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Introduction 1 

1 Introduction 
 

As the Programme for International Student Assessment (PISA) showed, the performance of 

German pupils in the Natural Sciences is considered to be in need of improvement. The 

educational standards in the Natural Sciences require students, among other things, to 

understand complex interrelations that change over time, and to integrate methods and 

knowledge from various subject matters like biology, chemistry, or physics with each other. In 

particular, topics in these domains are characterized by the fact that they require learners to 

understand how a change in one variable (e.g., availability of water) affects another variable (e.g., 

rate of plant growth). Unfortunately, students often fail to understand the complex interplay of 

such changes in Natural Sciences phenomena. Moreover, the content in these areas often 

appears decontextualized and abstract, which in turn holds the risk of inhibiting students to 

engage more thoroughly in processing information related to such phenomena (e.g., Hake, 1998; 

Taasoobshirazi & Carr, 2008; Whitelegg & Edwards, 2002). These problems are especially 

accentuated in physics, and, as a prototypical example, in Newton’s laws of motion, which consist 

of three physical laws. These laws describe how forces that act upon an object determine its 

motion. More precisely, the first law states that an object stays in rest, or moves uniformly 

respectively, as long as no force acts upon the object. The second law states that the size of a 

force is determined by the product of mass and acceleration (i.e., change in velocity). The third 

law states that when an object A exerts a force upon another object B (Actio), object B exerts a 

force upon object A (Reactio) that has the same size, but works in the opposite direction. These 

laws of motion can, on the one hand, be regarded as abstract, as well as decontextualized, and 

they rather contradict the observations one makes in real life (e.g., Hake, 1998). Moreover, 

learners often have difficulties understanding the interrelationship between these laws – for 

instance, the impact of movement characteristics of an object, and its impact on the changing 

directions and sizes of resulting forces (e.g., Waltner, Rachel, & Wiesner, 2006; Waltner, Wiesner, 

& Rachel, 2007).  

To investigate on how to reduce problems with which learners are confronted in the 

Natural Sciences (i.e., understanding of the interplay of changes between variables as well as 

decontextualized content), Newton’s law of motions were chosen in this thesis, since they 

prototypically comprise these problems. 

In an attempt to overcome the problem of decontextualization, it has been recommended 

to bring the content into a context with reference to the real world (context-based physics, for a 

review see Taasoobshirazi & Carr, 2008; see also situated learning, Resnick, 1987). In the current 

thesis, this was done by connecting the abstract physical principles of Newton’s law of motion 
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with a real-world phenomenon, namely the undulatory (i.e., wavelike) motion of swimming fish 

for generating propulsion. Connecting Newton’s law of motion with the movement of swimming 

fish has recently become a topic of interest in physic didactics, and has already been successfully 

implemented in school lessons (Waltner, Rachel, et al., 2006; Waltner, Wiesner, et al., 2007). 

Similarly, illustrating these physical principles with reference to fish locomotion has in the 

meantime also been added to German schoolbooks such as “Duden – Naturwissenschaft und 

Technik” by Franik and Klose (2007).  

However, even after bringing physics in context, the cognitive challenges of 

understanding physical principles remain. One proposed solution and promising way to support 

students’ understanding for such phenomena might lie in the use of multimedia (i.e., text and 

visualizations), at which visualizations are used to augment verbal explanations. The topic of 

learning with multimedia will be introduced in Chapter 2.1. Since it cannot be taken for granted 

that multimedia instruction will always foster comprehension, Study 1 of the current thesis 

addressed if adding visualizations to text aids understanding of physical principles underlying 

undulatory motion compared to learning only from text.  

With the increasing availability of computers in education, it has become common to not 

only show static visualizations, but also dynamic visualizations (e.g., videos or animations). 

However, even if at first glance learning with such dynamic visualizations might seem to be 

superior to learning with static visualizations in general, the current status of research shows that 

such a view might be too simplistic (e.g., Hegarty, 2004; Höffler & Leutner, 2007; Schnotz & Lowe, 

2008; Tversky, Bauer-Morrison, & Bétrancourt, 2002). Rather, it needs to be specified why and for 

which purposes one would expect dynamic visualizations to be beneficial. At this, it is also crucial 

to uncover features that might diminish the potential of dynamic visualizations. These issues will 

be explicated in more detail in Chapter 2.2. For instance, although dynamic visualizations might 

possess high potentials to convey dynamic features like motion, trajectory, or acceleration, they 

also might impose high processing demands onto learners due to their high degree of visual 

complexity, since elements within the visualization move at different locations at the same time 

(e.g., Lowe, 1999, 2003, 2004).  

Therefore, when investigating the potential of dynamic visualizations for learning, specific 

design characteristics of the learning environment need to be taken into account, because 

dynamic visualizations are not necessarily helpful in themselves. Rather, they may need to be 

implemented in learning environments, as well as designed in ways that support the processing of 

the to-be-conveyed information. Particularly if such conditions are met, the potential of dynamic 

visualizations might unfold, and as a consequence, their instructional effectiveness might be 

enhanced. However, there is still a lack of research on how to implement learning with dynamic 
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visualizations in ways that it helps in processing the respective information (e.g., Bétrancourt, 

2005; Schnotz & Lowe, 2008; Tversky, Heiser, Lozano, MacKenzie, & Morrison, 2008). 

Thus, a major goal of this thesis is to investigate different ways of optimizing multimedia 

instruction in general, and dynamic visualizations in particular compared to static visualizations. 

Contrary to static visualizations, dynamic visualizations are supposed to possess a high degree of 

visual complexity. Following from this, there are two problems that might reduce their 

instructional effectiveness compared to the static visualizations (cf. Schnotz & Lowe, 2008). First, 

problems resulting from the need to split attention between visualization and text (inter-

representational split-attention effect) may be more severe when learning from dynamic 

visualizations than from static visualizations: Due to heir higher degree of visual complexity, the 

processing of dynamic visualizations might be hampered, if learners need to switch their attention 

between processing written text and visualizations. With spoken text on the other hand, learners 

can focus their attention on the visualizations, and process verbal and pictorial information in 

parallel (e.g., Ginns, 2005; Schnotz, 2005). Thereby, problems associated with a high degree of 

visual complexity might become less severe. Hence, one may assume that learners receiving 

dynamic visualizations might benefit from spoken text to a greater extent than learners receiving 

static visualizations. The theoretical rationale for these assumptions will be described in more 

detail in Chapter 4.1, and was examined in Study 2 of this thesis. 

Second, even though the handling with the visual complexity of dynamic visualizations 

might be disburdened by using spoken text, the problem of the visual complexity within dynamic 

visualizations still remains. To cope with the visual complexity within dynamic visualizations, it has 

been recently suggested to improve dynamic visualizations by means of cueing, since cueing may 

guide learners’ attention to the most relevant information within the visualization (e.g., Boucheix 

& Lowe, 2010; de Koning, Tabbers, Rikers, & Paas, 2010a; Kriz & Hegarty, 2007). Therefore, it was 

investigated in Study 3, if cueing would be beneficial for multimedia instruction, and, because 

specifically dynamic visualizations are supposed to suffer from a high degree of visual complexity, 

would be even more beneficial when learning with dynamic as opposed to static visualizations. 

The rationale for these assumptions will be explained in Chapter 4.2. 

To conclude, the main focus of this thesis is to detect design characteristics that are 

supposed to optimize learning with multimedia instruction, and particularly to optimize the 

effectiveness of learning with dynamic as opposed to static visualizations. Thereby, first it will be 

tested if visualizations in general are helpful for the domain at hand (Study 1). Thereafter, it will 

be investigated how design characteristics that are supposed to counteract problems arising from 

an inter-representational split-attention effect, as well as from the visual complexity of dynamic 

visualizations themselves, influence learning with dynamic and static visualizations, respectively. 
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The three studies that are designed to examine these research questions will be described in 

more detail in Chapters 3, 5, and 6. A general discussion of these studies will be given in Chapter 

7. 
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2 Learning with Multimedia 
 

When considering how to improve learning, particularly in domains that are hard to imagine and 

where understanding the interplay of different variables is important (like the domain in the 

current study), one often proposed and advocated solution is the use of multimedia instruction. 

Multimedia can be defined – in a simple, but widely accepted form, with the aim of covering a 

wide range of research – as the combined presentation of text and visualizations, independent of 

the medium in which the information will be conveyed (Mayer, 2001, 2005b, 2009). Text can be 

presented in either spoken or written form, whereas visualizations include graphs, maps, 

sketches, photos, videos, or animations. This means that also textbooks, which include pictures 

can be classified as multimedia learning material, even though only one sensory modality (in this 

case the visual senses) and only one medium (book) is involved. Throughout this thesis, this broad 

definition suggested by Mayer will be used.  

Overall, adding visualizations to text can be regarded as a promising and successful way to 

enhance learning. This view is supported by strong empirical evidence that people learn better 

with multimedia instruction than with text alone as indicated by the reviews of Anglin, Vaez, and 

Cunningham (2004), Carney and Levin (2002), Fletcher and Tobias (2005), Levie and Lentz (1982), 

Levin, Anglin, and Carney (1987), as well as Mayer (2001, 2009). However, it should be noted that 

there are some boundary conditions for this to be true, such as that visualizations should not be 

implemented when subjects are learning to read, as in this case the visualizations might distract 

learners from the primary task (cf. Levie & Lentz, 1982). Another boundary condition is that the 

visualizations must not serve decorational purposes, but need refer to the content of the text (cf. 

Levie & Lentz, 1982; Levin et al., 1987) – which is the case for the visualizations used in the 

current study. The finding that people learn better with multimedia instruction than with text 

alone, which is also called the multimedia effect (Mayer, 2001, 2009), can be considered as the 

basis for all further research in multimedia learning. If, in general, learning with multimedia would 

not be better than learning with text alone, there would be no need to examine which 

combination of text and visualizations would be best, as text alone would be sufficient. Hence, 

when developing new multimedia instruction, it appears reasonable to first determine – before 

investigating more sophisticated research questions – whether adding visualizations to text is 

indeed beneficial for achieving a better understanding of the new material. In the following, a 

closer look is taken at the reasons for why adding text to visualizations should be beneficial. 
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2.1 Why Learning with Multimedia Should be Beneficial 

 

There are at least two perspectives to explain why learning with multimedia as compared to text 

alone should be beneficial (cf. Schmidt-Weigand & Scheiter, 2011). The first view is outcome-

oriented in that it focuses on the mental representations people build when learning with 

multimedia instruction (Chapter 2.1.1). The second perspective is more functional or process-

oriented and focuses on the functions text and pictures might play for the cognitive processing of 

the information that is conveyed through these external representations (Chapter 2.1.2).  

 

2.1.1 The Outcome-Oriented View on Learning with Multimedia 

 

The Cognitive Theory of Multimedia Learning (CTML) of Richard E. Mayer (2001, 2005a, 2009) is 

the most prominent outcome-oriented view to explain the superiority of learning with text and 

visualizations as opposed to only text (i.e., multimedia effect). Within the CTML, the multimedia 

effect is explained by assuming that additional and better developed internal representations 

result from learning with text and pictures as compared to only text.  

As Figure 2.1 illustrates, the CTML postulates different stages of processing information – 

which can be traced back to three important cognitive theories/models that influenced the CTML, 

namely the model of different memory stores by Atkinson and Shiffrin (1968), Baddeley’s working 

memory model (1992), as well as Paivio’s Dual Coding Theory (1986, 1991).  

 

WORKING MEMORY

Pictorial 
Model

Verbal  
Model

Pictures

Words

integrating

LONG-TERM 
MEMORY

selecting 
images

selecting 
words

organizing 
images

organizing 
words

SENSORY 
MEMORY

Ears

Eyes

Prior 
Knowledge

Prior 
Knowledge

MULTIMEDIA 
PRESENTATION

Images

Sounds

 

Figure 2.1. The Cognitive Theory of Multimedia Learning (Mayer, 2005a, p. 37). 

 

According to the CTML, multimedia instruction is first processed in the sensory memory before it 

enters working memory. More precisely, pictures enter sensory memory through the eyes, 

whereas words enter sensory memory either through the eyes (in case of written text), or 

through the ears (in case of spoken text).  

To enter working memory, the most relevant information from sensory memory needs to 

be selected. It is assumed that in working memory, selected spoken words are initially processed 
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as sound images, while selected pictures are initially processed as visual images. Selected written 

words are supposed to be initially processed as visual images that are then converted in sound 

images.  

In a next step, through the processes of organizing the selected information, the sound 

images of words are transformed into a verbal mental model, whereas the visual images of 

pictures are transformed into a pictorial mental model. According to the CTML, sounds and 

spoken words are processed in an auditory/verbal channel (upper half of Figure 2.1), while 

pictures are processed in a visual/pictorial channel (lower half of Figure 2.1). Written words, 

however, are supposed to be initially processed in the visual/pictorial channel according to the 

sensory modality, and then to be processed in the auditory/verbal channel according to the 

codality. Thus, verbal information presented in written form will not end up in the pictorial model, 

but in the verbal model through converting printed words in sounds, given the information is 

selected and organized appropriately.  

The assumption that both, a verbal mental model as well as a pictorial mental model, are 

constructed is derived from Paivio’s Dual Coding Theory (1986, 1991). According to the Dual 

Coding Theory, the processing of verbal information leads to internal linguistic representations 

(logogens), while the processing of nonverbal information ends in analogical representations 

(imagens). At this, processing text and pictures is assumed to result in dual coding, that is in the 

construction of both, logogens and imagens, whereas processing only text is assumed to result 

most likely in one code only, namely logogens. Information that is coded in both ways is assumed 

to be better accessible in memory. Between logogens and imagens referential connections can be 

established. Thereby, information from one internal representation can be activated by the other 

internal representation.  

In a last step, the verbal and pictorial models are, along with prior knowledge, integrated 

into an integrated mental model. To do so, connections between the verbal and pictorial model 

are drawn by mapping elements and their relations from one model to the other. Note that also 

this integration process is somewhat similar to assumption in the Dual Coding Theory (Paivio, 

1986, 1991) concerning the building of referential connections between imagens and 

corresponding logogens (cf. Scheiter, 2009). Prior knowledge that is activated from long-term 

memory is assumed to be used to coordinate the integration process. As a result, an integrated 

mental model is formed that, contrary to the two mental models built earlier, is not linked to a 

specific representational code in the CTML. Rather, it is left open whether the integrated model is 

either represented in an abstract format, or in a multimodal format. According to the CTML, a 

deeper understanding of the content can be achieved only if the materials are actively processed, 

that is if the presented information is selected, organized and integrated. However, active 
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processing requires cognitive resources. In line with contemporary cognitive psychology research, 

it is assumed that resources, both in sensory memory and working memory are limited. Hence, a 

major aim when designing multimedia instruction is to help learners in making optimal use of 

these limited resources. 

The idea of the CTML, namely that different internal representations – in this case 

different mental models – derive from different external representations (such as text and 

pictures) builds the basis to call this view an outcome-oriented one. The theoretical rationale 

within the CTML to explain the multimedia effect is based on the mental models resulting from 

learning with multimedia: When learners are presented with text and visualizations, they are able 

to build both, a verbal and a pictorial model, and make connections between these two models. 

Hence, building a verbal and a pictorial model also increases the chances that an integrated 

mental model will be constructed, and, thus, a deeper understanding of the content is achieved. 

In contrast, if only text is presented, learners might be able to build a verbal model, but less likely 

a pictorial model. Thus, they less likely will make connections between these models, resulting in 

a less developed integrated mental model. 

In compliance with this line of reasoning, the benefits of multimedia instruction (i.e., 

presenting text and visualizations) should be observed most likely for tasks that require 

predominantly either the use of the pictorial mental model or the integrated mental model, but 

not necessary for tasks that solely require the use of the verbal mental model. 

While there exists no simple one-to-one mapping between different task formats and the 

knowledge representations they address, some assumptions can be made concerning this 

mapping. These assumptions are based on two arguments: First retention/recall tasks, which 

refer directly to what has been stated in the learning materials are more likely to address 

knowledge stored in the verbal and pictorial mental model, respectively, whereas transfer tasks, 

which require a deeper understanding of the content are more likely to be based on the 

integrated mental model. Second, there is some correspondence between the representation 

format of the task (i.e., verbal vs. pictorial) and the mental model it addresses, in that answers to 

verbal tasks are more likely to be based on the verbal mental model, while answers to pictorial 

tasks are more likely to be based on the pictorial mental model. This is assumed to be the case, 

because under these conditions, no further translation from task format to knowledge format is 

required when giving an answer; rather, the information can be directly read off the mental 

representation (cf. Scheiter, Wiebe, & Holsanova, 2008). Despite these correspondences, it 

certainly depends on what a question asks for, whether the verbal, or the pictorial mental model, 

or both contribute to the answers and to what extent. For transfer tasks, the representational 
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code of the task should be irrelevant, as the integrated mental model is no longer linked to a 

specific representational code. 

To conclude, to directly assess the content of the verbal mental model, verbal factual 

knowledge tasks may be used that address what was explicitly conveyed through the text. This is 

most often done in current research on multimedia learning by means of verbal retention tasks, 

verbal multiple-choice tasks, or cloze texts. To directly assess the pictorial mental model explicitly, 

factual knowledge tasks posed in a pictorial format may be used that address what was explicitly 

depicted in the visualizations. This can be done, for instance, by administering drawing tasks, 

picture sorting tasks, or picture identification tasks (e.g., Joseph & Dwyer, 1984). It should be 

noted though that in current multimedia research the role of the format of the tasks in factual 

knowledge tasks, and specifically the role of pictorial tasks, is often mostly neglected (cf. Anglin et 

al., 2004; Scheiter et al., 2008), even though there are some exceptions (e.g., Bartholomé & 

Bromme, 2009; Brünken, Steinbacher, Schnotz, & Leutner, 2001; Schmidt-Weigand & Scheiter, 

2011; Schmidt-Weigand, Kohnert, & Glowalla, 2010).  

As mentioned above, the integrated model is constructed by elaborating on the inter-

representational connections between the verbal and pictorial mental model, and by activating 

prior knowledge; therefore, it goes beyond the information contained in these representations. 

According to the CTML, the quality of the integrated mental model is supposed to be best 

reflected by performance in transfer tasks – irrespective of other representational formats – 

where a learned content has to be applied to new situations, thereby proving that a deeper 

understanding of the content has been acquired (cf. Mayer, 2001, 2005a, 2009).  

To sum up, learning with text and visualizations as opposed to only text should result in a 

more elaborated pictorial as well as in a more elaborated integrated mental model, but not 

necessarily in a better developed verbal mental model. Hence, in turn, the multimedia effect 

should be more pronounced for pictorial and transfer tasks as compared to verbal factual 

knowledge tasks. However, this should not to be misunderstood in a way that the multimedia 

effect is assumed to not hold true for verbal factual knowledge tasks, but solely that it might be 

less accentuated for verbal factual knowledge tasks as compared to pictorial factual knowledge 

tasks or transfer tasks. 

In line with this reasoning, the superiority of learning with text and visualizations 

compared to text-only has been shown to be more pronounced for transfer rather than (verbal) 

factual knowledge tasks. Mayer (2001) reported in an overview of his own studies that in six of 

nine studies students achieved higher learning outcomes in verbal factual knowledge tasks; the 

median of the nine effect sizes was .67, whereas in nine of nine studies, students showed better 

performance in transfer tests when learning with text and visualizations as opposed to text alone; 
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the median of the nine effect sizes was 1.50. Hence, larger effect sizes in favor of the multimedia 

effect were observed for transfer tasks than for verbal factual knowledge tasks. Moreover, with 

respect to factual knowledge tasks, the superiority of text and visualizations over text alone has 

been shown to be especially accentuated for pictorial tasks like drawing tasks or picture 

identification tasks, but less accentuated, and sometimes even nonexistent for verbal tasks like 

terminology tasks or cloze texts (e.g., Alesandrini & Rigney, 1981; Baker & Dwyer, 2000; Beagles-

Roos & Gat, 1983; Joseph & Dwyer, 1984; Szabo, Dwyer, & DeMelo, 1981; for an overview see 

Levie & Lentz, 1982).  

Despite the fact that the outcome-oriented view inherent to the CTML allows predicting 

multimedia effects for different types of knowledge assessments, nevertheless it also has some 

limitations. In particular, the CTML does not describe the functions that text and visualizations 

might play with regard to the cognitive processes they may facilitate, and the properties these 

external representations might possess to be beneficial for learning. Thus, this topic will be 

addressed next.  
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2.1.2 Functional View on Learning with Multimedia 

 

In addition to the abovementioned outcome-oriented view, the superiority of learning with text 

and visualizations over text alone might be also explained by the cognitive processes that are 

facilitated when learning with multimedia instruction. At this, text and pictures can facilitate 

cognitive processing, and thereby foster deeper understanding by 1) computational offloading, 2) 

re-representation, 3) graphical constraining, and 4) supporting elaborations. These four 

arguments will be explicated below.  

 

Computational offloading 

According to Scaife and Rogers (1996), computational offloading “refers to the extent to which 

differential external representations reduce the amount of cognitive effort required to solve 

informationally equivalent problems” (p. 188). For instance, for visuo-spatial information, pictorial 

in comparison to verbal representations can be more computationally efficient by reducing the 

need to search, recognize, and memorize information. That is, visual elements representing 

conceptually related information are grouped together in a pictorial representation, and, hence, 

this information can directly be read-off (Larkin & Simon, 1987), whereas in text, this information 

may be distributed across different paragraphs.  

Similarly, Levie and Lentz (1982) argued that when visualizations are presented with text, 

the visualizations can offload working memory as they “may help to keep the relationships 

between key concepts at ready access, freeing the learner’s processing capacity for other aspects 

of the learning task” (p. 222). Taken together, it can be argued that adding visualizations to text 

may reduce unnecessary demands imposed on working memory.  

Such an argumentation may be well in line with assumptions made by one of the most 

prominent instructional design theories that focus on the demands on working memory when 

processing information, namely the Cognitive Load Theory (CLT; Sweller, 1999, 2005a; Sweller van 

Merriënboer, & Paas, 1998). The CLT is not a theory specifically devoted to multimedia learning, 

but has been applied to a variety of instructional materials including, among others, multimedia 

instruction.  

According to the CLT, three kinds of cognitive load can be distinguished that constitute 

the overall load on working memory’s limited capacity, namely intrinsic cognitive load (ICL), 

extraneous cognitive load (ECL), and germane cognitive load (GCL).  

ICL is conceptualized as the load on working memory that depends on the element 

interactivity (or complexity) of the learning material, as well as the expertise (or prior knowledge) 

of the learner. The higher the number of elements and their interrelations that have to be hold in 
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working memory, the higher is ICL. ICL is reduced once learners have available prior knowledge 

that helps them to group a number of elements into a larger meaningful unit.  

ECL is said to be an unnecessary load on working memory resulting from a bad 

instructional design, where learners have to conduct cognitive processes that do not contribute to 

learning. One way to explain the multimedia effect within CLT is that ECL is decreased through 

adding visualizations to text, since (as explicated above) thereby unnecessary demands on 

working memory might be reduced. According to the CLT, the main goal of instructional design 

lies in the reduction of ECL to free working memory resources for more valuable processing 

activities. 

These valuable processing activities that learners have to conduct to foster meaningful 

learning constitute GCL. Like ECL, the investment of GCL can be altered by instructional design; a 

further goal of instructional design should hence be to increase a learner’s GCL. How the 

construct of GCL can also be used to explain the multimedia effect will be explained below (cf. 

supporting elaborations). 

 

Re-representation 

Re-representation “refers to how different external representations that have the same abstract 

structure, make problem-solving easier or more difficult” (Scaife & Rogers, 1996, p. 189). At this, 

verbal and pictorial representations may differ in the processes each representation supports, 

even though the representations contain the same information (cf. Zhang & Norman, 1994). 

According to Schnotz (2002, 2005), verbal representations are more powerful in conveying 

abstract knowledge and concepts, which cannot be depicted in a single picture, as pictures refer 

to concrete concepts. For instance, when trying to convey that food is not allowed in public 

transportation, one can easily refer to the concept of food by means of a verbal representation. 

However with pictorial representations, one can refer only to concrete objects (e.g., ice-cream, 

hamburgers et cetera), but not to an abstract concept. On the other hand, pictorial 

representations may be more apt in conveying visuo-spatial information. At this, Levie and Lentz 

(1982) suggested that particularly for visuo-spatial information, visualizations may be an efficient 

substitute for words. 

 

Graphical constraining 

Pictorial representations are often less ambiguous than verbal representations, and hence 

constrain the interpretation of a representation. For instance, when reading “the bottle is next to 

the glass” it is unclear whether the bottle is on the left side of the glass or on the right side. In 

contrast, this relationship is explicitly depicted within a visualization. Thus, pictorial 
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representations are able to reduce the number of possible represented worlds of a topic (cf. 

graphical constraining, Scaife & Rogers, 1996). The combination of visualizations and text can 

hence reduce the ambiguity of the text content, as the visualizations may constrain the 

interpretation of a text segment (Ainsworth, 1999, 2006). Moreover, visualizations may also 

provide a context in which the textual information can more accurately be interpreted, organized, 

and understood (Bransford & Johnson, 1972; cf. Levie & Lentz, 1982). Thereby, visualizations may 

also serve as a source to check one’s own understanding of the text (cf. Ainsworth, 1999, 2006; 

Levie & Lentz, 1982). Similarly, presenting text and visualizations can also reduce uncertainty 

about the visualizations, as the text might help to better understand the elements of the 

visualization. Accordingly, when text is presented with visualizations, this might not only offload 

working memory, but also might lead to less uncertainty regarding the content, which may be 

reflected in fewer erroneous statements made by learners (Butcher, 2006), fewer negative 

monitoring statements (i.e., expressions referring to not understanding), as well as more positive 

monitoring statements (i.e., expressions of understanding) compared to when only text is 

presented. 

 

Supporting elaborations 

By substituting for more demanding reasoning processes, pictorial representations may allow for 

drawing inferences grounded in perception (Goldstone & Son, 2005; Schwartz, 1995). Several 

think-aloud studies are in line with this view, as they show that learners conducted more valuable 

processing activities when processing visualizations than when processing text (Ainsworth & 

Loizou, 2003; Cromley et al., 2010; Moore & Scevak, 1997). By combining text with visualizations 

as opposed to only text, a more thorough processing of the content might hence be supported. 

Moreover, presenting text and visualizations offers the opportunity to relate these different 

representations to each other (cf. Ainsworth, 1999, 2006). By doing so, a learner may gain insights 

that he/she could hardly achieve with solely one representation. Also, Levie and Lentz (1982) 

suggested that visualizations may lead readers to increase their depth of semantic analyses, for 

instance, by inducing a deeper processing of the text (cf. Peeck, 1993). In line with these 

arguments, Butcher (2006) observed, by applying the think-aloud methodology that learners 

generated more inferences when studying text and visualization rather than only text. In terms of 

CLT (Sweller, 1999, 2005a; Sweller et al., 1998), conducting such valuable processing activities 

might be interpreted as an increase in GCL.  
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Empirical evidence 

To sum up, based on a functional view, one might gain more insights in the cognitive processes 

evoked when learning with text and visualizations as opposed to text only. With regard to the 

processes, which may occur, learning with text and visualizations should lead to less uncertainty 

about the content, and, furthermore, to a more elaborate processing of the content as compared 

to learning with text alone.  

The empirical support for these assumptions is rather sparse, since these assumptions 

have seldom been investigated so far. In a study by Butcher (2006), learners receiving text and 

visualizations made fewer erroneous statements, which might be regarded as an indicator of 

being more certain about the content. Also, Butcher (2006) observed that learners receiving text 

and visualizations generated more inferences than learners receiving only text. Similarly, in a 

recent study by Cromley, Snyder-Hogan, and Luciw-Dubas (2010), the authors observed 

comparatively more inferences when learners worked with visualizations than when they studied 

text only. Moreover, this higher proportion of inferences in the visualization condition was related 

to better performance (see also Ainsworth & Loizou, 2003).  

With respect to cognitive load, one might expect that ECL will be decreased, and GCL will 

be increased when learners are receiving text and visualizations as opposed to learners who are 

receiving text only. In line with this reasoning, recently Schmidt-Weigand and Scheiter (2011) 

could show a reduction of ECL when learners received text and visualizations as opposed to 

learners who received only text. No differences occurred with respect to the item supposed to 

measure GCL, which might however also be attributed to problems in measuring GCL with the 

item the authors used in their study (cf. de Jong, 2010).  
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2.1.3 Conclusions 

 

There is strong empirical evidence that adding visualizations to text is a successful and promising 

way to foster learning. There are at least two views that might account for why learning with 

multimedia should be beneficial: The outcome-oriented view stresses the cognitive outcomes 

achieved through multimedia learning, whereas the functional view emphasizes the cognitive 

processes that are supported when studying text-picture combinations.  

The most prominent outcome-oriented view in multimedia learning, the CTML (Mayer, 

2001, 2005a, 2009), suggests that different mental models are built when learning with 

multimedia. These additional and/or better developed mental models are assumed to result in a 

better understanding of the content. More precisely, the CTML assumes that through adding 

visualizations to text, learners will be more likely to additionally build a pictorial mental model. 

Furthermore, this pictorial mental model might help to build a better developed integrated 

mental model.  

Whereas the outcome-oriented view focuses on the different mental models build when 

learning with multimedia, the functional view on the other hand focuses on the cognitive 

processes that might be facilitated when visualizations are added to text. According to the 

functional view, adding visualizations to text might reduce unnecessary processing demands, 

which in terms of CLT correspond to a decrease in ECL. Moreover, it might reduce uncertainty 

about the conveyed content and enable valuable processing activities such as inferences – which 

in terms of CLT correspond to an increase in GCL.  

In the current thesis both approaches are considered and investigated in Study 1. It 

should be noted that even though it may be argued that under certain circumstances these two 

approaches lead to differing predictions (cf. Schmidt-Weigand & Scheiter, 2011), for the scope of 

Study 1 of this thesis, the two approaches do not contradict each other. While assumptions that 

can be derived from the outcome-oriented view are investigated indirectly by means of assessing 

performance on different learning outcome measures, the assumptions that can be derived from 

the functional view are investigated through assessing experienced cognitive load as well as think-

aloud protocols. Moreover, these data will be related to each other, to investigate, for instance, 

whether the number of generated inferences (observed from the think-aloud protocols) is 

associated with a deeper understanding as measured in transfer tasks, which are an indicator of 

the integrated mental model.  

Overall, the considerations made so far strongly recommend adding visualizations to text. 

However, these considerations do not provide any conclusion concerning differential effects of 

learning with different types of visualizations, such as dynamic as opposed to static visualizations. 
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Since for the domain of the current thesis dynamic visualizations might be even more apt than 

static visualizations, the topic of learning with these two types of visualizations will be addressed 

next.  
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2.2 Learning with Dynamic and Static Visualizations 

 

The domain of the current thesis, the physical principles underlying fish locomotion, is a concrete 

example that illustrates Newton’s laws of motion. This domain comprises various aspects of the 

fish locomotion, such as the interplay of the changing velocity of a fish’s caudal fin along its 

trajectory, and its impact on the sizes of the associated resulting forces, or its impact on the 

related swimming speed. One may wonder if for this domain specifically dynamic visualizations as 

compared to static visualizations might foster learning. This might be the case, because dynamic 

visualizations seem to possess enormous potential to improve the understanding of such 

interrelations that change over time (such as the changes in velocity of the caudal fin and its 

impact on resulting forces).  

In the following, first the characteristics of dynamic and static visualizations will be 

clarified. Thereafter, as a consequence of their properties, the processing demands of dynamic 

and static visualizations will be analyzed. Finally, an overview of research on learning with 

dynamic and static visualizations will be given. 

 

2.2.1 Definition of Dynamic and Static Visualizations 

 

As was explicated above, visualizations hold the potential to convey visuo-spatial information in a 

computational efficient way (cf. Larkin & Simon, 1987). However, it might be the case that for 

certain learning objectives not only the visuo-spatial information about entities is important, but 

how these entities change over time. To depict such changes, dynamic visualizations (like 

animations or videos) might be specifically helpful (cf. Lowe, 2003).  

In the following, it will be clarified what can be regarded as dynamic visualizations in 

contrast to static visualizations. At this, dynamic and static visualizations can be defined according 

to two aspects: One aspect concerns how dynamic and static visualizations differ from a technical 

point of view, and the other aspect concerns the information that can be directly depicted. As 

suggested by Schnotz and Lowe (2003), such differences of dynamic and static visualizations 

might influence how these two types of visualizations are perceptually and cognitively processed, 

which will be explicated in more detail in Chapter 2.2.2.  

From a technical point of view, a dynamic visualization consists of a series of still frames, 

which are shown rapidly one after the other, as is suggested by Bétrancourt and Tversky (2000), 

who state that “computer animation refers to any application which generates a series of frames, 

so that each frame appears as an alteration of the previous one and where the sequence of 
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frames is determined either by the designer or the user” (p. 313). The number of frames per 

second constitutes what Schnotz and Lowe (2008) call the temporal granularity, and it influences 

the perception of a continuous movement. According to Schnotz and Lowe (2008), a dynamic 

visualization should consist of at least five frames per second to be perceived as continuous. It 

should be noted that in addition to the number of frames per second, the alteration in space 

between each single picture affects the impression of a continuous movement (Schnotz & Lowe, 

2008; see also Rieber & Kini, 1991). If the temporal granularity was further reduced, a movement 

would no longer be perceived as continuous, but as a sequence of static frames, where one frame 

replaces the previous frame. Such a sequence of static frames can be regarded as a presentation 

format of static visualizations, namely as static-sequential visualizations. Another presentation 

format of static-visualizations that consist of more than one picture, are static-simultaneous 

visualizations. In static-simultaneous visualizations, all pictures are presented next to each other 

at the same time. In principle, instructional materials involving static visualizations do not 

necessarily need to consist of multiple static pictures, but they can also comprise a single static 

picture only. However, when comparing dynamic and static visualizations, it is often advocated to 

implement multiple static frames for the static visualization condition to keep the depicted 

information in the different visualization formats as informationally equivalent as possible to have 

a “fair” comparison (e.g., Tversky et al., 2002). It should be noted that even when using multiple 

static visualizations, they are not necessarily completely informational equivalent to dynamic 

visualizations, since these types of visualizations will nevertheless differ with regard to their 

inherent properties (see below).  

In addition to this technical point of view, one can distinguish dynamic and static 

visualizations with respect to the information that can be directly depicted, that is with regard to 

their content. According to Rieber and Kini (1991), dynamic visualizations present the changes of 

the position of an object over time (motion), and also the direction of these changes (trajectory). 

Additionally, and in contrast to static visualizations, a characteristic of a dynamic visualization is 

that it “triggers the perception of a continuous change“ (Schnotz & Lowe, 2008, p. 304). 

Concerning the continuous changes that can be displayed in dynamic visualizations, Lowe (2003, 

2004) distinguishes three main types of changes: translations, transformations, and transitions. 

Translations refer to position changes of objects from one position to another and correspond to 

Rieber’s and Kini’s (1991) concept of motion. Transformations refer to changes in an object’s 

appearance, such as changes in size, shape, or color. Transitions involve the appearance or 

disappearance of entities, irrespective of whether an entity is added/removed, or if the entity is 

moving in/out of the visual field. It may be argued that depending on the type of change that is 

depicted, dynamic visualizations might be more or less helpful, which is however not in the scope 
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of the current thesis, as all types of changes are relevant to understanding Newton’s law of 

motion in the context of fish locomotion. Translations, transformations, and transitions can be 

considered as visuo-spatial changes. Moreover, dynamic visualizations – in contrast to static 

visualizations – can not only depict continuously visuo-spatial changes, but also possess the 

property to directly depict temporal information: For instance, dynamic visualizations allow 

depicting how long it takes for an object to change its position from point A to point B, and if this 

change is constant (cf. Lowe, 2003; Schnotz & Lowe, 2008). Moreover, dynamic visualizations can 

exclusively display dynamic features, such as changes in velocity.  

These differences between dynamic and static visualizations, namely that dynamic 

visualizations can continuously display visuo-spatial changes, as well as temporal information 

(e.g., changes in velocity), in turn may affect how these visualizations are perceptually and 

cognitively processed. This topic will be discussed next in more detail.  
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2.2.2 Processing Demands of Dynamic and Multiple Static Visualizations 

 

In the following, as a consequence of their different characteristics, the benefits and challenges of 

processing dynamic and static visualization formats will be analyzed with respect to the 

processing demands these types of visualizations impose onto learners (cf. Gerjets, Imhof, Kühl, 

Pfeiffer, Scheiter, & Gemballa, 2010). At this, it will be distinguished between dynamic 

visualizations, and two presentation formats of static visualizations: static visualizations where the 

static pictures are presented sequentially one after the other at the same position (static-

sequential), and static visualizations where the static pictures are presented simultaneously next 

to each other at the same time (static-simultaneous). The processing demands that might be 

relevant to describe learning from these different visualization formats are related to five aspects, 

namely 1) access to information concerning visuo-spatial changes, 2) access to information 

concerning temporal changes, 3) transience, 4) visual complexity, and 5) illusions of 

understanding. When discussing these processing demands, it will be distinguished between the 

perceptual and the cognitive processing of these types of visualizations, as suggested by several 

authors (e.g., Schnotz & Lowe, 2008). 

 

Access to information concerning visuo-spatial changes 

Dynamic visualizations present the changes of the position, the form, and the appearance of an 

entity over time, as well as its direction (cf. Lowe, 2003, 2004; Rieber & Kini, 1991). As dynamic 

visualizations are able to continuously display these visuo-spatial changes of an entity, learners 

can directly perceive these changes, rather than having to infer them (cf. spatial inferences, 

Schnotz & Lowe, 2008). In contrast, with static visualizations, learners have to conduct such 

spatial inferences about the changes of the position, the form, the appearance, and the direction 

of an entity by means of mental animation (e.g., Hegarty, 1992; Hegarty & Sims, 1994). However, 

mental animation is supposed to be resource-intensive, and, furthermore harbors the risk that 

learners might inadequately reconstruct the changes of an entity, which may in turn result in an 

incomplete or erroneous mental model of the content (Schnotz & Lowe, 2008). Thus, with respect 

to the demands of mental animation, one can assume that dynamic visualizations might act as an 

external substitute for the internal processes (cf. supplantation, Salomon, 1979), thereby allowing 

for cognitive offloading (Scaife & Rogers, 1996), and reducing unnecessary processing demands, 

namely ECL. This is what Schnotz and Rasch (2005) call the facilitating function of dynamic 

visualizations. Hence, one can assume that the demands of mental animation might be generally 

lower for dynamic than any presentation format of static visualizations.  
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With respect to the different presentation formats of static visualizations, one might 

argue that the demands of mental animation may be less pronounced for static-sequential as 

opposed to static-simultaneous visualizations. This might be the case, because spatial changes 

may be easier retraced, since in static-sequential visualizations these changes are visually 

superimposed as the new picture appears at the same position as the previous one, so that they 

might give an impression of (a fragmented) motion (cf. Imhof, Scheiter, & Gerjets, 2009)1. In a 

similar way, Wells, van Mondfrans, Postlethwait, and Butler (1973) explained their finding of a 

superiority of static-sequential as opposed to static-simultaneous visualizations for conveying 

concepts of motion. They argued that when a learner viewed a static-sequential visualization, 

“the subject focused his eyes on one point while the slides changed, making the object’s change 

of position in each succeeding slide more apparent” (p. 239). Hence, static-sequential 

visualizations might impose less unnecessary demands on working memory (i.e., less ECL) than 

static-simultaneous visualizations.  

 

Access to information concerning temporal changes  

As mentioned above, in contrast to static visualizations, dynamic visualizations do not solely 

contain information concerning visuo-spatial changes, but also possess a temporal dimension (cf. 

Schnotz & Lowe, 2008). Therefore, they can be used to directly depict temporal information. At 

this, they can depict dynamic features like velocity or acceleration, so that this information can be 

directly read-off from the visualization. To clarify this point, this will be exemplified in a different 

domain, namely Kepler’s second law. According to Kepler’s second law, a planet changes its 

velocity when orbiting the sun on an ellipse as a function of its distance to the sun. More 

precisely, the planet is moving faster the nearer it is to the sun, and slower the farer it is away 

from the sun. This dynamic feature, the change of a planet’s velocity, can be directly depicted in a 

dynamic visualization in a continuous way. In contrast, these dynamic features – in the case of 

Kepler’s second law, the continuous changes in velocity of a planet orbiting the sun – are not 

inherent properties of static visualizations, and cannot be directly depicted in static visualizations, 

irrespective of whether the static visualizations are presented sequentially or simultaneously. 

Moreover, usually such dynamic features cannot even be directly inferred from static 

visualizations, but have to be given by an additional source (e.g., text or table). Aligning different 

sources and integrating them mentally and/or conducting inferences about dynamic features (cf. 

                                                           

1
 It should be noted that as with static-sequential visualizations the motion is not displayed continuously, a 

learner still has to mentally animate the gaps between successive static frames. Hence, also static-
sequential visualizations are still supposed to impose processing demands onto a learner due to the need of 
mental animation. 
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temporal inferences, Schnotz & Lowe, 2008) might be cognitive highly demanding, leading to an 

increase in ECL. Lowe (2004, p. 258) arrives at similar conclusions when stating:  

“At best, static depictions can present implicit representations only of dynamic 

content. They therefore require learners to infer the situational dynamics. *…+ In 

contrast, animations have the advantage of being able to present the situational 

dynamics explicitly and appropriately so that the majority of learners’ processing 

capacity could be devoted to comprehending the content directly.”  

Moreover, the process of inferring the dynamics in static visualizations can also be an 

error-prone process (Schnotz & Lowe, 2008). To conclude, dynamic visualizations might be best 

suited to convey dynamic features like changes in velocity.  

 

Transience  

In dynamic visualizations the presented information changes permanently. As a consequence, 

when learning from dynamic visualizations, previously presented information has to be kept in 

working memory, while new incoming information has to be processed and then integrated with 

the information held active in working memory. This may cause a temporal split-attention effect 

(cf. van Gog, Paas, Marcus, Ayres, & Sweller, 2009), and may impose high cognitive demands on 

working memory (e.g., Ayres & Paas, 2007). However, if the changes occur in the same way 

several times (i.e., repetitive changes), for instance, in the domain of planetary motion, this 

possible negative effect of dynamic visualizations should be reduced (cf. Schnotz & Lowe, 2008). 

This also accounts for the domain of the studies of the current thesis: The movement that has to 

be understood in the studies of the current thesis, namely the movement of an undulatory 

swimming fish repeats itself regularly in a periodical way, and is shown several times2. 

With respect to static visualizations, it should be noted that also with static-sequential 

visualizations the information is virtually transient, because each new static picture replaces the 

previous one. Also for static-sequential visualizations this possible negative effect should be 

reduced if the changes are shown several times. For static-simultaneous visualizations, problems 

associated with transience should not occur at all, and hence should not yield higher working 

memory demands, since the information conveyed through all static pictures remains on the 

screen and can directly be read-off. Thereby, with static-simultaneous visualizations, direct visual 

comparisons between different steps in a sequence can be made, and, moreover, the learner can 

regulate his own pace of processing the visualizations (cf. Boucheix & Schneider, 2009; Hegarty, 

Kriz, & Cate, 2003; Mayer, Hegarty, Mayer, & Campbell, 2005).  

                                                           

2
 Note that it is important that not only the movement is repetitive, but also that this movement is shown 

several times. 
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Visual complexity  

Due to the continuous movement that is exclusively displayed in dynamic visualizations, it might 

be perceptually more demanding to select the relevant information (e.g., Jarodzka, Scheiter, 

Gerjets, & van Gog, 2010). This problem is getting even worse, since in dynamic visualizations 

several elements may change simultaneously at different locations at the same time. Thereby, on 

the one hand, thematically less relevant information might distract attention away from the 

thematically more relevant information (Lowe, 1999). Moreover, due to the movement of several 

elements at different locations at the same time, learners are forced to spatially split their 

attention (e.g., Ayres & Sweller, 2005). Lowe (2003) refers to this as an intra-representation split-

attention effect occurring within visualizations, as opposed to an inter-representation split-

attention effect that may occur when learners have to attend to two different representations 

(e.g., text and visualizations). These factors (i.e., continuous movement, distracting movement, 

intra-representational split-attention) might induce a high degree of visual complexity in dynamic 

visualizations, which in turn may impose high demands on learners (e.g., Ayres & Paas, 2007; 

Hegarty, 2004; Hegarty & Kriz, 2008; Lowe, 1999, 2003, 2004; Tversky et al., 2002). In contrast, 

with static visualizations, single relevant states of a changing system can be accentuated. 

Moreover, as there is no continuous change in static visualizations, identifying relevant 

information from a static visualization might be perceptually less demanding, so that the external 

representations may be more likely to be accurately perceived and comprehended (apprehension 

principle; Tversky et al., 2002).  

Concerning different presentation formats of static visualizations, the apprehension 

principle may be more accentuated for static-sequential as opposed to static-simultaneous 

visualizations. While in static-sequential visualizations there is always only one picture presented 

at the same time, in static-simultaneous visualizations, on the other hand, several pictures are 

presented at once. At this, with static-simultaneous visualizations, learners have to decide when 

to attend to which information in the different pictures, and to match the different parts of the 

visualization. These search and match processes may burden the limited capacity of working 

memory, and may also be perceptually demanding. This problem may be even more pronounced, 

since in static-sequential visualizations each picture can be shown in a large size on the computer 

screen, whereas in static-simultaneous visualizations, each single picture usually needs to be 

shown in a smaller size to fit the screen when presented next to each other. It should be noted 

that the smaller size of each picture in static-simultaneous visualizations is not inevitable, as, for 

instance, the size of each picture in static-sequential visualizations could be artificially decreased 

to “control” this factor, or the static-simultaneous visualizations could be shown on a larger 

screen. Nevertheless, even though differences in picture size are not inherent properties of the 
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two visualization formats, for practical reasons these differences are present in many instructional 

materials.  

 

Illusion of understanding 

It is sometimes argued that since dynamic visualizations like videos and animations are commonly 

associated with entertainment – as opposed to any presentation format of static visualizations – 

they may seem to be easy to understand, which in turn may result in an illusion of understanding 

(e.g., Bétrancourt, 2005; Lewalter, 2003; Rebetez, Bétrancourt, Sangin, & Dillenbourg, 2010). In a 

similar way, Schnotz and Lowe (2008) stated that because of their association with entertainment, 

dynamic visualizations may trigger processing strategies that are inadequate for learning. As a 

consequence, at worst, learners may disengage from deeper processing of the content 

(underwhelming, Lowe, 2003, 2004; Salomon, 1984; see also inhibiting function, Schnotz & Rasch, 

2005). It should be noted that in most studies in which similar arguments have been made, there 

has been no direct empirical evidence in favor of an illusion of understanding, or of a shallower 

processing; rather these assumptions have been generated post-hoc in order to explain the 

observed results. A possible exception is a study by Lewalter (2003), where learners were asked to 

think aloud while learning from either dynamic or static visualizations. She observed more 

positive monitoring statements in the dynamic as opposed to the static visualization condition. At 

the same time, learners in the dynamic visualization condition did not outperform learners in the 

static visualization condition. Taken together, this may be interpreted as evidence for an illusion 

of understanding occurring during learning from dynamic visualizations. On the other hand, it 

should also be noted that even though an illusion of understanding might have occurred when 

learning with dynamic as opposed to static visualizations, this did not lead to a shallower 

processing of the content in Lewalter’s study (as measured by means of elaborations). 
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2.2.3 Conclusions for the Current Studies 

 

To sum up, when considering the processing demands of dynamic as opposed to static 

visualizations, one potential challenge of dynamic visualizations related to processing may be that 

they evoke an illusion of understanding, even though this claim has hardly been directly 

investigated. Another potential challenge of dynamic visualizations might lie in their transient 

nature, which, however, is considered to be diminished for dynamic visualizations that show a 

repetitive movement several times. This is the case for the dynamic visualizations of the domain 

of fish locomotion used in the current studies. A last potential challenge of dynamic visualizations 

is that they might suffer from a higher visual complexity than any format of static visualizations. 

This might also account for the dynamic visualizations in the current study, since several elements 

are changing continuously at the same time, making them particularly perceptually harder to 

process.  

However, specifically for a domain where the visuo-spatial changes might be hard to 

mentally animate, dynamic visualizations might be especially helpful, because they depict these 

changes in a direct way. Likewise, if for a given domain the understanding of temporal changes, 

such as changes in velocity is crucial, dynamic visualizations might be best suited to convey such 

information. At this, dynamic visualizations, may reduce unnecessary demands on working 

memory (i.e., decrease ECL), because learners do not need to engage in resource-demanding and 

error-prone processes like spatial and/or temporal inferences. Since ECL is supposed to be 

reduced, cognitive resources might be available that can be devoted to more valuable processing 

activities (i.e., increase GCL). 

The domain of this thesis deals with the physical principles underlying undulatory fish 

locomotion and is characterized on the one hand by visuo-spatial changes that can be regarded as 

hard to mentally animate, and, furthermore, by temporal changes, namely changes in velocity. 

More precisely, this domain addresses the interplay of the trajectory and changes in velocity of a 

fish’s different body parts, the changing sizes of the associated resulting forces, and the related 

swimming speed. Therefore, based on this analysis, and its relation to the chosen kind of 

multimedia instruction, even though the used dynamic visualizations may be perceptually more 

demanding, they nevertheless are supposed to be better suited for conveying a deeper 

understanding of the dynamics underlying the given domain than static visualizations, irrespective 

of how these static visualizations are presented. 

With regard to the presentation format of static visualizations, both, static-sequential and 

static-simultaneous visualizations, possess advantages and drawbacks. This is the case, as on the 

one hand, learning with static-simultaneous visualizations may reduce processing demands, since 
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the information that is depicted by the visualizations can directly be read-off. On the other hand, 

however, static-simultaneous visualizations may load a learner’s working memory, as the content 

may be harder to mentally animate, and, furthermore, decisions have to be made when and how 

to attend to which information. Moreover, static-simultaneous presented visualizations might be 

perceptually more demanding than static-sequentially ones, since more visual search and 

matching processes have to be conducted. This argument will be taken up in the context of cueing 

visualizations (Chapter 4.2). It should be noted that in the remainder of this thesis the distinction 

of static visualizations in static-sequential and static-simultaneous visualizations will be made only 

if the line of reasoning solely accounts for one of these two types of static visualizations. 

Otherwise, the broader term static visualizations will be used.  

In the following, an overview on the research of learning with dynamic and static 

visualizations will be given. At this, factors will be considered that were emphasized in recent 

research and that might influence the effectiveness of learning with these types of visualizations, 

since these factors are also related to the aforementioned processing demands in different ways.  

 



Learning with Multimedia 27 

2.2.4 Overview on Research of Learning with Dynamic and Static Visualizations 

 

In the reminder of this chapter, first, an overview on the current state of research learning with 

dynamic and static visualizations will be given on a global level. Thereafter, factors will be 

introduced that were emphasized in more recent research on learning with these types of 

visualizations.  

2.2.4.1 Global comparisons 

 

At first glance, from a naïve point of view, it may seem plausible to assume that learning with 

dynamic visualizations might be more apt than learning with static visualizations. However, when 

considering the research literature on learning with dynamic and static visualizations, the picture 

that arises remains somewhat unclear (e.g., Höffler & Leutner, 2007; Tversky et al., 2002), and will 

be explicated next. 

In a review by Park and Hopkins (1993), the authors examined 27 studies, in which 15 

studies demonstrated differences in favor of dynamic visualizations, whereas for the other 12 

studies dynamic and static visualizations yielded equal learning outcomes.  

Bétrancourt and Tversky (2000) reviewed 10 studies comparing dynamic and static 

visualizations, of which six showed a superiority of dynamic over static visualizations, whereas for 

the remaining four studies no differences were observable3. 

In a critical review by Tversky et al. (2002), the authors had a rather discouraging view on 

learning with dynamic compared to static visualizations. In their analysis, they listed eleven 

studies where no differences between dynamic and static visualizations could be observed. More 

importantly, however, they re-examined further eleven selected studies and could trace back the 

observed effects of a superiority of dynamic over static visualizations to an inequality in either 

content depicted by the visualizations, or procedures associated with dynamic visualizations. That 

is, on the one hand, in several studies, static visualizations were not informationally equivalent to 

dynamic visualizations. In these studies a lack of informational equivalence was not only due to 

inherent properties of the visualizations themselves that possibly cannot be circumvented (e.g., 

because dynamic visualizations, but not static visualizations, allow showing acceleration). Rather, 

in these studies the authors had failed to at least approximate informational equivalence by, for 

instance, comparing dynamic visualizations to only one static picture instead of multiple static 

pictures. Moreover, besides not being informationally equivalent, in some comparisons of 

                                                           

3
 Note that also additional studies were reviewed that, however, did not focus on a comparison of dynamic 

and static visualizations, and hence will not be considered here any further. 
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dynamic and static visualizations the procedures for dealing with the visualizations were not equal 

(e.g., interactivity was implemented in dynamic visualizations, whereas this was not the case for 

static visualizations). Note that Tversky et al. (2002) did not rule out the possibility that dynamic 

visualizations might be superior to static visualizations for specific purposes, such as for depicting 

continuous changes in time or spatial transformations. However, they suggested that when 

comparing dynamic and static visualizations, these comparisons should be implemented in a way 

that differences can be attributed to the type of visualizations per se, and not to unequal 

information or procedures. It should be noted that even in newer studies (i.e., studies published 

after the review by Tversky et al., 2002), this asking is by no means self-evident, as can be for 

instance seen below in Table 2.1, in which from the 34 studies, eleven studies were not in line 

with this recommendation.  

A meta-analysis by Höffler and Leutner (2007) revealed a medium-sized overall advantage 

of dynamic over static visualizations. In this meta-analysis 26 primary studies were analyzed with 

76 pair-wise comparisons of dynamic and static visualizations. One major criterion for the 

selected studies was that they should correspond to the recommendations of Tversky et al. 

(2002). That is, that the visualizations were basically informational equivalent, and that studies 

containing interactive dynamic visualizations were omitted. Of these 76 comparisons, 21 showed 

a significant superiority of dynamic over static visualizations, two showed a significant superiority 

of static over dynamic visualizations, and for the remaining 52 comparisons no significant 

differences were observable. However, even though only in 21 of 76 studies dynamic 

visualizations were statistically superior, 54 studies at least indicated an advantage of dynamic 

visualizations on a descriptive level, which in total probably accounted for the medium-sized 

overall effect of d = .37 . 

Since this meta-analysis, which included papers published until the year 2004, further 

studies were conducted that compared the effectiveness in learning with dynamic and static 

visualizations. These studies are listed in Table 2.1.  
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Table 2.1 

Effects in Favor of Dynamic Visualizations from Studies Comparing Learning with Dynamic and 

Static Visualizations Published Since 2004 

 Authors Effect for Dynamic Visualizations 

1 Ardac & Akaygun, 2005 
a
 Positive 

2 Arguel & Jamet, 2009 Positive 

3 Ayres, Marcus, Chan, & Qian, 2009 (Exp. 1) Positive 

4 Ayres, Marcus, Chan, & Qian, 2009 (Exp. 2) Positive 

5 Boucheix & Guignard, 2005 Positive 

6 Boucheix & Schneider, 2009
 b

 Positive 

7 Fischer, 2008 (Exp. 2) 
b
 Positive 

8 Höffler, 2007 (Exp. 1) Positive 

9 Höffler, 2007 (Exp. 2) Positive 

10 Imhof et al., 2009
 b

 Positive 

11 Imhof, Scheiter, Gerjets, & Edelmann, 2010 Positive 

12 Iskander & Curtis, 2005 
a
 Positive 

13 Kim, Yoon, Whang, Tversky, & Morrison, 2007
 b

 Positive 

14 Kriz & Hegarty, 2007 
a
 Positive 

15 Lin, Chen, & Dwyer, 2006 Positive 

16 Lin & Dwyer, 2010 Positive 

17 Marbach-Ad, Rotbain, & Stavy, 2008 
a
 Positive 

18 Münzer, Seufert, & Brünken, 2009
 b

 Positive 

19 Pfeiffer, Gemballa, Jarodzka, Scheiter, & Gerjets, 2009 Positive 

20 Rebetez et al., 2010 Positive 

21 Schnotz & Rasch, 2005 
a
 Positive 

22 Stebner, 2009 Positive 

23 Wang, Vaughn, & Liu, 2011 
a
 Positive 

24 Watson, Butterfield, Curran, & Craig, 2010 Positive 

25 Wong et al., 2009 (Exp. 1) Positive 

26 Wong et al., 2009 (Exp. 2) Positive 

27 Wong et al., 2009 (Exp. 3) Positive 

28 Yarden & Yarden, 2010 
a
 Positive 

29 Höffler, 2007 (Exp. 3) Neutral 

30 Höffler, Prechtl, & Nerdel, 2010 Neutral 

31 Kalyuga, 2008 Neutral 

32 Koroghlanian & Klein, 2004 Neutral 

33 Tunuguntla et al., 2008 
a
 Neutral 

34 van Oostendorp & Beijersbergen, 2007 Neutral 

35 van Oostendorp, Beijersbergen, & Solimani, 2008 
a
 Neutral 

36 Zhu & Grabowski, 2006 
a
 Neutral 

37 Lowe, Schnotz, & Rasch, 2011 Negative 

38 Mayer et al., 2005 (Exp. 1) 
a 

 Negative 

39 Mayer et al., 2005 (Exp. 2) 
a
 Negative 

40 Mayer et al., 2005 (Exp. 3) 
a
 Negative 

41 Mayer et al., 2005 (Exp. 4) 
a
 Negative 

42 Scheiter, Gerjets, & Catrambone, 2006 Negative 
a
 Note. Studies that are not methodological sound, for instance, in terms of a “fair” comparison of dynamic and static 

visualizations, as recommended by Tversky et al. (2002). 
b
 Note. These studies included either different types of dynamic visualizations or different types of static visualizations, 

where not every comparison was in favor of dynamic visualizations.  

 

Of these 34 studies with 42 experiments, which are listed in Table 2.1, 28 experiments (66.67 %) 

found a significant superiority of dynamic over static visualizations for at least one knowledge test 
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(Chi-square = 4.67; p = .03). Eight experiments (19.05 %) found no differences between dynamic 

and static visualizations, and six experiments (14.29 %) even found a superiority of static over 

dynamic visualizations. When considering only studies that conform to the recommendations 

stated by Tversky et al. (2002) – an equivalent amount of information and procedures in dynamic 

and static visualizations for at least one comparison – and that can be regarded as methodological 

sound, fourteen of the 42 experiments need to be excluded (marked in Table 2.1). Of these 

remaining 28 experiments, 21 experiments (75.00 %) showed a significant superiority of dynamic 

over static visualizations for at least one knowledge test (Chi-square = 7.00; p < .01), five 

experiments (17.86 %) showed no differences, and two experiments (7.14 %) showed a 

superiority of static over dynamic visualizations. When additionally neglecting the five studies in 

which not every comparison between dynamic and static visualizations was in favor of dynamic 

visualizations, of the remaining 23 experiments still 16 experiments (69.57 %) showed a 

superiority of dynamic over static visualizations, even though the comparison only marginally 

reached statistical significance (Chi-square = 3.25; p = .06). Broadly speaking, these findings 

mirrored the results of the meta-analysis by Höffler and Leutner (2007): The research on learning 

with dynamic as opposed to static visualizations is not as discouraging as suggested by Tversky et 

al. (2002). There might be an advantage of dynamic visualizations, but – as will be discussed in the 

remainder of this section – whether dynamic visualizations will be superior to static visualizations 

may depend on specific boundary conditions.  

Accordingly, as indicated by the global analysis of the reviews and meta-analysis, it might 

not be reasonable to question whether learning with dynamic as opposed to static visualizations 

is more beneficial. Instead of such a global comparison of dynamic and static visualizations, it 

might be more fruitful to take a more differentiated view into account, and to specify under 

which conditions this might be the case (e.g., Bétrancourt, 2005; Hegarty, 2004; Plass, Homer, & 

Hayward, 2009; Schnotz & Lowe, 2008). At this, in recent research several potential moderators 

were emphasized, namely the learning objective, the presentation format of static visualizations, 

learner characteristics as well as design characteristics (Bétrancourt & Tversky, 2000; Höffler & 

Leutner, 2007; Park & Hopkins, 1993; Tversky et al., 2002) that – among other things – are also 

related to the aforementioned processing demands.  
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2.2.4.2  Recent research concerning potential moderators 

 

Learning objective  

When considering a comparison of dynamic and static visualizations, potential benefits of 

dynamic visualizations may depend on the to-be-achieved learning objective. At this, Bétrancourt 

and Tversky (2000) recommended to focus on the observed learning outcomes that either require 

learners to give their answer on the basis of the explicit conveyed content, like in factual 

knowledge tasks, or on basis of inferences drawn from this explicit conveyed content, like in 

transfer tasks. According to Bétrancourt and Tversky, differences in learning from dynamic and 

static visualizations should hardly affect the memorization of explicitly conveyed content, because 

“explicit knowledge can be retrieved from surface processing structures (such as the text based 

representations, or the mental model of the picture)” (p. 322). Rather, differences in the learning 

outcomes achieved by studying dynamic or static visualizations should mainly affect tasks 

requiring a deeper understanding of the content where it is crucial to successfully draw 

inferences, as is the case for transfer tasks4. Therefore, with respect to the kind of knowledge 

tasks introduced earlier, namely, verbal factual knowledge tasks, pictorial factual knowledge 

tasks, and transfer tasks, one would thus mainly expect differences in transfer tasks when 

learning with either dynamic or static visualizations. 

Höffler and Leutner (2007) also examined in their meta-analysis the influence of learning 

outcome measures, namely declarative knowledge, which corresponds to factual knowledge, and 

problem solving, which in this case corresponds to transfer knowledge5. For both types of 

knowledge, dynamic visualizations were more apt than static visualizations with effect sizes that 

can be classified as educational meaningful. However, and surprisingly, this effect was not 

differently pronounced for these two types of knowledge tasks, which is not in line with the 

theoretical considerations proposed by Bétrancourt and Tversky (2000). It should be noted 

though that both factual knowledge tasks and transfer tasks were only assessed in some of the 

cited studies. Therefore, it cannot be ruled out that this finding can be traced back to the fact that 

these studies assessing factual knowledge tasks differed from those assessing transfer tasks on 

further important dimensions, such as the degree to which the applied visualizations were 

decorational. Generally, the meta-analysis by Höffler and Leutner (2007) should be treated with 

                                                           

4
 It should be noted though that this is only assumed to be the case, if the content to be animated depicts, 

at a minimum, changes over time, such as motion, so that there is a reasonable justification to use dynamic 
visualizations at all (cf. Bétrancourt & Tversky, 2000; Park & Hopkins, 1993; Rieber & Kini, 1991). 
5
 For reasons of consistency, in the following it will be referred to factual knowledge and transfer 

knowledge. 
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caution when aiming at detecting moderating variables due to the rather low number of included 

studies (26), and pair-wise comparisons (76), respectively. Hence, the assumption that differences 

in dynamic and static visualizations might be most likely observed for transfer tasks will not be 

rejected at this point.  

To sum up, dynamic visualizations might be best suited for tasks asking for a deeper 

understanding, such as transfer tasks, given the premise that the content that should be conveyed 

contains at a minimum changes over time. 

 

Presentation format of static visualizations 

When comparing dynamic to static visualizations, recently the influence of design characteristics 

of the static visualization conditions, specifically the presentation modes of static visualizations, 

has become a topic of major interest (Boucheix & Schneider, 2009; Imhof et al., 2009; Imhof et al., 

2010; Kim et al., 2007; Lowe et al., 2011; Wells et al., 1973). These different presentation modes 

of static visualizations (i.e., static-sequential and static-simultaneous visualizations) may have an 

influence on their instructional effectiveness, since – as explicated previously – they may impose 

different processing demands onto learners. 

Up to now, only little research has been conducted regarding the comparison of dynamic 

visualizations to different formats of static visualizations. These studies yielded inconclusive 

results: While in some studies a superiority of dynamic visualizations over static-sequential, but 

not over static-simultaneous visualizations was found (Boucheix & Schneider, 2009; Imhof et al., 

2009), in other studies a superiority of dynamic over static-simultaneous, but not over static-

sequential visualizations was observed (Kim et al., 2007). Again, other studies found that dynamic 

visualizations were superior to both, static-sequential and static-simultaneous visualizations 

(Imhof et al., 2010; Wells et al., 1973). A study by Lowe et al. (2011) even revealed another 

pattern of results, in that static-sequential visualizations were superior to dynamic as well as 

static-simultaneous ones.  

To roughly summarize these studies: In most cases dynamic visualizations were superior 

to at least one type of static visualizations, whereas no clear advantage could be shown in favor of 

any of this two static formats. Nevertheless, to rule out that potential differences between 

dynamic and static visualizations are valid only for one presentation format of static visualizations, 

it might be reasonable to compare dynamic visualizations with static-sequential as well as static-

simultaneous visualizations to control for this factor6. 

 

                                                           

6
 For reasons of economy, this was only done after the instructional material was considered to be 

optimized, that is, in Study 3 of this thesis. 
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Learner characteristics 

It is often recommended to take learner characteristics into account when considering learning 

with dynamic and static visualizations (e.g., Bétrancourt & Tversky, 2000; Boucheix & Schneider, 

2009; Hegarty & Kriz, 2008; Höffler & Leutner, 2007; Park & Hopkins, 1993). Thereby, in recent 

research especially the role of spatial abilities received attention, since they are reckoned to play 

an important role in learning with dynamic and static visualizations (cf. Hegarty & Kriz, 2008; 

Hegarty & Waller, 2005; Höffler, 2010).  

The construct of spatial abilities consists of several factors (see Hegarty & Waller, 2005 for 

an overview). The most prominent distinction is the one by Carroll (1993), which in turn is based 

on Lohman, Pellegrino, Alderton, and Regian (1987). According to Carroll (1993), spatial abilities 

consist of five factors, namely visualization (VZ), spatial relations (SR), closure speed (CS), closure 

flexibility (CF), and perceptual speed (PS). As defined by Carroll (1993), “tests of factor VZ 

emphasize power in solving increasingly difficult problems involving spatial forms, whereas tests 

of factor SR emphasize speed in solving relative simple spatial analysis problems” (p. 315). In 

recent research on learning with dynamic and static visualizations, especially the factor of VZ, and 

occasionally also SR, are supposed to play an important role in learning with the different 

visualization formats (e.g., Boucheix & Schneider, 2009; ChanLin, 2000; Hays, 1996; Höffler, 2007; 

Huk, 2006; Koroghlanian & Klein, 2004; Stebner, 2009; Yang, Andre, & Greenbowe, 2003; see also 

Höffler, 2010, for a review), whereas the factors CS, CF, and PS are usually neglected. Accordingly, 

in almost all studies where spatial abilities were assessed, the spatial ability tests used were part 

of the factor VZ, or SR (Blake, 1977; ChanLin, 2000; Hegarty et al., 2003; Koroghlanian & Klein, 

2004; Stebner, 2009), or they consisted of a mixture of several subtests, where at least one test 

loaded on the factor VZ or SR, respectively (Boucheix & Schneider, 2009; Hays, 1996; Münzer et 

al., 2009).  

In general, there is mostly a positive relationship between spatial abilities and 

performance when considering learning with dynamic and static visualizations (e.g., Hegarty et al., 

2003; Imhof et al., 2009, 2010; Large, Beheshti, Breuleux, & Renaud, 1996; Münzer et al., 2009; 

Narayanan & Hegarty, 2002; Stebner, 2009; Wender & Mühlböck, 2003; see also Hegarty & Kriz, 

2008 as well as Höffler, 2010, for a review), indicating that stronger spatial abilities are beneficial 

for both, learning with dynamic as well as static visualizations. This may be construed in a way 

that high spatial abilities allow learners to better perceive and extract visual information in 

learning with dynamic visualizations on the one hand, and to better mentally animate when 

learning with static visualizations on the other hand (cf. Hegarty & Kriz, 2008). 

Nevertheless, this finding does not rule out that the influence of spatial abilities is 

differently pronounced when learning with dynamic and static visualizations. According to Mayer 
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and Sims (1994), there are two conflicting hypotheses concerning the moderating role learning 

prerequisites can play in learning with dynamic visualizations: The ability-as-enhancer hypothesis, 

and the ability-as-compensator hypothesis. The ability-as-enhancer hypothesis states that if 

learners possess better learning prerequisites, they will benefit more strongly from dynamic 

visualizations. Conversely, the ability-as-compensator hypothesis states that especially learners 

with weaker learning prerequisites will benefit from dynamic visualizations, since they might be 

overwhelmed by inference and mental animation processes that are required when learning with 

static visualizations. When considering spatial abilities as a learning prerequisite, the ability-as-

compensator hypothesis is mostly advocated. Accordingly, especially learners with weaker spatial 

abilities might struggle when having to mentally animate changes when receiving static 

visualizations, so that for these learners dynamic visualizations might be particularly helpful. This 

is assumed to be the case, because on the one hand, the process of mental animation, which has 

to be conducted when receiving static visualizations, is highly correlated with spatial ability (e.g., 

Hegarty & Kozhenikov, 1999; Hegarty & Sims, 1994). On the other hand, when learners with low 

spatial abilities receive dynamic visualizations, they solely need to perceive the visuo-spatial 

changes, a process, which might be less dependent from spatial abilities. In line with this 

reasoning, Hays (1996) observed that learners with low spatial abilities profited more from 

dynamic than from static visualizations. Moreover, for learners with stronger spatial abilities, 

whose working memory is not highly loaded when mentally animating, benefits of presenting 

dynamic visualizations might emerge to a lesser extent. Therefore, one might argue that dynamic 

visualizations might act as a compensator for learners with weaker spatial abilities, and hence 

might play a moderating role in learning with dynamic and static visualizations (cf. Hegarty & Kriz, 

2008; Höffler, 2010). 

There are several pieces of evidence that speak in favor of the ability-as-compensator 

hypothesis. On the one hand, there are a couple of studies, in which a moderating role of spatial 

abilities in learning with dynamic and static visualizations could be observed (Blake, 1977; 

Boucheix & Schneider, 2009; Höffler, 2007; Exp. 1 & Exp. 2), thereby supporting the ability-as-

compensator hypothesis. Moreover, the influence of spatial abilities on learning with either 

dynamic or static visualizations was examined in a recent meta-analysis by Höffler (2010) in which 

studies were incorporated that investigated the influence of spatial abilities on either static 

visualizations, or dynamic visualizations, or on both, dynamic and static visualizations. Results 

revealed that spatial abilities had a positive influence on learning with both, dynamic as well as 

static visualizations. Furthermore, in line with the ability-as-compensator hypothesis, the mean 

effect size for the influence of spatial abilities on learning with static visualizations was significant 
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higher than the mean effect size for the influence of spatial abilities on learning with dynamic 

visualizations.  

It should be noted that somewhat related to the ability-as-compensator hypothesis, there 

is some evidence (Schnotz & Rasch, 2005; Exp. 1) that learners with weaker learning prerequisites 

(however in this case a combination of intelligence and prior knowledge, but not spatial abilities) 

learned longer with static visualizations than their counterparts receiving dynamic visualizations. 

This finding might be interpreted as suggesting that learners provided with static visualizations 

may possibly try to compensate for the demands of mental animation by watching the static 

visualizations longer than learners who are provided with dynamic visualizations. Such a 

compensation strategy might be more accentuated for learners with weaker learning 

prerequisites.  

The abovementioned explanations concerned the influence of spatial abilities in learning 

with dynamic as opposed to static visualizations in general. However, one may assume that the 

presentation format of static visualizations might also have implications with regard to the ability-

as-compensator hypothesis. More precisely, in Chapter 2.2.2 it was argued that the demands of 

mentally animating visuo-spatial changes with static-sequential as opposed to static-simultaneous 

visualizations might be less pronounced. If this would be the case, the assumed moderating role 

of spatial abilities might be more accentuated, when comparing dynamic visualizations with 

static-simultaneous visualizations as opposed to static-sequential visualizations. However, it 

should also be noted that there is no empirical evidence for this assumption in the few conducted 

studies, which investigated this topic (Boucheix & Schneider, 2009; Imhof et al., 2010). 

To sum up, especially when considering learning with dynamic and static visualizations, in 

line with the ability-as-compensator hypothesis, one might expect dynamic visualizations to be 

particularly helpful for learners with weaker spatial abilities. Thereby, it is recommended to use a 

spatial ability test that belongs to the factors VZ or SR, respectively. 

 

Design characteristics of dynamic and static visualizations 

In the abovementioned reviews and meta-analysis (Bétrancourt & Tversky, 2000; Höffler & 

Leutner, 2007; Park & Hopkins, 1993; Tversky et al., 2002), it has been suggested to take design 

characteristics of the multimedia instruction into account, since they may influence learning with 

dynamic and static visualizations differently. This suggestion was taken up in several of the more 

recent studies. At this, as abovementioned, some of these studies focused on the presentation 

format of static visualizations (e.g., Boucheix & Schneider, 2009; Imhof et al., 2009, 2010; Kim et 

al., 2007; Lowe et al., 2010). Several of the other studies aimed at counteracting problems in 

learning with dynamic as compared to static visualizations.  
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At this, in most of these studies, a goal was to cope with the problem of transience in 

learning with dynamic visualizations as opposed to static visualizations. For instance, Arguel and 

Jamet (2009) as well as Rebetez et al. (2010) investigated the influence of adding static pictures to 

an animation (Rebetez et al. additionally varied learning alone as opposed to learning in 

collaboration). Whereas adding snapshots to dynamic visualizations was beneficial in the study by 

Arguel and Jamet (2009; Exp. 1), and led to better learning outcomes as compared to dynamic 

visualizations without snapshots or static visualizations, in the study by Rebetez et al. (2010), it 

had no influence on learning outcomes; rather, there was a main effect in favor of dynamic 

visualizations.  

Another potential solution to reduce the problems associated with transience in dynamic 

visualizations compared to static visualizations might lie in giving learners control over the pacing 

of dynamic visualizations (i.e., self-pacing). This was explicitly examined in a study by Kriz and 

Hegarty (2007; Exp. 1) as well as in a study by Boucheix and Guignard (2005). Results in both 

studies revealed that dynamic visualizations led to better performance compared to static 

visualizations, while the absence or presence of self-pacing had no effect. Other studies did not 

directly explore the absence and presence of self-pacing, but solely implemented dynamic 

visualizations that could be paced by learners and compared them to static visualizations. While in 

a study by Scheiter et al. (2006), self-paced dynamic visualizations led to even inferior results 

compared to static visualizations, in a study by Wang et al. (2011), self-paced dynamic 

visualizations led to a better performance than static visualizations. To sum up, the research on 

how to cope with the demands of dynamic visualizations associated with transience is 

inconclusive. Irrespective of that fact, and as was explicated in Chapter 2.2.2, transience is 

assumed to play a negligible role for the dynamic visualizations used in the studies of the current 

thesis.  

However, transience is not the only potential drawback in learning with dynamic 

visualizations, since they may also possess a comparatively high degree of visual complexity. But, 

there are hardly any studies that examined how to improve dynamic visualizations (in comparison 

to static visualizations) by reducing this latter drawback. This point will be taken up again in 

Chapter 4, when design characteristic that aim at reducing the processing demands associated 

with the visual complexity of dynamic visualizations will be described in more detail.  

In a nutshell, this literature overview based on the existing reviews, the meta-analysis, 

and the recently conducted studies point to the fact that the comparison of dynamic and static 

visualizations should go beyond a global comparison (e.g., Bétrancourt, 2005; Hegarty, 2004; 

Scheiter & Gerjets, 2010). Thereby, first, it should be assured that it is a fair comparison as 

recommended by Tversky et al. (2002). When taking a more differentiated view, one might 
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consider why and for which purpose (learning objective), as well as for whom (learner 

characteristics) one might expect differences when learning with dynamic and static 

visualizations. Furthermore, it seems reasonable to investigate the potentials of dynamic 

visualizations as compared to static visualizations by taking design characteristics into account 

that aim at solving particular problems that are associated with learning from dynamic 

visualizations. By doing so, more meaningful conclusions might be drawn about the instructional 

effectiveness of dynamic as opposed to static visualizations. 
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2.3 Conclusions 

 

Taken together, in line with the CTML, one would assume a better developed pictorial and 

integrated mental model when learning with multimedia as compared to text alone. Since the 

pictorial and integrated mental model might be best reflected by pictorial and transfer tasks, 

respectively, the benefits of multimedia should particularly emerge for these tasks. Derived from 

the functions that visualizations might play when added to text, learning with multimedia should, 

on the one hand, reduce unnecessary processing demands (i.e., ECL), and, moreover, should 

support a more elaborate processing of the content (i.e., GCL).  

With regard to different types of visualizations, for the domain at hand – a domain where 

the understanding of the interrelations of dynamic features is crucial – one might consider 

dynamic visualizations, as compared to static visualizations, to be especially helpful. This is 

assumed to be the case, because on the one hand, a potential drawback of dynamic visualizations, 

namely their transience is diminished, since the depicted movement is shown several times. 

Moreover, the dynamic visualizations for the domain at hand allow for an immediate and 

continuously access to information concerning visuo-spatial changes, as well as temporal changes. 

Thereby, in contrast to learning with static visualizations, learners do not need to conduct 

resource intensive and error-prone processes like mentally animating visuo-spatial changes and 

inferring dynamic features. In terms of CLT, this should correspond to a decrease in ECL, thereby 

leaving resources available that can be devoted to GCL. With respect to learning outcomes, these 

benefits of dynamic visualizations should be best reflected in performance on transfer tasks. With 

regard to learner characteristics, one may assume that the benefits of dynamic visualizations are 

especially pronounced for learners with weaker spatial abilities, and only to a lesser extent for 

learners with stronger spatial abilities. These abovementioned assumptions will be examined in 

Study 1. 

Furthermore, to better understand learning from text, static and dynamic visualizations, 

and the functions the visualizations may serve for, process data might be particularly helpful, 

because they might give deeper insights in the associated cognitive processes when learning with 

this kind of multimedia instruction. At this, assumptions like the one of a more elaborate 

processing when visualizations are added to text can be examined more directly. This topic of 

assessing and analyzing cognitive processes will be considered in more detail in Study 1 of the 

current thesis.  

However, even though dynamic visualizations are supposed to be best suited to convey 

the content of the domain at hand, a potential drawback of dynamic visualizations, namely their 
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visual complexity, might still be apparent in Study 1. To further optimize learning with dynamic 

visualizations, it might be necessary to counteract the potential drawbacks arising from visual 

complexity. That is on the one hand the inter-representational split-attention effect, which might 

be especially problematic for visualizations that possess a high degree of visual complexity, and on 

the other hand the visual complexity within dynamic visualizations. This issue will be taken up 

again after Study 1.  
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3 Study 1: Can Differences in Learning Strategies Explain the 
Benefits of Learning From Static and Dynamic 
Visualizations?7 

 

The first goal of Study 1 was to establish the multimedia effect for the current set of materials by 

determining that adding visualizations to text, compared to only text, helps to gain a deeper 

understanding of the domain. If the multimedia effect would not be given and text was sufficient 

for an adequate understanding of this kind of learning material, there would hardly be a reason to 

expect differences in learning with dynamic and static visualizations accompanied by text. A 

second goal was to investigate whether dynamic visualizations would be more apt for learners to 

achieve a deeper understanding than static visualizations, and if spatial abilities would moderate 

learning with dynamic and static visualizations. A third goal was to get further insights in the 

cognitive processes when learning with the used instructional material, that is either text, or text 

and dynamic visualizations, or text and static visualizations. To achieve this goal, think-aloud 

protocols (cf. Ericsson & Simon, 1993), as well as behavioral data during learning were assessed.  

When applying the think-aloud procedure, participants are asked to think aloud while 

concurrently dealing with learning content (Ericsson & Simon, 1993). According to Ericsson and 

Simon, the think-aloud procedure is not supposed to interfere with the learning process itself as 

long as decisive guidelines are followed, such as not prompting the learners to verbalize certain 

aspects of the content. When assessing cognitive processes via verbal protocols, these verbal data 

have to be coded in order to classify the cognitive processes that took place. A systematic account 

of the different cognitive processes that can take place during learning with different multimedia 

instruction has been provided by Weinstein and Mayer (1986) in their seminal work on learning 

strategies, which also underlies the active processing assumption of the CTML. According to 

Weinstein and Mayer (1986, p. 315), learning strategies “can be defined as behaviors and 

thoughts that a learner engages in during learning and that are intended to influence the learner’s 

encoding process”. The quality of this encoding process is then supposed to affect learning 

outcomes. Weinstein and Mayer (1986), among other things, distinguish between rehearsal and 

elaboration strategies, as well as meta-cognitive strategies, such as comprehension monitoring 

strategies. Rehearsal strategies can be regarded as strategies where learners mainly recapitulate 

what was explicitly displayed in the multimedia instructions and that contribute to the 

                                                           

7
 This chapter is based on: Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can differences in 

learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & 

Education, 56, 176-187. 
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memorization of facts, but not to a deeper understanding. Elaboration strategies on the other 

hand are supposed to be involved in the construction and integration of new information, and 

should contribute to a deeper understanding of the content. Elaboration strategies can comprise 

processing activities such as connecting new content to already existing knowledge, as well as 

reasoning and inferring content that is not explicitly conveyed through the multimedia 

instruction. Comprehension monitoring strategies comprise activities that refer to a checking of 

one’s own understanding of the multimedia instruction, which can be either positive or negative. 

This learning strategy classification laid the foundation for the formulation of the CTML’s active 

processing assumption (see also Kombartzky, Ploetzner, Schlag, & Metz, 2010), and provides 

useful categories for distinguishing among different cognitive processes during learning. In line 

with this reasoning, the classification of cognitive processes for verbal data as learning strategies 

was successfully implemented in a study by Lewalter (2003). A similar coding scheme was used by 

Butcher (2006), with the categories paraphrases, which is essentially the same as rehearsal 

strategies, elaborations, self-explanation inferences and monitoring statements. Additionally, 

Butcher used the category errors (i.e., erroneous statements), which was also incorporated in the 

coding scheme of Study 1, as it may yield insight into misconceptions that arise during learning. 

More details about the coding scheme are provided in the method section of Study 1. 

By assessing think-aloud protocols, often articulated assumptions – as derived from the 

functional view on learning with multimedia (cf. Chapter 2.1.2) – about learning with text and 

visualizations as opposed to text might be investigated more directly. Moreover, with regard to 

the cognitive processes arising when learning with dynamic and static visualizations, there is 

hardly any research investigating the articulated claims more directly by means of think-aloud 

protocols (for instance such as an illusion of understanding in learning with dynamic 

visualizations). More precisely, to the author’s knowledge there is only one study (Lewalter, 2003) 

in which think-aloud protocols were used to assess the cognitive processes associated with 

learning with these types of visualizations in a multimedia context. The results of this study 

revealed that learners in the static compared to the dynamic visualization condition more often 

reproduced what had been described in the learning environment (rehearsal), and that this 

approach generally contributed to a better performance in (verbal) factual knowledge tasks, but 

not in transfer tasks. Also, learners in the static visualization condition more often made 

statements regarding the planning and regulation of further steps in learning, which was 

associated with a higher performance in transfer tasks. Lastly, learners in the dynamic 

visualization condition more often stated that they had understood the content (positive 

monitoring), even though this was not the case.  
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It should be noted though that participants in Lewalter’s study were only asked to think 

aloud while watching visualizations, but not while reading the text. However, in Study 1 of this 

thesis, a topic of interest concerned the cognitive processes of participants while reading text and 

the interplay between text and visualizations as opposed to text alone, which already points to 

one crucial difference with regard to the research questions between the study of Lewalter (2003) 

and Study 1. Another, rather methodological difference between these studies was that in Study 1 

of this thesis, a goal was to investigate these processes under more ecologically valid conditions: 

For instance, whereas in the study by Lewalter, text and visualizations were each presented on 

separate pages, never next to each other, in the current Study 1 text and visualizations were 

presented simultaneously. Moreover, in Lewalter’s study learners had no opportunity to navigate 

backwards in order to re-examine the multimedia material. In contrast, in the Study 1 learners 

could navigate back and forth through the learning environment, and decide by themselves when 

and how often to watch the visualizations.  

 

3.1 Hypotheses and Research Questions 

 

First, the multimedia effect was expected to apply. With respect to learning outcomes, learners 

provided with text with dynamic or static visualizations should outperform learners provided with 

only text. This superiority should be more pronounced for pictorial tasks as well as transfer tasks 

as opposed to verbal factual knowledge tasks. With regard to processing demands, adding 

visualizations to text should offload working memory as compared to receiving only text, and 

thereby decrease ECL. Moreover, it should also lead to a more thorough processing of the 

content, and, hence, in an increase in GCL. Concerning the assessed cognitive processes as coded 

by learning strategies, a more thorough processing of the content might be reflected by more 

elaborations. Also, in line with the functional view that was outlined in Chapter 2.1.2, it was 

assumed that learning with text alone as opposed to learning with text and visualizations would 

lead to more uncertainty about the domain. With regard to learning strategies, this uncertainty 

might be reflected by more erroneous statements (cf. Butcher, 2006), as well as more negative 

monitoring statements, and on the other hand to fewer positive monitoring statements.  

Second, for the domain of the study at hand, dynamic visualizations were expected to be 

superior to static visualizations with respect to learning outcomes, and specifically transfer tasks. 

Correspondingly, with respect to processing demands, dynamic visualizations were expected to 

decrease ECL. As was explicated in Chapter 2.2.2, inferring spatial and temporal changes with 

static visualizations may be an error-prone process (Schnotz & Lowe, 2008). Concerning learning 
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strategies, this might be reflected in comparatively more erroneous statements as well as more 

negative monitoring statements regarding the content when learning with static visualizations. 

Moreover, it was assumed that learners with dynamic visualizations would produce comparatively 

more positive monitoring statements, fewer rehearsal statements, and fewer statements about 

the planning and regulation of further steps in learning (see also Lewalter, 2003). 

Third, according to the ability-as compensator hypothesis, spatial abilities were expected 

to moderate the effectiveness of learning with these two different types of visualizations: The 

superiority of dynamic over static visualizations should be even more pronounced for learners 

with weaker spatial abilities than for learners with stronger spatial abilities. Alternatively, as 

mentioned in Chapter 2.2.4.2, learners in the static visualization condition might attempt to 

compensate for the drawbacks of static visualizations, and might therefore decide to watch the 

visualizations more often to understand the dynamic content. Again, this may be especially the 

case for learners with weaker spatial abilities.  

 

3.2 Method 

3.2.1 Participants and Design 

 

Seventy-five students with various educational backgrounds from the University of Tuebingen, 

Germany, participated in the study in return for either course credit or payment. Due to technical 

problems, the incomplete data from three participants had to be excluded. The remaining 72 

students were 45 female and 27 male participants (average age M = 24.32 years, SD = 3.10). The 

design comprised three conditions: a text-only condition (TOC), a condition that combined text 

with dynamic visualizations (DVC), and a condition that combined text with static visualizations 

(SVC), at which 24 participants served in each condition.  

 

3.2.2 Instructional Materials 

 

The computerized instructional material dealt with the physical principles underlying undulatory 

fish locomotion. The learning environment consisted of an introduction, where the concept of a 

parallelogram of forces was explained, as well as of a learning phase. The introduction contained 

250 words and four static visualizations that illustrated the different steps in constructing a 

parallelogram of forces, and was the same for all three conditions. Subsequently, the learning 

phase began, which was subject to experimental manipulation. The expository text (1,513 words) 
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was adequately comprehendible that the average learner could answer all questions after 

reading. The text of the learning phase was distributed across thirteen pages. Learners could 

navigate through the learning environment by clicking a “Next”-button or a “Back”-button, 

respectively. In all conditions, the same written text was presented on the left half of the screen. 

Written text as well as self-pacing was implemented to ensure that think-aloud protocols could be 

assessed properly. For participants of the text-only condition, the right half of the screen was 

blank.  

For the DVC, dynamic visualizations were presented on the right half of the screen, and 

the first frame of a dynamic visualization was presented on the screen until the visualization was 

started by clicking a “Play”-button (see Figure 3.1). To ensure that learners were playing the 

whole dynamic visualization, the “Next”-button of a page appeared only after a dynamic 

visualization had ended. When the dynamic visualization ended, the last frame remained visible 

on the screen. Learners could then either replay the visualizations (and/or read the text, 

respectively) or move on to the next page. Except for pressing the “Back”-, “Next”-, and “Play”-

button, no further interactivity was implemented in the learning environment. The DVC consisted 

of one photorealistic video and eleven computer-generated animations (cf. Figure 3.1). The video 

was displayed at the beginning of the learning phase, and showed various fish applying different 

locomotion patterns that have developed in the course of evolution. The computer-generated 

animations, which contained both, rather photorealistic as well as more schematized illustrations, 

depicted the underlying physical principles of an undulatory (i.e., wave-like) swimming fish. At 

this, they displayed translations, transitions, and transformations (cf. Lowe, 2003, 2004). More 

precisely, these computer-generated animations conveyed information about the interplay of the 

trajectory and velocity of the body parts, the corresponding displacement of water, as well as the 

relation between these variables, and the size of the associated resulting forces and their 

direction. These forces were represented as arrows, and continuously varied in length and spatial 

orientation depending on the force’s strength and direction, and can be regarded as an example 

for transformations. An example for translations would be the movement of the caudal fin, and 

for transitions, an example would be the displaced water that disappears from the visualization. 

Moreover, the animations depicted how the different forces that act upon different segments of 

the fish body add up or cancel each other out, respectively. Sometimes, in crucial states, the 

animation stopped and verbal labels for these states appeared.  

In contrast to the DVC, the SVC consisted of a sequence of extracted frames from the 

corresponding dynamic visualizations. In case labels appeared in the dynamic visualizations, the 

frames of the SVC also comprised the same labels to keep the static visualizations as similar as 

possible to the dynamic visualizations regarding the available information. These frames were 
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presented sequentially one after the other once a learner had clicked on the “Play”-button, and 

contained between nine to sixteen frames depending on the corresponding dynamic visualization. 

The condition with static visualizations was identical to the DVC in terms of navigation, 

interactivity, resolution, and size of the visualizations. Also, the duration of a sequence of static 

visualizations was identical to the duration of the corresponding dynamic visualizations. 

 

 

Figure 3.1. Snapshots of the learning environment for the visualization conditions (original text in 

German).  

3.2.3 Measures 

 

A questionnaire with respect to the attitudes towards biology and physics, as well as a 

prerequisite knowledge test served as control variables, and a spatial ability test served as a 

moderator variable (and also as a control variable). The dependent measures consisted of 

variables addressing the use of the learning environment (i.e., learning time and frequency of 

playing the visualizations), statements derived from the think-aloud protocols, cognitive load 

items, and several learning outcome measures. 

Attitudes towards biology and physics. The questionnaire was an adapted version of an 

attitude scale towards biology by Russell and Hollander (1975). For seven of the fourteen items of 
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that attitude scale, the word “biology” was substituted by “physics”, with the aim of not only 

being able to measure attitude towards biology, but also to measure attitudes towards physics. 

The fourteen items of that questionnaire had to be rated on a 5-point Likert scale, ranging from 1 

(“I strongly disagree”) to 5 (“I strongly agree”). The wording of the fourteen questions is provided 

in Appendix A (in their original German version). For further analysis, the negative formulated 

items were recoded, so that the higher a score is on the scale, the more positive a participant’s 

attitude is towards biology or physics, respectively.  

Prerequisite knowledge. The prerequisite knowledge test consisted of 5 multiple-choice 

questions asking for the second and third Newton axioms, the physical definition of forces, the 

characteristics of a harmonic oscillation, and knowledge about velocity and acceleration (see 

sample item below). A person’s knowledge about these basic definitions and principles was 

considered a beneficial prerequisite for more easily achieving an understanding of the topics 

explained in the current study. Hence, it was not the aim of testing for a deeper understanding of 

physical concepts or principles that were unlikely to be present in the used student sample. For 

each correct answer to a question, learners were assigned one point, and for each wrong answer, 

one point was subtracted. Within a question, however, learners could receive a minimum of zero 

points, resulting in a maximum of nine points (3 items with 1 correct answer, 2 items with 3 

correct answers). 

Example of a question from the prerequisite knowledge test 

According to Newton’s second law of motion, a force F is calculated from 

a) the product of mass and time 

b) the product of mass and acceleration 

c) the product of time and impulse 

d) the product of impulse and acceleration 

 

Spatial ability. To control for individual differences in spatial abilities, and to examine their 

potential moderating role, the mental rotation test (MRT) was administered (Vandenberg & Kuse, 

1978). As especially learning with the static visualizations used in this study required the ability to 

mentally rotate and manipulate spatial objects (e.g., to imagine the movement of the caudal fin), 

the MRT – which loads on the factor VZ of spatial abilities – was applied, since the MRT was 

assumed to fit well to these requirements. The MRT consists of 20 items, whereby each item 

comprises a complex three-dimensional block figure and four alternative figures as multiple-

choice answer options. For each item, the participant has to choose, which two of the four 

alternative figures are identical to the target when (mentally) rotated. There is a time limit of six 

minutes for working on the MRT. For each correctly identified figure one point was given, and for 
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each wrong identified figure one point was subtracted, resulting in a maximum of 40 points and a 

minimum of -40 points.  

Use of the learning environment. Because learners could decide how long they wanted to 

learn, learning time served as dependent variable. Furthermore, as learners in the two illustrated 

conditions could decide on how often to play the visualizations, the frequency of playing the 

visualizations was registered as another dependent variable. Due to recording problems, the data 

analyses of the use of the learning environment could only be conducted with the data of 71 

instead of 72 participants. 

Think-aloud protocols. The categories for coding the protocols were built on an adapted 

version of Butcher’s (2006) and Lewalter’s (2003) coding schemes, and were refined by analyzing 

sub samples of the protocols. The segmentation of the protocols was at a small grain size, in 

which sentences, subordinate clauses, or utterances preceded and followed by a pause were 

considered as separate segments (cf. van Gog, Paas, van Merriënboer, & Witte, 2005). Fifteen 

protocols were coded independently by two raters according to the refined coding scheme, with 

an inter-rater reliability of .73 (Cohen’s kappa). As inter-rater reliability was considerably good 

(van Someren, Barnard, & Sandberg, 1994), one rater who was blind with respect to the research 

questions coded the remaining protocols, and only the coding of this rater was used for further 

data analyses. To code the protocols, the software tool MEPA 4.10 (Erkens, 2005) was used. For 

each participant, the number of codes for each category was counted. Due to recording problems, 

the data analyses of the think-aloud protocols could only be conducted with the data of 71 

instead of 72 participants.  

The main categories were rehearsal, elaboration, monitoring, erroneous statements, and 

planning for further learning (cf. Butcher, 2006; Lewalter, 2003). The category rehearsal referred 

to statements, which solely reproduced what had been explicitly described in the learning 

environment. The category elaboration was divided in two subcategories, namely activation of 

knowledge and generative inferences. The subcategory activation of knowledge referred to 

statements, which showed strategies of linking the content to prior knowledge, or to what had 

already been learned from the instructional environment, whereas the subcategory generative 

inferences comprised statements, which referred to new deeper insights about the content and 

went beyond what was covered by the instructional material studied at the time the statement 

was made. The category monitoring referred to statements, which showed an evaluation of the 

actual learning process, which was either judged as positive or as negative. The category 

erroneous statements consisted of wrong reproductions or faulty elaborations. The category 
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planning for further learning referred to statements aiming at the planning for further steps in 

learning8. Table 3.1 provides examples of the abovementioned categories.  

 

Table 3.1 

Coding Scheme of the Categories and Their Respective Examples 

Categories Examples 

Rehearsal “every body section is considered as a propelling element”  

Activation of 

knowledge 

“when I swim, I also try to push myself off the water”, or “as was mentioned 

before, the reaction force is dependent of the acceleration and height of the 

moving fish” 

Generative 

inferences 

“if the lateral forces would not cancel each other out, the fish would swim 

diagonally and not straight on”  

Positive 

monitoring 

“ok, this is clear” 

Negative 

monitoring 

“I do not understand!” 

Erroneous 

statements 

“ok, at the zero baseline, the velocity of a propelling element is lowest” 

Planning for 

further learning 

“now I just will watch the animation, maybe this will help”, or “I have to read 

this again” 

 

Cognitive load measures. To be able to distinguish between ECL and GCL, two items were 

used to measure cognitive load after the learning phase. The item perceived difficulty of the tasks 

(“How difficult was it for you to understand the contents?”) was supposed to measure ECL, 

whereas the item mental effort (“How much effort did you invest in order to understand the 

content?”) was supposed to measure GCL (cf. Gerjets, Scheiter, Opfermann, Hesse, & Eysink, 

2009). Each item had to be rated by the participant on a scale ranging from 1 to 21.  

Knowledge tests. Learning outcomes were measured by means of verbal factual 

knowledge tasks (thirteen multiple-choice questions), three pictorial recall tasks, and eleven 

transfer tasks (see sample items of each test below). A maximum of 25 points could be achieved 

for the verbal factual knowledge test, a maximum of 6 points could be achieved for the pictorial 

recall test, and a maximum of 29 points could be achieved for the transfer test. All correct 

                                                           

8
 Statements about the design of the learning environment, as well as statements that could not be 

assigned to any category (e.g., program-related questions or isolated expressions such as “ok”), were 
subsumed to a rest category, which, however, will be neglected in the following. 
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answers to the verbal factual knowledge tasks had been explicitly mentioned in the text of the 

instructional material. The pictorial recall tasks were posed in pictorial format, and required the 

participant to work with pictures. The correct answer had been described in the text, and could 

additionally be seen in the two visualization conditions. The eleven transfer tasks were posed in 

verbal as well as in pictorial form. To solve the transfer tasks, learners had to apply what they had 

learned to new situations and problems. The transfer questions can be considered near transfer 

tasks in that the questions always referred to the situation of objects moving in water (e.g., fish, 

boats) under varying conditions (e.g., moving backwards). Hence, the context in which the 

questions were embedded was identical to that of the learning materials, but they required 

modifications of what had been learned to accommodate the task requirements (cf. Barnett & 

Ceci, 2002).  

The pictorial recall tasks as well as the transfer tasks were scored by two independent 

raters. For pictorial recall, raters agreed on 90%, and for transfer tasks, raters agreed on 95% of 

the given answers. Cases of disagreement were resolved by reaching a consensus.  
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Example of a question from the verbal factual knowledge test 

Which of the following is/are true?  

a) The reaction force acts in the opposite direction to the motion of the propelling element. 

b) The reaction force acts in the direction of motion of the propelling element. 

c) The reaction force forms a right angle to the propelling element. 

d) The reaction force forms a right angle to the swimming direction. 

 

Example of a question from the pictorial recall test 

Arrange the different states of the fish movement in the correct order by writing the 

corresponding numbers in the respective boxes. 

 

 

Example of a question from the transfer test 

Some undulating species of fish move their head back and forth in order to swim forwards. Why is 

this? Write down any feasible reasons you can think of! 
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3.2.4 Procedure 

 

Each participant was tested individually in a session lasting between 90 and 120 minutes. First, 

the participants received a written overview of the procedure, which was followed by the 

questionnaire concerning the attitude towards biology and physics as well as by the prerequisite 

knowledge test. Thereafter, they were required to work on the mental rotation test with a time 

limit of six minutes. Then, before they started studying the instructional materials, each 

participant was asked to practice thinking aloud while reading the introduction on the 

parallelogram of forces. The think-aloud protocols were recorded with Camtasia 3.0. 

Subsequently, the learning phase began. The participants could use the instructional material 

without any time constraints, and were asked to think aloud the whole time. When they stopped 

talking for more than 15 seconds they were prompted to think aloud. Having finished learning, 

they were provided with the cognitive load items to measure processing demands during the 

learning phase. Afterwards, learning outcomes were assessed by the knowledge tests. 

 

3.3 Results 

 

In a first step, the questionnaire concerning attitudes towards biology and physics was analyzed 

by means of a factor analysis, to validate the assumed independence of the two factors. Then 

students’ attitudes towards biology and physics, their prerequisite knowledge, as well as their 

spatial ability scores were analyzed by means of ANOVAs to test if the experimental conditions 

could be regarded as equal with respect to these influencing variables. In a second step, specific 

contrasts were used to test the specified hypotheses. Therefore, firstly the text-only condition 

was compared to the two visualizations conditions, and secondly, the hypotheses concerning 

dynamic and static visualizations for the dependent variables learning outcomes, cognitive load, 

and learning strategies were tested. Furthermore, it was tested if spatial abilities moderated 

learning with dynamic and static visualizations with regard to learning outcomes, as well as the 

frequency of the usage of visualizations in the two visualization conditions. For this purpose, the 

scores of the spatial ability test for participants of the two visualization conditions were z-

standardized and used as a continuous factor in the respective ANCOVAs. In case an interaction 

between spatial ability and the two visualization conditions occurred, correlations were computed 

to determine the direction of this interaction. Partial eta-squared (2p) is reported as measures of 

effect size. 
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3.3.1 Comparability of Experimental Conditions with Respect to Attitude 
Towards Biology and Physics, Prerequisite Knowledge, Spatial Abilities, 
and Learning Time 

 

Because two different scales were assumed for the attitude questionnaire, namely a biology scale, 

and a physics scale, two factors were extracted by principle component analysis and rotated by 

varimax rotation. Note that negatively formulated items were recoded. Loading of items on 

factors are depicted in Appendix A. Items are grouped by factors and by size of loading to 

facilitate interpretation. As can be seen in Appendix A, the items loaded on the one hand well on 

their assumed factors with all loadings > .60 (cf. Bortz, 2005), and, moreover, poorly on the other 

factor (all loadings < .30), indicating that the biology scale and the physics scale are two 

independent constructs.  

In a next step, the internal consistency was determined for each of the two scales. For the 

biology scale (item 1-7) Cronbach’s alpha (α) was α = .90, and the physics scale (item 8-14) 

revealed α =.94. Due to the high internal consistency of each scale, the items of each scale were 

subsumed to one biology score and one physics score, respectively. Means and standard 

deviations for attitudes towards biology as well as physics, prerequisite knowledge, and spatial 

ability are reported in Table 3.2. There were no statistically significant differences between the 

three instructional conditions concerning either attitude towards biology, attitude towards 

physics, prerequisite knowledge (all Fs < 1, ns), or spatial abilities (F(2, 69) = 1.77, MSE = 72.60, p = 

.18, 2p = .05), so that the conditions could be regarded as equal with respect to these variables. 

Data concerning learning time are depicted in Table 3.2. A one-factorial ANOVA for learning time 

revealed an overall effect for the three instructional conditions (F(2, 68) = 5.13, MSE = 37.86, p < 

.01, 2p = .13). Bonferroni post-hoc tests revealed significant longer learning times for the SVC 

compared to the TOC (p < .01), but no differences between the DVC compared to the TOC (p = 

.12) nor between the two illustrated conditions (p = .84). Because of these differences, learning 

time was used as a covariate in the analyses of learning outcomes. 
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Table 3.2 

Means (and SD) for Control Variables, Use of Learning Environment, Learning Outcomes, and 

Cognitive Load 

 Text (n = 24) Static (n = 24) Dynamic (n = 24) 

Attitude towards biology-scale (7-35) 29.75 (5.85) 28.92 (5.26) 29.25 (5.67) 

Attitude towards physics-scale (7-35) 18.29 (7.37) 19.88 (8.50) 19.04 (8.35) 

Prerequisite knowledge (%) 56.94 (22.54) 54.63 (24.94) 57.87 (23.39) 

Spatial abilities 18.00 (6.19) 21.88 (10.12) 17.75 (8.78) 

Use of learning environment a 

Learning time (in minutes) 20.98 (7.48) 26.63 (5.65) a 24.67 (5.05) 

Frequency of using visualizations - 15.70 (3.90) a 13.95 (2.18) 

Learning outcomes b 

Factual knowledge (%) 57.52 (3.64)  61.38 (3.67) 59.16 (3.49) 

Pictorial recall (%) 39.06 (5.78) 59.35 (5.83) 60.31 (5.55) 

Transfer (%) 38.98 (3.11) 50.39 (3.13) 52.18 (2.98) 

Cognitive load (1-21) 

ECL 14.38 (4.23) 10.75 (5.11) 10.71 (4.15) 

GCL 15.92 (3.61) 15.45 (3.65) 15.58 (3.15) 

a 
Only the data of 23 participants were available due to recording problems. 

b
 Note: Learning outcomes are adjusted by taking learning time into account; values in parentheses refer to standard 

errors for this dependent measure. This leads to the exclusion of one subject, whose learning time was not available 
due to recording problems. 

 

3.3.2 Effects of Adding Visualizations to Text 

 

The three experimental conditions were compared with regard to their instructional effectiveness 

by one-factorial ANCOVAs with the dependent variables verbal factual knowledge, pictorial recall, 

and transfer knowledge, and learning time acting as a covariate (cf. Table 3.2). There was no 

significant influence of learning time on verbal factual knowledge or pictorial recall (both Fs < 1, 

ns), but a marginal significant effect on transfer (F(1, 67) = 3.04, MSE = 646.18, p = .09, 2p = .04). 

However, learning time did not correlate significantly with transfer (N = 71; r = -.09; p = .47)9.  

Planned contrasts for learning outcomes concerning differences between the text-only 

and the two visualization conditions with learning time as a covariate, revealed no differences for 

factual knowledge (F < 1, ns), but for pictorial recall (F(1, 67) = 8.19, MSE = 737.47, p < .01, 2p = 

                                                           

9
 It should be noted that the same pattern of results for the different learning outcome measures was 

observable when learning time was not considered as a covariate. 
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.11) as well as for transfer (F(1, 67) = 9.97, MSE = 212.71, p < .01, 2p = .13), indicating that, in line 

with the first hypothesis, for the latter two tests learners provided with visualizations 

outperformed learners provided with only text.  

For cognitive load, planned contrasts between the two visualization conditions and the 

text-only condition revealed a significant effect for ECL (F(1, 69) = 10.41, MSE = 20.42, p < .01, 2p 

= .13), with learners in the text-only condition perceiving the content as more difficult than 

learners in the visualization condition, while there were no differences for GCL (F < 1, ns).  

Means and standard deviations for the categories of the think-aloud protocols are 

depicted in Table 3.310. Due to the fact that the think-aloud data violated the assumption of 

normal distribution, non-parametric Mann-Whitney’s U-statistics were applied. Planned contrasts 

between the two visualization conditions and the text-only condition for elaborations, namely for 

the subcategories generative inferences and activation of knowledge, revealed a significant effect 

for generative inferences (U = 365, p = .02), but not for statements concerning the activation of 

knowledge (U = 533.5, p = .71). As predicted, learners in the two visualization conditions 

generated more inferences (MdnVIS = 6.00) than learners in the text-only condition (MdnTOC = 

3.50), whereas however, this was not the case for activation of knowledge (MdnVIS = 6.00 and 

MdnTOC = 5.00, respectively). Comparing the two visualization conditions and the TOC revealed no 

effect for positive monitoring (U = 524, p = .63), but a significant effect for negative monitoring (U 

= 364, p = .02). As predicted, learners in the two visualization conditions less often stated that 

they did not understand the content (MdnVIS = 4.00) compared to learners in the TOC (MdnTOC = 

6.00), whereas on the other hand no differences for positive monitoring emerged (MdnVIS = 5.00 

and MdnTOC = 6.50, respectively). Also, no differences were observable between the visualization 

conditions and the TOC with respect to erroneous statements (U = 536.5, p = .73; both Mdn = 

3.00).  

To sum up, learners in the conditions receiving text and visualizations as opposed to the 

text-only condition performed better on pictorial tasks and transfer tasks, perceived the learning 

task as less difficult, generated more inferences and less often stated that they did not 

understand the content. 

                                                           

10
 Kruskal-Wallis’ tests revealed that the overall number of codes as well as the number of codes per minute 

learning time were comparable across conditions (overall number of codes: H(2) = 2.67, p = .27; number of 
codes per minute learning time: H(2) = 0.15, p = .93). 
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Table 3.3 

Means (and SD) for Processing Activities 

 Text (n = 24) Static (n = 23) a Dynamic (n = 24) 

Processing activities 

Overall number of codes 95.71 (46.97) 115.30 (53.38) 112.88 (37.50) 

Number of codes per learning 

time (in minute) 

4.67 (1.97) 4.51 (2.25) 4.58 (1.25) 

Rehearsal 40.63 (34.20) 43.26 (36.60) 33.21 (23.69) 

Activation of knowledge 5.75 (4.96) 7.22 (6.45) 5.00 (3.38) 

Generative inferences 4.54 (5.18) 7.52 (6.19) 8.38 (6.67) 

Positive monitoring 8.21 (7.35) 4.52 (4.21) 9.42 (7.92) 

Negative monitoring 6.83 (3.64) 4.48 (4.02) 5.17 (5.11) 

Erroneous statements 3.42 (3.65) 3.48 (2.37) 2.46 (3.72) 

Planning for further learning 1.83 (2.24) 3.00 (3.83) 4.25 (5.29) 

a 
Only the data of 23 participants were available due to recording problems. 

 

3.3.3 Effects of Dynamic versus Static Visualizations 

 

With regard to learning outcomes, planned contrasts between the dynamic and static 

visualization condition, with learning time as a covariate, revealed no differences for factual 

knowledge, for pictorial recall, or for transfer (all Fs < 1, ns).  

Concerning cognitive load, differences between the two visualization conditions emerged 

neither for ECL nor for GCL (both Fs < 1, ns).  

With respect to learning strategies, planned contrasts between the DVC and the SVC 

revealed no significant differences between the conditions concerning activation of knowledge (U 

= 223.5, p = .26; MdnDVC = 5.00 and MdnSVC = 6.00, respectively), generative inferences (U = 254, p 

= .64; MdnDVC = 6.00 and MdnSVC = 5.00, respectively), negative monitoring (U = 262, p = .76; both 

Mdn = 4.00), rehearsal (U = 246.5, p = .53; MdnDVC = 28.50 and MdnSVC = 35.00, respectively) and 

planning for further learning (U = 247.5, p = .54; both Mdn = 2.00). However, learners in the DVC 

made more positive monitoring statements than learners in the SVC (U = 156, p = .01; MdnDVC = 

8.00 and MdnSVC = 3.00, respectively) and less erroneous statements (U = 168, p = .02; MdnDVC = 

1.00 and MdnSVC = 3.00, respectively).  

In sum, there were no differences between the DVC and the SVC with respect to learning 

outcomes or subjectively rated cognitive load. Concerning learning strategies, more positive 
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monitoring statements as well as less erroneous statements were conducted in the DVC 

compared to the SVC. 

 

3.3.4 The Moderating Role of Spatial Abilities 

 

To test the moderating role of spatial abilities for learning with the two different visualization 

formats, one-factorial ANCOVAs with the different learning outcome measures as dependent 

variables and spatial abilities as a continuous factor was conducted. Concerning type of 

visualizations, the one-factorial ANCOVAs revealed neither differences for factual knowledge (F < 

1, ns), nor for pictorial recall (F < 1, ns), nor for transfer (F(1, 44) = 2.18, MSE = 224.76, p =.15, 2p 

= .05). Also with respect to the moderation of spatial abilities with type of visualizations, one-

factorial ANCOVAs revealed neither an interaction for factual knowledge (F < 1, ns), nor for 

pictorial recall (F(1, 44) = 2.21, MSE = 690.45, p =.14, 2p = .05), nor for transfer (F < 1, ns). 

However, the one-factorial ANCOVAs revealed a significant main effect of spatial abilities for 

pictorial recall (F(1, 44) = 8.21, MSE = 690.45, p < .01, 2p = .16) and transfer (F(1, 44) = 11.16, 

MSE = 224.76, p < .01, 2p = .20), and a marginally significant effect for factual knowledge (F(1, 

44) = 3.07, MSE = 284.71, p = .09, 2p = .07). The effects indicated that higher spatial abilities were 

associated with better performance in pictorial recall (N = 48; r = .35; p = .01) as well as transfer 

(N = 48; r = .42; p < .01), and marginally associated with better performance in factual knowledge 

(N = 48; r = .26; p = .08). 

To test whether differences in spatial abilities were associated with differences in the 

frequency of using different visualization formats, a one-factorial ANCOVA with the frequency of 

using visualizations as dependent variable and spatial abilities as a continuous factor was 

conducted. No main effect could be observed for spatial abilities (F < 1), but a significant effect for 

instructional condition could be observed (F(1, 43) = 4.37, MSE = 9.16, p = .04, 2p = .09), with 

learners in the static condition using the visualizations more often. Moreover, a significant 

interaction between spatial abilities and instructional condition (F(1, 43) = 4.33, MSE = 9.16, p = 

.04, 2p = .09) was found, indicating that spatial abilities moderated the frequency of the usage of 

visualizations in learning with dynamic and static visualizations. For the DVC, no significant 

correlations between spatial abilities and usage of visualizations were observable (N = 24; r = .26; 

p = .23), while for the SVC, there was a marginally significant relationship between spatial abilities 

and usage of visualization (N = 23; r = -.36; p = .10), meaning that the lower the spatial abilities 

were for learners in the SVC the more often they used the visualizations. 

To test the moderating role of spatial abilities on cognitive load with the two different 

visualization formats, one-factorial ANCOVAs with the two different cognitive load measures as 
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dependent variables and spatial abilities as a continuous factor was conducted. Concerning type 

of visualizations, the one-factorial ANCOVAs revealed no differences for ECL, or for GCL (both Fs < 

1, ns). Also with respect to the moderation of spatial abilities with type of visualizations, one-

factorial ANCOVAs revealed no interaction for ECL (F < 1, ns), or for GCL (F(1, 44) = 1.06, MSE = 

11.82, p =.31, 2p = .02). Furthermore, no main effect of spatial abilities could be observed for ECL 

(F(1, 44) = 2.35, MSE = 21.54, p =.13, 2p = .05), or for GCL (F < 1, ns). 

In conclusion, spatial abilities did not moderate learning outcomes or cognitive load. 

However, they did moderate the frequency of playing the visualizations for the two visualization 

conditions in that the lower spatial abilities were for learners in the SVC, the more often they 

played the static visualizations, while there was no association between spatial abilities and the 

frequency of playing the visualizations for learners in the DVC.  

 

3.3.5 Relationships between Learning Outcomes, Cognitive Load, and Learning 
Strategies 

 

Correlations between the two cognitive load items and the different knowledge tasks (verbal 

factual knowledge, pictorial recall, transfer knowledge) were computed across conditions. There 

was always a negative relationship between ECL and each kind of knowledge task (verbal factual 

knowledge: r = -.29, p < .05; pictorial recall: r = -.47, p < .01; transfer tasks: r = -.52, p < .01), 

indicating that higher ECL was associated with lower learning outcomes. However, there were no 

relationships between GCL and pictorial recall (r = .15, p = .20), transfer (r = -.04, p = .73), or verbal 

factual knowledge (r = .20, p = .10). 

The relationship between the categories of the think-aloud protocols and the different 

kind of learning outcomes are depicted in Table 3.4. Better factual knowledge was associated with 

more frequent verbalizations of rehearsal strategies, with more generative inferences, with less 

negative monitoring statements, and loosely associated with more frequent statements 

concerning the activation of knowledge. Pictorial recall was associated with more generative 

inferences and loosely associated with less negative monitoring statements. Similarly, transfer 

performance was related to fewer negative monitoring statements and slightly related to more 

generative inferences. There were no further relationships among the verbalizations and learning 

outcomes.  

 

Table 3.4 

Non-parametric Correlations (Kendall’s τ) Among Categories of the Think-aloud Protocols and 

Knowledge Tasks 
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n = 71 Factual knowledge Pictorial recall Transfer knowledge  

Rehearsal τ = .20* τ = .07 τ = .05 

Activation of knowledge τ = .15(*) τ = .13 τ = .04 

Generative inferences τ = .17* τ = .19* τ = .14(*) 

Positive monitoring τ = .05 τ = .09 τ = .02 

Negative monitoring τ = -.18* τ = -.17(*) τ = -.30** 

Erroneous statements τ = .04 τ = -.06 τ = -.11 

Planning for further learning τ = -.04 τ = -.04 τ = -.05 

Note: (*) p < .10, * p < .05, ** p < .01 

 

3.4 Summary and Discussion 

 

In the current study, a text-only condition, a condition with text and static visualizations and a 

condition with text and dynamic visualizations were compared with respect to use of the learning 

environment, learning strategies, processing demands, and learning outcomes. 

First, according to the multimedia effect, it was expected that the two visualization 

conditions would outperform the text-only condition for all learning outcome measures; this 

effect was assumed to be even more pronounced for pictorial recall and transfer tasks. Whereas 

for pictorial recall and transfer tasks the two visualization conditions outperformed the text-only 

condition, thereby confirming the first hypothesis, for verbal factual knowledge tasks however, no 

differences between these conditions were observed. A possible explanation for the latter might 

be found in the richness of the text. In the present study, the expository text was rich in detail to 

make it as “fair” as possible for the text-only condition, so that all relevant information that was 

depicted in the visualizations could in principle be inferred from the text (cf. informational 

equivalence, Larkin & Simon, 1987). Similarly, Mayer (2001) reported in his overview to have 

failed to find the multimedia effect for (verbal) factual knowledge in three of nine experiments. As 
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he stated, the text for these three experiments was richer than in the other six experiments, 

where text and visualizations were somewhat complementary. Thus, maybe an enriched text, 

which is basically redundant to the visualizations, purges the multimedia effect for verbal factual 

knowledge. As expected, for accomplishing pictorial recall and transfer tasks, where a pictorial 

model of the content was assumed to be advantageous, the two visualization conditions 

outperformed the text-only condition. These results stress the importance of applying more 

differentiated learning outcome measures when investigating the instructional effectiveness of 

multimedia learning environments. With respect to learning time, it should be noted that even 

though learners provided with static visualizations dedicated more time to the instructional 

material compared to the text-only condition, their higher effectiveness was still existent when 

considering learning time as a covariate. 

Regarding the abovementioned redundancy of text and visualizations, it should be noted 

that in some studies, the redundancy of text and visualizations might even be harmful for learning 

(cf. redundancy principle, Sweller, 2005b). For instance, in a recent study by Schmidt-Weigand 

and Scheiter (2011), the authors could not find a superiority of text and visualizations over text, if 

the text contained a high degree of spatial information; rather, there was a superiority of text and 

visualizations over text only when the text did contain a low degree of spatial information, so that 

text and visualizations had rather complementary roles. Moreover, learners receiving 

visualizations with text containing low degree of spatial information tended to outperform 

learners receiving text containing a high degree of spatial information. Hence, with respect to 

follow-up studies, from an instructional point of view, it seems recommendable to reduce the 

informational overlap between text and visualizations in a manner that advantages of text (e.g., 

conveying abstract knowledge) and advantages of visualizations (conveying visuo-spatial 

information) are emphasized. As a consequence, learning with different types of visualizations 

may also be more pronounced and may shine through, as learners may rely less on text, but have 

to rely more on the information depicted in the visualizations.  

Concerning processing demands, it was expected that learners in the text-only condition 

would experience higher ECL than learners in the two visualization conditions. The score of the 

perceived difficulty item – which can be regarded as a candidate for measuring ECL, because it 

correlated negatively with all learning outcome measures – supported this hypothesis. In contrast, 

the self-reported mental effort item was not correlated with any of the performance measures. 

Hence, it is a less likely candidate for measuring GCL, which might also explain why there were no 

differences between conditions for this item. Problems in finding subjective measures that are 

suited to distinguish among different load types contribute to a growing body of research (cf. de 
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Jong, 2010). However, this does not mean that looking for such measures is not worthwhile, but 

rather that the search is not yet over.  

With respect to learning strategies as measured by the verbal data of the think-aloud 

protocols, it was expected that fewer statements concerning the activation of knowledge, fewer 

generative inferences and fewer positive monitoring statements as well as more negative 

monitoring and more erroneous statements would occur in the text-only condition compared to 

the text and visualizations conditions. The verbal data gave partial support for these assumptions. 

On the one hand, learners in the text-only conditions did not produce fewer statements 

concerning the activation of knowledge, fewer positive monitoring, or more erroneous 

statements. However, it should be noted that these categories also had no substantial relation to 

learning outcomes. On the other hand, as predicted, learners in both visualization conditions 

stated less often that they did not understand the content, and, furthermore, conducted more 

generative inferences. Moreover, these categories had a substantial relation to learning 

outcomes, suggesting that they may be well suited in explaining the better learning outcomes of 

learners studying visualizations.  

To sum up, these results indicate that adding visualizations to text can offload working 

memory, and encourage learners to engage in more valuable processing activities, which in turn 

results in a better understanding of the content.  

Second, it was expected that dynamic visualizations would be more beneficial than static 

visualizations for transfer tasks. Moreover, it was expected that spatial abilities would moderate 

the effectiveness of learning with dynamic and static visualizations. However, dynamic and static 

visualizations did not differ with regard to any of the learning outcome measures, and spatial 

abilities also did not moderate learning with these two types of visualizations. In general, higher 

spatial abilities were associated with higher learning outcomes, indicating that higher spatial 

abilities are beneficial for learning with dynamic as well as static visualizations (cf. Hegarty & Kriz, 

2008; Höffler, 2010). The instructional equality of dynamic and static visualizations may be partly 

traced back to the fact that learners in the static visualizations condition tended to play the 

visualizations more often than learners in the dynamic condition. This more frequent use of static 

visualizations may be interpreted as a strategy to compensate for a drawback of the static 

presentation format, namely, its demands for mental animation. This interpretation receives 

further indirect support by the finding that spatial ability moderated the frequency of using static 

and dynamic visualizations. A similar pattern of results was observed in a study by Schnotz and 

Rasch (2005; Exp.1), where learners with weaker learning prerequisites spent more time studying 

static visualizations than studying dynamic visualizations, while the opposite was true for learners 

with stronger learning prerequisites. The compensatory-strategy interpretation might also 
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account for the finding that spatial ability did not moderate learning with dynamic and static 

visualizations. Moreover, it would also explain that there were no differences with respect to 

cognitive load between these two conditions. Hence, it may be the case that in a system-paced 

learning environment, learning with dynamic visualizations might yield better performance than 

learning with static visualizations for a dynamic domain like the one at hand. It should be noted 

though that solely data were collected concerning the frequency of playing the visualizations, but 

not whether learners actually watched the visualizations. For investigating this issue, for ongoing 

studies learners’ viewing behavior might be recorded by means of eye-tracking data (e.g., Ozcelik, 

Karakus, Kursun, & Cagiltay, 2009; Scheiter & van Gog, 2009; She & Chen, 2009). Although the 

compensatory-strategy interpretation is notional, it once again reveals the importance of 

considering strategic variables, as they may moderate or mediate performance for different 

instructional conditions (e.g., Gerjets & Scheiter, 2003). 

Another reason for the instructional equality of the two visualization conditions may be 

that the potentials of dynamic visualizations for this domain might not have been exploited 

completely. Even though high-quality animations were used, one possible benefit of the dynamic 

visualizations was not used: The interplay of changes in the frequency of the undulatory 

movement that are associated with changes in the magnitude of the reaction force, and their 

interrelatedness with swimming speed were not explained in this study. However, the power to 

depict changes in velocity is an inherent property of dynamic visualizations, which is not available 

in static frames. To further improve the instructional material, the abovementioned aspects were 

implemented in the dynamic visualizations used in Study 2 and 3.  

Concerning learning strategies, it was assumed that more erroneous as well as more 

negative monitoring statements would occur in the static visualization condition compared to the 

dynamic visualization condition. This assumption was confirmed for the number of erroneous 

statements. Learners in the static visualizations condition may, at least initially, have had 

difficulties in interpreting the changes of objects depicted in the static visualizations. However, 

they might not have noticed these difficulties as reflected in the equal amount of negative 

monitoring statements in the two visualization conditions. In contrast to the results of the study 

by Lewalter (2003), no differences for rehearsal strategies or for planning for further learning 

could be observed between the visualization conditions. However, as expected, and in line with 

Lewalter (2003), learners with dynamic visualizations produced more positive monitoring 

statements and were therefore more confident that they had understood the content, even 

though this was not the case as indicated by the learning outcome measures. Moreover, positive 

monitoring statements did not correlate with performance, suggesting that learners misjudged 

their understanding. Accordingly, the higher number of positive monitoring statements in the 
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dynamic visualizations condition may be interpreted in terms of an illusion of understanding (cf. 

Bétrancourt, 2005). It should be noted, however, that this illusion of understanding did not lead 

to less engagement in valuable processing activities such as elaborations. Therefore, these results 

cannot be interpreted as evidence that dynamic visualizations – as opposed to a sequence of 

static visualizations – lead to a shallower processing. 

Concerning the relationship between the categories of the think-aloud protocols and 

learning outcome measures, rehearsal strategies were only associated with verbal factual 

knowledge. This seems plausible, as rehearsal should mainly support the construction of a verbal 

model, which might be best assessed by the verbal factual knowledge task. Similar results were 

also obtained by Lewalter (2003). Surprisingly, producing erroneous statements was not 

associated with lower learning outcomes. On the one hand, the overall number of erroneous 

statements can be regarded as being rather low. Moreover, it may be the case that learners 

producing erroneous statements initially had the opportunity to correct their misunderstanding in 

the later process of learning, so that these misconceptions may not have had a strong impact. The 

finding that generating inferences was associated with higher performance for all learning 

outcomes measures, and that negative monitoring statements were associated with lower 

performance may be regarded as a positive validation check. However, the overall size of the 

correlations between the learning strategies and the learning outcome measures are rather low 

to moderate (Cohen, 1992). It can only be reported anecdotally that some learners had difficulties 

with the think-aloud procedure, felt uncomfortable with this method and got tired of it (keeping 

in mind that the average learning time was approximately 24 minutes). Accordingly, these results 

should be treated with caution. Similar problems with learners applying the think-aloud 

procedure in learning with visualizations were also reported by Cohen and Hegarty (2007).  

Overall, this study can be considered as a contribution to our understanding of how 

instructional formats can differently influence performance in diverse learning outcome 

measures, by having shown, for instance, that the multimedia effect only held for pictorial and 

transfer tasks, but not for verbal factual knowledge tasks. Moreover, it also might pave the way to 

pay more attention to learning activities in future studies as they may weaken the deterministic 

relationship that is sometimes assumed between instructional design and learning outcomes 

(Gerjets & Scheiter, 2003). For instance, whether dynamic visualizations lead to better learning 

outcomes than static visualizations may depend on the type of learning activities deployed, such 

as retrieving static visualizations more frequently. Finally, as the current study indicated, 

conducting think-aloud protocols can be considered a fruitful way to gain deeper insights into the 

cognitive processes of learners dealing with different instructional materials and their 

contribution to performance. For instance, it seems to be the case that adding visualizations to 
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text encouraged learners to engage in more valuable processing activities, which in turn helped to 

achieve a better understanding. The assessment of process data allows for the more direct 

investigation of specific claims, such as whether visualizations foster inferences, or whether in 

learning with dynamic visualizations an illusion of understanding might arise, thereby enriching an 

outcome-oriented approach to investigating multimedia learning. Such a research strategy may 

help at getting a more thorough understanding of the mechanism underlying learning with 

multimedia and may be more often considered in future studies in this field. 

To conclude, the addition of visualizations to text led to a deeper understanding for this 

domain. Nonetheless, the multimedia material might be further improved in several ways. First, 

the redundancy of text and visualizations can be reduced by deleting parts of the text describing 

visuo-spatial aspects, which are supposed to be more efficiently depicted in the visualizations (cf. 

Schmidt-Weigand & Scheiter, 2011). This was done for the multimedia material of the following 

studies in the current thesis. In turn, this also means that learners need to rely more on the 

visualizations, thereby allowing differences in the instructional efficiency of different visualization 

formats to become more evident. Moreover, not only visuo-spatial aspects were deleted from the 

text, but also dynamic features were less extensively described in the text of the following 

studies. This was done to further reduce the redundancy of dynamic features depicted in dynamic 

visualizations and dynamic features described in the text. Nevertheless, the dynamic features 

were not completely eliminated from the text, but only to a degree that they still could be 

regarded as being comprehensible when learners did not receive dynamic visualizations, but static 

visualizations.  

Second, particularly the design of the dynamic visualizations was rather suboptimal in the 

current study. They might be further enhanced by depicting dynamic features that can be 

represented in dynamic visualizations, but not in static visualizations. More precisely, the 

interplay of changes in the frequency of the undulatory movement that are associated with 

changes in the magnitude of the reaction force (symbolized by the length of arrows), and their 

interrelatedness with swimming speed were not depicted in Study 1, but they will be depicted in 

Study 2 and 3. Specifically, for representing the swimming speed, landscape background has to be 

added, so that a reference point is given to learners that allows in inferring how much distance 

the fish had travelled. However, it should be noted that adding background may also increase the 

visual complexity of the visualizations, and specifically of the dynamic visualizations, because it 

increases the chance that some less relevant details from the background can become more 

salient through their movement. Thereby, because more elements are moving at the same time, 

this may intensify the intra-representation split-attention effect. Due to the assumed high degree 

of visual complexity in dynamic visualizations, it may be the case that their benefits to depict the 
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dynamic interrelations of a domain like the one at hand might not completely unfold. To improve 

learning with visualizations in general, and dynamic visualizations in particular, it may be 

necessary to overcome problems associated with a high degree of visual complexity. These 

problems are on the one hand an inter-representation split-attention effect between text and 

visualizations, and on the other hand the visual complexity of visualizations themselves. 

Therefore, two design characteristics that aim at dealing with these two potential drawbacks will 

be introduced next, namely using spoken text to overcome inter-representational split attention, 

as well as cueing to cope with the visual complexity of dynamic visualizations themselves.  
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4 Optimizing Learning from Visualizations 
 

In the following, first the role of using spoken text to reduce inter-representational split attention, 

and its potential impact on learning with dynamic as well as static visualizations will be explicated. 

Thereafter, the role of cueing, as a means to reduce the visual complexity within visualizations will 

be outlined. 

4.1 Reducing Inter-representational Split-attention by Using Spoken Text 

 

The inter-representational split-attention effect occurs when learners have to split their attention 

between physically separated multiple sources, for instance, if a written text and the 

corresponding visualization are distributed across pages, but need to be mentally integrated in 

order to understand the information (cf. Ayres & Sweller, 2005; Sweller et al., 1998). Thereby, 

inter-representational split-attention is supposed to hamper learning. In the current thesis, a 

focus lies on avoiding this problem by using spoken text.  

Advantages of using spoken text rather than written text to accompany visualizations are 

referred to as the modality effect in multimedia learning. As with the multimedia effect, the 

modality effect could be confirmed in many studies (cf. Ginns, 2005; Low & Sweller, 2005; Mayer, 

2001, 2009; Sweller et al., 1998). In a meta-analysis by Ginns (2005), a moderate to large overall 

advantage (d = .72) of spoken over written text for multimedia material could be observed.  

The explanation for how spoken text may reduce inter-representational split-attention 

constitutes the most prominent explanation of the modality effect, namely, the split-attention 

explanation (Rummer, Schweppe, Fürstenberg, Seufert, & Brünken, 2010; see also temporal and 

spatial contiguity explanation, respectively, Rummer, Schweppe, Fürstenberg, Scheiter, & Zindler, 

in press; Schüler, Scheiter, Rummer, & Gerjets, 2011)11. Note that the split-attention explanation 

of the modality effect is formulated on the basis of the split-attention effect described by the CLT, 

which states12: “The modality effect derives from the split-attention effect. It occurs under split-

attention conditions when a written source of information that must be integrated with another 

                                                           

11
 An alternative to the split-attention explanation of the modality effect is the visuo-spatial load 

explanation (cf. Rummer et al., 2010). According to this explanation, written text and visualizations 
compete for limited visuo-spatial working memory resources, whereas spoken text and visualizations can 
be processed in different subsystems of working memory. However, the underlying theoretical rationale of 
the modality effect has been challenged (Rummer et al., in press; Rummer et al., 2010; Rummer, Schweppe, 
Scheiter, & Gerjets, 2008; Schüler et al., 2011; see also Tabbers, 2002). Moreover, a recently conducted 
study by Rummer et al. (in press) revealed no evidence for the visuo-spatial load explanation. 
12

 While in the terminology of CLT it is solely termed split-attention, in the remainder of this chapter it will 

be referred to as inter-representational split-attention to distinguish it from intra-representational split-
attention. 
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source of visually presented information such as a diagram is presented in auditory rather than 

visual (written) mode” (Sweller et al., 1998, p. 282). Accordingly, presenting visualizations with 

spoken text may offer at least three advantages with regard to reducing inter-representational 

split-attention. First, with spoken text, text and visualizations can be processed simultaneously. 

Hence, sufficient attention can be devoted to both representations. Second, since spoken text and 

visualizations are simultaneously available, this might facilitate the integration of text and 

visualizations. This is assumed to be the case, because with written text, the text has to be held 

and possibly be reconstructed in working memory before it can be integrated with the 

visualization (and vice versa). On the other hand, when visualizations are accompanied by spoken 

text, a learner can process both representations simultaneously, without needing to hold the 

information longer than necessary in working memory (cf. temporal contiguity explanation). 

Third, in contrast to written text, with spoken text, no switches have to be made between text 

and visualizations, thereby reducing visual search demands. Furthermore, as with written text and 

visualizations the visual attention has to be shifted between the two representations, this is 

supposed to pose additional perceptual demands on the visual system (cf. spatial contiguity 

explanation). In the terminology of CLT, the latter two advantages are usually associated with a 

decrease of ECL when using spoken text. Support for the assumption that spoken text reduces ECL 

is given by several studies, which assessed either subjective cognitive load ratings (e.g., Kalyuga, 

Chandler, & Sweller, 2000; Tindall-Ford, Chandler, & Sweller, 1997; van Gerven, Paas, van 

Merriënboer, & Schmidt, 2006), or used a dual task methodology (e.g., Brünken, Steinbacher, 

Plass, & Leutner, 2002). 

Consequences of using spoken text to reduce inter-representational split-attention may 

differ as a function of the mental models that emerge during multimedia learning. In particular, 

Schmidt-Weigand et al. (2010) showed that under inter-representational split-attention 

conditions, written text was processed superordinate (see also Hegarty & Just, 1993), resulting in 

less time allocated to the visualizations, but possibly in sufficient time allocated to the text. 

Accordingly, one might assume that learners receiving written text and visualizations will develop 

a comprehensive verbal mental model, but compared to learners receiving spoken text and 

visualizations, a less comprehensive pictorial mental model and, in connection, also a less 

developed integrated mental model. As a consequence, the modality effect should be more 

pronounced for pictorial tasks as well as transfer tasks as opposed to verbal factual knowledge 

tasks. First evidence for this assumption was reported in the meta-analysis by Ginns (2005), where 

the modality effect emerged for transfer tasks, but not for verbal factual knowledge tasks. 

Furthermore, there are indications that the modality effect also holds for pictorial tasks (e.g., 

Craig, Gholson, & Driscoll, 2002; Mayer & Moreno, 1998; Moreno & Mayer, 1999; Rummer et al., 
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in press; Schmidt-Weigand et al., 2010; Schüler et al., 2011), even though these kind of tasks are 

rarely assessed in current research on multimedia learning.  

 

Overall, spoken text might be a remedy to cope with the problems arising from an inter-

representational split-attention effect. The inter-representational split-attention effect may be 

especially problematic, if the visual complexity of the visualizations is high, which is assumed to be 

the case specifically for dynamic visualizations (cf. Chapter 2.2.2). Thus, when combining dynamic 

visualizations with written rather than spoken text, this may further increase the visual search 

demands, and, accordingly, may make it particularly hard to process the information conveyed by 

dynamic visualizations. Hence, the potentials of dynamic visualizations may not properly unfold 

with written text. On the other hand, when presenting spoken text, learners do not have to split 

their attention between text and visualization. In this case, the information in the dynamic 

visualizations may be selected and extracted appropriately, so that their potentials may be able to 

unfold. Therefore, the advantages of dynamic compared to static visualizations are expected to be 

more pronounced with spoken text. Schnotz (2005) arrives at similar conclusions when stating: 

“The negative effects of split-attention on learning are especially pronounced when animated 

pictures are used instead of static pictures” (p. 61), and “split-attention becomes less important if 

static pictures are used” (p. 65). 

 

Empirical evidence 

Support for the claim that the superiority of dynamic visualizations as opposed to static 

visualizations may be more pronounced for spoken than for written text may come from the 

meta-analysis of Höffler and Leutner (2007), the conducted studies since this meta-analysis, as 

well as at the meta-analysis of Ginns (2005) on the modality effect in multimedia learning13.  

While Höffler and Leutner (2007) considered the presence and absence of text as a 

potential moderator in learning with dynamic and static visualizations, they neglected the 

modality of the text. To examine the assumption that spoken text might particularly be beneficial 

for learning with dynamic visualizations, the meta-analysis by Höffler and Leutner (2007) was 

scrutinized. In their meta-analysis, the authors identified 56 comparisons from 20 studies that 

included text at all14. By reinspecting these 56 comparisons, several studies and the comparisons 

contained in them had to be excluded. First, the study by Rigney and Lutz (1976) did not compare 

dynamic visualizations to static visualizations. Second, the study by Spotts and Dwyer (1996) 

                                                           

13 It should be noted that the two meta-analyses differed in their applied methods of how to calculate the 

effect size, and hence cannot be simply merged for a re-examination. 
14

 Höffler and Leutner stated 59 comparisons, but adding up their coding revealed only 56 comparisons. 
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compared interactive animations to non-interactive static visualizations and hence violated the 

request of equivalent procedures (cf. Tversky et al., 2002), even though Höffler and Leutner 

(2007) stated to control for this factor to have “fair” comparisons. Third, for the study by Lai 

(2000), the comparison of dynamic and static visualizations which included spoken text was 

excluded, because a negative effect size was reported, even though learners with dynamic 

visualizations clearly outperformed learners with static visualizations. It should be noted that 

because of the exclusion of the study by Lai (2000) the mean effect size for the comparison of 

dynamic versus static visualizations that are accompanied by spoken text will be underestimated. 

Taken together, this resulted in 17 studies with 49 comparisons, whereof 38 comparisons 

included written text, and 11 comparisons included spoken text (cf. Table 4.1). The arithmetic 

means of the effect sizes for the comparisons of dynamic and static visualizations were calculated 

as a function of the modality of the text. For written text, there was a mean effect size of d = .25 

(SD = .70) in favor of dynamic visualizations, and for spoken text there was a mean effect size of d 

= .15 (SD = .54) in favor of dynamic visualizations. A t-test with text modality as between subject 

factor and effect size as dependent variable showed no significant difference between the 

superiority of dynamic over static visualizations for written text as compared to the superiority of 

dynamic over static visualizations for spoken text (t(47) = 0.43; p = .67). To conclude, with respect 

to the studies contained in this meta-analysis by Höffler and Leutner (2007), there was no direct 

support for the assumption that text modality might moderate the effectiveness in learning with 

dynamic as opposed to static visualizations. As abovementioned, the mean effect size for 

comparisons building on spoken text is probably underestimated (because of the wrong effect 

size of the study by Lai, 2000), but on the other hand, even the correct effect size would probably 

not change the results dramatically. Nevertheless, these results should be treated with caution. 

Therefore, as a next step the recently conducted studies in learning with dynamic and static 

visualizations were inspected on a descriptive level and, furthermore, the meta-analysis by Ginns 

(2005) was reinspected. 
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Table 4.1 

Effect Sizes in Favor of Dynamic Visualizations as Compared to Static Visualizations from Studies of 

the Meta-analysis by Höffler and Leutner (2007), Listed as a Function of Text Modality 

 Authors Text Modality Weighted Effect Size d 

1 Baek & Layne, 1988 Written Text .58 

2 Baek & Layne, 1988 Written Text .35 

3 Catrambone & Seay, 2002 (Exp.2)  Written Text .74 

4 Catrambone & Seay, 2002 (Exp.2)  Written Text -1.19 

5 ChanLin, 1998  Written Text .37 

6 ChanLin, 1998  Written Text -.38 

7 ChanLin, 1998  Written Text 0 

8 ChanLin, 1998  Written Text .11 

9 ChanLin, 2001  Written Text 1.13 

10 ChanLin, 2001  Written Text .97 

11 ChanLin, 2001  Written Text -.86 

12 ChanLin, 2001  Written Text -1.13 

13 Hays, 1996 Written Text .11 

14 Hays, 1996 Written Text 1.15 

15 Lewalter, 2003 Written Text 0 

16 Lewalter, 2003 Written Text .18 

17 Nerdel, 2003 (Exp. 2) Written Text .3 

18 Nerdel, 2003 (Exp. 2) Written Text .38 

19 Nerdel, 2003 (Exp. 3) Written Text .04 

20 Nerdel, 2003 (Exp. 3) Written Text -.2 

21 Nicholls, & Merkel, 1996 (Exp. 1) Written Text .27 

22 Rieber, 1989 Written Text .08 

23 Rieber, 1989 Written Text .11 

24 Rieber, 1989 Written Text .04 

25 Rieber, 1989 Written Text .07 

26 Rieber, 1989 Written Text -.01 

27 Rieber, 1989 Written Text -.11 

28 Rieber, 1989 Written Text -.09 

29 Rieber, 1989 Written Text -.01 

30 Rieber, 1990 Written Text 1.32 

31 Rieber, 1991 Written Text .73 

32 Rieber, 1991 Written Text 1.48 

33 Rieber, Boyce, & Assad, 1990  Written Text .04 

34 Rieber, Boyce, & Assad, 1990 Written Text -.21 

35 Rieber, Boyce, & Assad, 1990 Written Text .22 

36 Szabo & Poohkay, 1996  Written Text 2.63 

37 Wright, Milroy, & Lickorish, 1999 Written Text .24 

38 Wright, Milroy, & Lickorish, 1999 Written Text -.09 

39 Craig et al., 2002 (Exp. 1) Spoken Text .01 

40 Craig et al., 2002 (Exp. 1) Spoken Text .06 

41 Craig et al., 2002 (Exp. 1) Spoken Text -.01 

42 Craig et al., 2002 (Exp. 1) Spoken Text .04 

43 Craig et al., 2002 (Exp. 1) Spoken Text .02 

44 Craig et al., 2002 (Exp. 1) Spoken Text .08 

45 Craig et al., 2002 (Exp. 1) Spoken Text -.01 

46 Craig et al., 2002 (Exp. 1) Spoken Text .03 

47 Höffler, 2003  Spoken Text -.19 

48 Höffler, 2003  Spoken Text -.15 

49 Yang et al., 2003 Spoken Text 1.76 
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From the recently conducted 34 studies that include 42 experiments on learning with dynamic 

and static visualizations, there were 28 experiments where a comparison of dynamic and static 

visualizations with respect to the text modality was retraceable15. Of these 28 experiments, 15 

experiments included written text, and 13 included spoken text (see Table 4.2). Of the 15 

experiments that included written text, seven showed a positive effect in favor of dynamic 

visualizations (46.67%), whereas eight showed no differences, or even an advantage for static 

visualizations (53.33%). Of the 13 experiments that included spoken text, eleven showed a 

positive effect in favor of dynamic visualizations (86.67%), whereas two experiments showed no 

differences (13.33%). Fisher’s exact test (one-tailed) revealed that this relationship was marginal 

significant (p = .09)16. When only considering experiments that are on the one hand 

methodological sound and, moreover, where every comparison of dynamic and static 

visualizations led to a superiority of dynamic visualizations, only 17 experiments can be taken into 

account. Of these 17 experiments, seven included written text, whereby three of them (42.86%) 

showed a superiority of dynamic over static visualizations, and ten included spoken text, whereby 

eight of them showed a superiority of dynamic visualizations (80.00%). On a descriptive level this 

finding mirrors the pattern of results identified for all 28 experiments, even though Fisher’s exact 

test (one-tailed) failed to reach statistical significance (p = .15), which in turn also may be 

considered as a power problem. Nevertheless, broadly speaking, this finding may be cautiously 

interpreted as suggesting that the superiority of dynamic over static visualizations is more 

pronounced for spoken than for written text. 

 

                                                           

15
 In a strict sense, these were only 27 experiments. However, since the study of Koroghlanian and Klein 

(2004) incorporates two comparisons, one for written and one for spoken text, this study was treated as 
two studies, leading to a count of 28 experiments in Table 4.2. 
16

 Fisher’s exact test was used, since the preconditions for using a chi-square test were not given. 
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Table 4.2 

Effects in Favor of Dynamic Visualizations From Studies Comparing Learning With Dynamic and 

Static Visualizations Published Since 2004, Listed as a Function of Text Modality 

 Authors Text Modality Effect for Dynamic Visualizations 

1 Boucheix & Guignard, 2005 Written text Positive 

2 Boucheix & Schneider, 2009
 b

 Written text Positive 

3 Iskander & Curtis, 2005 
a
 Written text Positive 

4 Lin & Dwyer, 2010 Written text Positive 

5 Lin et al., 2009 Written text Positive 

6 Schnotz & Rasch, 2005 
a
 Written text Positive 

7 Wang et al., 2011 
a
 Written text Positive 

8 Yarden & Yarden, 2010 
a
 Written text Positive 

9 Höffler et al., 2010 Written text Neutral 

10 Tunuguntla et al., 2008 
a
 Written text Neutral 

11 van Oostendorp & Beijersbergen, 2007 Written text Neutral 

12 van Oostendorp et al., 2008 
a
 Written text Neutral 

13 Zhu & Grabowski, 2006 
a
 Written text Neutral 

14 Scheiter et al., 2006 Written text Negative 

15 
Koroghlanian & Klein, 2004 

Written text  Neutral 

16 Spoken text Neutral 

17 Höffler, 2007 (Exp. 3) Spoken text Neutral 

18 Arguel & Jamet, 2009 Spoken text Positive 

19 Höffler, 2007 (Exp. 1) Spoken text Positive 

20 Höffler, 2007 (Exp. 2) Spoken text Positive 

21 Imhof et al., 2009
 b

 Spoken text Positive 

22 Imhof et al., 2010 Spoken text Positive 

23 Kim et al., 2007
 b

 Spoken text Positive 

24 Münzer et al., 2009
 b

 Spoken text Positive 

25 Pfeiffer et al., 2009 Spoken text Positive 

26 Rebetez et al., 2010 Spoken text Positive 

27 Stebner, 2009 Spoken text Positive 

28 Wong et al., 2009 (Exp. 1) Spoken text Positive 
a
 Note. Studies that are not methodological sound, for instance in terms of a “fair” comparison as recommended by 

Tversky et al. (2002). 
b
 Note. These studies included either different types of dynamic visualizations or different types of static visualizations, 

whereas not every comparison was in favor of dynamic visualizations.  

 

As previously mentioned, in the meta-analysis by Ginns (2005) several potential moderating 

variables were accounted for, such as the kind of knowledge test. However, the type of 

visualization was neglected. Therefore, the 39 cited between-subject experiments of this meta-

analysis were reinspected with respect to the question of whether the visualizations were 

dynamic or static17. By doing so, two experiments by Levin and Divine-Hawkins (1974) had to be 

excluded, because these did not show visualizations in the learning phase, but instructed learners 

to create mental images instead. From the remaining 37 experiments, 16 used dynamic 

visualizations, and 21 used static visualizations (cf. Table 4.3). The arithmetic means of the effect 

                                                           

17
 The four within-subject experiments were excluded as they are also analyzed separately by Ginns. Even if 

they had been considered in the re-examination, this would not have considerably changed the results. 
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sizes for the respective types of visualizations were calculated. For dynamic visualizations there 

was a mean effect size of d = 1.13 (SD = .57) in favor of spoken text, whereas for static 

visualizations there was a mean effect size of d = .50 (SD = .60). A t-test with type of visualization 

as between subject factor and effect size as dependent variable showed a significant effect (t(35) 

= 3.19; p < .01) between the benefits of spoken text for dynamic visualizations as opposed to the 

benefits of spoken text for static visualizations.  

 

Table 4.3 

Effect Size in Favor of Spoken Text from Studies from the Meta-analysis by Ginns (2005), Listed as 

Function of Type of Visualization 

 Authors Type of Visualization Effect Size d 

1 Atkinson, 2002 (Exp. 1) Dynamic .82 

2 Atkinson, 2002 (Exp. 2) Dynamic .35 

3 Craig et al., 2002 (Exp. 1) Dynamic .93 

4 Mayer & Moreno, 1998 (Exp. 1) Dynamic .46 

5 Mayer & Moreno, 1998 (Exp. 2) Dynamic .76 

6 Mayer, Dow, & Mayer, 2003 (Exp. 1) Dynamic .78 

7 Moreno & Mayer, 1999 (Exp. 1) Dynamic 1.49 

8 Moreno & Mayer, 1999 (Exp. 2) Dynamic 1.13 

9 Moreno & Mayer, 2002 (Exp. 1) Dynamic 2.51 

10 Moreno & Mayer, 2002 (Exp. 1) Dynamic .91 

11 Moreno & Mayer, 2002 (Exp. 2) Dynamic 2.12 

12 Moreno & Mayer, 2002 (Exp. 2) Dynamic .61 

13 Moreno & Mayer, 2002 (Exp. 1) Dynamic .60 

14 Moreno, Mayer, Spires, & Lester, 2001 (Exp. 4) Dynamic 1.09 

15 Moreno, Mayer, Spires, & Lester, 2001 (Exp. 5)  Dynamic 1.54 

16 O'Neil, Mayer, Herl, Niemi, Olin, & Thurman, 2000 Dynamic .97 

17 Brünken & Leutner, 2001 Static .58 

18 Jeung, Chandler, & Sweller, 1997 (Exp. 3) Static 1.03 

19 Kalyuga, Chandler, & Sweller, 1999 Static 1.32 

20 Leahy, Chandler, & Sweller, 2002 (Exp. 1)  Static .04 

21 Mousavi, Low, & Sweller, 1995 (Exp. 1) Static .93 

22 Mousavi, Low, & Sweller, 1995 (Exp. 2) Static .88 

23 Mousavi, Low, & Sweller, 1995 (Exp. 3) Static .65 

24 Mousavi, Low, & Sweller, 1995 (Exp. 4) Static .68 

25 Mousavi, Low, & Sweller, 1995 (Exp. 5) Static .63 

26 Tabbers, 2002 (Chapter 4)  Static .51 

27 Tabbers, 2002 (Chapter 4) Static .09 

28 Tabbers, 2002 (Chapter 4)  Static -.66 

29 Tabbers, Martens, & van Merriënboer, 2000  Static -.54 

30 Tabbers, Martens, & van Merriënboer, 2001 (Exp. 1)  Static .67 

31 Tabbers, Martens, & van Merriënboer, 2001 (Exp. 2)  Static -.06 

32 Tabbers, Martens, & van Merriënboer, 2001 (Exp. 2)  Static .73 

33 Tabbers, Martens, & van Merriënboer, 2004  Static -.47 

34 Tindal-Ford et al.,1997 (Exp. 1) Static 1.68 

35 Tindal-Ford et al.,1997 (Exp. 2) Static 1.07 

36 Tindal-Ford et al.,1997 (Exp. 3) Static .23 

37 van Gerven (Chapter 5), 2002 Static .59 
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Accordingly, reinspecting the meta-analysis of Ginns (2005) revealed that the modality effect was 

more pronounced for dynamic visualizations than for static visualizations. This also indicates that 

dynamic visualizations as opposed to static visualizations might suffer more from written text or 

profit more from spoken text, respectively. Hence, this re-examination can be seen as a further 

hint towards the assumption that text modality might moderate learning with dynamic and static 

visualizations – even though such results from meta-analyses should be treated with caution, 

because there mostly will be further confounding variables that cannot all be reasonably taken 

into account.  

There are only two published studies to the author’s knowledge that investigated the role 

of text modality in learning with dynamic and static visualizations (Koroghlanian & Klein, 2004; 

Mayer et al., 2005). Koroghlanian and Klein (2004) observed neither a main effect for type of 

visualizations, nor a main effect for text modality, nor an interaction between these two factors. 

However, in this study, the spoken text conditions additionally received a stripped-down version 

of the same text in written form next to the visualizations, so that the potential benefit of spoken 

text, namely to reduce inter-representational split-attention, might have been non-existent. 

Moreover, presenting spoken text and a stripped-down version of written text together might 

have even led to a harmful redundancy, thereby further eliminating the potential benefit of 

spoken text in multimedia learning (cf. redundancy principle, Sweller, 2005b). In every experiment 

of the study by Mayer et al. (2005), solely two conditions were compared, namely a condition 

with spoken text and dynamic visualization to a condition with written text and static pictures. 

Due to the confounded nature of the chosen design of this study, however, the role of text 

modality in learning with dynamic and static visualizations could not be examined.  

To sum up, dynamic visualizations possess high potentials for conveying a deeper 

understanding of changes over time. However, due to their assumed visual complexity, these 

potentials may not properly unfold under inter-representational split-attention conditions. To 

cope with this problem, it might be reasonable to use spoken text. When optimizing learning with 

dynamic visualizations by reducing inter-representational split-attention through using spoken 

text, it may be the case that the superiority of dynamic visualizations as opposed to static 

visualizations might be even more pronounced. Since there appears to be no published study that 

directly addressed this question, this question was examined in Study 2.  

It should be noted though that using spoken text does not reduce the visual complexity of 

dynamic visualizations themselves. To counteract the processing demands associated with a high 

degree of visual complexity, it has been suggested to cue visualizations. This topic will be 

addressed next.  
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4.2 Reducing Visual Complexity by Cueing Important Information 

 

When considering learning with dynamic visualizations, learners may be overwhelmed by the high 

degree of visual complexity within dynamic visualizations (e.g., Lowe, 2003, 2004). This high 

degree of visual complexity might be induced by at least three factors: By the continuous 

movement of elements, by the distracting movement of less relevant elements, and by the need 

to split attention within dynamic visualizations since several elements may move at different 

locations at the same time. One way to overcome the processing demands of dynamic 

visualizations that are associated with their visual complexity is assumed to lie in the use of cueing 

techniques (cf. Bétrancourt, 2005; Boucheix & Lowe, 2010; de Koning, Tabbers, Rikers, & Paas, 

2009; Schnotz & Lowe, 2008).  

In line with de Koning et al. (2009), cueing is referred to as “the manipulation of visuo-

spatial characteristics of instructional material in order to help learners in selecting relevant 

information, and organizing and integrating the information into a coherent representation” (p. 

114). Thereby, by means of cueing, no additional information is added. 

According to Mayer (cf. signaling principle, 2005c, 2009), learning is facilitated when the 

essential information of the instructional material is cued. Even though Mayer (2005c, 2009) 

refers to the respective effect as evidence for the signaling principle, in the following the term 

cueing will be used as it is most often used in current multimedia research (see also de Koning et 

al., 2009). On the basis of the CTML, cueing should aid learning because it guides the learners’ 

attention towards the essential information thereby leaving more resources available for more 

thorough processing of the essential material (Mayer, 2005c, 2009; Mayer & Moreno, 2003). In 

CLT terminology, this corresponds with a decrease of ECL so that more resources may be devoted 

to processes associated with GCL.  

The potential effects of cueing can be well described by referring to the processes of 

selection, organization and integration within the CTML as will be shown in the following (cf. de 

Koning et al., 2009, Mautone & Mayer, 2001; Mayer & Moreno, 2003)18. Thereby, most of the 

cueing methods that support the processes of selection, organization, and integration can also be 

related to their potential to reduce the visual complexity within visualizations19.  

                                                           

18
 Surprisingly, Mayer (2001, 2005c, 2009) provides hardly any explanation of cueing within the CTML with 

regard to the processes of selection, organization, and integration, and the emerging mental models in his 
textbooks. 
19

 However, it should be noted though that not every type of cue that support one of these processes 

necessarily reduces visual complexity. Therefore, in the reminder of this chapter, these different functions 
will also be discussed with regard to the type of cue. 
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First, cueing may help to select relevant information. Concerning text, the selection of 

important words may be facilitated by means of cueing, for instance by using bold type (in the 

case of written text) or by a different intonation (in the case of spoken text), which is supposed to 

make these words more distinguishable from other text elements. Concerning visualizations, the 

selection of visual information might be disburdened by cueing essential elements within the 

visualization, for instance, by means of coloring these elements or by using a spotlight. It is 

assumed that cueing aids the selection of relevant information because on the one hand, by 

means of cueing, attention can be guided. Here, it also may facilitate the discrimination process 

that singles out important information, thereby enabling a more intensive processing of that 

information (cf. Mautone & Mayer, 2001). Recent research applying eyetracking methods 

supports the assumption of an attention-guiding function of cueing (e.g., Boucheix & Lowe, 2010; 

de Koning et al., 2010a; Jarodzka, 2011; Kriz & Hegarty, 2007; Ozcelik, Arslan-Ari, & Cagiltay, 

2010). For instance, de Koning et al. (2010a) used a spotlight that successively highlighted several 

subsystems of an animation depicting the cardiovascular system. Eyetracking data revealed that 

learners looked more often and longer at the cued region as opposed to learners in a control 

condition. Moreover, cueing may reduce unnecessary search processes so that “less visuospatial 

recourses are required to control the execution of eye movements. Thereby, cueing reduces 

extraneous cognitive load associated with locating relevant information.” (de Koning et al., 2009, 

p. 118). By reducing visual search processes, the demands on the perceptual system might be 

disburdened. First evidence for the claim that cueing additionally might reduce unnecessary 

search processes is also given by recent eyetracking studies (Jarodzka, 2011; Exp. 2; Ozcelik et al., 

2010). On the other hand, the eyetracking data from de Koning et al. (2010a) as well as Kriz and 

Hegarty (2007) did not reveal a reduction of visual search. However, as Ozcelik et al. (2010) points 

out, this may be due to inadequate analysis of the eyetracking data as, for instance, de Koning et 

al. (2010a) did not use a time-locked analysis (cf. Hyönä, 2010). Irrespective of this, by guiding a 

learner’s attention and by reducing visual search processes within a visualization, cueing 

(specifically a spotlight cue) might reduce problems associated with the visual complexity of 

visualizations, particularly the problems of distracting information, as well as intra-

representational split-attention.  

Cueing may also help in organizing the information. Thereby, text might be cued by 

means of headlines, enumerations, or summaries, which are supposed to make the global and 

local structures of a text more evident (e.g., Loman & Mayer, 1983; Lorch & Lorch, 1996; Meyer, 

1975; Mayer & Moreno, 2003). This in turn may help learners to organize the material more easily 

into a coherent verbal model (Mautone & Mayer, 2001). With respect to organizing information in 

visualizations by means of cueing, one might, for instance, cue the relevant elements one after 
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the other to stress the functional order of a system, or to mirror the cause-and-effect chain, 

respectively (e.g., Boucheix & Lowe, 2010). Thereby, cueing may not only help to organize a 

visualization in terms of its spatial order, but also with respect to the temporal order of the events 

depicted. Here, the processing of the respective information is guided, and, in connection, the 

visual complexity might be further reduced, since learners might be less distracted from 

information that is less relevant at a given point in time. Also, elements belonging together could, 

for instance, be grouped by depicting the same color, since they belong to the same functional 

unit within a system (cf. de Koning et al., 2009). Doing so might decrease ECL and might make it 

easier for the learner to organize the elements within a visualization into a coherent pictorial 

model. Moreover, by guiding a learner’s processing, cueing might additionally help the learner to 

better concentrate on the content and to devote the freed capacity to valuable processing 

activities, which in turn would correspond to an increase in GCL. Summing up, cueing is assumed 

to help in organizing the content, because the order of processing events is guided, thereby also 

possibly reducing the visual complexity within visualizations. Moreover, relations can be 

explicated that otherwise might have to be inferred – a process that can be considered resource-

demanding (cf. de Koning et al., 2009; Mautone & Mayer, 2001, 2007). Since specifically the use 

of effective visual cues for visualizations should result in a more elaborated pictorial model, the 

effectiveness of cueing might result in better performance on pictorial tasks. In line with this 

assumption, a positive effect of cueing on pictorial tasks could be observed (e.g., Beck, 1987; 

Boucheix & Guignard, 2005; Ozcelik et al., 2010; Van Meter, Gu, Pastore, & Cook, 2010), even 

though it should be noted that this learning outcome measure is seldom assessed in research on 

cueing. 

Cueing might not only help to select and organize the information within a 

representation, but also to relate information between two (or more) representations. Thereby, 

cueing might aid the integration of information of different external representations into a 

coherent mental representation of the content (cf. de Koning et al., 2009). This in turn might also 

be associated with an increase of GCL. Furthermore, ECL might be reduced, since working 

memory might be freed up by the lack of necessity for the resource-demanding processes of 

inferring relations and correspondences between elements of text. In the case of written text and 

visualizations, the integration function of cueing could be realized for instance by means of color-

coding, that is by giving the same color to the information in the written text and the referring 

information in the visualization (e.g., Folker, Ritter, & Sichelschmidt, 2005; Kalyuga et al., 1999; 

Ozcelik et al., 2009). In case of spoken text and visualizations, the integration function of cueing 

could be realized by synchronizing the spoken text and the visualizations, for instance, by 

highlighting elements when mentioned in the narration, or by not adding elements in the 
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visualizations until mentioned in the text (e.g., Jamet, Gavota, & Quaireau, 2008; Jeung et al., 

1997; Ozcelik et al., 2010). Thereby, problems associated with intra-representational split-

attention might additionally be decreased, since the visualizations gradually build up. Overall, 

emphasizing relationships between elements of the visualizations and corresponding elements of 

the text might lead to a well developed integrated mental model, which in turn should result in 

better performance on transfer tasks. Partly in line with this reasoning, a positive effect of cueing 

could be observed for transfer tasks (e.g., de Koning, Tabbers, Rikers, & Paas, 2010b; Ozcelik et 

al., 2010), admittedly not always (e.g., Huk, Steinke, & Floto, 2010; Jamet et al., 2008). 

In short, cueing may support the processes of selecting and organizing information, which 

in turn leads to a more coherent pictorial model when cueing visualizations20. Moreover, by 

supporting learners in relating corresponding verbal and pictorial information to each other, 

cueing may also facilitate the construction of a well developed integrated model. With regard to 

the demands on working memory, cueing might reduce ECL and increase GCL. However, there is 

little direct empirical evidence that cueing indeed reduces ECL as measured by subjective 

cognitive load ratings (e.g., Amadieu, Mariné, & Laimay, 2011; Berthold & Renkl, 2009; Jamet et 

al., 2008; Kalyuga et al., 1999). In other studies, no differences in the assessed subjective cognitive 

load ratings could be observed (e.g., de Koning, Tabbers, Rikers, & Paas, 2007; Keller, Gerjets, 

Scheiter, & Garsoffky, 2006; Tabbers et al., 2004), even though in the latter studies cueing had an 

effect on performance (cf. de Koning et al., 2009). Finally, most of the cueing methods that 

support the processes of selecting, organizing and integrating are also assumed to reduce the 

visual complexity of visualizations. However, since particularly dynamic visualizations, compared 

to static visualizations, are supposed to suffer from a high degree of visual complexity, the 

benefits of cueing might be more pronounced for dynamic than for static visualizations.  

 

Empirical evidence 

To pursue the claim that the benefits of cueing might be more pronounced for dynamic than for 

static visualizations, in the following, the research on the effects of cueing in learning with 

dynamic and static visualizations will be inspected. Unlike for the influence of using spoken text to 

optimize learning from dynamic as compared to static visualizations, where the meta-analyses of 

Höffler and Leutner (2007), Ginns (2005), as well as more recently conducted studies could be re-

inspected for estimating this effect, such a procedure could not be applied to determine whether 

cueing is especially suited to foster learning from dynamic visualizations. This is due to the fact 

that only a low number of studies covered by the meta-analyses of Höffler and Leutner (2007) 

                                                           

20
 Note that cueing text would similarly lead to a more coherent verbal model. However, as text was not 

cued in the studies of the current thesis, this topic will be neglected in the following. 
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incorporated cueing in learning from dynamic and static visualizations (at least as can be gathered 

from the description of these studies). Therefore, it was not possible to reasonably compare the 

studies that incorporated cueing in dynamic and static visualizations to those that did not use 

cueing in dynamic and static visualizations21. The same conclusion accounts for the recent studies 

that compared dynamic and static visualizations, of which only three incorporated cueing in their 

design for both types of visualizations (Ardac & Akaygun, 2005; Boucheix & Guignard, 2005; 

Pfeiffer et al., 2009). Finally, no meta-analysis exists with respect to cueing. Based on the 

information illustrated above, an overview of cueing in static visualizations will first be given. This 

will be rather brief as the research results regarding the effectiveness of cueing for static 

visualizations are consistent and mainly positive. Subsequently, the existing research concerning 

cueing in dynamic visualizations will be considered. This will be done in more detail due to the 

mixed pattern of results of a recent review by de Koning et al. (2009) considering the research on 

the effectiveness of cueing in dynamic visualizations. Studies unsuccessfully applying cues in 

dynamic visualizations will be explicated followed by studies that successfully applied cues in 

dynamic visualizations, after which suggestions as to what might have caused this different 

pattern of results for cueing in dynamic visualizations will follow. Finally, conclusions concerning 

the role of cueing in learning with dynamic and static visualizations will be reached. 

 

Cueing in static visualizations 

Research on the effectiveness of cueing in static visualizations is quite consistent and basically 

shows a positive effect of cueing on performance. In contrast to the research with dynamic 

visualizations discussed below, the studies entailing cueing in static visualizations mainly used 

multimedia material (i.e., text and visualizations), with the exception of one study by Grant and 

Spivey (2003), who solely cued a static visualization and also found a positive effect of cueing. The 

remaining studies investigated the influence of static visualizations accompanied by text, and the 

majority of these studies showed a positive effect of cueing on performance. This was the case for 

studies presenting static visualizations and written text (e.g., Beck, 1984, 1985, 1987; Berthold & 

Renkl, 2009; Florax & Plötzner, 2010; Folker et al., 2005; Kalyuga et al., 1999; Keller et al., 2006; 

Mautone & Mayer, 2007; Ozcelik et al., 2009; Scheiter & Eitel, 2010; Seufert & Brünken, 2006; 

Seufert, Jänen, & Brünken, 2007; Tabbers et al., 2004), as well as for studies presenting static 

visualizations and spoken text (e.g., Jamet et al., 2008; Jeung et al., 1997; Ozcelik, et al., 2010; 

Tabbers et al., 2004). Moreover, it could be shown that cueing not only has a positive effect on 

                                                           

21
 It should be noted though that it was possible in the meta-analysis by Höffler and Leutner (2007) to 

compare dynamic visualizations to static visualizations that contained cues (particularly arrows) and to 
static visualizations that did not contain cues; there were no differences of cued and uncued static 
visualizations with regard to their instructional effectiveness. 
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the comprehension of cued information, but that cueing also does not have a negative effect on 

the comprehension of uncued information (e.g., Beck, 1985; de Koning et al., 2007). However, it 

should be noted that some boundary conditions for the effectiveness of cueing emerged: For 

instance, ICL should not be too high or too low, and similarly, ECL should not be too low, as 

otherwise the effectiveness of cueing might not unfold (Jeung et al., 1997; Seufert et al., 2007).  

As explicated in Chapter 2.2.2, with respect to the type of multiple static visualizations, 

one can differentiate between static-sequential and static-simultaneous visualizations. However, 

since in mainly all studies single static visualizations were cued, there is a hardly any research with 

respect to the effectiveness of cueing in multiple static visualizations. From a theoretical point of 

view, one may nevertheless derive assumptions concerning the effectiveness of cueing in static-

sequential as opposed to static-simultaneous visualizations. As mentioned in Chapter 2.2.2, one 

potential drawback of static-simultaneous as opposed to static-sequential visualizations is that 

learners have to conduct more visual search and matching processes. Thus, one may assume that 

learners might particularly need guidance in static-simultaneous visualizations, which can be 

realized by means of cueing. If this assumption was true, one would suppose that learners 

receiving static-simultaneous visualizations may profit more from cueing than learners receiving 

static-sequential visualizations. However, it should be noted that there is a lack of research with 

respect to this research question, so this assumption stands on shaky ground.  

In the following, research concerning cueing in dynamic visualizations will be outlined, 

beginning with research where no evidence in favor of cueing was observable. An overview of the 

studies using cues in animations is provided in Table 4.4. 

 



Optimizing Learning from Visualizations 80 

Table 4.4 

Overview of Studies Investigating the Effectiveness of Cues in Dynamic Visualizations, Listed as a 

Function of Text Presence and Modality 

Authors Text modality Effect of cueing 

de Koning et al., 2010a No text Neutral 
de Koning et al. 2011a No text Neutral 
Kriz & Hegarty, 2007 No text Neutral 

Mautone & Mayer, 2001 Spoken text Neutral 
Moreno, 2007 Spoken text Neutral 
Spangenberg, 1973 Spoken text Neutral 

Large et al., 1996 Written text Neutral 
van Oostendorp & Beijersbergen, 2007 Written text Neutral 

de Koning et al., 2007 No text Positive 
Meyer et al., 2010 No text Positive 
Boucheix & Lowe, 2010 No text Positive (but not for arrows) 
Fischer, 2008 (Exp. 2) No text Positive (for fast speed) 
Fischer et al., 2008 No text Positive (for fast speed) 
Fischer & Schwan, 2010 No text Positive (for fast speed) 
de Koning et al., 2011b No text Positive (in combination with self-explanations) 

Amadieu et al., 2011 Spoken text Positive 
de Koning et al., 2010b Spoken text Positive  
Huk, 2010 Spoken text Positive 
Huk, 2010 Spoken text Positive 
Jarodzka, 2011 (Exp. 2) Spoken text Positive 
Jarodzka, 2011 (Exp. 3) Spoken text Positive 
Janelle et al., 2003 Spoken text Positive (for multiple cues) 

Boucheix & Guignard, 2005 Written text Positive 
van Oostendorp et al., 2008 Written text Positive 

 

Cueing in dynamic visualizations: no effects 

There are several studies that could not find a positive effect of cueing on comprehension of 

dynamic visualizations. These studies will be described next, beginning with studies using dynamic 

visualizations without text, followed by studies that were accompanied by written or spoken text, 

respectively. Thereby, possible explanations will be given for what might have caused the lack of 

differences in favor of cueing in these studies.  

In a series of five studies, de Koning, Tabbers, Rikers, and Paas (2007, 2010a, 2010b, 

2011a, 2011b) – with the exception of one study (de Koning et al., 2007) – could not find a 

superiority of cued compared to uncued animations, unless the animations were supported by 

further explanations. In these studies, comprehension was unaffected by cueing, even though an 

analysis of eyetracking data revealed that the cues served to guide attention towards relevant 

information (de Koning et al., 2010a). Similarly, Kriz and Hegarty (2007; Exp. 3) could show with 

the help of eyetracking data that cueing guided attention to the cued parts of the animation, even 

though no differences could be found for comprehension (Exp. 2 & 3). According to de Koning et 

al. (2010a), these results might be interpreted by suggesting that cueing mainly stimulated 

perceptual processing rather than cognitive processing, and that cues are seldom efficient to 
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foster understanding as long as no further explanations are given, for instance, by an 

accompanying text. Similarly, Kriz and Hegarty (2007) stressed the importance “to make a 

distinction between the perceptual processes of extracting the visual features of a display and the 

more conceptual processes of encoding that display and constructing a mental model of the 

referent” (p. 925). 

Irrespective of that conclusion, it should be noted though that a drawback in the 

experiments by Kriz and Hegarty (2007) was that they used arrows as a cueing device. However, 

arrows may interfere with the depicted motion in an animation, as arrows are not only used to 

point to specific regions, but also to show the direction of a movement (Heiser & Tversky, 2006). 

More direct support for the assumption that arrows are a rather suboptimal type of cue for 

learning with dynamic visualizations is given by a study from Boucheix and Lowe (2010). In this 

study the authors compared arrows as cues with a spreading-color cue (i.e., a cue that consists of 

colored ribbons and that spreads through the relevant graphic entities in synchrony with the main 

causal chain of those entities). The results revealed that only the spreading-color cue, but not 

arrows were beneficial to enhance understanding. This study and its results will be described in 

more detail below. 

When considering the interplay of several representations, such as animations and text, 

cues may not only serve to highlight information within a representation, but additionally to 

relate corresponding elements in the representations to each other (cf. de Koning et al., 2009). 

However, particularly in the studies using text and dynamic visualizations that failed to show an 

effect of cueing, the cueing of relations between representations was occasionally implemented 

in a rather suboptimal way.  

In a study by van Oostendorp and Beijersbergen (2007), the authors related a written text 

to highlighted parts of an animation by placing a dot in front of the corresponding paragraph. The 

text was given in written form, while the pace of the presentation was system-paced. It is possible 

that, as learners had to split their attention between text and dynamic visualizations, the learners 

may have missed crucial information, so that the effectiveness of cueing might have been 

overshadowed. Indirect support for this assumption was provided in a follow-up study by van 

Oostendorp et al. (2008), in which the authors used the same dynamic visualizations, but this time 

the presentation’s pace could be determined by the learner. Results of this study showed that 

cued dynamic visualizations were superior to uncued ones under learner-control conditions.  

In a study by Moreno (2007), labels were shown next to a dynamic visualization. These 

labels were highlighted when mentioned in the narration that accompanied the dynamic 

visualization. Results revealed no positive effect of cueing. Moreno interpreted the absence of an 

effect by assuming that this type of cueing may have forced learners to split their attention 
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between the dynamic visualization and the highlighted label, so that no benefit of cueing 

emerged.  

Mautone and Mayer (2001) investigated in a 2x2-design the presence/absence of visual 

cues (such as pictorial headlines and colored elements) in dynamic visualizations and the 

presence/absence of cues in a corresponding spoken text (i.e., adding headlines, summaries, 

enumerations, logical connective phrases et cetera). Results revealed only an effect for text cues, 

but not for visual cues in the animations. The authors gave several explanations for the lack of an 

effect for visual cueing. On the one hand, the complexity of the animation was considered to be 

rather low, making it questionable if visual cues had been necessary at all to guide the learners 

cognitive processing. This would also be in line with a study by Jeung et al. (1997), who found 

cueing to be beneficial only when the complexity of the visualizations was high. On the other 

hand, the cueing treatment of Mautone and Mayer (2001) may have been a rather weak one, 

because in the cued animation condition solely icons that acted as a kind of pictorial headline and 

some colored elements were used.  

The same argument of a rather weak treatment might also account for the results of a 

study by Large et al. (1996), who could not find an effect of cueing when adding two captions to 

dynamic visualizations. Since in both, the cued and uncued animations, parts of the animations 

were labeled, the authors explained their finding by assuming that adding two captions was not 

necessary anymore.  

Also a rather weak treatment was used in a study by Spangenberg (1973; Exp. 2). The 

author was comparing a narrated video to a narrated video with arrows and found no differences 

between conditions. The arrows were implemented not to point to relevant parts, but to show 

the direction of the movement. However, as the movement was already conveyed through 

dynamic visualizations, this function of arrows was rather redundant, so it might not be very 

surprising that there was no effect of cueing. 

To sum up, the studies that did not show any effect of cueing in dynamic visualizations 

might have implemented cues in a suboptimal way, by either not adding further explanations to 

the animations so that cueing did not stimulate cognitive processes (de Koning et al., 2010a; Kriz 

& Hegarty, 2007), by using inappropriate cues such as arrows (Kriz & Hegarty, 2007; Spangenberg, 

1973), by overshadowing a potential effect of cueing through a split of attention (Moreno, 2007; 

van Oostendorp & Beijersbergen, 2007), or by a rather weak treatment, or a lack of necessity of 

cues, respectively (Large et al., 1996; Mautone & Mayer, 2001; Spangenberg, 1973).  
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Cueing in dynamic visualizations: positive effects 

In the following, studies will be described that showed a positive effect of cueing in dynamic 

visualizations. Studies using dynamic visualizations without text will be outlined first, before 

reviewing studies in which dynamic visualizations were accompanied by text.  

Although de Koning et al. (2007) could find a positive effect on performance when an 

animation (without text) was cued as opposed to an uncued animation, these results will be 

neglected, as the authors could not replicate this finding for these two conditions in three further 

studies (cf. de Koning et al., 2010a, 2011a, 2011b).  

Different presentation speeds can be regarded as a special form of cueing, since they do 

not add any new information, but are supposed to guide attention and make certain aspects of an 

animation more salient (dynamic contrast, Schnotz & Lowe, 2008). Thereby, they might make it 

easier for learners to select the relevant information. For instance, slow processes might become 

better perceivable and comprehensible in an animation by speeding the animation up. In a study 

by Fischer, Lowe, and Schwan (2008), different presentation speeds (fast vs. normal) were used as 

a cueing device for an animation of a pendulum clock. The fast presentation speed made aspects 

salient that in the normal speed condition were hardly perceivable. Results revealed that the 

different presentation speeds influenced the distribution of attention and led to differences in 

performance, whereby learners in the fast presentation condition outperformed the normal 

speed condition (see also Fischer, 2008; Exp. 2). In a follow-up study, Fischer and Schwan (2010) 

again compared the effectiveness of different presentation speeds of the same animation (fast vs. 

normal); in addition, they varied whether different parts of a pendulum clock were highlighted by 

blinking colors. The blinking color was supposed to guide attention via visuo-spatial contrast, that 

is, due to its blinking character the entity was supposed to be more easily distinguished from its 

surroundings (cf. Schnotz & Lowe, 2008). The different presentation speeds, on the other hand, 

were supposed to guide attention via dynamic contrast. The results again revealed that the fast 

presentation speed was beneficial for learners, whereas this was not the case for cueing different 

parts of the animation by means of blinking colors. Similarly, in a study by Meyer, Rasch, and 

Schnotz (2010), results revealed that different presentation speeds of an animation depicting a 

four stroke-engine affected the comprehension of macroscopic functional aspects (e.g., the timing 

device of the four cylinders). Even though one might argue that these results are restricted to 

specific characteristics of the used animations of the studies by Fischer and colleagues (2008, 

2010), as well as Meyer et al. (2010), they nevertheless reveal the importance of how 

overemphasizing certain aspects of a motion can contribute to the understanding of a depicted 

topic.  
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Boucheix and Lowe (2010) compared two different kinds of cues, arrows and a 

(synchronized) spreading-color cue, with respect to their effectiveness for fostering the 

understanding of the mechanics of a piano. Results of their first experiment revealed that 

performance in the spreading-color cue condition was superior to the arrow condition and to a 

control condition, whereas the latter two conditions did not differ. In a second experiment, the 

authors compared in a 2x2-design once again type of cue (arrows vs. spreading-color cue) and 

whether the cues were synchronized with the time-course (synchronized vs. unsynchronized). 

They thereby did not only spatially cue the different components of the system, but also 

temporally cued the time course of the system. Note that in the condition of the unsynchronized 

spreading-color cue, the spreading-color cue did not cue temporally, since all colored ribbons 

appeared at once. This experiment confirmed the superiority of spreading-color cues to arrows, 

and also revealed that the synchronization of the cues to the functional time course of the system 

was beneficial for an understanding of the kinematics and functioning of the system. Thus, the 

cues might have helped the learner to organize the displayed information into a coherent mental 

model by guiding processing by means of synchronizing the cues according to the cause-and-

effect chain. 

The aforementioned studies investigated the effectiveness of cueing in dynamic 

visualizations without text and observed a positive effect of cueing. This is somewhat 

contradictory to the findings of Kriz and Hegarty (2007) as well as de Koning et al. (2010a) who 

could not find an effect of cueing without text and concluded that cueing might mainly stimulate 

perceptual processing rather than cognitive processing and might therefore not be very beneficial 

without further explanations. This conflicting pattern of results of cueing in dynamic visualizations 

without text may be explained by the functional aspects the successful cues emphasized. On the 

one hand, the speed of an animation was manipulated in the studies by Fischer and colleagues 

(2008, 2010) as well as Meyer et al. (2010). By using high speed, certain functional aspects might 

have become salient, which otherwise may not have really been perceivable. In the study by 

Boucheix and Lowe (2010), the positive effect of cueing might be traced back to the special design 

of this cue that emphasized the functional aspects of the system by cueing the time course of the 

elements, or the cause-and-effect chain, which can be considered as the most important aspect of 

their used instructional material. Thereby, the aforementioned cues might not only have 

stimulated perceptual processing by helping to select the presented information, but might also 

have stimulated cognitive processing (cf. de Koning et al., 2009). 

In the following, research on cueing in dynamic visualizations accompanied by further 

explanations will be discussed. This particular method is especially interesting in the context of 

this thesis as the visualizations described in the current thesis were also accompanied by text. 
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Van Oostendorp et al. (2008) found a positive effect of cues in animations accompanied 

by written text. The cue within the dynamic visualization (spotlight cue) aimed at reducing the 

visual complexity within the dynamic visualization and at guiding attention to the relevant 

information in the visualization. Furthermore, there were cues that were designed to emphasize 

the relationship between text and visualizations. However, as already discussed above, cueing 

was only beneficial if the animations were self-paced, so that a split of attention between the 

written text and the animations could be compensated and the benefits of cueing were able to 

shine through.  

Boucheix and Guignard (2005) implemented several cueing techniques, such as colored 

dots, arrows, tachometers, and verbal cues in dynamic visualizations, which in turn were 

accompanied by short written text consisting of one-two sentences. Results revealed that these 

cues aided comprehension of dynamic visualizations. 

Moreover, there is evidence that cues may be helpful in learning with dynamic 

visualizations accompanied by spoken text. 

Amadieu et al. (2011) compared an ordinary animation to an animation that was cued by 

zooming in on the relevant information in the visualization. Both animations were accompanied 

by spoken text. By zooming-in, less relevant details of the animation move out of focus. This in 

turn reduces the visual complexity of an animation, and, moreover, helps learners to relate 

information of the narration and the corresponding information of the visualization. Results 

showed a positive effect of cueing on learning outcomes.  

In two experiments by Huk et al. (2010), cues were implemented in dynamic visualizations 

either by coloring elements or by adding labels, synchronized with a corresponding narration. In 

doing so, particularly the processes of selecting information within the visualization and making 

the connection with the corresponding information within the narration might be supported. For 

both experiments results revealed that cues increased performance in a task that required the 

learner to memorize important facts that were explicitly depicted in the dynamic visualizations, 

whereas cues had no impact on deeper understanding. The authors supposed that the latter 

finding might be caused by the short duration of the visual cues, and suggested that the use of 

prolonged as well as multiple cues may be a promising way to support more thorough 

comprehension.  

Support for using multiple cues comes from a study by Janelle, Champenoy, Coombes, 

and Mousseau (2003) in which the authors showed learners a narrated video of a model 

performing a procedural task and highlighted relevant parts either by visual cues, verbal cues, or a 

combination of both. Results revealed that learners in the combined cues condition outperformed 
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learners in the single cue conditions and in the non-cued video condition, whereas learners in the 

single cues condition did not outperform the pure video condition.  

Jarodzka (2011; Exp. 2 & Exp. 3) used two different forms of cues across two studies: a 

spotlight and a dot. In both studies the cues were derived from the viewing behavior of the 

expert. Moreover, the narrated explanations of the expert were used as accompanying text. The 

cues were then synchronized with the narration. This might have not only highlighted information 

in the visualization, but might have also helped learners to relate the cued elements of the 

visualizations with the corresponding text, thereby facilitating the process of integrating these 

sources of information into a coherent mental model. This view is supported by the results of 

these two studies, since they both show that cueing guided attention to the cued parts and 

enhanced understanding. 

De Koning et al. (2011b) investigated the influence of cues in animations. The cues either 

did or did not contain self-explanation prompts. A spotlight, which was supposed to deemphasize 

less relevant information, thereby reducing visual complexity, was used as the cueing method. 

The results showed that the benefits of cueing animations were only observable when learners 

were prompted to conduct self-explanations. In a follow-up study (de Koning et al., 2010b), cued 

and uncued animations that were either augmented with self-explanation prompts or with 

spoken instructional explanations were compared. Results indicated that cued animations were 

superior to uncued animations for the self-explanation conditions as well as the spoken text 

conditions, supporting the view that the benefits of cueing in animations might mainly become 

evident, if additional explanations are provided by the instructor (i.e., instructional explanations), 

or by the learner (i.e., self-explanations).  

In conclusion, it is fair to say that studies that implemented effective cues in dynamic 

visualizations, which were not accompanied by text, used cues that overemphasized the motion in 

dynamic visualizations or that highlighted the time course of events. When accompanied with 

written text, cueing was mainly effective in dynamic visualizations, if these were self-paced, or if 

the text was short. This could possibly be accounted to the fact that a split of attention did not 

overshadow the potential of cues in these cases. When dynamic visualizations were accompanied 

by spoken text, most of the studies showed a positive effect for cueing in dynamic visualizations, 

indicating on a descriptive level that the potential of cueing might most likely unfold for narrated 

dynamic visualizations.  

 

All in all, the mixed pattern of results for cueing in dynamic visualizations (see Table 4.4) indicates 

that on the one hand, cueing holds great potential for improving learning with dynamic 

visualizations, but that on the other hand, cueing is not a remedy in itself. Therefore, it is 
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necessary to take a closer look at, and identify the conditions under which cueing in dynamic 

visualizations has proven to be beneficial. If cues were implemented in dynamic visualizations 

without text, their influence on comprehension might be rather subordinate, because they might 

primarily foster perceptual processing, but not cognitive processing (cf. de Koning et al., 2009). 

Nevertheless, specific designs of visual cues might also stimulate cognitive processing, for 

instance if they were to cue the cause-and-effect chain (e.g., Boucheix & Lowe, 2010). Moreover, 

there is evidence that in the studies where no effect of cueing could be observed, the potential of 

cues was not fully exploited (see also de Koning et al., 2009). This might especially be the case, as 

the movements depicted in dynamic visualizations already possess the potential to attract 

attention (dynamic contrast, Schnotz & Lowe, 2008), which might compete with the attention-

guiding function of cues (cf. de Koning et al., 2009). Therefore, especially designing cues for 

dynamic visualizations might be complicated and need to be considered carefully. Based on this 

research overview, some guidelines might be derived for the design of successful cues in dynamic 

visualizations. These guidelines will address cueing techniques in learning with dynamic 

visualizations that are accompanied by text, since this was the case for all studies in the current 

thesis. To successfully cue dynamic visualizations, it might be reasonable to implement multiple 

cues that on the one hand support the processes of selection, organization, and integration (cf. de 

Koning et al., 2009; Mayer & Moreno, 2003), and counteract the assumed visual complexity of 

dynamic visualizations on the other hand.  

First, cues should facilitate the selection of relevant information. Doing so, they might 

overemphasize dynamic features, so that these aspects become more salient (e.g., Fischer, 2008), 

and, furthermore, they might overshadow the dynamic contrast of less relevant and distracting 

movements, for instance by means of a spotlight (e.g., de Koning et al., 2007, 2010a, 2010b, 

2011a, 2011b). Thereby, especially the latter treatment is supposed to reduce the visual 

complexity of dynamic visualizations, since less relevant elements decrease distraction. Second, 

cues should help in organizing the information (depicted by the visualizations) into a coherent 

pictorial mental model. This might be realized by the use of cues that correspond to the temporal 

order of a system, or to the cause-and-effect chain, respectively (e.g., Boucheix & Lowe, 2010). 

Since in this case, the order of processing elements within a visualization can also be guided, so 

that learners know when to attend to which location, the problems arising from an intra-

representational split-attention effect, and in turn, the visual complexity of dynamic 

visualizations, might become extenuated. Third, cues should aid learners in making the 

connection between certain elements of the text and their corresponding elements within a 

visualization, thereby supporting the process of integrating information from text and 

visualizations into a coherent mental model (cf. de Koning et al., 2009). With spoken text, for 
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instance, this could be realized by adding elements to dynamic visualizations step by step, when 

each is first mentioned in the text (e.g., Huk et al., 2010). Once again, such a cueing method might 

additionally reduce the problems arising from the visual complexity of dynamic visualizations, 

particularly problems associated with an intra-representational split of visual attention, since the 

visualizations gradually build up. Another way to help learners to integrate information from text 

and visualization might be to synchronize the cued part of the visualization with the verbal 

explanation (e.g., Amadieu et al., 2011; Huk et al., 2010; Jarodzka, 2011; Exp. 2 & Exp. 3). 

In compliance with these suggestions, Study 3 of this thesis made use of multiple cues in 

dynamic visualizations. These cues aimed at supporting the processes of selection, organization, 

and integration, and also aimed at counteracting problems associated with the visual complexity 

of dynamic visualizations. Note that arrows as a type of cueing device were omitted, as their 

benefits are highly questionable for cueing dynamic visualizations (e.g., Boucheix & Lowe, 2010). 

A detailed description of the cues used is given in the method section of Study 3 of the current 

thesis.  

In the reminder of this chapter conclusions about the conducted literature overview of 

cueing in static visualizations and cueing in dynamic visualizations will be drawn. 

 

The role of cueing in learning with dynamic as opposed to static visualizations 

At first glance, the effectiveness of cueing in static visualizations seems to be overall more 

successful than in dynamic visualizations. However, the research on how to construct successful 

cues for dynamic visualizations is somewhat in its early stages (cf. de Koning et al., 2009). This 

might be traced back to the fact that the construction of helpful cues might be easier for static 

visualizations than for dynamic visualizations: In dynamic visualizations the attention guiding 

function of cueing has to compete with the dynamic contrast of dynamic visualizations, which in 

turn is supposed to attract attention.  

However, when carefully designing cues for dynamic visualizations, cues might counteract 

the factors that are supposed to constitute the high degree of visual complexity in dynamic 

visualizations and therefore unfold the potential of dynamic visualizations. For instance, a 

spotlight can de-emphasize less relevant distracting elements, or gradually building up the 

visualization can reduce the problems arising from intra-representational split-attention. Because 

especially dynamic visualizations compared to static visualizations may possess a comparatively 

high degree of visual complexity, cueing might be even more helpful in learning with dynamic 

than with static visualizations. 

Two studies are known to have attempted to investigate the influence of cues on learning 

with dynamic and static visualizations: Spangenberg (1973) as well as Boucheix and Guignard 
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(2005). However, these studies have flaws that have already been partly discussed above. 

Spangenberg (1973; Exp. 2) used arrows as a cueing device to indicate the direction in which the 

movement would lead. The results of this study revealed a main effect of type of visualizations in 

favor of dynamic visualizations, but no main effect for cueing and no interaction. However, as in 

dynamic visualizations the movement is already depicted, one would not expect cues to be 

helpful there. If anything, these cues should be mainly helpful for static visualizations, where they 

help to convey information concerning direct movement. In the study by Boucheix and Guignard 

(2005), results revealed a main effect for type of visualization in favor of dynamic visualizations, 

and a main effect of cueing, but no interaction. The authors implemented multiple cues, among 

those also tachometers and verbal cues. A tachometer explicitly depicts information about 

velocity and changes in thereof. However, the tachometer might be especially helpful for learners 

in the static visualization conditions, who heavily rely on dynamic information from other sources, 

such as text (Kühl, Scheiter, & Gerjets, 2010). Moreover, learners in the dynamic visualizations 

condition can directly read-off dynamic information and, hence, may have even been 

unnecessarily distracted by the tachometer, which, taken together, may have overshadowed a 

potential interaction. In addition, the implemented verbal cues consisted of prompts on how to 

process the visualizations. This is problematic for two reasons: First, such prompts are not 

regarded as cueing anymore, but may rather be seen as an instructional learning strategy. Second, 

while learners in the dynamic visualizations conditions were prompted to compare the speeds of 

two gears by perceiving their speeds, learners in the static visualizations conditions were 

prompted to compare the speeds of two gears by inferring their speeds. Accordingly, it is unclear 

if the added value of the implemented cueing methods in this study can be traced back to what 

can be considered literal cueing, or if it might be traced back to prompting learners to engage in 

certain cognitive processes, which also differed from each other (i.e., prompt to perceive and 

compare speeds with dynamic visualizations vs. prompts to infer and compare speed with static 

visualizations). 

To conclude, research predominantly shows that cueing static visualizations is beneficial 

for learning. With regard to cueing dynamic visualizations, results are at first glance inconclusive, 

indicating that cueing dynamic visualizations is not a remedy in itself. Rather, it might be the case 

that cues have to be implemented in a way that they are able to counteract the problems 

associated in learning with dynamic visualizations, particularly their visual complexity, and, 

furthermore, support the processes of selection, organization, and integration. Here, such 

carefully designed cues may be a promising way to optimize learning with dynamic visualizations. 

Moreover, as such cues aim to cope with the processing demands associated with a high degree 

of visual complexity – which in turn is assumed to be more harmful in dynamic than in static 
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visualizations – these cues may be even more beneficial for dynamic than for static visualizations. 

Finally, with respect to static visualizations, seeing as static-simultaneous visualizations may suffer 

more from a higher degree of visual complexity than static-sequential ones, the benefits of cueing 

might be more pronounced in static-simultaneous visualizations. These assumptions will be 

investigated in Study 322. 

 

                                                           

22
 Note that due to the way cueing was implemented in the abovementioned studies that examined the 

influence of cueing in dynamic and static visualization (Boucheix & Guignard, 2005; Spangenberg, 1973), 
these studies are inconclusive with respect to the research questions of Study 3 for the current thesis. 
Moreover, Study 3 is different from the other two studies with regard to other design factors and research 
questions, respectively (e.g., the impact of cueing on different presentation formats of static visualizations). 
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4.3 Conclusions 

To sum up, there are two problems that might specifically account for learning with dynamic 

visualizations as compared to static visualizations: An inter-representational split-attention effect 

and the visual complexity of dynamic visualizations themselves.  

To overcome inter-representational spilt-attention, and to foster learning, it might be 

reasonable to use spoken text. Using spoken text instead of written text should – in terms of 

CTML – mainly have a positive impact on the pictorial, as well as the integrated mental model, 

and hence mainly affect performance in pictorial tasks and transfer tasks. Using spoken text 

should also reduce working memory demands, thus reducing ECL. Furthermore, the benefits of 

dynamic visualizations as compared to static visualizations might be even more pronounced for 

spoken than for written text, as the potential of dynamic visualizations to convey a deeper 

understanding of the content might particularly unfold when problems arising from an inter-

representational spilt-attention effect are solved. As the superiority of dynamic over static 

visualizations is solely assumed to become evident for transfer tasks, the moderating role of the 

text modality should also mainly affect transfer tasks. These research questions will be addressed 

in Study 2.  

However, using spoken text does not solve the problem of a high degree of visual 

complexity within dynamic visualizations. To cope with this, it has been suggested to optimize 

learning with dynamic visualizations by means of cueing. However, recent research shows that 

cueing is not a remedy in itself. It may actually be necessary to carefully design cues in order to 

counteract the assumed high degree of visual complexity in dynamic visualizations. Such carefully 

designed cues might specifically help learners to build a better pictorial as well as integrated 

mental model, and should therefore mainly affect pictorial and transfer tasks. Cueing should also 

reduce unnecessary processing demands (i.e., decrease in ECL), and may stimulate learners to 

engage in more valuable processing activities (i.e., increase in GCL). Moreover, since particularly 

dynamic visualizations might suffer from a high degree of visual complexity, the impact of cueing 

might be more pronounced for learning from dynamic than from static visualizations. Thereby, 

the potential of dynamic visualizations for fostering a deeper understanding might specifically 

come true, and should mainly affect transfer tasks, as they are assumed to be an indicator for a 

deeper understanding. With regard to different presentation formats of static visualizations, it 

might be argued that the benefits of cueing may be more pronounced for static-simultaneous as 

opposed to static-sequential visualizations as static-simultaneous visualizations are supposed to 

be more visually complex. These assumptions will be examined in Study 3. 
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5 Study 2: The Influence of Text Modality on Learning with 
Static and Dynamic Visualizations23 

 

5.1 Research Question and Hypotheses of Study 2 

 

Learning with text and visualizations might be enhanced when problems arising from inter-

representational split-attention are solved. In Study 1 of this thesis, however, inter-

representational split-attention may have been existent, since the text in Study 1 was presented 

in written form, thereby requiring learners to shift their attention between reading the text and 

processing the picture. Written text had to be used in Study 1, because think-aloud protocols 

were assessed, while learners were dealing with the multimedia instruction. As explicated in 

Chapter 4.1, to overcome problems arising from inter-representational split-attention, it is 

recommended to use spoken instead of written text (cf. modality effect; e.g., Ginns, 2005; Low & 

Sweller, 2005; Mayer, 2009; Sweller et al., 1998).  

Accordingly, a main effect for learning outcomes in favor of spoken text as compared to 

written text was expected. More precisely, this was assumed to be the case for pictorial recall 

tasks as well as transfer tasks, but not necessarily for verbal factual knowledge tasks, since spoken 

text should mainly have an impact on the pictorial as well as integrated mental model. 

Correspondingly, spoken text as opposed to written text should lead to a decrease of ECL, thereby 

leaving more resources available for GCL.  

Even though in Study 1 no differences concerning learning outcomes between dynamic 

and static visualizations were observable, in the current Study 2 it was nonetheless assumed that 

for this modified and enhanced instructional material, dynamic visualizations would be superior 

to static visualizations with respect to a deeper understanding of the underlying dynamics. This 

was expected to be the case for at least three reasons. 

First, the dynamic visualizations were improved in that dynamic interrelations became 

more evident (e.g., the interplay of changes in the frequency of the undulatory movement, its 

impact on changes in the magnitude of the reaction force, and the interrelatedness with 

swimming speed).  

Second, learners had to rely more on the visualizations, since, in contrast to Study 1, 

visuo-spatial aspects were mainly depicted in the visualizations, but not in the text anymore. 

                                                           

23 This chapter is based on: Kühl, T., Scheiter, K., Gerjets, P., & Edelmann, J. (2011). The influence of text 

modality on learning with static and dynamic visualizations. Computers in Human Behavior, 27, 29-35. 
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Thereby, because learners had to rely more on the visualizations, differences between the types 

of visualizations could become more evident. Moreover, even though dynamic features were still 

described in the text of Study 2, these descriptions were less extensive compared to Study 1. On 

the one hand, this reduction of dynamic features in the text, which are already depicted in 

dynamic visualizations, can be regarded as a reduction of redundancy, and, in turn may be 

beneficial for learners receiving dynamic visualizations (cf. Schmidt-Weigand & Scheiter, 2011). 

On the other hand, for learners receiving static visualizations, the reduction of dynamic features 

of the text might impose higher demands in constructing an adequate mental model of the 

underlying dynamics. In sum, this change of text content might favor learning with dynamic 

visualizations. 

Third, learner control over the learning environment was eliminated, so that the 

effectiveness of learning with dynamic and static visualizations could take place under more 

controlled conditions. However, learner control might rather help learners receiving static 

visualizations, since drawbacks in learning with static visualizations might be compensated 

through a more extensive use of the learning environment, as indicated by the results of Study 1. 

Thus, also eliminating learner control might have favored learning with dynamic visualizations.  

To conclude, with respect to type of visualization (static vs. dynamic), it was expected that 

a main effect for learning outcomes in favor of dynamic visualizations would be observed, 

particularly for transfer tasks, as differences between these types of visualizations are supposed 

to manly affect tasks asking for a deeper understanding (cf. Bétrancourt & Tversky, 2000). In 

connection, dynamic visualizations were assumed to decrease ECL, since learners receiving 

dynamic visualizations do not need to engage in resource-demanding processes, like spatial and 

temporal inferences. Thereby, dynamic visualizations may leave more working memory resources 

available for engaging in helpful learning activities, which are associated with an increase in GCL.  

Most importantly, an interaction between type of visualization and text modality was 

expected for learning outcomes and cognitive load: The advantage of learning with dynamic as 

opposed to static visualizations might be even more accentuated when using spoken instead of 

written text, since the potential of dynamic visualizations might particularly unfold with spoken 

text. This should be the case, because problems associated with a high degree of visual 

complexity in dynamic visualizations might be less severe when learners do not have to split their 

attention between text and visualizations (as for spoken text), so that the information depicted in 

dynamic visualizations may be processed appropriately. The assumed moderation should mainly 

affect transfer tasks – since also differences between dynamic and static visualizations are 

expected to become solely evident for transfer tasks – and should be mirrored by the respective 

patterns of ECL and GCL.  
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Finally, it was examined, if spatial abilities would moderate learning with dynamic and 

static visualizations. It was supposed that especially learners with weaker spatial abilities should 

profit from dynamic visualizations, whereas for learners with stronger spatial abilities the benefit 

of dynamic visualizations was expected to be less pronounced.  

 

5.2 Method 

5.2.1 Participants and Design 

 

Eighty students with various educational backgrounds from the University of Tuebingen, 

Germany, participated for either course credit or payment in the study. Students had to be native 

speakers and not to study physics. Sixty-three female and 17 male participants (M = 24.39 years, 

SD = 2.97) were randomly assigned to one of four conditions, which resulted from a 2x2-design 

with text modality (spoken vs. written) and visualization type (static vs. dynamic) as independent 

variables. 

 

5.2.2 Instructional Materials 

 

The instructional material was a revised version of the used material in Study 1. Major changes 

concerned the following points: First, the redundancy of text and visualizations was reduced, in 

that the text itself contained only little information concerning visuo-spatial relations; these 

aspects were depicted in the corresponding visualizations, as has been shown to be beneficial 

(Schmidt-Weigand & Scheiter, 2011). Moreover, the description of dynamic features in the text 

was reduced to avoid a redundancy between dynamic visualizations and text. Second, particularly 

the dynamic visualizations were improved by using their potential to depict dynamic changes 

directly. At this, also background had to be added to the visualizations. Third, the instructional 

material was now presented system-paced and not self-paced anymore24. Finally, mainly on the 

basis of the advice from two science educators who used similar material in high school, as well as 

on the basis of the verbal protocols obtained from Study 1, refinements of the content were 

made for Study 2 in that some subtopics were explained in a more comprehensible way (e.g., the 

                                                           

24
 This was done, because on the one hand, learners in Study 1 played less frequently the dynamic 

visualizations than their counterparts in the static visualization condition. However, to be better able to 
control for the latter one, it was decided to investigate the effectiveness of learning with dynamic and static 
visualizations under more controlled conditions by keeping learning time constant by means of system-
pacing. 
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interplay of velocity of the propelling element and its impact on the resulting force) and some 

topics were eliminated to not overcomplicate matters (e.g., calculating the reaction force by 

taking the mass of the displaced water into account).  

The computerized instructional material dealt with the physical principles underlying fish 

locomotion and consisted of seven sections that dealt with: 1) Swim styles, 2) Propelling element, 

3) Undulatory motion, 4) Actio and Reactio, 5) Magnitude of the reaction force, 6) Decomposing 

the reaction force, 7) Interaction of forces of various propelling elements. At this, the instructional 

material was focusing on various aspects of the locomotion by explaining the interplay of the 

trajectory and velocity of different body parts, the sizes of the associated resulting forces 

(symbolized by lengths of arrows), and the related swimming speed. For instance, two different 

swimming speeds were chosen to depict the relation among the frequency of the movement of 

the body parts, the associated changes in the sizes of the resulting forces, and the related 

swimming speed. Compared to the natural velocity of the movement of the body parts, the speed 

of the dynamic visualization was slowed down, as otherwise learners would not have been able to 

perceive the movements adequately. The decision for the chosen speeds was based on a 

consensus reached with the local domain experts of the larger research project (i.e., two marine 

biologists). 

The instructional material was presented system-paced with each of the seven sections 

lasting 45 seconds, corresponding to the length of the spoken text for each section. The text 

contained 520 words and was presented – depending on the experimental condition – in either 

spoken or in written form. The written text was presented on the left half of the screen, while for 

the spoken conditions the left half of the screen remained blank. Spoken text was presented on 

ear phones. The text was spoken by a skilled female voice. Speech rate was moderate (approx. 3.5 

syllables per second, respectively 1.8 words per second) and also the complexity of the whole text 

in terms of readability was moderate (Flesch-Index = 30).  

In the condition with dynamic visualizations, an animation presented the undulatory 

movement of a fish in a repetitive fashion, meaning that the movement of the swimming fish was 

looped. The animation depicted the same fish across the different instructional sections. In 

contrast to the dynamic visualizations used in Study 1, the dynamic visualizations used in Study 2 

were improved by depicting additional dynamic features. More precisely, the interplay of the 

changes in the frequency of the undulatory movement that are associated with changes in the 

magnitude of the reaction force (symbolized by the length of arrows), as well as their 

interrelatedness with swimming speed were depicted in the dynamic visualizations that were 

used in Study 2. Particularly for representing the swimming speed, landscape background was 
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added to provide learners a reference point that allows realizing the changes in the fish’s 

swimming speed (cf. Figure 5.1).  

The static visualization condition consisted of nine key frames per section that were 

extracted from the corresponding animations. The key frames were displayed sequentially, 

whereby the nine static key frames represented two loops of an undulatory movement (see 

Figure 5.1). As each section lasted 45 seconds, each key frame of a section remained visible on the 

screen for five seconds. 

 

 

Figure 5.1. Sequence of nine static key frames in the static visualization conditions. 
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5.2.3 Measures 

 

A questionnaire with respect to the attitudes towards biology and physics, as well as a 

prerequisite knowledge test served as control variables and a spatial ability test served as a 

moderator variable (and also as a control variable). As dependent variables served on the one 

hand three items asking about the experienced cognitive load during the learning phase, and 

furthermore several knowledge tests to measure learning outcomes. 

Attitudes towards biology and physics. The questionnaire concerning the attitude towards 

biology and physics of Study 1 was used with two modifications: First, instead of seven items for 

each scale, only five items of each scale were used, namely the five items with the best loadings 

on the respective factors (see Appendix B), and secondly, instead of a 5-point Likert scale, a 4-

point Likert scale was used ranging from 1 (“I strongly disagree”) to 4 (“I strongly agree”).  

Prerequisite knowledge test. Compared to Study 1, the prerequisite knowledge test was 

extended with three more questions to a total of eight multiple-choice questions. The eight 

questions were asking for the second and third Newton axioms, the physical definition of forces, 

the characteristics of a harmonic oscillation, knowledge about velocity and acceleration, 

knowledge about the undulatory swimming style, and knowledge about the interplay of forces by 

analyzing a parallelogram of forces (see below for a sample item). A person’s knowledge about 

these basic definitions and principles was considered a beneficial prerequisite for more easily 

achieving an understanding of the topics explained in the current study. Hence, it was not the aim 

at testing for a deeper understanding of physical concepts or principles that were unlikely to be 

present in the used student sample. The eight multiple-choice questions consisted of four to six 

alternatives to choose from and for each question there were one to three correct answers. For 

each correct answer, learners were assigned one point and for each wrong answer one point was 

subtracted. Within a question, however, learners could at worst receive zero points. The 

maximum score was 12 points. 

Example of a question from the prerequisite knowledge test 

Which of the following correctly describes Newton’s third law of motion? 

a) Gravity causes objects to fall towards the earth’s centre. 

b) When body A exerts force on to body B, a force of the same magnitude, acting in the opposite 

direction, results from B onto A. 

c) Every action results in a smaller reaction. 

d) A body remains at equilibrium due to the action and reaction principle. 
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Spatial ability test. To control for individual differences in spatial abilities and to 

examining their potential moderating role, the mental rotation test (MRT) was administered 

(Vandenberg & Kuse, 1978). The MRT was used, as especially learning with the static 

visualizations used in this study required the ability to mentally rotate and manipulate visuo-

spatial objects (e.g., to imagine the movement of the caudal fin). The MRT consists of 20 items, 

whereby each item comprises a complex three-dimensional block figure and four alternative 

figures as multiple-choice answer options. For each item, the participant has to choose, which two 

of the four alternative figures are identical to the target when (mentally) rotated. There is a time 

limit of six minutes for working on the MRT. For each correctly identified figure one point was 

given and for each wrong identified figure one point was subtracted, resulting in a maximum of 40 

points and a minimum of -40 points. 

Cognitive load measures. Because the perceived difficulty item (“How difficult was it for 

you to understand the contents?”), which was assessed in Study 1 seemed to be suited to 

measure ECL, it was also assessed in the current Study. This item will be named ECL1-item in the 

following. Furthermore, since Cierniak, Scheiter, and Gerjets (2009) could identify in their study 

two items that successfully measured ECL and GCL, respectively, also these two items were 

assessed. The item supposed to measure ECL was: “How difficult was it for you to learn with the 

given material?”(original German version “Wie schwer ist es dir gefallen, mit dem gegebenen 

Material zu lernen?”), and will be named ECL2-item in the following. The item supposed to 

measure GCL was: “How much did you concentrate during learning?” (original German version: 

“Wie sehr hast du dich während der Lernphase konzentriert?”). Each of these three items had to 

be rated on a nine-point Likert scale. 

Knowledge tests. In comparison to Study 1, the content of the instructional material for 

Study 2 was partly changed and reduced. Accordingly, also the knowledge test was changed in 

that some items were eliminated, some new items were added, and some other items were 

changed to fit to the new instructional material. Thereby, learning outcomes were measured by 

means of six multiple-choice questions assessing verbal factual knowledge, five pictorial recall 

tasks, and eleven transfer tasks (see below for sample items of each test). A maximum of 11 

points could be achieved for the verbal factual knowledge test, a maximum of 9 points could be 

achieved for the pictorial recall test, and a maximum of 26 points could be achieved for the 

transfer test. The verbal factual knowledge questions were posed in written form and all correct 

answers to these tasks had been explicitly conveyed by the multimedia instruction. The pictorial 

recall tasks were posed in pictorial form and the correct answers to the tasks were essentially 

conveyed by the visualizations, but not by the text. The transfer tasks were posed in written as 
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well as in pictorial form. To solve the transfer tasks, learners had to apply their acquired 

knowledge to new scenarios. 

The open questions were corrected by two independent raters. Cases of disagreement 

(3.34%) were resolved by discussion.  

Example of a question from the verbal factual knowledge test 

Which of the following is/are true?  

a) The reaction force can be broken down into a propelling force and a lateral force. 

b) Lateral force and reaction force are perpendicular to each other. 

c) Propelling force and lateral force are perpendicular to each other. 

d) Reaction force and propelling force are perpendicular to each other. 

 

Example of a question from the pictorial recall test 

Which of the following sequences correctly illustrates the forces emerging during undulation? 

 

 

Example of a question from the transfer test 

Some undulating species of fish move their head back and forth in order to swim forwards. Why is 

this? Write down any feasible reasons you can think of! 
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5.2.4 Procedure 

 

Each participant was tested individually during a session of approximately 90 minutes. First, the 

questionnaire concerning attitudes towards biology and physics, then the prerequisite knowledge 

test and then the mental rotation test were administered. Thereafter, the subjects were 

presented with the learning materials and were subsequently asked to rate their cognitive load 

experienced during learning. Finally, the subjects took the knowledge tests.  

 

5.3 Results 

 

First, the questionnaire concerning attitudes towards biology and physics was analyzed by means 

of a factor analysis, to validate the assumed independence of the two factors. Then students’ 

attitudes towards biology and physics, their prerequisite knowledge as well as their spatial ability 

scores were analyzed by means of ANOVAs to test if the experimental conditions could be 

regarded as equal with respect to these influencing variables. Then the abovementioned 

hypotheses were tested. The procedure to test if spatial abilities moderated learning outcomes in 

the two visualization conditions was as follows: The scores of the spatial ability test for 

participants of the two visualization conditions were z-standardized and used as a continuous 

factor in the respective ANCOVAs. Partial eta-squared (2p) is reported as measures of effect size. 

 

5.3.1 Comparability of Experimental Conditions with Respect to Attitude 
Towards Biology and Physics, Prerequisite Knowledge, and Spatial Abilities 

 

Since the attitude questionnaire slightly changed from Study 1 to Study 2, once again a factor 

analysis was conducted for the questionnaire used in Study 2. Because two different scales were 

assumed, namely a biology scale and a physics scale, two factors were extracted by principle 

component analysis, and rotated by varimax rotation. Note that negatively formulated items were 

recoded. Loading of items on factors are depicted in Appendix B. Items are grouped by factors 

and by size of loading to facilitate interpretation. As can be seen in Appendix B, the items loaded 

on the one hand well on their assumed factors with all loading > .60 (cf. Bortz, 2005), and, 

moreover, poorly on the other factor (all loadings < .30).  

The internal consistency for the shortened version of the biology scale and physics scale 

were still excellent, with α = .90 for the biology scale, and α = .91 for the physics scale. Because of 

the support of the two scales by means of the factor analysis as well as their high internal 
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consistency, the items of each scale were subsumed to one biology score and one physics score, 

respectively. Means and standard deviations are reported in Table 5.1. With respect to the 

biology scale, there were no statistically significant differences for type of visualization (F(1, 76) = 

2.41, MSE = 11.00, p = .13, 2p = .03), text modality (F(1, 76) = 1.82, MSE = 11.00, p = .18, 2p = 

.02), and no interaction (F < 1, ns). Also for the physics scale, there were no significant differences 

for type of visualization, text modality, and no interaction (all Fs < 1, ns). Concerning prerequisite 

knowledge, there were no statistically significant differences for type of visualization or text 

modality (both Fs < 1, ns). However, there was a significant interaction with regard to prerequisite 

knowledge (F(1, 76) = 3.93, MSE = 270.42, p = .05, 2p = .05): For written text, there were no 

differences between dynamic and static visualizations (F < 1, ns), whereas for spoken text, there 

was a marginal significant effect (F(1, 76) = 3.40, MSE = 270.42, p = .07, 2p = .04), with learners in 

the static visualization condition possessing higher prerequisite knowledge than learner in the 

dynamic visualization condition. For dynamic visualizations, there was no difference between the 

spoken and the written text condition (F(1, 76) = 1.26, MSE = 270.42, p = .27, 2p = .02), whereas 

for static visualizations, there was a marginal effect (F(1, 76) = 2.83, MSE = 270.42, p = .097, 2p = 

.04), with learners in the spoken text condition possessing higher prerequisite knowledge than 

learners in the written text condition. With respect to spatial abilities, there was no main effect 

for text modality (F < 1, ns), and no interaction (F(1, 76) = 1.36, MSE = 78.06, p = .25, 2p = .02). 

However, there was a marginal significant effect for type of visualizations showing that learners in 

the dynamic visualization condition tended to possess better visuo-spatial abilities (F(1, 76) = 3.70, 

MSE = 78.06, p = .06, 2p = .05). As prerequisite knowledge was not equal among conditions, it 

was used as a covariate in all analyses reported in this Study. Since spatial ability is inserted in the 

analyses as a continuous factor to test its moderating role anyway, differences among the 

visualization conditions are controlled for. 
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Table 5.1 

Means (and SD) as a Function of Type of Visualization and Modality 

 Dynamic visualizations 

 

Static visualizations 

 

 Spoken  

(n = 20) 

Written  

(n = 20) 

Spoken  

(n = 20) 

Written  

(n = 20) 

Attitude towards biology-scale  

(5-20) 
16.95 (3.09) 18.25 (3.04) 16.10 (4.09) 16.80 (2.91) 

Attitude towards physics-scale  

(5-20) 
11.95 (3.56) 12.30 (4.04) 13.10 (3.34) 12.45 (3.82) 

Prerequisite knowledge (% correct) 50.83 (16.64) 56.67 (16.58) 60.42 (15.50) 51.67 (17.01) 

Spatial abilities (-40 – 40) 18.50 (5.85) 20.30 (10.26) 17.00 (7.53) 14.20 (10.77) 

Cognitive load (1-9)*  

ECL1 4.82 (.42) 4.36 (.43) 5.28 (.42) 5.34 (.43) 

ECL2  4.64 (.42) 4.50 (.42) 5.37 (.42) 5.39 (.43) 

GCL 7.27 (.29) 8.08 (.29) 6.86 (.29) 7.65 (.30) 

Learning outcomes (% correct)*  

Verbal factual knowledge 54.59 (3.80) 58.23 (3.86) 55.41 (3.81) 52.95 (3.88) 

Pictorial recall 44.83 (3.88) 40.22 (3.94) 46.25 (3.89) 35.04 (3.97) 

Transfer 49.57 (2.39) 45.56 (2.43) 43.35 (2.40) 36.50 (2.44) 

* Learning outcomes, as well as cognitive load ratings, are adjusted by taking into account prerequisite knowledge as a 
covariate, and spatial abilities as a continuous variable; values in parentheses refer to standard errors for these 
dependent measures. 

 

5.3.2 Effects of Text Modality, Visualization Format, and Spatial Abilities on 
Learning Outcomes 

 

Two-factorial ANCOVAs with text modality and type of visualization as between subject factors, 

with using prerequisite knowledge as a covariate were conducted for the dependent variables 

verbal factual knowledge, pictorial recall, and transfer knowledge. Furthermore, to test if spatial 

abilities moderated learning with the two types of visualizations, the scores of the MRT were z-

standardized and their interaction with type of visualization was inserted into the respective 

ANCOVAs.  

One-factorial ANCOVAs revealed no effects of type of visualization for verbal factual 

knowledge, or pictorial recall (both Fs < 1, ns), but they did for transfer (F(1, 73) = 9.92, MSE = 
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111.06, p < .01, 2p = .12), indicating that learners presented with dynamic visualizations 

performed better in the transfer tasks.  

Concerning modality, the one-factorial ANCOVAs for the three learning outcome 

measures revealed no differences for verbal factual knowledge (F < 1, ns), but a significant effect 

for pictorial recall (F(1, 73) = 4.17, MSE = 291.55, p = .045, 2p = .05), as well as for the transfer 

test (F(1, 73) = 5.20, MSE = 111.06, p = .03, 2p = .07), indicating that learners presented with 

spoken rather than written text performed better in the latter two tests.  

With respect to the interaction of type of visualization and modality, neither the ANCOVA 

for verbal factual knowledge, nor for pictorial recall, nor for transfer revealed significant results 

(all Fs < 1, ns). 

Concerning spatial abilities, the one-factorial ANCOVAs for the three learning outcome 

measures revealed no differences for verbal factual knowledge (F(1, 73) = 2.24, MSE = 285.60, p = 

.14, 2p = .03), but a significant effect for pictorial recall (F(1, 73) = 13.88, MSE = 291.55, p < .001, 

2p = .16), as well as for the transfer test (F(1, 73) = 7.77, MSE = 111.06, p < .01, 2p = .10). The 

effects indicated that higher visuo-spatial abilities were associated with better performance in 

pictorial recall (N = 80; r = .44; p < .001) as well as transfer (N = 80; r = .38; p = .001). However, 

other than expected, there was no interaction of spatial abilities and type of visualizations for any 

of the learning outcome measures, neither for verbal factual knowledge (F(1, 73) = 2.22, MSE = 

285.60, p = .13, 2p = .03), nor for pictorial recall (F < 1), nor for transfer (F(1, 73) = 1.05, MSE = 

111.06, p = .30, 2p = .01), indicating that spatial abilities did not moderate learning with the 

different types of visualizations. 

With regard to prerequisite knowledge, the one-factorial ANCOVAs for the three learning 

outcome measures revealed no effects for the transfer test (F(1, 73) = 1.64, MSE = 111.06, p = .21, 

2p = .02), but a marginally significant effect for verbal factual knowledge (F(1, 73) = 3.90, MSE = 

285.60, p = .052, 2p = .05), as well as a significant effect for pictorial recall (F(1, 73) = 7.86, MSE = 

291.55, p < .01, 2p = .10). The effects indicated that a higher prerequisite knowledge was 

associated with better performance in verbal factual knowledge (N = 80; r = .26; p = .02) as well as 

pictorial recall (N = 80; r = .36; p = .001).  

 

5.3.3 Effects of Text Modality, Visualization Format, and Spatial Abilities on 
Cognitive Load 

 

Two-factorial ANCOVAs with text modality and type of visualization as between subject factors, 

with using prerequisite knowledge as a covariate were conducted for the dependent variables 

ECL1, ECL2, and GCL. Furthermore, to test if spatial abilities moderated experienced cognitive load 
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when learning with the two types of visualizations, the scores of the MRT were z-standardized 

and their interaction with type of visualization was inserted into the respective ANCOVAs. 

For the ECL1-item, which was also used in Study 1, a 2x2-ANCOVA showed a marginal main 

effect for type of visualization (F(1, 73) = 2.87, MSE = 3.43, p = .09, 2p = .04) with learners 

presented with static visualizations indicating higher ECL ratings than learners presented with 

dynamic visualizations. However, there was neither a main effect for modality nor an interaction 

between modality and type of visualizations, nor an interaction between spatial abilities and type 

of visualizations (all Fs < 1, ns). Moreover, there was also no effect for spatial abilities, or for 

prerequisite knowledge (both Fs < 1, ns). 

For the ECL2-item, which was adopted from the Study by Cierniak et al. (2009), a 2x2-

ANCOVA showed a marginal main effect for type of visualization (F(1, 73) = 3.65, MSE = 3.39, p = 

.06, 2p = .05) with learners presented with static visualizations giving higher ECL ratings than 

learners presented with dynamic visualizations. However, there was neither a main effect for 

modality nor an interaction between modality and type of visualizations, nor an interaction 

between spatial abilities and type of visualizations (all Fs < 1, ns). Moreover, there was also no 

effect for spatial abilities (F < 1, ns), or for prerequisite knowledge (F(1, 73) = 2.62, MSE = 3.39, p = 

.11, 2p = .04). 

A 2x2-ANCOVA for the GCL-item revealed a main effect of modality (F(1, 73) = 7.72, MSE = 

1.62, p < .01, 2p = .10), with learners in the written text condition giving higher GCL ratings than 

learners in the spoken text condition. There was no main effect for type of visualization (F(1, 73) = 

2.10, MSE = 1.62, p = .15, 2p = .03) and no interaction between modality and type of 

visualizations (F < 1, ns). There was also no effect for spatial abilities, or for prerequisite 

knowledge (both Fs < 1, ns). Moreover, the interaction between spatial abilities and type of 

visualizations failed to reach statistical significance (F(1, 73) = 2.80, MSE = 1.62, p = .10, 2p = .04).  

While there was a strong positive relationship between the ECL1-item and the ECL2-item (r 

= .56, p < .001), there was no relationship between the ECL1-item and the GCL-item (r = .04, p = 

.72), or the ECL2-item and the GCL-item (r = -.13, p = .26). Higher ratings on the ECL1-item were 

associated with lower performance on transfer tasks, while higher ratings on the ECL2-item were 

associated with lower learning outcomes for verbal factual knowledge as well as transfer. 

Moreover, higher GCL ratings were associated with higher verbal factual knowledge (see Table 

5.2). 
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Table 5.2 

Correlations Among Cognitive Load Measures and Knowledge Tests 

n = 80 Verbal factual knowledge Pictorial recall Transfer knowledge 

ECL1 r = -.12 r = -.05  r = -.22* 

ECL2 r = -.24* r = -.12  r = -.23* 

GCL r = .24* r = .11 r = -.01 

Note: * p < .05 

 

5.4 Summary and Discussion 

 

In the current study, it was investigated whether multimedia learning in general, and learning 

from dynamic visualizations in particular, could be optimized by using spoken text for presenting 

instructional explanations. 

First, it was expected that learning with dynamic as opposed to static visualizations would 

result in better learning outcomes, particularly for transfer tasks, a decrease in ECL, and an 

increase in GCL. Partial support in line with these assumptions was obtained in the study. That is, 

dynamic visualizations proved to be superior to static visualizations for transfer tasks, but not for 

verbal factual knowledge or pictorial recall tasks. The lack of an effect of type of visualization for 

verbal factual knowledge and pictorial recall tasks appears plausible, as the information for 

solving these tasks was explicitly conveyed in the multimedia instruction. However, effects of 

different types of visualizations are mainly expected for not explicitly taught content, where 

further inferences and elaborations are required from the learner, based on which a coherent 

mental representation of the content can be constructed (cf. Bétrancourt & Tversky, 2000). The 

superiority of dynamic visualizations for transfer tasks indicates that the presentation of the 

dynamic properties and their interrelations helped in constructing a deeper understanding of this 

dynamic domain. Concerning ECL, as predicted, learners presented with static visualizations found 

it more difficult to learn than students presented with dynamic visualizations, as indicated by the 

ECL2-item and slightly by the ECL1-item. However, there were no differences for the item 

supposed to measure GCL, which may be the result of a lack of validity of subjective cognitive load 

measures that will be discussed later (cf. de Jong, 2010). 
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Second, it was expected that learning with spoken as compared to written text should 

result in better learning outcomes, a decrease in ECL, and an increase in GCL. There was no 

modality effect for verbal factual knowledge tasks, but for pictorial recall tasks and transfer tasks. 

Because the verbal factual knowledge task could be answered based on information mainly 

contained in the text, one would not necessary expect a modality effect for this task, as usually 

text is processed dominantly and more intensively, while the processing of visualizations is 

subordinate (e.g., Schmidt-Weigand et al., 2010). In the same way, a possible interpretation of the 

superiority of spoken over written texts for pictorial recall may be that with spoken text sufficient 

attention could be paid to the visualizations, which contained essentially the necessary 

information for solving this task (see for similar results Schmidt-Weigand et al., 2010). In addition, 

the opportunity of processing spoken text and visualizations simultaneously rather than having to 

split attention between written text and pictures may have helped integrating text and pictures, 

thereby resulting in deeper understanding as measured in the transfer tasks. It should be noted 

that the modality effect was observable, even though the spoken text and the visualizations were 

not synchronized, in order to not favor the spoken-text over the written-text conditions, where no 

synchronization of text and visualizations could be realized. With respect to the items supposed to 

measure ECL, no modality effect could be observed. For the item supposed to measure GCL 

learners in the written-text condition reported to have concentrated more strongly than learners 

in the spoken-text conditions. 

Third, contrary to the initial expectations, the modality of the text did not moderate the 

effectiveness of learning with either static or dynamic visualizations. Also, concerning cognitive 

load, no interactions between type of visualization and text modality could be observed for either 

the ECL or the GCL measures, respectively. It was expected that with spoken text it should be 

possible for learners to appropriately extract the information from the dynamic visualizations in 

order for their potential to unfold. It may be argued that – even though spoken text was beneficial 

– the visual processing demands associated with the simultaneous processing of written text and 

dynamic visualizations are not the main problem as compared to the demands already imposed 

by the dynamic visualization itself, namely the visual complexity within dynamic visualizations. 

Therefore, a better solution to further support learning from dynamic visualizations may involve 

the use of cueing techniques to guide learners’ attention, which has – at least partly – been 

proven a useful procedure when processing dynamic visualizations (Amadieu et al., 2011; but see 

de Koning et al., 2011a; cf. de Koning et al., 2009 for a review). It should be noted that – with 

respect to the expected moderation – this experiment was designed in a conservative way, 

because the information in the dynamic visualizations was not transient, but repetitive. However, 

when using transient animations where a lack of attention is associated with a loss of information, 
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the expected interaction may be more likely (cf. Moreno & Mayer, 1999; Schnotz, 2005). 

Moreover, another important point with respect to the absence of the interaction might be that 

the static visualizations were somewhat transient, since they were shown sequentially one after 

the other. Even though this format of static visualizations should rather diminish their visual 

complexity, it nevertheless may have intensified the drawbacks of split attention in learning with 

static visualizations, and hence may have overshadowed a potential moderation.  

The results of the current study contradict the results of a study by Mayer et al. (2005), 

which calls for a closer examination. In their study, the authors found that animations and spoken 

text were inferior to static pictures and written text for different domains. It should be noted 

though that as only these two groups were compared, there was a confounding of type of 

visualizations and text modality. One factor, which may shed light on the contradicting results, is 

that in the current study, there were good reasons why dynamic visualizations should be superior 

to static ones, as it was about the understanding of dynamic features, whereas in the study by 

Mayer et al. (2005), there was no obvious reason why dynamic visualizations should be superior in 

these used domains (e.g., how lightning develop). However, due to the abovementioned 

confounding, this issue remains unclear. Moreover, the learning material used by Mayer et al. was 

designed in a way that it favored the written text and static pictures conditions. For instance, in 

Experiment 2 of their study, the auditory text could only be heard once with the animation and 

lasted 78 seconds (and then the animation could be replayed without auditory text until in total 6 

minutes had passed), whereas the written text in the static condition was available the complete 

6 minutes. But once again, due to confounding, the role of the duration of text presence cannot 

be elucidated. Irrespective of that fact, another important factor is that the static visualizations in 

the study by Mayer et al. were presented simultaneously next to each other, whereas in the 

current study they were shown sequentially one after the other. However, in a recent study, 

Boucheix and Schneider (2009) were able to show that for a mechanical content, static-

simultaneous visualizations were as good for learning as dynamic visualizations, whereas static-

sequential visualizations turned out to be inferior compared to both formats. As explicated in 

Chapter 2.2.4.2, since the current state of research concerning the effectiveness of different types 

of static visualizations compared to dynamic visualizations is rather inconclusive, it hence seems 

reasonable to investigate this issue in more detail for an ongoing study. 

The covariate prerequisite knowledge had an impact on learning outcomes, in that the 

higher prerequisite knowledge was, the better participants achieved in the verbal factual 

knowledge test and the pictorial recall test, whereas prerequisite knowledge had no significant 

impact on transfer tasks. This means that for tasks asking for explicitly conveyed knowledge, 

prerequisite knowledge was helpful in achieving an understanding of the explained topics, which 
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is in line with what the prerequisite knowledge test tested for. But for tasks asking where the 

learned content had to be applied to new scenarios, prerequisite knowledge was not helpful 

anymore, indicating that it did not affect deeper understanding, which then again was not tested 

in the prerequisite knowledge test. Irrespectively, it should be noted that the pattern of research 

results of prerequisite knowledge in learning with dynamic and static visualizations is inconsistent 

in itself, even when similar instructional material is used (cf. Hegarty & Kriz, 2008).  

The main effect of spatial abilities on learning outcomes, specifically for tasks that require 

an understanding of the visualizations (like the pictorial recall tasks and transfer tasks) is often 

observed in multimedia research with regard to learning with dynamic and /or static visualizations 

(cf. Hegarty & Kriz, 2008; Höffler, 2010). However, contrary to the ability-as-compensator 

hypothesis, spatial abilities did not moderate learning with dynamic and static visualizations. It 

should be noted that even though there are good theoretical reasons, as well as meta-analytic 

empirical evidence (Höffler, 2010) to expect such a moderation effect, this effect is rarely found in 

single studies (cf. Hegarty & Kriz, 2008). As was explicated in Chapter 2.2.4.2, it might be the case 

that the moderating role of spatial abilities in learning with dynamic and static visualizations 

might particularly shine through when dynamic visualizations are compared to static-

simultaneous visualizations as opposed to static-sequential visualizations. This research question 

will be taken up in Study 3 of this thesis, and conclusions will follow in Chapter 7 (General 

Discussion).  

With respect to the measurement of cognitive load, the lack of an effect of modality for 

the items supposed to measure ECL is somewhat surprising and inconclusive, because it is neither 

in line with CLT nor with the replicated modality effect for learning outcomes of the current study. 

The observed effect for type of visualizations as well as the small, albeit significant negative 

correlation of the subjective ratings of both ECL-items with learning outcomes may be seen as a 

hint that these items at least partially measured ECL. However, the evidence for an adequate 

measurement of different cognitive load types by means of subjective ratings can be regarded as 

fragile, which renders it doubtful if different load types can be distinguished by subjective 

measures (e.g., de Jong, 2010). This notion also holds for the measure assumed to assess GCL, as 

for instance learners with written text scored higher than learners with spoken text on the GCL-

item, while their performance was worse. Accordingly, in the current study, this item did not 

appear to have measured GCL as opposed to the study by Cierniak et al. (2009).  

As the GCL-item showed a small, but positive correlation with verbal factual knowledge, 

but not with the other two learning outcome measures, it may rather have measured 

compensatory attempts, as learners stated by means of this item that they concentrated more 

strongly on dealing with written text than with spoken text. Independently of the condition 
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learners were assigned to, the attempt to concentrate more strongly may have been helpful for 

simple verbal factual knowledge tasks, but not for a deeper understanding of the content.  

Overall, even though the learning outcomes results in general were in line with CLT, this 

was only sparsely the case for the measures associated with ECL and GCL. If anything, the ECL2-

item (“How difficult was it for you to learn with the given material?”) seemed to be more 

appropriate than the ECL1-item (“How difficult was it for you to understand the contents?”). 

Doubts about the adequacy and the validity of self-reports based on one-item scales that are 

supposed to distinguish between ECL and GCL have recently be raised, and are in line with a 

growing body of research using similar measures resulting in inconclusive findings (e.g., de Jong, 

2010). Nevertheless, this is not to be misinterpreted in a way that the quest for finding such 

subjective measures should be aborted, but it simply indicates that the grail is not found yet. It 

also does not mean that the measures that were used in the current study should not be assessed 

anymore (and they will be used again in Study 3), but that it should be kept in mind that they have 

to be interpreted cautiously. 

It should be noted though, that due to the number of changes from Study 1 to Study 2, in 

which most of them were supposed to favor dynamic visualizations, it is not retraceable which of 

these changes (or whether it was solely a conglomeration of these changes) exactly contributed 

to the superiority of dynamic over static visualizations with respect to transfer tasks: It might have 

been the improvement of the dynamic visualizations, in that dynamic features became more 

accentuated. But it also might be the case that learners with static visualizations may not have 

been able to compensate the drawbacks of static visualizations by devoting more time on them in 

the current study, as the learning phase was changed from self-paced to system-paced. For this 

latter argumentation, there is some weak indirect support from two experiments by Höffler 

(2007; Exp. 2 & 3): While under system-paced conditions dynamic visualizations lead to higher 

learning outcomes than static visualizations (Exp. 2), there were no differences between dynamic 

and static visualizations with regard to learning outcomes under self-paced conditions (Exp. 3), 

even though the same instructional material was used. Another reasonable argument may be that 

due to the elimination of redundancy between text and visualizations from Experiment 1 to 

Experiment 2, learners could less rely on the text, but had to rely more on the different types of 

visualizations. Moreover the impact of differences in the two types of visualizations may have 

been intensified, since the description of dynamic features was less extensive in Study 2. Some 

indirect support for this interpretation can be derived from a recent study by Kühl et al. (2010). In 

this study, the authors found no differences between dynamic and static visualizations when the 

text was rather extensive, thereby describing dynamic features in detail, whereas dynamic 

visualizations were superior to static visualizations, when the text was reduced, so that learners 
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had to rely and reason more with the visualizations (for related results see also Catrambone & 

Seay, 2002). Moreover, it should be noted that some more changes were made from Study 1 to 2, 

for instance, such as no think-aloud-protocols were assessed (which may have overshadowed 

existent differences between dynamic and static visualizations in Study 1), or that the content of 

the learning material was revised and refined – and connected with this, also the knowledge tests 

were revised. To sum up, it is not retraceable what exactly led to the superiority of dynamic over 

static visualizations in Study 2, and it would need several studies to retrace it. However, the 

incomparableness of Study 1 and 2 was accepted to achieve the superordinate goal of improving 

the instructional material, and, specifically, the dynamic visualizations.  

Similar to Study 2, one aim of Study 3 was to improve the instructional material, 

essentially the visualizations, as well as their coherence with the text. But this time, rather minor 

changes concerning the content of the instructional material as well as the knowledge tests were 

made. However, in Study 3, particularly the static-sequential visualizations were generally 

improved in that they were synchronized with the accompanying auditory text. In Study 2, the key 

frames of the static-sequential visualizations had changed every five seconds (and this in two 

loops), irrespective of whether the auditory text referred to the respective position that was 

depicted in a key frame or not. This lack of synchronization was realized to not favor the spoken 

text condition, as there was also no synchronization of written text and visualizations. It also 

should be noted that the dynamic visualizations were also not synchronized with the text.  

Even though spoken text and visualizations were not synchronized, adding spoken text 

compared to written text led overall to better performance on the knowledge test, indicating that 

it had helped to overcome the problems of inter-representational split-attention, irrespective of 

the type of visualization. However, especially when considering dynamic visualizations, they may 

suffer from an overwhelming character due to a high degree of visual complexity within the 

visualization (Lowe, 2003, 2004). To cope with the visual complexity of dynamic visualizations, and 

to guide a learner’s processing in a way that the benefits of dynamic visualizations might properly 

unfold, it has been suggested to use cueing methods (e.g., de Koning et al., 2009). Even though 

cueing should also be beneficial when learning with static visualizations, it was assumed that it 

would be even more beneficial when learners would receive dynamic visualizations (cf. Chapter 

4.2). Also, as stated above, it might be worthwhile not only to investigate static-sequential 

visualizations, but also static-simultaneous visualizations, even though it is hardly possible to 

predict which format might be better suited, due to the sparse and inconsistent research in this 

field (cf. Chapter 2.2.4.2). However, it might be the case that static-simultaneous visualizations 

might benefit more from cueing than static-sequential ones, since – as explicated in Chapter 2.2.2 

– static-simultaneous visualizations are supposed to be more demanding for the visual system.  
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In a nutshell, whereas spoken text can be regarded as a remedy to cope with inter-

representational split-attention, it might not be sufficient to handle the visual complexity of 

dynamic visualizations themselves. To deal with the visual complexity of dynamic visualizations, 

and hence to optimize learning with dynamic visualizations, cueing is assumed to be helpful. The 

influence of cueing in learning with dynamic and static visualizations will be investigated next, 

thereby also taking into account two different presentation formats of static visualizations.  
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6 Study 3: The Impact of Cueing in Learning from Dynamic and 
Static Visualizations25 

 

6.1 Research Question and Hypotheses of Study 3 

 

In the previous study, it could be shown that on the one hand, spoken text lead to better 

performance than written text. Moreover, dynamic visualizations were more apt to convey a 

deeper understanding of the domain than static visualizations. Nevertheless, it still can be argued 

that the potential of dynamic visualizations was not completely exploited, since there still might 

have been a high degree of visual complexity within dynamic visualizations. Thus, to optimize 

learning with dynamic visualizations, and to cope with a high degree of visual complexity, it has 

been suggested to use cueing methods.  

For cueing, a main effect for pictorial recall tasks and transfer tasks was expected, with 

learners in the cued conditions outperforming learners in the uncued conditions, since cueing 

visualizations and relating text and visualizations should mainly affect the pictorial and integrated 

mental model, respectively. Also, it was assumed that cueing would reduce ECL, as it should guide 

a learner’s processing. This in turn might help learners to engage in more valuable processing 

activities, associated with an increase of GCL. 

For type of visualization, it was expected that dynamic visualization conditions should 

outperform both static visualization conditions specifically for transfer tasks (but not for verbal 

factual knowledge or pictorial recall tasks), as differences between these types of visualizations 

are supposed to mainly affect tasks asking for a deeper understanding. No specified hypothesis 

could be derived with respect to differences between the static-sequential and the static-

simultaneous conditions. Furthermore, it was expected that dynamic visualizations compared to 

static visualizations would result in a reduction of ECL. However, since there was no impact of 

type of visualization on GCL in Study 2 of this thesis, no hypothesis was formulated concerning 

this topic.  

Furthermore, an interaction between type of visualization and cueing was hypothesized: 

Dynamic visualizations might benefit comparatively more from cueing than any presentation 

format of static visualizations, since static visualizations are supposed to possess a lower degree 

of visual complexity. Concerning static visualizations, the benefits of cueing should be more 

                                                           

25
 This chapter is based on: Kühl, T., Scheiter, K., & Gerjets, P. (2011). The impact of cueing in learning with 

dynamic and static visualizations. Manuscript in preparation. 
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pronounced for static-simultaneous visualizations than for static-sequential visualizations, since 

the attentional demands on static-simultaneous visualizations might be higher than those of 

static-sequential visualizations, so that static-simultaneous visualizations might benefit more from 

cueing than static-sequential ones. This pattern of results should be mirrored by the respective 

pattern of ECL and GCL.  

Moreover, it was once again examined, if spatial abilities would moderate learning with 

dynamic and static visualizations as predicted by the ability-as-compensator hypothesis: Especially 

learners with weaker spatial abilities should profit from dynamic visualizations, whereas the 

benefit of dynamic visualizations should be less pronounced for learners with stronger spatial 

abilities. Even though this moderating role of spatial abilities was not evident in Study 2, this 

research question was kept, since in contrast to Study 2, in Study 3 additionally static-

simultaneous visualizations were used. However, one may argue that the moderating role of 

spatial abilities might become evident, when comparing dynamic visualizations with static-

simultaneous visualizations, as especially for the latter ones mentally animating the movements 

becomes more important. This potential moderating effect should also hold for the items 

supposed to measure cognitive load. 
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6.2 Method 

6.2.1 Participants and Design 

 

One hundred and fifty students (122 female and 28 male participants; M = 22.47 years, SD = 3.07) 

with various educational backgrounds from the University of Tuebingen, Germany, participated 

either for course credit or payment in the study. Students had to be native speakers of German; 

no students of physics were allowed to take part. Students were randomly assigned to one of six 

conditions, which resulted from a 2x3-design with cueing (with/without) and type of visualization 

(dynamic, static-sequential, static-simultaneous) as independent variables. Twenty-five 

participants served in each condition.  

 

6.2.2 Instructional Materials 

 

The computerized learning material dealt with the physical principles underlying fish locomotion. 

This topic addresses the understanding of physical concepts in relation to movement 

characteristics such as trajectory, velocity, and acceleration. The material consisted of eight 

sections, which built upon each other. Particularly, these sections contained the themes 1) Swim 

styles, 2) Pushing off the water, 3) Body section and propelling element, 4) Undulatory motion, 5) 

Actio and Reactio, 6) Magnitude of the reaction force, 7) Decomposing the reaction force, as well 

as 8) Interaction of forces of various propelling elements. Note that in comparison to Study 2 of 

this thesis, the section “2) Pushing off the water” was added to the instructional material of Study 

3. Additionally, some minor adjustments were realized. These changes aimed at making the 

instructional material more comprehensive. 

Each section consisted of visualizations and corresponding explanatory texts. The same 

spoken text (695 words) was used in all conditions. The learning material was presented system-

paced. Each section lasted between 45 to 77 seconds (in total 481 seconds), corresponding to the 

length of the spoken text for each section.  

The visualizations were subject to experimental manipulation and differed with regard to 

type of visualization (dynamic, static-sequential, static-simultaneous) and the presence of cueing 

(with/without). Irrespective of these manipulations, all visualizations were placed in the middle of 

the screen.  

In conditions with dynamic visualizations, there was always one animation showing an 

undulatory (i.e., wave-like) movement of a fish in a recursive fashion (see Figure 6.1). The 
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animation depicted the same fish across the eight instructional sections, but focused on different 

aspects of its movement by portraying the interplay of the trajectory and velocity of different 

body parts, the corresponding displacement of water, the sizes of the associated resulting forces 

and their direction, as well as the related swimming speed. These forces were represented as 

arrows and varied in length and spatial orientation depending on the force’s strength and 

direction. For instance, in the section explaining the magnitude of the reaction force, the fish 

changed its frequency of the movement of the body parts to depict the relation of these changes 

and the associated changes in the sizes of the resulting forces (i.e., changing size of arrows) and 

the related swimming speed (i.e., changing speed of moving background). 

In conditions with static-sequential visualizations, nine key frames were shown within 

each section that had been extracted from the corresponding animation. The key frames were 

displayed sequentially one after the other. The nine static key frames represented two loops of an 

undulatory movement, so that each learner had the chance to see a frame again in case he/she 

had missed the information the first time (see Figure 6.1). Each key frame of a section remained 

visible on the screen between five up to 14.5 seconds, depending on the time the spoken text 

referred to the particular position of the fish. As can be seen in Figure 6.1, key frame number one, 

number five and number nine showed the same position, as they represented the starting point 

and the end point of the undulatory fish movement. Moreover, always two key frames showed 

identical positions of the fish (i.e., key frames two and six, key frames three and seven, as well as 

key frames four and eight). 
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Figure 6.1. Sequence of nine static key frames of the cued static-sequential visualization 

condition, depicting the spotlight and different elements in different colors. Note that the arrows 

were no cueing device, but belonged to the content and were used to symbolize the forces 

resulting from the fish’s movement. 
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In conditions with static-simultaneous visualization, the first five key frames of the static-

sequential visualizations were shown within each section26. They were presented next to each 

other, ordered from left to right. Each key frame of the simultaneous condition had only a fifth of 

the area of a key frame of the static-sequential visualization condition, so that they would fit on 

the monitor screen. Irrespective of the smaller size, everything relevant could be seen in the 

respective key frames. 

The cueing procedure for visualizations consisted of different cueing methods: (a) 

showing elements only after they were mentioned in the text, (b) color-coding, (c) a spotlight, as 

well as (d) zoom-ins (and zoom-outs). These methods were implemented for all types of 

visualizations, with the aim to counteract the assumed visual complexity of dynamic 

visualizations. Additionally, these cues were designed to support the processes of selecting, 

organizing and integrating information. In the following, the different functions of these cues will 

be described in more detail. 

First, to not to interfere with the depicted movement, a spotlight and colored elements 

were implemented to emphasize important aspects (see Figure 6.1), thereby producing a visuo-

spatial contrast (e.g., instead of using arrows as a cueing device) and supporting the process of 

selecting.  

Second, the spotlight was also applied to overshadow less relevant and potentially 

distracting movements. In a spotlight, the most relevant parts are in its focus, whereas the 

distracting movement of the background is reduced because it is deemphasized. Note, that the 

moving background was most of the time not irrelevant, because it depicted dynamic 

information, namely the actual swimming speed of the fish. Therefore, it did not seem advisable 

to leave out this information. However, as the moving background was covering the complete 

animation, it might have been more distracting than necessary. By applying a spotlight, a part of 

the background in the focus was still entirely visible, whereas the rest of the moving background 

was dimly visible only. As a consequence, the swimming speed was still perceivable, whereas the 

background was supposed to be less distracting. For depicting the changes of the velocity of the 

caudal fin from reversal point to baseline to reversal point – when describing the undulatory 

movement and the magnitude of the reaction force – a moving background was not considered 

necessary, but if anything disturbing. In this case, the background was completely eliminated and 

it was zoomed in to the caudal fin (and later zoomed out again). Note that for each section in 

which a spotlight was realized, it appeared only after the visualization had been present for 2 

                                                           

26
 Note that it was not necessary to show key frames number six to nine in the static-simultaneous 

visualizations condition as compared to the static-sequential visualizations conditions, since for the static-
sequential visualization conditions these key frames were shown only to decrease the chances of missing 
information. 
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seconds, so that participants could realize that the spotlight served as a manipulation within the 

visualization (e.g., de Koning et al., 2010a). Overall, the spotlight was supposed to reduce the 

visual complexity, and to aid learners to select the most relevant information. 

Third, dynamic relations were overemphasized, particularly the changes of the velocity of 

the caudal fin from reversal point to baseline to reversal point and its impact on the reaction 

force. This was done by overemphasizing the acceleration and deceleration of the movement 

pattern of the caudal fin (which was accompanied by removing the background and zooming in; 

see above). Moreover, when it seemed reasonable, the dynamic visualizations stopped at crucial 

states to make this information better extractable for learners. For instance this was done to 

emphasize an important position of the fish’s tail and its impact on the direction of the 

corresponding forces to highlight important aspects of this state. Note that these two cueing 

methods, namely overemphasizing and stopping, could uniquely be implemented for dynamic 

visualizations, and aimed at helping learners to more easily select the depicted information. 

Fourth, to correspond to the functional aspects of a system, elements were depicted 

according to their functional aspects, for instance, all depicted propelling forces were colored 

yellow, all reaction forces were colored blue, and all lateral forces were colored violet (see Figure 

6.2). Moreover, elements were presented according to the cause-and-effect chain (e.g., first the 

displaced water, thereafter the resulting reaction force). At this, it was supposed that these 

methods would support learners to organize the information into a coherent pictorial mental 

model. 

Finally, cues were designed to emphasize the relationship of elements of the text and the 

visualization, with the intention to make it easier for a learner to integrate the text and 

visualizations into a coherent integrated mental model (e.g., by not depicting elements in the 

visualizations until they were mentioned in the text, or by coloring elements in the visualization 

when mentioned in the text). By doing so, also the demands to split the attention within the 

visualizations were reduced, since the visualizations were build up in a stepwise manner by 

introducing relevant elements one after another (see above). 
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Figure 6.2. Snapshot of a cued visualization condition depicting four parallelogram of forces, at 

which the same type of forces receive the same color. Note that for this case no spotlight was 

implemented, since several spots were equally relevant, but that the background was dimmed. 

 

6.2.3 Measures 

 

A questionnaire with respect to the attitudes towards biology and physics, as well as a 

prerequisite knowledge test served as control variables, and a spatial ability test served as a 

moderator variable (and also as a control variable). As dependent variables served on the one 

hand two items asking about the experienced cognitive load during the learning phase, and 

furthermore several knowledge tests to measure learning outcomes. 

Attitudes towards biology and physics. Concerning the attitude towards biology and 

physics, the same questionnaire as in Study 2 was used. It consisted of ten items, which had to be 
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rated on a 4-point Likert scale. Note that negatively formulated items were recoded. Five items 

dealt with the attitude towards biology and were subsumed to one score, while the other five 

items dealt with the attitude towards physics and were subsumed to another score. Their internal 

consistencies in this study can be classified as very good, with α = .87 of the biology scale, and α = 

.89 of the physics scale.  

Prerequisite knowledge. The same prerequisite knowledge test as in Study 2 was used. 

The test consisted of eight questions asking for the second and third Newton axioms, the physical 

definition of forces, the characteristics of a harmonic oscillation, knowledge about velocity and 

acceleration, knowledge about the undulatory swimming style, and knowledge about the 

interplay of forces by analyzing a parallelogram of forces (see below for a sample item). A 

person’s knowledge about these basic definitions and principles was considered a beneficial 

prerequisite for more easily achieving an understanding of the topics explained in the current 

study. The eight multiple-choice questions consisted of four to six alternatives to choose from and 

for each question there were one to three correct answers. For each correct answer, learners 

were assigned one point and for each wrong answer one point was subtracted. Within a question, 

however, learners could at worst receive zero points. The maximum score was 12 points. 

Example of a question from the prerequisite knowledge test 

According to Newton’s second law of motion, a force F is calculated from 

a) the product of mass and time 

b) the product of mass and acceleration 

c) the product of time and impulse 

d) the product of impulse and acceleration 

 

Spatial ability. To control for individual differences in spatial abilities and to examining 

their potential moderating role, the mental rotation test (MRT) was administered (Vandenberg & 

Kuse, 1978). The MRT was used, as especially learning with the static visualizations used in this 

study required the ability to mentally rotate and manipulate visuo-spatial objects (e.g., to imagine 

the movement of the caudal fin). The MRT consists of 20 items, whereby each item comprises a 

complex three-dimensional block figure and four alternative figures as multiple-choice answer 

options. For each item, the participant has to choose, which two of the four alternative figures are 

identical to the target when (mentally) rotated. There is a time limit of six minutes for working on 

the MRT. For each correctly identified figure one point was given and for each wrong identified 

figure one point was subtracted, resulting in a maximum of 40 points and a minimum of -40 

points. 
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Cognitive load measures. Since the results of Study 2 indicated that the ECL2-item (“How 

difficult was it for you to learn with the given material?”) seemed to be more appropriate than 

the ECL1-item (“How difficult was it for you to understand the contents?”), the ECL2-item from 

Study 2 was used in Study 3. Moreover, the item supposed to measure GCL from Study 2 (“How 

much did you concentrate during learning?”) was again assessed in Study 3. These two items had 

to be rated on a nine-point Likert scale. 

Knowledge tests. Learning outcomes were measured by means of verbal factual 

knowledge tasks (eleven multiple-choice questions), five pictorial recall and twelve transfer tasks 

(see below for sample items of each test). A maximum of 21 points could be achieved for the 

verbal factual knowledge test, a maximum of 9 points could be achieved for the pictorial recall 

test, and a maximum of 32.5 points could be achieved for the transfer test. The verbal factual 

knowledge tasks were posed in a verbal format and all correct answers were explicitly conveyed 

by the multimedia instruction. The pictorial recall tasks were posed in a pictorial format and asked 

for facts that were depicted by the visualizations. The transfer tasks were posed in written as well 

as in pictorial form. For solving the transfer tasks, learners had to apply their acquired knowledge 

to new situations.  

The open questions of the pictorial tasks (4 of 5) as well as the transfer tasks (6 of 12) of 

30 participants were scored by two independent raters. Cases of disagreement (3.26%) for the 

open questions were resolved by consensus. As interrater-reliability was high (Cohen’s kappa: 

.95), the remaining data were scored by one rater. Performance was transformed into percentage 

correct for ease of interpretation. 
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Example of a question from the verbal factual knowledge test 

Which of the following is/are true?  

a) The reaction force is perpendicular to the propelling element. 

b) Lateral force and reaction force are perpendicular to each other. 

c) Propelling force and lateral force are perpendicular to each other. 

d) Reaction force and propelling force are perpendicular to each other. 

 

Example of a question from the pictorial recall test 

Three positions of an undulatory swimming fish are given below. The grey line symbolizes the 

baseline and the crosses symbolize the reversal points of the tail. However, the lower part of the 

fish is covered. Please draw the lower parts of the fish for the three given positions. 

 

Example of a question from the transfer test 

Some undulating species of fish move their head back and forth in order to swim forwards. Why is 

this? Write down any feasible reasons you can think of! 

 

6.2.4 Procedure 

 

Each participant was tested individually in a session lasting up to 120 minutes. First the different 

control variables were assessed in the following order: attitudes towards biology and physics, the 

prerequisite knowledge test, and the MRT. Thereafter, the learning phase began and when this 

phase was finished, students had to rate their cognitive load experienced during learning. Then 

students had to work on the different knowledge tests, namely the verbal factual knowledge test, 
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followed by the pictorial recall test and finally the transfer test. With the exception of the MRT, 

which was paper-pencil based, all other materials were presented via computer. 

 

6.3 Results 

 

Means and standard deviations are reported in Table 6.1. Partial eta-squared (2p) is reported as 

measures of effect size. 

 

Table 6.1 

Means (and SD) as a Function of Type of Visualization and Cueing 

Type of visualization Dynamic Static-sequential Static-simultaneous 

Cueing Yes 

(n = 25) 

No 

(n = 25) 

Yes 

(n = 25) 

No 

(n = 25) 

Yes 

(n = 25) 

No 

(n = 25) 

Control variables 

Attitudes towards 

biology (5 – 20) 

16.88 

(2.91) 

17.80 

(2.63) 

17.12 

(3.27) 

17.16 

(3.46) 

18.56 

(2.76) 

16.92 

(3.73) 

Attitudes towards 

physics (5 – 20) 

10.72 

(2.81) 

12.68 

(2.93) 

12.80 

(3.65) 

13.20 

(3.77) 

12.36 

(3.66) 

13.24 

(4.05) 

Prior knowledge (% 

correct) 

49.67 

(15.12) 

59.33 

(19.29) 

54.67 

(19.85) 

52.33 

(18.24) 

50.67 

(19.97) 

57.67 

(21.51) 

Spatial abilities (-40 

– 40) 

17.28 

(10.26) 

18.36 

(8.22) 

19.72 

(10.13) 

20.52 

(9.77) 

23.68 

(9.43) 

21.00 

(9.70) 

Learning outcomes (% correct)* 

Verbal factual 

knowledge 

70.48 

(3.54) 

66.71 

(3.43) 

66.52 

(3.40) 

59.72 

(3.41) 

60.94 

(3.53) 

62.96 

(3.42) 

Pictorial recall 53.03 

(4.39) 

45.42 

(4.26) 

45.96 

(4.22) 

39.92 

(4.23) 

54.11 

(4.37) 

41.49 

(4.24) 

Transfer 51.63 

(2.81) 

48.59 

(2.73) 

46.28 

(2.71) 

45.39 

(2.71) 

45.28 

(2.80) 

43.14 

(2.72) 

Cognitive load (1-9)* 

ECL  3.45 (.34) 3.93 (.33) 4.62 (.32) 4.49 (.33) 5.10 (.34) 5.33 (.33) 

GCL 6.69 (.36) 6.00 (.35) 6.58 (.34) 5.93 (.35) 5.88 (.36) 5.72 (.35) 

* Learning outcomes are adjusted by taking into account attitude towards physics and z-standardized scores for spatial 
abilities as covariates; values in parentheses refer to standard errors for these dependent measures. 
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6.3.1 Comparability of Experimental Conditions with Respect to Attitude 
Towards Biology and Physics, Prerequisite Knowledge, and Spatial Abilities 

 

A two-factorial ANOVAs with cueing (with/without) and type of visualization (dynamic/static-

sequential/static-simultaneous) was conducted to analyze if the learners in the six experimental 

conditions possessed similar prerequisite knowledge, spatial abilities, and attitudes towards 

biology as well as physics. Concerning prerequisite knowledge, there were no differences for 

cueing (F(1, 144) = 2.35, MSE = 364.82, p = .13, 2p =.02), type of visualization (F < 1, ns), and no 

interaction (F(2, 144) = 1.36, MSE = 364.82, p = .26, 2p =.02). With regard to spatial abilities, 

there were no differences for cueing (F < 1, ns), and no interaction (F < 1, ns), but marginal 

significant differences occurred for type of visualization (F(2, 144) = 2.77, MSE = 29.23, p = .07, 

2p =.04). For attitude towards biology, there also were no differences for cueing (F < 1, ns), or 

type of visualization (F < 1, ns), and no interaction (F(2, 144) = 2.13, MSE = 9.92, p = .12, 2p =.03). 

For attitude towards physics, there were no differences for type of visualization (F(2, 144) = 1.99, 

MSE = 12.31, p = .14, 2p =.03), and no interaction (F < 1). However, there was a marginal 

significant difference for cueing (F(1, 144) = 3.55, MSE = 12.31, p = .06, 2p =.03), with students in 

the uncued conditions (M = 13.04, SD = 3.58) possessing more positive attitudes towards physics 

than students in the cued conditions (M = 11.96, SD = 3.47). Because the experimental conditions 

could not be regarded as equal with respect to learners’ attitudes towards physics, this variable 

was used as covariate in all analyses reported in this Study. Since spatial ability is inserted in the 

analyses as a continuous factor to test its moderating role, differences among the visualization 

conditions are controlled for. 

 

6.3.2 Effects of Cueing, Visualization Format, and Spatial Abilities on Learning 
Outcomes 

 

Two-factorial ANCOVAs with cueing and type of visualization as independent variables and verbal 

factual knowledge, pictorial recall and transfer, respectively, as dependent variables were 

conducted, with learners’ attitudes towards physics as covariate. Furthermore, to test if spatial 

abilities moderated learning with the three types of visualizations, the scores of the MRT were z-

standardized and their interaction with type of visualization was inserted into the respective 

ANCOVAs. 

With respect to type of visualization, the two-factorial ANCOVAs revealed no differences 

for either verbal factual knowledge (F(2, 140) = 2.04, MSE = 288.64, p = .13, 2p =.03), or pictorial 
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recall (F(2, 140) = 1.18, MSE = 444.34, p = .31, 2p =.02). For transfer, there was a marginally 

significant effect for type of visualization (F(2, 140) = 2.39, MSE = 182.68, p = .097, 2p =.03). 

Because it was hypothesized that dynamic visualizations would outperform both types of static 

visualizations for transfer tasks, planned contrasts between the dynamic visualization conditions 

and the two types of static visualization conditions were applied, using attitude towards physics 

as covariate and spatial abilities as continuous factor. Results revealed a significant effect (F(1, 

140) = 4.42, MSE = 182.68, p = .04, 2p =.03), indicating that, in line with the hypothesis, learners 

in the dynamic visualization conditions outperformed learners in both static visualization 

conditions for transfer tasks. There were no significant differences between the static-sequential 

and static-simultaneous conditions for transfer tasks (F < 1, ns). 

The two-factorial ANCOVAs revealed no effect of cueing on verbal factual knowledge (F(1, 

140) = 1.02, MSE = 288.64, p = .32, 2p =.01) and, in contrast to the hypotheses, also no effect of 

cueing on transfer (F < 1, ns). However, cueing had an effect on pictorial recall (F(1, 140) = 6.25, 

MSE = 444.34, p = .01, 2p =.04), with learners in the cued conditions (M = 51.03, SE = 2.50) 

outperforming learners in the uncued conditions (M = 42.28, SE = 2.46).  

With respect to the assumed interaction between cueing and type of visualization, the 

two factorial ANCOVAs revealed no interaction for any of the three learning outcome measures 

(all Fs < 1, ns).  

Spatial abilities had an impact on all learning outcome measures: on verbal factual 

knowledge (F(1, 140) = 8.70, MSE = 288.64, p < .01, 2p =.06), on pictorial recall (F(1, 140) = 8.00, 

MSE = 444.34, p < .01, 2p =.05), and on transfer (F(1, 140) = 21.00, MSE = 182.68, p < .001, 2p 

=.13). The higher spatial abilities were, the better was performance on verbal factual knowledge 

tasks (r = .23, p < .01), on pictorial recall (r = .26, p = .001), as well as on transfer (r = .37, p < .001). 

However, other than expected, there was no interaction of spatial abilities and type of 

visualizations for pictorial recall (F(2, 140) = 1.04, p = .36, 2p =.02), verbal factual knowledge, or 

transfer (both Fs < 1, ns), indicating that spatial abilities did not moderate learning with the 

different types of visualizations.  

 

6.3.3 Effects of Cueing, Visualization Format, and Spatial Abilities on Cognitive 
Load 

 

For each cognitive load item a separate two-factorial ANOCVA was conducted with cueing and 

type of visualization as independent variables, attitude towards physics as covariate, and the ECL-

item or GCL-item, respectively, as dependent variable. Like for learning outcomes, it was 
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furthermore tested if spatial abilities moderated experienced cognitive load when learning with 

the three types of visualizations by introducing it as a continuous factor in the analyses. 

Concerning type of visualization, the two-factorial ANCOVA revealed no main effect for 

the GCL-item (F(2, 140) = 1.29, MSE = 3.06, p = .28, 2p =.02), but for the ECL-item as had been 

expected (F(2, 140) = 10.25, MSE = 2.66, p < .001, 2p =.13). Concerning the ECL-item, planned 

contrasts between the dynamic and the two types of static visualizations conditions revealed a 

significant effect (F(1, 140) = 16.53, MSE = 2.66, p < .001, 2p =.11), with learners in dynamic 

visualization conditions perceiving the content as less difficult than learners in the two types of 

static visualizations condition. Moreover, there was a significant effect between the static-

sequential and the static-simultaneous visualization conditions (F(1, 140) = 4.13, MSE = 2.66, p = 

.04, 2p =.03), with participants in the static-sequential visualization conditions perceiving it as 

less difficult to learn with the content than learners with static-simultaneous visualizations.  

Cueing had no effect on the ECL-item (F < 1, ns), but a marginal main effect on the GCL-

item (F(1, 140) = 2.87, p = .09, 2p =.02), with learners in the cued conditions (M = 6.37, SE = .21) 

reporting slightly more concentration on the content than learners in the uncued conditions (M = 

5.88, SD = .20).  

There was no interaction between type of visualization and cueing, neither for difficulty, 

nor for concentration (both Fs < 1, ns).  

Spatial abilities had no effect on the ECL-item (F(1, 140) = 2.22, MSE = 2.66, p = .14, 2p 

=.02) or on the GCL-item (F < 1, ns). The two-factorial ANCOVAs did not reveal an interaction of 

spatial abilities and type of visualization for the ECL-item or GCL-item (both Fs < 1, ns).  

The items supposed to measure ECL and GCL did correlate significantly with each other (r 

= -.30, p < .001) in that higher ECL ratings were associated with lower GCL ratings and vice versa. 

To analyze if the subjective cognitive load ratings were related to performance, correlations were 

conducted between the ECL and GCL measures and verbal factual knowledge, pictorial recall, and 

transfer (see Table 6.2). The three learning outcome measures were always negatively associated 

with ECL, and always positively associated with GCL. These correlations are in line with what 

would be expected from CLT and might be considered as a positive validation check for these 

items.  
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Table 6.2 

Correlations Among Cognitive Load Measures and Knowledge Tests 

n = 150 Verbal factual knowledge Pictorial recall Transfer knowledge 

ECL r = -.27** r = -.35***  r = -.31*** 

GCL r = .25** r = .31*** r = .18* 

Note: *** p < .001; ** p < .01; * p < .05 

 

6.4 Summary and Discussion 

 

In the current study, it was investigated if learning with multimedia instruction in general, and 

learning with dynamic visualizations in particular, could be optimized by means of cueing.  

First, it was expected that learning with dynamic as opposed to static visualizations would 

result in better learning outcomes, specifically for transfer tasks, and a decrease in ECL. The 

findings of this study supported this assumption to a large extent. On the one hand, learners in 

the dynamic visualizations conditions outperformed learners in the different static visualization 

conditions for transfer tasks, whereas no significant differences occurred for verbal factual 

knowledge and pictorial tasks, thereby confirming the results of Study 2. Concerning the two 

formats of static visualizations, there were no differences for any of the three learning outcome 

measures, indicating that the format of the static visualizations played a subordinate role for this 

kind of learning material. The superiority of dynamic visualizations for transfer tasks indicates that 

the presentation of dynamic features like changes in velocity and their interrelations helped in 

constructing a deeper understanding of this domain. For future studies, it would be interesting to 

check the generalizability of this finding to other domains with similar dynamic features, for 

instance Kepler’s second law, in which the understanding of the changes in velocity of the 

planetary motion around the sun is crucial (cf. Kühl et al., 2010). The item supposed to measure 

ECL correlated negatively with all learning outcomes measures, which may be regarded as a 

positive validation check. As predicted for ECL, learners presented with static visualizations found 

it more difficult to learn the content than students presented with dynamic visualizations. 

Moreover, participants in the static-simultaneous conditions found it more difficult to learn than 

participants in the static-sequential visualizations conditions. The item assessing learner’s 

concentration was supposed to be measure for GCL, and the positive relationship of this item with 
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the learning outcome measures may support this assumption. For this item, similarly as in Study 2 

of this thesis, no differences with regard to type of visualization could be observed. This finding 

may be attributed to a minor influence of the type of visualization on GCL, provided this item 

indeed measured GCL. It should be noted that even though the correlations of the ECL and GCL 

item with the learning outcome measures are in line with what would be expected from CLT, 

nevertheless the interpretation of these items should be treated cautiously, since doubts are 

raised from time to time whether subjective cognitive load ratings can be regarded as a valid 

measurement of cognitive load (cf., de Jong, 2010). 

Second, it was expected that learners in the cued conditions would outperform learners in 

the uncued conditions, particularly for pictorial recall and transfer tasks, and that cueing would 

result in a decrease of ECL as well as in an increase of GCL. As expected, there was an effect of 

cueing for pictorial recall tasks, and not for verbal factual knowledge tasks. However, other than 

expected, cueing had no influence on transfer tasks. Hence, on the one hand, cueing helped 

learners to better recall the information depicted in the visualizations, but this did not lead to a 

deeper understanding of the content. One possible explanation may be that cueing mainly helps 

in mentally organizing and structuring visual elements, but contributes less to a more elaborated 

mental model from which inferences concerning interrelations of dynamic features can be drawn. 

This finding partly corresponds to a recent review by de Koning et al. (2009), who could only find a 

positive effect of cueing in animations for approximately half of the reviewed studies and 

concluded that cueing does not necessarily lead to a deeper understanding of the content. 

Nevertheless, this finding is unexpected and somewhat discouraging, since the implemented cues 

in the current study were designed in a careful way, thereby incorporating successful cueing 

methods from other studies that aimed at supporting the processes of selecting, organizing and 

integrating information, and that, furthermore, aimed at reducing the visual complexity within 

(dynamic) visualizations. With respect to the item supposed to measure ECL, no effect of cueing 

could be found. On the one hand, this contradicts the abovementioned assumption, but on the 

other hand, it also mirrors the effect of cueing on transfer tasks, so this pattern of results is at 

least consistent in itself. For the item supposed to measure GCL, learners in the cued conditions 

gave higher ratings than learners in the uncued conditions. While this does not reflect the 

performance on transfer tasks, it is well in line with performance on pictorial recall tasks. One 

may interpret this finding in that cueing may help to concentrate on the content, as cueing is 

supposed to guide a learner’s processing.  

It should be noted though that cueing consisted of different cueing methods, such as 

synchronizing text and visualizations, a spotlight, zooming et cetera. All these manipulations were 

assumed to have a positive effect, and, hence were implemented to improve the instructional 
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material. Consequently, it cannot be traced back which impact each manipulation had on the 

learner’s processing of the materials. Also, it cannot be completely ruled out that different cueing 

manipulations interfered with each other - even if that appears to be unlikely, because prior 

studies indicated that the use of multiple cueing techniques is associated with best performance 

(e.g., Jamet et al., 2008). Nevertheless, the unique contribution of each cueing technique and 

their potential interactions need to be examined in future studies. 

Third, other than expected, cueing did not moderate the effectiveness of learning with 

either dynamic or any format of static visualizations. Also, concerning cognitive load, no 

interactions between type of visualization and cueing could be observed for either ECL or GCL. On 

the one hand, it was assumed that cueing should help to reduce the visual complexity and to 

guide a learner’s processing, which should be especially beneficial in dynamic visualizations, 

because dynamic visualizations are supposed to possess a comparatively high degree of visual 

complexity (cf. Lowe, 2003). Moreover, some cueing methods could uniquely be implemented for 

dynamic visualizations (e.g., overemphasizing changes in velocity), thereby, if anything, fostering 

the supposed interaction. However, the assumption of a moderating role of cueing in learning 

with dynamic and static visualizations was not confirmed. While cueing had no impact on transfer 

tasks for any type of visualization, it had an equally positive influence on pictorial tasks for all 

types of visualizations. Based on these results, several explanations might account for this finding. 

On the one hand, it may be argued that because several cueing techniques were applied, they 

may have had different influences on the respective types of visualizations. For instance, it may 

be possible that the manipulation of zooming in the visualizations was most helpful for the static-

simultaneous visualizations, because the key frames shown in this condition were presented in 

the smallest size, whereas adding elements to the visualization only once they have been 

mentioned in the narration might have been most advantageous for learning with dynamic 

visualizations. Even though this explanation is notional, from a more principle-based point of view 

it might be worthwhile to investigate each manipulation separately. Another explanation for the 

absence of a moderating influence of cueing in learning with dynamic and static visualizations 

might be that the visual complexity of the dynamic visualizations for this specific learning material 

might not have been the major problem. This may be the case, because, first, the content was 

segmented into multiple sections (cf. segmenting principle, Mayer, 2009), where the sections built 

up on each other and, correspondingly, the number of elements in the visualizations increased 

from section to section. Secondly, dynamic visualizations were shown repeatedly, so that learners 

in the uncued conditions had the chance to see relevant changes several times. These two factors 

might already have decreased the visual complexity of dynamic visualizations to a certain degree, 

and thus may have overshadowed additional potential cueing effects for dynamic visualizations, 
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for which the strongest effect for cueing was expected. Hence, one may speculate that a 

moderating role of cueing in learning with dynamic and static visualizations might be observed, 

when the animations are for instance transient, so that a lack of or misdirected attention will be 

associated with a loss of information. 

Contrary to the advocated spatial ability-as-compensator hypothesis, no moderating 

effect of spatial ability in learning with dynamic and static visualizations could be observed, 

irrespective of the presentation format of static visualizations (i.e., static-sequential and static-

simultaneous visualizations, respectively). It should be noted though that the moderating role of 

spatial ability is rarely found in single studies (cf. Hegarty & Kriz, 2008), so that the specific 

circumstances for the moderating role of spatial ability should be investigated in more detail in 

ongoing studies. Such circumstances might be the used test to measure spatial abilities, or to 

which factor of spatial ability the used test may contribute, respectively (cf. Höffler, 2010), and 

how the applied tests matches with the task to mentally animate the changes, when receiving 

static visualizations. Nevertheless, spatial ability had a strong effect on learning outcomes in that 

higher spatial abilities were associated with higher learning outcomes, a finding that is 

predominantly observed when learning with visualizations (cf. Hegarty & Kriz, 2008; Höffler, 

2010). 

To sum up, the results of this study confirmed the hypothesis that dynamic visualizations 

in contrast to the two types of static visualizations were more apt for learners to get a deeper 

understanding of a dynamic content like the one at hand. Cueing on the other hand, had no 

influence on tasks asking for a deeper understanding of the content, but it generally helped 

learners to better recall the information depicted in the visualizations. These results were – at 

least partly – mirrored by the items that were supposed to measure cognitive load. No 

moderating influences could be observed for learning with dynamic compared to static 

visualizations, that is neither the design factor cueing nor the learner characteristic spatial ability 

moderated learning with dynamic and static visualizations. It remains unclear from this study, if 

these missing moderating effects can, for instance, be attributed to the design of the instructional 

material (e.g., the repetitive movement, or the segmented instructional material). Hence, future 

studies using different materials may investigate these questions in more detail. All in all, from an 

instructional point of view, these results indicate that it is worthwhile to produce dynamic 

visualizations for learning domains with properties like the one at hand, where the understanding 

of dynamic features like changes in velocity is crucial. 
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7 General Discussion 
 

7.1 Aims and Research Questions 

 

In the current thesis, it was examined how to foster the comprehension of Natural Science 

phenomena by means of deploying multimedia instruction. Thereby, the domain physical 

principles underlying fish locomotion was chosen, for at least two reasons: First, the domain can 

be regarded as a concrete solution to deal with the problems of decontextualization that learners 

are often confronted with in learning Natural Sciences, and particularly in learning physics (cf. 

Taasoobshirazi & Carr, 2008; Whitelegg & Edwards, 2002). More precisely, the physical principles 

underlying fish locomotion are a concrete instantiation of the abstract Newton’s laws of motion 

with reference to the real world (Waltner, Rachel, et al., 2006; Waltner, Wiesner, et al., 2007). 

Second, the chosen domain mirrors the requirements learners are often confronted with in the 

Natural Sciences, in particular, learners need to understand how a change in one variable affects 

another variable, in this case, for instance, the interplay of the changing velocity of a fish’s caudal 

fin along its trajectory, and its impact on the sizes of the associated resulting forces, or its impact 

on the related swimming speed.  

Based on a literature review it was proposed that adding visualizations to text would be 

helpful in fostering students’ understanding of Natural Science phenomena, such as the physical 

principles underlying fish locomotion. In particular, dynamic visualizations as opposed to static 

visualizations were assumed to possess enormous potential to convey dynamic interrelations, like 

changes in velocity and their impact on further variables. Therefore, in Study 1 it was investigated 

whether static and dynamic visualizations would foster learning compared to a pure text-based 

instruction, as well as whether dynamic visualizations would be even better suited to achieve this 

aim. Based on the literature concerning the cognitive functions dynamic and static visualizations 

may play for learning as opposed to only text, students’ cognitive processes were investigated by 

means of verbal protocols  

Even though in particular dynamic visualizations may be well suited for conveying the 

physical principles underlying fish locomotion, their processing might be hampered due to their 

high degree of visual complexity. Therefore, the goal of Study 2 and 3 of this thesis was to 

investigate ways of optimizing learning with multimedia in general, and learning with dynamic 

visualizations in particular, so that the potentials of dynamic visualizations might best unfold. It 

was assumed that due to the higher degree of visual complexity in dynamic visualizations 

compared to static visualizations, the effectiveness of dynamic visualizations might be reduced 
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under inter-representational split-attention conditions, as is for instance the case when 

presenting written instructional explanations along with the visualizations. Hence, in Study 2, it 

was investigated if the superiority of dynamic over static visualizations would be more 

pronounced when using spoken instead of written text. On the other hand, it was assumed that 

due to the higher degree of visual complexity of the dynamic visualizations compared to static 

visualizations, the selection and organization of relevant information in the dynamic 

visualizations, as well as its integration with text, would be particularly challenging. Hence, in 

Study 3, it was examined if the superiority of dynamic over static visualizations could be even 

enhanced by means of cueing. Moreover, in all three studies it was examined if the benefits of 

dynamic over static visualizations would especially be observable for learners with weaker spatial 

abilities, as would be predicted by the ability-as-compensator hypothesis (cf. Mayer & Sims, 

1994).  

In the following, first the findings of the three studies will be summarized, and afterwards 

each research question will be taken up again. Finally, limitations of the studies of the current 

thesis will be discussed and conclusions will be given. 

 

7.2 Summary of Main Findings 

 

In Study 1 of this thesis, one major goal was to test if adding visualizations to text would generally 

help learners to better understand the chosen domain in this thesis. Furthermore, the assumption 

was examined whether dynamic visualizations would be better suited than static visualizations to 

convey a deeper understanding for this domain. At this, and in line with the ability-as-

compensator-hypothesis, the assumption was tested that the benefits of dynamic over static 

visualizations should be more pronounced for learners with weaker spatial abilities. Moreover, 

the cognitive processes associated in learning with the different instructional formats were 

examined by means of think-aloud protocols (Ericsson & Simon, 1993). The think-aloud protocols 

in turn were coded according to the taxonomy of learning strategies by Weinstein and Mayer 

(1986). Thereby claims were examined that can be derived from the cognitive functions that text, 

dynamic and static visualizations may play in learning. More precisely, it was assumed that adding 

visualizations to text would offload a learner’s working memory, would reduce uncertainty about 

the content and would lead to a more thorough processing of the content. With regard to the 

comparison of dynamic and static visualizations, it was assumed that dynamic visualizations 

would further lessen the demands on working memory and reduce the uncertainty about the 

content.  
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These research questions were examined in a one-factorial design with three conditions 

(text-only, text with dynamic visualizations and text with static visualizations) as independent 

variable, and spatial abilities as a continuous factor. The think-aloud protocols assessed during the 

learning phase, the use of the learning environment, learning outcome measures (verbal factual 

knowledge, pictorial recall and transfer tasks), as well as subjective ratings of extraneous and 

germane cognitive load served as dependent variables.  

Results revealed that visualizations in general were helpful to achieve a deeper 

understanding (as measured by transfer tasks), as well as to develop a better pictorial mental 

model (as measured by pictorial recall tasks) of the content as opposed to only text, which is well 

in line with the outcome-oriented view of the CTML (Mayer, 2001, 2005a, 2009). This observed 

multimedia effect can be regarded as a crucial precondition for investigating more differentiated 

research questions concerning the effectiveness of dynamic and static visualizations, since it is 

ensured that learners have to rely on visualizations in order to come to a comprehensive 

understanding of the domain at hand. Moreover, through adding visualizations to text, processing 

demands were reduced (as measured by subjective ratings of cognitive load), which is in line with 

a functional view of learning with text and visualizations, and specifically with the CLT (e.g., 

Sweller et al., 1998). Furthermore, as can be reasoned from a functional view, learners were less 

uncertain about the content (as measured by less negative monitoring statements) and, more 

importantly, generated more inferences (as measured by the coded learning strategies of the 

think-aloud protocols).  

With respect to dynamic and static visualizations, contrary to the assumption that 

dynamic visualizations would be more apt than static ones, no differences were observable for 

any leaning outcome measure between these types of visualizations in Study 1, which will be 

discussed in more detail in section 7.4. Also, no differences were observable with regard to 

working memory demands, as measured by the subjective cognitive load ratings. Regarding the 

role of spatial abilities, results revealed that even though spatial abilities did not moderate 

learning with dynamic and static visualizations with regard to learning outcomes, learners 

receiving static visualizations at least played the visualizations more often than learners receiving 

dynamic visualizations. This might be interpreted as an attempt to compensate for the demands 

to mentally animate the content, and somewhat corresponds to the ability-as-compensator 

hypothesis (cf. Mayer & Sims, 1994). Think-aloud protocols revealed that learners with dynamic 

visualizations made less erroneous statements about the content, and were more confident to 

have understood the content, as measured by more positive monitoring statements. Since these 

positive monitoring statements had no relation to any learning outcome measure, this might be 

interpreted as an illusion of understanding in learning with dynamic visualizations, thereby 
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confirming the results of a study by Lewalter (2003). On the other hand, the analysis of the think-

aloud protocols also indicated that this possible illusion of understanding had no negative impact 

on valuable processing activities (i.e., elaborations), since these were not reduced when learning 

from dynamic visualizations compared to static visualizations.  

To sum up, even though the multimedia effect could be confirmed in Study 1, no 

differences occurred between dynamic and static visualizations. A reason for the observed 

instructional equality of these types of visualizations might be that the potentials of dynamic 

visualizations might not have properly unfold in Study 1. This in turn might be the case, since 

problems associated with a high degree of visual complexity might have hampered learning with 

dynamic visualizations. Hence in Study 2 and Study 3, it was investigated whether particularly 

learning from dynamic visualizations could be optimized by reducing the problems associated 

with a high degree of visual complexity. 

More precisely, in Study 1, the text was presented in written form, mainly because think-

aloud protocols were assessed. However, due the assumed high degree of visual complexity in 

dynamic visualizations, the potential of dynamic visualizations may not properly unfold when 

learners have to split their attention between written text and visualizations. This inter-

representational split of attention can be overcome by using spoken text. In general, according to 

the modality effect (e.g., Ginns, 2005; Mayer, 2009, Sweller et al., 1998), multimedia instruction 

can be enhanced by using spoken instead of written text. The prediction that learning from 

visualizations in general could be facilitated by using spoken text was investigated in Study 2. 

Furthermore, the assumption was tested whether specifically the benefits of dynamic over static 

visualizations may become more evident when using spoken instead of written text. This might be 

the case, because an inter-representational split-attention effect, which is caused by using written 

text (cf. Schnotz & Lowe, 2008; Sweller et al., 1998) may specifically harm learning with dynamic 

visualizations, which are assumed to possess a high degree of visual complexity. Moreover, even 

though in Study 1 no differences were observable between dynamic and static visualizations, it 

was assumed that in Study 2 dynamic visualizations should be better suited for gaining a deeper 

understanding of the content. This was supposed to be the case, because several changes 

between the material in Study 1 and 2 were realized. These changes mainly aimed at making 

better use of the potentials of dynamic visualizations, such as emphasizing dynamic features in 

the dynamic visualizations. Accordingly, it was tested whether learning with dynamic 

visualizations would offload working memory and particularly improve performance on transfer 

tasks that require a deeper understanding of these dynamic features (cf. Bétrancourt & Tversky, 

2000). Furthermore, it was investigated if the benefits of dynamic visualizations would be more 

pronounced for learners with weaker spatial abilities.  



General Discussion 135 

The abovementioned research questions were examined in a 2x2-design with type of 

visualization (dynamic vs. static) and text modality (written vs. spoken) as independent variables, 

and spatial abilities as a continuous factor. Dependent variables were learning outcome measures 

(verbal factual knowledge, pictorial recall, transfer knowledge) and subjective ratings of cognitive 

load. 

Results revealed that adding spoken instead of written text to visualizations fostered 

learning, and as predicted, specifically with regard to pictorial recall and transfer tasks. Moreover, 

and in contrast to Study 1, dynamic visualizations were shown to be more apt for conveying a 

deeper understanding of the content than static visualizations, as measured by transfer tasks. In 

line with this finding, dynamic visualizations seemed to reduce processing demands, as indicated 

by subjective ratings of cognitive load. However, contrary to what had been expected, the 

superiority of dynamic visualizations was not more pronounced when the visualizations were 

accompanied by spoken instead of written text. There was also no moderating role of spatial 

abilities in learning with these types of visualizations. Summing up, it occurred that the 

modifications of the multimedia instruction, and particularly the improvement of the dynamic 

visualizations to better unfold their potential to convey dynamic features, led to the superiority of 

dynamic as opposed to static visualizations. Nevertheless, one drawback of dynamic visualizations 

themselves might still have been apparent (as indicate by the moderate performance on transfer 

tasks), namely their inherent visual complexity that is, for instance, caused by multiple changes 

occurring in parallel. To help learners in coping with the visual complexity of dynamic 

visualizations in particular, but also as a means to improve multimedia instruction in general, it 

has been suggested to apply cueing (e.g., de Koning et al., 2009). Cueing should thereby facilitate 

the processes of selection, organization, and integration, and, in connection, should counteract 

the demands that constitute the high degree of visual complexity in dynamic visualizations. Thus, 

for Study 3, it was examined if cueing would enhance learning with this kind of multimedia 

instruction. Thereby, it was expected that cueing would generally lead to better performance in 

pictorial and transfer tasks. Moreover, it was tested whether the superiority of dynamic over 

static visualizations for transfer tasks would be more pronounced under cued than under non-

cued conditions. Furthermore, to ensure that the superiority of dynamic over static visualizations 

for transfer tasks found in Study 2 would not only be restricted to one specific presentation 

format of static visualizations, namely static-sequential visualizations, static-simultaneous 

visualization conditions were additionally implemented. Finally, it was once again tested if the 

benefits of dynamic visualizations would particularly hold true for learners with weaker spatial 

abilities. These assumptions were expected to be mirrored by the respective pattern of cognitive 

load.  
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To test these research questions, a 2x3-design was chosen with cueing (with/without) and 

type of visualizations (dynamic, static-sequential, static-simultaneous) as independent variables, 

and spatial abilities as a continuous factor. Learning outcome measures (verbal factual 

knowledge, pictorial recall, transfer knowledge) and subjective ratings of cognitive load served as 

dependent variables. 

Results revealed that learners in the cued conditions developed better pictorial mental 

models, as indicated by their performance on pictorial recall tasks, and stated that they could 

better concentrate on the content than learners in the uncued conditions. However, other than 

expected, cueing neither had an effect on transfer tasks, nor did it decrease ECL. With respect to 

the type of visualizations, learners receiving dynamic visualizations outperformed learners 

receiving static visualizations for transfer tasks. Also, dynamic visualizations seemed to reduce 

processing demands, as indicated by the cognitive load ratings. Thereby, the results of Study 3 

mirrored the results of Study 2 with regard to the comparison of dynamic and static visualizations. 

The presentation format of static visualizations, on the other hand, had no influence on any 

learning outcome measure, indicating that the presentation format of static visualization played a 

subordinate role for the understanding of this domain and the dynamic features it comprises. 

Contrary to the assumption that the superiority of dynamic over static visualizations would be 

even more pronounced if cueing was implemented, cueing did not moderate learning with 

dynamic and (different formats of) static visualizations. This may suggest that overall the visual 

complexity played a subordinate role in learning with the used visualizations. Once again, no 

moderating role of spatial abilities was observable in learning with dynamic and static 

visualizations. 

In a nutshell, the results of these three studies indicate that first, adding visualizations to 

text is essential for conveying the abstract Newton’s laws of motion by means of a contextualized 

example, such as the physical principles underlying fish locomotion. Second, particularly dynamic 

visualizations seem to be better suited than static visualizations for gaining a deeper 

understanding of the domain given that conditions are met under which dynamic visualizations 

can unfold their potential. Thereby, it should, for instance, be ensured that the potential of 

dynamic visualizations to depict dynamic features is exploited. Also, boundary conditions that 

might hamper learning with dynamic (and static) visualizations, such as inter-representational 

split-attention or a high visual complexity should be diminished, for instance by using spoken text 

or by cueing visualizations, even though it should be noted that cueing was solely partly 

beneficial.  

In the following, the research questions and the corresponding results of the current 

thesis will be discussed in more detail: The benefits of multimedia learning, learning with dynamic 
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and static visualizations, optimizing learning from visualizations, and the moderating role of 

learner characteristics. Thereafter, some limitations of the current thesis will be discussed, and 

finally conclusions will be derived.  

 

7.3 The Benefits of Multimedia  

 

As indicated by a vast majority of research (e.g., Anglin et al., 2004; Carney & Levin, 2002; Fletcher 

& Tobias, 2005; Levie & Lentz, 1982; Levin et al., 1987; Mayer, 2001, 2009), learning with text and 

visualizations (i.e., multimedia), as opposed to learning with text-only, can be considered as a 

successful way to enhance learning. There are at least two perspectives to explain why learning 

with multimedia should be beneficial (cf. Schmidt-Weigand & Scheiter, 2011), namely an 

outcome-oriented view, as well as a functional view. An outcome-oriented view focuses on the 

mental representations that are build when learning with multimedia; its most prominent 

exponent is the CTML (2001, 2005a, 2009). According to the CTML, learning with text and 

visualizations as opposed to only text should mainly lead to a better pictorial mental model (as 

measured by pictorial recall tasks) as well as to a better integrated mental model (as measured by 

transfer tasks), but not necessarily to a better verbal mental model (as measured by verbal factual 

knowledge tasks). A functional view, on the other hand, focuses on the cognitive processes that 

are facilitated when learning with text and visualizations. In line with a functional view, learning 

with text and visualizations as opposed to only text should offload working memory (i.e., decrease 

extraneous cognitive load), lead to less uncertainty about the content (as reflected by fewer 

erroneous, fewer negative monitoring and more positive monitoring statements), as well as to 

support a more elaborate processing of the content (as reflected by more generated inferences, 

more activated knowledge and an increase in germane cognitive load).  

The results of Study 1 are in line with what would be expected from the CTML: Learners 

receiving text and visualizations outperformed learners receiving only text for pictorial recall and 

transfer tasks; however, there were no differences for verbal factual knowledge tasks. These 

results thereby also basically mirror the research on the multimedia effect that differentiates 

between different knowledge tasks: In a review of his own studies, Mayer (2001) reported higher 

effect sizes for transfer tasks than for verbal factual knowledge tasks. Similarly, studies that 

assessed verbal and pictorial factual knowledge tasks found the multimedia effect to be especially 

pronounced for pictorial tasks, but less accentuated and sometimes even nonexistent for verbal 

tasks (e.g., Alesandrini & Rigney, 1981; Baker & Dwyer, 2000; Beagles-Roos & Gat, 1983; Joseph & 

Dwyer, 1984; Szabo et al., 1981; for an overview see Levie & Lentz, 1982).  
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With respect to the functional view, the results of Study 1 gave only partial support to the 

derived predictions. Other than expected, there were no differences for the amount of erroneous 

statements, positive monitoring statements and statements about the activation of knowledge. 

However, it should be noted that these categories of the coded think-aloud protocols had no 

substantial relation to learning outcomes. Accordingly, they may not be valid indicators for the 

cognitive processes suggested by the functional view. As assumed, learning with text and 

visualizations reduced the processing demands on learners, as indicated by lower subjective 

ratings of ECL. Moreover, adding visualizations to text led to fewer negative monitoring 

statements as well as to more generated inferences, both categories that had a substantial 

relation to learning outcomes. These results confirm findings by Butcher (2006), who also 

observed more generated inferences for learners receiving text and visualizations. However, the 

more generated inferences in Study 1 were not reflected by an increase in GCL, which in turn 

might also be a problem of assessing different types of cognitive load by means of subjective 

measures (cf. de Jong, 2010), an issue that will be discussed in more detail in section 7.7. It should 

be noted though that beyond the study of Butcher (2006), the empirical support for the derived 

assumptions from the functional view is rather sparse, mainly because of a lack of research in this 

field. For instance, the finding that learners receiving text and visualizations conducted fewer 

negative monitoring statements can be regarded as a new, first evidence for the claim that adding 

visualizations to text might lead to less uncertainty regarding the content as compared to text 

alone.  

Hence, to further examine the functions of visualizations in facilitating cognitive 

processes, further research is needed that applies on-line measures such as think-aloud protocols. 

Moreover, other online-measures, such as eye-tracking data might additionally contribute to a 

better understanding of the processes, for instance by relating the time spend on visualizations, 

or the switches between text and visualizations, with categories of verbal data. Thereby, claims 

derived from a functional view can be examined in more detail and can enrich an outcome-

oriented view (e.g., van Gog, Paas, & van Merriënboer, 2005; see also Scheiter & van Gog, 2009). 

Likewise extending the methodological repertoire in research on multimedia learning may enrich 

our understanding of the functions of dynamic and static visualizations and of the cognitive 

processes they may facilitate.  
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7.4 The Superiority of Dynamic over Static Visualizations 

 

Concerning the research on the effectiveness of learning with dynamic as opposed to static 

visualizations, the pattern of results has been rather inconclusive so far: Whereas Tversky et al. 

(2002) had a rather discouraging view, the meta-analysis of Höffler and Leutner (2007), as well the 

research overview given in Chapter 2.2.4 of this thesis support an overall advantage of dynamic 

over static visualizations. However, this is not to be misunderstood as to say that dynamic 

visualizations are globally always better suited than static visualizations. Rather, it is 

recommended to take different boundary conditions into account when and why dynamic 

visualizations should be superior (e.g., Bétrancourt, 2005; Hegarty, 2004; Schnotz & Lowe, 2008). 

This was done for the three studies of the current thesis. Thereby, it was reasoned that because 

the domain chosen for this thesis comprises several dynamic features, dynamic visualizations 

should be better suited than static ones for conveying knowledge in this domain. Thereby, 

dynamic visualizations were supposed to offload working memory, since resource-intensive 

processes, specifically spatial and temporal inferences, did not need to be conducted. This 

superiority was assumed to become true for transfer tasks (cf. Bétrancourt & Tversky, 2000), and 

was, in line with the ability-as-compensator hypothesis, expected to be more pronounced for 

learners with weaker spatial abilities.  

In Study 1 of this thesis, no differences between dynamic and static visualizations could be 

observed with regard to any learning outcome measure. On the other hand, for Study 2 and Study 

3, as predicted, learners receiving dynamic visualizations performed better on transfer tasks than 

learners receiving static visualizations. However, several changes in the learning material were 

realized between Study 1 as opposed to Study 2 and 3: For instance, the complexity of the 

learning material was reduced, the redundancy of text and visualizations was diminished, and the 

visualizations changed by adding landscape background to make dynamic features in the dynamic 

visualizations easier discernable for the learner. Therefore, it is not retraceable which change or 

combination of changes, respectively, caused these differences between Study 1 compared to 

Study 2 and 3. It should be noted though that these changes were implemented since they were 

supposed to generally improve the instructional material, and particularly dynamic visualizations. 

For this superordinate goal of optimizing learning with dynamic and static visualizations, it was 

tolerated that results of Study 1 were not directly comparable to Study 2 and Study 3 anymore 

(see also section 7.7.2).  

Irrespective of that, in Study 2 and 3, the benefits of dynamic visualizations became 

especially evident for transfer tasks, which asked for a deeper understanding of the content, but 
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not for verbal or pictorial factual knowledge tasks. The fact that differences between dynamic and 

static visualizations solely had an impact on transfer tasks is well in line with theoretical 

considerations by Bétrancourt and Tversky (2000), who argue that differences between these 

types of visualizations may mainly become evident in tasks where inferences from a mental model 

have to be drawn. Thereby, the results stress the importance to distinguish these different 

learning outcome measures when investigating differences between dynamic and static 

visualizations. Also, for Study 2 and 3, and corresponding to the results of the transfer tasks, 

dynamic visualizations seemed to reduce processing demands, as indicated by the subjective 

cognitive load ratings. This corresponds to the claim that the dynamic visualizations may be 

beneficial for learners, because they reduce resource-intensive processing demands during 

learning, namely the need to conduct temporal and spatial inferences (cf. Schnotz & Lowe, 2008).  

The major aim of this thesis was to improve multimedia instruction in general, and 

dynamic visualizations in particular, to convey Newton’s laws of motion in the context of the 

physical principles underlying fish locomotion. Nevertheless, in the current thesis it was also 

aimed at uncovering boundary conditions at which the benefits of dynamic as opposed to static 

visualizations might become more or less pronounced. At this, it was argued that due to the 

assumed higher degree of visual complexity in dynamic as opposed to static visualizations, the 

benefits of dynamic visualizations would particularly unfold with spoken text. This assumption 

was tested in Study 2 of the current thesis. However, even though spoken text was beneficial, the 

benefits of dynamic as opposed to static visualizations were not differently pronounced with 

regard to text modality. Therefore, it was reasoned that it may be the case that reducing 

processing demands by using spoken text was not sufficient to deal with the visual complexity of 

dynamic visualizations per se. Hence, in the following Study 3, the role of cueing – which is 

supposed to help dealing with visual complexity in (dynamic) visualizations – was examined, and it 

was argued that the benefits of dynamic over static visualizations would be more pronounced for 

cued visualizations. Even though cueing helped learners to better recall the information depicted 

in the visualizations, and dynamic visualizations once again proved to be better suited than static 

visualizations for achieving a better understanding of the content, no moderating role of cueing in 

learning with dynamic and static visualizations could be observed.  

Taken together, even though the two treatments of spoken text (Study 2) and cueing 

(Study 3) enhanced learning with both kinds of visualizations (cueing had at least a positive impact 

on pictorial recall tasks in study 3), both treatments did not accentuate these benefits 

comparatively stronger in learning with dynamic visualizations. In hindsight, these findings may be 

interpreted as suggesting that the visual complexity might have not been the major problem in 

learning with dynamic as opposed to static visualizations. As discussed in Study 3 of this thesis, 
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this might be the case for at least two reasons with regard to the design of the dynamic 

visualizations used in the current study: First, the content was segmented, that is the 

visualizations gradually built up from section to section (cf. segmenting principle, Mayer, 2009). 

Second, the fish’s undulatory movement was shown repeatedly in the dynamic visualizations, so 

that the learners had the chance to see the depicted elements several times. These factors might 

have already reduced the visual complexity typically observed in many dynamic visualizations, so 

that it may be argued that the visual complexity has played a subordinate role in processing the 

current materials. This is not to be misinterpreted in a way that the visual complexity could not be 

regarded as higher in dynamic as opposed to static visualizations, but solely that it might not have 

been the major problem.  

It should be noted that therefore, with regard to these two factors, the design of Study 2 

and Study 3 can be considered as conservative for testing a moderating role of text modality or 

cueing, respectively, in learning with dynamic and static visualizations. One would still expect to 

find such a moderating role, when the visual complexity is higher because of a non-segmented or 

transient display, where a lack of attention is associated with a loss of information.  

Overall, it might be concluded that for a dynamic domain like the one at hand, dynamic 

visualizations might be beneficial for learners to get a deeper understanding of the content – at 

least if their potential to depict the interrelations of dynamic features is exploited, as might be the 

case for Study 2 and Study 3 of this thesis. Thereby, with dynamic visualizations a learner does not 

need to conduct resource-intensive processes, namely temporal and spatial inferences (cf. 

Schnotz & Lowe, 2008). This is in line with the pattern of results for the item supposed to measure 

ECL in Study 2 and 3. On the other hand, it was initially assumed that the freed cognitive 

resources would be dedicated to more valuable processing activities that are associated with an 

increase in GCL. There might be at least two reasons for why such an effect was missing: First, it 

may be that an increase in GCL does not happen automatically when learning with dynamic 

visualizations. Rather, it may be necessary to prompt the learners to actively process the 

visualizations (e.g., de Koning et al., 2011b; Kombartzky et al., 2010) to devote the freed resources 

of working memory to GCL when learning with dynamic visualizations. Second, as 

abovementioned, the lack of an effect for GCL may also be traced back to problems in measuring 

cognitive load by means of subjective ratings (cf. de Jong, 2010; Schnotz & Kürschner, 2007; see 

section 7.7.1).  

It should be noted that the effect size concerning the superiority of dynamic over static 

visualizations – although these comparisons were significant in both studies – dropped from 2p = 

.12 in Study 2 to 2p = .03 in Study 3. This might be traced back to the fact that the static 

visualizations, particularly the static-sequential visualizations, were improved from Study 2 to 
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Study 3. The improvement in Study 3 was realized by synchronizing the corresponding key frame 

with the auditory text in case the text referred to a specific state depicted in a key frame, 

irrespective of whether cueing was implemented or not. However, in Study 2, the static-

sequential visualizations were not synchronized with the text to avoid a confounding of 

synchronization and text modality. Similarly, no synchronization was realized for the dynamic 

visualizations in Study 2, and for the uncued dynamic visualizations in Study 3, but only for the 

cued dynamic visualizations in Study 3, which were paused in important states, if the auditory text 

referred to these states27. Therefore, it may be argued that overall, if anything, in Study 3 the 

static visualizations were favored as opposed to the dynamic visualizations with regard to the 

synchronicity with the spoken text. Nevertheless, also for Study 3 dynamic visualizations proved 

to be better suited than static visualizations; however, the effect size was less pronounced 

compared to Study 2.  

Based on these results, it can be argued that dynamic visualizations are better suited than 

static visualizations for conveying the physical principles underlying fish locomotion, since this 

domain comprises dynamic features that are crucial for achieving a deeper understanding of the 

content. However, it would be desirable to be able to generalize these findings with instructional 

material in another domain that also possess dynamic features like changes in velocity. This was, 

for instance, recently done in a study by Kühl et al. (2010) for the domain of Kepler’s second law. 

However, once again, this is not to be misunderstood that as long as dynamic features like 

changes in velocity are crucial for understanding a content, dynamic visualizations are always 

better than static visualizations, since also then boundary conditions still have to be taken into 

account. For instance, in the case of the study by Kühl et al. (2010), the superiority of dynamic 

over static visualizations to convey a deeper understanding of Kepler’s second law was only 

observable if text and (dynamic) visualizations were not redundant.  

Hence, and to emphasize this point, the results of the current studies are not to be 

misinterpreted in a way that dynamic visualizations are globally better than static visualizations 

(cf. Bétrancourt, 2005; Hegarty, 2004; Scheiter & Gerjets, 2010; Tversky et al., 2002). Rather, 

dynamic visualizations might be better suited than static visualizations under certain boundary 

conditions, for instance, if the content comprises crucial visuo-spatial changes and/or dynamic 

features that are depicted in the dynamic visualizations, and if the respective learning outcome 

measure asks for the understanding of these properties (cf. Bétrancourt & Tversky, 2000). 

However, if there is no clear reasoning for why dynamic visualizations should be beneficial, one 

                                                           

27
 It was decided not to pause the dynamic visualizations in the uncued condition, since some authors argue 

that pausing dynamic visualizations can already be considered as a form of cueing (cf. Schnotz & Lowe, 
2008) 
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consequently should not expect this to be the case! For instance, when considering classic 

multimedia material used by Mayer and his co-workers (e.g., Mayer et al., 2005), such as “How 

lightning works”, it is questionable if there are good arguments to expect dynamic visualizations 

to be beneficial. This is questionable, because on the one hand, the dynamic visualizations neither 

depict changes that are assumed to be hard to mentally animate (e.g., a cloud rising up in the 

sky), nor do they depict crucial dynamic features, such as changes in velocity. Moreover, besides 

hardly possessing an obvious benefit, the dynamic visualizations for this content may be even 

harmful, since they are transient, thereby possibly imposing unnecessary processing demands on 

a learner.  

Summing up, even though dynamic visualizations might possess enormous potential to 

particularly convey a domain with dynamic features (e.g., changes in velocity), still then boundary 

conditions have to be taken into account, such as the learning objective to be achieved by 

presenting dynamic visualizations to learners. 

 

7.5 Optimizing Learning From Visualizations 

 

To optimize learning from visualizations in general, and dynamic visualizations in particular, two 

design characteristics were implemented that aimed at reducing inter-representational split-

attention by using spoken text (Study 2), and at dealing with the visual complexity of (dynamic) 

visualizations by means of cueing (Study 3). However, since both design factors did not pronounce 

the superiority of dynamic over static visualizations differently, in the following the influence of 

these design factors on learning with the instructional material will be summarized for the two 

types of visualizations.  

As explicated in Chapter 4.1, according to the modality effect in multimedia learning, 

using spoken instead of written text should lead to better learning outcomes (cf. Ginns, 2005; Low 

& Sweller, 2005; Mayer, 2009; Sweller et al., 1998). More precisely, and as can be derived from 

the CTML (Mayer, 2001, 2005a, 2009), the modality effect should result in a better pictorial 

mental model (as measured by pictorial recall tasks), as well as in a better integrated mental 

model (as measured by transfer tasks), but not necessarily result in a better verbal mental model. 

With regard to the demands on working memory, and in line with the CLT (e.g., Sweller et al., 

1998), using spoken text should decrease ECL and increase GCL.  

As explicated in Chapter 4.2, and in line with the CTML (Mayer, 2001, 2005a, 2009), 

cueing visualizations in a way that the processes of selection, organization and integration are 

supported, should also lead to a better pictorial mental model, as well as in a better integrated 
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mental model, but not necessarily in a better verbal mental model. Concerning CLT (e.g., Sweller 

et al., 1998), cueing should thereby lead to a decrease in ECL and increase in GCL.  

The results of Study 2 as well as Study 3 both revealed no differences for verbal factual 

knowledge tasks, which are supposed to be an indicator for the verbal mental model. However, as 

expected, accompanying visualizations by spoken text (Study 2), led to better performances for 

pictorial recall tasks, which is in line with the few studies that also assessed pictorial tasks (e.g., 

Craig et al., 2002; Mayer & Moreno, 1998; Moreno & Mayer, 1999; Rummer et al., 2011; Schmidt-

Weigand et al., 2010; Schüler et al., 2011). Moreover, as predicted, accompanying visualizations 

by spoken text led to better performance for transfer tasks, which is in line with the results of the 

meta-analysis by Ginns (2005). With respect to the demands on working memory, other than 

expected, using spoken instead of written text neither decreased ECL nor increased GCL as 

measured by subjective cognitive load ratings. This problem of measuring cognitive load by 

subjective ratings will be discussed in more detail in section 7.7.1.  

Concerning cueing, as expected, cueing visualizations (Study 3) led to better performance 

for pictorial recall tasks, which is in line with the assumptions derived from the CTML as well as 

with the few studies that examined the influence of cueing on pictorial tasks (e.g., Beck, 1987; 

Boucheix & Guignard, 2005; Ozcelik et al., 2010; Van Meter et al., 2010). However, other than 

expected, there were no statistical significant differences between cued and uncued conditions 

for transfer tasks (Study 3). Even though this latter result is often found in learning with (dynamic) 

visualizations (cf. de Koning et al., 2009), it is nevertheless somewhat discouraging, because the 

cues in Study 3 were also designed to support learners in relating information from text and 

visualizations. This in turn was supposed to result in a better integrated mental model, and finally 

in better performance on transfer tasks. One possible explanation for the missing effect of cueing 

with respect to transfer tasks might be that whereas cueing basically helped in relating 

information from text and visualizations, it may not have supported learners to develop a more 

elaborated integrated mental model from which inferences concerning interrelations of dynamic 

features could be drawn. However, such inferences were required to successfully accomplish the 

transfer tasks in Study 3. Another possible explanation might be that the cueing methods that 

aimed at supporting learners to relate text and visualizations were not sufficient and should be 

further enhanced. For instance, it might be beneficial to temporarily add labels to the 

visualizations to make the relationship of text and visualizations more salient.28 With respect to 

the influence of cueing on cognitive load, contrary to the assumptions, cueing did not decrease 

ECL. However, cueing lead to a marginal increase in GCL. Irrespective of the latter result, doubts 

                                                           

28
 It should be noted though that this might on the other hand increase the visual complexity of the 

visualizations, which was the main reason to not implement labels in Study 3. 
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concerning the valid assessment of different types of cognitive load by means of subjective ratings 

have recently been raised so that the interpretation of these items should be treated cautiously 

(cf. de Jong, 2010). The problem of assessing cognitive load will be discussed in more detail in 

section 7.7.1. 

Overall, a focus in the current thesis was to optimize learning with visualizations in 

general, and dynamic visualizations in particular. Even though learning with visualizations could 

be optimized by means of using spoken text and, at least partly, by cueing, this improvement was 

not more pronounced for learning with dynamic visualizations. However, there may be more 

important variables – which were not explicitly investigated in the current thesis – that may 

optimize learning with (dynamic) visualizations, which will be discussed in the following. 

It is occasionally recommended to improve learning with dynamic visualizations through 

implementing interactivity (e.g., Hasler, Kersten, & Sweller, 2007; Schwan & Riempp, 2004; 

Tabbers & de Koeijer, 2010), particularly if the dynamic visualizations are transient. However, 

even for transient visualizations, the research on interactivity is not conclusive (cf. Boucheix, 

2008): While in some studies a positive effect of interactivity was found (e.g., Tabbers & de 

Koeijer, 2010; Wang et al., 2011), in other studies interactivity in learning with dynamic 

visualizations had no influence (e.g., Boucheix & Guignard, 2005; Boucheix & Schneider, 2009; 

Exp. 2; Kriz & Hegarty, 2007), or even a negative effect (Bétrancourt & Réalini, 2005). Particularly, 

for the chosen domain, namely the physical principles underlying fish locomotion, implementing 

interactivity might have been harmful. This is due to the fact that if interactivity was implemented 

in a way that learners would be able to rewind the visualizations (e.g., by means of a slider), this 

would likely result in a misconception: When playing the visualizations backwards, one would not 

only see a “wrong” undulatory movement of a fish, but more importantly, the concept of a 

reaction force would be depicted erroneous, because in this case, the movement of a body 

segment and the movement of the reaction force would point in the same direction instead of 

opposite directions! Hence, the only reasonable interactivity would be to implement a play, 

pause, and replay button (i.e., self-pacing). However, as abovementioned, since the dynamic 

visualizations were not transient, but were displaying the fish’s movement repeatedly, the need 

for self-pacing was considered to play a subordinate role. Nevertheless, it cannot be ruled out 

that self-pacing might have led to a different pattern of results in Study 2 and Study 3. For 

instance, the modality effect, which was observed in Study 2 (Study 2 was system-paced), might 

have not been observed under self-paced conditions, since self-pacing might diminish the 

modality effect (cf. Ginns, 2005; Tabbers, 2002). Also, the influence of cueing – which was at least 

found for pictorial tasks – might have been diminished if self-pacing had been applied, since 

learners could have taken all the time they needed to view the visualizations and extract the 
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information, so that, for instance, the attention-guiding function of cueing might have been less 

important. On the other hand, it should be noted that it probably would take more time to learn 

under self-paced than system-paced conditions. Hence, even though self-pacing may make cueing 

unnecessary, since it allows achieving the same effectiveness this would not mean that self-pacing 

would also be equally efficient compared to the abovementioned design characteristics. However, 

while these assumptions are plausible, they need to be investigated in further studies, thereby 

possibly also taking into account the modality of the text and the visualizations’ transience, since 

this may further influence the effect. 

Moreover, pacing might not only affect the modality effect and cueing, but it might also 

influence the relative effectiveness of learning with dynamic and static visualizations. Whereas in 

Study 2 and 3 dynamic visualizations were better suited for the domain at hand than static 

visualizations, this was not the case for Study 1. Several things changed between Study 1 as 

opposed to Study 2 and 3: the complexity of the domain in general, the design of the visualization 

and what they depicted, the redundancy between text and visualizations, the application of think-

aloud protocols, but also if the learning environment was self-paced (Study 1) or system-paced 

(Study 2 and 3). Even though it is not retraceable what exactly led to the different pattern of 

results, it cannot be completely ruled out that solely the change from self-pacing to system-pacing 

accounts for this finding (see also Höffler, 2007; Exp. 2 & 3). This might be the case because 

learners with static visualizations may have tried to compensate for the demands of mentally 

animating the changes when learning with this kind of visualizations. This notion gets further 

indirect support from the fact that in Study 1 particularly learners with weaker spatial abilities 

receiving static visualizations played the visualizations more often, thereby possibly trying to 

compensate the demands of mental animation. Hence, the kind of pacing may moderate the 

effectiveness in learning with dynamic and static visualizations in that benefits of dynamic over 

static visualizations become less pronounced once self-pacing is implemented. In that case, static 

visualizations may be as effective as dynamic visualizations, but less efficient, since learners with 

static visualizations might take longer time for learning. The relative effectiveness and efficiency 

of static and dynamic visualizations under conditions of self-pacing as opposed to system-pacing 

should be addressed in future research. 

A major goal of the current thesis was to optimize learning with multimedia instruction, at 

which the focus was set on improving the design of the multimedia material in general, and the 

design for learning with dynamic visualizations in particular. However, this is only one side of the 

coin. The other side of the coin may be to improve processing activities, that is, to encourage 

learners to more adequately and thoroughly process the content. Several methods have been 

suggested to do so, such as self-explanations (e.g., de Koning et al., 2011b; Gerjets, Scheiter, & 
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Catrambone, 2006; Renkl, 2002; for an overview see Chi, 2005), prompts (e.g., Berthold, Nückles, 

& Renkl, 2007; Glogger, Schwonke, Holzäpfel, Nückles, & Renkl, 2009), or the teaching of learning 

strategies (e.g., Kombartzky et al., 2010; Schlag & Plötzner, 2010; Selcuk, Sahin, & Acikgöz, 2011). 

By teaching learners how to apply learning strategies, a learner’s understanding can be improved, 

as recently shown by Kombartzky et al. (2010) as well as Schlag and Plötzner (2010). The 

effectiveness of such an approach may be accentuated differently for learning with dynamic and 

static visualizations. For instance, learning with dynamic visualizations might lead to an illusion of 

understanding as indicated by the results of Study 1 of this thesis, and by Lewalter (2003) – even 

though it did not lead to a shallower processing. Nevertheless, it might be the case that when 

learners are aware of such an illusion and are taught how to process dynamic visualizations in a 

way that they can devote their freed resources to a more thorough processing, they might benefit 

more from such a learning strategy than their counterparts learning with static visualizations. On 

the other hand, it can also be construed that when learners would be taught how to (or be 

prompted to) conduct spatial and temporal inferences, one may assume that such a strategy 

might be more beneficial for (novice) learners receiving static visualizations, since these learners 

are supposed to struggle in conducting such inferences in particular. Summing up, providing 

adequate learning strategies possesses enormous potential to improve a learner’s understanding. 

Whether and how such learning strategies play a moderating role in learning with static and 

dynamic visualizations, is assumed to depend on characteristics of the visualizations, for instance, 

what they depict, as well as on the properties of the learning strategies, such as which kind of 

cognitive processes they might stimulate. Research in this field is still at its beginning and it is 

exciting what further studies in this area will reveal.  

 

7.6 The Moderating Role of Learner Characteristics 

 

In the current thesis it was not only investigated how to optimize learning with dynamic and static 

visualizations, but also the influence of learner characteristics, specifically spatial abilities, in 

learning with these types of visualizations was examined. Concerning the learner characteristic 

spatial ability, according to the ability-as-compensator hypothesis (cf. Mayer & Sims, 1994), 

particularly learners with weaker spatial abilities should profit from learning with dynamic 

visualizations (cf. Höffler, 2010). This was assumed to hold true for Studies 1, 2, and 3. However, 

for all three studies, spatial abilities did not moderate learning with dynamic and static 

visualizations for any learning outcome measure, independently if the static visualizations were 

shown sequentially or simultaneously (Study 3). Only for Study 1, and in accordance with the 
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ability-as-compensator hypothesis, spatial abilities moderated the frequency of playing dynamic 

and static visualizations, respectively. In addition, for all three studies, a main effect of spatial 

abilities on learning outcomes could be observed, in that stronger spatial abilities were associated 

with higher learning outcomes, irrespective of the type of visualization. This main effect of spatial 

abilities is in line with the current status of research (cf. Höffler, 2010), and emphasizes the 

importance of assessing spatial abilities in learning with visualizations. 

It should be noted though that even there are good theoretical reasons, meta-analytic 

empirical evidence (Höffler, 2010), as well as evidence by a few studies (e.g., Boucheix & 

Schneider, 2009; Höffler, 2007) to expect that spatial abilities should moderate learning with 

dynamic and static visualizations, overall this effect is nevertheless rarely found in single studies 

(cf. Hegarty & Kriz, 2008). At this, the three studies of this thesis are in line with the majority of 

published studies concerning this topic, indicating that the moderating role of spatial abilities in 

learning with dynamic and static visualizations may be a fragile effect, only occurring under 

certain circumstances.  

A possible explanation for the lack of a moderating role of spatial abilities on learning with 

dynamic and static visualizations with regard to learning outcomes for the studies in the current 

thesis (even though it should be noted that in Study 1 spatial abilities moderated the frequency of 

playing the visualizations), might be traced back to the applied test to measure spatial abilities, 

namely the MRT (Vandenberg & Kuse, 1978). The MRT is supposed to mainly measure a person’s 

ability to mentally rotate objects, but not necessarily the ability to infer dynamic features and 

interrelations. However, the dynamic visualizations in the current thesis did not only depict visuo-

spatial changes, but also dynamic features. Hence, to compensate for these differences between 

dynamic and static visualizations, learners with static visualizations were not only required to 

mentally animate the spatial changes, but also to infer dynamic features with static visualizations 

to achieve a similar level as their counterparts receiving dynamic visualizations (cf. Schnotz & 

Lowe, 2008). Since the MRT might not match best with the task demands posed by learning with 

static visualizations, it hence might not have been apt to reveal a moderating influence for the 

dynamic and static visualizations used in these studies. Similarly, Höffler (2007; see also Stebner, 

2009) stressed the importance of an appropriate test to observe a moderating effect in learning 

with dynamic and static visualizations. For instance, Höffler (2007; Exp. 2) observed a moderating 

role of spatial abilities in learning with dynamic and static visualizations solely for a test that 

belonged to the factor visualization (VZ), but not for a test that belonged to the factor spatial 

relation (SR), and concluded that the test belonging to VZ matched best the demands of mental 

animation for his used instructional material. For the used instructional material of the current 

thesis, a well-suited test might not only measure the ability to reason about spatial changes, but 
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also the ability to reason about dynamic features. Hence, it may not be necessary to reject the 

“ability-as-compensator-hypotheses” per se; rather spatial abilities may simply not be the ability 

to best match the task demands imposed by learning with static and dynamic visualizations for 

this kind of instructional material. A further line of future research with regard to the influence of 

spatial abilities may pay closer attention to the fact that the dynamic information has to be 

perceived when learning with dynamic visualizations. Hence, one might additionally consider tests 

that aim at measuring this ability. According to D’Olivera (2004), such a test might be a dynamic 

spatial ability test, since “dynamic spatial abilities refers to the ability to deal with moving 

elements and relative motion” (p. 20; see also Hegarty & Waller, 2005). 

Another crucial learning prerequisite, which might have consequences on the 

effectiveness in learning with dynamic and static visualizations, and which was investigated in 

several prior studies, is a learner’s expertise (e.g., ChanLin, 1998, 2001; Kalyuga, 2008, Schnotz & 

Rasch, 2005; Yarden & Yarden, 2010; Zhu & Grabowski, 2006). In the experiments of the current 

thesis, basically novice learners were investigated, but not experts, who in this case would most 

likely be people with a background in Physics. This means that a moderating role of expertise, or 

prior knowledge respectively, was not explicitly investigated (cf. prior knowledge principle [or 

expertise reversal effect, respectively], Kalyuga, 2005). Nevertheless, as a learners’ expertise can 

be regarded as an important factor in learning with dynamic and static visualizations, a test for 

assessing the prerequisite knowledge of learners was applied in all three studies to control for this 

factor. 

Concerning a learner’s expertise, there are mostly two lines of reasoning with respect to 

how it influences learning with dynamic and static visualizations. One line of reasoning argues 

that a higher expertise is necessary to make sense of dynamic visualizations, as they would 

otherwise be overwhelming (e.g., Kalyuga, 2008; Schnotz & Rasch, 2005). Some studies support 

this view: Low prior knowledge students learned better with static than with dynamic 

visualizations, whereas there were no differences between the two types of visualizations for high 

prior knowledge students (e.g., ChanLin, 2001; Kalyuga, 2008). Importantly, for these studies 

there was no clear reasoning why dynamic visualizations should be beneficial. Rather, in these 

cases dynamic visualizations could even be regarded as harmful, since they did not depict crucial 

visuo-spatial changes or dynamic features, and, were moreover transient, thereby imposing 

unnecessarily processing demands onto learners. Accordingly, high prior knowledge may in these 

studies simply have served to compensate for the negative and unnecessary demands imposed by 

dynamic visualizations that low prior knowledge learners suffered from. 

The other line of reasoning corresponds to the ability-as-compensator hypothesis. 

Thereby, it is argued that learners with a high expertise might learn equally well with static 
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compared to dynamic visualizations, because they might be able to conduct valuable processing 

activities, such as inferring dynamic features, which in turn might be conducive to building an 

adequate mental model. Novice learners, on the other hand, are not supposed to be able conduct 

such processes (e.g., Boucheix & Guignard, 2005; Lowe, 1996), but nevertheless are able to 

perceive the dynamic features depicted in dynamic visualizations. Accordingly, one may assume 

that in this case the benefits of dynamic compared to static visualizations might become 

especially evident for novice learners. This pattern of results was found in a study by Yarden and 

Yarden (2010): Dynamic visualizations were more apt than static visualizations for learners with 

low prior knowledge, while there were no differences for learners with high prior knowledge. 

Note that the ability-as-compensator hypothesis with regard to a learner’s expertise might be 

reasonable if dynamic visualizations depict dynamic features, like for the multimedia instruction 

in the studies of this thesis. Accordingly, for the novice learners investigated in this thesis, 

dynamic visualizations were more apt than static visualizations (Study 2 and 3). Hence, one may 

wonder whether dynamic visualizations would still be better suited than static visualizations if 

learners possessed high prerequisite knowledge with regard to their ability to easily infer dynamic 

features, so that these processes would not be regarded as resource-demanding anymore. 

Moreover, one may speculate whether for these learners the need to actively process static 

visualizations (e.g., by conducting spatial and temporal inferences, instead of perceiving all the 

relevant processes in the dynamic visualizations), would even be more beneficial. Similar effects 

have been observed in text comprehension research, where high prior knowledge learners 

benefitted more strongly from incoherent rather than coherent instructional text (McNamara, 

Kintsch, Songer, & Kintsch, 1996). The underlying explanation for these effects is that high prior 

knowledge learners are better able to conduct inferences to overcome the information gaps in 

the text and that these inferences yield a deeper comprehension than what could be achieved 

from a more coherent text. Similarly, high prior knowledge learners may profit more strongly 

from (incoherent) static visualizations, which promote their inference activities. Among yielding 

deeper comprehension of the content, these inferences may also pay off in the long run, for 

instance, in delayed testing by yielding a more durable mental representation of the content (cf. 

Palmiter & Elkerton, 1993). Hence, for future research, one might test if this observed superiority 

of dynamic visualizations to depict dynamic features might also account for learners possessing a 

high expertise. Also, future research might consider further learner characteristics. For instance, 

even though spatial abilities as well as a learner’s expertise are the two predominantly examined 

learner characteristics in learning with dynamic and static visualizations, recently Höffler et al. 

(2010) examined the influence of cognitive style (cf. Massa & Mayer, 2006; Mayer & Massa, 

2003). Höffler et al. (2010) found a moderating effect in that high developed visualizers learning 
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with static visualizations outperformed their counterparts learning with dynamic visualizations, 

whereas there were no differences between the types of visualizations for low developed 

visualizers. Summing up, to be able to identify under which conditions which kind of learner 

would benefit most from which type of visualizations, future research should also consider 

different learner characteristics in learning with dynamic and static visualizations (cf. Hegarty, 

2004; Tversky et al., 2002). 

 

7.7 Limitations of the Current Studies 

 

In the following, limitations of the current studies will be discussed, particularly the assessment of 

cognitive load and the changes in the instructional material between the three studies.  

 

7.7.1 Cognitive Load Measurement 

 

In the current thesis, in all three studies, based on CLT, the demands on working memory 

associated in learning with this kind of multimedia instruction were examined by means of 

subjective cognitive load ratings (e.g., Sweller et al., 1998). It should be noted though that there 

are problems associated with the measurement of cognitive load. Several suggestions have been 

made how to measure cognitive load and its components, thereby taking into account objective 

(cf. Brünken, Seufert, & Paas, 2010; Paas, Tuovinen, Tabbers, & van Gerven, 2003) as well as 

subjective measurements, the latter being predominant ones when measuring cognitive load in 

educational research (cf. Paas et al., 2003; van Gog & Paas, 2008). The attractiveness of subjective 

measures might be traced back to the fact that they are relatively easy to implement and, 

furthermore, do not interfere with the learning process itself. Probably the most often used 

measurement for measuring cognitive load is the mental-effort item developed by Paas (1992). It 

should be noted that instead of measuring cognitive load during learning, the mental effort item 

was originally developed to measure the effort for solving problems or knowledge tests 

respectively (cf. van Gog & Paas, 2008)29. However, when applied for measuring cognitive load, 

one critical drawback of the mental-effort item is that it does not distinguish between the three 

load types explicitly, which makes the interpretation of this item problematic (cf. de Jong, 2010). 

Therefore, it is desirable to have subjective rating measures available that can distinguish 

                                                           

29
 In this context, it is also often used to calculate the instructional efficiency of a given multimedia 

instruction. 



General Discussion 152 

between, and map consistently to, the different load types (cf. Brünken et al., 2010; de Jong, 

2010; Gerjets, Scheiter, & Cierniak, 2009). At this, several attempts have been made to formulate 

items that may be apt to differentiate between the different load types (e.g., Cierniak et al., 2009; 

Corbalan, Kester, & van Merriënboer, 2008; Scheiter et al., 2006; Gerjets et al., 2009), with partly 

inconclusive results (cf. de Jong, 2010). Hence, also in the current thesis, it was tried to use 

subjective measures that are able to distinguish between the different load types.  

In Study 1, two items were assessed to measure ECL (“How difficult was it for you to 

understand the contents?”) and GCL (“How much effort did you invest in order to understand the 

content?”), respectively. However, since particularly the item supposed to measure GCL seemed 

to be insufficient, for Study 2 and Study 3 two items were used from a study by Cierniak et al. 

(2009), which originally could be mapped successfully to ECL (“How difficult was it for you to learn 

with the given material?”) and GCL (“How much did you concentrate during learning?”), 

respectively. The results for these two items, which were assessed in Study 2 and 3 of this thesis, 

however, were only partly in line with what would be expected from CLT. While ratings on the 

ECL-item were consistently lower in the dynamic than in the static visualization conditions, 

thereby reflecting the results for learning outcomes in a theory-consistent way, the pattern of 

results concerning the modality effect and cueing was not in line with CLT. The GCL-item was 

basically in line with CLT for cueing, but not in line with the CLT with regard to the modality effect, 

making it arguable if this item indeed measured GCL. There were also no differences for the GCL-

item with respect to type of visualization. However, there are at least two explanations for this 

latter result: First, it may be that even if dynamic visualizations reduce ECL, they do not 

necessarily lead to an increase in GCL. Second, it might be that dynamic visualizations also lead to 

an increase in GCL, but that no effect is observable for the GCL-item due to problems in 

measuring cognitive load (cf. de Jong, 2010). 

It should be noted though that measuring different types of cognitive load by means of 

subjective ratings may be fragile. At this, occasionally doubts have been raised, if learners are 

generally able to distinguish between the load types by means of subjective evaluation and/or if 

these subjective ratings, which are assessed after a learning phase really reflect the processing 

demands during learning (e.g., de Jong, 2010; Schnotz & Kürschner, 2007). Therefore, the items 

should be treated with caution, and should not be assessed uncritically. It should also be noted 

that even though several more or less successful attempts have been made so far, no measure 

that might be mapped to different load types won ultimate recognition yet (cf. de Jong, 2010). 

Thus, although the assessed items in the study might not perfectly match ECL and GCL, 

respectively, they nevertheless can be considered as one of the most suited subjective ratings in 
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CLT research so far. On the other hand, this also indicates that research on measuring 

components of cognitive load is in need of improvement (cf. de Jong, 2010).  

 

7.7.2 Comparability Across Studies 

 

In the current thesis, learning with dynamic and static visualizations was examined across three 

consecutive studies. Thereby, conditions that were used in one experiment were also used in the 

following experiment. Nevertheless, it must be admitted that these studies are not directly 

comparable, because the instructional material changed from study to study in other potentially 

important variables. This incomparability was accepted for the superordinate goal of optimizing 

the instructional material that was newly developed for the current thesis. In Study 1, the 

instructional material left room for improvement in several ways: For instance, to have a fair 

comparison between the text-only and the text and visualization conditions, the text was 

extensive, thereby leading to a high redundancy between text and visualizations. This 

redundancy, however, might be even harmful for learning from multimedia (Schmidt-Weigand & 

Scheiter, 2011; Sweller, 2005b). Moreover, the potential of the dynamic visualizations to depict 

dynamic features and their interrelation to other variables was not completely exploited for the 

multimedia instruction in Study 1, which might account for the instructional equality of dynamic 

and static visualizations in this study. Hence, to further improve the multimedia instruction, for 

Study 2, several changes were realized: For instance, to counteract the abovementioned 

drawbacks the redundancy of text and visualizations was reduced, and the potential of dynamic 

visualizations to depict dynamic features and interrelations was accentuated, thereby possibly 

mostly enhancing learning with dynamic visualizations. Moreover, other changes occurred 

between Study 1 and Study 2, such as the reduction of the complexity of the domain itself, 

changes in the knowledge test, the pacing of the instructional material or the applying of think-

aloud protocols. Due to these changes, it cannot be decided what caused dynamic visualizations 

to be superior to static visualizations in Study 2, but not in Study 130. Similarly, also Study 2 and 3 

were not directly comparable. First, some minor changes were realized with regard to the domain 

itself, as well as to the related knowledge test. Moreover, and probably more importantly, also 

the synchronization between spoken text and particularly static-sequential visualizations was 

improved from Study 2 to Study 3. Thereby, particularly the static-sequential visualization 

                                                           

30
 Note that it would have needed to use a 2x2x2x2x2x2-design with 64 conditions to unravel this 

discrepancy, with redundancy, design of visualizations, complexity of domain, changes in the knowledge 
test, pacing, and applying of think-aloud protocols as independent variables. This was considered as too 
extensive for the scope of this thesis, especially when keeping in mind that the superordinate goal was to 
improve the instructional material. 
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condition was favored as compared to the dynamic visualization condition, which in turn may 

have led to a drop in the effect size for the superiority of dynamic over static visualizations. To 

sum up, even though in general it might be preferable to conduct studies that are directly 

comparable, in the current thesis an incomparability was taken into account for the superordinate 

goal of optimizing learning from dynamic and static visualizations.  

 

7.8 Conclusion 

 

All in all, the current thesis aimed at finding design factors that would optimize learning with text 

and visualizations in general, and dynamic visualizations in particular as compared to static 

visualizations. Study 1 proved that adding visualizations to text improved comprehension. Study 2 

showed that reducing inter-representational split-attention by using spoken text was beneficial 

for learning with dynamic as well as with static visualizations. Study 3 gave at least partly support 

for the assumption that cueing would improve learning with dynamic as well as static 

visualizations. Moreover, as the results for Study 2 and Study 3 indicated, dynamic as compared 

to static visualizations supported learners to gain a deeper understanding of the used domain, 

thereby stressing the importance of using different knowledge tasks, such as transfer tasks. Even 

though spatial abilities were an important learner characteristic, the superiority of dynamic 

visualizations was not more pronounced for learners with weaker spatial abilities.  

As abovementioned, future studies should examine if the observed superiority of dynamic 

over static visualizations can be generalized to other domains that possess similar properties as 

the domain of the physical principles underlying fish locomotion (e.g., Kepler’s second law). 

Moreover, it would be interesting to know whether the results would also hold true if interactivity 

or self-pacing, respectively, would be implemented, and whether this design factor would even 

further improve the multimedia instruction. Hereby, it is argued that such predictions seem to be 

solely reasonable when task characteristics of the used multimedia instruction as well as learner 

characteristics are taken into account. Furthermore, for ongoing studies, one might not only focus 

on design characteristics of the multimedia instruction, but also on how to engage learners in 

processing the instructional material more thoroughly. These issues might help us in achieving a 

better understanding on when and how to support which kind of learners, so that these learners 

can benefit most when dealing with a given subject.  
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Zusammenfassung 
 

In der vorliegenden Arbeit wurde in einer Reihe von 3 Experimenten untersucht in wie fern das 

Verständnis naturwissenschaftlicher Zusammenhänge allgemein durch den Einsatz von 

multimedialem Lernmaterial, und im Besonderen durch den Einsatz von dynamischen 

Visualisierungen (z.B. Videos oder Animationen), optimiert werden kann. Hierfür wurde 

exemplarisch die Lerndomäne der physikalischen Prinzipien, die einer undulatorischen 

Fischbewegung zu Grunde liegen, herausgegriffen. Diese Domäne spiegelt Probleme wider, mit 

denen Lernende in den Naturwissenschaften häufig konfrontiert sind, nämlich zu Verstehen wie 

eine Veränderung in einer Variablen zu Veränderungen in einer anderen Variablen führen kann 

(z.B. wie sich die Geschwindigkeitsänderung der Schwanzflosse eines Fisches auf andere 

Variablen, wie die entstehenden Reaktionskräfte oder die Schwimmgeschwindigkeit auswirken 

kann).  

In Studie 1 wurde untersucht, ob das Hinzufügen von Visualisierungen zu Text generell zu 

einem besseren Verständnis für die ausgewählte Domäne führen würde. Darüber hinaus wurde 

getestet, ob – wie aus den Eigenschaften dieser Domäne abgeleitet – dynamische 

Visualisierungen zu einem tieferen Verständnis führen als statische Visualisierungen. Hierbei 

wurde zudem überprüft, ob sich mögliche Vorteile dynamischer Visualisierungen gegenüber 

statischen Visualisierungen im Besonderen für Lernende mit einem geringen räumlichen 

Vorstellungsvermögen zeigen. Ferner wurden die kognitiven Prozesse beim Lernen mit Text, 

dynamischen sowie statischen Visualisierungen mittels Laut-Denken-Protokollen untersucht (vgl. 

Ericsson & Simon, 1993).  

Hierfür wurde in Studie 1 ein einfaktorielles Design mit drei Bedingungen (nur Text, Text + 

dynamische Visualisierungen, Text + statische Visualisierungen) realisiert. Als abhängige Variablen 

fungierten die erhobenen und kategorisierten Laut-Denken-Protokolle, die Abspielhäufigkeit der 

Visualisierungen, der Lernerfolg sowie die subjektiv eingeschätzte kognitive Belastung. Es zeigte 

sich, im Einklang mit der kognitiven Theorie multimedialen Lernens (z.B. Mayer, 2009), dass das 

Hinzufügen von Visualisierungen zu Text sowohl zu einer besseren Leistung für bildhafte 

Aufgaben, als auch zu einem tieferen Verständnis (gemessen durch Transferaufgaben) führte. 

Zudem führte dies zu einer geringer eingeschätzten kognitiven Belastung. Die Auswertung der 

Laut-Denken-Protokolle zeigte, dass Visualisierungen zu mehr Inferenzen anregten und zu 

weniger Äußerungen über Verständnisschwierigkeiten führten. Ferner produzierten Lernende mit 

dynamischen Visualisierungen weniger fehlerhafte Äußerungen und gaben häufiger an die Inhalte 

verstanden zu haben. Da letzteres jedoch nicht der Fall war, kann dies als eine 

„Verstehensillusion“ angesehen werden (vgl. Lewalter, 2003). Entgegen der Annahmen gab es 
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jedoch keine Unterschiede zwischen dynamischen und statischen Visualisierungen hinsichtlich des 

Lernerfolgs und der eingeschätzten kognitiven Belastung.  

Ein Grund für die instruktionale Gleichwertigkeit von statischen und dynamischen 

Visualisierungen in Studie 1 könnte unter anderem daran gelegen haben, dass sich das Potential 

dynamischer Visualisierungen nicht vollständig entfalten konnte, da Probleme, die mit der 

vergleichsweisen hohen visuellen Komplexität dynamischer Visualisierungen einhergehen, in 

Studie 1 gegenwärtig waren. Daher wurde in Studie 2 und 3 untersucht, ob durch die Reduktion 

der Probleme, die mit einer hohen visuellen Komplexität verbunden sind, das Lernen mit dem 

benutzten multimedialem Instruktionsmaterial im Allgemeinen, und das Lernen mit dynamischen 

Visualisierungen im Besonderen, optimiert werden könnte.  

In Studie 1 wurde aufgrund der Erhebung von Laut-Denken-Protokollen geschriebener 

Text dargeboten. Wegen der angenommenen visuellen Komplexität von dynamischen 

Visualisierungen ist es jedoch möglich, dass sich das Potential dynamischer Visualisierungen nicht 

entfalten kann, wenn Lernende ihre Aufmerksamkeit zwischen Text und Visualisierungen 

wechseln müssen. Diese Aufmerksamkeitsteilung zwischen geschriebenem Text und 

Visualisierung kann mittels gesprochenen Texts beseitigt werden. Gemäß dem Modalitätseffekt 

(z.B. Sweller et al., 1998) kann allgemein das Lernen mit Multimedia durch Verwendung von 

gesprochenem statt geschriebenem Text verbessert werden. Der Modalitätseffekt wurde in 

Studie 2 untersucht. Darüber hinaus wurde untersucht, ob der Vorteil dynamischer 

Visualisierungen gegenüber statischen Visualisierungen stärker zum Vorschein kommt, wenn 

gesprochener statt geschriebener Text verwendet wird. Diese Annahme lag darin begründet, dass 

die Verarbeitung dynamischer Visualisierungen, die aufgrund ihrer visuellen Komplexität viel 

visuelle Aufmerksamkeit benötigen, durch geschriebenen Text beeinträchtigt wird, so dass ihr 

Potential durch den Lernenden nicht voll ausgeschöpft werden kann. Ferner wurde angenommen, 

dass obwohl in Studie 1 keine Unterschiede zwischen dynamischen und statischen 

Visualisierungen beobachtbar waren, in Studie 2 dynamische Visualisierungen prinzipiell besser 

wären als statische Visualisierungen um ein tieferes Verständnis der Inhaltsdomäne - gemessen 

durch Transferaufgaben - zu erlangen (cf. Bétrancourt & Tversky, 2000). Diese Annahme lag darin 

begründet, da verschiedene Änderungen am Lernmaterial zwischen Studie 1 und 2 vorgenommen 

wurden, die im Wesentlichen darauf abzielten das Potential dynamischer Visualisierungen besser 

nutzbar zu machen. Beispielsweise wurde unter anderem das Potential dynamischer 

Visualisierungen Veränderungen in der Geschwindigkeit darzustellen, und den Einfluss den dies 

wiederum auf andere Variablen hat, in der ersten Studie nicht ausgereizt. Dies, und noch weitere 

Veränderungen am Lernmaterial, wurde jedoch für Studie 2 realisiert. Es wurde zudem erwartet, 

dass das Lernen mit dynamischen Visualisierungen die kognitive Belastung beim Lernenden 
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reduziert. Schließlich wurde getestet, ob der Vorteil dynamischer Visualisierungen stärker für 

Lernende mit geringerem räumlichem Vorstellungsvermögen ausgeprägt sein würde.  

Diese Forschungsfragen wurden mittels eines 2x2-Designs mit Visualisierungsart 

(dynamisch vs. statisch) und Textmodalität (geschrieben vs. gesprochen) untersucht. Die 

Ergebnisse zeigten, dass, im Einklang mit dem Modalitätseffekt, gesprochener Text zu einer 

besseren Leistung speziell für bildhafte Aufgaben und Transferaufgaben führte. Zudem führte das 

Lernen mit dynamischen Visualisierungen zu einer besseren Leistung bei Transferaufgaben als das 

Lernen mit statischen Visualisierungen. Im Einklang mit diesem Ergebnis schätzten Lernende die 

kognitive Belastung beim Lernen mit dynamischen Visualisierungen als geringer ein. Allerdings 

war, entgegen der ursprünglichen Annahme, der Vorteil von dynamischen gegenüber statischen 

Visualisierungen nicht stärker für gesprochenen im Vergleich zu geschriebenem Text ausgeprägt. 

Auch moderierte das räumliche Vorstellungsvermögen nicht das Lernen mit dynamischen und 

statischen Visualisierungen. Auch wenn dynamische Visualisierungen nun zu einem tieferen 

Verständnis führten als statische Visualisierungen, so blieb ein Nachteil dynamischer 

Visualisierungen bestehen, nämlich ihre inhärente visuelle Komplexität.  

Um das Lernen allgemein zu verbessern und aber auch speziell der visuellen Komplexität 

entgegen zu wirken, wird, speziell in letzter Zeit, vorgeschlagen Cueing-Methoden zu verwenden 

(z.B. de Koning et al., 2009). Daher wurde in Studie 3 untersucht, ob Cueing zum einen das Lernen 

mit den gegebenen Lernmaterialien verbessern könnte. Zudem wurde angenommen, dass die 

Überlegenheit von dynamischen gegenüber statischen Visualisierungen stärker unter Cueing-

Bedingungen als unter Bedingungen ohne Cueing zum Vorschein kommen würde. Darüber hinaus 

wurde, um zu gewährleisten, dass der in Studie 2 gefundene Vorteil dynamischer gegenüber 

statischen Visualisierungen nicht nur auf eine spezielle Form statischer Visualisierungen, nämlich 

statisch-sequentieller Visualisierungen zurückzuführen ist, zusätzlich noch statisch-simultane 

Visualisierungen implementiert. Zudem wurde wieder getestet, ob der Vorteil dynamischer 

Visualisierungen stärker für Lernende mit geringerem räumlichem Vorstellungsvermögen 

ausgeprägt sein würde.  

Diese Annahmen wurden mittels eines 2x3-Designs mit Cueing (ja/nein) und 

Visualisierungsart (dynamisch, statisch-sequentiell, statisch-simultan) untersucht. Die Ergebnisse 

zeigten, dass Lernende der Cueing-Bedingungen bessere Leistungen in Bilderaufgaben erzielten 

als Lernende aus den nicht gecueten Bedingungen. Entgegen der Erwartungen zeigte sich dieser 

Effekt jedoch nicht für Transferaufgaben. Das Lernen mit dynamischen Visualisierungen führte zu 

besseren Leistungen in Transferaufgaben als das Lernen mit statischen Visualisierungen, wobei 

sich keine Unterschiede für die beiden Präsentationsformate statischer Visualisierungen ergaben. 

Zudem schätzten Lernende der dynamischen Visualisierungsbedingungen die kognitive Belastung 
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als geringer ein als Lernende der statischen Visualisierungsbedingungen. Diese Ergebnisse von 

Studie 3 bezüglich des Lernens mit dynamischen und statischen Visualisierungen spiegeln dabei 

die Ergebnisse von Studie 2 wider. Entgegen der ursprünglichen Annahme war die Überlegenheit 

dynamischer im Vergleich zu statischen Visualisierungen nicht stärker ausgeprägt, wenn die 

Visualisierungen gecuet waren. Auch wurde das Lernen mit dynamischen und statischen 

Visualisierungen nicht durch das räumliche Vorstellungsvermögen moderiert. 

Knapp zusammengefasst lässt sich festhalten, dass erstens, für die ausgewählte Domäne 

das Hinzufügen von Visualisierungen zu Text für das Verständnis wesentlich ist. Zweitens, 

scheinen speziell dynamische Visualisierungen besser geeignet als statische Visualisierungen um 

zu einem tieferen Verständnis der Domäne zu gelangen – zumindest wenn Bedingungen gegeben 

sind unter denen sich das Potential dynamischer Visualisierungen entfalten kann. Hierbei sollte 

beispielsweise gewährleistet sein, dass das Potential dynamischer Visualisierungen um 

dynamische Eigenschaften darzustellen ausgereizt wird. Auch empfiehlt es sich Bedingungen zu 

verwenden unter denen (dynamische) Visualisierungen gut verarbeitet werden können, wie 

beispielsweise durch die Verwendung gesprochenen Textes oder von Cueing-Methoden.  
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Appendices 
 

 

Appendix A: Chapter 3, Study 1: Items and factor loadings of the attitudes towards biology and 

physics questionnaire 

 

Appendix B:  Chapter 5, Study 2: Items and factor loadings of the attitudes towards biology and 

physics questionnaire 
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Appendix A 

Items and Loadings of the Attitudes Towards Biology and Physics Questionnaire on the Assumed 

Two Factors after Varimax Rotation, Listed as a Function of Factors and Size of Loadings  

 Item Factor 1 

(Biology) 

Factor 2 

(Physics) 

1 Ich habe definitiv eine positive Einstellung zur Biologie; sie ist 

angenehm. 

.93 -.16 

2 Ich mag Biologie wirklich. .91 -.13 

3 Ich interessiere mich sehr für Biologie. .88 -.14 

4 Bei Biologie fühle ich mich sicher und es regt mich zugleich 

an. 

.80 -.16 

5 Ich mag Biologie nicht, und es ängstigt mich es haben zu 

müssen. 

.76 .03 

6 Es macht mich nervös, auch nur daran zu denken, ein 

Experiment in der Biologie durchzuführen. 

.66 .29 

7 Bei Biologie fühle ich mich unwohl, ruhelos, gereizt und 

ungeduldig. 

.61 -.03 

8 Ich fühle mich wohl in Physik und mag sie sehr gerne. -.05 .92 

9 Im Allgemeinen fühle ich mich bezüglich Physik wohl. -.05 .89 

10 Ich gehe an Physik mit einem Gefühl des Zögerns heran. .08 .87 

11 Wenn ich Physik höre, habe ich ein Gefühl der Abneigung. -.12 .86 

12 Physik ist faszinierend und macht Spaß. -.16 .84 

13 Mir hat es in der Schule immer Spaß gemacht Physik zu 

haben. 

-.10 .84 

14 Im Fach Physik war/bin ich immer unter großer Anspannung. .03 .78 

Note: Negatively formulated items (items 5, 6, 7, 10, 11, and 14) were recoded 
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Appendix B 

 

Items and Loadings of the Attitudes Towards Biology and Physics Questionnaire on the Assumed 

Two Factors after Varimax Rotation, Listed as a Function of Factors and Size of Loadings 

 Item Factor 1 

(Biology) 

Factor 2 

(Physics) 

1 Ich mag Biologie wirklich. .92 -.05 

2 Ich habe definitiv eine positive Einstellung zur Biologie; sie ist 

angenehm. 

.92 .06 

3 Ich interessiere mich sehr für Biologie. .88 -.02 

4 Es macht mich nervös, auch nur daran zu denken, ein 

Experiment in der Biologie durchzuführen. 

.73 .08 

5 Bei Biologie fühle ich mich unwohl, ruhelos, gereizt und 

ungeduldig. 

.73 .02 

6 Ich fühle mich wohl in Physik und mag sie sehr gerne. .01 .90 

7 Wenn ich Physik höre, habe ich ein Gefühl der Abneigung. -.04 .90 

8 Physik ist faszinierend und macht Spaß. .07 .88 

9 Im Allgemeinen fühle ich mich bezüglich Physik wohl. .14 .84 

10 Ich gehe an Physik mit einem Gefühl des Zögerns heran. -.06 .77 

Note: Negatively formulated items (items 4, 5, 7, 10) were recoded. 
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