
Defect Cost Flow Model
with Bayesian Networks

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Thomas Schulz

aus Müllheim / Baden

Tübingen

2011



Tag der mündlichen Qualifikation: 30.09.2011
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel
2. Berichterstatter: Prof. Dr. Norman Fenton



Zusammenfassung

Die Vorhersage von Software Fehlern ist eines der Hauptthemen der Software Ent-
wicklung. Zur Bestimmung der Software Qualität bzw. des Aspekts der Fehleranfäl-
ligkeit dient weitläufig die Anzahl der Fehler als eine der wesentlichen Kenngrößen.
Jedoch ist die alleinige Anzahl an Fehlern bei der Aufwandsschätzung von Fehlerkor-
rekturmaßnahmen ungeeignet, da der Fehlerkontext in diese Kenngröße nicht ein-
fließt. Diese Arbeit stellt eine neue Möglichkeit der Schätzung des Fehlerkorrektur-
aufwandes vor.

In der Regel werden Fehler im Rahmen von Änderungen in das Software Produkt
eingebracht. Ein Software Release umfasst potentiell hunderte dieser Änderungen.
Dabei hat jede Änderung eine eigene Charakteristik hinsichtlich ihrer Fehlerwahr-
scheinlichkeit, die auf verschiedenen Einflussfaktoren basiert. In dieser Arbeit wird
die Entwicklung des Software Prozess Modells (SPM) beschrieben, das die spezifi-
schen Charakteristika jeder einzelnen Änderung im Kontext des Software Releases
berücksichtigt.

Weiterhin haben Fehler der verschiedenen Entwicklungsphasen einen unterschiedli-
chen Einfluss auf den Fehlerkorrekturaufwand, abhängig von ihrem Ursprungs- und
Entdeckungsort. Dabei steigt der Mehraufwand für die Fehlerkorrektur bei Fehlern,
die über mehrere Entwicklungsphasen hinweg unentdeckt bleiben bzw. erst in einer
Folgephase entdeckt werden. Um den Korrekturaufwand zu verringern, ist es wichtig,
die einzelnen Entwicklungsphasen anhand ihrer spezifischen Merkmale zu bewerten
und in diesem Kontext den Fokus von Qualitätsmaßnahmen zu definieren. Diese Ar-
beit beschreibt die Erstellung des Modells zum Fehlerkostenstrom (DCFM), das den
Zusammenhang des Fehlerstroms über die Entwicklungsphasen zum Fehlerkorrek-
turaufwand herstellt.

Die Darstellungsform der Modelle in dieser Arbeit sind die Bayesschen Netze (BNs).

iii



Sie zeichnen sich im Wesentlichen durch ihre Eigenschaft aus, probabilistische Kau-
salketten darzustellen und dieses unter der Einbeziehung von Expertenwissen in
Kombination mit empirischen Daten. Die iterative Modellentwicklung berücksichtigt
dabei die Problemanalyse, Datenanalyse, Modellerstellung, Simulation und Validati-
on.

Die beiden entwickelten Modelle SPM und DCFM spiegeln das weitverbreitete Ent-
wicklungsvorgehen anhand des V-Modells wider, ein internationaler Standard für die
Entwicklung von Informationssystemen. Die Datengrundlage der Modelle basiert auf
Projektdaten, die bei der Robert Bosch GmbH erhoben wurden. Die Analyse der ver-
schiedenen Simulationsszenarien bestätigt, dass SPM und DCFM die realen Ent-
wicklungsprozesse abbilden und auf dieser Basis Optimierungsstrategien erarbeitet
werden können. Dabei ermöglicht die kausale Struktur der Modelle eine intuitive An-
wendbarkeit.

Klassische Kostenoptimierungsstrategien in der Software Entwicklung tendieren da-
zu, die einzelnen Entwicklungsphasen separat in ihren eigenen Domänen zu betrach-
ten. Im Gegensatz dazu zeigen die Ergebnisse dieser Arbeit, dass auch kosteninten-
sive Qualitätsmaßnahmen einen Mehrwert darstellen, wenn man sie hinsichtlich des
Fehlerkorrekturaufwandes im Kontext des gesamten Entwicklungsvorgehens betrach-
tet.



Abstract

Software defect prediction has been one of the central topics of software engineering.
Predicted defect counts have been used mainly to assess software quality and esti-
mate the Defect Correction Effort (DCE). However, in many cases these defect counts
are not good indicators for DCE. Therefore, in this thesis DCE has been modeled from
a different perspective.

The most common way of inserting defects into a software product is by applying
changes to it. In every software release, hundreds of changes are applied to the
software product. Every change has its unique characteristics based on process and
product factors. With regard to these factors, every change has its own probability of
injecting a defect. In this thesis, the Software Process Model (SPM) is demonstrated
taking into account the specific characteristics of multiple changes.

Furthermore, defects originating from various development phases have different im-
pact on the overall DCE, especially defects shifting from one phase to another. To
reduce the DCE it is important to assess every development phase along with its
specific characteristics and focus on the shift of defects over phases. These ideas
have been realized in the Defect Cost Flow Model (DCFM).

The modeling technique used in this thesis are Bayesian Networks (BNs) which,
among many others, have three important capabilities: reflecting causal relationships,
combining expert knowledge with empirical data and incorporating uncertainty. The
procedure of model development contains a set of iterations including the following
steps: problem analysis, data analysis, model enhancement with simulation runs and
model validation.

The developed models SPM and and the Defect Cost Flow Model (DCFM) reflect the
widely used V-model, an international standard for developing information technology
systems. It has been pre-calibrated with empirical data from past projects developed

v



at the Robert Bosch GmbH. The analysis of evaluation scenarios confirms that SPM
and DCFM correctly incorporates known qualitative and quantitative relationships.
Because of its causal structure it can be used intuitively by end-users.

Typical cost-benefit optimization strategies regarding the optimal effort spent on qual-
ity measures tend to optimize locally, e.g. every development phase is optimized
separately in its own domain. In contrast to that, the SPM and DCFM demonstrate
that even cost intensive quality measures pay off when the overall DCE of specific
features is considered.







Acronyms

AI Artificial Intelligence. 20

ASIL Automotive Safety Integrity Level. 10

BN Bayesian Network. 5–7, 19, 20, 23, 24, 26–29, 33, 52, 58, 69, 70, 74, 80, 107,
115–117, 119

CMMI Capability Maturity Model Integrated. 7, 10, 12, 13, 116

COCOMO Constructive Cost Model. 108, 109, 119

CU Customer. 18, 104, 105

DBN Dynamic Bayesian Network. 27, 28, 51, 52, 69, 117

DCE Defect Correction Effort. 3, 4, 31, 40, 42, 43, 45–48, 51–54, 59, 62–64, 66, 69,
73–80, 82, 83, 85–88, 90–93, 97, 99, 104, 109, 110, 112–114, 116–118, 120

DCF Defect Cost Factor. 5, 39, 46–48, 60, 61, 86, 105, 109, 112, 113, 116–118, 120

DCFM Defect Cost Flow Model. 5–7, 71, 73–75, 83, 86, 87, 107, 109, 110, 113, 114,
116–120

DE Design. 16, 18, 46, 75–77, 80, 83, 84, 88–94, 97, 99, 101, 103, 105, 110–113

DFM Defect Flow Model. 7, 18, 74, 77, 117

DOE Design of Experiment. 5, 48, 62, 120

ECU Electronic Control Unit. 8, 21, 22

GQM Goal Question Metric. 31, 54

ix



HMI Human Machine Interface. 46, 52, 60

I&T Integration & Test. 17, 18, 46, 75–77, 80, 84–86, 88, 90, 94, 97, 99, 101, 103,
104, 120

IEC International Electrotechnical Commission. 9, 10

IM Implementation. 17, 18, 75–77, 80, 83, 84, 88–90, 93, 97, 99, 101, 103, 110–113

ISO International Organization for Standardization. 10, 11

KPI Key Performance Indicator. 3–5, 32, 34, 40, 48, 51–54, 69, 73, 74, 80, 107–109,
116, 118

NPT Node Probability Table. 20, 24, 27, 82

PM Project Manager. 2–4, 19, 31, 115–118

QA Quality Assurance. 1, 3–5, 11, 18, 108–110, 113, 116, 118, 120, 121

RE Requirements Engineering. 16, 18, 46, 75–77, 80, 82–84, 86, 88–94, 97, 99,
101, 103, 105, 110–113

ROI Return of Invest. 6, 107

SPM Software Process Model. 5–7, 51–53, 65, 70, 107, 109, 115–118, 120



Contents

Abstract iii

Acronyms ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Automotive Product Engineering . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Defect Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Development Methodology 31
3.1 Procedure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Building and Simulating . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Refinement and Generalisation . . . . . . . . . . . . . . . . . . . . . . . 37

4 Model Data Chapter 39
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Internal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Feature Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Defect Cost Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi



4.5 Experiment Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Software Process Model 51
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Identifying KPIs and Relationships . . . . . . . . . . . . . . . . . . . . . 54
5.4 Building and Simulating . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Model Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Defect Cost Flow Model 73
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Defect Cost Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Identifying KPIs and Relationships . . . . . . . . . . . . . . . . . . . . . 79
6.5 Model Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.7 Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Practical Benefits 107
7.1 Developing Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Process Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Summary and Outlook 115
8.1 Model Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Hypothesis Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4 Research Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Process Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



List of Tables

2.1 Summary of recent BNs in software engineering . . . . . . . . . . . . . 29

4.1 Development and defect correction effort . . . . . . . . . . . . . . . . . 43
4.2 Type distribution error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Defect Cost Factor over feature . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Number of defects over deadline pressure . . . . . . . . . . . . . . . . . 49

5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Type of change distribution . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Deadline pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Effort spent on testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Defect detection rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Project scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Defect Cost Flow data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 DCFs per development phase . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Sufficiency of QA effort . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4 Effort Reduction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Development phase multipliers . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Scenario overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 RE scenario result data . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.8 DE scenario result data . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.9 IM scenario result data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.10 I&T scenario result data . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.11 S1 result overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiii



6.12 S1 result data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.13 S2 result overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.14 S2 result data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.15 S3 result overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.16 S3 result data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.17 S4 result overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.18 S4 result data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.19 Scenario overall results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 DCFM overall results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



List of Figures

2.1 V-Model development process . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Defect Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Example Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Entering observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Backward reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Common Bayesian Network structures . . . . . . . . . . . . . . . . . . . 26

3.1 Research procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Measurement concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Overall effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Number of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Effort distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Effort over feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Effort estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Change model BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Setup SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Change factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Process factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Product factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Test activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Development effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 Defect correction effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 DCFM concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Defect Cost Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Bayesian Network DCFM . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



6.4 DCFM part RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 DCFM part DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6 DCFM part IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7 DCFM part I&T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8 RE scenario results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.9 DE scenario results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.10 IM scenario results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11 I&T scenario results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.12 S1 DCFM chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.13 S2 DCFM chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.14 S3 DCFM chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.15 S4 DCFM chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Review evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 113



1 Introduction

1.1 Motivation

1.1.1 Automotive Industry

For the next years, experts estimate the global readmission rate for cars to be over
70.000.000 per year [Zimmermann and Hauser, 2004]. At the same time, the Euro-
pean Commission requests a reduction of traffic deaths by 50% in the same period.
70% of future innovation will be based on software. Therefore, with the increasing
number of cars, software becomes more and more important. A by- product of this,
in recent years 50% of all vehicle recalls were software related.

The increasing part of embedded software and the resulting complexity does not only
lead to improved new functions but also to an increasing defect rate. This affects qual-
ity and has a strong influence on success in the business. Especially for safety critical
use, which is characteristic for the automotive sector, reliability has to be guaranteed
by systematic defect avoidance already during development.

One major challenge in the development of large scale software products for the au-
tomotive industry is to optimize Quality Assurance (QA) over product costs to develop
high quality products at low in-field defect rates and still at low costs. Short develop-
ment life cycles stand in contrast to long product life cycles, a fact which confirms the
demand for failsafe innovative products.

The most common way of inserting defects into a software product is by applying
changes to it. In every software release, hundreds of changes are applied to the
software product. Every change has its unique characteristic based on process and
product factors. With regard to these factors, every change has its own probability of

1



1 Introduction

injecting a defect. Furthermore, defects originating from other development phases
than the one they were detected in, have a different impact on the overall product
costs compared to defects detected in the same development phases in which they
were applied.

1.1.2 Product Assessment

Decision making in software engineering is often based on various influencing vari-
ables from multiple domains which a single expert can not have a complete overview
of. One of the central topics when developing innovative safety critical products is the
assessment of a product’s defect rate before it is released. For example, it is very
difficult to estimate the defect rate of a specific software release when hundreds of
changes have been applied to it. Major indicators are, e.g.

• What parts of the software have been changed?

• How large were the changes to the software?

• How complex and difficult were these changes?

• Have all new functionalities been tested?

The defect rate of a software product has to be considered when estimating the effort
needed to complete a project. Especially the rework needed to fix defects is one of
the uncertain variables. In a project’s context, the defect rate of the software product
has further influencing factors, e.g. the project’s deadline pressure, which further has
to be taken into consideration when estimating the project effort.

For Project Managers (PMs) it is difficult to overview these variables and their im-
pact on the product’s defect rate. Their interpretation varies from one PM to another
leading to different decisions among different PMs.

1.1.3 Process Improvement

One goal of the continuous improvement process is to identify areas where optimiza-
tion leads to lower defect rates. Therefore, the efficiency of defect detection- and

2



1.2 Research Hypothesis

correction activities are maximized given certain boundary conditions. For example,
if the reduction of the overall defect rate is considered, how is the effort for review
and test activities distributed most effectively throughout the process phases? Before
optimizing the development process, all process phases need to be analyzed con-
cerning their effectiveness. This analysis needs to consider a variety of influencing
variables. Especially the influence of every variable on the optimization criteria is of
great interest. Based on this analysis, process changes can be introduced including
the evaluation of their improvement. For PMs it is difficult to overview the impact of
changing process variables to the overall engineering process. Thus, it is difficult to
find the optimal process optimization measures for a specific development process.

1.2 Research Hypothesis

The goal of this thesis is derived from the problems addressed in the previous sec-
tions. These problems primarily focus on the assessment of software products and
the supporting development processes regarding the effectiveness of QA measures
and cost reduction. These problems can be summarized to the following statement:

P1 Experts can not overview the impact of all Key Performance Indicators (KPIs) to
product quality and costs.

P2 Expert knowledge and process data are combined on a subjective basis leading
to different decisions among different experts.

The overview on all main influencing variables, named KPIs throughout this thesis,
is crucial to identifying optimization measures. Furthermore, it is important to un-
derstand the relationship among these KPIs to get an overall understanding of the
development processes. Only with the understanding of how KPIs affect the defect
rate of a software product it is possible to identify optimal measures leading to lower
defect rates as well as cost reduction. Furthermore, with the understanding of the
overall development process, it is possible to effectively distribute QA effort over pro-
cess phases.

In this thesis, effort is used to describe costs. In addition to that, the Defect Correction
Effort (DCE) is used to provide a measure for the defect rate of a software product.

3



1 Introduction

Development effort as well as DCE form the estimation variables. Due to the common
unit of these variables, it is possible to incorporate all KPIs within a consistent model.
Moreover, the resulting model should be able to incorporate both, process data and
expert knowledge when no data is available. Thus, the main goals of this thesis can
be formulated as follows:

G1 Enable PMs to identify QA measures where optimization leads to lower product
costs.

G2 Provide a method to identify product areas where optimization has an optimal
cost-benefit ratio regarding a defect rate reduction.

G3 Develop a model for a specific software development process to describe the
KPIs for development effort and DCE.

G4 Describe the KPIs in form of process data and expert knowledge when no data
is available.

Based on these goals the following research hypothesis for this thesis are defined:

H1 It is possible to develop estimation models for development effort and DCE that
incorporate process data and expert knowledge in the absence of significant
data.

H2 It is possible to enable PMs to identify product areas where additional effort
spent on defect rate reduction has an optimal cost-benefit ratio.

H3 It is possible to incorporate the supporting development process to distribute
effort for QA measures most effectively.

1.3 Outline

Chapter 1 introduces this thesis. Here, explicit research hypotheses are constructed
based on the problems motivating this thesis.

Chapter 2 provides information about this thesis’ problem domain. It describes the
fields of automotive software engineering and gives insights into domain specifics,
i.e. the engineering process model as well as QA topics are described. The section

4



1.3 Outline

on automotive engineering is followed by an introduction to Bayesian Networks (BNs),
the method used to create the models of this thesis. It describes the motivation behind
selecting BNs and introduces their main characteristics. The background chapter
closes with a state-of-the-art section, describing similar activities to those presented
in this thesis.

Chapter 3 describes the methodology followed to achieve the goal of this thesis. Every
research stage, from defining the problem to validating the models is described along
the research procedure.

Chapter 4 describes the data elicited for the models presented in this thesis. Process
and project data as well as expert knowledge is collected from an industrial partner,
one of the leading companies in the field of embedded applications in automotive in-
dustries. The data base provides insights to specific defect rates of a historical project
as well as the development process. During the data analysis feature classification
has been introduced to distinguish areas of of the software product with different de-
fect rates. Furthermore, the Defect Cost Factor (DCF) is defined to quantify the impact
of defects on the software development. In addition to that, this chapter describes the
Design of Experiment (DOE) conducted to understand the impact of major influenc-
ing variables, i.e. the impact of deadline pressure on the defect rate of a software
product.

Chapter 5 presents a model to estimate the amount of defects for a specific software
product. It focuses on the estimation of defects based on the changes introduced in
a specific software release cycle. The resulting model is called the Software Process
Model (SPM). After the Overview section, the main goal of SPM is defined. Based
on this, SPM’s main variables are defined. After this, the section on Building and
Simulating describes the actual building of the model. It is followed by a section on
the model usage. Scenarios are defined, analyzed and presented as a part of the
results section. Finally, the Conclusion section summarizes the results.

Chapter 6 describes the creation of the Defect Cost Flow Model (DCFM). The aim
of the DCFM is the identification of development phases in which an optimization of
QA effort will lead to lowest costs. The first sections provide background information
on the DCFM. Based on the problem definition, the KPIs and their relations can be
defined. The following sections describe the DCFM in detail including the simulation

5



1 Introduction

of several scenarios demonstrating its capabilities. The simulation results are dis-
cussed after that. Finally, the conclusion section summarizes the simulation results
and describes further steps in the domain of DCFM.

Chapter 7 presents the practical benefits of SPM and DCFM. Because this thesis has
been carried out in an industrial environment, several usage areas of such models
could be identified. It starts with the gain of knowledge in different areas, e.g. in mod-
elling techniques like BNs, accompanying the work of SPM and DCFM. But, most
importantly, the Return of Invest (ROI) is described based on a change in the devel-
opment process within the industrial environment. For this, an additional evaluation
has been carried out resulting from SPM and DCFM.

The final chapter 8 Summary and Outlook concludes this thesis.

6



2 Background

This chapter gives background information about the main aspects of this thesis,
i.e. the Software Process Model (SPM) and the Defect Cost Flow Model (DCFM).
Section 2.1 describes the domain of embedded software engineering along with the
challenges to be met. It describes the engineering process on which the hypothesis
evaluation of this thesis is based on. The following section on embedded software
engineering introduces the standards and norms used for the development of auto-
motive software as well as other safety critical embedded software. These sections
motivate the need for fail-safe products and therefore methods describing how to re-
duce software defects. The section about the Defect Flow Model (DFM) introduces a
concept to describe defects as part of the development process. It is followed by the
principles of Bayesian Networks (BNs), the probabilistic theory used to develop the
models for this thesis. The final section of this chapter is a review of the state-of-the-
art in the field of predictive software engineering showing this thesis’ relationship to
current research.

2.1 Automotive Product Engineering

This section describes the field of automotive product engineering depicting the
boundary conditions for the development of fail-safe automotive products, one ma-
jor motivation for this thesis. The introduction is followed by a section on standards
and norms defining the requirements for the development of safety critical embedded
systems. The following sections describe general purpose process models fulfilling
these standards and norms, i.e. quality management, the Capability Maturity Model
Integrated (CMMI) and the V-Model development process, an international standard
for developing software products. The description of these general purpose process

7



2 Background

models is followed by an introduction to the development process implementing the
described standards. It is used within the automotive industry to develop high qual-
ity products. The concepts and models developed as part of this thesis have been
developed in this specific engineering environment.

2.1.1 Introduction

The demand for software products in the automotive industry has been increasing ex-
ponentially over the last decades, making software engineering one of its critical suc-
cess factors [Lee et al., 2007]. The extensive use of Electronic Control Units (ECUs)
in vehicles today has already lead to an average of 20 ECUs in smaller and even
more than 70 ECUs in upper class cars [Zimmermann and Hauser, 2004]. Complex
features with short time to market and minimal engineering costs at very high quality
are the challenges to be met. Besides functional complexity, embedded software is
the subject to domain specific characteristics, especially:

• code efficiency due to limitations of processor and memory resources.

• code portability to ensure further development and variant handling.

• high availability and reliability to support safety critical applications.

• real-time operation.

• network operation.

With the software part continuously increasing, the automobile has turned into a com-
plex technical product. It has to fulfill increasing requirements by the customer and
legal specifications. Basically, these are marked by high requirements for reliability,
availability and safety. As safety relevant vehicle functions increase, acting without
the active interference of the driver, the analyses of the function safety and the speci-
fication of suitable concepts have great importance in the development. The require-
ments and the resulting cross-company collaboration lead to an intensified tendency
towards distributed systems.

Additionally, the function development needs to follow a defined domain specific pro-
cess, specifically adjusted to the character of embedded systems and the develop-

8



2.1 Automotive Product Engineering

ment context. The development of high-quality products in such an environment is
a great challenge as they underlie the frame conditions of limited costs, short de-
velopment cycles and high product variability. Standards and norms as well as the
derived supporting processes, described in the following sections, are common prac-
tice in the automotive industry. The so-called maturity models enable an evaluation
of the companies in respect to the availability of the corresponding processes, which
are increasingly being used as a basis for order placement. For the development
of automotive specific software it is indispensable to have a continuous process, in-
cluding all phases of the development process, as a result of the interaction of dif-
ferent engineering disciplines. The use of systematic development processes is a
necessary prerequisite for continuous improvements and is mostly acknowledged or
already mandatory. Next to standardized progress models for the software develop-
ment, there are general, not software specific standards, which are partially having
extensions and adjustments for specific domains.

2.1.2 Standards and Norms

Standards and norms serve the improvement of products and processes to increase
the general quality. Especially in areas concerning safety relevant systems, it is most
important to obey the defined processes. At the same time, the customer’s require-
ments for product and process certification have to be added. The following standards
are already followed for the development of embedded software within the automotive
industry.

IEC 61508

The standard “functional safety of safety relevant programmable electronic systems”
of the International Electrotechnical Commission (IEC) is relevant for the develop-
ment of safety oriented functions. It defines requirements for the development of safe
systems without being limited to one domain.

9



2 Background

ISO/CD 26262

A standard of the International Organization for Standardization (ISO) is originating
especially for the vehicle development, being an adaption of the IEC 61508. The
ISO 26262 “Road vehicles - Functional safety" is to be passed in 2011 as a public
standard. ISO 26262 is already adhered to within the automotive industry to further
increase the reliability of safety products. The increasing demand for further safety
measures is one reason for the research activities carried out as part of this thesis.

At the moment it is in a committee draft for examination and further processing. The
basic organisational requirements of this standard refer to the development process
and its support processes and also to the management of the functional safety. The
technical requirements for the software development include recommendations for the
use of techniques and methods, being realized dependent on the Automotive Safety
Integrity Level (ASIL).

ISO 26262 contains the definition of responsibilities and activities to guarantee the
functional safety during the development and also independent from the project. The
third part is the definition of the overall system and the corresponding requirements,
e.g. the observance of certain standards and the legal framework. Here, dangers
and risks of potential errors are estimated according to appropriate techniques and
classified in ASIL.

The standard further describes the product development being divided into system,
hard- and software development. It contains specific requirements, e.g. how the
methods are used, being specified according to ASIL as optional, recommended or
urgently recommended. As a reference process for the single phases of the product
development the V-Model has been chosen. ISO 26262 defines the introduction of
corresponding production and process work flows to guarantee the functional safety
and also the observance of the requirements by all involved manufacturers.

Furthermore, the standard refers to all requirements in the area of the support pro-
cesses. In the organisational area of the standard one can find agreements for the
requirements of maturity models as the CMMI. That is why the certification of at least
level two is seen as a prerequisite for the conformity of the development process
referring to ISO 26262.

10



2.1 Automotive Product Engineering

2.1.3 Quality Management

Quality management serves as a support process of the software development. The
standard ISO 26262 described in the previous section contains guidelines and recom-
mendations for test procedures of safety critical application in the automotive sector.
It establishes certain measures to guarantee the fulfilment of specific quality require-
ments. All of these measures are summed up under the notion of quality assurance.
Software quality assurance aims to increase the trust in software products and lead to
a quality increase in development. Quality management is based on the assumption
that software quality is directly defined by the quality of its development process. In
opposition to the processes of manufacturing, from which the assumption is derived,
there is also a certain influence by individual capabilities and experiences in software
development. Factors as the novelty of a requirement have an effect on quality. But
it has become clear that the process quality still largely affects the product quality in
spite of the mentioned external factors.

Increasing process quality is the prerequisite for high-quality software products. The
definition of standards in the development and their observance are the basis of this.
The process related quality assurance takes place by the examination of the devel-
opment process according to the agreement of the result to be delivered and the pre-
viously defined standards and goals. The product related quality assurance refers to
the examination of the software products according to previously set quality features.
Measures of Quality Assurance (QA) for software do not only aim to examinations but
distinguish the following three categories. They complement themselves:

• Organisational Measures: measures for the systematic processing of the devel-
opment and quality assurance, e.g. measures for planning and examining.

• Constructive Measures: measures for the avoidance of errors in software de-
velopment, e.g. use of appropriate methods, training of employees support the
use of a process model.

• Analytic Measures: measures for tracing errors in the results, e.g. reviews and
software tests.

Constructive measures alone cannot guarantee the accuracy of a software product.
If the development is phase oriented, there is the possibility of realizing constructive

11



2 Background

measures in every phase. At the end of each phase there is an evaluation of the
interim results’ quality by means of analytic measures. If the quality is insufficient,
the interim result has to be altered until it accords with the previously defined quality
and can be released for the next phase. This procedure enables an early defect
recognition- and correction. It is advantageous that errors can be already recognised
when they originate. It also keeps the effort to correct them very low.

Basically, the examination of embedded software does not differ from conventional
software. However, for embedded systems there are higher requirements for the
quality attributes. The primary goal of the examination of embedded systems is the
examination of the correctness as potential errors might cause serious damage. In
the framework of the analytical quality assurance several techniques exist to examine
the software. They are classified as follows:

• Dynamic: the product is tested at runtime with explicit test data, e.g. with a
threshold value analysis.

• Static: the artifacts describing the product are tested, e.g. with reviews.

• Formal: the software is tested according to formal means, e.g. with model
checking.

Dynamic test procedures are applicable for embedded systems but examinations for
correctness are only possible for previously defined test cases. Statements about
reliability and safety can hardly be rendered by this, only in connection with other
procedures. It is similar to the situation of static and formal procedures. To consider all
aspects a combination of the available test procedures has to be selected dependent
on correctness, reliability, availability and safety.

2.1.4 CMMI

For evaluating and optimizing the process the CMMI provides a vast reference model.
The basis for process improvements are “Best Practices". These are practices which
already proved themselves. The CMMI consists of different process areas, which
among others are there to define procedures for system, hard- and software develop-
ment and also the corresponding support processes.

12



2.1 Automotive Product Engineering

The process areas of the CMMI each contain the specific requirements for a certain
specialist field and are the central structural elements of the model. From them the
single process areas are derived. They are divided into specific and generic goals.
While the specific goals refer to certain process areas, the generic goals follow gen-
eral formulations. They describe the “institutionalisation of a process area” and pro-
vide the instruction how the specific goals can be realized in the long-term. To reach
the goal practices are described in detail by part practices and typical outputs. The
CMMI differentiates between a cascade and a continuous display. In the cascade the
so-called maturity levels have five levels:

1. Initial: each process is more or less un-defined or hardly defined. The success
depends on the performance and the competence of single employees.

2. Managed: The most important management processes for planning, processing
and controlling of projects are implemented.

3. Defined: consistent management and development processes for the overall
organisation are defined.

4. Quantitatively Managed: Measurements and figures to forecast and control the
processes are used systematically.

5. Optimizing: The processes underlie continuous improvement with the help of
systematic selection, the introduction of improvements and also error and prob-
lem analysis.

These maturity levels complement each other. For reaching a higher level the level
below including the corresponding requirements has to be fulfilled. The first maturity
level is an exception as it has no assigned requirements. The cascade specifies two
generic goals. The first one defines the institutionalisation of the processes on the
second maturity level. The second one is valid for all higher maturity levels.

13



2 Background

2.1.5 V-Model Development Process

The life cycle model underlying the models presented in this thesis fulfills the stan-
dards and norms described in the previous sections. Life cycle models are proce-
dures by which software is engineered in a defined way using structured process
steps from the requirements to delivery. The implemented process is based on the V-
Model [IABG, 1992], an international standard for developing information technology
systems. The V-Model is an enhancement of the common waterfall model and is in-
tended for planning and executing interdisciplinary projects, combining hardware and
software as well as high level system engineering activities within a single framework.
For decades, the V-Model has been enhanced to reflect the needs of the automotive
industry to develop high quality, failsafe products. The V-Model describes different
phases of a software release life cycle and focuses on high level system specification
and testing as well as on implementation level, module testing respectively. On the
management level, every phase of the V-Model is supported by specific methods to
ensure a seamless integrated engineering environment.

Figure 2.1 illustrates the V-Model phases. Starting with System Requirements Engi-
neering & Design, high level functions are specified according to the desired product
functionality. They are further specified and assigned to specific software components
according to their functionality. These components contain software modules building
the code base of the product. Detailing of requirements and testing is continued from
the highest level of function definition down to the module level where module reviews
and tests are performed. The right side of the V-Model is related to integration and
testing. Modules are integrated into components and components are integrated into
the overall software. Software engineers assess the software on a more detailed,
software related perspective. After software testing, the overall software is integrated
in the system forming an ECU as part of a vehicle’s functionality. System engineers
review and test high level product functionality from the customer’s perspective.

14



2.1 Automotive Product Engineering

Customer

System 

Requirements & 

Design

Software 

Requirements & 

Design

Component 

Requirements & 

Design

Module 

Requirements & 

Design 

Module Implementation

Module 

Integration & 

Test

Component 

Integration & 

Test

Software 

Integration & 

Test

System 

Integration & 

Test

Review

Product Acceptance

Review

Test Cases

Review

Review

Review

Product Functionality

Figure 2.1: V-Model development process

15



2 Background

2.1.6 Automotive Software Development

The software development processes underlying the concepts and models developed
as part of this thesis follow a defined and documented life cycle [CDQ, 2010]. Based
on the criteria for each life cycle, the project determines which of the life cycle models
will be used. As a minimum, each of the approved software life cycles must include
the following phases:

• Requirements Engineering

• Design

• Coding / Implementation

• Integration & Testing

Depending on the life cycle, these phases are applied repeatedly, e.g. in incremental,
iterative life cycles or when verification steps are applied after each phase.

Requirements Engineering

Within the Requirements Engineering (RE) phase, the customer specification is ana-
lyzed, or if it is not delivered by the customer, it is developed and refined into the inter-
nal specification. The project transforms the customer specification into the internal
target specification in terms of completeness and adequate level of detail. Thereby
the project checks whether further requirements need to be supplemented to the in-
ternal specification (e.g. non-functional requirements, standards, company-internal
objectives). It is unambiguously communicated to the customer which requirements
are accepted and which are not. The internal requirements specification forms the
basis for the succeeding design phase.

Design

The Design (DE) phase, several architecture describing documents are developed to
specify the functions as well as the interfaces within the software and to the hardware.
In case there is a need to develop alternative solutions, systematic decision methods

16



2.1 Automotive Product Engineering

are applied to identify the best solution. The design phase is carried out either in one
step or in several stages (architectural design, detailed design).

Coding / Implementation

Within the Implementation (IM) phase, work products used to create executable pro-
grams are defined and documented in terms of their structure and content. Rules are
defined such as coding guidelines, provisions for using code generators, strategies
for the later integration and configurations of tools (e.g. compilers, code checkers,
etc.). The IM phase is followed by calibration and parametrization steps influencing
the functional behavior of the software.

Integration and Testing

Phase Integration & Test (I&T) describes the software verification and validation pro-
cess. At a minimum the following topics (type and scope of the evaluations that have
to be carried out) are defined:

• Applicable dynamic software testing

• Regression testing

• Reviews and applicable methods (e.g. inspections, walkthroughs)

• Criteria and procedures for the release of software

These process phases form the software development life cycle followed for every
iteration of the product development. There are further supporting processes, e.g.
project-, configuration- or change & defect management needed to plan, assess and
control every life cycle iteration as part of the overall product development.

17



2 Background

2.2 Defect Flow Model

The automotive industry uses the DFM as a measurement system supporting the
quantitative evaluation of QA measures in their engineering processes [Stolz and
Wagner, 2005]. The DFM is based on the orthogonal defect classification concept
for process measurements [Chillarege et al., 1992]. Its main goal is to provide trans-
parency on phase specific defect rates. Defects are represented based on where
they are made in relation to where they are found. Based on the DFM, an analysis of
every phase can be assessed separately for its specific defect rates to identify phases
where to focus QA measures on. The DFM uses the number of defects as indicator
for development phase performance.

A sample DFM is illustrated in Figure 2.2 based on a data set presented in [Klaes
et al., 2007]. It has defect data in the form of number of defects for specific de-
velopment phases, i.e. RE, DE, IM, I&T and Customer (CU). It depicts 55 defects
introduced and 40 defects detected in development phase RE resulting in 15 resid-
ual defects after this phase. It is possible that these defects will be detected in later
phases, e.g. in phase DE. Finally, phase CU illustrates that 33 product defects are
left, probably detected by the customer. According to [Stolz and Wagner, 2005] the
DFM has proven its capability to monitor and improve quality processes in the domain
of software development for automotive applications .

55

140

125

25

0

40

91
98

68

33

0

20

40

60

80

100

120

140

160

RE DE IM I&T CU

N
u

m
b

e
r 

o
f 

d
e

fe
ct

s

Defects introduced Defects detected

Figure 2.2: Defect Flow Model

18



2.3 Bayesian Networks

2.3 Bayesian Networks

This section provides an introduction to BNs, the method used for creating the models
of this thesis. It describes the motivation behind selecting BNs and introduces their
main characteristics.

2.3.1 Introduction

Managers often have to assess projects without historical data available or where
relevant data is difficult to collect. Managing software projects for innovative prod-
ucts implies adapting project conditions to actual needs of a specific project or the
surrounding processes taking into account even process changes based on latest
knowledge from process improvement activities. Even though from a statistical point
of view there is no relevant data available. Project Managers (PMs) are still able to
assess such projects mostly based on expert judgement as well as taking related
information into consideration.

It is not possible to build a predictive model automatically reflecting the software engi-
neering processes from data because the data sets of required volume and diversity
do not exist in practice. Thus, building such models involves combining domain ex-
pert knowledge and empirical data. While there are different modeling techniques
satisfying this condition, splbn are selected because of the following other important
advantages:

• explicit incorporation of uncertainty,

• ability to reflect causal relationships,

• intuitiveness through a graphical representation,

• ability of both forward and backward reasoning,

• ability to run / obtain predictions from incomplete data

BNs have received a lot of attention over the last decades from both scientists and
engineers. They are part of modern techniques of artificial intelligence (AI). Although
a fundamental theorem on conditional probability was introduced by The Reverend

19



2 Background

Thomas Bayes back in XVIII century [Bayes, 1763], the term “Bayesian network” and
its concepts were introduced in the 1980’s in pioneering work of Judea Pearl [Pearl,
1985, 1988]. Experienced researchers have recently put strong statements in the
review of one of the books [Darwiche, 2009] on BNs: “Bayesian Networks are as
important to Artificial Intelligence (AI) and Machine Learning as Boolean circuits are
to computer science”, “Bayesian networks have revolutionized AI”. A BN can be per-
ceived from two perspectives:

1. as a graph where the nodes represent random variables and the arcs represent
the relationships between variables,

2. as a formal mathematical model definition where variables are expressed as
conditional probability distributions.

The graphical representation of cause and effect chains makes it possible to overlook
and communicate even complex structures. Bayes’ theorem [Bayes, 1763] enables
us to reason from cause to effect and vice versa. Propagation of information from
any part of the BN makes it possible to enter observations in specific nodes and
revise probabilities of the depending nodes. Due to Bayes’ theorem trade-off analysis
including sensitivity analysis and what-if scenarios are possible enabling us to reason
under uncertainty.

2.3.2 Bayes’ Theorem

BNs describe causal relationships between multiple influencing factors with the pos-
sibility to combine expert knowledge with statistical data in a single model [Castillo
et al., 1997]. A BN represents relationships between causes and effects. It is made
up of nodes and arcs whereas arcs represent the relation between nodes and nodes
represent the real cause or effect.

Numerically a BN consists of a set of Node Probability Tables (NPTs) quantifying
the node and its relation to others. A node which does not have a link directed to it is
called a root node and is therefore defined by an unconditional probability distribution.
In contrast to that, a node for which there is at least one incoming link from another
is called child node defined by a conditional probability distribution. NPT are used as
synonym to these distribution types.

20



2.3 Bayesian Networks

The inference process in a BN extensively uses the Bayes’ Theorem:

Pr(α|β) = Pr(β|α)Pr(α)
Pr(β)

(2.1)

Where α is the cause of an effect β. Typically, the probability Pr(β|α) for an effect
β given the cause α is available. Based on this information Bayes’ Theorem can
be used to assess the cause α given the effect β. The following example explains
the benefit of this theorem. Suppose that the ECU is part of a vehicle in a network
with several other ECUs. In case the vehicle is failing it is tested with a diagnostic
tester. These tests are not fully reliable with a false positive rate of 2% and a false
negative rate of 5%. The goal is to assess the probability for the ECU failing if the
tester identifies it to be the cause of a vehicle malfunction. The probability Pr(F ) that
the ECU fails is

Pr(F ) =
1

1000

Since the false positive rate of the diagnosis tester Pr(T ) is 2% it is known that

Pr(T |notF ) = 2

100

whereas the expression that in 98% the tester works correct and the ECU is not failing
is

Pr(notT |notF ) = 98

100
.

Furthermore, the expression for the false negative rate of the diagnosis tester can be
expressed as

Pr(notT |F ) = 5

100

21



2 Background

where the expression for 95% of the tester working correct is

Pr(T |F ) = 95

100
.

With the help of Bayes’ Theorem it results to

Pr(F |T ) =

95

100
× 1

1000
Pr(T )

.

The probability that the diagnosis tester identifies all failing ECUs can be derived from
the following expression:

Pr(T ) = Pr(T |F )Pr(F ) + Pr(T |notF )Pr(notF )

=
95

100
× 1

1000
+

2

100
× 999

1000
=

2093

100000

leading to

Pr(F |T ) = 95

2093
≈ 4.5%.

In real-life models with a multiple of dependant nodes, it is impossible to perform
these inference calculations manually. Since the beginning of this decade, there are
powerful BN tools [GeNIe, Hugin, AgenaRisk] ready for application. Decision sup-
port systems based on BNs are already in use in the domains of medical diagnosis,
forensics, procurement and software engineering. They can be either “exact” (e.g.:
variable elimination, clique tree propagation, recursive conditioning, enumeration) or
“approximate” (e.g.: direct sampling, Markov chain sampling, variational methods,
loopy propagation). More on theoretical aspects of BNs can be found in the various
books [Darwiche, 2009, Jensen, 1997, Neapolitan, 2003, Pearl, 1988, Russell and
Norvig, 2002, Winkler, 2003].

22



2.3 Bayesian Networks

2.3.3 Propagation of Evidence

One very useful feature of BNs is their ability to run with an incomplete set of obser-
vations. This means, the user does not need to provide observations to all predictors
in the model, as it is required for example in a model represented with an equation.
In fact, a BN does not have a fixed list of predictors and dependant variables. The
role of a variable is either a predictor or a dependent variable depending on model
usage. In case the variable has an observation assigned, it becomes the predictor.
Thus, it is able to predict the posterior distribution of variables where no observation
is assigned.

Figure 2.3 illustrates a BN example consisting of three variables related to software
projects. This model assumes that a fast delivery (FD) of a software product depends
on the defined process followed (DPF), i.e. the defined process requires additional
effort apart from pure development effort and thus reduces the ability of fast delivery of
a software product. Both DPF and FD influence a high product quality (HPQ). Having
a good process, gives a greater confidence in the quality of a developed product and
rushing a project may cause a decrease in product quality. All variables are Boolean,
i.e. a value “true” indicates a high level of intensity of a given feature and a value
“false” indicates low level of intensity of this feature.

P(dpf) P(fd) P(hpq) P(-hpq)

true true 0.6 0.4

true false 0.9 0.1

false true 0.1 0.9

false false 0.4 0.6

P(dpf) P(fd) P(-fd)

true 0.2 0.8

false 0.6 0.4

P(dpf) P(-dpf)

0.8 0.2

False

True

0.72

0.28

fast delivery (fd)

False

True

0.28

0.72

high product quality (hpq)

False

True

0.20

0.80

defined process followed (dpf)

Figure 2.3: Example Bayesian Network

23



2 Background

In this example, root node DPF has the probability P (dpf) of 0.8 indicating that 80%
of all projects follow a defined process. In 20% of the cases the defined process is not
followed, expressed where P (−dpf) is 0.2. Following a defined process influences
a fast software delivery. This is indicated by the arrow from node DPF to FD and
expressed in the NPT of node FD. When the defined process is followed, indicated
where P (dpf) is true, there is a probability P (fd) of 0.2 that the software is delivered
fast and a probability P (−fd) of 0.8 that the software delivery is slowed. In case the
defined process is not followed, P (dpf) is false leading to a probability for of 0.6 for
the delivery to be fast and 0.4 for it to be slow. Both nodes DPF and FD have an
influence on the product quality indicated by the arrows pointing to the node HPQ.

The corresponding NPT expresses this relation. For the case where the defined
process is followed and a fast delivery is expected, P (dpf) and P (fd) is true. For this
combination, the probability P (hpq) to release a high quality product is 0.6. The case
where processes are followed and there is enough time for development is depicted
where P (dpf) is true and P (fd) is false. In this case the probability for P (hpq) is 0.9.
In case where the process is not followed as defined is expressed where P (dpf) false.
The probability P (hpq) to release a high quality product in case the software needs to
be delivered fast is 0.1. The probability to release a high quality product increases to
0.4 in case there is enough time for the development.

Another important feature of BNs is the ability of forward and backward reasoning.
The direction of a link between the nodes represents the direction of statistical influ-
ence between this pair of variables, which in many cases also corresponds to their
causal relationship. However, this direction does not determine the only way of rea-
soning. The concept of reasoning is explained based on the example illustrated in
Figure 2.4 and 2.5. In the previous example illustrated (see Figure 2.3) there is no
information about the model state included. In this case, no observation is entered in
the model and it is calculated using prior distributions only. Therefore, the probability
of a fast product delivery is 0.28 achieving a high product quality with a probability of
0.72.

For the following project it is known that the defined process will not be followed.
BNs enable us to update the model based on new information as shown in Figure
2.4. Taking this into consideration, the model predicts a faster delivery P (fd) with a

24



2.3 Bayesian Networks

probability of 0.6 with the consequence to release the software at lower quality where
P (hpq) is 0.22.

False

True

1.00

defined process followed (dpf)

Scenario 1: False

False

True

0.40

0.60

fast delivery (fd)

False

True

0.78

0.22

high product quality (hpq)

Figure 2.4: Entering observations

To demonstrate the ability of backward reasoning let us assume that high product
quality becomes a constraint. Figure 2.5 illustrates the updated model. Based on the
fact that the defined process is not followed but the product should be of high quality,
the model predicts that more time has to be spent on the development of the product.
As a consequence, the probability for a fast delivery P (fd) is only 0.28.

False

True

1.00

defined process followed (dpf)

Scenario 1: False

False

True

0.72

0.28

fast delivery (fd)

False

True 1.00

high product quality (hpq)

Scenario 1: True

Figure 2.5: Backward reasoning

25



2 Background

An important topic when building a BN is related to obtaining reliable prior distribu-
tions. These distributions can be assessed using either the objective approach by
observing the frequencies of data in a system. The subjective approach is a mea-
sure of the personal degree of belief. Thus, it may vary among individuals leading to
different predictions according to the knowledge of the expert.

2.3.4 BN Structures

Depending on the aim of an experiment, the availability of empirical data and expert
knowledge, four main structures of BNs are used in modeling software engineering
issues as illustrated in figure 2.6.

naive Bayesian classifier converging star causal net

dynamic BN

Figure 2.6: Common Bayesian Network structures

The naive Bayesian classifier has a structure of a diverging star with a single depen-
dent variable in the middle of it. All links are directed from the dependent variable
to each of the predictors. These models are usually built automatically, based on
empirical data. Experts only select the appropriate predictors.

26



2.3 Bayesian Networks

A converging star has a similar topology to the naive Bayesian classifier with the
difference of having reversed directions of links from each predictor to the single de-
pendent variable. The complexity of the definition for the dependent variable causes
these models only to be built automatically based on the collected data.

Causal Bayesian Networks contain causal relationships between variables. In soft-
ware engineering both structure and parameters can be built automatically based on
empirical data. It is also possible to use a mixture of expert knowledge and empirical
data, e.g. the structure could be defined by expert knowledge whereas the parame-
ters are collected using learning algorithms based on data. Finally, it is also possible
to define both structure and parameters using expert knowledge only.

Dynamic Bayesian Networks are a sequence of causal BNs where each individual
BN reflects the state of the system at a specific point of time. With Dynamic Bayesian
Networks (DBNs) it is possible to use the results of one BN as input for another BN.

The models presented in this thesis are based on causal BNs and DBNs. Both exist-
ing models extensively use the notion of ranked nodes [Fenton et al., 2007b]. Ranked
nodes are used to define qualitative variables which can be expressed on a ranked
scale. These ranks can be ordered e.g. depending on the degree of belief on a 5 point
scale from very low to very high. The range of a ranked node is defined internally as
the interval between zero and one. This range is divided in as many equal-width in-
tervals as there are labeled states where every state has a label assigned. During
the calculation process, ranked nodes are treated as continuous nodes when their
intervals are used. This enables various arithmetic expressions, such as sum, mul-
tiplication, etc. and statistics such as mean, median, standard deviation etc. to be
calculated. The ability to use various weighted expressions, such as weighted mean,
weighted max, weighted min [Fenton et al., 2007b] drastically simplifies the process
of defining NPTs.

27



2 Background

2.4 State of the Art

BNs in the domain of software engineering have been used mainly for effort and qual-
ity prediction. Extensive analysis of BNs models developed for effort and quality pre-
diction have been performed in a variety of studies. There are different approaches
used for building the BNs presented in table 2.1. Some are generated automatically
from data without expert input. Others do not have a causal structure. Furthermore,
the level of detail varies among those approaches. This is due to their different ana-
lytical purpose including their point of view. Only a few studies are directly related to
this thesis. Bibi and Stamelos [2004] proposed a model for development effort pre-
diction in projects compatible with the Rational Unified Process. In their model, effort
is estimated at various project stages and for different activities. This concept seems
to be clear and intuitive. However, the authors have not yet performed any validation
and only published a basic topology of the model. Thus, a detailed analysis of their
model is difficult.

Fenton et al. [2004] discussed making resource decisions for software projects. They
discussed the problems with traditional metric approaches, i.e. regression based
models. One possible solution to this is the use of causal models like BN. In their work
they pointed out the need to incorporate empirical data as well as expert judgement
within a single model. Based on the resulting model, they explained how managers
can use their approach for decision support. The model has evolved in a number of
collaborative projects and was validated as part of the EC funded project MODIST.

Fenton et al. [2008] analyzed the effectiveness on the early life cycle defect prediction
with BNs. The resulting model predicts the number of residual defects after devel-
opment, i.e. the number of defects to be found during testing and in the field. Since
their method does require detailed domain knowledge it can be applied early in the
development life cycle. The resulting model incorporates quantitative and qualitative
factors describing a project and its development process. These factors, including
the relationships between them, have been identified as part of a major collaborative
project. A dataset on multiple software projects was taken to validate the results. The
model assumes that effort required to fix a defect is constant, i.e. that it does not de-
pend on the defect itself. This assumption is valid only when proportions of different
defect types are constant among multiple projects and components. Radlinski et al.

28



2.4 State of the Art

[2008] developed a DBNs where each instance reflects a testing and rework iteration.
The model aims to predict the number of defects remaining after each iteration and
thus may be used to estimate the release time. This model is restricted to be used in
situations where no functionality is added to the code during the testing and rework
phase. The predictions are based mainly on the amount of effort, process quality
factors and amounts of defects found and fixed. This model has been validated using
a set of synthetic data.

The following table 2.1 gives an overview on further related research activities in the
fields of BNs in software engineering.

Table 2.1: Summary of recent BNs in software engineering

Source Main problem investigated

Abouelela and Benedicenti [2010] productivity, duration, quality
Bibi and Stamelos [2004] effort

Dabney et al. [2006] defect rate
de Melo and Sanchez [2008] maintenance delays

del Sagrado and d’Aguila [2010] need for requirement review
Fenton et al. [2010] development process support

Fenton et al. [2008, 2007a] defects
Fenton et al. [2004] size, effort, quality
Hearty et al. [2009] project velocity

Radlinski et al. [2007] project resources
Radlinski et al. [2007], Radlinski [2008] size, effort, quality

Schulz et al. [2010b,a, 2008] effort
Stewart [2002] effort, productivity

Torkar et al. [2010] effort
Wagner [2009] various aspects of software quality

Wang et al. [2010] variance of project schedule
Wooff et al. [2002] testing process

29





3 Development Methodology

This chapter describes the methodology followed to develop the models presented in
this thesis. Every research stage, from defining the problem to validating the model
is described along the procedure model for designing expert systems.

3.1 Procedure Model

The procedure model follows the guidelines to designing expert systems [Weiss,
1984]. Their main application is the support of Project Managers (PMs) and process
owners on decisions related to Defect Correction Effort (DCE) estimation. Figure 3.1
illustrates the procedure used to build the models.

Essential for every expert system is the problem definition and the key performance
indicators (KPIs) related to it. The problem definition of the models described in
this thesis are derived from the research goal defined earlier (see section 1.2). The
Goal Question Metric (GQM) approach [Basili and Rombach, 1988] has been used to
systematically identify relevant KPIs of the model and their relations. According to the
GQM approach, the problem definition includes its purpose, object of interest, issue
and user’s point of view. Based on the problem definition KPIs and their relations are
used to build the causal structure of the model.

Model data has been obtained mostly from internal sources within the specific au-
tomotive engineering environment. Main data source here is the change & defect
management system where all change specific information is stored. A change en-
try summarizes all developed artifacts needed to realize a specific part of a feature.
Further internal sources are process documentation as well as expert knowledge.
Data used for model scenarios has been made anonymous due to their confidential-

31



3 Development Methodology

Expert Knowledge

Define the Problem

Identify KPIs and Relationships

Model Validation

Build and Simulation

Needs refinement?

Needs enhancement?

Internal Data

External Data

Statistical Knowledge

Organisational Knowledge

Domain Knowledge

Figure 3.1: Research procedure

ity. Model creation and simulation is a very challenging task because expertise is
required in multiple fields. First, a deep understanding of the model’s domain has to
be established. It is software engineering for the models presented in this thesis.

Second, the problem under discussion has to be fully understood including its Key
Performance Indicators (KPIs) and how they are related to each other. In this case
this means being an expert in the specific automotive work environment and being
able to map the problem definition from theory to practice.

Finally, statistical know-how is required to understand the consequences of combining
data from various sources and how it affects the simulation results. Multiple iterations
were needed to design and calibrate the models to fulfill all requirements from the
fields mentioned above. After this, multiple scenarios are defined to reflect different
aspects of the problem definition for the final analysis. The final step is model val-

32



3.2 Statement of the Problem

idation. According to the definition of the problem the predefined scenarios of the
Bayesian Network (BN) model are analyzed and assessed by experts.

Due to the novelty of this approach, it was not possible to validate all of the simulation
scenarios. Instead, domain experts analyzed and evaluated the model according to
the definition of the problem.

3.2 Statement of the Problem

The requirements were developped to support the PMs’ decisions. The system re-
flects the development process and software structure. The following major decisions
were identified:

• Can a specific software be released based on its defect rate?

• Can the development for new software be started with the given specific projects
boundary conditions ?

• Can a specific process area be optimised to decrease the error rate for artifacts
being developed here?

Every decision requires different indicators related to it. Therefore the decision sup-
port system provides all the information needed for the specific decisions. Different
aspects of a single decision need to be taken into account:

• How likely is a specific error rate for the project achieved when implementing a
function of a certain complexity with given resources?

• How many resources are needed to develop a certain functionality given the
project’s boundary conditions?

• What is the risk of delivering malfunctioning software to the customer given a
specific software release?

• Which are the process areas where the lowest optimization effort results in the
highest product quality?

Consequently, the statement of the problem is to build a decision support system,
which represents the structure of a specific software development process and a

33



3 Development Methodology

specific software product. The system needs to point out the different aspects of a
decision. It has to combine these results to support the decision maker in this specific
decision. It needs to be able to consider process KPIs as well as expert knowledge
or a combination of both.

To solve the problem stated, experts were consulted, in this case decision makers.
They were able to identify the most critical decisions, where a support system could
supply relevant information. Experts help to describe the

1. definition of the problem,

2. KPIs to be taken into account,

3. causal relationship of these KPIs,

4. strength of relation between the KPIs.

Decisions as well as how KPIs lead to a specific decision can be provided by experts.
These are managers who have to come to a decision as a part of their daily work.
KPIs with high relevance for a specific decision can be identified in databases, e.g.
process or product metric databases. Also the relation of KPIs among themselves
as well as their relation to other indicators of the system can be elicited from such
databases. Furthermore, it is possible to get quantitative descriptions by explicitly
designing experiments. If this is not possible, a qualitative description of such rela-
tionships can still be done with the help of experts to parametrise the model. Finally
data from the research community, e.g. from Promisedata [Promisedata] or Cocomo
[Center for Systems and Software Engineering, 1995] can be used as expert knowl-
edge. This leads to the following sources to obtain expert knowledge from:

• Specific experts

• Specific product and process metrics

• Specific experiments (quantitative description)

• Specific questionnaires (qualitative description)

• Publically available models

• Publically available databases

• Publically available research literature

34



3.3 Building and Simulating

3.3 Building and Simulating

The design of the system itself is based on requirements resulting from the statement
of the problem and the consultation of human experts. Every decision to be supported
should be assigned to a high level domain. If the system needs to support decisions
from multiple domains it might be necessary to create multiple domain related spec-
ifications. Interfaces, meaning the exchange of information over multiple domains
are described in the domain specification. The creation of a new domain might also
be necessary in case the reuse of indicators among multiple decisions is low. This
encapsulation of supported decisions increases the overview and especially the per-
formance of the overall system. In contrast to this, the more indicators are used in a
single domain the more consistent decisions are supported by the system. In every
domain all decision are specified together with the indicators leading to the particular
decision.

A further aspect considered when designing the expert system is the later verification
of the system described in subsection 3.4. Not only KPIs but also relationships to
other indicators must be verifiable. KPIs and relationships should be meaningful and
measurable ideally extractable from either process or product metrics.

To model a complex structure such as an software engineering environment we
needed a method supporting the following aspects

• Combining diverse types of data for a single decision.

• Reasoning from any aspect of the network to another.

• Making predictions with incomplete data.

• Quantifying the uncertainty of a supported decision.

These requirements towards the development tool are typically not supported by tra-
ditional modelling techniques.

Based on the domain specification a first prototype model has been created in an
iterative process where build cycles are planned explicitly after Testing the Prototype
and Refinement and Generalisation.

35



3 Development Methodology

3.4 Model Validation

To test the prototype different validation techniques [Leary et al., 1990] have been
considered to cover different aspects of validity. Problems found during testing which
do not affect the system’s specification are reworked immediately. Validation tech-
niques cover High Level Validity, Subsystem Validity and Input-Output Comparison
described in the following subsections

This step of validation ensures that the structure of the model allows to support the
decisions which have been specified during Design of the Expert System. It is a high
level validation assuring that the model supports an expert as he expects it to be.
The model should exactly address the Statement of the Problem as described in the
beginning of this section.

The next step of validation focuses on the internal validity of the model. Therefore the
model is divided into logical groups with functions where every group can be defined
on its output by a function of its input. It is defined how a specific group should
respond as part of the system. Whenever possible existing data should be taken to
stimulate the group and to validate its reaction on the stimulation. In case there is no
data available for validation experts need to define the function of the group. Experts
and the systems designers need to agree that the model’s major assumptions are
specified according to the statement of the problem.

Finally, the model is tested as a whole. Comparable to the subsystem validity, the
overall decision support system can be seen as an output generator based on a
function of its input. For every decision which had been specified as part of the system
design a set of input and output data are compared to how an expert would respond
to the specific input data. There are different techniques available for input-output
comparison [Shannon, 1975] [Sargent, 2005]. When validating an expert system,
both quantitative as well as qualitative validation techniques are required. Classical
goodness-of-fit tests are taken where large amount of data sets are available. In
areas of the system where observations and controlled data with statistical relevance
are not available, subjective methods need to be taken, for example the Turing Test
where multiple experts define the appropriate sets of input and output data to validate
the system’s behaviour.

36



3.5 Refinement and Generalisation

3.5 Refinement and Generalisation

To finalise the model prototype it is necessary to refine it. Also parts of one domain
of the system might be of interest in an other domain. Generalisation techniques can
be used in this case. Further calibration and fine-tuning as well as correcting faults
should also be applied in this step. After planning the refinement the prototype is
rebuild.

Feedback of experts and users as well as major corrections and enhancements are
integrated in this step to create another iteration for building the expert system.

37





4 Model Data Chapter

This chapter describes the data base for the models presented in this thesis. The
data set has been collected from a historical project for the development of automo-
tive applications. Thus, it does not represent the typical defect rates of the automotive
industry but focuses on a single project with specific boundary conditions. The data
set is described in the internal data section. The data base provides insights to spe-
cific defect rates of the project as well as the development process. During the data
analysis, the feature classification has been introduced to distinguish areas of the
software product at different defect rates. Furthermore, the Defect Cost Factor (DCF)
is defined to quantify the impact of defects on the software development. In addition
to that, this chapter introduces an experiment that has been conducted to understand
the impact of major influencing variables.

4.1 Overview

The data used for model building, calibration and validation has been collected from
the following domains:

• Internal process data from the automotive development process described in
section 2.1. It is based on change & defect management (CM) information of
a specific component used for developing a specific customer project. This
data contains information about every change, describing the development of a
specific requirement. A change summarizes all developed artifacts needed to
realize a specific part of the software product. It is part of the change manage-
ment process. Data has been collected from the beginning to the end of a single
customer project. Further internal sources are process documentation as well

39



4 Model Data Chapter

as expert knowledge. It has been made anonymous due to their confidentiality.

• Expert knowledge from project managers and stakeholders where no internal
data is available, e.g. on how process maturity and process activity influence
the rework of a project.

• Data based on an experiment carried out to identify the influence of specific Key
Performance Indicators (KPIs) on the Defect Correction Effort (DCE) as a part
of a separate master’s thesis [Wuchenauer, 2009].

• External data from literature.

4.2 Internal Data

Internal data is collected based on a measurement concept describing what types
of data are collected and how they are related. This data is used to describe the
following characteristics of the engineering process.

• Feature volatility indicated by a feature’s requirements change rates.

• Type of task as the category for changes.

• Effort needed for every type of task, change, defect and defect correction.

• Defect analysis and defect correction as specific type of tasks.

Internal data is collected in two different management systems. The requirement
management system (RM) is used for managing and developing requirements. The
change & defect management system (CM) is needed for managing changes. The
CM system is a standardized database system used for the management of all prod-
uct related changes and defects. It holds information about the development of arti-
facts which are needed to realize a specific part of a feature. Traceability is supported
both from requirements to source code as well as from source code to requirements.
Furthermore, it is one major metric source of metrics to support the assessment and
improvement of the development process. Entries in the CM have one of the following
categories:

• Change entries describe the development of a newly added, modified or re-

40



4.2 Internal Data

moved requirement. They hold information about the development effort needed
for this change.

• Defect Analysis entries describe a defect in an existing feature. They store
the information about the analyzing effort, where the defect has been detected
(origin phase) and in what phase it has been corrected (correction phase).

• Defect Correction entries describe what changed to remove the defect. It stores
information about the correction effort.

Figure 4.1 illustrates the data measurement concept. Every node has a relation to the
feature it describes. A feature has at least one requirement related to it, whereas ev-
ery requirement is related to exactly one feature. The nodes change, defect analysis
and defect correction also relate to exactly one feature. There is at least one change
related to a feature in the sense that the measurement concept needs at least one
data point to be applied to. Features might have zero defects and therefore no defect
correction nodes related to it. But if a feature has defects there is always a defect
analysis node describing the defect and, in case it can be fixed, a defect correction
node describing what needs to be fixed to remove the defect.

Change Management System

Requirements Management System

Feature

- Name

Change

- Development Effort

- Testing Effort

Requirement

- Complexity

- Volatil ity

Defect Analysis

- Analysis Effort

- Correction Phase

- Origin Phase

Defect Correction

- Correction Effort

Effort used for 

developing single 

change

Effort used for defect 

analysis

Effort used for defect 

correction

Change rate of 

requirements
11..*

1

1..*

1

0..*

1

0..*

1 0..*

Figure 4.1: Measurement concept

41



4 Model Data Chapter

4.2.1 Project Data

The internal data set has been collected from a single completed project. It holds en-
tries with information about the type of change, whether it is considered as a change
describing development- or defect correction activities. Furthermore, each of these
entries holds the information about the effort needed to complete the change, de-
scribed as development effort or DCE. In addition to that, every change has an at-
tribute describing the relation to the feature it realizes.

Change Categories

Every entry has a type of change attribute. The categorization of changes is made
based on its purpose. It is either related to the development category where func-
tionality is added, removed or changed. Or the change is of type defect correction
where corrections have to be made due to a defective feature. The categorization of
changes is defined as follows:

• small for changes where development effort <= 10 hours.

• medium for changes where development effort > 10 and <= 30 hours.

• large for changes where development effort > 30 hours.

• other is used for unclassified changes, e.g. architectural changes.

• bugfix describing a change for defect correction.

Change Distribution

Every change holds unique information about the effort needed for its completion.
Figure 4.2 gives an overview of the data set. Considering the number of change
entries, there are 242 development changes and 170 bugfix changes. Regarding the
effort, there are 2045 hours of development effort and 1202 hours of defect correction
effort.

Table 4.1 summarizes the data set. There are 412 changes, including both, changes
for development as well as for defect correction. It shows an overall effort of 3247

42



4.2 Internal Data

2045

1202

0

500

1000

1500

2000

2500

Development Bugfix

Ef
fo

rt

242

170

0

50

100

150

200

250

300

Development Bugfix

N
u

m
b

e
r 

o
f 

ch
an

ge
s

Figure 4.2: Overall effort

hours for both development and defect correction changes. This results in an average
effort over all changes of 7.88 hours. The number of development changes is 242
representing 2045 hours of feature development. Here, the average development
effort per change is 8.45 hours. For bugfixes, there are 170 of change entries in the
data set. They represent an overall of 1202 hours of defect correction resulting in an
average DCE of 7.07 hours per change.

Table 4.1: Development and defect correction effort

Overall number of changes 412
Overall effort 3247 hours

Avg. overall effort per change 7.88 hours

Number of development changes 242
Development effort 2045 hours

Avg. development effort per change 8.45 hours

Number of bugfix changes 170
Defect correction effort 1202 hours
Avg. DCE per change 7.07 hours

Figure 4.3 depicts the distribution based on the number of changes whereas Figure
4.4 shows, for the same data set, the distribution of effort.

Regarding the number of changes, the data set contains 164 small changes, 35
medium changes, 8 large, 35 other and 170 bugfix changes. Accordingly, the dis-
tribution of changes consists of , 40% small, 9% medium, 2% large, 8% other and

43



4 Model Data Chapter

41% bugfix changes.

Small
40%

Medium
9%

Large
2%

Other
8%

Bugfix
41%

0

20

40

60

80

100

120

140

160

180
N

u
m

b
e

r 
o

f 
ch

an
ge

s

Figure 4.3: Number of changes

Considering the effort, the distribution changes. There are 805 hours for the devel-
opment of small changes, 587 hours for medium changes and 377 hours for large
changes. Other changes have 276 hours. For defect correction, there are 1202
hours. The percentage distribution of effort results in 25% for small changes, 18% for
medium changes, 12% for large changes. 8% for other and 37% for bugfix changes.

Small
25%

Medium
18%

Large
12%

Other
8%

Bugfix
37%

0

200

400

600

800

1000

1200

1400

Ef
fo
rt

Figure 4.4: Effort distribution

The difference between the average number of types and the average effort per type
is summarized in Table 4.2. Small changes reflect 40% of the data set entries but
only 25% of the overall effort resulting in a deviation of 15%. Medium changes rep-
resent 9% of the overall number of changes but reflect 18% of the overall effort. For

44



4.3 Feature Classification

medium changes, the percentage deviation is 9%. Large changes represent only 2%
of the overall number of changes whereas their effort reflects 12% of the overall effort.
Their percentage deviation is on 10%. Finally, for other changes the deviation is 0%
because both, number of changes and effort are at 8%.

The bugfix cateogry represents 41% of the data set entries. Considering effort, it
reflects 37% of the overall effort. This results in a percentage deviation of 4%. If
number of defects would have been used within the models to predict potential defect
correction effort, this deviation would represent a potential calcualtion error within the
models. In other data sets, the deviation could be even higher, depending on the
other categories.

Table 4.2: Type distribution error

Type No. of changes Effort Deviation

Small 40% 25% 15%
Medium 9% 18% 9%
Large 2% 12% 10%
Other 8% 8% 0%

Bugfix 41% 37% 4%

Considering this thesis goal to optimize the DCE, effort is used instead of the number
of changes to describe the models.

4.3 Feature Classification

Every change entry describes a modification of a specific part of the software. It is
always related to specific functionality of the software product, e.g. of a bus interface.
These functional groups are called features. Every entry of the data set belongs to
either one of the following feature:

• CAN. Interface to the vehicle’s network.

• HMI. Interface for the driver.

• PAD. Parameter dispatcher for variable handling.

45



4 Model Data Chapter

• VDB. Component interface.

• CNV. Central number and versions.

The optimization of rework in software development requires an assessment of the
DCE. It is known that specific parts of a software product have lower defect rates than
others. Features are used to distinguish these areas of the software product with dif-
ferent defect rates because features are different in many aspects, e.g. concerning
their requirement complexity and volatility, resulting code complexity and finally their
testability. For instance, the probability of a defect occurring when implementing pa-
rameter changes is lower than for using a complex state machine to realize Human
Machine Interface (HMI) logic.

4.4 Defect Cost Factor

Defect costs can be derived from the rework needed to complete a product. Rework
is necessary where released features are corrected because they do not meet their
requirements. The amount of rework is often expressed as the number of defects
but this is only an indicator for the actual rework spent to fix product requirement
deviations. As a single measure it is not capable of quantifying the amount of rework,
e.g. a simple defect might be fixed in hours, whereas another defect might take
days for analyzing and fixing. Furthermore, defects detected in later development
phases, e.g. in Integration & Test (I&T), leading to a change in early phases, e.g.
Requirements Engineering (RE) or Design (DE), are more cost intensive than defects
detected in development phases where they originated.

In this thesis, the potential DCE is used as one indicator to describe a product’s
defect rate. A second indicator, the development effort, is needed as reference value
for the DCE to indicate its impact, e.g. 10 hours of DCE for a feature with 1000 hours
of development effort represents a low defect rate whereas 10 hours of DCE for a
feature with only 5 hours of development indicates a very high defect rate. This leads
to the following definition of the DCF:

Defect Cost Factor =
Defect Correction Effort

Development Effort
(4.1)

46



4.4 Defect Cost Factor

Where:

• DCE is effort needed for defect correction (applies to all changes of category
“bugfix”).

• Development effort is effort needed for implementation (applies to all changes
of categories “small”, “medium”, “large” and “other”)

This relation implies, with increasing development effort the potential effort needed
for later defect correction also increases. For the data set used in this thesis, the DCF
results to

DCF(Overall) =
1202

2045
= 0.59 (4.2)

Where an overall DCF of 0.59 represents the potential product defect rate. Therefore,
for 100 hours of development effort, the potential DCE is expected to be 59 hours.

To express different error rates for different features, this thesis defines a separate
DCF for every product feature. Figure 4.5 illustrates development effort in relation to
DCE for every feature.

0

100

200

300

400

500

600

700

800

CAN HMI PAD VDB CNV

Ef
fo
rt

Development Defect Correction

Figure 4.5: Effort over feature

The figure shows an unequal distribution of DCE. Features CAN and HMI have a high

47



4 Model Data Chapter

DCE in relation to their development effort whereas the DCE for other features are
lower. The comparison also shows nearly the same DCE for features PAD and VDB.

Table 4.3 depicts the DCF for every feature. For feature CAN, the development effort
is at 486 hours. The DCE is 408 hours resulting in a DCF of 0.84. For feature HMI
with a development effort of 622 hours and a corresponding DCE of 707 hours, the
resulting DCF is 1.14. This is due to HMI development is far more complex than e.g.
maintaining a feature where only version numbers are stored. For feature PAD, the
DCF is 0.26 resulting from 173 hours of development effort in relation to 45 hours of
DCE. Feature VDB has the lowest DCF of 0.05 based on 637 hours of development
and only 34 hours of defect correction. Feature CNV is at a similar DCF of 0.06 based
on 127 hours of development and only 8 hour of defect correction.

Table 4.3: Defect Cost Factor over feature

Category CAN HMI PAD VDB CNV

Development effort 486 622 173 637 127
Defect correction effort 408 707 45 34 8

DCF 0.84 1.14 0.26 0.05 0.06

4.5 Experiment Data

In [Wuchenauer, 2009], a Design of Experiment (DOE) has been conducted to quan-
tify KPIs needed for the estimation of DCE. The experiments were carried out with 17
participants, both students of the University of Stuttgart and professionals from the
Robert Bosch GmbH.

The DOE’s main focus was to analyze the influence of deadline pressure on software
defects. The experimental setup was specific to the automotive engineering domain.
Every participant had to solve a typical engineering problem from this domain.

The results for the influence of deadline pressure on the number of software defects
are illustrated in Table 4.4. Regarding the median for every deadline pressure level,
the results indicate an increase of defects for medium and high deadline pressure.

48



4.5 Experiment Data

Table 4.4: Number of defects over deadline pressure

Measure Deadline pressure

High Medium Low

Minimum 1 0 1
25% quartile 3 4.5 1

Median 4 6.5 1
Mean 3.83 5 2,4

75% quartile 5 7 4
Maximum 6 7 5

Standard deviation 1.83 3.37 1.95
Variance 3.37 11.33 3.8

The strong statistical variation is due to the small amount of participants. However,
the results are taken as indicators for the statistical distribution.

49





5 Software Process Model

This chapter presents a methodology to estimate the amount of defects for a specific
software product. It focuses on an estimation of defects based on the changes intro-
duced in a specific software release cycle. The resulting model is called the Software
Process Model (SPM). The overview section is followed by the main goal of the SPM
based on which the model’s Key Performance Indicators (KPIs) are identified. After
this, the section on building and simulating describes the actual build of the model.
It is followed by a section on the model usage. After that, scenarios are defined, an-
alyzed and presented as part of the results section. Finally, the conclusion section
summarizes this chapter and discusses the results.

5.1 Overview

The most common way of inserting defects into a software product is by applying
changes to it. In every software release, hundreds of changes are applied to the
software product. Every change has its unique characteristic based on process and
product factors. With regard to these factors, every change has its own probability of
injecting a defect.

The SPM is mainly designed to optimize the Defect Correction Effort (DCE) over
time. It enables to assess measures of the process influencing the DCE. Due to the
dynamic structure of the model, it further allows to analyze the impact of possible
process and product changes over time. These capabilities give various views to
project managers on the current and future software product that are discussed at
the end of this chapter to highlight the practical benefit of SPM.

The SPM is a Dynamic Bayesian Network (DBN) with capabilities to represent mul-

51



5 Software Process Model

tiple change characteristics of a specific software release. The dynamic structure
represents the successive development of changes as part of a software release life
cycle. For every change a single DBN is used to estimate its development effort
and DCE. Hereby, the SPM enables project managers to oversee the impact of ev-
ery change made within this software release while taking into account the individual
change characteristics. A DBN is a model forming a sequence of individual Bayesian
Networks (BNs) where each individual BN reflects the state of the system at a spe-
cific point of time. Databases on historical and current projects are used to validate
the results. The resulting model was assessed by process and project experts for
predictive accuracy and usability.

The following sections describe how SPM was set up and what the simulation results
were. According to the methodology described in the previous chapter 3, this chapter
starts with the statement of the problem. This is followed by a description of SPM’s
main variables and how they are related. The main section 5.4 focuses on the creation
of SPM. It describes the structure, variable calibration and gives details about the
setup of the simulation environment. The final sections 5.5 and 5.6 focus on model
validation followed by a result discussion.

5.2 Problem Definition

SPM has been developed to estimate DCE in relation to the development effort for a
specific feature of a software product, e.g. the Human Machine Interface (HMI). SPM
is intended to be used in a number of analyses to support project managers planning
or assessing their software project. The major advantage of SPM is its capability to
take KPIs into account having a significant influence on the estimation variables, i.e.
development effort and DCE. It incorporates product, project and process information
in form of objective data (e.g. process metrics) and subjective data (e.g. expert
knowledge) in a causal relationship.

KPIs used in SPM can be divided into five categories:

1. Process activities represent the influence of process activities, such as process
maturity grade and its degree of implementation.

52



5.2 Problem Definition

2. Product factors such as quality of documentation and further engineering arti-
facts.

3. Project factors are project constraints which may vary over time.

4. Change factors are related to the feature to be developed.

5. Test activities incorporate the amount of tests carried out as well as how effective
tests are.

These categories for KPIs hold the core parameters of SPM. They are identified to
have major influence on the estimation variables, especially on a change’s error-
proneness and consequently to the DCE of the overall software product. SPM fo-
cuses on additional rework in form of the DCE because it has the highest influence
on the overall effort, apart from the the development effort itself. The influence of the
DCE on the overall effort needed for a specific feature has been discussed earlier in
chapter 4. This leads us to the following problem definition:

Estimate the engineering effort as sum of development effort and DCE of every
change for a specific feature in a specific software development process from a project
manager’s point of view.

Figure 5.1 depicts the process of effort estimation as a part of the software release
planning which the SPM’s structure is based on.

Process, Product and 

Project Factors

Dev elopment EffortDefect Correction Effort

Further change list

entries?

Estimate 

Engineering 

Effort

Change List

Product 

Requirements 

Analysis

Consider 

KPIs

Figure 5.1: Effort estimation

The process starts with analyzing product requirements for a specific feature. It is
followed by the creation of a change list to define work packages for a specific release.

53



5 Software Process Model

This change list is used by project managers for planning and tracking as well as by
developers assigned to implement specific change. For every change of the change
list, KPIs are considered to estimate the engineering effort as a sum of development
effort and DCE.

5.3 Identifying KPIs and Relationships

The Goal Question Metric (GQM) approach has been used to systematically identify
relevant KPIs of the model and their relation. According to GQM, KPIs are derived
from the problem definition which is broken down into its major components for fur-
ther characterization. Questions are used for this refinement. Questions which also
project managers might ask to understand the problem being assessed. For every
question there is a set of metrics characterizing it. Metrics represent a model to mea-
sure properties of any engineering artifact, KPIs in SPM respectively. The following
enumeration holds a set of questions (Q) along with their metrics (M) characterizing
the goal of SPM. All questions are related to a single change implementing a specific
feature.

Q1 What is the difficulty of a feature?

M1 feature difficulty. How difficult is it to realize?

M2 feature volatility. How often are requirements changed?

M3 feature complexity. How complex are the requirements of a specific fea-
ture?

Q2 What is the engineering effort?

M1 engineering effort. Effort used to develop a single change including effort
spent on test activities.

M2 type of change. Category of a specific change describing its complexity.

Q3 What is the potential defect correction effort?

M1 defect correction effort. Potential effort to fix a deviation according to the
requirements.

54



5.3 Identifying KPIs and Relationships

M2 development effort. Effort to implement a single change in hours.

M3 defect cost factor. Factor indicating a feature’s error-proneness.

M4 defect correction effort after testing. Residing defect correction effort after
finishing a change.

Q4 What is the potential defect correction effort?

M1 testing effectiveness. How many defects can be found by testing activities?

M2 effort spent on testing. Effort used for testing after implementation.

M3 test ratio. Amount of testing as a proportion of development effort.

M4 test payoff. Defect detection potential. How good are test activities estab-
lished?

M5 defects found. Reduction of potential defect correction effort.

Q5 What are product factors?

M1 product factor. Existing product as a base for further development.

M2 documentation quality. Understandability of the product base.

M3 code quality. Ease of understanding, changing, enhancing the existing
code base.

Q6 What are project activities?

M1 deadline pressure. Amount of pressure put on the engineering team to
finish a change within a specific time frame.

Q7 What are process activities?

M1 process activities. Supporting measure for less error-prone engineering.

M2 process organization. Maturity level of the organizational process defini-
tion.

M3 process application. Implementation of maturity level.

55



5 Software Process Model

5.4 Building and Simulating

The actual build and test stages require expertise from multiple fields of knowledge,
which is the main reason making the setup of SPM so challenging. On the one hand
the model designer has to be a statistician knowing how to collect data and how to
represent this data in a cause and effect chain within a BN. On the other hand he has
to be fully aware of the problem to be solved by the model. A software engineering
expert in the SPM domain has to be able to describe how defect correction effort
is influenced by a software engineering process. Furthermore, the model designer
needs to know the organizational structure in detail. How is the implemented software
engineering process established, what kind of data is available and where to acquire
it? For every KPI, a mapping of real world data to model data has to be done. The
model designer needs to know what the meaning of the data is and which relevance
it has for SPM.

SPM offers the possibility to assess characteristics of a feature’s defect correction
effort in relation to its influencing factors. It is even possible to calculate different
what-if scenarios to compare alternatives to the current model settings. The change
model in form of a BN illustrated in Figure 5.2 represents the central part of SPM.
It depicts causal relationships represented by the arcs among key performance indi-
cators represented by its nodes. Strong borders indicate the calibration nodes, used
by the simulation environment to adjust the model according to the simulation condi-
tions. Model data is elicited based on internal data, expert knowledge and external
data whereas internal data has been made anonymous due to their confidentiality.
All KPIs and relations described in the previous section provide the basis for building
the model. There are five main categories in the change model: change factors, test
activities, product factors, process activities and project factors.

5.4.1 Calibration

After building the model it can be used for test runs. Typically models like SPM need
calibration until they perform as expected. From simulation perspective Figure 5.3
shows how the SPM is set up. It is crucial to every form of effort estimation to calibrate

56



5.4 Building and Simulating

Project Factors

Change Factors

Test Activ ities

Product Factors

Process Activ ities

feature 

difficulty

feature 

v olatility

feature 

complexity

engineering 

effort

type of 

change

dev elopment 

effort

defect cost 

factor

test 

effectiv eness

effort spent 

on testing

test ratio

test payoff

product 

factor

documentation 

quality 
code quality

deadline 

pressure

process 

activ ities

process 

organization

process 

application

defects 

found

defect 

correction 

effort after 

testing

defect 

correction 

effort

calibration 

node

cause

effect

Legend

output node

relation

Figure 5.2: Change model BN

the KPIs influencing the development effort of a specific product feature. Therefore
product requirement analysis acts as an entry point to SPM’s setup to categorize
the feature to be assessed according to its feature complexity. Product features are
assigned to one of the predefined complexity and volatility levels. Historical project
data is used to support the classification process. In typical engineering environments
this data can be derived from historical project data but could also be obtained based
on expert judgment. If a feature has already been developed in another project the
former distribution of changes can be taken as basis for the current estimation and
adjusted by an expert according to their degree of belief. The feature might also be
similar to another feature already implemented in the past. In this case the former
distribution could serve as a reference distribution list and be adjusted according to
its new characteristics.

57



5 Software Process Model

Defect Cost Factor

Historical Project 

Data

Create BN 

Sub Model

Analyse 

Results

For every

change

Calculate 

DBN

Change Distribution List 

Template

Join Sub 

Models to 

DBN

Calibrate 

DBN Setup

Calibrate 

Change 

Model

Product and Project 

Factors

Calibrated Simulation 

Env ironment

Calibrated Change 

Model

DBN Change 

Model

Calculated Simulation 

Env ironment

Product 

Requirement 

Analysis

Process and Test 

Activ ities

Figure 5.3: Setup SPM

The following step calibrate change model is used to setup the defect cost factor
in the BN model itself to reflect the characteristics of the feature to be realized. In
parallel, the step calibrate DBN setup adjusts the parameters within the simulation
environment. The DBN setup is responsible for creating the final DBN in a later step.
It uses the change distribution list template, product and project factors and process
and test activities to individually setup every change model. The change distribution
list template is selected based on the product requirement analysis. It defines the
expected type of change distribution for the specific feature, e.g. focusing on small
changes for a feature at lower complexity. Every change in the change distribution list

58



5.4 Building and Simulating

is calibrated according to its KPIs enabling SPM to vary these factors over time. Prod-
uct and project factors define the quality of existing engineering artifacts, e.g. source
code or documentation quality on which the feature development is based. Further-
more, project specific factors are adjusted in this step. Process and test activities
represent the performance of the engineering environment.

The calibrated change model and the calibrated simulation environment are used in
the following steps to create the final DBN change model. The simulation environment
holds information for every change about the feature to be developed.

The steps create BN sub model and join sub models to DBN iterate over the prede-
fined changes. For every change an instance of the change model is created and
linked to to the DBN change model. Finally, SPM is ready to run its calculations ac-
cording to the evidence that has been entered to it. This is done in step calculate
DBN. Calculation takes place for every BN sub model taking previously calculated
models into account if required. Results are stored distinctly in the calculated simula-
tion environment for every BN sub model, for every change and for every related KPI.
This enables project managers to assess the estimation variables developing over
time. This is followed by the results analysis which is the central topic of the following
section.

5.4.2 Change Factors

Change factors describe relations among change specific KPIs. The complexity of a
feature is influenced by feature specific factors, feature difficulty and feature volatility.
It describes the complexity of requirements and its impact on the difficulty to realize
the feature. Figure 5.4 illustrates this specific part of SPM with the goal to estimate
DCE based on the main influencing change factors.

In SPM it is possible to distinguish between three different levels of feature volatility
and feature difficulty, from low to high. These nodes are merged into the average
node feature complexity with levels from low to high. Feature volatility and complexity
are elicited from internal data. They are acquired from the requirement management
system used. Feature complexity also influences the DCF due to different error rates
for different features. Some features are much easier to realize resulting in a low DCF,

59



5 Software Process Model

Change Factors

feature 

difficulty

feature 

v olatility

feature 

complexity

engineering 

effort

type of 

change

dev elopment 

effort

defect cost 

factor

effort spent 

on testing

test ratio

deadline 

pressure

process 

activ ities

defect 

correction 

effort

Figure 5.4: Change factors

whereas other features, e.g. with a high volatility and complexity, have much higher
DCFs as described in chapter 4. Furthermore, it is influenced by process activities
and project factors indicating the engineering environment quality. The higher the
quality of these influencing factors the lower the DCF.

SPM is calibrated as described in the previous section 5.4.1, based on statistical data
both from literature and project data and expert knowledge. Calibration values for
feature volatility and complexity are based on expert knowledge. They are illustrated
in table 5.1. The resulting Defect Cost Factor (DCF) is based on internal data.

Table 5.1: Features

CAN HMI PAD VDB CNV

Volatility Medium High Low Low Low

Complexity Medium High Low Low Low

DCF 0.84 1.14 0.26 0.05 0.06

It can be seen that developing the HMI has the highest volatility and complexity lead-
ing to the highest DCF of 1.14. The HMI is followed by the CAN development at both
medium volatility and complexity leading to a DCF of 0.84. The features PAD, VDB

60



5.4 Building and Simulating

and CNV are at a low volatility and complexity level leading to a lower DCF of 0.26 for
PAD, 0.05 for VDB and 0.06 for CNV.

Based on feature complexity the type of change is determined. It holds a distribution
defining the amount of change categories used for a specific feature complexity, e.g. a
feature with low complexity responsible for parameter maintenance within the product
is developed mostly within smaller changes consuming only a low amount of effort be-
cause in the majority of cases only parameters are changed. Whereas features with
higher complexity, e.g. a human machine interface development are realized mainly
by larger changes consuming more effort. The average engineering effort needed for
development is elicited based on the type of change. It includes all activities for a
change including requirement engineering, design, implementation and testing. En-
gineering effort spent without testing is expressed in node development effort. It is
dependent on the effort spent on testing as a result of the test activities. SPM uses
the following data illustrated in table 5.2. It is based on the data set described in
chapter 4. SPM extended the internal data set by mapping specific features, e.g. HMI
to more general complexity classes. Thus, feature complexity high uses HMI data to
elicit the corresponding type of change distribution.

Table 5.2: Type of change distribution

Type Feature Complexity Engineering

of Change Low Medium High Effort

Small 67.61% 34.55% 20.00% 3.84
Medium 7.04% 14.55% 10.00% 19.58
Large 2.82% 0.00% 2.50% 53.9
Other 12.68% 3.64% 5.00% 5.31
Bugfix 9.86% 47.27% 62.50% 7.15

The potential defect correction effort results from the average engineering effort
needed for a specific type of change in combination with a feature’s DCF. It estimates
how much defect correction effort will be needed after change implementation. It is
the basis for the potential amount of defects to be found by all test activities.

61



5 Software Process Model

5.4.3 Process Activities and Project Factors

Process organization and process application represent the maturity level of an orga-
nization and its application. It is a measure of how capable process activities are to
continuously ensure the development of high quality products. Figure 5.5 illustrates
this specific part of SPM with the goal to describe the influence of those factors to the
DCE.

Project Factors

Process Activ ities

defect cost 

factor deadline 

pressure

process 

activ ities

process 

organization

process 

application

Figure 5.5: Process factors

Both process organization and process application are merged to process activities
by their weighted minimum. The deadline pressure of a project influences the DCF of
a feature as well as all process activities. Data leading to table 5.3 has been acquired
based on the Design of Experiment (DOE) described in chapter 4. The experiment
showed that at higher deadline pressure and low process activities it is possible to
lower the average engineering effort to realize a specific change down to 50% of its
original effort.

62



5.4 Building and Simulating

Table 5.3: Deadline pressure

Type of Effort
Process Activities &

Project Factors

Low Medium High

DCE 100% 350% 500%
Engineering Effort 100% 50% 37.5%

The consequences lead up to a 350% higher DCE compared to ideal engineering
conditions. Further pressure in combination with low process activities reduce the
average engineering effort down to 37.5% with the effect to increase the potential
DCE up to 500%.

5.4.4 Product factors

Product factors documentation quality and code quality represent a software product’s
testability. They have a major influence on a feature’s error rate after the tests. The
better these product factors are, the more effective testing is possible. Figure 5.6
illustrates this specific part of SPM with the goal to describe the influence of those
factors to the DCE.

Product Factors

test 

effectiv eness

product 

factor

documentation 

quality 
code quality

Figure 5.6: Product factors

Higher documentation as well as code quality represent a high product factor leading
to higher defect detection rates. These nodes are defined by expert knowledge and
merged in node product factors by their weighted minimum.

63



5 Software Process Model

5.4.5 Test Activities

The better the test process is established, assuming the product is testable and there
is enough effort spent on testing, the fewer defects reside in the final product. Figure
5.7 illustrates this specific part of SPM with the goal to describe the influence of those
factors on the actual DCE resident after testing.

Test Activ ities

test 

effectiv eness

effort spent 

on testing

test ratio

test payoff

product 

factor

defects 

found

defect 

correction 

effort after 

testing

defect 

correction 

effort

Figure 5.7: Test activities

Test payoff and test ratio influence the test effectiveness. Test payoff is the amount
of defects that can be found by test activities as a proportion of the estimated defect
correction effort. Test ratio is the relative amount of engineering effort spent on test-
ing. The higher the test ratio the more effort is spent on testing as illustrated in table
5.4.

Table 5.4: Effort spent on testing

Test Test Effort /
Ratio Engineering Effort

Low 10%
Medium 20%

High 40%

64



5.5 Model Usage

Both test payoff and test ratio are merged by their weighted average in node test
effectiveness. Table 5.5 illustrates different detection rates for all combinations of
test ratio and test payoff levels. Detection rates are elicited based on external data
[Jones, 2000] indicating how successful test activities can be. Experts supported the
application of this data to SPM. Defects found and defect correction effort after testing
are arithmetical nodes combining the estimated defect correction effort from change
factors with test activities.

Table 5.5: Defect detection rates

Test Effectiveness Detection

Test Payoff Test Ratio Rate

Low Low 1%
Low Medium 30%
Low High 40%

Medium Low 5%
Medium Medium 37%
Medium High 53%

High Low 10%
High Medium 75%
High High 87%

5.5 Model Usage

The next step after building the SPM is the evaluation of its performance. SPM is
evaluated from two perspectives:

1. Usage: How does the model work regarding the problem definition?

2. Accuracy: How accurate does the model predict estimation variables?

65



5 Software Process Model

5.5.1 Validation Scenario

This scenario is used to verify how SPM performs regarding DCE estimation. All
features (CAN, HMI, PAD, VDB and CNV) along with their volatility and complexity
levels are part of the validation. The data set introduced in chapter 4 is split randomly
into two equally sized parts, one is used for calibration, the other for validation. The
results are shown in section 5.6.1.

5.5.2 Usage Scenarios

Finally, SPM is validated against its initial requirements whether it fulfils the solution
for the problem definition derived from the first stage. To demonstrate SPM’s practi-
cal capabilities two scenarios are compared, S1 and S2 as described below. In both
scenarios, two features are developed, i.e. CAN and HMI. The simulation has 93 iter-
ations, every iteration represents a change according to the feature’s correspondent
type of change distribution. The scenarios are defined as follows:

• Scenario S1 represents a project under normal development conditions of a
mature organization, medium deadline pressure, high process application, high
defect detection potential with a high amount of testing.

• Scenario S2 represents a project where deadlines are close, low process and
test activities with focus to reducing the development effort to a minimum.

Table 5.6 illustrates the main differences between scenario S1 and S2.

Table 5.6: Project scenarios

Scenario Deadline Process Defect De- Amount
Pressure Application tection Potential of Testing

S1 Medium High High High
S2 High Low Low Low

The results can be seen in section 5.6.2.

66



5.6 Results

5.6 Results

5.6.1 Validation Results

The validation results after simulation are presented in table 5.7 in form of median
of resulting probability distribution. For the feature CAN, SPM predicts 246 hours of
engineering effort (eng) and 229 hours of defect correction effort (corr). Prediction
accuracy is calculated in relation to the reference data set as described in chapter
4. SPM achieves an accuracy of 95% for engineering effort and 97% for defect cor-
rection effort. Similar to feature HMI, PAD and VDB prediction accuracy is over 75%.
For the feature CNV the prediction accuracy is lower, 63% for engineering effort and
14% for defect correction effort. The deviation in prediction accuracy for feature CNV
compared to the other features could be a result of only a small amount of reference
data available for model calibration.

Table 5.7: Prediction accuracy

Feature Prediction Reference Accuracy

eng corr eng corr eng corr

CAN 246 229 260 221 95% 97%
HMI 257 322 258 351 100% 92%
PAD 126 43 143 33 88% 77%
VDB 186 21 218 18 85% 84%
CNV 81 7 51 1 63% 14%

5.6.2 Scenario Results

Figure 5.8 illustrates the results for scenario S1 and S2. The scenarios are based
on the scenario definition described in the previous section 5.5.2. The calculated
values represent the median of the resulting probability distribution. SPM estimates
1316 hours of development effort for scenario S1 and 678 hours for scenario S2.
The development effort needed to realize the features is reduced down to 50% where
scenario S2 meets the target to reduce development effort to a minimum.

67



5 Software Process Model

1316

678

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Ef
fo

rt

Number of changes

Scenario S1

Scenario S2

Figure 5.8: Development effort

Due to the missing quality and testing measures there is a higher amount of hidden
defect correction effort in scenario S2. Figure 5.9 illustrates this. Scenario S1, with
normal deadline pressure and established quality measures, supports the develop-
ment of robust software leading to a very small amount of potential defect correction
effort (41 hours). In contrast to that, scenario S2 has 1119 hours of potential defect
correction effort still pending at the end of the project.

41

1119

0

200

400

600

800

1000

1200

0 20 40 60 80

Ef
fo

rt

Number of changes

Scenario S1

Scenario S2

Figure 5.9: Defect correction effort

68



5.7 Model Complexity

Table 5.8 depicts the overall effort needed to get a product at a similar quality level.
In scenario S1 SPM estimates 1316 hours of development effort and 41 hours of
potential defect correction effort. The resulting overall effort is 1357 hours. Scenario
S2 has 678 hours of development effort and 1119 hours of defect correction effort
resulting in 1797 hours overall effort. Thus scenario S2 working at high deadline
pressure with supposed low overall effort overruns scenario S1 by 440 hours, 24%
respectively.

Table 5.8: Simulation results

Scenario Development Effort DCE Overall Effort

S1 1316 hours 41 hours 1357 hours
S2 678 hours 1119 hours 1797 hours

5.7 Model Complexity

DBNs can get very complex regarding their development and calculation time. SPM
as a single instance represents a single change within the software development
process. It consists of 20 nodes with 24 relations among each other. There are 10
calibration nodes representing the KPIs for every single change. Two output nodes
connect one DBN to another. Calculation speed depends on processor speed and
BN specific algorithmic features, e.g. does the BN engine use dynamic discretization
or not. Calculation time for one instance takes about 1 minute on a 2GHz processor.

A single scenario in SPM consists of 100 changes similar to a single software re-
leases. Therefore, several tools had to be developed to handle this complexity. There-
fore, a tool was developed to handle the creation and linking of 100 DBNs. Fur-
thermore, an other tool had to be developed to create the calibration data for every
instance of the DBN 100 times in a row. Both tools had to be connected to the calcu-
lation engine where its results for every single node had to be exported to a database
for later analysis.

Summing up, the creation of a single scenario in SPM from definition to analysis takes
around one day and involves several pre- and post processing steps.

69



5 Software Process Model

5.8 Conclusion

Even though there are many metric and related effort estimation programs which
have been established for a long period of time [Ordonez and Haddad, 2008], the
final breakthrough and commitment to metric based software quality assessment is
still missing. These metric programs form the basis for further effort estimation meth-
ods such as SPM. SPM shows that based on accurate data it is possible to handle
complex structures as well as incomplete and changing data. To achieve the goal
of building a decision support system based on BNs it is crucial to have data repre-
senting the real world. It is essential to have a positive way of managing errors so
that employees as well as project managers have a system of tracking defects that
potentially have negative influence on their reputation. Furthermore employees need
to belief that continuous improvement programs alleviate daily work. With the com-
mitment to such programs the results of SPM show that it is possible to predict defect
correction effort at high accuracy.

The SPM demonstrates the potential of using a system based on BNs to support de-
cisions in the context of software effort estimation. Even though it is very challenging
to build such complex models, it includes a wide range of benefits. BNs offer the
possibility to support decision makers based on objective process and product data
as well as on expert knowledge. Using BNs project managers could not only mon-
itor the current situation of a project but also estimate and predict project behavior
under specific circumstances. BNs enable decision makers to justify and document
their decisions. Based on the graphical representation of cause and effect it is easy
to discuss even complex problems and identify weaknesses or even new aspects in
such complex domains as software effort estimation.

Explicit scenario analysis enables project managers to argue for their scenarios based
not only on the knowledge of a single expert but incorporating knowledge from multi-
ple experts possibly from different domains, e.g. project management, development
or testing. Furthermore, the argumentation is based on empirical data from various
sources of the implemented engineering process and hereby supports a decision in
this specific context.

A further step to enhance the estimation of a software product’s potential defect cor-

70



5.8 Conclusion

rection effort is to represent every engineering phase separately at a higher level of
detail. SPM in its current version estimates the total defect correction effort over all
phases of the engineering process. The design of a model explicitly incorporating the
KPIs of every single engineering phase offers a wider range of optimization possibil-
ities regarding effort estimation. This improvement enables not only to estimate the
potential defect correction effort per engineering phase but also to consider the flow
of defects from one phase to another. The resulting model is called the Defect Cost
Flow Model (DCFM) where a defect’s origin is assessed in relation to the place where
it is detected. The DCFM takes the variation of effort respectively costs into account
over multiple process phases. Because of that not only project managers but also
process responsibles could benefit from the DCFM.

71





6 Defect Cost Flow Model

This chapter describes the creation of the Defect Cost Flow Model (DCFM) including
its structure and how it performs. First, the overview section provides background
information on the DCFM. Based on the problem defintion, the Key Performance In-
dicators (KPIs) and their relations can be defined. The following sections describe
the DCFM in detail including the simulation of several scenarios demonstrating its
capabilities. The simulation results are discussed after that. Finally, the conclusion
section summarizes the simulation results and describes further steps in the domain
of DCFM.

6.1 Overview

Process improvement activities identifying the optimal QA effort to detect most of the
software defects tend to optimize locally in their specific domains. For example, a
typical improvement activity is to focus on a defect reduction in development phases
where most of the defects occur. However, the correction of defects especially is more
costly if these defects are detected in a development phase later than the one they
were detected in. Current models for software effort prediction do not incorporate the
increase of defect correction costs over time.

As part of the initial problem analysis and definition, a different impact on the overall
Defect Correction Effort (DCE) has been recognized for defects originating in other
development phases than they are detected in compared to defects detected in the
same development phases where they are made. Therefore, to reduce the DCE of
the software product, every phase of the development process described in 2.1.5 has
been assessed along with its specific DCE characteristics and focused on the shift

73



6 Defect Cost Flow Model

of defects over development phases. The idea of a Defect Flow Model (DFM) has
already been established (see 2.2) but focusing on the number of defects instead
of DCE. The DCFM has been created to identify development phases in which an
optimization of QA effort will lead to lowest costs.

The DCFM enables to estimate the DCE dependent on KPIs which represent product,
process and project characteristics. With the DCFM it is possible to assess effort
spent on defect correction in comparison to effort spent on development throughout
every phase of the development process. Besides, the DCFM follows the concept of
focusing on a single high level function of the software product due to different error
rates for different features.

The underlying technique of the DCFM is based on Bayesian Networks (BNs) to in-
corporate both process data and expert knowledge within a single model. Historical
and current process data as well as expert knowledge have been used for model
calibration and validation.

6.2 Problem Definition

The continuous improvement of processes demands a reduction of the development
effort needed to realize a specific feature. At first sight, QA effort represents additional
effort and seems to stand in contrast to an overall effort reduction. However, the DCE
increases if defects stay undetected over development phases. The problem was to
create a model to identify development process phases in which optimization leads
to a reduction of the DCE and thereby of the overall effort, which is the basis of our
statement of the problem:

For a specific engineering environment, the DCFM should identify the ideal distribu-
tion of QA effort to minimize rework at given time and costs from a project manager’s
point of view.

Model data in form of DCFM’s KPIs and their relations are described in form of a
metric definition table where every metric is derived based on a set of questions
describing the DCFM’s principal aim, e.g.

• How good are the development phases with regard to unnecessary rework?

74



6.3 Defect Cost Flow

• How much effort is spent on QA measures?

• How effective are these QA measures?

• What is the additional effort needed for defects shifting from one development
phase to another?

The DCFM is built as a BN based on these parameters and their relation among each
other. Model assessment focuses on the overall amount of effort, development effort,
and rework as well as on QA effort for the features developed. For final comparison
several scenarios are defined where KPIs are varied according to different alterna-
tives regarding the distribution of QA effort over development phases. For example,
one scenario focuses on the elimination of all defects just before customer delivery
whereas another scenario focuses on the maximum amount of QA effort spent in
early phases.

6.3 Defect Cost Flow

The concept of flowing defects is illustrated in Figure 6.1. There are four development
phases built into the DCFM according to the V-Model development process definition
in section 2.1.5: Requirements Engineering (RE), Design (DE), Implementation (IM)
and Integration & Test (I&T). For every phase, the DCE is determined separately
based on process specific KPIs.

In phase RE, there is only one possibility to have defective requirements, represented
by the node DCE after QA. QA activities, e.g. requirement reviews, detect defects and
hereby reduce the potential DCE. The remaining, undetected defects are handed over
to the subsequent phase DE.

In phase DE, there are two defect types: one originating in phase RE, e.g. a defective
requirement leading to problems creating the design artifacts. Second, there are
defects introduced in the DE phase itself represented by the grey node DCE after QA.
RE defects are adjusted by its phase multiplier. It represents the increase of effort if
defects are not corrected in the same phase in which they are injected. This for
example is the case, if the design process has to be followed twice due to a defective
requirement. The phase multiplier varies from company to company and depends on

75



6 Defect Cost Flow Model

the development process. The more development phases are involved, the higher
the overall effort needed to fix these defects. There are different phase multipliers for
different phases. Possible QA measures in this phase are design reviews.

In phase IM there are three different defect types. The first are defects with their origin
in phase RE, e.g. a defective requirement passed through the design process on
which an implementation is based. Second, there are DE defects, e.g. if a defective
design is used as basis for an implementation. Defects with their origin in phase RE
and DE are adjusted by their specific phase multipliers. And finally, there are defects
originating from a defective implementation. In this phase typical QA activities are
code reviews and several types of tests.

In phase I&T, there are defects from RE, DE, IM and I&T itself. This phase represents
final integration and test activities for development artifacts of all phases. This is the
point where where the software product is delivered to the customer. The resulting
DCE after I&T represents rework for defects detected by the customer and thereby
the additional effort needed to finish the project.

Phase DE

Phase IM

Phase I&T

Phase RE

DCE after QA

DCE after Rev iew 

(DE) in IM

DCE after Rev iew 

(DE) in I&T

DCE after QA

DCE after Rev iew 

(IM) in I&T

DCE after QA

DCE after QA

DCE after Rev iew 

(RE) in DE

DCE after Rev iew 

(RE) in IM

DCE after Rev iew 

(RE) in I&T

DCE (RE) left DCE (DE) left DCE (IM) left DCE (I&T) left

Figure 6.1: DCFM concept

76



6.3 Defect Cost Flow

6.3.1 Example

The following example is based on the DFM introduced in chapter 2.2. It is extended
based on the internal data set described in chapter 4 to reflect DCE instead of number
of defects. The cost development in DCFM is shown in Figure 6.2 and Table 6.1
focusing on the flow of DCE over development phases. Defects are injected in their
corresponding phase and detected in later phases. In DCFM, defect correction costs
are represented by the DCE. The positive axis illustrates the effort spent on defect
correction whereas the negative axis depicts the reduced DCE after QA measures.
Starting with defects originating in phase RE, there are 440 hours of potential DCE
residing in the software product. With QA measures and a very high DCE reduction
rate of 85%, the DCE could be reduced by 374 hours leading to a total DCE of 66
hours for phase RE. These 66 hours remain undetected and shift from phase RE to
DE. Here, they are adjusted by the phase multiplier for RE to DE where DCFM is
calibrated with a value of 4. Following the flow of DCE injected in phase RE, 264
hours are detected by QA measures in phase DE and reduced by 224 to around 40
hours. Here, the DCE is adjusted again by a phase multiplier of 5 leading to 198 hours
of DCE injected originally in phase RE. In the IM phase it is more difficult to detect
defects from RE, resulting in a DCE reduction rates of 43%. Finally, the DCE for RE
defects shift to the I&T phase. Here it is adjusted by a phase multiplier of 4 resulting
in 455 hours of DCE. With the help of QA measures, it is reduced by 387 hours to a
DCE of 68 hours. This final DCE represents the residing defects potentially detected
by the customer.

Table 6.1: Defect Cost Flow data

Phase RE DE IM I&T CU

RE 440 264 198 455 68
DE 1120 840 1932 290
IM 1000 880 194
I&T 200 50

I&T -150
IM -780 -686
DE -952 -357 -1642
RE -374 -224 -84 -387

77



6 Defect Cost Flow Model

In every development phase there is a correspondent DCE, either reduced by specific
QA measures or shifting to further phases. This example shows that even with very
high DCE reduction rates, every undetected defect flowing from one phase to another
causes a multiple of the correction effort when compared to the QA measures.

440
264 198

455

1120

840

1932
1000

880

200

-374
-224 -84

-387

-952

-357

-1642

-780

-686

-150

-3000

-2000

-1000

0

1000

2000

3000

RE DE IM I&T

Ef
fo
rt

RE DE

IM I&T

Figure 6.2: Defect Cost Flow

78



6.4 Identifying KPIs and Relationships

6.4 Identifying KPIs and Relationships

The aim of the model is to identify the ideal amount of effort spent on QA measures
per development phase to reduce the overall effort. The identification of KPIs and their
relations is the first step in creating such a model. According to the research method,
the systematic approach to identify these KPIs is the prior definition of measurement
categories. Every measurement category contains a set of specific metrics, actual
measures to characterize a category. Measurement categories are defined with the
help of questions you might ask to understand the statement of the problem. With
the help of these questions it is possible to systematically identify relevant KPIs and
characterize the goal of the model. The following enumeration holds the set of ques-
tions enabling the identification of all major components of the final model. For every
question, a set of metrics is described to quantify it.

Q1 How is the defect correction effort determined?

M1 DCF. Defect Cost Factor indicating a feature’s error-proneness.

M2 DCE. Potential defect correction effort (in hours) spent on correcting de-
fects. Multiplication of defect correction factor and development effort.

Q2 How is the benefit / effort of QA determined?

M1 sufficiency of QA effort. Degree of QA activity.

M2 QA effort. Effort (in hours) spent on QA measures.

M3 DCE reduced. Reduction of DCE based on the sufficiency of QA effort. It
is an integrated part of the QA activities.

M4 DCE after QA. Remaining DCE. Difference between defect correction effort
and defect correction effort after QA.

Q3 How are additional costs taken into account for defects shifting over phases?

M1 phase multiplier. Company specific factor representing additional rework if
defects flow over development phases.

Q4 How is the overall effort determined?

M1 development effort. Effort (in hours) spent on artifact development in RE,

79



6 Defect Cost Flow Model

DE, IM and I&T excluding QA and correction effort.

M2 overall effort. Includes all types of effort. Sum of development effort, QA
effort, defect correction effort reduced and defect correction effort after QA

6.5 Model Creation

Finally, all necessary information can be put into the DCFM BN. It is based on the
problem definition to identify product areas where optimization has an optimal cost-
benefit ratio regarding DCE reduction rates. Based on the problem definition, KPIs
are identified including internal process data, expert knowledge and external data.
The resulting indicators are put into the resulting model consisting of 60 nodes repre-
senting four development phases: RE, DE, IM and I&T. The overall model structure
is depicted in Figure 6.3. As indicated by its legend, Figure 6.3 illustrates the BN
as a cause and effect chain where nodes represent events and arcs their relation.
Calibration nodes are used for setting up the model.

The following sections describe every phase in detail, about the relation of nodes
as well as how they are calibrated. The basic principle repeated in every phase is
explained based on the initial phase RE. Following phases are explained based on
additional principles increasing with every phase, e.g. every phase holds information
about defects from earlier phases.

80



6.5 Model Creation

Phase DE

Phase RE

calibration 
node

effect

cause

Legend

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Phase 
Multiplier 
(RE) RE to 

DE

DCE (RE) in 
DE 

DCE after 
Review (RE) 

in DE 

Effort 
Reduction 

Rate

Effort 
Reduction 

Rate (RE) in 
DE 

Sufficiency 
of QA effort 
(RE) in DE 

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

Phase IM

Phase 
Multiplier 

(RE) DE to IM

DCE (RE) in 
IM

DCE after 
Review (RE) 

in IM  

Effort 
Reduction 

Rate (RE) in 
IM

Sufficiency 
of QA effort 
(RE) in IM

Phase 
Multiplier 

(DE) DE to IM

DCE (DE) in 
IM

DCE after 
Review (DE) 

in IM  

Effort 
Reduction 

Rate (DE) in 
IM

Sufficiency 
of QA effort 
(DE) in IM

Phase DE

Phase 
Multiplier 
(RE) RE to 

DE

DCE (RE) in 
DE

DCE after 
Review (RE) 

in DE

Effort 
Reduction 

Rate (RE) in 
DE

Sufficiency 
of QA effort 
(RE) in DE

Phase 
Multiplier 

(DE) DE to IM

DCE (DE) in 
IM

DCE after 
Review (DE) 

in IM

Effort 
Reduction 

Rate (DE) in 
IM

Sufficiency 
of QA effort 
(DE) in IM

Phase 
Multiplier 

(IM) IM to I&T

DCE (IM) in 
I&T

DCE after 
Review (IM) 

in I&T

Effort 
Reduction 

Rate (IM) in 
I&T

Sufficiency 
of QA effort 
(IM) in I&T

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

Figure 6.3: Bayesian Network DCFM

81



6 Defect Cost Flow Model

6.5.1 Requirements Engineering

Starting in phase RE there are three calibration nodes as illustrated in Figure 6.4: Suf-
ficiency of QA effort, Development Effort and DCF. These nodes are calibrated based
on data as well as on expert knowledge representing the varying factors. Based on
these factors, every phase is adjusted according to its specific boundary conditions.
These calibration nodes are combined in child nodes. The resulting calculation is il-
lustrated by an output node which again could be an input node to an other network.
All nodes are described in detail throughout the following section 6.6.

Phase RE

calibration 
node

effect

cause

Legend

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

DCE (RE) shifted to Phase DE

input
node

output
node

Figure 6.4: DCFM part RE

Parent (calibration) as well as child (following) nodes are described throughout the
following sections. Calibration nodes only represent a single dimension Node Proba-
bility Table (NPT), e.g. for a specific sufficiency of QA effort there is a corresponding
probability of occurrence between 0% and 100%. However, for child nodes with more
than one parent node, NPT become multidimensional to represent all possible combi-
nations from all incoming nodes. This results to, for example, specific DCE reduction
rates for every sufficiency of QA effort. The final processing step DCE after QA es-
timates the DCE for this specific phase. This node is the output node for this phase
and the input node for the following, indicated by the node DCE (RE) shifted to phase
DE.

82



6.5 Model Creation

6.5.2 Design

Estimating the DCE for phase DE is similar to as it is in the earlier phase RE. This
is illustrated by the right side of Figure 6.5. Here, the DE phase specific DCE after
QA is calculated and shifted to the following phase IM through output node DCE (DE)
shifted to phase IM.

Phase DE (RE) Phase DE

Phase 
Multiplier 
(RE) RE to 

DE

DCE (RE) in 
DE

DCE after 
Review (RE) 

in DE

Effort 
Reduction 

Rate (RE) in 
DE

Sufficiency 
of QA effort 
(RE) in DE

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

DCE (RE)
shifted from
Phase RE

DCE (DE) shifted to Phase IMDCE (RE) shifted to Phase IM

Figure 6.5: DCFM part DE

According to the concept of the DCFM, every phase has information about defects
from earlier phases. In Figure 6.5, this is expressed as phase DE (RE) indicating the
shift of defects from the earlier phase RE to the current phase DE. Input node DCE
(RE) shifted from phase RE holds the DCE. It is multiplied by the Phase Multiplier (RE)
RE to DE representing additional effort that has to be spent for RE defects shifting
from phase RE to DE. Details on phase multipliers are given in section 6.6. In phase
DE, nodes sufficiency of QA effort (RE) in DE and effort reduction rate (RE) in DE
are different than in phase RE corresponding to phase specifics. For example, the
DCE reduction rate in phase DE is lower for defects introduced in RE than for defects
introduced in phase DE. This is because defective or even missing requirements lead
to a defective design even if the design itself is correct. The different defect detection
potentials for every phase are explained later in section 6.6. The pattern of shifting
defects is repeated for every succeeding phase.

83



6 Defect Cost Flow Model

6.5.3 Implementation

In phase IM, there are three different types of defects already. Based on their origin
they can be separated into defects with origin in phase RE, DE and IM itself. Figure
6.6 illustrates those three categories. Phase IM (RE) represents defects in phase IM
with origin in phase RE. This is illustrated by input node DCE (RE) shifted from phase
DE. After calculating the DCE after Review (RE) in IM it shifts to the final phase I&T.
From model perspective, calculating Phase IM (DE) is similar. Only calibration data
varies from phase to phase.

Phase IM (RE) Phase IM (DE)

Phase 
Multiplier 

(DE) DE to IM

DCE (DE) in 
IM

DCE after 
Review (DE) 

in IM

Effort 
Reduction 

Rate (DE) in 
IM

Sufficiency 
of QA effort 
(DE) in IM

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Defect 
Detection 
Potential

Effort 
Reduction 

Rate

DCE (IM) shifted to Phase I&T

DCE (DE)
shifted to
Phase I&T

DCE (RE)
shifted to
Phase I&T

DCE (DE)
shifted from
Phase DE

Phase 
Multiplier 

(RE) DE to IM

DCE (RE) in 
IM

DCE after 
Review (RE) 

in IM

Effort 
Reduction 

Rate (RE) in 
IM

Sufficiency 
of QA effort 
(RE) in IM

DCE (RE)
shifted from
Phase DE

Figure 6.6: DCFM part IM

84



6.5 Model Creation

6.5.4 Integration & Test

Finally in phase I&T there are four different types of defects, one for every phase.
This is illustrated in Figure 6.7. The calculation of a phase specific DCE is handled
in phase I&T (RE), phase I&T (DE) and phase I&T (IM). Output nodes DCE (RE)
left, DCE (DE) left, DCE (IM) left and DCE (I&T) left illustrate residing DCE before
software release.

Phase I&T

Phase I&T (DE)Phase I&T (RE)

Phase I&T (IM)

Phase 
Multiplier 

(IM) IM to I&T

DCE (IM) in 
I&T

DCE after 
Review (IM) 

in I&T

Effort 
Reduction 

Rate (IM) in 
I&T

Sufficiency 
of QA effort 
(IM) in I&T

Sufficiency 
of QA effort

Development 
Effort

QA Effort

DCF

DCEDCE after QA

Effort 
Reduction 

Rate

DCE (IM) left

DCE (IM)
shifted from
Phase IM

DCE (RE) left DCE (DE) left

DCE (I&T) left

Phase 
Multiplier 

(RE) IM to I&T

DCE (RE) in 
I&T

DCE after 
Review (RE) 

in I&T

Effort 
Reduction 

Rate (RE) in 
I&T

Sufficiency 
of QA effort 
(RE) in I&T

Phase 
Multiplier 

(DE) IM to I&T

DCE (DE) in 
I&T

DCE after 
Review (DE) 

in I&T

Effort 
Reduction 

Rate (DE) in 
I&T

Sufficiency 
of QA effort 
(DE) in I&T

DCE (RE)
shifted from
Phase IM

DCE (DE)
shifted from
Phase IM

Figure 6.7: DCFM part I&T

85



6 Defect Cost Flow Model

6.6 Model Calibration

The following sections describe how calibration nodes are set up and how they are
related among each other.

6.6.1 Defect Cost Factors

In every phase, there is a specific development effort and Defect Cost Factor (DCF)
resulting in the potential DCE as an indicator for a phase’s error-proneness. These
nodes take into account that for specific features, e.g. a simple parameter database,
it might not be necessary to put the maximum sufficiency of QA effort into defect
detection because its initial defect rates are already very low. Furthermore, not every
development phase has the same defect rate. Especially later phases, e.g. I&T, have
lower DCFs than early phases, e.g. RE.

The DCFM is calibrated using phase specific DCFs. They are illustrated in Table 6.2.
This calibration of DCFs is based on the assumption to develop a complex feature,
e.g. the HMI. Other features of lower complexity have lower DCFs. These DCFs are
taken based on the data described in chapter 4.

Table 6.2: DCFs per development phase

RE DE IM I&T

1 0.8 0.7 0.01

6.6.2 Quality Assurance Activities

In every development phase, both nodes development effort and defect cost factor
are combined to defect correction effort in a multiplication node. The nodes effort
reduction rate and Sufficiency of QA effort represent the effectiveness of all QA ac-
tivities for specific development phases. The effort reduction rate enables to define
DCE reduction rates resulting from QA activities between 0% and 100%.

86



6.6 Model Calibration

The DCFM uses ranked nodes for their representation with the possibility to define
the most relevant values, for a realistic scenario from a project manager’s perspective.
Four different ranks are defined:

1. Low represents a worst case scenario.

2. Medium is used in an average scenario.

3. High represents ideal conditions for a scenario.

4. Very High is used for the best case scenario.

Table 6.3 illustrates the review effort ER(ED) for every sufficiency of QA effort from
low, medium, high to very high. It is represented as percentage of the development
effort ED, e.g. if 1000 hours are planned for the development of a feature, an ER(ED)

of 10% represents 100 hours of additional review effort.

Table 6.3: Sufficiency of QA effort

Rank ER(ED)

Low 5%
Medium 10%

High 20%
Very High 40%

6.6.3 Effort Reduction Rates

The nodes effort reduction rate and sufficiency of QA effort result in DCE after QA.
This node defines the possible reduction of DCE for every phase. The corresponding
defect DCE reduction rates are shown in Table 6.4.

87



6 Defect Cost Flow Model

In every development phase there is a specific DCE reduction rates dependent on
the sufficiency of QA effort and defect type, e.g. Table 6.4 column D(DE) represents
the DCE reduction rate in the DE phase for defects created in the DE phase itself and
defects created in the previous phase RE.

Table 6.4: Effort Reduction Rates

Sufficiency of
D(RE)

D(DE) D(IM) D(I&T)

QA effort RE DE RE DE IM RE DE IM I&T

Low 10% 10% 5% 5% 5% 8% 5% 5% 8% 8%
Medium 60% 60% 30% 30% 30% 53% 30% 30% 53% 53%

High 75% 75% 38% 38% 38% 68% 38% 38% 68% 68%
Very High 85% 85% 43% 43% 43% 78% 43% 43% 78% 78%

6.6.4 Development Phase Multipliers

Figure 6.5 illustrated the residing effort shifting from phase RE to DE. At this point
it is adjusted by the phase multiplier to node DCE (RE) in DE. The phase multiplier
represents additional rework that has to be done over two phases, e.g. if a defective
requirement is detected in phase DE, first it has to be corrected (this effort cannot
be saved) and, in addition to that, the design might have to be reworked. The phase
multipliers of the DCFM are illustrated in Table 6.5. They are defined based on expert
knowledge.

Table 6.5: Development phase multipliers

RE→ DE DE→ IM IM→ I&T

4 5 4

For a DCE flowing from RE to DE, a phase multiplier of 4 is taken, leading to an effort
multiplication by 4, e.g. if there is a residing DCE of 64 hours left in phase RE an
effort of 256 hours is needed if it is detected in phase DE. For DCE flowing from DE
to IM it is 5 and from IM to the final phase I&T a factor of 4. This results in a worst
case DCE multiplication of 80 for defects flowing through all development phases.

88



6.7 Scenario Definition

6.7 Scenario Definition

Following the goal to identify the ideal distribution of QA effort through all development
phases (RE, DE, IM and I&T) of the development process under discussion, four sce-
narios have been defined based on the assumption of developing a complex feature
with an estimated development effort of 1000 hours. These scenarios demonstrate
the capabilities of the DCFM.

• S1 is at low QA activities, the worst case scenario considering the development
of DCE through all development phases.

• S2 uses a high amount of QA effort typically used if you consider optimizing
a single development phase only. The definition of an additional scenario to
demonstrate medium (average) QA activities has been left out because it per-
forms similar to this one.

• S3 has very high QA activities for RE and DE and a high amount for IM and I&T.
It is expected to be too cost expensive if you consider every development phase
in its own context only.

• S4 uses a very high amount of QA activities on all development phases.

Table 6.6 gives an overview on the amount of QA effort used for scenarios S1 to S4.

Table 6.6: Scenario overview

Phase Sufficiency of QA effort in

S1 S2 S3 S4

RE Low High Very High Very High
DE Low High Very High Very High
IM Low High High Very High
I&T Low High High Very High

89



6 Defect Cost Flow Model

6.8 Simulation Results

The simulation results are presented from two perspectives.

1. The development phase perspective focuses on how the scenario simulation
performs in every development phase RE, DE, IM and I&T. Result illustration and
data have been divided into two charts due to the high level of detail, especially
in later phases. The development of effort for defects with their origin in phase
RE or DE is explained in detail. Defects with their origin in phases IM and I&T
are presented in form of an illustration along with its result data table.

2. The scenario perspective uses the DCFM to present the final simulation results
for every scenario S1, S2, S3 and S4. The DCFM charts are explained along
with their corresponding data tables.

All values represent the calculated median of the predicted probability distribution for
DCE.

90



6.8 Simulation Results

6.8.1 Development Phase Results

RE Results

For the RE phase, Table 6.7 and Figure 6.8 illustrate a constant DCE of 200 hours in
all scenarios. In S1, the DCE could only be reduced by 23 hours as indicated in row
RE. S2 reduces the DCE by 150 hours whereas S3 and S4 have the highest DCE
reduction of 170 hours due to very high QA activities. The remaining DCE is shifted
from the RE to DE phase and adjusted by the phase specific multiplier.

Table 6.7: RE scenario result data

Phase S1 S2 S3 S4

RE 200 200 200 200
-RE -23 -150 -170 -170

200 200 200 200

-23

-150 -170 -170

-200

-150

-100

-50

0

50

100

150

200

250

S1 S2 S3 S4

Ef
fo
rt

RE

Figure 6.8: RE scenario results

91



6 Defect Cost Flow Model

DE Results

The development of DCE is illustrated in Table 6.8 and Figure 6.9. All scenarios have
an additional DCE of 160 hours caused by defects originating in the DE phase. The
shifted DCE from RE has increased to 598 hours in S1. In S2, it is 199 hours whereas
for S3 and S4 it is 119 hours of remaining DCE. With the corresponding QA effort, the
DCE for defects which originated in the DE phase could be reduced by 16 hours in
S1, 120 hours in S2 and 136 hours in S3 and S4. The DCE reduction for RE defects
in phase DE is 17 hours in S1, 76 hours in S2 and 52 hours in S3 and S4.

Table 6.8: DE scenario result data

Phase S1 S2 S3 S4

DE 160 160 160 160
RE 598 199 119 119
-RE -17 -76 -52 -52
-DE -16 -120 -136 -136

598

199 119 119

160

160
160 160

-17
-76 -52 -52

-16
-120 -136 -136

-400

-200

0

200

400

600

800

1000

S1 S2 S3 S4

Ef
fo
rt

RE DE

Figure 6.9: DE scenario results

92



6.8 Simulation Results

IM Results

Table 6.9 and Figure 6.10 summarize IM results. The development of DCE for RE
defects has increased to 2529 hours in S1, in S2 the DCE is still 601 hours whereas
S3 and S4 only have 332 hours. For defects with their origin in phase DE, the DCE is
648 hours in scenario S1, 198 hours in S2 and 119 hours in S3 and S4. The DCFM
assumes low effort reduction rates for RE and DE defects in phase IM. Thus, the DCE
for defects with origin in phase RE is reduced by 36 hours in S1, 225 hours in S2 and
146 hours in S3 and S4. For DE defects, the reduction of DCE is 38 hours in S1, 74
hours in S2 and 53 hours in S3 and S4.

Table 6.9: IM scenario result data

Phase S1 S2 S3 S4

RE 2529 601 332 332
DE 648 198 119 119
IM 140 140 140 140
-IM -12 -95 -109 -109
-DE -38 -74 -53 -53
-RE -36 -225 -146 -146

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

S1 S2 S3 S4

Ef
fo
rt

RE DE IM

Figure 6.10: IM scenario results

93



6 Defect Cost Flow Model

I&T Results

The results for phase I&T are illustrated in Table 6.10 and Figure 6.11. The DCE
for defects with their origin in phase RE increases to 8361 hours in scenario S1. In
S2 the DCE is 1462 hours whereas in scenario S3 and S4 it is 722 hours. For DE
defects, the DCE is 2048 hours in scenario S1, 482 hours in S2 and 265 hours in
S3 and S4. The reduction of DCE for RE defects as a result of QA activities is 851
hours in scenario S1, 1115 hours in S2, 375 hours in S3 and 614 hours in S4. For
DE defects the DCE could be reduced by 189 hours in scenario S1, 361 hours in S2,
198 hours in S3 and 225 hours in scenario S4.

Table 6.10: I&T scenario result data

Phase S1 S2 S3 S4

RE 8361 1462 722 722
DE 2048 482 265 265
IM 434 177 122 122
I&T 10 10 10 10
-I&T -1 -6 -6 -7
-IM -41 -121 -83 -96
-DE -189 -361 -198 -225
-RE -851 -1115 -375 -614

-4000

-2000

0

2000

4000

6000

8000

10000

12000

S1 S2 S3 S4

Ef
fo
rt

RE DE IM I&T

Figure 6.11: I&T scenario results

94



6.8 Simulation Results

95



6 Defect Cost Flow Model

6.8.2 Scenario Results

S1 Results

-2000

0

2000

4000

6000

8000

10000

12000

RE DE IM I&T

Ef
fo
rt

RE DE IM I&T

Figure 6.12: S1 DCFM chart

Table 6.11: S1 result overview

Development Effort QA Effort QA DCE Residual DCE Overall

1000 h 50 h 1224 h 9771 h 12045 h

96



6.8 Simulation Results

Figure 6.12 and Table 6.11 on page 96 give an overview of the overall results for
scenario S1 where QA activities are reduced to a minimum. Based on a development
effort of 1000 hours, 50 hours are spent for QA activities. Low QA activities lead
to low DCE reduction rates and therefore to a low DCE as part of QA. In case of
S1, 1224 hours. This results in a residual DCE of 9771 hours in the product, which
potentially can be detected by the customer. The overall effort needed to finish the
desired feature is expected to be 12045 hours, 12 times the amount of development
effort than expected. Table 6.12 shows the results in detail. In phase RE, there are
200 hours of DCE inserted while developing the feature. With QA activities, the DCE
could only be reduced by 23 hours. Therefore, the defects with their origin in phase
RE shifting to phase DE already have a DCE of 598 hours. In addition, 180 hours of
DCE for defects with origin in phase DE are inserted. QA activities only reduce the
DCE by 16 hours for DE defects and 17 hours for defects with origin in phase RE.
At this point, the DCE for defects introduced in early phases increases exponentially
in phase IM. Illustrated by column IM in Figure 6.12, it is 2628 hours for RE defects,
648 hours for DE defects and an additional 140 hours of DCE for IM defects. With low
QA activities, the reduction of DCE is only 12 hours for IM defects, 38 hours for DE
defects and 36 hours for RE defects. The exponential increase continues in phase
I&T where the DCE for defects with origin in phase RE is 8361 hours, for DE defects
it is 2048 hours and 434 hours for defects introduced in phase IM and 10 hours for
I&T defects. Even with low QA activities, in this phase the DCE could be reduced by 1
hour for I&T defects, 41 hours for IM defects, 189 hours for DE defects and 851 hours
for defects with origin in the RE phase.

Table 6.12: S1 result data

Phase RE DE IM I&T CU

RE 200 598 2529 8361 7510
DE 160 648 2048 1859
IM 140 434 393
I&T 10 9

I&T -1
IM -12 -41
DE -16 -38 -189
RE -23 -17 -36 -851

97



6 Defect Cost Flow Model

S2 Results

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

RE DE IM I&T

Ef
fo
rt

RE DE IM I&T

Figure 6.13: S2 DCFM chart

Table 6.13: S2 result overview

Development Effort QA Effort QA DCE Residual DCE Overall

1000 h 200 h 2343 h 528 h 4071 h

98



6.8 Simulation Results

In scenario S2, all development phases are optimized in their specific domains to
have a high cost benefit ratio among the optimal QA effort spent and the reduction of
DCE per phase. Figure 6.13 and Table 6.13 on page 98 illustrate the results. Based
on a development effort of 2000 hours, a total of 200 hours are spent for QA activities.
The DCE as part of the QA activities is 2343 hours. The residual DCE after I&T is
528 hours leading to an overall effort of 4071 hours.

Table 6.14 depicts the details of this scenario. Starting with 200 hours of DCE for
defects introduced in phase RE, the QA activities are able to reduce it by 150 hours.
In phase DE, the RE defects are already at a DCE of 200 hours in addition to the 160
hours of DCE for defects with origin in phase DE. By QA activities these defects could
be reduced by 120 hours for DE defects and 76 hours for RE defects. In phase IM, RE
defects are at 601 hours of DCE, DE defects at 198 hours and defects with origin in
the same phase IM at 140 hours of DCE. Even with high QA activities, it is difficult to
detect defects from the earlier phases RE and DE in phase IM, leading to a reduction
of only 225 hours for RE defects and 74 hours for DE defects. DCE reduction rates
for IM defects are higher leading to a reduction by 95 hours for IM defects. In the
final phase I&T RE defects are at 1482 hours, DE defects at 482 hours, whereas IM
defects and I&T defects are only 177 hours and 10 hours respectively. In this final
phase it is easier again to detect defects from early phases RE and DE because
integration and testing is performed based on requirements and design. This leads
to a reduction of 1115 hours of DCE for RE defects, 361 hours for DE defects, 121
hours for IM defects, and 6 hours for defects introduced in the final phase I&T.

Table 6.14: S2 result data

Phase RE DE IM I&T CU

RE 200 199 601 1462 347
DE 160 198 482 121
IM 140 177 56
I&T 10 4

I&T -6
IM -95 -121
DE -120 -74 -361
RE -150 -76 -225 -1115

99



6 Defect Cost Flow Model

S3 Results

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

RE DE IM I&T

Ef
fo
rt

RE DE IM I&T

Figure 6.14: S3 DCFM chart

Table 6.15: S3 result overview

Development Effort QA Effort QA DCE Residual DCE Overall

1000 h 320 h 1328 h 457 h 3105 h

100



6.8 Simulation Results

Scenario S3 is expected to be too cost intensive due to its maximum QA effort spent
in early phases. Figure 6.14 and Table 6.15 on page 100 summarize the simulation
results. For 1000 hours of development effort, 320 hours are spent for QA activities.
The DCE as part of the QA activities is 1328 hours. The DCE residing in the product
is 457 hours, mostly for defects with origin in phase RE and DE. Figure 6.14 illus-
trates a exponential increase of DCE through all phases. However, the overall DCE
in final phase I&T is low at around 1000 hours due to the very high QA activities in
early phases. Furthermore, the overall DCE could be reduced by more than 50% as
indicated by the bar for negative I&T values.

Table 6.16 illustrates the detailed result data. Based on 200 hours of initial DCE for
defects with origin in phase RE, 170 hours could be reduced due to the very high level
of QA activities. RE defects have 119 hours of DCE in phase DE. In addition to that,
160 hours of DCE are inserted for defects with origin in phase DE. These defects are
reduced by 136 hours for DE defects and 52 hours for RE defects. In phase IM, there
are 332 hours of RE defects, 119 hours of DE defects and 140 hours of IM defects.
Most of IM defects could be detected which lead to a reduction of DCE by 109 hours.
Furthermore, the DCE could be reduced by 52 hours of DE defects and 146 hours of
RE defects. Finally, in phase I&T, there are 722 hours of RE defects, 265 hours of DE
defects, 122 hours of IM defects and an additional 10 hours for defects with origin in
phase I&T. Final QA activities reduce the DCE for I&T defects by 6 hours, 83 hours
for IM defects, 198 hours for DE defects and 375 hours for RE defects. This leads to
a residing DCE of 347 hours for RE defects, 67 hours of DE defects, 39 hours of IM
defects, and 4 hours of I&T defects potentially detected by the customer.

Table 6.16: S3 result data

Phase RE DE IM I&T CU

RE 200 119 332 722 347
DE 160 119 265 67
IM 140 122 39
I&T 10 4

I&T -6
IM -109 -83
DE -136 -53 -198
RE -170 -52 -146 -375

101



6 Defect Cost Flow Model

S4 Results

-1500

-1000

-500

0

500

1000

1500

RE DE IM I&T

Ef
fo
rt

RE DE IM I&T

Figure 6.15: S4 DCFM chart

Table 6.17: S4 result overview

Development Effort QA Effort QA DCE Residual DCE Overall

1000 h 400 h 1608 h 177 h 3185 h

102



6.8 Simulation Results

Figure 6.15 and Table 6.17 on page 102 depict the results for scenario S4 where QA
activities are set to a maximum for all development phases. For a development of
1000 hours, 400 hours are spent on QA activities. This leads to a DCE of 1608 hours
as part of the high QA activities resulting in 177 hours of DCE residing in the product.
The overall effort needed to develop the feature is 3185 hours. Due to the focus on
QA activities, the increase of DCE of all phases could be reduced to a minimum.

Table 6.18 shows for defects with their origin in phase RE an initial DCE of 200 hours,
reduced by 170 hours. In phase DE, the DCE for RE defects is at 119 hours and for
DE defects on 160 hours. They could be reduced by 136 hours for DE defects and 52
hours for defects with their origin in phase RE. The following phase IM has a DCE of
332 hours for RE defects, 119 hours for DE defects and an additional 140 hours for
defects with their origin in this phase. The reduction of DCE for defects from earlier
phases RE and DE is 146 hours and 53 hours whereas the DCE for IM defects could
be reduced by 109 hours. When these defects shift to the final phase I&T, they are
at 722 hours for RE defects, 265 hours for DE defects, 122 hours of IM defects and
10 hours of I&T defects. Due to the high level of QA activities, they could be reduced
by 614 hours for RE defects, 225 hours for DE defects, 96 hours for IM defects and
7 hours for I&T defects. The residing DCE leading to potential defects detected by
the customer are 108 hours for RE defects, 40 hours for DE defects, 26 hours for IM
defects, and 3 hours for I&T defects. This final DCE is extremely low considering the
phase multipliers for each development phase. For example, 108 hours divided by
the overall phase multiplier of 80 hours result in 1.35 requirement defects.

Table 6.18: S4 result data

Phase RE DE IM I&T CU

RE 200 119 332 722 108
DE 160 119 265 40
IM 140 122 26
I&T 10 3

I&T -7
IM -109 -96
DE -136 -53 -225
RE -170 -52 -146 -614

103



6 Defect Cost Flow Model

6.8.3 Overall Results

Table 6.19 summarizes the overall results based on the initial development effort of
1000 hours for every scenario. The effort spent on QA activities is 50 hours for sce-
nario S1, 200 hours for S2, 320 hours S3 and 400 hours for S4. These activities lead
to the effort for fixing the detected defects, 1224 hours for scenario S1, 2343 for S2,
1328 for S3 and 1608 for S4. The residual DCE after the final phase I&T is 9771
hours for S1, 528 hours for S2, 457 hours for S3 and 177 hours for S4. Finally, the
overall effort needed to realize the feature is 12045 hours for scenario S1, 4071 hours
for S2, 3105 for S3 and 3185 for S4.

Table 6.19: Scenario overall results

Results S1 S2 S3 S4

Development effort 1000 1000 1000 1000
QA effort 50 200 320 400

DCE (part of QA) 1224 2343 1328 1608
Residual DCE 9771 528 457 177

Overall 12045 4071 3105 3185

6.9 Conclusion

Final results from scenario simulation demonstrates the capabilities of the DCFM.
They are evaluated by process as well as project experts regarding their accuracy to
describe the development process where DCFM is based on. According to DCFM’s
results, the development process is optimized in terms of effort spent for QA activities
to reduce the overall effort.

Scenario S1 was selected to demonstrate the worst case scenario regarding the over-
all effort needed for the development of a specific feature. The scenario indicates the
consequences on saving the effort on QA activities to focus on feature development
only. In early development phases, QA effort and DCE are reduced to a minimum.
The DCE in early phases is low because only little effort is spent on QA activities lead-
ing to low DCE reduction rates. In later phases, especially in phase Customer (CU)

104



6.9 Conclusion

where the product is delivered to the customer, the potential DCE is very high. It can
be seen that the residing DCE for requirement defects has the largest percentage
of 75%. This figure results from the necessity to re-run the complete development
process for the correction of a defective requirement. For a design defect, less pro-
cess phases are involved with their correction. The DCE for defects with their origin
in phase DE is lower accordingly. However, it is still 20% of the final DCE. The final
5% are due to defective implementations, integration and tests. This worst case sce-
nario confirms the strategy to focus on QA activities especially, in early development
phases to reduce a project’s overall DCE.

In scenario S2, every development phase is optimized in its own domain. Typical cost
benefit optimization strategies regarding the optimal effort spent on QA activities tend
to optimize locally. Even though every development phase has an optimal cost ben-
efit ratio, the overall effort needed to realize the feature is very high. This is mainly
because of defects with their origin in phase RE and DE, staying undetected until
the final phase I&T. Even with high detection rates in phase I&T, correcting defects
here from early phases is very costly. Nevertheless, the DCE residing in the prod-
uct until the final phase CU is much lower compared to scenario S1. Scenario S2
also supports the strategy to intensify an invest in QA activities in early development
phases.

Scenario S3 and S4 are calibrated using the maximum level of QA activities, S3 with
focus on early phases, S4 throughout all phases. These scenarios demonstrate the
return of QA invest. Considering the overall amount of effort, it is still cheaper to
invest in QA activities close to a maximum level than in optimizing them. Especially
QA activities in early phases are profitable because longer process iterations involve
more process activities and therefore more effort is needed to correct a defect. The
effort invested in QA activities is limited to a single development phase. Defects
flowing from one development phase to later phases involve activities in these phases.
The more phases involved the higher is the effort needed for fixing.

A further important aspect concerning the ideal sufficiency of QA effort, is its depen-
dency on feature specific characteristics. There are more and less complex features
resulting in different DCFs. QA activities are more effective for features with higher
DCFs. Furthermore, the ideal sufficiency of QA effort per development phase de-

105



6 Defect Cost Flow Model

pends on the involved process activities. The more activities needed for the rework of
an engineering artifact, the higher the overall effort.

The overview of the influence of all KPIs of a software product is very complex. With
DCFM project managers could not only monitor the current situation of a project but
also estimate project behavior under given circumstances, e.g. project rescheduling
or process tailoring. Furthermore, the DCFM could support higher process maturity
levels, e.g. the Capability Maturity Model Integrated [CMMI Product Team, 2010], a
process improvement approach also used as reference for appraising a company’s
engineering processes.

Next steps towards higher effort estimation performance and therefore better software
projects in time, quality and costs are the establishment of this method as part of the
continuous improvement process. One major part of it would be the establishment of
a long term measurement framework. Based on this data, models could be further
enhanced and thereby provide decision support to process optimization and project
estimation.

106



7 Practical Benefits

This chapter describes the benefits of using the models presented in this thesis in a
real-life environment. Working with such models can reveal improvement potential in
various ways. Several usage areas of such models could be identified. It starts with
the gain of knowledge in different areas, e.g. in modelling techniques like Bayesian
Networks (BNs), accompanying the work of Software Process Model (SPM) and De-
fect Cost Flow Model (DCFM). These benefits are described in section 7.1. Beyond
this, the Return of Invest (ROI) is described based on a change in the development
process within the real-life environment. For this, an additional evaluation has been
carried out resulting from SPM and DCFM which is presented in section 7.2.

7.1 Developing Knowledge

It is challenging to create predictive models on a specific software development pro-
cess because expert knowledge is developed in multiple domains. There are several
aspects to be considered when building predictive models, e.g. the SPM and DCFM
for software defect prediction, i.e.

• What are the Key Performance Indicators (KPIs) leading to software defects?

• What are the KPIs of the target development process?

• What is the adequate modeling technique?

• What process data is available for model calibration?

The following sections introduce these aspects and describe their benefits regarding
the gain of knowledge for the organization working such models.

107



7 Practical Benefits

7.1.1 Subject Area

An expert in the theory of software engineering is needed to describe the domain of
the model in general. For this thesis for example, a deep understanding on software
defect prediction is necessary, especially on KPIs leading to software defects. This
includes knowledge on general techniques to describe software defects as part of a
development process as well as defect prediction specifics, e.g. detection rates for
different Quality Assurance (QA) techniques.

This knowledge is of high value for an organization to not only build complex models
on defect prediction but also to define and continuously improve its processes with
regards to the theory of software engineering.

7.1.2 Field of Application

Furthermore, if models are intended to be used in real-life, as they are for this thesis,
there has to be a deep understanding of the model’s field of application. The de-
velopment processes behind the models developed in this are needed to build large
scale embedded systems for the automotive industry. On a single product, potentially
more that 100 engineers are working simultaneously in a distributed environment.
Such complex process structures evolve over time and adapt to specific boundary
conditions. Thus, it is very challenging to model software defects as part of such a
development process.

Process experts are essential for an organization because they understand the com-
plex structure of their current development process. Only with the help of process
experts, it is possible to predict the impact of process changes which are essential to
the continuous improvement of an organization.

7.1.3 Modelling

There is a variety of defect prediction models in existence. The most relevant for
this thesis are discussed in section 2.4. One of the most well known models is the
Constructive Cost Model (COCOMO) mentioned already in the previous section 8.4.

108



7.2 Process Changes

Models like COCOMO are general purpose models implementing universal correla-
tions in software engineering, e.g. the more test activities are carried out, the more
defects are found. Due to the generality of these models, they are often large and
complex covering a wide range of KPIs. With such models it is possible to get a
general understanding of the KPIs leading to software defects.

The major challenge of establishing a general model in a real-life software develop-
ment environment is its calibration. The more parameters are used in a model, the
more complex it is to calibrate. Furthermore, it is important to have a detailed un-
derstanding of the model, of every single KPI, how it is related to the others, and
especially how it influences the overall model calculation.

Modeling experts have a good understanding of translating a given problem into a
mathematical or even graphical representation. With the help of the resulting model,
the problem can be assessed from various perspectives. The modelling expert is of
high value for an organization, because he links the theoretical experts to the practice.
The potential for improvement increases further with the help of modelling experts.

7.2 Process Changes

This section shows the benefit of using the models presented in this thesis in a real-
life environment. Although it is very challenging to build models like the SPM and
DCFM it can be shown that working with these models can reveal improvement po-
tential in various ways. The models have been calibrated based on real data and
expert knowledge from the target environment. Expert knowledge was needed to
describe process dependencies, e.g. relevant development phases as well as the
corresponding metric databases. Historical project data has been used to calibrate
process dependencies among each other, e.g. specific Defect Cost Factors (DCFs)
for specific features lead to an environment specific Defect Correction Effort (DCE)
which was the base for optimization. After that, the resulting DCFM has been used
to simulate various hypothetical scenarios. For further analysis, scenario S2 and S3
described in the previous chapter 6 were focused. where scenario S2 represents the
current level of QA in the real-life development environment. Scenario S2 uses a high
level of QA activity equal distributed over all development phases. Such a scenario

109



7 Practical Benefits

is typically used to optimize a single development phase only. Scenario S3 is an op-
timization of scenario S2. Scenario S3 uses very high QA activities in early phases
RE and DE. Such QA effort typically is often too expensive considering the return
of invest per development phase. However, the DCFM calculates an overall effort
reduction for scenario S3.

The following subsections discus the results of a review process change, introduced
based on several analyses from the model’s prediction results. The process change
has been evaluated as part of this thesis.

7.2.1 Prior Predictions

Table 7.1 depicts the DCFM overall results which has been discussed in the previous
chapter 6.

Table 7.1: DCFM overall results

Results S1 S2 S3 S4

Development effort 1000 1000 1000 1000
QA effort 50 200 320 400

DCE (part of QA) 1224 2343 1328 1608
Residual DCE 9771 528 457 177

Overall 12045 4071 3105 3185

Scenario S2 represents the current level of QA in the real-life development environ-
ment. Comparing scenario S2 with S3, the model predicts an overall effort reduction
from 4071 hours to 3105 hours. This can be achieved by increasing the effort for QA
from 200 hours to 320 hours.

Based on these predictions, the real-life development processes has been adapted
accordingly. This results in an change for the level of QA activity in phases Require-
ments Engineering (RE), Design (DE) and Implementation (IM) from High to Very
High. In effort, it can be expressed as an increase for QA effort from 20% to 40% of
the development effort. It should be noted that in scenario S3 the level of QA activity
in phase IM is still on High unlike the process change in the real-life environment. With

110



7.2 Process Changes

this process change an overall effort reduction of approximately 30% is expected.

7.2.2 Review Data

The evaluation of the process change lasted over a period of three months. A sin-
gle project was selected as the evaluation project for the process change. It mainly
intensifies the review activities in phases RE, DE and IM.

Figure 7.1 illustrates the overview on the evaluated data including the effort spent on
development and reviews. The effort spent in phases RE and DE is 320 hours. An
additional effort of 41 hours is spent on reviews in these phases, 13% of the develop-
ment effort respectively. The effort spent on implementation on phase IM is 80 hours.
For implementation reviews 16 hours are spent representing 20% of the development
effort. Summing up, there is an overall effort of 400 hours of development activities
that have been reviewed. The overall effort spent on reviews is 57 hours.

320

41

80

16

0

50

100

150

200

250

300

350

400

450

Development Review

Ef
fo
rt

RE & DE IM

Figure 7.1: Effort

111



7 Practical Benefits

Figure 7.2 depicts all detected defects and comments during review. Comments are
given, if the finding is not an obvious defect but further clarification is needed. It is
assumed to have one additional defect on every fourth comment. In phase RE and
DE the reviewers identified 8 defects and 28 comments leading to an overall of 15
defects detected in phases RE and DE. Based on these reviews, one defect and 5
comments could be identified leading to an overall of 2.25 defects detected in phase
IM. With the help of these additional reviews 9 defects are detected as well as 33
comments.

8

28

1

5

0

5

10

15

20

25

30

35

Defects Found Comments Found

N
u
m
b
e
r

RE & DE IM

Figure 7.2: Occurrence

7.2.3 Evaluation

A review performance analysis is is not possible purely based on the number of de-
tected defects. To solve this, the concept of the DCF is taken. It determines the
potential DCE per defect for a specific feature based on statistical data. The data
set is described earlier in chapter . The performance analysis uses the DCF in com-

112



7.2 Process Changes

bination with the corresponding development effort to determine the potential DCE.
Furthermore, the average DCE per defect in its specific development phase is taken
to express the detected defects in form of their potential DCE.

For this evaluation a DCF of 0.75 is assumed due to the high difficulty of the feature
development for this specific project. The phase multiplier for defects shifting from
one phase to another is 20 for undetected defects from phases RE and DE. For
undetected defects with origin in phase IM it is 4. The average DCE for all phases RE,
DE and IM for one defect to be fixed is 10 hours. To evaluate the overall performance,
the effort needed for integration & tests needs to be taken into account which is, based
on internal cost estimation tables, an additional 40% of the average DCE. The results
are shown in figure 7.3.

560

300

82

57

-218

-300

-200

-100

0

100

200

300

400

500

600

700

Devevelopment &
Review Effort

Estimated & Detected
DCE

Residual DCE

Ef
fo
rt

Figure 7.3: Review evaluation results

The overall development effort is 560 hours. Effort spent on QA activities is 57 hours.
For this scenario, the DCFM estimates an overall DCE of 300 hours. With the process
change suggested by the DCFM, additional defects could be detected and corrected.
The identified defects were analyzed by engineering experts. Based on the experi-
ence of experts in combination with historical data, the potential DCE saved could be
estimated to 218 hours resulting to 82 hours of residing DCE. This value served as a
base for analysis of both the model and the process performance.

113



7 Practical Benefits

Thus, the overall defect detection rate is 73% (i.e. 218 hours / 300 hours). Including
effort spent on review activities the overall effort is 699 hours (i.e. 560 hours + 57
hours + 82 hours). Finally, the overall effort saving is approximately 19% (i.e. 1 Ű
699 hours / 860 hours) thanks to performing additional reviews. This result proves the
justification for these additional reviews. This ratio of 19% is close to the predicted
reduction of 24% what proves the reasonable accuracy of the DCFM.

The evaluation results are based on a DCE estimated by experts which are treated as
real empirical values. This is a validation limitation because experts might not have
estimated the DCE correctly. However, it is not possible to assess the accuracy of
this assessment because defects, for which the DCE was estimated were actually
detected and fixed during reviews and not passed to the next phases to see how
much it would really take to correct them.

114



8 Summary and Outlook

This chapter summarizes the results of this thesis and gives an outlook on future
activities. First, the results from the model analyses are discussed in section 8.1.
It is followed by the novel contributions of this thesis in section 8.2. This section
also explains to what extent these contributions confirm the hypothesis of this thesis
defined in section 1.2. After this, section 8.4 points out the most important research
activities that have been carried out during this thesis. The consequential process
optimizations resulting from this thesis for the development of automotive application
within the Robert Bosch GmbH are described in section 8.4. Finally, the perspectives
are presented in section 8.6.

8.1 Model Analyses

8.1.1 Software Process Model

Even though many metric related effort estimation programs have been established
for a long period of time, the final breakthrough and commitment to metric based
software quality assessment is still missing [Ordonez and Haddad, 2008]. These
metric programs form the basis for further effort estimation methods such as Software
Process Model (SPM). The SPM shows that based on accurate data it is possible to
handle complex structures as well as incomplete and changing data. To achieve
the goal of building a model based on Bayesian Networks (BNs) to support decision
makers, it is crucial to have data representing the real world. It is essential to have
a positive way of managing errors so that employees as well as Project Managers
(PMs) can use a system for tracking defects that potentially have negative influence
on their reputation. Furthermore, employees need to be convinced that continuous

115



8 Summary and Outlook

improvement programs alleviate daily work. With the commitment to such programs
the results of SPM show that it is possible to predict Defect Correction Effort (DCE)
at high accuracy. The SPM demonstrates the potential of using a system based on
BNs to support decisions in the context of software effort estimation. Even though
it is very challenging to build such complex models, BNs include a wide range of
benefits. They are based on objective process and product data as well as on expert
knowledge and offer the possibility to support decision makers. BNs enable them to
justify and document their decisions. Based on the graphical representation of cause
and effect it is easy to discuss even complex problems and identify weaknesses or
even new aspects in such complex domains as software effort estimation.

8.1.2 Defect Cost Flow Model

The Defect Cost Flow Model (DCFM) predicts the lowest DCE for a maximum ef-
fort spent on Quality Assurance (QA) measures in early development phases. Later
phases are predicted to have their benefit cost-optimized. Typical cost-benefit op-
timization strategies regarding the optimal effort spent on quality measures tend to
optimize locally. For example, every development phase is optimized separately in
its own domain. In contrast to this, it is demonstrated that even cost intensive quality
measures pay for themselves when the overall DCE of specific features is consid-
ered. The ideal amount of QA effort depends on DCE injected, whereas DCE itself
is based on development effort and its corresponding Defect Cost Factor (DCF) for
the feature to be developed. Furthermore, the DCE depends on the process activities
involved per development phase. The more activities involved in the rework of an
engineering artifact, the higher the overall DCE. The overview on the influence of all
Key Performance Indicators (KPIs) of a software product is very complex. With the
DCFM, PMs could not only monitor the current situation of a project but also estimate
project behavior under given circumstances, e.g. project rescheduling or process op-
timization. Furthermore, DCFM could support higher process maturity levels, e.g. the
Capability Maturity Model Integrated (CMMI) [CMMI Product Team, 2010], a process
improvement approach also used as a reference to appraising a company’s engineer-
ing processes.

116



8.2 Novel Contributions

8.2 Novel Contributions

8.2.1 Defect Cost Factor

In the course of this thesis, the need for a measure is identified to describe the amount
of rework for a specific defect. The amount of rework is often expressed as the number
of defects. It is defined as DCF, as an indicator for the rework of defects. The DCF is
defined for every high level function, i.e. named features, of the software product to
describe different defect rates for different features. Besides the potential DCE, the
DCF incorporates the development effort as reference value to normalize the DCE
over all features (see 4.4).

8.2.2 Software Process Model

The SPM was developed to represent all changes of a software release as part
of a Dynamic Bayesian Network (DBN). For each of these potentially hundreds of
changes, a separate BN is created including its unique change characteristics and
linked to the overall release respectively the DBN. The SPM enables PMs to assess
process, product or project changes over time (see 5).

8.2.3 Defect Cost Flow Model

A different impact on the overall DCE could be recognized for defects originating from
other development phases than the one they were detected in when compared to de-
fects detected in the same development phases in which they originated. Therefore,
to reduce the DCE of the software product, every development phase is assessed
along with its specific DCE characteristic and focus on the shift of defects through the
development phases.

These ideas were realized in the brand new DCFM. The main goal of the DCFM
is the identification of process areas where optimization leads to the lowest defect
rates and the lowest cost. The idea of a Defect Flow Model (DFM) had already been
established before DCFM but with a different focus. The DCFM enables to estimate

117



8 Summary and Outlook

the DCE based on KPIs representing product, process and project specifics. With the
DCFM it is possible to assess effort spent on defect correction in comparison to effort
spent on development throughout every phase of the development process (see 6).

8.3 Hypothesis Confirmation

At the beginning of this thesis, the following hypothesis had been defined:

H1 It is possible to develop estimation models for development effort and DCE that
incorporate process data and expert knowledge in the absence of significant
data.

H2 It is possible to enable PMs to identify product areas where additional effort
spent on defect rate reduction has a high cost-benefit ratio.

H3 It is possible to incorporate the supporting development process to distribute
effort for QA measures most effectively.

Hypothesis H1 can be confirmed based on the results from SPM and DCFM. Both
models showed their capabilities to incorporate both process data as well as expert
knowledge within a single model. Furthermore, both models represent an industry
based development process using real data from process databases as well as ex-
perts. Furthermore, their results could be used to estimate development effort in
combination with its DCE at high accuracy.

With the help of the DCF, it is possible to confirm hypothesis H2. Models like SPM
and DCFM using the DCF enable PMs to define DCF thresholds and classify error-
prone features, independent of the development effort used to realize these feature.
This allows the focus of QA measures on product areas where optimization leads to
high benefits in terms of a reduction of rework.

Hypothesis H3 can be confirmed based on the change of suggested process areas
identified by the DCFM. The results of the process change evaluation depict the ca-
pabilities of DCFM to identify development phases where optimization leads to an
overall cost reduction. Classical optimization strategies tend to optimize with focus
on a single only. In contrast to that, DCFM is capable to optimize single phases with

118



8.4 Research Activities

focus on the overall effort.

8.4 Research Activities

Several research activities have been carried out during this thesis. Their main goal
is to illuminate different aspects and assure state-of-the-art research in the domain of
this thesis, i.e. the potential of BNs and how they can be used to assess our software
products, -projects and -development processes.

We had our first publication in [Schulz et al., 2008] with a presentation on how BNs
can be used to describe automotive software engineering processes [Schulz et al.,
2008].

At the same time, we carried out a workshop for the assessment of risks coming along
with the development of safety critical functions, e.g. the autonomous emergency
brake for vehicles. Therefore, we consulted Prof. Norman Fenton from the Queen
Mary University of London, one of the leading experts in this field. The results of this
workshop are documented as a part of a separate bachelor thesis [Weibert, 2009].

Furthermore, a cooperation with Dr. Lukasz Radlinski was started, who obtained
his Ph.D. as a part of the research team around Prof. Norman Fenton [Radlinski,
2008]. Our part of this cooperation was to supply data and expert knowledge along
with the backgrounds behind the development of fail-safe automotive applications.
On the other side, Dr. Radlinski assured state-of-the-art research in our fields. Two
publications resulted from this cooperation: [Schulz et al., 2010a,b]. After presenting
the DCFM in [Schulz et al., 2010b], we had been invited to publish further details and
analysis in [Schulz et al., 2011].

In [König, 2008] we analyzed the potential of the Constructive Cost Model (CO-
COMO), a widely known software cost estimation model first published in 1981 by
Barry Boehm. The results of this work showed that it is difficult to calibrate generic
cost estimation models such as COCOMO. Furthermore, it is difficult to adapt the
structure of these models to company specific characteristics. As a consequence,
the goal of this thesis was to pursue the approach to build completely new models
reflecting the main characteristics of our domain.

119



8 Summary and Outlook

The topic of how to calibrate those parts of the models for which there was no data
available in [Wuchenauer, 2009] was discussed. With this work we wanted to under-
stand how data can be collected with the help of a Design of Experiment (DOE) and
use it to calibrate our models. Therefore, a DOE was set up with the main focus on
identifying the relation between a project’s deadline pressure and resulting software
defects. The DOE was partly conducted by students of the University of Stuttgart and
engineers of the Robert Bosch GmbH. The results showed that in general it is possi-
ble to calibrate specific parts of our models with the help of a DOE. However, it is very
expensive to calibrate models for an industrial application in their own context solely
based on DOEs. For this thesis we could use the influence of deadline pressure on
software defects as one of the main indicators for the SPM.

8.5 Process Optimization

The results of this thesis are used to support several process improvement activities.
One conclusion from the results of the SPM is to focus on QA measures not only at
the end of a project but throughout all development phases. Furthermore, deadline
pressure especially at the end of a projects leads to higher defect rates. The resulting
DCE demands even more effort to finalize the project. These results support our
Quality for Feature initiative focusing on low defect rates instead of extra functionality.

The results of the DCFM are used to focus the QA measures in early phases of a
project. New methods for requirements-, design- as well as code reviews have been
established in a first project. Here, every work package is reviewed by the Integration
& Test (I&T) engineers before it is closed. First analyses of review protocols show
similar results as predicted by the DCFM. In a second step, these new methods will
be established in every future project.

Based on the measurement concept introduced in this thesis it is possible to assess
the benefit of QA measures. Development effort, DCE and the DCF are the main
variables. Hence, the benefit of reviews is expressed based on their average DCE
reduction. An example: for a specific feature we spend 80 hours on requirements
engineering and take 12 hours for review activities. Three defects are detected by the
review. Based on the DCF for the feature, we estimate a potential DCE of 47.2 hours.

120



8.6 Perspectives

The average DCE for one of these defects is 7.07 hours. For the three detected
defects, it means a DCE reduction of 21.2 hours. Taking the effort spent into account,
the effort saved can be expressed as 9.2 hours or 19% compared to the performance
of the previous QA activities.

8.6 Perspectives

The next step towards higher effort estimation performance and therefore better soft-
ware projects in time, quality and costs is the establishment of our method as a part
of the continuous improvement process. One major part of this, is the establishment
of a long term measurement framework. Based on the collected data, we could fur-
ther enhance our models and thereby provide precise decision support to process
optimization and project estimation.

Furthermore, if we consider effort instead of number of defects, changes or review
findings, this would allow a consistent assessment of the software product, projects
and development processes. Effort as a metric is more accurate and therefore leads
to a better estimation performance.

The collection of data not only for the overall development process but also for spe-
cific features enables the focus on product areas where optimization leads to highest
benefit-cost ratios.

121





Bibliography

Central directive quality - cdq0302 software development. Robert Bosch GmbH Cen-
tral Directive (Internal), May 2010.

M. Abouelela and L. Benedicenti. Bayesian network based xp process modelling.
International Journal of Software Engineering & Applications, 1:1–15, 2010.

AgenaRisk. URL http://www.agenarisk.com/.

V. R. Basili and H. D. Rombach. The tame project. towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 14(6):758–
773, 1988.

T. Bayes. An essay towards solving a problem in the doctrine of chances, 1763.

S. Bibi and I. Stamelos. Software process modeling with bayesian belief networks. In
Proc. Int. Software Metrics Symposium, 2004.

E. Castillo, Guti, J. M. Gutiérrez, J. M. Gutîaerrez, and A. S. Hadi. Expert Systems
and Probabilistic Network Models. Springer, 1997.

Center for Systems and Software Engineering. Cocomo2, 1995. URL http:

//sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html.

R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M.-Y. Wong.
Orthogonal defect classification-a concept for in-process measurements. IEEE
Transactions on Software Engineering, 18:943–956, 1992. ISSN 0098-5589. doi:
http://doi.ieeecomputersociety.org/10.1109/32.177364.

CMMI Product Team. Cmmi for development version 1.3. Technical Report CMU/SEI-
2010-TR-033, Software Engineering Institute (SEI), 2010.

123

http://www.agenarisk.com/
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html


Bibliography

J. Dabney, G. Barber, and D. Ohi. Predicting software defect function point ratios
using a bayesian belief network. In Proc. 2nd Int. Workshop on Predictor Models in
Software Engineering, 2006.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press, 1 edition, 4 2009. ISBN 9780521884389.

A. C. V. de Melo and A. J. Sanchez. Software maintenance project delays prediction
using bayesian networks. Expert Syst. Appl., 34(2):908–919, 2008. ISSN 0957-
4174. doi: http://dx.doi.org/10.1016/j.eswa.2006.10.040.

J. del Sagrado and I. M. d’Aguila. Artificial Intelligence Applications for Improved
Software Engineering Development: New Prospects, chapter A Bayesian Network
for Predicting the Need for a Requirements Review, pages 106–128. IGI Global,
2010.

N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M. Tailor. Making resource deci-
sions for software projects. In ICSE ’04: Proceedings of the 26th International Con-
ference on Software Engineering, pages 397–406, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2163-0.

N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R. Mishra. Pre-
dicting software defects in varying development lifecycles using bayesian nets. Inf.
Softw. Technol., 49(1):32–43, 2007a. ISSN 0950-5849. doi: http://dx.doi.org/10.
1016/j.infsof.2006.09.001.

N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and P. Krause. On the effec-
tiveness of early life cycle defect prediction with bayesian nets. Empirical Softw.
Engg., 13(5):499–537, 2008. ISSN 1382-3256. doi: http://dx.doi.org/10.1007/

s10664-008-9072-x.

N. Fenton, P. Hearty, M. Neil, and L. Radlinski. Artificial Intelligence Applications for
Improved Software Engineering Development: New Prospects, chapter Software
Project and Quality Modelling Using Bayesian Networks, pages 1–25. IGI Global,
2010.

N. E. Fenton, M. Neil, and J. G. Caballero. Using ranked nodes to model qualitative
judgments in bayesian networks. IEEE Trans. on Knowl. and Data Eng., 19(10):

124



Bibliography

1420–1432, 2007b. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2007.
1073.

GeNIe. URL http://genie.sis.pitt.edu/.

P. Hearty, N. Fenton, D. Marquez, and M. Neil. Predicting project velocity in
xp using a learning dynamic bayesian network model. Software Engineering,
IEEE Transactions on, 35(1):124 –137, jan.-feb. 2009. ISSN 0098-5589. doi:
10.1109/TSE.2008.76.

Hugin. URL http://www.hugin.com/.

IABG. The v-model - general directive 250. software development standard for the
german federal armed forces., 1992. URL http://v-modell.iabg.de/.

F. V. Jensen. Introduction to Bayesian Networks. Springer, 1 edition, 8 1997. ISBN
9780387915029.

C. Jones. Software Quality: Analysis and Guidelines for Success. International Thom-
son Computer Press, 6 2000. ISBN 9781850328674.

M. Klaes, T. Beletski, and A. Sarishvili. Ap 3.1: Effektivität von qs-maSSnahmen
stand der wissenschaft. Fraunhofer IESE-Report, 096.07/D:40, 2007. doi: urn:nbn:
de:0011-n-692908. URL http://publica.fraunhofer.de/.

B. König. Aufwandschätzung mit bayes’schen netzen. Master’s thesis, Eberhard Karls
Universität Tübingen, 2008.

T. J. O. Leary, M. Goul, K. E. Moffitt, and A. E. Radwan. Validating expert systems.
IEEE Expert: Intelligent Systems and Their Applications, 05(3):51–58, 1990. ISSN
0885-9000. doi: http://doi.ieeecomputersociety.org/10.1109/64.54673.

I. Lee, J. Y.-T. Leung, and S. H. Son. Handbook of Real-Time and Embedded Sys-
tems. Chapman & Hall/CRC, 2007. ISBN 1584886781, 9781584886785.

R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, illustrated edition edi-
tion, 4 2003. ISBN 9780130125347.

125

http://genie.sis.pitt.edu/
http://www.hugin.com/
http://v-modell.iabg.de/
http://publica.fraunhofer.de/


Bibliography

M. J. Ordonez and H. M. Haddad. The state of metrics in software industry. In In-
formation Technology: New Generations, 2008. doi: 10.1109/ITNG.2008.106. URL
http://ieeexplore.ieee.org/iel5/4492437/4492438/04492521.pdf.

J. Pearl. Bayesian networks: A model of self-activated memory for evidential reason-
ing (Report. University of California, Los Angeles. Computer Science Dept). UCLA,
Computer Science Dept, 1985.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, 1 edition, 9 1988. ISBN 9781558604797.

Promisedata. URL http://promisedata.org/.

L. Radlinski. Improved Software Project Risk Assessment Using Bayesian Nets. PhD
thesis, Queen Mary University, London (unpublished), 2008.

L. Radlinski, N. Fenton, M. Neil, and D. Marquez. Improved decision-making for
software managers using bayesian networks. Technical report, School of Electronic
Engineering and Computer Science Queen Mary University of London, 2007.

L. Radlinski, N. Fenton, and M. Neil. A learning bayesian net for predicting number
of software defects found in a sequence of testing. Polish Journal of Environmental
Studies, 17:359–364, 2008.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall, 2 edition, 12 2002. ISBN 9780137903955.

R. G. Sargent. Verification and validation of simulation models. In WSC ’05: Pro-
ceedings of the 37th conference on Winter simulation, pages 130–143. Winter
Simulation Conference, 2005. ISBN 0-7803-9519-0. URL http://portal.acm.

org/citation.cfm?id=1162708.1162736#.

T. Schulz, T. Gorges, and W. Rosenstiel. Bayesian networks modelling automotive
software engineering processes. In IP08, 2008.

T. Schulz, L. Radlinski, T. Gorges, and W. Rosenstiel. Knowledge Engineering for
Software Development Life Cycles: Support Technologies and Applications, chap-
ter Software Process Model using Dynamic Bayesian Networks. IGI Global (in
press), 2010a.

126

http://ieeexplore.ieee.org/iel5/4492437/4492438/04492521.pdf
http://promisedata.org/
http://portal.acm.org/citation.cfm?id=1162708.1162736#
http://portal.acm.org/citation.cfm?id=1162708.1162736#


Bibliography

T. Schulz, L. Radlinski, T. Gorges, and W. Rosenstiel. Defect cost flow model - a
bayesian network for predicting defect correction effort. In PROMISE ’10, 2010b.

T. Schulz, L. Radlinski, T. Gorges, and W. Rosenstiel. Predicting the flow of defect
correction effort using a bayesian network model. Empirical Software Engineering,
2011.

R. E. Shannon. Systems Simulation: The Art and Science. Prentice Hall, 1975.

B. Stewart. Predicting project delivery rates using the naive-bayes classifier. Journal
of Software Maintenance, 14(3):161–179, 2002. ISSN 1040-550X.

W. Stolz and P. Wagner. Introduction of a quantitative quality management for the ecu
software development at gasoline systems. Technical report, Robert Bosch GmbH,
2005.

R. Torkar, N. Adnan, A. Alvi, and W. Afzal. Predicting software test effort in iterative
development using a dynamic bayesian network. In Proc. of 21st IEEE International
Symposium on Software Reliability Engineering, 2010.

S. Wagner. A bayesian network approach to assess and predict software qual-
ity using activity-based quality models. In PROMISE ’09: Proceedings of the
5th International Conference on Predictor Models in Software Engineering, pages
1–9, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-634-2. doi: http:

//doi.acm.org/10.1145/1540438.1540447.

X. Wang, C. Wu, and L. Ma. Software project schedule variance prediction using
bayesian network. In Advanced Management Science (ICAMS), 2010 IEEE Inter-
national Conference on, volume 2, pages 26 –30, 2010. doi: 10.1109/ICAMS.2010.

5552847.

M. Weibert. Risikobewertung von sicherheitskritischen funktionen auf basis von
bayes’schen netzen. Master’s thesis, Hochschule Furtwangen, 2009.

S. M. Weiss. A Practical Guide to Designing Expert Systems. Rowman & Littlefield
Publishers, Inc., 1 1984. ISBN 9780865981089. URL http://amazon.com/o/ASIN/

0865981086/.

127

http://amazon.com/o/ASIN/0865981086/
http://amazon.com/o/ASIN/0865981086/


Bibliography

R. Winkler. An Introduction to Bayesian Inference and Decision, Second Edition.
Probabilistic Publishing, 2nd edition, 1 2003. ISBN 9780964793842.

D. A. Wooff, M. Goldstein, and F. P. A. Coolen. Bayesian graphical models for software
testing. IEEE Trans. Softw. Eng., 28(5):510–525, 2002. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/TSE.2002.1000453.

V. Wuchenauer. Ein empirisches vorgehen zur prognostizierung von softwarefehlern
auf basis ausgewählter entwicklungsprozessgröSSen eingebetteter software im au-
tomobilbereich. Master’s thesis, University of Stuttgart, 2009.

K. W. Zimmermann and H.-M. Hauser. The growing importance of embedded soft-
ware: Managing hybrid hardware-software business. Technical report, The Boston
Consulting Group, Inc., 2004. URL http://www.bcg.com/impact_expertise/

publications/files/The_Growing_Importance_of_Embedded_Software_Sep04_

rpt.pdf.

128

http://www.bcg.com/impact_expertise/publications/files/The_Growing_Importance_of_Embedded_Software_Sep04_rpt.pdf
http://www.bcg.com/impact_expertise/publications/files/The_Growing_Importance_of_Embedded_Software_Sep04_rpt.pdf
http://www.bcg.com/impact_expertise/publications/files/The_Growing_Importance_of_Embedded_Software_Sep04_rpt.pdf

	Abstract
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research Hypothesis
	1.3 Outline

	2 Background
	2.1 Automotive Product Engineering
	2.2 Defect Flow Model
	2.3 Bayesian Networks
	2.4 State of the Art

	3 Development Methodology
	3.1 Procedure Model
	3.2 Statement of the Problem
	3.3 Building and Simulating
	3.4 Model Validation
	3.5 Refinement and Generalisation

	4 Model Data Chapter
	4.1 Overview
	4.2 Internal Data
	4.3 Feature Classification
	4.4 Defect Cost Factor
	4.5 Experiment Data

	5 Software Process Model
	5.1 Overview
	5.2 Problem Definition
	5.3 Identifying KPIs and Relationships
	5.4 Building and Simulating
	5.5 Model Usage
	5.6 Results
	5.7 Model Complexity
	5.8 Conclusion

	6 Defect Cost Flow Model
	6.1 Overview
	6.2 Problem Definition
	6.3 Defect Cost Flow
	6.4 Identifying KPIs and Relationships
	6.5 Model Creation
	6.6 Model Calibration
	6.7 Scenario Definition
	6.8 Simulation Results
	6.9 Conclusion

	7 Practical Benefits
	7.1 Developing Knowledge
	7.2 Process Changes

	8 Summary and Outlook
	8.1 Model Analyses
	8.2 Novel Contributions
	8.3 Hypothesis Confirmation
	8.4 Research Activities
	8.5 Process Optimization
	8.6 Perspectives


