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Zusammenfassung

Die heutigen Methoden der Genexpressionsanalyse erlauben die Datenerfassung mit
zunehmender Geschwindigkeit und Qualität. Hochdurchsatzverfahren wie DNA-Micro-
arrays und Sequenzierungsverfahren der zweiten Generation haben zahlreiche neue Ent-
deckungen ermöglicht. Zusammen mit Ergebnissen aus Verfahren der Proteom- und Me-
tabolomanalyse stehen große Datenmengen zur Verfügung, zusätzlich ergänzt durch viele
Annotationen und Metadaten. Im Rahmen von Genexpressionsstudien müssen diese Da-
ten oft mit visuellen Methoden untersucht und analysiert werden. In dieser Arbeit werden
dazu neue Methoden und Konzepte für die Visualisierung von Genexpressionsdaten im
Kontext von Metainformationen und Ergebnissen anderer Technologien vorgestellt.

Zunächst werden Standardvisualisierungsmethoden für Resequenzierungs-Microarrays
diskutiert. Zum Zwecke der Anwendung von generischen und angepassten Visualisie-
rungsmethoden auf entsprechende Daten wird das Programm ResqMi (“Resequencing
using Microarrays”) vorgestellt. ResqMi bietet neue Möglichkeiten für die Qualitäts-
kontrolle, Analyse und Nachbearbeitung der Daten.

Der Fokus dieser Arbeit liegt auf der Visualisierung von Genexpressionsdaten. Zu-
nächst werden einige Visualisierungsmethoden für Genexpressionsdaten im Kontext von
Metainformationen aus Prozessierungsergebnissen und externen Quellen - etwa Funkti-
onsannotationen - vorgestellt. Zur Darstellung von geclusterten Genexpressionsprofilen
werden Profillogos verwendet, die das Konzept der Sequenzlogos für die Darstellung von
Expressionsdaten erweitern. Chromogramme und Tag Clouds, Visualisierungstools für
verschiedene Aspekte von nominalen Daten, werden hier kombiniert genutzt, um Muster
in Annotationen von Genexpressionsdaten zu finden. Außerdem werden zur Visualisie-
rung von nominalen und ordinalen Metainformationen geeignete erweiterte tabellenartige
Ansichten verwendet: die Term Pyramid bzw. Probe Rank Plots.

Die graphenbasierte Visualisierung von Genexpressionsdaten ist generischer und bietet
viele zusätzliche Möglichkeiten und wird im Weiteren näher verfolgt. Viele Anwendungen
für die Visualisierung biologischer Pathways nutzen nicht alle Möglichkeiten für die Dar-
stellung von Genexpressions- und Metadaten. Hier werden verschiedene Möglichkeiten
zur Einbeziehung von Genexpressionsdaten in die Darstellung biologischer Daten un-
tersucht. Sowohl spezielle Anwendungen für die Darstellung biologischer Pathways (in
KEGG- und BioPax-Format) als auch MGV (“Mayday Graph Viewer”) werden vorge-
stellt. MGV ist ein generisches Tool, das die Visualisierung vieler verschiedener biologi-
scher Netzwerke mit vielen Optionen innerhalb einer mächtigen Oberfläche ermöglicht.
Verschiedene Strategien für die Erzeugung, Strukturierung und Analyse innerhalb dieses
Programmes werden vorgestellt. Außerdem wird die Integration von Daten aus unter-
schiedlichen Studien und Technologien in MGV untersucht. Dynamische Gruppen von
Knoten, die mit Daten aus verschiedenen Quellen angereichert sind, sind die Ausgangsba-
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Zusammenfassung

sis für datensatzübergreifende Analysen. Weitere Anwendungen umfassen unter anderem
die Analyse von Metabolomik-Daten, der Vergleich von Clusterings und die Visualisie-
rung von Genmodellen.
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Abstract

Today, gene expression data is acquired with increasing speed with increasing quality
and depth. High throughput technologies like DNA microarrays and next generation se-
quencing technologies have led to a rising pace of new discoveries in the biomedical field.
These technologies are complemented by high throughput pipelines for proteomics and
metabolomics profiling. Altogether, vast amounts of primary measured data, comple-
mentary data from other omics and meta information from many sources is available for
researchers. This data needs to be jointly analyzed and visualized in context of external
data and meta information. In this thesis, new tools and concepts are introduced for
the purpose of visualizing gene expression data in the context of meta information and
complementary data from other “omics” experiments.

First, the application of generic visualization tools to resequencing microarrays, which
are used for finding mutations in single genes is discussed. For this final step of gene ex-
pression analysis, an application called ResqMi, (“Resequencing using Microarrays”) is
presented that allows to use generic and adapted visualization tools on resequencing mi-
croarrays, in order to improve quality control, data analysis and revision of problematic
base calls.

The focus of this work is on the visualization of gene expression data. Here, new tools
for the visualization of gene expression data in the context of meta information from
processing results and external sources, like functional annotations are introduced. For
the visualization of clustered gene expression data, profile logos extend the concept of
sequence logos to expression data. Chromograms and tag clouds, tools for visualizing
different properties of collections of nominal data are applied in combination in order
to explore temporal, spatial and other patters in annotations of gene expression data.
Furthermore, enhanced tabular views of summarized gene annotations and genes ranked
by statistical values are discussed for comparative visualization of textual and numeric
meta data.

Graph based visualizations of gene expression and meta data are more generic and
investigated in greater detail. Most tools for visualizing biological pathways do not make
full use of gene expression or meta information data. Here, a variety of ways to include
gene expression data into biological network visualizations is investigated and imple-
mented, based both on the node rendering and the layout of the graph. This allows
dense, high dimensional visualizations. Specialized tools that are optimized for work-
ing with pathways in KEGG and BioPax formats, are presented as well as MGV (the
Mayday Graph Viewer), a general tool for visualizing a wide range of biological net-
works that offers a full range of options within a rich, extensible user interface. Options
for integration and creation of network data, data organization and analysis within the
graph framework are investigated. MGV furthermore incorporates tools for integrating
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data from several datasets, which allows to combine multiple “omics” data in one vi-
sualization. With dynamic groups that can contain nodes with data from all sources,
cross dataset analyses can be performed. Further applications include the integration of
metabolomics data, clustering comparisons and the visualization of gene models.
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1. Introduction

This thesis is concerned with the analysis and visualization of gene expression data. The
analysis of gene expression is motivated by the numerous findings expected from compre-
hensive knowledge of the pattens of gene expression in an organism. Gene expression is
involved in nearly all biological processes. Patterns of gene expression control cell cycle,
embryonic development, aging, diseases including cancer, or adaptation to environmen-
tal changes. There are numerous regulation methods on multiple levels, that control
gene expression [111]. These mechanisms make the analysis of gene expression data a
complicated endeavor, even for single genes. However, the focus of biomedical research
recently shifted from the reductionist view of single aspects to a holistic view of entire
systems. Ultimately, systems biology intends to comprehensively model entire biological
systems with formal methods. To this end, high quality data measuring the activity and
abundance of ideally all relevant components is necessary. For the analysis of gene ex-
pression, high-throughput methods are available on all levels, that allow the quantitative
analysis of thousands of components in parallel. These systems encompass microarrays
and RNA-seq for transcriptomics and mass spectrometry methods, combined with gas
or liquid chromatography for proteomics and metabolomics.

Comprehensive gene expression analysis gives rise to large, multilevel datasets, where
each level introduces new potential insights, but also new potential problems. Besides
statistical modeling and analysis, an important tool gene for expression data analysis is
visualization. It is common to visualize the data at multiple points during the analysis
process. Usually, this is done before normalization steps to decide on methods and pa-
rameters and after data processing steps to assess the result. Furthermore visualization is
used before and after confirmatory analysis to generate and illustrate hypotheses. There
are no defined steps for this process, and a large variety of methods is used [47].

Visualization is the process of creating graphical representations for data that facilitate
interpretation and identification of patterns using human perception [27]. Visualization
has been established as an important analysis tool, especially for exploratory purposes.
The importance of visualization is classically shown by Anscombe’s quartet [5], that
highlights how important it is to visualize the primary data. Common tools encom-
pass parallel coordinates and heat maps, which allow large scale visualization of high
dimensional data. Furthermore, good visualization require careful data processing and
transformation [58, 205]. Modern analysis tools allow to create multiple connected and
coordinated views of the data, that even in a static form would have been impossible
to create by hand. Challenges encompass the structuring and preparation of the data.
The concept of visual analytics introduces summaries and overviews, combined with
statistical analysis and optimized perception, also in dealing with large and complex
datasets.
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An important aspect of modern gene expression data analysis is that there is already a
vast knowledge about each of the measured components. Annotations, sequences, struc-
tures, scientific articles and functional categories as well as activity measurements in
other conditions are available for many genes, proteins and metabolites. This informa-
tion is important to use during analysis and visualization.

Integrating meta information into visualizations of gene expression data is therefore a
main topic in this thesis. For this purpose, first a set of context-based visualization tools
for gene expression data is presented. Partially these tools are based on well-established
visualizations applied in other areas, like sequence logos [159] for multiple sequence
alignments and tag clouds [198] for word counts. The context-based visualization tools
allow to interactively visualize textual and numerical meta information combined with
gene expression data, either directly or via connected views. The tools presented are of
exploratory nature and are intended to find patterns both in gene expression data and
annotations.

Often, meta information is structured and describes not a single object, but a biolog-
ical process. The common representation of a biological process is a so-called pathway.
Pathways are conceptual representations of biological processes and can be seen of the
modules of which life consists. It is important to keep in mind that biological pathways
are not isolated processes, but instead are highly connected and interfere with each other.
Biology is therefore also referred to as a network science [10]. Networks of various types
and densities can be found in biology. Besides pathways and their interactions, molecular
level interactions and regulatory networks are investigated.

The natural representation for a biological network is a graph. Based on this pow-
erful theoretical foundation, visualization and analysis of biological pathways is done.
While this is already an important part of high level meta information, in this thesis a
thorough visualization of graph-based meta information and textual as well as numer-
ical meta information along with gene expression data is presented. For this purpose,
the various options for visualizing gene expression data and meta information in graphs
are investigated. This is also part of an exploratory strategy [97]. Implementations of
this concept are presented, in which users can dynamically modify generic or specialized
graphs enriched with gene expression and meta information data. Visually analyzing the
graphs is possible using various tools for summary, details and dynamic extensions and
reductions of the graphs. Due to the fast development in the biomedical field, extensi-
bility is important. In order to prove this extensibility, the analysis and visualization of
several problems in this field are investigated, as well as the problem of handling multiple
datasets. Handling of multiple datasets that describe the complementary data, is often
cumbersome, even for basic visual comparison and analyses. The framework presented
herein partly addresses this problem.

The analysis of gene expression cannot fully answer the question of whether and how
a gene is active. Multiple mechanisms for modifications before and after transcription
might distort the gene product. Additionally, due to mutations, the protein resulting
from gene expression might not be active at all. Causes are often single nucleotide poly-
morphisms (SNPs), i.e. single (non-synonymous) mutations in the genomic sequence of
the gene. These mutations are best observable on the genomic level. Therefore, genomic
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analysis can be seen the final step of gene expression analysis. A proven tool for identify-
ing mutations are resequencing microarrays [69]. Resequencing microarrays are based on
the same principle as gene expression microarrays, however they are used with genomic
DNA and yield not expression values, but the sequence of one or a few single genes. Base
calling algorithms [41] transform the measured intensities into base sequences. For the
analysis of resequencing microarray data, the tool ResqMi is presented in this thesis. It
addresses the necessity of quality control and visualization features, as well as of fast and
interpretable base calling methods. Quality control and visualization methods designed
for resequencing arrays might also prove to be useful for new and emerging resequencing
technologies.

This thesis contributes new methods for visual analysis and exploration of a variety
of data, with the emphasis on high-throughput life science data. Based on the current
state of methods for gene expression data analysis and visualization, an inventory of
possible methods for visualizing annotations in context is provided. The context-based
tools presented here are adjusted and applied to gene expression data. Graph-based vi-
sualization of gene expression data, in the context of biological models is a topic of active
research. The tools provided in this work extend current approaches by added visualiza-
tion plots and the option to include meta information and annotations in a modular way.
Implementations of all these concepts are available. Facile integration of complementary
expression data further adds to the use of the presented tools. Complement to this, the
analysis of resequencing microarrays is enhanced by ResqMi with visualization tools for
quality control, data inspection and summarization.

1.1. Outline

This thesis has three major parts: (1) The biological and theoretical background for this
work is given in chapters 2 and 3. More precisely, chapter 2 gives the biological back-
ground on gene expression, the measurement thereof, especially on the transcriptional
level. Further techniques of acquiring systems biology data are briefly discussed. The
analysis of gene expression data is also summarized in this chapter. The following chap-
ter 3 summarizes the development and current state of data visualization, with a focus
on visualization of gene expression data. Elements of graph theory and graph drawing
are then discussed. Special attention is given to the visualization of biological pathways.
The chapter is concluded by a brief overview of the analysis tools used and extended in
this thesis.

(2) The main work presented in this thesis is subject of chapters 4, 5 and 6. The
first chapter deals with the analysis and visualization of resequencing microarray data.
Proposals for the further use of the techniques are given at the end of this chapter.
Chapter 5 gives an overview of visualizing gene expression data in the context of meta
information. In this chapter, several context-based visualization tools are introduced
and applied. Graph-based visualization of biological data is the topic of chapter 6. This
chapter describes the details of graph-based visual data exploration and presents imple-
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mentations of this concept: a specialized variant for biochemical pathways, and a generic
graph viewer for biological data, both in concept and implementation.

(3) This thesis is completed in chapter 7 with a discussion of the work presented and
an outlook on possible further directions.
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2. Analysis of Gene Expression

Understanding the patterns of gene expression is one of the major topics in biological
and medical research. This is in fact one of the core questions of biology: How do organ-
isms function at the most basic level of control? Regulation of gene expression concerns
many parts of biology and medicine: developmental genetics, physiology, signal trans-
duction, infection biology, oncology and many others [111]. While the process of gene
expression in general is fairly well understood, the regulation of gene expression is not
trivial even in simple organisms, such as viruses and bacteriophages. In this chapter, an
overview of the process of gene expression, as well as of the most important regulation
mechanisms is given (section 2.1). There is a large variety of tools for the analysis of
gene expression. This thesis focuses on high-throughput techniques, such as microarrays
and RNA sequencing (RNA-Seq). They are briefly introduced in sections 2.2 and 2.3.
These techniques are used to study gene expression at transcription level, which is the
first step of the process. Regulation and variation of gene products are however not
limited to transcription. Therefore measuring the protein concentration, as the result of
the translation step is also important. Furthermore, the final effects of gene expression
is measurable on the metabolic level. Techniques for the analysis of metabolomes are
discussed in section 2.4.

2.1. Analysis of Gene Expression

The analysis of gene expression is crucial for current biological research. Gene expression
is controlling a vast number of biological processes, including cell differentiation, stress
response, embryonal development or cancer. Cells of the same organism, which have the
same genome, can differ greatly in function. These differences are due to differential
gene expression. Important insights about these and other processes are to be gained by
analysing the modal, temporal and spacial patterns of gene expression.

2.1.1. Gene Expression

Gene expression can be considered the fundamental activity of all organisms. Most
activity of an organism, including gene expression itself, is controlled and performed by
proteins, which are (together with noncoding RNAs) the products of gene expression. The
basic principle of gene expression, on a high-level view, consists of two steps: transcription
and translation (see figure 2.1). Origin of all gene expression is the genomic DNA of a
cell, that contains genes, i.e. transcribed loci. During transcription, the sequence of a
gene is transcribed into a complement RNA molecule. For protein coding genes, the RNA
is called a messenger RNA (mRNA), and it serves as a template for protein biosynthesis
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Figure 2.1.: Coarse overview of the processes involved in gene expression. The figure
omits transport processes necessary in eukaryotes and genomewide tran-
scription processes for brevity. Protein structure taken from PDB, accession id: 3pxe

during the translation step. Classically, the information flow from DNA to RNA to
proteins is called the central dogma of molecular biology. Today, several exceptions and
extensions of this concept are known, e.g. retroviruses, which have RNA as genetic
material. The transcriptome, the assembly of all transcripts in an organism, is by no
means limited to mRNAs. Non-coding RNAs, including ribosomal RNAs and transfer
RNAs (tRNAs) and several different types of regulatory RNAs are a sizeable part of the
transcriptome. The qualitative and quantitative analysis of the transcriptome is called
transcriptomics and has lead to important insights into many biological questions

The biological details of gene expression are non-trivial and are not discussed here.
However, it is important to note that prokaryotes and eukaryotes differ greatly in genome
organization, which gives rise to important differences in the process and complexity of
gene expression. Prokaryotes produce so-called polycistronic mRNAs that span several
genes. If genes structured in this way are commonly regulated, they form a so-called
operon. Operons often contain genes for a common biological process. The lac operon [84],
which contains genes for lactose metabolism in Escherichia coli is a classical example.

Eukaryotes have a nucleus, a separate compartment in which the DNA is located, and
in which transcription takes place. Furthermore, especially in higher eukaryotes, genes
consist of exons and introns, of which only the former are translated. The process of
splicing, which removes the introns, may give rise to different transcripts from the same
genomic locus, introducing a further layer of complexity into the eukaryotic transcrip-
tome. Both retention of introns and skipping of exons are common events of differential
splicing. The patterns of differential splicing are an important subject of research. In
the latest release of the Homo sapiens genome, 20,930 protein coding genes and 8,271
RNA genes are annotated [55, 53]. These give rise to 168,848 transcripts, which consist
of 615,132 exons. Furthermore, transcripts may occur from not annotated regions. This
genome wide transcription [92] further increases the complexity of the transcriptome.
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(a) Potential of gene expression
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(b) Annotated objects in Homo sapiens

Figure 2.2.: Complexity of gene expression. Part (a) shows the potential of gene expres-
sion, induced by the possible RNA and Protein processing steps. Part (b)
shows the currently annotated numbers of genes (from Ensembl [53]) and
proteins (from UniProt [194]) in Homo sapiens as of April 2011.

Additional complexity can be observed on the level of the proteome (the whole en-
semble of proteins in an organism). Posttranslational modifications are observed in all
organisms and alter proteins to differ from their primary sequence defined by the mRNA.
Common modifications are acetylations, methylatons or phosphorylations, and a large
variety of other modifications has been identified [126]. Potentially, the number of distinct
proteins in an organism far extends the number of genes and transcripts (see figure 2.2a).
Currently, fewer proteins than transcripts are annotated (based on UniProt [184, 194],
see figure 2.2b). This is due to the facts that not every transcript is translated and that
protein identification is non-trivial.

In summary, studying gene expression is an endeavor to be taken on multiple levels.
From a limited number of genes a much larger number of different transcripts and pro-
teins may be produced. The main complexity of higher eukaryotes does not lie, as once
thought, in the number of genes, but in the variations and regulation of gene expression.

2.1.2. Regulation of Gene Expression

The regulation of gene expression is important for cells and organisms. Unnecessary
gene products are a waste of resources, but may also harm the cell structure or even the
entire organism. Processes as apoptosis or cell division must be controlled carefully for
normal development and to prevent cancer. This is achieved by a multitude of regulatory
processes, of which the most important ones are shown in figure 2.3.

On the level of transcription, gene expression is controlled on DNA level. The process
of transcription is performed by the RNA polymerase that must bind to a transcription

7
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Figure 2.3.: This figure shows the key regulation points in gene expression: Epigenetics
which controls the overall access to the DNA, initiation of transcription,
which is controlled by transcription factors and RNA stability. Protein structure

taken from PDB, accession id: 3pxe

start site on the genomic DNA. The binding of the RNA polymerase and the efficiency
of transcription is controlled by various transcription factors. The access for the RNA
polymerase can be enhanced or restricted by enhancer or repressor proteins, that bind to
specific regions, often, but not necessarily near the transcription start side of a gene [111].

Due to genomic imprinting, a set of epigenetic modifications, the access to the gene
locus may not be possible at all. DNA methylation or the modifications to the histone
molecules that structure the genomic DNA prevent the unfolding of the DNA. In conse-
quence, the RNA polymerase and transcription factors cannot bind to the DNA and no
transcription can occur.

After transcription, the stability and processing of pre-mRNA are targets of regulation.
The stability of RNA is enhanced by the 5’-cap-structure and the polyadenylation of the
3’ end of the RNA, which is subject to rapid decay by various enzymes without these
structures. The mRNA needs to be single stranded in order to be used in translation.
Antisense RNAs, such as miRNAs and siRNAs specifically target mRNAs which are
then inactivated and decayed rapidly. This process is called RNA interference (RNAi)
and leads to the silencing of expressed genes.

The multitude of regulation mechanisms make the analysis of gene expression difficult,
since the effects of changes (i.e. resulting from mutations, the environment, and other
causes) are not necessarily linear: The control of transcription in an organism is exercised
by a complex and non-linear network that can contain thousands of components.

2.1.3. Measuring Gene Expression

The question of whether and in which quantity a gene is expressed is common in biolog-
ical research. For this purpose, many different methods have been developed to measure
gene expression on all levels. On the transcription level, the earliest method for quali-
tative detection of mRNAs is the northern blot [4]. A quantitative measurement can be
achieved with quantitative real time PCR (qRT-PCR). In-situ hybridization allows to
find spatial patterns in transcript abundance. While these methods focus on a single, or a
few genes, there are also high-throughput methods, that allow to measure whole genome
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transcription [111]. SAGE, serial analysis of gene expression [197] works by identifying
short sequence tags. DNA microarrays (see section 2.2) use nucleic acid hybridization to
estimate transcription levels. Recently, high throughput sequencing of RNA (RNA-Seq)
allows a more direct measurement of transcripts. This technique is beginning to replace
microarrays for most applications [163]. The latter two methods are described in detail
in the next two sections.

On the translation level, the presence of proteins can be detected via western blot,
and, for a spatial pattern, using immunoflourescence methods [111]. Towards a whole
proteome analysis, 2D polyacrylamide gel electrophoresis (2D-PAGE) allows the separa-
tion of several thousand proteins, and could also be used in comparative studies. Liquid
chromatography followed by mass spectrometry (LC-MS) allows to quantify, via peptides,
a large number of proteins from complex samples.

In addition to measuring the intermediate and final products of gene expression, it is
often useful to quantify the effects of gene activity, especially in the case of enzymes.
Metabolite concentrations can be measured by various means of chemical analytics. In
order to quantify a high number of metabolites, gas chromatography followed by mass
spectrometry (GC-MS) is used (see section 2.4).

2.2. The Microarray Technology

2.2.1. Principle

The until now most frequently used tool for the whole-genome analysis of gene expression
are DNA microarrays, or microarrays for short. The underlying idea of microarray-
based gene expression analysis is the assumption, that the concentration of mRNA is
proportional to the activity of the related gene. The general principle of measuring
RNA concentrations using microarrays is nucleic acid hybridization: A labeled sample
of DNA or RNA, extracted from a biological source, e.g. a certain tissue or cell culture,
hybridizes to a DNA probe. The probe is fixed at a defined position (called spot) within a
grid on a solid surface, called the (micro)array or slide. Hybridization fixates the labeled
sample to the probe. The label, usually a fluorescent dye, allows then to estimate the
concentration of the different DNA features in the sample. Fluorescence intensity is
assumed to be proportional to the concentration of the labeled sample. This leads to a
relative, dimensionless measurement of gene expression, which usually requires quality
control and normalization in order to be interpretable. It is possible to use either one or
two samples, using two different fluorescent dyes. Thus, on one array, two hybridizations
are possible, allowing two measurements to be made. For this purpose, the dyes Cy5
(red under fluorescent light) and Cy3 (green under fluorescent light) are commonly
used. More than two samples on the same array would be possible in theory, however,
no such established platforms exist.
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Figure 2.4.: Possible outcome of a probe design for a gene expression microarray and for
two tiling arrays with different resolution. Genes A and B are denoted in
5’-3’ direction. Probes in the respective array designs are displayed as blue
lines.

2.2.2. Technologies

Several technologies of microarrays are available (see figure 2.5 for examples). In gen-
eral, the production method of the physical arrays and the origin of the DNA probe
characterize a microarray platform. Two strategies of producing microarrays are used:

• Spotted microarrays are produced using a spotting robot that prints the probe
material onto the substrate. The probes can either be cDNA or oligonucleotides.
In the former case, probes can be up to several hundred bases long, in the latter up
to 60 bases is common. The main limitation of the spotting approach is a potential
lack of quality: uneven spot sizes, shapes and non-uniform grids are common.
However, costs and the effort of building a new design are low. Spotted microarrays
are frequently used for two-channel experiments.

• In-situ microarrays are produced by in place synthesis of the probe [170]. This
is done in an iterative process: In each cycle, a protective group is removed from
the open end of the oligonucleotide using ultraviolet light which is directed to
the relevant positions, often using a mask. Then, the next nucleotide is concate-
nated to the growing oligonucleotide. Each step requires a different mask, which
is expensive and limits the probe length; to address this, maskless production pro-
cesses are available (e.g. from Agilent Technologies). This process however leads
to high quality arras with uniform grids and evenly sized square spots. Affymetrix
GeneChip®s are produced in this way. Like the Affymetrix arrays, most in-situ
arrays are used for single channel studies.

As probe targets, in general every potentially expressed gene (including RNA genes)
could be used. One or more probes can be used for one gene, often to query the 3’ end
of the gene. Careful selection of the probe sequence is necessary to obtain sensitive and
specific measurements: secondary structures and non-unique probes as well as probes
that would allow cross-hybridization are to be avoided. Furthermore, the DNA melting
temperature of all probes must be similar. On Affymetrix arrays, also mismatch probes
exist, that differ in their central position from the so-called perfect match probe by using
the Watson-Crick complement of the central base of the perfect match probe. This setup
is used for estimating the amount of unspecific hybridization. For so-called tiling arrays,
fragments of genomic DNA, chosen by a regular pattern are used instead (see figure 2.4).
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Figure 2.5.: Microarrays of different platforms. From left to right: custom made cDNA
microarray printed on a glass slide; Affymetrix GeneChip for Danio rerio;
Applied Biosystems whole genome microarray for Homo sapiens; Illumina
BeadArray for Homo sapiens.

Using known genes is most useful for gene expression analysis. Tiling arrays, while not
optimized for this purpose allow to detect new transcripts and can be used for DNA
analysis studies (see below).

2.2.3. Development and Standards

The microarray technology has been established during the 1980s and 1990s, starting
with rather small designs querying a few dozen of genes in parallel. With great efforts
in miniaturization and genome projects being completed at an increasing rate, whole
genome arrays became feasible towards the end of the 1990s. Today, numerous whole
genome arrays for human and many other organisms are available from a variety of
suppliers (Affymetrix, Agilent, Applied Biosystems, Illumina, etc, see figure 2.5 for ex-
amples).

Considerable theoretical work on the normalization and data analysis (see 2.5 for a
short summary) and key studies performed by Eisen et al. [52], Spellman et al. [169] and
Golub et al. [66], established microarrays as a significant research tool. Standardization
and reproducibility became increasingly important, which lead to the establishment of
the MIAME (Minimum Information About a Microarray Experiment) standard [21],
which dictates the minimum amount of information researchers must disclose to make
their data reproducible. The establishment of public databases, mainly GEO [50] and
Array Express [22] allow researchers to share microarray data structured in this way.
Quality Control efforts, like the Microarray Quality Control project (MAQC) [164] and
data integration between microarrays and other experimental platforms have lately re-
ceived much attention.
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2.2.4. Experimental Workflow

A typical microarray experiment consists of several steps:

1. Design of study. At this point, the microarray platform is chosen. Based on this
choice, the experiment design (see [208] for an overview), is devised, taking into
account the number and nature of the samples and the number of replicates. For
two-channel platforms, the experiment design requires careful consideration: Indi-
rect designs are more extensible and fault-tolerant, but require more arrays. Direct
designs allow direct comparisons, and require potentially fewer arrays, but the loss
of one array can destroy the entire study.

2. Preparation of arrays and samples. This includes the production of the microarrays
and the extraction and labelling of the biological samples.

3. Hybridization of arrays with samples. In this crucial step, the binding of sample
to probe takes place. Afterwards, washing steps are required to remove non-bound
sample material.

4. Scanning and data acquisition. This step consists of detecting the spots on the
array, discriminating them from the slide background (segmentation) and measur-
ing intensity values for each spot. This concludes the laboratory work. Subsequent
steps are the normalization and statistical analysis of the resulting data (see sec-
tion 2.5).

In each step, sources of variation are introduced, which have to be removed during
normalization. Therefore, to ensure that the experiment is reproducible, each of these
steps needs to be documented according to the MIAME [21] standard.

2.2.5. Microarrays for Genomic Analysis

The hybridization-on-chip principle has been applied to more than gene expression analy-
sis. Genomic analysis, especially for the purpose of sequence and variation determination,
as well as the analysis of protein binding and epigenetic studies have been pursued using
this technology. Resequencing microarrays [69] are a special case of the sequencing by
hybridization (SBH) concept [9]. Originally, in SBH, determining a DNA sequence of
length n would require 4n probes. In resequencing, deviations from a known reference
sequence are determined. Since the reference sequence is known, a single substitution can
be detected using 4 probes, one for each possible base at the interrogated position. There-
fore, when limited to substitutions, 4n probes are sufficient to determine an individual
gene sequence. However, insertions and deletions cannot directly be detected in this way.
For this purpose, specific strategies are discussed in [69]. Resequencing microarrays are
a useful tool in clinical diagnostics, especially for detecting genetic diseases. Research
applications include studying genomic variations of bacteria [2, 42], viruses [176] and
other short genomes, e.g. the human mitochondrion [124]. A similar principle is com-
monly used for the determination of single nucleotide polymorphisms (SNPs). Here, the
microarrays are designed to query known variant positions of a genome.
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Other genomic studies performed with microarrays aim at detecting protein-DNA
interactions. Chemo-immunoprecipitation on microarrays, ChIP-Chip for short, allows
to identify protein binding sites in the genome [78]. For this purpose, usually tiling arrays
are used. Epigenetic modifications of the DNA can be analyzed in similar protocols.

2.3. RNA-Seq

Recently developed technologies for high throughput sequencing allow to get a quantita-
tive measurement of gene expression. The current technologies allow fast sequencing with
deep sequence coverage, which is suitable for both genome sequencing and gene expres-
sion analysis. This technology involves the sequencing of libraries of RNA molecules and
is therefore called RNA-Seq for short. Several different technologies for RNA-Seq exist.
While the Sanger sequencing method allows RNA-Seq in principle, the new technoligies
made it practical and affordable.

The advantage compared to the classical Sanger sequencing is that a large number of
reactions are performed in parallel. This allows to produce millions of relative short reads
(30-400 bp depending on the technology [200]). RNA-Seq protocols based on such tech-
nologies allow the direct quantification of RNA populations. In contrast to expression
and tiling microarrays, RNA-Seq can identify the transcripts on a single base pair reso-
lution. Furthermore, the background noise is considered lower, and the dynamic range
is higher for RNA-Seq than for microarray-based technologies [200]. A reference genome
is not necessarily required for all applications, for example the unsupervised profiling of
transcripts is possible. Novel transcripts and new variants of known transcripts can also
be detected.

2.3.1. Next-Generation Sequencing

Several different technologies for high-throughput sequencing are available. The earliest
technology, from Roche/454 employs pyrosequencing [152] in microtiter vessels to gen-
erate reads of length of up to 400bp. Major applications of this technology are genomic
sequencing: In a 2005 landmark study, Margulies et al. presented the sequencing of the
complete genome of the bacterium Mycoplasma genitalium, with 238,000 reads of average
length of 110 bp in a four hours effort [127].

The Illumina GenomeAnalyzer technology [15] works in a flow cell, on which DNA
molecules with specific adapters are immobilized. Then, bridge amplification is used to
create identical copies of each immobilized fragment. Resulting clusters of DNA have
a high density and are the templates that are subject to sequencing. A sequence-by-
synthesis approach is used, in which in each step, four different fluorescence-labeled
reversible terminators (one for each base) are added to the flow cell. DNA polymerase
appends the terminators at the end of the growing sequence, which is the complement
of the template. Fluorescence scanning is used to determine the type of the last incorpo-
rated base, which is recognized by the specific fluorescence color of the terminator. The
terminator is removed by the laser excitation during the fluorescence scanning, allowing

13



2. Analysis of Gene Expression

to begin the next iteration. In this way, sequence reads with length of up to 100bp can
be acquired [82].

Other technologies in this area are the SOLiD technology which is based on litigation-
based sequencing and the Helicos technology for single molecule sequencing. Applications
of next-generation sequencing include, besides genome sequencing and expression anal-
ysis, protocols for the detection of polymorphisms, protein binding sites (Chip-Seq) and
epigenetic modifications.

RNA-Seq experiments require the creation of a library of RNA which is extracted from
a biological sample. Fractioning of the RNA molecules allow to restrict such libraries to
poly-adenylated RNAs [200]. This might require the fragmentation of longer molecules.
Then, cDNA is produced from the library, which is used as an input for the supplier
specific sequencing protocol. The result is a large number of sequenced reads from the
input RNA library, along with quality values.

2.3.2. Normalization and Analysis

Several computational challenges arise during the process of RNA-Seq. This includes
base calling, which involves the conversion of intensities into a corresponding sequence
of DNA bases. Base calling must adjust to the properties of the underlying technology.

The primary output of RNA-Seq is a large number of short sequenced reads. The aim
of the analysis of such data is to calculate an expression measure from it. In general it is
assumed that the expression level of a gene is proportional to its number of reads. As the
read length is short, many overlapping reads are generated for all expression genes. The
first step of analysis involves the alignment of all reads to a reference genome. For this
purpose, traditional pairwise alignment techniques based on dynamic programming are
too slow. Therefore, several tools like Bowtie (based on the Burrows-Wheeler transform),
MAQ, RazerS (both using hashing techniques) have been developed to overcome this
problem (see [117] for a overview). A challenge is to allow for gapped alignments, which
is useful to map reads that span exon/intron boundaries. The identification of chimeric
transcripts from distant loci is also of interest.

The alignment gives a raw number of reads for each exon. The values need to be nor-
malized to be comparable within and between experiments. A well established method
for this purpose is RPKM [136] – Reads per Kilobase per Million Reads. Let C be the
reads mapped to an exon, N the total number of reads, and L the length of the exon in
base pairs. Then RPKM = 109 C

NL [136]. This method normalizes the mapped reads per
kilobase of exons (which normalizes the arrival of reads within the sample) by the num-
ber of overall reads generated in the sample. 109 is a scaling factor which compensates
for the order of magnitude of the denominator. Normalization is also necessary to en-
sure comparability between samples. For this purpose, global scaling methods [151] and
model based procedures [128] are used. The effects of on the detection of differentially
expressed genes of several normalization strategies, including quantile normalization are
compared in [24]. Besides general topics in gene expression data analysis as summarized
in section 2.5, like identifying differentially expressed genes in comparative studies, the
identification of novel transcripts is possible.
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2.4. Metabolomics

The metabolome is defined as the population of low weight molecules found in an organ-
ism. These molecules are substrates and products of physiological reactions. Therefore,
measuring metabolites is considered, in theory, to be the most direct analysis of pro-
cesses in an organism. Metabolomics is the process of analysis of this populations and
complements transcriptomics and proteomics in systems biology research. Like the other
“omics”, metabolomics aims at acquiring quantitative measurements. In connection with
functional genomics, metabolomics analysis can help to identify the function of genes
with phenotypes that would be otherwise invisible [131].

The complexity of the metabolome is currently a subject of research. It has been con-
jectured that 200,000 different metabolites are present in the plant kingdom [67], while
the respective number for human is up to 20,000. Currently, the human metabolome
database lists 7900 metabolites [207]. This potential gives rise to various applications,
including toxicology, profiling of diseases, nutrition, and discovery of drugs and natu-
ral products [131]. Clinical applications of metabolomics encompass efforts to identify
biomarkers, which can indicate whether or not a certain medical condition is present in
a patient.

The analysis of the metabolome employs general technologies from chemical analyt-
ics. For metabolomics quantification, experimental setups involving molecular or mass
spectrometry are used, commonly preceded by gas or liquid chromatography. For liquid
samples, nuclear magnetic resonance (NMR) spectroscopy can be used [67]. Challenges
in this area arise from the multitude of metabolites, methods for sample preparation,
especially addressing the experimental bias resulting from sample preparation. Compu-
tational challenges include the deconvolution of NMR spectra, and the identification
of metabolites from mass spectrometry and chromatography data. A frequently used
solution for the latter problem is XCMS [167].

Different strategies for metabolomic studies are used: Target analysis of metabolites
involves the profiling of a limited number of metabolites, which are relevant for the pro-
cess of interest. It requires the actual identification of the metabolites as well as an abso-
lute quantification [35]. In large scale comparative studies, statistical analysis, clustering
and other analysis methods can be applied. Time series of concentrations of identified
metabolites can be used to infer biochemical models. In contrast, metabolite profiling
requires no identification and relies on unsupervised methods like dimension reduction
and cluster analysis to characterize and compare samples. Furthermore, metabolomics
data can be acquired either in metabolomic footprinting studies, in which extracellular
molecules are investigated and metabolomic fingerprinting which focuses on intracellular
molecules. The latter technique suffers however from low reproducibility that arise as a
consequence of the sample extraction procedures.
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2.5. Gene Expression Data Analysis

The analysis of gene expression using the above tools, especially when they give a quan-
titative measurement, leads to raw data that needs to be processed. In the case of
microarray data, this is usually a set of images along with spot intensity values for each
image. This data, however, is usually not ready for drawing conclusions from it. Raw mi-
croarray data contains effects from several sources of variation, which should be reduced
by data processing and normalization in order to obtain high quality data.

The analysis of gene expression data requires several steps, with numerous potential
methods available for each step. Unfortunately, there is no “silver bullet”, no method
that fits for all problems. Instead, depending on the technology and the experiment,
methods must be chosen carefully. In this section, common methods are discussed for
the analysis of gene expression microarrays, beginning with normalization. Furthermore,
methods for the statistical and higher level analysis of microarray data are described.
These methods usually require an expression matrix as an input and therefore generalize
well to other experimental platforms.

Every technology requires a thorough quality control, that assess the quality of the
resulting raw data, based on the specific sources of variation and technological problems.
For microrarray data, it is common to remove at some point the spots that failed to meet
quality criteria during the scanning step and the normalization steps.

2.5.1. Microarray Data Normalization

This section is focused on expression microarrays. Resequencing microarrays require
different treatment, which is discussed indenpendently in section 4.1. Normalization of
microarray data is necessary due to the random effects that are imminent to microarray
experiments. A large number of variation sources has been identified [47, 208] that affect
all steps of a microarray study.

For the normalization of two-channel microarrays, typically three steps are performed,
which mostly are also necessary for all other types of microarrays.

1. Background Correction. This step is necessary to eliminate the error in the spot
intensities that arise from unspecific signals. The background is not uniform over
the array, and may have strong spatial effects (see figure 2.6 for an example). An
additive model is often used for modelling the background [208]: The measured
signal S is given by S = B + T , where B denotes the background signal and T
is the true signal. B and T cannot be measured directly. Therefore, most back-
ground correction methods subtract an estimate B′ from S in order to obtain an
estimation for the true (foreground) signal: Ŝ as Ŝ = S − B′. Several methods
for globally and locally estimating the background have been introduced. Depend-
ing on the background correction method, spots with negative signal may result
(Ŝ < 0), which is undesirable and often mitigated by adding an offset or setting Ŝ
to a minimum positive value. For many application, the normexp method which
estimates the true background value via a convolution model gives satisfactory
results in combination with an offset value [148].
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2. Within-Array Normalization. This step aims at making data comparable within
one array. It is most important in the analysis of two-color arrays, where the aim
is to remove the bias that results from different properties of the commonly used
fluorescent dyes. The dyes Cy3 (green) and Cy5 (red) differ in their incorporation
properties and their photo bleaching properties. Furthermore, the dye effects can
depend (not necessarily in a linear way) on the spot intensities [208]. Dye swap
normalization, which exploits two hybridizations with inverted dyes, can be used
to solve this. More frequently, intensity dependent dye normalization (see for ex-
ample [208, 47, 116]) is applied to this problem. For this purpose, a regression
model is fitted on the transformed red and green channel intensities, Ri, Gi. Then,
the MA-transformation is given as

Mi = log2(Ri)− log2(Gi)Ai =
1

2
(log2(Ri) + log2(Gi)) (2.1)

This transformation gives rise to the MA scatterplot (see figure 2.7) to which a
smooth curve f is fitted, using either all, or an invariant subset of the genes [157].
For this, the LO(W)ESS (Locally Weighted Regression) methods (using linear or
polynomial regression models, see [47] for an overview) has become the standard
procedure, however many other methods have been devised and successfully ap-
plied, for example smoothing splines [208]. The corrected values M̂ and Â are
calculated as

M̂i = Mi − f(Ai)

Âi = Ai

Figure 2.7 shows an example of this procedure. From this point on, the data is
represented on a log2 scale, which is has a variance stabilizing effect and allows an
easy interpretation of fold changes [208].

3. Between-Array Normalization. Subtle differences between the processing of two
microarray slides in the laboratory make between array normalization necessary.
A standard method is scaling the data so that the mean or median value of each
slide match [208]. Quantile normalization [17], which makes the value distributions
of all arrays identical is often used for between-array normalization.

For single channel microarrays, especially Affymetrix GeneChipTMs, slightly differ-
ent steps are performed, for example in background correction, where several specialized
methods exist. Since only a single channel is available, no dye effect normalization is nec-
essary. Intensities of the mismatch probes are used to correct for unspecific hybridization
and to estimate the true probe values. Finally, the overall expression of a probe set is es-
timated from the corrected probe values (using Tukey’s Biweight in the MAS5 package).
Between-arrays normalization is also performed. Usually, fixed collections of methods
for background correction, normalization and probe set expression level estimation like
MAS5, dChip and RMA are used. Zhu et al. [213] have investigated more than 150
different options for normalization using a large scale spike-in dataset. Their study con-
cluded that a process with the GCRMA (a variant of the RMA method) background
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z−range 481.5 to 1619 (saturation 481.5, 1619)

(a) Background intensities

z−range 522.6 to 65535 (saturation 522.6, 65535)

(b) Foreground intensities

Figure 2.6.: Background and foreground intensities of a cDNA microarray. The spatial
pattern of the background could lead to problems without adequate back-
ground correction. The two images show the intensities using white-blue
color gradients, however, (a) and (b) use different scales.
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Figure 2.7.: Effect of loess normalization: (a) shows the MA plot of a cDNA microarray
before normalization, along with several curves fitted to the data; (b) shows
the same data after normalization.
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2.5. Gene Expression Data Analysis

correction and median polish probe set summarization outperformed all other meth-
ods. Variance stabilization [80], without any background correction also performed well.
Other platforms, e.g. the Illumina BeadArrays require similar, but adopted strategies
for background correction and normalization.

The normalization of microarray data is complex, and a host of different options is
available. Successful normalization requires choosing an adequate set of methods. Quality
control on all levels is necessary to ensure high quality data. This involves identification
of poor quality array features or even arrays with an overall poor quality, which are then
excluded from further analysis. In most steps, visualization can help the researcher to
make decisions. For a summary of visualization tools, see chapter 3.

After performing these steps, the data is available in the form of a background cor-
rected, normalized, log2 transformed matrix, which is the primary data used in further
analyses. Usually, for two-channel data it is given in the form of a matrix of fold changes
or, from single channel data, as a matrix of normalized probe expression levels. Generally,
we refer to this matrix from now on as the expression matrix. A row in this matrix rep-
resents the expression profile of one gene (sometimes called a probe) in various samples
or experiments.

2.5.2. Statistical Analysis

Gene expression studies are often comparative in nature. The aim of many studies is
to characterize the differences between two or more groups of samples. These groups
may arise from different conditions, cell lines, treatments, diseased or healthy tissues, or
any other biological or medical factor that is of interest. Time series data is also of high
interest. Here, differences between time points or between before and after perturbations
happened are investigated.

For this purpose, one is interested in finding the genes that are differentially expressed
between conditions. The log2 fold change of a gene g expressed in groups a and b is
defined as fcg = gb − ga, where g· denotes the average expression value of g in a or b.
Due to the variation in the values, it is not sufficient to calculate fcg and declare g to be
differentially expressed when |fcg| is higher than some cut-off. Instead, the variance of
the must be taken into consideration. For this purpose, the whole repertoire of statistical
tests can be used. Classical statistical tests like the t-test or the Wilcoxon rank-sum test
have been applied as well as microarray specific adoptions, like SAM [193]. Numerous
non-parametric methods with different test statistics have been developed, examples
are RankProduc [23] and Weighted Average Difference (WAD) [87]. The performance
of various methods, also in dependence to normalization methods, have been evaluated
in [213] and [87]. For the identification of differences between multiple groups, ANOVA
and the non-parametric Kruskal-Wallis Test can be employed.

Statistical significance, which can be found by the above methods, is not a sufficient
criterion for biological relevance. Here, the magnitude of the fold change should be taken
into account as a filter: genes with |fcg| ≤ 1 are usually not considered to be differentially
expressed.
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2. Analysis of Gene Expression

The multiple testing problem, especially when analyzing large whole-genome arrays,
requires a correction of the p-values resulting from the various methods. Single step
methods for controlling the family-wise error rate (FWER) like the Bonferroni or Šidak
procedures are often considered too conservative. Instead, the Benjamini-Hochberg step-
down method for controlling the false discovery rate (FDR) is often used [208]. In addi-
tion, the number of tests performed can be reduced by preprocessing steps, like cluster
analysis (see below) or removing invariant genes from the analysis.

2.5.3. Cluster Analysis

Cluster analysis is among the most frequently used steps during gene expression analysis.
Identifying clusters of co-regulated genes allows to structure the data into smaller units
which makes handling and visualization easier and more effective. Furthermore, it is
conjectured that there might be biologically relevant relationships between co-expressed
genes: co-expression might indicate co-regulation. Similarity of expression profiles, is, in
most clustering methods, measured using one of many distance measures. The most im-
portant among them are the Euclidean distance, the Pearson correlation distance (which
is invariant to scaling) and the Manhattan metric. However, various others distance mea-
sures exist [47].

The usage of hierarchical clustering methods on microarray data has been popularized
by Eisen et al. in 1998 [52], who used average linkage clustering on expression profiles
from a study on Saccharomyces cerevisiae. Following this influential paper, various other
linkage methods and methods originating from phylogeny, like Neighbor Joining, have
been used. Usually, a heat map with the resulting clustering tree is used for visualization.
Clustering the experiments is also common, as it allows to inspect the similarity of
experiments and to discover classes.

Partitioning clustering algorithms allow to separate genes into an (often predefined)
number of clusters. The k-means clustering method [121] and adaptations that allow the
usage of other distance measures allow a relatively fast clustering into k groups. Self-
organizing maps (SOM) provide a better and meaningful topology of the cluster centers.
Quality-based clustering [75] requires no predefined number of clusters and can reject to
cluster genes.

Further topics in clustering microarray data includes using dimensionality reduction
methods like Principal Component Analysis (PCA) to induce and visualize clusterings.
Quality assessment and comparison of clustering results are as well of interest as biclus-
tering, which allows to simultaneously identify similar subsets of genes and experiments.
For an overview, see [32] or [47].

Often, dimensionality reduction methods are used, most commonly principal compo-
nent analysis (PCA). The aim of PCA is re-expressing the input data in a way that best
reflects the variance of the data and reduces redundancy (see [47] for an overview) For
this purpose, a basis transformation is performed, the new basis are the eigenvectors
of the covariance matrix of the input. Let A be a centered matrix, then for every row
(column) x, y, let x̄, ȳ denote the expected values. Then, the covariance is defined as
Cov(x, y) = E((x− x̄)(y− ȳ). E denotes the expected value function. In this way, the co-
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2.5. Gene Expression Data Analysis

variance matrix C is calculated from each row (column) of x. Then C = V DV −1, where
V is a matrix consisting of the eigenvectors of C, ordered by their eigenvalues; D is a
diagonal matrix of the ordered eigenvalues. The sum of the first n ordered eigenvalues is
the fraction of retained variance in the first n components. Let W be the first n columns
of V . Then x′ = xW is the n-dimensional reduction of vector x.

2.5.4. Higher Level Analysis

Based on the results of statistical analysis and cluster analysis, several higher level
analysis steps can be taken. These usually include external data and extend the focus
beyond the statistical analysis of the data.

Biological questions are seldom answered with a single gene. Often the overall regula-
tion of a whole set of genes is of interest. Common gene sets of interest are for example
genes related to a metabolic pathway or genes that have a certain Gene Ontology [6]
term. For identifying differential behaviour of gene sets, several methods for gene set
enrichment have been proposed. Subramanian et al. published GSEA – Gene Set En-
richment Analysis [175]. Over-representation analysis and several similar methods based
on hypergeometric tests and other parametric and non-parametric test are also used.

For many comparative studies, especially in cancer research, it is interesting to build
a model for automatically distinguishing between two or more classes of samples. A
landmark study was performed by Golub et al. [66] who presented a classification model
to distinguish between two forms of leukemia. Following studies employed a large variety
of classification models on different microarray studies, with varying results. Common
procedures are feature selection to identify genes that discriminate between classes and
the training and evaluation of classification models. See [209] for an overview of methods.
Other medical applications of machine learning are using gene expression profiles to
predict the disease outcome or the survival time.

Further topics in higher level analysis of gene expression data encompass the inference
of regulatory networks, the prediction of operons or the validation of non-coding RNAs.
In general, for the generation of biological hypothesis and for the coming to conclusions
from gene expression data, external data must be referred to. This encompasses many
different sources, from gene annotations to biological networks. A discussion of such
meta information and ways for extracting relationships from expression and meta data
is provided in chapter 5.

Much of the knowledge of the biomedical community is condensed in a multitude
of biological, biochemical, signaling and other pathways. Pathways represent series of
biochemical reactions and are an important tool for understanding and structuring the
overwhelming number of physiological reactions. They constitute a condensed concep-
tual representation of biological knowledge, which is gathered from many studies. Using
pathways, including the topology, for the analysis of gene expression data, can give good
answers to many biological questions. The possibility of crosstalk between pathways un-
derlines, that biology is in fact a network-based science [10]. Therefore, gene expression
must be seen in the context of networks, tools for which are introduced in chapter 6.
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3. Data Visualization

In this chapter, the theoretical foundation of this work is summarized. This chapter
starts with a short summary of the topic of data visualization. The basic principles
are discussed, as well as important data analysis strategies based on visualization and
applications to gene expression data (section 3.1). Furthermore, the most important
visualization plots are described (section 3.2). An equally valuable tool for dealing with
complex and high dimensional data are graphs. A brief overview of graph theory and
visualization is given in section 3.3. The combination of visualization and graphs is
relevant for working with biological networks, which are described in section 3.4. A step
away from the theoretical framework, Mayday, the technical foundation of this thesis is
summarized in section 3.5.

3.1. Data Visualization

Data visualization is the process of turning data into an image that represents the data
and allows to answer questions related with the data. This is achieved by choosing a
visual representation of the data which may amplify several aspects and omit others. In
general, data visualization allows important insights into data, even by simple means.
A landmark example for the importance of inspecting data before performing statistical
analyses is Ansconbe’s quartet [5]. It contains four datasets of two variables x and y. For
each dataset, mean and variance of x and y, respectively, are equal or nearly equal. The
correlations between x and y and linear regression line are also practically equal for all
four datasets. However, as it can be seen from figure 3.1, the datasets differ greatly in
shape, what is difficult to detect by statistical analysis alone. Furthermore, in datasets
3 and 4, outliers have a large influence on the characteristics of the datasets, especially
for dataset 4, where the regression line could not be calculated without the outlier.

One of the earliest application of data visualization were geographical maps [188].
Maps represent large datasets: area boundaries or roads and topological features are
represented as polygons or polylines supported by a large number of vertices. An exam-
ple that highlights the importance of visualization of geographical data is John Snow’s
map of deceased patients during a cholera outbreak in London, 1854 [189], which helped
identifying a contaminated water pump. No summary of data visualization would be
complete without mentioning Joseph Minard’s high-dimensional map-based visualiza-
tions of Napoleons military campaigns, most importantly of the invasion of Russia (see
figure 3.2a). Early applications of visualization of time series data arise in astronomy
beginning the 10th century C.E. [188], although the first concise uses date back to the
late 18th century. The same era gave rise to the first visualized economical statistics by
William Playfair (see [188] for a review), who invented line graphs, bar charts and pie
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Figure 3.1.: Anscombes Quartet. Several important properties of the datasets are iden-

tical, however they differ greatly in shape. Note that the outliers in datasets
3 and 4 dramatically change the properties of the dataset.

charts. This started the era of decision making based on charts. The radial bar plots
presented by Florence Nightingale on causalities during the Crimean war (1853 – 1856,
see figure 3.2b) showed that most soldiers died from preventable causes and triggered
decisions to enhance health care and sanitation. Enhancements of data processing (first
patents on punched cards by Herman Hollerith in 1889), statistics and printing allowed
advances in data basis, interpretation and presentation of visualizations. However, the
focus in statistical analysis laid mostly on mathematical methods. This was attacked
by works by Tukey [191, 192] and Anscombe [5], which paved the way for exploratory
analysis of data. The introduction of parallel coordinates, Chernoff faces and the in-
creased use of heat maps allowed to produce multivariate visualizations. Conceptual
work was first done by Bertin [27], later Wilkinson formulated data visualization as a
formal grammar [205]. Quality considerations (e.g optimizing “data ink” [188]) and in-
clusion of results of cognitive science, psychophysics and other disciplines gave rise to
new topics and fields, including visual analytics. Computer graphics and data visualiza-
tion became a successful combination, greatly increasing creation speed and accuracy of
visualization.

Current challenges include the handling of large scale heterogeneous data, arising
form biology, astronomy and physics. Interactivity and especially collaborative work
are further topics of research. Presentation of visualizations (“story telling”, [161]), info
graphics, and data journalism are further aspects of data visualization that currently
receive much attention, also from the general public.
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3.1. Data Visualization

(a) Minard’s Map of Napoleon’s Invasion of Russia

(b) Florence Nightingale’s Radial Bar Plots

Figure 3.2.: Classical examples of data visualization. (a) shows the Minard’s map of
Napoleon’s invasion of Russia, which shows latitude, longitude, number of
surviving men, and temperature. (b) Nightingales chart shows the causes
of soldiers dying in the Crimean war. (Sources: (a): en.wikipedia.org/wiki/File:Minard.png (b):

en.wikipedia.org/wiki/File:Nightingale-mortality.jpg)
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3.1.1. General Concepts

Ben Fry discusses in [58] eight steps that summarize the actions necessary as well as
the challenges during the process of data visualization. These steps begin with data
acquisition, parsing into data structures, filtering in order to find the data of interest.
Then, data is to be mined for interesting patterns and a suitable visual representation
is to be found, and refined, i.e. optimized to better convey the particular information.
Finally, interaction methods are to be added [58].

This is only one possible model for data visualization. Wilkinson describes a “Gram-
mar of Graphics” [205], based on object oriented design. In this grammar, statistical
graphics are defined in a number of statements that describe data, variable transforma-
tions, scale transformations, the coordinates system, the elements displayed, and guide
items. Following Wilkinson and Fry, several aspects of visualization are discussed here.

Data acquisition depends on the general field of application. Methods for data acqui-
sition of gene expression data are described in the previous chapter, including methods
for preprocessing and statistical analysis. Identifying the important parts of the data
is done using statistical and clustering analysis. As data structures, (subsets of) high
dimensional expression matrices are relevant.

The representation step involves choosing the graphical representation of a dataset,
often using one or more of the plot types described in section 3.2. Further aspects are
transformations of the variables to be visualized. Examples are sorting, aggregating
(e.g. for boxplots and histograms), discretization and numerical transformation (often
logarithmic, exponential etc.).

Another common preprocessing step for data visualization is dimensionality reduction.
The most common method for this is principal component analysis (PCA); similar meth-
ods are singular value decomposition and multidimensional scaling. A related non-linear
alternative is kernel PCA.

The scale of measurements also influences the data representation. Scale theory was
introduced by Stevens in his influential 1946 paper [171]. Stevens identified four scales
of data which are characterized by possible mathematical operations and statistical op-
erations

Nominal data is defined as data for which no order can be defined; for examples for
person names. The mode and the equality of two measurements can be determined.
Ordinal data can be ordered, i.e. it is possible to determine whether an object is greater
or less than another one. The median and other percentiles can be calculated. School
grades are an example. Interval data are quantitative measurements made on some
interval with arbitrary origin. Additions can be performed on this data, and it allows to
calculate mean, variance and correlation coefficients. A common example is temperature
measured on the Celsius scale. Calculations requiring divisions are not possible in interval
data. Ratio data allows divisions of measurements, and geometric and harmonic means
can be calculated. Examples are all measurements made in SI units.

The scales of measurements dictate several aspects in a visualization, e.g. the encoding
of data, data transformations (of which most are only permissible for ratio data), axis
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labellings and, potentially, the kind of plot used: for plotting a function graph for nominal
data is not possible; instead, a bar chart can be used.

Different coordinate systems are used for data representation, most commonly Carte-
sian coordinates in two or three dimensions. Alternatively, polar coordinates are applied
e.g. to pie charts and radial bar plots. Fisheye transformations direct focus to central
elements of a visualization. Barycentric coordinates are based on a two dimensional pro-
jection (resulting in a triangle) of the three-dimensional space. Also four dimensions can
be displayed using tetrahedrons. Parallel coordinates (see below) are another useful way
of transforming high-dimensional objects into the plane.

The refinement step in Fry’s process of visualization involves enhancing the clarity
and directing attention to selected parts of the data [58]. Possible methods are manual
selection of data points to be distinctly represented. Scaling or coloring objects based on
relevance measures is also helpful, see [63] for examples. Refinements may also include
adding guides, i.e. axis descriptions, labels or legends the clarify the meaning of graphical
elements in a visualization [205].

The usage of color requires some considerations. While color is an indispensable tool
for many visualizations, for example heat maps, it has been found to be a poor way
of conveying information [36]. However, the color scheme used has a great influence
on the legibility of graphics. The often-used rainbow color map, which is based on the
wavelength of lights of several colors, is not optimal in several aspects. In general, a per-
ceptual ordering is required for color maps that should support comparing relative values.
The order of values represented by such colors is intuitively clear. Varying luminance
allows to identify small details. Color maps may not cause artifacts in visualizations.
The grayscale color map, black body radiation and green-red color maps are recom-
mended [18]. Tools suggesting color gradients for various purposes, including addressing
color vision impaired audiences, exist, e.g. ColorBrewer [71]. Useful selections depend
on the type of data, for ordinal data, the gray scale map, and the black body radiation
map is recommended [18]. The color gradient classically used in heat maps has not yet
received much attention by the perception community.

Interactive visualizations allow the user to explore the data beyond the scope of the
initial view [58]. This is especially useful for high dimensional data when the point of
view is selectable, i.e. in 3D graphics. In large and detailed visualizations, zooming allows
to inspect the data in greater detail, or get a better overview. Gradually moving over
the visualizations (panning) allows serial inspection of details. Selecting (picking) data
points, is useful for highlighting data points, and possible preparing manually chosen
data points for further use, i.e. in a refined visualization or in a confirmatory analysis
step.

The concept of coordinated multiple views means to have several views of the same
data, which are connected and exchange operations performed on the data and its rep-
resentation (“brushing and linking”). This allows to view several levels of the data, e.g.
an overview and details, or objects in the focus and their context, as well as views that
highlight differences [150]. Interactive search operations, allow to focus and refine the
visualization on relevant data items. Other operations, like on-line data transformations,
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filtering, changes of refinements or even addition of new data allow users to redefine the
visualization and interactively explore a dataset.

There are many applications of data visualizations in gene expression data analysis.
Visualization is used throughout the process of measuring and interpreting gene expres-
sion. Beginning with data normalization, visualization is a standard tool. For quality
control, image plots of microarrays are used (see figure 2.6). MA-scatterplots are impor-
tant tools for assessing the normalization of two-channel microarrays (figure 2.7). For
general assessment of normalization, box plots comparing multiple arrays are used. In
statistical analysis, volcano scatterplots are used to view the results. Up to this point, vi-
sualizations are mostly used in a static way, however often with optimal data preparation
and representation. Clusterings are visualized using profile plots and heat maps. Higher
level analyses often requires networks to be visualized. For all these topics, interactivity
is important.

3.1.2. Exploratory Data Analysis

Exploratory data analysis is a term coined by John Tukey in his groundbreaking 1977
book with the same title. Exploratory data analysis (EDA) describes a concept for
investigating data. Aims of this approach are commonly gaining insight into a dataset
and its structure. This involves finding outliers, important relationships and formulating
hypothesis. Furthermore it can be aimed at quality control and choosing confirmatory
tools. A main idea is not to engage into statistical testing before an overview of the
structure of the dataset is achieved.

For exploratory data analysis, many visualization tools are used, including the stem-
and-leaf plot, histograms, scatterplots, box plots and numerous variants of them. Com-
binations of visual tools with basic statistics, i.e. mean, standard deviation, median and
other measurements enrich the plots and allow further insight. Regression is also com-
monly used. Numerical summaries like the five number summary (see section 3.2.4) were
also introduced in the book [192]. Further relevant tools are data transformations (log,
square root) and data smoothing using nonlinear smoothing.

The impact of EDA to data analysis is huge and the methods and concepts suggested
by and following Tukey are today common tools for data exploration. While Tukey con-
centrated on numerical (mostly ratio and interval) data, the focus of EDA is today much
broader. Applications of EDA are also relevant to the exploration of graphs and network,
like in biological pathways [97]. EDA can be seen in contrast to confirmatory data anal-
ysis. The aim here is confirming the relationships found during exploration. Methods
relevant for this are statistical hypothesis tests or bayesian inference; visualization is
also possible for confirmatory analysis [96].

3.1.3. Visual Analytics

While the roots of exploratory data analysis were based on manual calculations and
hand drawn graphics, possibly enhanced by desk calculators, modern methods greatly
increased the speed and handling of visualization and exploratory statistics. Interactivity
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is a further important aspect made feasible by computer-based visualization. In the same
time, however, the size and complexity of datasets increased even faster then the analysis
tools were improved [95]. New concepts for making sense of large, noisy and heterogenous
datasets are required. Visual analytics makes use of interactive visualization to support
human cognition to analyze and interpret data. The focus lies on the optimal support
of human cognition, which is considered a powerful tool. For this purpose, methods and
results from various scientific disciplines are integrated, including computer graphics,
psychology, cognitive sciences and design.

The overall process of visual analytics can be summarized by the visual analytics
mantra: “Analyse First - Show the Important - Zoom, Filter and Analyse Further - De-
tails on Demand” [95]. It names some of the tools and strategies used in visual analytics.
Analysis methods are used to prepare and filter the data to first visualize concentrat-
ing on important features [95]. Visualizations are optimally maximizing data density and
should allow to easily identify patterns and relationships. Commonly tools used for EDA
are applied [27]. Based on an existing visualization, refinements are interactively made:
zooming to get a view that is more coarse or fine, filtering to remove irrelevant items and
further analyses. Details on objects are shown interactively on demand. This process is
iteratively repeated. Each iteration is aimed at providing a useful visual representation
that allows the viewer to make more sense of the data.

As visual analytics is concerned with extremely large datasets, several challenges exist.
The limited space on visual media, especially screens calls for scalable visualizations (and
larger screens) [96]. Analyzing high-throughput stream data can address data storage
problems. Another challenge is the analysis of heterogenous datasets, which arise in
many fields, including systems biology. Automatization of processes, decision support
and evaluation of existing processes are also fields of research in visual analytics.

3.2. Visualization Plots

In this section, a brief overview of several types of common visualization plots is given.
While a large number of plots exist, they can be summarized by a few basic types,
of which the most important ones for this thesis are discussed here. Some classical
approaches, like Chernoff faces, are left out here, as they are rarely used, especially
in gene expression analysis. Also not listed here are tree views or tree maps, which
do not directly display expression data but can be used to visualize meta information.
Genome browsers employ a subset of the tools described below. They are, while capable
of visualizing gene expression data, not in the focus of this thesis.

A classification of the different approaches discussed here can take into account the
graphic elements used, as well as the number of high dimensional objects and the number
of variables that can be plotted simultaneously (see table 3.1). The theory of graphic
elements has been introduced by Cleveland et al. [36]. A graphic element is the way a
plot conveys its information. A ranking of the most effective elements places the position
on an aligned scale at the top, and color at the bottom of the ranking. This ranking, has
however been challenged, as different tasks give rise to different rankings, and often many
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Plot Strategy Objects Variables

Scatterplot aligned scale < 10000 2
Parallel coordinates aligned scale, angle < 10000 < 100
Box plot aligned scale unlimited 1
Bar plot aligned scale, length, area < 100 1
Histogram aligned scale, length, area unlimited 1
Heat map color < 10000 < 100
Pie chart angle, area, length < 10 1
Radial bar plot area, length < 20 1
Star plot length, non-aligned scale, angle < 20 < 10000

Table 3.1.: Properties of visualization plots. The table shows the name of the plot, the
strategy for conveying information it uses (partly based on [36]) and typi-
cal maximum numbers of objects that can be visualized and the number of
variables that can be shown for these objects.

elements perform equally well [172]. Most plots use make use of two or more elements,
and most of them usually convey information effectively. Heat maps, while very dense,
use color, which might be an issue, but it has been found that for interpretation tasks,
color shade and saturation can be interpreted with high accuracy [172].

In general, plots capable of displaying high dimensional data are used for many pur-
poses. However, it is often useful to provide multiple plots with a reduced number of
elements, especially when a clustering or classification of objects is available. This con-
cept is sometimes called small multiples [188]. Usually, multiple plots of the same type,
with the same scales are presented. The small multiple concept is well established and
their first use can be tracked back to the late 18th century [188].

3.2.1. Scatterplots

Scatterplots are commonly used to visualize two variables x and y, for n objects, i.e.
x1, . . . , xn and y1, . . . , yn. Usually, continuous variables are used, however general ordi-
nal variables are also possible. Data from all scales has been visualized using scatterplots.
Scatterplots work by visualizing points (xi, yi) for all i in Cartesian coordinates (an ex-
ample can be found in figure 3.1). Applications of scatterplots are the visual comparison
of two variables. With scatterplots, the correlation of x and y can be detected. There-
fore, scatterplots are often extended by plots of regression functions. Additional data
dimensions can be encoded by color, point size or using different symbols. A problem
often observed in scatterplots is overplotting. If a large number of points is to be drawn
on a small area, they overlap each other. In this case, an estimate of the density of points
is useful, for example using continuous scatterplots [7].

Many special cases of scatterplots exist. They arise from applying transformation
to the input variables. In microarray data analysis, MA-plots (see eq. 2.1, figure 2.7)
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are used which present a rotation of the data by 45° and are in principle not limited
to microarray data. QQ-plots are used to compare the quantiles of samples, in order
to infer whether they are drawn from the same distribution. Dimensionality reduction
methods, especially PCA use scatterplots to show the data reduced to the first principal
components.

Three-dimensional scatterplots are also routinely used for visualization of three vari-
ables. Here, interactivity is important, to inspect the data from different view points. For
high-dimensional data, a scatterplot cannot be extended to more dimensions. Instead,
scatterplot matrices are used. They show a scatterplot for each pair of variables. Large
scatterplot matrices can be summarized to correlation matrices using ellipses to denote
the correlation. A scatterplot itself can be subject to statistical analysis. The technique
of scagnostics aims at extracting descriptors from scatterplots that describe their shapes.
This is usually applied to and displayed by scatterplot matrices.

3.2.2. Parallel Coordinates

Parallel coordinate plots, in the context of gene expression data usually called profile
plots, are a method for visualizing high dimensional data. A point p ∈ Rn is drawn on
n parallel axes by placing i-th vertex of a polyline on the position of the i-th axis that
represents the value of pi. A large number of points can be jointly visualized in parallel
coordinates. For interpreting the parallel coordinate plot, the order of the of the parallel
axes must be known. Parallel coordinate are used for a discrete number of dimensions,
like in discrete time series data. For this data, parallel coordinates are especially useful,
as the slope of the polylines is proportional to the difference between two adjacent time
points. The coordinates can also be spaced proportional to the distance between two
time points. Figure 3.3 shows an example of a parallel coordinate plot for time series
data.

Parallel coordinates were introduced in 1959 by Alfred Inselberg (a previous de-
scription of this concept was published by d’Ocagne in 1885) [83]. Since then, par-
allel coordinates have been used in a multitude of applications. An influential paper
of Wegmann [204] demonstrated several use cases and interpretations. it included high-
dimensional geometric objects and cluster visualization, which is one of the most common
applications of parallel coordinates. For this purpose, color is used to indicate cluster
membership. Parallel coordinate plots can be extended by adding additional dimensions,
for example showing statistical properties of the points.

Plotting many points in parallel coordinates can lead to overplotting. To address
this problem, a number of dimension reduction methods have been suggested, e.g. [89].
Alternatively, clusters can be represented by centroids, leaving out all other points.
Using semitransparent lines gives a better overview of the density of lines in a plot. The
number of dimensions in a parallel coordinate plot is not generally limited. However, a
large number of dimensions might lead to tightly spaced coordinates, which can be hard
to read. For time series, an aspect ratio that causes the average slope of a line segment
to be 45° is considered optimal [74]. This might lead to a trade-off between size and
readability.
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Figure 3.3.: Parallel coordinate plot (profile plot) of three clusters of gene expression
profiles in a time series. The coordinates are spaced proportionally to the
time points. The centroid profiles of the clusters are shown using thick lines.

3.2.3. Heat Maps

Heat maps are a tool for visualizing a large number of high dimensional objects. Let
Mn×p be a matrix, e.g. an expression matrix, with n objects described by p variables
in arbitrary but fixed order. Let c be a function that maps values of M to a color,
proportional to the value. Then a heat map displays M as an n × p array of colors,
given as c(Mi,j) for all elements of M . In general, for the entire heat map, the same
color gradient is used and all cells are drawn as rectangular boxes. As heat maps rely
on color for data representation, a color palette must be defined that maps the values
of M to a corresponding color in linear or sigmoid way; common color gradients are
green-black-red or blue-white-red.

Enhancements to heat maps are made by hierarchically clustering the objects or vari-
ables to induce a reordering of rows or columns. This allows to group together similar
objects and variables. The trees resulting from hierarchical clustering are plotted above
and left to the heat map. Further enhancements can be made by adding additional
columns, e.g. containing statistical measurements or annotations to the objects [63].
Scaling the height of rows is also possible to indicate their relevance.

Any discrete or continuous matrix can be visualized using heat maps. Social sciences,
usability studies, geographical information systems, and finance use heat maps. In gene
expression data analysis, heat maps are a standard tool to view (subsets of) expression
matrices. The usage of clustered heat maps for this purpose has been popularized by
Eisen et al. [52]. While Eisen’s paper was influential, the fist use of heat maps date
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Figure 3.4.: Clustered heatmap showing 49 expression profiles in S. coelicolor . The clus-
tering was performed using neighbor joining (using Pearson correlation dis-
tance). The color gradient used is depicted at the top of the figure.

back to the late 19th century, and clusterings in heat maps were introduced in the 1970s
(see [206] for a historical review).

Similar to heat maps are plots, which visualize a single variable for spatially distributed
objects. Examples are thematic maps, potentially with scaling the areas (cartograms),
which are used to present statistical values for areas. Image plots are used in microarray
quality control to visualize values for individual features (see figure 2.6).

3.2.4. Box Plots

Box plots (also called box-and-whisker plots) have been introduced by Tukey as at tool
for exploratory data analysis [192]. Box plots are a simple, but effective mean of visually
describing key characteristics of a data sample. Let x be a vector of n numbers, then, a
box plot visualizes a five-number summary, consisting of min(x), the first quartile Q1, the
median, the third quartile Q3, and max(x). The first and third quartile are represented
by the box (see figure 3.5). Values larger than Q3 + 1.5(Q3−Q1) and smaller than Q1−
1.5(Q3−Q1) are considered outliers (sometimes called 1.5 · IQR rule) and are indicated
as individual points. The whiskers extend from the box to the smallest and largest values
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Figure 3.5.: Box plot of an expression matrix, containing 18 normalized samples of 2304
genes.

not being outliers by this rule. This allows to inspect the main characteristics of a data
sample, as it gives a an overview of the location, deviation, skewness, and the number of
outliers. For a N(0, 1)- distributed values, based on the 1.5 · IQR rule, the box contains
50% of the values, the upper and lower whisker in total represent 49.3% of the values,
and 0.7 of the values are outliers.

Applications of box plots arise in all fields whenever single or multiple samples are to
be inspected. In gene expression data normalization, it is often useful to compare the
box plots of normalized and unnormalized values, or to inspect whether a number of
normalized arrays have a similar distribution (see figure 3.5). In cluster analysis, it can
be used to characterize clusters.

Variations of box plots are common: often, whiskers and outliers are omitted, in ad-
dition to the median the mean is indicated. Other outlier detection rules or summaries
are also possible. Violin plots [76] extend the concept of box plots. A rotated and scaled
kernel density plot is drawn in addition to indicators for the median and the whisker
lines.

3.2.5. Bar Plots and Histograms

Bar plots (see figure 3.6a) are a common chart type usually produced in order to visually
compare a vector of numbers, presented as rectangles of heights (or widths) proportional
to their value. In biological and other applications, bar plots showing means commonly
have error bars, that show the standard deviation. A common variation are stacked bar
plots, that allow to present fractions of a total within each bar.
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Figure 3.6.: Bar plot and histogram of gene expression data. (a) shows z-scored expres-
sion values at single time point of 40 genes. (b) shows the expression value
distribution of a whole genome microarray in one sample.

Histograms are used to display frequency distributions. The input sample x is split
into a number of (commonly, but not necessarily) equidistant bins. The sizes of the bins
are then displayed as rectangles with their heights scaled to the bin size. The histogram
can therefore be seen as a special case of the bar plot. The number and width of the bins
are free parameters. Histograms show the full distribution instead of summaries, like the
box plot and are therefore useful to identify multi modal distributions, or estimate shape,
location, deviation and other properties of a distribution. Stacked histograms allow to
compare multiple distributions. In stacked histograms, the rectangles representing the
bins are stacked and scaled to reach a uniform height. Kernel density plots are used for
the same purpose, but they give a continuous estimation of the distribution. They also
allow comparisons of distributions, as several so-called density plots can be drawn in
the same visualizations. Investigating histograms and density plots is often done in gene
expression data analysis in order to check if distributions of values match expectations
or requirements, and to detect unexpected peaks that might indicate quality issues.

3.2.6. Sequence Logos

Sequence logos were introduced in 1990 by Schneider et al. [159] as a tool to visualize
consensus sequences. They are mainly used for visualization of motifs in nucleic acid or
protein sequences. Sequence logos are created from multiple sequence alignments. Let A
be an alphabet of symbols, for example nucleotide bases or amino acids. Let fb,i be the
frequency of symbol b ∈ A at position i of the alignment, then the entropy Hi is given
as

Hi = −
∑
b∈A

fb,i log2(fb,i) (3.1)

The information content Ri of position i of the alignment is given as

Ri = log2(|A|)− (Hi + en) (3.2)
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Figure 3.7.: Example of a sequence logo for a DNA sequence, created by WebLogo [38].
It shows an alignment of 19 DNA binding sites of the LexA repressor in E.
coli.

Ri is measured in bits; en is a correction factor for small alignments of n sequences [160];
given as

en =
|A| − 1

2 · ln(2) · n
(3.3)

Ri is maximal (Ri = log2(|A|)) for a uniform position, which has zero entropy. The
minimal value is reached when each symbol b has a frequency f(b, i) = 1

|A| . Then, Ri = 0.
The height hb,i of a symbol b at position i is given as

hb,i = fb,i ·Ri (3.4)

A column of a sequence logo is then plotted by drawing each symbol b with height hb,i
and unit width in a stacked way, in increasing order of height. Symbols are commonly
drawn as the corresponding letter scaled in height. Each column in a sequence logo
represents a position i in the multiple alignment (see figure 3.7 for an example). A
sequence logo can be seen as a stacked histogram scaled by the information content of
the underlying distribution.

Sequence logos are rich in information [159]. They show a summary of the entire
alignment, with the consensus sequence highlighted. Each column shows the information
content of the corresponding alignment position, and the ordered frequencies of the
symbols.

3.2.7. Radial Plots

Several radial plots are used to visualize data. Pie charts are used to visualize a set of
fractions. Each fraction is represented by circular sectors, with an arc length proportional
to the fraction. Pie charts have, despite their ubiquity, been criticized. User studies found
that it is complicated to compare quantities in pie charts [205]. As an alternative, bar
charts can be used, which convey quantities by height, which is considered more efficient.
Another alternative are radial bar plots. Radial bar plot (also called polar area diagrams)
display values by circular sectors of equal angles. The sectors have a radius proportional
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to the values they represent. Radial bar plots can be seen as a bar plot transformed to
polar coordinates.

Star plots, or radar charts are a variant of parallel coordinate plots transformed to
polar coordinates. For a point p ∈ Rn, the i-th axis is drawn at an angle of 1

n2πi. Each pi
is then represented by a vertex of a closed, irregular polygon, placed on a position on the
axis proportional to its value. The applicability of star plots depends on the data to be
presented. Time series data or other data with defined order and meaningful differences
between dimensions should be used.

3.3. Graphs and Networks

A powerful formalism for representing connected objects are graphs. The objects are
called nodes or vertices, and the connections are called edges. In general, a graph is
denoted as a pair of sets, i.e. the set of nodes, usually named V , and the set of edges,
E, thus G = (V,E). Edges connect two nodes, and are often denoted as an unordered
set e = {v1, v2}. Two nodes u and v are called adjacent if {u, v} ∈ E. A graph with
unordered edges is called undirected. A directed graph (digraph) has a set of directed
edges, denoted by ordered pairs (u, v). Here, adjacency is an asymmetric relationship. For
every node, the number of edges adjacent to this node is called the degree of this node,
deg(v), for digraphs, the in-degree degi(v) and out-degree dego(v) represent the number
of incoming and outgoing edges. Edges can be weighted, let w(e), e ∈ E;w(e) ∈ R denote
the weight.

Graph theory is an important discipline of mathematics and computer science, and has
seen many theoretical advances since Euler’s work on whether or not there is a path us-
ing all the seven bridges of Königsberg exactly once (which was not) [143]. Graph theory
has also many theoretical and practical applications. Shortest path problems are applied
in many fields, including navigation and optimization problems. In bioinformatics appli-
cations, graph representations are used for many problems, including genome assembly
(De Bruijn graphs, spanning trees), phylogeny (inferring trees or networks), and rep-
resenting molecular structures. In the analysis of biological networks, clique problems,
modularity and centrality problems are investigated, with the purpose of identifying key
nodes and subgraphs. In the analysis of biochemical pathways and reactions, maximum
flow problems are of interest.

3.3.1. Selected Problems and Algoritms

In this section, some central aspects of working with graphs are summarized, however
only topics relevant for this thesis are mentioned.

Common data structures for representing graphs are usually adjacency matrices and
adjacency lists. An adjacency matrix is a square matrix denoting at position i, j the
existence or weight of an edge between vi, vj . An adjacency list stores for each node v
the nodes adjacent to v. The choice of data structures can influence the complexity of
basic operations [143]. Space efficiency of the data structures depends on the number of
edges in a graph. For sparse graphs, adjacency lists are more effective, for dense graph
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adjacency matrices are optimal, the exact turnover points depend on the complexity of
the edges.

The foundation of many algorithms and applications in graph are methods for travers-
ing and searching in graphs. Two basic principles exist: depth-first search (DFS) and
breadth-first search (BFS, see [143, 68] for an overview). Input for both strategies is
an input graph G = (V,E) and a target node vt. Both method traverse the graph in a
tree-like manner, however, the strategy of building this tree differ, which is also reflected
by the choice of supporting data structures.

Depth first search begins at some root node r. For each node v encountered, an expand
step is performed, that pushes all previously unvisited neighbors of v on a stack. The
topmost node on the stack is then investigated using DFS, unless vt is found or the stack
is empty. In summary, DFS works by going as deep as possible from a single node, before
exploring the other neighbors of this node.

Breadth first search works in a similar way. However the entire neighborhood of a
node is explored before going deeper into the search tree. Nodes are expanded by placing
unvisited neighbors in a queue; the nodes are then inspected and expanded in the order
of the queue, unless vt is found or the queue is empty.

The worst case time complexity of both methods is O(|V | + |E|), in the case of a
single, unrepeated traversal of the graph, as every node and edge needs to be inspected.
The space complexity is in linear in the number of nodes inspected, as they need to be
placed in the stack or queue [143].

A spanning tree of an undirected graph G = (V,E) is a tree, that contains all nodes
and a subset of the edges of G, i.e. T = (V,E′ ⊆ E). If G is unconnected or directed,
a spanning forest may be calculated. DFS and BFS can be used to find spanning trees
in a graph, by adding every edge to E′ that is connected to a previously unvisited
node during the expansion step in the search. These spanning trees are not subject to
any optimization. For weighted graphs, minimal spanning trees are often required, for
which the total weight of the edges in E′ is minimal. Algorithms for calculating minimal
spanning trees are Kruskal’s algorithm and Prim’s algorithm [143].

For a digraph G = (V,E), which contains no cycles, an ordering of the nodes v1 ≺
. . . ≺ vn can be given, that for every edge (u, v) u ≺ v holds. This is called a topological
ordering [37]. Calculating a topological ordering (using Kahn’s algorithm) involves first
identifying source nodes, i.e. nodes v with degi(v) = 0. These nodes are then removed
from the graph, and inserted into a sorted list T . The adjacent edges are then removed
from G. Nodes which have no more incoming edges are added to T and, the process is
iteratively on the resulting graph. If no more edges can be removed, and the E = ∅,
T contains a topological ordering of V . Otherwise, the graph contains a cycle and no
topological ordering can be established. The runtime of this algorithm is (O(|V |+ |E|),
as every node and edge needs to be visited [37].

A problem often occurring is the question of whether or not a graph consists of a single
component, or whether there are several unconnected parts of a graph. Let G = (V,E)
be an undirected graph, and u, v ∈ V . Then u and v are called connected, if there is path
u, . . . , v in G. A path is an ordered sequence of nodes, of which successive nodes must be
adjacent in G. If a path starts and begins at the same node, i.e. u, . . . , u, it is called a
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cycle. The same definitions apply for directed graphs, based on the directed formulation
of adjacency [68].

A graph G is called connected, if a path exists for every pair of nodes u, v. If a graph
is not connected, two or more connected components, Ci ⊂ V exist, which are connected
or consist of single nodes.

The definition is extended to digraphs in two ways: a digraph is weakly connected, if
an undirected path (i.e. with all edges considered to be undirected) exists for each pair
of nodes. A graph is called strongly connected, if a directed path exists between each pair
of nodes. The definition of weakly and strongly connected components is analogous to
connected components in undirected graphs, however, a singe node v must be adjacent
to an edge (v, v) to form a strongly connected component. Note that each strongly
connected component is a cycle.

Testing connectivity can be performed using a depth-first traversal of the graph, in
which every node is counted on the first encounter. If the final number of counted nodes
is equal to the total number of nodes, then the graph is (weakly) connected. Finding
connected components is done based on the same principle, restarting the traversal at an
unvisited node for each new component. Both algorithms run in linear time, i.e. O(|V |+
|E|)[143]. In order to find strongly connected components, Tarjan’s algorithm [182] which
is also based on depth-first search can be used. The runtime complexity is also linear in
the number of nodes and edges, O(|V |+ |E|).

Extending from connectivity, identifying clusters in graphs is an useful for investi-
gating many kinds of networks in social, biological and computer networks research.
As a target function for optimizing such clusterings, modularity has recently been in-
troduced [139]. The modularity of a clustering represents the fraction of edges within
groups, normalized by the expected fraction of such edges in a random graph. Modularity
clustering was already successfully applied to bioinformatics studies [173]. Furthermore,
it has been shown that modularity clustering and force-based graph layout share many
properties [142].

3.3.2. Graph Drawing

Graph drawing is the process of visual representation of a graph. The most common sce-
nario is an embedding of nodes and edges on the euclidean plane. Commonly, nodes are
represented by geometrical shapes (spheres, boxes) and edges are drawn as lines, poly-
lines or curves. No ultimate solution for the problem of graph drawing exists, instead,
the adequate method depends on the type and structure of the graph and the applica-
tion. There are several general aesthetic requirements. Most importantly, nodes should
not overlap each other and ideally, edges should neither overlap nodes or other edges.
The latter problem can only be solved optimally for planar graphs. Other requirements
depend on the application, and may address distribution or size of nodes and length and
shape of edges (see for example [146]).

Different methods are applied to this problem. Force-based graph layouts model nodes
as charged particles and edges as springs connecting the particles (executing an attracting
force). They can be applied to a wide range of graphs and often lead to good results.
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Classical examples are the algorithms by Fruchterman and Reingold [57] and Kamada
and Kawai [88]. In general, force-based algorithms use an energy term, which is to
be minimized during layout. Attractive forces (springs) can be modeled using Hooke’s
law, the repulsive forces are modeled using Coulomb’s law, or modifications of both
methods. This is used to iteratively calculate the forces acting on nodes and moving the
node according to it, in order to minimize the total energy of the graph. To avoid early
convergence to suboptimal local minima, optimization strategies are used, like simulated
annealing in the Fruchterman-Reingold algorithm.

Directed acyclic graphs can be laid out using a layered method, in which nodes are
distributed into layers, the nodes in which are then iteratively reordered in order to
minimize the number of edge crossings. The Sugiyama framework [48] encompasses the
following steps: (1) cycle removal (2) layer assignment, (3) vertex ordering and (4)
positioning of nodes. For the first step, using an algorithm that addresses the feedback
arc set problem, edges inducing cycles found and then be inverted or removed, allowing
to use hierarchical layout for graphs with cycles. This is required for (2), as the layering
of a graph is only defined if this graph is acyclic. A layering of a graph is established
by placing a node in a layer, so that all previous nodes are in a higher layer, and all
following nodes are in a lower layer. Layer assignment algorithms are the longest path
layout and the Coffman-Graham algorithm. The vertex ordering step arranges the nodes
in each layer (3) so that the overall edge crossings are minimal. This problem is NP-
complete [48]. Several heuristics are applied here. In the final step, the ordering of nodes
in the layers is transformed to actual coordinates, adhering some constraints.

Based on a spanning tree of the graph, a tree layout method, e.g. the Reingold-
Tilford algorithm can be used to embed a general graph. An example for a radial layout
based on a spanning tree can be found in [211]. Grid-based methods strive to place
nodes on positions in a grid, which allows to take the node size into account. Examples
exist for the layout of biological networks [118, 106]. Spectral graph drawing uses matrix
representations of graphs of which eigenvectors are employed. Large graphs can be swiftly
laid out using this method, possible with respect to additional criteria. An adjacency
matrix of the graph or transformations of it are used [108].

3.4. Visualization of Biological Pathways

Biological pathways arise in many fields of biology and are the main building blocks of
our understanding of physiological processes. Textbook examples of metabolic pathways
come from the carbohydrate metabolism: glycolysis (via the EMP pathway) and the
TCA cycle are central parts of the metabolism in a wide range of organisms. Pathways
can be seen as a set of reactions, which form a network, that might be linear, branched,
circular or otherwise complex. Signaling pathways describe how cells react to internal
or external signals. Usually, this encompasses a receptor molecule located on the cell
membrane and a cascade of second messengers that induces cellular actions, for example
by altering gene expression or inducing cellular or metabolic processes. Internal signals
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can also trigger many signaling pathways. Important examples are encompass major
cellular events like apoptosis and cell differentiation.

The focus of research lies in identifying new pathways and finding extensions, shortcuts
and new effects of pathways. Optimization of especially metabolic pathways are a tool
of biotechnology for efficient production of compounds, e.g. antibiotics. Visualization of
pathways is a useful tool for such activities.

An early application for a comprehensive visualization of biochemical pathways is the
Roche pathway map (based on [132]). It provides a detailed view of common biochemical
pathways, including chemical structures for most participants. To enhance search, it has
a grid and an index book in which for every compound, the grid position is listed.

In computer generated visualizations of biological pathways, the natural representa-
tion of pathways is the graph, and many applications use this concept (see 6.2 for an
overview of applications in this field). Requirements for visualization of pathways have
been analyzed in user studies in [156]. These encompass easy integration of pathway
data, information overlay, which means adding biological relevant information to the
pathway graph and enriching pathway graphs with high-throughput data. Furthermore,
overviews and browsing the pathway landscape have been requested. Semantical scal-
ing and aggregation of pathways is required for maintaining overview in large pathway
systems.

Due to specific aesthetic requirements of drawing biological pathways, common graph
drawing algorithms can give suboptimal results. The existence of cellular compartments,
requirements on proximity of certain nodes and conventions make optimal layout a com-
plicated task. Specific graph layout methods have been developed for the presentation
of biological pathways. An early approach was taken by Karp et al. [93], which used
decomposition of a graph into easily drawable components. Several similar approaches
and enhancements to this approach were suggested [14]. Alternatively, grid based lay-
out algorithms have been employed, some of which allow to use biological properties,
e.g. [106]. Many applications however rely on predefined pathway diagrams, and manual
layout.

3.4.1. Data Formats

Biological pathways are available in a number of formats, which are briefly described
here. All major data formats for biological pathways are based on XML, however they
differ greatly in way they model the data. The major sources of biochemical pathways
are KEGG [91] and a number of databases that provide BioPax [43] files, including
MetaCyc [29] and others [130, 30, 144].

KGML

The KEGG Markup Language (KGML, www.genome.jp/kegg/xml) is a format for the
definition of KEGG pathways. A KGML file provides all entries, i.e. chemical compounds,
enzymes or map links for a single pathway. The entries are defined by links to the
KEGG database. The graphical representation of the entry is defined in a graphics
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element, that also denotes the position and size of the object. Reactions describe a
chemical reaction between substrate and product entries. Most objects have a name
property, annotations are mostly stored as references to the KEGG database. The “type”
attribute of a reaction denotes the reversibility of the reaction. Furthermore, relations
define relationships between other entries. Relations can describe successive reaction
steps, protein interactions, coexpression, and relationships to other pathways.

BioPax

The BioPax format is based on a systematic modeling of biological processes [43]. Sev-
eral versions (“levels”) of BioPax exist. The current level 3 can describe metabolic and
signaling pathways, regulatory networks, and molecular interactions. Level 2, which is
still common in databases and applications, lack support of regulatory networks and is
less descriptive for signaling pathways. BioPax is divided in an ontology, which is the
abstract representation, and the BioPax file format. The file format is based on OWL
(Web Ontology Language), an XML dialect which allows the description of ontologies
and of documents based on the ontology (see BioPax level 3 user guide, biopax.org).
The base class of the BioPax ontology is the Entity, It has several subclasses, including
Physical Entity, which has in turn several subclasses that describe different types of
chemicals. Interaction is the base class for several types of direct and indirect reactions,
including protein interactions and chemical reactions and controlling processes (catal-
ysis, inhibition). Pathways are described by listing the reactions in the pathway. The
order of these reactions is indirectly defined by a network of Pathway Step entities.

Each BioPax entry is described with a terms taken from controlled vocabularies and
enriched with a number of cross-references to databases. Evidence of the described bi-
ological fact and availability (legal or otherwise) must be stated. For interactions, the
chemical or otherwise properties can be added. This makes BioPax files very rich in
information.

Other Formats

The most common format for denoting biochemical reactions is SBML [81]. It integrates
definitions of reactions, species (entities taking part in a reaction), compartments, and a
mathematical description of the reaction kinetics, and the initial conditions. Commonly,
objects in SBML are described using terms of the Systems Biology Ontology (SBO) [113].
The BioModels database [113] provides a curated source of SBML models. These models
mostly describe reactions in great detail, and sometimes cover entire pathways, however,
SBML is predominantly used to model smaller processes in higher detail.

CellML [39] has a purpose similar to SBML. It is designed as a language that describe
models using differential equations. Biological objects are described using “components”,
which can contain variables and mathematical definitions. Connections can be defined
between components, with respect to variables. A repository of CellML models is avail-
able at cellml.org.
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3.4. Visualization of Biological Pathways

Figure 3.8.: Overview of the SBGN process description language (taken from sbgn.org,
see also [135]).

The PSI-MI format is used to denote protein interactions [100]. PSI-MI uses lists of in-
teractors, described using controlled vocabularies, and interactions, for which confidence
values and experimental evidence can be stated. Both an XML and a tab-separated text
file variant of this format are available. PSI-MI is used among others by the IntAct
database (www.ebi.ac.uk/intact).

3.4.2. SBGN

While a vast number of biological pathways, models, and interaction networks have
been published, no unique standard for depicting physical and conceptual components
has been established for a long time. It has been argued that biology lacks a standard
graphical notations with defined meaning of symbols, like for example in electronics
symbols. This has lead to a situation, in which the same symbol can denote many
different concepts, depending on the publication, or vice versa, a single concept is denoted
by various symbols.

To overcome this problem, SBGN – the Systems Biology Graphical Notation – was
introduced in 2009 by Le Novère et al. [115]. SBGN was the result of an international
community effort of systems biology researchers. Some of the contributors to SBGN work
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Figure 3.9.: First steps of the glycolysis in the SBGN Process description language.
Adapted from [135].

on SBML and other file formats, which ensured compatibility of the underlying concepts.
The aim of SBGN was to provide a free, consistent notation, for describing biological
objects and interactions. The set of symbols used was to be minimal and visually dis-
criminable. For this purpose. in SBGN, color and size of objects carry no information,
which allows allow photocopying and easier drawing by hand. Furthermore, modularity
and a mathematical model were required [115]. Previous work on the unification of bi-
ological diagrams was done by Kohn et al. [105], who introduced Molecular Interaction
Maps, which already defined a set of symbols and possible connections of these symbols.
This was taken up by other researchers, most of whom contributed to SBGN. SBGN
addresses some of the information overlay requirements noted above.

Biological processes are diverse and can be investigated on multiple levels. Therefore,
SBGN provides three different languages, which focus on different aspects of biological
processes. Each language defines a set of glyphs, which unambiguously describe an object,
and arcs which connect nodes that are represented by glyphs. All languages define rules
that direct which nodes are allows to be connected by which arcs. Nodes and edges form
a graph, the layout of which is not defined by SBGN. However, specifications exist on
node and arc placement to ensure readability.

The SBGN process description language (see [135] for the complete specifications) is
designed for sequential descriptions of biochemical processes. A process is represented by
a process node (see figure 3.8), the participating biological entities are described as entity
pool nodes (see figure 3.9 for an example). Entity pool nodes describe indistinguishable
biological entities, like macromolecules (proteins, etc), simple chemicals, nucleic acid
features (DNA or RNA molecules), complexes or multimers of these types. Perturbing
agents can also be defined. All elements are defined based on SBO terms. Annotations
on objects can be added using units of information that can be used to describe certain
aspects of an entity pool node, based on SBO terms. The state of an entity, e.g. mod-
ifications of proteins is displayed using state variables. Clone markers indicate the an
entity pool node occurs several times in a diagram, which is not allowed otherwise. Fur-
ther elements are cellular compartments, and references nodes, i.e. labels and submaps
that allow the compressed representation of nested processes. Logical operators allow to

44



3.5. Mayday

model dependencies and alternatives of entities in a process. SBGN process descriptions
correspond to textbook pathway diagrams.

Interactions between entities can be displayed in the SBGN entity relationship lan-
guage [115]. This language uses unique entities, which are connected by arcs representing
influences. Influence arcs can be connected to other influence arcs, thus create possibly
complex networks of relationships. State variables are used to describe internal changes,
like allosteric modifications. The main purpose of entity relationship diagrams is describ-
ing signaling and other processed that involve many state changes of entities.

SBGN activity flow diagrams are used to describe the sequential influences between
entities. These diagrams display the influence, but omit the biochemical details of the
processes. To this purpose, entities, perturbations and phenotypes are displayed, arcs
representing inhibitory, activating or other influences connect these entities. Entities
can be annotated with units of information displayed as entity pool nodes to indicate
the type of the entity. The style of activity flow diagrams is similar to many informal
drawings of signaling pathways.

The three languages of SBGN are an important step towards the formalization of
biology. Especially the process description language is widely adopted and is supported
already by several tools and databases. In this work, the SBGN process description
language is used for formal representation of biological processes.

3.5. Mayday

Mayday [12] is a tool for the integrative analysis of gene expression data. It is designed to
analyze and visualize microarray and similar systems biology data. Mayday is platform
independent and implemented in Java. The development of Mayday at the Integrative
Transcriptomics group at the University of Tübingen began in 2003 as a tool for microar-
ray data visualization and clustering. Many extensions have been added since then, with
major code revisions performed in 2005 and 2008. A group of five core developers and
18 contributors collaborated on Mayday over the years. In a recent review of numerous
microarray data analysis tools, Mayday was found to be among the most complete and
usable of 78 tools investigated [109].

3.5.1. Data Model

The data model of Mayday consists of several classes. All information concerning an
expression study are contained in a DataSet object. The main component is an expression
matrix, called MasterTable in Mayday. A single measured object, e.g. gene or protein,
is modeled by the class Probe. The probe stores the expression values and therefore
represents a row of an expression matrix. A sample is represented by an Experiment. In
addition to the primary expression data, meta information about dataset, experiments
and probes ca be stored. These objects are called MIOs – Meta Information Objects –
and are organized hierarchically in MIGroup objects. MIGroups keep a map of annotated
objects to MIOs, of which a number of different types exist. A major concept of data
organization in Mayday are probe lists. The class ProbeList keeps an unordered set
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3. Data Visualization

Figure 3.10.: Main window of Mayday, showing different datasets studying growth of
Saccharomyces cerevisiae in different conditions. The selected probe lists
are displayed in the height map visualization on the right.

of probes. Probe lists, which can also form hierarchies are the main objects for user
interaction in Mayday. The main view of Mayday shows the probe lists defined in a
dataset (see figure 3.10). Probe lists are input and result of most data analysis features
and visualization tools in Mayday.

The Mayday core provides the framework for statistics and graph handling, as well as
genomic scale data structures. For extending Mayday, a generic plugin interface exists.
Many functions, on all levels are implemented as plugins. The plugin interface uses the
capability of the Java Virtual Machine to load new classes at runtime. Predefined exten-
sion points exist for plugins that work on probe lists, datasets and meta information, for
data visualization, for distance measures and data import. Plugin packages can define
their own extension points if necessary.

3.5.2. Extensions to Mayday

Mayday features packages for many analysis and visualization purposes. Partitioning
clustering is implemented in various different algorithms, including k-Means [121], qual-
ity threshold clustering [75], self organizing maps and others. Hierarchical clustering
is possible using UPGMA and neighbor joining. Several tools for assessing clustering
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Figure 3.11.: Overview of the Architecture of Mayday. The Mayday core provides data
structures and basic frameworks. Independent plugins provide the visual-
ization and analytical functionality for the user.

quality are available. The training and testing of classification models and the inference
of association rules is possible via a series of extensions based on the WEKA machine
learning library [209]. Several standard and non-standard statistical tests and feature se-
lection methods are implemented, including the t-test, SAM, WAD and Rank Product.
Gene set enrichment analysis tools, including ORA (over-representation analysis) and
methods for analyzing enrichment of overlapping gene sets are implemented. For data
processing and organization, a modular pipeline system is available. Intelligent gene se-
lections called dynamic Probe Lists help to filter data dynamically. Using an interface
based on the Derby database management system (db.apache.org/derby), SQL queries
can be performed directly on Mayday’s data structures. Access to these data structures is
available to programmers via interactive environments for execution of R and JavaScript
code in Mayday. The alignment of time series allows to identify time shifts between dif-
ferent time series. For the pairwise and multiple alignment of time series, Mayday Tiala
- “Timeseries Alginment Analysis” provides visual and analytical tools. A recent major
extension is Mayday SeaSight [11]. SeaSight allows to import, structure and normalize
RNA-Seq data and microarray data from multiple sources, and provides methods for
combining data from both technologies.

3.5.3. Visualization Framework

Visualization is a main focus of Mayday. Basic visualization of gene expression data
is performed using all the tools described in section 3.2, especially profile plots, heat
maps, scatterplots (in several variants), and box plots. These plots feature extensions
for basic visualization of meta information, including an enhanced heat map [63]. Three
dimensional visualization plots have been recently added, including 3D scatterplots and
PCA plots [86]. Visualization of high dimensional data is possible using height maps
(see figure 3.10) and radial profile plots, a 3D-extension of star plots. ChromeTracks is
an extensible, track based genome browser, that allows to visualize expression data in
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its genomic context [214]. Tracks and other components can be added via plugins. The
plots are supported by table views of expression and meta data.

The visualization framework in Mayday provides several key feature for all plots. This
is based on a uniform and user friendly interface, which allows adding and removing
probe lists from the plot, and to create new visualization of the current data. A window
list makes handling of multiple views easier. Selections and data transformations are
communicated between the currently open plots. Selections can be used to create new
probe lists. Plots can be exported in a number of bitmap formats, as well as SVG and
PDF for publication quality figures.

The Mayday visualization framework is organized in a model/view pattern. The model
component is the ViewModel, which keeps the probe lists to be visualized, manages the
probe selections and notifies plots of changes to these objects. The view model allows the
unified access to the data for all plots and keeps a reference to a ProbeDataManipulator

that performs online data transformations. All visualization tools are implemented as
Java Swing components, and implement the interface PlotComponent. They are child
components of a PlotContainer, which provides the overall user interface, including
the menu, over which the most functionality described above can be reached. The con-
ceptual structure of multiple connected plots is the Visualizer, which keeps track of
all plots for a single view model. Plots are generated via specialized plugins that re-
turn a PlotComponent instance. For easier access to probe data, the ValueProvider

class, which also provides a user interface shown in the PlotContainer, can be used, the
ColorProver integrates a configurable ColorGradient and transforms probe values into
corresponding colors. The actual implementation of a plot can use these components,
and can otherwise use any Java component necessary, e.g from an internal chart library,
Java Swing and JOGL, an OpenGL framework for Java.

While Mayday provides many useful visualization and analysis tools, some features
necessary for working with modern high throughput gene expression data still need to
be provided. Based on the framework Mayday provides, many of the necessary tools
can be integrated. Visualization specialized for meta information biological models are
introduced in the course of this thesis.
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4. Analysis and Visualization of
Resequencing Microarrays

The analysis of gene expression on transcriptome and proteome level gives important
insights into the expression strength of a protein. However, it is not guaranteed that
a gene product has the expected function. Single nucleotide polymorphisms (SNPs)
can occur in genes, which do not necessarily effect the expression level. SNPs however
may introduce changes in the protein structure, which could lead to loss or decrease of
function. To identify such effects, it is necessary analyze at the genomic sequence.

Resequencing microarrays are a useful tool for small-scale sequencing. The main appli-
cation is the determination of individual sequence deviations from a reference sequence.
The major field of applications is in medical diagnostics and research. For these pur-
poses, based on the diploma thesis of Kirstin Weber [203], the application ResqMi was
developed. ResqMi addresses common issues related with the most prominent technol-
ogy of resequencing microarrays, the Affymetrix GeneChip® CustomSeq® microarrays.
ResqMi features an efficient base calling algorithm that uses a model-based approach
using intensity comparisons and region-wise conformance assessment, as well as an al-
gorithm to revise uncalled positions.

This chapter summarizes my work on resequencing microarrays. First, an introduction
into the technology of resequencing microarrays is given. Then ResqMi and its features
for base calling and visualization are introduced. To demonstrate these features, ResqMi
is applied for quality assessment and base calling. This chapter is concluded by a dis-
cussion, which also addresses upcoming technologies in this field.

4.1. Analysis of Resequencing Data

Resequencing microarrays are commonly used for the fast and precise analysis of individ-
ual genetic variations. An important application is the identification of genetic diseases
by resequencing the respective genes. This allows a fast and reliable diagnosis and of-
ten directly displays the cause of the disease. Applications include monitoring genetic
variation of infectious diseases [176], identifying infectious pathogens [119, 125, 199] and
antibiotic resistances [42]. Affymetrix’s Human Mitochondrial Resequencing Array 2.0
[124] which interrogates the entire 16kb mitochondrial genome on a single array has been
used for the detection and diagnosis of various diseases, such as oxidative phosphoryla-
tion disorders and [195], and cancer [133].

Resequencing microarrays are used to determine sequences by hybridization. In con-
trast to classical sequencing by hybridization, resequencing designs use a known reference
sequence. This drastically reduces the number of probes required sequencing. For each
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4. Analysis and Visualization of Resequencing Microarrays

(a) Region with high quality data (b) Mismatch site: the central position in the
chart represents a mutated base

Figure 4.1.: Intensity charts of a resequencing microarray (a) shows positions with high
quality: a high signal to noise ratio is observed at all positions in the chart.
(b) shows a mismatch site: at the central position, a highly intense signal is
observed, corresponding to a base not matching the reference, the neighbor-
ing sites have comparably low intensities.

position in the reference sequence, eight probes, typically of length 25 are used. Four
probes interrogate the sense strand, the other four are complementary and query the
antisense strand. Affymetrix produces arrays that contain for each perfect match probe
the three respective mismatch probes. In total, for determining a sequence of length n,
8n probes are necessary. As target material, amplified genomic DNA of the genomic
region of interest is used.

The assumption used in this array design is that the single central mismatch position
is enough to assure that no excessive unspecific hybridization occurs for the probe. In
general, every sequence position is assumed to have probes with a high signal to noise
ratio. However, non-central mismatches also reduce the signal at a probe, e.g. near a
base that differs from the reference. Figure 4.1 show examples of a site with high quality
signals, and a site with a mismatch, with respect to the reference. For positions with low
intensities and low signal to noise ratio, no reliable signal for calculating the sequence
is available, and results into uncalled positions. Instead of A, C, G, or T, the sequence
contains an N at the relevant position.

This design of resequencing arrays allows to identify substitutions, but other mutations
like deletions and insertions cannot be detected. While it is possible to add probes
for a limited number of events, it is infeasible to add probes that cover all possible
events (see [69] for details). Instead, the Affymetrix arrays often query commonly known
mutations using a set of probes based on a reference sequence that reflects the mutation.

4.1.1. Base Calling

The analysis of genetic variations using resequencing microarrays involves laboratory
protocols similar to those used for expression microarrays (see section 2.2.4). After scan-
ning, however, the analysis of resequencing microarrays is different. Normalization steps,
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Figure 4.2.: Probes on a resequencing microarray. The figure shows the probes for two
positions on a resequencing microarray.

apart from background correction, are usually not performed. The crucial analysis step
is base calling.

Base calling is the process of converting the intensities of probes representing the
different alternative bases into a DNA sequence. More formally, let Isx,i denote the in-
tensity of base x ∈ {A,C,G, T} in tiling position i on the sense strand, and let Iax,i
be the corresponding intensity for the antisense strand. Let Ri be the base and Rc

i the
complementary base at the ith position of the reference DNA. Then, a base calling al-

gorithm is a function f : I
{s,a}
x,i 7→ A,C,G, T . This function must be applied to every

position of the sequence. Often, base calling algorithms use additional positions or qual-
ity measurements for determining the sequence. A näıve base calling algorithm would

simply call Bs
i = arg maxx

{
Isx,i

}
. However this would lead to unreliable calls when the

data is of poor quality. Several more sophisticated algorithms for base calling exist. The
most important one, ABACUS (“Adaptive Background genotype Calling Scheme”), has
been published by Cutler et al. in 2001 [41], and was used in the analysis tools provided
by Affymetrix. ABACUS performs data quality control in order to identify positions of
poor quality. Then, for each possible base, the likelihood of a specific model is calcu-
lated. The base with the highest likelihood is then called [41]. An alternative base calling
algorithm, Model-P, was suggested by Zhan et al.. It employs a physical model of DNA
hybridization which is based on the target sequence [212]. A fast and efficient algorithm
was published by Clark et al., which is based on a statistical model [34].

Clark’s algorithm was used to find SNPs in a whole genome resequencing project in
Arabidopsis thaliana [34]. The application to single-gene resequencing for base calling
is straightforward. The algorithm works in general by using näıve base calls, unless the
quality of data representing the position in question is poor (see figure 4.3 for an overview
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For each strand

Raw Data
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Figure 4.3.: Overview of Clark’s base calling algorithm. The figure shows the elements
calculated during the algorithm for base calling of a single position. The
input (raw data) are the intensities for both strands. See text for details.

of the algorithm). For each position i, calculate separately for both sense and antisense
strands:

1. The raw base call : Bi = arg maxx {Ix,i}

2. The conformance, which is a measurement of how much the raw base calls of
neighboring positions around i correspond to the reference sequence R. Ci is defined
as the fraction of bases for which Bj = Rj is true for all

j ∈
{

[i− 10, i+ 10], if Bi = Ri

[i− 20, i− 10] ∪ [i+ 10, i+ 20] , else

holds. The ranges on which Ci is calculated are based on the rationale that for a
non-reference call the neighboring bases have reduced intensities.

3. The signal to noise ratio is calculated from Pi, the highest intensity for base i and
Qi, the second highest intensity, as ∆i = Pi

Qi
.

4. The strict call is calculated using cutoffs µ, ν for Ci and ∆i:

Si =

{
Bi, if Ci > µ and ∆i > ν
N, else

If Si is an alternative call, i.e. Si 6= Ri, and there is an alternative call within the
range i − 5, . . . , i + 5, with a higher maximal intensity, the call as position i is
considered unreliable, and Si = N is called.

Based on the strict base calls for both strands Ss
i and Sa

i , the consensus call is cal-
culated. If both calls are complementary, and no other alternative call within the range
i− 5, . . . , i+ 5 with a higher maximal intensity exists, the corresponding base is called.
If both calls differ, either N is called (strict consensus call), or the IUPAC nucleotide
symbol representing both bases is called (relaxed consensus call). Clark et al. used the
strict consensus calls for finding SNPs by integrating sequences from different strains of
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A. thaliana. For base calling purposes alone, both versions of the consensus calls can be
used.

This procedure aims at identifying positions with poor quality. These are ambiguous
positions which have a low signal to noise ratio ∆, and positions within a region greatly
differing from the reference sequence, which show a low conformance C. This is based
on the rationale that for an alternative call the intensities at the adjacent positions
are reduced, as all the probe targets at these positions have a mismatch compared
to their probes. A large part of the intensities for these positions is due to unspecific
hybridization [69], which is the reason for rejecting alternative calls near high-intensity
alternative calls. The highest intensity alternative is more likely to be actually based on
a reliable signal.

All base calling algorithms used for resequencing microarrays have in common that
some ambiguous calls remain, so that manual inspection of data is required [195]. No-call
ratios of about 5% [1] leave several hundred bases per experiment to inspect by the user
in order not to miss an important mutation. Manual inspection and subsequent editing
of such large datasets is generally cumbersome and time consuming. Furthermore, GSEQ
(GeneChip® Sequence Analysis Software, Affymetrix), the only commercially available
software application for Affymetrix resequencing arrays, lacks important visualization
features, base editing ability and has restrictive operating system requirements.

Efficient and fast processing of the arrays however is important. In particular, base
calling should be fast and reliable. Additionally, user-friendly interaction as well as swift
navigation through sequence and intensity data is necessary to find and identify the
impact of mutations. Finally, software should provide an overview and position specific
visualization of intensity as well as sequence data, which is important for the inspection
of critical positions and for manual base calls. All these considerations lead to the devel-
opment of ResqMi, an analysis software for resequencing microarrays, that is described
in the next section.

4.2. ResqMi

ResqMi, short for “Resequencing using Microarrays” is a multi-platform, open source
software for the analysis of resequencing microarray data. It features visualization of
intensity and sequence data, calling algorithms and tools to revise uncalled bases. ResqMi
has a user-friendly GUI and can easily be expanded with further functionality via a plugin
interface (based on the Qt plugin mechanism).

The development of ResqMi began in 2005, during the diploma thesis of Kirstin We-
ber [203]. This basic version of ResqMi has been rewritten and extended in this thesis.
ResqMi is implemented in C++ using the Qt framework (qt.nokia.com) for GUI de-
velopment. Currently, the project consists of the main application, a shared library
providing common components and several small plugin libraries. In total, the current
version ResqMi 1.2 encompasses 37,500 lines of code.

ResqMi works on data generated with the Affymetrix’s Sequence Analysis platform. It
processes raw intensity data (stored in “CEL” files) and processed sequence data (from
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“CHP” files). Called sequences are either provided by external applications or produced
by base calling performed within ResqMi. The data is organized in a data tree, which
shows CEL and CHP files separately and is the main control panel of ResqMi.

Intensity data can be analyzed using ResqMi. For this purpose, ResqMi features
Clark’s model based calling algorithm described above. Furthermore, it is possible to
inspect the data on several levels. The intensity values can be shown as a list with a
connected chart component. The chart component displays either a line chart, spike
plots (which resemble chromatograms from Sanger sequencing), sequence logos (see sec-
tion 3.2.6), or a table view of the selected base and its neighbors. Figure 4.4 shows several
examples. The plots can be exported to several image formats. A single intensity window
is used for each CEL file; to compare several files reduced views without tables can be
used.

For quality control in gene expression microarrays it is common to inspect image plots
of foreground and background intensities in order to detect spatial effects. These tools
can also be used for resequencing arrays. For this purpose, ResqMi allows to display
image maps of probe intensities, standard deviation and coefficient of variation values
extracted from CEL files. Furthermore, the base with the highest intensity for each
sequence position can be plotted. For comparative purposes, given a reference array
R and a target array T , MA-transformed values can be inspected. These values are
calculated as M = log2(R) − log2(T ) and A = 1

2(log2(R) + log2(T )). Different color
gradients can be used, including heat colors, grayscale and green-red-black. Images can
be zoomed in, on the highest zoom level, the letter of the base queried by each probe is
displayed; export in various formats is also possible.

Sequence data in CHP files can be viewed and edited in the “Resequencing Window”,
the central window of ResqMi (see figure 4.6). It gives a fragment-wise view of sequence
data of several arrays, with the sequences aligned to the reference sequence and high-
lighting non-reference calls. Editing sequences is done in place by typing or via a context
menu. This view also summarizes the base composition of the reference via a colored
bar at the top of the window. An overview plot shows the type of base calls present
in the alignment: reference calls are gray, missing calls are blue, and homozygous and
heterozygous non-reference calls are highlighted in green and orange, respectively. A
heterozygous call is present if two variations if a position were found and no single base
could be called. To enhance productivity, searching for non-reference sites and book-
marking is implemented. An automatically updated list of all non-reference sites allow
to swiftly find positions of interest. The list also allows editing, and it allows to show a
detailed view of the position, including a line chart of the intensities and quality values.
ResqMi implements the concept of coordinated views at many points. Selections of in
the intensity plots are communicated from and to the resequencing window and to the
non-reference site list and several other views.

To view and compare the called sequences of a large number of CHP files, a sequence
heat map can be used (see figure 4.5 for an example). It shows the base composition,
with the sequence positions in the rows, the arrays in the columns. The bases are color
coded, the encoding can be configured by the user.
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(a) Line Chart

(b) Spike Plot

(c) Sequence Logo

Figure 4.4.: Intensity and sequence visualization in ResqMi. (a) Line chart, (b) Spike
Plot (c) Sequence Logo of the same position. (d) Sequence heat map showing
the calls at a problematic site for various arrays. Rows represent sequence
positions, columns represent different arrays.
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Figure 4.5.: Sequence heat map showing the calls at a problematic site for various arrays.
Rows represent sequence positions, columns represent different arrays.

ResqMi features various export functions. It can export intensity into tab-separated
files and sequence data into FastA, Phylip and plain text formats. Furthermore, reports
can be generated from sequence data, summarizing the resequencing results. The number
and positions of uncalled bases and non-reference calls are listed, as well as an overview
of the processing of the array is shown.

Identifying the impact of a mutation is an important task in the analysis of resequenc-
ing microarrays, especially finding mutations that trigger a change on the protein level.
Given a mapping of resequencing fragments to the genomic or mRNA sequence of a gene,
ResqMi displays detailed information on the position, whether it is within the coding
sequence, intron, exon or if this position has been identified as SNP position. These
mappings can be produced using a tool called ResqMap from Genbank annotation files.

Based on the plugin framework for ResqMi, several methods for base calling are im-
plemented in ResqMi. The Affymetrix implementation of the ABACUS algorithm can
be called via the “Analyze” plugin, however this is only possible under Windows and
requires the Affymetrix software to be installed. ResqMi has a native implementation
of Clark’s calling algorithm, which allows to swiftly produce called sequences. The user
can select the thresholds µ, ν and the type of call, i.e. which calling strategy (strict
consensus, or relaxed consensus) should be used. It is also possible to ignore the sense
or antisense strand when calculating calls.

Uncalled positions can be reviewed using ReAnalyze. ReAnalyze (see [203] for the
original concept) helps to reduce the tedious task of manually reviewing single positions.
The concept of ReAnalyze involves producing calls for positions for which a homozygous
call can be made. For these position, the call matches the reference and is based on a
high signal to noise ratio in both strands. This is done in order to mimic the manual
editing of a position. As ReAnalyze does not produce any non-reference call, especially
no heterozygous call, it will not introduce false mutations. As an extension to ReAnalyze
for increased confidence, a cutoff for the conformance (see above) can also be defined.
If a position lacks conformance, it will remain uncalled. Experiments have shown that
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Figure 4.6.: Resequencing window of ResqMi, including an intensity view (bottom left)
and position details, exemplified here for the case of a mutation in the CFTR
gene.
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Table 4.1.: Key features of the datasets used. Note that each array contains several
fragments for sites of known mutations of the main target.

Name Target Bases Fragments Experiments

CFTR CFTR 9511 84 17
Mito Human Mitochondrium 37756 480 14

ReAnalyze is capable, with conservative cutoffs, to remove a significant fraction of the
uncalled positions [178].

4.2.1. Application: Comparison of Base Calling Algorithms

In this section, ResqMi is applied to typical tasks in the analysis of resequencing microar-
rays, especially quality control and base calling. Two datasets produced with different
resequencing microarrays designs are inspected using ResqMi. The key features can be
found in table 4.1. Target sequences are the human cystic fibrosis transmembrane conduc-
tance regulator (“CFTR”, dataset from [203]) and the human mitochondrion (“Mito”;
dataset available from Affymetrix; www.affymetrix.com).

ResqMi is first used for quality control of the arrays of the Mito dataset via image
plots of intensities and standard deviation. In one of the arrays of the Mito data, we find
a circular area of spots with overall low intensities, lower than in all other arrays of the
dataset (see figure 4.7). The sequence positions represented by the affected spots can be
affected by poor quality calls.

For the comparison of calling algorithms, CHP files generated with the Affymetrix
algorithm and Clark’s method, using a number of parameters were used. For the latter,
every combination of conformance parameter µ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and ratio pa-
rameter ν ∈ {1.01, 1.05, 1.1, 1.25, 1.33}, both for strict and relaxed consensus calls was
tested. For each parameter combination and array we computed the ratio of no-calls
and the number of non-reference calls (other than “N”). The results are summarized
in figure 4.8. The impact of parameters ν and µ depends on the dataset. In general,
we observe that large values of the signal to noise ratio ν correlate with higher rates
of N-calls, especially for the CFTR dataset. The effect of the conformance cutoff µ is
higher in the Mito dataset, a very high cutoff, µ = 0.9 leads to high N-rates in both
datasets. The relaxed consensus method consistently produces lower N-rates. Vice versa,
the frequency of non-reference calls is higher for the relaxed consensus method than for
the strict consensus. The impact of µ, ν on the number of non-reference calls is similar
to the effects on the calling rate. For low values of µ and ν, the rate of discrepancies is
higher than for more restrictive ones. The ratio cutoff, however, has a far lower impact
on the rate as the conformance cutoff. Naturally, the relaxed consensus method leads to
more discrepant calls than the strict consensus method, especially at lower values for µ.
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left, center: probe intensities: low high right: M -values: low medium high

Figure 4.7.: Potential quality issue in the Mito dataset. The left image shows the probe-
wise intensities (using a red-white color gradient). A part of the image is
enlarged (upper center). The M -value plot shows the comparison with a
reference array. The defective spot has considerably lower intensities than
on other arrays in the dataset.

Note that generally calls made using low values of µ and ν might be unreliable. There-
fore, choosing more restrictive parameters can increase accuracy, albeit at a lower call
rate. Especially in the CFTR datasets, some arrays exist for which no base can be reliably
called (see table 4.2). These arrays are not usable, even with very relaxed parameters.
The no-call rate of the array displayed in figure 4.7 is in fact the highest for the Mito
dataset (relaxed consensus: 34.7%, strict consensus: 38.4%).

In general, Clark’s calling algorithm performs similarly to the Affymetrix implementa-
tion, both in terms of uncalled bases and non-reference bases, depending on dataset and
parameters. Furthermore, there is a good concordance between both methods: Kohens
K is ≥ 0.54 for both consensus settings and µ = 0.8 and ν = 1.25 (see table 4.2). For a
more detailed evaluation of calling methods, see [178].

Table 4.2.: Mean percentage of N-calls, percentage of discrepancies and Kappa statistic
(K) for all datasets using parameters µ = 0.8, ν = 1.25. Note that K is equal
for both consensus methods.

Strict consensus call Relaxed consensus call
Name %N range % disc. %N range % disc. K

CFTR 37.3 (18.5. . .100) 0.1 36.7 (17.9. . .100) 0.8 0.56
Mito 35.6 (32.3. . .38.4) 1.4 31.5 (27.2. . .34.7) 5.5 0.54
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(a) Mean no-call ratio (b) Mean non-reference call ratio

Figure 4.8.: Mean no-call ratio (left) and discrepancies ratio (right) in three datasets
using strict consensus calls (triangles) and relaxed consensus calls (q) for
different values of µ and ν. For comparison, the two horizontal lines show
no-call-ratio of the Affymetrix algorithm on the same data.

4.3. Discussion and Outlook

ResqMi is the first open source and multi-platform software for the analysis of rese-
quencing microarray data. In order to allow a fast and flexible evaluation of intensity
and sequence data, ResqMi features a graphical user interface and allows easy data han-
dling. The main strength of ResqMi is the power to visually inspect and analyze many
aspects of the data in different ways. The inspection of intensities and comparing them
between arrays allows to identify even subtle spatial effects. ResqMi offers several views
of the data, from large-scale overviews in image plots, reports and sequence heat maps
to spot-oriented views of the intensity data necessary to make most of the data available.
This allows the efficient manual revision of base calls. Furthermore, it allows to estimate
the actual impact of a mutation to be identified easily. Since all calling algorithms fail
to call bases for many sequence positions, efficient manual inspection features like the
ones offered by ResqMi are important.

The implemented base calling algorithm is fast and produces results comparable to
the Affymetrix method. For data with quality issues, calls can be made with permissive
thresholds. However, it must be noticed that the confidence of calls is reduced in these
cases. ReAnalyze helps to further increase the calling rate for clearly homozygous loci.
While this method is not error-free it complements classical calling algorithms.

A trade-off exists between the calling rate, and the false-positive rate. The approaches
relying on conformance and signal-to-noise ratio are prone to errors, as many uncalled
positions are due to lack of quality and allow no reliable base call. Evaluations of call-
ing algorithms require a set of golden standard sequences produced with an absolutely
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reliable method to establish correct estimates for the calling rate. The called sequences
determined in the above study are not compared to such a standard and therefore, no
false positive rate can be established. However, the approach is useful as it facilitates
manual revision of called sequences. Due to the nature of the data and the relevant algo-
rithms, which do not call many base, the presented approach is helpful. The alternative
would be ignoring all uncalled positions and potentially miss important mutations or an-
alyzing everything manually. Using ResqMi, a whole analysis of a resequencing dataset
of 40 arrays including import, base calling, ReAnalyze and generation of reports takes
less than 5 minutes.

4.3.1. Possible New Applications

ResqMi only processes arrays produced with the Affymetrix technology. So far, most re-
sequencing arrays published were produced by Affymetrix, encompassing one catalogue
array and many custom arrays. Still, despite their usefulness, especially in clinical ap-
plication, the use of resequencing microarrays is declining. The recent developments in
second generation sequencing have also affected the problem of gene specific resequencing
and introduced new methods. Methods for so-called “targeted resequencing” are offered
by all suppliers of sequencing technologies. In general, this process involves amplification
of the target sequences using PCR. Identifying the target regions is done using marked
“bait” RNA molecules [65]. Sequences are then determined using a second-generation
sequencing method (see section 2.3). An evaluation of this approach can be found in [70].
The new protocols allow to determine far longer sequences than array-based sequencing
(≥ 260 kbp vs 30 kbp), which can also encompass several genes. Furthermore, the new
protocols allow to find all mutations, including long insertions and deletions. Using such
methods, resequencing can be improved compared to microarrays, as the overall qual-
ity of sequencing technologies is considered superior to hybridization based methods.
Furthermore, the base calling from intensities would be unnecessary, as this problem is
addressed by the sequencing technology.

Gene specific resequencing, regardless of the technology has advantages. If in clini-
cal settings a single gene needs to be inspected, as in the example of cystic fibrosis, it
is unnecessary to sequence a whole genome. Even with second generation sequencing
technology, the process is too expensive and time consuming, due to the computational
and manual data processing. Therefore, especially in clinical practice, gene specific rese-
quencing (also using microarrays) stays relevant.

ResqMi is based on data structures modeled around the Affymetrix resequencing plat-
form. Major parts of ResqMi would need to be reimplemented for next-generation rese-
quencing applications. Therefore, future directions would include using the visualizations
and user interfaces evaluated in ResqMi in new applications. In that setting, the current
version of ResqMi can be seen as a template for new tools for the analysis of second
generation resequencing data analysis. Especially, the visualization and comparison of
sequences remains an important task which has not changed by the technology, except
for the intensity-based features.
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Enhancements on the sequence heat map, following the visual analytics paradigm,
would be useful: automatic and manual aggregation of positions and inclusion of qual-
ity estimations (quality scores, read count, etc). In general, some of the position based
features like the line chart (for quality measurements) and the sequence logo (when
comparing different samples) remain useful. Most challenges are posed by the increased
length of sequences. This may increase the use of search and highlighting of non-reference
sites, like in ResqMi’s non-reference site table. The integration of gene expression data
and external annotations allows a better informed estimation of mutation effects. Fur-
thermore, information about gene models would be useful to estimate mutation effects
on a per-transcript level. In general, based on all available information, new applications
should make finding interesting sites easier. Any advanced resequencing analysis tool
will share properties with modern genome browsers. Relevant features are visualization,
annotation and handling of large datasets.

ResqMi currently works on sequences in a per-fragment style. This is imposed by the
Affymetrix technology. However, it might also be useful to generally structure resequenc-
ing data in this way if manual inspection is necessary. A triage of fragments is possible,
e.g. first inspect exons, then introns, finally intergenic regions. Clever handling of mul-
tiple genes is also important. Based on this, fragment-wise sequences can be viewed in
conceptually the same resequencing window as shown in figure 4.6.

In summary, resequencing has undergone the same explosion of dataset sizes as the
analysis of gene expression. This results in high quality datasets, which introduce new
challenges. A part of the methods necessary to handle these datasets, especially overview
and search functions, are already part of ResqMi. Scaling the current methods and
introducing new ones to match the new datasets can make the new resequencing protocols
even more successful than array-based resequencing.
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In this chapter, methods for visualizing gene expression data are discussed. Gene ex-
pression data consists of far more than the expression matrix and the raw data that was
used to produce it. A large number of gene annotations is available that is important to
include into analyses and visualization because it represents the condensed knowledge of
the biomedical community about genes. Furthermore, numerical values calculated during
the data analysis, for example probe expression level summaries or results from feature
selection methods, is important information that should be included in visualizations.

This chapter first introduces the most important types of meta information encoun-
tered during gene expression analysis and gives a brief overview of existing strategies
of processing and visualizing meta information. The following sections present a set of
tools for different ways of visualizing meta information. These tools are partly based
on common visualization tools as summarized in chapter 3. For each tool, a theoretical
motivation is given. Then an implementation for Mayday is described. This implemen-
tation is then used to briefly discuss the interpretation and possible applications of the
respective tool. A discussion concludes this chapter.

5.1. Meta Information

With exhaustive assays querying gene expression and growing knowledge of biological
systems, gene expression data is analysed in the context of other findings. Gene expres-
sion data usually consists of large expression matrices (see section 2.5.1) which contain
the measured data. In addition, genes are associated with a variety of meta data that in
terms of size and complexity can by far extend the DNA sequence of the gene as well as
the measured expression values in a single study.

Common meta information available for genes include alternative names and database
identifiers, as well as functional, and spatial annotations, such as Gene Ontology (GO) [6]
terms. Furthermore all kinds of biological findings related to the gene are meta infor-
mation, for example regulatory factors and interaction partners (for example from the
STRING database [181]) of the gene products. Biological models like pathways (for
example from KEGG [91], Reactome [130], MetaCyc [29]) or reaction models (from
BioModels [114]) a gene or gene product is part of are meta information about that
gene, albeit on a higher level. Activity measurements derived in other studies can com-
plete the knowledge about a gene. Higher level features including phenotypes, diseases
and nearby genomic features are also of interest. Molecular structures of proteins and
metabolites give insight into the chemical basis of the process. This data has a wide
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range of cardinalities for each gene and is available in many different data types. Table
5.1 gives a summary of the most common types of meta information. While much infor-
mation is available in the literature, an increasing effort is under way to structure this
information and make it readily available for research.

An extension to this general meta information, experiment-specific meta data is accu-
mulated during the analysis of a study. This includes statistical values from quality con-
trol, statistical tests, clusterings, and other procedures. Furthermore, probe sequences,
read sequences and laboratory processing details are of interest. Again, the cardinality
and data types of such information vary greatly (see table 5.2 for examples).

Meta Information Examples Data Type

Alternative Names UniProt id, gene name, locus id String
Function Gene Ontology, Sequence Ontology String, Tree
Spatial pattern Gene Onology String, Tree
Functional Context Pathways, Models String, Network
Gene Loci Genomic coordinate Number
Structure Protein Structure Complex, Image
Interaction Partners STRING List, Network

Table 5.1.: Typical meta information about genes. This table gives some examples about
the most common meta information available about genes in an expression
study, along with sample sources of such information, their typical data type
and the expected number of elements per gene.

Meta Information Examples Data Type

Statistical values p-value from hypothesis tests Number
Quality control Spot quality flags, noise intensity, signal

to noise ratio
Bit vector, Number

Summaries Mean, median, standard deviation Number
Sequences Probe sequence, read sequence String
Processing details Spot coordinate, probe origin Tuple, String
Analysis results Hierarchical clustering tree any

Table 5.2.: Meta information derived during studies. The examples concentrate on tran-
scriptomics studies, but especially statistical values, summaries and analysis
results are valid for a wide range of studies.

Handling of meta information is commonly implemented in gene expression analysis
software. Most of the above data can be analysed and inspected with R [147] and the
BioConductor [64] suite. Most available microarray analysis tools provides means of
analysing and visualizing meta information to some extent. Common operations on meta
information range from simple filtering, e.g. on quality control values or statistical test
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results to higher level analyses like analysis of gene set enrichment, which is most useful
for the analysis of GO terms and pathways.

Visualization of meta information can be performed using a variety of classical visual-
ization tools, like scatterplots, histograms or bar plots (see section 3.1 for an overview).
For structured meta information, especially for those based on formal ontologies, trees
or graphs are a natural representation. For hierarchical clusterings, trees are used for
visualization. The heat map can provide a visualization that combines clusterings with
the primary data. As another tree based approach, Timeline Trees [25] combine hierar-
chies and measured data. The enhanced heat map combines the expression data, also
displayed in a heat map with numerical and categorical meta information [63].

In general, it is often not useful to visualize a whole expression matrix. Most visual-
ization tools, suffer from overplotting, lack of overview and other issues resulting from
too much input data. Therefore, either the number of genes must be reduced (according
to meta information or using clustering) or intelligent summaries of the genes must be
employed. The same is true for meta information. The extent of meta information can
be overwhelming and requires careful structuring, both for handling and visualization.

Mayday features a large number of different visualizations and analysis tools for meta
information. The meta information concept used by Mayday is capable of working with
a variety of derived values and external annotations, for the latter, often requiring no or
only minor preprocessing. Basic visualization tools are available in Mayday, for example
the enhanced heat map, histograms and scatterplots. These tools are restricted to few
types of meta information (mostly numerical) and make poor use of textual meta infor-
mation. For example, it is hard to get an overview or a comparison of which annotations
are associated with different sets of probes. To address this problem, in this chapter,
several methods for context-based visualization of gene expression data are investigated.

In the following sections, methods for graphically structuring gene expression data
with the focus on their meta information are presented and discussed. Profile logos
(section 5.2) employ a weak form of meta information, as they rely on summarized
discretizations of the primary data. Tag clouds and chromograms (section 5.3) deal with
textual information, as do term pyramids (section 5.4). Numerical meta information,
albeit the easiest to display, can be structured and compared with probe rank plots
(section 5.5).

5.2. Profile Logo

Sequence logos [159] (see section 3.2.6 for details) are a common tool to visually sum-
marize multiple sequence alignments. The main application is visualization of motifs
in nucleotide and protein sequences. However, the concept of sequence logos can easily
be adapted to the visualization of any data matrix. Let A be an alphabet of discrete
symbols b ∈ A. From a column of a multiple alignment of sequences of symbols from A,
the frequency of symbols f(b) is calculated for all b ∈ A. f(b) is then scaled according
to equations 3.1 to 3.4). A sequence logo is a bar chart visualization of these scaled fre-
quencies. To display a numerical data matrix, e.g. an expression matrix, as a sequence
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logo, a discretization function is necessary. The discretized data can then be displayed
in the same way as a multiple sequence alignment.

The application of the sequence logo concept to discretized data matrices is especially
useful in the context of gene expression data. It could be employed to characterize clusters
of expression profiles and help to identify interesting (i.e. variant or uniform) columns
in expression matrices. The name sequence logo is not fitting for this purpose, as several
of the characteristics of biological sequences, most importantly the fixed order of the
residuals are not necessarily observed in expression profiles. Consequently, a graphical
representation of the frequencies of symbols in a discretized matrix, scaled by their
information content is here called a profile logo.

Next, several discretization strategies and their applicability to profile logos are dis-
cussed. Then, an implementation of the profile logo concept along with several examples
is presented. The interpretation of profile logos is discussed at the end of the section.

5.2.1. Discretization of numerical data

Discretization (in this context also often called binning) is the process of transforming
a vector of continuous numerical values into a vector of corresponding discrete (nominal
or ordinal) values. These values are from a set of predefined levels and represent non-
overlapping subsets of the original data, often called bins. More formally, it can be
defined as a function

f(x) : R 7→ S

where S is a set of s = |S| discrete values. In the context of gene expression data
analysis, a binary binning with two (e.g. regulated, not regulated) or three symbols (up-
regulated, down-regulated, unchanged) is commonly used. Such strategies are often used
for supervised and unsupervised machine learning purposes. Several binning strategies
have been investigated in this context [209]. Let x ∈ Rn be a vector of continuous
values, and let xmin = min(x) and xmax = max(x). In equal-width binning, thresholds
are chosen to form intervals of equal width w = xmax−xmin

s for an arbitrary s > 0.
This method, however, has been found liable to outliers [45]. In contrast, equal-frequency
binning creates bins with identical size. The number of bins can be chosen arbitrarily in
both methods. However a single bin, or an extremely large number of bins, so that most
of them are empty, are most often not useful.

In general, any set of n thresholds gives rise to a binning with s = n+1 bins. Therefore,
many strategies exist to choose one or two thresholds based on the overall properties of
the data [123]. Some of these strategies are actually special cases of one the above general
strategies for discretization. The overall mean or median value of a data sample, possibly
combined with its standard deviation can be used to induce a binary or ternary binning.
A binary discretization based on the mid-range can be achieved using the mid-ranged
discretization method, which has been shown to produce biologically relevant results
when applied in biclustering [123].

Equal frequency binning results in bins of equal size. Thus, the information content
of every column of a resulting profile logo would be zero, making method is unsuitable
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for the creation of profile logos. Using only the median value as a threshold is a special
case of equal frequency binning and is therefore also not usable for profile logos.

For the discretization of time series data, the difference between time points can be
used. Transitional state discrimination [134] takes as as input a data matrix A, which
is z-score normalized, resulting in matrix A′. The discretized form Ad is defined as

Ad
ij =

{
1, if A′ij −A′ij−1 ≥ 0

0, else
(5.1)

for j > 1 or, in order to obtain a ternary binning, given a threshold t > 0 for the maximal
allowed difference between values to be considered constant:

Ad
ij =


1, if A′ij −A′ij−1 ≥ t
−1, if A′ij −A′ij−1 ≤ −t

0, else

(5.2)

Note that Ad is defined with one column less than A′, so set Ad
•,0 = 0. This method is

only applicable to time series data with unique time points or data where the difference
between two experiments is meaningful. Several modifications and extensions of this
method have been proposed. However, the binary variant (eq. 5.1) of this method also
performed well in the biclustering study in [123].

Many supervised discretization methods are also available [209]. While these methods
are useful in the context of machine learning, usually no class partitions are available in
the context of expression data visualization. Therefore, only unsupervised strategies are
considered here for profile logos.

5.2.2. Implementation in Mayday

The Profile logo plugin for Mayday is an implementation of the profile logo concept. It
is implemented as a plugin for the Mayday visualization system. The plugin works by
calculating a discretization of the input data and transforming it to a profile logo. The
profile logo is then displayed on the screen. An extension point exists that allows to add
new discretization strategies via the plugin interface of Mayday. All binning strategies
must extend the class AbstractBinningStrategy. The discretization strategy used for
generating the profile logo is configurable. Upon selecting a new strategy or modifying
the parameters, the diagram is redrawn. Currently implemented discretization strategies
are:

• Threshold binning : Arbitrary thresholds can be entered for binning. This allows
the users to adopt to special ranges of data (e.g. z-scores or M -values) or specific
questions, like identifying strongly regulated genes, e.g. with absolute fold change
> 5.

• Equal width binning (with 3 bins) is the default setting. The number of bins can
be chosen between 2 and 20.
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Figure 5.1.: Example of a profile logo, created by the Mayday profile logo plugin. It shows
the expression values of a cluster of 13 genes related to energy metabolism
in Streptomyces coelicolor [140]. Equal-width binning with 3 bins was used.
The horizontal bar indicates the depletion of phosphate in the medium.

• Transitional state discrimination, as defined in equations 5.1 and 5.2. The threshold
t can be chosen by the user and is interpreted on the z-score scale.

• Average binning using either the mean or the mid-range as a threshold. In addition,
a ternary binning can be achieved by considering all values within one standard
deviation from the average to be unchanged.

Similar to sequence logos, in which the symbol frequencies are displayed by a scaled
letter, profile logos use arrow symbols to represent bins. The arrows are chosen according
to the number of bins. For two bins, the lower bin is represented as a downward pointing
arrow (↓), the upper bin is indicated as an upward pointing arrow (↑). For a ternary
binning, the middle bin is represented as a box. For more than three bins, boxes are used
for all bins. All arrows and boxes are scaled to their respective height using equation 3.4.
The coloring scheme used for the bins can be configured by the user. To indicate special
positions or regions of interest, vertical lines can be introduced to the profile logo. An
example of a plotted profile logo with 3 bins can be found in figure 5.1. It also shows an
automatically created legend that indicates the thresholds used for discretization.

In contrast to sequence logos, the largest bin of probes is not necessary on the top
of a profile logo column. While the ordering of the one letter codes for DNA or protein
residuals is more or less arbitrary, the ordering of the bins is well-defined and is therefore
preserved in the profile logos created by this plugin, even if the bottommost bin is the
largest by size.

5.2.3. How to Interpret Profile Logos

Schneider et al. [159] point out five features of sequence alignments that are displayed in
sequence logos. Based on these points, the features of profile logos, depending on different
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discretization strategies are discussed. As an example, a cluster of 24 antibiotics related
genes in Streptomyces coelicolor is used. Figure 5.2 shows the expression profiles of
the genes as a profile plot and three profile logos created using different discretization
methods. The features Schneider et al. mention are:

• “The general consensus of the sequences”. Profile logos show the consensus se-
quence of symbols representing discretized values. The most frequent symbol is,
however, not placed on the top of each columns, as the order of the symbols is pre-
served. Still, the consensus sequence can be identified by finding the largest symbol
in each column. For example, by visual inspection, users can easily determine that
in figure 5.2d, most profiles are above the grand mean after 40h. From figures 5.2c
and 5.2b it can be seen that the profiles remain relatively stable on a lower level for
the first half of the experiments. In a nutshell, profile logos summarize the overall
profile of cluster of profiles, even though the most frequent symbol is not painted
atop.

• “The order of predominance of the residues at every position”. The order of pre-
dominance cannot as easily found in profile logos as in sequence logos, due to the
ordering of the symbols by their numerical values. It is possible to obtain this or-
dering by mentally sorting the symbols by height, but this is not as intuitive as in
sequence logos. Still the natural order of bins should be preserved, as the natural
ordering of the values helps to map the symbol to the range of values they repre-
sent. Furthermore, in most cases, profile logos show two or three symbols, which
makes determining the largest symbol very easy, as can be see in the examples
shown in figure 5.2.

• “The relative frequencies of every residue at every position”. This features is pre-
served in profile logos. The height of each symbol is proportional to the frequency
of each symbol. However, the height of two symbols cannot be directly compared
between columns due to the scaling of the overall column height by the information
content. A stacked histogram or a bar chart would be more useful for this purpose.

• “The amount of information present at every position in the sequence, measured
in bits”. This feature is indicated by the total height of a column, which can easily
be determined in profile logos. In most cases, for columns with high information
content, the values are more uniform, for a low information content, the values are
more scattered.

• “An initiation point, cut point, or other significant location (if appropriate)”. This
feature is useful to indicate key features of the profile in a straightforward way.
An example can be found in figure 5.1. There, the vertical bar indicates the time
point during the fermentation when the phosphate in the medium supporting the
bacteria was depleted. As it can be seen from this figure, this correlates well with
a significant (downward) change in the profile of many genes, which can also be
seen in figure 5.2d.
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(a) Profile Plot
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(b) Equal Width Binning
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(c) Transitional State Discrimination
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(d) Average Binning: Mean

Figure 5.2.: Profile plot and three different profile logos of a cluster of 24 antibiotics
related genes in Streptomyces coelicolor [140]. (a) Profile plot; (b) equal
width-binning with 3 bins; (c) Transitional state discrimination with t = 0.25
and (d) average binning with the total mean as cutoff.
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(a) Profile Plot of two clusters (yellow, green)
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(b) Profile logo of the same cluster

Figure 5.3.: Profile logo of a mixture of clusters. The information content in the first
and last time points is low, because the clusters have different profiles. The
profile logo is a poor representation of different profiles of clusters.

The discretization method can have a significant effect on the profile logo. However,
equal width binning with two bins and mean- or mid range-discretization do not differ
that much in their effect on the data, that the interpretation is vastly different. Choosing
custom thresholds or a high number of bins can vastly change the representation of the
data. However, this allows profile logos to be adapted to a wide range of applications. In
contrast to the other three methods, TSD has a different focus. Instead of summarizing
the values, it summarizes the change of the values between time points. This is useful
to identify inflection points (which would lead to a profile logo similar to “↑↑↑↓↓↓”) in
profiles and monotonous (↑↑↑↑) or unstable (↑↓↑↓) profiles.

Profile logos are most successfully applied to single clusters, when the overall tendency
is of interest. Then, a profile logo can provide a clean, concise summary of the cluster,
which can easily be compared with other profile logos, as can be seen from the comparison
of figures 5.1 and 5.2. Profile logos are not well suited to summarize a mixture of clusters
or large unstructured sets of profiles. In a mixture of clusters, the clusters can interfere,
which leads to very low information content per column. The shape of the individual
clusters would be lost. The result would be a profile logo with very small columns that
would be hard to interpret (see figure 5.3). Therefore, the application of partitioning
clustering algorithms, like k-Means or QT clustering [121, 75]. greatly enhances the use
of profile logos.

5.3. Chromogram and Tag Cloud

Chromograms and tag clouds are two visualization tools that display textual information.
More precisely, key words, often calls tags, which are related to a dataset are shown.
Chromograms display temporal patterns, while tag clouds directly display the frequencies
of key words. With the abundance of meta information, many of which is textual in
nature (see table 5.1 for an overview), these tools can be powerful additions to the
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Chromogram DNA dynamic Microarray Megabyte RNA Tag cloud

0 1 2 3 4 5 6 7 8 9

Figure 5.4.: Examples of the chromogram color transformation.

gene expression analysis toolbox. In this section, the two tools are described, and an
implementation of them in Mayday is presented. Their application to gene expression
data and notes on interpretability conclude this section.

5.3.1. Chromograms

Chomograms have been introduced by Wattenberg et al. [201]. The main idea is to use
color to encode strings that summarize activities in a way that similar strings are encoded
by similar colors. The application of chromograms is the visualization of long sequences
of short texts. Wattenberg et al. applied this to visualize edit operations on Wikipedia,
visualizing the titles of the edited articles as a time series [201].

The input to chromograms is an ordered lists of strings. Commonly, the strings are or-
dered by some temporal key, however this depends on the application. A lexicographical
order is less useful in most cases. Lemmatisation of strings can be a useful preprocessing
step to unify inflected forms of words. The string is then converted to lower case and
encoded as a color, based on the HSB color model. For this purpose, only the first three
letters are used: The first letter determines the hue of the resulting colors, second and
third letters determine saturation and brightness, respectively, which are chosen from a
limited range to ensure the hue remains easily recognizable. Let c be a lowercase alpha-
bet character, and let be ’a’=1, ’b’=2, etc.; then v(c) = 1

26(c− ’a’) is the letter value of
c. Then the color (h, s, b) of a word w = w1, w2, w3, . . . converted to lowercase is given as
h = v(w1), s = 0.3 + 0.6× v(w2) and b = 0.4 + 0.5 ∗ v(w3) [201]. Strings starting with a
number are converted using a grayscale color gradient. Figure 5.4 shows some examples.

The encoded strings are then displayed in a block view, a sequence of colored boxes,
which fill the screen in reading direction. In the original application, the chromograms
omit the text and instead use tool tips to display it. For applications to time series,
Wattenberg et al. also presented a timeline view that can highlight bursts of activity [201]
in a stem-and-leaf style.

Chromograms can be applied to the visualization of meta data of gene expression
studies. A multitude of annotation data is available, for which temporal and other pat-
terns are of interest. For ease of exposition, we assume that there is a unique annotation
for genes investigated in an expression study (see section 5.3.5 for a discussion of this).
Then, depending on the ordering of the genes, chromograms can be produced as de-
scribed above. For example, it could be interesting to see if genes with an overall high
expression pattern tend to have similar annotations. This could be achieved by creating
a chromogram sorted by mean expression and searching for runs of similar colors.
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Figure 5.5.: Chromogram of Sanger annotations of variant genes in Streptomyces coeli-
color [140]. The genes are sorted by the experiment in which they have the
maximal expression. The stretch of marked genes at the end of the chromo-
gram are annotated with “PKS” thus related to polyketide synthesis.

5.3.2. The Chromogram Plugin for Mayday

The chromogram plugin for Mayday is an implementation of the chromogram block
view. Based on a table component, it uses annotations associated with sorted probes to
produce chromograms as discussed above. The chromogram is created either from the
the probe names, their alternative display names, or meta information. Either textual
or lists of text-based meta information can be used. However, as chromograms display
only one element per probe, currently only the first element of the list is used.

As genes have no unique natural order, and in general, no temporal ordering is avail-
able, the order of the genes has a significant effect on the resulting chromogram. There
are many possible orderings, and the choice depends on the underlying question. Cur-
rently, the following ordering options are available in Mayday:

• Probe name. This function allows to exploit the fact that the probe identifiers can
reflect structured information that has a useful ordering. This could for example
be locus tags (which reflect the order of the genes on the chromosome), as often
used for bacteria.

• Probe display name. The ordering by probe display names option is based on the
same rationale as the ordering by probe name. However, this also supports non-
unique names and is more configurable.
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5. Context based Visualization of Gene Expression Data

• Number of probe lists. This allows to prioritize the probes that are contained in a
large number of probe lists. These might be key genes that are present in many
pathways.

• Experiment value. Here, the user can select an experiment. The probes are then
sorted by their expression value in this experiment.

• Minimum, maximum. Sorts the probes by their overall minimum or maximum
across all experiments.

• Mean. This function can be used to sort the genes by their average expression value,
allowing for example to identify runs of similar annotations in highly expressed
genes.

• Standard deviation, variance. Allows to search for patterns related to the overall
variation in the probes’ profiles.

• Meta information. A configurable meta information can be used to introduce an
ordering, for example significance values, feature selection scores or genomic loci.

• Experiment with maximum / maximum. This feature is useful for example in time
series studies. Patterns of annotations that arise in probes peaking early or late in
the time series can be found with this ordering.

The ordering can be performed either increasingly or descendingly. Note that the meta
information used for sorting is not necessarily the same meta information as displayed
in the chromogram. Figure 5.5 shows an example. It shows 322 genes in a fermentation
time series of Streptomyces coelicolor [140]. We are interested in finding groups of genes
that are highly expressed at the beginning or the end of the time series, therefore genes
are ordered by the experiment which the maximal expression value occurs. We find
several genes related to primary metabolism (ribosomal proteins, TCA cycle) to peak
at the beginning of the time series. At the end of the time series, many genes from the
secondary metabolism peak, especially genes related to polyketide synthesis.

Chromograms provide a condensed view of meta information. This view is most useful
when combined with the underlying gene expression data. For this purpose, users can
obtain a profile plot of each probe by clicking on them with the middle mouse button. As
with all Mayday visualization plots, selections are communicated to and received from
other open plots.

5.3.3. Tag Clouds

Tag clouds (also called word clouds) are a well-established tool to display the abundance
of tags – key words associated with data. They are being used in many web-based
applications, and are useful to highlight, for example, the major topics on a social web
site. Tag clouds began to receive much attention as the photo sharing web site Flickr
(www.flickr.com) used a tag cloud to visualize the frequency of the tags the site’s users
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5.3. Chromogram and Tag Cloud

Figure 5.6.: Tag cloud showing word occurrences in “Alice’s Adventures in Wonder-
land” [28] created by TagCrowd (www.tagcrowd.com).

added to the photos. Beside the display of such “folksonomies”, tag clouds have been
applied to text analysis. Figure 5.6 shows a tag cloud of the word counts in “Alice’s
Adventures in Wonderland” [28]. In addition, tag clouds have also been used extensively
for illustrative purposes and infographics (see wordle.net for examples).

Tag clouds use the font size to display the frequency of a tag. This can be easily and
efficiently implemented in HTML, which contributed to the popularity of tag clouds
in social web sites. More formally, for a tag t with relative frequency 0 ≤ ft ≤ 1 the
height h is given as h ∼ ft. A simple way of calculating the height of a tag cloud item
is a scaling of the range of the tag frequencies to the range of font sizes. In the case
of a larger range of tag occurrences, this may lead to unsatisfactory results. In this
case, exponential transformation of the untransformed counts could highlight the most
frequent tags, while log transformation is useful to highlight a larger number of tags.

The layout of tag clouds is subject of research. In general, the tags are embedded in
the plane, in reading direction, in lexicographical order or by their frequency. Clustering
of tags gives rise to alternative layout styles. A circular layout, in which the most fre-
quent tags are placed in the center of the embedding is also used [122]. This has been
performed using self-organizing maps [155], k-means clustering of similarity matrices [72]
or automatic electronics design methods [94].

A user study [122] found that lexicographically sorted tags are best to find specific
tags. A circular layout with the most frequent tag in the center optimally highlights this
tag. Clustered layouts were found best to identify groups of tags belonging to a specific
topic.

In the context of gene expression data, many annotations can be visualized by tag
clouds. Functional gene annotations, for example each of the three parts of the Gene
Ontology [6], or the Sequence Ontology [51] can be instantly used for this purpose. Also
the membership of genes in biological pathways (e.g. from KEGG [90]) and structural
properties (e.g. from Pfam [54]) are good sources of tags. Long textual annotations are
less useful, as long tag names distort the tag cloud image.
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Figure 5.7.: Tag cloud showing TIGR/ JCVI annotations (www.jcvi.org) of variant
genes in Steptomyces coelicolor created with the Mayday tag cloud plugin.
The most frequent tags are placed at the center of the cloud.

5.3.4. The Tag Cloud Plugin for Mayday

Tag clouds are a useful tool to visually inspect textual or other discrete meta information
in gene expression studies. The integration of tag clouds in Mayday is based on the
Mayday graph framework (see section 6.6) and is implemented as a plugin for the Mayday
visualization framework.

The initial view presented to the user shows a tag cloud calculated from the size of the
selected probe list. Tag clouds can also be generated from meta information groups that
can be selected from the menu. To transform the occurrence counts of the individual
tags, linear, logarithmic or exponential mapping is available. The mapped counts are
then transferred to the font size range, which is 10 to 28 pt by default.

Each tag is displayed on an individual component. The component is painted as a
box colored according to the frequency of the tag (see figure 5.7 for an example). The
color gradient can be configured by the user. Each tag is associated with the probes that
have this tag. These probes can be visualized within the tag component using a profile
plot. For better visual comparison, if tag is selected, the selection is exchanged with all
currently visible plots.

The layout of the tag cloud is also configurable. The tags can be ordered lexicographi-
cally or by tag frequency. A radial layout is also available. In addition to these strategies,
the expression values of the probes can be used to induce a layout of the tags. This is
done by computing a matrix consisting of the centroids of each tag’s probes and cal-
culating a principal component analysis on this matrix. Each tag is then placed at the
position of its centroid reduced to the first two principal components of its centroid.

76



5.3. Chromogram and Tag Cloud

When using meta information as tags, the resulting tag cloud can become large. The
tag cloud plugin can display a histogram of the tag counts to give an overview of their
distribution. Filtering is also possible to remove the least frequent tags.

5.3.5. Interpretation of Chromograms and Tag Clouds

Chromograms and tag clouds both deal with textual annotations of objects, albeit in
different ways. Chromograms visualize the annotations of (temporally) ordered objects,
while giving no direct estimation of the frequency of a certain annotation. In contrast,
tag clouds show the frequency of annotations while, in general, omitting any patterns
present in the annotated objects. Especially with the interactivity possible in the Mayday
implementations of both tools, they can be used together to perform powerful analyses
of meta information and the primary data.

The combined use of tag cloud and chromograms is demonstrated on a set of variant
genes in a time series in Streptomyces coelicolor [140], that were clustered using quality
threshold based clustering [75]. In total 13 clusters of 4 to 147 genes and a set of 27
unclustered genes were computed. One chromogram and two tag clouds are produced.
The chromogram is ordered by the maximum experiment criterion and shows the Sanger
categories (www.sanger.ac.uk) of the genes. The order was chosen to find genes that
have their expression maximum early or late during the time series. The first tag cloud
represents the clusters sizes. The second tag cloud also shows the Sanger annotation.
The resulting plots are shown in figure 5.8.

These plots allow to identify several interesting patterns. Genes related to ribosomal
proteins all belong to the largest cluster and have their peaks at an early time point
during the fermentation, as they are mostly located at the beginning of the chromogram
in figure 5.8a (dark blue, also indicated by white diagonal lines). Further findings in this
setup are that the PKS genes (related to polyketide secondary metabolites) are mostly
expressed at the end of the fermentation. In fact, all the PKS genes that are represented
by the long light blue sequences at the end of figure 5.8a are identical to cluster 10
(20 genes). Furthermore, most of them are genomic neighbors, as can be inferred from
another chromogram ordered by locus tag (SCO5071 to SC05091 without SCO5082
and SC05083, not shown). Genes related to the secondary metabolism (scattered along
the time series) and gram-positive exported/lipoprotein (maxima mostly at later time
points) are often co-regulated with each other, or they are co-regulated with PKS genes,
as can be inferred from the cluster memberships of the respective genes.

This demonstration used the experiment with maximum ordering for the chromogram.
This is only one possible application. Genomic location or the overall expression level are
also useful to identify interesting clusters here. In fact, with large or multiple displays it
is no problem to display several chromograms and tag clouds in parallel.

The above findings can be quickly inferred from the plots of figure 5.8 using interactiv-
ity. Users can browse tag clouds to identify tags that have interesting temporal (or other,
see figure 5.9) patterns in chromograms. By selecting the genes in question, the respec-
tive tags are selected as well which allows, for example, to swiftly identify co-expressed
genes. Vice versa, by selecting a tag, the chromogram shows instantly whether or not
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(b) Tag cloud of Sanger annotations
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Figure 5.8.: Chromogram and two tag clouds of 13 clusters of variant genes in Strepto-
myces coelicolor . All three plots are connected with each other. The high-
lighted tags represent tags that match the selected genes in the chromogram.
(a) Chromogram with genes sorted by experiment with maximum, showing
the Sanger categories of the genes; (b) Tag cloud of Sanger categories present
in the genes; (c) Tag cloud showing the cluster sizes.

78



5.4. Term Pyramid

Figure 5.9.: Interactions between tag clouds and chromograms that can be used to infer
patterns in annotations and annotated objects.

there are any patterns in the annotated objects. This concept of connected views is a
well established part of the visual analytics concept and is in no way limited to two plots.
For example, to the view expression patterns of the genes along with chromograms and
tag clouds, heat maps or profile plots can be used.

Chromograms exceed the capabilities of sorted lists of genes, which could also be
employed for such a strategy, because they are far more compact. The above example
shows 322 genes (see figure 5.8a), still distinguishable, even in such a small view. No
current list implementation could perform this without converging to a vertical kind of
chromogram.

The handling of string lists as meta information in chromograms remains a problem.
The current implementation displays only the first elements of such a string list. The
advantage of chromograms is that they visualize a long sequence of strings in a very com-
pact way. Drawing multiple strings per probe might distort patterns. Drawing multiple
horizontally stacked colors per probe would require more space per probe to be readable.
This would remove a major advantage of chromograms. Using unevenly sized boxes to
display would also reduce readability. For a limited number of meta information items
per probe, a stacked view of constant size could be used for each probe. The order of
the strings within the probes would have to be constant, which would also allow missing
elements. Figure 5.10 illustrates the shortcomings of current chromograms and a stacked
chromogram as a possible solution.

Further implementations of the tag cloud can be designed to exploit relationships
between tags. The current design of the tag cloud plugin already allows edges between
tags, e.g. for indicating relationships between tags to be displayed.

5.4. Term Pyramid

While tag clouds and chromograms, especially in combination, excel at exploring the
landscape of gene or probe annotations, they cannot provide a comparison of the anno-
tatons for two sets of genes. Tag clouds occupy too much screen area, and the ordering
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Figure 5.10.: Illustration of a stacked chromogram showing up to five annotations for
a set of probes. (A) lists of available meta information for 4 probes; (B)
the current implementation of the chromogram shows only the first item
for each probe; (C) a stacked chromogram showing all annotations for the
probes.

of tags may be unstable. While chromograms are space-efficient, the ordering problem
remains and individual annotations are cumbersome to compare due to the color encod-
ing.

For comparative purposes, bar charts have been successfully used for more than 200
years ([188] discusses examples of early examples of such visualizations). Furthermore,
it has been found that bar plots, that by design encode numbers using different points
on the same scale, use one the most efficient and readable strategies for visual encoding
data [205]. For comparative purposes, groups of pairs of bars can be used to display pair-
wise comparative data. Population pyramids use another approach. Besides providing an
overall summary of the population structure of a country along with the age distribution,
it also shows the differences of in size of the male and female population in a certain age
quantile. This all is reached by showing two bar charts with the same base line, but with
the bars pointing into two different directions (by convention, male to the left, female
to the right). Similar charts are in general used for comparative purposes. The usage of
two equal, but non-aligned scales has also been found to be a readable visual encoding
for data [205].

The concept of a pyramid style bar chart for pairwise comparison of quantities can
be used to compare the frequency of annotations in two sets of genes. The objects of
comparison are annotation terms, with their frequency calculated from the count of terms
for all genes in the respective set. The resulting plot is therefore called term pyramid.
In the following, an implementation of the term pyramid concept is presented and a few
notes concerning the interpretation of term pyramids.

5.4.1. The Term Pyramid Plugin for Mayday

The term pyramid concept is implemented in the term pyramid plugin for Mayday. It is
based on the visualization framework for Mayday. As an input, the plugin takes a list of
probe lists and a meta information group (of string or string list type). From this data,
a configurable tabular view is created that shows the term pyramid.
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Figure 5.11.: Term pyramid showing the Gene Ontology cellular component (GO:CC)
annotations in two sets of nitrogen-regulated genes in Saccharomyces cere-
visiae. The figure only shows the upper part of the plot. The rows are sorted
by the count of annotations in the left set. The coloring of the bar charts is
based on the relative count of terms for each bar, using a green-black-red
color gradient. Data from [103]

The term pyramid table has 5 columns (see figure 5.11). The central column shows the
annotation terms, the outer two columns list the number of genes with this annotation
and a bar chart that is scaled to the most frequent annotation. The probe lists used to
generate the left and right columns can be configured via the main menu. Each column
can be used to sort the term pyramid.

The rendering of the term pyramid can be configured in many ways. The coloring
of the bar chart can be adjusted to match the color of the probe list, to the chromo-
gram color encoding or using a green-black-red color gradient to encode the count of
annotations. As an alternative view, the centroid profile of the probes having an anno-
tation can be viewed using a heat map view (see figure 5.12a for an example). Several
sparkline based visualization [190] are available. For interactive analyses, the term pyra-
mid plugin communicates all selections to other open plots and sends and receives data
transformations.

5.4.2. Interpretation of Term Pyramids

Term pyramids allow the swift comparison of the annotations of two probe lists. Similar
probe lists with similar annotations would result in a very symmetrical term pyramid,
with bars of the same length at each row. Dissimilar annotations give rise to a sequence
of ordered bars on the one side, and an unordered set of bars on the other side. Example
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with somewhat dissimilar annotations can be found in figure 5.12b. Completely disjoint
annotations give rise to a term pyramid with only one non-zero value in each row.

Term pyramids further extend the capability of analysing the annotation content of a
set of genes. Comparisons of the amount of annotations of two gene sets are cumbersome
using lists, and also the advanced tools discussed in the previous section have their
strength in exploring the annotations of one set of genes. In contrast, term pyramids are
specifically built for this purpose and use, beside a variety of options for visualizing either
the abundance of terms, symmetry for the comparison of the annotations. Symmetry has
been shown to be easily detected by human perception [13].

5.5. Probe Rank Plot

The concepts of the previous plots concentrates on discrete meta information, like gene
annotations. As discussed at the beginning of this chapter, numerical meta information
is also important. Tag clouds and chromograms rely on aggregation of textual meta in-
formation and perform poorly on numerical values. Discretization methods as discussed
in section 5.2.1 can transform the numerical values to discrete bins, but a direct visual-
ization of such data is often more useful.

Standard visualization tools like histograms, bar plots and scatterplots can be used to
visualize numerical values reasonably well. For the integration of numerical meta data
with gene expression data, the enhanced heat map [63] exists.

For comparisons of numerical meta information horizontal bar plots can be employed,
in a way similar to the term pyramid. Given a probe list and two different sets of
numerical meta information, for each set the ranks are of the probes are calculated.
Then, the ranks are visualized as two horizontal bar plots, called probe rank plot. The
bars of both plots are arranged in the order of the first (left) bar plot. Alternatively, the
ranking can be visualized in a tabular form. This allows to show the names of the probes
and the actual numbers. A gradient can be used to strengthen the visual comparability
of both plots. If the order of the probes with respect to the different values differ, this
can be visually detected: The bars in the right bar chart are not sorted ascendingly, and
the color gradient is not continuous.

This concept has been used for many applications, including the visualization of sort-
ing algorithms (see www.sorting-algorithms.com for an interactive example). For gene
expression analysis, the comparison of quality measures, summaries and variance mea-
sures and feature selection values can be of interest.

5.5.1. The Probe Rank Plot for Mayday

The probe rank plugin for Mayday implements the probe rank concept for expression
data. It is based on the Mayday visualization framework and uses a customized JTable

for displaying the bar plots. The plugin accepts as input one or more probe lists (only one
can be shown at one time), and any numerical meta information. As described above, the
left probe list is remains constantly sorted, while the order of the right probe list depends
on the left meta information set. The alternative, more verbose, list view visualization
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N vs all -

5 7 28,5 0

# GO: CC # N vs all +

0 11,5 2 3

5 7 0005737 cytoplasm 9

3 3 0030529 ribonucleoprotein complex 0

3 1 0005840 ribosome 0

2 9 0005622 intracellular 0

2 2 0022625 cytosolic large ribosomal subunit 0

2 0 0005739 mitochondrion 4

1 5 0005634 nucleus 6

9 0016020 membrane 2 3

8 0005576 extracellular region 3

8 0005618 cell wall 2

8 0009277 fungal-type cell wall 1

7 0005759 mitochondrial matrix 2

6 0015934 large ribosomal subunit 0

6 0031225 anchored to membrane 1

5 0030686 90S preribosome 0

(a) Term pyramid showing annotations and centroid profiles of the annotated genes

Expression level: low medium high

C vs all -

1 2 6 0

# GO: MF # C vs all +

0 5 2 104

1 2 0005515 protein binding 104

1 1 0016787 hydrolase activity 4 2

1 0 0003824 catalytic activity 7 5

6 0000166 nucleotide binding 5 4

6 0005215 transporter activity 6

5 0005524 ATP binding 5 2

4 0003676 nucleic acid binding 2 9

4 0008233 peptidase activity 2 7

4 0046872 metal ion binding 7 1

3 0003677 DNA binding 3 4

3 0005351 sugar:hydrogen symporter activity 4

3 0005353 fructose transmembrane transport... 3

3 0005355 glucose transmembrane transporte... 3

3 0005488 binding 1 7

3 0008270 zinc ion binding 4 0

3 0015078 hydrogen ion transmembrane tran... 1 0

3 0015578 mannose transmembrane transpor... 3

3 0022891 substrate-specific transmembrane ... 5
(b) Term pyramid comparing clusters of carbon related genes

Figure 5.12.: Two term pyramids showing the Gene Ontology cellular component
(GO:CC) and molecular function annotation in two sets of nitrogen (a)
and carbon (b) regulated genes in Saccharomyces cerevisiae. Only the up-
per part of the whole plots are shown. The rows are sorted by the count of
annotations in the left set. (Data from [103])
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# C vs all - / Fold change C vs all - / Gini Index
1234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 63 73 83 94 04 14 24 34 44 54 64 74 84 95 05 15 25 35 45 55 65 75 8

Rank: low medium high

Figure 5.13.: Probe rank plot showing a comparison of the fold change and the Gini
Index (discriminating between anaerobic and aerobic samples) of cluster of
carbon regulated genes in Saccharomyces cerevisiae. A heat colors gradient
is used to color the bar plot. Data from [103]

of the probe ranks with explicitly stated probe names and values is also implemented
(see figure 5.14a). In both cases, a configurable color gradient can be used, with a heat
colors gradient (red - yellow - white) as the default. Figure 5.13 shows an example, in
which for a set of genes the fold change and the Gini index are compared. The example
shows that there is in general a high correlation between these measures, however some
outliers can be seen.

Comparisons of annotations between two probe lists are also possible (see figure 5.14b).
In this case, only probes that occur in both probe lists are drawn as bars in the right
bar plot. The other probes are not drawn explicitly.

The probe rank plot works well in combination with the GeneMining plugin for May-
day [158] and with the statistical test plugins. These plugins produce numerical meta
information as an output. For further analyses of genes, the probe rank plot is interac-
tive, selections in one of the bar plots are communicated to the other bar plot and to all
other currently shown plots in Mayday.

5.5.2. Interpretation of Probe Rank Plots

The interpretation of probe rank plots is straightforward. A mostly monotonously in-
creasing bar length in both plots indicate that both meta information values have a
very similar ordering. An example can be found in figure 5.13. Deviations from a simi-
lar ordering can easily be detected, as they introduce out-of-the-order bars in the right
plot. Completely different meta information sets give rise to an unordered bar plot on
the right side, which is also visible in the color gradient. An example can be found in
figure 5.14a.
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# N vs all - / ttest (N vs all) N vs all - / ttest (C vs all)
1 YNL096C 0 / 0,091 YJL217W 0,032 / 0
2 YGL076C 0 / 0,954 9823_at*  0,034 / 0
3 AFFX-YFL039C5_at* 0 / 0,076 YKL067W 0,035 / 0
4 YDL182W 0 / 0,048 YKL006W 0,023 / 0
5 YHR089C 0 / 0,673 YOR020C 0,011 / 0
6 YLR448W 0 / 0,094 YJR094W-A 0,013 / 0
7 YKL164C 0 / 0,356 YGR214W 0,01 / 0
8 YLR391W-A 0,001 / 0,119 YML024W 0,038 / 0
9 YGR254W 0,001 / 0,436 YKL006W 0,01 / 0
1 0 YMR116C 0,001 / 0,023 YER056C-A 0,006 / 0
1 1 2163_s_at* 0,001 / 0,097 YNL135C 0,003 / 0
1 2 YNL208W 0,001 / 0,1 YDL174C 0,041 / 0
1 3 YGL148W 0,001 / 0,627 YOL120C 0,012 / 0,001
1 4 YOR309C 0,001 / 0,465 YLR441C 0,011 / 0,001
1 5 YJL177W 0,001 / 0,061 YFL018C 0,025 / 0,002
1 6 YLR048W 0,001 / 0,105 YLR150W 0,01 / 0,002
1 7 YEL054C 0,002 / 0,026 YOL040C 0,008 / 0,002
1 8 YDL232W 0,002 / 0,192 AFFX-YFL039CM_at* 0,018 / 0,003
1 9 YPL170W 0,002 / 0,019 YNL104C 0,002 / 0,004
2 0 YNL104C 0,002 / 0,004 YBR249C 0,018 / 0,005
2 1 YNL135C 0,003 / 0 YLR029C 0,008 / 0,005

(a) Probe rank list view

# C vs all - / ttest (aerobic vs anaerobic) N vs all + / ttest (aerobic vs anaerobic)
1234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 63 73 83 94 04 14 24 34 44 5

(b) Probe rank comparison of two probe lists

(a) Rank: low medium high (b) Rank: low medium high

Figure 5.14.: Probe rank plots showing different numerical meta information and probe
lists in Saccharomyces cerevisiae. (a) shows the list view of a cluster of
nitrogen regulated genes, annotated with different statistical test results.
Here, an inverse heat color gradient is used; (b) shows a cluster of carbon
regulated genes and the nitrogen genes from (a). Only a subset of genes
from the left probe list is present in the right probe list, as carbon and
nitrogen related genes have a small intersection. Data from [103]

When comparing two probe lists with respect to numerical meta information, only the
probes that are in the intersection of both probe lists are drawn as bars in the right plot,
however all the probes of the right probe list are used to sort the right bar plot. This
shows both the intersection of the probe lists and the ranks of the common probes. Here,
the comparison of the two rankings must take the possible gaps between two common
probes into consideration.

It can be argued that the left bar plot is redundant, because it is always sorted.
However, the left plot serves an important purpose, because it provides a standard for
comparing bar length and color. Furthermore it sends and receives selections from and
to the right bar plot, which helps navigating the plot.

Probe rank plots compare the ranks of numerical meta information sets. When how-
ever, the overall distributions of the values should be compared, then one should use
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QQ-plots, scatterplots or histograms. Nevertheless, the ranks of the probes are very im-
portant in practice. Examples are settings in which the top 100 probes with respect to a
feature selection criterion are to be found. Probe rank plots can give an overview of how
the genes selected with respect to the first method would perform with respect to the
second one. This can be applied when searching for genes that are stable with respect
to different scoring functions.

5.6. Summary and Discussion

In this chapter, I have described and discussed five different plots that visualize gene
expression data at several levels of abstraction.

The least abstraction is used for the profile logo plot. The profile logo plot uses a
summary of an indirect representation of the primary expression data. This allows to
compare analysis results like partitioning clusterings. It is also useful to inspect pro-
file logos of genes grouped together by gene annotations. The different discretization
strategies allow to pursue different aims when using profile logos, for example find ex-
periments in which most genes are either up- or down-regulated. In addition, the TSD
method allows to identify time points or series of time points with interesting features.
The interpretation of profile logos is sometimes not straightforward, and heavily depends
on the chosen binning strategy. Still, the examples show that they provide a very con-
cise, but still readable summary of a set of gene profiles, especially when profile plots or
heat maps become illegible due to the high number of probes. Furthermore, they present
data in a very similar way as sequence logos, which are widely adopted in the research
community.

Tag clouds and chromograms have been introduced as tools for text analysis and
visualization. They both visualize short summaries of the texts, data or activities. These
plots complement each other. Tag clouds show a quantitative summary of the tags. This is
not done in the most space efficient way, but the different two dimensional embeddings
of the tag cloud allow to adapt to several questions, as for different tasks, different
embeddings are optimal. For most tasks, straightforward layouts are unsurpassed [122].
Chromograms provide a very concise summary of an ordered list of tags. This order is,
in the case of gene expression data with annotations, not unique and may be customized
to fit different purposes, but can make interpretation more complicated, if a non-trivial
sorting pattern was chosen. Users with impaired color vision will have trouble dealing
with chromograms. However, chromograms have the great advantage of being able to fit
thousands of genes onto the screen without over-plotting and the necessity of scrolling.
Together, chromograms and tag clouds can be used to interactively browse the landscape
of annotations, and inspect their patterns with respect to various sorting criteria.

For comparisons of meta information between two probe lists, neither tag clouds nor
chromograms are very useful, especially when temporal or other patterns are not of
interest. In contrast, term pyramids provide bar charts of the frequency of annotations
present in two sets of genes. This allows to answer questions like: “How do two clusters
of up-regulated genes differ in the annotations of their genes?” Term pyramids can,
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by the way of sorting, find the most frequent annotations in both probe lists. By the
way of scanning over the annotations, an overview of the similarity of both groups
and terms that are differentially abundant between both gene sets can be found. For
quick comparison of the expression levels of commonly annotated probes, several ways
of adding expression summaries are available. For a through analysis of genes of interest,
however, a full plot, like a profile plot or a heat map should be used.

Textual meta information is only a part of the whole meta information available in
gene expression experiments. Therefore, the comparison of numerical meta data is also
of interest. None of the above methods are particularly useful for this purpose. The
comparison of the ranks of the meta information is visualized by the probe rank plot.
This plot allows to compare the ranking of a gene with respect to two different meta
information sets. Also the ranking of probes in two probe lists can be viewed. This
somewhat extends the concept of the term pyramid plot, as it makes use of two bar
plots placed next to each other. The fixed left bar plot serves as an anchor and makes
finding specific probes easier.

Interactivity and communication between plots is crucial. The joint analysis of several
sets of meta data is only possible if several plots can be viewed simultaneously, which is
nowadays possible as large inexpensive screens and fast computers supporting them are
available. However, the approach is more intuitive and potentially faster than devising
complex filtering schemes for the same purpose.

All of the plots discussed in this chapter have not yet received much attention in the
context of gene expression data visualization. This is especially true for the profile logo,
and the tag cloud/chromogram combination. I am not aware of other implementations of
this set of tools, at least not within a single working environment. Their implementations
presented herein now allow an evaluation on their single and joint capabilities. The notes
on the interpretation of the plots highlight some key assets and liabilities of the individual
approaches.

A free and open source implementation of all five plots is available in Mayday. The
implementation of the plots are all based on the very versatile Mayday visualization
framework (see section 3.5). This provides interactivity, interoperability of different plots
and high quality data export features with very little additional effort. Extensibility was
prime concern during the implementation of the plots. Several extension points can be
used to add features. Still, the implementations differ in some important points. The
profile logo is based on an internal plot library used in several visualization plots in
Mayday [12]. Extension points here are the binning strategies and the rendering strat-
egy for the bin representation. The tag cloud is implemented based on the Mayday
graph framework (see section 6.3), which provides a large number of extension points
(see chapter 6 for details). For sake of simplicity, only a few of them have been used.
The chromogram, the term pyramid, and the probe rank plot are based on the JTable

component of the Swing library (Oracle, Redwood Shores, CA, USA). This component
employs the model-view-controller design pattern and allowed a swift implementation
of all the features required by the plots. In general, this strategy requires a specific ta-
ble model, a table cell renderer that displays the information as desired, and a selection
handling component that can communicate with the selection model of the Mayday visu-
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Figure 5.15.: UML class diagram of the five context-based visualization plots presented
in this chapter. The diagram shows the overall implementation of the plots,
as well as their principal extension points. Components that are part of
Mayday are drawn in white. Light green indicates Swing components.

alization framework. In principle, the rendering components are exchangeable, however
they are specific for their respective purpose and would not introduce useful features to
other plots. Figure 5.15 shows a UML diagram with the overall structure of the plots,
the means of their implementations and the principal extension points.

These different implementations have been chosen because they made the task at
hand as easy as possible. Especially the table-based components were useful as the table
component provides the overall structure of plots and is designed with several extension
points in mind. Furthermore, they work fairly efficient, which is important when dealing
with tens of thousands of genes.

Further development of these tools is possible, based on the extension points exist
that allow to add new features like summarization or rendering methods. In this work
however, this approach has not been pursued. While the five plots discussed here provide,
especially in combination, a wide range of possibilities for data analysis incorporating
meta information in the broadest sense, they are specialized tools for a limited purpose.
The joint visualization of meta information and gene expression data should however be
approached in a broader sense, with more general tools, that also provide a more direct
view of the primary expression data. One such approach based on graph visualization is
presented in the next chapter.
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Expression Data

The field of visual data exploration has provided a set of powerful tools for data analysis.
These tools are now routinely applied to gene expression data, which has lead to a large
number of new insights. The complexity of gene expression data, with data from up to
three different levels (transcript, protein, metabolites), and additional meta information,
which can be equally complex (see section 5.1), requires strong analysis and visualization
tools.

Several ways of dealing with meta information combined with expression data from
a single source have been introduced in the previous chapter. The tools presented there
proved to be useful, especially when combined. However, the entire complexity of meta
information, especially of pathways and other biological models, is not covered by them.

To overcome these limitations, an approach based on graph visualization is applied in
this chapter. The well-established field of graph drawing and the emerging field of visual
analytics provide the background for this strategy. This chapter presents specialized and
generic solutions for the visualization of graphs in combination with expression data and
meta information. New applications and topics extending those presented in chapter 5
are discussed.

This chapter first discusses the combination of graph based visualizations with the
visual analytics concept. Related work in this field is summarized in section 6.2. My ap-
proach to this problem is described in the following sections, starting with the description
of the Mayday graph framework in section 6.3. The various options for displaying gene
expression data on graphs are described in section 6.4. Tools based on these concepts
are presented in section 6.5 where specialized pathway viewers are presented, and in sec-
tion 6.6, where the concept, implementation and extensions of MGV – a generic graph
viewer for Mayday – is presented. An important feature of MGV is the capability of
combining gene expression data and meta information from different sources (datasets,
studies, “omics”), which is presented in section 6.7. The key features are illustrated with
various different experiments, along with notes on interpretability. A discussion of the
approach, the implementation and the examples is given at the end of the chapter.

6.1. Exploratory Analysis of Biological Networks

The topic of this thesis is the visualization of gene expression data. The theoretical
foundation, the methods and principles of data visualization, as well as their application
for gene expression data were summarized in chapter 3. Based on these principles, in
chapter 5 several methods were described which can be used to integrate gene expression
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data with meta information. The focus of these context-based methods were certain
classes of categorical and numerical meta information. While these tools are appropriate
for their purpose, they are specialized and generalize poorly. The visualization of both
meta information and gene expression data is possible only using connected views, which
requires a lot of screen space.

In every step of the analysis of gene expression data, visualization is used: it allows to
identify quality issues, supports decisions on methods, summarizes the results and helps
to structure the data and hypothesis. In higher level analyses, it becomes necessary
to integrate meta information into visualizations. Meta information is often structured.
Examples are biochemical pathways and interaction networks, or ontology based annota-
tions. Neither of those can be adequately visualized in a table or a bar plot. Most common
visualization plots cannot display network information. Network information, however,
is important, as the full structure of pathways or networks contains more information
than a list of their components. It shows the context in which gene expression occurs
and in which a protein is active, especially for multi-omics data, where it is especially
useful to visualize the process combined with the activity measurements.

Biological networks (see table 6.1 for an overview of common types) are of major
interest. Research in systems biology yielded a large and extending body of knowledge
rich both in breadth and depth. This knowledge is condensed and accessible in databases
which describe organisms, processes, genes and chemicals in detail. This is the foundation
on which systems biology works toward its ultimate aim: to comprehensively model
biological systems. Therefore, especially biochemical pathways are of interest, as they
provide a conceptual representation of biological knowledge, which is highly condensed
and often aggregates many studies. Pathways are the elements of our understanding of
basic biological processes. Their visualization is helpful for various purposes. While gene
set enrichment analysis tools can identify the overall activity of a pathway, a drawing of
the pathway enriched with expression data can give an overview as well as the details of
the process.

The natural representation of biological networks are graphs. Graphs directly model
interaction networks, where nodes represent proteins and edges represent interactions.
A similar graph can be defined for reactions and pathways. Splice graphs [73] use this
concept to represent different transcripts of a gene. In general, every association of two
objects can be represented in a graph, for example a gene and associated objects of meta
information. However, it has been shown that a Petri net representation [145] is a more
useful way of describing biological processes. Here, place nodes represent metabolites,
and transition nodes represent reactions. This concept is used for example in the SBGN
standard [115].

Graphs represent a wide range of biological information and graph theory is a solid
foundation based on which theoretical questions can be addressed. The field of graph
drawing provides methods for visualization of graphs which can be seamlessly used for
biological applications.

The visualization of gene expression data in this context is possible via charts on the
nodes in a graph visualization or representing single values via node color and size (see
section 6.2 for a summary of related projects). This can be achieved because in most
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Type Description Sources Formats

Pathways Summary of a biological
process

KEGG [91], MetaCyc [29],
PathwayCommons [30],
WikiPathways [144],
Reactome [130]

KGML,
BioPax

Interactions Network of interacting
biological components

UniProt [184],
STRING [181]

PSI-MI

Reaction Models Detailed model of a sin-
gle process

BioModels [113] SBML,
CellML

Gene Models Model of different tran-
scripts of a gene

Ensembl [55] GFF

Co-expressed Genes Genes with similar ex-
pression profiles

Gene expression studies

Table 6.1.: List of different types of networks occurring in systems biology. For each type
of network, a short description of the content, as well as the most common
sources and file formats are stated.

cases, the nodes represent measurable entities, like transcripts, proteins or metabolites.
The same visualization tools as described in section 3.2 or chapter 5 can be potentially
used for this purpose.

The feasibility of presenting multiple small plots in greater contexts has been demon-
strated by spark lines [190], which show a small profile plot, or bar plot in an often
textual context. Only a single data series is plotted in each instance. Applications are
common in finance (stock rates), health and exercise. The technical foundation of spark
lines is a medium that allows high resolution graphics. In general, a distributed visual-
ization of gene expression data can be seen as an implementation of the small multiples
concept, which is also well established. Commonly, a matrix of small profile plots, or
bar chars (i.e. spark lines) are used to display multiple data series. Each individual plot
displays only one, or very few individual data series using the same scale.

The aim is to allow the user to explore biological data, detect interesting patterns and
find hypotheses. To this end, tools for data visualization in various levels of detail, for
graph layout and for data integration are required. In general, biological networks are a
tool for exploratory data analysis [97]. Statistical and visual summary tools and methods
for extending and summarizing the graph can be applied. This is an application of the
visual analytics concept which involves the usage of interactive visualizations combined
with statistical methods to enhance human perception. Mining more details usually
ensues, often including additional data or models. Integrative bioinformatics aims at
combining data from multiple domains. For this purpose, rich data integration features
are necessary.

A framework for visual analysis and exploration of high dimensional gene expression
data and meta information in the context of networks will be presented here. The frame-
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work will be based on interactive graph visualization and will allow rich visualization of
gene expression data and meta information presented on the nodes, as individual nodes,
and in the form of graphs. Data integration – of expression data and networks – and
clustering and summary tools for a variety of purposes will support this.

A further advantage of using graphs as the basic model of visualization is that this
framework allows a large amount of flexibility. This will be exploited via associating
gene expression values with nodes, which then can be used to induce an embedding of
the graph. For an unconnected graph, this is a special case of a scatterplot. Thus, using
probe information and meta information, as described in section 6.4 allows to produce
high dimensional data visualizations. Furthermore, data from different sources can be
included: Applications will be the enriched visualization of general biological networks,
biochemical pathways, gene models and clustering stability.

6.2. Related Work

With the theoretical foundation of this chapter presented in section 6.1, this section
summarizes previous efforts in this field. Various concepts and tools have been proposed
for the visualization of biological networks and gene expression data. Common applica-
tions are multiple purpose visualization tools, gene expression software analysis tools,
biological graph analysis tools and pathway visualization tools.

In principle, every visualization tool can be used for the visualization of biological
processes. Spreadsheet tools can be used for this purpose. A better choice in most cases
would be the BioConductor [64] suite for R [147], which features a vast choice of analysis
and visualization methods. Analysis tools like sigPathway, and visualization tools like
pathRender or KEGGgraph (all available via bioconductor.org, see figure 6.1a for
an example), are based on the layout capabilities of GraphViz (graphviz.org). They
provide powerful statistical methods, but are not interactive and visualization options
are limited.

Graphical applications in this field, like GGobi [177], Mondrian [185] and others excel
at the visualization of high dimensional data. They feature general visualizations like
box plots, scatterplots, histograms and profile plots. These can be used to explore the
expression profiles of genes that are part of pathways. This however comes at the price
that the network information is lost, and as a consequence can only be inspected using
another application.

Further into the direction of biological applications, gene expression data analysis
tools have all necessary data integration features and provide specific data analysis and
visualization features. Examples are MEV (Multi-Experiment Viewer, part of the TM4
suite [153]) or Chipster (chipster.sourceforge.net) which provide a wide range of
visualization tools. The integration of network data still requires other tools. Partially,
this is addressed by MapMan [186], a Java gene expression data visualization application.
It is focused on plant model organisms, features some general purpose visualization tools
and integrates pathway visualization by means of showing plots that summarize the gene
expression or metabolite concentration of pathway components.
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KRAS

PIK3R4 RALGDS

ARHGEF6 AKT3

ARAF

RALA

RAC1 CHUK BAD CASP9

MAP2K1

RALBP1 PLD1

NFKB1 BCL2L1
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(a) Regulatory pathway displayed using the pathRender package for R.

(b) Regulatory network in Yeast shown in Cytoscape. Data: Cytoscape sample data

Figure 6.1.: Visualization of biological pathways in R and Cytoscape. (a) shows a small
sample signaling pathway controlled by KRAS; (b) shows a sample interac-
tion network from Saccharomyces cerevisiae in Cytoscape.

Biological pathway analysis tools are available in a wide range of functionality. A com-
mercial product is the Ingenuity Pathway Analyzer (ingenuity.com). It is supported by
extensive manually curated annotations and provides custom designed pathways, though
it is limited to selected standard organisms. Cytoscape [168] is a popular free application
for the analysis of biological networks. It allows the analysis of large graphs and provides
many data integration features. Charts can be added to nodes by means of the Google
Chart API (code.google.com/apis/chart/). Numerous plugins are available for anal-
ysis purposes. Data analysis is, however, no core feature of Cytoscape. VisANT [79] is
a similar tool, however with more limited analysis and visualization features. The in-
tegration of experimental data is possible, but visualization tools are limited to profile
plots. Vanted [85] integrates expression data and KEGG pathways and allows to build

93



6. Graph Based Visual Exploration of Gene Expression Data

custom networks from them. Several graph-based analysis tools and layout options are
available, as well as several node visualization tools and SBGN export. BiNA (Biological
Network Analyzer) [98] provides high quality graph visualizations of biological networks.
It stores networks and annotations in a database and can integrate expression data and
visualize it via node properties. ONDEX [104] allows to create and integrate networks
from multiple sources. It focuses on data integration from heterogeneous data sources
and on using such data in a graph layout. GenMapp [154] is a Windows program that
integrates expression data with community-created pathways. Expression data can also
be integrated and visualized as small one-line heat maps. PathVisio [196] is an extended
reimplementation of GenMapp in Java. Both tools allow to create user-defined pathways.

Web based tools for visualization of biological pathways are quite common. ProMe-
Tra [138] visualizes biological pathways and other networks as annotated SVG files. These
files are rendered with a visualization of measured data on annotated SVG objects. All
elements to be displayed need to be prepared before visualization. KaPPA-View [187] is
a tool for the visualization of metabolical networks of plants. It features limited visu-
alization features and allows user-provided pathway maps. PathwayProjector [107] is a
web application based on the Google Maps API (code.google.com/apis/maps/) that
provides an overview of all pathways in the KEGG database. It concentrates on visu-
alizing pathways. No data visualization or analysis is possible. Paintomics [62] is a web
service that allows to map expression and metabolome data to KEGG pathways using a
heat map based visualization. Several other tools use this strategy, see also section 6.5.1
for applications that specifically work with KEGG data.

In Mayday, all important visualization tools for gene expression data are included and
can be used in a coordinated way. Aside from these, an implementation of a KEGG
pathway viewer was available [44], which was used to inspect pathways resulting from
gene set enrichment analysis. The pathway viewer was capable of rendering single ex-
pression values on nodes and featured a information bar that shows KEGG annotations
of selected components.

It must be duly noted that the visualization of gene expression data within biological
networks is nothing revolutionary new. Applications like Vanted and VisANT are to be
credited for providing such features. There is a great range of visualization options in the
pathway visualization tools, but even the applications with most options miss important
visualization features. A complete visualization of gene expression and meta information
is missing in all of the tools mentioned above. Such information, though, is helpful to
make full use of the data. Nodes representing many genes are also rarely addressed (also
only to a limited degree in Vanted). Furthermore, data integration methods are often
lacking, or applications are limited to certain organisms. Concepts like exploratory data
analysis rely on a multitude of visualization tools, multiple views of the same data and
powerful analysis tools. Dynamic manipulation of graphs is also an important feature,
still many of the above applications are restricted to fixed graphs. These features are
generally rarely provided by the web-based applications, and neither are interactivity
and summary functions.
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6.3. The Mayday Graph Framework

This section describes the technical implementation of the graph visualization compo-
nents for Mayday. Incorporating graph visualization tools into Mayday has advantages
as well as requirements that arise from the architecture of Mayday.

Mayday already has a rich visualization framework, which allows to display gene ex-
pression data in many different ways, including those presented in chapter 5. It has
proven to be powerful enough to support applications ranging from simple scatterplots
to genome browsers that can display large eukaryotic chromosomes on single base pair
resolution [180]. Mayday additionally offers a variety of tools for statistical and clustering
analysis of such data, that could aid in graph based visualizations. On the other hand,
a graph framework included in Mayday could be used for other applications.

An external graph framework that is to be used within Mayday must fulfill certain
requirements. As a technical requirement, it must be compatible with the Mayday visu-
alization framework and should be lightweight and implemented in native Java code for
portability. Visualization features of such a framework are less important, as the compat-
ibility with the Mayday visualization framework and the focus on gene expression and
meta data visualization would require vast customization. Furthermore, the licensing
must be compatible with the free and open source licensing used for Mayday.

For the implementation of the graph based visual exploration of gene expression data,
Mayday has therefore been extended by a custom lightweight framework for graphs and
graph visualization. The overall concept of the Mayday graph framework is described
in the rest of this section. Specific extensions for gene expression data visualization are
discussed in the following sections.

6.3.1. Overall Design

The conceptual basis of the Mayday graph framework is a directed graph G = (V,E). To
every node v ∈ V , edge e ∈ E, and G itself, a name n• can be assigned. For the nodes
and edges, additionally roles r• that describe their biological meaning are stored. Edges
can be weighted, we denotes the weight of edge e.

The core class of the Mayday graph framework is the class Graph, which models a
directed graph G as defined above (see figure 6.2 for an overview of the model). A Graph

object stores the graph name nG and keeps an adjacency list L : v 7→ En ⊆ E, with
En being the set of directed edges that start at node v ∈ V . A list L′ : n 7→ E′n ⊆ E
that contains the incoming edges of node v can be used for added performance in some
cases. The use of an adjacency list is motivated by the observation that most biological
networks, especially pathways and reaction models are sparse. The Graph class allows
access and modification of nodes and edges and offers some convenience functions for
searching nodes, calculating the degrees of nodes and removing unconnected nodes.

Both nodes and edges are explicitly modeled, because in biological networks both
nodes and edges can be associated with explicit meaning and data. Nodes are modeled
in the class Node. A node object stores nv and rv. Defaults for commonly used roles are
defined in the utilities class Nodes. For convenience, if associated with a graph, a node
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can calculate degree and neighborhood functions directly. It is possible that a node is a
part of more than one graph, which is useful for dealing with subgraphs. In this case,
functions querying degrees or neighbors may return different results, depending on which
graph is used as the basis. Several subclasses of Node exist: DefaultNode extends the
basic node by the handling of a map of properties. It is further extended by the class
MultiProbeNode that keeps a list of probes, which represent expression data. Edges are
implemented in the class Edge e = (s, t). They keep the source and target node s, t, the
edge role re and have a weight we (we = 1 by default) and an optional name. Edges
can keep a map of attributes that can be used to denote biological or processing details.
Similar to the Nodes class, an Edges class exists that defines constants used by edges.

This design is complemented by a number of graph algorithms that are implemented
in the class Graphs and an algorithms package. Currently available methods encompass,
among others, the identification of connected components, strongly connected compo-
nents, cycles and smallest cycles (via the Floyd-Warshall algorithm [56]). Standard op-
erations like restricting the graph to a set of nodes or identifying root and leaf nodes in
tree-like graphs can also be found in the Graphs class. A set of iterators allow to traverse
the graph in depth-first, breadth-first, and, for acyclic graphs, in topological order.

Graphs can be natively serialized to GraphML [20]. Import of graphs is also possible
from GraphML. Further import and export features are delegated to the applications
and are discussed in the respective sections, especially in section 6.6.4.

The overall implementation of the Mayday graph framework is located in the Mayday
core, and is used by the applications presented in this chapter as well as by other plugins
for Mayday, namely the association mining plugin [165] and the graph based enrichment
analysis plugin [99] for both analytical and visualization purposes. The code base is
lightweight, encompassing about 4100 lines of source code. This generic graph data
structure is the basis of the graph based visualization tools for Mayday.

6.3.2. Graph Visualization in Mayday

The Mayday visualization framework provides the base classes for data visualization in
Mayday. This encompasses data structures, tools for online data transformation, color
gradients and image export as well a common graphical user environment. The graph
visualization tools presented in this chapter are all based on this general framework.

A model/view design was chosen to integrate graph drawing into Mayday. The view
part of this approach is called GraphCanvas, which relies on models that extend the
GraphModel class. GraphCanvas is the base class for graph visualization in Mayday. It
is responsible for drawing the graph, receiving user interaction and communicating with
the Mayday visualization framework. While it is used in some basic applications within
Mayday, for more sophisticated applications it is subclassed and extended to meet special
requirements.

The GraphModel class is the abstract basis of the models serving the GraphCanvas. For
visualization and interactivity, each node n ∈ V is represented by a CanvasComponent,
a lightweight Java Swing component. The components are children of the GraphCanvas

object. They also represent the screen embedding of the graph. This allows to have
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Figure 6.2.: UML Diagram of the core graph classes of Mayday. Key components are
the classes Graph, Node and Edge. The subclasses of Node exist for different
purposes and can keep annotations and expression data. The algorithms
package (colored in blue) implements some of the most important graph
algorithms.

several drawings for the same graph. The CanvasComponent class is also responsible for
handling interactions with the node it represents. The GraphModel keeps track of the
CanvasComponent instances and maps them to nodes.

A model serves as a front end for the graph it represents. All changes to the graph
that arise during visualization, e.g. introduction of edges or additions of new graphs
must be performed through the model, which informs by means of the listener pattern,
all GraphCanvas implementations that represent it. Several GraphModel implementations
exist for different purposes, for example mapping probes to components.

The layout of the graph is taken care of by a CanvasLayouter. The classes which
implement this interface use graph drawing methods like force-based or hierarchical
layout, or näıve methods to arrange the components on the canvas.

Drawing a GraphCanvas to the screen consists of four basic steps. For drawing, the
default Java two-dimensional graphics framework is used. This provides a Graphics2D

object that can be used to paint on. The following steps are involved:

1. Clear the drawing area and draw the edges. This is done by drawing the shape
of each edge. The shape of the edges is determined by an EdgeRouter instance.
Several styles for the stroke of the edge, and the color are available. Finally, arrow
heads, edge names and weights are rendered.

2. Draw the nodes. The nodes are represented by CanvasComponents, which are
drawn by the library method paintChildren(). The way the component is drawn
is controlled by the ComponentRenderer instance responsible for it. See section 6.6.1
for details.
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Figure 6.3.: Overview of the graph visualization classes in Mayday. The subclasses of
GraphCanvas may use their specialized models and can handle rendering in
a custom fashion.

3. Draw the node labels and other external decorating items for the nodes. This is
done independently of drawing the nodes, to allow node labels that are not within
the bounding box of the node.

4. If necessary, draw the selection rectangle, and an ellipse that highlights an impor-
tant node or edge. The former is triggered by a drag selection event on the canvas,
the latter is triggered by a call to a highlighting function.

This process guarantees that nodes are drawn over edges, and that labels and the selec-
tion rectangle can overlay both nodes and edges. The key components of edge rendering
(EdgeRouter) and of node rendering (ComponentRenderer) are discussed in section 6.4.
Many extension points exist in this framework. ComponentRenderers, EdgeRouters and
CanvasLayouters can be added via the Mayday plugin interface. Modular interfaces, as
well as a rich library of supporting functions allow to swiftly extend these and other com-
ponents. Based on this framework, three implementations of the Mayday graph frame-
work are presented in this chapter.

6.4. Graph-based visualization of expression data

In this section, the options available in the Mayday graph framework for the visual-
ization of gene expression data and meta information of various types within graphs
are described. Note that graphs and networks representing biological concepts are also
a form of meta information. Based on this observation, the tools presented herein are
basically tools for displaying high-dimensional data.

This is the basis for presenting rich visualizations of biochemical pathways (the path-
way viewers described in the following section however no not use all of the below
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Figure 6.4.: Data preparation for node rendering. The view model represents the expres-
sion data including meta information. All information can be prepared by a
color provider, which also handles color gradients. Expression data and meta
information can also be rendered directly. Figure simplified for brevity.

options), and rich visualizations of arbitrary graphs, as provided by the Mayday Graph
Viewer, which can use all of the options described below.

These tools intend to make full use of data visualization and graph drawing principles.
The most important tool is the display of primary and meta information on nodes, which
are discussed in the first and second part of this section, respectively. A summary of the
edge rendering and graph layout options, which are also used for adding expression data
and meta information to graphs concludes this section.

6.4.1. Options for visualizing nodes

As systems biology data is diverse, many different types of nodes, which may or may
not be associated with probes are necessary. The different strategies for displaying nodes
and the renderers that implement them are discussed in this section. The renderers are
grouped by the data typically represent.

In general, three types of data can be viewed in Mayday. Experiment (expression)
data, which can undergo a data transformation, meta information, which is represented
by color or text and the top priority probe list, whose color can be viewed (see figure 6.4
for the structure). The renderers that use probe information can use these three types,
the details depend on the individual renderer. The color gradients used for this are
configurable. In general, a single color gradient is used for probe data visualization.

Drawing Nodes

All renderers for drawing general nodes can be seen in figure 6.5. Nodes for which no
experiment data is to be displayed, or that are without other properties that direct the
rendering, are displayed using the default renderer. This renderer displays the number
of probes present at the node, or the label of the node on a rectangular shape.

Some informal representations of the data require distinguishing nodes of different
types. For this purpose, a set of different shapes can be used. If probes are associated
with nodes rendered as a shape, optionally, an overall mean of the probes values can be
displayed via the node color. Otherwise, a single, user defined color can be used.
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Figure 6.5.: Basic node renderers for different purposes. The nodes on the left are drawn
with the default renderer that only draws a brief summary of the node. On
the right side, a set of nodes with probes having different expression levels
are shown with different renderers. The bottom line shows custom colored
shapes.

Single Probes

Often, nodes are associated with a single probe, that can be visualized in different styles
based on general plots for displaying numerical data (see figure 6.6). In the simplest case,
a solid color can be used to display a single value of a profile (i.e. from one sample). The
gradient renderer uses the selected experiment for this purpose. This concept seamlessly
generalizes to visualizing all the probe values, giving rise to a “one-dimensional heat
map”. Instead of encoding values by color, they are encoded by height in the bar plot
renderer. It uses the bar color as an additional visual cue. Pie charts encode data using
angle. While this concept is frowned upon in the visualization community, it has been
notably used in the microarray analysis tool GeneSight (biodiscovery.com). Radial bar
plots, which are also available for display, convey information better than pie charts.

Often, summary values are of interest, for example the fold change fc, as defined in
section 2.5.2. The “Fold Change Renderer” uses a class partition to calculate the fold
change of a gene between two conditions. It visualizes this data by means of an arrow,
either upward or downward-pointing, flanked by the individual class means.

While small plots of data are useful, a minimum of space is required for probe data.
Furthermore, a rectangular shape is preferable for most plots (except pie charts or radial
bar plots). For this reason, the default size of most of these renderings is 80x50 pixels.
This is sufficient for most visualizations, as can be seen in figure 6.6. The ratio of both
sides is also close to the golden ratio. However, radial plots require a larger size to be
effective.

Multiple Probes

Multiple probes at a single node can occur, for example, when working with probe lists
or as a result of aggregating nodes. Basic visualizations of multiple probes can be created
with renderers showing single probes. These renderers display the column mean of the
expression value. To directly view multiple profiles, heat maps and profile plots are
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Figure 6.6.: Single Probe renderers available in the Mayday graph framework. The gradi-
ent renderer shows a solid color gradient, and thus only a single, configurable
value. The fold change renderer summarizes the fold change between two
conditions. The other renderers show all data points of a single expression
profile.

Profile Plot Box Plot

Star Plot

Heat Map

Figure 6.7.: Renderers capable of visualizing multiple probes. The heat map, profile plot
and star plot renderers can also display single genes, while the box plot is
optimal for visualizing the distributions of a large number of values.

available, as well as a star plot (also called radar chart), which extends the concept of
radial bar plots to multiple genes. The renderers for this purpose are shown in figure 6.7.

For most applications, the efficiency of these plots is limited by the number of pro-
files. For large numbers of genes, where the individual profiles are of no concern (or
are inspected in a connected plot), the profiles can be visualized as a box plot, which
concentrates on displaying the overall distribution. However, it is not always desirable
to visualize all data. Therefore, in the Mayday graph framework, it is possible to filter
the probes: Instead of all probes, only a centroid (mean, median) or the median and the
first and third quartile of the data can be displayed. This is transparent to the renderer.

Further Options: Time Series, Tags, Notes

Displaying summaries and either structured or unstructured meta information is the
purpose of the renderers shown in figure 6.8. Time Series Bitmaps [110] are a method
for summarizing and visualizing time series, based on the SAX [120] representation of the
data combined with a chaos game representation of the resulting data. This technique
allows to summarize long and complex time series to shorter sequences of symbols, which
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1 [0006350 	 transcription 	 inferred from electronic annotation, 0006355 	 regulation of transcription, DNA-dependent 	 inferred from electronic annotation, 0006357 	 regulation of transcription from RNA polymerase II promoter 	 inferred from genetic interaction, 0007047 	 cell wall organization 	 inferred from genetic interaction]
2 [0006260 	 DNA replication 	 inferred from physical interaction, 0043457 	 regulation of cellular respiration 	 inferred from genetic interaction]
3 [0000122 	 negative regulation of transcription from RNA polymerase II promoter 	 inferred from mutant phenotype, 0000821 	 regulation of arginine metabolic process 	 inferred from mutant phenotype, 0006350 	 transcription 	 inferred from electronic annotation, 0006355 	 regulation of transcription, DNA-dependent 	 inferred from electronic annotation, 0006525 	 arginine metabolic process 	 inferred from electronic annotation, 0010526 	 negative regulation of transposition, RNA-mediated 	 inferred from mutant phenotype, 0032958 	 inositol phosphate biosynthetic process 	 inferred from direct assay, 0042493 	 response to drug 	 inferred from mutant phenotype, 0045944 	 positive regulation of transcription from RNA polymerase II promoter 	 inferred from mutant phenotype, 0046854 	 phosphoinositide phosphorylation 	 inferred from direct assay, 0050821 	 protein stabilization 	 inferred from mutant phenotype]
4 [0000045 	 autophagic vacuole formation 	 inferred from mutant phenotype, 0006468 	 protein amino acid phosphorylation 	 inferred from electronic annotation, 0006468 	 protein amino acid phosphorylation 	 inferred from mutant phenotype, 0006810 	 transport 	 inferred from electronic annotation, 0006914 	 autophagy 	 inferred from electronic annotation, 0015031 	 protein transport 	 inferred from electronic annotation, 0034727 	 piecemeal microautophagy of nucleus 	 inferred from mutant phenotype]

NoteNoteNote

Top AnnotationsTime Series Bitmap

Figure 6.8.: Renderers for additional information. The time series bitmap summarizes
the profile of a time series experiment. The Tag list renderer shows the top
annotations associated with genes. The nodes at the bottom show free-text
annotations that can be displayed in different styles.

are represented as matrices drawn as squared heat maps. Each field in a time series
bitmap represents a pattern in the time series, and the color indicates the frequency
(bright green=0, bright red=1). The resolution of the heat map indicates the length of
the patterns: a heat map with n rows represents patterns of length log2(n). This feature
allows to compare and visualize profiles with specific temporal patterns.

The meta information associated with a set of probes may of primary interest. The
tag list renderer summarizes meta information associated with the probes of a node, and
displays them as an ordered list, with the most frequent term on the top. This allows
to include parts of the tag cloud concept (see 5.3) into graph visualizations, however it
does not summarize the overall tags, but summarizes the tags present at one node.

Nodes with a textual note (a short description of the graph, of adjacent nodes, etc.) are
displayed by the Note Renderer. This renderer draws plain text on the component that
represents the node. Nodes can be configured to have different text color, background
color and fonts. This is achieved by editing the node properties.

SBGN Process Diagram

Glyphs defined by the SBGN process diagram standard (see section 3.4.2) are rendered
using the SBGNGlyphRenderer class. This class inspects the role of a node and renders the
corresponding glyph as defined by the standard. This is applied for all entity pool nodes,
and process nodes. Non-SBGN nodes are drawn by this renderer are as blue circles. The
size of the nodes is chosen to be proportional to the other nodes. See section 6.6.2 for
the display options for compartments and submaps.

6.4.2. Adding Meta Information

Displaying meta information together with primary experimental data is a prime con-
cern of this work. For this purpose, the default rendering tools described above can be
used, however, it is often necessary to view meta information as well as the primary
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Figure 6.9.: Concept of renderer decorators. The left example shows a node associated
with two probes and decorators showing experiment ticks, a meta informa-
tion (MIO) value and class labels. The right example shows the same probes,
without the meta information; but instead using transparency to display a
relevance meta information.

data. This is achieved here using a concept based on the decorator design pattern [61]:
Each of the renderers described above can be extended by one or more renderer dec-
orators. These decorators have the same interface as the primary renderers, and keep
a pointer to the next renderer or decorator. The painting is done recursively, with the
first decorator drawing the outermost layer. Each decorator paints its part of the im-
age, crops the drawing area, and recurses to the next decorator or finally the primary
renderer, as illustrated in figure 6.9. Renderer decorators can convey different messages
(see figure 6.10): They can add indicators to plots (ticks for experiments, or highlights
for the currently selected experiment), show meta information and properties of nodes
and probes.

Decorators for Displaying Meta Information

The meta information decorators available can display probes-based meta information
as colored bars, or numerical values printed below the primary plot. Multiple probes
are handled in the former case by displaying a horizontal array of colored boxes and in
the latter case by averaging. The color bar approach is also chosen for the indication of
class labels and the dataset membership of the node’s probes. Textual annotations can
be added that show rendering information, or probe and node properties.

For relevance information (e.g. statistical values), the nodes can be shaded using a
decorator according to a meta information group that contains their variance. One pos-
sible strategy is overlaying nodes of low relevance with the opaque background color of
the graph and highly relevant nodes with a nearly transparent color.

Auxiliary Items

Additional information, which can be added ad hoc or by filtering (see section 6.6.3)
are displayed using auxiliary items. Auxiliary items can be added to any node, and
a variety of shapes shown in figure 6.11 is available. These symbols add small visual
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Figure 6.10.: Decorators add additional information to nodes. This figure shows dec-
orators for adding tick marks to both axes of the renderings, as well as
information about the dataset, the node and sample classes. Meta infor-
mation objects can be displayed as numbers, colors, or used for shading
the node.

MultimerMacromolecule

several markersImportantQuestionable Gene

n:3P@16!

!

?

Figure 6.11.: Auxiliary items add small visual cues to nodes, like for expressing uncer-
tainty, importance or generic signals. For SBGN state flags or units of
information can be added to a node.

cues that express uncertainty (“?”), indicate important genes (“!”) or add information
encoded in four different shapes with configurable colors. State variables, which indicate
e.g. modifications in macromolecules, and units of information, like the cardinality of
multimers, which annotate SBGN glyphs are also rendered in this way.

6.4.3. Visualizing edges

The style in which an edge is drawn conveys the nature of the connection between
adjacent nodes. For this purpose, the edge rendering can be configured in the Mayday
graph framework according to roles of the edges. Edges can be characterized by three
properties: The stroke used for drawing the edge, the arrow heads on both ends of
the edge, and the shape of the edge. Examples of possible configurations are shown in
figure 6.12.

The stroke and arrowheads usually define the type of the edge. Strokes can carry two
messages. The type of the stroke (solid, dotted, dashed, see figure 6.12) indicates the
meaning of the edge, while its width indicates the weight of the edge. The weight of an
edge can also be indicated using the amplitude of a zig-zag stroke. The stroke can also
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Figure 6.12.: Options for rendering edges. The left graph shows several options for draw-
ing edges as quadratic and cubic Bezier curves, with different strokes. The
center graph shows all options available for drawing arrow heads. The right
graphs show two ways of representing edge weight: line width and zig-zag
amplitude.

be used to indicate the direction of an edge, for example the tapered edge (bottommost
edge of the left panel in figure 6.12), which has been found to convey this information
very well [77]. Many different arrowheads indicate different interpretations for an edge,
for example in SBGN, in which connecting arcs have defined arrow heads, while using a
uniform stroke.

The shape of an edge is determined by a EdgeRouter instance. EdgeRouters create
a path, either a straight line, or a quadratic or cubic Bezier curve. Figure 6.12 shows
several examples for all three cases. The supporting points of the Bezier curves drawn are
determined only by the relative position of the nodes. The rules for placing the support
point(s) are encoded in the EdgeRouter. Bezier curves can be used to heuristically bundle
edges.

6.4.4. Graph Layout

Much research has been done on the problem of graph drawing. Many methods have been
proposed, an overview of them can be found in section 3.3.2. Both standard methods
as well as näıve methods are available in the Mayday graph framework, the latter often
using properties of the probes assigned to edges.

Common methods for graph layout are available in basic implementations, including a
force based layout using the Fruchterman-Reingold method and the Sugiyama hierarchi-
cal graph drawing framework. From the JUNG (jung.sourceforge.net) graph package
for Java, several methods including the Kamada-Kawaii algorithm, a balloon layout, a
spring-based approach and a SOM-based layout are integrated. Interfaces for methods
from the GraphViz and JGraph package are also available
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A common task is the layout of graphs with E = ∅. In this case, common graph
layout algorithms lead to unsatisfactory results. On the other hand, näıve methods often
lead to good results. Aligning all nodes on a rectangular grid allows to employ sorting
in order to arrange the nodes. Sorting criteria can be the properties of the probes or
nodes. In a simple circular layout, in which all nodes are placed on the circumference of
a circle, the nodes are automatically ordered by their in-degree or by probe properties.
Linear graphs can be drawn either as rows, columns or as snakes. Some basic biological
processes denoted in SBGN can be drawn based on simple rules, as they are linear or
have specific topologies. These layouts are used for some data integration features (see
section 6.6.4) as an initial layout.

Krzywinski et al. recently suggested for complex networks the so-called “Hive Plots”
(mkweb.bcgsc.ca/linnet/), which use internal and external properties of nodes to build
so-called “axes” of nodes. Axes are then are sorted and drawn, omitting the node shapes.
Only edges between nodes from different axes are displayed. This method is extended
here to building groups from nodes using different criteria for the creation and sorting
of the groups and the sorting of the nodes within the groups. For this purpose, mostly
the properties of the nodes’ probes are used. Groups are created based on probe list or
dataset membership, meta information and expression values. The role of the node and
the degree (sources, sinks, inner nodes, unconnected) as in [210] can also be used. Sorting
the nodes within the groups is possible by various criteria related to nodes and probes
(for sorting of probes see section 5.3.2). The groups can be ordered by either their name
or their number of nodes and are laid out using four different methods. Krzywinski et
al. suggested the axis layout. Alternatives are as laying out groups circles, which can be
arranged either on a grid, or as concentric circles, or in the form of rectangular groups, or
as heuristically placed components laid out with the Fruchterman-Reingold algorithm.

The expression values of probes associated with nodes can be used to induce an em-
bedding. This is done by calculating a principal component analysis of the expression
values of the probes, using the the centroid if several probes are present at one node.
Nodes are placed on the position of their probes, reduced to the first two principal com-
ponents and scaled to the screen dimensions. The resulting embeddings often reflect the
structure of partitioning clusterings.

As finding the layout with minimal edge crossings in a bipartite graph is NP-complete,
heuristics are commonly used to arrange the nodes in each partition [49]. Here, for this
purpose, the node degree or the number of probes can be used. The ordering can also
be specified during the creation of a graph and therefore follow arbitrary criteria. Some
of the data import features described in section 6.6.4 employ this strategy.

6.5. Pathway Viewers

Pathway visualization is a major tool in the analysis of gene expression data. Pathways
condense much of the available biological knowledge of a process. Therefore, pathway
viewers are important tools for understanding data, hypothesis generation and teaching.
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Node degree: low medium high

Figure 6.13.: Group based layout of the neural network of C. elegans, taken from [202].
Groups are input, inner, and output nodes. The nodes are colored by the
overall degree, using an inverse heat colors gradient.

Figure 6.14.: Group based layout of transcription factors and controlled genes in Sac-
charomyces cerevisiae. Transcription factors (red) control clusters of genes
(blue). Each connected component of the graph is laid out as a circle, or-
dered by the node degree. Data from [103]

107



6. Graph Based Visual Exploration of Gene Expression Data

This section describes two implementation of the options for the visualization of bio-
logical pathways described above, focusing on combining biological pathways with mea-
sured data and meta information. As the related work section indicated, there are limited
options for visualizing biological pathways enriched with additional data. This context
however is important to make sense of the data as well as of the pathway. For example, in
an otherwise highly expressed pathway, a single key gene is down-regulated under some
condition, causing the pathway’s final product not to be produced. In order to detect
this, neither single gene expression profiles, nor all the profiles related to a pathway are
sufficient. The information necessary to explain the phenotype lies in both the pathway
and the profile. Their joint visualization has the highest probability of triggering the
discovery of the key gene.

Pathways are available in different styles and formats. In this section, tools for visu-
alizing pathways from KEGG and pathways in the BioPax format, a standard format
for biological pathways, are presented. This distinction is necessary, because these path-
way sources are highly different. The tools presented in [180] and the following sections
are optimized to the different properties of their data bases. While they serve a similar
purpose, the resulting plots look different and the usage of both tools is different.

6.5.1. The KEGG Pathway Viewer

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a major source of pathways,
which covers all aspects of a biological process. The KEGG database covers a wide
range of topics, including genomic annotations, enzyme annotations (called “ko”, KEGG
Ontology), metabolites (“compounds”) and reactions. This information is stored in user
and machine readable files.

Using this information is common in bioinformatics and pathway visualization. Tools
like KGML-ED [102], which concentrates on the manipulation of KGML files, Ca-
leydo [174], which uses a 3D-box view to visualize several pathways and other plots
in order to compare different datasets, and Dragon View which uses overlay graphics
for displaying expression of enzymes [19] exist. Often such applications lack complete
visualization features, or are restricted to a single organism. Furthermore, some tools do
not exploit the rich database provided by KEGG.

In the application presented here, KGML files (see section 3.4.1) are parsed, repre-
sented as graphs and laid out based on the given coordinates. The resulting layout can
be manipulated by the user and allows for larger nodes that represent enzymes and
metabolites. The fact that KEGG provides highly organism specific pathways is used in
the implementation presented herein: only the specific pathway components are shown.

Implementation

The KEGG pathway viewer for Mayday is implemented as a plugin for the Mayday
visualization framework, and a subclass of the GraphCanvas. The implementation has
all features of a Mayday plot, including communicated selections, configurable color
gradients and online data transformations.
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The KEGG pathway viewer requires as input a directory which contains KGML path-
ways and data files (ko, compounds). Furthermore, a taxon identifier (“hsa” for human,
“mmu” for mouse, etc) is required to select organism-specific pathways. The download
of pathways and database files is possible, but time consuming.

From this input, a configurable default pathway is imported from a KGML file. For
easier mapping of probes to enzymes or metabolites, the ko and compounds files are
parsed and organism-specific identifiers are extracted. Pathway components for which a
mapping could be provided are annotated with probes. These probes are then displayed
with one of the renderers listed above, allowing to display meta information as well. The
pathway components are laid out as defined in the KGML file, with the components size
adjusted to allow for rendering of probe values.

In the KEGG pathway viewer, nodes can be moved and resized freely. The nodes
representing pathway links are interactive: a double click on such a link opens the target
pathway of the link in the current window. This allows to interactively browse the
landscape of pathways. As an alternative way of switching pathways, a menu listing
all available pathways can be used.

Rendering options available allow to configure the rendering style of reactions and
relation edges. In order to reduce the complexity of a pathway, the graph can be filtered
for connectivity in different settings: either all nodes, the backbone nodes of the pathway
or only key hubs can be displayed.

The nodes are marked according to their type: “E” denotes enzymes; a flask denotes
a chemical compound; a link symbol denotes a pathway link. Tool tips are available that
give more information about the nodes. A look up function allows to directly search for
a node in KEGG, the result is shown in a web browser.

Examples

The KEGG pathway viewer for Mayday can be applied for two general purposes: gain-
ing an overview of the entire pathway, and concentrating on the details of a pathway.
Figure 6.15 gives an overview of the phenylalanine, tyrosine and tryptophan biosyn-
thesis pathway of Streptomyces coelicolor as generated by the KEGG pathway viewer.
The precursors of these amino acids are produced in several carbon metabolism related
pathways (penthose phosphate pathway, glycolysis). The products and intermediates are
themselves part of other processes, which highlights the importance of this pathway and
gives a good starting point for exploring the many pathways referenced from it. Zooming
in allows to study the expression levels for this pathway. For displaying gene expression
data, the time series data from [140] was used.

Figure 6.16 shows the details of the inositol phosphate metabolism. The figure shows
a switch of means of inositol production after the depletion of phosphate in the medium.
The expression level of the inositol-3-phosphate synthase is decreased, while the phos-
pholipase C expression is increased. Inositol is related to many metabolic processes,
including streptomycin biosynthesis and other secondary metabolism.
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Figure 6.15.: Overview of the phenylalanine, tyrosine and tryptophan biosynthesis path-
way for S. coelicolor from KEGG. The pathway is shown for S. coelicolor .
Nodes are marked according to their type: “E” denotes enzymes; a flask
denotes a chemical compound; a link symbol denotes a pathway link. The
layout as defined by KEGG. Expression data from [140]
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Figure 6.16.: Detail of the inositol phosphate metabolism of S. coelicolor . The gene ex-
pression is shown as heat maps rendered at each node. The data is taken
from a phosphate limitation study in [140]. Nodes are marked according
to their type: E denotes enzymes; a flask denotes a chemical compound; a
link symbol denotes a pathway link.

6.5.2. The SBGN Pathway Viewer

The visualization of pathways in Mayday is not restricted to KEGG pathways. Many
databases provide pathways and other data in the BioPax format, which is modelled
based on controlled vocabularies. Complement to BioPax is SBGN – the systems biology
graphical notation (see section 3.4.2 which defines a set of rules for drawing pathways
in an unambiguous way. The combination of both standards seems useful for conveying
biological meaning.

Previously, this concept was mainly used for creating and exploring pathways, for
example using CellDesigner [59], Athena [31], Cytoscape, and many other tools, a list of
which can be found at sbgn.org. Biochemical modeling software packages have routinely
adopted SBGN for their visualizations. Few further approaches exist for integration of
gene expression data into such visualization. Furthermore, neither SBGN nor BioPax
define rules for drawing expression values or metabolite abundances on pathways, which
gives freedom to propose new methods.

To fill this gap, the SBGN pathway viewer [180] for Mayday has been developed. It
complements the KEGG pathway viewer and allows to simultaneously view pathways in
both formats.

Implementation

The implementation of the SBGN pathway viewer for Mayday is based on the Mayday
visualization framework with all its advantages. As an input, it accepts a BioPax level 2
(.owl) file that contains pathway annotations. This file is parsed using a lightweight
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Figure 6.17.: SBGN pathway viewer showing the phenylalanine biosynthesis in P. aerug-
inosa. The figure shows the pathway diagram in SBGN, along with the
control panel. The control panel shows a list of small chemicals, one of
which (phenylpyruvate) is selected in both views.

BioPax parser which is converted into a graph. The components of the BioPax files are
converted into nodes and edges with roles according to the SBGN standard. Annotations
stored in the BioPax files are transferred to the nodes.

The layout of the graph is based on the recursive algorithm of Karp et al. [93]. In a first
step, the backbone of processes and metabolites is determined, which is then recursively
laid out as follows: Primitive graphs (linear, circular, branched) are drawn according
to their type. For complex pathways, strongly connected components are identified and
treated separately and reduced to a single node. The overall layout of the reduced graph
is then performed recursively on the reduced graph. If a graph could not be further
dissected without belonging to a primitive type, it is drawn using a force-based method.
Based on this layout of the pathway backbone, side components are then placed heuris-
tically around the reaction nodes. Alternatively, most of the layout methods described
in section 6.4.4 can be applied.

By default, the pathway is drawn as a SBGN diagram. Nodes are freely movable
and resizeable. Figure 6.17 shows the chorismate degradation pathway for Pseudomonas
aeruginosa. A control panel allows to inspect the lists of the chemicals, proteins and
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Figure 6.18.: SBGN pathway viewer showing the histidine degradation in P. aerugi-
nosa. The gene expression levels for the enzymes are shown using a 1D-
heatmap. The remaining components are drawn as SBGN glyphs. Principal
input and output substrates are drawn enlarged. The growth conditions are
color-encoded: black. no oxygen; shades of red, 0.4% (darkest), 2%, 20%
(lightest). Data from [3]

reactions, and shows an overview graph of the pathway. The lists and graph are interac-
tive and can be used for navigation in the pathway. In order to concentrate on the key
aspects of the pathway, users can deactivate all side components (e.g. enzymes). To view
expression data, the SBGN view can be deactivated. This allows all renderers described
above to be used, including decorators for adding meta information. Often, reactions are
catalysed by multiple enzymes. To give a summary of the reactions activity (estimated
via the expression values of the enzymes), a mean profile of all enzymes can be shown
at the reaction.

Application

The SBGN pathway viewer has been used to investigate metabolic effects of anaerobic
and aerobic growth of Pseudomonas aeruginosa [3]. A first step would be exploring a
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pathway. Figure 6.17 presents the tools provided for this. The pathway can be viewed on
the conceptual level (in SBGN process description style). The controls window assists in
finding relevant elements and shows the overview of reactions. The pathway displayed is
the chorismate metabolism of Pseudomonas aeruginosa, as found in MetaCyc [29].

Inspecting the details of a pathway, including enzyme expression levels, is the next
step. As an example, 6.18 shows the histidine degradation pathway in P. aeruginosa.
The visualization of class labels along with expression values allows to swiftly see that
the expression of all enzymes is lowest in the anaerobic samples, and highest in the mi-
croaerobic (0.4% oxygen) conditions. Further investigations could include finding simi-
lar patterns and attempting to explain this pattern. Possible causes can be low overall
metabolic activity in anaerobic conditions, high demand for glutamate or formate in
anaerobic conditions and high demand for histidine in aerobic conditions.

6.6. MGV - The Mayday Graph Viewer

The pathway viewers are a first implementation of the principles described at the begin-
ning of this chapter. However, a more generic application to visualize gene expression
data in the context of biological networks is provided in this section. Here, MGV – the
Mayday Graph Viewer – is presented, a generic graph viewer for Mayday [179]. It aims
at integrating a wide range of biological networks, both induced by gene expression data
in Mayday and from external sources. The full range of expression data and meta infor-
mation visualization tools described above can be used. To provide an implementation
of the concept described at the beginning of this chapter, extensible tools for editing,
expanding and condensing graphs are provided, in addition to data integration methods
for a wide range of biological models. Figure 6.19 illustrates the scope of MGV.

Figure 6.19.: Scope of MGV. MGV is a tool for the higher level analysis of data and
integrates many high-level data visualization features.

6.6.1. Implementation

The Mayday Graph Viewer is implemented as a plugin for the Mayday visualization
framework. It allows to visualize generic graphs, with the nodes annotated with gene
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expression data and meta information. MGV can be used to create, view and edit graphs
and can perform filtering and analysis operations on them.

MGV is extensible by plugins which implement methods for data integration, for
extending, structuring and summarizing the graph, editing its layout, and other actions
on the graph. All plugins extend the class AbstractGraphViewerPlugin and have access
to the GraphModel as well as to the graph canvas. Several categories of plugins exist for
different purposes. Depending on the plugins, they can be run from the main menu of
MGV or be invoked by a key short cut. For graph layout and arranging nodes, the tools
described in 6.4.4 or plugins for arranging and sorting nodes by various criteria can be
used.

MGV is designed to have a rich user interface for easy handling of graphs. Drag and
drop of probe lists from the Mayday main window into MGV is supported, as well as
copying and pasteing of nodes, also between different MGV instances. For swift working
with graphs, selected features can be invoked using key shortcuts (see appendix A).
MGV provides three overview functions for the graph. The node inspector gives a list
of the nodes and edges in the graph. The structure inspector shows a hierarchically
structured view of strongly connected components, connected components and nodes.
The edge weight histogram displays the overall distribution of the weight of all edges.

For the easy integration of external information in MGV, a number of options are
available to look up objects in external databases. If a node is annotated with a database
entry, it can be automatically looked up via the “Look Up” function.

MGV supports graphs that represent probes from multiple datasets (see section 6.7 for
details of the cross-dataset visualization and analysis features). Visualization of probes
from different datasets is possible without preparations. Many plugins are designed to
handle heterogeneous data, but some are limited to probes from single datasets.

For displaying time series data, MGV can use animation. Two plugins, called “Ex-
pression Movies”, are available for this purpose. Expression movies are visualizations of
probe data in a serial way. They display one experiment after the other for a certain
amount of time, either adjusting the node rendering or the node size for each experi-
ment in the dataset. The former case is best used with a solid color gradient for probe
data visualization, or with a highlighting decorator. The latter case scales the nodes in
a defined range according to their value. The frame rate of the movie can be adjusted.
Manually controlling the movie is also possible.

Rendering of Nodes and Edges

MGV implements all features for data visualization described in section 6.4. A node
is rendered using a primary component renderer, which dictates the shape of the node
and is responsible for data visualization. Additionally, decorators can be used that add
additional information.

The assignment of rendering strategies to nodes requires multiple steps. MGV keeps
track of a list of roles to which a certain rendering strategy is assigned. Such a rendering
rule is defined as a the combination of a target role, a primary renderer and an ordered list
of decorators (see figure 6.9). Rendering rules can also be assigned to nodes individually.
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When a node is to be rendered, the correct renderer is chosen by first checking whether
there is a customized rendering rule for this node. If not, the role of the node is used to
render the node. If no such role is defined, a default renderer is employed to paint the
node. If a decorator should be used at all nodes, it can be added to the list of overall
decorators. They are applied to all nodes, in addition to their normal rendering. strategy.
If a node is too small to be rendered in a legible way, the node is drawn as an ellipse,
regardless of the rendering rule. A number of roles, especially for SBGN glyphs and
Mayday objects are predefined, and custom roles can be added to adapt to new data.

A short cut for switching between different rendering strategies can be used. By press-
ing the space bar, the next of a series of predefined, but customizable rendering strategies
(different plots and SBGN only) can be activated.

The same role based strategy with customization and a fall-back solution is used for
edges. A set of predefined rendering rules exist that adapt to common use cases of MGV,
including SBGN arcs. Overall settings include the rendering of the edge names and of
the edge weight as labels for the edges.

Edges in biological networks are often weighted, however the order of magnitude of
the weights can differ greatly. Often, the inverse (for distance measures) or just the order
of magnitude may be of interest. MGV can, for this purpose, transform (invert, log2,
log10) or scale edge weights. Furthermore, a filter can be applied to remove edges that
have a weight below a threshold.

6.6.2. Node Groups

It is often necessary to group a number of nodes. This can be done in order to indicate
that these nodes share a certain property or result from a clustering method. It can also
be used to organize the nodes. MGV allows all nodes to be grouped together. This can
either be done manually, by selecting nodes and grouping them via the “Create Group”
plugin, or as the result of a plugin that creates groups of nodes. Node groups in MGV
have two properties, a name and a color.

Moving a group automatically moves all nodes that are within the group. This is useful
for swiftly organizing nodes in the graph. There are different options for displaying the
size and the content of a node group. In the default view, a node group shows all nodes
it encompasses, their layout is defined by the current layout of the graph. Nodes within
a group can be freely moved, however the bounding shape of the box will by adjusted
to fit the nodes within. The default bounding shape is rectangular. Alternative shapes
are the convex hull of the nodes, or an ellipse. For SBGN submaps and compartments,
standard-conforming shapes can be chosen.

The content of the group can be displayed in several ways (see figure 6.20 for an
example). Apart from the actual nodes, a brief summary of the nodes and probes present
can be displayed. For functional analyses, the group can display meta information which
is associated with the probes, summarized by their frequency. It is displayed in the form
of a tag list. Alternatively, a tag list can be created from the source datasets and probe
list. A sortable list of the probe names, origin, mean, and standard deviation, can be
inspected. A heat map view shows an overview of the expression values of all probes.
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Figure 6.20.: Grouped nodes in MGV. All groups show genes related to glucose repression
in Saccharomyces cerevisiae [129] . The upper left shows a group display-
ing the nodes, the upper right shows a heat map of the probes, and the
lower group displays a tag list showing Gene Ontology cellular component
annotations.

Both the heat map and the probe table send their selections to the graph viewer and
other visualization plots.

Groups of nodes can be created via grouping of nodes according to their properties,
by probe list, by source dataset, based on common meta information or via a threshold
binning method on the expression profiles. Creating groups via clustering algorithms is
also possible. For this purpose, k-means clustering or quality based clustering can be
used. Using modularity clustering [139], the graph can be clustered based on the nodes’
connectivity. For this purpose, MGV makes use of implementation by Noack [141]. To
display groups that are the result of modularity clustering, the convex hull style is useful.

The examples in figure 6.20 show how node groups allow to structure nodes, and how
they introduce new views of the nodes enclosed by them. The number of nodes per group
is not limited, and the minimize and restore function allow to handle large numbers of
nodes. Thus, the tag lists and heat maps shown in the figure can represent a large number
of nodes and help to reduce clutter in this way.
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6.6.3. Working with Graphs in MGV

Graphs can be created in MGV from probes, probe lists and other components in May-
day. New elements can be added in different ways, as described below. The basis for
graph creation in MGV are probes in user selected probe lists. These probes are struc-
tured by a component called GraphProvider, which transforms them to a graph. Three
GraphProviders are available. The default option creates a node for every input probe.
The selected probes can also be used to create a compressed graph, that joins all the
probes of an input probe list into one node. A third option uses the hierarchy of the
GraphProviers to induce edges between the probelist nodes. Note that the first two
GraphProviders create graphs without edges. From this initial input, the graph can be
extended by adding nodes and edges, filtered and condensed.

Extending the Graph

New nodes can be introduced into MGV by different means. Generic nodes, probe nodes
and nodes with SBGN roles can simply be added at the mouse cursor position by invoking
a key stroke (see appendix A). Via drag and drop, probe lists from the Mayday probe
list manager can be imported. They can either be added as a single node that contains
all probes, as an individual node for each probe, and a node that carries either a Mayday
profile plot, heat map or box plot.

In addition to these manual import options, tools exist that allow to extend the graph
in an automated way. These tools are implemented as plugins in the “Extend” category.
The plugins in this category allow to add nodes created from Mayday objects, including
probes, probe lists and meta information. Nodes that summarize the probes present at all
adjacent nodes can also be added. To introduce nodes with similar expression profiles to a
selected probe node, a plugin can be used that supports more than 10 distance measures.
A similarity cutoff and a maximal number of results allow to restrict the number of added
probes. Given genomic coordinates for the probes in the current dataset, the “Genomic
Neighborhood” plugin allows to add probes in the genomic neighborhood of the probes
of a node. Parameters are maximal distance, strand and relative orientation with respect
to the query probe.

Edges are introduced into the graph using a mouse gesture (Ctrl+drag from the source
to the target node). Furthermore, edges can be added automatically between nodes that
share probes, or have probes annotated with the same meta information. Edges can also
be added based on similarity of the probes in the two adjacent nodes, with respect to
some distance measure. Existing edges can be annotated and weighted based on the
same principle.

External data sources often contain important extensions to the information present
locally in Mayday. For this reason, three external data sources can be queried to extend
the current graph in MGV with different information. These plugins are usually used on
one query node associated with at least one probe, from which a query for the webservice
API of a web site is created.
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Figure 6.21.: Abstracts and interaction partners of SCO5088. Abstracts were retrieved
from PubMed, and interaction partners are fetched from STRING. A high
correlation of interaction partners genomically located near SCO5088 to
this gene can be observed. The numbers below the heat map denote the
regularized variance of the probe.

The STRING database [181] contains protein/protein interaction data. This database
can be queried by the “String Interaction Partners” plugin. The plugin contacts the
database via the String Web API and parses the results that are returned in the PSI-
MI-Tab format. Resulting interactor names are mapped to probes, which are added to
the graph as new nodes and connected to the query node (see figure 6.21).

Information about genes and their effect is often stored in unstructured form in journal
publications. In the biomedical community, PubMed is the default search engine for such
information. The “Abstracts” plugin queries PubMed, with an optional preprocessing
step that finds relevant PubMed ids in STRING. Abstracts matching the query are
added to the graph as notes (see figure 6.21). These nodes are annotated with PubMed
ids and can be opened in a web browser using the “Look up” function.

The UniProt database [184] contains a vast amount of annotations for numerous pro-
teins from all organisms. This data can be queried using the “UniProt” plugin, which
accesses UniProt and retrieves an XML file containing the annotations. Currently, al-
ternative names, structural similarities, interaction partners and literature abstracts like
generated with the above plugin are added to the graph.

Joining Nodes

Visually analyzing a graph might require to collapse a number of nodes to a single node.
For this purpose, the plugins in the “Shrink” category allow to systematically reduce the
number of nodes within a graph. Relevant options allow to merge nodes with identical
name, nodes that adjacent, or that have probes with similar expression profiles. Merging
all selected nodes is also possible. To generate a coarser view of the data, it is possible
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Figure 6.22.: Methods of joining nodes in MGV. The original nodes are grouped on the
left. The center shows a single node carrying all probes. On the right, a
Mayday profile plot displays the same data.

to replace selected nodes by the probe lists they are contained in. The resulting nodes
represent the entire respective probe lists. Edges starting or ending at removed nodes
are redirected to the resulting joint node.

To remove nodes while keeping the probes that are associated with them in the plot,
they can be replaced by a joint node with all probes, or by a Mayday visualization plot
(see figure 6.22 for an example). This allows to include a large plot to the visualization
that gives an overview of a number of nodes.

Filtering Nodes

Filtering nodes allows to remove unwanted content from the graph. For this purpose,
several filtering plugins are available.

In general filters are formulated as following: An operation is selected, which is applied
to all nodes that do not match the filtering criteria. It is possible to invert this condition:
then, nodes that do match the criteria are processed as selected.

Filtering can be done on Node criteria (name, role, degree) and probe properties (the
dynamic probe list interface is used for this purpose, cf. [12]). In addition, the dataset
origin or the number of probes present at a node are criteria for filtering. Nodes that
are processed when not matching a filter are subject either to be set to minimal size, be
hidden, deleted, merged to a single node, grouped together, or they can be assigned a
selectable role or auxiliary item.

6.6.4. Data Integration

Loading and saving Graphs

MGV can save and restore its graphs in a native format based on GraphML [20], which
preserves all rendering settings, groupings and viewer settings. For general graphs from
other applications, support for several graph data formats exists. Graphs in GraphML,
DOT (GraphViz), GML and XGMML formats can be imported. These formats support
graphs for all applications. Currently, the topology of the graph, and the names and
properties of nodes and edges are imported. Not all properties are used to direct the
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display of the nodes. For export options, the graph can be exported into GML, GraphML
and GraphViz DOT formats.

Integrating Biological Data

Biological graphs are in general not limited to the general purpose formats mentioned
above. Several formats for biological models exist, including KGML and BioPax [8],
which is used by multiple providers of biological pathways. Biochemical models are de-
noted in SBML [81] or CellML [39], while interactions are often exchanged in the PSI-MI
format [100].

Creating a graph based on these formats is not generally straightforward. The domain-
specific models employed for all of the above file formats do not directly give rise to a
useful data structure. Furthermore, different graphs can be extracted from a file format.
This is especially true for data in BioPax files.

The interface that MGV used to address this problem is the GraphModelProvider.
Components that implement this interface provide the details for an auto generated
dialog that directs the user through the import of the data. This dialog has five steps:

1. Method of data import. These options are described in this section.

2. Import Settings. This allows to select the input files and set parsing options.

3. Select probe lists. In this step, the expression data to be viewed with the graph is
selected from one or more datasets.

4. Configure Probe Lists. This allows to configure how probes from different datasets
map to each other or to identifiers in the input files.

5. Additional configuration depending on the input format. This allows for example
to select individual pathways from BioPax files.

The selected probe lists are mapped by the format-specific graph creation method to
the probes, using the mappings selected in step 4. GraphModelProviders also define a
layout method, which is used by default to lay out the imported graph. This can either
be a standard method, or a data specific layout.

Data Mining of BioPax Files

BioPax files contain large amounts of data which are by no means limited to pathway
definitions. This information can be used to characterize the pathway and reaction land-
scape of an organism. It can also give an overview of the overall metabolic activity, when
combined with expression data. BioPax is a format based on RDF, the Resource De-
scription Framework (standardized by the W3C). An observation about this framework
is that each entry can be seen as a triple of format (subject, predicate, object). An ex-
ample for such triples is shown in table 6.2. This concept is used by triple stores, which
are optimized for storing and querying RDF data. A simplified version of this principle
here is used for parsing and mining the BioPax files. A component called BioPaxMiner
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smallMolecule618210 OBJECT-TYPE smallMolecule

smallMolecule618210 XREF unificationXref618215

smallMolecule618210 SYNONYMS H20

smallMolecule618210 SYNONYMS hydrogen oxide

smallMolecule618210 SYNONYMS water

smallMolecule618210 STRUCTURE chemicalStructure618216

smallMolecule618210 NAME H2O

smallMolecule618210 MOLECULAR-WEIGHT 18.015

Table 6.2.: RDF triples describing the water molecule in a BioPax file. The triples were
created by the BioPaxLoader of MGV. BioPax files contain many cross-
references (XREF) to database entries. Some triples are omitted here for
brevity.

parses a BioPax file and stores all triples of information in a single table in an in-memory
SQLite database. SQL queries can be used to extract the required data.

This procedure has some advantages. The database can, to some degree, optimize the
queries used for mining the SQLite files. The current parser works for BioPax level 2, and
due to the fact that no assumptions about the format are made, also for BioPax levels
1 and 3, however for those the queries need to be adapted. The overall implementation,
without the SQLite jar file itself, is lightweight (1400 lines of Java code). This approach
requires a large number of triples stored in a unoptimized database schema. Many of
these triples might be unnecessary for most tasks. However, SQLite scales well even for
large tables and allows fast queries even for large files.

Based on this component, several options for extracting data from BioPax files are
implemented for MGV. Complete pathways from BioPax files can be loaded via the
“BioPax (Pathway)” option. They are laid out and drawn in the same style as in the
SBGN pathway viewer (see above, section 6.5.2). Furthermore, it is possible to import
graphs that arise from the interconnections of pathways and reactions. These graphs
can be imported using the BioPax GraphModelProvider option. In this case, from a
BioPax file and a mapping to identifiers, the user can select the pathways which are to
be investigated from a list. This could be all pathways annotated in an organism, or a
subset.

For the intersections of pathways, the resulting graph G = (V,E) has as set V the
selected pathways, and the set of edges E = {e = (V1, V2) : IV1,V2 6= 0}. IV1,V2 is defined
as the number of chemicals shared by the two pathways and is used as the weight of the
respective edges. The role of each edge is “undirected”. The graph for the intersections of
reactions is defined analogously. Ubiquitous chemicals, such as water, oxygen, CO2 and
several co-enzymes induce a large number of connections which are of limited biological
interest. Therefore, I can optionally be calculated ignoring these chemicals. A force-
based graph layout is used to embed G. If possible, the nodes that represent pathways
or reactions are associated with the probes for the enzymes that catalyze the respective
process. In the resulting graphs (see figure 6.23 for an example), cross references and
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ethanol degradation

2-oxopentenoate degradation

Mean expression value for pathways: low medium high

Figure 6.23.: Network of biochemical pathways in S. coelicolor . Nodes represent path-
ways, edges represent shared metabolites between two pathways. The color
of nodes shows the mean expression values over a time series [140].

other information about physical entities that are stored in the BioPax file are added as
node properties that can be used for web lookup.

In a multiple omics setup, it is useful to include data from different levels, especially
when a comprehensive dataset is available. In this case for example, the probes for
transcripts and for metabolites can be viewed with their functional relationship by the
import function “Transcript - Protein - Metabolite”. This function uses a mapping from
transcripts to proteins and a BioPax file to establish which proteins act as enzymes
and which reactions they catalyze. An SBGN process diagram is used for this purpose.
The graph has multiple connected components, one for each protein. Each component
consists of a linear part, which denotes translation (the transcript is drawn as a nucleic
acid feature, the protein as a macromolecule, connected via an omitted process - the
translation). An optional, potentially branched part shows the reactions catalyzed by
the protein. For each reaction, the substrates are on top, a process node in the middle,
and the products on the bottom of the graph (figure 6.24a shows an example). This graph
allows to inspect the correlation between transcript and protein and gives an estimation
of the metabolic activity of the protein.
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succinate

succinate

fumarate

fumarate

an oxidized elect...

a ubiquinone

a ubiquinol

a reduced electr...

SCO4856-MONOMER

SCO4856-MONOMER

(a) Detail of transcript-protein-reaction view for
the gene sdhA in P. aeruginosa. (Data
from [33])

(b) Interaction network from PSI-MI file in Sac-
charomyces cerevisiae. The nodes are colored
by degree centrality.

(a) Expression value and (b) degree centrality: low medium high

Figure 6.24.: Examples for data integration in MGV.

To concentrate on the relationships of transcriptomics and proteomics data, a simple
component is available that aligns the transcripts and proteins, and displays them in a
reduced view omitting the metabolites. This component is called “Transcript - Protein”,
and lays out the graph as described above, but without the catalyzed reactions and the
metabolites.

Importing Biological Models

A number of different biological models can be imported into MGV. For this pur-
pose, a number of parsers for relevant file types, all of which are based on XML, have
been implemented. Each of the following four formats can be imported in MGV via a
GraphModelProvider.

SBML files contain biochemical reaction models, which are defined by the reacting
components and a mathematical model that defines the kinetics of the reaction. SBML
requires to define the type of each component, i.e. substrate, reaction, etc. using the
Systems Biology Ontology (SBO) [113]. This allows a direct mapping to SBGN, as
SBGN is defined as a set of visualizations for SBO terms. For this purpose, a parser for
generic SBO files is available that also allows to check transitive is-a relationships within
an ontology and that can map SBO terms to SBGN roles. The current implementation
imports the topology of the model, but not the reaction kinetics, as there is currently
no use for it in MGV.
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Further formats that can be imported are CellML, PSI-MI and KGML. CellML is an
alternative to SBML. CellML works by defining variables and components, which are
connected. The resulting network of connections can be imported into MGV. PSI-MI is a
language for denoting protein interactions, an example of a PSI-MI interaction network
displayed in MGV can be found in figure 6.24b. KEGG issues KGML files as described
above to describe single pathways for a single organism.

Comparing Clusterings

Cluster analysis is an important step in the analysis of gene expression data. Often
different clusterings are produced during the analysis. Evaluation and comparison of
clustering outcomes has been subject of research [183]. Several quality measurements,
together with visualizations like silhouette plots are used for this purpose. Furthermore,
it could be interesting how stable clusterings are when performed within different stud-
ies. This is related to the question of whether genes are co-expressed in two studies.
Generalizing from clusterings, lists of differentially expressed genes, or genes found by
prioritization methods can also be subject of comparison.

The “Compare Clusterings” function of MGV addresses this problem using a graph-
based method. The input are probe lists from two or more different studies on genes for
which a mapping between the probes in all datasets exist. From this input, a bipartite
(in the case of two studies), or multipartite (in the case of n > 2 studies) graph G =
(V1, . . . , Vn, E) is created. Vi = {Vi1, . . .}, i < n is the set of clusters from the ith study.
Node that all Vi are disjoint. The set E of edges is defined as follows: An edge e is
introduced in G if clusters Via and Vjb share at least one gene, i.e. Via ∩ Vjb 6= ∅. Edges
are introduced in this way for all studies i 6= j and all clusters a ∈ Vi, b ∈ Vj .

To reduce the number of intersections, it is possible to modify the criterion for edges
to |Via ∩ Vjb| > te for some threshold te. Likewise, only clusters Via can be regarded if
|Via| ≥ tc, i.e. if the cluster Via represents at least tc genes. Furthermore, it is possible
to remove all unconnected clusters from the graph.

If the overall set of genes in the clusterings is identical for all samples, then a sig-
nificance test based on the hypergeometric distribution can be performed to find inter-
sections between clusters that are significant [60]. Let ni, nj be the number of genes in
cluster Via and Vjb, respectively and let m = |Via ∩ Vjb| be the number of genes both
clusters share. Let N be the the total number of genes. Then

p(m) =

(
ni
m

)(
N−ni
nj−m

)(
N
nj

) (6.1)

is the probability (based on the hypergeometric distribution) of observing an intersection
of size m when randomly sampling ni genes and independently randomly sampling nj
genes from a total of N genes [60]. Based on equation 6.1, the probability for all k,m ≤
k ≤ min(ni, nj) is given as

p =

min(ni,nj)∑
k=0

p(k)−
m−1∑
k=0

p(k). (6.2)
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Figure 6.25.: Comparison of clusterings between aerobic (left) and anaerobic conditions
(right) in Saccharomyces cerevisiae. Edges represent significant overlaps
between clusters (p < 0.05).
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Using this p-value, we can conduct a statistical test. The null hypothesis is that the
intersect of size m of two independent random samples of size ni and nj out of n objects,
is a random event [60]. For the calculations of the distribution function of the geometric
distribution, the Apache Math library (commons.apache.org/math) is used.

The example in figure 6.25 compares clusterings of genes in two studies on aerobic
and anaerobic nutrient limitations in Saccharomyces cerevisiae [103]. The conditions in
both datasets can be considered comparable. The graph only shows significant (p <
0.05) overlaps. The example indicates that there is limited concordance between both
clusterings: The largest cluster in the anaerobic conditions intersects with three smaller
clusters in the aerobic study, two of which however have different expression profiles.
In contrast, several cluster intersections exist, in which both clusters have very similar
profiles.

A similar view can be used to compare different statistical measures. Comparisons of
statistical values, feature selection scores or other gene prioritizations can be made using
the statistical values comparison tool for MGV. This tool creates a bipartite graph based
on the ranking of two numerical meta information groups. The probes are ranked and
binned independently for each meta information and visualized as a bipartite graph. For
each pair of groups, an edge is added to the graph if the groups have an non-empty
intersection. The weight of each edge is set to the number of intersecting genes.

Visualization of Alternative Splicing and Differential Expression

Differential splicing is a common process in eukaryotes and is a major source of ge-
nomic variation and adaption. It is known that different transcripts that arise from the
same gene locus can have different lengths, functions and, naturally, differences in ex-
pression levels. The visualization of differential splicing as a graph has been proposed
by Heber et al. [73], who coined the term Splice Graph. In combination with visual-
ization of expression on the nodes, a splice graph can represent differential activity on
two levels: differential splicing and differential expression. These measurements became
feasible using RNA-Seq both on transcript and exon level. The concept of MGV allows
the straight-forward presentation of the splice graph. Let a transcript T be defined as
a sorted set of exons ei, defined by begin and end coordinates eb and ee. Sorting of all
exons is done ascendingly by eb. We assume that for all genes that have more than one
transcript that Ta ∩ Tb 6= ∅ for all pairs of transcripts Ta, Tb.

The transcripts of each gene can be transformed to a directed acyclic graphG = (V,E),
keeping a mapping M of nodes to exons, v ∈ V → {ei, . . .}. Introns are represented by
edges between two nodes representing exons. Several ways of transforming a gene to a
gene model graph are considered here:

1. Verbose: Each transcript T is considered separately, with each exon being repre-
sented by a node. In M , each node maps to a single exon from one transcript. The
resulting graph G consists of t connected components (with t being the number of
transcripts).
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2. Simplified : Starting from the 5’-most exon, identical exons from different tran-
scripts are combined to a single node, as long all transcripts contain the same
exons. When different exons occur, the process is repeated for each unique set of
identical exons. G can contain one or more connected components.

3. Compressed : For each unique exon, exactly one node is produced. Therefore in M ,
one node maps to one or more exons from different transcripts. G consists of one
connected component. This is equivalent to the original splice graph suggested by
Heber et al. [73]

The implementation of this concept in MGV uses genomic coordinates parsed from
Generic Feature Format (GFF) files with genomic annotations. This is based on the
framework described in [11]. In MGV, a GraphProvider is available that allows to create
splice graphs of all three types from a set of annotated input probes.

Drawing the splice graphs (see figure 6.26) is done representing the order of the exons,
i.e. the start and end coordinates of the exons determine the horizontal position of each
node as well as its width. The height can be chosen arbitrarily. Long transcripts need
to be scaled to fit to the screen: exons and introns overlapping exons are drawn to scale
while other introns are scaled to a fixed width.

For the verbose case, the layout is straightforward, as each component of the graph is
completely linear. Simplified splice graphs can be laid out in a cladogram-like fashion,
placing the parent node at the mean height of the children. Compressed gene model
graphs could be placed by sorting overlapping nodes by degree and thus placing the most
commonly used exons on the top of the layout. This potentially reduces the overlap of
the edges with the highest weight.

Classically, gene models are visualized with the exons as boxes. Often, arrow heads
indicate the 3’ direction on the last (3’-most) exons. Introns are usually represented as
lines. This kind of view is well-established and is not changed here. The nodes repre-
senting exons, however, can be used to represent additional data, e.g the length of the
exon, the number of transcripts it occurs in, or the genomic coordinates of the exon.
Renderers for visualizing transcript abundance (i.e. gene expression) can also be used.
However, the different length of the exons might introduce a bias in the perception of
parallel coordinate plots.

Visualization can then be used to study differential expression and splicing. The exam-
ples in figures 6.26 show the different transcripts of the gene STK25 (serine/threonine
kinase 25) of Homo sapiens in several cancer cell lines (data from Illumina, Inc, unpub-
lished). From figure 6.26a we can infer that the bottom-most transcript is only marginally
expressed and retains 5 introns compared to the six other transcripts, which share a com-
mon 5’-end. Figure 6.26b gives an overview of the splice variants, highlighting the four
different 3’-ends.

In the case that exon-based values are also available, it would be of interest to compare
the transcript-based and exon based values. For this purpose, the exon renderer in MGV
can be configured to display two heat maps: one displaying the transcript totals, one
displaying the exon-specific values. This is illustrated in figure 6.26c, where the difference
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24209659...

24209659...

24209653...
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242083105-242087262

242083105-242083789

(a) Simplified view of the transcripts of gene STK25 in Homo sapiens. The heat maps on the nodes
indicate differential expression in several cancer cell lines (columns of the heat map).

(b) Compressed splice graph for STK25. The number in each node denotes the length of each
exon.

(c) Visualization of both transcript and exon values for a short gene model
in Homo sapiens. The upper heat map represents the transcript, the
lower one represents the exon.

Color gradient for gene expression in (a) and (c): low medium high .

Figure 6.26.: Differential splicing and gene expression displayed in MGV using the sim-
plified (a,c) and compressed splice graph (b).
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of exon and transcript RPKM values can be inspected. In the example, in most cases a
high correlation between transcript and exon values can be observed.

Comprehensive Gene Annotations

Often, it is interesting to aggregate all information available about one single gene. For
this purpose, the “One Probe” import function aggregates all information available to
MGV on a selected probe. For this probe, internal and external information is queried.
Internal information encompasses the Mayday probe lists the gene is contained in, as well
as meta information, and genomic neighbors. The expression profiles in other dataset can
also be queried. External sources are BioPax files, from which reactions and pathways
the gene’s product takes part in are extracted. Interactors can be queried from STRING,
and further annotations are fetched from UniProt. The resulting nodes are grouped by
origin. The entire graph is laid out in a star-like topology. Figure 6.27 shows an example
for the gene pgi (glucose-6-phosphate isomerase) in S. coelicolor with five groups of
annotations. In this view, the position of the gene in the primary metabolism of this
gene can be inferred.

6.7. Cross Dataset analysis

MGV is prepared to visualize and analyze data from different datasets. This is necessary
in order to properly integrate data from different omics. Different experimental platforms
lead to different ranges and distributions of values. Even if the same technology is used,
data integration is not trivial (for microarrays see e.g. [164]). Combining all data in one
expression matrix is therefore usually not helpful. Still, combining data from different
platforms is important, as this allows to explore the data on different levels. Furthermore,
different time points or experimental conditions investigated in different studies can be
compared. The graph data structure used in MGV makes, in general, no assumptions
on which dataset a probe comes from. Therefore, MGV can be used to visually compare
data from different sources if some adjustment are made to the applications. For visual
comparison, this is straightforward and often automatically used in several data integra-
tion methods (see for example figures 6.25 and 6.24a). However, MGV supports further
tools for integrating data from several datasets.

6.7.1. Cross-Dataset Visualization and Statistics

Mayday can work on different datasets in parallel. Operations on multiple datasets are
already implemented for time series alignments [12]. MGV adds the possibility to jointly
visualize and analyze any data from two or more datasets.

This is achieved by keeping different ViewModel instances for each dataset. This en-
sures that all nodes are rendered correctly and allows independent value ranges and color
gradients for each dataset. This is sufficient for visualizing multiple datasets within a
single MGV plot, provided no nodes exist with probes from more than one dataset. The
joint visualization of probes from different datasets is possible via node groups. Node
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Figure 6.27.: Annotations graph for the gene SCO1942 (glucose-6-phosphate isomerase)
in S. coelicolor . The graph contains meta information, related pathways
and reactions parsed from a BioPax file, interaction partners retrieved from
STRING and the genomic neighbors. Expression data from [140]

groups allow the joint visualization of probes from multiple datasets via their heat map
function.

When dealing with different datasets, probes and experiments may differ between
them. Therefore, a mapping of what is common between datasets is necessary. A mapping
of experiments common to the datasets is kept, along with a mapping of equivalent
probes. The probe mapping can be inferred from probe names or meta information.
The experiment mapping can be set up from predefined settings, e.g. based on common
names or time points. All mappings can be manually altered. The probe mapping can be
viewed in a mapping tree in which each set of equivalent probes is summarized. Based
on these mappings, statistical comparisons and visualization can be created.

A supporting view of multi dataset graphs is the correlation heatmap (see figure 6.29b).
The correlation heatmap provides a pairwise comparison of probes from different datasets.
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Figure 6.28.: Overview of the options for cross dataset analysis. From left to right, the
statistical operation, the grouping strategy, and the parameter for distances
and correlation.

It shows three columns: the left and right columns display the expression values of the
probes in different datasets. The central column shows one of three correlation measure-
ments. Either the Pearson correlation coefficient, Spearman’s rank correlation coefficient
or Kendall’s τ rank correlation coefficient can be used. For the calculation, only the
mapped experiments are used. The correlation heatmap reflects data transformations
and communicates selections to the graph. The columns can be sorted by probe name
or correlation coefficient.

Node groups can be formed from nodes with probes from any dataset. They can also
be used to calculate and visualize basic statistics from probes from multiple datasets.
The “Calculate Statistics” function allows to calculate distance and correlation measures
within or between groups of probes. Alternatively, the correlation or distance to a cen-
tral element can also be calculated. Groups can be defined in various ways, including
using the dataset and node name. A full view of the options is given in figure 6.28. The
calculated statistics are stored at the node group and can be displayed as heat maps,
either within the node group or in a separate window. Correlations and distances be-
tween groups containing multiple objects are summarized using the mean or median. No
summarization is necessary for the RV coefficient [149]. Let Xi×j and Yi×k be matrices,
then the RV coefficient is defined as:

RV (X,Y) =
tr(XX′YY′)√

tr((XX′)2)tr((YY′)2)
(6.3)

where tr(X) =
∑

iXii denotes the trace of a square matrix. A modification was suggested
by Smilde et al. [166] that addresses the overestimation of correlation by the above
formula. Both methods are implemented in MGV.

6.7.2. Example

Explorative analysis of data from different sources can reveal common features and
differences. Figure 6.29 shows an example using two studies investigating aerobic and
anaerobic growth of Saccharomyces cerevisiae under four nutrient limitations [103]. In
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the aerobic dataset, a number of clusters were identified, and we are interested in how the
genes of each cluster are regulated under the anaerobic conditions. In MGV, the clusters
are shown using profile plots. This gives a first overview of similarities and differences
(see figure 6.29a). Cluster 2 (6 probes) and cluster 5 (8 probes) are very similar in
both conditions. Often, only a subset of the genes differ. In the correlation heat map
(figure 6.29b), we can see that the correlation is, in general very high. However, we
find some probes that have a strong anticorrelation between both datasets. Investigating
these probes yields that the most highly anticorrelated ones belong to a cluster of 30
probes, many of which are related to respiration processes. The four nearly perfectly
anticorrelated genes are annotated with biological processes related to oxygen reduction.
In general, the mean euclidean distance of clusters (see figure 6.29c) to all others is
especially high for two clusters with 7 and 31 genes. Many genes in these clusters are
related to ribosomal proteins.

This example shows how to search for expression patterns between different datasets.
In a first step, the different display options of MGV are used to get an overview of the
data. Using the correlation heat map, can be used to verify cartain hypothesis. Overall
similarities and differences can be searched for using the distance heat maps. These two
heat map implementations complement the visualization tools provided by MGV.

6.8. Summary and Discussion

In this chapter, a generic concept for the joint visualization of gene expression data,
meta information and biological models was described and implemented. Based on the
related concepts in data visualization and integrative bioinformatics, the question of how
to display both data and meta information was already addressed, for special cases, in
the previous chapter. This question is addressed in this chapter in a much more generic
way, based on graphs and the massive usage of small multiple plots of various kinds.
From the existence of numerous related, though often lacking programs in this field it
can be concluded that this approach is feasible.

The Mayday graph framework serves as a lightweight foundation for the implemen-
tations. The framework was designed to ensure extensibility and to allow for swift inte-
gration of new methods for many purposes related to graph and data visualization via
plugins. A number of visualization tools allow to display many different types of data in
different styles. Generic nodes, single expression profiles, multiple profiles, with or with-
out meta information and manual annotations can be visualized within this framework.

Applications of this framework are twofold. The specialized pathway viewers, the
KEGG and SBGN pathway viewers integrate the data/meta information combination
into standard tools in biomedical research. The two pathway viewers employ many of
the strategies for visualizing gene expression data and meta information. Being included
in the Mayday visualization framework, they can further rely on the tools presented in
chapter 5 to view additional data in parallel. The KEGG pathway viewer attempts to
be a user-friendly front end for exploring and browsing pathways. The SBGN pathway
viewer is a lightweight alternative to many extensive tools which are available. Some
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(a) Clusters in yeast chemostat study. The values are z-score transformed for better comparison
of the profiles. For cluster 9 (30 genes), the gene ontology (biological process) is shown.
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(c) Distance heat map showing the euclidean distance using a green-black-red gradient.

Figure 6.29.: Comparative visualizations of 10 clusters in the aerobic and anaerobic
datasets. The correlation heat map in (b) shows a number of highly anti-
correlated genes. The distance heat map in (c) identifies four clusters with
vastly different genes.
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helpful tools for visual exploration are implemented, like summaries of reactions. The
host of different pathways available in the BioPax format and the stringent visualization
of the processes in SBGN style make it useful in many studies. The scope of these tools,
however, is limited, and the visual styles of KEGG and SBGN are not expressive enough
for the variety of meta information and networks available. The generic Mayday Graph
Viewer (MGV) offers a superset of their functions, in a less specialized, more general
setup.

MGV integrates all described tools for data integration and visualization. It is designed
to visually explore and analyze data from multiple sources in the context of biological
models. This is extended by some specialized tools for data analysis. Also, MGV can be
used as a general purpose visualization tool. The scope of MGV is not to visualize huge
biological networks, but instead finding interesting patterns in datasets, on which first
analyses have already been made. For this, numerous visualization tools for gene expres-
sion data, along with filtering and summary methods are provided. MGV is therefore
especially useful for summarizing results and formulating hypotheses. The combination
of graphs, which state a model, and expression values allows to produce a joint visual-
ization of model and data in order to succinctly present a hypothesis. Building blocks of
for this can be graphs created by the methods described in section 6.6.1.

MGV includes analysis tools into the graph visualization. For this purpose, the node
groups, with their statistical and visualization tools have been integrated. They allow to
visually group nodes, and use these groups as the basis for new visualizations. These vi-
sualizations summarize the data or add new aspects. Node groups also allow to structure
the data and help to remove clutter from the graph, without deleting nodes.

The cross dataset tools extend the scope of MGV. Integration of vastly different data
is possible. For this kind of data integration, visual exploration is the tool of choice. It is
facilitated by the statistical tools described in section 6.7 and the correlation heat map.
The correlation heat map, while simple in design, allows for swift visual and quantita-
tive comparisons between two datasets. The presented statistical functions are currently
limited to exploratory tools that allow to identify similarities and differences in the
data. While this proof of concept allows swift analysis as described, additional tools for
three purposes would be useful extensions. The integration of statistical methods for
integration like co-inertia analysis [40] or methods based on partial least squares [112]
extend the concept beyond visual comparison. Integration of time series alignment tools
facilitate the experiment mapping.

The memory consumption of the framework is moderate, and can support large sparse
graphs. If a dataset can be opened in Mayday, the additional memory consumption for
a graph is independent of the number of probes used. Memory consumption is mostly
depending on the number of nodes in a graph. The rendering speed is mostly depending
on the number of edges and probes in a graph. The rendering strategy used for the
nodes also determines the frame rate. However, rendering leaves room for optimization.
First tests indicate that selectively caching nodes that represent many probes can greatly
improve performance and is an acceptable trade-off between memory consumption and
rendering speed.
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The concept and implementation of MGV is open for extensions. The various extension
points in MGV allow to extend rendering capabilities, graph layout and analysis tools
such as graph measures, without the need to modify core components.

Systems biology often requires data exchange between applications. A framework for
this purpose based on Java RMI (remote method invocation) is the Gaggle [162]. Many
applications, including MeV and Cytoscape support Gaggle. The integration of May-
dayx MGV and Gaggle is currently under way. This will allow to better exchange data,
including graphs, between applications supporting Gaggle.

MGV can be extended in many points. Some extensions might challenge the bound-
aries between the graph viewer and the main application. Many features of Mayday are
already invocable from MGV. Future versions of Mayday might use the graph-based
presentation of data on all levels as their main way of presenting and organizing data.
The node groups that can be used in MGV, intended to extend the probe list con-
cept of Mayday, already are a step into this direction. Node groups can combine nodes
from all sources, and as presented in 6.7, basic calculations can be executed on them.
How far this concept can be extended, would be subject to user studies. However, sim-
ilar network based products like Hugin [101], a tool for collaborative data analysis or
SpicyNodes [46], which uses a tree structures for data presentation achieved promising
results at user studies.

In conclusion, the theoretical and practical framework presented here proved to be
more than adequate for integrating visualization of gene expression data and a wide
range of meta information. The framework is generic enough not to be limited to a
single kind of data. It allows rich visualizations of present and future gene expression,
proteomics and metabolomics studies in context.
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This thesis presents new approaches for analysis and visualization of complex, multivari-
ate high-dimensional data from high-throughput life science experiments. The analysis of
gene expression – an important part of biomedical research – is a challenging endeavor on
multiple levels. While several technologies allow to measure the activity of genes, or the
concentrations of proteins and chemical compounds, the analysis of the resulting data is
a problem at least as complicated as the laboratory work necessary for generating it.

In this work, an exploratory data analysis approach to this problem has been chosen.
A major focus of this work is the integration of meta information using visualization
and efficient analysis tools. The relevance of meta information is indisputable, as it adds
the context in which gene expression happens and in which it is to be interpreted. The
heterogenity and complexity of meta information requires several strategies to make
use of it in different settings. Context-based plots presented in chapter 5 allow to vi-
sually explore and analyze meta information, based on specific visual representations.
Interactivity and connected plots allow to combine meta information and primary data.
Nominal and ordinal annotations are addressed here.

The graph-based visualization of gene expression data as described in chapter 6 is a
different approach. Here, a generic data structure is chosen as a representation, combined
with general purpose visualization strategies for gene expression and meta data. The
context of gene expression is here displayed in two ways. The functional context can
be shown as graphs, on which expression is visualized within nodes. Alternatively, meta
information can be displayed via node visualization. This strategy has been found to be
very generic and supports a wide range of applications, as illustrated.

Gene activity can not solely be determined by measuring gene expression. Mutations
can alter and reduce or prevent the function of a gene product. This final step of gene
expression analysis must be performed with genomics technologies: here, resequencing
microarrays are used. The analysis of resequencing microarrays with ResqMi makes use of
the same general concept: visualization of intensity and analyzed data and presentation
of the context. The context here is defined as the genomic location of and the effects of
possible mutation.

This chapter concludes this thesis, presenting a discussion of the major aspects of this
work and providing an outlook which describes possible further research directions.

7.1. Discussion

The general concept of this work is the application of visual analysis and exploration for
the analysis of gene expression data. The applicability of this concept to gene expression
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has been proven in extensive previous work (e.g. [52]) and helped to produce important
results. Major parts of this thesis are concerned with the integration of meta information
into this concept. For this purpose, two approaches were taken. Specific applications and
visual representations in the context of gene expression were investigated for the context-
based plots. This also included ways for including primary expression data within these
representations as an application of the “Details on Demand” concept from the visual
analytics mantra. A more generic approach is using a representation that can model
a wide range of data: graphs. The graph data structure has also been proven to be
capable for representing expression data and meta information. This is applied here to
produce very dense multivariate visualizations high-dimensional visualizations. The tools
presented here provide a modular visualization of data on multiple levels, which is a step
towards graph-based visual analysis and exploration of data.

The plots presented in chapter 5 are based on the first approach. New visual repre-
sentations were applied to gene expression data and meta information. This was done
in order to address the problem of visualization of meta information and gene expres-
sion data. Tag clouds and chromograms are useful extensions for primary-data centric
plots, like heat maps and profile plots. Term pyramids and probe rank plots allow to
identify patterns in nominal and ordinal meta information. Profile logos are designed for
summarizing the shape of clusters. The examples provided showed that these concepts
are feasible for gene expression data and a wide range of meta information, especially
when used in parallel. Still, a more integrated and generic approach to meta information
visualization would be helpful, also that includes more extension points for refinements
and overviews.

The Mayday Graph Viewer implements the second, more generic approach based on
graphs. It integrates many visualization tools and presents a range of options for integra-
tive bioinformatics, visual analytics and exploratory analysis in the context of biological
networks in the broadest sense. This includes the visualization of gene expression and
the addition of numerical and ordinal meta information in various styles via a modu-
lar framework. A large variety of analysis and graph layout tools and many extension
points allow to further increase the use of MGV. The combination of pathway viewer,
general visualization tool and single aspects of a diagramming tool make MGV a useful
extension of the gene expression data analysis toolkit.

The requirements formulated by Saraiya et al. [156] mentions features for easy integra-
tion of pathway data, overlay of biological information and expression data visualization,
all of which MGV provides. Additionally, some overview functions exist. However, MGV
can be improved concerning semantical scaling and aggregation of pathways beyond fil-
tering tools and manual aggregation of nodes. In the current implementation, the focus
was on the visualization features. The addition of more analytical methods (especially
centrality, analysis of flows, etc.) could greatly enhance MGV.

MGV also supports the visualization of gene models. Drawing gene models as enriched
graphs highlights the order as well as the expression data associated with it. In order to
address challenges coming from further research concerning genome-wide transcription,
transcripts that contain several instances of an exon, distant exons, or even exons from
other chromosomes should be regarded. This would require adaptation for splice graphs
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with cycles, as well as new ways of dealing with the distances of exons. The current
approach does not fail on this as the introns are not drawn to scale, but also does not
exploit this to provide an enhanced view.

MGV supports handling of multiple datasets. This is an important feature, because
gene expression data is complex and multiple levels of data exist. Integrating multiomics
data for visual inspection and basic statistical analysis is possible. For this purpose, the
graph framework is used to structure the probes from different datasets. For analyses,
the node groups extend the concept of the probe list. They allow generic collections
of nodes, which can represent virtually everything. The scalability of this approach to
whole genome settings remains to be tested. The multi dataset framework leaves room
for extensions, including new methods for data analysis and integration, especially the
usage of time series alignment tools.

The pathway viewers for KEGG and BioPax/SBGN are useful for pathway centric
visualization, as they support browsing and orientation in the pathway landscape. They
feature a subset of the tools provided by the Mayday graph framework and present the
data in two well-established visual styles. However, the tools have a limited scope, for
many data analysis purposes, MGV is better equipped.

With the tools presented, gene expression data on all levels can be visualized and
analyzed. For the most parts of this work, Mayday, a technology-agnostic environment,
was used for the implementation of the methods. While this precludes the usage of some
technology-specific properties of the data, e.g. the visualization of mass spectra from
proteomics analysis, the data model of Mayday is flexible enough to include, at least
potentially, a wide range of meta data, either in atomic or structured form. Furthermore,
the Mayday platform is capable, by making few assumptions on the data, of working
with all data in the same way. In review, MGV and the additional tools presented in
chapter 5 form a powerful combination together with Maydays additional features.

ResqMi however is specifically designed for resequencing microarrays from Affymetrix.
This is a limitation, even though only few alternative designs are used. ResqMi provides
new useful visualization and analysis tools, which enhance the use of resequencing mir-
croarrays. Base calling algorithms remain a problem due to high no-call ratios and qual-
ity issues in the data. Rigid testing of the presented concepts using sizable external test
data would be interesting. Unfortunately, the technology of array-based resequencing is
obsolete. Still, the work conducted was not at all in vain. Resequencing of specific ge-
nomic regions is an important application of second-generation sequencing technologies
and useful especially in a clinical setting. While base calling from array intensities is no
longer necessary, the visualization and data handling features of ResqMi can serve as a
template for a next-generation resequencing analysis suite.

The methods presented in this work are not restricted to bioinformatics applications.
The presence of graphs and networks, that need to be correlated with numerical data is
by no means restricted to bioinformatics. In the design and the implementation of this
work, bioinformatics applications were the focus. However, especially for the presented
graph based visualizations, this does not hinder users to apply MGV to any kind of data.
The data structures of Mayday are data-agnostic not only with respect of biological
data. Data and graph formats that can be imported by Mayday and MGV are used
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in virtually all fields. The addition of import features for new formats is feasible via
the plugin interface. The other extension points allow the integration of domain-specific
processing tools and rendering options.

In summary, this work presents concepts for the visualization and analysis of gene
expression data on all levels, focusing on including the context of gene expression into
visualizations. This is supported by the presentation of feature-rich applications that im-
plement these concepts. Furthermore, tools and concepts are demonstrated by examples
as a proof that the concepts shown here are feasible.

7.2. Outlook

Further directions of the work presented in this thesis include short term perspectives
and long term goals for the relevant tools and technologies. Short term improvements on
MGV are the inclusion of new data sources and visualization plots. In general, everything
can be modeled as a graph, and if it is relevant to biological applications and can be
enriched with expression data and meta information, MGV should be able to work on it.
For this purpose, more automated methods for extensions should be used. Association
mining, motif search, text mining and integration of databases and web services for all
relevant purposes should be integrated. Generic and user-friendly interfaces for these
purposes are to be designed and developed.

Interactivity is a key feature of MGV which is not captured in exported images.
Interactive displays of graphs generated in MGV are more useful that static images,
especially when placed in a rich web interface. The concepts have already been tested
for general visualization plots [137]. A possible application would be the export of graphs
for showing hypotheses enriched with data that allow limited interactivity, e.g. changing
node renderers.

Scripting functions and a SQL query interface allow automatization and data mining
features to be implemented on graphs. For automatization, Java Script, which currently
receives much attention for usage in web browsers can be used. Possible applications
are additional animation features, methods to generate graphs and custom analyses.
Smart graphs with active components (nodes, edges, groups) can introduce new usage
and analysis concepts. However, questions arise on how much activity within graphs is
useful.

The SBGN entity relationship language has a high potential. Implementations, fo-
cusing on high quality layouts would greatly increase the acceptance of this standard.
Furthermore, combining it with expression data and meta information might still in-
crease the use of it, as it happened with the process description language. Extensions
for specific data visualization using edges and logical nodes should be investigated. The
same is basically true for the activity flow language, which can help the visualization of
signaling pathways. In general, the layout requirements of SBGN merit further research
on layout algorithms for biological pathways.

The addition of new analysis and visualization tools is limited by the user require-
ments. Users must be able to efficiently find, understand and apply new and existing
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methods. Therefore, a user study should be conducted, that evaluates MGV and the
overall concept.

The context-based visualizations of meta information should be extended and im-
proved as new types of meta information and applications arise. New data processing and
transformations are of interest, as are new visual representations, like timeline trees [25]
or stacked graphs [26]. In general, a user study could be helpful to evaluate existing and
potential principles for the joint visualization of meta data and primary data.

The development of ResqMi highlighted some important design guidelines for the anal-
ysis of future resequencing technologies. Resequencing makes the analysis of single genes
more feasible then whole genome sequencing. The challenges and costs of wet lab, data
processing and storage and ethical considerations forbid the sequencing of whole genomes
on a daily basis for now. Therefore, focused technologies will stand their ground in the
repertoire of technologies, especially in medicine. In resequencing data, every position
of the sequence is associated with a vector of numbers: meta information and uncer-
tainty estimations. The tools developed in ResqMi for the Affymetrix technology may
be obsolete, the rationale behind their use is not. New applications in this field can use
the concepts tested in ResqMi. Extensions on this point towards the integration of data
analysis tools and genome browsers. An additional chance is going beyond limitations
of the current approach, as for example multiple reference sequences can be used.

In the long run, the integration of many of the described methods and concepts in
order to form more generic and more efficient tools is conceivable. Enhancements in user
interfaces, methods and data basis will allow and require modular, but powerful tools
that can work on huge, heterogeneous datasets. This will also require advances in data
management and storage. A further, very important point is collaborative analysis of
datasets. Even enhanced by powerful visual analytics tools, the cognitive capabilities of
human are limited. Therefore, collaboration, especially in parallel, of local and non-local
scientists is necessary to explore and analyze huge datasets

Research and development of new user interfaces already made new usage concepts
feasible. As slim but powerful tablet computing devices are becoming available, accom-
panied by ubiquitous network access, visual analytics systems are being developed for
these platforms. The technology curve predicts that most the ideas that are now de-
veloped with much enthusiasm will not stand the test of everyday use. However there
might be niches in which graph based visual analytics can profit from mobile devices
with touch screens. The ubiquitous network access is useful for collaborative approaches.
Multi-touch displays allow interesting usage concepts, which can facilitate handling of
graphs, in collaborate applications, or as a remote control for large visualizations, e.g.
on power walls.

The usefulness of visualization efforts in the field of systems biology heavily depends on
data availability. Research in this field could therefore be enhanced by establishing public
data repositories for biological graphs and networks. While there are many sources of
biological pathways, and some authoritative sources of biological models that are actively
curated, a general collection of biological graphs would be helpful. However today, this
data is separated from each other and other sources, like interaction data, gene and
protein annotations and expression data. Careful modeling, reporting standards as used
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in the microarray community (and many others) strong data mining features would be
required. The reward would be comprehensive knowledge base of biological data, which
is also rich in cross links – a further step taken towards the goals of both systems biology
and integrative bioinformatics.

Similar data consolidation and publication initiatives are necessary for metabolomics
data. The wide spread publication of metabolomics data in public repositories could help
the development of tools and enhance research. The advances in this field will eventually
allow to measure compounds on a whole-metabolome level with high confidence and
reproducibility. This data needs to be integrated with expression data and biological
networks and must therefore be publicly available. The MIAMET [16] standard is a first
step towards this direction. First databases exist, but much work needs to be done to
collect and integrate data.

All these approaches can be used to further enhance data visualization and analy-
sis of gene expression and similar data. Constant improvements in current and newly
emerging more efficient technologies emphasize the importance of scalable and extensible
techniques for visual analysis and exploration. This thesis has presented several starting
points for dealing with this.
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A. MGV Key Shortcuts

Basic Keystrokes

Keystroke Action Operation

F1 Help Open help window

F2 Lock/unlock Make nodes fixed or movable and resizable

F3 Node inspector Show node inspector, edit and search for
nodes and edges

F4 Show/hide title Show or hide the title of the graph

F5 Reset view Set zoom level to 100 % and reset the size
of all nodes to default

F6 Fit to width Set zoom level in order to fit make the
graph as wide as the window

F7 Fit to frame Fit the graph into the width and height of
the window

F8 Reset nodes Scale all nodes to default size

F9 Show/hide labels Hide or show the node labels

0 Reset zoom Set zoom level to 100%

Home Home Go to the top of the graph

End End Go to the bottom of the graph

PgUp Page up Move up one page

PgDown Page down Move down one page

Spacebar Next renderer Switch to next renderer set

Ctrl + N New graph Open new graph viewer window

Ctrl + S Save graph Save the graph to MGV file

Ctrl + L Load graph Load the graph from MGV file
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Selection Keystrokes

Keystroke Action Operation

Ctrl + A Select all Select all nodes

Esc Clear selection Clear selection

Del Hide Hide selected nodes

Ctrl + Del Delete Permanently delete selected nodes

Ctrl + G Group Create node group from selected nodes

Ctrl + M Merge Merge selected nodes to single node, re-
move selected nodes

Shift + Ctrl + M Join Join selected nodes to single node, keep
selected nodes

Ctrl + → Move Move node 1 pixel to the right. Same for
← , ↑ , ↓

Shift + Ctrl + → Move Move node 10 pixel to the right. Same for
← , ↑ , ↓

H / J Arrange Horizontally/vertically arrange nodes

Ctrl + H / Ctrl + J Arrange Horizontally/vertically arrange nodes,
align with left/topmost node

Adding Nodes

The following keystrokes add a single new node (or multiple nodes as described) of the
described role to the graph at the position of the mouse pointer.

Keystroke Role Add new Node

N Node Generic Node

T Note Empty Note

P Probe Probe (selectable)

Ctrl + R any Open create new node dialog

Shift + M Macromolecule SBGN glyph

Shift + S Simple Chemical SBGN glyph

Shift + N Nucleid acid feature SBGN glyph

A Association SBGN glyph

P Process SBGN glyph

O Omitted Process SBGN glyph

D Dissociation SBGN glyph

Shift + Ctrl + P several Add a new reaction (process, substrate,
product, enzyme)
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[204] E. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal of the
American Statistical Association, 85(411):664–675, 1990.

[205] L. Wilkinson. The Grammar of Graphics. Wiley, New York, NY, USA, 2005.

[206] L. Wilkinson and M. Friendly. The history of the cluster heat map. The American Statis-
tician, 63(2):179–184, 2009.

[207] D. Wishart, C. Knox, A. Guo, R. Eisner, N. Young, B. Gautam, D. Hau, N. Psychogios,
E. Dong, S. Bouatra, et al. HMDB: a knowledgebase for the human metabolome. Nucleic
Acids Research, 37:D603, 2009.

[208] E. Wit and J. McClure. Statistics for Microarrays. Wiley, New York, NY, USA, 2004.

[209] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan
Kaufmann, San Francisco, CA, USA, 2005.

[210] K.-K. Yan, G. Fang, N. Bhardwaj, R. P. Alexander, and M. Gerstein. Comparing genomes
to computer operating systems in terms of the topology and evolution of their regulatory
control networks. PNAS, 107(20):9186–9191, 2010.

[211] K. Yee, D. Fisher, R. Dhamija, and M. Hearst. Animated exploration of dynamic graphs
with radial layout. In Infovis, pages 43–51. IEEE, New York, NY, USA, 2001.

[212] Y. Zhan and D. Kulp. Model-P: a basecalling method for resequencing microarrays of
diploid samples. Bioinformatics, 21(Suppl. 2):ii182–ii189, 2005.

161



[213] Q. Zhu, J. Miecznikowski, and M. Halfon. Preferred analysis methods for Affymetrix
GeneChips. II. An expanded, balanced, wholly-defined spike-in dataset. BMC Bioinfor-
matics, 11(1):285, 2010.

[214] C. Zipplies. Skalierbare Methoden zur interaktiven Visualisierung genomweiter Genexpres-
sionsdaten. Diplomarbeit Bioinformatik, University of Tübingen, 2009.
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