
Renormalization Group Flows

of Hamiltonian QCD

in Coulomb Gauge

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Zusammenfassung

In der vorliegenden Dissertation wird die Yang-Mills-Theorie in Coulombeichung
in der Hamilton-Formulierung unter Anwendung der Funktionalen Renormierungs-
gruppenflüsse untersucht. Yang-Mills-Theorien bilden die Grundlage des Standard-
modells der Elementarteilchenphysik. Der Fokus dieser Arbeit liegt insbesondere
auf der Quantenchromodynamik, die die Starke Wechselwirkung beschreibt.

In Kap. 1 wird die Methode der Funktionalen Renormierungsgruppe eingeführt.
Sie wird dabei zunächst in ihrer üblichen Formulierung innerhalb des Lagrange-
Zugangs zur Quantenfeldtheorie präsentiert. Die Flussgleichung für den Propagator
der skalaren Quantenfeldtheorie wird hergeleitet.

Kap. 2 enthält einen Überblick über die Yang-Mills-Theorie in Coulombeichung
in der Hamilton-Formulierung, als Gegensatz Lagrange-Formulierung.

In Kap. 3 wird die Funktionale Renormierungsgruppe auf den Hamilton-Zugang
zur Yang-Mills-Theorie in Coulombeichung übertragen. Mit diesem neuen Werkzeug
werden die Flussgleichungen für den Gluon- und den Geistpropagator hergeleitet.
Die Gleichungen werden numerisch unter Benutzung zweier verschiedener Nähe-
rungen gelöst und die Ergebnisse mit jenen aus dem Variationszugang verglichen.

Kap. 4 hat die Herleitung und Lösung einer Flussgleichung für das Farb-Coulomb-
Potential zwischen zwei schweren Farbladungen zum Thema. Die entsprechende
Dyson-Schwinger-Gleichung wird hergeleitet und die Bedingungen für die Existenz
von Lösungen für diese Gleichung werden untersucht.

Die Einbeziehung dynamischer Quarks in diesen Formalismus wird in Kap. 5
behandelt. Der statische Quark-Propagator wird berechnet, um die Massenfunk-
tion zu erhalten, die die dynamische Erzeugung der Konstituentenquarkmasse be-
schreibt. Der Einfluss des Gluonpropagators und der Quark-Vier-Punkt-Funktion
auf die Massenfunktion werden untersucht.

Im letzten Kapitel werden eine kurze Zusammenfassung und ein Ausblick gegeben.
Einige Definitionen und mehrere längere Rechnungen werden in den Anhängen
dargestellt.





Abstract

In this thesis, Yang-Mills theory in Coulomb gauge in its Hamiltonian formulation
is investigated by applying the method of the Functional Renormalization Group.
Yang-Mills theories form the basis of the Standard Model of elementary particle
physics. The focus of this work is in particular on Quantum Chromodynamics,
which describes the Strong Interaction.

In Chap. 1, the method of the Functional Renormalization Group is introduced.
At first, it is presented in its usual formulation in Lagrangian Quantum Field Theory.
The flow equation for the propagator of scalar quantum field theory is derived.

Chap. 2 contains an overview of Yang-Mills theory in Coulomb gauge in its
Hamiltonian formulation as opposed to the Lagrangian approach.

In Chap. 3 the Functional Renormalization Group is transferred to the Hamilto-
nian setting of Yang-Mills theory in Coulomb gauge. With this new tool, the flow
equations for the gluon and ghost propagators are derived. The equations are solved
numerically using two different approximations. The results are compared to those
obtained in the variational approach.

Chap. 4 deals with the derivation and solution of a flow equation for the colour
Coulomb potential between two heavy colour charges. The corresponding Dyson-
Schwinger equation is derived and the conditions for the existence of solutions are
examined.

The inclusion of dynamic quarks into this formalism is the subject of Chap. 5. The
static quark propagator is calculated in order to obtain the mass function, which
shows the dynamic generation of the constituent quark mass. The influence of the
gluon propagator and of the quark four-point function on the mass function are
examined.

In the last chapter, a short summary and an outlook are given. Some definitions
and several longer calculations are presented in the appendices.
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Contents

1 The Functional Renormalization Group 13

2 Hamiltonian Yang-Mills Theory in Coulomb Gauge 21

3 The Gluon and Ghost Propagators 29

3.1 FRG in Hamiltonian Yang-Mills Theory . . . . . . . . . . . . . . . . 29
3.2 The Gluon and Ghost Propagator Flows . . . . . . . . . . . . . . . . 33
3.3 Uniqueness of Infrared Scaling . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Truncation of the Propagator Flows . . . . . . . . . . . . . . . . . . . 37
3.5 Approximation without Tadpoles . . . . . . . . . . . . . . . . . . . . 38
3.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 The Colour Coulomb Potential 47

4.1 Defining the Colour Coulomb Potential . . . . . . . . . . . . . . . . . 47
4.2 The Flow Equation for the Coulomb Form Factor . . . . . . . . . . . 50
4.3 An Alternative Derivation of the Coulomb Form Factor Flow . . . . . 52
4.4 The Dyson-Schwinger Equation for the Coulomb Form Factor . . . . 57
4.5 Infrared Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Overall power laws . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 The angular approximation . . . . . . . . . . . . . . . . . . . 59
4.5.3 Assessment of the angular approximation . . . . . . . . . . . . 62

4.6 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.1 Iterative solution of the flow equation . . . . . . . . . . . . . . 64
4.6.2 Solution of the DSE based on matrix inversion . . . . . . . . . 66
4.6.3 Iterative solution of the DSE with the angular approximation 73

5 The Quark Propagator 77

5.1 Derivation of the Flow Equation for the Quark Propagator . . . . . . 77
5.2 Inclusion of the Gluon Propagator Diagram . . . . . . . . . . . . . . 84

5.2.1 Non-vanishing current quark mass . . . . . . . . . . . . . . . . 84
5.2.2 Input from the variational approach in the chiral limit . . . . 86

5.3 Inclusion of the Tadpole Diagram . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Derivation of the mass equation . . . . . . . . . . . . . . . . . 91
5.3.2 Results obtained in the framework of Adler and Davis . . . . . 93

5.4 Solving the Mass Equation . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 A Hamiltonian ansatz for the four-quark function . . . . . . . 96
5.4.2 A perturbatively improved four-quark function . . . . . . . . . 99



10 Contents

6 Summary and Outlook 107

A Notations and Conventions 111

B Derivation of the Propagator Flow 113

B.1 Details of the Propagator Flow Derivation . . . . . . . . . . . . . . . 113
B.2 Ghost Number Conservation . . . . . . . . . . . . . . . . . . . . . . . 116

C Numerical Methods 119

C.1 Chebyshev Representation . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2 Gauss-Legendre Integration . . . . . . . . . . . . . . . . . . . . . . . 120
C.3 Iterative Solution and Fine Tuning . . . . . . . . . . . . . . . . . . . 121

D Calculation of Two-Point Integrals 123

E Calculations for the Quark Propagator Flow 127

E.1 Calculation of the Two-Quark Kernels . . . . . . . . . . . . . . . . . 127
E.2 Perturbative Calculation of the Four-Quark Function . . . . . . . . . 128
E.3 Calculation of the Quark Tadpole Term . . . . . . . . . . . . . . . . . 132



List of Figures

1.1 Typical regulator function . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Flow equation of the effective action . . . . . . . . . . . . . . . . . . 18
1.3 Theory space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Flow equation of the scalar propagator . . . . . . . . . . . . . . . . . 20

3.1 Flow equation of the gluon propagator . . . . . . . . . . . . . . . . . 34
3.2 Flow equation of the ghost propagator . . . . . . . . . . . . . . . . . 34
3.3 Truncated flow equation of the gluon propagator . . . . . . . . . . . . 35
3.4 Truncated flow equation of the ghost propagator . . . . . . . . . . . . 35
3.5 Gluon correlation function ω for different minimal cutoffs kmin. . . . . 40
3.6 Ghost dressing function d for different minimal cutoffs kmin. . . . . . 40
3.7 Flow of the ghost dressing function, dk(p) . . . . . . . . . . . . . . . . 41
3.8 Comparison gluons, optimized and without tadpoles . . . . . . . . . . 42
3.9 Comparison ghosts, optimized and without tadpoles . . . . . . . . . . 42
3.10 Comparison optimized flow and variational approach . . . . . . . . . 43
3.11 Optimized flow equation of the gluon propagator . . . . . . . . . . . . 44
3.12 Optimized flow equation of the ghost propagator . . . . . . . . . . . . 44
3.13 Running coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Error of the angular approximation . . . . . . . . . . . . . . . . . . . 64
4.2 Coulomb form factor f for different minimal cutoffs kmin . . . . . . . 65
4.3 Coulomb form factor f for different kmin with optimized input . . . . 66
4.4 Coulomb form factor f from the DSE . . . . . . . . . . . . . . . . . . 68
4.5 Coulomb form factor f from the DSE, half-logarithmic . . . . . . . . 68
4.6 Coulomb form factor f from the DSE with d ≡ 1 . . . . . . . . . . . 69
4.7 Gluon two-point function, critical and subcritical . . . . . . . . . . . 69
4.8 Ghost dressing function, critical and subcritical . . . . . . . . . . . . 70
4.9 Coulomb form factor f from the DSE with critical d . . . . . . . . . . 71
4.10 Coulomb form factor f from the DSE with subcritical d . . . . . . . . 71
4.11 Coulomb form factor f from the DSE for different scaling inputs . . . 72
4.12 Coulomb form factor f from the DSE with angular approximation . . 73
4.13 Comparison of f from DSE with and without angular approximation 74

5.1 Flow equation of the quark propagator . . . . . . . . . . . . . . . . . 80
5.2 Truncated flow equation of the quark propagator . . . . . . . . . . . 82
5.3 DSE of the quark propagator with a bare quark-gluon vertex . . . . . 84
5.4 Mass function from the DSE for different couplings . . . . . . . . . . 85



12 List of Figures

5.5 Comparison mass function for gluon and photon propagator input . . 86
5.6 Two-quark kernel ϕ from the variational approach . . . . . . . . . . . 88
5.7 Quark propagator dressings for ϕ from the variational approach . . . 88
5.8 Approximated quark propagator flow with quark tadpole . . . . . . . 91
5.9 Mass function of Adler/Davis . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Mass function of Adler/Davis, half-logarithmic . . . . . . . . . . . . . 95
5.11 Mass function with Hamiltonian four-quark function, chiral . . . . . . 97
5.12 Mass function with Hamiltonian four-quark function, chiral, half-log. 98
5.13 Mass function with Hamiltonian four-quark function, non-chiral . . . 98
5.14 Comparison mass functions . . . . . . . . . . . . . . . . . . . . . . . 99
5.15 Comparison mass functions, double-logarithmic . . . . . . . . . . . . 100
5.16 Mass function with improved four-quark function, chiral . . . . . . . 103
5.17 Mass function with improved four-quark function, high IR regulator . 103
5.18 Mass function with improved four-quark function, low IR regulator . 104



Chapter 1

The Functional Renormalization

Group

In this chapter, we introduce the technique of the Functional Renormalization Group
(FRG) in the formulation by Wetterich [1] for a general quantum field theory, fol-
lowing mainly Ref. [2].

Quantum Field Theories (QFT) can be treated using different methods and ap-
proaches which all have their strengths and weaknesses. These different methods
complement each other and therefore they should be and actually are applied simul-
taneously to the same theory in order to provide multiple checks on the results: for
small couplings, perturbation theory has been successfully utilized like in low-energy
quantum electrodynamics or in high-energy quantum chromodynamics (QCD). For
large couplings, however, perturbation theory fails. In contrast, numerical methods
like Monte Carlo simulations in the framework of lattice gauge theory [3] can be
applied for arbitrary couplings and are therefore genuinely non-perturbative. But
although the systematic and statistical errors of these methods are under control,
the path from the basic definition of the theory to observable results is obscured
due to its statistical nature, which may leave some dissatisfaction behind regarding
a thorough understanding of the theory. Moreover, due to the finite size of the
lattice, it becomes increasingly costly to push the simulations into the infrared, i.e.,
long-distance regime, which is the significant scale for confinement in QCD. For
introductions to lattice gauge theory, see [4–6].

Another approach to solving quantum field theories non-perturbatively are func-
tional methods. They consist in determining generating functionals for the expect-
ation values of field operators, i.e., the correlation functions of the theory, which
as a whole contain all the physical information about a particular QFT. Functional
methods combine the advantage of perturbation theory, in allowing a largely ana-
lytical treatment, with the advantage of lattice simulations, in not being restricted
to weak coupling, to the expense, however, that often approximations have to be
made whose errors may be hard to estimate. Rather than calculating expectation
values directly like in lattice simulations, where discretized path integrals are eval-
uated, in the functional approach equations are set up which relate different field
operator expectation values to one another. The theory is then solved in terms of
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these expectation values without the need to calculate a path integral directly. The
infrared limit can be taken without the problems encountered in lattice simulations.
Their downside lies in the fact that these equations couple the correlation functions
of interest (which usually are of low order, the propagator to mention above all) to
correlation functions of higher order which are usually unknown as well. Therefore,
either terms of presumably minor influence on the quantities of interest have to be
neglected, a process commonly known as truncation, or suitable ansatzes have to
be made for them. One such functional method is the method of Dyson-Schwinger
equations, sometimes also called the quantum equations of motion, see Refs. [7–9]
and the reviews [10, 11] focussed on QCD.

In this thesis, however, we will employ another important functional method, the
Functional Renormalization Group. The basic idea of the renormalization group
is to take into account the influence of the different field modes on the correlation
functions not all-at-once, like in the Dyson-Schwinger approach, but step-by-step,
starting with the high-frequency modes, and thus the physics at small distance, going
down to the low-frequency modes, describing long-distance physics. Although the
process of renormalization had already been developed in quantum electrodynamics
in order to deal with the occurring infinities of integrals, the first steps from this
rather operational prescription backed by its success towards a more physical under-
standing were taken in statistical physics by Kadanoff [12] in form of the so-called
block-spin transformations and were continued by Wilson and others [13–16] in or-
der to describe critical phenomena, culminating in the award of the Nobel Prize in
Physics to Kenneth Wilson in 1982.

This basic idea of the renormalization group has been shaped into different forms
over the time, notably by Polchinski [17] who used it to prove the renormalizability
of φ4-theory. In this work we will apply a formulation devised by Wetterich [1].
It is based on the notion of the effective action Γk which interpolates between the
bare action S and the full quantum effective action Γ in a manner which will be
detailed in this chapter. Although in the main part of this thesis we will apply
the FRG to Yang-Mills theory in its Hamiltonian formulation, we will introduce it
in the following within the framework in which it has commonly been used so far,
i.e., the Lagrangian formulation of a general quantum field theory. For reviews and
introductions, see Refs. [2, 18–25]. See also Ref. [26] for an early application to
Yang-Mills theory and Ref. [27] for an application to quantum gravity.

The starting point for the derivation of the flow equation for the effective action
is the generating functional of the Green functions,

Z[j] =

∫

Dϕ exp{−S[ϕ] + j · ϕ} . (1.1)

Here, ϕ and j denote collectively all fields involved and the corresponding sources.
Furthermore, the scalar product j ·ϕ includes summation over all indices and integ-
ration over space-time. The theory is specified by the classical action S[ϕ] and the
functional integral measure. In the FRG approach the generating functional is IR
regularized by adding a regulator term ∆Sk to the classical action S. It depends on
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a cut-off momentum k and is chosen to be quadratic in the fields,

∆Sk[ϕ] :=
1

2
ϕ · Rk · ϕ =

1

2

∫
ddp

(2π)d
ϕ(−p)Rk(p)ϕ(p) . (1.2)

Because of this form of the regulator term, the regulator function Rk(p) acts like an
effective momentum dependent mass and is chosen to have the properties

lim
p→0

Rk(p) > 0 ,

lim
k→0

Rk(p) = 0 ,

lim
k→∞

Rk(p) → ∞ .

(1.3)

The first condition ensures that Rk(p) is indeed an infrared regulator and suppresses
the propagation of the modes with momentum p . k. The second condition implies
that the momentum modes with p & k are unaffected by the regulator and that the
full finite renormalized generating functional of the theory is recovered as the cut-off
scale k is pushed to zero, because the only modification we have made of the theory
is the term ∆Sk[ϕ]. The third condition ensures that the initial condition at infinity
for the cutoff-dependent effective action Γk, which we are going to define later in
Eq. (1.10), coincides with the classical action S, limk→∞ Γk = S, see the discussion
below Eq. (1.11). A typical regulator function is sketched in Fig. 1.1.

In the FRG flow equation approach to Yang-Mills theory, we will start at a large
cut-off scale k, where the theory is under control due to asymptotic freedom, and
then let the cut-off k flow to the small momentum regime where the theory cannot
be treated perturbatively anymore. The evolution of the Green’s functions with
the cut-off scale k is described by a flow equation which is obtained by taking the
derivative of the regulated generating functional,

Zk[j] =

∫

Dϕ exp{−S[ϕ] − ∆Sk[ϕ] + j · ϕ} =: eWk[j] , (1.4)

w.r.t. the momentum scale k. The flow of Zk is then derived as

∂tZk[j] =

(

−1

2

δ

δj
· Ṙk ·

δ

δj

)

Zk[j] , (1.5)

where the dot on R stands for the derivative w.r.t. the dimensionless variable t =
ln k/k0. Here, k0 is an arbitrary reference scale. The functional derivative δ/δj in
momentum space is understood as

δ

δj
(p) :=

δ

δj(−p) . (1.6)

Expressing Eq. (1.5) in terms of the generating functional of the connected Green
functions, Wk[j], defined in Eq. (1.4), we get

∂tWk[j] = −1

2

δWk

δj
· Ṙk ·

δWk

δj
− 1

2
Tr Ṙk

δ2Wk

δjδj
, (1.7)
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pk

k R
k

(d/dt) R
k

Figure 1.1: A typical regulator function Rk(p) and its scale derivative ∂tRk(p) are shown,
where t := ln k/k0 with an arbitrary reference scale k0. It fulfils the properties of Eq.
(1.3). Whereas for p & k the regulator vanishes and the field modes therefore fully
contribute to the generating functional, the modes with p . k are still suppressed by
an effective mass term. The shape of the scale derivative ∂tRk(p), which controls the
loop integrals in the flow equations, see Eqs. (1.20), (1.27), and Figs. 1.2, 1.4, shows
that only a narrow momentum shell around k ∼ p contributes to the flow at k = p, in
accordance with Wilson’s picture of renormalization. (Picture taken from Ref. [2].)

where

Tr Ṙk
δ2Wk

δjδj
:=

∫
ddp

(2π)d
Ṙk(p)

δ2Wk

δj(−p)δj(p) . (1.8)

By taking derivatives of Eq. (1.7) w.r.t. j one obtains the flow equations for the
connected Green’s functions. By performing a Legendre transformation from the
sources j to the classical field φ, which defines the sources jk[φ] in terms of the
classical field,

φ =
δWk[j]

δj

∣
∣
∣
∣
j=jk[φ]

, (1.9)

we obtain the effective action

Γk[φ] = (−Wk[j] + j · φ)j=jk[φ] − ∆Sk[φ] . (1.10)

This Legendre transformation is a slightly modified version of the usual one that
defines the transition from the generating functional W of connected Green’s func-
tions to the generating functional Γ of proper Green’s functions, which takes into
account the regulator term quadratic in the fields. Eq. (1.10) also implies that

jk[φ] =
δ(Γk + ∆Sk)

δφ
. (1.11)
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As the regulator vanishes for k → 0, see Eq. (1.3), we retrieve the full quantum
effective action,

Γk→0[φ] = Γ[φ] . (1.12)

For the limit k → ∞ we consider the exponential of the definition of the effective
action, Eq. (1.10),

e−Γk[φ] =

∫

Dϕ exp

{

−S[ϕ] − 1

2
ϕ · Rk · ϕ+ jk[φ] · (ϕ− φ) +

1

2
φ ·Rk · φ

}

=

∫

Dϕ exp

{

−S[ϕ] +
δΓk[φ]

δφ
· (ϕ− φ) − 1

2
(ϕ− φ) · Rk · (ϕ− φ)

} (1.13)

where we have used Eq. (1.11). As limk→∞Rk(p) → ∞, taking this limit, the last
exponential is a representation of the delta functional (up to a factor):

exp

{

−1

2
(ϕ− φ) ·Rk · (ϕ− φ)

}

k→∞−→∼ δ[ϕ− φ] , (1.14)

so that

e−Γk [φ] ∼
∫

Dϕ exp

{

−S[ϕ] +
δΓk[φ]

δφ
· (ϕ− φ)

}

δ[ϕ− φ] = e−S[φ] . (1.15)

Therefore, Γk→∞[φ] ∼ S[φ] + . . . . More detailed considerations using the saddle
point approximation, which becomes exact in the limit k → ∞, show that indeed

Γk→∞[φ] = S[φ] (1.16)

holds, up to a modification of the bare parameters contained in the action S of a
renormalizable theory, see [28].

By taking the derivative of the effective action Γk w.r.t. t = ln k/k0 and using its
definition Eq. (1.10) together with Eq. (1.7), one arrives at

∂tΓk[φ] =
1

2
Tr Ṙk

δ2Wk

δjδj
. (1.17)

The second derivative ofWk w.r.t. the currents is the propagator (with non-vanishing
sources). It is related to the inverse of the second derivative of the effective action,

δ2Wk

δjδj
=

(
δ2Γk
δφδφ

+Rk

)−1

. (1.18)

Equation (1.18) follows from Eqs. (1.9) and (1.11) as well as

δ

δφ
j =

(
δ

δj
φ

)−1

=

(
δ2Wk

δjδj

)−1

. (1.19)
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k∂kΓk[φ] =
1

2

Figure 1.2: The flow equation of the effective action, Eq. (1.20). The solid line with the
filled black circle denotes the regularized scalar propagator at cut-off momentum k for

non-vanishing field φ, i.e.,
(

Γ
(2)
k [φ] + Rk

)−1
. The regulator insertion Ṙk is represented

by a square with a cross.

Inserting Eq. (1.18) into Eq. (1.17) we obtain Wetterich’s flow equation for the
effective action [1], which is the central equation of this approach and of the present
work:

Γ̇k[φ] =
1

2
Tr Ṙk

(

Γ
(2)
k [φ] +Rk

)−1

, (1.20)

where the dot denotes the derivative w.r.t. t and

Γ
(n)
k,1···n[φ] :=

δnΓk[φ]

δφ1 · · · δφn
(1.21)

are the one-particle irreducible n-point functions (proper vertices) at non-vanishing
classical field φ. We have also introduced a condensed notation where n stands for
the space-time variable, φn = φ(xn). This equation is diagrammatically depicted in
Fig. 1.2.

The structure of Eq. (1.20) is independent of the details of the underlying theory,
i.e., of the explicit form of the action S[φ]; it is but a mere consequence of the form
of the regulator term (1.2) being quadratic in the fields. Although we have started
out with the generating functional Z[j] of Green’s functions, which is defined by a
functional integral, Eq. (1.20) and the equations we will derive from it involve no
evaluation of a functional integral as they relate different expectation values to each
other. The regulator function Rk(p) effects an infrared regularization, in form of the
mass term in the propagator in Eq. (1.20) and in all the equations derived from it,
as well as an ultraviolet regularization in form of the insertion Ṙk(p) which cuts off
the loop integral in the ultraviolet, see Fig. 1.1.

The flow equation (1.20) in general cannot be solved exactly. Therefore, we have to
apply approximation methods which consist in systematically taking into account
more and more operators in the effective action, e.g., in the gradient expansion,
where the effective action is constructed from derivative operators of higher and
higher order:

Γk[φ] =

∫

ddx

[

Vk[φ(x)] +
1

2
Zk[φ(x)](∂µφ(x))2 + O(∂4)

]

(1.22)
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Γk=Λ = Sbare

Γk=0 = Γ Γ(3)

R1

R2

R3

Γ(4)

Γ(2)

Figure 1.3: The space of all effective actions Γ[φ] for a given field content is called
theory space. The effective action Γk[φ] describes a trajectory from the defining bare
action Γk=Λ = S to the full quantum effective action Γk=0 = Γ, determined by the flow
equation (1.20). For the same bare action Γk=Λ the trajectories for different regulator
functions Rk(p) always end in the same point. The depiction is highly simplified as
theory space and even the correlation functions shown as axes are infinite dimensional.

In the present work, however, we apply the vertex expansion of the effective action,

Γk[φ] =
∑

n

1

n!
Γ

(n)
k,1···n · φ1 · · ·φn (1.23)

where the expansion coefficients are the proper vertices. (We denote Γ
(n)
k,1···n :=

Γ
(n)
k,1···n[φ = 0]). With this parameterization we can symbolically depict the flow of

the effective action Γk[φ] in theory space, which is the space of all effective actions
for a given field content, here for the scalar field φ, see Fig. 1.3. It is called theory
space because each point in it is an effective action Γ[φ] and therefore a whole
quantum field theory, and consequently, the theory space is infinite dimensional.
As axes we choose the vertex functions (which themselves are infinite dimensional).
The flow starts at a high cut-off scale k = Λ, which should be chosen much larger
than any other scale involved in the theory. There the bare action Γk=Λ = S defines
the theory. The cut-off scale k is then lowered down to k = 0: as more and more
lower frequency modes are taken into account, the effective action describes a path
through theory space ending at the full quantum effective action Γk=0 = Γ where all
field modes now contribute. Depending on the exact shape of the regulator function
Rk(p), the exact paths may all be different but they always end at Γ, which is
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k∂k
−1 = + −

Figure 1.4: Flow equation (1.27) for the inverse propagator (two-point function) Γ
(2)
k =

〈φφ〉−1. Here and in all the following diagrammatic equations, lines with full circles

represent
(

Γ
(2)
k + Rk

)−1
on the r.h.s. of the equation, but only Γ

(2)
k

−1
on its l.h.s. Open

circles represent full proper vertices Γ
(n)
k , while the square with a cross represents the

regulator insertion Ṙk.

guaranteed by the property Rk=0(p) = 0 shared by all the regulator functions, see
Eq. (1.3). Unfortunately, this need not be true any longer if truncations are applied.

By taking functional derivatives of the flow equation for the effective action (1.20)
w.r.t. the fields one obtains the flow equations for the (inverse) propagators or ver-
tices. From (

Γ
(2)
k [φ] +Rk

)−1 (

Γ
(2)
k [φ] +Rk

)

= 1 (1.24)

we obtain

δ

δφi

(

Γ
(2)
k [φ] +Rk

)−1

= −
(

Γ
(2)
k [φ] +Rk

)−1

Γ
(3)
k,i [φ]

(

Γ
(2)
k [φ] +Rk

)−1

. (1.25)

Taking one functional derivative of Eq. (1.20) w.r.t φ1 we find (using the preceding
equation)

Γ̇
(1)
k,1[φ] = −1

2
Tr Ṙk

(

Γ
(2)
k [φ] +Rk

)−1

Γ
(3)
k,1[φ]

(

Γ
(2)
k [φ] +Rk

)−1

(1.26)

and a second derivative w.r.t φ2 as well as setting φ = 0 yields

Γ̇
(2)
k,12 =

1

2
Tr Ṙk

(

Γ
(2)
k +Rk

)−1
(

−Γ
(4)
k,12 +

[

Γ
(3)
k,1

(

Γ
(2)
k +Rk

)−1

Γ
(3)
k,2 + (1 ↔ 2)

])

(

Γ
(2)
k +Rk

)−1

.

(1.27)

We have suppressed here all internal indices, which are summed (integrated) over.
Eq. (1.27) is diagrammatically illustrated in Fig. 1.4.

In this chapter we have presented the implementation of the FRG into the Lag-
rangian formulation of scalar QFT. In Chap. 3 we will implement it into the
Hamiltonian formulation of Yang-Mills theory, which we will introduce in Chap.
2, and derive similar equations for the gluon and ghost propagators and also for the
quark propagator in Chap. 5.



Chapter 2

Hamiltonian Yang-Mills Theory in

Coulomb Gauge

In this chapter we introduce the Hamiltonian formulation of Yang-Mills theory in
Coulomb gauge as opposed to the standard presentation of the theory in the Lag-
rangian formulation in Landau gauge. The Hamiltonian formulation provides the
framework of the present work. In Chap. 3 we will incorporate the method of the
Functional Renormalization Group, presented in Chap. 1, into this framework.

The Standard Model of Elementary Particle Physics describes the Electroweak
Interaction and the Strong Interaction via a special kind of Quantum Field Theories,
the non-Abelian gauge theories, also called Yang-Mills theories. In this work we focus
on the Strong Interaction which is described by a Yang-Mills theory based on the
non-Abelian Lie group SU(3), called Quantum Chromodynamics (QCD). We will,
however, mostly consider SU(N) gauge theories in general.

The term ‘gauge invariance’ was first used in 1919 by Weyl [29] for invariance under
space-time dependent scale changes in order to unify gravity with electromagnetism,
unsuccessfully though. Fock showed that scalar Quantum Electrodynamics (QED)
can be based on what today is called the gauge principle [30], whose similarity to
Weyl’s original scale change was pointed out by London [31]. Henceforth, the term
‘gauge invariance’ was used in the modern sense [32]. While it referred to Abelian
U(1) symmetry then, the generalization to non-Abelian gauge groups was given by
Yang and Mills in 1954 [33]. For detailed accounts of the history of Yang-Mills
theory, see Refs. [34, 35], for introductory textbooks, see, e.g., [36–38].

The application of Yang-Mills theory to the Strong Interaction in form of QCD
is rooted in the quark model proposed by Gell-Mann [39]. This rather schematic
model of baryons and mesons is based on an internal quantum number called flavour,
associated with the group SU(3). In order to avoid problems with Fermi statist-
ics, a further internal quantum number called colour was introduced that is also
based on an SU(3)-symmetry. Gauging this colour symmetry then led to QCD [40].
Yang-Mills theories have been shown to exhibit asymptotic freedom [41, 42], which
means that the force becomes arbitrarily small for short distances, and explained
experimental results from deep inelastic scattering. Gross, Politzer, and Wilczek
have been honoured with the Nobel Prize in Physics in 2004 for this insight. Con-
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finement, however, could not yet be inferred from QCD. It means that asymptotic
states must be colourless, which includes the fact that the quarks are ‘confined’ in-
side the hadrons and cannot be observed separately. An attempt at deducing this
property from Yang-Mills theory is part of the present work, especially of Chap. 4.

In the following, we present the Hamiltonian approach to Yang-Mills theory in
Coulomb gauge as set forth in [43]. Although we will not explicitly make use of the
Hamiltonian operator and of canonical quantization in our approach, they provide
the frame in which the present work is embedded.

Note that from here on until Eq. (2.22) excluded, we use the metric gµν =
diag(1,−1,−1,−1). Greek indices refer to space-time, Latin indices to space only.
Upper indices denote contravariant tensor components, lower indices covariant com-
ponents. We will change this notation from Eq. (2.22) on.

The defining Lagrangian of Yang-Mills theory reads

L = −1

4
F a
µνF

µν
a + ψ̄(iγµDµ −m)ψ (2.1)

where ψ is a collection of N Dirac fields, ψ = (ψ1, . . . , ψN), which transform in the
fundamental representation of the gauge group and which we will refer to as matter
or quark fields henceforth. In this work we will focus on the gauge group SU(N).
The gauge covariant derivative

Dµ = ∂µ + igAaµT
a (2.2)

effects the coupling of the quark sector to the gauge or gluon field Aaµ. The matrices
T a form the fundamental, N -dimensional, Hermitean representation of the gauge
group SU(N). The dynamics of the pure gauge field is governed by the first term
in the Lagrangian where the field strength tensor is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν (2.3)

where the fabc are the structure constants of the gauge group defined via

[T a, T b] = ifabcT c . (2.4)

This Lagrangian is invariant under the local gauge transformations

ψ → ψU = Uψ

Aµ = AaµT
a → AUµ = UAµU

† − i

g
U(∂µU

†)
(2.5)

with
U(x) = exp(iθa(x)T a) . (2.6)
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The transition to the Hamiltonian formulation is made by means of the usual Le-
gendre transformation. To perform it, we need the momentum density of the fields:

Πa,i
A (x) =

δS

δ(∂0Aai (x))
= −1

2

∫

d4y
δ

δ(∂x0A
a
i (x))

F b
0j(y)F

b,0j(y)

= −
∫

d4yF b,0j(y)
δ

δ(∂x0A
a
i (x))

(∂y0A
b
j(y) − ∂yjA

b
0(y) + · · · )

= −F b,0j(x)gij = F a,i0(x) ,

Πψ =
δS

δ(∂0ψ)
= iψ† .

(2.7)

Note that
Πa
A,0 = 0 . (2.8)

In analogy to electrodynamics, we can define a chromo-electric field Ea
i by

F a
i0 = Πa

A,i = Ea
i . (2.9)

The Hamiltonian is defined as the Legendre transform

H =

∫

d3x(Πa,i
A ∂0A

a
i + Πψ∂0ψ − L) . (2.10)

From Eq. (2.3) we obtain the time derivative of the spatial gauge field components
as

∂0A
a
i = −Πa

A,i + (δab∂i + gfabcAci)A
b
0 = −Πa

A,i + D̂ab
i A

b
0 (2.11)

where we have introduced the covariant derivative in the adjoint representation of
the gauge group

D̂ab
µ := δab∂µ + gfabcAcµ . (2.12)

The Hamiltonian becomes

H =

∫

d3x( − Πa,i
A Πa

A,i + Πa,i
A D̂

ab
i A

b
0 + iψ†∂0ψ +

1

4
F a
ijF

ij
a +

1

2
F a

0iF
0i
a

− iψ†∂0ψ − iψ̄γi∂iψ + gAa0ψ̄γ
0T aψ + gAai ψ̄γ

iT aψ +mψ̄ψ) .

(2.13)

Motivated by electrodynamics, we can define a chromo-magnetic field Ba
i by

Ba
i =

1

2
εimnF

a
mn . (2.14)

Furthermore, we perform an integration by parts in the D̂-term, getting

H =

∫

d3x

[

1

2
(Πa2

A,i +Ba
i
2) + Aa0

(

D̂ab
i Πb

A,i + gψ̄T aγ0ψ
)

− iψ†αi(∂i + igAai T
a)ψ +mψ†βψ

]

.

(2.15)
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The second of the two terms coupling to the time-component of the gauge field can
be interpreted as the charge density of the matter field which we abbreviate as

ρam = ψ̄T aγ0ψ . (2.16)

The Hamiltonian equation of motion for Πa
0,

∂0Π
a
0 = − δH

δAa0
, (2.17)

in view of Eq. (2.8) turns into

D̂ab
i Πb

A,i + gψ̄T aγ0ψ = 0 . (2.18)

This equation is nothing but the non-Abelian analogue to the Gauss law in elec-
trodynamics, as can be seen by choosing vanishing structure constants of the gauge
group, fabc = 0, which means returning to an Abelian gauge theory as electrodynam-
ics is: the preceding equation indeed turns into

∂iE
a,i = gρam . (2.19)

The Hamiltonian equation of motion for Aa0 is

∂0A
a
0 =

δH

δΠa
A,0

= 0 (2.20)

so Aa0 is in fact no dynamic variable at all. The fact that its conjugate momentum
Πa
A,0 vanishes, see Eq. (2.8), poses a problem for canonical quantization where the

commutator of the field operator and its momentum operator, [Aa0,Π
a
A,0], cannot be

zero everywhere. To avoid this problem, we can use the freedom to choose a gauge
such that

Aa0 ≡ 0 (2.21)

which is called temporal gauge or Weyl gauge.
Because no temporal vector components occur anymore, from now on we will

exclusively use contravariant vector components which we denote with a subscript.
Note that the partial derivative transforming covariantly ∂i ≡ ∂/∂xi already involves
the contravariant position vector.

In Weyl gauge the Hamiltonian simplifies to

H =

∫

d3x

[

1

2
(Πa2

A,i +Ba
i
2) − iψ†αi(∂i − igAai T

a)ψ +mψ†βψ

]

, (2.22)

Now we can promote the fields and their conjugate momenta to operators which
fulfil the canonical equal-time commutation relations (notice that we work in the
Schrödinger picture),

[Aai (x),Πb
A,j(y)] = iδabδijδ

3(x − y)

[Aai (x), Abj(y)] = [Πa
A,i(x),Πb

A,j(y)] = 0 ,
(2.23)
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or anti-commutation relations in the case of the matter fields (note that the conjug-
ate momentum is given by Eq. (2.7)),

{ψaα(x), ψ†b
β (y)} = δabδαβδ

3(x − y)

{ψaα(x), ψbβ(y)} = {ψ†a
α (x), ψ†b

β (y)} = 0 .
(2.24)

After fixing the Weyl gauge, the Hamiltonian (2.22) still possesses an invariance
under purely spatial gauge transformations U(x). Fixing it poses no problem in the
fermionic sector of the theory so we focus on the pure gauge part. In this work, we
choose Coulomb gauge,

∂iA
a
i (x) = 0, (2.25)

and thereby resolve the quantum analogue to the classical Gauss law in Eq. (2.18)
which is (without dynamical quark fields)

D̂ab
i Πb

A,i|φ〉 = 0 , (2.26)

where |φ〉 is a state vector of the theory. It turns out that the Gauss operator
D̂ab
i Πb

A,i is just the generator of the operators U which implement the spatial gauge
transformations U(x) on the states |φ〉. This means that the states fulfilling the
Gauss law (2.26) are the gauge invariant ones. For further details regarding the
Gauss law and the simultaneous choice of Weyl gauge and Coulomb gauge, which is
possible only for one time slice but not for the whole space-time, see Ref. [44].

Fixing the Coulomb gauge implies that the transverse components A⊥ are the
physical degrees of freedom. They are defined as

A⊥
i (x) := tij(x)Aj(x) (2.27)

with the transverse projector

tij(x) = δij −
∂i∂j
∂2

, (2.28)

which reads in momentum space

A⊥
i (p) := tij(p)Aj(p) , tij(p) = δij −

pipj
p2

. (2.29)

The field operator and its conjugate momentum have to fulfil the canonical com-
mutation relations

[Â⊥a
i (x), Π̂⊥b

A,j(y)] = iδabtij(x)δ3(x − y) . (2.30)

This can be achieved by choosing a representation where, in analogy to quantum
mechanics, the field operator acts multiplicatively on the state in field representation,
i.e., on the wave functional,

〈A⊥|Â⊥a
i (x)|φ〉 = A⊥a

i (x)φ[A⊥] , (2.31)
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where
〈A⊥|φ〉 = φ[A⊥] (2.32)

is the wave functional which describes the state the system is in and |A⊥〉 is an
eigenstate of the field operator,

Â⊥a
i (x)|A⊥〉 = A⊥a

i (x)|A⊥〉 . (2.33)

The momentum operator acts as a derivative on the wave functional

〈A⊥|Π̂⊥a
A,i|φ〉 =

δ

iδA⊥a
i (x)

φ[A⊥] . (2.34)

Henceforth, we work with transverse fields and momenta exclusively and therefore
drop the transversality sign as well as the hat denoting an operator. The pure gauge
part of the Yang-Mills Hamiltonian in Weyl gauge (2.22) can be expressed using
only transverse operators [45], turning into

Hg =
1

2

∫

d3x[J−1Πa
A,i(x)JΠa

A,i(x)+Ba
i (x)2]+

g2

2

∫

d3[xy]J−1ρa(x)F ab(x,y)Jρb(y) .

(2.35)
The Jacobian introduced by the transition to transverse fields,

J ≡ J [A] = det(−∂iD̂i[A]) (2.36)

is a functional determinant called the Faddeev-Popov determinant. The last term
of the Hamiltonian is called the Coulomb term: it describes the interaction of the
charge densities

ρa(x) ≡ ρ[A,ΠA]a(x) = fabcAci(x)Πb
A,i(x) + ρam(x) , (2.37)

the first term of which describes the charge of the gauge field itself while the second
term denotes the charge of the matter fields, which we have reintroduced here,
through the Coulomb propagator

F ab(x,y) ≡ F [A]ab(x,y) = [(−∂iD̂i[A])−1(−∂2)(−∂jD̂j [A])−1]ab
x,y . (2.38)

These terms can be made more transparent by reducing them to the familiar case
of an Abelian theory like electrodynamics by setting fabc = 0. The gauge covariant
derivative then turns into the ordinary partial derivative, D̂ED,i = ∂i, so the Faddeev-
Popov determinant reduces to

JED = det(−∂2) , (2.39)

and drops out of the Hamiltonian. The charge density reduces to the charge density
of matter alone,

ρaED = ρam , (2.40)
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which shows that the electromagnetic field carries no charge itself, and the Coulomb
propagator turns into

F ab
ED(x,y) = [(−∂2)−1(−∂2)(−∂2)−1]ab

x,y = [(−∂2)−1]ab
x,y =

δab

4π|x − y| , (2.41)

i.e., the ordinary Coulomb potential between two electric charges. In total, the
Yang-Mills Hamiltonian transforms into the electrodynamics Hamiltonian,

HED =
1

2

∫

d3x[Ea2
i (x) +Ba

i (x)2] +
g2

2

∫

d3[xy]ρam(x)
1

4π|x − y|ρ
a
m(y) . (2.42)

Returning to Yang-Mills theory, the coordinate change to transverse gauge fields
implies that its Jacobian is part of the measure of integration over these fields.
Therefore, the matrix element of an operator O[A,Π] between two states |φ1〉 and
|φ2〉 in field space reads

〈φ1|O[A,Π]|φ2〉 =

∫

DAJ [A]φ∗
1[A]O[A,Π]φ2[A] . (2.43)

In the next chapter we will use this expression as the starting point to implement
the functional renormalization group into the Hamiltonian approach to Yang-Mills
theory in Coulomb gauge.

Most of the progress made so far in the formulation presented here has been
achieved by applying the variational principle [43, 46–52], for a concise introduction
see also Ref. [53]. There, the vacuum state |φ〉 of the theory, which is the eigenstate
of the Yang-Mills Hamiltonian (without the charge density of matter) with the lowest
energy,

Hg|φ〉 = Emin|φ〉 , (2.44)

is determined approximately by making a suitable ansatz for |φ〉 and minimizing its
energy expectation value,

〈φ|Hg|φ〉
〈φ|φ〉 → min. (2.45)

With the vacuum wave functional so determined, the quantities of interest like the
gluon propagator or the static quark potential can be calculated. As with other
functional approaches, however, this method in general leads to a set of coupled
integral equations which require further approximations. A specific advantage of
the Hamiltonian formulation is its close connection to physics as demonstrated in
the dual superconductor picture of the QCD vacuum, see, e.g., Ref. [54].

Another major approach to Yang-Mills theory is the application of the Dyson-
Schwinger equations. Although the DSE approach has been used mainly in Landau
gauge so far [10, 55–59], lately there have been many results obtained in Coulomb
gauge, see, e.g., Refs. [60–62] or for some recent work also including quarks, see
Refs. [63–66]. Its setting, however, is the Lagrangian formulation of the theory
where the definition of a potential between colour charges is not as straightforward
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as in the Hamiltonian approach, see Eq. (2.38) and Chap. 4. However, a connection
can be established between the colour Coulomb potential and the 〈A0A0〉 correlator
[60].

Much progress in Coulomb gauge Yang-Mills theory has also been achieved in
lattice gauge theory. Although it is an advantage of the lattice formulation that
no gauge fixing is required and that, starting from the action, a direct access to
observable quantities is provided, it can also be used to calculate gauge dependent
quantities like correlation functions. Particularly, in Ref. [67] the simple form of the
gluon propagator proposed by Gribov [68] has been confirmed. Moreover, a simple
relation between the gluon propagators in Coulomb and Landau gauge has been
shown [69]. Also the ghost and quark propagators are being incorporated [70]. For
a short review of older results, see Ref. [71].

In this work now, the method of the Functional Renormalization Group is applied
to Hamiltonian Yang-Mills theory in Coulomb gauge.



Chapter 3

The Gluon and Ghost Propagators

In this chapter, we will apply the method of renormalization group flows introduced
in Chap. 1 to the Hamiltonian Yang-Mills theory in Coulomb gauge shown in Chap.
2. We will derive the flow equations for the static gluon and ghost propagators.
A unique infrared scaling relation will be derived and the truncations necessary to
make these two flow equations a closed system of equations will be discussed. This
system of equations will be solved numerically using two different approximations.
Both solutions will be shown to fullfil the so-called infrared scaling relation which
relates the infrared behaviour of the gluon and the ghost propagator to each other.

Most of the content of this chapter is based on Ref. [72].

3.1 FRG in Hamiltonian Yang-Mills Theory

In Chap. 1, we have shown the derivation of the flow equation for the effective action
in the Lagrangian formulation of QFT. In this section we derive the corresponding
flow equation for Yang-Mills theory in Coulomb gauge in the Hamiltonian approach.

As in the Lagrangian approach, see Eq. (1.1), we start from the generating func-
tional of the Green functions, which in this case are the static, equal-time Green
functions. It can be obtained by using Eq. (2.43) to express the vacuum expectation
value of several field operators A as

〈φ|A1 · · ·An|φ〉 =

∫

DA det(−∂iD̂i)A1 · · ·An|φ[A]|2

=
δn

δJ1 · · · δJn

∫

DA det(−∂iD̂i)|φ[A]|2 exp(J · A)

∣
∣
∣
∣
J=0

(3.1)

with the abbreviation J · A including the internal indices,

J · A =

∫
d3p

(2π)3
Jai (−p)Aai (p) . (3.2)

The vacuum wave functional is denoted as 〈A|φ〉 = φ[A]. Therefore, we recognize
the expression

Z[J ] =

∫

DA det(−∂iD̂i)|φ[A]|2 exp(J ·A) (3.3)
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as the generating functional of Green functions. We represent the Faddeev-Popov
functional determinant det(−∂iD̂i) in the standard fashion as an integral over ghost
fields c and c̄,

det(−∂iD̂i) =

∫

D[c̄c] exp

(

−
∫

d3x c̄a(x)(−∂iD̂i)
abcb(x)

)

. (3.4)

Together with the absolute square of the vacuum wave functional, this permits the
definition of an action S via

exp(−S) := exp

(

−
∫

d3x c̄a(x)(−∂iD̂i)
abcb(x)

)

|φ[A]|2 (3.5)

so that the generating functional becomes

Z[J, σ, σ̄] =

∫

D[Ac̄c] e−S+J ·A+σ̄·c+c̄·σ (3.6)

where the ghost sources σ̄ and σ have been introduced. This expression has precisely
the standard form of the generating functional (1.1) in Lagrangian field theory,
except that the functional integral extends over time-independent fields such that
it generates static, equal-time correlation functions. Therefore, we can repeat, step
by step, the derivation in Chap. 1 to obtain the corresponding FRG flow equation,
which will have the same structure as Eq. (1.20). Introducing regulator terms for
ghosts and gluons via ∆Sk, see Eq. (1.2), the regulated generating functional (1.4)
now reads

Zk[J, σ, σ̄] =

∫

D[Ac̄c] e−S−∆Sk+J ·A+σ̄·c+c̄·σ , (3.7)

where the regulator term is chosen as

∆Sk[A, c, c̄] =
1

2
A · RA,k · A+ c̄ · Rc,k · c . (3.8)

Here we have again used the abbreviation for scalar products, e.g.,

A · RA,k · A =

∫
d3p

(2π)3
Aai (−p)Rab

A;k,ij(p)Abj(p) . (3.9)

Due to global colour symmetry and spatial rotational symmetry, the regulators take
the form

Rab
A;k,ij(p) =RA,k(p)tij(p)δab ,

Rab
c,k(p) =Rc,k(p)δ

ab ,
(3.10)

with the notation p = |p| that we will use from now on. Both regulators are chosen to
depend on the same dimensionless shape function rk(p). Accounting for dimensions
we set

RA,k(p) = 2p rk(p) ,

Rc,k(p) = g p2 rk(p) = gR̄c,k(p) ,
(3.11)
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see the remarks following Eq. (3.33) concerning the factor g included in the definition
of Rc,k(p).

From the regularized generating functional (3.7) and the regulator term (3.8) we
first derive the flow equation for Zk,

∂tZk[J, σ, σ̄] =

(

−1

2

δ

δJ
· ṘA,k ·

δ

δJ
+

δ

δσ
· Ṙc,k ·

δ

δσ̄

)

Zk[J, σ, σ̄] , (3.12)

where the difference in signs of the gluon and ghost regulator term compared to
Eq. (3.8) is due to the anticommutation property of the ghost fields and sources.
The definition of the Schwinger functional Wk generating connected Green functions
reads

Wk[J, σ, σ̄] := lnZk[J, σ, σ̄] , (3.13)

and therefore its flow is expressed as

∂tWk =

(

−1

2

δWk

δJ
· ṘA,k ·

δWk

δJ
− 1

2
Tr ṘA,k

δ2Wk

δJδJ

+
δWk

δσ
· Ṙc,k ·

δWk

δσ̄
− Tr Ṙc,k

δ2Wk

δσ̄δσ

)

.

(3.14)

The effective action Γk is defined via a modified Legendre transformation,

Γk[A, c̄, c] := −Wk[Jk, σk, σ̄k] + Jk · A+ σ̄k · c + c̄ · σk −
1

2
A · RA,k ·A− c̄ · Rc,k · c .

(3.15)

This modification of the Legendre transformation is chosen because it renders the
flow equation for the effective action more elegant and it ensures that the effective
action turns into the classical action for high cut-off momenta k, see the discussion
starting at Eq. (1.13). However, it turns into the usual one upon taking k →
0, because we will choose the regulator functions in compliance with Eq. (1.3),
RA,k=0 = Rc,k=0 = 0. In Eq. (3.15), the sources are functionals of the fields (that are
not denoted), which are the expectation values of the corresponding field operators.
The relations between sources and fields are given by

Aai (−p) =
δWk[Jk, σk, σ̄k]

δJai (p)
,

ca(−p) =
δWk[Jk, σk, σ̄k]

δσ̄a(p)
,

c̄a(−p) = − δWk[Jk, σk, σ̄k]

δσa(p)
,

(3.16)

abbreviated as

A =
δWk

δJ
, c =

δWk

δσ̄
, c̄ = −δWk

δσ
. (3.17)
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With these definitions and with Eq. (3.14), the flow of the effective action is written
as

∂tΓk = − (∂tWk)[Jk, σk, σ̄k] − ∂tJk ·
δWk

δJ
− ∂tσk ·

δWk

δσ
− ∂tσ̄k ·

δWk

δσ̄

+ A · ∂tJk + ∂tσ̄k · c− ∂tσk · c̄−
1

2
A · ṘA,k · A− c̄ · Ṙc,k · c

=

(
1

2
Tr ṘA,k

δ2Wk

δJδJ
+ Tr Ṙc,k

δ2Wk

δσ̄δσ

)∣
∣
∣
∣
Jk,σk,σ̄k

.

(3.18)

In the present case, to keep the derivation of the propagator flows compact, it is
convenient to switch to the superfield formalism 1, i.e., we combine gluon and ghost
fields into a superfield

ϕ = (A, c, c̄) , ϕ̄ = (A,−c̄, c) . (3.19)

Accordingly, we introduce the supersources

I = (J, σ, σ̄) , Ī = (J,−σ̄, σ) (3.20)

and supermatrices

Rk = diag
(
RA,k, Rc,k, R

T
c,k

)
, M = diag(1,−1,−1) , (3.21)

where M enters the definition of the supertrace,

STr(. . . ) := Tr(M . . . ) . (3.22)

With this notation the effective action (3.15) is given by

Γk[φ] = −Wk[Ik] + Ik · φ̄− 1

2
φ̄RkMφ , (3.23)

where Wk[Ik] is defined by Wk := lnZk and

φ̄ =
δWk[Ik]

δIk
(3.24)

is the classical superfield φ = 〈ϕ〉 with φ = (A, c, c̄), where we will use the same
symbols for the components of φ and ϕ as the latter will not turn up anymore in
the following. The flow equation (3.18) of the effective action reads (cf. Eq. (1.17))

∂tΓk[φ] =
1

2
STr Ṙk

δ2Wk

δĪδI
. (3.25)

1To maintain clarity of presentation, we have not started in the superfield formalism from the
beginning. For a derivation that starts with the generating functional Z in the superfield
formalism, see the discussion from Eq. (5.4) on, there with quark fields included.
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With Eq. (3.24) we derive from (3.23) (cf. Eq. (1.18))

δ2Wk

δĪδI
=

(
δ2Γk
δφ̄δφ

+ Rk

)−1

(3.26)

and obtain the flow equation (cf. Eq. (1.20))

∂tΓk =
1

2
STr Ṙk

(

Γ
(2)
k + Rk

)−1

, (3.27)

where Γ
(2)
k := δ2Γk/δφ̄δφ. In components of the superfield, Eq. (3.27) reads

∂tΓk =
1

2
Tr














ṘA,k

−Ṙc,k

−ṘT
c,k



























δ2Γk
δAδA

+ RA,k
δ2Γk
δAδc

δ2Γk
δAδc̄

− δ2Γk
δc̄δA

−δ2Γk
δc̄δc

+ Rc,k −δ2Γk
δc̄δc̄

δ2Γk
δcδA

δ2Γk
δcδc

δ2Γk
δcδc̄

+ RT
c,k














−1

(3.28)

From this equation we will derive the flow equations for the ghost and gluon propag-
ators in Sec. 3.2 by taking functional derivatives w.r.t. the ghost and gluon fields.

In the present Hamiltonian formulation, Γk[φ] – defined by Eqs. (3.5), (3.7),
(3.8), (3.13), and (3.23) – is only determined by the vacuum wave functional φ[A]
and the Faddeev-Popov determinant. Importantly, the FRG approach does not
require the knowledge of the full vacuum wave functional. It is sufficient to know
the wave functional in the asymptotic region k → ∞, where perturbation theory
applies. The full quantum effective action Γk→0 and therefore the full vacuum wave
functional is then computed by solving the flow equation, making suitable ansatzes
and truncations for Γk and its functional derivatives.

3.2 The Gluon and Ghost Propagator Flows

In this section we derive the flow equations for the gluon and the ghost propagator.
The approximations made will be discussed in Sec. 3.4.

The propagator flows are obtained from the flow equation for the effective action
(3.27) by differentiating twice w.r.t. the fields. These derivations are detailed in
Appendix B.1, their outcome is represented diagrammatically in Figs. 3.1 and 3.2.
All propagators and vertices, denoted by black and white circles, respectively, are
fully dressed k-dependent correlation functions. It is interesting to compare this
with the DSEs for the propagators where all diagrams contain one bare vertex.

For the approximations to be made, we rely on an expansion of the effective action
in powers of the field,

Γk[φ] =
∑

NA,Nc,Nc̄

1

NA!

1

Nc!

1

Nc̄!
Γ

(N)
k,n1···nN

· φn1
· · ·φnN

, (3.29)
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k∂k
−1 = − −

− −1
2

Figure 3.1: Flow equation of the gluon propagator, Eq. (B.8). Here and in the following,
the spiral and dotted lines with the black circles denote the regularized gluon and ghost
propagators at cutoff momentum k, respectively. White circles stand for proper vertices
at cutoff k, a regulator insertion Ṙk is represented by a square with a cross.

k∂k
−1 = + −1

2 −

Figure 3.2: Flow equation of the ghost propagator, Eq. (B.7)

where the φni
stand for either the gluon fields (φ = A) or the ghost fields (φ = c, c̄).

In the following, we take into account the bare ghost-gluon vertex and the full
momentum dependent propagators. All other vertices are set to zero. Therefore, in
this minimal order of the approximation, the only non-vanishing n-point functions
are the ghost and gluon (inverse) propagators and the ghost-gluon vertex. The flow
equations truncated in this way are depicted in Figs. 3.3 and 3.4. In an improved
approximation presented in Sec. 3.6 we will also take into account tadpole terms
related to ghost and ghost-gluon vertices, which allows an error estimate for the
approximation scheme set up here.

We parameterize the inverse gluon propagator as,

δ2Γk
δAai (p)δAbj(q)

= δabtij(p) 2ωk(p)(2π)3δ3(p + q) . (3.30)

The diagonality in colour space is due to global colour symmetry. The transverse
projector comes with the choice of Coulomb gauge where the gauge fields are trans-
verse, see Eq. (2.29), and momentum conservation arises from spatial translational
invariance of the theory. The only quantity left to be determined by the flow equa-
tion is ωk(p), which depends only on the absolute value of the external momentum
due to rotational invariance of the theory, and on the cutoff momentum k. The
factor of 2 is mere convention. In the flow we need the gluon propagator GA,k tijδ

ab

where

GA,k(p) =
1

2ωk(p) +RA,k(p)
. (3.31)
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k∂k
−1 = − −

Figure 3.3: Truncated flow equation of the gluon propagator. Here and in the following,
the bare vertices at k = Λ are symbolized by small dots.

k∂k
−1 = +

Figure 3.4: Truncated flow equation of the ghost propagator.

The full gluon propagator at vanishing cut-off is given by GA(p) = 1/2ω(p), with
ω(p) := ω0(p).

The ghost two-point function can be expressed as

− δ2Γk
δc̄a(p)δcb(q)

= δabg
p2

dk(p)
(2π)3δ3(p + q) , (3.32)

where dk(p) is the ghost form factor, which is the quantity to be calculated. The
ghost propagator Gc,k δ

ab comprises the scalar function

Gc,k(p) =
1

g
Ḡc,k(p) with Ḡc,k(p) =

1

p2/dk(p) + R̄c,k(p)
. (3.33)

We have included an explicit constant factor of 1/g in the definition of the ghost
form factor in order to compare our results with the Dyson-Schwinger equations of
the variational approach in Sec. 3.6. The full ghost propagator at vanishing cut-off
is Gc(p) = d(p)/gp2, where d(p) := d0(p).

The last quantity to be specified is the ghost-gluon vertex. We will argue in Sec.
3.4 that it is well approximated by its bare part,

δ3Γk
δc̄a(p1)δcb(p2)δA

c
i(p3)

= igfabcp1,jtij(p3)(2π)3δ3(p1 + p2 + p3) , (3.34)

where we have used the fact that the gauge field is transverse in Coulomb gauge.
These parameterizations are plugged into the propagator flow equations in Ap-

pendix B.1 with the result

∂tωk(p) = −Nc

2

∫
d3q

(2π)3

(

Ḡc,k
˙̄Rc,kḠc,k

)

(q) Ḡc,k(|p + q|) q2(1 − (p̂ · q̂)2) , (3.35)



36 Chapter 3. The Gluon and Ghost Propagators

∂td
−1
k (p) = Nc

∫
d3q

(2π)3

[(

GA,kṘA,kGA,k

)

(q) Ḡc,k(|p + q|)

+
(

Ḡc,k
˙̄Rc,kḠc,k

)

(q)GA,k(|p + q|) q2

(p + q)2

]

(1 − (p̂ · q̂)2) .

(3.36)

These equations are diagrammatically depicted in Figs. 3.3 and 3.4.

3.3 Uniqueness of Infrared Scaling

The Hamiltonian flow equation derived for Coulomb gauge Yang-Mills theory in
Sec. 3.1 very much resembles the one in Landau gauge, but with one dimension
less. It has already been speculated that there is a close connection between these
two formulations, see Ref. [69]. Here we employ the similarities in order to derive
unique scaling laws for the infrared behaviour of Coulomb gauge Yang-Mills theory.

It has been shown in Refs. [73, 74] that Landau gauge Yang-Mills theory admits
a unique infrared scaling solution [75] in the sense that, if scaling is present, the
scaling relations are unique. Moreover, this solution implies ghost dominance. In-
deed, Landau gauge Yang-Mills theory also admits a solution without such a scaling
behaviour, the decoupling solution, see Ref. [58] for further details. The scaling and
decoupling solutions also exist for the DSE obtained in the Hamiltonian formula-
tion of Yang-Mills theory in Coulomb gauge and are called critical and subcritical
solutions there [51]. Furthermore, lattice calculations [69] show that it is actually
the scaling or critical solution which is realized in Coulomb gauge. In the following,
we will show that the scaling relation (3.42), which has already been found in Refs.
[43, 49, 76], is unique.

The uniqueness proof in Ref. [73] is based on the comparison of the full hierarch-
ies of DSE and FRG equations for the Green functions. This proof can be directly
transferred to Coulomb gauge, the only missing piece is provided by the flow equa-
tion derived in Sec. 3.1. With the Hamiltonian Coulomb gauge DSEs and the FRGs
we can derive the same set of constraint equations for the scaling coefficients as in
Ref. [73]. We conclude that also Coulomb gauge Yang-Mills theory in its Hamilto-
nian formulation admits a unique scaling solution with the same scaling laws that
are satisfied in Landau gauge in d = 3. The scaling relations relevant for the present
work are that for the propagators,

〈A(p)A(−p)〉 ∝ 1

p2(1+κA)
, 〈c(p)c̄(−p)〉 ∝ 1

p2(1+κc)
, (3.37)

and for the ghost gluon vertex at the symmetric point,

δ3Γk
δc̄aδcbδAci

∝ p2κc̄cA
δ3S

δc̄aδcbδAci
. (3.38)

The scaling solution entails the non-renormalization of the ghost-gluon vertex, κc̄cA =
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0, and a scaling relation for the scaling of the ghost and gluon propagator, summar-
ized as

κc̄cA = 0 and κA = −1

2
− 2κc , with κA ≤ −1

4
. (3.39)

Equation (3.39) implies

κc − κA ≥ 1

8
> 0 , (3.40)

a relation which is called ghost-dominance, i.e., diagrams with ghost lines dominate
in the infrared over diagrams with gluonic lines, see also [73]. The scaling coefficients
α, β used in Coulomb gauge are usually defined via

〈A(p)A(−p)〉 ∝ pα , 〈c(p)c̄(−p)〉 ∝ 1

p2+β
, (3.41)

see Eq. (3.46). The coefficients α and β relate to the κ’s via α = −2 − 2κA and
β = 2κc. Therefore, we find unique scaling laws in Coulomb gauge with the scaling
relation

α = 2β − 1 . (3.42)

Yet it must be noted that a numerical treatment is necessary after all because the
uniqueness proof only shows that there is no scaling solution with a relation between
the exponents other than α = 2β − 1, it does, however, not yield the actual values
of α or β. These have to be calculated numerically, as will be done in Sections 3.5
and 3.6. It will be found there that the solutions indeed comply with the scaling
relation (3.42).

3.4 Truncation of the Propagator Flows

To arrive at the flow equations of the gluon and the ghost propagator, Eqs. (3.35)
and (3.36), we have approximated the full effective action with the bare ghost-gluon
vertex and fully momentum dependent (inverse) propagators. As we are specifically
interested in the infrared momentum regime where we assume scaling, and unique-
ness of scaling as proven in Sec. 3.3 then implies ghost dominance, we have dropped
the gluonic vertices and only kept the ghost vertices. The resulting flow equations
for the gluon and ghost propagators are shown in Figs. 3.3 and 3.4.

We now discuss the meaning of and the justification for this truncation in detail.
The generating functional (3.6) is a functional integral whose definition involves
the full vacuum wave functional φ[A], see Eq. (3.5), which is, however, unknown.
In Ref. [77] the vacuum functional has been determined explicitly to one-loop or-
der through a perturbative solution of the Schrödinger equation for the Christ-Lee
Hamiltonian of Eq. (2.35). As expected, it was found that gluonic terms give contri-
butions to the static gluon propagator that are important to its ultraviolet behaviour,
in particular its anomalous dimension. By neglecting the purely gluonic vertices in
the truncation considered here, the ultraviolet behaviour of the two-point function
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is not accurately reproduced, i.e., the power of the logarithmic correction in this
kinematic regime is incorrect.

On the other hand, the three- and four-gluon couplings are not relevant to the
infrared behaviour, which is our main concern here: it has been argued in Refs.
[76, 78, 79] that in the infrared the static ghost propagator is strongly enhanced
relative to its tree-level behaviour, while the gluon propagator is suppressed or even
vanishing. This is precisely what happens for the unique scaling solution as discussed
in Sec. 3.3: the infrared behaviour is dominated by the diagrams with the largest
number of ghost propagators (ghost dominance). The approximation of keeping a
bare or tree-level ghost-gluon vertex is based on the non-renormalization theorem
for this vertex [80, 81], which can be carried over to the present situation. Indeed
we have shown in Sec. 3.3 that it follows for the unique scaling solution. It has
been confirmed on the non-perturbative level for the Landau gauge case in lattice
[82, 83] and DSE [84] studies. As for the Coulomb gauge, a perturbative evaluation
of the vertex (to one-loop level) at the symmetric point shows that the quantum
corrections are finite and independent of the scale [77, 85].

In summary, we can drop the gluonic vertices without changing the infrared be-
haviour of the propagators. We emphasize that for large momenta this is evidently
not true. Finally, we also drop the tadpole diagrams in the flow equations for the
static propagators. We assume that their contribution is negligible in the infrared,
at least for the qualitative behaviour of the two-point correlation functions. We will
partially mend this neglect of the tadpole terms in Sec. 3.6 by an optimized flow.

3.5 Approximation without Tadpoles

In this section we solve the flow equations for the propagators within the minimal
truncation introduced above: the only non-vanishing vertex function is the bare
ghost-gluon vertex of Eq. (3.34). In particular, this eliminates the tadpole diagrams.

Equations (3.35) and (3.36) are two coupled differential equations for ωk and dk,
which can be solved numerically. Due to our definition (3.32) of the ghost form factor
dk(p), the bare coupling constant g has formally disappeared from the propagator
flow equations. To incorporate the appropriate initial conditions it is convenient to
cast the differential flow equations into an integral form,

ωk(p) − ωΛ(p) =

∫ k

Λ

dk′

k′

∫
d3ℓ

(2π)3
Iωk′[dk′](ℓ,p) , (3.43)

d−1
k (p) − d−1

Λ (p) =

∫ k

Λ

dk′

k′

∫
d3ℓ

(2π)3
Idk′[ωk′, dk′](ℓ,p) . (3.44)

Iω and Id stand for the integrands of the loop integrals on the r.h.s. of Eqs. (3.35)
and (3.36).

The initial conditions dΛ(p) and ωΛ(p) for the flow can be determined by perturb-
ation theory [77, 85]. Contributions with higher powers of momenta than the ones
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in lowest-order perturbation theory, d(0)(p) = 1 and ω(0)(p) = p, are suppressed by
the corresponding powers of Λ. In the case of dΛ(p), this implies that for a large
initial cut-off scale k = Λ we only have to fix the constant dΛ(p) ≡ dΛ.

For the gluon the introduction of the regulator term enforces a mass-like term,
i.e., a p-independent contribution to ωk(p). For large initial cut-off scales k = Λ
the inverse gluon propagator has two relevant parameters, the mass-like parameter
a and the coefficient of the classical term. The latter is set to one and we have the
initial condition for the gluon correlator ωΛ(p) = p+ a.

It is evident from the form of the flow equations (3.43) and (3.44) that the solution
will not show infrared scaling unless the parameter d−1

Λ (p) ≡ d−1
Λ is fine-tuned, at

least for β > 0. Such fine-tuning of relevant parameters is a well-known initial
condition problem for RG flows. In Ref. [58] it has been shown that in Landau
gauge there is a family of solutions of the flow equations where only one shows a
scaling behaviour whereas the other solutions show a decoupling behaviour: a gluon
with a massive propagator and a ghost which is at most logarithmically enhanced.
Such a scenario also applies to Coulomb gauge.

In the present case we have numerically solved the fine-tuning condition for dΛ with
the constraint of infrared scaling for the ghost dressing function. The parameter a in
the initial condition ωΛ(p) is fixed by demanding that ω(p) reduce to the perturbative
form ω(p) ∝ p for large momenta p close to but below Λ. The regulator used in the
numerical solution is

rk(p) = exp

(
k2

p2
− p2

k2

)

. (3.45)

Our numerical procedure is detailed in Appendix C. The results for the inverse gluon
propagator ωk(p) and the ghost dressing function dk(p) are shown in Figs. 3.5 and
3.6 for different values of the minimal cutoff kmin down to which the flow integration
has been carried out. For better comparison, a physical scale has been introduced
such that the extremum of the gluon propagator coincides with the one determined
on the lattice in [67]. It is seen that the power law behaviour in both cases extends
towards the IR as the cutoff kmin is lowered, although we have implemented a scaling
behaviour (not the horizon condition d−1

0 (p = 0) = 0) only for the ghost dressing.
We also display the full flow of the ghost dressing function, dk(p), in Fig. 3.7.

The IR power laws are extracted from the numerical solution shown in Figs. 3.5
and 3.6. The scaling coefficients α and β defined in Eq. (3.41) as

ω(p→ 0) ∼ p−α , d(p→ 0) ∼ p−β . (3.46)

are determined as
α = 0.28, β = 0.64 , (3.47)

so α and β satisfy the sum rule (3.42) already found analytically for the Coulomb
gauge DSE in Refs. [43, 49]. Thus, we arrive at the nontrivial result that a scaling
solution for the flow equations for both the gluon and the ghost propagator can
be found. Note, however, that the scaling coefficients themselves obtained in the
present truncation differ from the ones obtained in the DSE. In Figs. 3.8 and 3.9 the
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Figure 3.5: Gluon correlation function ω for different minimal cutoffs kmin.
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Figure 3.6: Ghost dressing function d for different minimal cutoffs kmin.
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Figure 3.7: The flow of the full ghost form factor dk(p) is shown. The gradual formation
of the IR power law on lowering the cut-off scale k is explicitly seen.

solutions of the FRG flow equation for ω(p) and d(p) are compared to the results
which will be obtained from an optimized calculation in Sec. 3.6 which in turn are
precisely the results found in [43] by the variational calculation, see Fig. 3.10. This
variational calculation gave rise to the DSEs which will be found in Sec. 3.6 by an
optimization of the truncated flow equations of Figs. 3.3 and 3.4.

While the curves in Figs. 3.8 and 3.9 match in the UV, the results of the FRG in
the present minimal truncation are less infrared enhanced than the ones of the DSE.
The scaling coefficients are actually expected to depend on the chosen regulator. It
has already been proven in [86] for Landau gauge Yang-Mills theory that the scaling
coefficients of FRG and DSE agree for optimized regulators if a bare ghost-gluon
vertex is used, for details of the optimization theory for the FRG see, e.g., [22, 87].

3.6 Optimization

In this section we use optimization arguments in order to improve the present trun-
cation. Similar arguments have already been used in Landau gauge for arriving at
FRG results for the propagators that quantitatively agree with the lattice results
[58]. Here we follow the arguments put forward in [86]. To that end we consider the
following approximation: under the loop integrals we replace the propagators at the
running momentum scale k, ωk and dk, by the propagators of the full theory, i.e.,
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Figure 3.8: Comparison of the gluon two-point functions ω calculated from the optimized
flow and from the flow without tadpoles.
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Figure 3.9: Comparison of the ghost dressings d calculated from the optimized flow and
from the flow without tadpoles.
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Figure 3.10: Gluon correlation function ω and ghost dressing function d from the op-
timized flow equation in comparison with the results of the DSEs obtained from the
variational ansatz in [43]. The results lie on top of each other as expected.

the ones at zero scale k = 0:

dk(p) → dk=0(p) , ωk(p) → ωk=0(p) , (3.48)

with the effect that the difference between the propagators at k = 0 and the reg-
ularized ones at k drops out in the integrals. Indeed one can explicitly construct
regulators for which this holds true in the asymptotic IR region, see [86]. Note
that due to the strong infrared suppression introduced with the regulator choice
(3.45) the approximation (3.48) is quantitatively reliable inside the loop integrals
except for a small range of momenta p around the scale k. The approximation of
Eq. (3.48) allows us to integrate the flow equations (3.35) and (3.36) over k analyt-
ically. The only k-dependence left is the explicit one on the regulator as the vertices
are not k-dependent from the outset. Therefore, the flow can be rewritten as a total
t-derivative of the loop integrals with full propagators. We arrive at

(ω0 − ωΛ)(p) =
Nc

4

∫
d3q

(2π)3

q2

q2d−1
0 (q) + R̄c,k(q)

(1 − (p̂ · q̂)2)

(p + q)2d−1
0 (|p + q|) + R̄c,k(|p + q|)

∣
∣
∣
∣

k=0

k=Λ

,

(3.49)

(d−1
0 − d−1

Λ )(p) = −Nc

∫
d3q

(2π)3

1

2ω0(q) +RA,k(q)

(1 − (p̂ · q̂)2)

(p + q)2d−1
0 (|p + q|) + R̄c,k(|p + q|)

∣
∣
∣
∣

k=0

k=Λ

.

(3.50)
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−1 = −1 +

Figure 3.11: The integrated gluon flow equation of Eq. (3.49) is shown. It is equal to
the gluon DSE where the purely gluonic terms are neglected and the ghost-gluon vertex
is chosen bare.

−1 = −1 +

Figure 3.12: The integrated ghost flow equation of Eq. (3.50). It is equal to the ghost
DSE where the ghost-gluon vertex is chosen bare.

We notice that the flow equations (3.49) and (3.50) have acquired the form of trun-
cated DSEs. They are shown diagrammatically in Figs. 3.11 and 3.12. Given the
fact that Rk=0 = 0, see Eq. (1.3), these equations coincide with the DSEs obtained
in the variational approach of Ref. [43] (up to some additional contributions in
the DSE for ω(p) which are, however, subleading in the infrared), with a different
UV-regularization realized here via the (k = Λ)-terms. Moreover, the optimization
arguments in Refs. [22, 86] imply that the flows in the Eqs. (3.49) and (3.50) provide
the best approximation to the full theory for the IR asymptotics.

That Eqs. (3.49) and (3.50) – shown in Figs. 3.11 and 3.12 – are a better approx-
imation than Eqs. (3.35) and (3.36) – shown in Figs. 3.3 and 3.4 – can be seen also
in the following way: without truncations, both the DSE and the flow equations
are exact. Truncating the full ghost DSE by choosing the ghost-gluon vertex bare,
we obtain Eq. (3.50), Fig. 3.12. Making the same approximation in the flow equa-
tion in Fig. 3.2 does not yield the truncated flow in Fig. 3.4 unless we additionally
neglect the tadpole terms. Therefore, the truncated DSE in Fig. 3.12 is a better
approximation than the truncated flow of Fig. 3.4. Truncating the full gluon DSE
by also choosing the ghost-gluon vertex bare and by discarding the purely gluonic
diagrams, we get Eq. (3.49), Fig. 3.11. Also here, the same approximation in the
flow in Fig. 3.1 only yields the truncated flow in Fig. 3.3 if the additional approx-
imation of neglecting the ghost tadpole is made. Therefore, the truncated DSE in
Fig. 3.11 is a better approximation than the truncated flow in Fig. 3.3.

It remains to adjust the initial conditions. We could proceed in the same way as
for the numerical solution in Sec. 3.5 to implement the condition of infrared scaling
for the ghost dressing function. However, it is much simpler to use as an input the
information from this numerical solution that β > 0 and thus d−1

0 (p = 0) = 0 (the
horizon condition), so we can write

d−1
0 (p) =

∫
d3q

(2π)3
[int(k,p,q) − int(k,p = 0,q)]

∣
∣
∣
∣

k=0

k=Λ

, (3.51)

where int(k,p,q) denotes the integrand in Eq. (3.50). The initial condition for the
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Figure 3.13: The running coupling α, see Eq. (3.55), calculated from the optimized flow
and from the flow without tadpoles.

gluon propagator is determined as before in Sec. 3.5. More details of the numerical
procedure can be found in Appendix C.

The results of the iterative solution are shown in Fig. 3.10 in comparison to the
results from the variational approach of Ref. [43], as well as in Figs. 3.8 and 3.9 in
comparison with the non-optimized results of Sec. 3.5. A power law as parameterized
in Eq. (3.46) emerges in the infrared region for both the gluon energy ω(p) and the
ghost dressing function d(p) with the IR exponents

α = 0.60, β = 0.80 , (3.52)

which is precisely one of the two possible IR solutions found analytically for the DSE
in Ref. [49]. Furthermore, it corresponds to the solution found in the variational
approach in Ref. [43] and it complies with the sum rule of Eq. (3.42) for the infrared
exponents,

α = 2β − 1 . (3.53)

The second possible solution in the analytical calculation of Ref. [49] with the in-
frared exponents

α = 1, β = 1 (3.54)

has also been confirmed in a numerical calculation within the variational approach
[50]. Although it might be present also in the optimized approximation, it has not
been found numerically and it is not clear whether after the inclusion of the gluonic
diagrams this solution would persist as an infrared stable one.

Finally, with the results for the propagator we can calculate the running coupling
(recalling the definition in Eq. (3.32) including g),

α(p) =
1

4π
d2(p)

p

ω(p)
, (3.55)
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see Ref. [88]. The result is shown in Fig. 3.13, calculated using the propagators
from the optimized flow equation as well as from the flow equation without the
tadpoles. The plateau in the IR is due to the sum rule (3.42) which is fulfilled by
the propagators resulting from both approximations of the flow equations.

In summary, we have shown that the method of Hamiltonian flows can be suc-
cessfully applied to Yang-Mills theory in Coulomb gauge by calculating the gluon
two-point function and the ghost form factor with it. The results have been obtained
imposing the condition of infrared power law behaviour for the ghost form factor
but without dictating the actual value of the exponent. Two different approxima-
tions have been used, where one of them can be argued to yield an optimized result.
Both results fulfil a unique infrared scaling relation but with the optimized result
possessing stronger infrared divergences than the non-optimized one. Moreover, the
optimized result is in excellent quantitative agreement with the results obtained
from the variational approach.



Chapter 4

The Colour Coulomb Potential

In this chapter we use the flow equation of the ghost form factor of Chap. 3 to
derive a flow equation for the so-called Coulomb form factor. This quantity de-
termines, together with the ghost propagator, the colour Coulomb potential which
forms an upper bound for the static quark potential. We will find a linearly rising
colour Coulomb potential from this equation. In contrast, the corresponding Dyson-
Schwinger-like equation will be found to have no solution with the given gluon and
ghost propagators. We will analyze this equation and the conditions for the existence
of solutions in detail.

Part of the content of this chapter has already been presented in Ref. [89].

4.1 Defining the Colour Coulomb Potential

The Coulomb part of the Yang-Mills Hamiltonian in Coulomb gauge is, see Eq. (2.35),

Hcoul =
g2

2

∫

d3[xy]J−1[A]ρa(x)F [A]ab(x,y)J [A]ρb(y) , (4.1)

where the charge density ρ is composed of the charge of the gauge field itself and of
the charge of the matter fields, see Eq. (2.37),

ρa(x) ≡ ρ[A,ΠA]a(x) = ρadyn(x) + ρam(x) , (4.2)

where
ρadyn(x) = fabcAci(x)Πb

A,i(x) . (4.3)

It can be shown that mixing terms in the Hamiltonian, which are the terms with
ρmFρdyn and ρdynFρm, actually lower the potential between the matter fields [90].
Therefore, the term ρmFρm, which is called the colour Coulomb potential, forms
an upper bound to the full static quark potential, but it is much easier to obtain.
We therefore restrict ourselves to the calculation of this quantity. As matter fields
which we choose two point charges with opposite colour separated by the distance
r = |r|,

ρam(x) = δa0
[

δ3
(

x − r

2

)

− δ3
(

x +
r

2

)]

. (4.4)
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The colour Coulomb potential for this charge distribution is

VC(r) = 〈Hcoul〉(r) = g2〈F [A]00(0, 0) − F [A]00(0, r)〉

= g2

∫
d3p

(2π)3
F (p)(1 − eip·r)

=
g2

2π2

1

r3

∫ ∞

0

dxF
(x

r

)

x2

(

1 − sin(x)

x

)

,

(4.5)

where we denote as

〈F [A]ab(x,y)〉 =

∫
d3p

(2π)3
δabF (p)eip·(x−y) (4.6)

the Fourier transform of the expectation value of the Coulomb kernel. The determ-
ination of F (p) is what we are aiming at in this chapter. We will find it to obey a
(infrared) power law parameterized as

F (p→ 0) =
a

pαF
. (4.7)

Extending the IR behaviour of F to the whole momentum range, the potential
becomes

VC(r) =
g2a

2π2

1

r3−αF

∫ ∞

0

dx x1−αF (x− sin(x)) , (4.8)

which is convergent in the UV for αF > 3 and convergent in the IR for αF < 5.
Regularizing by a cut-off u in the UV as well as l in the IR and using integration
by parts twice yields for the integral

[
1

2 − αF
x2−αF (x− sin(x)) − 1

(2 − αF )(3 − αF )
x3−αF (1 − cos(x))

]∣
∣
∣
∣

u

l

+

∫ u

l

dx
1

(2 − αF )(3 − αF )
x3−αF sin(x) .

(4.9)

Taking the limits u → ∞ and l → 0, the boundary terms vanish and the integral
becomes [91]

∫ ∞

0

dx x1−αF (x− sin(x)) =

{
Γ(4−αF ) sin((4−αF )π

2
)

(2−αF )(3−αF )
for 3 < αF < 5; αF 6= 4

π
4

for αF = 4 .

(4.10)
The Coulomb potential itself finally reads

VC(r) =







g2a

2π2

Γ(4 − αF ) sin((4 − αF )π
2
)

(2 − αF )(3 − αF )
rαF−3 for 3 < αF < 5; αF 6= 4

g2a

8π
r for αF = 4

(4.11)
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In the case of a linearly rising potential, the slope is called the Coulomb string
tension,

σC =
g2a

8π
, (4.12)

and we get

g2F (p) =
8πσC
p4

. (4.13)

It has been shown in Ref. [90] that the Coulomb string tension σC forms an upper
bound to the Wilson string tension σ,

σC ≥ σ , (4.14)

which can be calculated from the Wilson loop and which describes the static quark
potential, i.e., there is “no confinement without Coulomb confinement”.

We usually express the colour Coulomb potential with the Coulomb form factor
f defined via

〈F [A]〉 =〈(−∂D̂)−1(−∂2)(−∂D̂)−1〉
=〈(−∂D̂)−1〉(−∂2)f(−∂2)〈(−∂D̂)−1〉 ,

(4.15)

or in momentum space

F (p) := 〈F [A]〉(p) = Gc(p)p
2f(p)Gc(p) . (4.16)

In order to calculate the colour Coulomb potential, in Ref. [76] the Coulomb form
factor was simply set equal to one, while in Refs. [43, 50] the DSE for this form
factor was approximated by replacing in the loop integral the full ghost propagator
〈(−∂D̂)−1〉 with the bare one, which results in an infrared finite Coulomb form
factor. In this way, a strictly linear growth of the colour Coulomb potential with the
distance between the colour sources (for sufficiently large distances) has been found
in Ref. [50]. A natural improvement of this approximation would be the use of the
full DSE for the Coulomb form factor. However, it turned out [51] that the full DSE
for the Coulomb form factor cannot be consistently solved together with the DSEs
for the static gluon and ghost propagators with an infrared-divergent ghost form
factor, i.e., implementing the horizon condition. We will find that a solution for the
Coulomb form factor equation with a ghost form factor complying with the horizon
condition can be found only for a ghost form factor with an infrared divergence
which is much milder than the ones found so far in various approaches.

In other words, a confining colour Coulomb potential cannot be obtained within
the present approximation if the full DSE for the Coulomb form factor is used.
In contrast, a consistent solution which exhibits scaling behaviour of the static
propagators and of the colour Coulomb potential is found with the Hamiltonian
flow equations without any additional approximation for the Coulomb form factor.
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4.2 The Flow Equation for the Coulomb Form Factor

In the Hamiltonian approach to Yang-Mills theory in Coulomb gauge the poten-
tial between static colour sources is given by the vacuum expectation value of the
Coulomb kernel

F [A]ab
x,y =

[

(−∂D̂)−1(−∂2)(−∂D̂)−1
]ab

x,y
, (4.17)

where −∂D̂ is the Faddeev-Popov operator with

D̂ab = δab∂ + gfabcAc . (4.18)

With these definitions the Coulomb kernel can be written as a derivative w.r.t. the
coupling constant g,

F [A] =
∂

∂g
[g(−∂D̂)−1] , (4.19)

because

∂g[g(−∂D̂)−1] = (−∂D̂)−1 − g(−∂D̂)−1[∂g(−∂D̂)](−∂D̂)−1

= (−∂D̂)−1[(−∂D̂) + gA∂](−∂D̂)−1 = (−∂D̂)−1(−∂2)(−∂D̂)−1 .
(4.20)

By taking the vacuum expectation value of Eq. (4.19) we get

F = 〈F [A]〉 =

∫

DA∂g(g(−∂D̂)−1)e−S

= ∂g

(∫

DAg(−∂D̂)−1e−S
)

+ g

∫

DA (∂gS)(−∂D̂)−1e−S

= ∂g(gGc) + g
〈

(∂gS)(−∂D̂)−1
〉

,

(4.21)

where
e−S := |ψ(A)|2 det(−∂D̂) . (4.22)

Note that a possible normalization factor can be included in S. In the infrared, the
first term of Eq. (4.21) reads (with the infrared parameterization d(p) = c(g)p−β(g))

∂

∂g
(gGc(p→ 0)) = [c′(g) − c(g)β ′(g) ln p] p−2−β(g) . (4.23)

Therefore, ∂g(gGc) has the same infrared behaviour as Gc, i.e., p−2−β , up to log-
arithms, so in principle it is crucial to keep the second term in Eq. (4.21) which
might potentially be more divergent due to the insertion ∂gS. Note that the desired
1/p4 behaviour for F (p), which yields a linearly rising potential, see Eq. (4.11), is
achieved by the first term in Eq. (4.21) alone if β = 2. However, no solution nearly
as divergent had been found in the explicit computations, the strongest divergence
being β = 1 [50].
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As an alternative to keeping the term g〈(∂gS)(−∂D̂)−1〉 in Eq. (4.21), we can
drop it and balance this neglect by taking into account only part of the first term
in Eq. (4.21). This way of computation is chosen in the following, in order to make
the computation of F by a flow equation feasible. We denote the g-dependence
of S, which includes the vacuum wave functional as well as the Faddeev-Popov
determinant, by a different variable g′:

Fk(g) = 〈F [A](g)〉k =

∫

DA∂g(g(−∂D̂)−1(g))e−Sk(g′)

∣
∣
∣
∣
g′=g

= ∂g

[∫

DAg(−∂D̂)−1(g)e−Sk(g′)

]∣
∣
∣
∣
g′=g

= ∂g(gGc,k(g, g
′))|g′=g ,

(4.24)

where we have already included the cut-off dependence k. We denote the quantity
occurring on the r.h.s. of Eq. (4.24) as

Fk(p; g, g
′) := ∂g(gGc,k(g, g

′)) , (4.25)

so that
Fk(g) = Fk(p; g, g

′)|g′=g . (4.26)

Motivated by Eq. (4.16), to which the following equation has to reduce at k = 0,
we define the Coulomb form factor fk as

Fk(p; g, g
′) =: G2

c,k(p; g, g
′)p2fk(p; g, g

′) = p2fk(p; g, g
′)

1

g2

1
(

p2

dk(p;g,g′)
+ R̄c,k(p)

)2 ,

(4.27)
where Eq. (3.33) has been applied. (Note also that fk(p; g, g

′)|g′=g = fk(p; g).) Given
that

∂g(gGc,k(p; g, g
′)) = ∂g

1
p2

dk(p;g,g′)
+ R̄c,k(p)

=
−p2

(
p2

dk(p;g,g′)
+ R̄c,k(p)

)2∂gd
−1
k (p; g, g′)

(4.28)
we obtain

fk(p; g, g
′) = −g2∂gd

−1
k (p; g, g′) . (4.29)

With this equation and recalling the definition in Eq. (3.33),

Ḡc,k(p) =
1

p2/dk(p) + R̄c,k(p)
, (4.30)

we can write

∂gḠc,k(p; g, g
′) = −Ḡ2

c,k(p; g, g
′)∂gḠ

−1
c,k(p; g, g

′) =
1

g2
Ḡ2
c,k(p; g, g

′)p2fk(p; g, g
′) .

(4.31)
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Furthermore, because of

GA,k(p; g, g
′) =

∫

DAA(−p)A(p)e−Sk(g′) (4.32)

we obtain
∂gGA,k(p; g, g

′) = 0 . (4.33)

Taking the g-derivative of Eq. (3.36), making use of Eqs. (4.29), (4.31), (4.33), and
subsequently setting g = g′ (which will not be denoted from now on) we get the flow
equation for the Coulomb form factor:

∂tfk(p) = −Nc

∫
d3q

(2π)3

[(

GA,kṘA,kGA,k

)

(q) Ḡ2
c,k(p + q)(p + q)2fk(p + q)

+ 2 ˙̄Rc,k(q)Ḡ
3
c,k(q) q

2fk(q)GA,k(p + q)
q2

(p + q)2

]

(1 − (p̂ · q̂)2) .

(4.34)

As the Coulomb form factor fk(p) does not enter the flow equations of ghost and
gluon, we can use the flow of the gluon correlator ωk(p) and of the ghost form factor
dk(p) as input into Eq. (4.34) for fk(p). This is different in the variational approach
[43], where the gap equation, following from minimizing the energy density with
respect to the gluon energy, indeed contains the form factor f(p).

4.3 An Alternative Derivation of the Coulomb Form

Factor Flow

In this section, we will re-derive the flow equation for the Coulomb form factor fk(p),
Eq. (4.34), in an alternative way.

We begin with the generating functional for static correlation functions of Yang-
Mills theory in Coulomb gauge, where the Faddeev-Popov determinant has been
expressed by a ghost-field integral, see Eqs. (3.6) and (3.5),

Z[J, σ̄, σ] =

∫

DA
∫

D[c̄c] exp(−c̄(−∂D̂)c+ σ̄ ·c+ c̄ ·σ) exp(−S[A]+J ·A) , (4.35)

where for the moment we have included only the purely gluonic part into S. We
evaluate the Gaussian ghost field integral by shifting the integration variable

c′ = −c+ (−∂D̂)−1σ , c̄′ = −c̄ + σ̄(−∂D̂)−1 , (4.36)

dropping the prime and using the path integral representation of the Faddeev-Popov
determinant

det(−∂D̂) =

∫

D[c̄c] exp(−c̄(−∂D̂)c) (4.37)
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which leads to the second form of the generating functional

Z[J, σ̄, σ] =

∫

DA det(−∂D̂) exp(−S[A] + σ̄(−∂D̂)−1σ + J · A) . (4.38)

This is simply the generating functional where the introduction of the ghost fields
has been reversed but the ghost sources kept.

Our aim is to relate the expectation value of two ghost operators (−∂D̂)−1 to the
expectation value of four ghost fields, which we will calculate using the flow equation
of the ghost form factor. To this end we act with four derivatives w.r.t. the ghost
sources on Z in both forms:

1st form, Eq. (4.35):

δ4

δσ̄4δσ3δσ̄2δσ1
Z[J, σ̄, σ]

∣
∣
∣
∣
0

= 〈c4c̄3c2c̄1〉 , (4.39)

where the number subscripts stand for (adjoint) colour indices and spatial arguments
condensed.

2nd form, Eq. (4.38): (showing only the ghost source exponential)

δ

δσ1
eσ̄(−∂D̂)−1σ = − σ̄(−∂D̂)−1

1 eσ̄(−∂D̂)−1σ

δ

δσ̄2

→[−(−∂D̂)−1
21 + (σ̄(−∂D̂)−1

1 )((−∂D̂)−1
2 σ)]eσ̄(−∂D̂)−1σ

δ

δσ3

→[σ̄(−∂D̂)−1
3 (−∂D̂)−1

21 − (−∂D̂)−1
23 σ̄(−∂D̂)−1

1

− (σ̄(−∂D̂)−1
3 )(σ̄(−∂D̂)−1

1 )((−∂D̂)−1
2 σ)]eσ̄(−∂D̂)−1σ

δ

δσ̄4

σ=σ̄=0−−−−→(−∂D̂)−1
43 (−∂D̂)−1

21 − (−∂D̂)−1
23 (−∂D̂)−1

41 .

(4.40)

This yields

〈c4c̄3c2c̄1〉 = 〈(−∂D̂)−1
43 (−∂D̂)−1

21 〉 − 〈(−∂D̂)−1
23 (−∂D̂)−1

41 〉 . (4.41)

Setting the sources to zero already after the second ghost source derivative, we
additionally get the useful expression for the ghost propagator

〈c2c̄1〉 = 〈(−∂D̂)−1
21 〉 . (4.42)

Now we insert the matrix elements of the negative Laplacian, (−∂2)32, into Eq.
(4.41), sum over 3 and 2 and write the condensed indices explicitly as 4 ≡ (a,x), 1 ≡
(b,y), whereupon we can identify one of the terms as the Coulomb kernel F [A]:

〈F [A]ab(x,y)〉 =〈F41[A]〉 = 〈(−∂D̂)−1
43 (−∂2)32(−∂D̂)−1

21 〉
=〈c4c̄3(−∂2)32c2c̄1〉 + 〈(−∂D̂)−1

41 (−∂2)32(−∂D̂)−1
23 〉

=

〈

ca(x)

(∫

d3x′c̄c(x′)(−∂2
x′)cc(x′)

)

c̄b(y)

〉

+

〈[

(−∂D̂)−1
]ab

xy

∫

d3x′
[

(−∂2)(−∂D̂)−1
]cc

x′x′

〉

.

(4.43)
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This shows that there is no simple expression of the Coulomb propagator in terms
of ghost field expectation values.

We are going to express the first term on the r.h.s. of Eq. (4.43) in terms of the
generating functional of connected Green functions. For this purpose we define the
scalar, Grassmann-even operator

K :=

∫

d3x′c̄c(x′)(−∂2
x′)cc(x′) , (4.44)

which is a composite operator that we can add to the source terms of Z with a scalar
source s,

Z[J, σ̄, σ, s] =

∫

DA
∫

D[c̄c] exp(−c̄(−∂D̂)c+ σ̄ · c+ c̄ ·σ) exp(−S[A]+J ·A+ sK) .

(4.45)
Taking the appropriate derivatives we obtain

δ2

δσ̄δσ
∂sZ

∣
∣
∣
∣
0

= −〈cKc̄〉 , (4.46)

and with W = lnZ we get

∂sW =Z−1∂sZ

δ

δσ
∂sW = − Z−2 δZ

δσ
∂sZ + Z−1 δ

δσ
∂sZ

δ2

δσ̄δσ
∂sW

∣
∣
∣
∣
0

= − Z−2 δ2Z

δσ̄δσ
∂sZ

∣
∣
∣
∣
0

+ Z−1 δ2

δσ̄δσ
∂sZ

∣
∣
∣
∣
0

,

(4.47)

which with Eq. (4.46) yields

δ2

δσ̄δσ
∂sW

∣
∣
∣
∣
0

= 〈cc̄〉〈K〉 − 〈cKc̄〉 . (4.48)

In the next step, we establish the relation to the corresponding 1PI-correlation func-
tion. The definition of the effective action with cut-off k in the superfield formalism
reads (see Eq. (3.23) and the definitions there)

Γk[φ, s] = −Wk[Ik[φ, s], s] + Ik[φ, s]φ̄− 1
2
φ̄RkMφ , where

δWk[Ik[φ, s], s]

δIk
= φ̄ .

(4.49)
We take the derivative w.r.t. s on both sides,

∂sΓk[φ, s] = −∂sIk[φ, s] ·
δWk

δIk
− ∂sWk + ∂sIk[φ, s] · φ̄ = −∂sWk[Ik[φ, s], s] , (4.50)

and two ghost field derivatives to get

δ

δc
∂sΓk = −

[
δ

δc
Ik

]
δ∂sWk

δIk
(4.51)

δ2

δc̄δc
∂sΓk = −

[
δ2

δc̄δc
Ik

]
δ∂sWk

δIk
−
[
δ

δc̄
Īk

]
δ2∂sWk

δĪkδIk

[
δIk
δc

]T

, (4.52)
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where derivatives w.r.t. the ghost fields c̄ and c are to be read as matrix rows and
columns respectively. Going to the second line, we have used that in the terms of
the scalar product δ

δci
Ik · δ∂sWk

δIk
there is always one commuting factor, so we can

commute δ
δci
Ik past δ∂sWk

δIk
without a sign. Setting s = 0 and φ = 0 (which implies

Ik = 0), the term δ∂sWk

δIk
vanishes due to global colour symmetry.

What is left to be calculated are the field derivatives of the sources. From Eq.
(4.49) we obtain

δ

δφ̄
Ik =

δ2

δφ̄δφ
ΓkB +BRk , (4.53)

where

B :=





1 0 0
0 0 −1

0 1 0



 . (4.54)

Using Īk = BIk, which implies (noting that we regard a single derivative operator
as a left index)

δ

δφ̄
Īk =

δ

δφ̄
IkB

T , (4.55)

we are left with
δ

δφ̄
Īk =

δ2

δφ̄δφ
Γk + Rk , (4.56)

where RT
k = Rk has been used. Taking into account that

− δ

δc̄
Īk =

δ

δφ̄2

Īk and
δ

δc
Ik =

δ

δφ̄3

Ik , (4.57)

where the indices indicate the entries in the superfield of Eq. (3.19), Eq. (4.52)
turns into

δ2

δc̄δc
∂sΓk

∣
∣
∣
∣
0

=

[

δĪk
δφ̄

δ2∂sWk

δĪkδIk

(
δIk
δφ̄

)T
∣
∣
∣
∣
∣
0

]

23

=

[(
δ2Γk
δφ̄δφ

+ Rk

)
δ2∂sWk

δĪkδIk

(

BT δ
2Γk
δφ̄δφ

T

+ RT
kB

T

)∣
∣
∣
∣
∣
0

]

23

= −
(

−δ
2Γk
δc̄δc

+ Rc,k

)
δ2∂sWk

δσ̄kδσk

(

−δ
2Γk
δc̄δc

+Rc,k

)∣
∣
∣
∣
0

.

(4.58)

Putting Eqs. (4.43), (4.48), and (4.58) together, we obtain

〈F [A]〉 = 〈(−∂D̂)−1〉 δ
2∂sΓ0

δc̄δc

∣
∣
∣
∣
0

〈(−∂D̂)−1〉 + 〈(−∂D̂)−1〉〈Tr[(−∂2)(−∂D̂)−1]〉

+ 〈(−∂D̂)−1 Tr[(−∂2)(−∂D̂)−1]〉 .
(4.59)
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In the last two terms on the r.h.s., the Laplacian is not connected to the external
ghost propagators by ghost lines. However, judging from the perturbative expan-
sion of 〈F 〉, the opposite is expected. Therefore, there must also be such “ghost-
disconnected” terms in the first term on the r.h.s. of Eq. (4.59) to balance the
last two terms. We will neglect the last two terms and will account for this neglect
later directly in the flow equation for ∂sδc̄δcΓk by inserting the K-operator only into
the ghost lines connected with the external ghosts by ghost lines. This amounts to
dropping the terms where the Laplacian is not connected to the external ghosts by
ghost lines also in the first term on the r.h.s of Eq. (4.59). In the meantime, we
denote this procedure by writing ∂′s until we plug in the flow equation explicitly.
After this treatment, the above equation becomes

〈F 〉 = 〈(−∂D̂)−1〉 δ
2∂′sΓ0

δc̄δc

∣
∣
∣
∣
0

〈(−∂D̂)−1〉 . (4.60)

On the other hand, we define the Coulomb form factor f in momentum space as

〈F 〉(p) = 〈(−∂D̂)−1(−∂2)(−∂D̂)−1〉(p) =: 〈(−∂D̂)−1〉(p) p2f(p)〈(−∂D̂)−1〉(p) ,
(4.61)

so we get
δ2∂′sΓ0

δc̄a(p)δcb(q)

∣
∣
∣
∣
0

= δabp2f(p)(2π)3δ3(p + q) . (4.62)

This equation motivates an obvious definition of the k-dependent Coulomb form
factor fk such that it becomes amenable to a flow equation treatment:

δ2∂′sΓk
δc̄a(p)δcb(q)

∣
∣
∣
∣
0

=: δabp2fk(p)(2π)3δ3(p + q) . (4.63)

With Eq. (3.32) we get

δ2Γk(s)

δc̄a(p)δcb(q)

∣
∣
∣
∣
c=c̄=0

= −δabg p2

dk(p, s)
(2π)3δ3(p + q) , (4.64)

where there is still the free argument s. We observe that the equations

∂′sd
−1
k (p, s)|s=0 = −1

g
fk(p) ,

∂′sḠ
−1
k (p, s)|s=0 = −p

2

g
fk(p)

(4.65)

hold. We are going to apply these relations to the flow equation of the ghost form
factor dk, Eq. (3.36), which is unchanged by the inclusion of the operator K except
for an argument s in each vertex and propagator, which we do not denote,

∂td
−1
k (p) = Nc

∫
d3q

(2π)3

[(

GA,kṘA,kGA,k

)

(q) Ḡc,k(p + q)

+
(

Ḡc,k
˙̄Rc,kḠc,k

)

(q)GA,k(p + q)
q2

(p + q)2

]

(1 − (p̂ · q̂)2) .

(4.66)



4.4 The Dyson-Schwinger Equation for the Coulomb Form Factor 57

We act with ∂′s on both sides of the equation and set s = 0. This procedure accounts
for the neglect of the last two terms on the r.h.s. of Eq. (4.59), because it means
that, taking the derivative ∂s on the r.h.s., only the ghost propagators are hit.
Thereby we avoid creating closed ghost loops without a ghost-line connection to the
two external points, see the discussion below Eq. (4.59). This results in the same
flow equation as in Eq. (4.34):

∂tfk(p) = −Nc

∫
d3q

(2π)3

[(

GA,kṘA,kGA,k

)

(q) Ḡ2
c,k(p + q)(p + q)2fk(p + q)

+ 2 ˙̄Rc,k(q)Ḡ
3
c,k(q) q

2fk(q)GA,k(p + q)
q2

(p + q)2

]

(1 − (p̂ · q̂)2) .

(4.67)

4.4 The Dyson-Schwinger Equation for the Coulomb

Form Factor

As in the case of the flow equations for the gluon and the ghost propagator, see Sec.
3.6, we will at first resort to the replacement of fk, ωk, and dk at the cut-off scale k
by their values at zero cut-off k = 0 in the loop integral of Eq. (4.34), i.e.,

fk → fk=0 , ωk → ωk=0 , dk → dk=0 . (4.68)

Although we can apply the same optimization arguments as in the case of the gluon
and the ghost propagator, the resulting equation has no solution for the previously
found gluon and ghost propagator as input, as will be found. Said replacement
allows us to integrate the flow equation analytically. Indeed,

∂t

[

Nc

∫
d3q

(2π)3

1

2ω0(q) + 2qrk(q)

f0(p + q)

(p + q)2

(1 − (p̂ · q̂)2)

[d−1
0 (p + q) + rk(p + q)]2

]

= −Nc

∫
d3q

(2π)3

2qṙk(q)

[2ω0(q) + 2qrk(q)]2
f0(p + q)

(p + q)2

(1 − (p̂ · q̂)2)

[d−1
0 (p + q) + rk(p + q)]2

− 2Nc

∫
d3q

(2π)3

1

2ω0(q) + 2qrk(q)

f0(p + q)

(p + q)2

ṙk(p + q) (1 − (p̂ · q̂)2)

[d−1
0 (p + q) + rk(p + q)]3

(4.69)

which is just the r.h.s. of Eq. (4.34) with the approximation of Eq. (4.68) and
Eqs. (3.11), (3.31), and (3.33) plugged in (which is explicitly seen after shifting
q → −q − p in the 2nd term). Therefore, the integration of Eq. (4.34) over the
cut-off momentum k yields

f0(p) − fΛ(p) = Nc

∫
d3q

(2π)3

1

2ω0(q) + 2qrk(q)

f0(p + q)

(p + q)2

1

[d−1
0 (p + q) + rk(p + q)]2

(1 − (p̂ · q̂)2)

∣
∣
∣
∣

k=0

k=Λ

.

(4.70)
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Separating the ultraviolet regularization, we obtain

f0(p) =fΛ(p) +
Nc

2

∫
d3q

(2π)3

1

ω0(q)

f0(p + q)

(p + q)2
d2

0(p + q)(1 − (p̂ · q̂)2)

−
[

Nc

∫
d3q

(2π)3

1

2ω0(q) + 2qrΛ(q)

f0(p + q)

(p + q)2

(1 − (p̂ · q̂)2)

[d−1
0 (p + q) + rΛ(p + q)]2

]

.

(4.71)

For fΛ(p) ≡ 1, this is just the Dyson-Schwinger equation obtained in the variational
approach [43] (up to the ultraviolet regularization terms in square brackets).

4.5 Infrared Analysis

In order to gain information about the infrared behaviour of the Coulomb form
factor, f(p → 0), which is relevant for the long-distance behaviour of the Coulomb
potential, VC(r → ∞), aside from numerical calculations, which will be presented in
Sec. 4.6, we perform infrared analyses on the Dyson-Schwinger equations obtained
in Sec. 4.4: firstly, we will use the common method of extending the infrared power
laws to the whole momentum range and subsequently scale the momenta. With this
method we will find no information about the infrared behaviour of f ; secondly and
more successfully, we will apply the angular approximation.

4.5.1 Overall power laws

First, one might proceed in a similar way as in Ref. [92]: making power law ansatzes
for the functions occurring in the unregularized Eq. (4.71), taking the infrared expo-
nents as exponents for the whole momentum range and using the bare form factor
fΛ ≡ 1. Then calculating the loop integral exactly, which becomes possible due to
the simple power law form of the functions occurring, and making conclusions on
the infrared exponents. Explicitly, with the ansatzes (dropping the indices ‘0’)

ω(p) = Ap−α , d(p) = Bp−β , f(p) = Cp−γ , (4.72)

where ω and d obey the infrared power laws previously determined from the corres-
ponding Dyson-Schwinger equations, we get

Cp−γ = fΛ +

∫
d3q

(2π)3

C|p + q|−γ
Aq−α(p + q)2

B2|p + q|−2β(1 − (p̂ · q̂)2) . (4.73)

In the ultraviolet, the radial integral behaves like

∼
∫

dqq2+α−2β−2−γ =

∫

dqq−γ−1 , (4.74)

where the sum rule α = 2β−1, see Eq. (3.42), has been applied. This is convergent
in the ultraviolet only on the condition that

γ > 0 . (4.75)
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Under the assumption that the integral exists, which implies γ > 0, we can rescale
the external momentum p → λp with a scale factor λ > 0 and substitute the loop
momentum q → λq :

λ−γCp−γ = fΛ +λα−2β+1−γ

∫
d3q

(2π)3

C|p + q|−γ
Aq−α(p + q)2

B2|p+q|−2β(1− (p̂ · q̂)2) (4.76)

For the integral, we plug in Eq. (4.73),

λ−γCp−γ = fΛ + λ−γ(Cp−γ − fΛ)

= fΛ(1 − λ−γ) + λ−γCp−γ ,
(4.77)

which leads to
γ = 0 , (4.78)

contradictory to the assumption γ > 0 which was necessary for the ultraviolet-
convergence of the loop integral. This ansatz is therefore self-contradictory.

In summary, an infrared analysis by extension of the infrared power law behaviour
to the whole momentum range fails because of the severe restriction forced on the
exponents by the condition of ultraviolet convergence of the integral. One could
relax this restriction by keeping (or introducing) the ultraviolet regularization or by
using the true ultraviolet behaviour for the functions in the loop integral to make it
converge. Then, however, the exact calculation of the integral, which the argument
in Ref. [92] relied on, would be impossible. Therefore, another kind of infrared
analysis is called for, which will be presented in the next subsection.

4.5.2 The angular approximation

An infrared analysis which can be performed also with an explicit ultraviolet regu-
larization is carried out along the lines of Ref. [43]: for p→ 0 and for a sharp cut-off
function rΛ(p) we can write Eq. (4.71) with a single ultraviolet integration cut-off
Λ, turning it into (after substituting q → −q)

f(p) = fΛ(p) + If (p) (4.79)

with

If (p) =
Nc

2

∫ Λ d3q

(2π)3
[1 − (p̂ · q̂)2]

d2(p− q)f(p− q)

(p− q)2ω(q)
(4.80)

The so-called angular approximation is defined by approximating a function h(|p−
q|) under a momentum integral by

h(|p− q|) = θ(p− q)h(p) + θ(q − p)h(q) . (4.81)

This approximation has the benefit to render the angular integrals trivial. We can
expect it to be a good approximation at least in the limits p/q ≫ 1 and p/q ≪ 1.
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We will use this approximation for the momentum differences p − q in the loop
integral of Eq. (4.80), so we get

If (p) =
Nc

8π2

∫ π

0

dϑ sin3 ϑ

︸ ︷︷ ︸

=4/3

∫ Λ

0

dqq2 1

ω(q)

[

θ(p− q)
d2(p)f(p)

p2
+ θ(q − p)

d2(q)f(q)

q2

]

=
Nc

6π2

[
d2(p)f(p)

p2

∫ p

0

dq
q2

ω(q)
+

∫ Λ

p

dq
d2(q)f(q)

ω(q)

]

.

(4.82)

To avoid the necessity of evaluating the second integral, we take the p-derivative of
this equation,

I ′f(p) =
Nc

6π2

d

dp

(
d2(p)f(p)

p2

)∫ p

0

dq
q2

ω(q)
. (4.83)

As we investigate the limit p→ 0, we use the infrared power law forms

ω(p) = Ap−α, d(p) = Bp−β, f(p) = Cp−γ (4.84)

and get

I ′f(p) =
Nc

6π2
B2C

d

dp

(
p−2−2β−γ

) 1

A(3 + α)

[
q3+α

]p

0

= − Nc

6π2

B2C

A

2 + 2β + γ

2β + 2
p−1−γ ,

(4.85)

where the sum rule α = 2β− 1 of Eq. (3.42) for the infrared exponents of the gluon
and ghost propagators has been plugged in. As fΛ(p → 0) → const. for p≪ Λ, the
p-derivative of Eq. (4.79) in the infrared regime is

f ′(p→ 0) = I ′f (p→ 0) (4.86)

and therefore

γ

(
Nc

6π2

B2

A

1

2β + 2
− 1

)

= − Nc

6π2

B2

A
. (4.87)

The same arguments can be applied to the ghost Dyson-Schwinger equation as has
been done in Ref. [43]. This not only led to the sum rule (3.42), which has also been
found in Sec. 3.3 using a different line of reasoning, but also to a relation between
the prefactors of the infrared power laws and the infrared exponents,

Nc

6π2

B2

A
=

2β(β + 1)

β + 2
. (4.88)

Therefore, γ only depends on the infrared exponent of the ghost form factor,

γ = β(β + 1) . (4.89)
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Under the assumption that this relation between the infrared exponents also holds
in the case without the angular approximation, we will analyze for which values of
β the original integral (4.80) exists at all. Because of the cut-off Λ, the convergence
of the integral in the ultraviolet is guaranteed. Due to the power law ansatzes there
might be a pole at q = 0. However, this pole is integrable if 3 + α > 0, in view of
Eq. (3.42) becoming β > −1, which is always true if the horizon condition β > 0
is fulfilled. To examine the possible pole at q = p, we make the transformation
q → q − p (note that the expression (1 − (p̂ · q̂)2)/(p− q)2 is invariant under this
momentum shift):

If (p) =
Nc

2

∫ Λ d3q

(2π)3

d2(q)

ω(p− q)
f(q)

1 − (p̂ · q̂)2

(p − q)2
. (4.90)

The pole, now at q = 0, is integrable if 3 − 2β − γ > 0, which means

γ < 3 − 2β . (4.91)

If this is fulfilled, our line of reasoning leading to γ = β(β + 1) is valid, imposing
the condition

β(β + 1) < 3 − 2β (4.92)

on β, which becomes

1
2
(−3 −

√
21) < β < 1

2
(−3 +

√
21) (4.93)

or
− 3.791 < β < 0.791 , (4.94)

i.e., for values of β outside this range the integral in the f -equation does not exist,
for values inside it does exist and we have γ = β(β + 1). In particular, the integral
(4.80) in the f -equation does not exist for the values of β = 1 and β = 0.796 which
have been found as two possible infrared exponents in an analytical infrared analysis
of the Dyson-Schwinger equations in Ref. [49], and numerically in Refs. [43] and
[50].

Note, however, that in a numerical treatment of Eq. (4.70) without the angular
approximation, solutions will be found only for the stricter condition β . 0.5, see
Fig. 4.11.

We may ask which value of β, in the present framework of the angular approx-
imation, leads to a linearly rising Coulomb potential at large distances. To achieve
this, the Fourier transform F (p) of the Coulomb potential must behave as

F (p→ 0) ∼ p−4 (4.95)

in the infrared. Recalling the definition (4.16) of the Coulomb form factor f via

F (p) =
1

g2

1

p2
d2(p)f(p) , (4.96)
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we obtain an infrared behaviour of

F (p→ 0) ∼ p−2−2β−γ = p−2−3β−β2 !
= p−4 (4.97)

leading to

β1/2 = −1
2

(
3 ±

√
17
)

or β1 = −3.562 , β2 = 0.562 . (4.98)

Sticking to the horizon condition, we conclude that an infrared exponent of β ∼ 0.56
will produce a linearly rising confinement potential, a value considerably smaller
than found so far in analytical and numerical studies, see again Refs. [43, 49, 50].
Note that for such a value of β the angular approximation will not be reliable
anylonger, compare Fig. 4.11 to Fig. 4.12.

Without the angular approximation, in view of Fig. 4.11, no infrared strength
greater than

F (p→ 0) ∼ p−2−2β−γ ∼ p−3.75 (4.99)

can build up. This holds true, however, only for the DSE for f but not for the flow
equation.

4.5.3 Assessment of the angular approximation

In Subsec. 4.5.2 we have used the angular approximation to determine the infrared
behaviour of the Coulomb form factor f . In this subsection we will assess the
reliability of this approximation by applying it to a similar integral whose exact
value is known. We will find a deviation of less than 5 percent in the parameter
range this assessment can be carried out for.

We consider the integral in Eq. (4.80) with Λ → ∞ and the parameterizations of
Eq. (4.72):

If (p) =
Nc

2

B2C

A

∫
d3q

(2π)3

1 − (p̂ · q̂)2

|p− q|2β+γ+2|q|−α . (4.100)

Without the ultraviolet cut-off Λ we have to demand

γ > 0 (4.101)

to ensure the ultraviolet convergence of the integral (the sum rule α = 2β − 1 is
understood). For convergence at the two poles we demand

α > −3 , i.e., β > −1 and 2β + γ < 3 . (4.102)

the last condition is seen by shifting q → q + p in the integral. This integral can
be calculated by writing it as a sum of two integrals both evaluated in Appendix D
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(along with the function K(β, γ)),

If(p) =
Nc

2

B2C

A

(∫
d3q

(2π)3

(
|q − p|−2β−γ−2|q|α

)

− 1

p2

∫
d3q

(2π)3

(
(p · q)2|q − p|−2β−γ−2|q|α−2

)
)

=
Nc

2

B2C

A

[

θ0(−α/2, β + γ/2 + 1) − 1

p2
θ2(−α/2 + 1, β + γ/2 + 1)

]

=
Nc

2

B2C

A

K(β, γ)

(4π)3/2
p−γ ,

(4.103)

to the expense, however, that the parameter range has to be further restricted to

2β + γ < 1 (4.104)

because both integrands are more divergent at q = p by a pole of the order 2 than
is their difference.

On the other hand, the momentum derivative of the same integral has been calcu-
lated in Eq. (4.85) using the angular approximation (the ultraviolet cut-off Λ drops
out by virtue of the derivative). Imposing the same UV asymptotics as for the exact
integral, If (p→ ∞) = 0, this yields

Iangf (p) =
Nc

6π2

B2C

A

2 + 2β + γ

(2β + 2)γ
p−γ . (4.105)

Therefore, the error made by using the angular approximation is

Iangf (p)

If(p)
=

4

3
√
π

2 + 2β + γ

K(β, γ)γ(β + 1)
. (4.106)

This function is shown in Fig. 4.1, restricted to the parameter range of interest
(β > 0, the horizon condition). The angular approximation turns out to be quite
accurate, overestimating the exact value by less than 5 per cent throughout the
parameter range. The numerical computations will indeed show that for β < 0.3
the angular approximation yields good results, see Fig. 4.13. Note, however, that
values of β > 0.3 (with γ = β(β + 1)) lie beyond the scope of the error estimate
of this subsection. The numerical computations will show that the deviation from
the value of γ computed using the angular approximation, γ = β(β + 1), grows
with β until at β ∼ 0.5 no power-law solution is possible any longer, see Fig. 4.11.
Note also that it is not possible to use the exact value of the integral If (p) for an
infrared analysis directly because the removal of the ultraviolet cut-off Λ enforces
the condition γ > 0 to ensure the ultraviolet convergence of the integral, which
together with the ansatz of power laws on the whole momentum range leads to a
contradiction in the equation for f , see Subsec. 4.5.1.
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Figure 4.1: The error Iangf (p)/If (p) of the angular approximation with respect to its exact
value, see Eq. (4.106), for those parameters γ and β where the exact value of the integral
is known. The angular approximation turns out to be quite accurate, overestimating
the exact value by less than 5 per cent throughout the parameter range.

4.6 Numerical Solutions

Both the full flow equation as well as the Dyson-Schwinger equation will be solved
numerically using two different algorithms. First, the full flow equation will be
solved iteratively after turning it into an integral equation in the same way as the
flow equations for the gluon and ghost propagators, see Chap. 3. For the Dyson-
Schwinger equation no solution could be found in this way because the iteration
procedure does not converge unless the angular approximation is used; it has there-
fore been solved by turning it into a system of linear equations, which is possible
because of the special structure of this equation.

4.6.1 Iterative solution of the flow equation

We will solve Eq. (4.34) numerically by integrating the flow and performing the
iteration procedure as in Chap. 3. For this, we need the initial condition fΛ.
Because Eq. (4.34) is linear and homogeneous in f , it fixes fk(p) only up to a
multiplicative constant. This constant is chosen by considering the asymptotic value
fk=0(p → ∞) = 1, which is known due to asymptotic freedom. In the numerical
implementation we therefore set

fkmin
(pmax = Λ)

!
= 1 (4.107)

after each iteration step by adjusting fΛ. The results are shown in Fig. 4.2. In the
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Figure 4.2: The Coulomb form factor f for three different values of kmin down to which
the flow has been integrated. The input into the flow equation for fk(p) are the flows
of the gluon and ghost propagator, ωk(p) and dk(p), from the approximation without
tadpoles in Sec. 3.5.

infrared, f(p) behaves as
f(p→ 0) ∼ p−0.57 . (4.108)

Together with the infrared behaviour d(p→ 0) ∼ p−0.64, this yields for the Coulomb
potential, see Eq. (4.16),

F (p→ 0) ∼ p−3.85 , (4.109)

which results in an almost linearly rising Coulomb potential at large distances: a
linear rise would be F (p) ∼ p−4 in momentum space, see Eq. (4.11).

For Eq. (4.70), however, an iterative solution was not successful because no con-
vergence could be achieved. Nevertheless, in order to use as input into the flow
equation of the Coulomb form factor the ghost and the gluon propagators which
have been calculated including tadpole terms, we set these propagators as infrared
boundary conditions, ωkmin

(p) and d−1
kmin

(p), for the flow equations for ωk(p) and
dk(p), and again solve these flow equations:

ωk(p) = ωkmin
(p) +

∫ k

kmin

dk′Iω(k
′, p) , d−1

k (p) = d−1
kmin

(p) +

∫ k

kmin

dk′Id(k
′, p) .

(4.110)
The so obtained ωk(p) and dk(p) are plugged into Eq. (4.34), solving it iteratively
as before. The result is shown in Fig. 4.3. We find an infrared behaviour of

f(p→ 0) ∼ p−0.65 . (4.111)

Together with the infrared behaviour of d(p→ 0) ∼ p−0.80 for the ghost form factor
from the optimized flow, see Eq. (3.52), this yields for the Coulomb potential, see
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Figure 4.3: Like Fig. 4.2 but with gluon and ghost input from the approximation with
inclusion of the tadpoles in Sec. 3.6.

Eq. (4.16),
F (p→ 0) ∼ p−4.25 , (4.112)

which rises slightly more than linearly at large distances.

4.6.2 Solution of the DSE based on matrix inversion

For the Dyson-Schwinger equation (4.70), a direct, i.e., non-iterative method of solv-
ing can be applied by turning it into a system of linear equations, which is possible
because it is an inhomogeneous Fredholm integral equation: first, we perform the
coordinate change q → q − p to get (dropping the indices ‘0’)

f(p) =fΛ(p) +

∫
d3q

(2π)3

[
Nc

2

d2(q)

ω(p− q)

−Nc
1

[2ω(p− q) + 2|p− q|rΛ(p− q)][d−1(q) + rΛ(q)]2

]
1 − (p̂ · q̂)2

(p − q)2
f(q) ,

(4.113)

such that no extrapolation of f beyond its representation range is necessary. This
can be rewritten as

f(p) = fΛ(p) +

∫ qUV

qIR

dq M̃(p, q)f(q) , (4.114)
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where

M̃(p, q) =
Nc

(2π)2

∫ 1

−1

dx
q2(1 − x2)

q2 + p2 − 2pqx

[
d2(q)

2ω(q2 + p2 − 2pqx)

− 1

[2ω(q2 + p2 − 2pqx) + 2rΛ(q2 + p2 − 2pqx)
√

q2 + p2 − 2pqx] [d−1(q) + rΛ(q)]2

]

,

(4.115)

with x := p̂ · q̂. As shown in Appendix C.2, we approximate the momentum integ-
ration by a sum over Gauss-Legendre nodes according to

∫ x2

x1

f(x)dx ≈
N∑

i=1

wif(xi) . (4.116)

We need to know f only on a Gauss-Legendre grid so we can drop the Chebyshev
representation entirely. Eq. (4.114) then becomes

f(pi) = fΛ(pi) +

N∑

j=1

w(qj)M̃(pi, qj)f(qj) =: fΛ(pi) +

N∑

j=1

M(pi, qj)f(qj) (4.117)

or
(1−M)f = fΛ (4.118)

where
f = (f(p1), . . . , f(pN)) and Mij = M(pi, pj) . (4.119)

This system of linear equations is solved using Crout’s algorithm with fΛ(pi) = 1
and with gluon and ghost from the optimized flow as input, which have the infrared
exponents of Eq. (3.52), i.e., ω(p → 0) ∼ p−0.6 and d(p → 0) ∼ p−0.8. The results
are shown in Figs. 4.4 and 4.5.

The Coulomb form factor f shows an oscillation around zero whose amplitude
grows towards the infrared. This result has been used as the starting value of the
iterative solving method. It is observed that the iteration diverges towards higher
or lower function values depending on initial inaccuracies. This indicates that the
above obtained solution is an unstable fixed point of the iterative solving procedure,
thereby explaining its failure in the present case. Taking qIR → 0, the amplitude
of the oscillation becomes larger and f changes not only in the infrared but over
the whole momentum range. Therefore, there seems to be no finite solution to
Eq. (4.113) in this limit.

In contrast, setting d(p) = 1 in Eq. (4.113), we obtain an almost constant Coulomb
form factor f as previously found in Ref. [43], see Fig. 4.6. A logarithmic ultraviolet
behaviour is observed.

Using this solving method, the dependence of the Coulomb form factor f on
the infrared behaviour of the gluon two-point function ω and the ghost propagator
dressing function d can be examined. The functions ω and d are used as input into
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Figure 4.4: The Coulomb form factor f obtained from Eq. (4.113) for different boundaries
qIR and qUV of the radial loop integral. The oscillation amplitude becomes larger as
qIR is lowered, and there are also modifications to f at momenta much higher than qIR.
This indicates that there is no finite solution to Eq. (4.113) for qIR → 0. In contrast,
an increase of the upper boundary qUV renders no modifications.
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Figure 4.5: Like Fig. 4.4 but in a half-logarithmic plot.
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Figure 4.6: The Coulomb form factor f as a solution of Eq. (4.113) with d ≡ 1 in a half-
logarithmic plot. The logarithmic ultraviolet behaviour is explicitly seen as a linear
descent in this plot.
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Figure 4.7: The gluon two-point function ω as determined in Sec. 3.6 from an optimized
flow equation, in its original critical form as well as in a modified subcritical form.
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Figure 4.8: The ghost propagator dressing function d as determined in Sec. 3.6 from an
optimized flow equation, in its original critical form as well as in a modified subcritical
form.

Eq. (4.113) in their original critical form as above, as well as in a modified form
with a subcritical infrared behaviour. Both forms are shown in Figs. 4.7 and 4.8.
Similar solutions have been found in Ref. [51].

Figure 4.9 shows that in the case where the critical, strongly divergent ghost form
factor d is present, the oscillation of f cannot be mitigated or even avoided by a
subcritical gluon two-point function ω. On the contrary, a subcritical ω further
aggravates the oscillations concerning both their amplitude and their frequency,
which points to the fact that (because it is ω−1 that enters the equation) a larger
integral kernel favours an oscillating behaviour of the solution f . In contrast, a
subcritical ghost form factor d results in a non-oscillating and even infrared-constant
Coulomb form factor f in both cases, see Fig. 4.10. Also in this case, different
infrared behaviours of ω only effect quantitative changes in the resulting f .

In the preceding analysis of Eq. (4.113) we have focussed on subcritical gluon and
ghost propagators as input functions, namely those violating the scaling relation
(3.42) between the infrared exponents. Now both the gluon as well as the ghost
propagator are chosen critical: the infrared exponent β of the ghost form factor d is
varied while α, the infrared exponent of ω, is adjusted according to

α = 2β − 1 . (4.120)

Likewise, the infrared coefficient A of the gluon correlator ω is chosen to fulfil Eq.
(4.88) for given B. Equation (4.113) has been solved using the matrix inversion
method as before and the infrared exponent γ of f has been determined wherever
possible. The result is displayed in Fig. 4.11. Up to a value of β ∼ 0.5 there is
no oscillation of f although for β = 0.475 there is already a deviation (apart from
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Figure 4.9: The Coulomb form factor f as solution of Eq. (4.113). For the critical and
strongly infrared divergent ghost form factor d, see Fig. 4.8, an oscillating behaviour of
f is obtained, regardless of the infrared behaviour of ω as shown in Fig. 4.7.
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Figure 4.10: The Coulomb form factor f as solution of Eq. (4.113). For a subcritical
ghost form factor d, see Fig. 4.8, a non-oscillating and even constant infrared-behaviour
of f is obtained, regardless of the infrared behaviour of ω as shown in Fig. 4.7.
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Figure 4.11: The Coulomb form factor f as solution of Eq. (4.113) for critical ω and
critical d whose infrared exponents α and β, obey the sum rule α = 2β − 1 and whose
infrared coefficients A and B fulfil Eq. (4.88). The transition to an oscillating behaviour
of f takes place around the point where the Coulomb potential is about to become
“overconfining”, i.e., where F (p) rises steeper than p−4 in the infrared. This happens
roughly for β ∼ 0.5.

fringe effects) of the infrared behaviour of f from a power law (therefore, the value
of γ ∼ 0.8 is only an estimate.) The transition to an oscillating f for growing β is
marked by a sign change of det(1 −M), which becomes negative for growing β at
about β ∼ 0.5.

Note that unlike in the case of Eq. (4.94), where the relations between the infrared
exponents found from the angular approximation are used to determine the range
of existence of the original integral without the angular approximation, here the
reason that Eq. (4.113) ceases having a non-oscillating solution for growing β is not
a possible infrared divergence of the loop integral. In the infrared, the radial part
of the integral in Eq. (4.113) behaves as

∼
∫

dq q2−2β−γ , (4.121)

which for the steepest non-oscillating solution β = 0.475, γ ∼ 0.8 (see Fig. 4.11)
becomes

∼
∫

dq q0.25 , (4.122)

so there is not even an infrared pole in the integrand, still less a divergence.
The Coulomb potential in the infrared behaves as

F (p) ∼ d(p)2f(p)

p2

p→0∼ p−2β−γ−2 . (4.123)
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Figure 4.12: The Coulomb form factor f resulting from the iterative solution of Eq. (4.70)
with angular approximation (4.81) is shown for different ghost and gluon propagators
as input functions. α has been determined according to the sum rule α = 2β − 1 for
different values of β. The infrared coefficients A and B have been chosen to fulfil Eq.
(4.88). It is seen that the result obeys an infrared power law over a wide range of
different values of β. Moreover, the infrared exponent γ of the Coulomb form factor f
with high accuracy fulfils the relation γ = β(β + 1) found in the infrared analysis, see
Eq. (4.89).

see Eq. (4.16). If the Coulomb potential in position space is to rise linearly for large
distances, V (r → ∞) ∼ r, F (p) must behave like F (p → 0) ∼ p−4, Eq. (4.11). For
a value of β = 0.475 we get −2β − γ − 2 = −3.75. Therefore, the transition of f to
an oscillating behaviour occurs just before the point where the Coulomb potential is
about to become “overconfining”, i.e., rising steeper than linearly at large distances.

This analysis shows that even if both ω and d have critical infrared behaviour,
with infrared exponents small enough a non-oscillating behaviour of f will result.
Therefore, not criticality in itself, but a size of the infrared exponents too large
prevents the f -equation from having a non-oscillating solution.

4.6.3 Iterative solution of the Dyson-Schwinger equation with

the angular approximation

In contrast to the original Dyson-Schwinger equation for the Coulomb form factor
f , Eq. (4.70), a solution can be found iteratively if the angular approximation (4.81)
is used. Figure 4.12 shows the result for ghost and gluon propagators chosen again
as explained at Eq. (4.120). It is seen that the result obeys an infrared power law
over a wide range of different values of β. Moreover, the infrared exponent γ of
the Coulomb form factor β fulfils Eq. (4.89), γ = β(β + 1), found in the infrared
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Figure 4.13: The Coulomb form factor f as solution of Eq. (4.70) with and without
the angular approximation (4.81) is shown for small values of β. It is observed that for
these small values of β the angular approximation indeed provides a good estimate, see
also Fig. 4.1.

analysis, with great accuracy.
Compared to the original equation, the equation with the angular approximation

is more benign because important contributions to the integral around q = p are
neglected. This does not take much effect for small β as can be seen in a direct
comparison of the solutions with and without the angular approximation in Fig.
4.13. For larger values of β these contributions become more and more important
until for β & 0.5 the character of the solution changes to an oscillating behaviour.

In summary, we have derived a flow equation for the Coulomb form factor from
the ghost form factor in two different ways with the same result. This flow equation
has been solved with the flows of the ghost form factor and the gluon propagator as
input. We have seen that the FRG is well suited to calculate the colour Coulomb
potential: with the gluon and ghost propagators from the flow equations without
tadpoles as input, ω(p → 0) ∼ p−0.28 and d(p → 0) ∼ p−0.64, we have obtained
VC(p → 0) ∼ p−3.85. With the propagators from the optimized flow, ω(p → 0) ∼
p−0.60 and d(p → 0) ∼ p−0.80, we have even found VC(p → 0) ∼ p−4.25. This is an
important result because a confining static quark potential implies a confining colour
Coulomb potential [90], but an infrared exponent αF < 4 of the colour Coulomb
potential VC(p→ 0) ∼ p−αF would lead to a VC which rises weaker than linearly in
position space, thereby excluding a linear static quark potential.

In contrast, the corresponding DSE for the Coulomb form factor has no non-
oscillating solution for values of β & 0.5, i.e., for all values found so far in various
approaches, which has been shown using a solution method based on matrix inver-
sion. Only for subcritical ghost form factor inputs or for critical inputs with a very
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mild infrared divergence of the ghost form factor a solution is found. Such a weakly
infrared divergent scaling solution for the propagators, however, has not been found.
This method also shows that the angular approximation, although very accurate for
values of β < 0.3, fails for higher values of β, which are those found so far. An
analytical infrared analysis has been performed which has confirmed the numerical
findings in its range of reliability.





Chapter 5

The Quark Propagator

Until now we have considered the pure gauge sector of Yang-Mills theory. Had-
rons, however, which QCD is expected to describe, are also composed of quarks.
Therefore, we will include quark fields into the present formalism in this chapter.

Besides confinement, the breaking of chiral symmetry is an outstanding feature
of QCD: while the explicit chiral symmetry breaking by the current quark masses
in the Lagrangian is very small, the dynamic chiral symmetry breaking by quantum
corrections is the decisive mechanism which gives mass to the baryons. We use two
quantities in order to show this generation of mass: a suitably defined mass function
M(p) and the chiral condensate 〈ψ̄ψ〉, which both can be calculated from the static
quark propagator.

The two limits of the mass function in the UV and in the IR describe the current
quark mass and the constituent quark mass, respectively: M(p → ∞) = m and
M(p → 0) = Mconstit. ∼ 300 MeV. The value of the chiral condensate can be
inferred from the Gell-Mann-Oakes-Renner relation, (mu +md)〈ψ̄ψ〉 = −f 2

πm
2
π, see

Ref. [93] and the pedagogical introduction of Ref. [94]. Here, fπ ∼ 92 MeV is the
pion decay constant, mπ ∼ 135 MeV is the pion mass, and mu + md ∼ 13 MeV is
the sum of the current masses of the up- and the down-quark. Moreover, we have
set 〈ψ̄ψ〉 = 〈ūu〉 ∼ 〈d̄d〉, which holds because of isospin symmetry. Accordingly, we
expect a chiral condensate of about 〈ψ̄ψ〉 ∼ −(230MeV)3.

A number of studies have been conducted so far in the field of chiral symmetry
breaking with inclusion of a confining potential, see Refs. [95–102]. Also the func-
tional renormalization group has been applied to study chiral symmetry breaking
in QCD-like systems, see Refs. [103, 104]. In this work we use the FRG method to
study chiral symmetry breaking in Hamiltonian QCD.

5.1 Derivation of the Flow Equation for the Quark

Propagator

In order to derive the flow equation for the static quark propagator, we start with the
generating functional of static Green functions that can be derived from a suitable
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ansatz for the quark vacuum wave functional:

Zk[J, σ̄, σ,Λ
†,Λ] =

∫

D[Ac̄cψ†ψ] exp[−ψ†Ωf,kψ − ψ†Ω[A]ψ − Sk[A, c̄, c] + JA + σ̄c+ c̄σ + Λ†ψ + ψ†Λ]

(5.1)

where we define

Λ†ψ :=

∫
d3p

(2π)3
(Λm

α )∗(−p)ψmα (p) . (5.2)

The Λ are the quark sources, m are colour indices in the fundamental representation
of the gauge group and α are Dirac indices. Sk denotes the action of the gluon sector,
that is to say, the vacuum wave functional, together with the regulator term, i.e.,
Sk = S + ∆Sk in the notation of Eq. (3.7). In the quark sector, we have the free
part of the vacuum wave functional, i.e., the two-quark kernel Ωf,k, and the coupling
of the quarks to the gluon field Ω[A]. We choose the two-quark kernel as

Ωf,k := Ωf +Rψ,k , (5.3)

whereas Ω[A] is k-independent because, due to the formalism of the FRG, the regu-
lator term is added only to the two-point kernel Ωf in the action. For the following
derivations it is convenient to switch to the superfield formalism which we have
already used from Eq. (3.19) on. For this, we define

φ := (A, c, c̄, ψ, ψ†) , I := (J, σ, σ̄,Λ,Λ†) ,

φ̄ := (A,−c̄, c,−ψ†, ψ) , Ī := (J,−σ̄, σ,−Λ†,Λ) .
(5.4)

In Eq. (5.1) we separate the regulator terms and introduce

M := diag(1,−1,−1,−1,−1) ,

Rk := diag(RA,k, Rc,k, R
T
c,k, Rψ,k, R

T
ψ,k)

(5.5)

to get

Zk[I] =

∫

Dφ exp

[

−S[φ] − 1

2
φ̄RkMφ + Iφ̄

]

. (5.6)

Acting with the dimensionless flow derivative ∂t := k ∂
∂k

on it we obtain

∂tZk[I] = −
∫

Dφ 1

2
φ̄ṘkMφ exp

[

−S[φ] − 1

2
φ̄RkMφ + Iφ̄

]

=

(

−1

2

δ

δI
Ṙk

δ

δĪ

)

Zk[I] ,

(5.7)

where the dot denotes the t-derivative. The latter equality holds because of
(

−1

2

δ

δI
Ṙk

δ

δĪ

)

eIφ̄ =

(

−1

2

δ

δI
Ṙk

δ

δĪ

)

eĪMφ = −1

2

δ

δI
eIφ̄ṘkMφ = −1

2
φ̄ṘkMφeIφ̄ .

(5.8)
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We define the regularized generating functional for connected equal-time Green func-
tions Wk as

Wk = lnZk , (5.9)

whose flow equation therefore is

∂tWk =Z−1
k ∂tZk = e−Wk

(

−1

2

δ

δI
Ṙk

δ

δĪ

)

eWk = −e−Wk
1

2

δ

δI
Ṙk

δWk

δĪ
eWk

= −1

2

δWk

δI
Ṙk

δWk

δĪ
− 1

2
TrMṘk

δ2Wk

δĪδI
.

(5.10)

In accordance with Eqs. (5.6) and (5.9) the effective action is defined as

Γk[φ] = −Wk[Ik[φ]] + Ik[φ]φ̄− 1

2
φ̄RkMφ with

δWk[Ik[φ]]

δI
= φ̄ . (5.11)

Note that φ denotes the field expectation value from here on. The flow of the
effective action can be expressed as

∂tΓk = −(∂tWk)[Ik[φ]] − İk[φ]
δWk[Ik[φ]]

δI
+ İk[φ]φ̄− 1

2
φ̄ṘkMφ

=
1

2

δWk[Ik[φ]]

δI
Ṙk

δWk[Ik[φ]]

δĪ
− 1

2
φ̄ṘkMφ+

1

2
TrMṘk

δ2Wk[Ik[φ]]

δĪδI

=
1

2
TrMṘk

δ2Wk[Ik[φ]]

δĪδI
,

(5.12)

where
δWk[Ik[φ]]

δI
= φ̄ and

δWk[Ik[φ]]

δĪ
= Mφ (5.13)

have been used. With Eq. (3.26) this becomes (cf. Eq. (3.27))

∂tΓk[φ] =
1

2
TrMṘk

(
δ2Γk
δφ̄δφ

+ Rk

)−1

. (5.14)

The derivation of the quark propagator flow is completely analogous to the derivation
of the ghost propagator flow. Therefore, we can replace the ghost fields by quark
fields in the ghost propagator flow equation which then becomes

δ2Γ̇k

δψ†
jδψi

=

Tr ṘA,k

(
δ2Γk

δAδA
+RA,k

)−1
δ3Γk

δψ†
j δAδψ

(

− δ2Γk

δψ†δψ
+Rψ,k

)−1
δ3Γk

δψiδψ†δA

(
δ2Γk

δAδA
+RA,k

)−1

+ Tr Ṙψ,k

(

− δ2Γk

δψ†δψ
+Rψ,k

)−1
δ3Γk

δψiδψ†δA

(
δ2Γk

δAδA
+RA,k

)−1
δ3Γk

δψ†
j
δAδψ

(

− δ2Γk

δψ†δψ
+Rψ,k

)−1

− 1

2
Tr ṘA,k

(
δ2Γk

δAδA
+RA,k

)−1
δ4Γk

δψ†
j δψiδAδA

(
δ2Γk

δAδA
+RA,k

)−1

− Tr Ṙψ,k

(

− δ2Γk

δψ†δψ
+Rψ,k

)−1
δ4Γk

δψ†
j δψiδψ†δψ

(

− δ2Γk

δψ†δψ
+Rψ,k

)−1

.

(5.15)
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k∂k
−1 = + −1

2

−

Figure 5.1: The flow equation of the quark propagator, Eq. (5.15). The spiral and solid
lines with filled black circles denote the regularized gluon and quark propagators at
cut-off momentum k, respectively. White circles stand for proper vertices at cut-off k,
a regulator insertion Ṙk is represented by a square with a cross.

This equation is diagrammatically illustrated in Fig. 5.1. The gluon propagator is
specified as (see Eqs. (3.30) and (3.31))

[(
δ2Γk
δAδA

+ RA

)−1
]ab

ij

(p,q) = δabtij(p)(2π)3δ3(p + q)
1

2ωk(p) + 2p rk(p)
(5.16)

with
Rab
A,ij(p,q) = δabtij(p)(2π)3δ3(p + q) · 2p rk(p) , (5.17)

where ωk(p) as determined in Chap. 3 will be input into the equations. This is
expected to be a good approximation as the effects of the quarks on the gluon sector
are probably small as has been demonstrated in Landau gauge with DSEs [105] and
on the lattice [106, 107].

The pure quark part of the Hamiltonian is (see Eq. (2.22))

Hψ†ψ =

∫

d3xψm†(x) [−iα · ∂ + βm]ψm(x)

=

∫
d3p

(2π)3
ψm†(p)[α · p + βm]ψm(p) .

(5.18)

We use this structure also for the two-quark part of the effective action with two
dressing functions A and B, so the two-point function in momentum space reads

(

− δ2Γk
δψ†δψ

)mn

(p,q) = δmn(2π)3δ3(p + q)[α · pAk(p) + βBk(p)] , (5.19)

where ψ† = ψ = 0 is understood. The dimensions of the dressing functions, however,
are [A] = −1 and [B] = 0 because the dimension of the effective action is one less
than the dimension of the Hamiltonian.

To gain physical information from the quark two-point function, we rewrite it as

S−1(p) = α · pA0(p) + βB0(p) = A0(p)[α · p + βM(p)] , (5.20)
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where we have defined the mass function

M(p) :=
B0(p)

A0(p)
. (5.21)

In analogy to the free two-quark function

S−1
free(p) =

2
√

p2 +m2
[α · p + βm] , (5.22)

where the coefficient in front of β is the mass of the free quark, we expect that the
analogous term M(p) in the full two-quark function denotes the scale dependent
mass where M(0) is the mass in the infrared, i.e., the constituent quark mass.
Moreover, we define the quark regulator function as

Rmn
k,ψ(p,q) = δmn(2π)3δ3(p + q)[α · pRk,α(p) + βRk,β(p)] , (5.23)

with

Rk,α(p) =
rk(p)

p
, Rk,β(p) = rk(p) (5.24)

where rk(q) is a dimensionless regulator shape function. Therefore, we get for the
quark propagator

([

− δ2Γk
δψ†δψ

+Rk,ψ

]−1
)mn

(p,q)

= δmn(2π)3δ3(p + q)
α · p(Ak(p) +Rk,α(p)) + β(Bk(p) +Rk,β(p))

p2(Ak(p) +Rk,α(p))2 + (Bk(p) +Rk,β(p))2
,

(5.25)

which becomes the full static quark propagator in the limit k → 0.
For the quark-gluon vertex, which is not a priori known, we consider the structure

of the quark-gluon coupling term in the Hamiltonian (see Eq. (2.22)),

HAψ†ψ = −g
∫

d3xψ†(x)αiAai (x)T aψ(x) , (5.26)

furnished with a dressing function h such that the vertex becomes

(
δ3Γk

δAδψ†δψ

)a,mn

i

(p3,p2,p1) = gαjtji(p3)T
ahk(p2,p1)(2π)3δ3(p1 + p2 + p3) ,

(5.27)
where the dressing function h has dimension [h] = −1.

Similarly, we consider the part of the Coulomb term of the Hamiltonian, where
the colour density is generated by matter fields exclusively (see Eq. (2.35)),

HC =
g2

2

∫

d3[xy]ρam(x)F ab(x − y)ρbm(y) , (5.28)
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k∂k
−1 = + −

Figure 5.2: Truncated flow equation of the quark propagator.

with the colour density (see Eq. (2.16)),

ρam(x) = ψ†(x)T aψ(x) . (5.29)

As we neglect the reaction of the quarks on the gluon sector, we have plugged the
Coulomb operator F = 〈F [A]〉, calculated in Chap. 4, into the Hamiltonian.

We take the four-quark part of the effective action to have the same structure as
the corresponding part of the Hamiltonian,

Γk,4ψ =
g2

2

∫

d3[xy]ψ†(x)T aψ(x)δabPk(x − y)ψ†(y)T bψ(y) (5.30)

which, after transformation into momentum space, leads to the quark four-point
function

(
δ4Γk

δψ†δψδψ†δψ

)m4m3m2m1

α4α3α2α1

(p4,p3,p2,p1) =

(2π)3δ3(p4 + p3 + p2 + p1)g
2[Pk(p1 + p2)δα2α1

δα4α3
(T a)m4m3 (T a)m2m1

− Pk(p2 + p3)δα3α2
δα4α1

(T a)m4m1 (T a)m2m3 ] .

(5.31)

The momentum-dependent function Pk(p) has the dimension [P ] = −3.
We plug these parameterizations into Eq. (5.15) where, however, we omit the

gluon tadpole term, which is unknown, see Fig. 5.2. For the flow of the dressing
functions A and B we get (with C2 = (N2

c − 1)/(2Nc))

pȦk(p) = −g2C2

∫
d3q

(2π)3
hk(−q,p)hk(−p,q) · 2q(p̂ · p̂ − q)(q̂ · p̂ − q)

[
2|p− q|ṙk(p − q)

[2ωk(p − q) + 2|p− q|rk(p − q)]2
(Ak +Rk,α)(q)

[q2(Ak +Rk,α)2 + (Bk +Rk,β)2](q)

+
[2(Ak +Rk,α)(Bk +Rk,β)Ṙk,β + q2(Ak +Rk,α)

2Ṙk,α − (Bk +Rk,β)
2Ṙk,α](q)

[2ωk(p − q) + 2|p− q|rk(p− q)][q2(Ak +Rk,α)2 + (Bk +Rk,β)2]2(q)

]

− g2C2

∫
d3q

(2π)3
p̂ · q̂ q Pk(p− q)

[2(Ak +Rk,α)(Bk +Rk,β)Ṙk,β + q2(Ak +Rk,α)
2Ṙk,α − (Bk +Rk,β)

2Ṙk,α](q)

[q2(Ak +Rk,α)2 + (Bk +Rk,β)2]2(q)
(5.32)
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and

Ḃk(p) = −g2C2

∫
d3q

(2π)3
hk(−q,p)hk(−p,q)

[
2|p− q|ṙk(p− q)

[2ωk(p − q) + 2|p− q|rk(p− q)]2
2(Bk +Rk,β)(q)

[q2(Ak +Rk,α)2 + (Bk +Rk,β)2](q)

+
2[2q2(Ak +Rk,α)(Bk +Rk,β)Ṙk,α + (Bk +Rk,β)

2Ṙk,β − q2(Ak +Rk,α)
2Ṙk,β](q)

[2ωk(p− q) + 2|p− q|rk(p− q)][q2(Ak +Rk,α)2 + (Bk +Rk,β)2]2(q)

]

− g2C2

∫
d3q

(2π)3
Pk(p− q)

[2q2(Ak +Rk,α)(Bk +Rk,β)Ṙk,α + (Bk +Rk,β)
2Ṙk,β − q2(Ak +Rk,α)

2Ṙk,β](q)

[q2(Ak +Rk,α)2 + (Bk +Rk,β)2]2(q)
.

(5.33)

As in the case of the gluon and ghost flow equations in Chap. 3 and of the
Coulomb form factor flow equation in Chap. 4, we can transform the flow equations
of the quark correlator form factors A and B into Dyson-Schwinger-like equations
by making the replacements

Ak → A0, Bk → B0, ωk → ω0, hk → h0, Pk → P0 (5.34)

in the loop integrals. This makes an analytic integration of the flow integral feasible
because of

∂t
A0 +Rk,α

q2(A0 +Rk,α)2 + (B0 +Rk,β)2
(q)

=
−2(A0 +Rk,α)(B0 +Rk,β)Ṙk,β − q2(A0 +Rk,α)

2Ṙk,α + (B0 +Rk,β)
2Ṙk,α

[q2(A0 + Rk,α)2 + (B0 + Rk,β)2]2
(q)

(5.35)
and

∂t

[
1

(2ω0 + 2|p− q|rk)(p− q)

A0 +Rk,α

q2(A0 +Rk,α)2 + (B0 +Rk,β)2
(q)

]

= − 2|p− q|ṙk(p − q)

(2ω0 + 2|p− q|rk)2(p− q)

A0 +Rk,α

q2(A0 +Rk,α)2 + (B0 +Rk,β)2
(q)

+
[−2(A0 +Rk,α)(B0 +Rk,β)Ṙk,β − q2(A0 +Rk,α)

2Ṙk,α + (B0 +Rk,β)
2Ṙk,α](q)

[(2ω0 + 2|p− q|rk)(p − q)][q2(A0 +Rk,α)2 + (B0 +Rk,β)2]2(q)
(5.36)

as well as the corresponding expressions for the dressing function B. Thus we arrive
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−1 = −1 −

Figure 5.3: The approximated flow equation of the quark propagator, Eqs. (5.37) and
(5.38), with the quark tadpole neglected and a bare quark-gluon vertex. The solid lines
with filled black circles denote the quark propagators. The solid line without a circle is
a bare quark propagator. Small dots represent a bare vertex.

at

A0(p) = AΛ(p) + g2C2
1

p

∫
d3q

(2π)3

[
h0(−q,p)h0(−p,q)(p̂ · p̂− q)(q̂ · p̂− q)

2ω0(p− q) + 2|p− q|rk(p− q)

2q(A0 +Rk,α)(q)

[q2(A0 +Rk,α)2 + (B0 +Rk,β)2](q)
+

p̂ · q̂P0(p − q)[q(A0 +Rk,α)](q)

[q2(A0 +Rk,α)2 + (B0 +Rk,β)2](q)

]k=0

k=Λ

(5.37)

and

B0(p) = BΛ(p) + g2C2

∫
d3q

(2π)3

[
h0(−q,p)h0(−p,q)

2ω0(p− q) + 2|p− q|rk(p− q)

2(B0 +Rk,β)(q)

[q2(A0 +Rk,α)2 + (B0 +Rk,β)2](q)
+

P0(p− q)(B0 +Rk,β)(q)

[q2(A0 +Rk,α)2 + (B0 +Rk,β)2](q)

]k=0

k=Λ

.

(5.38)

In the following sections we will make various approximations to these equations in
order to calculate the dressing functions A and B as well as, ultimately, the mass
function M and the chiral condensate 〈ψ̄ψ〉.

5.2 Inclusion of the Gluon Propagator Diagram

In this section we study the approximated quark propagator flow equation of Sec.
5.1 without the quark tadpole in order to investigate the influence of the static
gluon propagator on dynamic mass generation. The quark-gluon vertex is chosen
bare. This results in an equation shown diagrammatically in Fig. 5.3.

5.2.1 Non-vanishing current quark mass

In this subsection we employ a bare quark propagator with non-vanishing current
quark mass. The simplest choice for the bare quark dressing functions compatible
with the dimensions [A] = −1 and [B] = 0 is

AΛ(p) =
1

p
and BΛ(p) =

m

p
, (5.39)
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Figure 5.4: The mass function M(p) for different values of the coupling g, calculated
with a bare quark-gluon vertex and the static gluon propagator as input.

where we choose the current quark mass m = 3 MeV. For the transverse static
gluon correlation function ω we draw on the results obtained in Sec. 3.6 from the
optimized flow equation. In accordance with perturbation theory [108], the bare
static quark-gluon vertex dressing function h in Eq. (5.27) is

h(p,q) =
1

Eψ
p + Eψ

q + EA
p+q

(5.40)

with
Eψ

p
=
√

p2 +m2 and EA
p

= |p| . (5.41)

With these assumptions, Eqs. (5.37) and (5.38) without the tadpole are solved
numerically. In Fig. 5.4 the result for the mass function M(p) is shown for different
values of the coupling g. It is seen that for high couplings the mass function can
reach high values for intermediate momenta but eventually drops to the current
quark mass in the infrared. No dynamic generation of mass occurs. The same
calculation has been performed with ω(p) = p on the whole momentum range, which
coincides with the photon two-point function in the infrared regime. It is seen in Fig.
5.5 that there is not only no qualitative difference between the two mass functions
but that also the quantitative differences are negligibly small, if the coupling g is
appropriately tuned, i.e., the effect of different infrared behaviours of the gauge
field propagator can be balanced by adjusting one single number. Therefore, in
the FRG approach there seems to be no effect on chiral symmetry breaking coming
from the static gluon propagator alone. This is in accordance with the results from
the variational approach in Ref. [109] where no chiral symmetry breaking occurs
without the Coulomb term in the Hamiltonian.
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Figure 5.5: The mass function M(p) for different values of the coupling g, calculated
for the Yang-Mills case with the static gluon propagator as input (symbols), as in Fig.
5.4, and for the case ω(p) = p (lines). If the values for the coupling g are chosen
appropriately, the curves coincide. Therefore, it is seen that the IR behaviour of the
static, transverse gluon propagator has only negligible influence on the mass function.

5.2.2 Input from the variational approach in the chiral limit

In order to improve the input for the dressing functions AΛ and BΛ, we will use
results from the variational approach. As these were obtained in the chiral limit, we
now set m = 0.

In the Lagrangian formulation of QFT, the bare propagators and vertices occur-
ring in the Dyson-Schwinger equations are the bare propagators and vertices in the
classical action S. In the Hamiltonian formulation, however, S is actually defined
via

〈φ|O[A,ψ†, ψ]|φ〉 =

∫

D[Aψ†ψ]O[A,ψ†, ψ]e−S[A,ψ†,ψ] (5.42)

with
exp(−S[A,ψ†, ψ]) := J [A]|φ[A,ψ†, ψ]|2 . (5.43)

Therefore, S is completely determined by the vacuum wave functional φ and the
gauge fixing procedure. Interpreting Eqs. (5.37) and (5.38) without the quark tad-
pole and with a bare quark-gluon vertex as Dyson-Schwinger equations, the propag-
ator functions AΛ and BΛ at cutoff momentum Λ are the “bare” propagator func-
tions in the exponent S of the vacuum wave functional. They can be determined by
applying the variational principle,

〈φ|H|φ〉
〈φ|φ〉 → min. , (5.44)
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with a suitable ansatz for φ, and used as input into the present equation. In Ref.
[110] the action

S[ψ†, ψ] =

∫

ψ†Ω̃ψ with Ω̃ = S(+)+S(+)KS(−)+S(−)K̄S(+)−S(−) , (5.45)

has been proposed where

S(±)(p) =
1

2

(1± h(p)

Ep

)

with h(p) = α · p + βm and Ep =
√

p2 +m2

(5.46)
are the projectors on particle and antiparticle states, respectively. If we choose the
quark kernel K as

K(p) = βϕ(p) , (5.47)

i.e., without coupling to the gluons, the above ansatz corresponds to the ground
state used in Ref. [99]. We obtain

Ω̃mn(p) = δmn [α · pAΛ(p) + βBΛ(p)] (5.48)

with

AΛ(p) =
1

Ep

− m

E2
p

ϕ(p) and BΛ(p) =
m

Ep

+
p2

E2
p

ϕ(p) (5.49)

where the indices m and n are indices in the fundamental representation of the gauge
group. This calculation is detailed in Appendix E.1. The determination of ϕ(p) by
means of the variational principle has been performed in Ref. [99] (see also [109])
in the chiral limit m = 0 where the kernels read

AΛ(p) =
1

p
and BΛ(p) = ϕ(p) . (5.50)

For the calculation and subsequent minimization of the energy expectation value,
the Coulomb part HC of the Hamiltonian containing the confinement potential has
been fully included in addition to the kinetic part Hψ†ψ. The kernels AΛ and BΛ are
shown in Fig. 5.6 together with their asymptotic behaviour.

Using these AΛ and BΛ as input, the dressed propagator functions A0(p) and
B0(p) (the indices ‘0’ will be dropped from now on) have been calculated in the
chiral limit. The results are shown in Fig. 5.7 together with the mass function
M(p) = B(p)/A(p). It is seen that although mass builds up from the ultraviolet
region towards the mid-momentum region, the mass function reaches a peak value
of M = 270 MeV at p = 580 MeV and falls down towards the infrared region like
M ∼ p. Therefore, the gluon propagator term does not seem to be sufficient to
maintain chiral symmetry breaking in the infrared.
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Figure 5.6: The variational parameter ϕ(p) of Eq. (5.45) as calculated in Ref. [99] (see
also [109]) with m = 0 is shown together with the two-quark kernels AΛ and BΛ shown
of Eq. (5.50). The respective asymptotic behaviour is indicated.
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Figure 5.7: The dressing functions of the static quark propagator, A(p) and B(p), as a
solution of the equation in Fig. 5.3 in the chiral limit with input from the variational
approach [99, 109] is shown. The mass function M(p) has a peak value of M = 270
MeV at p = 580 MeV. However, the mass function falls off towards the infrared region
like M ∼ p.
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Infrared analysis

Concerning the numerical solution of Eqs. (5.37) and (5.38), note that in the loop
integrals the only momentum argument of the dressing functions A and B is the
loop momentum q. In particular, no sums of the external momentum and the
loop momentum like |p − q| or |p + q| occur. As a consequence, the range of the
radial loop integration momentum q and the range of the Chebyshev representation
momentum p can be chosen to coincide without the need to extrapolate A and B
outside their representation range and, therefore, without the need to perform an
analysis of their asymptotic behaviour as an input into the numerical computation.
However, in order to check up on the numerical calculations, we will carry out such
an analysis for the infrared region in the following.

As a reference, we first list the infrared behaviour of ω(p) and ϕ(p) and, as a
consequence, of AΛ(p) and BΛ(p) according to Eq. (5.50):

ω(p→ 0) ∼ p−α, ϕ(p→ 0) ∼ p0, AΛ(p→ 0) ∼ p−1, BΛ(p→ 0) ∼ p0 . (5.51)

For the quark dressing functions we assume a power law behaviour in the infrared
region and define the infrared exponents

A(p→ 0) ∼ p−η and B(p→ 0) ∼ p−τ . (5.52)

In the deep infrared region we can write the loop integrals in Eqs. (5.37) and (5.38)
with the present approximations using a single ultraviolet cut-off:

A(p) = AΛ(p) + g2C2
1

p

∫ Λ d3q

(2π)3

h(−q,p)h(−p,q)(p̂ · p̂ − q)(q̂ · p̂− q)q · 2A(q)

2ω(p− q)[q2A2 +B2](q)
(5.53)

and

B(p) = BΛ(p)+g2C2

∫ Λ d3q

(2π)3
h(−q,p)h(−p,q)

1

2ω(p− q)

2B(q)

[q2A2 +B2](q)
. (5.54)

In the infrared analysis, we make the assumption that in the infrared region the
infrared behaviour dominates the integral and therefore we replace the correlation
functions under the integral with their infrared asymptotic behaviour given in Eqs.
(5.51) and (5.52). We then scale the external momentum p as well as the loop
momentum q by a positive factor of λ, p → λp, q → λq, where λ < 1. Two cases
have to be distinguished:

τ < η − 1 In this case the term q2A2 dominates over the termB2 in the denominator

of the loop integrals in Eqs. (5.53) and (5.54), so we get for the B-equation (in view
of Eq. (5.40) with m = 0)

λ−τB(p) = λ0BΛ(p) + λ2η−τ+α−1Loop(p) . (5.55)

Again, we have to distinguish two cases:
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2η − τ + α− 1 < 0: In this case the loop is dominant, so 2η − τ + α − 1 = −τ →
η = 1−α

2
.

2η − τ + α− 1 ≥ 0: In this case BΛ is dominant, so τ = 0.

For the A-equation we get

λ−ηA(p) = λ−1AΛ(p) + λη+α−1Loop(p) . (5.56)

We have to distinguish
η + α < 0: Loop dominates, η + α− 1 = −η → η = 1−α

2
.

η + α ≥ 0: AΛ dominates, η = 1.

τ ≥ η − 1 In this case the term B2 dominates over the term q2A2 in the denominator

of the loop integrals in Eqs. (5.53) and (5.54), so we get for the B-equation

λ−τB(p) = λ0BΛ(p) + λ1+α+τLoop(p) . (5.57)

α+ τ + 1 < 0: Loop dominates, 1 + α + τ = −τ → τ = −1+α
2

.
α+ τ + 1 ≥ 0: BΛ dominates, τ = 0.

For the A-equation:

λ−ηA(p) = λ−1AΛ(p) + λ1+α−η+2τLoop(p) . (5.58)

α− η + 2τ + 2 < 0: Loop dominates, 1 + α + 2τ − η = −η → τ = −1+α
2

.
α− η + 2τ + 2 ≥ 0: AΛ dominates, η = 1 .

In the following, we check the above case distinctions for consistency and we find
that there is only one infrared behaviour of A and B which can be realized. We use
the condition that α > −1, which is easily fulfilled not only for the optimized result
of Chap. 3 (α = 0.60) used in the numerical solution of Eqs. (5.37) and (5.38), but
also for the result without inclusion of the tadpoles (α = 0.28) and for the result
(α = 1) of the variational approach [50].

First, we consider the case of τ < η − 1: for the A-equation, the result η = 1−α
2

with the prerequisite η+α < 0 contradicts α > −1. Therefore, we must have η = 1
which, considering the B-equation and again the condition α > −1, leads to the
possibility τ = 0. These results, however, conflict with the condition τ < η − 1,
which is therefore ruled out.

Next, we consider the case τ ≥ η − 1: for the B-equation, the result τ = −1+α
2

with the prerequisite α + τ + 1 < 0 contradicts α > −1. Therefore, we must have
τ = 0 which, considering the A-equation and again the condition α > −1, leads to
the possibility η = 1. Both values of τ and η are now in accord with the condition
τ ≥ η − 1, even with τ = η − 1. Therefore, none of the terms q2A2 and B2 in the
denominator of the quark propagator actually dominates the infrared behaviour.

In summary, the only case where the result does not contradict any of the as-
sumptions made for its derivation is τ = 0 and η = 1 in the case of τ ≥ η − 1 with
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−1 = −1 +

Figure 5.8: The approximated equation for the quark propagator, Eqs. (5.37) and (5.38),
with inclusion of the quark tadpole only.

α + τ ≥ −1 and α− η + 2τ + 2 ≥ 0. This leads to the infrared behaviour

A(p→ 0) ∼ 1

p
and B(p→ 0) ∼ 1, and therefore M(p → 0) ∼ p ,

(5.59)
which excellently confirms our numerical calculation, see Fig. 5.7.

5.3 Inclusion of the Tadpole Diagram

The foregoing considerations have shown that despite the improvement by using
input from the variational approach, the mass function vanishes in the infrared. The
static gluon propagator obviously has little influence on dynamic mass generation
in the FRG approach. Therefore, we will neglect it in the following and consider
only the quark tadpole in Eqs. (5.37) and (5.38). The resulting approximated flow
equation is shown in Fig. 5.8.

5.3.1 Derivation of the mass equation

In order to write down an integral equation for the quantity of interest itself, the
mass function, rather than for the dressing functions A and B, we make an ansatz
for the proper self energy as in Ref. [99], such that the energy-dependent quark
two-point function reads

S−1(p0,p) = −i[γ0p0 − γ · pÃ(p) − 1B̃(p)] , (5.60)

and therefore

S(p0,p) = i
γ0p0 − γ · pÃ(p) + 1B̃(p)

(p0)2 − p2Ã2(p) − B̃2(p)
. (5.61)

The static quark two-point function has been parameterized as

S−1(p) = γ · pA(p) + 1B(p) , (5.62)

see Eq. (5.19), and therefore

S(p) =
−γ · pA(p) + 1B(p)

p2A2(p) +B2(p)
. (5.63)
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The static propagator is defined as the integral over the p0-component of the time-
dependent propagator:

S(p) =

∫
dp0

2π
S(p0,p) =

i

2π
(−γ · pÃ + 1B̃)

∫

dp0 1

(p0)2 − p2Ã2 − B̃2 + iε

=
i

4π

(−γ · pÃ + 1B̃)
√

p2Ã2 + B̃2

∫

dp0

[

1

p0 −
(√

p2Ã2 + B̃2 − iε

)

− 1

p0 −
(

−
√

p2Ã2 + B̃2 + iε

)

]

=
1

2

(−γ · pÃ + 1B̃)
√

p2Ã2 + B̃2

,

(5.64)

where the residue theorem has been used. Comparison of Eqs. (5.63) and (5.64)
yields the conditions

Ã

2

√

p2Ã2 + B̃2

=
A

p2A2 +B2
and

B̃

2

√

p2Ã2 + B̃2

=
B

p2A2 +B2
, (5.65)

which can be solved for A and B giving

A(p) =
2

√

M(p)2 + p2
and B(p) =

2M(p)
√

M(p)2 + p2
(5.66)

with

M(p) =
B̃(p)

Ã(p)
=
B(p)

A(p)
. (5.67)

Therefore, using an energy independent ansatz for the quark self energy allows us
to express the dressing functions A and B of the static quark two-point function in
terms of the mass function M . In the ultraviolet, the dressing functions turn into
the ones of the bare propagator (see Ref. [44]),

A(p → ∞) =
2

√

m2 + p2
and B(p → ∞) =

2m
√

m2 + p2
, (5.68)

so the mass function approaches the current quark mass for high momenta,

M(p → ∞) =
B(p → ∞)

A(p → ∞)
= m . (5.69)

On the other hand, Eq. (5.65) yields the constraint

p2A2(p) +B2(p) = 4 . (5.70)
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We choose the bare dressing functions AΛ and BΛ according to Eq. (5.68) as

AΛ(p) =
2

√

m2 + p2
and BΛ(p) =

2m
√

m2 + p2
. (5.71)

This result is also obtained directly in the case g = 0, because then we have A =
AΛ and B = BΛ and the bare time-dependent two-point function in Eq. (5.60) is
parameterized with Ã(p) = 1 and B̃(p) = m. Together with Eq. (5.65) this yields
again the above equations.

We plug these bare propagators into Eqs. (5.37) and (5.38), without the gluon
term, and those into the definition of the mass function, Eq. (5.67). As the regulator
functions only occur with the argument q, we can replace the UV regulator terms
with an integration cut-off Λ and get

M(p) =

{

2m
√

m2 + p2
+ g2C2

∫ Λ d3q

(2π)3

M(q)P (p− q)

2
√

M2(q) + q2

}

/{

2
√

m2 + p2
+ g2C2

∫ Λ d3q

(2π)3

p̂ · q̂ qP (p− q)

2p
√

M2(q) + q2

}

,

(5.72)

where the dressing functions A and B have been expressed in terms of the mass
function, Eq. (5.66), and the constraint (5.70) has been taken into account. This
is the equation we are going to solve in the following. It can also be written in an
alternative form,

M(p) = m+ g2C2

√

m2 + p2

2

∫ Λ d3q

(2π)3
P (p− q)

M(q) − p̂ · q̂ q
p
M(p)

2
√

M2(q) + q2
(5.73)

5.3.2 Results obtained in the framework of Adler and Davis

In Ref. [99] by Adler and Davis, chiral symmetry breaking in Coulomb gauge QCD
has been studied. An equation for the mass function, however, has not been derived
explicitly. We will use this framework to calculate the mass function and to compare
it later on with our own results. There, the static quark propagator has been
parameterized as

S(p) =
pĀ(p)β + (1 + B̄(p))α · p
2p
√

Ā(p)2 + (1 + B̄(p))2
. (5.74)

With this parameterization the mass function reads

M(p) =
pĀ

1 + B̄
(p) , (5.75)
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see Eq. (5.67). The equation for the dressing functions in the approximation of a
bare quark-gluon vertex, which has been applied there, yields

pĀ(p) =
16π

3

∫
d3q

(2π)3
F (p− q)

Ā

2
√

Ā2 + (1 + B̄)2
(q) ,

pB̄(p) =
16π

3

∫
d3q

(2π)3
F (p− q)p̂ · q̂ 1 + B̄

2
√

Ā2 + (1 + B̄)2
(q) .

(5.76)

With these expressions we can formulate an equation for the mass function only:

M(p) =

{

16π

3

∫
d3q

(2π)3
F (p− q)

Ā

2
√

Ā2 + (1 + B̄)2
(q)

}

/{

1 +
16π

3

1

p

∫
d3q

(2π)3
F (p − q)p̂ · q̂ 1 + B̄

2
√

Ā2 + (1 + B̄)2
(q)

}

=

{

16π

3

∫
d3q

(2π)3
F (p− q)

M

2
√

M2 + q2
(q)

}

/{

1 +
16π

3

∫
d3q

(2π)3
F (p− q)

q
p
p̂ · q̂

2
√

M(q)2 + q2

}

.

(5.77)

This can be rewritten as

M(p) =
16π

3

∫
d3q

(2π)3
F (p − q)

M(q) − q
p
p̂ · q̂M(p)

2
√

M(q)2 + q2
. (5.78)

Note that this equation is very similar to ours in the chiral limit, Eq. (5.73). The
structural differences are that our equation comprises the four-quark function P (p)
instead of the colour Coulomb potential F (p) and that in our equation the integral
is multiplied by the free quark energy Ep = p.

To solve this equation numerically, we introduce an infrared regulator ε into the
Coulomb potential,

F (p) ∼ 1

p4
→ 1

p2(p2 + ε2)
. (5.79)

It turns out that the equation in the form of (5.78) is less amenable to a numerical
iterative treatment than in the form of (5.77). The results are shown in Figs. 5.9
and 5.10. The mass function decreases in the ultraviolet like M(p) ∼ 1/p4 and it
reaches a plateau value of M(0) = 0.19 in the infrared. With a Coulomb string
tension of about σC ∼ 2σ [111–114] and the Wilson string tension σ = (440MeV)2,
the constituent quark mass becomes M(0) = 120MeV, a value considerably smaller
than the phenomenological 300MeV.

Furthermore, we can calculate the chiral condensate, an order parameter of chiral
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Figure 5.9: The mass function calculated within the framework of Adler and Davis [99]
in a double-logarithmic plot. The infrared plateau value gives the constituent quark
mass M(0) = 0.19

√
σC . With σC ∼ 2σ = 2 · (440MeV)2, the constituent quark mass is

M(0) = 120MeV.
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Figure 5.10: Like Fig. 5.9 in a half-logarithmic plot. The convergence of the procedure
on lowering the infrared regulator ε is explicitly seen.
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symmetry breaking. It is defined as

〈ψ̄(x)ψ(x)〉 = ββα〈ψ†m
β (x)ψmα (x)〉 = ββα〈δmmδαβδ3(0) − ψmα (x)ψ†m

β (x)〉

= δmmTrβδ3(0) − ββα

∫
d3[pq]

(2π)6
δmmS(p)βα(2π)3δ3(p + q)ei(p+q)·x

= −Nc

∫
d3p

(2π)3
Tr

(1 + B̄)γ · p + pĀ1

2p
√

Ā2 + (1 + B̄)2
(p) = −Nc

∫
d3p

(2π)3

2M(p)
√

M(p)2 + p2

(5.80)

In the case at hand the chiral condensate is

〈ψ̄ψ〉 = −1.84 · 10−2σ
3/2
C = −(164MeV)3 , (5.81)

which is substantially lower than the expected value of about 〈ψ̄ψ〉 ∼ −(230MeV)3.

5.4 Solving the Mass Equation

In this section, we use two different ansatzes for the four-quark function, which
enters the quark tadpole term, in order to calculate the mass function: an ansatz
that is inspired by the form of the corresponding term in the Hamiltonian and a
perturbatively improved ansatz.

5.4.1 A Hamiltonian ansatz for the four-quark function

In the derivation of the quark propagator flow equation in Sec. 5.1 we have already
used the ansatz of Eq. (5.31) for the four-quark function,

(
δ4Γk

δψ†δψδψ†δψ

)m4m3m2m1

α4α3α2α1

(p4,p3,p2,p1) =

(2π)3δ3(p4 + p3 + p2 + p1)g
2[Pk(p1 + p2)δα2α1

δα4α3
(T a)m4m3 (T a)m2m1

− Pk(p2 + p3)δα3α2
δα4α1

(T a)m4m1 (T a)m2m3 ] ,

(5.82)

that has been modelled after the Coulomb term (5.28) in the Hamiltonian,

HC =
g2

2

∫

d3[xy]ψ†(x)T aψ(x)F ab(x − y)ψ†(y)T bψ(y) . (5.83)

Making the appropriate approximations in the loop integral, we have arrived at Eq.
(5.72) for the mass function. Approaching the chiral limit, m = 0, this equation
becomes

M(p) =

{

C2

∫ Λ d3q

(2π)3
g2P (p− q)

M(q)

2
√

M2(q) + q2

}

/{

2

p
+ C2

∫ Λ d3q

(2π)3
g2P (p− q)

p̂ · q̂ q
p

2
√

M2(q) + q2

}

.

(5.84)
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Figure 5.11: The mass function calculated with the ansatz of Eq. (5.82) for the four-quark
function, in a double-logarithmic plot. The infrared plateau value gives the constituent
quark mass M(0) = 0.67

√
σC . With σC ∼ 2σ = 2 · (440 MeV)2, the constituent quark

mass is M(0) ∼ 420 MeV.

It has assumed almost the same structure as the equation for the mass function in
the framework of Adler and Davis, Eq. (5.77). There are two important differences:
the term 2/p in the sum in the denominator occurs instead of the term 1 in the sum
in the denominator of Eq. (5.77), and the four-quark function P (p − q) appears
instead of the colour Coulomb potential F (p − q). As the four-quark function is
not known, we go by the dimension [P ] = −3, which is one less than the dimension
of the colour Coulomb potential, [F ] = −2, and in view of Eq. (4.13) we use the
ansatz

g2P (p− q) =
8πσC

|p − q|5 . (5.85)

This ansatz can be justified a posteriori by the observation that the UV behaviour
of the mass function M(p → ∞) ∼ 1/p4 will turn out to be same as in the case
of Adler and Davis, see Fig. 5.9, and that the behaviour of P is the same in the
UV as well as in the IR as it is the case for the colour Coulomb potential F used
before in Eq. (5.77). We can therefore expect similar results as in the case of Subsec.
5.3.2, also in the IR. Obviously, this is indeed true qualitatively: the result of the
numerical calculation for the chiral limit is shown in Figs. 5.11 and 5.12, the result
for a current quark mass of m ∼ 4 MeV is given in Fig. 5.13, each with a decreasing
infrared regulator ε as in Subsec. 5.3.2.

We observe that with this choice of the four-quark function the ultraviolet be-
haviour in the chiral limit is M(p → ∞) ∼ 1/p4 like in the framework of Adler
and Davis, see Fig. 5.9. In the infrared a plateau develops at a value of M(0) =
0.67

√
σC ∼ 420 MeV in the chiral limit and of M(0) = 0.69

√
σC ∼ 430 MeV in

the case of m ∼ 4 MeV. In contrast to Subsec. 5.3.2, both results lie higher than
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Figure 5.12: Like Fig. 5.11, in a half-logarithmic plot. The convergence on lowering the
infrared regulator ε is explicitly seen.
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Figure 5.14: Comparison of the mass function obtained with the simple ansatz for the
four-quark function in the chiral and massive case with the mass function obtained from
the equation of Ref. [99].

the phenomenological 300 MeV, but still at a reasonably good value considering the
model ansatz for the four-quark function. In Figs. 5.14 and 5.15 we compare our
results obtained for the chiral case and for the massive case to the results from the
equation in the framework of Adler and Davis. Our results are higher by a factor of
about 3.5.

With the knowledge of the mass function we can again calculate the chiral con-
densate defined in Eq. (5.80) and get

〈ψ̄ψ〉 = 1.48 · 10−1σ
3/2
C = −(329 MeV)3 , (5.86)

which lies considerably higher than the experimental value of about ∼ −(230MeV)3.
Note again that without the replacements of Eq. (5.34) a solution for the flow

equations for A and B was not found.

5.4.2 A perturbatively improved four-quark function

In the previous section, we have used a sophisticated guess to determine the four-
quark function as an input into the equation for the mass function, where the model
was the Coulomb term of the Hamiltonian. In this section we use perturbation
theory to improve the ansatz of Eq. (5.31) in order to get a hint at the form of the
four-quark function. The perturbative calculation to the lowest order is shown in
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Appendix E.2, and the result is

(
δ4Γ

δψ†δψδψ†δψ

)m4m3m2m1

α4α3α2α1

(p4,p3,p2,p1) =
64g2(2π)3δ3(p1 + p2 + p3 + p4)

Ep1
+ . . .+ Ep4

{

(T a)m4m3(T a)m2m1

[
(
S(+)(p4)S

(−)(−p3)
)

α4α3

(
S(+)(p2)S

(−)(−p1)
)

α2α1

+
(
S(−)(p4)S

(+)(−p3)
)

α4α3

(
S(−)(p2)S

(+)(−p1)
)

α2α1

]

F (p1 + p2)

−(T a)m4m1(T a)m2m3

[
(
S(+)(p4)S

(−)(−p1)
)

α4α1

(
S(+)(p2)S

(−)(−p3)
)

α2α3

+
(
S(−)(p4)S

(+)(−p1)
)

α4α1

(
S(−)(p2)S

(+)(−p3)
)

α2α3

]

F (p2 + p3)

}

.

(5.87)
We plug the improved four-quark function of Eq. (5.87) into the flow equation of
the two-quark function, see Eq. (5.15), retaining only the quark tadpole term. This
calculation is detailed in Appendix E.3. For the flows of the dressing functions A
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and B we get

p2Ȧk(p) = 16g2C2

∫
d3q

(2π)3
Fk(p− q)

mp2(q2 − p · q) +mp · qEp(Ep −Eq)

(Ep + Eq)E2
p
E2

q

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

m
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

(5.88)
and

Ḃk(p) = −16g2C2

∫
d3q

(2π)3
Fk(p− q)

(m2 −EpEq)p · q + p2q2

(Ep + Eq)E2
p
E2

q

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

m
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

(5.89)
As usual, in order to make the analytic integration of the flow possible, at first we
replace {Ak, Bk, Fk} → {A0, B0, F0} in the loop integral. We can then again use the
total derivatives of Eqs. (5.35) and (5.36) as well as the corresponding expressions
for B to get

p2A0(p) = p2AΛ(p)+16g2C2

∫ Λ d3q

(2π)3
F0(p − q)

mp2(q2 − p · q) +mp · qEp(Ep − Eq)

4(Ep + Eq)E2
p
E2

q

(mA0(q) −B0(q))

(5.90)
and

B0(p) = BΛ(p) − 16g2C2

∫ Λ d3q

(2π)3
F0(p − q)

(m2 − EpEq)p · q + p2q2

4(Ep + Eq)E2
p
E2

q

(mA0(q) − B0(q)) .

(5.91)
The effect of the perturbatively improved four-quark function, besides the emergence
of several kinematic factors, is that, compared to Eqs. (5.37) and (5.38), the dressing
function B is mixed into the equation for A and vice versa, apart from the term in
the denominator which is a constant at k = 0, according to Eq. (5.70). With these
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two dressing functions and using Eq. (5.68) for the bare dressing functions as well
as Eqs. (5.66) and (5.70), we can write the mass function (5.67) as

M(p) =

{
2m

Ep

+16g2C2

∫ Λ d3q

(2π)3
F0(p− q)

(m2 −EpEq)p · q + p2q2

2(Ep + Eq)E2
p
E2

q

M(q) −m
√

M2(q) + q2

}

/{
2

Ep

+16g2C2

∫ Λ d3q

(2π)3
F0(p − q)

mp2(q2 − p · q) +mp · qEp(Ep − Eq)

2(Ep + Eq)E2
p
E2

q
p2

m−M(q)
√

M2(q) + q2

}

.

(5.92)

This equation simplifies considerably in the chiral limit m = 0 as the loop integral
in the denominator vanishes and we obtain

M(p) = 4C2p

∫ Λ d3q

(2π)3
g2F (p− q)

M(q)(1 − p̂ · q̂)

(p+ q)
√

M2(q) + q2
. (5.93)

We can now use a pure confining potential,

g2F (p) =
8πσc
p4

, (5.94)

as input into the equation. The numerical results are shown in Fig. 5.16. We see
the ultraviolet behaviour of M(p) = 1/p4 unchanged, but instead of a plateau in
the infrared, a divergence of M(p) ∼ 1/p emerges, leading to an infinite constituent
quark mass, which is, of course, unphysical.

The inclusion of a current quark mass even aggravates the situation: due to the
differences occurring Eq. (5.92), in the numerical solution the mass function M(p)
at some iteration step turns negative for sufficiently high values of the current quark
mass m, regardless of the value of the infrared regulator ε. Two exemplary cases
are shown in Figs. 5.17 and 5.18.

So far we have taken the perturbative form (5.87) of the four-quark function with
the non-perturbative infrared behaviour F (p → 0) ∼ 1/p4 of the colour Coulomb
potential F plugged in. This may seem inappropriate as we are dealing with entirely
non-perturbative correlation functions, so we now go one step further and replace
the energy terms of the free quarks in Eq. (5.87),

Ep =
√

m2 + p2 by Ep =
√

M(p)2 + p2 (5.95)

as well as the projectors

S(±)(p) =
1

2
± α · p + βm

2Ep

by S(±)(p) =
1

2
± α · p + βM(p)

2Ep

. (5.96)
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Figure 5.16: The mass function with the improved four-quark function of Eq. (5.87) as
input is shown in the chiral limit m = 0. The regulator ε in F (p−q) = 1/[(p−q)2((p−
q)2 + ε2)] is gradually lowered until convergence is reached. The ultraviolet behaviour
of M(p) = 1/p4 is the same as in the cases before but in the infrared a divergence of
M(p) ∼ 1/p instead of a plateau emerges, leading to an infinite constituent quark mass,
which is, of course, unphysical.
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Figure 5.17: Like Fig. 5.16 but with non-vanishing current quark mass m and with the
infrared regulator ε = 10−1. As m is gradually increased, the mass function at some
point becomes negative. This is caused by the differences occurring in Eq. (5.92).
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Figure 5.18: Like Fig. 5.17, but with the infrared regulator ε = 10−3.

Plugging this four-quark function into Eq. (5.15) we can proceed as in Appendix
E.3, but the Dirac structure of the equations now reads

S(+)(−p)S(−)(−q) α · qS(+)(−q)S(−)(−p)

+S(−)(−p)S(+)(−q) α · qS(−)(−q)S(+)(−p)

=
M(q)

2E2
p
E2
q

[
α · p (M(p)q2 −M(q)p · q)

+α · q (M(q)E2
p
−M(p)EpEq)

+β
(
p2q2 + (M(p)M(q) − EpEq)p · q

)]

(5.97)

and
S(+)(−p)S(−)(−q) β S(+)(−q)S(−)(−p)

+S(−)(−p)S(+)(−q) β S(−)(−q)S(+)(−p)

=
1

2E2
p
E2
q

[
α · p (M(p)q2 −M(q)p · q)

+α · q (M(q)E2
p
−M(p)EpEq)

+β
(
p2q2 + (M(p)M(q) − EpEq)p · q

)]
.

(5.98)

Again the two terms are equal up to a mass factor, but the difference is that this
time it is not the current quark mass m but the mass function M(q). As we are
dealing with a flow equation, the mass function is cut-off dependent as it is the
quotient of the scalar and the vectorial part of the quark propagator in Eq. (5.25),

Mk(p) =
Bk(p) +Rβ,k(p)

Ak(p) +Rα,k(p)
, (5.99)
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so the flow equations become

p2Ȧk(p) = 16g2C2

∫
d3q

(2π)3
Fk(p− q)

Mk(p)q
2p2 −Mk(q)p

2p · q +Mk(q)E2
k,pp · q −Mk(p)Ek,pEk,qp · q

(Ek,p + Ek,q)E2
k,pE2

k,q [q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

Mk(q)
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

(5.100)
and

Ḃk(p) = −16g2C2

∫
d3q

(2π)3
Fk(p− q)

p2q2 + p · q(Mk(p)Mk(q) − Ek,pEk,q)
(Ek,p + Ek,q)E2

k,pE2
k,q

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

Mk(q)
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

(5.101)
However, again making the replacement {Ak, Bk, Fk} → {A0, B0, F0} in the loop
integral, we cannot perform the flow integration analytically in this case. Moreover,
also for the flow equations (5.100) and (5.101) without said replacement, no solution
has been found. This is also true for Eqs. (5.32) and (5.33) as well as for Eqs. (5.88)
and (5.89).

In summary, a flow equation for the static quark propagator has been derived. An
approximation has been made which transforms the flow equation into an integral
equation similar to a Dyson-Schwinger equation. With this equation, the effect of
the gluon propagator and of the four-quark vertex on the dynamic generation of mass
has been examined. It has been found that no dynamic generation of mass occurs
if only the term involving the gluon propagator is taken into account. In contrast,
with the quark tadpole term containing a simple ansatz for the four-quark vertex,
a constituent quark mass emerges that even exceeds the phenomenological value
of 300 MeV. For the quark propagator flow equation without the Dyson-Schwinger
approximation, however, no solution has been found.





Chapter 6

Summary and Outlook

In this work a new approach to the non-perturbative calculation of the static correl-
ation functions from the Hamiltonian formulation of Yang-Mills theory in Coulomb
gauge has been presented. In the generating functional of the correlation functions
at equal times, the absolute square of the vacuum wave functional plays the role
of the exponential of the negative action in the usual Lagrangian approach. The
functional renormalization group has been adapted to this Hamiltonian formulation.

Subsequently, the derivation of the flow equations for the gluon and ghost propag-
ators has been presented. In order to arrive at a closed system of equations, the
dressed ghost-gluon vertex has been replaced with the corresponding bare one, which
is a good approximation according to perturbative arguments and lattice calcula-
tions, and all tadpole diagrams and vertices with three or more gluon lines have been
discarded, which does not affect the infrared behaviour of the results. An approx-
imation allowing for an analytical integration of the flow equations has been made
that corresponds to an optimized choice of the regulator functions. The choice of the
initial conditions has been discussed, which serve to implement the renormalization
conditions corresponding to an infrared scaling solution for the propagators.

The result of the numerical solution of the flow equations has been compared to the
solution of a system of Dyson-Schwinger equations derived from a variational prin-
ciple for the vacuum wave functional. The solution of the optimized flow equations
agrees with one of the two possible scaling solutions in the latter approach. In the
approximation without tadpoles slightly different values for the infrared exponents
have been obtained. The non-perturbative running coupling has been calculated,
which forms a plateau in the infrared due to the scaling relation that both solutions
fulfil.

Starting from the flow equation for the ghost propagator, a flow equation for the
Coulomb form factor has been derived. Using the results for the flows of the gluon
and ghost propagators as input, an infrared divergent Coulomb form factor has
resulted without any further approximations. A confining colour Coulomb potential
has been found, rising slightly more or less than linearly for large distances depending
on the gluon and ghost propagator input.

In contrast, the Dyson-Schwinger-like integral equation for the Coulomb form
factor found in the variational approach has no solution for the corresponding gluon
and ghost propagators. Here, this equation has been re-derived from the flow equa-
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tion and has been closely examined. It has been found that the equation indeed has
a solution either for subcritical (or decoupling) input propagators or for critical (or
scaling) propagators which are weakly infrared divergent (even more weakly than
the one from the flow equation with the tadpoles neglected), which have, however,
not been found in any approach.

Dynamic quarks have been included into the present formalism and a flow equa-
tion for the static quark propagator has been derived. An approximation has been
made which turns the flow equation into a DSE-like equation with only the gluon
propagator as input. With this approximation, only an infrared vanishing mass
function has resulted. This confirms the result of the variational approach where
no chiral symmetry breaking has been found by including transverse gluons without
the Coulomb term of the Hamiltonian. In another approximation only the quark
tadpole term has been considered. An ansatz for the four-quark function resembling
the corresponding term in the Hamiltonian has been used. With this ansatz, an in-
frared constant mass function has been found, indicating a constituent quark mass
slightly higher than expected. As there is no obvious direct connection to the colour
Coulomb potential with this ansatz, the four-quark function has been calculated
perturbatively to the lowest order, which contains the colour Coulomb potential.
However, in this case no solution has been found with a finite current quark mass
and in the chiral limit even an infrared divergent mass function emerged, which
is, of course, unphysical. In any case, for the full flow equation, i.e., without the
replacement leading to the DSE-like equation, no solution has been obtained.

The approach and results presented in this work motivate several additional in-
vestigations. In an analytical infrared analysis in Ref. [49] and also in a numerical
calculation within the variational approach of Ref. [50], a second scaling solution
with a stronger infrared divergence of the gluon correlator and the ghost form factor
has been found. This solution has not been observed here as it poses an additional
fine-tuning problem and is therefore difficult to obtain. The formalism put forward
in the present work also allows to directly access the confining properties of the
propagators. This can be done by using the Wilson loop potential evaluated along
the lines of Ref. [115]. A first step in this direction is to implement the missing
gluonic diagrams, which account for the correct ultraviolet behaviour, to allow a
comparison with lattice data in the full momentum regime.

Concerning the quark sector, a better way to determine the quark four-point
function should be found, as it is there where the information about the colour
Coulomb potential enters. In the Lagrangian formulation, the potential can be
identified with the time-time component of the gluon propagator. In the DSE for
the quark propagator it couples to the quark via the quark-gluon vertex. One can
speculate that a bare or some other kind of poor ansatz for this vertex fails to
convey enough of the information about the potential from the gluon to the quark
propagator, which might be the reason that in studies like in Ref. [99] only about
a third of the expected constituent quark mass has been found. In our approach,
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however, the gluon propagator has no time-time component and the information
about the potential enters via the four-quark vertex. Therefore, a constituent quark
mass has been obtained with the quark tadpole term alone. To corroborate these
speculations, the ansatz for the quark tadpole should be improved and the equation
be solved including both the quark-tadpole and the gluon propagator. In any case,
the difficulties in finding a solution to the full quark propagator flow equation should
be investigated more closely, especially the question whether it is a numerical issue
or whether it hints to a deeper problem. Although the effect of dynamic quarks on
the gluon sector is expected to be small, ultimately a solution of the full coupled
system of the gluon and the quark sector should be undertaken.





Appendix A

Notations and Conventions

In this appendix we give some of the conventions used, mainly concerning the Fourier
transformation.

We use the metric
gµν = diag(1,−1,−1,−1) . (A.1)

Importantly, for the most part of this work we use contravariant tensor components
which we denote with a subscript, except for the part of Chap. 2 from the beginning
until and excluded Eq. (2.22). There we use upper indices to denote contravariant
tensor components and lower indices to denote covariant components. Greek indices
refer to space-time, Latin indices to space only.

We define the Fourier representation of a function in d-dimensional Euclidean
position space as

f(x) =

∫
ddp

(2π)d
f(p)eip·x , (A.2)

where we do not use different symbols for the two functions but we distinguish them
only by the names of their argument. The inverse transformation to momentum
space then is

f(p) =

∫

ddxf(x)e−ip·x . (A.3)

The functional derivatives transform as

δ

δf(x)
=

∫
ddp

(2π)d
e−ip·x

δ

δf(p)
(A.4)

and conversely
δ

δf(p)
=

∫

ddx eip·x
δ

δf(x)
, (A.5)

where
δf(x)

δf(y)
= δd(x − y) and

δf(p)

δf(q)
= (2π)dδd(p− q) . (A.6)

In position space, the functional chain rule for functionals F,G and a function H is

δF [G[H ]]

δH(x)
=

∫

ddy
δF [G[H ]]

δG(y)

δG[H ](y)

δH(x)
, (A.7)
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and in momentum space it is

δF [G[H ]]

δH(p)
=

∫
ddq

(2π)d
δF [G[H ]]

δG(q)

δG[H ](q)

δH(p)
. (A.8)

Expressions like

D(x,y) =

∫

ddz A(x, z)B(z,y) (A.9)

can be regarded as a continuous matrix multiplication that has the momentum
representation

D(p,q) =

∫
ddℓ

(2π)d
A(p, ℓ)B(−ℓ,q) . (A.10)

Note the minus sign at one of the inner momentum arguments. Accordingly, the
functional trace

TrD =

∫

ddxD(x,x) (A.11)

becomes

TrD =

∫
ddp

(2π)d
D(p,−p) . (A.12)

An important special case of the matrix multiplication formula (A.9) is the inversion
relation

δd(x − y) =

∫

ddz A(x, z)B(z,y) (A.13)

which has the Fourier representation

(2π)dδd(p + q) =

∫
ddℓ

(2π)d
A(p, ℓ)B(−ℓ,q) . (A.14)

Note that also here the difference in the argument of the delta function in position
space turns into the sum of the external momenta in the Fourier representation of
the delta function.



Appendix B

Derivation of the Propagator Flow

B.1 Details of the Propagator Flow Derivation

In this appendix we derive the flow equations for the gluon and ghost propagators
from the flow equation for the effective action, Eq. (3.28). A useful relation for
the following concerns the commutation of fermionic derivatives past supermatrices.
Consider a matrix with a block structure of commuting (c) and anticommuting (a)
quantities and an anticommuting η:

η





c a a
a c c
a c c



 =





c −a −a
−a c c
−a c c



 η = M





c a a
a c c
a c c



M η , (B.1)

with
M := diag(1,−1,−1) . (B.2)

This matrix structure is shared by δ2Γk/δφ̄δφ as well as
(
δ2Γk/δφ̄δφ+ Rk

)−1
, the

latter because of Eq. (3.26).
In the following, i and j are condensed external indices. They stand for colour

indices, momenta and, in the case of gluon fields, also for contravariant Lorentz
indices at the same time. They are, however, not part of the matrix notation. From
the identity

0 =
δ

δci

((
δ2Γk
δφ̄δφ

+ Rk

)(
δ2Γk
δφ̄δφ

+ Rk

)−1
)

=
δ3Γk

δciδφ̄δφ

(
δ2Γk
δφ̄δφ

+ Rk

)−1

+M

(
δ2Γk
δφ̄δφ

+ Rk

)

M
δ

δci

(
δ2Γk
δφ̄δφ

+ Rk

)−1
(B.3)

it follows that

δ

δci

(
δ2Γk
δφ̄δφ

+ Rk

)−1

= −M
(
δ2Γk
δφ̄δφ

+ Rk

)−1

M
δ3Γk

δciδφ̄δφ

(
δ2Γk
δφ̄δφ

+ Rk

)−1

. (B.4)

For bosonic derivatives the same formula holds without the M ’s. Using this, we can
derive the ghost propagator flow equation from the flow of the effective action, Eq.
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(3.28) by taking functional derivatives w.r.t. ghost fields:

δ2Γ̇k
δc̄jδci

=
1

2

δ2

δc̄jδci
STr

[

Ṙk

(
δ2Γk

δφ̄δφ
+ Rk

)−1
]

=
1

2

δ

δc̄j
STr

[

−Ṙk M
(
δ2Γk

δφ̄δφ
+ Rk

)−1

M δ3Γk

δciδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1
]

=
1

2
STr

[

Ṙk

(
δ2Γk

δφ̄δφ
+ Rk

)−1

M δ3Γk

δc̄jδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1

M δ3Γk

δciδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1
]

− 1

2
STr

[

Ṙk

(
δ2Γk

δφ̄δφ
+ Rk

)−1

M δ3Γk

δciδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1

M δ3Γk

δc̄jδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1
]

− 1

2
STr

[

Ṙk

(
δ2Γk

δφ̄δφ
+ Rk

)−1
δ4Γk

δc̄jδciδφ̄δφ

(
δ2Γk

δφ̄δφ
+ Rk

)−1
]

.

(B.5)

Setting the fields to zero, A = c̄ = c = 0, only the block matrices with the same
number of ghosts and antighosts remain, see Appendix B.2. The first of the three
terms in Eq. (B.5) becomes

1

2
TrṘA,k

(
δ2Γk
δAδA

+RA,k

)−1
δ3Γk

δc̄jδAδc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

δ3Γk
δciδc̄δA

(
δ2Γk
δAδA

+RA,k

)−1

+
1

2
TrṘT

c,k

(
δ2Γk
δcδc̄

+RT
c,k

)−1
δ3Γk

δc̄jδcδA

(
δ2Γk
δAδA

+RA,k

)−1

δ3Γk
δciδAδc̄

(
δ2Γk
δcδc̄

+RT
c,k

)−1

.

(B.6)

The other two terms are treated alike. The ghost flow equation then reads (using
RT
c,k = Rc,k)

δ2Γ̇k
δc̄jδci

=Tr ṘA,k

(
δ2Γk
δAδA

+RA,k

)−1
δ3Γk

δc̄jδAδc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

δ3Γk
δciδc̄δA

(
δ2Γk
δAδA

+RA,k

)−1

+Tr Ṙc,k

(

−δ
2Γk
δc̄δc

+Rc,k

)−1
δ3Γk

δciδc̄δA

(
δ2Γk
δAδA

+RA,k

)−1

δ3Γk
δc̄jδAδc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

−1

2
Tr ṘA,k

(
δ2Γk
δAδA

+RA,k

)−1
δ4Γk

δc̄jδciδAδA

(
δ2Γk
δAδA

+RA,k

)−1

−Tr Ṙc,k

(

−δ
2Γk
δc̄δc

+Rc,k

)−1
δ4Γk

δc̄jδciδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

.

(B.7)
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In much the same way, the gluon flow equation is derived from Eq. (3.28), and the
result is

δ2Γ̇k
δAjδAi

=Tr ṘA,k

(
δ2Γk
δAδA

+RA,k

)−1
δ3Γk

δAjδAδA

(
δ2Γk
δAδA

+RA,k

)−1

δ3Γk
δAiδAδA

(
δ2Γk
δAδA

+RA,k

)−1

−Tr Ṙc,k

(

−δ
2Γk
δc̄δc

+Rc,k

)−1
δ3Γk

δAjδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

δ3Γk
δAiδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

−Tr Ṙc,k

(

−δ
2Γk
δc̄δc

+Rc,k

)−1
δ3Γk

δAiδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

δ3Γk
δAjδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

−1

2
Tr ṘA,k

(
δ2Γk
δAδA

+RA,k

)−1
δ4Γk

δAjδAiδAδA

(
δ2Γk
δAδA

+RA,k

)−1

−Tr Ṙc,k

(

−δ
2Γk
δc̄δc

+Rc,k

)−1
δ4Γk

δAjδAiδc̄δc

(

−δ
2Γk
δc̄δc

+Rc,k

)−1

.

(B.8)

These equations are represented diagrammatically in Figs. 3.1 and 3.2.
We now plug the parameterizations of the gluon and ghost propagators and the

ghost-gluon vertex of Sect. 3.2 into these flow equations, dropping all the other
vertices. As the ghost two-point function and the ghost regulator are both diagonal
in colour space and momentum space, they can easily be inverted, yielding (see
Eqs. (3.10), (3.32), and (3.33) )

[(

−δ
2Γk
δc̄δc

+Rc,k

)−1
]ab

pq

= δab
[
g p2/dk(p) +Rc,k(p)

]−1
(2π)3δ3(p + q)

= δab
1

g
Ḡc,k(p)(2π)3δ3(p + q) .

(B.9)

A similar formula holds for the gluon two-point function and the gluon regulator,
which are invertible in the transverse subspace (see Eqs. (3.10), (3.30), and (3.31)):

[(
δ2Γk
δAδA

+RA,k

)−1
]ab

ij,pq

= δabtij(p)GA,k(p)(2π)3δ3(p + q) . (B.10)
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Therefore, the truncated gluon flow equation shown in Fig. 3.3 reduces to

2δabtij(p)ω̇k(p)(2π)3δ3(p + q) =

−
∫
d3[p1...6]

(2π)18
δcdg ˙̄Rc,k(p1)(2π)3δ3(p1 − p2) δ

de 1

g
Ḡc,k(p2)(2π)3δ3(p2 − p3)

gf eaf tim(p)(ip4,m)(2π)3δ3(p + p3 − p4) δ
fg 1

g
Ḡc,k(p4)(2π)3δ3(p4 − p5)

gf gbhtjl(q)(ip6,l)(2π)3δ3(q + p5 − p6) δ
hc1

g
Ḡc,k(p6)(2π)3δ3(p6 − p1)

+(i↔ j) .

(B.11)

Carrying out the index contractions and integrations we obtain the flow equation
for ωk:

∂tωk(p) = −Nc

2

∫
d3q

(2π)3

(

Ḡc,k
˙̄Rc,kḠc,k

)

(q)Ḡc,k(|p + q|) q2(1 − (p̂ · q̂)2) . (B.12)

In much the same way we treat the truncated ghost flow equation shown in Fig. 3.4
to get

−δabgp2∂td
−1
k (p)(2π)3δ3(p + q) =

∫
d3[p1...6]

(2π)18
δcdtij(p1)ṘA,k(p1)(2π)3δ3(p1 − p2) δ

detjh(p2)GA,k(p2)(2π)3δ3(p2 − p3)

gf featlh(p3)(−ip4,l)(2π)3δ3(p + p3 − p4) δ
fg 1

g
Ḡc,k(p4)(2π)3δ3(p4 − p5)

gf bhgtmn(p6)(iqm)(2π)3δ3(q + p5 − p6) δ
hctni(p6)GA,k(p6)(2π)3δ3(p6 − p1)

+

∫
d3[p1...6]

(2π)18
δhcg ˙̄Rc,k(p1)(2π)3δ3(p1 − p2) δ

cd 1

g
Ḡc,k(p2)(2π)3δ3(p2 − p3)

gf bedtmi(p4)(iqm)(2π)3δ3(q + p3 − p4) δ
ef tij(p4)GA,k(p4)(2π)3δ3(p4 − p5)

gf gfathj(p5)(−ip6,h)(2π)3δ3(p + p5 − p6) δ
gh1

g
Ḡc,k(p6)(2π)3δ3(p6 − p1) .

(B.13)

With the index contractions and integrations it turns into,

∂td
−1
k (p) = Nc

∫
d3q

(2π)3

[(

GA,kṘA,kGA,k

)

(q)Ḡc,k(|p + q|)(1 − (p̂ · q̂)2)

+
(

Ḡc,k
˙̄Rc,kḠc,k

)

(q)GA,k(|p + q|) q2 1 − (p̂ · q̂)2

(p + q)2

]

.

(B.14)

B.2 Ghost Number Conservation

In this appendix we show that correlation functions with a different number of ghosts
and antighosts vanish.
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Following Ref. [116], we consider a global phase transformation on the ghost fields
and sources,

c→ c′ = eiλc, c̄→ c̄′ = e−iλc̄, σ → σ′ = eiλσ, σ̄ → σ̄′ = e−iλσ̄ . (B.15)

The generating functional is invariant under this transformation,

Zk[J, σ
′, σ̄′] =

∫

D[Ac̄c] exp {−S[A, c, c̄] − ∆Sk[A, c, c̄] + J · A+ σ̄′ · c+ c̄ · σ′}

=

∫

D[Ac̄′c′] exp {−S[A, c′, c̄′] − ∆Sk[A, c
′, c̄′] + J · A + σ̄′ · c′ + c̄′ · σ′}

= Zk[J, σ, σ̄] ,

(B.16)

because of

Dc̄′Dc′ = Dc̄Dc and (S + ∆Sk)[A, c
′, c̄′] = (S + ∆Sk)[A, c, c̄] . (B.17)

This holds because we only consider actions and regulators with terms containing
the same number of ghosts and antighosts. We then get (suppressing the notation
of the bosonic fields and sources)

Wk[σ
′, σ̄′] = Wk[σ, σ̄] . (B.18)

Taking the derivative of this equation w.r.t σ̄ gives

δ

δσ̄
Wk[σ, σ̄] =

δσ̄′

δσ̄

δ

δσ̄′
Wk[σ

′, σ̄′] = e−iλ
δ

δσ̄′
Wk[σ

′, σ̄′] . (B.19)

Plugging in
σ = σk[c, c̄] and σ̄ = σ̄k[c, c̄] (B.20)

we obtain

δ

δσ̄′
k

Wk[σ
′
k[c, c̄], σ̄

′
k[c, c̄]] = eiλ

δ

δσ̄k
Wk[σk[c, c̄], σ̄k[c, c̄]] = eiλc = c′

=
δ

δσ̄k
Wk[σk[c

′, c̄′], σ̄k[c
′, c̄′]] .

(B.21)

Together with the analogous equation obtained by taking the derivative of Eq.
(B.18) w.r.t σ we get

σ′
k[c, c̄] = σk[c

′, c̄′], σ̄′
k[c, c̄] = σ̄k[c

′, c̄′] . (B.22)

The effective average action now turns out to be invariant under this phase trans-
formation:

Γk[c̄
′, c′] = −Wk[σk[c̄

′, c′], σ̄k[c̄
′, c′]] + σ̄k[c̄

′, c′] · c′ + c̄′ · σk[c̄′, c′] − c̄′ ·Rc,k · c′
= −Wk[σ

′
k[c̄, c], σ̄

′
k[c̄, c]] + σ̄′

k[c̄, c] · c′ + c̄′ · σ′
k[c̄, c] − c̄ · Rc,k · c

= −Wk[σk[c̄, c], σ̄k[c̄, c]] + σ̄k[c̄, c] · c+ c̄ · σk[c̄, c] − c̄ · Rc,k · c
= Γk[c̄, c] .

(B.23)
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We conclude that derivatives w.r.t different numbers of ghosts and antighosts vanish
at c̄ = c = 0:

δΓk[c̄, c]

δc̄
=
δΓk[c̄

′, c′]

δc̄
=
δc̄′

δc̄

δΓk[c̄
′, c′]

δc̄′
= e−iλ

δΓk[c̄
′, c′]

δc̄′
c̄=c=0−−−→ δΓk[c̄, c]

δc̄

∣
∣
∣
∣
0

= 0 .

(B.24)
The same holds for the derivative w.r.t c.

In contrast, if we take an equal number of ghost and anti-ghost derivatives, we
get

δ2Γk[c̄, c]

δc̄δc
=

δ

δc̄

(
δc′

δc

δΓk[c̄
′, c′]

δc′

)

= eiλ
δc̄′

δc̄

δΓk[c̄
′, c′]

δc̄′δc′
=
δ2Γk[c̄

′, c′]

δc̄′δc′
. (B.25)

The phase factors have cancelled and nothing can be inferred. Taking more deriv-
atives, it can be shown in general that correlation functions with different numbers
of ghosts and antighosts vanish.



Appendix C

Numerical Methods

In this appendix, the details of the numerical method used for solving the flow
equations are presented. To be specific, the method is exemplified for the case of
the gluon and ghost propagator equations.

C.1 Chebyshev Representation

The functions ω(p) and d(p) of Sec. 3.6 as well as ωk(p) and dk(p) of Sec. 3.5
can be calculated numerically only for a finite number of sites (pi) and (kj, pi),
respectively. The evaluation of these functions, however, cannot be restricted to
these sites because the structure of the loop integrals enforces evaluations like ω(p+
q), where q is the loop integration momentum, which will assume discrete values on
a Gauss-Legendre grid. Therefore, these momentum arguments of the functions will
in general not match the sites (pi). For this reason an approximation method has
to be applied to approximate the function values between the momentum sites (pi)
they have originally been calculated for. Although not involved in loop integrals, this
approximation method is necessary also for the cut-off momenta (kj), because the
flow integrals with varying limits as in Eqs. (3.43) and (3.44) enforce an evaluation
also between the grid sites (kj).

The function interpolation is accomplished by Chebyshev approximation using
the implementation of Ref. [117]. In this method, the function is approximated by
a sum of the Chebyshev polynomials of degree 0 to N − 1, weighted by coefficients
that are calculated from the function to be approximated. It has the property that
it is an exact representation of the function at the N zeros of the N -th Chebyshev
polynomial. Moreover, the maximum error is getting smaller with increasing poly-
nomial order, thereby avoiding Runge’s phenomenon which is the observation that
the error increases with the polynomial order due to strong oscillations if equidistant
nodes are used. Indeed, the Chebyshev approximation polynomial comes close to the
minimax polynomial which (out of all polynomials with the same degree) minimizes
the maximum difference to the function to be approximated.

Therefore, the momentum sites (pi) and (kj, pi) are chosen to be the Chebyshev
nodes on suitably sized momentum ranges, spanning up to nine orders of magnitude.
A logarithmic momentum scale is used in order to sample the behaviour of the func-
tions equally well on all orders of magnitude. The function values are also taken
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logarithmic because otherwise the power laws, that frequently occur as behaviour of
the functions in the IR and in the UV, would turn into exponentials on the logar-
ithmic momentum scale, which can, however, not be fitted well with polynomials. In
a double logarithmic representation, power laws turn into straight lines, which can of
course easily be fitted with polynomials. Altogether, a representation of the function
y = ln f(ex) with x = ln(p) on the range [ln(pmin), ln(pmax)] is obtained rather than
of f(p) on [pmin, pmax], likewise for the cut-off momentum argument k if present. In
the case of the flow functions ωk(p) and dk(p), which have the cut-off momentum
as an additional argument, the coefficients along the p-direction for each value of
(kj) are calculated; this results in functions of k for each of the p-coefficients. These
functions are known just at the Chebyshev nodes (kj) and therefore their Chebyshev
coefficients can be determined. To evaluate the functions this procedure is processed
backwards. About 130 Chebyshev nodes in each direction have been used.

In the loop integrals of Sec. 3.5, the flow functions ωk(p) and dk(p) need to be eval-
uated also outside the Chebyshev representation range of the external momentum
p. Yet the IR extrapolation of the flow functions requires no extra assumptions
about their IR behaviour: as long as kmin never reaches the lower boundary of the
p-range, the functions can simply be chosen to be constant beyond this boundary,
as clearly seen in Fig. 3.7. For their continuation in the UV, a power law has been
fitted to their behaviour in the UV region of the p-range, which is ωk(p) ∼ p and
dk(p) ∼ const. As for the k-range, the functions are never evaluated outside the
Chebyshev range anyway, so no extrapolation is necessary.

In contrast, the correlation functions ω(p) and d(p) of Sec. 3.6 require also an
IR-extrapolation because the cut-off momentum is set to k = 0 there. As both ω
and d develop a power law in the IR, the form

f(p) = a pb (C.1)

is assumed for p < pmin and the values for a and b are determined within the range
[pmin, 10pmin]. Similarly, the functions ω(p) = ap and d(p) = const. are taken as
fitting functions for the UV in the range [0.1pmax, pmax].

C.2 Gauss-Legendre Integration

The momentum integrals, for the loop as well as for the flow (in Sec. 3.5), have been
calculated using the Gauss-Legendre quadrature as implemented in Ref. [117]. This
method spreads N nodes (xi) over an integration range [a, b] together with weight
factors (wi) such that

∫ b

a

f(x)dx ≈
N∑

i=1

wif(xi) . (C.2)

This equation holds exactly if f is a polynomial of a degree not greater than 2N −
1 and approximately otherwise. The three-dimensional loop integrals have been



C.3 Iterative Solution and Fine Tuning 121

calculated as nested one-dimensional integrals according to Fubini’s theorem,

∫

d3q f(p,q) =

∫ qmax

qmin

dq q2

∫ 1

−1

dx

∫ 2π

0

dϕ f(p,q) where x = q̂ · p̂ . (C.3)

Whilst the integral over the azimuth angle ϕ of the p-axis can be carried out trivially
because the functions f occurring in this work are independent of it, the other two
integrals are calculated numerically using the Gauss-Legendre approximation. As
for the integral over x, it can be applied to the integral as it stands whereas for
the radial integral the Gauss-Legendre nodes have to be calculated on a logarithmic
momentum scale in order to appropriately sample the IR behaviour. To achieve
this, the substitution

x := ln q (C.4)

is performed such that a radial integral of a function g becomes

∫ qmax

qmin

dq g(q) =

∫ ln qmax

ln qmin

dx exg(ex) . (C.5)

Just as for the Chebyshev nodes, the Gauss-Legendre nodes are now spread over the
range [ln qmin, ln qmax] instead of [qmin, qmax], so there are more nodes lying in the
low momentum region where important contributions to the integrals evaluated in
this work are coming from. These considerations can be verified and the programme
be tested by calculating integrals that are similar in structure to the actual integrals
but can be evaluated analytically and by subsequent comparison of the numerical
result to the real value of the integral.

Moreover, the radial loop integrals in the case of the fully k-dependent flow equa-
tions of Sec. 3.5 have been confined to a range of one order of magnitude around the
cutoff momentum k, qmin ≤ k ≤ qmax, outside of which there is virtually no contribu-
tion to the integral owing to the regulator functions employed, see Eq. (3.45). The
validity of this restriction can be checked by using a wider integration range which
shows to have no effect on the result. Also for the optimized equations of Sec. 3.6
the integration range has to be broadened and the number of Gauss-Legendre nodes
to be increased along with it until the results do not change anymore upon further
extension, so effects coming from the choice of a momentum integration range too
narrow can be excluded. For the flow integral in k as well as for the loop integral,
about 70 nodes have been used.

C.3 Iterative Solution and Fine Tuning

The sets of equations (3.43) and (3.44) as well as (3.50) and (3.49) have been
solved iteratively. Starting from constant functions ω and d, the r.h.s. of the equa-
tions are calculated. From the result, the initial values of the flow, dΛ and ωΛ,
are determined following the procedures described in the next paragraph, giving
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temporary results ωtmp and dtmp. To improve the convergence behaviour, a re-
laxation method is applied to determine the final result of the n-th iteration as
ω

(n)
kj

(pi) = rωtmpkj
(pi)+(1−r)ω(n−1)

kj
(pi) for each Chebyshev node (kj, pi), likewise for

dk(p). Values of r ∈ [0.1, 0.5] have been used, depending on how much the functions
change from one iteration to the next. This yields the new functions ω(n) and d(n)

which are then fed back into the r.h.s. of the equations as input to the (n + 1)-th
step of the iteration. This iteration is repeated until the functions do not change
anymore from one step to the next, so convergence is reached. These functions are
the solutions to the integral equations.

The initial conditions dΛ and ωΛ are determined in the following way: the constant
dΛ(p) ≡ dΛ in Eq. (3.44) is chosen such that dkmin

(p) fulfil a power law for p in the
IR, d−1

kmin
(p → 0) ∼ pβ. First, we observe that for a power law f(p) = pβ the

expression

p
d

dp
ln f(p) = β (C.6)

yields a constant value, i.e., the exponent. Let g(p) be the r.h.s. of Eq. (3.44) (with
k = kmin). Demanding that

d

dp

(

p
d

dp
ln
(
g(p) + d−1

Λ

)
)

!
= 0 (C.7)

is equivalent to demanding that g(p) fulfil a power law. Solving for d−1
Λ and perform-

ing a least squares fit of a constant function to the infrared region of the expression
obtained for d−1

Λ (which will in general not yet be a constant) gives the optimal
value for d−1

Λ in order to achieve a power law behaviour for d−1
kmin

(p) in the IR region.
This is done during each iteration step as described in the previous paragraph. In
this way, a power law behaviour can be imposed on the ghost form factor without
dictating its exponent. Concerning the Eqs. (3.43) (with k = kmin) and (3.49), the
expression −a + bp is fitted to the r.h.s. in the UV and ωΛ(p) = a + p is used to
achieve ωk=kmin

(p)|p→Λ ∼ p for Eq. (3.43) and ω0(p)|p→Λ ∼ p for Eq. (3.49), which
is an expression of asymptotic freedom. For Eq. (3.50) the determination of the
initial conditions is not a numerical issue anyway, see Eq. (3.51).

This method allows for a systematic, simultaneous determination of the solution
together with originally unknown initial conditions to accomplish that the solution
at k = kmin fulfil certain properties. Solving the differential equations in their
original, i.e., differential form would require a trial-and-error search for the initial
conditions to find a solution with the specified characteristics.
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Calculation of Two-Point Integrals

Here we calculate the two-point integrals necessary for the assessment of the angular
approximation in Subsec. 4.5.3. We define

θm(a, b) :=

∫
ddq

(2π)d
(q · p)m

(q2)a
(
(q − p)2)b

. (D.1)

For the cases of our interest, m = 0 and m = 2, the integral is convergent in the
ultraviolet, at the pole q = 0, and at the pole q = p, respectively, if

a+ b >
d

2
+
m

2
, a <

d

2
+
m

2
, b <

d

2
. (D.2)

Using the Feynman parameterization [36] for the integrand,

1

(q2)a
(
(q − p)2)b

=

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)
xa−1yb−1

(
xq2 + y (q − p)2)a+b

Γ(a+ b)

Γ(a)Γ(b)
,

(D.3)
we get

θm(a, b) =

∫
ddq

(2π)d

∫ 1

0

dx

∫ 1

0

dy δ(x+y−1)
xa−1yb−1(q · p)m

(
xq2 + y (q − p)2)a+b

Γ(a + b)

Γ(a)Γ(b)
. (D.4)

Shifting q → q + yp yields

θm(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)xa−1yb−1

∫
ddq

(2π)d
(q · p + yp2)

m

(q2 + p2xy)a+b
.

(D.5)
In the case of m = 0 we obtain the integral [36]

∫
ddq

(2π)d
1

(q2 + p2xy)a+b
=

1

(4π)d/2
Γ(a+ b− d/2)

Γ(a+ b)

(
p2xy

)−a−b+d/2
(D.6)

and therefore

θ0(a, b) =
1

(4π)d/2
Γ(a+ b− d/2)

Γ(a)Γ(b)

(
p2
)d/2−a−b

∫ 1

0

d[xy] δ(x+ y − 1)xd/2−b−1yd/2−a−1

(D.7)
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Using the Feynman parameterization (D.3) in reverse we obtain

θ0(a, b) =
1

(4π)d/2
Γ(a+ b− d/2)Γ(d/2 − b)Γ(d/2 − a)

Γ(a)Γ(b)Γ(d− a− b)

(
p2
)d/2−a−b

. (D.8)

In the case of m = 2 we get with Feynman parameterization

θ2(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

dx

∫ 1

0

dy δ(x+ y − 1)xa−1yb−1[IA + IB] (D.9)

where

IA :=

∫
ddq

(2π)d
(q · p)2

(q2 + p2xy)a+b
and IB :=

∫
ddq

(2π)d
(yp2)

2

(q2 + p2xy)a+b
(D.10)

because the integrand with the term 2yp2 p ·q in the numerator is proportional to q
and therefore this integral vanishes by symmetry. As in the case of m = 0 we obtain

IB =
1

(4π)d/2
Γ(a+ b− d/2)

Γ(a+ b)
xd/2−a−byd/2−a−b+2

(
p2
)2+d/2−a−b

. (D.11)

The integral IA can be rewritten and solved [36], giving

IA = pipj

∫
ddq

(2π)d
qiqj

(q2 + p2xy)a+b
=

pipjδij
2(4π)d/2

Γ(a+ b− d/2 − 1)

Γ(a+ b)

(
p2xy

)1+d/2−a−b
.

(D.12)
Altogether, we get

θ2(a, b) =

Γ(a+ b− d/2 − 1)

2(4π)d/2Γ(a)Γ(b)

(
p2
)2+d/2−a−b

∫ 1

0

d[xy] δ(x+ y − 1)x1+d/2−b−1y1+d/2−a−1

+
1

(4π)d/2
Γ(a+ b− d/2)

Γ(a)Γ(b)

(
p2
)2+d/2−a−b

∫ 1

0

d[xy] δ(x+ y − 1)xd/2−b−1yd/2−a+2−1 ,

(D.13)
and removing the Feynman parameters with Eq. (D.3) finally yields

θ2(a, b) =
1

(4π)d/2

[
1

2

Γ(a+ b− d/2 − 1)Γ(1 + d/2 − b)Γ(1 + d/2 − a)

Γ(a)Γ(b)Γ(2 + d− a− b)

+
Γ(a+ b− d/2)Γ(d/2− b)Γ(d/2 + 2 − a)

Γ(a)Γ(b)Γ(d+ 2 − a− b)

]
(
p2
)2+d/2−a−b

.

(D.14)
The term in square brackets in Eq. (4.103) can now be written as

θ0(−α/2, β + γ/2 + 1) − 1

p2
θ2(−α/2 + 1, β + γ/2 + 1) =

K(β, γ)

(4π)3/2
p−γ (D.15)
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with

K(β, γ) =
Γ(β + 1)Γ(1/2 − β − γ/2)Γ(γ/2)

Γ(1/2 − β)Γ(β + γ/2 + 1)Γ(3/2 − γ/2)

− Γ(β + 2)Γ(1/2 − β − γ/2)Γ(1 + γ/2)

Γ(3/2 − β)Γ(β + γ/2 + 1)Γ(5/2 − γ/2)

− 1

2

Γ(β + 1)Γ(3/2 − β − γ/2)Γ(γ/2)

Γ(3/2 − β)Γ(β + γ/2 + 1)Γ(5/2 − γ/2)
.

(D.16)





Appendix E

Calculations for the Quark

Propagator Flow

E.1 Calculation of the Two-Quark Kernels

Here we calculate the two-quark kernel Ω̃ of the wave functional in Eq. (5.45), as
suggested in [110],

Ω̃ = S(+) + S(+)KS(−) + S(−)K̄S(+) − S(−) . (E.1)

The part without ϕ is

S(+) − S(−) =
α · p + βm

Ep

. (E.2)

The parts containing ϕ are

S(+)KS(−) =
1

4
ϕ(p)

(1+
α · p + βm

Ep

)

β

(1− α · p + βm

Ep

)

S(−)K̄S(+) =
1

4
ϕ∗(p)

(1− α · p + βm

Ep

)

β

(1+
α · p + βm

Ep

) (E.3)

With
(1± α · p + βm

Ep

)

β

(1∓ α · p + βm

Ep

)

= β ∓ 1

Ep

(βα · p +m) ± 1

Ep

(α · pβ +m) − 1

E2
p

(α · pβα · p + 2α · pm+ βm2)

= β ∓ 1

Ep

(2βα · p) − 1

E2
p

(−βp2 + 2mα · p + βm2
0)

= β
2p2

E2
p

+ α · p−2m

E2
p

∓ βα · p 2

Ep

(E.4)

we obtain

Ω̃ =β

[
m

Ep

+
p2

2E2
p

(ϕ(p) + ϕ∗(p))

]

+ α · p
[

1

Ep

− m

2E2
p

(ϕ(p) + ϕ∗(p))

]

+ βα · p
[

1

2Ep

(ϕ∗(p) − ϕ(p))

]

.

(E.5)
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For real ϕ this becomes

Ω̃ = β

[
m

Ep

+
p2

E2
p

ϕ(p)

]

+ α · p
[

1

Ep

− m

E2
p

ϕ(p)

]

. (E.6)

In the chiral limit, m = 0, the kernel further simplifies to

Ω̃ = βϕ(p) + α · p 1

p
. (E.7)

E.2 Perturbative Calculation of the Four-Quark

Function

In this appendix we will apply perturbation theory to the lowest order to improve
the ansatz for the four-quark function of Eq. (5.31). We use the notations and
conventions of Ref. [44] where perturbation theory has been applied to the static
quark propagator. Here we restrict ourselves to the purely fermionic part of the
theory with the colour Coulomb potential F . The Hamiltonian then reads

H = Hψ†ψ + g2HF =

∫
d3p

(2π)3
ψ†(p)(α · p + βm)ψ(p)

+
g2

2

∫
d3[p1p2p3p4]

(2π)12
ψ†(p1)T

aψ(p2)

F (p1 − p2)ψ
†(p3)T

aψ(p4)(2π)3δ3(p1 − p2 + p3 − p4)

(E.8)

The quark field operator in momentum representation can be decomposed into its
particle and anti-particle part as

ψm(p) =
1

√
2Ep

∑

s

[bm(p, s)u(p, s) + dm†(−p, s)v(−p, s)] (E.9)

where u and v are the solutions of the free Dirac equation, Ep =
√

m2 + p2 is the
free fermion energy and the particle and anti-particle creators and annihilators fulfil
the anticommutation relations

{bm(p, s), bn†(q, t)} = {dm(p, s), dn†(q, t)} = δmnδst(2π)3δ3(p− q) . (E.10)

All the other anti-commutators vanish. For the solutions of the free Dirac equation
we obtain the relations

∑

s

uα(p, s)u
†
β(p, s)

2Ep

= S
(+)
αβ (p),

∑

s

vα(−p, s)v†β(−p, s)

2Ep

= S
(−)
αβ (p) (E.11)

where

S(±)(p) =
1

2
± h(p)

2Ep

, h(p) = α · p + βm . (E.12)
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The S(±)(p) are projectors on particle and anti-particle states, i.e.,

S(+)(p)u(p, s) = u(p, s), S(+)(p)v(−p, s) = 0,

S(−)(p)v(−p, s) = v(−p, s), S(−)(p)u(p, s) = 0,
(E.13)

S(+)(p) + S(−)(p) = 1, S(+)(p)S(−)(p) = 0, S(±)2(p) = S(±)(p) . (E.14)

In the following we use abbreviations like

bn := bmn†(pn, sn) and ψ−n := ψmn
αn

(−pn) (E.15)

as well as obvious extensions thereof to other quantities. Our intent is to calculate
the quark four-point function to first order in g2,

〈ψ†
1ψ2ψ

†
3ψ4〉 =

(
1〈0|g2 + 〈0|

)
ψ†

1ψ2ψ
†
3ψ4

(
|0〉 + g2|0〉1

)

= g2〈0|ψ†
1ψ2ψ

†
3ψ4|0〉1 + g2 1〈0|ψ†

1ψ2ψ
†
3ψ4|0〉 ,

(E.16)

where disconnected and higher order terms have been dropped. The first order
correction in g2 to the non-interacting vacuum state is

|0〉1 = −
∑

n 6=0

〈n|HF |0〉
En

|n〉 (E.17)

where the |n〉 are the eigenstates of the free Dirac Hamiltonian Hψ†ψ. The simplest
non-trivial result is obtained using a two-quark-two-antiquark basis,

|0〉1 ∼ b†5b
†
6d

†
7d

†
8|0〉 , (E.18)

as terms with a lower number of creation operators either vanish in Eq. (E.16) or
give disconnected terms. For the evaluation of Eqs. (E.16) and (E.17) we need the
expectation values

〈0|ψ†
1ψ2ψ

†
3ψ4b

†
5b

†
6d

†
7d

†
8|0〉 =

1
∏4

i=1

√
2Epi

∑

s1...s4

v†−1u2v
†
−3u4〈0|d−1b2d−3b4b

†
5b

†
6d

†
7d

†
8|0〉

=
1

∏4
i=1

√
2Epi

∑

s1...s4

v†−1u2v
†
−3u4(δ−17δ26δ−38δ45 − δ−18δ26δ−37δ45

+ δ−18δ25δ−37δ46 − δ−17δ25δ−38δ46)
(E.19)

and

〈0|d8d7b6b5ψ
†
1ψ2ψ

†
3ψ4|0〉

=
1

∏4
i=1

√
2Epi

∑

s1...s4

v−4u
†
3v−2u

†
1(δ−47δ36δ−28δ15 − δ−48δ36δ−27δ15

+ δ−48δ35δ−27δ16 − δ−47δ35δ−28δ16) .

(E.20)
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With these expressions, the first order correction to the ground state, Eq. (E.17),
becomes

|0〉1 = − (T a)m5m8 (T a)m6m7
1

2

∫
d3[p5 . . . p8]

(2π)12
(2π)3δ3(p5 + . . .+ p8)F (p5,−p8)

1
√
Ep5

· · ·Ep8
(Ep5

+ . . .+ Ep8
)
u†5v8u

†
6v7 b

†
5b

†
6d

†
7d

†
8|0〉

= :

∫
d3[p5 . . . p8]

(2π)12
K5867 b

†
5b

†
6d

†
7d

†
8|0〉

(E.21)
The first expectation value in Eq. (E.16) therefore becomes

〈0|ψ†
1ψ2ψ

†
3ψ4|0〉1

=
1

4
√
Ep1

· · ·Ep4

∑

s1...s4

v†−1u2v
†
−3u4(K4−32−1 −K4−12−3 +K2−14−3 −K2−34−1)

=
4(2π)3δ3(p4 + p2 − p3 − p1)

Ep1
+ . . .+ Ep4

(

(T a)m4m1(T a)m2m3

(
S(+)(p4)S

(−)(p1)
)

α4α1

(
S(+)(p2)S

(−)(p3)
)

α2α3

F (p2 − p3)

−(T a)m4m3(T a)m2m1

(
S(+)(p4)S

(−)(p3)
)

α4α3

(
S(+)(p2)S

(−)(p1)
)

α2α1

F (p1 − p2)

)

.

(E.22)
Taking into account

(
S(+)(p4)S

(−)(p1)
)∗

α4α1

=
(
S(−)(p1)S

(+)(p4)
)

α1α4

, (E.23)

we obtain for the four-point function

〈ψm4†
α4

(p4)ψ
m3

α3
(p3)ψ

m2†
α2

(p2)ψ
m1

α1
(p1)〉 =

4g2(2π)3δ3(p4 + p2 − p3 − p1)

Ep1
+ . . .+ Ep4

{

(T a)m4m1(T a)m2m3

[
(
S(+)(p4)S

(−)(p1)
)

α4α1

(
S(+)(p2)S

(−)(p3)
)

α2α3

+
(
S(−)(p4)S

(+)(p1)
)

α4α1

(
S(−)(p2)S

(+)(p3)
)

α2α3

]

F (p2 − p3)

−(T a)m4m3(T a)m2m1

[
(
S(+)(p4)S

(−)(p3)
)

α4α3

(
S(+)(p2)S

(−)(p1)
)

α2α1

+
(
S(−)(p4)S

(+)(p3)
)

α4α3

(
S(−)(p2)S

(+)(p1)
)

α2α1

]

F (p1 − p2)

}

(E.24)
Because of

〈ψm4†
α4

(p4)ψ
m3

α3
(p3)ψ

m2†
α2

(p2)ψ
m1

α1
(p1)〉 = W (4),m4m3m2m1

α4α3α2α1
(p4,−p3,p2,−p1) (E.25)
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and
Γ(4) = −W (4)

amp. , (E.26)

we still have to amputate the external propagators to get the one-particle irreducible
four-quark vertex. In Ref. [44] the bare static quark propagator has been calculated
as

Smnαβ (p,q) = δmn
h(p)αβ
2Ep

(2π)3δ3(p + q) (E.27)

whose inverse is

(
S−1

)mn

αβ
(p,q) = δmn

2 h(p)αβ
Ep

(2π)3δ3(p + q)

= 2δmn
[
S(+)(p) − S(−)(p)

]

αβ
(2π)3δ3(p + q) .

(E.28)

Cutting off the external quark propagators, Eq. (E.24) involves terms like

∫
d3p′4
(2π)3

(S−1)α4α′
4
(p4,−p′

4)S
(±)
α′

4
αi

(p′
4)(2π)3δ3(p′

4 + . . .)

=

∫
d3p′4
(2π)3

2
[
S(+)(p4) − S(−)(p4)

]

α4α′
4

(2π)3δ3(p4 − p′
4)S

(±)

α′
4
αi

(p′
4)(2π)3δ3(p′

4 + . . .)

= ± 2S(±)
α4αi

(p4)δ
3(p4 + . . .)

(E.29)
and ∫

d3p′1
(2π)3

S
(±)
αiα′

1

(−p′
1)(2π)3δ3(p′

1 + . . .)(S−1)α′
1
α1

(−p′
1,p1)

=

∫
d3p′1
(2π)3

(2π)3δ3(p′
1 + . . .)S

(±)
αiα′

1

(−p′
1)

2
[
S(+)(−p′

1) − S(−)(−p′
1)
]

α1α′
1

(2π)3δ3(p′
1 − p1)

= ±2S(±)
αiα1

(−p1)δ
3(p1 + . . .) ,

(E.30)

where use has been made of Eq. (E.14). Therefore, cutting off a propagator at S(±)

yields a factor of ±2, so we get

Γ(4) = −W (4)
amp. = −16W (4) . (E.31)
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The four-quark function finally becomes
(

δ4Γ

δψ†δψδψ†δψ

)m4m3m2m1

α4α3α2α1

(p4,p3,p2,p1) =
64g2(2π)3δ3(p1 + p2 + p3 + p4)

Ep1
+ . . .+ Ep4

{

(T a)m4m3(T a)m2m1

[
(
S(+)(p4)S

(−)(−p3)
)

α4α3

(
S(+)(p2)S

(−)(−p1)
)

α2α1

+
(
S(−)(p4)S

(+)(−p3)
)

α4α3

(
S(−)(p2)S

(+)(−p1)
)

α2α1

]

F (p1 + p2)

−(T a)m4m1(T a)m2m3

[
(
S(+)(p4)S

(−)(−p1)
)

α4α1

(
S(+)(p2)S

(−)(−p3)
)

α2α3

+
(
S(−)(p4)S

(+)(−p1)
)

α4α1

(
S(−)(p2)S

(+)(−p3)
)

α2α3

]

F (p2 + p3)

}

.

(E.32)

E.3 Calculation of the Quark Tadpole Term

In the following, we calculate the flow equation for the quark two-point function
retaining only the quark tadpole term. In condensed notation this equation reads,
see Eq. (5.15),

δ2Γ̇k

δψ†
jδψi

= −Tr Ṙψ,k

(

− δ2Γk
δψ†δψ

+ Rψ,k

)−1
δ4Γk

δψ†
jδψiδψ

†δψ

(

− δ2Γk
δψ†δψ

+Rψ,k

)−1

.

(E.33)
With Eq. (5.19) the l.h.s. becomes
(

δ2Γ̇k
δψ†δψ

)mjmi

αjαi

(pj ,pi) = −δmjmi [(α · pj)Ȧk(pj) + βḂk(pj)]αjαi
(2π)3δ3(pj + pi) .

(E.34)
With Eqs. (5.23) and (5.25) the loop of the tadpole turns into

[(

− δ2Γk
δψ†δψ

+Rψ,k

)−1

Ṙψ,k

(

− δ2Γk
δψ†δψ

+Rψ,k

)−1
]m2m1

α2α1

(p2,p1) =

[

(α · p1)α2α1

(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k p

2
1(Ak +Rα,k)

2

− 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(p1)

+βα2α1

(

2Ṙα,k p
2
1(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2

− Ṙβ,k p
2
1(Ak +Rα,k)

2

)

(p1)

]

δm2m1(2π)3δ3(p2 + p1)

[p2
1(Ak +Rα,k)2 + (Bk +Rβ,k)2]

2
(p1)

.

(E.35)
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Using the four-quark function in Eq. (5.87) with a cut-off dependent Coulomb
potential Fk(p), the quark tadpole term in Eq. (E.33) is

−
∫
d3[p1p2]

(2π)6

[(

− δ2Γk
δψ†δψ

+Rψ,k

)−1

Ṙψ,k

(

− δ2Γk
δψ†δψ

+Rψ,k

)−1
]m2m1

α2α1

(p2,p1)

[
δ4Γk

δψ†δψδψ†δψ

]mjmim1m2

αjαiα1α2

(pj ,pi,−p1,−p2)

= −
∫

d3q

(2π)3

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
{

(α · q)α2α1

(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2

− 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+βα2α1

(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2

− Ṙβ,k q
2(Ak +Rα,k)

2

)

(q)

}

{

− (T a)mjm2(T a)m2mi

︸ ︷︷ ︸

=C2δ
mjmi

[
(
S(+)(−p)S(−)(−q)

)

αjα2

(
S(+)(−q)S(−)(−p)

)

α1αi

+
(
S(−)(−p)S(+)(−q)

)

αjα2

(
S(−)(−q)S(+)(−p)

)

α1αi

]

F (p− q)

+ (T a)m2m2

︸ ︷︷ ︸

=0

· . . .
}

32g2

Ep + Eq

(2π)3δ3(0)

= δmjmi [(α · p)αjαi
Ȧk(p) − βαjαi

Ḃk(p)](2π)3δ3(0) ,
(E.36)

where we have used the fact that the generators of the gauge group T a are traceless
and renamed pi → p and p1 → q. The lengthy products of Dirac matrices can be
simplified to

S(+)(−p)S(−)(−q) α · qS(+)(−q)S(−)(−p)

+ S(−)(−p)S(+)(−q) α · qS(−)(−q)S(+)(−p)

=
m

2E2
p
E2

q

(α · pm(q2 − p · q) + α · qmEp(Ep − Eq)

+ β((m2 − EpEq)p · q + p2q2))

(E.37)
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and

S(+)(−p)S(−)(−q) β S(+)(−q)S(−)(−p) + S(−)(−p)S(+)(−q) β S(−)(−q)S(+)(−p)

=
1

2E2
p
E2

q

(α · pm(q2 − p · q) + α · qmEp(Ep −Eq)

+ β((m2 −EpEq)p · q + p2q2)) .
(E.38)

Note that these two expressions differ only by a factor of the current quark mass m
which accounts for different dimensions. For the flows of the dressing functions A
and B we finally obtain

p2Ȧk(p) = 16g2C2

∫
d3q

(2π)3
Fk(p − q)

mp2(q2 − p · q) +mp · qEp(Ep − Eq)

(Ep + Eq)E2
p
E2

q

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

m
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

(E.39)

and

Ḃk(p) = −16g2C2

∫
d3q

(2π)3
Fk(p− q)

(m2 −EpEq)p · q + p2q2

(Ep + Eq)E2
p
E2

q

1

[q2(Ak +Rα,k)2 + (Bk +Rβ,k)2]2 (q)
[

m
(

Ṙα,k(Bk +Rβ,k)
2 − Ṙα,k q

2(Ak +Rα,k)
2 − 2Ṙβ,k(Ak +Rα,k)(Bk +Rβ,k)

)

(q)

+
(

2Ṙα,k q
2(Ak +Rα,k)(Bk +Rβ,k) + Ṙβ,k(Bk +Rβ,k)

2 − Ṙβ,k q
2(Ak +Rα,k)

2
)

(q)

]

.

(E.40)
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