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Zusammenfassung

In dieser Arbeit wird ein Ansatz zur Erstellung von Bestrahlungspléanen in
der Krebstherapie préasentiert, welcher in neuartiger Weise den Fehlerquellen,
die wahrend einer Strahlentherapie auftreten kénnen, Rechnung tragt. Aus-
gehend von einer probabilistischen Interpretation des Therapieablaufs, wird
jeweils eine Methode zur Dosisoptimierung, Evaluierung und gezielten Indi-
vidualisierung von Bestrahlungsplanen vorgestellt. Mafigebliche Motivation
hierfiir ist die, trotz fortschreitender Qualitat der Bildgebung des Patien-
ten wahrend der Behandlung, immer noch unzureichende Kompensation von
Lagerungsfehlern, Organbewegung und physiologischer Plastizitat der Pa-
tienten sowie anderen statistischen Storungen. Mangelnde Berticksichtigung
dieser Einfliisse fiihrt zu einer signifikanten Abnahme der Planqualitdat und
damit unter Umstanden zur Zunahme der Komplikationen bei verringerter
Tumorkontrolle.

Im Zentrum steht ein vollig neuartiger Ansatz zur Berticksichtigung von
Unsicherheiten wahrend der Dosisplanung. Es ist iiblich, das Zielvolumen
durch einen Saum zu vergroflern, um zu gewahrleisten, dass auch unter geo-
metrischen Abweichungen das gewiinschte Ziel die vorgesehene Dosis erhélt.
Der hier vorgestellte Optimierungsansatz umgeht derlei Mainahmen, indem
den Auswirkungen unsicherer Einfliisse explizit Rechnung getragen wird.
Um die Qualitat einer Dosisverteilung hinsichtlich ihrer Wirksamkeit in ver-
schiedenen Organen zu erfassen, ist es notig, Qualitdtsmetriken zu definieren.
Die Giite einer Dosisverteilung wird dadurch von n Skalaren beschrieben.
Die Schliisselidee dieser Arbeit ist somit, samtliche Eingangsunsicherheiten
im Planungsprozess quantitativ bis in die Qualitatsmetriken zu propagieren.
Das bedeutet, dass die Bewertung von Bestrahlungsplanen nicht mehr an-
hand von n Skalaren vorgenommen wird, sondern mittels n statistischer
Verteilungen. Diese Verteilungen spiegeln wider, mit welchen Unsicherheiten
das Ergebnis der Behandlung aufgrund von Eingangsunsicherheiten wahrend
der Planung und Behandlung behaftet ist.

Der in dieser Arbeit beschriebene Optimierungsansatz riickt folgerichtig die
oben beschriebenen Verteilungen an Stelle der bisher optimierten skalaren
Nominalwerte der Metriken in den Mittelpunkt der Betrachtung. Dadurch
werden alle moglichen Szenarien zusammen mit deren jeweiligen Wahrschein-
lichkeiten mit in die Optimierung einbezogen. Im Zuge der Umsetzung dieser



neuen Idee wurde als erstes das klassische Optimierungsproblem der Be-
strahlungsplanung neu formuliert. Die Neuformulierung basiert auf Mittel-
wert und Varianz der Qualitatsmetriken des Planes und bezieht ihre Recht-
fertigung aus der Tschebyschew-Ungleichung. Der konzeptionell einfachste
Ansatz zur Errechnung von Mittelwert und Varianz komplexer Comput-
ermodelle wie des Patientenmodells ist die klassische Monte Carlo Meth-
ode. Allerdings muss dafiir das Patientenmodell sehr haufig neu evaluiert
werden. Fiir eine Reduzierung der Anzahl der Neuberechnungen konnte
jedoch ausgenutzt werden, dass kleinen Anderungen der unsicherheitsbe-
hafteten Parameter nur leichte Fluktuationen der Qualitatsmetriken folgen,
d.h. der Ausgang der Behandlung hangt stetig von den unsicheren geo-
metrischen Parametern ab. Durch diesen funktionalen Zusammenhang wird
es moglich, das Patientenmodell durch ein Regressionsmodell auszutauschen.
Dazu wurden GauB-Prozesse, eine Methode zur nichtparametrischen Regres-
sion, verwendet, die mit Hilfe von wenigen Evaluierungen des Patientenmod-
ells angelernt werden. Nach der Anlernphase nimmt der Gau-Prozess die
Stelle des Patientenmodells in den folgenden Berechnungen ein. Auf diesem
Wege konnen samtliche zur Optimierung relevanten Groflen sehr effizient
und haufig berechnet werden, was dem iterativen Optimierungsalgorithmus
entgegen kommt. Die dadurch erreichte Beschleunigung des Optimierungsal-
gorithmus ermoglicht dessen Anwendung unter realen Bedingungen. Um
die klinische Tauglichkeit des Algorithmus zu demonstrieren, wurde dieser
in ein Bestrahlungsplanungssystem implementiert und an Beispielpatienten
vorgefiihrt.

Zur Evaluierung optimierter Bestrahlungsplane wurden die klinisch etab-
lierten Dosis-Volumen-Histogramme (DVHs) unter Einbeziehung der zusétz-
lich durch probabilistische Patientenmodelle bereitgestellten Informationen
erweitert. Durch die Verwendung von Gaufl-Prozessen kann die DVH-Unsi-
cherheit unter verschiedenen Bedingungen auf aktueller Computerhardware
in Echtzeit abgeschatzt werden. Der Planer erhalt auf diese Weise wertvolle
Hinweise beziiglich der Auswirkungen verschiedener Fehlerquellen als auch
einen ,,Uberblick” iiber die Effektivitit potentieller Gegenmafnahmen. Um
die Prazision der Vorhersagen auf Gaufl-Prozessen zu verbessern wurde die
Bayesian Monte Carlo Methode (BMC) maBgeblich erweitert mit dem Ziel,
neben Mittelwert und Varianz auch die statistische Schiefe zu berechnen.
Der letzte Teil dieser Arbeit befasst sich mit der Verbesserung von Bestrah-
lungsplanen, die gegebenenfalls dann notwendig wird, wenn der vorliegende
Plan noch nicht den klinischen Anspriichen gentigt. Oftmals, beispielsweise
durch zu streng verschriebene Schranken fiir die Dosis im Normalgewebe,
kommt es im Zielvolumen zu punktuellen Unterdosierungen. In der Praxis ist
somit von erheblicher Bedeutung, das Zusammenspiel aller Verschreibungen



zu durchleuchten, um einen bestehenden Plan in moglichst wenigen Schritten
den Vorgaben anzupassen. Mit anderen Worten: Der vorgestellte Ansatz hilft
dem Planer, lokale Konflikte binnen kiirzester Zeit zu losen.

Es konnte gezeigt werden, dass die statistische Behandlung unvermeidlicher
Storgroflen in der Strahlentherapie mehrere Vorteile birgt. Zum einen er-
moglicht der gezeigte Algorithmus, Bestrahlungsplane zu erzeugen, die indi-
viduell auf den Patienten und dessen Muster geometrischer Unsicherheiten
zugeschnitten sind. Dies war bislang nicht der moglich, da die momen-
tan verwendeten Sicherheitssdume die Unsicherheiten nur summarisch und
fiir das Zielvolumen behandeln. Zum anderen bietet die Evaluierung von
Bestrahlungspléanen unter expliziter Beriicksichtigung statischer Einfliisse dem
Planer wertvolle Anhaltspunkte fiir das zu erwartende Ergebnis einer Be-
handlung.

Eines der grofiten Hindernisse fiir eine weitere Steigerung der Effizienz der
Strahlentherapie stellt die Behandlung geometrischer Unsicherheiten dar,
die, sofern sie nicht eliminiert werden konnen, durch die Bestrahlung eines
deutlich vergrofierten Volumens kompensiert werden. Diese ineffiziente und
wenig schonende Vorgehensweise konnte durch die hier vorgestellte Behand-
lung des Optimierungsproblems der Strahlentherapie als statistisches Prob-
lem abgelost werden. Durch die Verwendung von Gauf-Prozessen als Substi-
tute des Originalmodells konnte ein Algorithmus geschaffen werden, welcher
in klinisch akzeptablen Zeiten im statistischen Sinne fiir alle Organe robuste
Dosisverteilungen liefert.
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Chapter 1

Introduction

Radiotherapy is the application of ionizing radiation to cure malignant dis-
ease or slow down its progress. The principal goal is to achieve local tumor
control to suppress further growth and spread of metastases, while, at the
same time, immediate and long term side effects to normal tissue should be
minimized. This trade-off between normal tissue sparing and tumor control
is the fundamental challenge of radiotherapy and continues to drive develop-
ment in the field.

In the planning stage, prior to treatment, images from various modalities,
e.g. CT, MRI and PET, are used to create a virtual model of the patient.
Based on this model, the dose to any organ can be precisely predicted. From
a medical viewpoint, the idealized dose distribution tightly conforms to the
delineated target volume. The main task of treatment planning is to bridge
the gap between the idealized dose distribution and a distribution that is
physically attainable. To accomplish this, the method of constrained opti-
mization has proven particularly useful. The idea is to maximize the dose in
the target under the condition that the exposure of the organs at risk must
not exceed a given threshold. In order to quantify the merit of a given dose
distribution, the optimizer employs cost functions. In recent years, biological
cost functions experienced increasing popularity. Biological cost functions,
in contrast to physical cost functions, incorporate the specific dose response
of a given organ into the optimization.

Typically, radiation is administered in several treatment sessions. Frac-
tionated radiotherapy exploits the inferior repair capabilities of malignant
tissue. Through fractionation, the damage to normal tissue is significantly
reduced. This is the key to reach target doses as high as 80 Gy. In most
cases, radiotherapy is concentrated on a region around the tumor. Depend-
ing on the particular scenario, the target region may be expanded to also
include adjacent tissue such as lymph nodes. Apart from clinical reasons for
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such an expansion, a margin around the tumor is typically added to compen-
sate for movement that occurs during treatment. Such movement comprises
motion that may occur during a treatment session as well as displacements
that happen between treatment fractions.

Unfortunately, motion compensation via margins comes at the price of
a severely increased dose to surrounding normal tissue. Furthermore, the
margin concept is entirely target centered and completely neglects poten-
tially hazardous effects of motion on the organs at risk. Several approaches
have been put forth to alleviate this problem [BABN06, BYA*03, CZHSO05,
OW06, CBT06, SWA09, MKVF06, YMS*05, WvdGS*07, TRL*05, LLBYg].
Perhaps the simplest extension to the margin concept is coverage probability
[BABNO6]. The basic idea is to superimpose several CT snapshots to gen-
erate an occupancy map of any organ of interest. The resulting per voxel
occupancies are used as weights in the optimization. Through these occu-
pancy maps, the specific motion of the organs in essence replaces the more
unspecific margins. Even though the problem of overlapping volumes is al-
leviated, it is not solved. The probability clouds of the organs may still very
well have common regions. In contrast, other authors [BYAT03, MKVF06,
SWA09, TRLT05] use deformable patient models to track the irradiation of
every single volume element. These methods evaluate dose in the reference
geometry while the dose is calculated in the deformed model. Compared to
coverage probability, this method is more demanding, as it requires deforma-
tion vector fields between the CT snapshots and the optimization on several
geometry instances. Additionally, this technique introduces further sources
of error.

The core of this thesis is an entirely new concept for uncertainty man-
agement. The key difference to the previously outlined methods is that it
pays tribute to the inherent uncertainties in a purely statistical manner. All
treatment planning techniques up to this point culminate in the optimiza-
tion of nominal values to reflect the treatment plan merits. The approach in
the present work handles all treatment outcome metrics as statistical quan-
tities. That is, instead of optimizing a nominal value, our approach directly
optimizes the shape of dose metric distribution. Because it is independent
of geometric considerations, any treatment parameter, whose uncertainty is
quantifiable, can be incorporated into our framework. Requiring no changes
to the infrastructure of the optimizer, it seamlessly integrates into the ex-
isting framework of constrained optimization in conjunction with biological
costfunctions. The new method will also reveal its true potential in conjunc-
tion with heavy particle therapy because many concepts that are currently in
use will fail and other sources of error, such as particle range uncertainties,
besides geometric deviations have to be considered.
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Once a plan has been computed, it needs to be evaluated. Dose volume
histograms (DVHs) are used to express the merit of a 3D dose distribution
into an easy to grasp 2D display. Today, DVHs are ubiquitous in the field
radiation oncology. Classic DVHs reflect the irradiation of an organ only for
a static geometry, hence provide no indication how the irradiation pattern
changes under the influence of uncertainties. Consequently, to assess the
influence of organ movement and setup errors, DVHs should reflect the as-
sociated uncertainties. This work augments DV Hs such that the assumed or
measured error propagates into the DVH, adding error bars for each source
of uncertainty individually, or any combination of them. Furthermore, it
is possible to discriminate DVHs based on biological measures, such as the
realized equivalent uniform dose (EUD).

The very nature of the radiotherapy optimization problem, i.e. contra-
dictory objectives, almost always demands further refinements to the initial
plan. In the realm of constrained optimization, this translates into the need
to predict the changes to the dose distribution if a constraint is altered.
While this can be done by sensitivity analysis in terms of treatment metrics,
the introduced method in this work introduces spatial resolution to trade-off
analysis. It is especially suitable to eliminate so-called cold spots, i.e. re-
gions in the target that experience underdosage. The algorithm screens the
optimization setting and determines which constraints need to be loosened
in order to raise the dose in the cold spot to an acceptable level. This is
especially useful if a multitude of constraints can be the cause of the cold
spot. This way, tedious trial and error iterations are reduced.

To sum up, this thesis introduces a novel framework for uncertainty man-
agement. In contrast to earlier publications in the field, it explicitly accounts
for the fact that the inherent uncertainties in radiotherapy render all asso-
ciated quantities random variables. During optimization and evaluation, all
random variables are rigorously treated as such. The algorithm seamlessly
integrates as cost function into existing optimization engines and can be
paired with arbitrary dose scoring functions. To provide the physician with
essential information needed to evaluate a treatment plan under the influ-
ence of uncertainty, DVHs, a cornerstone in every day clinical practice, were
augmented to reflect the consequences of potential error sources. The expert
is provided with valuable information to facilitate the inevitable trade-off be-
tween tumor control and normal tissue sparing. The last part of this thesis
deals with a new tool for the efficient customization of a treatment plan to
the needs of each individual patient.




Chapter 2

Robust Treatment Plan
Optimization

In the presence of random deviations from the planning patient geometry,
there will be a difference between applied and planned dose. Hence, the de-
livered dose and derived treatment quality metrics become random variables
[MUO06, BABN04, L.J01, vHRRLOO].

Evidently, the statistical nature of the treatment also propagates into
the treatment quality metrics, e.g. dose volume histogram (DVH) points or
equivalent uniform dose (EUD) [Nie97]. Any one of these metrics becomes
a random variable, having its own patient and treatment plan specific prob-
ability distribution. This distribution indicates the likelihood that a certain
value of the metric will be realized during a treatment session. Because the
outcome distribution is sampled only a few times, namely the number of
treatment sessions, it becomes important to consider the width of the dis-
tribution in addition to the mean value, fig. 2.1(a) [UO04, UO05, BABNO04].
The wider a distribution becomes, the more samples are necessary to obtain
reliable estimates of the mean. In the treatment context, this translates into
the need to minimize the distribution width of the quality metrics to arrive
at the planned mean of the metric with a high probability. This is to assure
that the actual prescription is met as closely as possible in every potentially
realized course of treatment.

The standard approach to address this problem is to extend the clinical
target volume (CTV) to obtain a planning target volume (PTV) [oORUM93].
Provided that the margin is properly chosen [vHRL02, SABHV99], the dose
to any point of the CTV remains almost constant across all fractions, leading
to a narrow distribution of possible treatment outcomes, fig. 2.1(b). However,
the PTV concept only addresses the target, not the organs at risk (OARs).
The addition of margins for the OARs was suggested by [MvHMO02], lead-

5
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Figure 2.1: (a) The mean of only a few samples (blue) may not resemble the
mean of the distribution. This is confounded if the width of the distribution
increases. (b) The treatment outcome distribution (e.g. in terms of EUD)
plotted against target margin width. If the target margin becomes larger,
the target distribution becomes more and more located (top 3 panels). The
contrary is the case regarding the organ at risk distribution. With increasing
target margin, this distribution widens toward higher doses as the gradient
moves into organ space.

ing to planning risk volumes (PRVs). This increases the overlap region of
mutually contradictory plan objectives even more [SH06].

In order to overcome these problems, numerous approaches have been
suggested [BABN06, BYA 03, CZHS05, OW06, CBT06, SWA09, MKVF06,
YMSH05, WvdGST07, TRLT05, LLB98] that explicitly incorporate the mag-
nitude of possible geometric errors into the planning process. Depending on
the authors’ view on robustness, and thereby the quantities of interest, the
proposed methods are diverse.

The method of coverage probabilities can be regarded as the most ba-
sic extension of the PTV concept in that it assigns probability values to a
classic or individualized PTV/PRV to indicate the likelihood of finding the
CTV/OAR there [SABHV99]. The work of [BABNO06] addresses the problem
of overlapping volumes of interest by incorporating a coverage probability
based on several CTs into the optimization process. Through these occu-
pancy maps, the specific motion of the organs in essence replaces the more
unspecific margins. Even though the problem of overlapping volumes is alle-
viated, it is not solved. The respective probability clouds of the organs may
still very well have common regions, since there is no notion of correlated
motion. A related concept, namely the optimization of the expectation of

6
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tumor control probability (TCP) and normal tissue complication probability
(NTCP) was investigated [WvdGST07]. Notice that coverage probability is
still based on a static patient model, i.e. the dose is evaluated in dose space.

In contrast, other authors use deformable patient models to track the
irradiation of every single volume element (voxel). This means that while
dose scoring and evaluation is done in a reference geometry of the patient, the
dose is calculated on the deformed model. The authors of [BYAT03] brought
forth a method of accounting for uncertainties by substituting the nominal
dose in each voxel of a reference geometry with an effective dose. The effective
dose is obtained by averaging the doses in the voxel over several geometry
instances. This also allows for the use of biological cost functions. A similar
approach with the addition of dose recomputation for each geometry instance
has been presented [MKVF06, SWA09, TRL*05]. The authors of [CZHS05]
and [()WO6] propose a method that models organ movement as uncertainties
in the dose matrix. In essence, their method addresses the robustness of
the dose on a per voxel basis. Thus, their method is restricted to physical
objective functions.

Naturally, all the above methods require precise information about the
patient movement prior to treatment. Due to the limits of available infor-
mation, these deformation models themselves provide for another source of
errors. A method to take these errors of the model of motion into account
has also been suggested [CBT06].

In consequence, even concepts that go beyond margins to alleviate the
impact of geometric variation have to deal with uncertain outcome metrics.

In this chapter, a general probabilistic optimization framework, R.O.B.-
U.S.T. - Robust Optimization Based Upon Statistical Theory, is proposed
for any type of cost function, that pays tribute to the statistical nature of
the problem by controlling the treatment outcome distribution of target and
OARs alike. Any treatment parameter, for which the uncertainty is quan-
tifiable, can be seamlessly incorporated into the R.O.B.U.S.T. framework.
By actively controlling the width of the outcome distributions quantitatively
during the optimization process, the finite amount of treatment fractions can
also be considered.

2.1 Main Objective

As the exact patient geometry configuration during each treatment fraction
is unknown, the delivered dose becomes a statistical quantity. Due to the
statistical nature of the delivered dose, all associated quality metrics become
random variables, in the following denoted by Y for objectives and Z for con-
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Figure 2.2: (a) The indispensable properties of a treatment outcome distribu-
tion: 1. the mean (red) should be close to the prescribed dose (black) 2. The
distribution should be as narrow as possible, because patients are treated in
only a few treatment sessions. (b) In case of the target, the red area, depict-
ing undesirable outcomes, is minimized. This corresponds to maximizing the
blue area. In other words, the optimization aims to squeeze the treatment
outcome distribution into the set interval.

straints. Because the geometric uncertainties are specific for every individual
patient, the probability distribution of the quality metrics for any given plan
is also patient specific. Hence, it is essential to consider the shape of the
outcome metric distribution p(y) instead of just a nominal value y for the
outcome.

Two basic properties are postulated, that any outcome distribution of
a robust plan should possess, fig. 2.2(a). First of all, it is important that
the planned value of the metric and the mean of the distribution coincide,
i.e. the delivered dose should resemble the planned one. If the treatment
had wvery many fractions, this condition would suffice to ensure that the
proper dose is delivered. In this case, sessions with a less than ideal delivery
would be compensated by many others. However, in a realistic scenario a
failed treatment session cannot be compensated entirely. It is therefore also
necessary to take the outcome distribution width into consideration. By
demanding that the outcome distribution should be as narrow as possible,
it is ensured that any sample taken from it, i.e. any treatment session, is
within acceptable limits. This issue becomes more serious for fewer treatment
sessions.

Consequently, any robust treatment optimization approach should keep
control over the respective outcome distributions of the involved regions of
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Figure 2.3: Exemplary outcome distributions in relation to the aspired treat-
ment outcome region. The green area denotes acceptable courses of treat-
ment whereas red indicates unfavorable treatment outcomes. The top row
illustrates the two-sided target cost function (e.g. the green area could in-
dicate 95%-105% of the prescribed dose). The distribution in the left panel
is entirely located within the acceptable region, indicating that the patient
would receive the proper dose during all courses of treatment. While the dis-
tribution width in the middle panel is sufficiently narrow, its mean is too low,
pointing towards an underdosage of the target. The distribution on the right
panel is too wide and its mean too low. In practice, this means that there is
a significantly reduced chance that the patient will receive proper treatment.
The bottom panels show the one-sided OAR cost function. From left to right
the complication risk increases. Notice, that even though the mean in the
middle panel is lower than on the leftmost panel, the overall distribution is
less favorable because of a probability of unacceptable outcomes.
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interest. In case of the target, it is desirable to keep the distribution narrow
and peaked at the desired dose. The organ at risk distributions, however,
should be skewed towards low doses and only a controlled small fraction
should be close or above the threshold. This ensures that in the vast majority
of all possible treatment courses, the irradition of the organ at risk is within
acceptable limits, fig. 2.3.

The course of treatment is subject to several sources of uncertainty (e.g.
setup errors). Suppose each of these sources is quantified by a continuous
geometry parameter x (e.g. displacement distance), its value indicating a
possible realization during a treatment session. The precise value of any
of these geometry parameters is unknown at treatment time, making them
statistical quantities. Thus as random variables, X, they have associated
probability distributions, p(x), indicating the probability that a certain value
x is realized. These input distributions need to be estimated either prior to
planning based on patient specific or population data, or data acquired during
the course of treatment.

The central goal is to obtain reliable estimates of the outcome distribu-
tion p(y) given the input uncertainty p(x). First a number of samples, X1y,
is drawn from the uncertainty distributions. Then, for all those geometry
instances the outcome metric, y, = f(D,xx), 0 < k < N, is computed. If
this is repeated sufficiently often, i.e. for large IV, the treatment outcome dis-
tribution, p(y), can be obtained and alongside an estimate of the probability
mass, M, present in the desired interval, I;,.

- fowolh SRSk e

The interval I is the green area in fig. 2.3.

However, there are two major problems with the practical implementation
of this approach. First and foremost, for dependable estimates, large num-
bers of samples are required, rendering this method becomes prohibitively
expensive, especially with dose recalculations involved. Secondly, the quan-
tity of interest, M[Y] (2.1), cannot be computed in closed form, an essential
requirement for efficient optimization schemes. The next paragraph will in-
troduce a cost function with similar utility that does not suffer from these
limitations.

Typical prescriptions in radiotherapy demand that the interval contains
large parts of the probability mass, e.g. 95% of all outcomes must lie within.
This means that the exact shape of the actual distribution loses importance
while concentrating on the tails by virtue of the Chebyshev inequality. Loosely
speaking, it states that if the variance of a random variable is small, then

10
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the probability that it takes a value far from its mean is also small. If Y is
a random variable with mean p and variance o2, then

P(]Y—p|2ka)§%, k> 1 (2.2)
limits the probability of a sample being drawn k standard deviations away
from the mean, independently of the density p(y). For the problem at hand,
k is calculated by determining how many standard deviations fit in the pre-
scription interval I;,. If most of the probability mass is already concentrated
in the desired area, its spread is relatively small compared to the extent of
the acceptable region. This means that k is large, and by virtue of (2.2),
the probability of a sample lying outside L is low. This holds regardless of
what the real outcome distribution may look like.

Hence, instead of trying to obtain the entire outcome distribution, it is
assumed that its tails can be approximated by a Gaussian to compute all
quantities necessary for the optimizer. This is justified by the Chebyshev
inequality (2.2). The idea is shown in fig. 2.2(b). Given this assumption, it
is sufficient to compute mean, Ex[Y], and variance, vary[Y]. It is important
to note that even if p(y) does not resemble a normal distribution, the above
approximation is still reasonable in the context of the proposed prescription
scheme. It is sufficient to assume that the tails of p(y) (two sided for target
volumes, one sided for OARs) can be described by the tails of the Gaussian
N (y|Ex[Y], varx[Y]). This approximation becomes more powerful for frac-
tionated treatments because of the central limit theorem[BT02]. It states
that the sum of n random variables is normally distributed if n is sufficiently
large.

Incorporating the assumption above, the probability mass enclosed in the
interval of interest can be approximated analytically,

M[Y] ~ / dy N (y|Ex[Y], varg[Y]) (2.3)

min I

which is crucial for the formulation of an objective function for the optimizer.
The entire optimization problem reads

maximize M[Y] (2.4a)
subject to 1 — M[Zy] < ¢ (2.4b)
and ¢; >0 Vj. (2.4¢)

Loosely speaking, this amounts to maximizing the probability mass of treat-
ment outcomes for the tumor inside the prescription interval via (2.4a), while

11
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Figure 2.4: (a) Constrained optimization in conjunction with classic cost
functions. (b) The R.O.B.U.S.T. probabilistic approach. Notice that the
algorithm is entirely concealed from the optimizer. Hence, no alterations are
necessary.

at the same time allowing only a controlled portion of the organ at risk dis-
tribution over a set threshold in (2.4b).

Since the Gaussian approximation tries to squeeze the probability mass
into the interval, it points the optimizer into the right direction, independently
of the actual shape of p(y). This is guaranteed by the Chebyshev inequality.
Further refinements regarding the error bounds are possible, but beyond the
scope of this work. For the optimization of (2.4) to work, it is important that
the Chebyshev inequality exists, but not necessarily how accurate it is. The
Chebyshev bounds can be tightened by re-adjusting the imposed constraints
¢ in (2.4b). Notice that the actual distribution depends on the intermediate
treatment plans of the iterative optimization, and hence constantly changes
its shape. The more the dose distribution approaches the optimization goal,
the less probability mass stays outside the prescription interval and the better
the Gaussian approximation and the tighter the Chebyshev bound become.

The algorithm for the cost function computation works as follows, c.f.

fig. 2.4:

12
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1. For each of the N geometry instances the cost function, f, is computed,
ye = f(D,x), L<ESN

2. Mean, E4[Y], and variance, vary[Y], of those N samples is determined.

3. Use mean and variance to approximate a Gaussian N (y|Ex[Y], var,[Y]),
fig. 2.2(b).

4. Compute the objective function, (2.3), and return the value to the
optimizer.

Results of the algorithm, as well as a side by side comparison against
different robust optimization methods can be found in [SMA10].

2.1.1 Explicit Incorporation of the Number of Frac-
tions

It was mentioned earlier that the spread of the outcome distribution becomes
increasingly important as one moves towards smaller fraction numbers. This
is substantiated by the law of large numbers in probability theory[BT02].
In this section, the previous observation is quantified and the cost function
augmented accordingly.

In the present context, the final outcome A,, can be regarded as the sample
mean of all n sessions Y;

n

However, notice that the quantity of interest is typically the EUD of the
cumulative dose. Taking into account the curvature properties of the EUD
functions, one can establish a relation between the two quantities to prove
that it is sufficient to consider the average EUD instead of the EUD of the
average dose. Given a convex function f and a random variable D, Jensen’s
inequality [Jen06] establishes a link between the function value at the average
of the random variable and the average of the function values of the random
variable, namely

f(E[D]) < E[f(D)]. (2.6)
The converse holds true if f is concave. With the general form of the EUD

EUD(D) = ¢! (% Zgum) (27)

veV

it can be shown that (2.5) provides a lower bound for the tumor control
and an upper bound for normal tissue damage. For details regarding this
argument, please refer to appendix B.1 and [SSSA11].

13
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The random variable A,,, (2.5) has mean Ex[A,] = Ex[Y] = 1 and vari-
ance vary|A,] = %"m = %2 Again, the Chebyshev inequality, (2.2), is
employed to obtain an approximation for the probability mass inside the

prescription interval. With k = £ and the mean and variance of Ay,

o2

P (A, —pl 2 ) < 2 (2.8)
is obtained, where ¢ is the maximum tolerated error. The probability of a
treatment violating the requirements, i.e. the realized outcome is more than
¢ away from the prescription, is proportional to the variance of a single frac-
tion, 02, and goes to zero as the number of treatment fractions, n, increases.
Further refinements can be made by reintroducing the Gaussian approxi-
mation. The accuracy of the approximation increases with the number of
fractions, n, as indicated by the central limit theorem [BT02]. It states that
the sum of a large number of independent random variables is approximately
normal. The actual convergence rate depends on the shape of Y;. For exam-
ple, if Y; was uniformly distributed, n ~ 8 would suffice [BT02]. The ensuing
probability mass is computed analogously to (2.3),

max Iy
M[A,] ~ / dy N (y|Ex[An], vars[A,])

min I (2 9)

max Iy
- / dy N (y[Ex[Y],

min I

varg|Y]

).

By explicitly including fractionation effects in the cost function, (2.9), the
influence of the variance is regulated. That is, one quantitatively accounts
for the fact that a given number of fractions offers a certain potential for
treatment errors to even out. Notice that in the limit of very many fractions,
the initial statement that the mean value alone suffices to ensure proper
treatment is recovered.

2.2 Efficient Treatment Outcome Parameter
Estimation

To estimate the robustness of a treatment plan, it is necessary to capture the

response of the treatment outcome metric if the uncertain inputs are varied
according to their respective distributions. Only if the response is sufficiently
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Figure 2.5: Sensitivity of the EUDs of different organs to gradual shape
changes for a prostate cancer patient. The latter were modelled with principal
component analysis (PCA) of a set of CT scans. The plots show the effects
of the first three eigenmodes. For example, the first mode roughly correlates
to A-P motion induced by the varying filling of rectum and bladder. Notice
that the prostate EUD is fairly robust toward the uncertainties in question.

well behaved, i.e. does not depart from its tolerance limits, the treatment
plan can be considered robust.

This section deals with the estimation of the treatment outcome distribu-
tion. This is commonly referred to as uncertainty analysis. The most direct
way to do this is the Monte Carlo (MC) method. Samples are drawn from
the input uncertainty distributions and the model is rerun for each setting.
While MC is conceptionally very simple, an excessive number of runs may
be necessary. For computer codes that have a non-negligible run time, the
computational cost can quickly become prohibitive.

To alleviate this problem, an emulator for the real patient model is in-
troduced. The underlying assumption is that the patient model output is a
function f(-) that maps inputs, i.e. uncertain parameters X, into an output
y = f(x), i.e. the dose metric. The behavior of the EUDs of four exemplary
prostate cancer plans is shown in fig. 2.5. ' An emulation y(-) in place of
the patient model f(-) is employed. If the emulation is good enough, then
the results produced by the analysis will be sufficiently close to those that
would have been obtained using the original patient model. Because the

'Notice that due to the continuous nature of physical dose distributions, and their finite
gradients, the smoothness assumption holds true for all physical and biological metrics
commonly employed in dose optimization.
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computation of the approximate patient model response using the emulator
is much faster than the direct evaluation of the patient model, comprehensive
analyses become feasible.

To replace the patient model, Gaussian Processes (GPs) [RW06, Mac03]
are used. In the present context, they are used to learn the response of the
patient model and subsequently mimic its behavior. GPs have been used to
emulate expensive computer codes in a number of contexts / applications
[SWMW89, KO00, 0002, 0004, PHR06, SWNO03]. Notice that GP regres-
sion is also commonly referred to as “kriging” in literature.

This section is divided as follows. First, a brief introduction in Gaussian
process regression is provided. Afterwards, it is presented how GPs can be
used to greatly accelerate treatment outcome Monte Carlo analyses by sub-
stituting the patient model. It turns out that under certain conditions the
introduced computations can be further accelerated while increasing preci-
sion. This technique, as well as benchmarks, is subject of the remainder of
the section.

2.2.1 Gaussian Process Regression

In the following, the sources of uncertainty during treatment time are quan-
tified by the vector-valued random variable X. The associated probability
distribution, p(x), indicates the likelihood that a certain vector x is realized.
The dimensionality of x is denoted by S, i.e. x € R®. For a given dose dis-
tribution and any given vector x, the patient model computes the outcome
metric y € R. The input uncertainty inevitably renders the outcome metric
a random variable Y.

Some fundamentals of Gaussian processes are only briefly recaptured, as
a comprehensive introduction is beyond the scope of this work. For a detailed
introduction, consult [RW06], [Mac03, ch. 45] or [SS02, ch. 16].

To avoid confusion, it is stressed that the method of Gaussian processes
is used to provide a non-parametric, assumption-free, smooth interpretation
of f(x), for which otherwise only a few discrete observations are available.
The GP does not make any assumptions about the nature of the probability
distribution p(x).

Assume a data set S = x,,,y, with N samples is given, stemming from a
patient model. It is the goal to utilize this data to predict the model response
f(x*) at a previously unseen location, e.g. geometry configuration, x*. The
key idea is to incorporate that for any reasonable quality metric f, f(x) ~
f(x*) holds if x’ is sufficiently close to x*, i.e. f is a smooth, continuous
function. For example, if x denotes the displacement of the patient from
the planning position, minor geometry deviations should entail only a small
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Figure 2.6: (a) Random functions drawn from a Gaussian process prior. No-
tice the influence of the scaling hyperparameter on the function. (b) Random
functions drawn from a Gaussian process posterior where sample positions
are marked with crosses. Notice that all functions pass through the observed
points.

change in the dose metric y. !

GPs can be thought of as a generalization of linear parametric regression.
In linear parametric regression, a set of .J basis functions ¢;(x) is chosen and
is linearly superimposed:

f(x) = Z a; ¢;(x) = a' - p(x) (2.10)

Bayesian inference of the weighting parameters « follows two steps. First, a
prior distribution is placed on «, reflecting the beliefs of the modeller before
having seen the data. The prior, p(«), is then updated in light of the data S
via Bayes’ rule leading to the posterior distribution, p(a|S) x p(S|a) - p(«).
The posterior reflects the updated knowledge of the model.

The properties of the model in (2.10) depend crucially on the choice of
basis functions ¢(x). Gaussian process modelling circumvents this problem
by placing the prior directly on the space of functions, fig. 2.6(a), eliminating
the need to explicitly specify basis functions, thus allowing for much greater
flexibility. Following the scheme of Bayesian inference, the GP prior is up-
dated using Bayes’ rule yielding the posterior, when observations become
available, fig. 2.6(b).

By definition, a Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution [RWO06]. That
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is, the joint distribution of the observed variables, [f(x;)... f(xn)]", is a
multivariate Gaussian.

(f(xl)7 ce 7f(XN)) ~ N(f“"’? E) (211)

with mean vector pu and covariance matrix 3. A Gaussian process can be
thought of a generalization of a Gaussian distribution over a finite dimen-
sional vector space to an infinite dimensional function space [Mac03]. This
extends the concept of random variables to random functions.

A Gaussian process is completely specified by its mean and covariance
function:

[ ()] (2.12a)
[(f(x) = u(x)) (2.12b)
(f(x) = p(x))]

In the context of Gaussian processes, the covariance function is also called
kernel function,

n(x) =

Ey
cov(f(x), f(x) = Ej

cov(f(x), f(x)) = k(x,x). (2.13)

It establishes the coupling between any two dose metric values f(x), f(x).
A common choice for k(-,-) is the so-called squared exponential covariance
function

fre(xx) = whoxp (3¢ T -x)). (@

where (2 is a diagonal matrix with Q = diag{w?...w%}. If the locations x,
x" are close to each other, the covariance in (2.14) will be almost one. That
in turn implies that the respective function values, f(x), f(x’) are assumed
to be almost equal. As the locations move apart, the covariance decays
rapidly along with correlation of the function values. Given some covariance
function, the covariance matrix of the Gaussian in (2.11) is computed with
Zij = ]{?(Xi,X]‘), Z,] =1...N.

Because it governs the coupling of the observations, the class of functions
which is embodied by the Gaussian process, is encoded in the covariance func-
tion. In (2.14) the behavior is steered by w, the so-called hyperparameters.
While wy is the signal variance, wy g are scaling parameters. The scaling pa-
rameters reflect the degree of smoothness of the GP. Their influence on the
prior is shown in fig. 2.6(a). In (2.14) a separate scaling parameter is used for
each input dimension. This allows for the model to adjust to the influence
of the respective input dimensions. This is known as Automatic Relevance
Determination [Mac95, Nea96]. If the influence of an input dimension is
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Figure 2.7: The mean function as well as the predictive uncertainty of a GP.

rather small, the length scale in that dimension will be large, indicating that
function values are relatively constant (or vice versa).

Given this prior on the function f, p(f|w), and the data S = {x,, y, }, the
aim is to get the predictive distribution of the function value f(x*). Because
the patient model typically exists on a voxel grid, its discretization may also
have an influence on y, especially since the dependency of y on some kind
of continuous movement is modelled. Consequently, it must be taken into
account that the data may be contaminated by noise, i.e.

y = f(x) +e. (2.15)

Standard practice is to assume Gaussian noise, € ~ N (g|0,w?). Hence, an
extra contribution, w?, is added to the variance of each data point. The final

kernel matrix now reads

where ¢ is the Kronecker delta. By additionally accounting for possible noise
in the data, the constraint that the posterior has to go exactly through
the data points is relaxed. This is a very powerful assumption, because
it allows for the data explaining model to be simpler, i.e. the function is
less modulated. Thus, the hyperparameters of the GP are larger. This, in
turn, entails that fewer sample points are needed to make predictions with
high accuracy. The trade-off between model simplicity and data explanation
within the GP framework follows Occam’s razor [RGO1]. In other words, the
model is automatically chosen as simple as possible while being at the same
time as complex as necessary. Patient model uncertainties that arise due
to imprecise image segmentation, discretization errors, etc. are effectively
handled this way.
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Within the GP framework, the predictive distribution, p(f.|x., S, w), for
a function value f, = f(x.) is obtained by conditioning the joint distribution
of unknown point and data set, p(fs,S|w), on the data set [Mac03]. Since
all involved distributions are Gaussians, the posterior predictive distribution
is also a Gaussian,

pflxe, S w) = N(flp(x.), 0% (x.)). (2.17a)
with mean pu(x,) = k(x.) 'K 'y (2.17b)
and variance o%(x,) = k(X X,) (2.17¢)

—k(x,) K 'k(x,)

where k(x,) € RV*! is the vector of covariances between the unknown point
and data set, i.e. [k(x.)]; = k(x;,x.). Fig. 2.7 shows the mean function
(2.17b) as well as the confidence interval (2.17c) for an exemplary dataset.
For a detailed derivation of (2.17), please refer to [RWO06, chap. 2]. Notice
that the mean prediction (2.17b) is a linear combination of kernel functions
centered on a training point. With 3 = K~y (2.17b) can be rewritten as

pu(x.) = k(x.)' B. (2.18)

Loosely speaking, the function value f(x,) at an unknown point x, is
inferred from the function values of the data set S weighted by their relative
locations to x,.

It is important to notice that Gaussian process prediction does not return
a single value. Instead, it provides an entire probability distribution over
possible values f(x.), (2.17). However, the mean (2.17b) is often regarded as
approximation, but the GP also provides a distribution around that mean,
(2.17¢), which describes the likelihood of the real value being close by.

At last it is briefly covered how the hyperparameters are computed. Again,
this is presented in much greater detail in [RW06, ch. 5], [Mac03, ch. 45],
[SS02, ch. 16]. Up to this point the hyperparameters w were assumed as
fixed. However, it was shown that their values critically affect the behavior
of the GP, fig. 2.6(a). In a sound Bayesian setting, one would assign a prior
over the hyperparameters and average over their posterior, i.e.

p(filx, 8) = /dwp(f*|x*,87w)p(w|8). (2.19)

However, the integral in (2.19) cannot be computed analytically. A common
choice in this case is not to evaluate the posterior of the parameters w, but to
approximate it with a delta distribution, §(w — w*). Thus, (2.19) simplifies
to:

p(filxi 8) = p(filxs, S, w") (2.20)
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The preferred set of hyperparameters maximizes the marginal likelihood

w”* = argmax p(S|w) (2.21)

It can be computed in closed form and optimized with a gradient based
scheme. In the implementation the negative log likelihood is optimized

1 1 N
—log[p(S|w)] = —3 log det K — §yTK_1y -5 log(2m) (2.22)

with the BFGS method. Since the kernel matrix K is symmetric and positive-
definite, it can be inverted using Cholesky decomposition. Generally, the
selection of the hyperparameters is referred to as training of the Gaussian
process.

2.2.2 Uncertainty Analysis with Gaussian Processes

The central goal of this work is to efficiently compute the treatment outcome
distribution under the influence of uncertain inputs. The benefits of GP
regression to accelerate classical Monte Carlo computations are investigated
in the following. The most straightforward way to use the GP emulator is
to simply run an excessive number of evaluations based on the GP mean,
(2.17b). This approach implicitly exploits the substantial information gain
in the proximity of each sample point. This proximity information is lost in
classical Monte Carlo methods.

The application of Gaussian processes as a model substitution is inher-
ently a two stage approach. First, the Gaussian process emulator is built and
subsequently used in place of the patient model to run any desired analysis.
Only one set of runs of the patient model is needed, to compute the sample
points necessary to build the GP. Once the GP emulator is built, there is no
more need for any additional patient model evaluations, no matter how many
analyses are required of the simulator’s behavior. This contrasts with conven-
tional Monte Carlo based methods. For instance, to compute the treatment
outcome for a slightly altered set of inputs, fresh runs of the patient model
are required.

GPs are used to learn the behavior of a head and neck patient model under
rigid movement. The primary structures of interest, Chiasm and GTV, are
directly adjacent to each other as depicted in fig. 2.9. This is the reason why
a slight geometry change leads not only to a target EUD decline, but also to
a rapid dose increase in the chiasm.

For the experiment, 1000 sample points, i.e. displacement vectors, were
drawn at random. For all runs, the same dose distribution was used. To
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Figure 2.8: Treatment outcome histograms obtained with different methods
for (a) the GTV and (b) the Chiasm. The blue bar stands for 1000 evaluations
of the patient model. The green and red bars stand for 1000 evaluations of
a Gaussian process trained on 100 or 10 points, respectively.

Figure 2.9: The GTV and Chiasm in a head and neck case. Both structures
are colored according to the delivered dose (dose increasing from blue to red).
Notice the extremely steep dose gradient between GTV and Chiasma.
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no. of pat. model runs 10 100
MC on pat. model. 12.3 £ 31% | 13.36 & 10.0%
MC on GP | 13.1 £ 0.3% 12.9 £+ 0.3%
no. of pat. model runs 1000 100000
MC on pat. model. | 12.96 + 3.1% | 12.89 + 0.3%
MC on GP | 12.89 + 0.3% -

Table 2.1: Computation of the average treatment outcome (EUD) for the
GTV under random rigid movement. The second row shows the result for
the standard approach of simply averaging over the computed outcomes.
Accordingly, the error bound becomes tighter as more samples are involved.
The third row shows the results of computing the average via MC on a
Gaussian Process that mimics the patient model. The MC error is always
at a minimum because in every run 10° samples were computed on the GP.
Merely the number of original patient model evaluations to build the GP is
varied.

establish a ground truth, the patient model was evaluated for each displace-
ment vector and included in the analysis. To evaluate the Gaussian Process
performance, only a small subset of points was chosen to build the emula-
tor. Once built, the rest of the 1000 points were evaluated with the emulator.
Fig. 2.8 shows the outcome histograms of GTV and chiasm respectively if the
displacement in x-y-direction is varied by max. 1cm. The plots show that
as few as 10 points suffice to capture the qualitative behavior of the model.
With only 100 points, i.e. 10% of the MC model runs, the GP histogram is
almost indistinguishable from the patient model histogram obtained through
classical MC.

For instance, one could use the emulator runs p = pu(x1), g2 = p(x2), ...
to compute the mean treatment outcome. It is important to note that with
increasing sample size, the value for the mean does not converge to the true
mean of the patient model, but the mean of the GP. However, given a rea-
sonable number of sample points to build the GP, it is often the case that
the difference between GP and actual patient model is small compared to the
error arising from an insufficient number of runs when computing the mean
based on the actual patient model.

To clarify this, consider the head and neck case illustrated in fig. 2.9.
For all practical purposes, the true average treatment outcome of the GTV
is 12.89 Gy based on 10° patient model runs. In table 2.1, the results of
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both methods for a varying number of patient model runs are collected. The
theoretical error margin of the Monte Carlo method, 1/ VN, is also included.
The means based on the GP were computed using 10° points resulting in an
error of 0.3%. Consequently, the residual deviations stem from errors in the
Gaussian Process fit.

A similar argument can be made for the variance of the treatment out-
comes.

2.2.3 Bayesian Monte Carlo

It was previously shown that the use of GP emulators to bypass the original
patient model greatly accelerates the treatment outcome analysis. Because
all results in the previous section were essentially obtained through Monte
Carlo on the GP mean, this approach still neglects that the surrogate model
itself is subject to errors. In the following, a Bayesian approach is presented
that does not suffer from these limitations.

The R.O.B.U.S.T. costfunction (2.3) is based entirely on mean and vari-
ance of the outcome metric, Y. Consequently, it is the objective to obtain
both quantities as efficiently as possible. The underlying technique to solve
integrals (such as mean and variance) over Gaussian Processes has been in-
troduced as Bayes Hermite Quadrature [O'H91| or Bayesian Monte Carlo
(BMC) [RGO03].

It was established that in case of Gaussian input uncertainty, p(x) =
N (x|pux, B), in conjunction with the squared exponential kernel, (2.14), mean
and variance can be computed analytically [GRCMS03]. The remainder of
this subsection deals with the details of computing these quantities.

Given the GP predictive distribution, (2.17), the additional uncertainty
is incorporated by averaging over the inputs. This is done by integrating
over X,:

p(f" |y x, S, w) = /dx*p(f*lx*,&w)p(x*lux,Ex) (2.23)

Notice that p(f*|ux, Xx, S, w) can be seen as marginal predictive distribution,
as the original predictive distributions has been marginalized with respect to
X,. It only depends on the mean and variance of the inputs.

For notational simplicity, set p(x) = p(x|ux, Xx). The quantities of inter-
est are the expectation of the mean, jiys, and variance, 012”|S (0004, PHRO6],

1sis = Egis [Ex[f(X)]] = Ex [Egs[f(X)]]
= Ex [M(X)] (2'24>

— [ axpoki Kty =2 Ky,
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where g is the GP mean, (2.17b). The estimated variance of the function
over p(X.|ux, Xx) decomposes to

s = B [varef(X)] = vare [Epsl/(X)]]

Term 1

2.25

+ By [vat s (0] — var i [E F(X0)] 229
Term 2 Term 3

If the GP had no predictive uncertainty, i.e. varys[-] = 0, the expectation of
the input variance with respect to the posterior would be solely determined
by the variance of the posterior mean, i.e. term 1,

vas [Bys[f(X)]] = vary [u(X)]
= [ xpo0 (<007 ) S EX0(X)) (2:260)
= (K'y) T L(Ky) — EX [u(X)].
The remaining terms 2 & 3 account for the GP uncertainty, (2.17c),
Ex [vars[f(X)]] = Ex [0*(X)]
— [ dxplo0) [k x) k) TK )] (2:260)
= ko — tr [K'L]
and
var s [Ex[f(X)]] = Eps [ (Bl f(X)] = Egs[Ex[F(X)]))°]
= [ axpt) [ axpx)covss 7). £ <)
= [ xpto0 [ axplx)iix.x)
k() K Kk(x)

—k.—z' K 'z.

Some basic, re-occurring quantities can be identified:

b= [l / ax' p(x') k(x, X (2.27a)

(2.26¢)

ky = dx p(x (2.27Dh)

L, =

jl

/
4 = / dx p(x) k(x, x;) (2.27¢)
/

dx p(x) k(x,x;) k(x,x;) (2.27d)
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The [-th sample point is denoted by x;. It becomes apparent from (2.27) that
the problem can be reduced to an integral over some product of the input
distribution and the kernel. Normally, high dimensional integrals as in (2.27)
are hard to solve and analytically intractable. With X, = diag{o%, ...02

the input distribution factorizes, p(x) = [[,; pi(x;) = [T, N(@i|pix,, 02,) and
one S-dimensional integral can be decomposed into S 1-dimensional integrals.
Because the solutions for k., kg, z and L tend to be lengthy, they were moved
to appendix A.1.

Summarizing the above, closed form expressions for mean and variance of

the outcome Y were derived. The calculation consists of the following steps:
1. Generate a set of samples, S = x,,, y,,, from the original patient model

2. Utilize this sampleset to train a Gaussian process, (2.17), that subse-
quently replaces the patient model

3. Compute mean, (2.24), and variance, (2.25), of outcome Y based on
the GP

Aside from taking the GP uncertainty into account, BMC also eliminates
MC errors due to a finite sample size. Because the computations are cheap,
even compared to brute force MC on the GP, BMC is more expedient.

2.2.4 Bayesian Monte Carlo vs. classic Monte Carlo

To make R.O.B.U.S.T. computationally efficient, the number of recompu-
tations of potential courses of treatment has to be minimal. Hence, it is of
great interest to evaluate the predictive performance of Bayesian Monte Carlo
opposed to classical Monte Carlo. To establish a ground truth, the EUDs
for a fixed dose distribution for 10° randomly drawn PCA geometries were
evaluated. For each setting, 100 runs with randomly drawn samples were
computed. The trials include the first three most significant PCA modes.

Fig. 2.10 show the convergence properties of mean and variance as a
function of the number of points used. For every organ, BMC consistently
outperformed MC by several orders of magnitude. Compared to MC, BMC
uses the information from each sample point more efficiently, which is the
key to make R.O.B.U.S.T. feasible under realistic conditions. Exploiting the
fact that minor perturbations in the inputs induce only slight changes in
the outcome metrics ultimately leads to a major reduction of the number of
points necessary to obtain reliable results for mean and variance.
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Figure 2.10: Convergence speed of BMC compared to classical MC for the
predictive mean and predictive variance. The blue line denotes the ground
truth. Light gray is the standard deviation (30) from MC and dark gray
from BMC. For all organs in question, BMC reaches reliable results with a
significantly reduced number of points, thus clearly outperforming classical

MC.
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Figure 2.11: Based on only a few real CTs, Principal Component Analysis
(PCA), can be used to generate an arbitrary amount of realistic geometry
configurations[SBYAO05].

2.3 Accelerating the Optimization Algorithm

In the proof of principle optimizer [SMA10], the main ingredients of the
R.O.B.U.S.T. costfunction (2.3), mean and variance of the treatment out-
come, were obtained via a crude Monte Carlo approach. However, classical
Monte Carlo has many limitations and drawbacks. Firstly, in a realistic sce-
nario, model evaluation runs are at a premium. Obtaining a large sample
size, required for accurate computation of mean and variance, is prohibitive.
Hence, further measures should be taken to utilize the available samples as
efficiently as possible. Secondly, as [O'H87] argues, MC uses only the ob-
servations of the output response quantity [yi,...,yn], not the respective
positions [x1,...,xy]. Hence, MC estimates are error prone to an uneven
distribution of samples. Quasi Monte Carlo techniques, such as Latin Hy-
percube [MBCT79], have been introduced to alleviate this problem. However,
they are still based on point estimates, hence make no full use of the infor-
mation at hand.

It was shown that by introducing GPs as fast surrogates, these problems
can be addressed. Additionally, in case of Gaussian input uncertainty, BMC
can be used instead of classical Monte Carlo. All operations after the GP
emulator is built can be carried out in closed form, thus very efficiently and
with no precision issues (2.27). Furthermore, the uncertainty in the GP itself
is accounted for (2.25).

Now the details of the integration of augmented R.O.B.U.S.T. into an
existing IMRT optimizer are elaborated. It was integrated into the HYPER-
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ION treatment planning system, which has been developed at the University
of Tiibingen. It was fused into its constrained optimizer, allowing for a
combination of classical and R.O.B.U.S.T. cost functions. The underlying
uncertainty model was based on the work of [SBYA05, SSA09]. They model
organ deformation based on the dominant eigenmodes of geometric variabil-
ity obtained via principal component analysis (PCA). This method takes into
account the correlated movement between organs, hence there are no more
overlap regions. Since it manages to capture the significant aspects of a pa-
tient’s movement only in terms of a few parameters, namely the dominant
eigenmodes, and, alongside, delivers (Gaussian) probabilities for any value of
a mode being realized, it is very well suited as a basis for the algorithm. By
varying the model parameters along the eigenmodes, an arbitrary number of
realistic geometry configurations can be generated, fig. 2.11. In essence, it
serves as a statistical biomechanical model.

2.3.1 Constrained Optimization in Radiotherapy

In this section a generic approach to IMRT optimization is reviewed [ARO7].
The method of constrained optimization to maximize dose to the target while
maintaining reasonable organ at risk dose levels is employed. In this context,
the kth constraint, which is a function of the dose distribution D, is denoted
by gi(D). For the sake of simplicity, assume that there is only one objective,
f(D). All cost functions can be physical (maxDose, DVH) or biological
(EUD, gEUD). The incident beams are discretized into so-called beamlets or
bixels. Each one of those beamlets is assigned a weight ¢; to model the fluence
modulation across the beam. The dose distribution is the product of the
dose operator T" and the beamlet weights ¢. The element T;; relates the dose
deposited in voxel i by beamlet j, thus the dose in voxel i is D; = > i Lijo;
The entire optimization problem can now be stated as

find ¢ such that f(T¢) — min (2.28a)
while g, (T¢) < ¢y (2.28Db)
and ¢; >0 Vj, (2.28c¢)

where ¢, is the upper limit of constraint k. It is evident that the optimum
depends upon c. Notice that in many cases the number of beamlets may
exceed 10*, resulting in a very high dimensional optimization problem.

2.3.2 Core Algorithm

In this section, R.O.B.U.S.T. [SMA10] is augmented with the previously in-
troduced techniques. Since the cost function, (2.3), is based on mean and
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variance of the outcome metric, it is crucial to obtain both quantities as effi-
ciently as possible. That is, to make the approach computationally feasible,
the number of recomputations of potential courses of treatment, N, has to
be as low as possible. This is done by making further assumptions about the
behavior of the patient model. Namely, the functional dependency between
treatment parameter and outcome is exploited.

While a complete patient model substitution by a GP is appealing because
it would allow instant reoptimizations, say, under altered conditions, it is
infeasible due to the extremely high dimensional nature of the IMRT problem.
Instead, a hybrid approach is proposed, where in each optimization step only
the behavior of the model with respect to the uncertain parameters is learned.
This way, the number of beamlets is decoupled from the uncertainty handling.

The initial step is to sample several values [x1,...,Xy] from the support
of X. Notice that the actual shape of the distibution p(x) enters the analysis
analytically in (2.24) and (2.25), hence it is sufficient to cover the support
of p(x) uniformly. In order to improve the filling of the input space, the
implementation uses a Latin Hypercube scheme [MBCT79].

In each iteration, that is, for a given set of fluence weights, ¢, a dose
distribution D is calculated. Now that D is available, the dose metric is
evaluated in each training scenario, y; = f(x;). Subsequently, the GP is
trained on the dataset S = {x;,y;} that was generated in the previous step.
Mean and variance of Y are calculated using (2.24) and (2.25) respectively.
Equation (2.3) can now readily be calculated.

The fit can be improved by introducing a classical regression model prior
to the GP fit. In practice this means that a regression model is fitted to the
data and then a GP is used to explain the residuals. By using the GP only to
represent the variation of the residuals the GP is allowed to have increased
smoothness, so that even fewer training runs are required [O’HO06]. In many
cases, a simple linear offset already suffices. Notice, in fig. 2.5 the EUD
exhibits linear tendencies in many cases. In the following, the non-linear GP,
p(x), is combined with a linear part, m(x) = a'x + b. Mean and variance
are extended to

Ex[n(X) + m(X)] = Ex[u(X)] 4 Ex[m(X)] (2.29)
var [ (X) +m(X)] = vark[u(X)] + vary[m(X)]
+2 covy [p(X), m(X)]. (2.30)

For details regarding the computation of (2.29) and (2.30), please refer to
the appendix A.2.
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0.5

Figure 2.12:  Unaltered (solid line) and augmented (dashed line)
R.O.B.U.S.T. costfunctions along with their respective derivatives. The plots
shows the value of (2.3) as a function of y with 02 = 10 and I, = [48, 52].
Notice that the unaltered R.O.B.U.S.T. gradient is practically zero as u
moves away from I, rendering such points infeasible as starting points for
the IMRT optimization.

2.3.3 Convergence Considerations

Regarding the technical aspects of IMRT optimization, there is one major
problem associated with the R.O.B.U.S.T. cost function, (2.3). If the out-
come distribution is far away from the prescription interval, the cost function
and its gradient. If such a point is chosen as a starting point, the optimization
will not succeed, fig. 2.12.

There are two principal ways to address this problem. Firstly, is the use of
a classic cost function, e.g. EUD, to optimize the dose distribution to a point
where the probability mass inside the interval, (2.3) is non-zero and then
launch R.O.B.U.S.T. from there. The second possibility is to augment (2.3)
to have a non-zero gradient everywhere. In this work, the latter possibility
was chosen.

The idea is to introduce an extra term to (2.3) that vanishes as soon as
the enclosed probability mass turns non-zero. The heuristic used during this
work is
(Ex[Y] — )’

exp(—n - M[Y]) 2

— M[Y] (2.31)
where py is the mean of the interval I. The first term, exp(—n - M[Y]), is
designed to vanish if the actual cost function M[Y] becomes non-zero. The
fading speed is determined by parameter 1. For values far from the desired
interval I, the augmented cost function effectively minimizes the square dis-
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tance from the expected outcome to the interval mean, (Ex[Y] — pur)?.

2.3.4 Efficient Computation of the Derivative

The efficiency of the optimization can be greatly improved if gradients are
available. Again, since the cost function (2.3) consists of mean and variance,
the gradients of the latter quantities are of interest.

OEF(0.X)) _ o [9(6.X)
s _ B, [a—é} (2.32a)

Duanlf(60.X)] _ OB{*(6.X)
5 = =L (2.32b)

OB[f(6.)

%
— 9E, {f(gb,X)%(;Xq (2.320)
2.0, X | LX)

Because the gradients can be expressed in terms of expectation values, they
can also be computed with BMC. Mind that each component of the gradient
constitutes a dataset of its own that needs to be learned to conduct BMC.
Notice also that optimizing the hyperparameters, i.e (2.22), involves the in-
version of K, a N x N matrix, which is a O(N?3) process. Clearly, with
the amount of beamlets for complicated cases being in the order of 10%, this
becomes prohibitively expensive.

Nonetheless, the problem can still be handled by taking into account that
neighboring beamlets in a beam will ‘see’ similar influences of fluctuations of
uncertain parameters on the cost function gradient. In other words, adjacent
beamlets will very likely have similar hyperparameters, i.e. with varying
X, %;;’x) changes on similar length scales to W if beamlets ¢ and j
lie sufficiently close. In consequence, the joint likelihood of the datasets
of several beamlets, [], p(Sk,w) is optimized. In practice, this amounts
to summing over the respective log marginal likelihoods, (2.22), for each
beamlet.

log

[[2(Skw)| =D log [p(Sk, w)] (2.33)

This is also known as multi-task learning.

The implementation currently groups the beamlets by beam. That is, for
each beam a set of hyperparameters was learned during gradient computa-
tion. The rationale is that the impact of a given source of uncertainty has on
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Beam 2

Figure 2.13: Suppose there are two principal directions of movement (A,B).
While the impact of movement direction B is negligible for beam 1, it is quite
significant for the second beam. The opposite is the case for direction A.

a beam may vary drastically with beam direction. The idea is illustrated in
fig. 2.13. However, depending on the nature of the problem at hand, different
partitioning schemes are conceivable.

Implementational Details of Multi-task Learning Gradient

The hyperparameters of a number of beamlet datasets are computed via
gradient descent of (2.33). A naive implementation of the gradient of (2.33)
via summation of the constituent derivatives is inefficient and slow. Because
the optimization of (2.33) is performed frequently, an improved computation
scheme for the gradient of (2.33) is presented. Starting from the gradient of
log likelihood (2.22), [RWO06, ch. 5],

dlog [p(S,w)] 1

OK
O, =5t ((@5T ~ K™ a—%> (2.34)
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the gradient of the multitask log likelihood (2.33) can be written as
0 1 0K
737 - S ¢ A ) el 2.
gy 2 oxlp(S1.) %5r0mm Vhn) e
1 -\ ox
= Str <§ BB — K >_8w-> (2.36)

1 1\ OK
= §tl“ \(BkB];r—K 1)4(9_%

rank update

where B is a column matrix consisting of the individual S-vector for each
of the beamlets. The term (BkB,;r - K _1) is identified with the symmet-
ric rank update of matrix K !, an operation for which high-performance
implementations, e.g. ATLAS [WPDO1], exist.

Implementational Details of IMRT gradient computation

In the following, the attention is directed to the computation of o ¢ 8/ X) , the

derivative of the IMRT cost function.

Typically, IMRT cost functions define a mathematical measure of the
dose. The measure of a set of voxels is the sum of its constituent subsets. In
that sense, these subsets, labelled f (D;) and g(D;) respectively, are entirely
local quantities, only depending upon the dose in a given voxel . Hence,
cost functions structurally resemble volume integrals. Notice that objectives
as well as constraints can be arbitrary functions of the local dose [Alb0S,
RDLO04].

In order to solve the IMRT optimization problem, (2.28), efficiently, the
gradients of the objectives are needed. Applying the chainrule yields

of oD,
a@—aﬁﬁ (2.38)
= 3 2Ty (2.39)

Notice that the summation in (2.39) is fairly expensive to compute because
the index 7 runs over the entire voxel grid and needs to be repeated by the
number of beamlets. Additionally, due to its sheer size, the dose operator re-
mains in a compressed format in memory, requiring in-flight decompression.
Since R.O.B.U.S.T. is carried out on a multitude of geometry instances, an-
other penalty factor is added, making o ¢’X) very expensive to obtain. Again,
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the problem is re-stated so it can be handled with existing high-performance
linear algebra libraries, e.g. ATLAS [WPDO1].

The key is to extract the voxels that are occupied by the hull of the single
instances of an organ. This submatrix is denoted by T;;. Because typically
the volume relevant for R.O.B.U.S.T., e.g. the target, is small compared to
the dose cube, Tij is stored uncompressed. Notice that this needs to be done
only once prior to optimization. The matrix product of the row matrix of
variation grids and Tj;, yields a column matrix containing the derivatives of
cost function f with respect to ¢;.

2.4 Evaluation

The results were obtained using the first 3 eigenmodes, i.e. p(x) = [} N (2,0, oz)
of the PCA model. Notice that the Gaussians are zero-mean because PCA
returns the deviation from a mean geometry. The likelihood of a certain
configuration is indicated by its standard deviation oy.

The basis for this analysis were the CT datasets of four prostate cancer
patients, consisting of ~ 15 images each. Included into the optimization
were prostate, rectum and bladder and biological optimization [AN99] was
employed. The tolerance interval, Iy j, for the prostate was chosen to range
from 74 Gy EUD to 76 Gy EUD based on the Poisson cell kill model. Bladder
as well as rectum were assumed to be governed by a serial complication model
and the limits were set such that no more than 10% may exceed 57.5 Gy
EUD and 65.5 Gy EUD respectively. The optimizer used 3mm voxels and,
depending on patient, had about 5000-8000 2 x 4mm beamlets. These were
arranged in eight beams. The basis for the GP training were 70 geometries
sampled prior to the optimization. In the present study the dose distribution
is assumed to be invariant under organ deformations [BYA'03, WvdGS*07].
In practice, an optimization run took between and 20 and 30 minutes on a
quad core workstation.

The investigation was twofold. Firstly, for each patient, N CTs were
drawn at random from the image pool and the (PCA) patient model based
on these CTs was used for optimization. The procedure was run 20 times.
Secondly, it was investigated whether the treatment outcome distributions,
as predicted by the optimizer, coincide with the outcome distributions that
are obtained if the model of motion is built using all available imagery, which
served as a gold standard. Both procedures were repeated for varying N.
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#CTs

Figure 2.14: Std. dev. of predictive mean (solid) and predicitive std. dev.
(dashed) using different CTs each trial. (Each point represents 20 samples.)

Dependence of outcome variability on CT choice

In this section it is investigated how the projected treatment outcome is
affected by the choice of CTs initially included into the optimization. To
ascertain the credibility of the predictions, the spread of the relevant quan-
tities, (2.24), (2.25) was investigated. In fig. 2.14 the standard deviation of
both quantities with respect to the number of CTs are shown. In both cases,
the standard deviation rapidly declines as more CTs are included. Starting
from about 5 CTs, both standard deviations are around or below one gray.

Comparison with gold standard

A similar picture becomes apparent if the deviation from the gold standard
is considered. The average difference from the gold standard is plotted in
fig. 2.15(a). Again mean and standard deviation show similar tendencies.
A closer look at fig. 2.15(a) as well as fig. 2.14 reveals that it is always the
same patients who require more imagery than others. Naturally, the question
arises for the possibility to identify these before a large amount of images is
available. The key insight here is that the need for additional information
comes from the increased movement of individual patients, i.e. large move-
ment patients require more imagery. For similar prescriptions, the predictive
standard deviation serves as a measure for a patient’s geometric variability,
i.e. how much the projected outcome is spread by the patient’s movement.
Fig. 2.15(b) shows the predictive standard deviations. It is possible to iden-
tify large movement patients starting from very few CTs. This way, patients
which require more images can be identified from a very early stage.
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average difference [Gy]

Figure 2.15: (a) Average differences of predicitive mean (solid) and predic-
itive std. dev. (dashed lines) to the all image gold standard model. (Each
point represents 20 samples.) (b) Predictive standard deviations. Notice the
elevated standard deviations for the large movement patients. (green, black)

Interpretation of the results

Exemplary optimization results of two patients are shown in fig. 2.16. The
target EUD range for the prostate was set to 74 Gy - 76 Gy. The prescriptions
for the organs at risk, i.e. bladder and rectum, were that no more than 10%
of the outcome distribution may exceed 57.5 Gy and 65.5 Gy, respectively.

The treatment outcome distribution for the prostate of a large amplitude
movement patient, fig. 2.16(a), is not entirely situated in the desirable dose
range. This is because at least one, in case of fig. 2.16(a) both constraints
are exhausted. The reason is a fairly large overlap region of the occupancy
clouds of prostate and rectum in fig. 2.17(a). More specifically, this forces
the optimizer to contain high doses to regions of very high probability of
prostate occupancy in order to keep the radiation exposure of the rectum
within predefined limits. In other words, the resulting dose distribution in
fig. 2.17(a) pays tribute to the serial nature of the rectum by ensuring that
the probability for high dose exposure is sufficiently low, while at the same
time allowing lower doses to extend into regions of higher probability of
rectum occupancy. In contrast, the high dose region in fig. 2.17(b) even
encompasses regions of a low probability of prostate occupancy, especially
towards the rectum. The resulting treatment outcome distribution of the
prostate is fairly narrow and sharply peaked, fig. 2.16(b). Notice that the
optimizer irradiates regions with very low prostate occupancy with high doses
because the rectum constraint is still slack in fig. 2.16(b).
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Figure 2.16: Partial screenshots of the R.O.B.U.S.T. front-end. There are
three costfunctions that were handled with R.O.B.U.S.T. - tumor control in
prostate, and serial complication in rectum and bladder, respectively. Tol-
erable EUD ranges are marked green. The Gaussian approximations, as
seen by the optimizer, are illustrated in red. The histograms in the fore-
ground are the treatment outcomes of the single geometry instances handled
by the R.O.B.U.S.T. engine. Mind that these histograms are only for illus-
trational purposes, the optimizer is solely based on the Gaussian approxi-
mations. Shown are the final optimization results for (a) a large amplitude
movement patient and (b) a patient with small amplitude movement. Notice
that the rectum constraint in (b) is not reached.
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Figure 2.17: Sagittal images of prostate (red), bladder (blue), and rectum
(yellow) of a (a) large (b) small amplitude movement patient. The stippled
lines indicate boundaries of organ occupancy levels. Darker tones indicate
a higher probability of the volume of interest occupying a certain region.
Notice that the overlap of prostate and rectum is significantly smaller in
(b). Consequently, as indicated by the isodose lines, the optimizer is able to
irradiate regions with a lower likelihood of prostate occupancy with full dose.
The corresponding treatment outcome distributions are in fig. 2.16.
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This case illustrates the difference between coverage probability and R.O.-
B.U.S.T. While coverage probability introduces spatial weighting solely based
on organ occupancy, R.O.B.U.S.T. maintains the spatial correlation between
volume elements. In other words, contrary to coverage probability, R.O.B.-
U.S.T. assesses the individual outcomes under the influence of uncertainty
along with their respective probabilities. Hence, it can detect extraordinarily
hazardous scenarios (e.g. a sizeable, compact, part of an organ moves into a
high dose region) and adapt accordingly or, conversely, escalate the dose to
the target as long as the effect to the organs at risk in conjunction with the
probability of being realized is justifiable.

2.5 Discussion and Outlook

In the first part of this chapter, a new approach towards robust treatment
plan optimization was presented. Accepting the fact that all outcome metrics
are random variables in the presence of geometry uncertainties, it addresses
robustness in the sense that under all possible uncertainties, the treatment
outcome quality metrics should remain within a specified range across all
treatment fractions. It focuses on controlling the position and width of the
outcome distribution instead of a nominal value of the metric. By quantify-
ing the uncertainty of the treatment outcome for each metric, it provides a
measure for the robustness of the plan.

If the optimization problem is stated like (2.4), precise knowledge of the
outcome distribution is not necessary and the Gaussian approximation is
possible by virtue of the Chebyshev inequality. This greatly reduces the
effort of uncertainty sampling.

Because the method maintains different organ geometry setups, it is able
to preserve correlations in geometric shifts. This means that there are no
more ambiguous prescriptions. However, due to the fact that the method is
offline, there may still be ambiguous dose volumes. Since it also explicitly
takes the shape of the uncertainty distributions of the treatment parameters
into account, it can detect a potentially hazardous scenario and assess its
likelihood. This way, the plan will neither be overly conservative, nor lenient
towards dangerous organ doses.

The robustness regarding the treatment outcome was investigated in
terms of EUD. The method relies on sampling the distribution of each source
of uncertainty. R.O.B.U.S.T. is very versatile because it can handle all
sources of error and is only limited by the available patient uncertainty
model. This is currently a very active field of research. In a number of
works, e.g.[vSSLCO07], new models of motion only depending upon very few
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Figure 2.18: Side-by-side comparison of classical IMRT optimization,

R.O.B.U.S.T. and R.O.B.U.S.T. with Gaussian Processes. The key to
R.O.B.U.S.T. is the optimization of the outcome distribution in place of
the nominal value. Gaussian Processes are introduced to obtain a precise es-
timate of mean and variance with only few samples. This leads to a greatly
reduced computational effort.
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parameters have been proposed. Each of these may leverage R.O.B.U.S.T.

In the second part of the chapter, an algorithm to facilitate the compu-
tation of mean and variance for any dose metric under arbitrary influence of
uncertainty was introduced. It was described how to augment the previously
presented probabilistic optimizer.

The method exploits the fact that practically all dose quality metrics
undergo only minor changes if the fluctuations in the uncertain inputs are
sufficiently small, i.e. the metrics are smooth, continuous functions of the
inputs. Gaussian processes are used to mimic those functions and finally
compute the essential quantities, i.e. mean and variance, analytically. FEr-
rors introduced by the Gaussian process fit are accounted for. Any source
of uncertainty quantifiable in terms of probability distributions can be seam-
lessly included.

Side by side comparisons of the classic and augmented version showed
that Gaussian process regression allows for a significant reduction of samples
to be considered during treatment plan optimization, fig. 2.10.

The augmented R.O.B.U.S.T. algorithm in conjunction with PCA was
implemented into the in-house planning system HYPERION. Investigations
based on four prostate cancer patients showed that R.O.B.U.S.T. delivers
dependable results with realistic computational effort. Large movement pa-
tients, requiring more imagery, are identified at a very early stage during
treatment. This way the method leaves enough room for further measures to
be taken, if necessary. The predicted outcome distributions can be updated
in light of additional data acquired during the course of treatment. This
allows for adaptive radiotherapy schemes.

Because R.O.B.U.S.T. is applicable to any kind of uncertainty, future
work will include the evaluation of its performance in other fields and appli-
cations, e.g. the realm of particle therapy.
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Chapter 3

Uncertainties in Dose Volume
Histograms

The previous chapter dealt with uncertainty management at the planning
stage, i.e. how to take uncertainties into account in the IMRT optimization
process. Given a treatment plan, the complementary need arises to quanti-
tatively evaluate its merits in the presence of uncertainties.

In that context, it is proposed to augment the well established Dose Vol-
ume Histograms (DVHs) with additional information about the impact of
potential error sources.

Approaches pursuing similar goals have been presented [CvHMB02, MUOO0G,
HC08, NHBT09]. The authors of [HCO08] address DVH uncertainty on a per
voxel basis. They propose to compute the DVH based on the average dose re-
ceived by a voxel in the volume of interest. This entails that the uncertainty
distribution for each voxel needs to be known. DVHs based on population
data, (DVPH) have been introduced by [NHBT09]. They describe a method
to incorporate the distribution of systematic and random errors into the DVH
where the magnitude of the geometrical errors is calculated based on the pop-
ulation distribution. The basis of their algorithm is to simulate numerous
treatment outcomes. Despite measures to re-use computed samples, their
algorithm remains computationally expensive.

The approach presented in this work uses Gaussian process regression to
detach the uncertainty analysis from the patient model. The two advantages
that come with this approach are speed and the ability to interpolate DVHs
directly, i.e. without the need to re-compute patient model parameters, e.g.
rigid shifts or deformations for each previously unseen parameter set. The
concept of interpolation of DVHs has been validated in [CvHMBO02]. Their
method of choice is B-spline interpolation. However, as the authors point
out, while B-spline interpolation as applicable in higher dimensions, it scales
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Figure 3.1: Rectum DVHs for a single prostate cancer patient under the influ-
ence of uncertainty. (a) Each DVH corresponds to one of 15CT's taken during
the course of treatment. (b) Interpolated DVHs computed with a Gaussian
process based on the 15 CTs obtained during treatment. Because the GP
generates a DVH for any uncertainty realization, a continuous spectrum of
DVH may be computed. A darker tone indicates a more likely scenario. No-
tice that, especially for doses around 40 Gy, the most likely scenario does not
coincide with the mean.

very poorly in terms of memory consumption. Furthermore, it yields no
statistical information.

In the present work, DV Hs are extended in three ways. Firstly, the DVHs
can be annotated by additional measures, such as biological effect (EUD).
For example, the DVHs of an organ at risk that correspond to a certain EUD
in the target may be extracted. Secondly, by propagating the assumed or
measured error distribution into the DVH, error bars may be supplied. Be-
cause the algorithm establishes a mapping from input uncertainty to DVH
error bars, it is also possible to screen the influence of each input separately.
This substantial information gain facilitates the inevitable trade-off between
organ at risk sparing and tumor control. And thirdly, it is also shown that a
sensitivity analysis can be implemented very efficiently with the tools devel-
oped in the previous two points.
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3.1 Discrimination of Dose Volume Histograms
based on their respective Biological Ef-
fects

Since each uncertain parameter may take a different value at treatment time,
a multitude of scenarios may be realized. Fig. 3.1(a) shows several DVHs
that arise for different treatment scenarios. It is evident from the plot that
single DVHs suffer from limited expressiveness. In order to break the one
image (CT) < one DVH constraint, i.e. move from a few to a host of DVHs
regardless of the available imagery, it is necessary to interpolate DVHs across
the uncertainty space. The goal of this section is to derive a method that
provides an overview over the treatment plan merits as a whole. That is,
instead of only emphasizing the single patient geometry instances, all possible
DVHs along with their likelihood and biological effect are presented.

Mathematically, DVHs can be understood as a function of dose, h : RT
[0,1], i.e. for any given dose d, h(d) returns the percentage of the organ
receiving d Gy or less. Suppose the treatment is subject to random influences
reflected by the S dimensional random variable X, e.g. displacements from
a mean position. Since the DVH reflects the irradiation of a volume of
interest, it is also influenced by the random variable, h(d, X'). This is shown
in fig. 3.1(a) for 15 distinct samples (CTs) of X. To overcome the limit
of only being able to display DVHs of previously recorded CTs, Gaussian
process regression is employed to interpolate between the patient geometry
samples.

Thus, the goal is to learn the behavior of the DVH as a function of dose
and the uncertain parameters, h(d, X), i.e. emulate a RS*! s [0, 1] function
with a Gaussian process. The distinct benefit is that this enables interpola-
tion in uncertainty space. The GP training data are randomly chosen points
from the DVHs depicted in fig. 3.1(a). The result is shown in fig. 3.1(b),
where GP interpolated DVHs are plotted for several realizations of the un-
certain parameters X. Notice the transition from discretely spaced DVHs
in fig. 3.1(a) to a continuous representation in fig. 3.1(b). The DVHs are
shaded based on their likelihood of being realized, i.e. p(x).

In order to assess the merits of a treatment plan, it is useful to consider
biological measures. That means, in addition to purely physical doses, the
expected biological effect is taken into account. Typically, the function that
maps a physical dose to a biological effect is highly organ specific because
organs react differently depending on the irradiation pattern. Using GPs, a
multitude of DVHs can be generated and with added post-processing, ad-
ditional information can be incorporated, fig. 3.2. One could also color the
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Figure 3.2: Bladder DVHs of a prostate cancer treatment plan. The hue
encodes the biological effect (EUD). The likelihood is reflected by the satu-
ration. Notice the broad green region of equal toxicity. The toxicity infor-
mation in conjunction with the likelihood of a given scenario, provides an
overview of the treatment plan merits.

DVHs of the organs at risk based on the EUD of the target to reveal cross-
correlations.

GP regression of DVHs provides a qualitative overview of the risk for
a certain organ that comes with a given treatment plan. A quantitative
analysis of the risk is the subject of the second part of this chapter.

3.2 Quantitative Analysis

Recall that, given an S-dimensional uncertain input, the DVH is a function
of dose d and S-dimensional random variable X, h(d, X). In the previous
section, a method to compute a host of DVHs, independent of the number
of available imagery, was introduced. This was made possible by the use of
Gaussian process regression to interpolate the DVHs at values x, e.g. dis-
placements, where no CT is available. If the probability distribution of the
treatment uncertainties X is Gaussian, p(x) = N(x), error bars indicat-
ing the probability of a deviation from the nominal value can be efficiently
computed. Next, the mathematical foundations for the DVH error bar com-
putation are laid out.

In essence, the DVH error bars are independently computed the at each
dose dy. DVHs at a given dose, h(d = dp), can be interpreted as distribution
of a treatment metric, i.e. the statistical methods that were introduced
in the previous chapter can be re-applied. Notice, however, that in the
previous chapter the integral in (2.24) and (2.25) ran over all inputs of the
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Figure 3.3: Rectum DVH with confidence levels. At every dose, a Gaussian
is computed via BMC. The quantiles are marked in the plot.

GP, whereas now the dose is not integrated out, but held constant at d = d.
Within the framework that was presented in the previous chapter, this can
be conveniently done by setting

p(d) = 6(d — do) = N(d|dp,a)  with a— 0. (3.1)

Thus, the mean and variance of the DVHs at dose d are given by

By [h(do, X)] = / dx p(x)h(do,x)  and (3.2)
vary|[h(do, X)| = /pr(X)h2(d(),X)—Ei[h(do,X)] (3.3)

respectively. Together they provide an indicator of the expected DVH of the
treatment along with an estimate of possible deviations. Again, (3.2) and
(3.3) can be solved analytically if p(x) = N (x).

With the methods at hand, the first step to compute DVH errors bars
is to learn the behavior of the DVH as a function of dose and the uncertain
parameters, h(d, X). The basis of the GP training remains identical to the
previous section, i.e. several samples are taken at random from the DVHs
of each CT, fig. 3.1(a). The resulting GP is shown in fig. 3.1(b). Once the
GP is trained, mean (3.2) and variance (3.3) are computed using Bayesian
Monte Carlo at every dose. With mean and variance at hand, the maximum
entropy principle suggests to assume a Gaussian at each dose. Given this
normality assumption, quantiles can readily be computed. Using the GP
shown in fig. 3.1(b) to compute mean and variance via BMC yields fig. 3.3.

To this point, it was presented how Gaussian process regression can be
used to augment DVHs. The idea is to understand DVHs as functions of dose
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Figure 3.4: Prostate DVHs for 15 CTs taken during treatment with the DVH
of the planning geometry in red.

and uncertainty parameters and that as such, they can be learned and substi-
tuted by GPs. It was shown that the substitution has two major advantages.
Firstly, while classical DVHs are CT bound, GPs can estimate a DVH for
previously unseen patient geometries, i.e. uncertainty realizations. Hence,
the uncertainty space may be traversed freely resulting in a family of DVHs.
Secondly, using the trained GP, quantile information may be obtained by in-
tegrating out the uncertainty parameters. The required computations can be
carried out analytically via Bayesian Monte Carlo, i.e. in place of numerical
integration methods, if the input uncertainty distribution are Gaussian.

While statistical information may already be extracted from fig. 3.3, it
still somewhat lacks a basic property that the plot fig. 3.1(b) exhibits, specif-
ically asymmetry. The normality assumption entails that the mean coincides
with the mode and that uncertainty intervals are equal on both sides of the
mean. In the next section, BMC will be extended to quantitatively predict
the level of asymmetry.

3.3 Accounting for Asymmetry

Perturbations of the DVH typically do not lead to a symmetrical distribution
around the mean as implied by the normality assumption. Consider, for
example, the fact that a DVH that is at unity for a given dose can only
decrease under perturbations, i.e. not all of the organ volume is contained
entirely in the high dose region anymore. The DVH plotted red in fig. 3.4
is the DVH of the planning geometry. Notice that between 55 Gy and 65
Gy, the DVH moves toward lower volumes only. Consequently, the ensuing
asymmetry should be quantitatively taken into account. Thus, the grade of
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Figure 3.5: (a) Probability density functions of the skew normal distribution
for difference choices of the shape parameter . (b) The histogram of the
DVHs in fig. 3.1(b) at 42Gy. Green is the normal approximation based on
mean and variance. To take the asymmetry into account the skew normal
distribution is used (red).

the error bounds is greatly improved by including the skewness,

Ex[(h(d, X) — Ex[h(d, X)])*]
vars [h(d, X)]

skew|h(d, X)] = (3.4)

in addition to mean, (3.2), and variance, (3.3). Typically, the computation of
error bounds is based on the Gaussian distribution. However, the Gaussian
distribution does not allow for the inclusion of skewness. Hence, a distri-
bution is needed that is based on the first three moments to compute error
bars that reflect the asymmetry in the underlying data. In the upcoming
paragraphs, a distribution is presented that can be parameterized in terms
of mean, variance and skewness.

3.3.1 Skew Normal Distribution

Given mean and variance, error bars are typically based on the quantiles of
the normal distribution. The inclusion of the skewness, however, demands
a distribution that includes mean, variance as well as skewness directly or
indirectly as parameters. The extension of the normal distribution to non-
zero skewness has been presented by the authors of [Azz85]. With the density
function of the normal distribution, ¢(x), and its cumulative distribution
function, ®(z), the skew normal distribution density can be written as

fx) = 2¢(x)P(or) (3.5)
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where « is the shape parameter. Fig. 3.5(a) shows the density, (3.5), for
several . For a = 0 the normal distribution is recovered, for a@ > 0 the
distribution is right skewed and for v < 0 the it is left skewed. Via the
transformation z %_5 location £ and scale w parameters are added. The
transformed density now reads

f(:z):%.¢(m;§).<b(ax;£>. (3.6)

The values of &, w and « are estimated via the method of moments from
mean p, variance o2 and skewness v. Given the sample skewness v, the
shape parameter « is computed according to

2

w

vl

0
0=, |7 ————=- (3.7a)
v+ (457)°
where 6 = Tia- With 0 and the sample variance o2, the scale parameter w is
o2
w=il{ (3.7b)

and similarly the location &

fzu—aﬁ\/g. (3.7¢)

These equations are obtained by inverting the relations for mean, variance
and skewness of the skew normal distribution given in appendix B.2. Fig. 3.5(b)
depicts the histogram of the DVHs in fig. 3.1(b) at 42Gy. The Gaussian
(green) was fitted to the histogram based on mean and variance, whereas the
skewed Gaussian (red) was fitted based mean, variance and skewness of the
data.

3.3.2 Extension of Bayesian Monte Carlo to compute
the Skewness in Addition to Mean and Variance

In order to compute the skewness of the DVH distribution in each dose point,
BMC needs to be extended. Previously, details on the computation of the
mean Eg s [Ex[f(X)]] and variance E s [varg[f(X)]] were given in (2.24) and
(2.25), respectively. Similarly, a solution for the skewness will now be derived.
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However, instead of computing E s [skew[f(X)]], the latter is approzimated
with a solution for
3

Epslf] — Ex [Egs(f]]

vary [Efs(f]]
By [E}s[f1] — 3Ex [Egslf]] vary [Eps[f1] — ES [Egs(f1]
vard, [Es1/]] |

skewy [Ef‘s[f]] = Ex

(3.8)

where Ey [Efs[f]] stems from (2.24) and vary [Eys[f]] from (2.26a). This
corresponds to neglecting the GP predictive uncertainty, vargs[f] (2.17c).
To see this, bear in mind that skew, [Eﬂg[ fﬂ computes the skewness solely
based on the mean of the GP, Efs[f] (2.17b). Hence, for GPs with a low
predictive uncertainty, the approximation is reasonable.

The only new term in (3.8) that needs to be computed is Ex [E%S[f]}
With (2.18) this can be rewritten as Ex[(k(X, X)" - 3)3]. In the computation
of the average, only the kernel depends on x,

Exl(b(x. )" 8] = [ dxpo)(bix.x)" - B)
= Z Z Z B35 Bx / dx p(x)k(X, x;)k(X, x;)k(X, xx)
= Z Z Z BB BTk

(3.9)

rendering I' the only quantity of interest. Under the condition of Gaussian
input uncertainty p(x) = N (x|ux, Xx) as well as the usage of the squared
exponential kernel (2.14), there exists a closed form solution

_ 1
Lk =wd }39712,( + ]1| vz, exp (—ﬁ(xi — Xj)T(QQ)i%Xz’ — Xj))

exp <—% (xij — x5) | (gﬂ) R (xij — Xk)) (3.10)

1 1 -
exp <—§ (Xijh — pix) <§Q + Zx) (%3 — ux))

where x;; = %(xmij), Xijp = %(Xi-f—Xj +x;) and x; denotes the [-th training
point. A detailed derivation of (3.10) is given in appendix A.1.

51



Chapter 3. Uncertainties in Dose Volume Histograms

Figure 3.6: DVH with confidence levels. Due to the inclusion of the skewness,
the confidence intervals on both sides of the mode are non-symmetric.

The skew normal distribution is used to compute mode and confidence
intervals. This was done for the rectum DVHs in depicted in fig. 3.1(a).
As opposed to the first analysis which was based only on mean and variance
fig. 3.3 the result of the full analysis is shown in fig. 3.6. The asymmetry that
is apparent in fig. 3.1(b) is now reproduced, greatly increasing the accuracy
of the analysis.

Accounting for a linear offset in the BMC skewness calculation

It was argued in the previous chapter, that the overall fit can be improved
if a linear offset is substracted before the actual GP fit [O’H87]. In essence,
this means that the GP is used to solely represent the non-linear parts of the
behavior. Hence, with m(x) = a'x + b, the GP pu(x), and (3.8), the goal is
to compute the skewness of the sum of both,

Ex [(m(X) + p(X))*] = E [m(X) + p(X)]
e u(X)  m(X)]

3Ex [m(X) + p(X )] ar[(X)+m( )]
Vvard [u(X) + m(X)] .

skewy [m(X) + p(X)] =
(3.11)

To recover expression for which results were given earlier, (3.11) is decom-
posed into expectations and variance of m(X) and p(X) individually, where
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possible. Some algebra yields

B [1°(X)] +E [m*(X))]
Vvard[u(X) +m(X)]
3Ex [p (X) (X)] + 3B [(X)m?(X)]
\/Var?’ (X) +m(X)]

skewy [m(X) + u(X)] =

_ (Ex[m(X )] [M(X)])3
vvarg [u(X) + m(X)]
3 (Bxm(X )] pUX)]) varx[p(X) +m(X)]

Ex [p(X
Vvard[u(X) + m(X)]
(3.12)

The variance of the sum p(X)+m(X) is calculated according to (2.30). Ex-
cept for Ey [u?(X)m(X)], Ex [1(X)m?(X)] and E, [m3(X)], solutions for all
terms have been given. Detailed derivations for the three missing expressions
are given in appendix A.3.

3.4 Determination of Significant Influences

To this point, it was dealt with the overall impact of uncertainty on the DVHs
of a given treatment plan. However, it is also of great interest to screen the
setup for the influence of each source of uncertainty. With the aid of such
information, the practitioner may evaluate whether additional measures for
uncertainty reduction (e.g. IGRT) promise to be worthwhile for a specific
patient.

To conduct a sensitivity analysis, a certain input uncertainty distribution,
e.g. the setup error, is held fixed while the others, e.g. breathing motion
amplitude are varied. A superposition with the DVHs where all inputs were
varied, quickly reveals which factors have a great impact, and may require
special care in planning or treatment.

Based on the techniques that were introduced, this functionality can be
implemented very efficiently. In fact, all computations run in real time be-
cause the Gaussian process emulator decouples all calculations from the orig-
inal patient model. In this context, it is important to note that the input
distribution p(x) which is subject to variation during the analysis, enters
analytically into the computations (2.24),(2.25),(3.8). This reduces the com-
putational effort even further.

The sensitivity of the rectum DVHs, fig. 3.1(a)/fig. 3.6, was examined
with respect to uncertain model parameters. In order to identify the most
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Figure 3.7: Rectum DVH with confidence levels. To screen the influences
quantitatively, the (a) first (b) second input was held constant at its nominal
value. (a) Notice that fixing the first parameter significantly reduces the
spread in the high dose region of the DVH. (b) The second parameter is
clearly responsible for the DVH spread in lower doses, pointing towards the
fact that the rectum is not moved into the high dose region by this parameter.
See also fig. 3.6 for comparison when all inputs are varied.

influential source of errors, they were each held fixed one at a time to their
respective nominal value z. For brevity, it is assumed that the inputs are
independent, i.e. p(x) can be decomposed into [, pi(z;). To employ BMC,
it it necessary to further restrict the input distribution to Gaussians p(x) =
[TN (x|, 07). The results for the first input being fixed, p(x) = p(x|z; =
Z1), at the nominal position are shown in fig. 3.7(a). This parameter is critical
because it does influence the high dose irradiation of parts of the rectum.
Since these localized high dose exposures play a paramount role in triggering
side effects, further control for this patient would be worthwhile. Quite the
opposite is the case for the second parameter, fig. 3.7(b). The movement
encoded by the latter does not influence high dose exposure. However, it
does have an impact on the irradiation of most of the volume. The rectum
being a serial organ, it is not expected that this would affect the treatment
outcome. For an organ with a different dose response, the biological relevance
of both parameters may be reversed.

3.5 Summary and Discussion

The primary goal of this chapter was to incorporate the additional informa-
tion that becomes available in probabilistic patient models into DVHs in a
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meaningful manner. At the core of the introduced techniques lie Gaussian
processes (GPs) that are used to substitute DVHs. It was shown that this
is useful in three distinct ways. Firstly, the extra information can be prop-
agated into the DVH, enabling the calculation of DVH error bars. These
provide an overview of the risks associated with a treatment plan. Secondly,
the computed set of DVHs can be correlated with EUDs, which adds infor-
mation about the biological effect to each DVH. And lastly, the dependencies
of the error bars on the different sources of uncertainty may be investigated
interactively.

Starting from a small number of patient geometries or other models of
geometric setup error, the DVHs are computed for each geometry instance.
These DVHs each represent a particular realization of a treatment with its
assumed probability. The DVHs, along with the uncertainty parametriza-
tion, are used to train a Gaussian process (GP) surrogate model. It replaces
the patient model in subsequent calculations. The analytical structure of
the GP in conjunction with Gaussian input distributions can be exploited
to compute the DVH uncertainty in closed form via Bayesian Monte Carlo
(BMC). Because the input probability distributions enter the analysis ana-
lytically, they can be varied freely without having to resample geometries and
dose calculations from the patient model. This was exploited to implement
a sensitivity analysis. To quantitatively account for inherent asymmetry of
the distribution of DVHs at a given dose, BMC was extended by the com-
putation of the skewness in addition to mean and variance. The ensuing
distribution based on these moments was modelled with the skew-normal-
distribution. The parameters of the latter are estimated via the method of
moments, keeping the necessary computations at a minimum. Notice that
the algorithm is not limited to geometric deviations, but can accommodate
all kinds of uncertainties.

With the methods at hand, it was demonstrated that DVH error bars
provide more clarity than the DVHs computed on the CTs of the patient
alone. Apart from the better overview, quantitative information to facili-
tate risk assessment for a given treatment plan may also be extracted. DVH
error bars prove their usefulness especially in conjunction with sensitivity
analysis. By providing uncertainty-source specific DVH error bars, the ex-
pert gains valuable information about the likelihood that a certain course of
treatment is realized. The introduced method uncovers the otherwise hidden
linkage between a given source of uncertainty and its specific effect on the
DVH. Labelling DVHs according to the corresponding biological effect fur-
ther supports the expert in the evaluation of the merits of a treatment plan
at hand.
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Chapter 4

Spatially Resolved Sensitivity
Analysis

In the previous chapters, a new framework for robust dose optimization and
evaluation was introduced. The optimization algorithm is to negotiate a com-
promise between normal tissue sparing and target coverage. If the objectives
are mutually contradictory, the algorithm will not be able to achieve all ob-
jectives. Quite frequently, the optimum may exhibit underdosage in some
target volume or otherwise does not meet the expectations of the expert,
hence mandating further refinements. As the compromise of the optimizer
may not be easily comprehendable, the need for an analysis of the solution
Space arises.

The IMRT optimization problem can be addressed using constrained op-
timization. This means that any solution has to meet a set of constraints
while an objective function is minimized. Typically, the setup is chosen such
that delivered dose to the tumor is maximized while the dose to the organs
at risk (OAR) is limited by the constraints. In case the dose is not satisfying,
it is necessary to refine the constraints until the plan is acceptable. In order
to do this, the expert needs to know what steps are necessary to tailor the
optimum as needed.

Frequently, if constraints are chosen too tightly, the initial plan is not
satisfactory due to underdosage in the target. Such cold spots are clinically
unacceptable. It is therefore highly desirable to not only determine the active
constraints in the target as a whole, as done by sensitivity analysis [ABN02],
but also spatially resolved.

This chapter introduces a simple, yet powerful heuristic to identify the
set of active constraints for each subvolume of the target not satisfying the
desired dose. The proposed method potentially helps to reduce trial-and-
error adjustments of the constraints to eliminate the cold spot. The expert
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Figure 4.1: (a) Elevated variation grid (grey levels) in zones of conflict. Chi-
asm (purple) and blood vessels (yellow) are OARs. (b) Optimized plan with
PTV (red), chiasm (purple) and blood vessels (yellow). Notice the extended
high dose region towards the OARs.

selects an offending region and the algorithm quantifies the impact of the
constraints, thus supporting in resolving the conflict at hand.

4.1 The Impact of the Organs at Risk on spe-
cific Regions in the Target

In the following, a formula to compute the most influental cost function
for any given voxel in the patient model will be derived. For convenience,
the IMRT optimization problem (2.28) is restated. The kth constraint is
denoted by gx(D). There is only one objective, f(D). The beamlet weights
are denoted by ¢; to model the fluence modulation across the beam. The
dose distribution is the product of the dose operator 7" and the beamlet
weights ¢. The element T}, relates the dose deposited in voxel ¢ by beamlet
J, thus the dose in voxel i is D; = > i T;j¢;. The entire optimization problem
can be stated as

find ¢ such that f(T'¢) — min (4.1a)
while g, (T¢) < ¢y (4.1b)
and ¢; >0 Vj, (4.1¢)

where ¢, is the upper limit of constraint k. Typically, IMRT cost functions
define a mathematical measure of the dose. The measure of a set of voxels
is the sum of its constituent subsets. In that sense, these subsets, labelled
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f(D;) and §(D;) respectively, are entirely local quantities, only depending
upon the dose in a given voxel i. Notice that objectives as well as constraints
can be arbitrary functions of the local dose.

4.1.1 Pointwise Sensitivity Analysis

The algorithm for pointwise sensitivity analysis is based on the gradients,
(2.39), used to solve the IMRT optimization problem, (2.28),

of of 0D,
YU Zz (4-2>
0¢; 0D; 0¢;
1 2
=3 25T (4.3)

In the following, the attention is directed towards the first term, which is
refered to as first variation of the objective. It states that every voxel ¢
in the volume of interest is assigned a value, since it solely depends upon
the local dose at point i by construction. Fig. 4.1(a) depicts the resulting
variation grid of the head and neck case example. It consists of 25 cost
functions being defined in 18 volumes of interest. The target is located in
between the right optical nerve and the chiasm. It comprises ~ 4.2 cm?® and
was prescribed 18 Gy per fraction. The irradiation geometry consists of 6
non-coplanar arcs with 9 beams each. The setup of the optimization problem
included constraints on the maximum equivalent dose (EUD) as well as the
maximum dose of the organs at risk. A constraint for the maximum dose for
the EUD objective was also imposed. Fig. 4.1(a) indicates that in zones of
contradictory objectives, the variation of f is quantitatively elevated. This is
intuitively clear as the objective function, in the present case EUD, is highly
non-linear.

A non-linearly constrained optimization problem is commonly solved by
transformation into an unconstrained subproblem. This is usually done via
the method of Lagrange multipliers (X). The objective function of the un-
constrained problem is the so-called Lagrange function or Lagrangian (L). It
consists of the weighted sum of all constraints and objectives. The Lagrange
formalism will play a central role in the derivation of the algorithm.

L(gp.A) = f(T$) + Y Muge(T) subject to ¢ > 0 (4.4)
k

A necessary condition for the Lagrangian, (4.4), at a minimum is that its
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first variation must vanish, thus

oL

Zaf(;gl Z)\kzagk 2,4
l

Eq. (4.6) can be interpreted as a dose weighted mean of the first variations
along the path of the beamlet. It accumulates negative <8 f / 8D,~> as well

as positive (0gx/0D;) contributions on its way through the patient. If both
contributions compensate, the sum vanishes. In fact, it is the primary goal
of the constrained optimizer to alter the multipliers until this equilibrium is
achieved. Therefore, in the optimum, any beamlet that sees massive negative
contributions by some target structure will also pass through their positive
counterparts in the OARs at some point. In consequence, an elevated varia-
tion in a given target subvolume entails a counterpart in another region, e.g.
organ.

To shed some light on the composition of the dose limiting subvolume,
several steps are necessary. The central idea is to exploit the fact that the
negative and positive contributions to the variation of the Lagrangian must
be equal in the optimum.

Multiplying (4.6) with the dose operator T;; and applying the chain rule
reversely yields:

ZTuaf = an-ag’“—” (4.7

Recall that the dose deposition operator T establishes the link between beam-
let weights, scalar quantities and voxels. By applying the same line of thought
to gradients instead of beamlet weights, the left side of (4.7) can be under-
stood as the potential change of the dose that takes place in a given voxel
1, if a step in the direction of steepest descent of the objective was taken. If
D; was a cold spot, this is the quantity of interest as an improvement of F
means an increase of the dose there. Hence, it is worthwhile to analyze the
single components of the sum on the right hand side. Clearly, the impact
of a constraint on a voxel in the target is reflected by the magnitude of its
contribution to the sum. The term

Nik = Ak ZTz‘j : %j}p) (4.8)

J
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Table 4.1: Results of the analysis for three voxels. The queried voxels are
marked in fig. 4.1(a).
Constraint Voxel 1 Voxel 2 Voxel 3

Dose (% prescription) 59 62 101
Chiasm 1 0.23 0.02
Blood vessel  0.85 1 0.04
Max. Dose 0.0 0.0 1

denotes the impact on a given voxel ¢, induced by a certain constraint cy.
Thus, the expert gains insight into what actions to take in order to address
problems with the dose distribution in the target.

Notice that computing (4.8) is possible almost instantaneously in practice.
Because the constraint derivative g%’; does not contain the voxel index ¢, it
can be precomputed. The dose operator T" as well as the Lagrange multipliers
A are also readily available.

The method was applied to the test case mentioned above. Assume
that the initial optimization run yielded the dose distribution depicted in
fig. 4.1(a). The dosage in the lower left part of the target volume is not
satisfactory. Consequently, a voxel was picked in that region to investigate
which constraints are dose limiting. The results for three voxels are shown in
table 4.1. Because 1 has no physical interpretation, all values are normalized
to the maximum impact. As expected, voxel 1 and 2 receive the highest
influence from the abutting OARs. The elevated value of the blood vessel in
the distant voxel suggests that its overall target influence is higher compared
to the chiasm. After slightly loosening the constraints for chiasm and blood
vessel, the dose distribution looks as in fig. 4.1(b).

4.1.2 Perturbation Analysis

In the previous section, a novel method to perform spatially resolved sen-
sitivity analyses was proposed. It allows the expert to take action directly,
avoiding cumbersome trial and error. In order to further accelerate the plan-
ning process, comprehensive predictions of the outcome of potential changes
are useful. In the present context, this translates into predicting the dose
change if a constraint was altered. However, because constraints are inter-
dependent, a step in the direction of the steepest decent, Vg, is not a good
approximation of the expected outcome.

To see this, recall that in the optimum, the first variation of the La-
grangian vanishes, (4.6). If a constraint is altered, its corresponding La-
grange multiplier changes. This leads to a residual gradient Vg. A step
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Figure 4.2: Iso constraint lines of constraints ¢, co (solid, dashed). The sys-
tem will not follow the gradient Vg (dashed arrow) if ¢; is adjusted, because
that would entail a violation of ¢y. The anticipated behavior is approximated
by the orthogonal projection PVg (solid arrow).

along the direction of Vg may violate the remaining constraints. Hence, the
constrained optimization algorithm chooses a step that does not entail such
violations. The effective direction is the projection PVg, only permitting
dose changes along the isoconstraint lines of the remaining constraints. This
is illustrated in fig. 4.2. Shown are the isoconstraint lines of two constraints.
Suppose that the solid constraint c¢; is under investigation. If the gradient
(dashed arrow, Vg) was followed, the other constraint would be violated.
To alleviate this problem, the orthogonal projection P of the gradient onto
the isoconstraint line (solid arrow, PVg) is used. The projected vector, a
parallel to the unaltered constraint, is a reasonable approximation for the
outcome of the constraint adjustment. Notice that this is a consequence of
solving a constrained optimization problem. Notice also that the resulting
vector has to be projected onto all constraints, allowing for the treatment of
higher dimensional problems.

Fig. 4.3(b) displays the projected dose changes, if a given constraint is
relaxed. As anticipated, the dose changes locally where the OAR meets
the PTV. This suggests that both constraints have to be loosened in order to
achieve a better target coverage. The dose distribution after the adjustments
is shown in fig. 4.1(b).
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(b)

Figure 4.3: (a) chiasm (purple) is loosened (b) blood vessel (yellow) is loos-
ened

4.2 Evaluation and Discussion

In radiotherapy it is crucial to obtain a satisfactory cost-benefit ratio be-
tween tumor control and normal tissue sparing. Experience shows that in
difficult situations, numerous refinements of the initial plan are necessary. In
order to make changes more predictable, [ABN02] put forward a method to
assess the impact of certain contraints on the value of the target objective
in the optimum, i.e. a sensitivity analysis. This is achieved by analyzing the
tangential hyperplane of the Pareto surface in the solution of the constrained
optimization problem.

The novelty is the pointwise 3D analysis of impact of each constraint on
a cold spot in the target. This is especially useful when several constraints
are relevant in the optimization, such that the interplay between the single
objectives is not intuitively clear any longer, e.g. fig. 4.4. It was shown
that in different areas of the target, different constraints may be limiting the
dose. The algorithm enables the expert to quickly screen such scenarios, thus
helping to refine the plan in an efficient manner.
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Figure 4.4: 3D reconstruction of many of the volumes of interest in a head
and neck case. The interconnections between various costfunctions are hard
to overlook intuitively.
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Chapter 5

Summary & Conclusions

This thesis addresses one essential problem of radiation therapy: setup er-
ror, organ movement along with other inevitable sources of uncertainty can
significantly degrade the tumor control probability or increase the risk of
complications.

Based on the workflow of the treatment planning process, this thesis is
divided into three different parts.

First and foremost, an entirely new approach to account for uncertainties
at planning time was presented. The key idea is to quantitatively incorpo-
rate the fact that different uncertainty realizations entail different treatment
outcomes. In essence, the merit of a treatment plan is no longer quantified
by a nominal value but by a treatment outcome distribution. This distribu-
tion, reflecting all possible outcomes, is optimized. This means that every
scenario in conjunction with its likelihood of being realized is taken into con-
sideration by the optimizer. The first step of putting the idea into practice
was to introduce a new formulation of the IMRT optimization problem. This
approach is based upon mean and variance of the treatment outcome metric
and is mathematically justified by the Chebyshev inequality. Numerically,
the front-end for the optimizer is based on a Gaussian approximation of the
treatment outcome metric. Normally, the computation of mean and vari-
ance would require brute force sampling, but it was shown that the smooth
response of the treatment outcome metric to fluctuations in the inputs can
be exploited to drastically reduce the number of patient model evaluations.
This is made possible by employing Gaussian process regression, a machine
learning algorithm. It effectively decouples the patient model, which requires
extremely costly computations, from the subsequent analysis. By introduc-
ing an emulator between optimizer and patient model, all crucial quantities
for the optimization are obtained very efficiently, thus enabling the treat-
ment plan optimization to complete in a clinically feasible timeframe. That

64



Chapter 5. Summary & Conclusions

was demonstrated by implementing the algorithm into a clinical treatment
planning system. It was evaluated on four prostate cancer patients.

Secondly, at the analysis stage of the treatment plan workflow, an ap-
proach to augment classical DVHs to incorporate additional information
made available by non-static patient models that are typically used in ro-
bust treatment plan optimization was introduced. By employing Gaussian
processes, the uncertainty in a DVH under varying conditions can be quan-
tified in real time. The expert is provided with valuable information about
the impact of error sources, and the effectiveness of countermeasures against
them. To increase the accuracy of the analysis, Bayesian Monte Carlo (BMC)
was considerably extended to account for the skewness apart from mean and
variance.

Lastly, a tool was introduced that accelerates any prescription refinement
steps after a plan has been computed and evaluated. Frequently, the plan
resulting from the initial run exhibits spots of insufficient radiation exposure
of the target. The introduced 3D sensitivity analysis helps to illuminate the
interplay between dose limiting constraints and dose maximizing objectives,
thus it helps the expert with the resolution of localized conflicts. While there
are already approaches that reveal the interconnection between organs in a
treatment plan, the presented approach adds spatial resolution, i.e. instead
of treating an organ as a whole, specific subregions can be addressed.

The optimization and evaluation approaches presented in this work are
based on an entirely new line of thought. The optimization algorithm (R.-
O.B.U.S.T.) is versatile in that it is not bound to any specific source of
uncertainty. A proof of principle of the algorithm in conjunction with a de-
formable biomechanical patient model was given. Combining R.O.B.U.S.T.
with other patient models, e.g. rigid shifts to account for setup errors, is
very well possible.

The aforementioned proof of principle of R.O.B.U.S.T. was run with-
out dose recalculations. That is, it was implicitly assumed that the patient
model deformation entailed only negligible dose deviations. Since the algo-
rithm requires only very few patient model evaluations, dose recalculations
are feasible. This is the key to use the algorithm in the realm of heavy par-
ticle therapy, as the dose distributions are highly susceptible to geometric
variations of the patient.

Despite the fact that the current speed is already within the range of
clinical applicability, it can be further improved. Because GP training lies at
the core of algorithm, there is still tremendous acceleration potential by using
sparse approximations during GP training. Furthermore it may be possible
to incorporate the skewness into the optimization. This may be worthwhile
because it enables the optimizer to find even better compromises between
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normal tissue sparing and tumor control.

To this point, clinical dose optimization is conducted on a static patient
model without uncertainty quantification. In contrast, R.O.B.U.S.T. is a fea-
sible method to optimize dose on a probabilistic patient model with quantified
uncertainties. Because treatment is inherently a random process, the quality
of each goal is reflected by a probability distribution within R.O.B.U.S. T,
as opposed to a single number in traditional approaches. Without detailed
uncertainty information, the expert has to rely on experience and good faith
to ensure that the countermeasures against uncertainties are adequate. With
the method presented in this thesis, the effectiveness of countermeasures can
be quantified and explicitly incorporated into the optimization for a more
robust dose distribution.
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Appendix A

Calculations

A.1 Solutions for Bayesian Monte Carlo
The goal is to compute
Exlp® (X)) with p(X) =k X)" -5 (A.1)

where 8 = K~'y € RV*! and a = 1,2,3. The results apply for squared
exponential kernel, (2.14). The input distribution is Gaussian

p(x) = N (x| pix, Xx) (A.2)

Let x; denote the [-th training point. A very useful relation for the
following derivations is the product of Gaussian densities

N(x|my, 3) - N (x|my, Xp) = ¢ N (x|m,, X,) (A.3)
with

c = N<m1’m2> (21 + E2))
m, = (57 4+ (3 my + 25 my)
Y. = (Ert+hH)h

For ko and k. in (2.27) we obtain

k’o = wg (A4)
ke = w207 B+1)7 (A.5)

The solutions for z;, L;; as well as the derivation of I';;x, (3.10), are found in
the following sections.
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Appendix A. Calculations

A1l Eyfu(X)]

Ey[1(X)] = Z zf;  with: (A.6)
zi = /dxp(x)k(x,xi) (A.7)
1 TO-1

= /dx exp (—§(Xi —x)' Q7 (x; — X)) N (x|px, Xx)  (A8)
_ W2em 30k / i N (e, S N (x5, ) (A.9)

= Wi(2m)T|Q2(2n) T |0+ Sy 2

1 T -1
exp (= = 30 (B + 97 e~ x0)) (A.10)

= WIS 17

exp <—%(,ux — %) (Zx + Q) Hpux — XZ)> (A.11)

A1.2 E.[p*(X)]

Ey[1(X)] :ZZLM&-@ with: (A.12)

L, = /dxp(x)k:(x,xi)k(x,xj) (A.13)
= wp(2m) 7|92 (2m) 7|02

/ A N (X, Bo) N (x5, QN (x[x;, Q) (A.14)

= wbem 2| e (-3 x - x)70) " (x—x)

/ Y (xyxij, %Q) N (X, ) (A.15)
= Wi207n, 1]

exp (=506 - x)720) " (x  x))

exp (—gmj )" (5045) e m) (A.16)

where x;; = 1(x; + x;).
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A1.3 E [ (X)]

The details on the computation of (3.10) is presented in the following.

/dxk(xi,x)k:(xj,x)k(xk,x)p(x) (A.18)
wS(?w)%|2§2_1|_% exp <—%(Xi —x;) " (29) " (x; — xj))
(27) 2|02 / dx N (x|xz-j, %Q) N (x| e, S )N (x| x5, Q) (A.19)

e 2130 |F exp (— 5 - x) (290 - )

exp (-%(Xz’j —xi)" <;Q) B (%55 — Xk))
/dx/\f (X|Xijk,%Q) N (x|px, Xx) (A.20)

- 1
U.)g |39712x + ]1| 1/2 - exp (—§(Xz — XJ)T(QQ)il(X,L - X]))

exp <_%( 5—x)T (;9)_1 (xij — xk)>

exp (—% ( ijk — Mx)T (%Q + 2x>_ (Xijk — ,ux)> (AQl)

where x;; = %(Xl +x;) and x;;, = %(XZ— + X + Xp,).

A.2 Details of the Incorporation of Linear

Offset into the Algorithm for the Vari-
ance Computation

In this section, we present the details of the incorporation of the linear offset

into the variance computation. Plugging in the definition of the covariance,
cov(X,Y) = E[XY] - E[X]E[Y], along with m(x) = a’x+b yields for (2.29)
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and (2.30)
Eu8) (0] = B0] BN
= EfuX)]+a'p+b (A.22)
] +a'avar,[X]

varx[(X) + m(X)] = vary[u(X)
+2(Ex[m(X) p(X)]
—Ex[m(X)] Ex[n(X)])
= varg[u(X)]+a'ao?
+2a " (Ex[X (X)) (A.23)
_MXEX[M(X)])'

From (A.23) it becomes apparent that the expectation of X -u(X) is required,

EX (0] = [ dxp(x)xptx) = QK 'y (A.24)

where @) is a N x D matrix, N being the total number of trainings points
and D is the dimensionality of the data. Hence, an extra term to (2.27) is
added

q = /dxp(x)xk(x, X;), (A.25)

where q; is the [-th column of Q).

With the squared exponential kernel, (2.14) and Gaussian input distri-
bution (A.2), the columns of the matrix () can also be computed in closed
form

a = wien? o [ do i S Nk, ) (420
= W27 - |Q+E |72 - Ex[X] (A.27)
)
= - (' +3g )1Q b+ Q7+ 8y )12;1%{)/ (A.28)
E [X]
= - (' + I (% + I ) (A.29)
= 2 (S 1) T (S ) (A.30)
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A.3 Details of the Incorporation of Linear
Offset into the Algorithm for the Skew-
ness Computation

The goal is to compute the skewness of the sum of the linear offset and the GP.
The unknown expressions in (3.12) are Ey [u?(X)m(X)], Ex [(X)m?*(X)]
and Ey [m3(X)]. Ex [12(X)m(X)] and Ey [1(X)m?(X)] can be derived by
extending the computation of L and q in (A.13) and (A.25), respectively.
Again, the results given depend on the use of the squared exponential kernel,
(2.14), Gaussian input noise, (A.2) and m(x) = a'x + b.

A.3.1  Ey [pA(X)m(X)]

Ex [1*(X)m(X)] = Ex [(aX + b)p*(X)]

=a'Ey [Xu(X)?] + bEx [1(X)?] (A-31)

An expression for Ey [p(X)?] has been given in (A.12). The calculation of
Ey [X1(X)?] adds the expectation of X to (A.13).

Ex [Xu ZZL BiB;  with: (A.32)
L, = /dxxp (x,x;)k(x,x;) (A.33)
= Ly 207"+ 37120 %y + 37 x) (A.34)

where we have used (A.3) and (A.13).

A.3.2 Ey [pu(X)m*(X)]

Ey [u(X)m?(X)] = a’aEy [X?u(X)]

. , (A.35)
+ 22 bEx [X p(X)] + BBy [pu(X)]

Except for Ey [X?u(X)], the constituent terms of Ey [u(X)m?(X)] are given
by (A.6) and (A.24).

Ey [X?u(X)] = /dxp(x) x'xp(x)=u Ky (A.36)
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where u is an N-dimensional vector. Similar to the computation of (A.6)
and (A.28), u can be expressed as

u = zl/dxxTxN(x|ux,Zx)N(x|xi,Q) (A.37)

= z ((Q_l + o ht (Q_lxl + Z;l,ux))z
+atr (71 + 2N (A.38)

where we have used that
E[X?] = p? +tr (%) (A.39)

if X is a Gaussian random variable with mean g and covariance matrix .
A.3.3 E, [m*(X)]

Ex [m*(X)] = Ex[a’X®+3a°X%b + 3aXb” + b°) (A.40)
a’Ey [X?] 4 3aE, [X?] b+ 3aB, [X]b+b® (A41)
= a’ (4l + 3uxDx) +3a (3 + Xx) b

+3apb + b° (A.42)

where we have used (A.39) and
E[X?] = i + 3u% (A.43)

if X is a Gaussian random variable with mean p and covariance matrix .
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Details

B.1 Relating the Average Biological Effect to
the Biological Effect of the Average

With the general form of the EUD, (2.7), we can distinguish the following
cases.

Serial complication

Given that the serial complication function, g(D) = D% a > 1, renders
(2.7) a convex function[AN99], it follows from (2.6), that EUD(E[D]) <
E[EUD(D)]. Hence, considering the average EUD as outcome, (2.5), always
overestimates the risk for the patient, i.e. the EUD of the mean dose is
certain to be lower.

Poisson cell kill

The basic reasoning is similar to the serial complication mechanism. How-
ever, (2.7) in conjunction with g(D) = exp(—a D) is concave. Thus, the
relation in (2.6) reverses to EUD(E[D]) > E[EUD(D)]. That is, in case of
the target we underestimate the cell kill by taking the average EUD, (2.5).

Parallel complication

The parallel complication function, g(D) = (1+(Dy4/D)") ", where Dy is
the tissue tolerance dose, is convex for D < Dtol and concave for D > Dtol'
In consequence, the above reasoning cannot be directly applied. However,
typical prescriptions demand that large parts of the organ are kept intact,
hence most of the organ volume is irradiated with D < Dy . For this organ

82



Appendix B. Details

— logistic function

- - - linear extension at inflexion

Figure B.1: The parallel complication cost function (logistic function) is
linearly extended at the inflexion point to be convex on its entire support.
This is useful to relate the mean value of the cost function to the value of
the costfunction based on the mean dose.

subvolume, the estimate (2.5) is, again, an upper bound. For the part of the
organ that may be sacrificed, the average EUD underestimates the risk. But
keeping in mind that (2.5) overestimates the risk of the functional reserve
being destroyed while underestimating the damage to tissue we are willing to
sacrifice, this seems acceptable.

If a safe upper bound is desired the parallel cost function may be linearly
extented at its inflexion point. This ensures convexity for all doses D. This
is shown in fig. B.1.

B.2 Mean, Variance and Skewness of the Skew
Normal Distribution

Given the probability density function of the skew normal distribution (3.6)
with location parameter £, scale parameter w and shape parameter «,

the mean is E+why /2 (B.1a)

the variance w? (1 — ﬁ) and (B.1b)

the skewness

with 0 = ﬁ
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Abstract

The major challenge in intensity-modulated radiotherapy planning is to find
the right balance between tumor control and normal tissue sparing. The
most desirable solution is never physically feasible, and a compromise has
to be found. One possible way to approach this problem is constrained
optimization. In this context, it is worthwhile to quantitatively predict the
impact of adjustments of the constraints on the optimum dose distribution.
This has been dealt with in regard to cost functions in a previous paper. The
aim of the present paper is to introduce spatial resolution to this formalism. Our
method reveals the active constraints in a target subvolume that was previously
selected by the practitioner for its insufficient dose. This is useful if a multitude
of constraints can be the cause of a cold spot. The response of the optimal
dose distribution to an adjustment of constraints (perturbation) is predicted.
We conclude with a clinical example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dose optimization is a vital ingredient in intensity-modulated radiotherapy (IMRT) planning.
The purpose of the optimization algorithm is to assist the expert in negotiating a compromise
between normal tissue sparing and target coverage. If the objectives are mutually contradictory,
the algorithm will not be able to achieve all objectives. In order to resolve these conflicts,
methods are needed that enable the expert to quickly screen the problem.

In order to quantify the merit of a given dose distribution, cost functions are employed in
the optimization (Webb 2000, Wang et al 1995, Bortfeld et al 1997, Raphael 1992). Depending
on the desired dose—response characteristics, many different types have been devised (Romeijn
et al 2004, Censor et al 2006). Whereas physical cost functions act solely on the delivered
dose, their biological counterparts strive to take biological effects into account (Alber and
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Belka 2006, Alber 2008). A widely used concept is equivalent uniform dose (EUD) (Niemierko
1997, Alber and Niisslin 1999, Wu et al 2002, Thieke et al 2003). Olafsson et al (2005)
additionally provide an overview regarding the general development of cost functions. The
particular choice of cost functions for certain organs is of importance as it gives rise to different
amounts of dose inhomogeneity. Quite frequently, the optimum may exhibit underdosage in
some target volume or otherwise does not meet the expectations of the expert, hence mandating
further refinements. As the compromise of the optimizer may not be easily comprehendable,
the need for an analysis of the solution space arises.

One possible approach is to assign a weight factor to each objective, indicating its priority
to the optimizer. Unfortunately, there exists no straightforward method to determine the
weights prior to the optimization since this requires an understanding which criteria are
competing and non-competing. This leads to a trial and error process that involves multiple
optimization runs. Multicriterial optimization is a promising approach to reduce the number
of iterations required (Monz et al 2008, Hoffmann et al 2006). This technique treats each
objective separately, giving rise to a vector-valued objective function. One way to judge the
grade of a solution vector is to use Pareto optimality. A point on the so-called Pareto surface
is characterized by the fact that no criteria can be improved without worsening another. In
practice, the Pareto surface is approximated by generating a variety of plans (Craft et al
2007). From that surface, the practitioner then selects the best plan for the case at hand
(Thieke et al 2007).

Alternatively, the IMRT optimization problem can be addressed using constrained
optimization (Alber 2000, Alber and Reemtsen 2007). This means that any solution has
to meet a set of constraints while an objective function is minimized. This translates into the
delivery of a prescribed dose to the tumor while limiting the dose deposited in organs at risk
(OAR). Clearly, the target dose is limited only by the imposed constraints. In case the dose
is not satisfying, it is necessary to refine the constraints until the plan is overall acceptable.
In order to do this, the expert needs to know what steps are necessary to tailor the optimum
as needed (Alber er al 2002). Varieties of the constrained optimization approach have been
introduced by Jee et al (2007) and Wilkens et al (2007).

For the sake of simplicity, assume that all normal tissue objectives have been given
maximum priority so that only the target underdosage reflects the conflicting objectives. More
often than not, the initial plan is not satisfactory due to underdosage in the target. Such cold
spots are clinically unacceptable. It is therefore highly desirable to not only determine the
active constraints in the target as a whole, as done by sensitivity analysis (Alber et al 2002),
but also in certain subregions. In this paper we present a simple yet powerful heuristic to
identify the set of active constraints for each subvolume of the target not satisfying the desired
dose. The proposed method potentially helps to reduce human iteration loops, where the
constraints are adjusted to eliminate the cold spot. The expert selects an offending region
and the algorithm quantifies the impact of the constraints, thus supporting the practitioner in
resolving the conflicts at hand.

2. Methods and materials

2.1. Prerequisites

Before elaborating on the algorithm, we briefly review a generic approach to IMRT
optimization. The kth constraint, which is a function of the dose distribution D, is denoted by
G (D). For the sake of simplicity, assume that there is only one objective, F'(D). Typically,
these cost functions define a mathematical measure of the dose. The measure of a set of voxels
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Figure 1. Left panel: optimized plan with underdosage region. Right panel: optimized plan with
adjusted constraints. (a) Elevated variation grid (gray levels) in zones of conflict. Chiasm (purple)
and blood vessels (yellow) are OARs. (b) Optimized plan with PTV (red), chiasm (purple) and
blood vessels (yellow). Note the extended high dose region towards the OARs.

is the sum of its constituent subsets. In that sense, these subsets, labeled f(D;) and g(D;)
respectively, are entirely local quantities, only depending upon the dose in a given voxel i.
Hence, cost functions structurally resemble volume integrals. Note that objectives as well as
constraints can be arbitrary functions of the local dose (Alber 2008, Romeijn et al 2004).

The incident beams are discretized into so-called beamlets or bixels. Each one of those
beamlets is assigned a weight ¢; to model the fluence modulation across the beam. The dose
distribution is the product of the dose operator T and the beamlet weights ¢. The element T;;
relates the dose deposited in voxel i by beamlet j, thus the dose in voxel i is D; = ) i T,
The entire optimization problem can now be stated as

find ¢ such that F (T ¢) > min (la)
while G (T @) < cx (1b)
and ¢; > 0V}, (1)

where ¢y is the upper limit of constraint k. It is self-evident that the optimum depends upon c.
Consequently, the constraints need to be adjusted if the result does not meet the requirements
onF.
In order to solve the above optimization problem efficiently, the gradients of the objectives
are needed. Applying the chainrule yields
oF af 9D;

a5 _ It )
99; 5 Di 39,

= —T;;. 3

In the following, we direct our attention toward the first term, which we refer to as first
variation of the objective. It states that every voxel i in the volume of interest is assigned
a value, since it solely depends upon the local dose at point i by construction. Figure 1(a)
depicts the resulting variation grid of our head and neck case example. It consists of 25 cost
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functions being defined on 18 volumes of interest. The target is located in between the right
optical nerve and the chiasm. It comprises ~4.2 cm? and was prescribed 18 Gy per fraction.
The irradiation geometry consists of 6 non-coplanar arcs with 9 beams each. The setup of the
optimization problem included constraints on the maximum equivalent dose (EUD) as well
as the maximum dose of the organs at risk. A constraint for the maximum dose for the EUD
objective was also imposed. Figure 1(a) indicates that in zones of contradictory objectives,
the variation of F is quantitatively elevated. This is intuitively clear as the objective function,
in our case EUD, is highly nonlinear.

A nonlinearly constrained optimization problem, (1), is commonly solved by
transformation into an unconstrained subproblem. This is usually done via the method of
Lagrange multipliers (A). The objective function of the unconstrained problem is the so-
called Lagrange function or Lagrangian (L). It consists of the weighted sum of all constraints
and objectives. The Lagrange formalism will play a central role in the derivation of
our algorithm.

L. N) =F(Tp)+ Y nGi(To) subjectto ¢ > 0. 4)
k
A necessary condition for the Lagrangian, (4), at a minimum is that its first variation must
vanish, thus
oL

——~ =90 5
09, ®

_ Z 3f(Dl) Ti; + Z)\k Z 8gk(Dm) T 6)

Equation (6) can be interpreted as a dose weighted mean of the first variations along the path
of the beamlet. It accumulates negative (3f/d D;) as well as positive (dgx /9 D;) contributions
on its way through the patient. If both contributions compensate, the sum vanishes. In fact, it
is the primary goal of the constrained optimizer to alter the multipliers until this equilibrium is
achieved. Therefore, in the optimum, any beamlet that sees massive negative contributions by
some target structure will also pass through their positive counterparts in the OARs at some
point. In consequence, an elevated variation in a given target subvolume entails a counterpart
in another region, e.g. organ.

2.2. Algorithm

2.2.1. Pointwise sensitivity analysis. To shed some light on the composition of the dose
limiting subvolume, several steps are necessary. The central idea is to exploit the fact that
the negative and positive contributions to the variation of the Lagrangian must be equal in the
optimum.

Multiplying (6) with the dose operator T;; and applying the chain rule reversely yields

Z . aF(T@ Z " Z - aGk(f¢) -
]

./

Bear in mind that the dose deposition operator 7 establishes the link between beamlet weights,
scalar quantities and voxels. By applying the same line of thought to gradients instead of
beamlet weights, the left side of (7) can be understood as the potential change of the dose that
takes place in a given voxel i, if a step in the direction of steepest descent of the objective was
taken. If D; was a cold spot, this is the quantity we are interested in as an improvement of F'
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Table 1. Results of our analysis for three voxels. The queried voxels are marked in figure 1(a).

Constraint Voxel 1  Voxel2  Voxel 3
Dose (% prescription) 59 62 101
Chiasm 1 0.23 0.02
Blood vessel 0.85 1 0.04
Maximum dose 0.0 0.0 1

means an increase of the dose there. Hence, it is worthwhile to analyze the single components
of the sum on the right-hand side. Clearly, the impact of a constraint on a voxel in the target
is reflected by the magnitude of its contribution to the sum. By

oG (T
nik=kk27}j'$ ®)
j J

we denote the impact on a given voxel i, induced by a certain constraint c¢;. Thus, the expert
gains insight into what actions to take in order to address problems with the dose distribution
in the target.

Note that computing (8) is possible almost instantaneously in practice. Because the
constraint derivative % does not contain the voxel index i, it can be precomputed. The dose
operator T as well as the Lagrange multipliers A are also readily available.

We applied the method to the test case mentioned above. Assume that our initial
optimization run left us with the dose distribution depicted in figure 1(a). The dosage in
the lower left part of our target volume is not satisfactory. Consequently, we pick a voxel in
that region to investigate which constraints are dose limiting. The results for three voxels are
shown in table 1. Because 1 has no physical interpretation, all values are normalized to the
maximum impact. As expected, voxels 1 and 2 receive the highest influence from the abutting
OARs. The elevated value of the blood vessel in the distant voxel suggests that its overall
target influence is higher compared to the chiasm. After slightly loosening the constraints for
chiasm and blood vessel, the dose distribution looks as in figure 1(b).

2.2.2. Perturbation analysis. Inthe previous section, we proposed a novel method to perform
spatially resolved sensitivity analyses. It allows for the expert to take action directly, avoiding
cumbersome trial and error. In order to further accelerate the planning process, comprehensive
predictions of the outcome of potential changes are useful. In the present context, this translates
into predicting the dose change if a constraint was altered. However, because constraints are
interdependent, a step in the direction of the steepest decent, VG, is not a good approximation
of the expected outcome.

To see this, recall that in the optimum, the first variation of the Lagrangian vanishes, (6). If
a constraint is altered, its corresponding Lagrange multiplier changes. This leads to a residual
gradient VG. A step along the direction of VG may violate the remaining constraints. Hence,
the constrained optimization algorithm chooses a step that does not entail such violations. The
effective direction is the projection P VG, only permitting dose changes along the isoconstraint
lines of the remaining constraints. This is illustrated in figure 2. The isoconstraint lines of
two constraints are shown. Suppose that the solid constraint c; is under investigation. If we
were to follow the gradient (dashed arrow, VG), the other constraint would be violated.
To alleviate this problem, we use the orthogonal projection P of the gradient onto the
isoconstraint line (solid arrow, PVG). The projected vector, a parallel to the unaltered
constraint, is a reasonable approximation for the outcome of the constraint adjustment. Note
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Figure 2. Isoconstraint lines of constraints ¢, ¢z (solid, dashed). The system will not follow the
gradient VG (dashed arrow) if ¢; is adjusted, because that would entail a violation of ¢;. The
anticipated behavior is approximated by the orthogonal projection PV G (solid arrow).

(a) chiasm (purple) is loosened (b) blood vessel (yellow) is loosened

Figure 3. Dose change prediction (by gray level) if (a) the chiasm or (b) the blood vessel constraint
is loosened. The projected gradients of the objective function, PV F are shown. Note the local
dose increase around the OAR in question.

that this is a consequence of solving a constrained optimization problem. Note also that the
resulting vector has to be projected onto all constraints, allowing for the treatment of higher
dimensional problems.

Figure 3 displays the projected dose changes, if a given constraint is relaxed. As
anticipated, the dose changes locally where the OAR meets the PTV. This suggests that
both constraints have to be loosened in order to achieve a better target coverage. The dose
distribution after the adjustments is shown in figure 1(b).

3. Discussion and conclusion

In radiotherapy it is crucial to obtain a satisfactory cost—benefit ratio between tumor control
and normal tissue sparing. Experience shows that in difficult situations, numerous refinements
of the initial plan are necessary. In order to make changes more predictable, Alber et al
(2002) put forward a method to assess the impact of certain constraints on the value of the
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target objective in the optimum, i.e. a sensitivity analysis. This is achieved by analyzing the
tangential hyperplane of the Pareto surface in the solution of the constrained optimization
problem.

In the spirit of the previous paper, the present work introduces spatial resolution into this
framework. The novelty is the pointwise analysis of impact of each constraint on a cold spot in
the target. This is especially useful when several constraints are relevant in the optimization,
such that the interplay between the single objectives is not intuitively clear any longer. It was
shown that in different areas of the target, different constraints may be limiting the dose. The
algorithm enables the expert to quickly screen such scenarios, thus helping to refine the plan
in an efficient manner.
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Purpose: Organ movement is still the biggest challenge in cancer treatment despite advances in
online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted
precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and
maxDose) are random variables with a patient-specific probability distribution. The method that the
authors propose makes these distributions the basis of the optimization and evaluation process.
Methods: The authors start from a model of motion derived from patient-specific imaging. On a
multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting
pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the
outcome distribution based on its mean and variance. This is in contrast to the conventional opti-
mization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean
and variance allow for an estimate of the expected treatment outcome along with the residual
uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes
the organs at risk (OARs).

Results: The likelihood that a given value of a metric is reached in the treatment is predicted
quantitatively. This information reveals potential hazards that may occur during the course of the
treatment, thus helping the expert to find the right balance between the risk of insufficient normal
tissue sparing and the risk of insufficient tumor control. By feeding this information to the opti-
mizer, outcome distributions can be obtained where the probability of exceeding a given OAR
maximum and that of falling short of a given target goal can be minimized simultaneously.
Conclusions: The method is applicable to any source of residual motion uncertainty in treatment
delivery. Any model that quantifies organ movement and deformation in terms of probability dis-
tributions can be used as basis for the algorithm. Thus, it can generate dose distributions that are
robust against interfraction and intrafraction motion alike, effectively removing the need for indis-

criminate safety margins. © 2010 American Association of Physicists in Medicine.
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I. INTRODUCTION

In the presence of deviations from the planning patient ge-
ometry, there will be a difference between applied and
planned dose. Hence, the delivered dose and derived treat-
ment quality metrics become random variables.'™

Evidently, the statistical nature of the treatment also
propagates to the treatment quality parameters, e.g., dose
volume histogram (DVH) points or equivalent uniform dose
(EUD).5 Any one of these metrics becomes a random vari-
able, having its own patient-specific probability distribution.
This distribution indicates the likelihood that a certain value
of the metric will be realized during a treatment session.
Because the outcome distribution is sampled only a few
times, namely, the number of treatment sessions, it becomes
important to consider the width of the distribution in addition
to the mean value.>®’ The wider a distribution becomes, the
more samples are necessary to obtain reliable estimates of
the mean. In the treatment context, this translates into the
need to minimize the distribution width of the quality metrics
to arrive at the planned mean of the metric with a high prob-
ability (Fig. 1). This is to assure that the actual prescription is
met as closely as possible in every course of treatment.
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The standard approach to address this problem is to ex-
tend the clinical target volume (CTV) to obtain a planning
target volume (PTV).® Provided that the margin is properly
chosen,”'” the dose to any point of the CTV remains almost
constant across all fractions, leading to a narrow distribution
of possible treatment outcomes (Fig. 2). However, the PTV
concept only addresses the target, not the organs at risk
(OARs). The addition of margins for the OARs was sug-
gested by McKenzie et al.,"! leading to planning risk vol-
umes (PRVs). This increases the inevitable overlap region of
mutually contradictory plan objectives even more."?

In order to overcome these problems, numerous ap-
proaches have been suggestedw_23 that explicitly incorporate
the magnitude of possible geometric errors into the planning
process. Depending on the authors’ view on robustness, and
thereby the quantities of interest, the proposed methods are
diverse.

The method of coverage probabilities can be regarded as
the most basic extension of the PTV concept in that it assigns
probability values to a classic or individualized PTV/PRV to
indicate the likelihood of finding the CTV/OAR there."’
Baum ef al."® address the problem of overlapping volumes of

© 2010 Am. Assoc. Phys. Med. 4019
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FI1G. 1. The important properties of a treatment outcome distribution. (1)
The mean should be close to the prescribed dose. (2) The distribution should
be as narrow as possible because patients are treated in only a few treatment
sessions.

interest by incorporating a coverage probability based on
several CTs into the optimization process. Through these oc-
cupancy maps, the specific motion of the organs in essence
replaces the more unspecific margins. Even though the prob-
lem of overlapping volumes is alleviated, it is not solved.
The respective probability clouds of the organs may still very
well have common regions, since there is no notion of cor-
related motion. A related concept, namely, the optimization
of the expectation of tumor control probability and normal
tissue complication probability was investigated.21 Note that
coverage probability is still based on a static patient model,
i.e., the dose is evaluated in dose space, not relative to the
moving organs.14

In contrast, other authors use deformable patient models
to track the irradiation of every single volume element
(voxel). This means that while dose scoring and evaluation is
done in a reference geometry of the patient, the dose is cal-
culated on the deformed model. Chu ef al."> and Olafsson
and Wright16 propose a method that models organ movement
as uncertainties in the dose matrix. In essence, their method
addresses the robustness of the dose on a per voxel basis;

target
EUD
target margin increase >
organ
at risk

EUD

FIG. 2. The treatment outcome distribution (e.g., in terms of EUD) plotted
against target margin width. If the target margin becomes larger, the target
distribution becomes more and more located (top three panels). The contrary
is the case regarding the organ at risk distribution. With increasing target
margin, this distribution widens toward higher doses as the gradient moves
into organ space.
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thus, their method is restricted to physical objective func-
tions. Birkner et al.™* brought forth a method of accounting
for uncertainties by substituting the nominal dose in each
voxel of a reference geometry with an effective dose. The
effective dose is obtained by averaging the doses in the voxel
over several geometry instances. This also allows for the use
of biological cost functions. A similar approach with the ad-
dition of dose recomputation for each geometry instance has
been presented.lg'lg’22

Naturally, all the above methods require precise informa-
tion about the patient movement prior to treatment. Due to
the limits of available information, these deformation models
themselves provide for another source of errors. A method to
take these errors of the model of motion into account has
also been suggested.17

In consequence, even concepts that go beyond margins to
alleviate the impact of geometric variation have to deal with
uncertain outcome metrics.

We propose a general probabilistic optimization frame-
work, robust optimization based upon statistical theory (R.O-
.B.U.S.T.), for any type of cost function that pays tribute to
the statistical nature of the problem by controlling the treat-
ment outcome distribution of target and OARs alike. Any
treatment parameter, for which the uncertainty is quantifi-
able, can be seamlessly incorporated into our framework. By
actively controlling the outcome distribution width during
the optimization process, the finite amount of treatment frac-
tions is considered. Here lies one of the major differences to
Unkelbach and Oelfke.® While their work aims to optimize
mean and variance of the dose in each voxel, we strive to
control the distribution of the treatment outcome metric as a
whole.

When evaluating a treatment plan, the expert is provided
with valuable additional information to facilitate the inevi-
table tradeoff between tumor control and normal tissue spar-
ing, ultimately resulting in a robust custom tailored plan for
each individual patient.

Il. METHODS AND MATERIALS
Il.A. Prerequisites

As the exact patient geometry configuration during treat-
ment is unknown, the delivered dose becomes a statistical
quantity. Due to the statistical nature of the delivered dose,
all associated quality metrics become random variables, in
the following denoted by Y for objectives and Z for con-
straints. Because the geometric uncertainties are specific for
every individual patient, the probability distribution of the
quality metrics for any given plan is also patient specific.
Hence, it is worthwhile to consider the shape of the outcome
metric distribution p(y) instead of just a nominal value y for
the outcome.

We postulate two basic properties, that any outcome dis-
tribution of a robust plan should possess (Fig. 1). First of all,
it is important that the planned value of the metric and the
mean of the distribution coincide, i.e., the delivered dose
should resemble the planned one. If the treatment had very
many fractions, this condition would suffice to ensure that
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Fic. 3. Exemplary outcome distributions in relation to the aspired treatment
outcome region. The top row illustrates the two-sided target cost function
(e.g., the area of acceptable treatment outcomes could range from 95% to
105% of the prescribed dose). The distribution in the left panel is entirely
located within the acceptable region, indicating that the patient would re-
ceive the proper dose during all courses of treatment. While the distribution
width in the middle panel is sufficiently small, its mean is too low, pointing
toward an underdosage of the target. The distribution on the right panel is
too wide and its mean too low. In practice, this means that there is a sig-
nificantly reduced chance that the patient will receive proper treatment. The
bottom panels show the one-sided OAR cost function (the area of acceptable
outcomes ranges up to 100%). From left to right, the complication risk
increases. Note that even though the mean in the middle panel is lower than
on the leftmost panel, the overall distribution is less favorable.

the proper dose is delivered. In this case, sessions with a less
than ideal delivery would be compensated by many others.
However, in a realistic scenario, a failed treatment session
cannot be compensated entirely. It is therefore also necessary
to take the outcome distribution width into consideration. By
demanding that the outcome distribution should be as narrow
as possible, it is ensured that any sample taken from it, i.e.,
any treatment session, is within acceptable limits. This issue
becomes more serious for fewer treatment sessions.

Consequently, any robust treatment optimization approach
should keep track of the respective outcome distributions for
the involved regions of interest. In case of the target, it is
desirable to keep the distribution narrow and peaked at the
desired dose. The organ at risk distributions, however, should
be skewed toward low doses and only a controlled small
fraction should be close or above the threshold. This ensures
that in the vast majority of all possible treatment courses, the
irradiation of the organ at risk is within acceptable limits
(Fig. 3).

The R.O.B.U.S.T. algorithm extends our approach to in-
tensity modulated radiotherapy optimization.24 We employ
the method of constrained optimization to maximize dose to
the target while maintaining reasonable organ at risk dose
levels. In this context, the kth constraint, which is a function
of the dose distribution D, is denoted by g,(D). For the sake
of simplicity, assume that there is only one objective, f(D).
All cost functions can be physical (maxDose or DVH) or
biological (EUD or gEUD). The incident beams are dis-
cretized into beamlets or bixels. Each one of these beamlets
is assigned a weight ¢,. The dose distribution is the product
of the dose operator 7 and the beamlet weights ¢. The ele-

Medical Physics, Vol. 37, No. 8, August 2010

Start with initial
beamlet weights

Compute dose < Chanﬁ:igﬁ{asmlets

Compute
cost
functions

Constraints fullfilled &
objective min.?

Finished

(a)

Start with initial
beamlet weights

Compute < Change beamlet

weights

ROBUSTL ............ ;

Compute N elementary
cost functions per
RO.B.US.T. cf

v

Evaluate mean and
variance of N
elementary cf values

v

Compute Gaussian
approximation with
computed mean and
variance

v

Evaluate objectiy
function

Constraints fullfilled &
objective min?

YES

Finished

FIG. 4. (a) Constrained optimization in conjunction with classic cost func-
tions. (b) Our probabilistic approach. Notice that the algorithm is entirely
concealed from the optimizer, hence no alterations are necessary.

ment T}; relates the dose deposited in voxel i by beamlet j,
thus the dose in voxel i is D;=2,T;;¢;. The entire optimiza-
tion problem can now be stated as

find ¢ such that f(T'¢)+— min, (1a)
while g, (T¢) = ¢y, (1b)
and ¢;=0 V, (1c)

where ¢, is the upper limit of constraint k. It is evident that
the optimum depends on c¢. An outline of the algorithm is
shown in Fig. 4(a).
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I1.B. Algorithm

The course of treatment is subject to several sources of
uncertainty (e.g., setup errors). Suppose each of these
sources is quantified by a geometry parameter (e.g., displace-
ment distance), its value indicating a possible realization dur-
ing treatment. The precise value of any of these geometry
parameters is unknown at treatment time, making them sta-
tistical quantities. Thus as random variables X, they have
associated probability distributions p(x), indicating the prob-
ability that a certain value x is realized. These input distri-
butions need to be estimated prior to planning based either
on pretreatment data, data acquired during the course of
treatment, or population data.

The initial step is to obtain reliable estimates of the mean
and the variance of the outcome distribution p(y) given the
input uncertainty p(x). First a number of samples x; _y is
drawn from the uncertainty distributions. Then, for all those
geometry instances the outcome metric y,=f(D,x;), 0=k
=N is computed. If this is repeated sufficiently often, i.e., for
large N, the treatment outcome distribution p(y) can be ob-
tained and alongside an estimate of the probability mass M
present in the desired interval I;.

I < f(X) eItol

0 & fXEL, @

M[Y]= f dxp(x)

The interval I is the green area in Fig. 3. However, there
are two major problems with this approach. First and fore-
most, for dependable estimates, this method becomes pro-
hibitively expensive, especially with dose recalculations in-
volved. Second, the quantity of interest, Eq. (2), cannot be
computed in closed form, an essential requirement for effi-
cient optimization schemes.

Typical prescriptions in radiotherapy demand that the in-
terval contains large parts of the probability mass, i.e., 95%
of all outcomes must lie within. That means that the exact
shape of the actual distribution loses importance. Instead of
trying to obtain the entire outcome distribution, we assume
that its tails can be approximated by a Gaussian. The idea is
shown in Fig. 5. Given this assumption, it is sufficient to
compute mean E,[Y] and variance var,[ Y]. It is important to
note that even if p(y) does not resemble a normal distribu-
tion, the above approximation is still reasonable in the con-
text of the proposed prescription scheme [Eq. (2)]. Tt is suf-
ficient to assume that the tails of p(y) (two-sided for target
volumes, one-sided for OARS) can be described by the tails
of the Gaussian NM(y|E,[ Y], var,[Y]). This approximation be-
comes more powerful for fractionated treatments because of
the central limit theorem.

Incorporating the assumption above, we can state that the
probability mass enclosed in the interval of interest can be
computed analytically

max I,
M[Y]~ f dyN(y[E[Y],var,[Y]), 3)

min Ly

which is crucial for the formulation of an objective function
for the optimizer. The new optimization problem reads
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FIG. 5. (a) The tails of the actual outcome distribution are approximated
with a Gaussian with identical mean and variance to enable us to formulate
a cost function in closed form. (b) In case of the target, the area of the tails
of the Gaussian, depicting undesirable outcomes, is minimized. In other
words, the optimization aims to squeeze the treatment outcome distribution
into the set interval.

maximize M[Y], (4a)
subject to 1 —M[Z] = c,, (4b)
and ¢;=0 V. (4¢)

It is desirable to quantify the error introduced by the ap-
proximation in Eq. (3). The Chebyshev inequality provides
for an estimate. Loosely speaking, it states that if the vari-
ance of a random variable is small, then the probability that
it takes a value far from its mean is also small. If Y is a
random variable with mean wu and variance o2, then

1
P(|Y - u| = ko) =

E, k=1 (5)

limits the probability of a sample being drawn k standard
deviations away from the mean, independently of the density
p(y). For the problem at hand, k is calculated by determining
how many standard deviations fit in the prescription interval
I,,;- If most of the probability mass is already concentrated in
the desired area, its spread is relatively small compared to
the extent of the acceptable region. This means that k is
large, and by virtue of Eq. (5), the probability of a sample
lying outside I, is low. This holds regardiess of what the
real outcome distribution may look like. Since the Gaussian
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The final algorithm is illustrated in Fig. 4(b). Its incorpo-
ration into an existing optimizer is straightforward, since the
method can be encapsulated. In Fig. 4(b), the entire algo-
rithm is encased in the red box which acts as a single cost
function to the outside. In summary, the algorithm works as

(1) For each of the N geometry instances, the cost function
f is computed, y,=f(D,x;), | =<k=N.
(2) Mean E,[Y], and variance var,[Y] of those N samples

(3) Use mean and variance to approximate a Gaussian
NO[EJY],var¥)) (Fig. 5),

(4) Compute the objective function, Eq. (3), and return the
value to the optimizer.

1l.B.1. Accounting for fractionation

We have mentioned earlier that the spread of the outcome
distribution becomes increasingly important as we move to-
ward smaller fraction numbers. This is substantiated by the
law of large numbers in probability theory.25 In this section,
we quantify the previous observation and augment our cost

In the present context, the final outcome can be regarded
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FIG. 6. (a) An arbitrary distribution (foreground) is approximated by a
Gaussian (background) with identical mean and variance. (b) The error
made by the Gaussian approximation is bounded from below by the Cheby-
shev inequality. The more probability mass is enclosed in the desired inter-
val (increasing k), the tighter the bound becomes.

approximation tries to squeeze the probability mass into the
interval, it points the optimizer into the right direction, inde-
pendently of the actual shape of p(y). Further refinements
regarding the error bounds are possible, but beyond the
scope of this paper.

In order to visualize the quality of the Chebyshev inequal-
ity, consider Fig. 6(a). Suppose the red area reflects the out-
come distribution. The blue Gaussian included in the figure
has identical mean and variance. The green bars are the up-
per and lower limits of the desired interval.

Figure 6(b) shows the behavior of the Chebyshev bound
as a function of the interval width, i.e., k in Eq. (5). The red
dashed curve is the area enclosed in the interval for our ex-
emplary pdf. For illustrational purposes, we also included the
Gaussian approximation, which serves as objective function
for the optimizer. As the optimizer squeezes increasing
amounts of the Gaussian inside the interval, it also inevitably
forces the actual distribution inside. Notice that the actual
distribution depends on the intermediate treatment plans of
the iterative optimization, and hence constantly changes its
shape. The more the dose distribution approaches the opti-
mization goal, the less probability mass stays outside the
prescription interval and the better the Gaussian approxima-
tion and the tighter the Chebyshev bound become.
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as the sample mean (for details regarding this approximation,
please see the Appendix) of all n sessions

E?:l Y;

n

A (6)

n

The random variable A, has mean E,[A,]=E,[Y]=u and
variance vary[A,]=var[Y]/n=0?/n. Again, we employ the
Chebyshev inequality, Eq. (5), to obtain an approximation
for the probability mass inside the prescription interval. With
k=¢e/o0 and the mean and variance of A,

0,2
P(A, - ul=e) =~ (7)

is obtained, where ¢ is the maximum error we are willing to
tolerate. We observe that the probability of a treatment vio-
lating the requirements, i.e., the realized outcome is more
than & away from the prescription, is proportional to the
variance of a single fraction o2, and goes to zero as the
number of treatment fractions n increases. Further refine-
ments can be made by reintroducing our Gaussian approxi-
mation. The accuracy of the approximation increases with
the number of fractions n, as indicated by the central limit
theorem.” It states that the sum of a large number of inde-
pendent random variables is approximately normal. The ac-
tual convergence rate depends on the shape of Y, For ex-
ample, if Y; was uniformly distributed, n ~ 8 would suffice.”
The ensuing probability mass is computed analogously to
Eq. (3),
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max lml
MIA,] = f dyNOIESA, JvargA,)

min Ly

max Ly varx[Y]
=f dy/\/<)’|Ex[Y],T : (8)
min L

By explicitly including fractionation effects in the cost func-
tion, Eq. (8), the influence of the variance is regulated. That
is, we quantitatively account for the fact that a given number
of fractions offers a certain potential for treatment errors to
even out. Note that in the limit of very many fractions, we
recover our initial statement that the mean value alone suf-
fices to ensure proper treatment.

lll. RESULTS

In this section, we compare R.O.B.U.S.T. to the PTV
method and a method that controls the dose variance in each
point of a volume, proposed by Unkelbach and Oelfke.” We
utilize a simplified 2D model implemented in MATLAB (The
MathWorks, Inc., Natick, MA). It is driven by the con-
strained nonlinear multivariable function optimizer from the
MATLAB optimization toolbox. For brevity, we only consider
rigid movement in two directions. Recall that our method is
by no means restricted to rigid movement; the inclusion of
further sources of uncertainty is deemed unnecessary to il-
lustrate the optimization problem and its solution. Our model
consists of one tumor as well as two organs at risk. We
employ biological cost functions.”® The Poisson cell kill
model was chosen for the target. The organs at risk were
chosen to be represented by the parallel and serial complica-
tion model, respectively. There are four beams impinging on
the target, each having 100 beamlets. To avoid artifacts such
as a very high modulation of the beam profiles, a penumbra
was also modeled [Jelen et al.,”’ Eq. (3)]. The input uncer-
tainty was chosen to be independent Gaussians, i.e.,
p(x)=I1p;(x) =II:M(x;]0,07). The variances o7 were all
equal, implying isotropic movement. In order to compute
mean and variance, 1000 sample geometries were drawn
from X prior to the optimization. To save computation time,
these were used throughout the optimization process. Under
the assumption of a static dose distribution, the cost func-
tions of each geometry were computed and subsequently
mean and variance obtained.

The geometry is depicted in Fig. 7(a). In order to make
the setup challenging, the tumor is embedded in the organs at
risk. The parallel organ is located to the lower left side of the
tumor, whereas the serial organ is on the right side.

lllLA. Comparison to PTV based optimization

We computed several plans using the described model
optimizer. First of all, we created a plan disregarding any
uncertainties, i.e., all prescriptions were to the CTV, called
the nominal plan. As expected, the possible treatment out-
comes in terms of EUD for the tumor are wide spread [Fig.
7(b)]. Notice that the organ at risk distributions are mostly
within the acceptable region.
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Next we employed the PTV approach to increase the ro-
bustness in the target. The margin was set to one o. As ex-
pected, the target outcome distribution is well localized
around the prescription [Fig. 7(c)]. However, compared to
the nominal plan, the dose to the adjacent organs is clearly
elevated. Moreover, the potentially delivered dose in slightly
shifted setups lies greatly beyond the nominal threshold. This
emphasizes the fact that the PTV concept as a whole ignores
the dose to the nearby organs.

The goal for R.O.B.U.S.T. was to fit the target outcome
distribution in between 97% and 103% of the prescribed
EUD. At the same time, no more than 10% of all possible
outcomes were allowed to exceed the organ at risk con-
straints. The resulting distributions, along with their Gauss-
ian approximations, are depicted in Fig. 7(d). While the tar-
get distribution closely resembles its margin counterpart, the
EUDs of the organs at risk are significantly lower. Notice
also that the target distribution of R.O.B.U.S.T. is left-
skewed. This can be explained by taking a closer look at the
OAR Gaussian approximations. Both already exceed the
EUD limit by 10% [red part of the Gaussians in Fig. 7(d)],
thereby preventing further improvements to the objective.

Table I shows a brief summary of the test runs.

lll.B. Comparison to Unkelbach robust optimization
scheme

In the following paragraphs, we briefly compare R.O-
B.US.T. to the method of Unkelbach and Oelfke.’ They
argue that the variance due to a finite amount of treatment
fractions needs to be accounted for and they quantitatively
incorporate the number of fractions in their cost function.
According to Unkelbach and Oelfke,’ Eq. (7), the cost func-
tion for the target is

fuD)= X (Ex[Di]—DCTV)2+1(EX[D?]—E§[DJ) 9)
ieCTV n

and for the kth organ at risk, they propose

(D)= 2 (EJAD]-Doar);» (10)
icOAR,

where (-), is the one-sided overdose, D; is the dose to voxel
i, and D¢y and Doag, are the prescriptions for target and
organs at risk, respectively. Notice that not unlike Eq. (8), the
influence of the variance decreases as the number of frac-
tions increases in Eq. (9).

While Egs. (9) and (10) are designed to tightly control the
dose delivered to each voxel, the optimization of Eq. (3) and
(8) implies control over the outcome distribution of an entire
volume. In consequence, our approach allows intervolume
tradeoffs of the mean dose per voxel, a basic requirement for
biological cost functions. Their approach deals exclusively
with the voxelwise quadratic deviation cost function
(D-Dy)*.

For the following comparison, we set n=30 fractions.
Each point of the histograms in Fig. 8 consequently repre-
sents the average over 30 sample geometries. Note that the
target distribution, Fig. 8(d), now lies entirely in the desired
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FIG. 7. The model geometry and treatment outcome histograms obtained from several methods. (a) The organ setup. Tumor (center, Poisson model), parallel
organ (lower left), and serial organ (right). In the histograms [(b)—(d)], the highlighted area denotes the region of acceptable dosage. The horizontal axes show
the percentage of the prescription for the respective organs. Note that these histograms apply for a single fraction. (b) The treatment outcome histogram for
the plan without motion compensation. (c) The PTV margin greatly reduces the width of the target distribution, but worsens the organ at risk counterparts. (d)
The outcome distributions along with their Gaussian approximation in the probabilistic case (R.0.B.U.S.T.).

interval [as opposed to Fig. 7(d)]. This is because the vari-
ance is rescaled by the number of fractions and therefore the
OAR constraints allow for a higher mean EUD to the target.
Also note that the distributions look Gaussian. This is a di-
rect consequence of the central limit theorem.

For the Unkelbach approach, we initially set Dcpy to the
target EUD value and Doag, were chosen according to their

TaBLE 1. The first column indicates what fraction of treatment outcomes
would be in the 97%-103% prescription interval [Eq. (2)]. The second and
third columns show the percentage of treatment outcomes that are over the
defined threshold for the serial and parallel organ at risk, respectively.

Tumor Serial OAR  Parallel OAR
All cases Max. 10% of cases
Goal 97%—-103% presc. Overconstraint
No compensation 43% 0% 7%
PTV plan 96% 48% 47%
R.0.B.U.S.T. plan 92% 10% 9%
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respective EUD tolerance doses. For better comparability,
the optimized dose was slightly rescaled for the serial organ
doses to match. The outcome distributions of the Unkelbach
method are shown in Fig. 8(c). The target EUD distribution
lies outside the desired interval, due to a persistent cold spot
that is heavily penalized by the Poisson EUD. It is also sig-
nificantly wider than its R.O.B.U.S.T. counterpart. Further-
more, the parallel organ is overdosed due to a relatively high
mean dose.

We also examined the results of both methods based on
the criteria suggested by Unkelbach and Oelfke.” Figure 8(a)
shows the DVH of the expected dose in the respective re-
gions of interest. Both methods exhibit underdosage in the
target. However, the Unkelbach method enforces stricter
tradeoffs between the standard deviation and the mean dose
in a voxel, which results in a larger volume being under-
dosed than by R.O.B.U.S.T., which increased the mean dose
slightly to minimize the most extreme cold spots. This is also
reflected by the respective EDVH.
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FIG. 8. A brief comparison of the Unkelbach method and R.O.B.U.S.T. The solid lines in (a) and (b) are from the Unkelbach method whereas the dashed lines
stem from R.O.B.U.S.T. (a) The DVH of the expected dose. The dotted horizontal line shows the prescription for the target. (b). The standard-deviation-
volume-histogram provides insight over the dose variability in each voxel. Note that in SDVHs, better graphs are further left, i.e., less variability in the dose.
For more transparency, additionally to the comprehensive SDVH in the top left panel, we included three SDVHs, each for a different dose interval. The EUD
treatment histograms for the (c) Unkelbach method and (d) R.O.B.U.S.T. It is important to note that these plots consider 30 fractions. Consequently, each entry
in the histograms is the average over 30 randomly drawn sample geometries.

Additionally, Unkelbach and Oelfke’ propose to examine
the standard-deviation-volume-histogram to visualize the un-
certainty of the dose prediction provided by the expectation
value. The SDVHs for R.O.B.U.S.T. and the Unkelbach
method are shown in the top left plot of Fig. 8(b). R.O-
.B.U.S.T. succeeds for the target because the standard devia-
tion is consistently lower than its counterpart from the Un-
kelbach method. The R.O.B.U.S.T. SDVH for the parallel
organ, however, shows increased variability for about 30% of
the volume. This can also be attributed to the dose gradient
in the parallel organ as its cost function penalizes homoge-
neous irradiation. This can be seen in the top right plot in
Fig. 8(b). The maximum standard deviation of the dose to the
functional reserve, i.e., the part of the volume in the low dose
region (0%—40% of prescribed dose), is similar to its coun-
terpart from the Unkelbach method. The higher dose SD-
VHs, i.e., the bottom plots in Fig. 8(b), however, show an
increased standard deviation which is acceptable because
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the irradiated volume may be sacrificed. In essence,
R.O.B.U.S.T. shapes the dose distribution such that the func-
tional reserve is kept intact under all circumstances that may
occur based on their respective probabilities p(x).

Notice that in the absence of constraints, both methods
tend to deliver near identical results (data not shown). How-
ever, as soon as constraints come into play, R.O.B.U.S.T.
benefits from its larger space of potential solutions, due to
the incorporation of nonlocal effects and absence of voxel-
wise constraints.

IV. DISCUSSION AND CONCLUSION

We have presented a new approach toward robust treat-
ment plan optimization. Accepting the fact that all outcome
metrics are random variables in the presence of geometry
uncertainties, it addresses robustness in the sense that under
all possible uncertainties, the treatment outcome quality met-
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rics should remain within a specified range across all treat-
ment fractions. It focuses on controlling the shape of the
outcome distribution instead of a nominal value of the met-
ric. By quantifying the uncertainty of the treatment outcome
for each metric, it provides a measure for the robustness of
the plan.

If the optimization problem is stated like Eq. (3), precise
knowledge of the outcome distribution is not necessary and
the Gaussian approximation is possible by virtue of the
Chebyshev inequality. This greatly reduces the effort of un-
certainty sampling.

Because our method maintains different organ geometry
setups, it is able to preserve correlations in geometric shifts.
This means that there are no overlapping regions of interest
in the patient model. Since it also explicitly takes the shape
of the uncertainty distributions of the treatment parameters
into account, it can detect a potentially hazardous scenario
and assess its likelihood. This way, the plan will neither be
overly conservative, nor lenient toward dangerous organ
doses.

In this work, we investigated robustness regarding the
treatment outcome in terms of EUD. The method relies on
sampling the distribution of each source of uncertainty.
R.O.B.U.S.T. is very versatile because it can handle all
sources of error and is only limited by the available patient
uncertainty model.

Accelerations in the evaluation of the R.O.B.U.S.T. cost
functions to make the method suitable for clinical problems
are possible and are subject of future work. %%

APPENDIX: DETAILS ON THE EVALUATION OF
EUD ACROSS FRACTIONS

We have stated earlier that we regard the final treatment
outcome EUD as the average of the EUDs of its constituent
sessions. However, the quantity of interest is typically the
EUD of the cumulative dose. Taking into account the respec-
tive properties of the EUD functions, one can establish a
relation between the two quantities. Given a convex function
f and a random variable D, Jensen's inequality30 establishes
a link between the function value at the average of the ran-
dom variable and the average of the function values of the
random variable, namely,

J(E[D]) = E[f(D)].

The converse holds true if f is concave. With the general
form of the EUD

(A1)

EUD(D) =g-‘(1V2 g(Dv>), (A2)

veV

we can discriminate the following cases.

I. Serial complication

Given that the serial complication function g(D)=D<,
a=1, renders Eq. (A2) a convex function,’® it follows from
Eq. (Al), that EUD(E[D]) =E[EUD(D)]. Hence, consider-
ing the average EUD as outcome, Eq. (6), always overesti-
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mates the risk for the patient, i.e., the EUD of the mean dose
is certain to be lower.

Il. Poisson cell kill

The basic reasoning is similar to the serial complication
mechanism. However, Eq. (A2) in conjunction with
g(D)=exp(—aD) is concave. Thus, the relation in Eq. (A1)
reverses to EUD(E[D]) =E[EUD(D)]. That is, in case of the
target we underestimate the cell kill by taking the average
EUD [Eq. (6)].

lll. Parallel complication

The parallel complication function g(D)
=(1+(Dy/D)")™" is convex for D=D,,; and concave for
D=D,,. In consequence, the above reasoning cannot be di-
rectly applied. However, typical prescriptions demand that
large parts of the organ are kept intact, hence most of the
organ volume is irradiated with D <D,. For this organ sub-
volume, the estimate Eq. (6) is, again, an upper bound. For
the part of the organ that may be sacrificed, the average EUD
underestimates the risk. But keeping in mind that Eq. (6)
overestimates the risk of the functional reserve being de-
stroyed while underestimating the damage to tissue we are
willing to sacrifice, this seems acceptable.

In summary, we have shown that using the average EUD
as outcome metric for fractionated radiotherapy is viable be-
cause it leads to underestimation of tissue damage for the
target and overestimation of tissue damage for the organs at
risk.
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Abstract

Frequently, radiotherapy treatments are comprised of several dose distributions
computed or optimized in different patient geometries. Therefore, the need
arises to compute the comprehensive biological effect or physical figure of
merit of the combined dose of a number of distinct geometry instances. For
that purpose the dose is typically accumulated in a reference geometry through
deformation fields obtained from deformable image registration. However, it
is difficult to establish precise voxel-by-voxel relationships between different
anatomical images in many cases. In this work, the mathematical properties of
commonly used score functions are exploited to derive an upper boundary for
the maximum effect for normal tissue and a lower boundary for the minimum
effect for the target of accumulated doses on multiple geometry instances.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The need to compute the combined effect of several dose distributions in distinct geometries
arises in a number of applications. For example, some approaches to 4D IMRT optimization
optimize dose simultaneously on multiple geometries (Birkner et al 2003, McShan et al 2006,
Sohn et al 2009, Trofimov et al 2005) by warping the dose in each instance to a reference
geometry, thereby realizing optimization in ‘tissue-eye-view’. Also in combined modality
treatment, e.g. brachytherapy and external beam therapy, the overall effect has to be computed
(Osorio et al 2010). Similar problems occur with the dose recomputation in mobile organs,
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e.g. prostate on daily cone beam CT (Morin et al 2006, Rong et al 2010). Since particle therapy
is very sensitive to geometry changes, especially in regions with heterogeneous density, doses
have to be computed on several geometries and subsequently combined (Soukup et al 2009,
Knopf et al 2010).

All of these methods require a correspondence between the volume elements (voxels) of
each geometry instance to add up each dose contribution correctly. In general this requires
deformable registration. Given the independently computed doses in each patient geometry,
the voxel correspondence is used to warp the individual doses back to some reference geometry.
In this reference geometry, the doses are accumulated and evaluated. Unfortunately, there are
several issues with this approach. The computation of the deformation fields is fraught with
uncertainties and difficult to verify. The computation frequently needs human surveillance
and the data set may be incomplete or disturbed by artifacts. Some organs, especially bowel,
are difficult to model because of variations in filling and the lack of fiducials. Incomplete
knowledge of the extent of movement due to infrequent and sparse imaging may also affect the
accuracy of the model. Additionally, special care must be taken to ensure energy conservation
during dose warping and accumulation. Dose distributions are frequently analyzed with score
functions that are a sum over all volume elements of an organ. In contrast to pointwise scores,
a lot of the effort that goes into correct dose accumulation is washed out in the summation.
Very often, these score functions are convex, which opens a possibility for very powerful
estimations of their true value without going through the process of proper dose accumulation.

This note derives how the mathematical properties of commonly used cost functions, e.g.
equivalent uniform dose (EUD) (Niemierko 1997), can be exploited to compute boundaries
of the combined effect of the dose distributions in different geometries. These boundaries
are computed without the need for deformable registration. For the target, lower boundaries
will be given, and for the critical structures upper boundaries. Thus, a worst case scenario
is obtained that may be used for a quick scoring of a treatment plan at only a fraction of the
cost of a full analysis. The method is demonstrated on a prostate case with interfractional
movement and a 4D lung case.

2. Methods and materials

Suppose F is a score function and let Dy be the dose distribution of the full treatment applied
to the kth geometry instance ;. For dose accumulation, a reference geometry I is chosen.
Dy, denotes the warped dose in the reference geometry, i.e. the deformation field from I to I
applied to dose Dy. Hence, the quantity of main interest, the accumulated dose, is

N—1
1 . .
EID] = Y Dy with Dy = Dy. 1
k=0

Note that the accumulated dose is expressed as an average in (1). Average and sum are
equivalent because the dose distribution may be rescaled by a constant factor.

Dose warping as well as dose accumulation is a linear operation and therefore the dose
integral of Dy over the volume of interest equals that of Dy. This is a direct consequence of
energy and volume conservation. By virtue of this, and by way of definition

F(Dy) = F(Dy). 2
If no deformation field is available, the single doses D, cannot be warped back to the

reference geometry, and in other words Dy is inaccessible. However, by virtue of Jensen’s
inequality (Jensen 1906) for a convex function F,

F(E[D]) < E[F(D)] = E[F(D)] 3
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can be established. Conversely, for concave functions F, (3) reverses to
F(E[D)) > E[F(D)] = E[F(D)], )

where E[F(D)] = 1/N Z,](V:_Ol F(Dy) is the sum of the score function evaluated for each
original geometry instance. The equality relations in (3) and (4) are due to (2).

Convex functions (curved upward) are commonly associated with normal tissues or other
dose-limiting objectives. Examples include maximum dose, one-sided dose-limiting quadratic
penalty and EUD for serial organs (Alber and Niisslin 1999), i.e. f(D) = D% a > 1. Note
that the mean dose is also covered by the inequality because it is synonymous with the serial
EUD cost function with a = 1. The parallel EUD (Alber and Niisslin 1999) is an exception
because it is neither convex nor concave; however, it can still be handled within the proposed
framework, see below. A commonly used cost function for the target volume, the Poisson cell
kill EUD (Niemierko 1997, Alber and Niisslin 1999), is concave.

In practice, this means that in the case of normal tissue the score function value of the
accumulated dose (F(E[D])) is always smaller than the sum of the score functions of the
instance doses (E[F(D)]) (3). For the target, the EUD of the accumulated dose is always
larger than the sum of the EUDs of the instance doses (4). Hence, using Jensen’s inequality,
worst case boundaries for the score function of the accumulated dose can be derived without
the need for a deformable registration model.

Note that EUD and other cost functions are volume averages and are therefore insensitive
to changes of the absolute volume of some organ or tumor. Still, uncertainties in delineation
or volume shrinkage can introduce errors into the above inequalities. In order to maintain
the validity of the inequality, it is sufficient to formulate a worst case. For normal tissue, this
would be equivalent to using the smallest volume of the organ of interest in any geometry
instance to normalize EUD in each instance. In case of tumor shrinkage, it is helpful to resort
to the mechanistic basis of the model. Tumor EUD is derived from the initial number of
clonogenic cells, which can be expressed as the mean cell density times the tumor volume.
Under the assumption that no clonogenic cells are lost from the initial population by effects
other than those caused by radiation, the primary quantity cell number is preserved despite
volume loss. A volume reduction then results in an increase of clonogenic cell density. For the
purpose of inequality, the EUDs of different geometry instances may be added although they
pertain to differently sized volumes since EUD is independent of cell density. However, if the
quantity of interest were the expected number of surviving clonogens instead, the increase in
cell density would have to be considered.

The parallel complication function f(D) = (1 + (Dy1/D)?)~" is convex for doses below
the dose Dy, and concave for doses above, i.e. it has a point of inflection at D = Dy,. In
consequence, the above reasoning cannot be directly applied. However, typical prescriptions
demand that large parts of the organ are kept intact; hence, most of the organ volume is
irradiated with doses below Dy,. For this fraction of the volume, (3) applies, i.e. the damage
is overestimated. To account for the entire volume of the parallel organ, the cost function can
be convexified by linear extrapolation at the point of inflection, see figure 1.

Note that the above relation (3) is not valid for dose—volume constraints. Table 1 contains
an overview of the properties of commonly used score functions.

3. Results and discussion

The presented method is valuable because it provides a safe upper boundary on normal tissue
doses and effects, and a safe lower boundary for tumor EUD. It is applicable even if deformation
fields are not available or tumor shrinkage makes warping and accumulation difficult.



N126 B Sobotta et al

L — logistic function ,
- = =linear extension at inflexion ’

1 1 1 J

Figure 1. The parallel complication cost function (logistic function) is linearly extended at the
inflection point to be convex on its entire support.

Table 1. Properties of various cost functions.

Cost function Property

Poisson cell kill EUD Concave

Parallel EUD -

Generalized EUD k > 1 Convex

(Serial EUD)

Generalized EUD k£ <1  Concave

Average dose Convex and concave
DVH constraints -

Maximum dose Convex

Quadratic deviation Convex

penalty

To illustrate one possible application, the method was applied to a prostate cancer case.
Target, bladder and rectum (wall) EUDs were evaluated in 18 geometries and their averages
computed, table 2. The biomechanical model, which is the basis of the deformation field
for the dose accumulation, is based on Yan et al (1999). The EUD computations based on
the accumulated dose and the estimated boundaries yielded 71.601 Gy (> 70.31 Gy) for the
prostate, 59.897 Gy (< 61.28 Gy) for the bladder and 56.675 Gy (< 57.8 Gy) for the rectal
wall. As predicted, for the target the average EUD in table 2 is lower than the EUD of the
average dose. The contrary is the case for the organs at risk. Resultingly, a useful worst case
approximation of the EUDs was obtained without dose accumulation.

To illustrate another application, the method was employed for a 4D lung cancer case.
The EUDs for the gross tumor volume (GTV) (Poisson cell kill) and the lung (mean dose)
were investigated. The basis were eight 4D CT scan instances taken during a breathing cycle.
Each of these instances is associated with an instance weight that was computed from the
breathing PDF. It reflects the relative fraction of a breathing cycle that is represented by a
given instance. During dose accumulation, the doses of the respective instances were also



Properties of common biological score functions

N127

Table 2. EUDs for 18 patient geometries and their average.

Prostate Bladder Rectum
Poisson EUD (Gy)  Serial EUD (Gy) Serial EUD (Gy)
CT# a=04 a=2~8 a=12
1 71.73 59.24 63.7
2 70.81 58.61 49.56
3 55.28 62.62 42.41
4 71.7 57.21 57.35
5 70.68 62.80 48.75
6 71.7 60.07 60.9
7 71.63 62.49 54.89
8 64.18 63.97 58.16
9 71.76 60.43 59.44
10 71.5 58.14 64.41
11 71.87 63.72 58.39
12 71.79 60.96 61.16
13 71.63 61.04 62.23
14 71.95 63.76 58.08
15 71.88 64.43 59.16
16 71.67 61.48 58.12
17 71.87 61.65 62.31
18 71.88 60.38 61.46
70.31 61.28 57.80

Table 3. Instance weights and EUDs for GTV and lung from a breathing cycle (inhale (In) exhale

(Ex) respiratory levels in the range 0-100) and the weighted sum of the EUD.

GTV EUD  Weighted GTV EUD Lung EUD weighted lung EUD

Breathing Poisson EUD Poisson EUD
phase Weight (Gy)a =04 (Gy)a =04

Serial EUD Serial EUD
Gy)a=1 (Gy)a=1

01In 0.402  48.029 19.312
251In 0.088  48.127 4.229
50 In 0.077  49.656 3.800
75 In 0.084 49.661 4.190

100Ex  0.117 48.250 5.629
75Ex  0.033 50.718 1.682
S0Ex  0.048 49.851 2.379
25Ex  0.152  49.661 7.528

48.749

4.66
4.48
4.37
4.24
4.29
4.38
4.43
4.51

1.874
0.394
0.334
0.358
0.501
0.145
0.211
0.684

4.501

weighted. For details, please refer to Sohn et al (2009). The EUD of the accumulated dose is
49.835 Gy (> 48.749 Gy) for the GTV and 4.501 Gy (£ 4.501 Gy) for the lung. Again the
prediction in table 3 proves to be a worst case estimate. Note that the EUDs for the lung are
equal for both methods by necessity, reflecting energy and volume conservation. This is due
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to the fact that the mean dose score function is linear, hence concave and convex at the same
time.

Further applications of this relation have been outlined in the introduction, whereby the
combination of brachytherapy and teletherapy is of particular usefulness in practice. Here,

EUD(Dggt + Dpr) < EUD(DgpT) + EUD(DRT) (5)
for normal tissues and
EUD(Dggt + Dpt) = EUD(DEBT) + EUD(DRT) (6)

for targets. This work also lays the foundation for robust optimization schemes that require
no deformation fields (Sobotta et al 2010). The application of Jensen’s inequality to the
optimization of doses for variable patient geometries is the subject of future work.

4. Conclusions

A method to derive boundaries on the score function of the accumulated dose of multiple patient
geometries was presented. By virtue of Jensen’s inequality and the mathematical nature of
commonly used score functions, in particular EUD and other biological score functions, it is
possible to compute a worst case approximation on the combined effect of doses applied to
variable geometries. Because the approach circumvents the computation of the accumulated
doses by means of deformation fields, it eliminates the need for deformable registration and
dose warping.
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This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009
at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of
institutions actively involved in particle therapy delivery and research. The purpose of the 4ADTPW
was to discuss current approaches, challenges, and future research directions in 4D-treatment plan-
ning in the context of actively scanned particle radiotherapy. Key aspects were addressed in plenary
sessions, in which leaders of the field summarized the state-of-the-art. Each plenary session was
followed by an extensive discussion. As a result, this article presents a summary of recommenda-
tions for the treatment of mobile targets (intrafractional changes) with actively scanned particles
and a list of requirements to elaborate and apply these guidelines clinically. © 2010 American
Association of Physicists in Medicine. [DOI: 10.1118/1.3475944]
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Il. OVERVIEW dose calculation techniques, together with the inherent
uncertainties of these approaches,

advanced treatment planning approaches including 4D
optimization for proton and heavy ion therapy,
treatment simulations and experimental validation of
scanning in the presence of motion to quantify the ef-
fects for different delivery strategies, and

The 4D-treatment planning workshop (4DTPW) focused on
technical aspects of 4D-treatment planning and delivery in
the context of intrafractional motion. Consequences of in-
terfractional motion are, for example, examined in Refs. 2
and 3. The topics which were discussed at the 4DTPW in-

cluded e latest developments in beam tracking, gating, and
* methods to take into account intrafractional, nonrigid rescanning.
anatomical changes and resulting variations in densities This report is structured in two parts. First, in Sec. II, an

through the use of deformable image registration and overview of the current status of motion mitigation ap-
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proaches for scanned particle therapy is given and areas for
future investigation are identified. Second, in Sec. III, some
suggested research directions (from the point of view of the
participants of the workshop) in the field of 4D-treatment
planning are summarized. Final comments are given in Sec.
Iv.

Il. CURRENT OPTIONS FOR THE TREATMENT
OF TARGET LOCATIONS SITUATED
IN TEMPORALLY CHANGING ANATOMICAL SITES

There are many ideas of how to mitigate effects due to
temporal changes in anatomy (e.g., breathing). Such changes
can be taken into account during planning simply through the
use of the internal target volume (ITV) approach4 or using
the more sophisticated approach of 4D-inverse planning.s’6
Alternatively, treatments planned on a static geometry can be
delivered in a way that compensates for changes of the
anatomy. This approach is followed in beam rescanning, gat-
ing, and tracking. For the three latter techniques, the com-
mon expectation is that none of the methods represents the
ultimate solution. Rather, different approaches have different
advantages in different scenarios. Many of the motion man-
agement strategies rely on motion information acquired prior
to the actual treatment (for example, 4DCT). In this case, one
should always be aware that 4DCTs only provide a snapshot
of the present motion and the resulting uncertainties at the
time of treatment should be taken into consideration. The
parameters which should be considered in the choice of the
motion management approach include the following:

e The facility specifications such as scanning speed (en-
ergy modulation speed, time for lateral position adjust-
ment, and dose rate), the available scanning method
(raster-scan, spot-scan, and continuous scan), the deliv-
erable dose resolution, the time latency (in actively con-
trolled beam delivery), and the available imaging tools;
patient specific parameters such as the target volume
and location, surrounding critical structures, motion pa-
rameters, clinical status, and patient compliance, and

e the fractionation scheme used.

Below, we summarize the current status of motion man-
agement approaches in particle therapy and identify areas for
future investigation.

Il.LA. Margin-based approach

The use of margins alone for motion management is likely
not sufficient for scanned particle beams because of interplay
effects.” Nonetheless, margins and ITVs could be required
also for scanned particle beam treatments since some motion
management techniques are of limited precision and thus
margins have to cover for the uncertainties. This is especially
important for rescanning which does not perform any sur-
veillance of the patient’s motion and thus relies on margins.
Implementation of the ITV, or any margin approach, using
concepts defined for photon beams may well be invalid for
protons and heavy ions due to the high sensitivity of the dose
distribution to density variations in the entrance channel. Al-
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ternatives to a margin definition in geometrical units (e.g., a
5 mm CTV-PTV margin) that is, for example, based on
water-equivalent units, approaches incorporating the depen-
dence of the dose on the density variations, are discussed in
Refs. 8—11. The development of general margin recipes re-
quires further investigation.

II.B. Rescanning

With rescanning,'” the ITV/PTV is irradiated multiple
times within each field delivery, with the rationale that inter-
play effects will be smoothed out and thus a homogeneous
coverage of the CTV is achieved. However, this will inevi-
tably be at the cost of therapeutic dose in the internal mar-
gins that form the PTV. Multiple delivery modes for per-
forming rescanning exist, with the most prominent
distinction being whether the scans are first repeated within a
2D energy layer (slice-by-slice rescanning) or the whole 3D
volume is rescanned (volumetric rescanning).® In both
modes, different repainting strategies can be employed as,
for example, scaled rescanning, for which the beam weight
of each scan position is divided by the number of rescans or
isolayered rescanning, for which fixed beam weights are ap-
plied per rescan.''* When implementing rescanning, par-
ticular awareness has to be given to machine specifications
such as the scanning speed, the scanning method, and the
dose deliverable resolution which can place limitations on
the rescanning approach.

For the determination of the appropriate repainting strat-
egy, the fractionation scheme, number of fields," as well as
the number and temporal sequence of the energy layers con-
tributing to a beam position should be considered. For a
single-field-uniform-dose plan,16 all of these parameters have
been shown to contribute an intrinsic rescanning effect,
which should be considered in the decision of how many
rescans and what type of rescanning should be employed.
Extensive simulations and experimental work are required to
comprehensively evaluate these effects for different patient
and plan parameters. Synchronization effects due to the pe-
riodicity of target motion and individual rescans, especially
for repetitive scaled rescanning, are a potential source of
large underdosage in the CTV.3" Their impact has to be
studied more extensivelyx’18 and possible solutions, such as
the introduction of random pauses between rescans,16 have to
be investigated.

II.C. Gating

Gating refers to an irradiation technique in which the
beam is turned on during specific motion phases only, the so
called gating window.'”?’ Gating thus requires a motion
monitoring system that determines the motion phase of the
patient during treatment delivery. Reviews on motion moni-
toring methods are given by Murphy and Evans.”'** Gating
has been used for treatment with scattered particle beams for
several years.lg’zo’23 For application to scanned beams, the
residual motion within the gating window and the scanning
process interfere, leading to a residual interplay effect.”**
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To mitigate this interplay effect, a combination of
rescanning26 and an increased overlap between neighboring
pencil beams have been proposed.24

With respect to treatment planning, gating requires opti-
mization of gating window size and the parameters that miti-
gate the dosimetric effect of the residual interplay. Robust-
ness analysis to investigate the effect of baseline drifts,
limited precision of the motion monitoring system, and
variations in patient breathing parameters are also required.

II.D. Beam tracking

Beam tracking for particle therapy refers to the lateral
adaptation of pencil beam position, combined with appropri-
ate energy changes to modify the position of the Bragg
peak27 in order to compensate for target motion in all direc-
tions. Like gating, tracking relies on motion monitoring; ide-
ally, real time 3D imaging should be employed or alterna-
tively pretreatment acquired 4DCT in combination with a
motion surrogate. For tracking, it is particularly important to
minimize the time lag between the detection of a geometry
change and the corresponding adaptation of the beam. De-
spite an experimental implementation of tracking for carbon
beam radiotherzlpy,28’29 beam tracking has not yet been used
clinically. Due to the strong dependence of the dose on the
radiological depth, the adaptation parameters are currently
determined prior to treatment delivery based on 4DCT data,
which leads to concerns about variations in patient anatomy
and respiratory motion between the 4DCT scan and the time
of treatment. By minimizing the time between pretreatment
imaging, potential online plan adaptation, and treatment de-
livery, these uncertainties can be reduced, but there is need to
investigate the robustness of beam tracking, particularly over
the time scales of fractionated delivery. The main points that
should be investigated prior to clinical implementation are
compensation of dose changes due to tissue deformation, al-
ternative range adaption methods, robustness against uncer-
tainties in the motion monitoring system, changes in the pa-
tient geometry, and respiratory motion variations during
treatment delivery. For carbon ion beams, the impact of the
relative biological effectiveness (which is also a concern for
other motion management strategies) on the compensation
vectors has to be investigated. Investigation of the tracking
accuracy requirements for proton and heavy ion beams is
also needed to provide criteria for future developments in
beam control, motion prediction, and target tracking.

Especially for single-field-plans delivered in hypofrac-
tionated schema, gating and tracking might be advantageous
as in this scenario, the probability to run into serious inter-
play effects for the rescanning approach is relatively high. In
addition, gating and especially beam tracking most likely
require smaller internal margins and can thus minimize the
irradiation of normal tissues.

I.LE. Other approaches

Manipulation of the patient’s respiration, for example, by
using breath hold techniques, has not yet been investigated
for scanned beam delivery. Gantry 2 at PSI is designed to
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scan an energy slice (10X 10 cm?) on a time scale of
~210 ms and a volume of 1 I within ~6.5 s,30 when no
limits on the required dose rate are considered. However, the
clinical application of 2 Gy to a volume of 11 (for a typical
beam current of 2.5 X 10° protons/ms, in continuous line-
scanning mode and with ten rescans) should lead to a deliv-
ery time of approximately 2 min. In this scenario, each res-
can could be delivered within a single breath hold. For a
detailed discussion on possible scanning modes at the new
Gantry 2 at PSI and the consequent delivery time, see Refs.
13 and 14. For hypofractionated radiotherapy, the use of ap-
nea (a short induced suspension of the breathing) or
jet—ventilation”f33 to immobilize the patient respiration
might be clinically justifiable.

In some situations, combinations of the abovementioned
motion management methods, such as gated phase-controlled
rescarming,26 could be advantageous compared to a single
approach. Assuming that the technical requirements for beam
tracking, gating, and rescanning can be adequately ad-
dressed, the patient specific recipe of Rietzel and Bert® can
be followed, which bases the choice of mitigation technique
on the motion characteristics. For instance, rescanning is rec-
ommended for target motion amplitudes below 5 mm and
irregularly moving tumors. Gating, and later beam tracking,
on the other hand is recommended for patients with larger
motion amplitudes due to the increased CTV dose conforma-
tion.

In general, the choice of the management technique for a
specific set of patient, machine, and plan parameters has to
be investigated much more extensively. Qualitatively, differ-
ent effects have been reported.””**" The severity of motion
effects for different treatment scenarios has, however, only
been roughly quantified so far. For some of the treatment
approaches currently used for stationary target tumors, tem-
poral changes of the anatomy would likely result in only
clinically negligible distortions. Furthermore, it is expected
that different mitigation techniques have a different sensitiv-
ity to variations in motion and deformation.®® Therefore, be-
sides quantitative studies, detailed robustness studies are also
needed to ultimately decide on the most suitable 4D-
treatment approach, taking into account all the treatment pa-
rameters including fractionation scheme and the number of
fields delivered per fraction.

lll. GENERAL DEMANDS IN THE FIELD
OF 4D-TREATMENT PLANNING

lllLA. The development of a standardized 4D phantom

Over the past years, many institutes have developed
4D-treatment planning tools that incorporate temporal
changes in the anatomy, and which can calculate the dose
distributions resulting from different motion management
techniques.g’”_41 The experimental verification of these 4D
dose calculations, however, still remains a problem. In par-
ticular, this has been hampered by the lack of a realistic 4D

phantom. So far, only a few attempts have been made**™* to
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construct a phantom satisfying the requirements of the whole
4D community and no commercial product is currently avail-
able for such measurements.

For 4D imaging, sophisticated phantoms exist; however,
they do not incorporate dosimeters capable of measuring de-
livered dose.**® For IMRT, quality assurance tools are avail-
able, but are mainly limited to a single ionization
chamber®™* and they have not been tested for scanned par-
ticle beam delivery, where multiple measurement points are
required to detect interplay patterns. For motion monitoring,
phantoms have been constructed that enable external surface
motion detection, but no internal dose detection has been
incorporated.48 In addition, motion phantoms have also been
used for testing registration software. What is ultimately
needed, however, is a commercial product that combines all
these features. The currently available in-house solutions are
limited in function, often difficult to handle, and are gener-
ally not suitable for performing interdepartmental measure-
ments.

Ideally, a 4D phantom for dosimetric verifications should
have at least the following specifications. It should

* be capable of being programed to simulate nonrigid,
irregular, and reproducible breathing patterns with vary-
ing periods and amplitudes;

* be capable of performing deformations involving real-
istic density changes;

* consist of tissue equivalent materials suitable for 4DCT
and MR imaging;

* be able to simulate realistic surface behavior to extract
external surface motion (to perform beam tracking and
gating);

* be capable to hold radiochromic or light-shielded radio-
graphic films in multiple positions for 3D dose mea-
surements;

* be equipped with ionization chamber arrays for 4D dose
measurements; and

* allow accurate measurements of the deformations (i.e.,
with implanted markers) at multiple points so that the
accuracy of image registration can be evaluated.

The participants of the 4DTPW feel that it is an urgent
need to formulate a universal product tender for a sophisti-
cated 4D phantom. If such a tender is supported by many
participating institutes, we believe there is a greater chance
and motivation for a firm to develop such a phantom.

lll.B. Experimental validation of 4D-treatment planning

Given the availability of a realistic 4D-treatment planning
phantom, experimental validation is required to benchmark
different 4D dose calculation approaches. However, the pa-
rameter space in 4D radiotherapy is too large to experimen-
tally validate all possible treatment scenarios. Despite the
growing number of particle therapy centers, the available
beam time for proton and heavy ion measurements is limited.
The participants of 4DTPW therefore propose that standard-
ized experiments, similar to Ref. 25, should be established to
efficiently benchmark 4D-treatment planning.
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lIl.C. 4D database

Many institutes have developed their own dedicated 4D-
treatment planning tools. Besides an experimental verifica-
tion, an interinstitutional verification of the different tools
would also be desirable. One of the reasons why that has not
been attempted until yet is the absence of a commonly usable
4DCT data set(s). Only a few 4D patient CT data sets are
available for straightforward public download, for example,
the ten lung cases available from the MD Anderson Cancer
Center.”™! These images also contain a large number (
>100) of manually identified landmarks for the purpose of
deformable image registration evaluation. Another thorax
data set with vector fields and landmarks is available for
download via the Institut National des Sciences Appliquées
(INSA) de Lyon.

For an interinstitutional 4D-treatment planning study,
however, we emphasize the need for the establishment of a
comprehensive open 4DCT database, containing 4DCT data
sets of various target locations, defined volumes, and non-
rigid transformation data. Another possibility is the creation
of motion libraries to simulate specific motion scenarios fol-
lowing the work by von Siebenthal et al>®>* In this ap-
proach, motion information acquired over relatively long
time periods (1 h) by MRI can be applied to 3DCT data sets
to obtain 4DCT data sets. Motion vectors for example cases
are already accessible over the web.”

A commonly available database would enable interinstitu-
tional comparisons of 4D-treatment plans, excluding the per-
turbing influence of registration quality and different patient
data sets. As a short term solution, it would be useful to
define one, “standard” 4D CT data set for such comparisons.
This could either be a real patient data set, for example, from
the databases mentioned above,SI’52 or data of an anatomi-
cally realistic virtual phantom. For the latter, the 4D
NURBS-based cardiac-torso (NCAT) phantom could be
used.”®™ The NCAT phantom models common patient mo-
tions such as the cardiac and respiratory motions in four
dimensions and has already been used for 4D Monte Carlo
treatment plan studies.”” The use of one standardized
anatomy would be the first step toward quantitative interin-
stitutional 4D-treatment plan comparisons.

ll.D. Evaluation of different deformable registration
methods

Deformable registration is needed for a variety of tasks to
establish voxel correspondence, for example, in different res-
piratory phases. Sequential 3D and 4D imaging highlights
the obvious nonrigid nature of motion of the human body,
and therefore deformable registration is needed to accommo-
date the complex physiologic motion and changes in
anatomy. Among other applications, it is used for contour
propagation, dose accumulation, treatment adaption, dosim-
etric evaluation, and 4D optimization. One advanced ap-
proach enabling fully automatic, multimodality deformable
registration was presented during the 4DTPW.*! Many par-
ticipants of the 4ADTPW have worked on deformable regis-
tration related topics.9’42’62
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As stated in Ref. 63, several methods of image registra-
tion are currently available, both commercially and in re-
search environments. However, algorithmic accuracy has
only been tested inconsistently, test cases are usually limited
to a narrow range of clinical situations (e.g., imaging modal-
ity or disease site), and reported errors vary widely even for
methods that are nominally similar. This confounds the abil-
ity to objectively benchmark algorithms and hinders the
widespread adoption of such algorithms into clinical prac-
tice. Although each algorithm has its benefits and limitations,
it is likely that the results of different studies could, at least
partially, be dependent on the deformable registration algo-
rithm used.

So far, only a few attempts have been made to provide a
consistent quantitative metric of accuracy of such registra-
tions which allow for direct comparisons of the various al-
gorithms. One multi-institutional study conducted on a 4D
phantom, although showing acceptable results overall, nev-
ertheless had the potential for large errors in regions with
large deformations.** A multi-institutional study on patient
data highlighted the success achieved in deformable registra-
tion for anatomic sites imaged with consistent contrast (i.e.,
4DCT of the lung) but also pointed out the work that must be
done to ensure that these results are also obtained for multi-
modality images and anatomy that has less contrast variation
(i.e., prostate). Furthermore, it was stated in this work that
maximum errors, which were large for some algorithms, and
especially their effect on applications (e.g., dose accumula-
tion), should be investigated further.%

It is out of the scope of this workshop to follow these
suggestions or to perform more extensive quantifications of
different deformable registration algorithms. However, when
doing interinstitutional 4D-treatment plan comparisons, one
has to be aware that a non-negligible source of differences is
due to the different methods used for deformable registra-
tion. We therefore propose to establish a quantitative esti-
mate of the influence of different deformable registration al-
gorithms on the dose accumulation in 4D-treatment
planning. Thus, in addition to a commonly usable 4DCT da-
tabase, a standard 4D deformable registration tool could then
be established.

llILE. Standards for 4D-treatment plan evaluation

During the workshop, several 4D-treatment planning
studies were presented, reflecting the rising number of pub-
lications in this field. Besides the problem of different dose
calculation codes, patient data sets and deformable registra-
tion algorithms used, the quantification of dosimetric effects
due to temporal changes in the anatomy on 4D-treatment
plans is also an open question. Generally, dose volume his-
tograms and/or mean dose values are reported and Ds—Dygs
values are calculated to evaluate the dose homogeneity in the
target volume. However, combining all effects per plan into
one curve or number probably does not reflect the entire
clinical picture.65’66 Just as important as the existence of dose
inhomogeneities is their spatial distribution and how they
vary over time, especially in treatment situations affected by
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temporal anatomy changes. For example, besides target dose
homogeneity, the dose to neighboring organs also has to be
evaluated.

Radiation therapy is inherently probabilistic.67 One cannot
be certain as to whether a tumor will be controlled or
whether any given normal tissue will be damaged. These
outcomes can be stated only in terms of probabilities, which
is particularly the case when tumors are situated in areas of
temporally changing anatomy. An overview of how to calcu-
late and present the consequences of temporal changes in the
anatomy has been given by Goitein.®® To make a clinically
relevant plan evaluation in these complex treatment situa-
tions, we propose that old concepts such as the calculation of
upper-bound and lower-bound dose distributions, also known
as worst case or best case dose distributions,69 should be
revisited and relevant metrics for plan evaluation should be
established.

ll.F. 4D-treatment plan optimization

Many of the participants of the 4ADTPW have also worked
on optimization related topics.m_74 In 4D-treatment planning,
the parameter space is considerably larger than in 3D-
treatment planning and the parameter space for the optimi-
zation of scanned particle beams is considerably larger than
that for IMRT with photons. Treatment plan optimization is
therefore expected to play an important role in reducing mo-
tion effects at the planning/optimization stage. Generally,
4D-inverse planning refers to methods which explicitly opti-
mize the accumulated dose in the moving tissue (tumor and
organs-at-risk) by using multiple CT instances (from a
4DCT) and the respective deformation fields, as well as the
probability density function (pdf) of breathing motion.>® In
fact, for photon radiotherapy, it has been shown that 4D-
inverse planning results in comparable results to this of beam
tracking75 and gating.73 For heavy ion/proton radiotherapy,
however, only few studies have been pelrformed,76 and there
are still many issues to be addressed until 4D-inverse plan-
ning could be used clinically. A drawback of the current ap-
proaches to 4D optimization is that treatment plans are usu-
ally optimized for the motion derived from the planning
4DCT, i.e., for one sample probability distribution only,
while the breathing pattern and extent typically change on a
daily basis. Quantification of the sensitivity of treatment
plans to such uncertainties is an important issue especially in
scanned particle therapy. Generally, it is desirable to explic-
itly incorporate measures of robustness into the planning
prc)cess.7l’72’77 Methods for robust optimization in the pres-
ence of breathing-pdf uncertainties”*’® and other uncertain-
ties like setup errors and range uncertainties’”” have been pro-
posed in this context.

So far, only a few attempts have been made to incorporate
the “time” dimension explicitly in the optimization algorithm
and to fully exploit it in terms of “optimized tracking,”
where the treatment plan is optimized in all phases
simultaneously.ﬁ’80 Furthermore, no consideration of the tem-
poral aspects of the dose delivery has been included in the
optimization approaches developed thus far. In a first step,
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the magnitude of interplay effects for such first-order robust
optimization approaches needs to be evaluated. Indeed, treat-
ment plan optimization in the scope of 4D radiotherapy is an
expansive topic itself and we believe deserves a dedicated
workshop of its own.

lll.G. Image guidance

Apart from the above mentioned topics related to 4D-
treatment planning, we would like to emphasize the need for
further development of image guidance in particle beam
therapy. In-room volumetric imaging (as, for example, cone
beam CT) is a fairly mature technology for photon therapy
but there is a need to translate this technology to particle
radiotherapy to quantify range uncertainties due to density
changes or anatomical variations. Compared to photon
beams, particle therapy, especially intensity modulated par-
ticle therapy, exhibit a higher sensitivity to patient misalign-
ments. Thus, the expected gains from introduction of ad-
vanced image guidance in particle therapy is not only limited
to intrafractionally moving targets but will most likely also
improve the treatment of interfractionally moving as well as
stationary targets.

IV. FINAL COMMENTS

This workshop provided a dynamic platform for discuss-
ing the current status of 4D-treatment planning in particle
beam therapy. As a result, we have tried to identify the most
urgent challenges in this field and the likely research oppor-
tunities that should be addressed. The topic of 4D-treatment
planning is very complex. Clearly, not one group of research-
ers can solve such challenges on their own, neither in terms
of manpower nor in financial regards. For projects like a
standardized 4D phantom or a comprehensive 4D database,
interinstitutional collaborations are urgently needed. A
follow-up of this successful workshop is planned for the end
of 2010 at the GSI Helmbholtz Centre for Heavy Ion Research
in Darmstadt, Germany.
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Abstract. We present a method of modelling dosimetric consequences of organ de-
formation and correlated motion of adjacent organ structures in radiotherapy. Based
on a few organ geometry samples and the respective deformation fields as determined
by deformable registration, Principal Component Analysis (PCA) is used to create
a low-dimensional parametric statistical organ deformation model (S6hn et al 2005,
PMB 50(24)). PCA determines the most important geometric variability in terms of
eigenmodes, which represent 3D-vector fields of correlated organ deformations around
the mean geometry. Weighted sums of a few dominating eigenmodes can be used to
simulate synthetic geometries, which are statistically meaningful inter- and extrapola-
tions of the input geometries, and predict their probability of occurrence.

We present the use of PCA as versatile treatment simulation tool which allows com-
prehensive dosimetric assessment of the detrimental effects that deformable geometric
uncertainties can have on a planned dose distribution. For this, a set of random syn-
thetic geometries is generated by a PCA model for each simulated treatment course,
and the dose of a given treatment plan is accumulated in the moving tissue elements
via dose warping. This enables the calculation of average voxel doses, local dose vari-
ability, DVH uncertainties, probability distributions of organ equivalent uniform doses
(EUDs) and thus of TCP and NTCP, and other dosimetric and biologic endpoints.
The method is applied to the example of deformable motion of prostate/bladder /rectum
in prostate IMRT. Applications include dosimetric assessment of the adequacy of mar-
gin recipes, adaptation schemes etc., as well as prospective ‘virtual’ evaluation of the
possible benefits new radiotherapy schemes.

1. Introduction

Geometric uncertainties caused by patient set-up errors and internal organ motion lead
to nontrivial deviations of the actually applied doses to the moving and deforming tumor
and organs-at-risk (OARs) as compared to the planned static dose distribution. Methods
that allow simulation of such dosimetric uncertainties are vital for an assessment of
existing radiotherapy schemes and the potential benefit of new schemes in terms of
prospective ‘virtual treatment simulations’. In such simulations planning parameters
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like margin sizes, adaptation schemes etc. are systematically varied in order to determine
optimal parameters for a given level of geometric uncertainties. Uncertainties caused
by patient set-up errors and rigid organ motion can be modelled in terms of shifts and
rotations. For this, methods for evaluation of treatment plan quality and dosimetric
consequences have been proposed (Killoran et al 1996, van Herk et al 2002, Baum et al
2004, Gordon et al 2007). Probability distributions of the translational and rotational
parameters can be derived from population data or estimated on a patient-individual
level retrospectively. Usually, Gaussian distributions are assumed for the parameters.

Corresponding methods for modelling deformable organ motion are desirable.
However, while rigid uncertainties can be described by 6 parameters, organ motion
is of a seemingly much higher dimensionality. Therefore, it is not clear a-priori (1) how
to parametrize and model deformable organ motion, (2) how to model correlated
motion and deformation of adjacent organ structures, (3) how to define probability
distributions over and assign probabilities to different deformation states, (4) how to
obtain meaningful inter- and extrapolations of observed organ deformation samples,
and (5) how to incorporate both patient-individual and population deformation data
into a statistical deformation model. In a previous study, it was shown that Principal
Component Analysis (PCA) can be used to compress the large and unorganized
amount of data that results from several observations of organ deformation into a low-
dimensional system of base vectors, the eigenmodes (Sohn et al 2005). As compared to
the widely used approach to model rigid uncertainties by Gaussian distributions in 6-
dimensional parameter space, PCA is its natural multidimensional generalization to non-
ridid, deformable organ motion, which is able to address all of the challenges mentioned
above. Organ geometries and -deformations are parametrized in terms of a collection of
organ points and -displacement vectors which are used as input to the method. From
this, PCA extracts the most important ‘deformation modes’ for the deformation patterns
present in a number of input geometries. Each deformation mode is a normalized 3D-
vector field, for which PCA provides a quantitative prediction of variability in terms of
a Gaussian distribution. It has been shown that a small number of eigenmodes suffices
to represent the observed variability of a typical sample set (S6hn et al 2005). Weighted
superposition of a few dominating deformation modes applied to the mean geometry can
be used to simulate new, synthetic geometries, which are statistically meaningful inter-
and extrapolations of the input geometries with associated probability of observation.
The idea to use PCA for low-dimensional statistical modelling of geometric variability
has been applied to the calculation of coverage probabilities (Price and Moore 2007),
to respiratory motion as represented by RCCT datasets (Zhang et al 2007), and to
intra- and interfractional motion of structures in lung radiotherapy (Badawi et al 2010).
Recently, the method of PCA has been extended to allow population-based deformation
modelling (Budiarto et al 2011).

In the following, we describe how PCA can be used for dosimetric treatment course
simulations including organ deformations. This enables a comprehensive assessment of
treatment plan quality in terms of dose-to-moving-tissue for a variety of dosimetric
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endpoints including biologic parameters such as EUD. Preliminary results of this
research have been presented in Soéhn et al 2009.

2. Methods

2.1. Statistical model of deformable organ motion based on PCA

2.1.1.  Parametrization of organ geometries Given multiple 3-dimensional organ
geometries as seen in a series of N CT scans of an individual patient, a straightforward
parametrization of a geometry i in terms of an organ geometry vector p(i) is given by

p(i) = (%1(4),..., %) eR*M i=1...N (1)

of positions X;(i) € R? of j = 1... M organ points.

An organ geometry vector p may refer to a single anatomical organ or a composite
geometry of multiple organs, where in the latter case p(i) in eq. (1) is to be understood
as partitioned collection of points distributed over multiple organs. For the following
it is important that for each point index j the series X;(1),...,%;(N) refers to the
same anatomical position, i.e. the set of geometry vectors {p(i)};=1. n is a collection
of corresponding points. Therefore, p(iz) — p(i1), which is a field of M 3-dimensional
vectors, represents the deformation field between the organ geometry instances i; and
i. Any suitable deformable registration method can be used for generating a set of
organ geometry vectors {p(i)};=1..n by applying the respective deformation fields to a
reference geometry (say, the organ point positions p(1) as seen in the planning CT ‘1’).
For population-based deformation modelling, inter-patient point-correspondence
between different organ geometry samples needs to be established. A method to realize
this has been described by Budiarto et al 2011.

2.1.2. Principal component analysis (PCA) of organ geometric change A comprehen-
sive introduction into the theory of PCA-based statistical modelling of geometric vari-
ability can be found in our previous study (Séhn et al 2005).

In short, the set of organ geometry vectors {p(i)},—1. n are regarded as random
samples from a stochastic process of organ motion/deformation. Due to anatomical
reasons the displacements of the M organ points are highly correlated, which implies that
the underlying dimensionality of this multivariate statistical problem is actually much
smaller than 3M. A standard method from multivariate statistics for dimensionality
reduction is PCA, which models the variability of this dataset as a multivariate Gaussian
distribution, represented by the first two moments of the probability distribution, i.e.
the mean shape vector p € R3M

p= > Pl )
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and the covariance matriz C € R3M>*3M
1R VPP
C=r—7 2.0 -p) () -p)", (3)
i=1
where () - ()T denotes the outer product of the two 3M-dimensional vectors. The
covariance matrix C can be interpreted as ‘generalized standard deviation’ for high-
dimensional datasets.

Being interested in correlations in the displacements of the M organ points, the
covariance matrix C is diagonalized: C = diag(A1, ..., Asar). The resulting eigenvectors
q € R*M of the covariance matrix are the mutually independent modes of correlated
deformation, also called eigenmodes. Each eigenmode represents a 3D-vector field of
correlated displacements for the 3M organ points. Each eigenvalue \; € R quantifies
the variance of the N geometry samples p(i), eq. (1), in the (3M-dimensional) direction
of the corresponding eigenmode, and the relative eigenvalue N = 100% - N/ D oy s A
is a measure for the fraction of the overall geometric variability modelled by the [-th
eigenmode, and thus for its relative importance for representing the geometric variability
present in the input samples. Thus, the eigenmodes with largest eigenvalues (the
dominating eigenmodes) capture the ‘principal” deformation modes that span the space
of largest dataset variability, i.e. the space in which the majority of deformations occurs.

2.1.3. Construction of organ geometries using eigenmodes New geometry samples can
be generated within the low dimensional ‘deformation space’ by deforming the mean
shape with a weighted sum of L < 3M dominating eigenmodes
L
Dsimul zﬁ—l-ch-qz, @l =1 (4)
=1
According to the theory of PCA, the coefficients ¢; € R are drawn from Gaussian
distributions with the corresponding eigenvalues )\; as variances: of = );. Thus, a
simulated organ geometry Py is associated with the following realization probability:

P(cy, ... cp) —H\/%)\lexp (—%CIQ/AZ) —HP(Q) (5)

2.2. PCA for dosimetric treatment simulations

By repeatedly drawing random sets of coefficients {cq,...,c } from the Gaussian
probability distribution, eq. (5), a multitude of random geometry samples {pgz]mul}
(with & as sample index) can be generated according to eq. (4). In this way PCA
serves as statistical model of organ motion/deformation with only a small number L of
parameters. As this model explicitly provides information about the correlated motion of
all organ points/tissue elements, this can be used for dosimetric evaluation of simulated
treatment courses and thereby for evaluation of the actual dose coverage of moving
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organ structures as described in the following.
Let

dlp, D] = (di,...,dy,) = (D(X}),...,D(Xy,)) € RM? (6)

be the dose vector associated with an organ geometry vector p, i.e. d; is the dose value
of a given dose distribution D at the position }23 within an organ. In the simplest case
these positions coincide with the M organ points represented by the organ geometry
vector p: Xj = X; Vj = 1...M. Generally the Mp positions X} in eq. (6) can be
interpolated from the M organ points, if required by reasons of accuracy, speed etc. of
the specific implementation (see results section for an example).

Generating Ny,q. random organ geometies {p[slz]ﬂwl}kzlm Nfrqe based on the PCA
model, the corresponding accumulated dose for a single simulated treatment course

with N4 treatment fractions is

Nf'rac
doccum =Y, dp it DV (7a)
k=1
1 Nfruc [k]
~ Nf Z d[psimul7 Dplanned]. <7b)
rac j—,

Eq. (7a) takes into consideration that the physical dose distribution itself is subject to
changes along with the patient’s anatomical changes (D denotes the fractional dose
distribution of treatment fraction k). To accelerate computations further, this effect can
be neglected for photon irradiation of deep seated targets in homogeneous tissue, where
the fractional dose distribution D* can be represented by the static dose distribution
D yjanned as calculated on the planning CT: DI~ Dpianned/N frac (Birkner 2002, Birkner
et al 2003). In this case dgeecum can be calculated according to eq. (7b) as will be assumed
in the following. Note that eqs. (7a) and (7b) formally represent dose accumulation of
fractional doses as warped to the moving ‘tissue coordinate system’.

In eq. (7b), daceum is based on a single set {pg?mul}kzlm Njrq Of random geometries,
which only represents one of many possible realizations of a treatment course with Nyq.
fractions. Thus, d,..., itself is a random variable, the statistics of which is accessible
via S > 1 repeat simulations of single treatment courses according to eq. (7b) by means
of a Monte Carlo (MC) approach:

MC-simulations: {d., V.1 s (8)
This quantity is the basis of a variety of informative treatment plan quality measures:

e voxel-wise dose statistics: The dose statistics can be evaluated on a per-
voxel-/tissue-element-basis from eq. (8) by assessing the distribution {d[fc]wm’j} of
dose values for the Mp dose sampling points. This allows calculation of the expected

value (d;) and its standard deviation Ad; for organ point j:

S
1 s
<dj> = E Z dELc]cum,j (9)
s=1
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S

Ady= < > (ks = ) (10)
e Dose-volume histograms (DVHs): The DVH of the expected organ dose distribution
as well as DVH-uncertainties induced by organ motion/deformations can be
assessed by plotting the DVHs associated with the dose vector (d), eq. (9), resp.
the dose vectors of the S simulated treatment courses, eq. (8). Besides the dose
values d;, calculation of a DVH requires information about the relative organ volume
v; associated with each dose sampling point j, which is determined in the mean

geometry p.

o EUD statistics: FEquivalent uniform doses (EUDs) and other dosimetric measures
derive from the DVH. In this context it is a special strength of the PCA appoach
that multiple organs can be modelled simultaneously in terms of a composite PCA
model as described in sect. 2.1.1. Thus not only single organ EUD-distributions,
but also joint probability distributions of EUDs for multiple organs are accessible.
The following two EUD-definitions are used in this study: The poisson cell-kill
EUD derived from the standard Poisson model of TCP (Niemierko 1997),

1
EUDpoisson =——In <Z Vi eXp(_aDi)> (11)
o -

with the cell-sensitivity parameter «; and the generalized EUD as dosimetric
measure for serial organs-at-risk (Niemierko 1999),

1/a
EUDgeriat = (Z ViDg> (12)

with the volume-effect parameter a > 1.

3. Materials

As an example, the method was applied to the dataset of a prostate cancer patient.
The patient received a planning CT scan as well as multiple repeat CT scans that
were aquired immediately before or after treatment delivery. The repeat CT scans were
matched to the planning CT scan using bony anatomy, thereby reducing the geometric
variability to be described by the PCA model to internal organ motion/deformation.
The contours of prostate, bladder and rectal wall were manually delineated for each CT
dataset (fig. 1a).

The sets of corresponding points required as input data for the PCA model
were generated by the finite element method (FEM) described in Yan et al 1999
as applied to the above contour data (see also Sohn et al 2005). This deformable
registration method is based on a biomechanical model of tissue and provides the
position of each tissue element of the organs in the repeat CT scans, when the positions
of corresponding boundary points on the organ surfaces are given as input data.
For this method, the organs were decomposed into small tetrahedronal subvolumes,
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(@ (b)

mean geometry

prostate

Figure 1. (a) Transversal CT slice of the example patient with contours for
bladder, prostate and rectum as seen in the planning CT and the first four daily
pretreatment CTs.  These organ geometries were used as input for the PCA
model. The dose distribution of the example IMRT plan is shown in terms of the
70.0/66.5/63.0/56.0/49.0/35.0 Gy isodose lines. (b) The mean geometry of the PCA
model as sagittal 3D-view in front of the dose distribution.

resulting in 30240,/19437/38304 tetrahedrons with 6253/3740/8379 nodes representing
the prostate/bladder/rectal wall of the example patient. The altogether M = 18372
node positions in N = 5 CT datasets (planning CT scan plus four repeat CT scans
of the first treatment fractions) were used to form composite organ geometry vectors
{p(i)}i=1.. N as input data for a simultaneous PCA of all three organs. Notice, that
in this way correlated motion of these three organs is explicitly modelled by the PCA
model, which would not be the case when three separate PCA models were created for
the single organs.

An example IMRT plan was created as basis for dosimetric treatment course
simulations (fig. 1). The dose to the PTV (prostate as seen in the planning CT plus 1 ¢cm
isotropic margin) was prescibed as 70 Gy poisson cell-kill EUD (eq. (11) with o = 0.4)
to be applied in 35 fractions under dose constraints to the two relevant organs-at-risk:
max. 62 Gy serial EUD (eq. (12) with a = 12) to rectal wall, max. 58.5 Gy serial EUD
(a = 8) to bladder.

4. Results

A simultaneous PCA of the N = 5 composite organ geometry vectors representing
prostate, bladder and rectal wall of the example patient was performed. This resulted
in the following spectrum of relative eigenvalues: 40.7/36.5/13.7/9.1%*. Thus about
90.9% of the overall geometric variability present in the N = 5 input samples can be
represented by the first three eigenmodes. In the following, we will only consider these

* Note that a PCA model with IV input samples has only N — 1 eigenmodes with nonzero eigenvalue.
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mean geometry

mode 1

mode 2

mode 3

Figure 2. Visualization of the displacement fields given by the first three eigenmodes
of the example patient (first eigenmode in first row etc.). Shown are sagittal 3D-views
of prostate, rectum and bladder. The center column shows the mean geometry p,
whereas the left /right colums are deformations of the mean geometry by the respective
eigenvector q; according to p = p+ 0, - q; (eq. (4)). The arrows illustrate the local
motion/deformation.

three dominating eigenmodes.

Fig. 2 provides a visualization of these eigenmodes. While for this specific example
the first and third eigenmode are governed by changes in bladder filling and correlated
motion/deformation of prostate and rectum, the second eigenmode is driven by changes
in rectum filling. It should be noted in this context that the character of geometric
variations represented by single eigenmodes is highly patient specific and does not
necessarily have clear anatomical interpretation (eg. ‘bladder-filling driven’) for each
patient and mode. Only superpositions of dominating modes according to eq. (4) define
an anatomically meaningful ‘deformation space’.

Dosimetric treatment course simulations for the example IMRT plan were based
on the above PCA model with L = 3 dominating eigenmodes. For this S = 1000
treatment courses of Ny, = 35 fractions were simulated by repeat sampling of organ
geometries based on egs. (4) and (5). Sampling of the coefficients ¢; was restricted
to the range [—20y,20;]. For each sampled geometry, dose was evaluated at the
centers of the FEM-tetrahedrons, resulting in Mp = 30240/19437/38304 dose points for
prostate/bladder /rectal wall. As compared to directly using the M = 6253/3740/8379
organ points explicitly modelled by the PCA model in terms of the organ geometry
vector p, this not only provides an increased sampling rate of dose values (and thus
higher dosimetric accuracy), but also has the advantage that the corresponding relative
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Figure 3. Transversal slice of the planning CT of the patient example in fig. 1,
overlayed with the distributions of (a) the voxelwise expected values of dose (d) and
(b) corresponding standard deviations Ad for prostate (CTV), bladder and rectal wall
as resulting from repeat PCA-based dosimetric treatment course simulations (S = 1000
simulated treatment courses of Ny.q. = 35 fractions). For visualization purposes, the
distributions of (d) and Ad have been warped to the geometry of the planning CT to
match the contours of the respective organs as seen in the planning CT.

organ volumes v; needed for DVH- and EUD-calculations (egs. (11), (12)) are readily
available as relative volumes of the tetrahedrons of the FEM-dataset.

Fig. 3 shows the result of these simulations in terms of the voxelwise expected values
of dose (d), eq. (9), and the corresponding spatial distribution of standard deviations
Ad, eq. (10), warped to the geometry of the planning CT. Obviously, the expected values
of dose for prostate (CTV) meet the prescribed dose of 70 Gy with slightly increased
local dose standard deviations in the region adjacent to the bladder. Thus, at least
according to this slice the PTV-margin of 1 cm was sufficient to guarantee correct CTV
dosage in presence of organ motion/deformation. As can be expected, the local expected
values of dose for regions of the bladder and rectal wall close to the prostate are also in
the order of 70 Gy due to the relatively large margin. Interestingly, the local standard
deviations of dose do not have their maximum directly at the border to prostate but at
a distance of ~ lcm. This can be understood by the fact that tissue elements in direct
neighbourhood to the prostate are almost always residing within the PTV despite organ
motion, due to the relatively large PTV margin, while tissue elements that move within
the region of the dose gradient have increased standard deviations of local dose.

Fig. 4a shows the DVHs of 300 of the 1000 simulated treatment courses of 35
fractions together with the DVHs of the expected organ dose distributions (d) shown
in fig. 3a. According to this, the expected dose distribution for the prostate (CTV)
proves clinically acceptable target dosage also in presence of organ motion, and the
corresponding DVH uncertainties are small (red prostate DVHs of the 300 simulated
treatment courses). Similarly, the DVH uncertainties of bladder and rectal wall
are relatively small. In contrast, the single-fraction DVH uncertainties (fig. 4b) are
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Figure 4. Visualization of DVH uncertainties resulting from repeat PCA-based
dosimetric treatment course simulations for the patient example: DVHs of prostate
(CTV), bladder and rectal wall as resulting from (a) 300 simulated treatment courses
of 35 fractions each and (b) 300 simulated single fractions (rescaled to the dose of a full
treatment course for easier visual comparison to (a)). For reasons of visual clarity only
300 DVHs of the 1000 simulated treatment courses are shown. The saturation of the
DVH colors in (b) was scaled according to equation (5) to give a visual impression of
the relative realization probabilities for the different simulated fractions. The dashed
black DVHs are the DVHs of the expected doses (d) for the different organs.

considerably larger. A comparison of figs. 4a and b shows that local hot and cold spots
in the moving tissue elements cancel out in the accumulated dose to a certain extent,
thereby effectively reducing dose uncertainties for Nyyq. > 1.

Notice, that it is a special strength of the PCA method that the realization probability
of simulated geometries and thereby treatment fractions is readily available via eq.
(5). This can be used for providing additional visual information about the relative
probability of each DVH to be realized as shown in fig. 4b by scaling the DVH-color
accordingly. In this way, extreme ‘outliers’ can be easily distinguished from more
probable DVHs.

Finally, fig. 5 shows exemplarily how the presented method facilitates evaluation of
treatment plan quality in terms of the probability distributions of dosimetric measures
like EUDs. According to the single-organ EUD-distributions given in fig. 5a, the prostate
(CTV) receives the prescribed EUD of 70 Gy both with high probability and small
uncertainty, reconfirming that the PTV-margin was chosen large enough to ensure
coverage of the moving CTV. Compared to this, both bladder and rectal wall show
increased EUD uncertainties due to organ motion/deformation. Moreover, a systematic
difference to the maximal EUD-values used as constraints during planning is present:
While rectal wall EUDs stay well below the dose constraint of 62 Gy for 100% of all
simulated treatment courses, bladder is overdosed slightly by up to ~ 1 Gy EUD in the
majority of the simulated treatment courses.

Simultaneous PCA for more than one organ provides full information about
correlated motion/deformation and thus also correlated organ dosage. Thus, not
only single-organ EUD distributions can be determined, but also joint probability
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Figure 5. (a) Histograms of the single-organ EUD-distributions for prostate
(CTV), bladder and rectal wall as resulting from repeat PCA-based treatment course
simulations (S = 1000 simulated treatment courses of Ny, = 35 fractions each).
Information about the EUD-correlation structure is readily available in this approach
as shown in the scatterplot (b) for the example of prostate vs. rectal wall treatment
course EUDs. The dashed lines mark the EUD-values used as prescription/constraints
for planning.

distributions of more than one EUD as shown in fig. 5b. This 2D-scatterplot shows
the distribution and correlation of EUDs of bladder and prostate for the 1000 simulated
treatment courses and reveals the correlation structure of these two dosimetric measures.

5. Discussion and conclusion

Dosimetric effects of geometric uncertainties for a given treatment plan need to be
assessed by treatment simulations. To get a realistic picture about the influence of all
kinds of geometric uncertainties including the most general case of non-rigid deformable
organ motion, the limitations of static patient models and rigid modelling approaches
need to be overcome. The PCA-method presented here proves to be a powerful and
efficient tool for this. It is shown how PCA facilitates the statistical evaluation of
the actual organ doses, i.e. the accumulated doses-to-moving-tissue. Deformable organ
motion is modelled in terms of a small number of so-called eigenmodes, which are the
generalized main ‘directions’ of correlated geometric changes with associated Gaussian
probability distributions. This gives rise to the possibility of low-dimensional parametric
statistical modelling based on PCA with full information about correlated motion of all
organ points/tissue elements of both single and multiple organs.

The current paper presents in detail how such a PCA model can be used for Monte
Carlo simulations of treatment courses, enabling a comprehensive assessment of both
local and global dosimetric measures. This can be performed in terms of local expected
values of (voxel-)dose and their uncertainty, DVHs of the expected dose distributions and
corresponding DVH-uncertainties, as well as probability distributions of EUD. Such a
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‘virtual treatment simulator’ tool has important applications for evaluation of existing
radiotherapy schemes as well as prospective assessment of potential benefits of new
radiotherapy schemes. For example, the dosimetric adequacy of margin recipes or plan
adaptation schemes can be investigated by performing virtual treatment simulations
for a number of patients, which have multiple (conebeam-)CT scans and thus multiple
organ deformation samples available as input samples to patient-individual PCA models.
Alternatively, corresponding simulations can be based on a population PCA model
(Budiarto et al 2011).

For prostate (Sohn et al 2005) and lung patients (Badawi et al 2010) it has
been shown that information about patient-individual geometric variability can be
typically expressed by 3-5 dominating eigenmodes, which translates into ~ 5 repeat
CT scans as minimal imaging requirement. Population-based PCA models typically
require more dominating eigenmodes in order to represent a comparable fraction
of the overall variability present in the input samples, as shown for deformable
motion of prostate/semicle vesicles (Budiarto et al 2011). These studies, however,
mainly investigated geometric modelling accuracy in terms of representation residuals
and similar geometric measures. Being interested in the dosimetric consequences of
geometric variability, the consequent follow-up question is how this relates to the
number of input geometries N and dominating modes of a PCA model with respect
to dostmetric accuracy and predictive power. To a certain extent this will depend on
the treatment (planning) method involved (dose gradients etc.) (Gordon and Siebers
2008). A systematic investigation of the presented PCA method for use as a predictive
model is beyond the scope of this manuscript and will be subject to future research.

Another advantage of the presented method is calculation speed. Thanks to
algorithmic optimizations as described in Appendix B of Schn et al 2005, performing
the PCA itself (calculation of eigenmodes and -values) is essentially independent of the
number of organ points used to form the organ geometry vectors p and typically takes
less than a second on modern PC hardware. For the example case one simulation run
of a single treatment course (i.e. dose accumulation for 35 simulated organ geometries
of prostate/bladder/rectal wall) took ~ 1s using in-house developed single-threaded
software code. The very nature of Monte Carlo simulations allows parallelization in
a straightforward manner, which facilitates calculation times in the order of 1min on
recent multiprocessor/-core computer hardware for Monte-Carlo simulations of 1000
treatment courses.

The implementation of the PCA method as presented here uses a static dose
distribution as basis for dosimetric treatment course simulations (eq. (7b)). This
is a valid approximation for eg. the pelvic region with relatively small density
inhomogeneities in the vicinity of the moving CTV and OARs. In anatomical regions
with large density inhomogenieties (eg. lung, head-and-neck) and especially in particle
therapy (protons, heavy ions), however, changes of the physical dose distribution itself
along with anatomical motion/deformations invalidate this approximation. For such
cases, dosimetric simulations require dose calculation on deformed density distributions
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according to eq. (7a). It is a strength of PCA, that it can provide such synthetic density
distributions as shown by Zhang et al 2007 for the example of 4D-CTs of lung.

To summarize, the presented PCA-based method facilitates the creation of
low-dimensional parametric statistical organ motion/deformation models, and thus
represents a powerful treatment simulator tool, which allows in-depth assessment of
the dosimetric effects of geometric uncertainties in terms of accumulated dose and its
uncertainties in the moving and deforming tissue. As such it has important applications
in the evaluation of radiotherapy schemes with respect to the adequacy of margin sizes,
adaptation schemes etc. in the presence of all types of geometric uncertainties beyond
rigid uncertainties.

Acknowledgements

The authors thank D. Yan and J. Liang (Beaumont Hospital, Royal Oak, MI, USA) for
kindly providing the example patient dataset incl. deformable registration data as well
as fruitful discussions about potential applications of PCA-based geometric modelling.

References

Badawi A M, Weiss E, Sleeman IV W C, Yan C and Hugo G D 2010 ptimizing principal component
models for representing interfraction variation in lung cancer radiotherapy Phys. Med. Biol. 37
5080-91

Baum C, Alber M, Birkner M and Niisslin F 2004 Treatment simulation approaches for the estimation
of the distribution of treatment quality parameters generated by geometrical uncertainties Med.
Phys. 49 5475-88

Birkner M 2002 Bildgestiitzte, adaptive Bestrahlungsplanung intensitdtsmodulierter Strahlentherapie
(PhD thesis University of Tiibingen, available under http://nbn-resolving.de/urn:nbn:de:bsz:21-
opus-5429)

Birkner M, Yan D, Alber M, Liang J and Niisslin F 2003 Adapting inverse planning to patient and
organ geometrical variation: algorithm and implementation Med. Phys. 30 2822-31

Budiarto E, Keijzer M, Storchi P R, Hoogeman M S, Bondar L, Mutanga T F, de Boer H C J and
Heemink A W 2011 A population-based model to describe geometrical uncertainties in radiotherapy:
applied to prostate cases Phys. Med. Biol. 56 104561

Gordon J J, Crimaldi A J, Hagan M, Moore J and Siebers J V 2007 Evaluation of clinical margins via
simulation of patient setup errors in prostate IMRT treatment plans Med. Phys. 34 202-14

Gordon J J and Siebers J V 2008 Evaluation of dosimetric margins in prostate IMRT Med. Phys. 35
569-75

Killoran J H, Kooy H M, Gladstone D J, Welte F J and Beard C J 1997 A numerical simulation
of organ motion and daily setup uncertainties: implications for radiation therapy Int. J. Radiat.
Oncol. Biol. Phys. 37 213-21

Niemierko A 1997 Reporting and analyzing dose distributions: A concept of equivalent uniform dose
Med. Phys. 24 103-10

Niemierko A 1999 A generalized concept of equivalent uniform dose [Abstract] Med. Phys. 26 1100

Price G J and Moore C J 2007 A method to calculate coverage probabilities from uncertainties in
radiotherapy via a statistical shape model Phys. Med. Biol. 52 1947-65

Séhn M, Birkner M, Yan D and Alber M 2005 Modeling individual geometric variation based on
dominant eigenmodes of organ deformation: Implementation and evaluation Phys. Med. Biol. 50
5893-908



Dosimetric treatment course simulation 14

Séhn M, Sobotta B and Alber M 2009 Dosimetric treatment course simulation based on a patient-
individual statistical model of deformable organ motion Radiother. Oncol. 92(1 Suppl) S65-6

van Herk M, Remeijer P and Lebesque J V 2002 Inclusion of geometric uncertainties in treatment plan
evaluation Int. J. Radiat. Oncol. Biol. Phys. 52 1407-22

Yan D, Jaffray D A and Wong J W 1999 A model to accumulate fractionated dose in a deforming organ
Int. J. Radiat. Oncol. Biol. Phys. 44 665-75

Zhang Q, Pevsner A, Hertanto A, Hu Y C, Rosenzweig K E, Ling C C and Mageras G S 2007 A patient-
specific respiratory model of anatomical motion for radiation treatment planning Med. Phys. 34
4772-81



Dosimetric treatment course simulation 15

Figure captions

Figure 1. (a) Transversal CT slice of the example patient with contours for
bladder, prostate and rectum as seen in the planning CT and the first four daily
pretreatment CTs. These organ geometries were used as input for the PCA
model. The dose distribution of the example IMRT plan is shown in terms of the
70.0/66.5/63.0/56.0/49.0/35.0 Gy isodose lines. (b) The mean geometry of the PCA
model as sagittal 3D-view in front of the dose distribution.

Figure 2. Visualization of the displacement fields given by the first three eigenmodes
of the example patient (first eigenmode in first row etc.). Shown are sagittal 3D-views
of prostate, rectum and bladder. The center column shows the mean geometry p,
whereas the left /right colums are deformations of the mean geometry by the respective
eigenvector q; according to p = p+ 0, - q; (eq. (4)). The arrows illustrate the local
motion/deformation.

Figure 3. Transversal slice of the planning CT of the patient example in fig. 1,
overlayed with the distributions of (a) the voxelwise expected values of dose (d) and
(b) corresponding standard deviations Ad for prostate (CTV), bladder and rectal wall
as resulting from repeat PCA-based dosimetric treatment course simulations (S = 1000
simulated treatment courses of Nypqc = 35 fractions). For visualization purposes, the
distributions of (d) and Ad have been warped to the geometry of the planning CT to
match the contours of the respective organs as seen in the planning CT.

Figure 4. Visualization of DVH uncertainties resulting from repeat PCA-based
dosimetric treatment course simulations for the patient example: DVHs of prostate
(CTV), bladder and rectal wall as resulting from (a) 300 simulated treatment courses
of 35 fractions each and (b) 300 simulated single fractions (rescaled to the dose of a full
treatment course for easier visual comparison to (a)). For reasons of visual clarity only
300 DVHs of the 1000 simulated treatment courses are shown. The saturation of the
DVH colors in (b) was scaled according to equation (5) to give a visual impression of
the relative realization probabilities for the different simulated fractions. The dashed
black DVHs are the DVHs of the expected doses (d) for the different organs.

Figure 5. (a) Histograms of the single-organ EUD-distributions for prostate
(CTV), bladder and rectal wall as resulting from repeat PCA-based treatment course
simulations (S = 1000 simulated treatment courses of Ny, = 35 fractions each).
Information about the EUD-correlation structure is readily available in this approach
as shown in the scatterplot (b) for the example of prostate vs. rectal wall treatment
course EUDs. The dashed lines mark the EUD-values used as prescription/constraints
for planning.



