parameter group of Möbius transformations satisfying (5.2.1) is
conjugate to the 1−parameter group M acting on a unique round S3 ⊂
R4 ∼= C2 via isometries of the form:

Mt =

(
eimt 0

0 eint

)
∈ SO(4),

with m,n ∈ N and gcd(m,n) = 1.

Remark. Conjugation in the proposition above is equivalent to a
Möbius transformation of the ambient space.

Proof. A model of the conformal 3−sphere S3 is given by the
projectivized light cone in R4,1, see Chapter I. The group of Möbius
transformations of S3 is known to be O(4, 1)+. A connected subgroup
of O(4, 1)+ must lie in the identity component of the group. Thus we
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have in fact here a 1−parameter subgroup of SO(4, 1). Because the
1−parameter family is periodic we have that the image of t → Mt is
a compact subgroup of SO(4, 1). It is well known that any compact
subgroup of SO(4, 1) is conjugate to a subgroup of SO(4) which acts
on the round S3 = Se0 ⊂ e0 + e⊥0

∼= R4 via isometries. Further we have
that SO(4) = SO(3) × SO(3)/{±Id}. Thus in a suitable basis of R4

we get two rotation blocks:

Mt =

(
R1(t) 0

0 R2(t)

)
.

By identifying R4 with C2 we get that these rotations are given by
eiajt, j = 1, 2. In order to have periodic orbits we need that aj ∈ Q.
This proves the statement. �

Definition. A map f : T 2 → S3 is a (m,n)−torus, if it is equi-

variant with respect to the 1−parameter subgroup Mt =

(
eimt 0

0 eint

)
of Möb(S3) for m,n ∈ N coprime.

Remark. Let f : T 2 ∼= C/Γ → S3 be a (m,n)−torus and z =
x+ iy be a holomorphic coordinate of T 2. Identifying C2 and H we get
that Mx = eil1x(.)eil2x with l1 := m+n

2
and l2 = m−n

2
, where the terms

are multiplied as quaternions. Then we obtain

f(x, y) = eil1xf(0, y)eil2x.

Further, since T 2 ∼= C/Γ, we can also consider f as a map from C

to S3 which is additionally doubly periodic. For equivariant maps we
obtain two conditions. The first is that M has to be periodic and the
second is a periodicity condition on f(0, y).

5.3. Seifert Fibrations. In order to deal with equivariant tori, we
introduce the Seifert fiber spaces. For m,n ∈ N corprime, we define
the following equivalence relation on S3 ⊂ C2. Let z = (z1, z2), w =
(w1, w2) ∈ S3 ⊂ C2, then

z ∼m,n w ⇔ if there exist a t such that z = (eimtw1, e
intw2).

Definition. The triple F := (S3, S3/∼m,n , πm,n), where πm,n maps
every point in S3 to its equivalence class is a (m,n)-Seifert fiber space.

For every point in S3/∼m,n we can always find a representative such
that the first coordinate is real, since

(|z1|eiϕ, z2) ∼m,n (|z1|, ei
n
m
ϕz2).

S3/∼m,n will be referred to as the base space or orbit space. It is a
regular manifold away from the points [(1, 0)]∼m,n and [(0, 1)]∼m,n . If
mn > 1 both points are singular. For m = n = 1 the projection π1,1

is the Hopf fibration. Thus the base space is the round sphere and has
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no singular points. In the case of m = 0, n = 1 we have that only
[(0, 1)]∼m,n is singular, see [BW] for details.

5.4. Example. The two exceptional cases here provide the easiest
examples of equivariant tori.
In the first case m = n = 1 the torus is obtained as the preimage of
a closed curve on S2 under the Hopf fibration. These tori are called
Hopf tori.

In the second case we have m = 1, n = 0 and Mt is a rotation. The
torus can be constructed by the the rotation of a closed curve in the
open upper half plane, viewed as the hyperbolic plane, around the x−
axis.

Remark. F is a principal fiber bundle away from the singular
points. Let F ∗ := F \ {singularpoints}. We want to define a connec-
tion on F ∗ such that the curvature of F ∗ has a geometric meaning for
(m,n)−Tori. In order to do so we need a metric. It turns out that the
right choice of the metric is given by dividing the round metric on S3

by the fiber length. We denote this new metric by gm,n.

Because we can always find a representative of the base space where
the first coordinate is real and non negative, we can parametrize the
orbit space by

Φ : [0, 2π]× [0, π/2]→ S2 ⊂ C2

Φ(θ, ϕ) = (cos(ϕ), eiθ sin(ϕ)),

Lemma. The round metric on S3 induces a unique metric on the
base space such that π∼m,n is a Riemannian submersion. In the coor-
dinates given by the parametrization above this metric is given by

Φ∗gS3/∼m,n =
m2

4
sin2(2ϕ)

h2 ◦ Φ
dθ2 + dϕ2.

Proof. It is shown in [BW] that the induced metric on the base
space given by

Φ∗gS3/∼m,n (X, Y ) = gS3(Φ∗(X)N ,Φ∗(Y )N),

where ()N denotes the component of the vector orthogonal to the fibers,
makes the projection π∼m,n a Riemannian submersion. With basis
vector fields ∂

∂ϕ
and ∂

∂θ
and the fiber direction B given by

∂
∂ϕ

= (− sin(ϕ), eiθ cos(ϕ))

∂
∂θ

= (0, ieiθ sin(ϕ))

B = 1√
h
(im cos(ϕ), ineiθ sin(ϕ))

the formula for the metric can be obtained by a simple calculation. �
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To abbreviate the calculations, we define h((z1, z2)) := m2|z1|2 +
n2|z2|2 to be the fiber length in the round metric. We divide the round
metric g on S3 by the fiber length at each point and obtain the new
metric gm,n = 1

h
g. This metric lies in the conformal class of the round

metric. Since h is constant along the fibers, gm,n induces a well defined
metric on S3/∼m,n . We denote this metric also by gm,n = 1

h
gS3/∼m,n .

Furthermore, together with the fiber direction B the metric gm,n defines
a connection on the principle fiber bundle F ∗. We want to compute
the curvature of this connection.

Lemma. For the connection 1−form ω = gm,n(., B) of the princi-
pal fiber bundle F ∗, the curvature form is computed to be

Ωvolm,n =
2nm√
h ◦ Φ

volm,n,

where Ω is a real valued function and volm,n is the volume form on the
base space of F with respect to the metric gm,n.

Proof. The connection is well-defined, since ω only depends on
the point in the base space. The curvature of the connection is defined
to be dω, which can be computed using Cartan’s formula. With

ω( ∂
∂ϕ

) = 0

and

ω( ∂
∂θ

) =
n sin2(ϕ)

h ◦ Φ

we get

dω( ∂
∂ϕ
, ∂
∂θ

) = ∂
∂ϕ
ω( ∂

∂θ
)

=
n sin(2ϕ)

h ◦ Φ
+
n(m2 − n2) sin2(ϕ) sin(2ϕ)

h2 ◦ Φ

=
nm2 sin(2ϕ)

h2 ◦ Φ

The volume form of the metric gm,n is given by

volm,n =
m
2

sin(2ϕ)

h
3
2 ◦ Φ

dϕ ∧ dθ.

Therefore, we obtain

Ωvolm,n = dω =
2nm√
h ◦ Φ

volm,n.

�

Some other curvature functions will be needed in the following.
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5.5. Lemma. Let X be an arbitrary tangential vector field of the
base space. The sectional curvature K̄m,n of the plane given by X and
the fiber direction in S3 is a function on the base space given by:

K̄m,n =
n2m2

h ◦ Φ
.

And the Gaußian curvature of metric gm,n on the base space is given
by

Km,n = 6m
2n2

h◦Φ − (m2 + n2).

The proof of the first statement uses the O’Neil formulas, which
relate the curvatures of the total space to the curvatures of the base
space of a fibration. The second statement is obtained by a straight
forward calculation.

5.6. Curves and Equivariant Tori.

Proposition. There exist an one-to-one correspondence between
closed curves in the base space of the (m,n)−Seifert fiber space and
(m,n)−equivariant tori.

Proof. The preimage of every closed curve with respect to the
fibration πm,n is a (m,n)−torus. And the image of any (m,n)−torus
under πm,n is a closed curve in the base space. �

In every fiber bundle with a connection there exist to any curve
a horizontal lift to the total space (in general the lift is not closed).
Here we choose the connection given by ω. By definition this means
that the tangent of the lift is orthogonal to the fiber direction B. For
a conformal parametrization, we still need that the derivatives in both
directions have the same length. The fibers are arclength parametrized
with respect to gm,n. Thus, by arclength parametrization of the curve
with respect to the metric gm,n, we get a conformal parametrization for
the torus. We thus have shown the following:

5.7. Lemma. Let l1 := (m + n)/2, l2 := (m − n)/2 and let γ̃
be an arclength parametrized closed curve on S3/ ∼m,n with respect to
gm,n. Then there exist a curve γ in S3 with γ̃ = [γ] such that the
(m,n)−equivariant torus given by

f(x, y) = eil1xγ(y)eil2x

is conformally parametrized. The curve γ is called the profile curve of
f.

Remark. The horizontal lift of the curve γ̃ defines also a horizon-
tal lift of the frame of γ̃. The curvature of the lifted curve γ in the
direction given by the horizontal lift of the normal vector of γ̃ is by def-
inition the curvature of the curve γ̃. This statement is valid for both
metrics gS3/∼m,n and gm,n in the base space. Further the lifted curve γ
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has torsion in the fiber direction B, which becomes the binormal vector
of γ.

We now show how the invariants of the (m,n)−torus are determined
by the invariants of the curve γ̃ and the fibration πm,n. The surface
in S3 has two conformal invariants which determine the surface up
to Möbius transformations, see section (2) or [BuPP]. The first one
is the conformal Hopf differential. For a conformally parametrized
equivariant torus it is given by the function

q =
II
(
∂
∂z
, ∂
∂z

)
√
h

.

The second one is the Schwarzian derivative c. In the equivariant case
c is determined by q up to a integration constant by the Gauß-Codazzi
equations. Thus we will only consider q in the following.

5.8. Proposition. The conformal Hopf differential q of a (m,n)−
equivariant torus is given by

q =
1

4
(κm,n + iΩ),

where κm,n is the curvature of its profile curve γ̃ with respect to gm,n
and Ω is the curvature function of the (m,n)−Seifert fiber space.

Remark. This means that for equivariant tori the conformal Hopf
differential q only depends on y and is periodic. On the other hand,
if q only depends on one variable, then the corresponding surface is
equivariant. This follows from the fact that the conformal Hopf differ-
ential together with the Schwarzian derivative determines the surface
up to Möbius transformations of S3. Since c is determined by q up to
a constant by the Gauß−Codazzi equations, it depends also only on
one variable. Then f(x, y) and f(x + x0, y), for x0 ∈ R, has the same
q and c. Thus they differ only by a Möbius transformation.

We first compute the curvature and the torsion of the horizontally
lifted profile curve γ with respect to the metric gm,n on S3. We will not
distinguish between the normal Norm of the curve γ given by the hori-
zontal lift of the normal of γ̃, and the normal of the torus f = eil1xγeil2x,
since the second is just given by eil1xNorm(y)eil2x. Further we will need
to compare the two conformally equivalent metrics on the conformal
S3. We denote by Norm the normal of the curve γ in the round metric
and Nm,n =

√
hNorm is the normal of γ with respect to the metric gm,n.

5.9. Lemma. Using the parametrization of a (m,n)−torus given
in (5.7), the curvature of the profile curve γ with respect to the metric
gm,n is

(5.9.1) κm,n =
√
hκS3 − 2l1l2√

h
< iγi, Norm >S3 .
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The curvature expressed in terms of the corresponding immersion is

(5.9.2) κm,n = 1√
h
< (fyy − fxx), Norm >S3 .

Proof. Let γ = γ1 + jγ2 : I → S3 ⊂ H. Since f is conformal, we
have that γ is arclength parametrized in the metric gm,n. Thus

|γ′|2 = |l1iγ + l2γi|2 = m2|γ1|2 + n2|γ2|2 = h.

The change of the Levi-Civita connection due to a conformal change
of the metric by e2u = 1

h
is

∇m,n
X Y −∇XY = (X · u)Y + (Y · u)X − gS3(X, Y ) gradu.

The normal vector of the curve in S3 is given by

Norm = 1
h
γγ−1 ∂γ

∂x
γ−1 ∂γ

∂y
= 1

h
(l1iγ

′ + l2γiγ̄γ
′).

The length of the vector with respect to gm,n is
√
h, therefore we get

that the curvature of γ with respect to the metric gm,n is

κm,n = 1√
h
gm,n(∇m,n

γ′ γ
′, Norm)

= 1√
h
< γ′′, Norm >S3 −gm,n(gradu,Nm,n)

where u = −1
2
ln(m2|z1|2 + n2|z2|2), (z1, z2) ∈ H. Thus

−grad(u)|γ = (m2|γ1|)2 + n2|γ2|2)(m2γ1 + n2γ2j)

= 1
|g|2
S3

((l1 + l2)2γ1 + (l1 − l2)2γ2j)

= 1
|g|2
S3

((l21 + l22)γ − 2l1l2iγi).

So

κm,n = 1√
h
(< γ′′, Norm >S3 −2l1l2 < iγi, Norm >S3)

=
√
hκS3 − 2l1l2√

h
< iγi, Norm >S3 ,

where Norm is the normal of the surface in the round metric. By writing
out the second derivatives of f we get

κm,n = 1√
h
< (fyy − fxx), Norm >S3 .

�

5.10. Lemma. The torsion of γ is τ = 1
2
Ω, where Ωvolm,n is

the curvature form of the principle fiber bundle F . In terms of the
corresponding torus we have

τ = mn√
h

= − < fxy, Norm >S3 .

Proof. The connection between the curvature forms of the domain
and the target space of a Riemannian submersion are given by the
O’Neil formulas. In our case these formulas give the torsion of the
profile curve which is 1

2
Ω. Thus

(5.10.1) τ = mn√
h

= − < B′, Norm >H= − 1√
h
< fxy, Norm >S3 .
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�

Since the conformal Hopf differential q of the conformally parametrized
equivariant torus is given by

q =
II
(
∂
∂z
, ∂
∂z

)
√
h

=
< fxx − fyy − 2ifxy, Norm >

4
√
h

this proves Proposition (5.8).

Let T denote the tangent vector of γ. Then we also have< B′, T >=<
l1iγ

′ + l2γ
′i, γ′ >= 0, which shows the following.

5.11. Lemma. The frame of the profile curve γ given by the tan-
gent vector T , the normal vector Norm and the fiber direction B of the
Seifert fiber space is its Frénet frame in S3.

Example. In the case of tori of revolution, i.e., m = 1 and n = 0,
we have that 4q = κ1,0 = κ is real and κ is the curvature of the
profile curve γ in the hyperbolic plane. In the case of Hopf tori, i.e.,
m = n = 1, we have that the base space is the round 2−sphere of
constant curvature 4 and the curvature of the Seifert fiber space is 2.
Thus 4q = κ + 2i, where κ is the curvature of γ̃ = π1,1(γ) in this 2−
sphere.

The conformal type of the torus can also be derived from the profile
curve and the fibration type.

5.12. Lemma. The conformal type of a conformally parametrized
(m,n)−torus given by the preimage of a closed curve γ̃ in S3/∼m,n
under πm,n, which does not go through the singular points of S3/∼m,n ,
is given by the lattice Γ generated by:

ω1 = 2π and ω2 = ((

∫
C

Ωvolm,n) mod 2π, l),

where l is the length of the curve with respect to the metric gm,n, Ωvolm,n
is the curvature of the corresponding fiber space and C is a 2−chain in
S3/ ∼m,n with ∂C = γ̃.

Proof. As the image of the torus on S3/∼m,n under πm,n is a closed
curve γ̃, there exist a x0 with

γ(0) = eil1x0γ(l)eil2x0 = Mx0γ(l),

which means that f(0, 0) = f(x0, l). Clearly x0 only well defined mod-
ulo 2π. We obtain that (x0, l) and (2π, 0) are the generators of the
lattice Γ. Since γ̃ = πm,n(γ) is arclength parametrized with respect to
gm,n, l is the length of γ̃. It remains to show x0 +k =

∫
C

Ωvolm,n, where
k is a constant depending on the winding number of the curve around
the singularities of S3/∼m,n . This follows easily from the following more
general lemma. �
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Lemma. Let ω ∈ Ω1(M,R) and ∇ = d − iω be a hermitian con-
nection on the topologically trivial bundle M × C over a surface M.
Further let γi, i = 1, 2 be oriented closed curves on M which give the
boundary of a 2−chain C in M. Then the holonomies α1 and α2 along
γ1 and γ2 considered as complex numbers of length 1 are related by

α1 = α2e
i
∫
C dω

Proof. Let s = eif be a parallel section along a curve γ. Then

0 = ∇γ′s = eif (idf − iw)(γ′),

which is equivalent to

αk = e
i
∫
γk
ω
.

The formula is then a corollary of Stoke’s theorem. �

6. The Willmore Functional for Equivariant Tori

Lemma. The Willmore functional of an equivariant torus can be
computed as:

2W(f) = π

∫ l

0

(κ2
m,n + 4K̄m,n)ds = 16π

∫ l

0

|q|2ds,

where κm,n is the curvature of the profile curve, K̄m,n = 1
4
Ω2 is the

sectional curvature of the tangent plane of S3/∼m,n and L the length of
the profile curve with respect to gm,n and s the corresponding arclength
parameter.

This is a simple application of the conformal invariance of the Will-
more energy, since the metric gm,n = 1

h
g, where g is the round metric

on S3.

6.1. Theorem. Let f : T 2 ∼= C/Γ→ S3 be a conformally parametrized
equivariant immersion and q its conformal Hopf differential. Then f
is constrained Willmore if and only if q satisfies the equation:

q′′ + 8(|q|2+C)q − 8ξq = 2Re(λq),

2ξ′ = q̄′q − q′q̄.
(6.1.1)

where λ ∈ C is the Lagrange multiplier and ξ is a purely imaginary
function and C a real constant.

The real part of equation (6.1.1) is the actual Euler-Lagrange equa-
tion. The imaginary part of the equation is the Codazzi equation and
the equation on ξ is the Gauß equation, given in [BuPP]. In this
paper the Euler-Lagrange equations are stated in terms of q and the
Schwarzian derivative c of f . By the Gauß-Codazzi equations it turns
out that the Schwarzian derivative of an equivariant immersion is given
by

c = 4|q|2 + imnH + const.
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The function ξ we use is a multiple of the imaginary part of c. We have
ξ = imn

4
H, see formula (2.1.4).

The Gauß-Codazzi equations are already derived in [BuPP]. A
more general version of the Euler-Lagrange equation can be found
there, too. We want to recompute the Euler-Lagrange equation for
equivariant tori for which the profile curve does not go through the
singular points of the base space. This does not happen for immersed
tori of revolution or Hopf tori. The proof of the theorem needs:

6.2. Lemma. The following formulas hold:

(1)

∇H
γ̇ ∇H

γ′γ
′ = ∇H

γ′∇H
γ̇ γ
′ +Kgm,n(γ̇, Nm,n)Nm,n,

where ∇H is the Levi-Civita connection of gm,n on S3/∼m,n and
K is the Gaußian curvature.

(2)
κm,nΩ2 + gm,n(grad(Ω2), Nm,n) = 4mnΩH,

where H is the mean curvature of the (m,n)−torus.

Proof. The first formula is well known for the curvature tensor of
surfaces. For the second formula we need that the mean curvature H
is given by

2H = 1
h
< fxx + fyy, Norm > .

Further
κm,nΩ2 = 4m2n2

h3/2
< fyy − fxx, Norm >S3

and
< grad(u), Norm >S3=< fxx, Norm >S3 ,

as computed in (5.9). Since the conformal factor of the metric of the
torus is given by 4m2n2e2u = Ω2, we obtain

grad(Ω2) =
8m2n2

h
grad(u).

Adding both terms leads to the formula stated in the lemma. �

Now we can proof the theorem.

Proof. Fist we want to compute the Euler-Lagrange equation for
equivariant Willmore tori, then we build in the constraints. By sym-
metrical criticality we can compute the Euler-Lagrange equation for
equivariant Willmore tori by considering variations of curves. Let γ̃0

be any regular and arclength parametrized (with respect to gm,n) curve
in the base space and let γ̃t(s) be a regular variation, i.e., we want
γ̃0(s) = γ̃0 and γ̃t to be a regular curve for every t ∈ [−ε, ε]. We denote
by ()′ the derivative with respect to the curve parameter and by ()˙ the
derivative with respect to t at t = 0. For the calculations it is important
to understand what κ̇m,n and dṡ are. We define the function v(s, t) to be
the velocity of the parametrized curves, i.e., we want γ̃′t = v(s, t)T (s, t),
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Because γ̃0 is arclength parametrized, we have v(s, 0) = v = 1. The
frame equations for curves gives that ∇m,n

γ′ T = vκm,nNm,n, where we
use the notations introduced in (5.9). We obtain

κ̇m,n = gm,n((γ′′)˙, Nm,n)− 2v̇κm,n and v̇ = dṡ = gm,n(γ̇′, T ).

Now we frequently use the Stokes theorem and the first statement
of (6.2) to obtain the Euler-Lagrange equation for equivariant Willmore
tori.

1
π
Ẇ (f) =

∫
γ

(κ2
H + Ω2)˙ds+

∫
γ

(κ2
H + Ω2)dṡ

=

∫
γ

(2κ′′m,n + κ3
m,n + 2κm,nK)gm,n(γ̇, Nm,n)ds

+

∫
γ

Ω̇2ds+

∫
γ

Ω2dṡ

=

∫
γ

(2κ′′m,n + κ3
m,n + 2κm,nK)gm,n(γ̇, Nm,n)ds

+

∫
γ

gm,n(grad(Ω2), γ̇)− gm,n(grad(Ω2), gm,n(γ̇, γ′)γ′)ds

−
∫
γ

Ω2κm,ngm,n(γ̇, Nm,n)ds

=

∫
γ

(2κ′′m,n + κ3
m,n + κm,n(2K − Ω2)gm,n(γ̇, Nm,n)ds

+

∫
γ

gm,n(grad(Ω2), NH))gm,n(γ̇, Nm,n)ds.

Thus an equivariant torus corresponding to the curve γ̃ is Willmore if
and only if

2κ′′m,n + κ3
m,n + κm,n(2K − Ω2) + gm,n(grad(Ω2), Nm,n) = 0.

With the second statement of (6.2) and the formula for the Gaußian
curvature of the metric gm,n in (5.5), we get that this equation is equiv-
alent to:

2κ′′m,n + κ3
m,n + κm,n(Ω2 − 2(m2 + n2)) + 4mnΩH = 0.

The space of conformal constraints for tori which are not isother-
mic tori is 2−dimensional. For equivariant tori which are not strongly
isothermic we can consider the corresponding curve in S3/∼m,n . Infini-
tesimal conformal variations of an equivariant torus f , which preserves
the equivariance type, preserves the length and the total curvature∫
C

Ωvolm,n of f , see (5.12). This space is also 2 dimensional. Thus all
infinitesimal conformal variations of an equivariant torus which are not
strongly isothermic preserves the equivariance type.
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The variation of the length and the total curvature are given by

l̇ =

∫
γ

κm,ngm,n(γ̇, N),

and the variation of the total curvature is(∫
C

Ωvolm,n

).
=

∫
γ

Ωvolm,n(γ̇, .) =

∫
γ

Ωgm,n(γ̇, N).

For isothermic tori the space of conformal constraints is only 1−
dimensional. Further there exist a constant µ ∈ S1 such that the
rotated conformal Hopf differential qµ is real valued. Therefore Ω is a
constant multiple of κm,n and the space of length and total curvature
constraint is also 1-dimensional. Thus the Euler-Lagrange equation for
constrained Willmore (m,n)−tori with Lagrange multipliers λ1 and λ2

is:

2κ′′m,n + κ3
m,n + κm,n(Ω2 − 2(m2 + n2) + λ1) + 4mnΩH + λ2

mn

h
= 0.

With 4q = κm,n + iΩ and ξ = imn
4
H we get that the latter equation

is exactly the real part of the equation we stated above with C =
−1

4
(m2 + n2). �

6.3. Example. In the case of tori of revolution, we have 4q = κ,
where κ is the curvature of γ in the hyperbolic plane. These tori
are always isothermic. The Euler-Lagrange equation reduces to the
equation

κ′′ + 1
2
κ3 − κ = λ1κ,

which is the Euler-Lagrange equation for elastic curves, i.e., critical
points of the energy functional E(γ) =

∫
γ
κ2ds with prescribed length.

Free elastic curves corresponds to Willmore tori.

For Hopf tori we have that 4q = κ+ 2i, where κ is the curvature of
the curve π1,1(f) in the round S2 with curvature 4. The Euler-Lagrange
equation for constrained Willmore tori reduces to

κ′′ + 1
2
κ3 + 2κ = λ1κ+ λ2.

This is the Euler-Lagrange equation for constrained elastic curves in
the round S2 with curvature 4, where (λ1 + 2) is the length and λ2

is the enclosed area constraint. Note that free elastic curves do not
correspond to Willmore-Hopf tori. For free elastic curves we have λ1 =
−2 and λ2 = 0, but for Willmore-Hopf tori λ1 = λ2 = 0.

7. Associated Family and Equivariant Constrained Willmore
Immersions

Let f : T 2 → S3 be a conformally immersed constrained Willmore
torus with conformal Hopf differential q. Then there exist a circle worth
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of constrained Willmore surfaces fµ, µ ∈ S1, to f, the so called con-
strained Willmore associated family. The conformal Hopf differential
of fµ is given by

qµ = qµ.

For equivariant tori qµ satisfies Equation (6.1.1) with the parameters

Cµ = C + Re(µ2 − 1λ̄)

ξµ = ξ + Im(µ2 − 1λ̄)

λµ = µ̄2λ.

Since qµ satisfies the Gauß-Codazzi equations, there exist a surface
with conformal Hopf differential qµ and mean curvature H = −i4

mn
ξ.

Since both invariants depends only on one parameter, the surfaces
in the associated family of equivariant constrained Willmore surfaces
are also equivariant. In general these surfaces are not compact, i.e.,
fµ : C→ is not doubly periodic , even if the initial surface was.

A special class of constrained Willmore tori are the CMC tori. The
following theorem characterizes all equivariant CMC tori. It is a version
of a theorem by Richter [R].

7.1. Theorem. An equivariant constrained Willmore torus f is
isothermic if and only if f is an equivariant CMC torus in a space
form. In particular if mn 6= 0, then f is CMC in S3.

Proof. A surface is isothermic, i.e., it has a conformal curvature
line parametrization, if and only if there exist µ ∈ S1 such that qµ is
real valued. That is the case if and only if the imaginary part of q is a
constant multiple of the real part of q. Thus we get that f is isothermic
if and only if ξ′ ≡ 0. Since 4ξ = imnH, it is obvious that these surfaces
are CMC in S3 for mn 6= 0. For mn = 0 we have constrained Willmore
tori of revolution. These are obviously isothermic. In [B] it is shown
that these tori are CMC in a space form. �

Constrained Willmore tori of revolution are CMC in a space form,
thus we refer to these tori as Delaunay tori in the following.

Corollary. Except for the preimage of a circle, i.e., q = const and
the corresponding torus is homogenous, Hopf tori are never isothermic.

Proof. Since for m = n = 1 the curvature Ω of the Seifert fiber
space is constant so the imaginary part of q is constant. Thus Im(q) is
a constant multiple of Re(q) if and only if Re(q) is constant. But Re(q)
is the curvature of the profile curve on the round S2, which is constant
if and only if the curve is a circle. �

For CMC tori there exists a further associated family - the CMC
associated family. By definition isothermic surfaces have a conformal
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curvature line parametrization. In this parametrization the second fun-
damental form is diagonal and thus the Hopf differential is real valued
and ξ = 0. The Euler-Lagrange equation reduces to

q′′ + 8q3 + Cq = Hq,

where H is the mean curvature, see [BuPP]. The associated family
for CMC tori is simply given by Cr = C+ r and Hr = H+ r for r ∈ R.
Putting both associated families together we obtain

7.2. Theorem. Every equivariant isothermic torus is in the asso-
ciated family of a Delaunay cylinder.

Proof. First rotate q by µ such that qµ is real and then choose an
r ∈ R such that C = −1

4
. The corresponding q is the conformal Hopf

differential of a Delaunay cylinder. By Theorem (3.3) of [BuPP] we
have that isothermic surfaces with the same conformal Hopf differential
lie in the same associated family as isothermic surfaces. This associated
family coincides in our case with the associated family of CMC surfaces.

�





CHAPTER III

Spectral Curves for Conformal Immersions into S3

In this chapter we define the spectral curve for a conformal im-
mersion f : T 2 → S3. Following [BLPP] the spectral curve Σ is the
Riemann surface parametrizing all so called Darboux transformations
of f. If the genus of the spectral curve is finite, then the immersion f
is given in terms of algebraic data on Σ. In the following we use the
notations of the quaternionic theory introduced in chapter (1).

8. The General Case

8.1. Darboux Transformations.

Definition. Let L be the line bundle associated to the conformal
immersion f : T 2 → S4 and let δ be its differential. A sphere congru-
ence S̃ is a map from T 2 into the space of oriented round 2−spheres in
S4 such that for x ∈ T 2 f(x) ∈ S̃x and such that the tangent space of
S̃x at f(x) coincides with the one of f at x. In other words

S̃L = L and ∗ δ = S̃δ = δS̃.

Definition. A map f# : T 2 → S4 or its associated line bundle
L# is called a Darboux transform of the map f : T 2 → S4, if f#(x) is
distinct from f(x) for all x ∈ T 2 and there exists a sphere congruence
S̃ of f with

S̃L# = L#, and ∗ δ# = S̃δ#,

where δ# is the differential of L#.
If f#(x) = f(x) at isolated points x ∈ T 2 then we call f# singular.

To a conformal immersion f : T 2 → S3 ⊂ HP 1 consider the quo-
tient bundle V/L.

Definition. A section ψ with monodromy of V/L is a section of

the pull-back Ṽ/L of V/L to the universal covering C of T 2 = C/Γ
with

γ∗ψ(z) = ψ(z + γ) = ψ(z)hγ, for all z ∈ T 2,

where h : Γ → H∗ is a representation. We call h the monodromy
representation of ψ and hγ the monodromy of ψ along γ.

45
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Since h is a representation it is uniquely determined by its value on
the generators of the lattice Γ. We denote the generators by γ1 and γ2.

Let ∇ be the trivial connection on V and S the mean curvature
sphere congruence of f . A holomorphic structure on V is given by ∇′′,
the K̄−part of ∇ with respect to S. Since SL ⊂ L, the projection of
∇′′ to V/L defines a canonical holomorphic structure D on V/L. It
turns out that all Darboux transformations of f can be obtained by
considering holomorphic sections of (V/L,D) with monodromy. We

denote the space such sections by H0(Ṽ/L).

8.2. Theorem. Let f : T 2 → S4 be a conformal immersion. Then
there is a bijective correspondence between the space of (possibly singu-
lar) Darboux transforms of f and the space of nontrivial holomorphic
sections with monodromy up to scale.

The proof can be found in [BLPP]. It uses the uniqueness of the

prolongation ψ̃ of a section ψ in H0(Ṽ/L), which is an appropriate lift
of the holomorphic section to a section of Ṽ = C×H2. Then the cor-
responding Darboux transform L# is given by ψ̃H. The monodromy
representation is the same for the holomorphic section with monodromy
in V/L and for its prolongation. Moreover, prolongation is a H−linear
map.

8.3. Definition of the Spectral Curve. Consider a section ψ ∈
H0(Ṽ/L) and let h denote its monodromy representation. For a con-

stant λ ∈ H the section ψ̃ = ψλ is also holomorphic and induces the
same Darboux transform. But its monodromy representation is given
by h̃ = λ−1hλ since

ψ̃(z + γ) = ψ(z)hγλ = ψ(z)λλ−1hγλ = ψ̃(z)h̃γ.

Thus we are interested in the conjugacy class of a monodromy repre-
sentation h as the parameter space for all Darboux transforms of f.

8.4. Definition. The quaternionic spectrum of V/L is the sub-
space

SpecH ⊂ Hom(Γ,H∗)/H∗

of conjugacy classes of possible monodromy representations h of sec-

tions in H0(Ṽ/L). In other words, a representation h : Γ → H∗ rep-
resents a point [h] ∈ SpecH if and only if there exist a non trivial

holomorphic section ψ ∈ H0(Ṽ/L) with

ψ(z + γ) = ψ(z)hγ for all z ∈ C and γ ∈ Γ.
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Let ψ ∈ H0(Ṽ/L) and let h : Γ→ H∗ be its monodromy represen-
tation. Since Γ is a lattice, we have

hγ1hγ2 = hγ2hγ1 .

Thus the imaginary parts of the quaternions hγ1 and hγ2 are real
linearly dependent. Then it is always possible to choose a λ such that
λ−1hλ : Γ → C∗, i.e., for every point [h] ∈ SpecH we can always
find a representative hC : Γ→ C∗ with complex valued monodromies.
Further conjugating hC by j ∈ H we get the representation h̄C, which
is still complex valued. Thus the map

p : Hom(Γ,C∗)→ Hom(Γ,H∗)/H∗

is 2 : 1 away from real representations and we can lift the quaternionic
spectrum.

Definition. The lift of the quaternionic spectrum by p

Spec(V/L) := p∗SpecH(V/L)

is called the complex spectrum of V/L. With ρ(h) = h̄ we get

SpecH(V/L) = Spec(V/L)/ρ.

Theorem. Let f : T 2 → S3 be a conformal immersion and V/L
its quotient bundle. If h ∈ Spec(V/L) then we have that also h−1 ∈
Spec(V/L). We denote by σ the map

σ : Spec(V/L)→ Spec(V/L), h 7→ h−1.

Proof. Let h ∈ Spec(V/L) and ψ be a holomorphic section of
V/L with monodromy h. Then there exist a holomorphic section ϕ
in K(V/L)−1 with monodromy such that the pairing between these
sections (ψ, ϕ) has no monodromy. Therefore ϕ has monodromy h−1.
For f : T 2 → S3 we have further that the bundles V/L and K(V/L)−1

are holomorphic isomorphic and so ϕ induces a holomorphic section in
V/L with monodromy h−1 and we obtain h−1 ∈ Spec(V/L). �

8.5. Theorem. For h ∈ Spec(V/L) the space of holomorphic sec-
tions with monodromy h is finite dimensional and generically it is com-
plex 1−dimensional.

Theorem. Spec(V/L) is a complex 1 dimensional analytic variety.

The proof of both theorems can be found in [BLPP]. An analytic
variety has a uniquely determined normalization. Thus we can define
the following:

8.6. Definition. The spectral curve Σ̃ is the normalization of the
complex spectrum of V/L.
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Remark. The involutions ρ and σ defined on Spec(V/L) given by
ρ(h) = h̄ and σ(h) = h−1 induce an anti-holomorphic and a holomor-
phic involution on Σ̃.

The spectral curve defined here is non compact. A criteria when Σ̃
can be compactified is given by the following theorem.

8.7. Theorem. The spectral curve Σ̃ can be compactified to a Rie-
mann surface Σ of finite genus if and only if it has two ends inter-
changed by ρ, i.e., it can be compactified by adding two points. These
points are called 0 and ∞.

The proof can be found in [BoPP]. We also call Σ, if it exists, the
spectral curve of f . It has always two marked points corresponding to
the ends of Σ̃. All connected finite type spectral curves are classified in
[BoPP].

8.8. Theorem. If the spectral curve of a conformal immersion is
connected and has finite genus, then it has the structure of a n−fold
covering of CP 1.

Definition. A conformal immerison f : T 2 → S3 such that its
spectral curve has finite genus g is called a finite type immersion and
g is called its spectral genus.

It is shown in [B] that the spectral curve of a constrained Willmore
torus in S4 has finite genus and is connected. Since our interest lies
in equivariant constrained Willmore tori, we restrict ourselves now to
conformally immersed tori whose spectral curves are connected and
have finite genus.

9. The Kernel Bundle

The spectral curve Σ̃ carries a canonical line bundle L ⊂ Σ̃ ×
Γ(Ṽ/L). It is called the kernel bundle. The construction of L works as
follows: To a generic point h ∈ Σ̃ there exist a holomorphic section ψh
in V/L with monodromy h unique up to complex scale. Thus we can
assign to a generic h ∈ Σ̃ the complex line given by ψhC. Although
ψh is not well-defined on the torus, the line given by ψhC is. The line
bundle L extends holomorphically through the exceptional points of
Σ̃, where we have a higher dimensional space of holomorphic sections.
The kernel bundle is compatible with the involutions ρ and σ. Since
the holomorphic section with monodromy h̄ is given by ψhj we have
ρ∗L = Lj.

L does not extend to Σ by the asymptotic properties of Σ̃ shown in
[BoPP]. This can be repaired by fixing a point x ∈ T 2 and evaluating
the holomorphic section ψh at each point of Σ in x. In other words,



10. THE RECONSTRUCTION 49

to a fixed x ∈ T 2 we associate to a generic point h ∈ Σ̃ the line
given by ψh(x)C. The holomorphic line bundle corresponding to this
construction is denoted by Lx, see [BLPP].

9.1. Theorem. The map

Ψ : T 2 → Jac(Σ), x 7→ LxL−1
x0

for a fixed base point x0 ∈ T 2 is a group homomorphism.

Again, the proof can be found in [BLPP]. This theorem means that
the conformal immersion f induces a linear map into the Jacobian of
the spectral curve. Thus it is possible to construct f explicitly in terms
of algebraic data on Σ.

Remark. The bundle L over Σ̃ can be lifted to a line subbundle
L̃ of Σ× Γ(Ṽ ) by assigning to a generic point h ∈ Σ̃ the complex line

given by the prolongation ψ̃h of ψh. The monodromy of ψ̃h is also h.
Further the bundle L̃x, for a fixed x ∈ T 2, also extends to Σ.

10. The Reconstruction

Let Σ be a n−fold covering of CP 1 with an anti-holomorphic in-
volution ρ. Further fix a real subtorus Z = Ψ(T 2) of dimension 0, 1
or 2 of the Jacobian of Σ. The question is now how to construct con-
formal immersions f : T 2 → S3 with given spectral curve Σ and Z.
For x ∈ T 2 the line bundle L̃x over Σ is by construction a complex
holomorphic line subbundle of Σ × C4. Thus it defines a map from Σ
to CP 3. A quaternionic structure on C4 is a real linear endomorphism
j with j2 = −Id anti-commuting with i. By fixing such a quaternionic
structure j on Σ×C4 we obtain a canonical isomorphism between C4

and H2. This isomorphism induces a map πH between CP3 and HP 1

which is called twistor projection. The main theorem is the following
one proven in [BLPP].

Theorem. Let f : T 2 → S3 be a conformal immersion whose
spectral curve Σ has finite genus. Then there exist a map

(10.0.1) F : T 2 × Σ→ CP 3,

such that

• F (x,−) : Σ→ CP 3 is an algebraic curve, for all x ∈ T 2.

• The original conformal immersion f : T 2 → S3 is obtained by
the twistor projection of the evaluation of F at the points at
infinity:

f = πHF (−, 0) = πHF (−,∞).
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For given Σ with marked points 0 and∞ and a T 2−family of holo-
morphic line bundles Z in Jac(Σ) the map F is in general not unique.
In other words, the the immersion f is in general not uniquely deter-
mined by the spectral curve and Z.

Let L be a complex holomorphic line bundle over a Riemann surface
M. By Kodaira embedding there exist a holomorphic map s from L to
CP n if and only if the space of holomorphic sections of the line bundle
L∗ is at least complex (n+ 1)−dimensional. The space of holomorphic
sections of L∗ is (n+ 1)−dimensional if and only if the map is unique
up to a PSL(n + 1,C) action on CPn. Further, the line bundles in
Z must be compatible with the quaternionic structure j. Elements of
PSL(4,C) compatible with j acts on HP 1 as Möbius transformations.
So F is uniquely determined up to a PSL(4,C) action compatible with
j on CP 3 if and only if πH(F ) is uniquely determined up to Möbius
transformations of S4.

Definition. A immersion is called simple if the map F is uniquely
determined by Σ and Z up to a PSL(4,C) action on CP 3, compatible
with the quaternionic structure j.

10.1. Proposition. Let f : T 2 → S3 be a simple conformal im-
mersion and V/L the associated quotient bundle, then the space H0(V/L)
is quaternionic 2−dimensional.

Proof. If H0(V/L) > 2 then there exist at least 3 quaternionic
linear independent holomorphic sections. The quotient of any two of
them yield a map f : T 2 → HP 1. Thus in this case we get at least two
maps f and f̃ which are not Möbius equivalent such that the corre-
sponding quotient bundles V/L and V/L̃ are holomorphic isomorphic.

Thus f and f̃ have the same spectral curve and Z and the map F
cannot be unique. �

10.2. Corollary. A simple immersion of spectral genus 1 is equi-
variant.

Proof. By assumption the map F is unique. Thus the bundle
L = πHF (−,∞) is unique up to Möbius transformations of S4. If we
only consider immersions into a fixed S3 ⊂ S4, we obtain that this
reconstruction is unique up to Möbius transfomations of S3. Since the
Jacobian of a torus is the torus itself and the set of line bundles com-
patible with ρ is only a S1, the map Ψ has a 1−dimensional kernel.
Now let x be the direction in T 2 = C/Γ parametrizing the kernel of
Ψ. Then the conformal maps f(x, y) and f(x + x0, y) have the same
spectral curve Σ and Z. Thus there is a Möbius transformation Mx0 of
S3 with

f(x+ x0, y) = Mx0f(x, y).
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The map M : R → Möb(S3) is a group homomorphism, thus f is
equivariant. �

10.3. Example 1: The CMC Case. The spectral curve of a
conformal immersion of finite type is a n−fold covering of CP 1, if it
is connected. Thus the easiest non-trivial case is that Σ is a double
cover of CP 1. A surface class for which this holds is the class of CMC
immersions in S3 and R3. For CMC immersions there exist another
way to define the spectral curve, namely via the holonomy represen-
tation of an associated family of flat connections. Both approaches to
the spectral curve are equivalent by the Theorems (4.5) and (6.8.) of
[B]. In the following, we just explain the constructions and omit the
proofs.

This definition of the spectral curve is due to [H] and [BoB]. Let
f : T 2 → S3 be a conformally immersed torus into the Lie group S3

with constant mean curvature H. And let α = f̄df be the corresponding
Maurer-Cartan form. We denote by V the pull back of the spinor bun-
dle of S3. This is a complex rank 2 vector bundle with a quaternionic
structure j and a symplectic form ω̂.

Let α = α′ + α′′ be the splitting of α into its complex linear and
complex anti-linear part.

To f we can associate a family of connections

(10.3.1) ∇λ = ∇+ 1
2
(1+λ−1)(1+iH)α′+ 1

2
(1+λ)(1−iH)α′), λ ∈ C∗,

where∇ is the trivial connection on V. This family of connections is flat
if and only if H ≡ const. This family of connection has the symmetry

∇λ̄−1

= j−1∇λj.

Thus for λ ∈ S1 the connection ∇λ is unitary. An associated family
of constant mean curvature surfaces for a given f is obtained by the
following theorem.

Theorem. Let ∇λ be the family of flat connections given in (10.3.4)
and λ0, λ1 ∈ S1 with λ0 6= λ1. Further let Xλ be a parallel frame of ∇λ.
Then the map f : C→ S3 given by

(10.3.2) f = Xλ1X
−1
λ0

is well defined and has constant mean curvature H = iλ0+λ1
λ0−λ1 . Further all

constant mean curvature immersions in S3 with doubly periodic metric
comes from such a construction. For λ0 = λ1 we have

(10.3.3) f = X−1
λ0

∂X

∂λ
|λ0 ,

which yields all CMC immersions with doubly periodic metric in R3.
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The formulas above are called the Sym-Bobenko formulas and the
λi are called Sym-points. This is Theorem 5 of [BoB]. We refer to
this paper for the proof. By choosing λ0 = −λ1 we obtain a minimal
immersion. Thus we can restrict ourselves without loss of generality to
the associated family for minimal tori

(10.3.4) ∇λ = ∇+ 1
2
(1 + λ−1)α′ + 1

2
(1 + λ)α′′), λ ∈ C∗.

Let T 2 = C/Γ and let Hλ
x (γ) denote the holonomy of the connection

∇λ along γ ∈ Γ with respect to the base point x ∈ T 2. We choose γ to
be one of the generators of Γ.

Proposition. The holonomy is diagonalizable and has distinct eigen-
values for generic λ ∈ C∗.

The proof can be found in [H]. The spectral curve is now the
normalization and compactification of the analytic variety

{(η, λ) ∈ C∗×C∗ | f(η, λ) = 0} with f(η, λ) = det(Hλ
x (γ)−ηId).

Since Hλ
p (γ) is generically diagonalizable and 2×2, we have that the

spectral curve of a constant mean curvature immersion is hyperelliptic.
By [H] the spectral curve of a minimal immersion is branched over
λ = 0 and λ =∞. Thus it is given by

Σ : η2 = λΠg
i=1q̄

−1
i (λ− qi)(λ− q̄−1

1 ),

where qi 6= 0,∞, and q̄−1
i are the odd order roots of the function f(η, λ)

without multiplicity, i.e., Σ is a smooth curve.

The change of the base point corresponds to a conjugation of the
holonomy matrix. Thus the eigenvalues do not change and the spec-
tral curve is independent of x ∈ T 2. Further since the first fundamental
group of T 2 is abelian we obtain that the odd order roots of the func-
tion f(η, λ), and therefore the spectral curve, do not depend on the
choice of a generator γ ∈ Γ.

Next we want to consider the eigenspaces of the holonomy. For
a fixed x ∈ T 2 let Lx denote the line bundle over Σ given by the
eigenspace of the holonomy. To be more explicit, at a generic point
(η, λ) ∈ Σ we define the fiber Lx|(η,λ) to be the 1−dimensional eigenspace
of Hλ

x (γ) w.r.t. to the eigenvalue η. The bundle is well-defined and ex-
tends holomorphically to a line bundle over all Σ. Let σ denote the
hyperelliptic involution on Σ. Then the bundles Lx and σ∗Lx are sub-
bundles of the trivial bundle Σ × Vx. Since V is the pull-back of the
spin bundle of S3, there exists a symplectic form ω̂ on V . Therefore the
evaluation of the symplectic form ω̂x on Lx ⊗ σ∗Lx defines a holomor-
phic map to C. Thus ω̂x is a section in L∗x ⊗ σ∗L∗x. It vanishes exactly
at those points, where Lx and σ∗Lx coincides. Therefore the zeros of



10. THE RECONSTRUCTION 53

ω̂x does not depend on x. Obviously ω̂x vanishes at branch points of Σ,
thus it has at least 2g + 2 zeros.

Definition. Let f : T 2 → S3 be a conformal immersion of constant
mean curvature and Σ its spectral curve. The genus g of Σ is called the
geometric spectral genus of f . The arithmetic spectral genus p of f is
n−1

2
, where n is the number of zeros of the symplectic form ω counted

with multiplicity.

Obviously we have always p ≥ g. Let qi and q̄i denotes the zeros of
ω with multiplicity. Then the equation

η2 = λΠp
i=1q̄

−1
i (λ− qi)(λ− q̄−1

i )

defines a (possibly singular) hyperelliptic curve of genus p. We call this
curve the arithmetic spectral curve of a conformally immersed CMC
torus f. This spectral curve is smooth if and only if g = p.

Proposition. Let ω be the symplectic form defined above. The line
bundle L∗x has degree n

2
, where n is the number of zeros of ω counted

with multiplicity. Further, the bundle Lx is nonspecial for all x ∈ T 2,
i.e., the line bundle KL∗x has no holomorphic sections.

Obviously the degree of L∗x is n
2
. For the rest of the proof we refer

to [H].

Proposition. The map

Ψ : T 2 → Picp+1(Σ), x 7→ Lx
is a group homomorphism.

For a given spectral curve and a family of line bundles Ψ(T 2) com-
patible with all involutions, we can reconstruct by [H] an associated
family of flat connections of the form (10.3.4) and thus also an associ-
ated family of constant mean curvature tori.

Theorem. Let Σ be a (possibly singular) hyperelliptic curve over
CP 1 defined by the equation

η2 = λΠp
i=1q̄

−1
i (λ− qi)(λ− q̄−1

i ).

And let
Ψ : T 2 → Picp+1(Σ), x 7→ Lx

be a group homomorphism. Suppose all Lx ∈ Ψ(T 2) are nonspecial and
ρ∗Lx = Lxj. Further L∗x ⊗ σ∗L∗x = L(2p + 2), where L(2p + 2) is the
bundle of degree 2p+ 2 on CP1 .

Then we can construct a family of flat connections ∇λ on V for
which the lines L|(η,λ) and L|(−η,λ) define a parallel frame of V w.r.t.
∇λ. This family has the form

∇λ = ∇+ 1
2
(1 + λ−1)α′ + 1

2
(1 + λ)α′′.
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10.4. Example 2: The constrained Willmore case. The spec-
tral curve of a constrained Willmore torus is either a double cover-
ing or a 4−fold covering of CP 1. As in the CMC case, we can define
an associated family of flat connections. For this we need to state
the Euler-Lagrange equations for constrained Willmore surfaces in the
quaternionic set up. Recall that to a conformal immersion in S3 we
can associate a line bundle L ⊂ V = T 2 ×H2. The trivial connection
on V is denoted by ∇ and A denotes the Hopf field of ∇′ with respect
to the mean curvature sphere congruence S.

Proposition. Let f : T 2 → S3 be a conformal immersion. It is
constrained Willmore if there exist a 1−form ν ∈ Ω1(R) such that

d∇(2 ∗ A+ ν) = 0,

where R = {B ∈ End(V ) | ImB ⊂ L ⊂ KerB}.

Let A0 be the 1−form defined by 2 ∗ A0 = 2 ∗ A + ν. Consider V
as a complex rank 4 bundle with complex structure i given by the left
multiplication of the quaternionic i together with an anti-linear endo-
morphism j which is the right multiplication by the quaternion j. The
Euler-Lagrange equation for constrained Willmore tori is equivalent to
the flatness of the associated family of SL(4,C)−connections given by

∇µ = ∇+ (µ− 1)
1− iS

2
A0 + (µ−1 − 1)

1 + iS

2
A0,

for µ ∈ C∗. This associated family ∇µ has the symmetry

∇µ̄−1

= j−1∇µj.

Thus for all µ ∈ S1 ⊂ C∗ the connection ∇µ is quaternionic.

For a fixed point x ∈ T 2 = C/Γ consider the holonomy repre-
sentations Hµ

x of the associated family ∇µ. The representations are
holomorphic in µ and the holonomy Hµ

x to different basis points are
conjugated. Thus the eigenvalues are independent of x ∈ T 2. Since
the first fundamental group of T 2 is abelian, we get that every simple
eigenspace of Hµ

x (γ0) for γ0 ∈ Γ is a simultaneous eigenspace for all
γ ∈ Γ. Bohle [B] shows

Theorem. Let f : T 2 → S3 be a constrained Willmore torus.
Then the holonomy representation of the associated family ∇µ belongs
to the following 2 cases:

(1) there is a γ ∈ Γ such that the holonomy Hµ
x (γ) has 4 distinct

eigenvalues for generic µ ∈ C∗. These eigenvalues are non-
constant in µ.

(2) all holonomies Hµ
x (γ) have a 2−dimensional common eigenspace

with eigenvalue 1 and there is a γ ∈ Γ such that Hµ
p (γ) has 2

distinct and non constant eigenvalues for generic µ ∈ C∗.
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The spectral curve of a constrained Willmore torus is the normal-
ization and compactification of the 1−dimensional analytic variety

{(η, µ) ∈ C∗×C∗|f(η, µ) = 0} with f(η, µ) = det(Hµ
p (γ)−ηId).

Theorem. The spectral curve defined by the associated family of
flat connections coincides with the spectral curve defined in (8.6).

This is Theorem (4.5) of [B]. Since every constrained Willmore
torus is of finite type, the compactification of its spectral curve is well
defined and has two marked points 0 and∞ corresponding to the ends
of the spectral curve Σ̃. It is a 4− fold covering of CP 1, if the holonomy
representation of ∇µ belongs to case (1) and it is hyperelliptic if the
holonomy representation of ∇µ belongs to case (2).

We have two involutions ρ and σ on the spectral curve. Because of
the symmetry of ∇µ we have that ρ covers the involution µ 7→ µ̄−1 on
CP 1. By the following proposition we get that the involution σ fixes
the spectral parameter µ.

Lemma. Let f : T 2 → S3 be a constrained Willmore torus and
∇µ the corresponding associated family of flat connections. Further let
Hµ
x (γ) denote the holonomy of ∇µ at a base point x ∈ T 2 along γ ∈ Γ.

If η is an eigenvalue of Hµ
x (γ) then η−1 is also an eigenvalue of Hµ

x (γ).

Proof. Consider the bundle L⊥ ⊂ V ∗, where V ∗ is a complex
quaternionic bundle with respect to the complex structure −i, see sec-
tion (1.14). We can define a family of connections (∇⊥)µ, for µ ∈ C∗
on L⊥ by

(∇⊥)µ = ∇⊥ + (µ− 1)
1 + iS⊥

2
A⊥0 + (µ−1 − 1)

1− iS⊥

2
A⊥0 .

This family is dual to the family of connections

∇̃µ = ∇+ (µ− 1)Q0
1− iS

2
+ (µ−1 − 1)Q0

1 + iS

2
,

with respect to the indefinite inner product (., .) defining S3, since
A⊥ = −Q∗, Q⊥ = −A∗ and ν⊥ = −ν∗.

Both families of connections are flat if and only if the immersion is
constrained Willmore. By duality of these families we have if η is an
eigenvalue of the holonomy of (∇⊥)µ then η−1 is an eigenvalue of the
holonomy of ∇̃µ. On other hand, we have L = L⊥ and S = S∗ = S⊥ for
conformal immersions into S3. Thus we obtain (∇⊥)µ = ∇µ. Further
we have that ∇µ is gauge equivalent to ∇̃µ. The gauge is given by

2g = (µ+ 1)− i(µ− 1)S.

This proves the lemma. �
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At a generic point (η, µ) ∈ Σ we have that Hµ
x (γ) is diagonalizable

and has 2 or 4 distinct eigenvalues. We restrict ourselves now to the
case with 4 distinct eigenvalues. The other case corresponds to CMC
immersions in a space form. Then there exist basis of C4 such that
Hµ
x (γ) is given by

Hµ
x (γ) =


η 0 0 0
0 η−1 0 0
0 0 η̃ 0
0 0 0 η̃−1

.
For a fixed x ∈ T 2 consider the symplectic form ω on Vx defined in
(1.14). Let L̃x ⊂ Σ × C4 be the line bundle which at generic points
(η, µ) ∈ Σ coincides with the eigenspace of Hµ

x (γ) to the eigenvalue
η. Further let g(σ∗L̃x) denote the line bundle corresponding to the
eigenspace of the holonomy of ∇̃µ to the eigenvalue η−1.

The evaluation of ω on L̃x ⊗ g(σ∗L̃x)|(η,µ) is non zero at generic
points, where we have 4 distinct eigenvalues, and thus it defines a
holomorphic map

L̃x ⊗ g(σ∗L̃x)→ C,

which we also denote by ω. This map vanishes, if and only if the lines
L̃x and g(σ∗L̃x) coalesce at (η, µ). This is indepent on x. The bundles
g(σ∗L̃x) and σ∗L̃x are holomorphic isomorphic. Therefore we obtain

10.5. Lemma. The bundle L̃x ⊗ σ∗L̃x is independent of x ∈ T 2

as a complex holomorphic line bundle.

10.6. Theorem. Let f : T 2 → S3 be a simple constrained Will-
more immersion with spectral curve Σ and a fix point free anti-holomorphic
involution ρ : (η, µ) 7→ (η̄, µ̄−1) on Σ. Further let σ be the involution
(η, µ) 7→ (η−1, µ). If the quotient Σ/σ is CP 1 and ρ ◦ σ has fixpoints,
then f is a CMC immersion in a space form.

Proof. Let f : T 2 → S3 be a simple, conformal and constrained
Willmore immersion. Let ∇µ be its associated family of complex
flat connections of constrained Willmore surfaces on the bundle V =
T 2 ×H2 ∼= T 2 ×C4. There are 2 cases to consider.

In the first case the holonomy Hµ
x (γ) of∇µ has generically 2 distinct

eigenvalues. We obtain that the spectral curve Σ is always hyperelliptic
and σ is the hyperelliptic involution. By the Theorems (6.8), (6.9) and
(6.10) of [B] f is a conformally immersed CMC torus in a space form.

In the second case the holonomy of ∇µ has generically 4 distinct
eigenvalues. So Σ is a 4−fold covering of CP 1 and has two marked
points 0 and ∞ corresponding to the ends of the spectral curve Σ̃.
These points are fixed under the involution σ and interchanged by
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the involution ρ. By assumption the quotient Σ/σ is also CP 1. Thus
the spectral curve Σ is a hyperelliptic curve and σ is the hyperelliptic
involution. Let λ be a holomorphic coordinate of Σ/σ such that 0 ∈ Σ
is the point over λ = 0 and ∞ ∈ Σ is the point over λ =∞. Since the
involutions ρ and σ commute and ρ interchanges the points 0 and∞ on
Σ, ρ also interchanges the points λ = 0 and λ =∞ on Σ/σ and thus it
induces an anti-holomorphic involution on Σ/σ. An anti-holomorphic
involution on CP 1 interchanging λ = 0 and λ = ∞ is either the map
λ 7→ λ̄−1 or the map λ 7→ −λ̄−1. Since ρ ◦ σ has fixed points, ρ induces
the involution λ 7→ λ̄−1 on Σ/σ, which fixes the points over λ ∈ S1.

Moreover there exist by assumption a T 2−family of complex line
bundles L̃x over Σ. For every x ∈ T 2 the line bundle L̃x is a subbundle
of V. By Theorem (10) there is a map

F : T 2 × Σ→ CP 3,

such that the line bundle L corresponding to the immersion f can
be reconstructed by L = πHF (−,∞). Thus we can define the quotient
bundle V/L and the projection of the L̃x to V/L defines a T 2−family of
complex line subbundles Lx of the topologically trivial complex rank
2 bundle V/L. We want to show that for fixed x ∈ T 2 the bundle
L∗x has degree g + 1. Theorem (9.1) states that the degree of Lx is
constant in x. Moreover, since f is simple the map F is unique up
to Möbius transformations of S4. Thus also the complex holomorphic
bundle πL(F (x,−)) = Lx ⊂ Σ × (V/L)x ∼= Σ × C2 is unique up to
Möbius transformations of CP 1 and therefore h0(L∗x) = 2, by the Ko-
daira embedding theorem. The degree d of L∗x satisfies (g+1) ≤ d, since
the symplectic form ω defined in (10.5) is zero at the branch points σ.
Thus by the Riemann-Roch theorem the line bundle L∗x is non-special
and deg(L∗x) = g + 1. Then, using Theorem (10.3), we can define a
family of flat connections ∇λ, λ ∈ C∗ on V/L of the form

∇λ = ∇+ 1
2
(1 + λ−1)ω′ + 1

2
(1 + λ)ω′′,

under which (πV/L(F (−, h)), πV/L(F (−, σ(h))) is a parallel frame of the
rank two bundle V/L.

The section ψh = πV/L(F (−, h)) is by definition a holomorphic sec-
tion with monodromy of V/L. Since f is simple, all holomorphic sec-
tions of V/L with trivial monodromy are given by the projection of
constant sections of V by Proposition (10.1). Constant sections of V
are parallel sections of ∇µ=1, where ∇µ is the constrained Willmore
associated family of flat connections. This is a complex 4 dimensional
space. Thus there exist only 2 trivial connections in the ∇λ family
of flat connections on V/L. Since ρ ◦ σ has fixed points on Σ and ρ
induces a involution on the µ−plane which fixes the point µ = 1, the
corresponding λ0 and λ1 is also fixed under the involution. Hence λ0
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and λ1 has length 1. The immersion f is given by the quotient of the
two holomorphic sections without monodromy. This equals the recon-
struction by the Sym-Bobenko formula. Thus f is a CMC immersion
in S3 or R3 by Theorem (10.3). �

10.7. Corollary. A conformally immersed CMC torus is simple if
and only if its arithmetic spectral genus p equals its geometric spectral
genus g.

Proof. The proof of the theorem shows that for a simple CMC
immersion we have p = g. On the other hand, the degree of the line
bundle Lx is always p + 1. Thus for p > g we obtain by Riemann-
Roch that h0(L∗x) > 2. Therefore the map F cannot be unique by the
Kodaira embedding theorem. �

Corollary. A simple constrained Willmore immersion in S3 of
spectral genus 1 is CMC in a space form, if ρ ◦ σ has fixed points.

Proof. The involution σ is branched over the two ends of the
spectral curve. Thus by the Riemann-Hurwitz formula we have that
there must be two other branch points and Σ/σ ∼= CP 1. �

Lemma. Let f be a simple and constrained Willmore conformal
immersion in S3 with even spectral genus. If Σ/σ ∼= CP 1, then the
involution ρ ◦ σ has fixed points.

Proof. Let Σ be a hyperelliptic spectral curve with hyperelliptic
involution σ and a anti-holomorphic involution ρ such that ρ◦σ has no
fixed points. Further, Σ has two marked points 0 and∞ corresponding
to the ends of the spectral curve. The involution ρ interchanges these
points. Since ρ ◦ σ has no fixed points, the involution ρ induces an
involution onCP 1, which has no fixed points. Let λ be the holomorphic
coordinate on CP 1 such that the point 0 ∈ Σ lies over λ = 0 and the
point ∞ ∈ Σ lies over λ =∞. There exist a unique involution on CP 1

interchanging the points λ = 0 and λ =∞ without fixed points, which
is

λ 7→ −λ̄−1

In this coordinate Σ is given by

η2 = Πg+1
i=1 q̄

−1
i (λ− qi)(λ+ q̄−1

i ) =: P (λ),

where qi,−q̄−1
i ∈ C and 0,∞ are the branchpoints of Σ. It is easy to

compute that

P (−λ̄−1) = (−1)g+1λ̄−(2g+2)P (λ).

Therefore a map ρ inducing the involution λ 7→ −λ−1 on CP 1 is given
by

(η, λ) 7→ (±ig+1η̄λ̄−(g+1),−λ̄−1).

For even g this cannot define an involution on Σ. �
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Corollary. A simple constrained Willmore immersion of even spec-
tral genus such that Σ/σ ∼= CP 1 is CMC in S3 or R3.

Corollary. A simple constrained Willmore immersion of spectral
genus 2 is either equivariant or CMC in a space form.

Proof. The spectral curve of a constrained Willmore immersion
is either a double covering or a four-fold covering of CP 1. In the first
case we obtain, as before, a CMC immersion in a space form. In the
second case we obtain by Riemann-Hurwitz formula that the involu-
tion σ has 2 or 6 branch points. If σ has 6 branch points then Σ/σ is
CP 1. Because the genus is even, the involution ρ ◦ σ has fixed points.
Therefore we get a CMC torus in a space form.

If σ is 2 branch points then Σ/σ is a torus. Let x0, x ∈ T 2. Then
we have

Lx = Ex ⊗ Lx0 .
Since the bundle L∗x⊗σ∗L∗x is independent of x by corollary (10.5), we
obtain

Ex ⊗ σ∗Ex = C.

Thus Lx lies in a affine translate of the Prym variety of Σ with respect
to σ for all x ∈ T 2. Since the Prym variety is complex 1 dimensional
and ρ∗Lx = Lxj, the image of the map

x ∈ T 2 7→ Lx ∈ Jac(Σ)

is real 1−dimensional. And we obtain by the same arguments as in
Corollary (10.2) that f is equivariant.

�





CHAPTER IV

The Equivariant Case

In this chapter we want to restrict ourselves to the case of equi-
variant conformal immersions f : T 2 → S3, which are not necessarily
constrained Willmore. In this case the induced Dirac operator on the
quotient bundle V/L is translational invariant. Thus the partial differ-
ential equation Dψ = 0, where ψ is a section of V/L with monodromy
can be reduced to an ordinary differential equation. We show that
the spectral curve of an equivariant torus with finite spectral genus is
hyperelliptic. Further we show that equivariant constrained Willmore
tori have spectral genus g ≤ 3.

Recall that since the target space of f is S3 the section ϕ := πL(1, 0)
of V/L is non vanishing and thus it is a trivializing section of the bundle.
The holomorphic structure D is determined by Dϕ = 0. The projection
of the mean curvature sphere congruence S to V/L defines a complex
structure J under which D splits into a J−commuting part ∂̄ and a
J−anti-commuting part Q. Q is the Hopf field of f.

11. The Hopf Field of a Equivariant Immersion

We want to show how the Hopf field Q is related to the confor-
mal Hopf differential used in the lightcone model. Let f : T 2 → S3

be a (m,n)−equivariant torus. We have shown in proposition (5.8)
that the conformal Hopf differential of f is given by 4q = κm,n + iΩ,
where κm,n is the curvature of the profile curve in the base space of the
(m,n)−Seifert fiber space with respect to the metric gm,n and Ω is the
curvature function of the corresponding principal fiber bundle.

The Hopf field Q is an endomorphism valued 1−form and the sec-
tion ϕ = πL(1, 0) is a trivializing section of V/L. Thus Q is uniquely
determined by the value of Q(ϕ). We want to switch to another trivial-
izing section which behaves nicer with respect to J in order to compute
Q.

61
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11.1. Lemma. Let f be a conformally immersed torus in S3 and
V/L the corresponding quotient bundle. Then we can choose a trivial-

izing section with monodromy ψ ∈ Γ(Ṽ/L) with

Jψ = ψi

∂̄ψ = 0,

where ∂̄ is the J−commuting part of the holomorphic structure D on
V/L. This section ψ is uniquely determined up to multiplication by a
complex constant and has monodromy ±1.

Proof. By (1.24) the i−eigenspace E−1 of πLS on V/L is a spin
bundle. Since ∂̄ defines a complex holomorphic structure on E−1, it is
dual to a spin structure and thus there exist a solution to the equation
∂̄ψ = 0 on the double covering of the torus. Thus we obtain a section
ψ with monodromy ±1 satisfying the conditions above. This condition
fixes ψ up to multiplication with a complex constant. �

Remark. Since ϕ is a holomorphic trivializing section of V/L ev-
ery other section can be written as ψ = ϕλ, where λ is quaternionic
valued function. Further we have by formula (1.13.1) that Jϕ = ϕN .
Here N is the left normal vector of f. Then we have

Jψ = J(ϕλ) = (Jϕ)λ = ϕNλ = ϕλλ−1Nλ = ψλ−1Nλ.

Thus Jψ = ψi reduces to

N = λiλ−1.

Since the group S3 acts transitively on S2 via

x 7→ µxµ̄,

and N, i ∈ S2 there exist a function λ, for which the equation above
holds. The function λ, as a H−valued function, is not unique. The
multiplication by a complex function µ, not necessarily of length 1,
from the right does not change the equation.

Lemma. Let f be a conformally immersed equivariant torus in S3

and let ψ be the trivializing section of V/L given in (11.1). Then there
exist a complex valued function q satisfying

Qψ = ψdz̄qj,

where z = x+ iy is a holomorphic coordinate of T 2 = C/Γ.

Proof. The Hopf differential Q is tensorial, satisfies ∗Q = −JQ
and takes values in K̄(V/L). Thus there is a quaternionic valued func-
tion q with

Q(ψ) = ψdz̄q̃.

Further Q is J− anti-commuting and

JQ(ψ) = −Q(Jψ) = −Q(ψi) = −Q(ψ)i.
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This is equivalent to

J(ψdz̄q̃) = ψ(idz̄q̃) = −ψ(dz̄q̃i),

thus
iq̃ = −q̃i.

Since the quaternionic function q̃ anti-commutes with i, it takes values
in span{j,k}. Therefore there is a complex function q with q̃ = qj. �

11.2. Proposition. For an equivariant conformal immersion f :
T 2 → S3 the function q defined in the previous lemma is the conformal
Hopf differential of the torus. In particular q depends only on y and is
periodic.

Proof. The previous Lemma states

Q(ψ) = ψdz̄qj,

for a complex valued function q.
We want to compute the function q explicitly. For the section ϕ =

πL(1, 0) of V/L we have Jϕ = ϕN. Thus by formula (1.13.2) we obtain

4Q(ϕ) = ϕ(NdN − ∗dN).

SinceQ is tensorial and there exist aH−valued function λ with ψ = ϕλ.
We get

(11.2.1) 4Q(ψ) = 4Q(ϕ)λ = ϕ(NdN−∗dN)λ = ψλ−1(NdN−∗dN)λ.

We want to make a special choice of λ in order to relate q to the confor-
mal Hopf differential of the torus. Then we show that ψ = ϕλ satisfies
the conditions of Lemma (11.1).

Let f be a conformally parametrized (m,n)−torus in S3 ∼= SU(2)
given by

f(x, y) = eil1xγ(y)eil2x,

where l1 = 1
2
(m + n), l1 = 1

2
(m − n) and γ is the profile curve with

γ′ ⊥ fy and |γ′|2 = |l1iγ + l2γi|2 =: h, see (5.3). With su(2) ∼= ImH
the normal vector of the surface is given by

hNorm =
∂f

∂x
f̄
∂f

∂y
= −∂f

∂x

∂f̄

∂y
f

and the partial derivatives are

∂f

∂x
= eil1x(l1iγ + l2γi)e

il2x =
√
hB̃,

∂f

∂y
= eil1xγ′eil2x =

√
hT̃ .

Recall that by Lemma (5.11) (T̃ (0, y), Norm(0, y), B̃(0, y)) is the Frénet
frame of the profile curve γ. Further a frame of the equivariant torus is
simply obtained by multiplying every argument of the Frénet frame of
γ by eil1x from the left and eil2x from the right. We denote this frame
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of the torus also by (T̃ , Norm, B̃).

Since f is conformal, its left normal vector N is given by

∗df = Ndf.

This function is the right translation of the normal vector of the surface
to su(2) ∼= ImH:

hN =
∂f

∂y

∂f̄

∂x
= −∂f

∂x

∂f̄

∂y
= Normf̄ .

Right translating the frame of the surface to ImH we obtain point
wise a positive oriented orthonormal basis of ImH

N, T :=
∂f

∂y
f̄ , B := −∂f

∂x
f̄ .

We choose λ to be the function which point wise rotate this basis
to the canonical basis (i, j,k) of ImH, i.e., we have

i = λ−1Nλ, j = λ−1Tλ k = λ−1Bλ.

Obviously, this choice of λ satisfies Jψ = Jϕλ = ϕNλ = ψi. Thus
Q(ψ) = ψdz̄qj, for a complex function q.

Now we compute λ−1(NdN −∗dN)λ. The Frénet equations for the
profile curve in S3 gives:

N ′orm = −
√
hκS3T̃ +

√
hτS3B̃

⇒ ∂N

∂y
= N ′ormf̄ −Normf̄

∂f

∂y
f̄

= −
√
hκT −

√
hτB −

√
hNT

= −
√
hκT −

√
h(τ + 1)B

∂N

∂x
= l1(iN −Ni).

Inserting into (11.2.1) we get

(11.2.2) Qψ = l1λ
−1(NiN + i)λ+ (

√
hκ+

√
h(τ + 1)i)jdz.

The term NiN + i is perpendicular to N and purely imaginary. And
because (N, T,B) is a orthonormal basis of ImH we have

NiN + i =< NiN + i, T > T+ < NiN + i, B > B.

We compute both summands separately. The multiplication by a unit
length quaternion does not change the metric on H ∼= R4. Thus

< NiN + i, T > =< NiN,NTN > + < NiN, T >

= 2 < N, iB >= − 2l2√
h
< N, ifif̄ > .
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And with N = Normf̄ we obtain

l1 < NiN + i, T >= −2l1l2√
h
< Norm, ifi > .

Now we turn to the second term:

< NiN + i, B > = 2 < i, B >= −2l1
1√
h
− 2l2 < i,

f if̄√
h
>

= −2l1
1√
h

+
2l2√
h
Re(ifif̄).

Note that for equivariant tori Re(ifif̄) = Re(iγiγ̄). Moreover let γ =
γ1 +jγ2 with complex functions γ1 and γ2. Then we have h = m2|γ1|2 +
n2|γ2|2 and of course |γ1|2 + |γ2|2 = 1. Thus we get

< NiN + i, B > = − 2√
h

(m|γ1|2 − n|γ2|2)

⇒ l1 < NiN + i, B > = −1

h
((m− n)m|γ1|2 − (m− n)n|γ2|2)

= mn√
h
−
√
h.

Put these results into (11.2.2) and use the formulas computed in
(5.9) and (5.10) we get

4q =
√
hκS3 − 2l1l2√

h
< Norm, iγi > +i2mn√

h
= κm,n + i2mn√

h
.

Because the curvature of the corresponding (m,n)-Seifert bundle is
given by Ω = 2mn√

h
we obtain

4q = κm,n + iΩ.

It remains to show that we can adjust the section ψ to get ∂̄ψ̃ = 0
preserving the property Jψ̃ = ψ̃i and the function q. In order to do so,
we can still multiply by a real valued function. The condition ∂̄ψ̃ = 0
holds if and only if D(ψ̃) anti-commutes with i. We have

D(ψ) = D(ϕλ) = (ϕdλ)′′ = ψλ−1dλ+Jψλ−1∗dλ = ψ(λ−1dλ+iλ−1∗dλ).

Because of the frame equations of the profile curve we have

B′(0, y) = (
√
hτ +

√
h)N(0, y).

The derivative of the equation λ−1Bλ = k then gives that

λ−1(y)λ′(y) = jv(y),

with a complex valued function v. Since λ(x, y) = eil1xλ(y), we get

λ−1dλ+ iλ−1 ∗ dλ = dz̄(l1λ
−1iλ+ jv(y))

Thus for r = e
∫ y
0 l1<λ

−1iλ,i>ds and λ̃ = λr the section ψ̃ = ϕλ̃ is holo-
morphic with respect to ∂̄. �
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12. The Spectral Curve of Equivariant Conformal
Immersions

12.1. Introducing a Spectral Parameter. The next step to-
wards the spectral curve of an equivariant torus is to investigate holo-
morphic sections of V/L with monodromy. Let f : T 2 = C/Γ → S3

be a conformal immersion. Let γ1 ∈ R and γ2 denote the generators
of the lattice Γ and let V/L be the quotient bundle associated to f.
Recall that the spectral curve is defined to be the normalization of the
analytic variety given by

{(h1, h2) ⊂ C∗×C∗|∃ϕ ∈ H0(Ṽ/L) with monodromy hγ1 = h1, hγ2 = h2}.

In order to compute the spectral curve, it is thus sufficient to know the
generic points.

Let ψ be the trivializing section of V/L with monodromy as in
Lemma (11.1) and Proposition (11.2). All sections of V/L are given by
ψu, for a quaternionic valued function u, which splits into two complex
functions u = u1 + ju2, ui : C → C. Then the equation D(ψu) = 0
reduces to

(12.1.1) ∂̄u+ (dz̄qj)u = 0,

where ∂̄ is the ordinary holomorphic structure for functions. By iden-
tifying H with C⊕ jC we get the matrix notation of equation (12.1.1).

Du =

(
∂̄ q̄
−q ∂

)(
u1

u2

)
= 0.

Since the potential q depends only on y, the differential operator D
is translational invariant, i.e., if u(x, y) = u1(x, y) + ju2(x, y) satisfies
Du = 0. Then we also have Du(x+x0, y) = 0, for an arbitrary constant
x0 ∈ R. Obviously both solutions have the same monodromy. By
Theorem (8.5) the space of holomorphic sections with monodromies
(hγ1 , hγ2) is generically complex 1 dimensional. Thus, at a generic
point of the spectral curve, we have that for all x0 ∈ R

u(x+ x0, y) = u(x, y)Ax0 ,

where Ax0 is a complex constant. In particular, we have u(x, y) =
u(0, y)Ax. Now consider the smooth function A : R→ C. Since A0 = 1,
Aγ1 = h1 and Ax0+x1 = Ax0Ax1 , we have that Ax = eax with a ∈ C and
eaγ1 = h1.
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Thus we can use the following ansatz: ui = eaxũi(y), where a ∈ C
is a constant representing the monodromy in x−direction. This yields

0 =

(
∂̄ −q
q̄ ∂

)(
u1

u2

)
=

(
∂̄(eaxũ1(y))− q(eaxũ2(y))
∂(eaxũ2(y)) + q̄(eaxũ1(y))

)
=

(
1
2
(aeaxũ1(y) + ieax ∂ũ1(y)

∂y
)− q(eaxũ2(y))

1
2
(aeaxũ2(y)− ieax ∂ũ2(y)

∂y
) + q̄(eaxũ1(y))

)
.

Dividing by eax we obtain(
1
2
(aũ1(y) + i∂ũ1(y)

∂y
)− q(ũ2(y))

1
2
(aũ2(y)− i∂ũ2(y)

∂y
) + q̄(ũ1(y))

)
= 0

⇔

(
−iaũ1(y) + ∂ũ1(y)

∂y
) + 2iq(ũ2(y))

iaũ2(y) + ∂ũ2(y)
∂y

) + 2iq̄(ũ1(y))

)
= 0.

This is equivalent to the equation

(12.1.2)

(
∂

∂y
+

(
−ia 2iq̄
2iq ia

))(
ũ2

ũ1

)
= 0.

We have shown the following theorem.

Theorem. Let f : T 2 → S3 be an equivariant and conformal im-
mersion and V/L the associated quotient bundle. The spectral curve of
f is determined by the kernel of the family of ordinary linear differential
operators

Da :=
∂

∂y
+

(
−ia 2iq̄
2iq ia

)
, a ∈ C.

12.2. Definition and Properties of the Spectral Curve. The
spectral curve is given by all possible monodromies of solutions to equa-
tion (12.1.2). Since (12.1.2) is an ordinary linear differential equation,
we have for arbitrary a ∈ C two linear independent solutions. Let Φ(a)
be the fundamental solution matrix to (12.1.2). Then we have

Φ(y + γ) = H(a)Φ(y),

where γ ∈ R is a period of the potential q, and H(a) is a SL(2,C)
matrix independent of y. The solutions with monodromy of (12.1.2)
are exactly the eigensolutions of H(a). Therefore the spectral curve is
the normalization of the variety

Spec(V/L) := {(b, a)|a ∈ C and b eigenvalue of H(a)}.

Lemma. For generic a ∈ C the matrix H(a) is diagonalizable and
has distinct eigenvalues.
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Proof. If H(a) is not diagonalizable, then H(a) still is trigonaliz-
able and has only one eigenvalue 1 or −1 with algebraic multiplicity 2.
Since Spec(V/L) is an analytic variety the map

p1 : Spec(V/L)→ C∗, (b, a) 7→ b

is holomorphic. Therefore, if there exist a open set U ⊂ C such that
H(a) is not diagonalizable for a ∈ U then the map p1 must be constant.
Thus all solutions to Da have either monodromy 1 or −1. Now let a ∈
iR and ua(y) be an eigensolution of Da. Further let ψ be the trivializing
section with monodromy introduced in (11.2). Then ψeaxua(y) is a
holomorphic section with monodromy (eaγ1 , 1) or (eaγ1 ,−1) in V/L. In
either case for a ∈ γ1i

2π
Z we obtain infinitely many holomorphic sections

with monodromy (1,−1) or (1, 1) which contradicts Theorem (8.5). �

The normalization of Spec(V/L) is a double covering of C, because
to every spectral parameter a ∈ C we have generically two different
eigenvalues H(a) and thus two different points in Spec(V/L). If the
spectral curve Σ̃ is of finite genus then it can be compactified to Σ by
adding two points at infinity, see (8.7). In this case the ends of the
spectral curve corresponds to the points over a = ∞. Thus we obtain
that Σ is a hyperelliptic curve, which is not branched over a =∞.

To be more explicit: The spectral curve of an equivariant immersion
of finite genus is defined to be the solution set of the equation

η2 = Tr(H(a))2 − 4 =: P (a),

since the eigenvalues of H(a) are given by the roots of the characteristic
polynomial and detH(a) = 1. This is a double covering of CP 1 with
a as a local coordinate. We denote the hyperelliptic involution by τ.
The projection of involutions on Σ defines involutions on CP 1. The
spectral curve has the following properties:

• There exist a quaternionic structure

ρ : a→ ā, (u1, u2)→ (−ū2, ū1),

which comes from the right multiplication by j.

• Because f maps to S3 we get that ∂̄ is a spin structure and
thus there exist an involution σ : Σ→ Σ which maps the mon-
odromy h to h−1 . With respect to the spectral parameter a
we have σ(a) = −a. On CP 1 the only fixed points of σ are
a = 0 and a =∞. Thus for equivariant conformal immersions
into S3 the involution σ has 2 or 4 branch points.

• Moreover, we get a third involution ρ ◦ σ and the induced in-
volution on CP 1 is given by a 7→ −ā. The imaginary axis of
CP 1 is fixed under this involution. On the spectral curve the
involution ρ ◦ σ has fixed points over a ∈ iR if and only if
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there are branch points of τ over the imaginary axis. This is
because ρ ◦ σ interchanges the points over a =∞. If there are
no branch points of τ on the imaginary axis, then by smooth-
ness of ρ ◦ σ, it interchanges the points over all a ∈ iR.

• The branch points of τ are interchanged by the involutions
above. Thus if a is a branch point then −a and ā and thus
also −ā are branch points of the spectral curve. Therefore the
roots of the polynomial P (a) defining the spectral curve has
also these symmetries and the polynomial P (a) is even and
has real coefficients. If the genus of Σ is even, we have by
Riemann-Hurwitz formula that the number of branch points
of τ is not divisible by 4 and we always have branch points of
τ on the imaginary axis. Thus ρ ◦ σ has always fix points in
this case.

• The two points over a = ∞ corresponds to the ends of the
spectral curve Σ̃.

• Because for a ∈ R the connection Da is a SU(2) connection,
H(a) lies also in SU(2). Hence there are no branch points of
Σ lying over the real axis.

12.3. Reconstruction of the Equivariant Immersion. The
surface can be reconstructed from the spectral curve and the solutions
of Da for suitable a ∈ C by the following theorem.

Theorem. Let a ∈ iR and let u be an eigensolution to Da. Then
the map f : T 2 → S3 determined by

dff̄ = −e−axu(y)−1(dzk)u(y)eax,

is conformally immersed and the potential q is the Hopf field of f in a
suitable trivialization. Here z = x + iy is a holomorphic coordinate of
T 2 = C/Γ.

Proof. Since u is the solution of an ordinary differential equation
it is non vanishing. Thus the constructed f is an immersion. Further f
is conformal because

∗dff̄ = −e−axu(y)−1(∗dzk)u(y)eax = −e−axu(y)−1i(dzk)u(y)eax

= −(e−axu(y)−1iu(y)eiax)e−axu(y)−1(dzk)u(y)eax

= Ndff̄ .

For equivariant tori in S3 we have that ϕ = πL(1, 0) is a non van-
ishing holomorphic section of V/L. Let ψ be the trivializing section
of V/L given in Proposition (11.2). In the proof of Proposition (11.2)
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we showed that ψ = ϕλr, where r is some real valued function and
λ : T 2 → S3 satisfies

N = λiλ−1 T = λjλ−1 B = λkλ−1.

Here T = ∂f
∂y
f̄ and B = −∂f

∂x
f̄ . Further we have λ(x, y) = eil1xλ(y),

for a l1 ∈ R and r = r(y). Since ϕ is holomorphic we have u :=
(λ(x, y)r(y))−1 is a eigensolution to the equation D−il1u = 0 and

dff̄ = −eil1xu(y)−1(dzk)u(y)e−il1x.

Thus by choosing a = −il1 we obtain the original immersion.
Now we want to show that also for arbitrary a ∈ iR the Hopf field of

f is q in the right trivialization of V/L. Again the section ϕ = πL(1, 0) is
a trivializing section of V/L. Thus ψ := ϕe−axu−1 has by construction
the property that Jψ = ψi. Further ψ satisfies

Dψ = (ψueiaxd(e−axu−1))′′ = −ψ∂̄(ueax)e−axu−1 = ψdz̄qj.

This shows ∂̄ψ = 0 and q is the Hopf field of f. �

12.4. Corollary. Let f : T 2 = C/Γ → S3 be a constrained Will-
more immersion with conformal Hopf differential q and left normal
vector N = el1ixN(y)e−l1ix. Let z be a holomorphic coordinate of C/Γ.
Then its constrained Willmore associated family defined in section (7)
can be obtained by rotating the z−plane.

Proof. Let f be a constrained Willmore torus in S3 with confor-
mal Hopf differential q and let f̃ be a surface in its associated family.
Then f̃ is equivariant and lies also in S3 and by definition its confor-
mal Hopf differential is given by qµ2, with µ2 ∈ S1. Thus the family of
Dirac operators corresponding to f̃ is given by

D̃a =
∂

∂y
+

(
−ia 2iq̄µ̄2

2iqµ2 ia

)
.

This is gauge equivalent to the Dirac operator of f. The gauge is given
by

g =

(
µ 0
0 µ̄

)
.

By the previous theorem there is a spectral parameter a ∈ iR and an
eigensolution u to Da such that

dff̄ = −e−axu(y)−1(dzk)u(y)eax.

Since Da and D̃a are gauge equivalent we get ũ = µ̄u(y)eax is a

solution to D̃a. Thus there is a immersion f̂ given by

df̂
¯̂
f = −e−axu(y)−1(µdzkµ̄)u(y)eax.

Thus by defining z̃ = zµ2 we obtain

df̂
¯̂
f = −e−axu(y)−1(dz̃k)u(y)eax.



13. THE NONLINEAR SCHRÖDINGER HIERARCHY 71

The immersion f̂ is equivariant and has conformal Hopf differential qµ2,

since the frame given by df̂
¯̂
f and left normal vector N is the Frénet

frame of its profile curve. Thus f̂ and f̃ are non congruent if and only
if they are both isothermic but then they lie in the same associated
family as isothermic surfaces by Theorem (3.3) of [BuPP]. �

13. The Nonlinear Schrödinger Hierarchy

The definition of the spectral curve for the family of Dirac opera-
tors Da is the same as for the focussing nonlinear Schrödinger equation
(NLS). We only consider spectral curves of finite genus, i.e., the spectral
curve Σ is a hyperelliptic curve. Then there exist a so-called polynomial
Killing field, whose eigenlines for generic a ∈ CP 1 coincides with the
space of eigensolutions of Da. The equations on the polynomial Killing
field gives rise to differential equations on the potential q. Comparing
these to the Euler-Lagrange equations of constrained Willmore tori we
show that the (arithmetic) spectral genus of equivariant constrained
Willmore tori in S3 is at most 3. In particular, equivariant tori are
of spectral genus 1 if and only if they are CMC in a space form and
associated to a Delaunay cylinder, in the sense of Theorem (3.3) of
[BuPP]. They have (arithmetic) spectral genus 2, if and only if they
are associated to a constrained Willmore Hopf cylinder as constrained
Willmore surfaces.
Hyperelliptic solutions of the NLS equation are constructed in [Pr],
under some further restrictions. We use a different approach here.

In order to proof the existence of a polynomial Killing field we need
the following theorem which can be found in [BoPP] (Proposition 3.1).

Theorem. For a family of elliptic operators, which depends holo-
morphically on a parameter in a connected 1−dimensional complex
manifold M, the minimal kernel dimension is generic and attained
away from isolated points pi ∈ N ⊂M. Further the vector bundle over
M \ N defined by the kernels of the elliptic operators extends through
the isolated points with higher dimensional kernel and is holomorphic.

Corollary. Let Da be the family of Dirac type operators on V :=
S1 ×C2. For a fixed a ∈ CP 1 we define

Ea := {ω ∈ Ω1(End0(V )) | dDaω = 0},
where End0(V ) denote the trace free endomorphisms of V and dDa is
the induced differential on Ω1(End0(V )). Then there is a holomorphic
line bundle E over CP 1 whose fiber over a generic spectral parameter
a ∈ CP 1 coincides with Ea.

Proof. Let B =

(
−ia 2iq̄
2iq ia

)
and y be a coordinate on S1. Then

locally X̃ ∈ Ω1(End0(V )) can be written as X̃ = Xdy, where X is a
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section of End0(V ). The equation dDaX = 0 is equivalent to

X ′ = [X,B].

This is a first order ordinary differential equation and therefore X is
fully determined by its initial value at y = 0. We denote the initial
value of X by X0.

At a generic point a ∈ CP 1 the holonomy of Da is diagonalizable
and has distinct eigenvalues µ±1. Let L1

a and L2
a define the correspond-

ing eigenlines. With respect to the splitting V = L1
a ⊕ L2

a we get

that X(a) =

(
−s v
w s

)
, where s ∈ H0(L1

a), v ∈ H0(L2
a ⊗ (L1

a)
∗) and

w ∈ H0(L1
a ⊗ (L2

a)
∗).

The bundle V is the pull-back of the spin bundle of S3 and inherits
the symplectic structure. Thus by V = L1

a⊕L2
a we get that L2

a = (L1
a)
∗.

The bundle L1
a⊗ (L2

a)
∗ = L1

a⊗L1
a is not trivial and has no holomorphic

sections because the monodromy of L1
a is not ±1 and thus L1

a is not a
spin bundle. We obtain v = w = 0. Therefore X is fixed by the initial
value of s and E is a complex line bundle over Σ. �

Remark. Note that at a generic point a ∈ CP 1 the eigenlines of
X(a) are exactly the eigenlines of the holonomy of Da and detX(a) 6= 0.

For any meromorphic section Y in E whose only pole over a = ∞
we have

deg E =
∑
p∈Σ

ordpY.

Thus if Y is zero at some a ∈ C then its pole order at infinity increases
and the degree of the the polynomial Y in a increases.

Definition. A non vanishing meromorphic section X of E with a
single pole at a =∞ is called a polynomial Killing field of Σ.

Since E is a holomorphic vector bundle over CP 1 we have that X
is polynomial in a ∈ CP 1 and thus it is given by

X =

p+1∑
i=0

Xia
idy,

where Xi is a section in Γ(End0(V )). For a ∈ R we have that the
holonomy of Da is SU(2)−valued and the corresponding eigenlines are
perpendicular. Thus we can choose the section s ∈ L1

a to be purely
imaginary-valued for a ∈ R. Then we obtain that the coefficients Xi

are also su(V ) valued.

Lemma. Let X be a polynomial Killing field of Σ. The equation
X ′ = [X,B] preserves the polynomial det(X).



13. THE NONLINEAR SCHRÖDINGER HIERARCHY 73

Proof. Since tr(X) = 0 we get 2det(X) = trX2. Differentiating
both sides yields

(detX)′ = tr(X ′)X = tr([X,B]X) = tr(XBX −BX2) = 0.

�

The polynomial Killing field X has degree p + 1. Therefore we get
that detX is a polynomial of degree 2p+ 2. The equation

η2 = detX

thus defines a possibly singular algebraic curve of genus p.

Theorem. The normalization of the algebraic curve given by

η2 = detX

is the spectral curve.

Proof. The eigenlines of the polynomial Killing field for generic
a ∈ C gives exactly the solutions with monodromy to the equation
Dau = 0. The branch points of the spectral curve are given by those
points where these eigenlines coalesce to an odd order. At these points
a ∈ C the polynomial Killing field is not diagonalizable and therefore
it has only one eigenvalue, which must be 0. Since trX(a) = 0 and X

is non vanishing , we get that X(a) is conjugate to the matrix

(
0 1
0 0

)
.

Thus detX(a) has an odd order zero at this point. �

Definition. An equivariant immersion has arithmetic spectral genus
p if and only if the corresponding polynomial Killing field has degree
p+ 1.

13.1. Lemma. The coefficient Xp+1 and Xp of a polynomial Killing
field X can be choosen to be

Xp+1 =

(
−i 0
0 i

)
Xp =

(
−ib 2iq̄
2iq ib

)
.

Proof. The degree of the polynomial Killing field is constant in y.
The Lax type equation

X ′ = [X,B]

yields differential equation on each coefficient Xi of X. Since B =(
−i 0
0 i

)
a+

(
0 2iq̄

2iq 0

)
we obtain:

X ′i = [Xi,

(
0 2iq̄

2iq 0

)
] + [Xi−1,

(
−i 0
0 i

)
], for i = 1, ..., p+ 1,

Further since Xp+2 = 0 we get that

[Xp+1,

(
−i 0
0 i

)
] = 0.
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Thus Xp+1 =

(
−s 0
0 s

)
. The term −s2 is the top coefficient of the

polynomial detX, which is constant along y. Therefore s is a constant
and we can normalize it to be i. Then we obtain

X ′p+1 = [Xp+1,

(
0 2iq̄

2iq 0

)
] + [Xp,

(
−i 0
0 i

)
] = 0,

and this yields Xp =

(
−ib 2iq̄
2iq ib

)
. �

Now we build in the symmetry of the spectral curve coming from
an immersion f : T 2 → S3. It is given by the involution σ, see (12.2).
We obtain

det(X(a)) = det(X(−a)).

The branch points are then symmetric with respect to the real axis and
the polynomial detX is even. Since

X =

(
−i 0
0 i

)
ap+1 +

(
−ib 2iq̄
2iq ib

)
ap + lower oder terms,

the determinant is given by

detX = a2p+2 + ba2p+1 + lower order terms.

Therefore b = 0. Further the involution ρ gives that the branch points
are symmetric with respect to the imaginary axis, which is satisfied for
Xi ∈ Γ(su(V )). In particular we have for immersions into S3 that the
sum of all branch points is zero.

Lemma. An equivariant torus f in S3 has spectral genus 0 if and
only if q ≡ const 6= 0, i.e., f is homogenous.

Proof. The polynomial Killing field of an equivariant torus in S3

with spectral genus 0 is given by X = B. Then we get X ′ = [X,B] = 0
and X is constant. Therefore

(13.1.1) q = const.

This Killing field has no zeros, if and only if q 6= 0. �

13.2. Theorem. An equivariant torus in S3 has spectral genus 1
if and only if it is CMC in a space form and not homogenous.

Proof. Let f be an equivariant conformal immersion. The genus
of the spectral curve is 1 if and only if there is a polynomial Killing
field of degree 2 satisfying X ′ = [X,B]. By (13.1) we have that such a
polynomial Killing field is given by

X =

(
−i 0
0 i

)
a2 +

(
0 2iq̄

2iq 0

)
a+

(
−ib 2ip̄
2ip ib

)
.
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The equation X ′ = [X,B] gives:

X ′0 =

(
ib′ −2ip̄′

−2ip′ −ib′
)

= [X0, X1] =

(
4pq̄ − 4p̄q 4bq̄
−4bq −4pq̄ + 4p̄q

)
X ′1 =

(
0 −2iq̄′

−2iq′ 0

)
= [X0, X2] =

(
0 −4p̄
4p 0

)
X ′2 = 0.

Thus we obtain

2p = −iq′,
p′ = −2ibq,

ib′ = 4pq̄ − 4p̄q,

(13.2.1)

Therefore

(13.2.2) b = −2|q|2 − 2c, for some real constant c.

This gives

(13.2.3) q′′ + 8(|q|2 + c)q = 0,

The constrained that detX is an even polynomial yields

q′q̄ − q̄′q = 0.

This condition is satisfied if and only if there exist a µ ∈ S1 such
that qµ is real. Thus we obtain that the function ξ defined in the
Euler-Lagrange equation (6.1.1) for constrained Willmore surfaces is
constant. Further, if q satisfies equation (13.2.3) then q satisfies also
the Euler-Lagrange equation. By the proof of theorem (7.1) the corre-
sponding surface is CMC in a space form.

On the other hand, to a given non constant solution q of the equa-
tion

q′′ + 8(|q|2 + c)q = 0,

defines a polynomial Killing field

X =

(
−i 0
0 i

)
a2 +

(
0 2iq̄

2iq 0

)
a+

(
−ib 2ip̄
2ip −ib

)
with p = − i

2
q′ and b = −2|q|2 − 2c. By construction X satisfies the

equation X ′ = [X,B]. If the so defined polynomial Killing field X
would have a zero for a ∈ C then there exist another section of E with
degree 1 without any zeros for all a ∈ C. Then q is constant by the
previous lemma. �

Remark. For Delaunay tori we have that q = 1
4
κ, where κ is the

curvature of the profile curve in the hyperbolic plane. The torus is
constrained Willmore if there is a λ1 ∈ R such that κ satisfies

κ′′ + 1
2
κ3 + (λ1 − 1)κ = 0.
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This is equivalent to equation (13.2.3) by defining c = 1
8
(λ1 − 1). The

spectral curve is given by the equation η2 = detX. The polynomial
detX is computed to be

detX = (a2 + b)2 − (2iq̄a+ 2ip̄)(2iqa+ 2ip)

= a4 + 2a2b+ 4|q|2a2 + b2 + 4|p|2

= a4 − 4ca2 + b2 + 4|p|2.
(13.2.4)

Since detX is independent of y we get b2 + 4|p|2 = d ∈ R is constant.
Thus the spectral curve defined here is the elliptic curve defined by the
equation

(κ′)2 = −1
4
κ4 − 2(λ1 − 1)κ2 − ν,

by defining a := −iκ, η := iκ′ and ν := d. This equation is a integrated
version of the Euler-Lagrange equation for elastic curves in H2. The
spectral curve is regular if and only if the polynomial 1

4
κ4 + 2(λ1 −

1)κ2 + ν has only simple roots.
Since all equivariant CMC tori lies in the associated family of De-

launay cylinders, there exist a µ ∈ S1 such that qµ is real. By replacing
1
4
κ by qµ we obtain the same statement for all equivariant tori of spec-

tral genus 1.

13.3. Theorem. An equivariant and non-isothermic torus in S3

has (arithmetic) spectral genus 2 if and only if it lies in the associated
family of a constrained Willmore Hopf cylinder.

Proof. For spectral genus 2 solutions the polynomial Killing field
is given by

X =

(
−i 0
0 i

)
a3 +

(
0 2iq̄

2iq 0

)
a2 +

(
−ib1 2ip̄1

2ip1 ib1

)
a+

(
−ib0 2ip̄0

2ip0 ib0

)
The equation X ′ = [X,B] gives by a straight forward calculation

2p1 = −iq′,
ib′1 = 4p1q̄ − 4p̄1q,

2p0 = 2b1q − ip′1,
ib′0 = −2ip′1q̄ − 2ip̄′1q,

(13.3.1)

Therefore we get

b1 = −2|q|2 − 2c, for some real constant c.

and b0 = q̄′q − q′q̄ + d, for some real constant d.

Thus

(13.3.2) q′′′ + 24|q|2q′ + 8cq′ + d = 0.

This equation is known to be the stationary mKdV equation. Further
the σ−symmetry gives:

(13.3.3) b0 + 2p1q̄ + 2p̄1q = 0 and b0b1 + 2p1p̄0 + 2p̄1p0 = 0.
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The first equation is equivalent to d = 0. And the second equation is
equivalent to:

p′1p̄1 − p1p̄
′
1 = 0,

which holds if and only if there is a µ ∈ S1 with µp1 ∈ iR. Since
2p1 = iq′, we obtain for the corresponding q that there exist a µ with
qµ = κ + ir for a real valued funciton κ and a real constant r ≥ 0. If
r = 0, the surface is isothermic. An isothermic and constrained Will-
more torus has spectral genus 1, because the function ξ in the Euler-
Lagrange equation is constant. For r 6= 0 the surface with conformal
Hopf differential q = κ + ir is a Hopf cylinder. The function κ is the
curvature of its profile curve. A Hopf cylinder satisfies the stationary
mKdV equation with d = 0 if and only if its profile curve is constrained
elastic, i.e., if and only if the cylinder is constrained Willmore.

To a given solution q of the equation

q′′′ + 24|q|2q′ + 8cq′ = 0

which does not satisfy equations (13.1.1) and (13.2.3) we can again
define a polynomial Killing field

X =

(
i 0
0 −i

)
a3+

(
0 −2iq̄
−2iq 0

)
a2+

(
ib1 −2ip̄1

−2ip1 −ib1

)
a+

(
ib0 −2ip̄0

2ip0 −ib0

)
such that the entries satisfy the equations in (13.3.1). ThenX ′ = [X,B]
and X has no zeros by assumption. So q has spectral genus 2. �

Remark. In contrast to the Delaunay case the constrained Will-
more Hopf tori can have closed solutions with singular spectral curve,
which are obtained by simple factor dressing of a circle, see (15.2).
Nevertheless the arithmetic genus p of the constrained Willmore Hopf
tori satisfies p ≤ 2, since the profile curve is always constrained elastic.

13.4. Theorem. Let f : T 2 → S3 be an equivariant constrained
Willmore torus, then its (arithmetic) spectral genus is at most 3.

Proof. An equivariant torus has arithmetic spectral genus p = 3
if and only if it has a polynomial Killing field of the form:

X =

(
−i 0
0 i

)
a4 +

(
0 2iq̄

2iq 0

)
a3 +

(
−ib2 2ip̄2

2ip2 ib2

)
a2

+

(
−ib1 2ip̄1

2ip1 ib1

)
a+

(
−ib0 2ip̄0

2ip0 ib0

)
.
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Again the equation X ′ = [X,B] yields equations for each entry of
the Xi. We obtain

2p2 = −iq′

ib′2 = 4p2q̄ − 4p̄2q,

⇒ b2 = −2|q|2 − 2c, for some real constant c.

2p1 = 2b2q − ip′2
ib′1 = −2ip′2q̄ − 2ip̄′2q,

⇒ b1 = q̄′q − q′q̄ + d, for some real constant d.

2p0 = 2b1q − ip′1
ib′0 = −2ip′1q̄ − 2ip̄′1q,

⇒ b0 = 6|q|4 + 2c|q|2 + 1
2
(q′′q̄ + q̄′′q − q′q̄′) + e, for some real constant e.

(13.4.1)

By σ−symmetry we have

b1 + 2p2q̄ + 2p̄2q = 0 ⇔ d = 0,

b1b2 + 2p0q̄ + 2p̄0q + 2p2p̄1 + 2p̄2p1 = 0,

b0b1 + 2p1p̄0 + 2p̄1p0 = 0.

(13.4.2)

Thus we obtain the following differential equation for the conformal
Hopf differential q of a spectral genus 3 immersion.
(13.4.3)
q′′′′+96|q|4q+16q̄′q′q+24(q′)2q̄+8q̄′′q2+32|q|2q′′+8c(q′′+8|q|2q)+16eq = 0,

with real constants c and e.
The second condition of (13.4.2) is equivalent to

(13.4.4) Im
(
q′′′q̄ + 24|q|2q̄q′ + 8cq̄q′ + q̄′′q′

)
= 0.

Note that this condition holds if q is real. Further if there is a µ ∈ S1

with q′µ is real then the condition above reduces to equation (13.3.2).
Thus there is no spectral genus 3 solution with q = κ + ri such that
detX is even.

On the other hand the equations in (13.4.1) defines a polynomial
Killing field of degree 4 for all solutions of (13.4.3) which do not already
satisfy the equations (13.1.1), (13.2.3) and (13.3.2).

We want to show that a solution to the Euler-Lagrange equation
of an equivariant constrained Willmore torus satisfies the equation
(13.4.3). The Euler-Lagrange equation for equivariant constrained Will-
more tori in S3 stated in (6.1.1) has order 2 thus it is necessary to
differentiate twice to obtain:
(13.4.5)
q′′′′+ 24q̄′q′q+ 24(q′)2q̄+ 4q̄′′q2 + 20|q|2q′′+ 8Cq′′− 8ξq′′+ Re(λq) = 0.
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Note that if q satisfies the constrained Willmore equation (6.1.1) for a
surface in S3 then it also satisfies (13.4.2). For a constrained Willmore
surface we have a whole associated family of solutions to the Euler-
Lagrange equation. Inside this associated family we have always a
surface such that λ is real. Thus we can fix λ without loss of generality
to be real. A computation shows that one can integrate the real and
imaginary part of equation (refEL) once and we obtain:

q̄′q′ = −4|q|4 + 8ρ2 − 8C|q|2 − λq2
1 − d̃,

with q = q1 + iq2.

Using this equality the equation (13.4.5) is equivalent to the 4−th
flow given in (13.4.3) by defining the constants in (13.4.5) such that

16C − 8c+ λ1 = 0,

2d+ d̃+ 8C2 + 8cC = 0.
(13.4.6)

�

The space of spectral genus 3 solutions such that the spectral curve
is defined by an even and real polynomial is 8 dimensional but the space
of solutions for the Euler-Lagrange equation has only 7 dimensions.
Thus not all spectral genus 3 solutions yield constrained Willmore tori.
But a solution of a ordinary differential equation is uniquely deter-
mined by its initial values. Thus a solution of (13.4.3) yields an equi-
variant constrained Willmore surface if and only if its initial conditions
coincides with the initial values for a solution of the Euler-Lagrange
equation.





CHAPTER V

The Construction of Delaunay Tori and
Constrained Willmore Hopf Tori

In this chapter we want to derive explicit formulas for the Delaunay
and the constrained Willmore Hopf tori. Delaunay tori are surfaces ob-
tained by the rotation of elastic curves in the upper half plane, viewed
as the hyperbolic plane, around the x− axis. They have constant mean
curvature in a space form. A conformal parametrization corresponds
to an arclength parametrization of the curve in the hyperbolic plane.
Hopf tori are given by the preimage of a closed curve in the round
S2 under the Hopf fibration. The conformal constraint is equivalent
to length and enclosed area constraints for the curve. By Theorems
(15.5), (13.2) and (7.1) all equivariant constrained Willmore tori of
spectral genus g ≤ 2 are associated to Delaunay cylinders or Hopf
cylinders. The fact that makes these surfaces easy to construct is that
the imaginary part of the conformal Hopf differential is either 0 for the
Delaunay cylinders or 1

2
for the Hopf cylinders. Thus we only have

to deal with one real function which is the curvature of the curve. In
these cases equations (6.1.1) reduce to the Euler-Lagrange equations
for (constrained) elastic curves in the hyperbolic plane and the round
2−sphere with curvature 4, respectively, as shown in (6.3). Free elastic
curves in H2, i.e., critical points of the energy functional for curves
without any constraints, corresponds to the minimal Delaunay cylin-
ders, while Willmore Hopf cylinders are given by certain elastic curves.

What we construct in the following are constrained elastic curves
in space forms. The Miura transformation of the curvature is the
Schwarzian derivative of the curve in the conformal 2−sphere CP 1.
Since the Willmore functional is a conformal invariant functional this
setting seems to be more natural than the metric one. We construct
the constrained elastic curves by using the Weierstrass elliptic func-
tions. The definitions and properties that are needed were discussed in
chapter I, section (3).

In their paper [LS] Langer and Singer constructed elastic curves
in S2 and H2 without the enclosed area constraint. Our result is a
generalization of this and uses the Schwarzian derivative instead of the
curvature of the curve.

81
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14. Constrained Elastic Curves in Space Forms

14.1. The Scattering Problem. Consider an arclength para-
metrized closed curve γ into a two dimensional space form of constant
curvature G and let κ be its geodesic curvature in the space form. The
Euler-Lagrange equation for a constrained elastic curve is then given
by:

(14.1.1) κ′′ +
1

2
κ3 + (µ+G)κ+ λ = 0,

where the real parameters µ and λ can be interpreted as the length
constraint and the enclosed area constraint for closed curves, respec-
tively (not to be confused with the spectral parameters in the previous
sections). A solution to µ = λ = 0 is a free elastic curve in the space
form of curvature G. By multiplying the equation with 2κ′ one can
integrate the equation once and obtain

(14.1.2) (κ′)2 = −1

4
κ4 − (µ+G)κ2 − 2λκ− ν.

Here ν is a real integration constant. This equation is the well known
stationary first order modified Korteweg-de-Vries (mKdV) equation.
We denote the polynomial on the right hand side by P4.

The funciton κ must be real valued in order to be the curvature
function of a curve. Such a solution for κ exists if and only if P4 has real
roots. Since we are interested in tori, we need the corresponding curve
in S2 or H2 to be closed. Thus the solutions of the mKdV equation
we are looking for are periodic. A real-valued periodic function always
achieves its maximum and minimum and therefore there is a s0 with
κ′(s0) = 0. Thus by translation of s we can assume without loss of
generality that s0 = 0. So we solve an initial value problem for equation
(14.1.1) with initial values

κ(0) = κ0 and κ′(0) = 0,

where κ0 is a real root of P4. If κ0 is a multiple zero of P4 then it is also
a root of ∂P4

∂κ
, which is the right hand side of equation (14.1.1). There-

fore κ ≡ κ0 is the unique solution to the given initial value problem by
Picard-Lindelöff.

The so called asymptotic solutions are obtained if P4 has multiple
roots and we choose the initial value κ0 to be a simple root.

Proposition. Asymtotic solutions with λ = 0 are never periodic.

Proof. For λ = 0 we have the differential equation

(κ′)2 = −1
4
κ4 − 2(µ+G)κ2 − ν.

The polynomial on the right hand side is even. Asymptotic solutions
are obtained if this polynomial has multiple roots. In order to obtain
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non constant solutions we need at least 1 simple root of P4. By symme-
try the only case to consider is that the multiple root of P4 is at κ = 0
with multiplicity 2 and we have 2 simple roots for κ = ±κ0.

We solve a initial value problem for the differential equation of
second order

κ′′ + 1
2
κ3 + (µ+G)κ = 0,

with initial value κ(0) = κ0 and κ′(0) = 0. At κ(0) we obtain that

κ′′(0) = ∂(κ′)2

∂κ
< 0. Thus there exist a ε > 0 with κ′(t) < 0 for t ∈

(0, ε). The curvature function κ decreases monotonically for t ∈ (0, ε).
Let T := sup{ε ∈ R+|κ′(t) < 0 for t ∈ (0, ε)}. If T < ∞, then
κ′(T ) = 0 and we obtain κ(T ) is a root of P4. Since κ is continuos, we
obtain κ(T ) = 0, which is a multiple root. By Picard-Linderlöff we get
then that κ(t) ≡ 0 is the unique solution to the initial value problem
κ′(T ) = κ(T ) = 0. This contradicts κ(0) = κ0 6= 0. Therefore T = ∞
and κ(t) is not periodic. �

Corollary. Equivariant tori of spectral genus 1 are simple.

Proof. The spectral curve of a Delaunay torus is given by

(κ′)2 = −1
4
κ4 − 2(µ+G)κ2 − ν.

Solutions where the polynomial on the right hand side has multiple
roots are either constant, which are of spectral genus 0, or non periodic.
The polynomial P4 has therefore only simple roots. Thus by Corollary
(10.7) we get that the torus is simple. For other tori of spectral genus
1 there exist a µ ∈ S1 such that qµ is real valued, where q is the
conformal Hopf differential of the immersion. By replacing 1

4
κ by qµ,

we obtain that all CMC tori of spectral genus 1 are simple. �

We exclude the case that P4 can have multiple roots in the following.

For polynomials of degree 4 there exist an explicit algorithm to
compute their roots. The procedure is the following: Assign to every
polynomial of degree 4 a polynomial of degree 3, which is called the
cubic resolvent, and compute the roots of the first polynomial out of
the roots of the second.

The cubic resolvent of P4 is given by:

(14.1.3) crz = z3 + 8(µ+G)z2 + 16((µ+G)2 − ν)z − 64λ2.

By substituting z = x − 8
3
(µ + G) we get the normal form of the

polynomial, i.e., crx = x3 + px+ q with

p = −16
3

(µ+G)2 − 16ν

and
q = −128

27
(µ+G)3 + 128

3
ν(µ+G)− 64λ2.
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The properties of the roots of the cubic resolvent heavily depend on
the sign of its discriminant

D = 1
4
q2 + 1

27
p3.

There are 3 cases to consider:

• D = 0 : there exist multiple roots of P4.
• D < 0 : (orbitlike) the cubic resolvent crz has 3 real roots.

If all of them are non-negative, then P4 has 4 real roots. Oth-
erwise P4 has no real roots and there is no real solution for
κ.
• D > 0 : (wavelike) the cubic resolvent has 1 real root and
P4 has 2 real roots.

Lemma. Let P4 be the real polynomial of degree 4 given in (14.1.2)
with only simple roots and let crz be its cubic resolvent. Then P4 has
real roots if and only if all real roots of crz are non-negative.

Proof. Let e1, e2 and e3 be the roots of crz. Then the cubic
resolvent can be written as crz = (z − e1)(z − e2)(z − e3). We obtain

crz(0) = −e1e2e3 = −64λ2 ≤ 0.

For D > 0 there is only 1 real root and a pair of complex conjugate
roots of crz. Therefore the real root must be non negative. For D < 0
all roots of crz must be non-negative in order to obtain real roots of
P4. �

Now we fix an arclength parametrized constrained elastic curve γ
in a 2−dimensional space form of constant curvature G. This curve
has a real valued curvature function κ satisfying the stationary mKdV
equation for fixed constants µ, λ and ν. The solutions to the mKdV
equation can be transformed via Miura transformation to solutions of
the KdV equation. A geometric way to do this is described in [BuPP].
It works as follows: Take a curve γ inR2, H2 orS2. By interpreting these
space forms as subsets of CP 1, the curve γ can be lifted to a curve γ̃
in C2 (not necessarily closed) with respect to the canonical projection
from C2 to CP 1. Then there exist a complex function a with γ̂ := aγ̃
such that detC(γ̂, γ̂′) = 1. Thus γ̂′′ and γ̂ are linear dependent over C
and there exist a complex function q with

(14.1.4) γ̂′′ + qγ̂ = 0.

An equations of this type is called Hill’s equation.

Remark. We call q the Schwarzian derivative of the curve γ. It is
invariant under Möbius transformations of CP 1. To a given q we can
find by solving (14.1.4) a curve with Schwarzian derivative q unique up
to Möbius transformations of CP 1.
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Lemma. Let γ be a regular and arclength parametrized curve in a
space form of constant curvature G and let κ be its geodesic curvature.
Then the Schwarzian derivative q of γ is given by

q =
iκ′

2
+
κ2

4
+
G

4
.

Proof. It is only necessary to consider the normalized cases G =
0, 1,−1.

G = 0. Let γ : I → R2 = C be a regular and arclength parametrized
curve. Using affine coordinates we get that [γ, 1] is a curve in CP 1.
Thus γ̃ := (γ, 1) is a lift of the curve γ to C2. Then γ̂ = 1√

iγ′
(γ, 1) is

the lift of γ with the property that det(γ̂, γ̂′) = 1. Therefore γ̂ and γ̂′′

are linearly dependent and there exist a complex function q with

γ̂′′ + qγ̂ = 0.

The frame equations of a plane curve is given by(
T
N

)′
=

(
0 κ
−κ 0

)(
T
N

)
,

where T = γ′ is the tangent vector, N = iT is the normal vector and
κ is the curvature of the curve. Thus we have γ′′ = iκγ′ and we can
compute

γ̂′ =

(
−γ′′

2γ′
√
iγ′
γ + 1√

iγ′
γ′

−γ′′
2γ′
√
iγ′

)
=

(
−iκ

2
√
iγ′
γ + 1√

iγ′
γ′

−iκ
2
√
iγ′

)

γ̂′′ =

((
−iκ′
2
√
iγ′
− κ2γ′

4γ′
√
iγ′

)
γ

−iκ′
2
√
iγ′
− κ2γ′

4γ′
√
iγ′

)
=

(
( −iκ

′

2
√
iγ′
− κ2

4
√
iγ′

)γ
−iκ′
2
√
iγ′
− κ2

4
√
iγ′

)
= (−iκ′

2
− κ2

4
)γ̂.

This yields q = iκ
′

2
+ κ2

4
.

G = 1. Let γ : I → S2 be a regular and arclength parametrized
curve in the 2−sphere. In the quaternionic language the Hopf fibration
is given by

π : S3 ⊂ H→ S2 ⊂ ImH, x 7→ x̄ix.

Let η the horizontal lift of γ to S3 with respect to π, i.e., ηiη̄ = γ
and < iη, η′ >= 0. Since η′ is a quaternionic valued function and η
is non vanishing, there exist a quaternionic function u : I → H such
that η′ = 1

2
uη. Because < η, η′ >= 0 and < iη, η′ >= 0 we have that

u : I → span{i, j}. Further

T = γ′ = η̄′iη + η̄iη′ = η̄iuη,

⇒ |u|2 = 1.
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Thus there exists a real valued function θ with u = eiθj. The normal
vector of the curve γ in the 2−sphere is the vector which is simultane-
ously perpendicular to T and γ. Hence it is given by

N = γ × T = γT = −η̄uη,
where × denotes the vector product in R3 ∼= ImH. The geodesic cur-
vature of γ is then given by

κ =< γ′′, N >= θ′.

Now consider H ∼= C2 as a complex vector space. Then η = η1 + η2j =(
η1

η2

)
with complex funtions η1 and η2 and

η′ =

(
η1

η2

)′
=

1

2
eiθ
(
−η̄2

η̄1

)
.

Therefore γ̂ =
√

2e−iθ/2
(
η1

η2

)
is a lift of γ to C2 with det(γ̂, γ̂′) = 1.

To obtain the Schwarzian derivative we have to compute the second
derivative of γ̂.

γ̂′ = −i θ′
2

√
2e−iθ/2

(
η1

η2

)
+
√

2e−iθ/2
(
η1

η2

)′
= −iκ

2

√
2e−iθ/2

(
η1

η2

)
+

√
2

2
eiθ/2

(
−η̄2

η̄1

)
⇒ γ̂′′ = (−iκ′

2
− κ2

4
)
√

2e−iθ/2
(
η1

η2

)
− 1

4

√
2e−iθ/2

(
η1

η2

)
= −iκ

2
− κ2

4
− 1

4
γ̂.

And we get q = iκ
2

+ κ2

4
+ 1

4
.

G = -1. Consider the hyperbolic plane H2 as the upper half plane
{(x, y) ∈ R2|y > 0} of R2 together with the metric gH = 1

y2
(dx2 +dy2).

Obviously, this metric lies in the conformal class of the euclidiean met-
ric of R2. Let γ = (γ1, γ2) be a regular and arclength parametrized
curve in the upper half plane with respect to the euclidean metric. Then
γ ◦ϕ with ϕ′ = γ2(ϕ) is an arclength parametrized curve in the hyper-
bolic plane. Like in the G = 0 case we have that γ̃ = (γ◦ϕ, 1) is a lift of
γ ◦ϕ to C2. Therefore γ̂ = 1√

iγ2(ϕ)γ′(ϕ)
γ̃ satisfies det(γ̂(ϕ), (γ̂(ϕ))′) = 1.

The geodesic curvature κ of γ(ϕ) in the hyperbolic plane is given by

κ = gH(∇H
(γ(ϕ))′(γ(ϕ))′, NH),

where ∇H is the Levi-Civita connection of H2 and NH the normal
vector of the curve inH2. Because the hyperbolic metric lies in the same
conformal class as the euclidean metric we have that NH = γ2(ϕ)N,
where N is the normal vector of the curve in the R2 metric. Further
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the change of the Levi-Civita connection due to a conformal change of
the metric by e2λ is known to be

∇λ
XY = ∇XY − (X · λ)Y − (Y · λ)X− < X, Y > grad(λ).

Here λ = − ln(y). Thus we have that the geodesic curvature of the
curve κ in H2 is given by

κ(ϕ) = γ2(ϕ)κE(ϕ) + γ′1(ϕ)

and κE(ϕ) =< γ′′(ϕ), iγ′(ϕ) > is the curvature of the curve in the eu-
clidean metric. We have γ′′1 (ϕ) = −κE(ϕ)γ′2(ϕ) and γ′′2 (ϕ) = κE(ϕ)γ′1(ϕ)
and κ′(ϕ) = γ2(ϕ)2κ′E(ϕ). And now γ̂′′ is computed to be

(γ̂)′ =

(
1√

iγ2(ϕ)γ′(ϕ)

)′(
γ(ϕ)

1

)
+

1√
iγ2(ϕ)γ′(ϕ)

(
γ2(ϕ)γ′(ϕ)

0

)
= −γ2(ϕ)(γ′2(ϕ)γ′(ϕ) + γ2(ϕ)γ′′(ϕ))

2γ2(ϕ)γ′(ϕ)
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
+

(
−i
√
iγ2(ϕ)γ′(ϕ)

0

)
= −(γ′2(ϕ) + iκEγ2(ϕ))

2
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
+

(
−i
√
iγ2(ϕ)γ′(ϕ)

0

)
⇒ (γ̂)′′ = −(γ2(ϕ)γ′′2 (ϕ) + iκ′E(ϕ)γ2

2(ϕ) + iκE(ϕ)γ2(ϕ)γ′2(ϕ))

2
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
+

(γ′2(ϕ) + iκE(ϕ)γ2(ϕ))2

4
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
= −(γ2(ϕ)κE(ϕ)γ′1(ϕ) + iκ′E(ϕ)γ2

2(ϕ) + iκE(ϕ)γ2(ϕ)γ′2(ϕ))

2
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
+

((γ′2(ϕ))2 − κ2
E(ϕ)(γ2(ϕ))2 + 2iκE(ϕ)γ2(ϕ)γ′2(ϕ))

4
√
iγ2(ϕ)γ′(ϕ)

(
γ(ϕ)

1

)
=

1

4

(
−2γ2(ϕ)κE(ϕ)γ′1(ϕ)− 2iκ′E(ϕ)γ2

2(ϕ) + 1− (γ′1(ϕ))2 − κ2
E(ϕ)(γ2(ϕ))2

)
γ̂.

Since

κ2(ϕ) = γ2
2(ϕ)κ2

E(ϕ) + γ′21 (ϕ) + 2γ2(ϕ)γ′1(ϕ)κE(ϕ),

we get

q = iκ
′

2
+ κ2

4
− 1

4
.

�

Lemma. Let γ be an arclength parametrized curve in a space form
of curvature G. Let κ be its geodesic curvature and q its Schwarzian
derivative. If the curve is constrained elastic, i.e., κ is a real solution
of the stationary mKdV equation (14.1.2) with real constants λ, µ,G
and ν, then q satisfies the stationary KdV equation

(q′)2 + 2q3 + cq2 + 2dq + e = 0,
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with real constants c, d and e given by

c = µ− G
2

d = −ν
4
− G2

16
− µG

4

e = cd+ λ2

4
+ µ2G

4
− νG

4
.

Proof. Let γ be an arclength parametrized and constrained elastic
curve in a space form of constant curvature G and let κ be its geodesic
curvature and q = iκ

′

2
+ κ2

4
+ G

4
be its schwarzian derivative. Then κ

satisfies the equations:

κ′′ + 1
2
κ3 + (µ+G)κ+ λ = 0,

and

(κ′)2 + 1
4
κ4 + (µ+G)κ2 + 2λκ+ ν = 0.

Therefore we can compute (q′)2.

q′ =
i

2
κ′′ +

1

2
κ′κ = − i

4
κ3 − (µ+G)i

2
κ− iλ

2
+

1

2
κ′κ,

⇒ (q′)2 = −1

8
κ6 − (µ+G)2

4
κ2 − λ2

4
− ν

4
κ2 − (µ+G)

2
κ4 − 3λ

4
κ3 − i

4
κ′κ4

− (µ+G)λ

2
κ− (µ+G)i

2
κ2κ′ − iλ

2
κ′κ.

Moreover q2 and q3 are computed to be

q2 =

(
i

2
κ′ +

1

4
κ2 +

G

4

)2

= −1

4
(κ′)2 +

1

16
κ4 +

G2

16
+
i

4
κ′κ2 +

Gi

4
κ′ +

G

8
κ2

=
1

8
κ4 +

(µ+G)

4
κ2 +

1

2
λκ+

ν

4
+
G2

16
+
i

4
κ′κ2 +

Gi

4
κ′ +

G

8
κ2,

q3 =

(
iκ′

2
+
κ2

4
+
G

4

)(
1

8
κ4 +

(µ+G)

4
κ2 +

λ

2
κ+

ν

4
+
G2

16
+
i

4
κ′κ2 +

Gi

4
κ′ +

G

8
κ2

)
=

1

16
κ6 +

i

8
κ′κ4 +

3µ

16
κ4 +

9G

32
κ4 +

3λ

8
κ3

+
i(µ+ 2G)

8
κ′κ2 +

3ν

16
κ2 +

3G2

64
κ2 +

3(µ+G)G

16
κ2 +

iG

16
κ′κ2 +

iλ

4
κ′κ

+
iν

8
κ′ +

3iG2

32
κ′ +

λG

8
κ+

3νG

16
+
G3

64
+
λG

4
κ.
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Thus

(q′)2 + 2q3 = −
(µ− G

2
)

8
κ4 − µ2

4
κ2

− iµ

4
κ′κ2 +

ν

8
κ2 +

7G2

32
κ2 − µG

8
κ2 +

iG

8
κ′κ2 − µλ

2
κ

+
iν

4
κ′ +

3iG2

16
κ′ +

3νG

8
+
G3

32
+
λG

4
κ− λ2

4
.

In order to cancel the highest order terms we need to choose c = (µ−G
2

)
and obtain

⇒ (q′)2 + 2q3 + (µ− G
2

)q2 =
ν

8
κ2 +

G2

32
κ2 +

iν

4
κ′ +

iG2

16
κ′ +

νG

4
− λ2

4

+
µν

4
+
µG2

16
+
µGi

4
κ′ +

µG

8
κ2

=

(
ν

2
+
G2

8
+ µ

G

2

)
q +

(
µ− G

2

)(
ν

4
+
G2

16
+ µ

G

4

)
− λ2

4
− µ2G

4
+
νG

4
.

So we get

c = µ− G
2

d = −ν
4
− G2

16
− µG

4

e = cd+ λ2

4
+ µ2G

4
− νG

4
.

�

By substituting q̃ = q + 1
6
c we obtain:

(14.1.5) (q̃′)2 = −2q̃3 + 2g2q̃ − 4g3,

with

g2 =
c2

12
− d =

(µ+G)2

12
+
ν

4

g3 = −cd
12

+
e

4
+

1

63
c3 =

1

216
(µ+G)3 +

1

16
λ2 − 1

24
ν(µ+G).

In particular, we have that both constants are real. We denote the
polynomial on the righthand side by P̃3. Substituting q̃ = −1

8
x in P̃3

we get the polynomial 1
256
x3− 1

3
g2x−4g3. Then 1

256
P̃3(x) is the normal

form of the cubic resolvent of P4 given in (14.1.3). So there are the
same 3 cases for the number of roots as before.

Equation (14.1.5) is solved by the Weierstrass ℘−function

q̃(s) = −2℘(s+ s0),

for some constant s0 ∈ C∗. The ℘−function is defined on a torus C/Γ
with a lattice Γ determined by the lattice invariants g2 and g3. Because



90 V. DELAUNAY AND HOPF TORI

g2 and g3 are real, Γ is rectangular or its double covering is rectangular,
see chapter I section (3). As we started with an elastic curve, we already
know that

(14.1.6) q̃(s) =
iκ′

2
+
κ2

4
+

1

6
(µ+G).

Since we have chosen κ′(0) = 0 we get: −2℘(s0) = q̃(0) ∈ R. Be-
cause the double covering of Γ is rectangular and q̃ is not a real val-
ued function we obtain s0 ∈ iR∗ or s0 ∈ iR∗ + ω1, where ω1 the
real half period of Γ. If s0 ∈ iR∗ + ω1, let q̃(s) = −2℘(s + s0) and
q̃1(s) = −2℘(s−ω1 + s0) = −2℘(s+ s̃0) with s̃0 ∈ iR. Then we get by
Picard-Lindelöff q̃(s) = q̃1(s+ ω1), i.e., both functions differ only by a
translation of s. Thus without loss of generality we can choose s0 ∈ iR∗.

Let q̃ = −2℘(s + s0) as before, then we can reconstruct a whole
family of curves γE with Schwarzian derivative qE = (q̃ − E), for an
arbitrary parameter E ∈ C:
Let π denote the projection from C2 to CP 1

(z, w) 7→ [z, w].

Any curve γE in CP 1 with Schwarzian derivative qE = (q̃ − E) has a
lift γ̂E into C2 satisfying the equation

γ̂′′E + qE γ̂E = 0

or equivalently

(14.1.7) γ̂′′E + q̃γ̂E = Eγ̂E,

where γ̂E = (γ̂1
E, γ̂

2
E) with complex valued functions γ̂iE, i = 1, 2. Thus

γ̂iE, i = 1, 2 also satisfies the equation

(γ̂iE)′′ + q̃γ̂iE = Eγ̂iE.

On the other hand, if for a E ∈ C there exist two complex linear
independent solutions γ̂iE for the equation1

(γ̂iE)′′ + q̃γ̂iE = Eγ̂iE,

then the curve on CP 1 given by

(14.1.8) γE = π((γ̂1
E, γ̂

2
E)) = [γ̂1

E, γ̂
2
E]

has Schwarzian derivative qE. The functions γ̂iE can be expressed in
terms of the Weierstrass ζ and σ functions, since q̃ = −2℘(x+ x0). We

1At points E ∈ C where only 1 solution with monodromy exits, which happens
exactly at branch points of the Weierstrass ℘ function, there exist another re-
construction for the curve. We will show that this case never occurs for curves
corresponding to equivariant tori.
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have

γ̂1
E =

σ(x+ x0 − ρ)

σ(x+ x0)σ(−ρ)
eζ(ρ)(x+x0)

γ̂2
E =

σ(x+ x0 + ρ)

σ(x+ x0)σ(ρ)
eζ(−ρ)(x+x0), with ℘(ρ) = E.

(14.1.9)

By construction the functions γ̂iE, i = 1, 2 have no poles, since the only
zero of the Weierstrass σ function is at 0 but x0 ∈ iR∗ and x ∈ R. If
E is chosen such that ρ 6= −ρ mod Γ, then both functions are complex
linear independent. Further, γ̂iE, i = 1, 2 have no common zeros, if they
are linear independent. Hence the curve is well defined. Recall that
the Schwarzian derivative of a constrained elastic curve in the space
form of constant curvature G with parameters λ, µ and ν is given by
q = iκ′

2
+ κ2

4
+ G

4
, and

q̃ = q + 1
6
(µ− G

2
).

Note that the Schwarzian derivative determines the curve up to Möbius
transformations of CP 1. Thus, by choosing E = 1

6
(µ − G

2
) ∈ R, we

obtain that the corresponding curve γ̂E is a Möbius transformation
of the constrained elastic curve we started with, if E is not a branch
point of the ℘−function. The space of Möbius transformations of CP 1

is 3−dimensional. Thus the Möbius transformation needed to map one
curve on the other is fully determined by fixing the initial point, the
initial tangent vector of the curve and by the infinity point of CP 1.

14.2. The Inverse Problem. Now we want to construct all con-
strained elastic curves in 2−dimensional space forms with regular spec-
tral curves leading to equivariant constrained Willmore tori. As we
have seen in the last section all these curves have a Schwarzian deriv-
ative q solving the stationary KdV equation

q′′ = 3q2 + cq + d,

for real constants c and d. The solutions are given by q = −2℘ − 1
6
c,

where ℘ satisfies the differential equation

(14.2.1) (℘′)2 = 4℘3 − g2℘− g3,

with real constants g2 and g3. Thus, we first write down all such KdV
solutions that are putative Schwarzian derivatives. It is already shown
that these solutions are given by ℘−functions to special tori C/Γ. A
necessary condition, in order to get a real valued curvature function
for the curve, is that the lattice invariants g2 and g3 are real. We also
need that the discriminant D = g2

3 − 27g3
2 is nonzero in order to have

two linear independent generators for the lattice. Then the polynomial

P3 = 4x3 − g2x− g3

has only simple roots.
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We fix the space form of constant curvature G in which we want to
construct the constrained elastic curve and choose a E ∈ R which is
not a root of P3, see (14.1.9). Then we obtain the coefficients of P4 by:

µ = 6E + 3G

ν = 4g2 −
(µ+G)2

3

λ2 = 16g3 −
2(µ+G)3

27
+

2

3
ν(µ+G).

(14.2.2)

Lemma. The stationary mKdV equation (14.1.2) with real param-
eters (µ + G), λ and ν has real solutions, if and only if 1

6
(µ + G) is

less or equal to all real roots of the polynomial P3. Equality holds if and
only if λ = 0.

Proof. The stationary mKdV equation (14.1.2) has real solutions
if and only if the corresponding polynomial P4 has real roots. For this
it is necessary that the real roots of the cubic resolvent crz, given in
(14.1.3), are non-negative. In order to obtain the normal form of crz
we substitute z by x = z − 8

3
(µ+G). And by substituting y = 16x we

obtain the polynomial P3 defining the Weierstrass ℘−function. Thus
z ≥ 0 is equivalent to y ≥ 1

6
(µ+G) and all roots of P3 must be greater

or equal to 1
6
(µ+G). Further

(14.2.3) P3(1
6
(µ+G)) = − 1

16
λ2 ≤ 0,

and equality holds if and only if λ = 0. �

Since −crz(0) = 64λ2, the product of all roots is positive. Thus in
the case of D < 0, where we have 3 real roots of crz, it enough to show
that two roots of crz are non-negative. This is equivalent to the fact
that all critical points of crz are positive, i.e., all zeros of its derivative
are positive. The derivative of crz is 3z2+16(µ+G)z+16((µ+G)2−ν).
Thus the condition needed is computed to be:

(µ+G) < 0 and 1
3
(µ+G)2 ≤ ν ≤ (µ+G)2.

Remark. Applying the conditions above to the case of free elastic
curves on S2, i.e., G > 0, and λ = µ = 0, we get that there are no
orbitlike free elastic curves on S2. In the case of Willmore Hopf tori we
have that G > 0, λ = 0 and (µ+G) = 1

2
G > 0. Thus there are also no

orbitlike curves on S2 corresponding to Willmore Hopf tori.

In order to reconstruct the curve we use the following compatibility
condition which states that the conditions above are enough to get that
q = −2℘(x + x0) − 1

6
c is the Miura transformation of the curvature

function of a constrained elastic curve.

Lemma. Let g2 and g3 be real constants with g2
3 − 27g3

2 6= 0. And
let ℘ be the Weierstrass function with respect to the lattice Γ ⊂ C given
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by the lattice invariants g2 and g3. Then there is a function κ : R→ R

and x0 ∈ C \R with

℘(x+ x0) = −iκ
′(x)

4
− κ(x)2

8
− b,

where b is a real constant. Moreover, κ is a stationary mKdV solu-
tion with coefficients determined by g2, g3 with the formulas given in
(14.2.2).

Remark. Since ℘(x+ x0) is a periodic function, κ is also periodic
and achieves its maximum and minimum. Thus we can always choose
κ′(0) = 0, which means that we choose a x0 such that ℘(x0) ∈ R.
Assume that there exist an arclength parametrized constrained elastic
curve in a space form of constant curvature G with ℘(x + x0) as its
Schwarzian derivative. Then b would have to be real and because

℘(x+ x0) = −1
2
q + 1

12
c = −iκ

′(x)
4
− κ(x)2

8
− G

4
− 1

12
(µ− G

2
),

we obtain b = 1
12

(µ+G).

Proof. We will first proof that ℘(x+ x0) has the right form. De-
tails on elliptic functions were discussed in chapter I section (3). By
differentiating the differential equation defining the Weierstrass ℘ func-
tion we get another differential equation for ℘, namely

(14.2.4) ℘′′(x+ x0) = 6℘(x+ x0)2 − 1
2
g2.

Consider now only the points z ∈ C/Γ with ℘− ℘̄ 6= 0. A reformu-
lation of our statement is:

℘+ ℘̄ = (ζ − ζ̄ + const1)2 + const2,

with const1 purely imaginary, const2 real and ζ is the Weierstrass ζ−
function. Then we can define

(14.2.5) κ := −2i(ζ − ζ̄ + const1).

With (14.2.1) and (14.2.4) we obtain

2(℘̄− ℘)3 = (℘′′ + ℘̄′′)(℘̄− ℘) + (℘′)2 − (℘̄′)2.

This is equivalent to

2(℘̄− ℘) =
℘′′ + ℘̄′′

℘̄− ℘
+

(℘′)2 − (℘̄′)2

(℘̄− ℘)2
.

By integration we get

2(ζ − ζ̄ + const1) =
℘′ + ℘̄′

℘̄− ℘
,

with a purely imaginary integration constant const1. Thus

℘′ + ℘̄′ = 2(℘̄− ℘)(ζ − ζ̄ + const1).
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Integrate again we obtain

℘+ ℘̄ = ((ζ − ζ̄) + const1)2 + const2,

with a real integration constant const2. The functions ℘ and ℘̄ is holo-
morphic and anti-holomorphic, respectively, therefore we get that the
derivative of ℘ with respect to z = x + iy and of ℘̄ with respect to
z̄ is the same as the derivative of ℘ and ℘̄ with respect to x. Thus
by replacing ℘ by ℘(x + x0) this proves the statement. Since all the
functions we consider are continuous the equation above is still valid
at the boundaries in the x− direction. Thus it is necessary to choose a
x0 which does not lie on the real axis or on a parallel translate of it by
a half lattice point. These choices of x0 does not lead to an arclength
parametrized curve, since q would be real valued.

Now we show that κ defined by equation (14.2.5) is mKdV station-
ary with coefficients compatible with (14.1.5) and (14.2.2). We have

℘ = −iκ
′(x)
4
− κ(x)2

8
− b and therefore

℘(x+ x0)′′ = −i1
4
κ′′′(x)− 1

4
κ′′(x)κ(x)− 1

4
(κ′(x))2

6℘(x+ x0)2 =
3i

8
κ′κ2 + 3ibκ′ − 3

8
κ′2 +

3

32
κ4 + 6b2 +

3

2
bκ2.

Now put this into (14.2.4) and take the imaginary part we obtain

κ′′′ +
3

2
κ′κ2 + 12bκ′ = 0,(14.2.6)

which shows that κ is mKdV stationary and we get that

12b = (µ+G).

The other coefficients can be obtained by a straight forward computa-
tion. �

15. Construction of Tori

In this section we use the constructions of constrained elastic curves
in order to get examples of equivariant constrained Willmore tori.
There exist the following cases:

• Delaunay tori:
– orbitlike
– wavelike,

• constrained Willmore Hopf tori:
– orbitlike
– wavelike.

The surface corresponding to a constrained elastic curve is a torus
if and only if the curve is closed. We first show how the ”surface”
spectral curve is connected to the ”curve” spectral curve. Then we
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single out the closed constrained elastic curves and compute the con-
formal types and the Willmore energies of the corresponding tori. We
close by introducing a 1−dimensional deformation of Delaunay and
constrained Willmore Hopf tori preserving the closing condition, the
so called Whitham deformations.

15.1. The Surface Spectral Curve. We want to understand the
connection between the spectral curves of the equivariant tori of genus
g ≤ 2 and the spectral curves of the corresponding constrained elas-
tic curves in space forms. Further, we want to compute their spectral
genus. The spectral genus of an equivariant torus is defined to be
the genus of the spectral curve corresponding to the Dirac equation
(12.1.2). The spectral curve of the curve in the KdV setup is the torus
defined by the lattice invariants g2 and g3. This curve has always genus
1. It turns out that the surface spectral curve is a double covering of the
spectral curve we use in the KdV setup to construct the curves. The
branch points of this double cover determines the genus of the ”sur-
face” spectral curve. While the spectral curves of the Delaunay tori
have also genus 1, the spectral curves of constrained Willmore Hopf
tori have genus 2.

Delaunay tori have constant mean curvature in a space form. To
obtain the right space form we need to consider the fix point set of
the involution ρ ◦ σ, see sections (12.2) and (10.3). Fixed points of
this involution have unitary monodromy. For a CMC torus in S3 the
involution ρ ◦ σ has fixed points and the two Sym-points, see Theo-
rem (10.3), are fixed points by this involution. CMC tori in R3 are
obtained as the limit of the S3 case if the two Sym-points coincides.
For CMC tori in H3 with mean curvature H ≥ 1, we need that ρ ◦ σ
has fixed points but the two Sym-points are not fixed points. If the
involution ρ ◦ σ has no fix points, then we have CMC tori in H3 with
mean curvature |H| < 1. We show that for Delaunay tori the invo-
lution ρ ◦ σ has fixed points if and only if the corresponding curve is
orbitlike and ρ◦σ has no fixed points if and only if the curve is wavelike.

We need first a matrix version of the Miura transformation which
gauges the Dirac equation (12.1.2) into the matrix version of the KdV
equation. The Hill’s equation (14.1.7) can be written in matrix form
as: (

ψ′

ψ

)′
+

(
0 q − η
−1 0

)(
ψ′

ψ

)
= 0.

Proposition. The spectral curve of a Delaunay torus has genus 1
and is a double covering of the corresponding ”curve” spectral curve.
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Proof. The spectral curve of the Delaunay torus is determined by
the kernel of the operator

D = ∂y +

(
−ia iκ

2
iκ

2
ia

)
,

where a ∈ C is the spectral parameter. The KdV operator with spectral
parameter η ∈ C is given by

L = ∂y +

(
0 q − η
−1 0

)
We define a transformation of the spectral parameters η = −a2− 1

4
,

which is a double covering of the η−plane by the a−plane. Further we
have q = iκ

′

2
+ κ2

4
− 1

4
, which is just the Miura transformation of the

curvature function κ. Then these operators are gauge equivalent and
the gauge transformation from L to D is given by

g =

(
−iκ

2
− ia −iκ

2
+ ia

1 1

)
,

for a ∈ C∗.
The double covering of the parameter planes can be extended to

a = 0 and a =∞ and is branched at η = −1
4

and η =∞.

The surface spectral curve is a hyperelliptic curve over the a−plane.
Its branch points are determined by the branch points of the curve
spectral curve and the branch points of the double covering of the
parameters. The curve spectral curve has 4 branch points which are
the branch points of the corresponding Weierstrass ℘−function. If any
of these branch points coincides with the branch points of the parameter
covering, then the branch point becomes a regular point of the spectral
curve of D. Otherwise every branch point of the spectral curve of L
makes 2 branch points of D. The point η = ∞ is a common branch
point of the spectral curve of L and η = −a2 − 1

4
, thus a = ∞ is not

a branch point of the spectral curve of D. Therefore all branch points
η ∈ C \ {−1

4
} doubles over a and D has 4 or 6 branch points which

corresponds to spectral genus 1 and 2, respectively. The spectral genus
of the surface depends on whether η = −1/4 is a branch point of the
curve spectral curve. We have

q + 1
6
(µ+ 1

2
) = −2℘(x+ x0) and E = η + 1

6
(µ+ 1

2
).

Hence η = −1/4 is a branch point if and only if 1
6
(µ − 1) is a branch

point of the Weierstrass ℘−function, i.e., a root of the polynomial P3.
By equation (14.2) we have

P3(1
6
(µ− 1)) = − 1

16
λ2.

Thus 1
6
(µ− 1) is a root of P3 if and only if λ = 0, which always holds

for Delaunay tori. We obtain that in this case the spectral curve of D
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has always 4 branch points and is therefore of genus 1.
�

Proposition. The involution ρ ◦ σ has fixed points if and only the
curve is orbitlike and it has no fixed points if and only if the curve is
wavelike.

Proof. The double covering of the parameters gives that a is
purely imaginary if and only if η ∈ R and η ≥ −1

4
. Thus the sur-

face spectral curve has branch points over a ∈ iR if and only if the
curve spectral curve is branched over η ∈ R, η > −1

4
. In the case of

wavelike curves the curve spectral curve has only 1 real branch point
over η = −1

4
, which vanishes over the parameter a. There fore there is

no branch point of the surface spectral curve over a ∈ iR. The curve
spectral curve of orbitlike curves has 3 real roots and by (14.2). All
roots are greater or equal to 1

6
(µ− 1). Thus the corresponding η is real

and satisfies η > −1
4
. Thus all branch points of the surface spectral

curve lie over a ∈ iR. �

Proposition. The spectral curve of a constrained Willmore Hopf
torus has genus 2 and is a double covering of the corresponding curve
spectral curve.

Proof. For Hopf tori we have a slightly different Dirac operator.

D̃ = ∂y +

(
−ia iκ

2
− 1

iκ
2

+ 1 ia

)
.

Now the potential is not purely imaginary anymore and although the
real part is only a constant, we get that the spectral genus increases
by the gauge. Like in the G = −1 case we want to gauge the KdV
operator L to the operator D̃. The gauge is essentially the same

g̃ =

(
−iκ

2
+ 1− ia −iκ

2
− 1 + ia

1 1

)
.

But we need to define q = iκ
′

2
+ κ2

4
+ 1

4
and η = −a2 − 3

4
.

The difference to the Delaunay case is that the parameter covering
is now branched over η = −3

4
and η =∞. Again, the branch point over

η =∞ vanishes and if we have that the spectral curve of L is branched
over η = −3

4
, then the spectral genus of the surface would be 1 and

otherwise we get spectral genus 2. We need to compute whether E =
−3

4
+ 1

6
(µ− 1

2
) = 1

6
(µ−5) is a root of the polynomial P3 = 4x3−g2x−g3.

This is never the case, because if e is a root of P3 then it satisfies the
condition

e ≥ 1

6
(µ+ 1),

by Lemma (14.2), but 1
6
(µ−5) < 1

6
(µ+1). Thus constrained Willmore

Hopf tori have always spectral genus 2. �
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Remark. If we only consider constrained elastic curves in S2, its
spectral curve as a curve in the round 2−sphere (instead of CP 1) is
determined by the eigensolutions of D and the potential q is the cur-
vature of the curve as in the G = −1 case. Therefore, we get that the
curves have spectral genus 1 if and only if they are elastic, i.e., λ = 0
and spectral genus 2 if and only if they are constrained elastic, i.e.,
λ 6= 0.

Corollary. Let f be a constrained Willmore Hopf torus and D
the corresponding Dirac operator. Moreover let Φa be the fundamental
solution matrix to Dau = 0. Then its profile curve in S2 can be obtained
by

γ = Φa0Φ
−1
−a0 ,

for a0 ∈ R∗. Further the holonomy matrix of D±a0 is ±Id.

Proof. The curve to a given E = ℘(ρ) is given by the quotient
of the two linear independent solutions of the equation Lηu = 0, with
E = η + 1

6
(µ− G

2
). Because D and L is gauge equivalent, a curve to a

given E is also constructed by the quotient of the fundamental solutions
to the equations Da0u = 0 and D−a0u = 0, with E = −a2

0− 3
4

+ 1
6
(µ− 1

2
)

smaller than all roots of P3. Thus a0 ∈ R∗. Further the holonomy of
Lη is ±Id, thus holonomy of D±a0 is also ±Id. �

15.2. Corollary. There exist asymptotic solutions, i.e., non-constant
solutions to equation (14.1.2) where the polynomial P4 has multiple
roots, which yield closed curves in S2.

Proof. These curves are obtained by simple factor dressing of a
multi-covered circle. To be more concrete, let γ be a circle in the round
S2 of curvature κ ≡ 1, i.e., q = 1

2
. Then the corresponding operator D

is given by:

D = ∂y +

(
−ia 1

2
i− 1

1
2
i+ 1 ia

)
,

and its polynomial Killing field is given by

X0 = X =

(
−ia 1

2
i− 1

1
2
i+ 1 ia

)
dy.

The eigenvalues of the holonomy matrix are e
±iL

√
a2+

5
4 , where L =

√
2π

is the length of γ. The branch points of the spectral curve are given

by a = ±
√

5
4
i. And γ can be reconstructed at a0 =

√
3
4
. A curve re-

constructed with respect to the spectral parameter a ∈ R closes after
n periods of the original curve γ if and only if the eigenvalue of the ho-

lonomy satisfies
√

2
√
a2 + 5

4
= 2m

n
. Then for the double covered circle

γ, i.e., n = 2 and m = 1 the holonomy matrix is ±Id at α = ±
√

3
4
i.
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We change the initial values of the fundamental solution matrix. In-

stead of ϕa(0) = Id we choose ϕ̃a(0) = h, with h =

√a−α
a+α

0

0
√

a+α
a−α

 .

Then ϕ̃a = hϕa is a solution of Daϕ̃a = 0 with this new intial value.
The monodromy matrix of ϕ̃a and then also its eigenlines with respect
to the basis given by h are obtained by conjugation with h. Although
the gauge has a pole in ±α, the holonomy of Da with respect to ϕ̃a is
well defined for all a ∈ C, since the monodromy of ϕα is ±Id. Thus
also the initial value of the polynomial Killing field is conjugated by h.
Let X̃0 = hX0h

−1. We can compute X̃0 to be

X̃0 =

(
−ia −a+α

a−α
a−α
a+α

ia

)
,

which has a pole at a = ±α. In order to obtain the normal form of a
polynomial Killing field we multiply X̃0 by (a+α)(a−α). This yields the

initial value of a non vanishing polynomial Killing field X̂ of degree 3.
Thus the corresponding solution is mKdV stationary and corresponds
to constrained elastic curves in S2. The polynomial detX̂ has double
roots at a = ±α. Thus also the polynomial P3 has multiple roots. Since
the monodromy of the fundamental solutions ϕ±a0 is conjugated by h,
the reconstructed curve remains closed. �

Figure 15.2.1. Constrained elastic curve with singu-
lar spectral curve in S2 and corresponding constrained
Willmore Hopf torus.

15.3. Closing Conditions. To obtain closing conditions for the
curves γE defined in (14.1.8) we compute their monodromy. The curve
γE closes if and only if the monodromy is a rotation by a rational angle.
We fix a lattice Γ in C with real lattice invariants g2 and g3 and get a
℘−function with respect to this lattice. We denote by ωi, i = 1, 2, 3,
the half periods of Γ and fix ω1 to be the half period lying on the real
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axis. Then we always obtain for real g2 and g3 always a half lattice
point on the imaginary axis, which we denote by ω3. In the case of
D > 0 we have ω1 = ω3 mod Γ. Recall that γE is given by

γE = [γ̂1
E, γ̂

2
E],

where γ̂1
E and γ̂2

E are certain complex functions given in (14.1.9), pro-
vided E is not a branch point of the ℘-function. Further let ζ be the
Weierstrass ζ-function and define η1 = ζ(ω1), see chapter I section (3).
This is real because the lattice invariants g2 and g3 are real. We com-
pute the monodromy of both components separately with the formulas
for the monodromy of the Weierstrass σ function and obtain:

γ̂1
E(x+ 2ω1) = e−2η1ρ+2ζ(ρ)ω1 γ̂1

E(x)

γ̂2
E(x+ 2ω1) = e2η1ρ−2ζ(ρ)ω1 γ̂2

E(x).

The monodromy of the γE is the quotient of the both monodromies
computed here. Therefore we get that the curve closes after n periods
if and only if there exist a m ∈ Z, with (m,n) coprime, such that

e4η1ρ−4ζ(ρ)ω1 = e
2m
n
πi.

The integer m is the winding number of the curve. The equation above
is equivalent to

η1ρ− ζ(ρ)ω1 =
m

2n
πi.

We distinguish in the following between the 4 cases mentioned at
the beginning of the section. We want to show that we have always
infinite many Delaunay and constrained Willmore Hopf tori.

We start with the constrained Willmore Hopf tori.

15.4. Proposition. Let g2 and g3 be real constants with g2
3 −

27g3
2 > 0. And let γE be the family of curves in the round 2−sphere

of curvature G > 0 given by (14.1.8) with respect to these constants.
Then there exist infinitely many closed curves in that family for E
smaller than all roots of P3. In particular, E is never a branch point of
the ℘−function.

Proof. This is the case of wavelike constrained elastic curves in
the round 2−sphere. The polynomial P3 has 1 real root and a pair
of complex conjugate roots. We denote the real root by e. Let ω1 be
the real half lattice point of Γ. Then ℘(ω1) = e. In this case we have
ω3 = ω1 mod Γ. We vary E to close the curves. Since G > 0 we have
that E = 1

6
(µ − G

2
) < 1

6
(µ + G). Lemma (14.2) states that 1

6
(µ + G)

is less or equal to all real roots of P3. Thus here we have that E < e.
The Weierstrass ℘− function is even and lim

x→∞
℘(ix) = −∞, therefore

we obtain ρ ∈ iR. For fixed real invariants g2 and g3 we get that η1
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and ω1 are real constants. Further for ρ ∈ iR then we get ζ(ρ) ∈ iR,
too. Thus it is possible to define a map

g : iR→ iR, g(ρ) = η1ρ− ζ(ρ)ω1,

and g(iR) is a nontrivial interval since

lim
ρ→±0

g(ρ) = ±∞ and g(ω3) = 0.

The rational numbers is a dense subset of the real numbers, thus there
exist always infinite many closed solutions in this class.

�

Figure 15.4.1. Wavelike elastic curve in S2 to parame-
ters µ = −1

2
and λ = 0 in S2 and corresponding Willmore

Hopf torus.

15.5. Proposition. Let g2 and g3 be real constants with g2
3 −

27g3
2 < 0. And let γE be a family of curves in the round S2 as be-

fore. Then there exist infinitely many closed curves in that family for
E smaller than all roots of P3. In particular, E is never a branch point
of the ℘-function.

Proof. Now we consider orbitlike constrained elastic curves in the
2−sphere. The polynomial P3 has 3 distinct real roots. Again we have
that E must be smaller than the roots of P3 by Lemma (14.2) and
therefore ρ ∈ iR. Further the map

g : iR→ iR, g(ρ) = η1ρ− ζ(ρ)ω1

is still well defined and g(iR) is a non trivial interval, but g(ω3) = 1
2
πi.

Therefore we obtain infinite many closed solutions.
�

Now we turn to the case of Delaunay tori, i.e., we have G = −1
and λ = 0.
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Figure 15.5.1. Orbitlike constrained elastic curve in
S2 and corresponding constrained Willmore Hopf torus.

15.6. Proposition. Let g2 and g3 be real constants with g2
3 −

27g3
2 > 0 and let γE be the family of curves as in (15.4) in the space

form of curvature G < 0. Then there exist at most one closed curve
in that family. Also in this case E is never a branch point of the ℘-
function.

Proof. In the case of Delaunay tori we have λ = 0. This yields by
Lemma (14.2)

P3(1
6
(µ+G)) = − 1

16
λ2 = 0.

Thus 1
6
(µ + G) is the smallest root of P3. Since G < 0 we have E >

E + 1
4
G = 1

6
(µ+G) thus we get that ρ with ℘(ρ) = E does not lie on

the imaginary axis. In the case of wavelike solutions we have that

e0 = 1
6
(µ+G)

is in fact the only real root of P3 and because of E > e0 we get ρ ∈ R
and thus ζ(ρ) ∈ R: Therefore the only chance to get a closed solution
is that

ρη1 − ζ(ρ)ω1 = 0.

The solution holds obviously for ρ = ω1 but this choice contradicts
the fact that E > E0. The closing condition can be interpreted as
the intersection of the line given by ρ 7→ ρ η1

ω1
with the graph of the

function ζ|R. The function ζ|R is anti-symmetric with respect to ω1

and has a simple pole in 0 and is convex for ρ < ω1 and concav for
ρ > ω1. Thus there exist two other intersection points if and only if
−℘(ω1) = −(E + 1

4
G) > η1

ω1
. Otherwise there are no other intersection

points and no closed curves. This condition is never valid for (µ+G) >
0 by (15.8.2) in the next section. Because in this case by (14.2) there
are no orbitlike curves there are never closed elastic curves in H2 with
(µ+G) > 0. �
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Example. A closed curve in this class corresponds to a constrained
Willmore torus obtained by glueing two CMC cylinder in H3 with mean
curvature |H| < 1 at the infinity border of the hyperbolic 3−space. An
example of such a torus is shown in figure (15.6.1). The curve is closed
since the closing condition is a real valued and continuos function in all
parameters. In the left picture this function is negative and in the right
picture it is positive. Thus there exist a zero for the closing condition.

Figure 15.6.1. Wavelike elastic curves in H2.

15.7. Proposition. Let g2 and g3 be real constants with g2
3 −

27g3
2 < 0 and let γE be the family of curves as in (15.4) in the space

form of curvature G < 0. Then there exist infinitely many closed curves
in this family.

Proof. In the case of orbitlike constrained elastic curves we get
infinite many closed curves. To show this note that in the case of
orbitslike curves the polynomial P3 has three real roots and thus we
can choose a E > 1

6
(µ + G) such that P3(E) < 0 by varying G < 0.

The corresponding ρ satisfies ρ = ρ̃+ ω1 with ρ̃ ∈ iR and

ζ(ρ̃+ ω1) = −ζ(ρ̃− ω1) = −ζ(ρ̃+ ω1) + 2η1.

Thus the function
g(ρ) = ρη1 − ζ(ρ)ω1

is purely imaginary. Further g(ω2) = 1
2
πi and g(ω1) = 0. By the same

argument as in (15.4) we get infinite many closed solutions. �

Proposition. The choice of ρ ∈ iR + ω1 such that E = ℘(ρ) is
not a branch point of ℘ yield CMC cylinders in S3. If E is a branch
point, we get CMC cylinders in R3. Further the choice of ρ ∈ R or
ρ ∈ R + ω2, which is not branched, yield CMC cylinders in H3 with
mean curvature H > 1.

Remark. It is well known that there are no CMC tori in R3 with
spectral genus 1. Thus, in order to get all Delaunay tori it is not nec-
essary to consider the case where E is a branch point of ℘.
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Proof. Since the corresponding curves are orbitlike, the involu-
tion ρ ◦ σ has fixpoints. This exclude the case of CMC tori in H3 with
mean curvature |H| < 1. The surface spectral curve is obtained by a
double covering of the curve spectral curve. The parameter covering is
given by η = a2 − 1

4
. Since the surfaces have constant mean curvature

in a space form, we can also consider the involution σ as the elliptic
involution. Then we can use the Sym-Bobenko formula to reconstruct
the immersion. For ρ ∈ iR + ω1 such that E is not a branch point
of ℘, we have that the corresponding parameter ±a are not branch
points of the surface spectral curve. Thus we have 4 complex inde-
pendent solutions with monodromy to the equation D±au = 0. This
corresponds to the case of 2 Sym-points. Further, these solutions have
unitary monodromy, thus the Sym-points are fixed under the involu-
tion ρ◦σ. And we obtain that the corresponding surface is CMC in S3.

If we choose E to be a branch point of ℘, then we have only 2 com-
plex independent solutions with monodromy to the equation D±au = 0
which are interchanged by the involution σ. Thus in this case we have
only 1 Sym-point and the corresponding surface is CMC in R3.

For ρ ∈ R or ρ ∈ R+ω2 and ℘ not branched in E, the monodromies
of the 4 complex linear independent solutions to D±au = 0 are real.
Thus these solutions are not fixed by the involution ρ ◦ σ and we ob-
tain CMC cylinders in H3 with mean curvature H > 1. By the same
arguments as in the wavelike case there is at most 1 closed solution in
this case. �

15.8. Conformal Type and Willmore Energy. The Willmore
energy of the torus is determined by the bending energy of the curve,
the parameter µ and the curvature G of the space form. The curves γE
are Möbius transformations of arclength parametrized curves γ̃E, for
which q = 1

2
iκ′ + 1

4
κ2 + 1

4
G, where κ is the geodesic curvature of γ̃E.

Thus the conformal type and the Willmore energy of the corresponding
tori can be computed. Recall that the Schwarzian derivative q of such
a torus is a stationary KdV solution and it is given by

q = −2℘(x+ x0)− 1
6
(µ− 1

2
G).

Thus the integral of the real part of the Weierstrass ℘ function, i.e., the
real part of Weierstrass ζ− function determines the bending energy of
the curve. We have∫
γ

(κ2 + 2
3
(µ+G))ds = 8n(Re(ζ(x− x0 + 2ω1)− ζ(x− x0))) = 16nη1,

if the curve closes after n periods of ℘. In particular we have

(15.8.1)

∫
γ

κ2ds = 16nη1 − 4
3
(µ+G)nω1 ≥ 0
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thus

(15.8.2)
η1

ω1

> 1
12

(µ+G).

We need to deal with both cases separately. We start with Delaunay
tori, i.e., G = −1 and λ = 0. The conformal type of a torus of revolution
is rectangular by construction and the vectors generating the lattice
Γ ∈ C are given by

z1 = 2π and z2 = il

where l is the length of the curve. As the curve is arclength parametrized,
we get that the length of the curve is 2nω1. The Willmore energy is

W(f) = 1
2
π

∫
γ

κ2ds,

where κ is the geodesic curvature of the curve in the hyperbolic plane.
Thus

W(f) = 8nπη1 − 2
3
nπ(µ− 1)ω1.

For constrained Willmore Hopf tori we choose the space form G = 4
due to the formula in Example (6.3). The Willmore energy is given by

W(f) = 1
2
π

∫
γ

(κ2 + 4)ds,

and κ is here the geodesic curvature of the curve in the round S2 metric
of curvature 4. The Willmore energy can be computed to be

W(f) = 8nπη1 − 2
3
nπ(µ+ 1)ω1.

The conformal type of a Hopf torus is a bit more complicated to
compute than for Delaunay tori because apart from the length we need
the enclosed area A of the curve, see Lemma (5.12). The total area of
the 2−sphere of curvature 4 is π. Since there are no singularities in the
case of Hopf tori we get that the lattice is generated by

z1 = 2π and z2 = 2A mod 2π + il.

The enclosed area of a curve is given by A = 1
2
πm− 1

4

∫
γ
κds by the

Gauß-Bonnet theorem, where m is the winding number of the curve.

On the other hand we have: Imζ(x+ x0) = κ
4
− κ(0)

4
− iζ(x0). Thus:

1
2

∫
γ

κds− 2nω1(1
2
κ(0)− 2iζ(x0)) = 2Im(lnσ(x+ x0 + 2nω1)− lnσ(x+ x0))

= 2Im

(
ln

(
−e2nη1(x+x0+ω1)σ(x+ x0)

σ(x+ x0)

))
= 2Im

(
ln
(
eiπe2nη1(x+x0+ω1)

))
.
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The logarithm is only well defined modulus 2πi. We obtain

1
2

∫
γ

κds− 2nω1(1
2
κ(0)− 2iζ(x0)) = (2π − 4niη1x0) mod 4π.

Therefore (2A mod 2π) is given by:(
πm− 4inη1x0 − 2nω1(1

2
κ(0)− 2iζ(x0)

)
mod 2π.

We have shown the following theorem.

Theorem. Let f : T 2 → S3 be either a Delaunay torus or a
constrained Willmore Hopf torus determined by the formulas (14.1.8).
Then we have the following.

• If f is a Delaunay torus, then its conformal class is given by
the lattice generated by z1 = 2π and z2 = il. Further the
Willmore energy of f is given by

W(f) = 8nπη1 − 2
3
nπ(µ− 1)ω1.

• If f is a constrained Willmore Hopf torus, then its conformal
class is given by the lattice generated by z1 = 2π and z2 =
2A mod 2π + il. Further the Willmore energy of f is given by

W(f) = 8nπη1 − 2
3
nπ(µ+ 1)ω1.

Here l = 2nω1 denotes the length of the curve in the respective space
form and n is the lobe number. The enclosed area of the curve in S2,
2A mod 2π, is given by

2A mod 2π =
(
πm− 4inη1x0 − 2nω1(1

2
κ(0)− 2iζ(x0)

)
mod 2π.

15.9. Deformation of Constrained Elastic Curves. In order
to get a better understanding of the moduli space of closed elastic
curves, we want to investigate deformations of these. Deformations pre-
serving the spectral curve are excluded as these also preserves the Will-
more energy. It turns out that there exist generically a 1−dimensional
family of deformations of the spectral curves of constrained elastic
curves, the so called Whitham deformations. These deformations pre-
serves the closing of the curves.

We can assume with out loss of generality that the spectral torus
of a constrained elastic curve is generated by 2ω1 = 1 and 2ω2 = τ.
The scaling of the lattice corresponds to the scaling of the curve and
of the space form. As the invariants g2 and g3 are real we have τ ∈
iR or τ ∈ 1/2 + iR, depending on whether the curve is orbitlike or
wavelike. There exist Fourier series expansion for the functions ℘, ζ
and η1 with respect to τ. For ρ ∈ iR consider the function g : iR×iR→
iR, g(ρ, τ) = ρη1(τ) − ζ(ρ, τ) which is smooth in both arguments.
The closing conditions, (15.3), imply that the value of the function is
rational. Thus, it has to remain constant if we vary τ . A geometric
interpretation of this fact is that the quotient of the lobe number and
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the winding number of the curve is constant along the deformation.
The implicit function theorem states that if we have ℘(ρ, τ) 6= η1, we
can write the level lines of the the function g as a graph over τ, i.e.,
there exist a differentiable function ρ(τ) such that g(ρ(τ), τ) = const.
This results in a 1-dimensional deformation of the spectral curve. For
ρ ∈ iR+ ω1 the deformation can be defined analogously.
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Mathematik machen konnte ohne äußeren Druck zu verspüren.
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