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Zusammenfassung

Meson–Spektroskopie ist eines der interessantesten Themen in der Teilchenphysik.
Vor allem durch die Entdeckung von zahlreichen neuen Zuständen im Charmo-
nium Spektrum mit Eigenschaften, die nicht durch das Konstituenten Quark Modell
erklärt werden können, hat das Interesse zahlreicher theoretischer Untersuchungen
auf dieses Thema gelenkt.
In der vorliegenden Dissertation werden verschiedene Mesonstrukturen diskutiert,
die von leichten und schweren Quark–Antiquark Mesonen bis hin zu gebundenen
Zuständen von Hadronen, sogenannten Hadronischen Molekülen, im leichten und
schweren Sektor reichen. Für die Untersuchung der Mesoneneigenschaften wie Massen-
spektrum, totale und partielle Breiten sowie Produktionsraten verwenden wir drei
verschiedene theoretische Modelle.
Gebundene Zustände von Mesonen werden zunächst in einem Modell untersucht,
das auf gekoppelten Meson Kanälen basiert, bei der Meson–Meson Resonanzen dy-
namisch generiert werden. Die Zerfallseigenschaften von Mesonmolekülen werden
anschließend in einem zweiten Modell analysiert. Die Basis dieses zweiten Zugangs
bilden effektive Lagrangedichten, die die Wechselwirkung zwischen den hadronisch
gebundenem Zustand und dessen Konstituenten beschreibt. Neben den Meson-
molekülen betrachten wir auch die radiativen und starken Zerfallseigenschaften her-
kömmlicher Quark–Antiquark Mesonen in diesem phänomenologischen Modell.
Den Abschluss der drei theoretischen Methoden, die hier vorgestellt werden, wird
von einem AdS/CFT Modell gebildet. Dieses holographische Modell unterscheidet
sich fundamental von den beiden vorher diskutierten Ansätzen, da zusätzliche Di-
mensionen und Elemente aus der String Theorie enthalten sind. Wir berechnen das
Massenspektrum leichter und schwerer Mesonen und deren Zerfallskonstanten im
Rahmen dieses Modells.



Abstract

Meson spectroscopy became one of the most interesting topics in particle physics
in the last ten years. In particular, the discovery of new unexpected states in the
charmonium spectrum which cannot be simply explained by the constituent quark
model attracted the interest of many theoretical efforts.
In the present thesis we discuss different meson structures ranging from light and
heavy quark–antiquark states to bound states of hadrons—hadronic molecules. Here
we consider the light scalar mesons f0(980) and a0(980) and the charmonium–like
Y (3940), Y (4140) and Z±(4430) states. In the discussion of the meson properties like
mass spectrum, total and partial decay widths and production rates we introduce
three different theoretical methods for the treatment and description of hadronic
structure.
For the study of bound states of mesons we apply a coupled channel approach
which allows for the dynamical generation of meson–meson resonances. The decay
properties of meson molecules are further on studied within a second model based
on effective Lagrangians describing the interaction of the bound state and its con-
stituents. Besides hadronic molecules the effective Lagrangian approach is also used
to study the radiative and strong decay properties of ordinary quark–antiquark (qq̄)
states.
The AdS/QCD model forms the completion of the three theoretical methods intro-
duced in the present thesis. This holographic model provides a completely different
ansatz and is based on extra dimensions and string theory. Within this framework
we calculate the mass spectrum of light and heavy mesons and their decay constants.
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1. Introduction

Historically, mesons, i.e. pions, were first introduced by Yukawa [1] in 1935 as
exchange bosons generating the strong interaction between nucleons. However, pions
and nucleons did not remain the only hadron states but with the improvement of
the accelerator facilities, which gave access to higher mass regions, numerous states
of baryons and mesons have been observed, which needed to be interpreted in a
systematic way. By arranging the nearly degenerate hadron states according to
their quantum numbers such as total spin and parity, a specific pattern of multiplets
emerged which was the starting point of the constituent quark model introduced in
1964 by Zweig and Gell–Mann. Mesons and baryons were interpreted as composite
objects consisting of a valence quark–antiquark pair (qq̄) or three quarks (qqq),
respectively. Up to now the constituent quark model is one of the most important
models for hadron structure and provides a first reference point for newly observed
states.

The discovery of baryons with three identical quarks, as for example first the ∆++

(uuu) and then the Ω− (sss) state, required the introduction of an additional quan-
tum number, which is the color charge, since otherwise these states would be for-
bidden by the Pauli principle. The definition of the three colors and later on the
experimental evidence for this color degree of freedom in deep inelastic scattering
experiments provided the basis for quantum chromodynamics (QCD) which is the
underlying theory of strong interaction. One of the major challenges in the applica-
tion of QCD is how quarks and gluons combine to form composite particles called
hadrons. In contrast to quantum electrodynamics, QCD becomes non–perturbative
at large length scales and cannot be accessed by traditional methods as for instance
perturbation theory. Therefore, we do not have analytical tools at hand which al-
low for ab initio calculations of hadron properties from QCD. As a consequence,
one could rely on lattice calculations starting from first principles and which were
thought to be a promising technique to disentangle the hadron spectrum [2]. The
huge amount of computing power required by lattice calculations still poses the
main problem. For this reason, the majority of lattice calculations were done in
quenched QCD which means that the dynamics of the seaquarks (fermion loops of
quark–antiquark pairs) is neglected. Furthermore, lattice computations are done
with finite lattice spacing which requires an extrapolation to the infinite volume
limit, the continuum. Finally, lattice calculations are usually carried out with un-
physically large quark masses which are later extrapolated to physical quark masses.
These limitations on computer performance increase of course the uncertainty and
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restrict the application of lattice QCD. Despite certain success e.g. in computing
the glueball spectrum [3] at present lattice QCD cannot be used to calculate the
whole hadron spectrum. More precisely, while the experimental measurements of the
masses of the ground states (pseudoscalar and vector mesons) are well reproduced by
lattice calculations form factors and decay properties cannot be determined by lat-
tice QCD. Therefore, up to now our knowledge in hadron physics is to a large extent
based on effective or phenomenological models aimed to give a detailed description
of hadron properties.

In this context one has to mention effective field theories which provide an ap-
proximate theory for the description of physical phenomena at a chosen length
scale. One of the most successful effective field theories is chiral perturbation theory
(ChPT) [4, 5, 6, 7] which is based on the approximate chiral symmetry of the QCD
Lagrangian. Spontaneous breaking of this symmetry gives rise to the generation of
massless pseudoscalar Goldstone bosons, the pions. Therefore, ChPT describes the
dynamics of Goldstone bosons in the framework of an effective field theory. In par-
ticular it provides a systematic method to explore the low–energy QCD region based
on non–elementary hadronic degrees of freedom which are experimentally accessible.

Since ChPT can successfully describe the structure and interaction of light mesons
and also nucleons this effective field theory became a very important tool for nuclear
and low–energy particle physics. However, since ChPT is based on chiral symmetry
this method is necessarily restricted to the low–energy region of QCD, i.e. three
flavors (Nf = 3), where current quark masses are small.

While the light meson sector is described by ChPT the Heavy Quark Effective
Theory (HQET) has become a successful and widely used tool in the heavy quark
sector (for a review see [8, 9, 10, 11]). HQET is based on the expansion of QCD
in inverse powers of the heavy quark mass mQ since the mass of a heavy quark
is large compared to the typical scale of the light QCD degrees of freedom. In
particular, HQET works very efficiently in transitions between hadrons containing
heavy quarks, e.g. in b→ c semileptonic decays. For this reason, HQET played for
example an important role in the determination of the CKM matrix element Vcb.

Despite that lattice QCD, ChPT and HQET provide three important pillars in
hadron physics, up to now there is no complete and consistent method available
which can cover the full range of non–perturbative QCD. Moreover, even the afore-
mentioned methods cannot explain the complete spectrum of the light mesons. For
this reason hadron spectroscopy is an essential tool to study the strongly coupled
QCD regime. The decay and production patterns together with the mass spectrum
observed by experiments provide valuable information on the substructure and in-
teraction mechanisms of hadronic matter. Phenomenological approaches modeling
the hadron structure are the counterpart to the experimental observations. They
aim to understand and finally explain the nature of hadrons but also serve as a
framework with which new experimental observations are compared to.

Another interesting question is whether there exists hadron structures besides the
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well established qq̄ and qqq hadrons. In principle, the framework of QCD allows
for further color–singlet states such as multiquark, hybrid and glueball structures.
From the experimental side there are numerous states that cannot be understood in
the framework of the constituent quark model and might be a signal for structure
beyond the standard qq̄ picture. In summary, the understanding and interpretation
of hadronic structure is still one of the major aims in modern particle physics and
provides the research topic of the present thesis.

1.1. Hadronic Structure

The following section gives a compact review on hadron spectroscopy tracing back to
one of the first steps in the field of hadron structure which is the constituent quark
model. With the discovery of more and more hadronic resonances it became obvi-
ous that the simple quark model is not capable to explain the full meson spectrum.
Therefore, we also turn to fundamental structures beyond the quark–antiquark pic-
ture like hadronic molecules. Finally, we focus on the latest progress in the heavy
quark charmonium sector. Here, in the last ten years many new charmonium–like
resonances have been announced which are not easily explained as quark–antiquark
configurations. Recent and less recent reviews on the vast amount of phenomena
related to meson spectroscopy can be found in [12, 13, 14].

1.1.1. Constituent Quark Model

Probably the must successful and complete description of hadron structure is pro-
vided by the constituent quark model which was proposed by Murray Gell–Mann
and George Zweig in 1964 [15]. Within this framework quarks were introduced as
algebraic entities without experimental evidence acting as elementary and funda-
mental constituents of matter. The basis of the constituent quark model is the
ordering scheme, specific patterns of SU(N) multiplets, which emerge when hadron
resonances are arranged according to their quantum numbers. Considering SU(3)
flavor, which includes u, d and s quarks, mesons made up of a quark–antiquark pair
are arranged in nonets while the lowest lying baryons, represented by three–quark
states, form a decuplet and an octet. The final breakthrough of the quark model
was provided by direct evidence for quarks in deep inelastic scattering experiments
at SLAC in 1968 [16]. However, since quarks are confined they do not appear as free
asymptotic particles but only as constituents of the color–singlet hadrons. Hence,
there is only a qualitative understanding about the nature and dynamical origin
of constituent quarks which occur as quasiparticles, believed to be current quarks
dressed by a cloud of gluons and qq̄–pairs. In other words, it is known that the
nontrivial and nonperturbative QCD vacuum plays an important role but the possi-
ble link between the vacuum structure and the confinement property of QCD is not
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JPC I=1 I=1
2

I=0

0++ a0(980) κ ≡ K∗
0 (800) σ ≡ f0(600) f0(980)

0++ a0(1450) K∗
0(1430) f0(1370) f0(1500) f0(1710)

Table 1.1.: The lowest lying scalar mesons.

solved yet. Nevertheless, the simple constituent quark model works surprisingly well
and is able to classify the majority of meson and baryon resonances in the hadron
spectrum. Especially the masses of the low–lying pseudoscalar and vector mesons
are in good agreement with experiment.

1.1.2. Beyond the Quark Model

Despite the success of the quark model, detailed observables related to spectrum,
production and decay properties of observed hadrons still pose major challenges
to the theoretical understanding. In particular, already in the light meson sector
we have experimentally observed resonances, as for instance the low–lying scalar
mesons, which cannot be simply and consistently explained by a leading order quark–
antiquark structure (for a review see [12, 13, 14]). As indicated in Tab. 1.1 the scalar
sector is clearly overpopulated: There exist two meson nonets instead of one, one
below and one above 1 GeV. In addition, the heavier of the two nonets contains one
additional state, the f0(1500). These are clear hints for ’exotic’ structures in the
low–lying scalar sector. Simulations in lattice gauge theory result in bound states
of gluons, where the lightest scalar glueball is predicted to have a mass of about
1.5 GeV [3]. Since glueballs can mix with ordinary qq̄ states of the same quantum
numbers, the scalar mesons f0(1270), f0(1500) and f0(1720) are usually interpreted
as two qq̄ states which mix with a nearby glueball at 1.5 GeV. The situation in
the light nonet below 1 GeV is even more unclear as these states are difficult to
be accommodated in the constituent quark model. The scalar resonances overlap
and interfere with each other since the decay widths are very broad and sometimes
close to the threshold of a decay channel. The light scalars f0(980) and a0(980)
were already discussed in the 1970s as possible candidates for multiquark states.
The realization of this structure is a dynamical question since it is possible that
multiquark states exist as bound states of color couplings, i.e. a diquark–antidiquark
pair, the so–called tetraquark structures [17, 18]. However it is also possible that
(qq̄)(qq̄) configurations are realized in hadron–hadron potentials [19, 20, 21] leading
to bound states of two mesons, hadronic molecules. Both possibilities must be taken
into account when attempting to unravel the hadron spectrum.
A further indication for hadron structure beyond the constituent quark model is
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given by evidence for mesons with exotic quantum numbers like JPC = 0−−, 1+−.
They cannot be accommodated in the qq̄ scheme since in the constituent quark
model spin (S) and orbital angular momentum (L) are related to parity P and
charge conjugation C by P = (−1)L+1 and C = (−1)L+S. States which deviate
from this relation are candidates for so–called exotic states. Indeed two examples
with exotic quantum numbers are the JPC = 1−+ states η1(1400) and η1(1600) [22].
They are for example candidates for hybrid structures made up of a quark–antiquark
pair interacting with an excited gluon configuration.

Due to the broad range of unresolved phenomena in the meson sector it is important
to understand the full picture of meson spectroscopy in order to keep a global view
of the field. Therefore, investigating various structures with different models might
provide a better insight than even a detailed discussion of particular issues within
one specific theoretical approach. For this reason, the present dissertation covers
meson spectroscopy from light to double heavy mesons, from ordinary qq̄ mesons to
bound states of mesons, so–called hadronic molecules. This structures are studied in
the light of different theoretical approaches: We consider for example dynamically
generated resonances from meson–meson coupled channels. Furthermore, we intro-
duce an effective field theoretical model for hadronic bound states which is based on
effective interaction Lagrangians. This method we use to study traditional qq̄ quark
model states and bound states of mesons. Besides this rather traditional methods,
mesons are also discussed in the framework of a holographic model which is based
on extra dimensions, or roughly speaking, on new physics. The main idea of this
approach is the correspondence between string theory in Anti–de–Sitter space (AdS)
and conformal field theory (CFT) describing the hadronic world.

In the following Chapter 2 we focus on selected topics which provide the subject
matter of the present thesis. For example, we summarize the experimental status,
previous theoretical investigations and the resulting different interpretations. The
chapter is divided into two parts: The first section shortly addresses the light meson
sector while section 2.2 deals with the charmonium spectrum which is rather topical
through recent experimental observations.

Chapters 3–5 reflect the research work of the dissertation. Three theoretical methods
are introduced to analyze binding, decay and production properties of different
mesonic structures.

The range of theoretical models includes dynamically generated meson–meson res-
onances by coupled channels [23, 24]. From this approach we obtain information
on the meson–meson interaction, for example whether the binding is strong enough
to form a molecular state and which meson–meson channels yield the dominant
contributions to the bound state.

Further on, we analyze meson molecules in a complementary effective field theoreti-
cal approach for hadronic bound states (Chapter 4). This method, based on effective
Lagrangians, is very useful for studying decay and production properties [25, 26, 27].
Besides meson molecules we also apply this method to conventional mesons made



14 1.1. Hadronic Structure

up of a quark–antiquark pair.
In Chapter 5 the meson properties are studied in a completely different light. The
holographic model is based on the correspondence of strings living in the AdS space
and conformal field theory representing hadronic matter [28].
Finally, we summarize the thesis in Chapter 6 and draw the conclusions from our
findings.



2. Meson Spectroscopy

In this Chapter we give a survey on the status of meson spectroscopy looked at
from two perspectives — experimental observations and theoretical interpretations.
For the sake of readability we discuss mesons containing light and heavy quarks
separately. We try to cover a broad range of issues in meson spectroscopy in order
to give an overview of the topic. But of course the focus is put on these meson
resonances which are studied in this work.

2.1. Meson Spectroscopy in the Light Sector

For decades it is known that the meson spectrum is much richer than one might
expect from the simple quark model predictions. This fact was first observed and
noticed in the light meson sector [12, 13, 14]. However, from the theoretical point
of view this is not very surprising since QCD would allow in principle for further
color singlet objects beyond the minimal qq̄–configuration like multiquark states
and hadrons containing gluonic components. In particular, the role of gluons, be-
ing well established in the high energy perturbative QCD, is still unclear in the
nonperturbative limit. The non–abelian nature of QCD naturally leads to gluon
self–interaction which could result in bound states of gluons. These gluonic bound
states or glueballs have been intensely studied in various lattice calculations [3]
and constituent glue models [29, 30]. Lattice calculations predict for the lightest
glueball, which has scalar quantum numbers, a mass of about 1650 MeV with an
uncertainty of about 100 MeV (see PDG [22], non–qq̄ review). The experimental
candidate for the scalar glueball was seemingly found by the Crystal Barrel Col-
laboration at CERN [31]. The scalar f0(1500) was later confirmed by the WA102
Collaboration [32] in glue–proton–proton reactions with the gluonic structure pro-
duced by pomeron or multigluon fusion. As a consequence, with the announcement
of the f0(1500) the scalar nonet above 1 GeV is overpopulated so that a non–qq̄
origin of the f0(1500) seems natural. Since the glueball has the same quantum num-
bers, the probability of mixing with the nearby scalar mesons of the quark model
is rather high. In the literature the admixture of a glueball with the nearby two
conventional qq̄ states is the most common explanation for an overpopulated scalar
nonet of the physical mesons f0(1370), f0(1500) and f0(1710). But also note that
in some scenarios it is discussed that a dominant glueball component resides in the
f0(1710).

15
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Quark–gluon hybrids [33, 34] are a further variety of how gluon dynamics could
be realized in hadron structure. Here, a qq̄ state is bound by an excited gluon, or
rather, hybrids are made up of a valence quark–antiquark pair plus an additional
valence gluon.
In the present work we focus on hadronic bound states. There are two scalar mesons
in the light meson sector which are most likely bound states of mesons. We therefore
discuss the f0(980) and a0(980) in more detail.

2.1.1. f0(980) and a0(980)

The scalars f0(980) and a0(980) are known for more than 30 years but their nature
is still controversially discussed (see also the corresponding minireview in ’review
of particle physics’ [22]). Since the scalar nonet above 1 GeV seems established as
the 3P0 qq̄ nonet of the quark model with an additional glueball configuration, it
is not possible to further accommodate the f0(980) and a0(980). Furthermore, the
properties of the isovector a0(980) and isoscalar f0(980) mesons are not in agreement
with quark model predictions. For instance, the a0 and f0 masses lie about 100 MeV
below theoretical estimates based on the constituent quark model (see e.g. [35]). Due
to the very peculiar decay properties, it is difficult to precisely measure the decay
widths of these states. Experimental values for the f0 and a0 decay widths range
between 40 and 100 MeV which even deviates more from the quark model prediction
of about 500 MeV [17, 35]. Finally, the near degeneracy in mass of the isosinglet
and triplet states would require an ideal mixture of the states as e.g. realized in
the vector nonet. Ideal mixing requires that I = 0 and I = 1 states are dominantly
nonstrange as in case of ρ and ω mesons. However, φ production and the strong
coupling to the KK̄ channel point to a dominant strangeness content.
These large discrepancies gave evidence for a possible multiquark nature of this
states. There are several distinctive signatures for the multiquark interpretation of
a resonance. While tetraquarks are characterized by large decay widths due to the
fall–apart mechanism (see e.g. [17]), typical features for molecules are their proximity
to a threshold and the strong couplings to the constituent channel. Both criteria
are fulfilled in the cases of the f0(980)/a0(980) mesons. Both lie close to the KK̄
threshold and the anomalously large coupling of the f0(980) to KK̄ despite having
almost no phase space is a strong hint that one possibly deals with a kaon molecule.
The first analysis of the multiquark structure in the JPC = 0++ sector was per-
formed by assuming a diquark–antidiquark structure [17]. Later it was found that
the tetraquark systems, identified with the f0(980) and a0(980), are realized as
weakly bound KK̄ molecules in analogy to the deuteron [18, 19, 20]. The meson–
meson potentials derived in this framework in combination with a coupled channel
Schrödinger equation were used to reproduce the observed phase shifts for the a0
and f0 in ππ–scattering.
The scalar mesons are experimentally well established and studied in different pro-
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duction processes where the most important ones are introduced in the following.

1. Photoproduction

Electromagnetic probes are ideally suited to study the hadronic substructure
of a state. In particular, radiative processes are sensitive to the charge content
since photons couple directly to the charged constituents of the object. In
addition the QED coupling is well known and allows for a precise computation
of observables as for instance two–photon production cross sections and two–
photon decay widths.

The radiative decay widths have the potential to discriminate between the var-
ious scenarios since theoretical models display a large sensitivity to different
substructure assumptions. An overview on the electromagnetic decay width
in the context of different f0 scenarios is for example given in [36]. The results
obtained within a tetraquark model (0.3 keV) is similar to the KK molecule
prediction of 0.24 keV. In contrast, two–photon decay properties of qq̄ states
are very sensitive to the flavor content (i.e. mixing between strange and non–
strange components), to the meson size and the quark masses [37]. For exam-
ple, by assuming a non–strange qq̄ state leads to the two–photon decay width
of 4.5 keV [21] while a pure ss̄ configuration results in 0.3–0.5 keV [38].

We shortly introduce two possible photo production processes of the f0(980)
and a0(980) mesons.

• Two–photon fusion

Two–photon production processes and in particular the two–photon widths
extracted from them are considered to be useful to determine the struc-
ture of mesons since the photon coupling is related to the charge distri-
bution inside the meson.

e+e− colliders specifically allow for high statistics data on meson produc-
tion. Meson resonances are produced by two–photon fusion in the reac-
tion e+e− → e+e−H , where the hadron H is produced by the photons
radiated from the beam electron and positron. Two–photon production
of mesons has further advantages over meson production in hadronic pro-
cesses. For example, a single meson can be produced without ’hadronic
baggage’. Furthermore, due to the fact that photons couple directly to
the quarks, the photon production is sensitive to the charge distribution
of the produced hadron i.e. the production rate will be proportional to
the fourth power of the quark charge. As a consequence pure gluonic
degrees of freedom without electric valence charge like glueballs are not
expected to be produced in photon–photon collisions. Furthermore, this
production mechanism profits from less unknown parameters. The pro-
duction rate can be calculated from QED with the two–photon decay
width as the only unknown parameter.
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In the two–photon production processes we can differentiate between two
ways of detection, ’tagged’ and ’untagged’ data samples. Provided that
the scattering angle of the e± is large enough they will be detected or
tagged by the detector. Since the photon propagator is proportional to
the inverse of the photon momentum squared (1/q2) the virtual photons
are sharply peaked in the forward direction. Therefore, in case of tagged
e± the exchanged photon has a significant component of longitudinal
polarization, and hence is virtual. On the contrary, if neither the electron
nor the positron is tagged, the exchanged photons are ’real’. This leads
to powerful selection rules on the quantum numbers of the meson formed
in the collision. The quantum numbers of the final state are restricted to
states with positive charge conjugation (C = +).

B–factories such as BELLE and BABAR are excellent laboratories to
investigate two–photon production of low lying scalar mesons with very
large statistics. For example, the BELLE collaboration [39] analyses the
γγ → π0π0 process in e+e− collisions. The analysis is made in the ’zero–
tag’ mode which means that neither the recoil electron nor the positron
is detected.

• Initial state radiation

A further production process from photons is initial state radiation (ISR)
which is diagrammatically represented in Fig. 2.1 (a). Here, a vector me-
son state is produced by a virtual photon emitted by the initial electron–
positron pair. The BABAR collaboration studies f0(980) production in
the processes e+e− → K+K−(π+π−, π0π0, K+K−, . . .)γ. The signals
come predominantly from the intermediate states φ and f0(980) with
φ → K+K− and f0 → ππ.

The advantage of ISR is even more apparent in the case of vector meson
production since the quantum numbers of the hadron state produced by
the virtual photon are necessarily determined as JPC = 1−− (see also
discussion of charmonium production).

2. φ production

f0 and a0 production in φ decays is well suited to test the flavor content of
the scalars. Since the φ meson is a well established ss̄ state, φ production is
sensitive to the ss̄ component of the f0(980) and a0(980) mesons. For instance,
in the quark–antiquark picture a dominant ss̄ component residing in f0 or a0
would lead to a sizable production rate while a non–strange configuration
would result in a highly suppressed production.

φ production of the f0 and a0 mesons, which subsequently decay to a ππ
or πη pair are typically studied at electron–positron colliders as for instance
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SND [40], CMD–2 [41] or KLEO [42, 43]. The e+e− → π+π−γ and e+e− →
π0ηγ transitions are fed by three different processes. The photon can either be
emitted from the initial electron–positron pair (ISR), or originate from final
state radiation (FSR). The ISR process is illustrated in Fig. 2.1 (a) and does
not contribute to the φ → f0γ decay. In the FSR process the final photon is
emitted from the final state hadrons, in this case the pions (see Fig. 2.1 (b)).
Hence, FSR does also not contribute to the f0/a0 production. Only the third

(a)

e−

e+

γ

γ∗
π+

π−

(b)

e−

e+

γ∗
γ

π+

π−

φ
e−

e+

γ∗

(c)

π−

π+

γ

Figure 2.1.: Diagrams contributing to the e+e− → π+π−γ transition.

process, which is usually referred to as the structure dependent (SD) ampli-
tude [44], can be clearly assigned to the φ → f0γ (f0 → ππ) transition. Here
the vector meson (φ meson) is produced by a virtual photon. The correspond-
ing decay is diagrammatically represented by the graph in Fig. 2.1 (c).

In theoretical approaches the φ → f0(a0)γ decays are found to be rather
sensitive to the underlying meson structures. The different scenarios were
analyzed in [45] which resulted in equal branching ratios for a0 and f0 of
Br(φ→ f0(a0)γ) = 4·10−5 in theKK̄ molecule picture while qq̄ and tetraquark
configurations lead to much smaller production rates of 10−6 or even less. The
φ production rates quoted by PDG [22] are Br(φ → f0γ) = (3.22 ± 0.19) ·
10−4 and Br(φ → a0γ) = (7.6 ± 0.6) · 10−5, respectively, clearly favoring the
molecular KK interpretation.

3. Production in semileptonic decays

Besides the radiative production processes, weak semileptonic D(s) and B(s)

decays provide a very clean environment to study the properties of the f0(980)
meson. The first evidence for the scalar f0(980) in a semileptonic decay was
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found in the D+
s → f0e

+νe process illustrated in Fig. 2.2, investigated by the
CLEO [46, 47] and BABAR [48] collaborations.

D+
s

c

s̄

W+
e+

νe

f0

s

s̄

Figure 2.2.: Weak production of f0.

Semileptonic decays are well suited to probe different structure scenarios of
the f0 quark content. For example, the D+

s decay is very sensitive to the
strange quark component of the f0(980) as can be seen from Fig. 2.2 (see
also discussion in Ref. [46, 47]). Furthermore, in Ref. [49] it was found that
the ratio of f0 production in nonleptonic and semileptonic decays is rather
different in the quark–antiquark and tetraquark pictures. More precisely, the
ratio Γ(D+

s → f0(980)l
+νl)/Γ(D

+
s → f0(980)π

+) is more suppressed in the
q2q̄2 scenario than in the standard qq̄ model which is in favor of the multiquark
interpretation for the light scalar mesons.

Since f0 production in weak semileptonic decays is not analyzed in this thesis
we do not go into further detail.

2.2. Meson Spectroscopy in the Charmonium

Sector

The discussions involving a possible non–qq̄ nature of meson resonances find their
repetition in the heavy meson and especially the charmonium sector [50, 51]. Until
the late 90s the charmonium spectrum was thought to be well understood. First of
all, the cc̄ mass spectrum is not overcrowded by observed extra states as is the case
in the light scalar sector. Furthermore, the states below the open charm threshold
are narrow since hidden–charm decay modes are OZI suppressed. The OZI–rule
was suggested by Okubo, Zweig and Iizuka in the 1960s which states that processes
described by disconnected quark line diagrams are strongly suppressed. As a conse-
quence, we deal with a clear spectrum without an overlap or merger of states. On
top of that, the cc̄ mass spectrum can be well reproduced by lattice simulations and
in potential models [50]. The success of theoretical approaches can be judged from
Fig. 2.3. Besides some missing states potential model calculations indicated by the
red lines are in good agreement with experimental measurements in blue [50].
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Figure 2.3.: Charmonium spectrum: experimental measurements versus theoretical
predictions.

The situation changed around the turn of the millennium. Here investigations were
essentially fueled by the enormous progress on the experimental side. Many new
charmonium–like states were discovered by the BELLE [52, 53] and BABAR [54, 55]
collaborations at the B–factories, but also in experiments by the CDF [56], D0 [57]
and CLEO [58, 59] collaborations. Original built to study B physics related CP–
violating processes, the B–factories turned out to be an excellent environment to
study charmonium spectroscopy. Charmonium structures are produced in B meson
decays, e+e− annihilation and photon–photon fusion as illustrated in first three di-
agrams of Fig. 2.4. In the latter case the very low cross sections for these processes
are compensated by the very high luminosities obtained by the B–factories. Because
C–parity is conserved in electromagnetic processes the final cc̄ system can be identi-
fied as a state with positive C–parity. A further important production mechanism is
provided by the initial state radiation (ISR) at electron–positron colliders as already
discussed previously. Here a hard photon is emitted by the initial electron–positron
pair while the vector charmonium state is produced by a second virtual photon with
the quantum numbers JPC = 1−−. Meson production by ISR has two important
advantages. First of all, in contrast to the previous processes, ISR can definitely
identify the quantum numbers JPC = 1−− of the charmonium. Second, IRS allows
to measure the hadronic cross section over a wide range of energies at the same
beam energy. The ISR–production became highly topical with the start of the high
luminosity electron– positron colliders at B–factories.
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Figure 2.4.: Charmonium production processes.

In the last 10 years many charmonium–like X, Y and Z resonances have been dis-
covered. The present status of the experimental findings is summarized in Tab. 2.1.
Besides masses and widths the table also indicates the decay and production pat-
terns and the respective experiment. In most cases the quantum numbers are only
partially known. The exception are of course the vector mesons which are produced
by ISR. The majority of the X, Y and Z mesons cannot be easily explained within
the standard charm–anticharm (cc̄) assignment. For instance, besides the overpop-
ulation in the cc̄ spectrum due to the numerous occurrence of X , Y and Z mesons,
decay patterns of these mesons are in some cases in contradiction to the standard
charmonium predictions. One example is the sizable ωφ hidden charm decay width
Γ(Y (3940) → ωφ) of the Y (3940) [60, 61, 25] which should be significantly OZI
suppressed in the charmonium picture. Some of these new charmonium–like states
are considered good candidates for possessing a hadronic substructure which goes
beyond the standard cc̄ assignment ranging from quark–gluon hybrid mesons [62, 63]
and tetraquark states [64] to dynamically generated states [65] or bound states of
two mesons called hadronic molecules [66, 25]. A review on the experimental sit-
uation with a first overview of the present theoretical understanding is given e.g.
in [50, 51, 60, 61]. From all of this newly discovered charmonium–like X , Y and
Z resonances the observation of the charged Z±(4430) by the BELLE Collabora-
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State M (MeV) Γ (MeV) JPC Decay Modes Production Modes Experiments

X(3872) 3871.4± 0.6 < 2.3 1++ π+π−J/ψ,γJ/ψ B → KX(3872), pp̄ Belle, CDF, D0, BaBar

X(3875) 3875.5± 1.5 3.0+2.1
−1.7 ? D0D̄0π0(γ) B → KX(3875) Belle, BaBar

Z(3940) 3929± 5 29± 10 2++ DD̄ γγ → Z(3940) Belle

X(3940) 3942± 9 37± 17 JP+ DD̄∗ e+e− → J/ψX(3940) Belle

Y (3940) 3943± 17 87± 34 JP+ ωJ/ψ B → KY (3940) Belle, BaBar

Y (4008) 4008+82
−49 226+97

−80 1−− π+π−J/ψ e+e−(ISR) Belle

Y (4140) 4130± 4.1 11.7+12.0
−8.7 JP+ J/ψφ B+ → K+Y (4140) CDF

X(4160) 4156± 29 139+113
−65 JP+ D∗D̄∗ e+e− → J/ψX(4160) Belle

Y (4260) 4264± 12 83± 22 1−− π+π−J/ψ e+e−(ISR) BaBar, CLEO, Belle

Y (4350) 4361± 13 74± 18 1−− π+π−ψ′ e+e−(ISR) BaBar, Belle

Z±(4430) 4433± 5 45+35
−18 ? π±ψ′ B → KZ±(4430) Belle

Y (4660) 4664± 12 48± 15 1−− π+π−ψ′ e+e−(ISR) Belle

Table 2.1.: Charmonium–like X , Y and Z resonances.
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tion [67] presents so far the culmination of the series since a cc̄ assignment can be
clearly ruled out.

In the present work three of the states in Tab. 2.1 are discussed in more detail:
Y (3940), Y (4140) and the Z±(4430). The two Y states show similar decay and
production patterns. In particular, both resonances were produced in B decays and
observed in hidden–charm decay modes. Both charmonium–like objects are charac-
terized by unusually large hidden–charm decay rates which are orders of magnitudes
stronger than the predictions for conventional cc̄ states. In general, cc̄ states decay
dominantly to open charm decay modes while the hidden–charm decay channels are
OZI–suppressed which is diagrammatically represented in Fig. 2.5. Hidden–charm
decays of cc̄ mesons are typically of a few keV only [61, 60]. We will see later on
that in the meson bound state assumption the OZI suppression of hidden–charm
modes can be circumvented by intermediate loops of charmed mesons.

c
c̄

c

c̄

q̄

q

Y

D∗

D̄∗

c
c̄

c
c̄

s̄
s

Y

φ

J/ψ

Figure 2.5.: Open– and hidden charm decays of cc̄ states.

2.2.1. Y(3940)

The Y (3940) is rather well established since it was observed by BELLE [68] in B →
Y (3940)K decays with Y (3940) → J/ψω and later on confirmed by BABAR [69].
The signal for the Y (3940) is depicted in Fig. 2.6 (events per invariant mass of J/ψω).
Mass and widths are determined as mY (3940) = 3914.6+3.8

−3.4(stat)± 2(syst) MeV and
ΓY (3940) = 34+12

−8 (stat)±5(syst) MeV by BABAR. The measurement by BELLE leads
to larger values with mY (3940) = (3943± 17) MeV and ΓY (3940) = (87± 34) MeV.

The hidden–charm decay width can be estimated from the measured product of the
branching fractions

Br(B → KY (3940))Br(Y (3940) → ωJ/ψ) = (7.1± 3.4) · 10−5 (BELLE [68])

Br(B → KY (3940))Br(Y (3940) → ωJ/ψ) = (4.9± 1.1) · 10−5 (BABAR [69]) .

The upper limit for the branching fraction for B decays to a charmonium state
Br(B → K(cc̄)) is about 10−3 (see also [22]) which leads to the lower limit for the
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partial decay width Γ(Y (3940) → ωJ/ψ) of about 1 MeV. This value is several
orders of magnitude larger than expected values for a charmonium state [50].
Last year the BELLE collaboration found a resonance in the process γγ → J/ψω.
The mass and width of the so–called X(3915) state exposes this resonance as a good
candidate for the Y (3940). From the measured product of the two–photon decay
width and branching ratio Γ(X(3915) → γγ)Br(X(3915) → ωJ/ψ) = 61 ± 17 ± 8
eV one can estimate the decay width Γ(X(3915) → γγ) ≈ 0.4 keV.
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Figure 2.6.: Y (3940) resonance by BABAR [69].

The Y (3940) meson lies close to theD∗D̄∗–threshold which makes a molecular bound
state interpretation of D∗ mesons rather natural. For this reason, the binding of the
system is studied in different approaches. One of the first studies on the binding
of D∗D̄∗ systems was performed in [70]. In this work it is already predicted that
one–pion exchange is sufficient to bind the D∗D̄∗ system, many years before the
discovery of the Y (3940). In addition, the unitarized coupled channel model in [65]
finds that the Y (3940) is dominantly a D∗D̄∗ bound state with JPC = 0++.
In chapter 4 we analyze the hidden–charm and two–photon decay properties in a
theoretical approach for hadronic bound states.

2.2.2. Y(4140)

In contrast to the previously discussed Y (3940) [56], the heavier charmonium–
like Y (4140) is only observed by the CDF Collaboration in the exclusive B+ →
Y (4140)K+ decay. The significance of the signal is smaller in comparison to the
one of the Y (3940) as one can see from Fig. 2.7 indicating the number of events
in dependence on the invariant mass of φJ/ψ. The mass and width of the new
state are found to be mY (4140)=4130.0±2.9(stat)±1.2(syst) MeV and ΓY (4140) =
11.7+8.3

−5.0(stat)±3.7(syst) MeV. Curiously, the Y (4140) shows the same production
and decay properties as the Y (3940) since it is also observed in the untypically large
hidden–charm decay channel Y (4140) → J/ψφ. In analogy to the Y (3940) the lower
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limit for the Γ(Y (4140) → J/ψφ) > 100 keV decay width can be estimated from the
B decay rate Br(B+ → Y (4140)K+)Br(Y (4140) → J/ψφ) = (9.0± 3.4± 2.9) · 10−6

by using the estimate Br(B → K(cc̄)) < 10−3.
The electromagnetic interaction of the Y (4140) was studied by the BELLE collabo-
ration [71] in the γγ → φJ/ψ channel, but no explicit signal for the Y (4140) was de-
duced. The lower limit of the measured observable Γ(Y (4140) → γγ) Br(Y (4140) →
φJ/ψ) < 39 eV results in Γ(Y (4140) → γγ) < 0.14 keV.

Figure 2.7.: Y (4140) measured by CDF [56].

A further common feature of the Y (3940) and Y (4140) is the proximity to an open
charm threshold. In this case the difference between the Y (4140) mass and the
D∗+
s D∗−

s threshold is less than 100 MeV. As a consequence the D∗+
s D∗−

s configura-
tion is likely to play a dominant role. Nevertheless, the binding mechanism needs to
be studied in different theoretical approaches. One of the standard methods for in-
vestigating binding is based on meson exchange potentials [72]. In this case the pion
exchange potential is not sufficient to bind the system. However, when adding η and
φ exchange mesons two D∗+

s D∗−
s bound states are generated with JPC = 0++ and

2++. In addition QCD sum rule studies [73] give support for a Y (4140) = D∗+
s D∗−

s

bound state with JPC = 0++.

2.2.3. Z(4430)

From all the X , Y and Z mesons the charged charmonium–like Z±(4430) announced
by BELLE [67] is the most spectacular discovery since it is the first detection of a
charged hidden–charm state. Therefore, a conventional cc̄ as well as a hybrid config-
uration can be clearly ruled out. Provided that the Z± resonance becomes definitely
established, this would be the proof for the existence of a multiquark state either
realized as meson molecule or as compact diquark–antidiquark structure. The Z±

resonance was, in analogy to the Y states, observed in B → Z+(4430)K decays with
mZ+(4430) = 4443+15+19

−12−13 MeV and ΓZ+(4430) = 107+86+74
−43−56 MeV. A remarkable property
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of this state is that the Z+(4430) is only observed in the π+ψ′ decay mode while it
does not seem to decay to π+ψ despite that this mode is favored by phase space.
Therefore, the branching fraction Γ(Z+(4430) → π+ψ′)/Γ(Z+(4430) → π+ψ) is ex-
pected to be much larger than unity. Although some arguments [74, 75, 76, 77] were
put forward to understand this dynamical selection rule, a full quantitative expla-
nation is not given yet. The Z± also shows a sizable coupling to the hidden–charm
decay channel. Due to the product of the branching ratios Br(B → Z+K)Br(Z+ →
ψ′π+) = (4.1 ± 1.0 ± 1.4) · 10−5 [67] the partial decay width Γ(Z± → π±ψ′) is
expected to be of the order of several MeV [50].

The announcement of the Z± lead the BABAR Collaboration to search for a cor-
responding signal but without evidence so far. It was speculated that the resonant
structure, observed by BELLE, might arise from interference effects in theKπ rather
than in the πψ′ channel. After this report the BELLE Collaboration [78] reanalyzed
their data sample in a full Dalitz–plot formalism which resulted in a 6.4 σ signal
for Z+ → π+ψ′ with mass mZ = 4443+15+19

−12−13 MeV and width Γ = 107+86+76
−43−56 MeV.

The signal of the Z± resonance is depicted in Fig. 2.8 (events in dependence on
the invariant ψ′π mass squared). This reanalysis confirms and even supersedes the
previous Z±(4430) resonance parameters of [67]. The larger errors contain e.g. the
uncertainties in the spin assignment of the Z+ (J = 0, 1) and in the orbital angular
momentum in the B decay. The reanalysis by BELLE results in a product branch-
ing fraction Br(B̄0 → K−Z(4430)+)Br(Z(4430)+ → π+ψ′) = (3.2+1.8+5.3

−0.9−1.6) · 10−5 [78]
which is consistent with the BABAR upper limit. The decay mode ψ′π+, assuming
standard conservation laws, leads to an identification of the Z+ as an isotriplet state
with positive G–parity. The JP quantum numbers remain to be determined.
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Figure 2.8.: Z±(4430) by BELLE [67].

After the discovery of the Z±(4430) the BELLE Collaboration had evidence for
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further charged charmonium–like states in the B → Kπ+χc1 decay channel called
Z+

1 (4050) and Z
+
2 (4250) [79]. The significance of the signals is much smaller than

in the case of the Z±(4430).

Since the Z±(4430) cannot be explained by an ordinary cc̄ structure it has already
been discussed as either a radially excited cc̄ud̄ tetraquark [74, 64, 75, 80], a less
compact hadronic meson molecule [81, 82] or as a threshold effect [77]. Further ex-
planations for the occurrence of the Z(4430)+ are a cusp in the D1D

∗ channel [83], a
radial excitation of a cs̄ configuration [84], a baryon–antibaryon (baryonium) bound
state [85] or even a ψ′ bound state in mesonic matter [86]. However, due to the
nearby D1D̄

∗ threshold the Z± is regarded as a top candidate for a meson molecule.

There are two D1 mesons which are discussed as the bound state partner of the
D∗ meson. Both are almost degenerate in mass but their widths differ significantly.
Therefore, only the D1(2420), which is fairly narrow with a total width of about 20
MeV, would principally allow the formation of a hadronic bound state. The other
possibility, the D′

1 ≡ D1(2430), has a rather large width of about 400 MeV which
exceeds even the total width of the bound state. Meson molecules are most likely
realized by s–wave bound states since they are characterized by a small binding
energy, hence, the possible quantum numbers are JP = (0, 1, 2)−. The binding of
the D1D

∗ system is studied by standard methods like meson exchange potentials
and QCD sum rule. In the one–pion exchange model of Ref. [87] it is found that
the D′

1D̄
∗ can form a bound state with JP = 1−. Further inclusion of sigma meson

exchange leads to s–wave binding for D′
1D

∗ with JP = 0−, 1−, 2− [88]. However,
in both approaches it is assumed that the broad D′

1 is one of the constituents. Since
the width of the constituent meson (D′

1) becomes larger than that of the meson
molecule, the formation of a bound state is disfavored. The inclusion of the sigma–
exchange potential also leads to binding of the D1D

∗
configuration but only for

JP = 0− and at the price of a large cutoff at the meson interaction vertex which
in turn leads to an enhanced attraction of one–pion–exchange. Finally, QCD sum
rule studies [89, 90] support a D∗D̄1 molecular structure for the Z± with JP = 0−.
The study of the low–energy D1D∗ interaction in a quenched lattice calculation,
where virtual qq̄ fluctuations are neglected, also indicates attraction in the JP = 0−

channel, but this effect is considered probably too weak to lead to the formation of
a bound state [91].

The hidden–charm decay mode πψ′ and in particular the unexpected non–observation
of the πψ decay is the topic of this work and we try to understand this observations
in the framework of the constituent meson model in Chapter 4.

2.3. Outline of the theory part

In the following chapters we turn to the theoretical analysis of various meson prop-
erties by using different methods. The aim is to gain a broad insight into aspects
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of meson spectroscopy. Therefore we discuss different resonances ranging from the
established qq̄ structures to bound states on the hadron level in the light and heavy
meson sectors. In order to study the fundamental meson structures we use different
theoretical approaches to illuminate the topic from different view–points.

The outline of the present work is as follows:

Chapt. Method Meson Structure Details

3
Coupled meson–meson D∗

s2(2573) and flavor exotic mesons,

Channels (dyn. generated) radiative decays

4

Effective meson–meson light scalars: f0(980), a0(980)

model for (molecules) hidden–charm: Y (3940), Y (4140), Z±(4430)

hadronic (strong– and rad. decay properties)

bound states qq̄ Dalitz–decays of η, ω, φ

5
Holographic Mass spectrum,

(AdS/CFT)
qq̄

decay constants

In the first block of the theory part (Chapters 3–4) we focus on hadronic molecules,
in particular meson bound states. First, in Chapter 3, the binding and dynamical
origin of hadronic molecules is studied in a unitarized coupled channel approach,
from which we get information on the binding strength of meson channels and,
provided the binding is strong enough, we can extract the mass and width of the
meson–meson resonance. The interaction between the mesons is set up by chiral
Lagrangians which provide the kernel of the Bethe–Salpeter equation used to analyze
the transition amplitude with respect to resonances. Here we scan the open– and
hidden–charm sectors for dynamically generated resonances resulting from meson–
meson interaction. In addition, we apply this method for the first time to flavor
exotic channels. In this framework we resolve the charm D∗

s2(2573) as a K∗D∗

bound state and study the radiative decays of the hidden–charm mesons Z(3930),
Y (3940) and X(4160). The Y (3940) is also analyzed in an effective Lagrangian
approach which will be introduced in Chapter 4.
Decay and production properties of hadronic molecules are studied in more detail
in Chapter 4 by using an effective theory for hadronic bound states. In the first
part we continue to study meson–meson bound state structures. In particular, this
approach is used to get further information on the possible molecular structure by
analyzing their decay and production properties. At the beginning we deal with
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the light f0(980) and a0(980) mesons which have been discussed for many years
as good candidates for bound states of kaons. Furthermore, we also study the
hidden and radiative decays of the latest charmonium–like Y (3940), Y (4140) and
Z±(4430) mesons by assuming a possible hadron molecule structure of charmed
mesons. The Y (3940) is especially interesting since this resonance was also studied
in the framework of the dynamical approach in Chapter 3, where the Y (3940) is
identified as a bound state of D∗ mesons.
In the second part of Chapter 4 we switch over to ordinary quark–antiquark mesons.
We apply the effective Lagrangian approach, previously used to study hadronic
molecules, to quark–antiquark bound states and analyze their decay and production
properties in the light and heavy quark sector. This approach contains confinement
which is modeled by introducing a infrared confinement scale in the quark loops.
We use this model to study explicitly the electromagnetic form factors of the pion
and the Dalitz decays of the η, η′, ω and φ mesons.
In Chapter 5 we stay on the track with the conventional quark–antiquark structures.
However, the method is completely different from the ones discussed previously since
now we turn to a so–called holographic approach based on extra dimensions. This
model is based on the correspondence of strings in the five–dimensional Anti–de–
Sitter (AdS) space and conformal field theory representing the four dimensional
space–time of the hadronic world. In this approach we study the mass spectrum of
light and heavy mesons up to bottomia states and compute the decay constants of
the ground states.
Finally, in Chapter 6, we summarize our results obtained in the different approaches
which are then assembled to form a consistent picture of the mesons studied in the
present thesis. Furthermore, we relate our findings to future prospects of meson
spectroscopy.



3. Dynamically generated
resonances

As already pointed out in the previous chapters, the introduction of meson structure
besides the usual qq̄ states seems necessary to explain certain resonances in the
meson spectrum. For this reason, meson structure with gluonic components and
multiquark states came into the focus of interest. The latter structure can also be
realized as bound states of two mesons, which means that the meson states are made
up of hadronic components rather than effective quarks. Bound states of mesons
usually origin from the attractive strong interaction between mesons. This issue
was already proposed in the 80s [19] and studied in various potential models [92].
One of the first systematic analyses of meson–meson bound states was performed in
Ref. [70] within the framework of meson exchange potential models.

In the following we focus on meson structure composed of two other mesons. In
particular, we pursue the issue of dynamically generated resonances from meson–
meson interaction. In the present coupled channel approach the scattering process
between different meson channels is studied with respect to resonances which give
rise to poles in the transition matrix. The scattering amplitude, here contained in
the Bethe–Salpeter Equation, gives information about the generation of resonances,
their masses and widths and the respective contribution from the different channels.
For example, if one channel clearly dominates the others, this is a strong hint for a
meson molecule. For instance, the f0(980) and a0(980) are found to be dominantly
kaon–antikaon bound states [93]. In the case of the Y (3940) and Z(3930) the D∗D̄∗

coupling is much larger than the others which implies that the Y (3940) can be
considered as a D∗D̄∗ bound state. This interpretation is in agreement with the
D∗D̄∗ molecular interpretations in Refs. [66, 25].

3.1. Coupled channels

The unitarized coupled channel approach was first applied to interacting pseudoscalar–
pseudoscalar and pseudoscalar–vector meson channels [93, 94, 95]. The next step
is the extension of the model to coupled channels of two vector mesons which are
considered in the present case. In the previous works [94, 95] on coupled channels of
pseudoscalars the interaction was set up by the lowest order chiral Lagrangian. The
extension of the model to vector mesons therefore requires a method to incorporate

31
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vector mesons in the chiral Lagrangian. Effective chiral Lagrangians for the descrip-
tion of low-energy hadron physics with vector mesons involved have been intensely
studied in literature (for a review we refer to [96, 97] ). In particular, when con-
sidering vector mesons as dynamical gauge bosons of a hidden local symmetry [96],
hence the name hidden–gauge, one can derive a gauge invariant kinetic term which
provides a low–energy chiral Lagrangian of vector mesons

L = −1

4

〈
VµνV

µν
〉
, (3.1)

where
Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] . (3.2)

The symbol 〈〉 indicates the trace in the flavor space and Vµ represents the extension
of the vector nonet to SU(4) [95, 65]:

Vµ =




ωµ+ρ0µ√
2

ρ+µ K∗+
µ D

∗ 0
µ

ρ−µ
ωµ−ρ0µ√

2
K ∗ 0
µ D ∗−

µ

K ∗−
µ K

∗ 0
µ φµ D∗−

s µ

D∗ 0
µ D∗+

µ D∗+
s µ J/ψµ




µ

. (3.3)

The Lagrangian of Eq. (3.1) provides the four–vector contact term for the V1V2 →
V3V4 transition

LVVVV =
1

2
g2〈[Vµ, Vν]V µV ν〉, (3.4)

represented in Fig. 3.1 (a) and the three–vector meson interaction Lagrangian

LV V V = ig〈(V µ∂νVµ − ∂νVµV
µ)V ν)〉 (3.5)

which diagrammatically leads to the vector meson exchange diagrams of Fig. 3.1 (b)
and (c). In general, the diagrams in the s–channel (see Fig. 3.1 (c)) lead to a
repulsive p–wave interaction of the vector mesons for equal or similar masses [98] and
only to a minor s–wave component in the case of different masses [99]. Since we only
consider s–wave bound states we can neglect the diagrams of Fig. 3.1 (c) completely.
While the interaction terms corresponding to the diagrams (a)–(b) of Fig. 3.1 are
relevant for the generation of resonances, the two pseudoscalar decay modes play
an important role in the generation of the decay widths. The corresponding box
diagrams with intermediate pseudoscalars in Fig. 3.1 (d) are based on the interaction
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Figure 3.1.: V V –interaction diagrams.

Lagrangian

LVΦΦ = −ig
〈
V µ
[
Φ, ∂µΦ

]〉
(3.6)

taken from [95].

The resulting interaction terms characterize the potentials Vij of the respective initial
and final meson channels i = V3V4 and j = V1V2 which enter as a matrix type kernel
in the Bethe–Salpeter Equation

Tij = (1− V G)−1Vij . (3.7)

G represents the diagonal matrix of the respective two–meson loops given by

G = i

∫
d4q

(2π)4
1

q2 −M2
1 + iǫ

1

(P − q)2 −M2
2 + iǫ

, (3.8)

where Mi (i = 1, 2) are the masses of the mesons in the loop and P is the to-
tal four–momentum of the two mesons. Since G is UV divergent the expression
has to be regularized by either dimensional or cutoff regularization. Dimensional
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regularization leads to the expression

G =
1

16π2

(
α + ln

M2
1

µ2
+
M2

2 −M2
1 + s

2s
ln
M2

2

M2
1

+
p√
s

(
ln

s−M2
2 +M2

1 + 2p
√
s

−s +M2
2 −M2

1 + 2p
√
s
+ ln

s+M2
2 −M2

1 + 2p
√
s

−s−M2
2 +M2

1 + 2p
√
s

))
, (3.9)

where α is the subtraction constant and µ represents the cutoff scale parameter.
Both variables are not independent since they can be combined in one parameter
α̃ ≡ α− lnµ2. For this reason, we will later keep µ fixed and adjust α to data.

In the case of the cutoff regularization represented by

G =

∫ qmax

0

q2dq

(2π)2
ω1 + ω2

ω1ω2[(P 0)2 − (ω1 + ω2)2 + iǫ]
(3.10)

we also deal with one parameter which is the cutoff in the three–momentum qmax.
Furthermore, p =

∣∣~p
∣∣ denotes the absolute value of the three—momentum of the

mesons in the center–of–mass frame:

p =

√
(s− (M1 +M2)2) (s− (M1 −M2)2)

2
√
s

, (3.11)

ωi = (~q 2
i +M2

i )
1/2 and (P 0)

2
= s is the square of center–of–mass energy.

Dynamically generated meson–meson resonances appear as poles in the transition
amplitude Tij . Close to a resonance R (pole) the amplitude Tij can be approximated
by

T
(S)
ij = giP(S)(i)

1

s−M2
R + iMRΓR

gjP(S)(j) . (3.12)

The total spin J of the resonances is equivalent to the spin S since we deal with s–
wave bound states. For simplicity we consider the three–momentum of the vectors to
be small, i.e.

∣∣~p
∣∣/MV << 1. For this reason, the zero component of all polarization

vectors ǫ0 = 0 and the spin projection operators of the respective coupled channel
can be written in the simple form

P(0) =
1√
3
ǫi(1)ǫi(2) ,

P(1) =
1

2

[
ǫi(1)ǫj(2)− ǫj(1)ǫi(2)

]
, (3.13)

P(2) =
1

2

[
ǫi(1)ǫj(2) + ǫj(1)ǫi(2)

]
− 1

3
ǫm(1)ǫm(2)δij .

The polarization vectors of the particles 1 and 2 of one particular channel are denoted
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by ǫ(1) and ǫ(2). The indices i, j and m run over the spatial coordinates, i.e.
i, j,m=1,2,3.

The couplings gi and gj of the resonance R to the respective meson–meson channels
i and j can be extracted from the residues of the T–matrix at the poles because
of the approximation in Eq. (3.12). The coupling strength of the resonance R to
a particular channel gives a measure for the importance of its contribution to the
formation of R.

The generation of resonances is primarily driven by the three and four vector meson
interaction terms Eqs. (3.5) and (3.4). Already at this stage we can determine
the mass of the resonance and the couplings strengths to the channels involved.
However, for determining the width of the resonant state two further mechanisms
have to be included. First of all, the decay width of the vector mesons involved have
a certain influence on the width of the resonance. In the following section this issue
is addressed by considering the mass distributions of the vector mesons.

Further on, we include the two pseudoscalar decay modes of the vector mesons,
which means that initial and final vector mesons can interact via intermediate pseu-
doscalars corresponding to the box diagram of Fig. 3.1 (d).
Both issues are discussed in more detail in the following subsections.

Inclusion of the vector meson widths

The decay width of the vector mesons, i.e. their mass distribution, is taken into
account by folding the meson loop function G in Eq. (3.8) with the spectral function

S(M) = −1/π Im
( 1

M2 −M2
i + iMiΓi

)
(3.14)

of the respective vector meson with mass Mi and width Γi. The resulting expression
we refer to as convoluted function G̃ [100]

G̃(s) =
1

N2

(M1+2Γ1)2∫

(M1−2Γ1)2

dm̃2
1

π
Im
( −1

m̃2
1 −M2

1 + iΓ̃1m̃1

)

×
(M2+2Γ2)2∫

(M2−2Γ2)2

dm̃2
2

π
Im
( −1

m̃2
2 −M2

2 + iΓ̃2m̃2

)
G(s, m̃2

1, m̃
2
2) . (3.15)

The normalization is given by

N2 =

(M1+2Γ1)2∫

(M1−2Γ1)2

dm̃2
1

π
Im
( −1

m̃2
1 −M2

1 + iΓ̃1m̃1

)
·
(M2+2Γ2)2∫

(M2−2Γ2)2

dm̃2
2

π
Im
( −1

m̃2
2 −M2

2 + iΓ̃2m̃2

)
,
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and Γ̃i is determined as

Γ̃i = Γ0
q3off
q3on

Θ(m̃i −m1 −m2) . (3.16)

where m1 and m2 are the masses of the pseudoscalar decay products. The on and
off–shell momenta of the respective vector meson are defined by

qoff =
λ1/2(m̃2

i , m
2
1, m

2
2)

2m̃i

, qon =
λ1/2(M2

1(2), m
2
1, m

2
2)

2M1(2)

, (3.17)

where λ(a, b, c) = a2+b2+c2−2ab−2ac−2bc is the Källen function. The convolution
of the meson loop expression leads to an imaginary part of the potential which finally
contributes to the width of the resonance.

Box diagrams

Besides the contact and vector meson exchange terms, the vector–vector meson
interaction can also proceed via the dominant two pseudoscalar decay channels,
where the vertices are provided by the hidden gauge formalism (3.1) leading to the
Lagrangian

LVΦΦ = −ig〈V µ[Φ, ∂µΦ]〉 . (3.18)

This issue we take into account by including box diagrams (see Fig. 3.2) with in-
termediate states of two pseudoscalar mesons. The real part of the box diagrams,
which contribute to the mass of the resonances, was previously found to be negligi-
ble compared to the contributions of the three– and four–vector meson interaction
terms [65]. In contrast, the imaginary part of the box diagrams is large which
generates the width of the resonances.

The general structure of the box diagram reads

V ∼
∫

d4q

(2π)4
ǫ1 · (2q − k1)ǫ2 · (2q − k3) (3.19)

×ǫ3 · (2q − k3 − P )ǫ4 · (2q − k1 − P )

× 1

(q − k1)2 −m2
1 + iǫ

1

q2 −m2
2 + iǫ

× 1

(q − k3)2 −m2
3 + iǫ

1

(q − P )2 −m2
4 + iǫ

,

where the approximation of neglecting the three–momenta of the external particles
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leads to a simplified expression for V

V ∼
∫

d4q

(2π)4
ǫi1ǫ

j
2ǫ
m
3 ǫ

n
4q

iqjqmqn

× 1

(q − k01)
2 −m2

1 + iǫ

1

q2 −m2
2 + iǫ

× 1

(q − k03)
2 −m2

3 + iǫ

1

(q − P 0)2 −m2
4 + iǫ

. (3.20)

q

q − k1 q − k3

q − P

k1

k2

k3

k4

m1

m2

m3

m4

Figure 3.2.: Box diagram containing four pseudoscalar mesons. The cuts in the
diagram provide the sources of the imaginary part of the potential.

Since the integral is logarithmically divergent we regularize it with a three dimen-
sional cutoff. For this purpose we first perform the q0 integration by means of the
residue theorem and subsequently carry out the three–dimensional integration with
the cutoff qmax = 1.2 GeV [98, 65]. Since we only consider meson–meson systems
in a relative s–wave we deal with resonances of positive parity. As a consequence,
the intermediate pseudoscalar mesons in the box diagrams are also forced to form a
P = + state. This constraint is only fulfilled for the relative orbital momenta L = 0
and 2, which leads to total quantum numbers of JP = 0+ and 2+. For this reason,
box diagrams only contribute to resonances with quantum numbers JP = 0+, 2+

while the 1+ states generally appear as relatively narrow states.

Finally, we also include form factors in the box diagrams [65], where we use two
different models

• Model A: We introduce form factors inspired by the empirical form used in
the decay of vector mesons [101]. We therefore multiply the vertices in the
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diagram of Fig. 3.2 by:

F1(q
2) =

Λ2
b −m2

1

Λ2
b − (k01 − q0)2 + |~q|2 , (3.21)

F3(q
2) =

Λ2
b −m2

3

Λ2
b − (k03 − q0)2 + |~q|2 , (3.22)

where q0 =
s+m2

2−m2
4

2
√
s

. The cutoff parameter Λb is varied between 1.4 and 1.5
GeV to display the sensitivity of the model on this value.

• Model B: Here we introduce Gaussian form factors for off–shell pions and kaons
as e.g. used in the QCD sum rule approach in [102],

F (q2) = e((q
0)2−|~q|2)/Λ2

, (3.23)

with Λ = 1− 1.2 GeV.

3.2. Coupled channels including charmed mesons

We use the formalism introduced in the previous section to study coupled channels
of open– and hidden–charm vector mesons [103]. In this work we pursue two main
objectives: First we study charm–strange and hidden–charm meson systems since
here the heavy meson sector is fueled by the enormous progress on the experimental
side. We also focus on ’flavor exotic’ resonances which might provide an interesting
research topic in upcoming experiments. Mesons carrying flavor exotic quantum
numbers would be a natural consequence of the existence of tetraquark or molecular
meson structures. The observation of a flavor exotic state containing e.g. two
charmed quarks, would be the proof for the existence of such kind of multiquark
hadron substructure.
In the present coupled–channel approach we find a resonance in the charm–strange
spectrum coupling strongly to the D∗K∗ channel which is a good candidate for the
D∗
s2(2573) meson [103].

The D∗
s2(2573) was first observed by the CLEO Collaboration in 1994 [104]. Its

accommodation in the simple quark model was found to be difficult—a property
which is also known from other charm–strange mesons. In the following we shortly
discuss the charm–strange mesons before we study this sector with the coupled
channel approach. Within the heavy quark symmetry framework (HQS) the spin of
the heavy quark and the total angular momentum of the light quark are separately
conserved. As a consequence, the heavy–light systems can be grouped in one doublet
with jl = 3/2 and JP = 1+, 2+ and a second doublet with jl = 1/2 and JP =
0+, 1+, where jl denotes the total spin of the light quark. While the jl = 3/2 states
are relatively narrow, the states of the jl = 1/2 doublet are expected to be very
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broad [105]. After the detection of the D∗
s2(2573) it was first considered as the

possible jl = 3/2–doublet partner of the D∗
s1(2536). The D∗

s0(2317) and Ds1(2460)
mesons announced by the CLEO [106] and BABAR [107] collaborations in 2003
might be candidates for the jl = 1/2 doublet. Unfortunately, the masses of both
states are in contradiction with typical quark model predictions since experimental
measurements lie around 100 MeV below the potential model estimates. In addition,
the D∗

s0(2317) and Ds1(2460) are very narrow states with widths of about 4 MeV
while in the qq̄ picture the jl = 1/2 doublet is expected to be very broad.

Since the standard cs̄ scenario is in disagreement with experimental observations,
alternative structure interpretations have been made (for a review see [59]). The
proximity of the D∗

s0(2317), Ds1(2460) and D
∗
s2(2573) to the DK, D∗K and D∗K∗

thresholds gives strong evidence for bound states of mesons.

The charmed–strange meson sector has already been in the focus of interest in
earlier studies in the framework of coupled channels of two pseudoscalar mesons and
pseudoscalar–vector mesons. In Refs. [95] and [94] it was argued that the D∗

s0(2317)
and D∗

s1(2460) are possibly dynamically generated resonances with dominant DK
and D∗K molecular structures.

In the present work we study charm–strange meson systems in the context of vector–
vector meson coupled channels.

An overview on the coupled channels including quantum numbers of possibly gen-
erated resonances is given in Tab. 3.1. The quantum numbers C and S indicate the
open–charm and strange flavors, I and J refer to the isospin and total spin of the
resonances. The first three rows are related to the open– and hidden–charm sectors
while the second part of the table refers to flavor exotic channels. Up to now, there
is no experimental evidence for exotic states, however, they are predicted in several
theoretical models ranging from QCD sum rules [108] to potential models [109, 110].

When studying the coupled channels of Tab. 3.1 we first set up the appropriate
isospin states of the meson–meson channels involved. We thereby use the phase

convention (K∗ 0, K∗+), (−K∗−, K
∗ 0
), (−D∗ 0, D∗+), (D∗−, D

∗ 0
) and (−ρ+, ρ0, ρ−)

for the respective isospin doublets and triplet. In the next step we set up the
contact interaction and the vector meson exchange terms including the projections
in the respective spin basis. The formalism is demonstrated by means of the coupled
channels of D∗

s and φ mesons since we deal with the least to the simplest expression
of the Lagrangian in Eq. 3.4 with only four interaction terms

L(4V ) =
g2

2

(
[D∗−

s µ , D
∗+
s ν ]φ

µφν + [φµ, D
∗−
s ν ]D

∗+µ
s φν

+ [φµ, φν ]D
∗−µ
s D∗+ ν

s + [D∗+
s µ , φν]φ

µD∗− ν
s

)
. (3.24)

We define the polarization vectors of the initial D∗+
s and φ mesons by ǫ(1) and ǫ(2),

respectively. By analogy we denote the polarizations of the final D∗+
s and φ mesons
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Sectors
quantum numbers channels involved

C S I J

open-strange
0 1 1/2 D∗

sD̄
∗ J/ψK∗

(hidden–charm)

charm–strange 1 1 0 0,1,2 D∗K∗ D∗
sω D∗

sφ

charm–strange 1 1 1 0,1,2 D∗K∗ D∗
sρ

flavor exotic

1 -1 0,1 0,1,2 D∗K̄∗

1 2 1/2 D∗
sK

∗

2 0 0 1 D∗D∗

2 1 1/2 D∗
sD

∗

2 2 0 D∗
sD

∗
s

Table 3.1.: Channels analyzed in this work: quantum numbers and contributing
meson–meson channels.

by ǫ(3) and ǫ(4). Above Lagrangian can therefore be cast in the form

L(4V ) =
g2

2

(
− 2ǫµ(1)ǫµ(2)ǫ

ν(3)ǫν(4) + 4ǫµ(1)ǫν(2)ǫ
µ(3)ǫν(4)

− 2ǫµ(1)ǫν(2)ǫ
ν(3)ǫµ(4)

)
. (3.25)

By using the spin projection operators of Eq. (3.13) we can determine the contribu-
tions of the respective spins S = 0, 1, 2

L(4V ) = g2
(
− 2P0 + 3P1 + P2

)
. (3.26)

From above expression we obtain the four vector contact potentials

V (4V ) = −2g2 (S = 0),

V (4V ) = 3g2 (S = 1), (3.27)

V (4V ) = g2 (S = 2).

We consider chiral symmetry breaking by adapting the value of the coupling g
to the respective mesons involved in the coupled channels. For example we use
g = Mρ/2 fπ when dealing with light vector mesons, where fπ = 93 MeV is the
pion decay constant. If there are heavy vectors involved we either plug in the
experimental value in case of charmed mesons gD = gexpD∗Dπ = 8.95 [111, 112, 113]
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or use gDs = MD∗
s
/2 fDs = 5.47 with fDs = 273/

√
2 MeV [22] for charm–strange

vectors.

In the case of the vector meson exchange terms we proceed in complete analogy.
The three–vector interaction Lagrangian (3.5)

L(3V ) =ig
(
φµ∂νφ

µφν +D∗−
sµ ∂νD

∗+µ
s φν

+ φµ∂νD
∗−µ
s D∗+ ν

s +D∗+
s µ ∂νφ

µD∗− ν
s )

(3.28)

provides the basis for the vector exchange transition matrix element (see diagram
in Fig. 3.1 (b))

V (3V ) = g2φµ∂νD
∗−µ
s D∗+ ν

s D∗− ν′

s D∗−µ′

s ∂ν′φµ′

=
g2

m2
D∗
s

(k1 + k4)(k2 + k3)ǫ(1)
µǫ(2)νǫ(3)νǫ(4)µ (3.29)

=
g2

m2
D∗
s

(k1 + k4)(k2 + k3)(P2 − P1 + P0) .

The corresponding expression for the u–channel, which is zero in the present case,
would be proportional to (k1 + k3) · (k2 + k4) ǫ(1)

µǫ(2)νǫ(3)µǫ(4)ν . The momentum
dependence can be evaluated by using

k1 · k2 =
s−M2

1 −M2
2

2

k1 · k3 =
(s+M2

1 −M2
2 )(s+M2

3 −M2
4 )

4s
,

where k1 = (k01, ~p), k2 = (k02,−~p), k3 = (k03, ~q), k4 = (k04,−~q) and Mi (i = 1− 4) are
the masses of the external particles.

In the next step we need to consider the two–pseudoscalar decay channels of the
vector mesons which diagrammatically leads to box diagrams with intermediate
pseudoscalar mesons. In our calculations we consider the four boxes of Fig. 3.3
which make the dominant contribution to the transition amplitude.

It is well–known that the real part of the potential and therefore of the transition
amplitude represents the mass while the imaginary part defines the width of the
resonance. The real part only comes from the four and three vector meson interaction
terms while the real part of the box diagrams is negligible as illustrated by the
example of the D∗K∗ → D∗K∗ and D∗K∗ → D∗

sφ channels in Figs. 3.4 and 3.5.

In contrast, box diagrams lead to a sizable imaginary part of the potentials as
depicted in Figs. 3.6 and 3.7. In summary, the inclusion of box diagrams does not
influence the real part of the poles in the scattering matrix T , i.e. does not modify the
mass of the resonance, but only contributes an imaginary part which characterizes
the width. In Figs. 3.6 and 3.7 we compare the two types of form factors of the box
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Figure 3.3.: Box diagrams.
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Figure 3.4.: Real parts of the contact, vector exchange and box diagrams for the
D∗K∗ → D∗K∗ amplitude with quantum numbers I = 0, J = 0.

diagrams previously introduced as models A and B. In our numerical results we vary
the cutoffs of the Gaussian and monopole form factors. However, in Fig. 3.6 we set
Λ = 1400 MeV for the monopole form factor in model A while we put Λ = 1200
MeV when dealing with the Gaussian of model B in Fig. 3.7. Clearly, the Gaussian
form factor (version B) (3.23) provides a larger imaginary part compared to Model
A which results in a larger width of the resonance.
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Figure 3.5.: Comparison of the real part of the box diagram with the contact term
plus vector–exchange term for the D∗K∗ → D∗

sφ transitions and I = 0,
J = 0.

To generate an imaginary part besides the box diagrams we also include the explicit
decay widths of the vector mesons. Except for the decay widths of the ρ and K∗

mesons, all widths are relatively small and can be neglected. For this reason, we
only need to replace the two–meson loop function by the convoluted expression (Eq.
(3.15)) when ρ or K∗ mesons are involved. In the first case we use Γρ = 146.2
MeV, and m1 = m2 = mπ while for the K∗ meson we insert ΓK∗ = 50.55 MeV and
m1 = mK , m2 = mπ (see also diagrams of Fig. 3.3).

At this stage we are ready to analyze the transition matrix T for the various sets
of quantum numbers. In particular, we insert the potentials including contact,
vector exchange and box contributions into the Bethe Salpeter Equation (3.7). The
generation of resonances with dynamical origin depends sensitively on the attraction
of the resulting potential. Dynamically generated resonances appear as poles in the
T matrix. In the case of a less attractive interaction we also obtain threshold
cusps, which arise due to the opening of a meson–meson channel. Provided that the
interaction is strong enough to generate a resonance we approximate the transition
matrix by Eq. (3.12). From this representation we obtain the pole position, i.e.
mass and width, and the coupling strength of the resonance to a particular channel
by evaluating the residues of T .

The present coupled channel model is based on a few parameters. These are the
cutoffs of the form factors entering in the box diagrams and the coupling constants
g, gD and gDs in the hidden–gauge Lagrangian (3.1) which have already been dis-
cussed above. In addition, the regularization of the meson loop G requires further
parameters: Since µ and α depend on each other (see discussion after Eq. (3.9)) we
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Figure 3.6.: Imaginary part of the box diagrams (Model A) for I = 0, J = 0.
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Figure 3.7.: Imaginary part of the box diagrams (Model B) for I = 0, J = 0.
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use a unique scale parameter µ = 1500 MeV of natural size and adjust α to one
particular resonance which is e.g. experimentally well studied. For the open charm
channels C = 1;S = −1, C = 1;S = 1 and C = 1;S = 2 we set α = −1.6 while
we choose a slightly smaller value α = −1.4 for the heavy hidden–charm and flavor
exotic sectors in order to reproduce the Z(3930), Y (3940) and X(4160) states as
done in Ref. [65]. The values of the parameter sets α and µ are close to those in
earlier works where α ranges between -1.55 [94] and -1.74 [114].
In the following sections we present our results, where we discuss each flavor sector,
indicated by the quantum numbers C (charm) and S (strange), separately and also
differentiate between the respective isospin states denoted by I.
For the sake of readability, in the following sections we discuss the results for each
flavor sector separately.

3.2.1. Hidden–charm, open–strange sector (C=0; S=1;

I=1/2)

In the hidden–charm sector the potentials from the different contributing channels
are repulsive except for the D∗

sD
∗ → J/ψK∗ (J = 1) and D∗

sD
∗ → D∗

sD
∗
(J = 2)

coupled channels as noted in Tab. 3.2. In order to estimate the absolute value and
sign of the potential we indicate in the last column of Tab. 3.2 the potential for on–
shell particles i.e. we replace the momenta by the masses of the mesons. Of course,
we use the fully momentum dependent potentials for our calculations. However, in
total the attraction is too small to bind the system. Therefore, the T–matrix is free
of poles which is equivalent to the absence of resonances.

3.2.2. Charm–strange resonances (C=1; S=1; I=0, 1)

Isosinglet states

In the isosinglet channels the strong attractive interaction comes mainly from the
D∗K∗ → D∗K∗ channel which leads to potentials of the order of −18 g2 to −26 g2 as
evident from the estimate by using on–shell particles (see Tab. 3.3). The attraction is
sufficient to bind the D∗ and K∗ system which leads to three poles with massesM =
2683 MeV, 2707 MeV and 2572 MeV with total spin J = 0, 1 and 2, respectively, (see
Tab. 3.4). When considering the K∗ width neither the mass changes significantly
(only of about 2 MeV) nor the total width is affected by this modification. In fact,
the effect of the convolution is so small that it does not need to be considered.
Only the inclusion of the box diagrams leads to a width of several MeV, where we
again vary the monopole cutoff ΛA = 1.4 − 1.5 GeV and the Gaussian cutoff from
1.0–1.2 GeV (Model B). In Figs. 3.8 and 3.9 the squared amplitude |T |2 is plotted
after the inclusion of the box diagrams for the two models A and B. We observe
that these diagrams provide some width for the states with J = 0 and 2 (possible



46 3.2. Coupled channels including charmed mesons

J Amplitude Contact V–exchange ∼ Total

0 D∗
sD

∗ → D∗
sD

∗
2g2 − g2(p1+p3).(p2+p4)

m2
J/ψ

0.23g2

0 D∗
sD

∗ → J/ψK∗ −4g2 g2(p1+p4).(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
D∗
s

3.6g2

0 J/ψK∗ → J/ψK∗ 0 0 0

1 D∗
sD

∗ → D∗
sD

∗
3g2 − g2(p1+p3).(p2+p4)

m2
J/ψ

1.2g2

1 D∗
sD

∗ → J/ψK∗ 0 − g2(p1+p4).(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
D∗
s

−0.43g2

1 J/ψK∗ → J/ψK∗ 0 0 0

2 D∗
sD

∗ → D∗
sD

∗ −g2 − g2(p1+p3).(p2+p4)
m2
J/ψ

−2.8g2

2 D∗
sD

∗ → J/ψK∗ 2g2 g2(p1+p4).(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
D∗
s

9.6g2

2 J/ψK∗ → J/ψK∗ 0 0 0

Table 3.2.: Amplitudes for C = 0, S = 1 and I = 1/2.
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Figure 3.8.: Squared amplitude in the D∗K∗ channel for I = 0, J = 0 (Model A).

quantum numbers of box diagrams), although the width provided by the model B is
much bigger than that by model A. Since box diagrams do not contribute to J = 1
states, resonances with total spin 1 only gain their width from the convolution of G
and hence are much narrower than scalar and tensor states.
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J Amplitude Contact V-exchange ∼ Total

0 D∗K∗ → D∗K∗ 4g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −19.8g2

0 D∗K∗ → D∗
sω −4g2 g2(p1+p4).(p2+p3)

m2
D∗
s

+ g2(p1+p3).(p2+p4)
m2
K∗

6.8g2

0 D∗K∗ → D∗
sφ 2

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2
K∗

−9.2g2

0 D∗
sω → D∗

sω 0 0 0

0 D∗
sω → D∗

sφ 0 0 0

0 D∗
sφ→ D∗

sφ −2g2 g2(p1+p4).(p2+p3)
m2
D∗
s

0.20g2

1 D∗K∗ → D∗K∗ 6g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −17.7g2

1 D∗K∗ → D∗
sω 0 − g2(p1+p4).(p2+p3)

m2
D∗
s

+ g2(p1+p3).(p2+p4)
m2
K∗

6.6g2

1 D∗K∗ → D∗
sφ 3

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2
K∗

−7.8g2

1 D∗
sω → D∗

sω 0 0 0

1 D∗
sω → D∗

sφ 0 0 0

1 D∗
sφ→ D∗

sφ 3g2 − g2(p1+p4).(p2+p3)
m2
D∗
s

0.8g2

2 D∗K∗ → D∗K∗ −2g2 − g2

2 (
3
m2
ρ
+ 1

m2
ω
)(p1 + p3).(p2 + p4) −25.8g2

2 D∗K∗ → D∗
sω 2g2 g2(p1+p4).(p2+p3)

m2
D∗
s

+ g2(p1+p3).(p2+p4)
m2
K∗

12.8g2

2 D∗K∗ → D∗
sφ −

√
2g2 −

√
2g2(p1+p3).(p2+p4)

m2
K∗

−13.5g2

2 D∗
sω → D∗

sω 0 0 0

2 D∗
sω → D∗

sφ 0 0 0

2 D∗
sφ→ D∗

sφ g2 g2(p1+p4).(p2+p3)
m2
D∗
s

3.2g2

Table 3.3.: Amplitudes for C = 1, S = 1 and I = 0.

When comparing the results with data it is immediately obvious that the J = 2
state with mass 2572 MeV and width 20 ± 5 MeV matches rather well the prop-
erties of the observed D∗

2(2573) meson [22]. Here, the D∗K∗ channel is dominant
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I[JP ] Mass Width [MeV] couplings Data [22]

(
√
spole) Model A Model B gD∗K∗ gD∗

sω gD∗
sφ -

0[0+] 2683 20 - 25 44 - 71 15635 −4035 6074 -

0[1+] 2707 Convolution: 4 · 10−3 14902 −5047 4788 -

0[2+] 2572 7 - 8 18 - 23 18252 −7597 7257 Γ = 20± 5 MeV

Table 3.4.: C = 1;S = 1; I = 0: Masses, widths and couplings in MeV.
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Figure 3.9.: Squared amplitude in the D∗K∗ channel for I = 0, J = 0 (Model B).

which suggests the conclusion that the D∗
2(2573) meson is probably a dynamically

generated resonance with dominant D∗K∗ component.

Isovector states

The isovector channels with charm–strange flavor quantum numbers are attractive
in case of the D∗K∗ → D∗

sρ transition as one can see from Tab. 3.5. For J = 0 and
1 this potential is around −7 g2 while in case of J = 2 it is by a factor two bigger.
In fact, the attraction is only sufficiently large to form a resonance for J = 2. In
the case of J = 0 and 1 we only observe a cusp at the D∗

sρ threshold. In Tab. 3.6
we show the pole position and couplings of the resonance to the different channels.
Both channels, D∗K∗ and D∗

sρ, are equally important as one can deduce from the
corresponding couplings. The broad width of the ρ meson has to be taken into
account by means of Eq. (3.15) which results in a width of 8 MeV for the J = 2
resonance. In this case the box diagrams only have a small contribution to the width
of the resonance (see Fig. 3.10). In contrast to the previous situations, the width
of the resonance mainly comes from the convolution of the ρ mass. Since up to now
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J Amplitude Contact V–exchange ∼ Total

0 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

0 D∗K∗ → D∗
sρ 4g2 − g2(p1+p4)(p2+p3)

m2
D∗

− g2(p1+p3).(p2+p4)
m2
K∗

−6.8g2

0 D∗
sρ→ D∗

sρ 0 0 0

1 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

1 D∗K∗ → D∗
sρ 0 g2(p1+p4)(p2+p3)

m2
D∗

− g2(p1+p3).(p2+p4)
m2
K∗

−6.6g2

1 D∗
sρ→ D∗

sρ 0 0 0

2 D∗K∗ → D∗K∗ 0 g2

2 (
1
m2
ρ
− 1

m2
ω
)(p1 + p3).(p2 + p4) 0.11g2

2 D∗K∗ → D∗
sρ −2g2 − g2(p1+p4)(p2+p3)

m2
D∗

− g2(p1+p3).(p2+p4)
m2
K∗

−12.8g2

2 D∗
sρ→ D∗

sρ 0 0 0

Table 3.5.: Amplitudes for C = 1, S = 1 and I = 1.

there is no experimental evidence for a state with appropriate quantum numbers,
mass and width, this resonance is a prediction of the model.
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Figure 3.10.: Squared amplitude in the D∗K∗ channel for I = 1, J = 2 (Model A).
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I[JP ] Mass [MeV] Width [MeV] couplings

(
√
spole) Model A Model B gD∗K∗ gD∗

sρ

1[2+] 2786 8 - 9 9 - 11 11041 11092

Table 3.6.: C = 1;S = 1; I = 1: Masses, widths and couplings in MeV.

3.2.3. Flavor exotic resonances

Flavor exotics with C=1; S=-1; I=0 and 1

The isosinglet (I=0) channels are very attractive. For J = 0 and 1 the potential
is around −10 g2 and it is even more attractive ≈ −16 g2 for J = 2 which leads
to three resonances with total spin J =0, 1 and 2 as indicated in Tab. 3.7.

J Contact V–exchange ∼ Total

0 4g2 − g2(p1+p4).(p2+p3)
m2
D∗
s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −9.9g2

1 0 g2(p1+p4).(p2+p3)
m2
D∗
s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −10.2g2

2 −2g2 − g2(p1+p4).(p2+p3)
m2
D∗
s

+ 1
2g

2( 1
m2
ω
− 3

m2
ρ
)(p1 + p3).(p2 + p4) −15.9g2

Table 3.7.: Amplitudes for C = 1, S = −1 and I = 0 ( D∗K
∗ → D∗K

∗
).

I[JP ] Mass [MeV] Width [MeV] coupling

(
√
spole) Model A Model B gD∗K

∗

0[0+] 2848 23 - 30 25 - 59 12227

0[1+] 2839 Convolution: 3 13184

0[2+] 2733 11 - 24 22 - 36 17379

Table 3.8.: C = 1;S = −1; I = 0. Masses, widths and couplings in MeV.

The corresponding pole positions, characterizing the masses and widths of the
resonances, and the couplings to the vector–vector channels are given in Tab. 3.8.
The decay widths arise due to the inclusion of the box diagrams. The uncertainty
in the widths in Tab. 3.8 indicates the parameter dependence of this approach and
arises because of the variation of the cutoff from ΛA=1.4 to 1.5 GeV (monopole,
model A) and ΛB =1.0–1.2 GeV in case of the Gaussian form factor of model B.
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Figure 3.11.: Squared amplitude in the D∗K
∗
channel for I = 0, J = 0 (Model A).
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Figure 3.12.: Squared amplitude in the D∗K
∗
channel for I = 0, J = 0 (Model B).

Since box diagrams are only allowed for J = 0 and 2 (see discussion about box
diagrams in Section 3.1) the spin 1 state appears to be very narrow. The width of
3 MeV arises due to the inclusion of the K∗ width. Here, the two models lead to
similar results except for the Model B with Λ = 1200 MeV.

The convolution of the G function by including the K∗ width leads to a minor shift
in the pole positions (only 3 MeV for J = 2) and around 3 MeV in the widths for
the three states. This is a minor effect compared to the contribution of the box
diagrams. The transition amplitude squared |T |2 is depicted in Figs. 3.11 (Model
A) and 3.12 (Model B) for J = 0. In analogy the tensor states with J = 2 are shown
in Figs. 3.13 and 3.14 for the Models A and B. In general Model B is more sensitive
to variations of the cutoff parameter ΛB and leads to broader resonances which is
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Figure 3.13.: Squared amplitude in the D∗K
∗
channel for I = 0, J = 2 (Model A).
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Figure 3.14.: Squared amplitude in the D∗K
∗
channel for I = 0, J = 2 (Model B).

also confirmed by the numerical results in Tab. 3.8.

Since we deal with exotic states we cannot compare our findings to any experimental
counterpart. In contrast to the previously discussed isosinglet states, the interaction
is very repulsive in the isovector coupled channels. Therefore, we have no evidence
for dynamically generated resonances with I = 1.

Double strange sector (C=1; S=2; I=1/2)

The following section deals with coupled channels with exotic flavor quantum num-
bers as for instance double strange and double charmed mesons. Again, this flavor
quantum numbers cannot be reached by the constituent quark model. The detection
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of such states would therefore be a clear evidence for a non–qq structure. However,
in the present sector the potentials are repulsive as one can see from Tab. 3.9 and
therefore we do not expect dynamically generated states.

J Amplitude Contact V–exchange ∼ Total

0 D∗
sK

∗ → D∗
sK

∗ −4g2 g2(p1+p4)(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
φ

5.5g2

1 D∗
sK

∗ → D∗
sK

∗ 0 − g2(p1+p4)(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
φ

5.0g2

2 D∗
sK

∗ → D∗
sK

∗ 2g2 g2(p1+p4)(p2+p3)
m2
D∗

+ g2(p1+p3).(p2+p4)
m2
φ

11.5g2

Table 3.9.: Amplitudes for C = 1, S = 2 and I = 1/2.

Double–charmed coupled channels (C=2; S=0; I=0, 1)

In this case we study double charmed states by coupled D∗D∗ channels. The ampli-
tudes are given in Tab. 3.10, where the potential is zero for J = 0 and 2. This can
be explained by the fact that the D∗D∗ state is antisymmetric for I = 0. Therefore,
the only possibility to obtain a fully symmetric wave function is provided for J = 1.
For J = 1 the interaction is strongly attractive which leads to a pole in the scatter-

J Amplitude Contact V–exchange ∼ Total

0 D∗D∗ → D∗D∗ 0 0 0

1 D∗D∗ → D∗D∗ 0 1
4g

2( 2
m2
J/ψ

+ 1
m2
ω
− 3

m2
ρ
){(p1 + p4).(p2 + p3) −25.4g2

+(p1 + p3).(p2 + p4)}

2 D∗D∗ → D∗D∗ 0 0 0

Table 3.10.: Amplitudes for C = 2, S = 0 and I = 0.

ing matrix as one can see from Tab. 3.11. Since the width of the D∗ meson is very
small (∼ 100 keV or less in the case of the neutral charmed meson) we presently do
not perform the convolution of the G function. In addition, in the case of J = 1
states the inclusion of the box diagrams can be ruled out. Therefore, we obtain a
very narrow state. Since we deal with an extremely narrow double–charmed meson
we presently do not have any experimental evidence.
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I[JP ] Mass [MeV] Width [MeV] coupling

(
√
spole) gD∗D∗

0[1+] 3969 ≈ 0 16825

Table 3.11.: C = 2;S = 0; I = 0. Masses, widths and couplings in MeV.

The corresponding isovector coupled channels lead to a repulsive potential and we
therefore do not obtain resonances.

Double–charmed sector with C=2; S=1; I=1/2

This sector is also exotic. The amplitudes from the four–vector contact terms plus
vector–exchange diagrams lead to a repulsive potential for J = 0 and 2 while it is
attractive for J = 1 as indicated in Tab. 3.12. The pole lies almost at the D∗

sD
∗

J Amplitude Contact V–exchange ∼ Total

0 D∗
sD

∗ → D∗
sD

∗ −4g2 g2(p1+p4).(p2+p3)
m2
K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

19.0g2

1 D∗
sD

∗ → D∗
sD

∗ 0 − g2(p1+p4).(p2+p3)
m2
K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

−19.5g2

2 D∗
sD

∗ → D∗
sD

∗ 2g2 g2(p1+p4).(p2+p3)
m2
K∗

+ g2(p1+p3).(p2+p4)
mJ/ψ2

25.0g2

Table 3.12.: Amplitudes for C = 2, S = 1 and I = 1/2.

threshold (4121 MeV), where the pole position and the coupling is given in Tab. 3.13.
This state comes with zero width since we deal with a similar situation as in the
previous case. The box diagrams are not possible for J = 1 states and any possible
convolution of the G function would only lead to a very small width. This state is
also a prediction of the model and needs to be ultimately confirmed by experiment.

I[JP ] Mass [MeV] Width [MeV] coupling

(
√
spole) gD∗

sD
∗

1/2[1+] 4101 ≈ 0 13429

Table 3.13.: C = 2;S = 1; I = 1/2. Masses, widths and couplings in MeV.



Chapter 3. Dynamically generated resonances 55

Double–charmed, double–strange (C=2; S=2; I=0)

The D∗
sD

∗
s channel allows us to study double–charm double–strange objects. Since

we deal with two identical particles with isospin zero, the isospin D∗
sD

∗
s–state is

symmetric and hence we get interaction for J = 0 and 2 while the potential is zero
for J = 1. Since the potential is strongly repulsive for J = 0 and 2 we do not obtain
any resonant state in this sector.

3.2.4. Summary

We studied dynamically generated resonances from vector–vector interaction in the
charm–strange and hidden–charm sectors and for the first time extended the formal-
ism to flavor exotic resonances. The hidden gauge Lagrangians provide a consistent
method to include vector meson interaction in the coupled channel unitarity formal-
ism. The interaction between the vector meson channels is driven by four meson
contact and vector meson exchange diagrams. At this stage we can already see if
the attraction is strong enough to generate a resonance. However, in this limit the
states come with zero decay width. There are two effects which are relevant for the
generation of the width of the resonance. First, the widths of the vector mesons
involved need to be considered by the convolution of the two–meson loop function.
This effect is in particular important for the D∗

sρ channel. Second, the PP decay
modes of the vector mesons play an important role. In the present coupled chan-
nel approach this issue is taken into account by the insertion of box diagrams with
pseudoscalar mesons in the intermediate state.

Our analysis of the T matrix resulted in nine bound states which are summarized in
Tab. 3.14. In the charm–strange sector (C = 1, S = 1) we obtain four resonances,
where we can assign one resonance to an experimental counterpart. The J = 2
resonance matches the mass, width and quantum numbers of the D∗

s2(2573) meson
which suggests a new interpretation of the D∗

s2(2573) meson as a D∗K∗ molecular
state. This structure assumption would be in line with previous studies predicting
a DK nature for the D∗

s0(2317) [95] and a possible D∗K molecular structure of the
D∗
s1(2460) [94].

We obtain two further isosinglets with JP = 0+ and 1+ around 2700 MeV and one
isovector 2+ state around 2786 MeV. All of them are relatively narrow (Γ < 8 MeV)
and are predictions of the model without experimental evidence for these states so
far.

Within this framework we also studied flavor–exotic meson–meson systems. Mesons
with flavor exotic quantum numbers would be a corollary of meson molecules or
tetraquarks and have been mainly considered in tetraquark models [109, 108]. Up
to now there is no experimental evidence for double flavored mesons. However, their
observation would be a clear signal for the existence of meson structure beyond qq
states.
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Flavor I[JP ] Mass [MeV] Width [MeV] Data

C, S
√
s ΓA ΓB Meson Mass [MeV] Width [MeV]

1, 1 0[0+] 2683 20 44

0[1+] 2707 4× 10−3 4× 10−3

0[2+] 2572 7 18 Ds2(2573) 2572.6± 0.9 20± 5

1[2+] 2786 8 9

1,−1 0[0+] 2848 23 25

0[1+] 2839 3 3

0[2+] 2733 11 22

2, 0, 0[1+] 3969 0 0

2, 1 1/2[1+] 4101 0 0

Table 3.14.: Overview of the dynamically generated resonances (ΛA = 1.4 GeV,
ΛB = 1.0 GeV).

In the sector C = 1;S = −1; I = 0 we obtain three new exotic states with masses
around 2.8 GeV and widths between 3 MeV for the J = 1 state and 25 MeV for the
scalar resonance.

In the case of the double–charm vector meson systems C = 2;S = 0; I = 0 and
C = 2;S = 1; I = 1/2 we obtain in both sectors one resonance with quantum
numbers JP = 1+. Since the box diagrams do not contribute in this case and
the D∗ decay width is small, the potential has a very small imaginary part and
therefore we deal with two very narrow states. The masses lie around 4.0–4.1 GeV
which is close to the D∗D∗ and D∗

sD
∗ thresholds, respectively. Earlier investigations

in double charmed tetraquarks found a broad isosinglet cc(qq) system with J = 1
and mass around 4.0 GeV [108] which is similar to our result.

In summary, we found nine dynamically generated resonances, where four of them
can be assigned to the charm–strange sector. One resonance, being dominantly a
D∗K∗ bound state, is found to be a good candidate for the D∗

s2(2573). Furthermore,
we analyzed coupled channels with exotic flavor leading to five resonances which
can be interpreted as D∗K∗, D∗K̄∗, D∗D∗ and D∗

sD
∗ molecular states. There is
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no experimental counterpart to these exotic structures, nevertheless the mass of
the double–charmed resonance is close to the QCD sum–rule and potential model
predictions for double–charmed tetraquarks. Finally, our findings might be useful
to get further insight in the flavor exotic sectors and to encourage the search for
flavor–exotic mesons with e.g. double charm or double charm–strangeness in future
experiments.

3.3. Radiative decays of dynamically generated

states

In the following section we will have a closer look at the dynamically generated
states by studying its radiative decay properties. In the hidden gauge formalism
the electromagnetic interaction can easily be included by using the vector meson
dominance (VMD) formalism. The VMD model was originally developed by J.J.
Sakurai [115] in the 1960s to describe the interaction between hadrons and photons.
The VMD formalism describes the transition of vector mesons to photons and vice
versa by the current–field identity (CFI) [115]. The CFI implies the interaction of
photons with vector fields by identifying the electromagnetic current with a linear

combination of vector meson fields V µ: jemµ = −M2
V

g
Vµ, where MV and g denote the

vector meson mass and the coupling. The matrix element describing the coupling
between photon and vector meson with mass MV therefore reads

tV γ = −eM
2
V

g
Aµ
〈
V µQ

〉
, (3.30)

where Aµ is the electromagnetic field, and
〈
V µQ

〉
denotes the trace over the vector

meson matrix (3.3) and the matrix of the quark charges given by

Q = diag(qu = 2/3, qd = −1/3, qs = −1/3, qc = 2/3) .

Therefore we can write

tV γ = CV γ
e

g
M2

V ǫ
µ(γ) , where CV γ =





1√
2

for ρ0

1
3
√
2

for ω

−1
3

for φ
2
3

for J/ψ

(3.31)

is the flavor factor. The coupling constant g = mρ
2fπ

is determined by the pion decay

constant fπ = 93 MeV. We consider SU(4) breaking effects by changing the coupling
g; in case of J/ψ we have g ≡ gηc =MJ/ψ/(2fηc) where fηc = 420/

√
2 MeV is taken

from [116].
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Therefore, in the coupled channel approach one– and two–photon decays of dynam-
ically generated resonances can be easily studied by coupling the photon to the
ρ, ω, φ or J/ψ vector mesons in the respective coupled channels [117, 118, 100, 24]
which is depicted in Fig. 3.15. The calculation is greatly simplified and does not
induce further loop calculations. The issue of gauge invariance of this prescription
is addressed in Refs. [100, 119].

V

V

γ

V

R
gjP

(S)(j)

V

V

γ

γ

R
gjP

(S)(j)

Figure 3.15.: Photon coupling via VMD.

The transition amplitude for one– and two–photon decays is set up by combining
the coupling between the resonance and the appropriate vector meson channels gV1V2
and the VMD amplitude (3.31)

T (R)(γγ) ∝
∑

V1,V2

g
(R)
V1V2

P(S)
V1V2

( 1

−M2
V1

)
tV1γ

( 1

−M2
V2

)
tV2γ · FI , (3.32)

T (R)(V1γ) ∝
∑

V2

g
(R)
V1V2

P(S)
V1V2

( 1

−M2
V2

)
tV2γ · FI . (3.33)

FI represents the respective isospin Clebsch Gordan coefficients of the V1V2 compo-
nent for a certain isospin state.

After summing over the intermediate vector polarizations in Eqs. (3.32) and (3.33),
the amplitudes for the R → γγ and R → V γ decays are finally given by

T
(R)
V1γ

=
e

g

∑

V2=ρ0,ω,φ,J/ψ

g
(R)
V1V2

P(S)
V1γ

CV2γFIFV γ , (3.34)

T (R)
γγ =

e2

g2

∑

V1,V2=ρ0,ω,φ,J/ψ

g
(R)
V1V2

P(S)
γγ CV1γCV2γFIFγγ , (3.35)

where P(S)
V1γ

and P(S)
γγ are the spin projection operators which have been defined in

(3.13).

The use of the unitarity renormalization leads to an extra factor 1√
2
in the cases of

channels with identical particles (e.g. ρ0ρ0). The unitarity normalization and the
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symmetry factors are combined in Fγγ and FV γ with

Fγγ =

{ √
2 for a pair of identical particles, e.g ρ0ρ0

2 for a pair of different particles, e.g ρ0ω ,
(3.36)

FV γ =

{ √
2 for a pair of identical particles, e.g ρ0ρ0

1 for a pair of different particles, e.g ρ0ω .
(3.37)

The radiative decay widths Γγγ and ΓV γ can be easily calculated from the transition
amplitudes T by the relations

Γγγ =
1

2S + 1

1

16πMR

1

2
·
∑

spins

∣∣T (R)
γγ

∣∣2 , (3.38)

ΓV γ =
1

2S + 1

1

8πMR

∣∣~pγ |
MR

·
∑

spins

∣∣T (R)
V γ

∣∣2 , (3.39)

where the summation over all spin states contributes the factors

∑

spins

P(S)
γγ P∗(S)

γγ =





2
3

S = 0

1 S = 1
7
3

S = 2 ,

(3.40)

∑

spins

P(S)
V γP

∗(S)
V γ =





2
3

S = 0

2 S = 1
10
3

S = 2 .

(3.41)

In the following we analyze the radiative decay properties of mesons which have been
generated dynamically by coupled meson channels [99, 65]. As a first application we
study in Section 3.3.1 the one– and two–photon decays of the dynamically generated
resonances which were analyzed in the framework of SU(3) coupled channels [99, 24].
The coupled channels analysis of [99] lead to 11 dynamically generated resonances
around 1.5 GeV, where five of them have been assigned to the scalar f0(1370) and
f0(1710) mesons and the tensor states f2(1270), f

′
2(1525) and K

∗
2(1430). One prob-

lem of the coupled channels is that one does not obtain the full meson nonets. In
both cases, the scalars and tensors, the isovector states a0 and a2 are heavier than
data. We are aware of the fact that these mesons are in general assigned to qq̄ states
of the constituent quark model. However, the present coupled channel approach was
used to see which kind of resonances one obtains in the region between one and two
GeV and e.g. it is interesting if the dynamically generated states agree with the
qq̄ states. The coupled channel approach leads to a ρρ and K∗K

∗
interpretation of
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the f0 and f2 mesons which provides an alternative viewpoint and eventually gives
evidence for a relevant meson–meson component in addition to the underlying qq̄
structure of these mesons.
Besides the light mesons, in Section 3.3.2 we concentrate on the hidden–charm
resonances around 4 GeV analyzed in [65, 23]. The Z(3930), Y (3940) and X(4160)
are members of the charmonium–like mesons which are not easily explained by the
standard interpretation provided by the constituent quark model. The computation
of the two–photon and photon–vector meson decay properties might lead to further
insights concerning their possible molecular meson substructure.

3.3.1. Radiative decays of light mesons

The eleven dynamically generated resonances of Ref. [99] are summarized in Tab. 3.15.
The comparison with data shows that five of them can be identified with scalar and
tensor mesons. In the following we compute the radiative decay widths of all reso-
nances to allow for a more detailed analysis. Because of C–parity conservation the

pole position PDG

IG(JPC) (m,Γ/2) meson mass width

0+(0++) (1512,51) f0(1370) 1200–1500 200-500

0+(0++) (1726,28) f0(1710) 1724± 7 137± 8

0−(1+−) (1802,78) h1

0+(2++) (1275,2) f2(1270) 1275.1± 1.2 185.0+2.9
−2.4

0+(2++) (1525,6) f ′
2(1525) 1525± 5 73+6

−5

1−(0++) (1780,133) a0

1+(1+−) (1679,235) b1

1−(2++) (1569,32) a2(1700)??

1/2(0+) (1643,47) K∗
0

1/2(1+) (1737,165) K1(1650)??

1/2(2+) (1431,1) K∗
2 (1430) 1429± 1.4 104± 4

Table 3.15.: Dynamically generated resonances based on SU(3) coupled channels.

h1 and b1 mesons (JPC = 1+−) do not decay to two photons or one photon and a
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vector meson. The strange mesons K∗
0 , K1 and K∗

2 (1430) of course only decay into
K∗γ but not into γγ.
In the following we shall have a closer look at the radiative decay widths of the
resonances which might be associated with the experimentally observed f2(1270),
f ′
2(1525), f0(1370), f0(1710) and K∗

2 (1430) mesons [24]. In addition, we compare
our results to other theoretical investigations.

Radiative decay widths of f2(1270) and f ′
2(1525)

The decay properties of the tensor mesons are experimentally very well known be-
cause precise data are available. The dynamically generated resonance correspond-
ing to the f2(1270) meson arises mainly from the ρρ interaction. Our results for the
radiative decay widths of the tensor mesons f2(1270) and f

′
2(1525) can be found in

Tab. 3.16. Despite that the f2(1270) is a strong candidate for a quark–antiquark

(Mass,Width) Meson Γρ0γ Γωγ Γφγ Γγγ Γγγ (Exp.)

in MeV

(1276, 97) f2(1270) 1367 5.6 5.0 2.25 3.03± 0.35 [22]

2.27± 0.47± 0.11 [120]

2.35± 0.65 [121]

(1525, 45) f ′
2(1525) 72 224 286 0.05 0.081± 0.009 [22]

(1567, 47) a2 327 358 477 1.60

Table 3.16.: Pole positions and radiative decay widths in the strangeness=0 and
isospin=0 channel. The radiative decay widths are in units of keV.

structure, the present method, assuming a dynamical origin, leads to a surprisingly
good agreement with data.
The two-photon decay width for the f ′

2(1525) is slightly smaller than the experimen-
tal value quoted in the PDG review. This is quite acceptable since 1) we can assume
an inherent theoretical uncertainty of ∼ 20% and 2) there might be other relevant
coupled channels that have not been taken into account in the model of Ref. [99].
This can be inferred from the fact that the total decay width of the f ′

2(1525) in that
model ∼ 50 MeV is smaller than the experimental value ∼ 70 MeV.
Note that the significantly small value of the widths of the f ′

2(1525) (and f0(1710),
see below) compared to that of the f2(1270), for example, has a natural interpreta-
tion in our theoretical framework since the former two resonances are mostly K∗K̄∗

molecules. Therefore, the couplings to ρρ, ωω, ωφ, φφ, which lead to the final γγ
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decay, are very small. The advantages of working with coupled channels become
obvious in case of this radiative decays. While a pure K∗K̄∗ assignment would lead
to Γγγ=0 keV, our coupled channel analysis gives the right strength for the couplings
to the weakly coupled channels.
Unfortunately, there is no data available for the various V γ decays, which could
provide a further test for the meson–meson structure component of these mesons.
In Tab. 3.17 we compare our results for the radiative decay widths of the f2(1270)
meson with those obtained in other approaches based on a qq̄ interpretation. These

Decay COQM TMD AdS/QCD TMD&VMD NRQM Present work

[122] [123]1 [125] [126] [127] [24]

γγ - 3.15± 0.43 2.71 8.8 - 2.25

ρ0γ 254 630± 86 - 1364 644 1367

ωγ 27 - - 167.6± 25 5.6

φγ 1.3 - - - - 5.0

Table 3.17.: Results for the radiative decay widths of the f2(1270) obtained in dif-
ferent approaches.

include the covariant oscillator quark model (COQM) [122], the tensor-meson dom-
inance (TMD) model [123], the AdS/QCD calculation in [125], the model assuming
both tensor-meson dominance and vector-meson dominance (TMD&VMD) [126],
and the nonrelativistic quark-model (NRQM) [127]. From this comparison, one can
see that the AdS/QCD calculation and our present study provide a two-photon de-
cay width consistent with data. The TMD model result is also consistent with the
data (it can use either Γ(f2(1270) → γγ) or Γ(f2(1270) → π+π−) as an input to
fix its single parameter), while the TMD&VMD model prediction is off by a fac-
tor of 3. Particularly interesting is the fact that although the TMD&VMD model
predicts Γ(f2(1270) → ργ) similar to our prediction, but in contrast their result for
Γ(f2(1270) → ωγ) is much larger than ours, almost by a factor of 30. Therefore, an
experimental measurement of the ratio of Γ(f2(1270) → ργ)/Γ(f2(1270) → ωγ) will
be very useful to disentangle these two pictures of the f2(1270). Furthermore, one
notices that all theoretical approaches predict Γρ0γ to be of the order of a few 100
keV.

In Tab. 3.18 we compare the radiative decay widths of the f ′
2(1525) predicted in the

present work with those obtained in the COQM [122]. We notice that the COQM
predicts Γφγ/Γρ0γ ≈ 22 while our model gives an estimate of Γφγ/Γρ0γ ≈ 4, which
is quite different even when taking into account model uncertainties. Furthermore,
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COQM [122] Present work [24]

f ′
2(1525) → γγ 0.05

f ′
2(1525) → ρ0γ 4.8 72

f ′
2(1525) → ωγ 0 224

f ′
2(1525) → φγ 104 286

Table 3.18.: Radiative decay widths of the f ′
2(1525) obtained in the present work in

comparison with those obtained in the covariant oscillator quark model
(COQM) [122].

Γωγ in the COQM is almost zero while it is comparable to Γφγ in our approach.
An experimental measurement of any two of the three decay widths could be able
to distinguish between the COQM or the dynamical picture or even rule out both
scenarios.
An interesting quantity in this context is the ratio Γ(f ′

2(1525) → γγ)/Γ(f2(1270) →
γγ), since the ratio of rates suffers from less systematic uncertainties within a model.
In Tab. 3.19 we compare our result with available data and predictions of other

EF [128] TMS [129] PDG [22] Present work [24]

Γ(f ′2(1525)→γγ)

Γ(f2(1270)→γγ)
0.046 0.034 0.027± 0.006 0.023

Table 3.19.: Our results for the ratio Γ(f ′
2(1525) → γγ)/Γ(f2(1270) → γγ) in com-

parison with other approaches and data.

theoretical approaches. It is clear that our result lies within the experimental bounds
while those of the effective field approach (EF) [128] and the two-state mixing
scheme (TMS) [129] are slightly larger than the experimental upper limit, with
the latter being almost at the upper limit. Given the fact that we have no free
parameters in this calculation such an agreement is reasonable.

Radiative decay widths of the f0(1370) and f0(1710)

Now let us turn our attention to the f0(1370) and f0(1710) mesons. In Tab. 3.20
we compare our results for the radiative decay widths of the f0(1370) and f0(1710)
with available data. Similar to the tensor mesons the lighter f0(1370) is dominantly
a ρρ state while the f0(1710) is generated from the K∗K

∗
component. For this

reason the ρ0γ and γγ decay widths of the f0(1370) are much larger than that of
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Pole position [MeV] Meson Γρ0γ Γωγ Γφγ Γγγ Γγγ (Exp.)

(1523, 257) f0(1370) 726 0.04 0.01 1.31 -

(1721, 133) f0(1710) 24 82 94 0.05 < 0.289 [22]2

(1777, 148) a0 247 290 376 1.61

Table 3.20.: Pole positions and radiative decay widths of the scalar mesons in units
of keV.

the f0(1710). Despite that no precise data is available, at least in the case of the
f0(1710) our result is consistent with the experimental upper limit.
In Tab. 3.21 we compare our results for the radiative decay widths of the f0(1370)
and f0(1710) obtained by the coupled channel model with the predictions of other
theoretical approaches, including the nonrelativistic quark model (NRQM) [127], the
light-front quark model (LFQM) [130], and the calculation of Nagahiro et al. [131].
In the NRQM and LFQM calculations, based on two qq̄ states and an admixed
glueball (see discussion in Sec. 2.1), two numbers are given for each decay channel
depending on whether the glueball mass used in the calculation is smaller than the
nn̄ mass (Light) or larger than the ss̄ mass (Heavy) [127, 130].
First we note that for the f0(1370) our predicted two-photon decay width is more
consistent with the LFQM result in the light glueball scenario, while the ργ decay
width lies closer to the LFQM result in the heavy glueball scenario. Furthermore,
the ωγ decay width in our model is an order of magnitude smaller than that in the
LFQM.
For the f0(1710), the LFQM two-photon decay width is larger than the current
experimental limit (see Tab. 3.20). On the other hand, our ρ0γ decay width is more
consistent with the LFQM in the light glueball scenario while the φγ decay width is
more consistent with the heavy glueball scenario. Similar to the f0(1370) case, here
further experimental data are needed to clarify the situation.
Furthermore, we notice that the NRQM and the LFQM in the light glueball mass
scenarios and our present study all predict that Γργ ≫ Γφγ for the f0(1370) while
Γργ ≪ Γφγ for the f0(1710). On the other hand, the NRQM and LFQM in the
heavy glueball scenario predict Γργ ≫ Γφγ for the f0(1710). Therefore, an experi-
mental measurement of the ratio of Γf0(1710)→ργ/Γf0(1710)→φγ not only will distinguish
between the quark-model picture and the dynamical picture, but can also put a con-
straint on the mass of a possible glueball in this mass region.
The chiral approach in [132] delivers smaller absolute results for the two-photon de-
cays of the f0(1370) and f0(1710). However, the ratio Γ(f0(1370) → γγ)/Γ(f0(1710) →
γγ) = 18.4 lies much closer to our prediction Γ(f0(1370) → γγ)/Γ(f0(1710) →
γγ) ≈ 26 than the LFQM results which lies in a range between 1.7-3.0.
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NRQM [127]3 LFQM [130]a [131] [132] Present

Light Heavy Light Heavy KK̄ loop ππ loop work

f0(1370)

→ γγ – – 1.6 5.6+1.4
−1.3 – – 0.35 1.31

→ ρ0γ 443 1540 150 530+120
−110 79± 40 125± 80 – 726

→ ωγ – – – – 7± 3 128± 80 – 0.04

→ φγ 8 32 0.98 4.5+4.5
−3.0 11± 6 – – 0.01

f0(1710)

→ γγ – – 0.92 3.0+1.4
−1.2 - 0.019 0.05

→ ρ0γ 42 705 24 410+200
−160 100± 40 – 24

→ ωγ – – – – 3.3± 1.2 – 82

→ φγ 800 78 450 36+17
−14 15± 5 – 94

Table 3.21.: Radiative decay widths of the f0(1370) and f0(1710) obtained in the
present work and in comparison with other approaches. All decay
widths are given in keV.

Nagahiro et al. [131] evaluate the contributions from KK̄ and ππ loops by using
a phenomenological scalar coupling of the f0(1710) and f0(1370) mesons to the
KK and ππ channels. From the new analysis of these states within the framework
of coupled channels [99] the scalar couplings may not be justified anymore. One
rather has the f0(1710) coupling to K∗K̄∗ while the coupling to the KK̄ channel
only occurs indirectly through the decay K∗ → Kπ. Here, the pions correspond
to virtual internal propagators. As found in Ref. [98], loops containing these π
propagators only lead to small contributions compared to leading terms including
vector mesons (four-vector contact and t(u)-channel vector exchange).

Experimentally, there is a further piece of information on the f0(1710) that is rele-
vant to the present study. From the J/ψ decay branching ratios to γωω and γKK̄,
one can deduce [22]

Γ(f0(1710) → ωω)

Γ(f0(1710) → KK̄)
=

Br(J/ψ → γf0(1710) → γωω)

Br(J/ψ → γf0(1710) → γKK̄)
=

(3.1± 1.0)× 10−4

(8.5+1.2
−0.9)× 10−4

= 0.365+0.156
−0.169 . (3.42)

In the same way as we obtain the two-photon decay widths, we can also calculate
the two-vector-meson decay width of the dynamically generated resonances. For the
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f0(1710) its decay width to ωω is found to be

Γ(f0(1710) → ωω) = 15.2 MeV.

Using Γtotal(f0(1710)) = 133 MeV, already derived in Ref. [133], and the ratio
Γ(KK̄)

Γtotal(f0(1710))
≈ 55 % also given in Ref. [133], one obtains following ratio

Γ(f0(1710) → ωω)

Γ(f0(1710) → KK̄)
= 0.21 (3.43)

which lies within the experimental bounds although close to the lower limit.

Radiative decay widths of the K∗
2(1430)

The decay widths for the strange resonances are indicated in Tab. 3.22. Unfortu-
nately, there is no data available. However, the radiative decay widths of the

Pole position [MeV] Meson ΓK∗+γ [keV] ΓK∗0γ [keV]

(1639, 139) K∗
0 187 520

(1743, 126) K1 143 571

(1431, 56) K∗
2(1430) 261 1056

Table 3.22.: Radiative decay widths of the strange mesons.

COQM [122] Present work

K∗+
2 (1430) → K∗+γ 38 261

K∗0
2 (1430) → K∗0γ 109 1056

Table 3.23.: Radiative decay widths of theK∗
2(1430) (in keV) obtained in the present

work in comparison with the results of the covariant oscillator quark
model (COQM) [122].

K∗
2(1430) calculated in the present work are compared to those calculated in the

covariant oscillator quark model (COQM) [122] in Tab. 3.23. We notice that the re-
sults from these two approaches differ by a factor of 10. However, there is one thing
in common, i.e., both predict a much larger ΓK∗0γ than ΓK∗+γ. More specifically, in
the COQM ΓK∗0γ/ΓK∗+γ ≈ 3, while in our model this ratio is ≈ 4.
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As already mentioned, at present there exists no experimental measurement of these
decay modes. On the other hand, the K∗

2(1430) → K+γ and K∗
2 (1430) → K0γ

decay rates have been measured. According to PDG [22], ΓK+γ = 241 ± 50 keV
and ΓK0γ < 5.4 keV. Comparing these decay rates with those shown in Tab. 3.23,
one immediately notices that in the dynamical model the ΓK∗+γ is of similar order
as the ΓK+γ despite the reduced phase space in the former decay. This is of course
closely related to the fact that the K∗

2 (1430) is built out of the coupled channel
interaction between the ρK∗, ωK∗, and φK∗ components in the dynamical model.
Furthermore, both the COQM and our dynamical model predict ΓK∗0γ ≫ ΓK∗+γ ,
which is opposite to the decays into a kaon plus a photon where ΓK+γ ≫ ΓK0γ .
An experimental measurement of those decays would be very interesting and will
certainly help to clarify the present situation.

3.3.2. Radiative decays of hidden–charm mesons

In order to compute the radiative decay widths of the Y (3940), Z(3930), X(4160)
and the so far not observed ′Yp(3912)

′ [23] we take the couplings between resonances
and the V V channels from [65]. In the case of the ′Yp(3912)

′ state with quantum
numbers IG(JPC) = 0− (1+−) all couplings to vector mesons with hidden flavor are
zero due to C–parity violation. Therefore, radiative decays via VMD are forbidden
in this case.

In the context of the radiative decays of the X , Y and Z mesons it is important to
consider the three–momenta of the vector mesons which couple to the final photons.
In previous analyses the three momenta of the particles were neglected with respect
to the vector meson mass, |~p|/MD∗ ≃ 0. This is indeed the case for massive states
but not if we deal with two photons in the final state since |~pγ| ≃MD∗ . For simplicity
we do not consider a fully relativistic approach but it turns out that in particular
the vector meson exchange vertex depends sensitively on the three–momenta of the
vector mesons.

Hence, improvements on the present results are necessary. For this purpose we re-
analyze the couplings of [65] by considering the final momenta of the light vectors
which finally couple to the photons. We therefore modify the corresponding ex-
pressions in [65] in the following way, suitable for the photon field in the Coulomb
gauge.

1) For J = 0, we include the three–momenta by doing the following replacement:

(k01 + k03)(k
0
2 + k04) → (k01 + k03)(k

0
2 + k04) + 5~k23 +

~k43
M2

exc

(3.44)
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2) By analogy we change in the case of J = 2:

(k01 + k03)(k
0
2 + k04) →

√
a2 +

32

5
~k23 (3.45)

with

a = (k01 + k03)(k
0
2 + k04) +

~k23 +
~k43
M2

exc

, (3.46)

where ~k3 is the photon momentum and Mexc is the mass of the exchanged
vector meson, MD∗ or MD∗

s
.

With this prescription we solve the coupled channels Bethe–Salpeter equations and
obtain new couplings of the resonances to pairs of vectors, which, via the VMD,
provide the appropriate couplings of the resonances to the photons. The couplings to
D∗D

∗
and D∗

sD
∗
s are practically unchanged as well as the masses of the resonances.

We obtain new effective couplings to the light vectors which characterize the γγ
decay rates.
The results for the radiative decay widths are summarized in Tab. 3.24. The decay
widths of the Y (3940) are in general smaller when compared to the other resonances.
A further common feature is that the ργ and γγ decay modes are suppressed in
comparison to the ωγ and φγ decays except for the predicted Yp(3912) resonance,
which shows a rather strong coupling to the ργ decay channel. The two-photon

pole [MeV] (3943,+i7.4) (3922,+i26) (4169,+i66) (3919,+i74)

IG JPC 0+ (0++) 0+ (2++) 0+ (2++) 1− (2++)

meson Y (3940) Z(3930) X(4160) ′Yp(3912)
′

Γργ[keV] 0.015 0.040 0.029 201.458

Γωγ[keV] 0.989 15.15510.659 114.561

Γφγ[keV] 13.629 95.647 268.854 62.091

ΓJ/ψγ [keV] 0.722 13.952 125.529 135.479

Γγγ[keV] 0.085 0.074 0.54 1.11

Table 3.24.: Pole positions and radiative decay widths.

decay of the Y (3940) is of the same order of magnitude as in Ref. [25] which is
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also based on a D∗D
∗
molecular structure interpretation of the Y (3940). The two

photon width obtained within the coupled channel formalism is still by a factor
three smaller than the result of the effective Lagrangian approach of [25] but this
discrepancy lies within the theoretical uncertainties of this small rate.

For the two–photon width of the X(4160) we obtain Γ(X(4160) → γγ) = 0.54 keV.
In the present coupled channel approach the X(4160) is found to be dominantly a
D∗+
s D∗−

s state. This is the same underlying structure as the D∗
sD

∗
s bound state

studied in [25]. In reference [25] the D∗
sD

∗
s molecular state was associated with the

narrow Y (4140) discovered by the CDF [56] because it was possible to explain the
sizable observed J/ψφ decay width of this state. Our association with the broader
X(4160) is suggested by the large total theoretical width which was not evaluated
in [25]. Since the nature of the resonances is the same in both approaches it is less
surprising that the present result for Γ(X(4160) → γγ) = 0.54 keV agrees with
Γ(Y (4140) → γγ) = 0.5 keV evaluated in [25].

Experimental observations concerning the radiative decays are rare. However, the
BELLE Collaboration searched for charmonium–like resonances in the γγ → ωJ/ψ
process [134] which resulted in an enhancement of the cross section around M =
3915± 3± 2 MeV. The peak was associated with a resonance denoted by X(3915).
But it is thought that it could be the Y (3940) resonance or even the Z(3930) which
we have associated to our JP = 2+ resonance at 3922 MeV. In [134] the X(3915) has
unknown spin and parity, but 0+ or 2+ are preferred. In the following we compare
the experimental observations [134]

Γγγ(X(3915))B(X(3915) → ωJ/ψ) =

{
(61± 17± 8) eV for JP = 0+

(18± 5± 2) eV for JP = 2+
(3.47)

with the results of the present approach. Let us evaluate Eq. (3.47) for the two
theoretical states with JP = 0+ and mass 3943 MeV (Y (3940)) and 2+ at 3922 MeV
(Z(3930)) in Tab. 3.24. From the respective couplings gωJ/ψ of the Y (3940) and
Z(3930) resonances to the ωJ/ψ channel we can estimate the partial decay width
by

Γ(Y (Z) → ωJ/ψ) =
1

8π

kg2ωJ/ψ
M2

R

, (3.48)

where k is the momentum of the final meson. We obtain

Γ(Y (3940) → ωJ/ψ) = 1.52 MeV

Γ(Z(3930) → ωJ/ψ) = 8.66 MeV .
(3.49)
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Together with the two photon decay widths of Tab. 3.24 we find

Γ(Y (3940) → γγ)Br(Y (3940) → ωJ/ψ) = 7.6 eV

Γ(Z(3930) → γγ)Br(Z(3930) → ωJ/ψ) = 11.8 eV . (3.50)

If we compare these results with the experimental observations in Eq. (3.47) we im-
mediately see that the JP = 2+ state Z(3930) matches the experimental observation
of the BELLE collaboration (3.47) of about 18 eV. On the contrary, our result for
the Y (3940) meson with quantum numbers JP = 0+ underestimates the experimen-
tal observations by an order of magnitude. Our study thus favors the association of
the Z(3930) resonance with the X(3915) in [134].

3.3.3. Summary

We studied the two–photon and photon–vector meson decay properties of dynami-
cally generated resonances from vector–vector coupled channels in an unitarity hid-
den gauge formalism. In the present work the focus was set on radiative decays
of the scalar and tensor mesons between one and two GeV and the hidden–charm
mesons around 4 GeV analyzed in [65]. The results are compared with available data
and other theoretical models in order to test the dynamical picture of the mesons
versus the ordinary qq̄ predictions.

First we have calculated the radiative decay widths of the f2(1270), f0(1370), f
′
2(1525),

f0(1710), K
∗
2(1430), and four other states that appear dynamically from vector

meson-vector meson interaction in an unitary approach. In particular, we have iden-
tified the relevant pattern of decay rates predicted by different theoretical models and
found them to be quite distinct. For instance, the Γ(f2(1270) → ργ)/Γ(f2(1270) →
ωγ) ratio is quite different in the dynamical model from those in the TMD&VMD
model and the COQM model. By analogy, the Γ(f ′

2(1525) → φγ)/Γ(f ′
2(1525) → ργ)

ratio in the COQM model is orders of magnitude larger than in the dynamical pic-
ture.

A measurement of the f0(1370)/f0(1710) decay rates into ργ and φγ is possible
which not only could be used to distinguish between the quark model (NRQM and
LFQM) picture and the dynamical picture but also to put a constraint on the mass
of a possible glueball (in the qq̄-g mixing scheme of the NRQM and LFQM). For the
K∗

2(1430), as we have discussed, a measurement of its K∗+(K∗0)γ decay mode will
definitely be able to determine to what extent the dynamical picture is correct.

Besides the light unflavored mesons we also studied the radiative decays of the
hidden–charm mesons around 4 GeV [65]. According to their masses and widths
three of them are good candidates for the Y (3940), Z(3930) and X(4160) mesons
discovered by BELLE and BABAR. Furthermore, the Z(3930) possibly corresponds
to the recently observed X(3915). The two–photon decay width of the Y (3940) in
the hidden gauge formalism, assumed to be 0+, is more uncertain due to large can-
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cellations and could be compatible with the larger width of the prediction obtained
in the pure D∗D

∗
molecule interpretation in [25]. In the case of the X(4160), which

we assume to be the 2+ state at 4169 MeV, the γγ decay width agrees with the
results of [25] for a D∗+

s D∗−
s molecule with a chosen mass of 4140 MeV.

The information on the Γγγ decay rate of the X(3915) favors the association of
this resonance with the (2+, 3922) resonance that we obtain. Here, the quantum
numbers 0+ are clearly disfavored.
Unfortunately, there is not much data on radiative decays of the X, Y and Z mesons.
The large variety of results obtained by us concerning the different decays and differ-
ent resonances indicates that these measurements are very useful to shed light on the
structure of these resonances. In particular, the vector meson–photon decay modes
could be addressed in future facilities like PANDA and BESIII, and undoubtedly
these measurements would be very valuable to help to disentangle different aspects
of the nature of these charmonium like states.
Finally, we would like to stress that QCD dynamics is much richer than the present
theoretical scenario described by dynamically generated resonances. It is therefore
not very surprising that sometimes agreement with data is not perfect but the model
delivers at least an qualitative insight in the decay pattern. Because of the distinct
pattern in different theoretical models, an experimental measurement of some of the
decay modes are very sensitive to the nature of these resonances.





4. Effective Model for Hadronic
Bound States

In the following chapter we introduce a further theoretical approach for the in-
vestigation of hadron structure. The present relativistic quantum field theoretical
method is based on effective interaction Lagrangians in order to describe any kind
of hadronic bound states. In contrast to the previously discussed coupled channel
approach, the present model is therefore not restricted to a particular hadron sub-
structure but can be applied to a wide range of structure issues from conventional
mesons [135, 136] and baryons [137, 138], composed of a quark-antiquark pair and
three quarks, to bound states on the hadron level [26] — hadronic molecules. In
addition, the method is universally applicable to study decay and production proper-
ties of all kind of hadron bound states which can either consist of quarks or hadrons.
Further prominent features of the method are the manifest gauge invariance when
including electroweak interactions and the consideration of the extended structure
of the hadronic bound state.
We will use the effective Lagrangian approach to continue the study of mesonic
bound states but also consider conventional qq̄ mesons within this framework. We
calculate radiative, strong and weak decay and production properties which we com-
pare with other theoretical approaches and, if available, experimental observations.
In the following Section 4.1 the method is introduced by the example of meson
molecules. In the first part of this chapter we stay with the topic of bound states
of mesons. Candidates for hadronic molecule structure are resonances which cannot
be fully understood in the qq̄ picture and which typically lie close to a two–meson
threshold. Of course, the nearby threshold is necessary but not sufficient to identify
a meson molecule, but binding of the system has to be guaranteed as well. This
issue can e.g. be studied by coupled channel methods, meson exchange models or
QCD sum rule approaches (see discussion in Chapter 3).
As a first application of the model we consider the light scalars f0(980) and a0(980)
as hadronic molecules built of kaons. We study the radiative and strong decay prop-
erties and additionally also consider weak transitions between hadronic molecules,
i.e. f0 production from charmed and bottom meson bound states. Since the light
scalars are well studied from the experimental side, this mesons can be also consid-
ered as a test case of our model. We find that the kaon molecule picture studied
within the framework of the present method can reproduce experimental observation
rather well.

73
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We then turn to the more topical hidden–charm mesons Y (3940), Y (4140) and
Z±(4430) which have attracted much interest in recent years. For the examples
discussed here it is difficult and in the case of the Z± impossible to explain these
resonances as cc̄ states. The meson molecule interpretation of these mesons allows
to explain the unusual features which are in contradiction to the charmonium inter-
pretation.

More details on the experimental situation of the mesons discussed within the frame-
work of hadronic molecules can be found in Chapter 3.

4.1. Formalism

In the coupled channel formalism discussed in the previous chapter we deal with sev-
eral meson–meson channels which can contribute to the formation of a resonance.
In contrast, the present effective Lagrangian approach is based on a structure as-
sumption for a meson as a pure bound state of e.g. two mesons. However, this
assumption is justified since we only treat mesons which show clear properties of
hadron bound states. For example all mesons discussed within this formalism lie
close to a two–meson threshold which is a strong hint for the possible binding of the
corresponding meson–meson system. Therefore, we deal primarily with one domi-
nant meson–meson component while other contributions can be neglected. This is
also in agreement with the previously mentioned coupled channel approach. Here,
resonances which lie close to a threshold also show a strong affinity to this particular
channel while couplings to other meson–meson channels are much smaller. There-
fore, we also end up with a molecular picture in the coupled channel approach which
is consistent with the present hadronic molecule picture.

This framework technically also allows for the inclusion of different hadron substruc-
tures, e.g. a meson–meson component and a compact qq̄ structure as it was done
in [139]. However, this is at the cost of further parameters related to the amplitude
of each component.

In the following we introduce the effective Lagrangian approach by means of a meson
molecule H with mass m and momentum p which is considered as a bound state of
two mesons M1 and M2. The masses of the constituent mesons we refer to as m1

and m2. In the first step we set up the bound state

∣∣H
〉
=
∣∣M1M2

〉
(4.1)

from which we can define the effective Lagrangian describing the interaction between
the hadronic bound state and its constituents

LHM1M2 = gHM1M2H(x)

∫
dx1

∫
dx2Φ(x, x1, x2) JM1M2(x1, x2) , (4.2)
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where JM1M2(x1, x2) represents the appropriate current of the constituent mesons
M1 and M2 carrying the quantum numbers of H . The explicit structure of the
Lagrangian and meson currents are discussed for each hadronic bound state in the
following sections.

Since we consider the spatially extended structure of the molecular state, we intro-
duce the center of mass and relative coordinates x1 = x + ω12y and x2 = x − ω21y,
where ωij = mj/(mi + mj). Therefore, we deal with a nonlocal interaction La-
grangian (4.2). In particular, we consider the extended structure of the bound state
i.e. the distribution of the constituents by the vertex function Φ. Its Fourier trans-
form enters as a form factor in our calculations. A basic requirement for the choice
of an explicit form of the correlation function Φ is that its Fourier transform van-
ishes at a sufficient rate in the ultraviolet region of Euclidean space to render the
Feynman diagrams ultraviolet finite. In earlier analyses [140, 141] it was shown
that the influence of the shape of the form factor plays a minor role for processes
where the external momenta are relatively small. This criterion is fulfilled since
in the present work we deal dominantly with observables characterizing decay and
production processes. In the present analyses we use a Gaussian cutoff

Φ̃(k2E) = exp(−k2E/Λ2) (4.3)

with the four-dimensional size parameter Λ. The index E in the argument of Φ̃ is
chosen to emphasize that we are working in Euclidean space.

The composite structure of the bound state is set up by the compositeness or Wein-
berg condition [142], where a bound state is realized by setting its field renormal-
ization constant Z to zero. Since the field renormalization constant represents the
matrix element between bare and dressed fields the bound state exists as a pure com-
posite object without any further genuine component. The renormalization constant
of the composite field is defined by

ZH = 1−Π′(p2)
∣∣
p2=M2 = 1− g2HΣ

′(p2)
∣∣
p2=M2 , (4.4)

where Π(p2) denotes the mass operator

Π(p2) = g2HΣ(p
2) =

g2H
(4π)2

∫
d4k

π2i
Φ̃(−k2)ΓSM1(k + ω21p)Γ

†SM2(k − ω12p) (4.5)

which is depicted in Fig. 4.1. Γ represent the appropriate vertex structures and
SM(k) is the free propagator of the meson fieldM (for details see following sections).
The Weinberg condition [142] was originally applied to the deuteron as a proton–
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Figure 4.1.: Mass operator of the hadronic molecule H .

neutron bound state relating the coupling gWH and binding energy ǫH as

gWH =
√
32πM3/4 ǫ

1/4
H . (4.6)

This formula represents the leading term of an expansion in powers of the binding
energy ǫH . Note that this expression is obtained in the local limit (i.e. the vertex
function approaches the limit Φ(y2) → δ4(y)).

Meson loop diagrams are evaluated by using the free meson propagators, which in
momentum space read as

S(k) =
1

M2 − k2 − iǫ
(4.7)

in case of pseudoscalar and scalar mesons, and

Sµν(k) =
−gµν + kµkν/M2

M2 − k2 − iǫ
(4.8)

for vector mesons. Here, we do not include the finite widths of constituent mesons
in the propagators since, in general, the total width of the molecular state should
be bigger than the widths of the constituent mesons.

The aim of this approach is the evaluation of decay processes which in the molecular
picture are usually driven by an intermediate loop containing the constituent mesons
as depicted in Fig. 4.2. The final decay products couple via the constituent mesons
to the hadronic molecule, where the interaction is again determined by effective
Lagrangians. The most general form of the loop integral is given by

I(M2,M2
A,M

2
B) =

∫
d4k

π2i
Φ1

(
− k2

)
Φ2

(
− (k + ω31p− ω21p1)

2
)

× Φ3

(
− (k − ω13p+ ω23p2)

2
)

(4.9)

× Γ1 S3(k − ω13p) Γ3 S2(k − ω13p+ p2) Γ2 S1(k + ω31p) ,
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H
Φ1

Γ1

M1

M3

Φ2, Γ2

Φ3, Γ3

p
p1

p2

A

B

M2

Figure 4.2.: Decay of a hadronic molecule via a meson loop.

where the indices 1, 2, 3 refer to the respective particle and vertex structure in the
loop of Fig. 4.2. In most cases the form factors Φ2 and Φ3 are equal to one since in
comparison to the extended structure of the hadronic molecule finite size effects of
the other hadrons involved are neglected.

4.1.1. Inclusion of the electromagnetic interaction

Radiative decay and production processes of mesons are an important aspect of
meson structure since electromagnetic transitions are in general more precisely de-
termined by theory and experiment than strong decays. The reason is the precise
theoretical knowledge how to include the electromagnetic coupling while on the ex-
perimental side clean events can be obtained without overwhelming hadron produc-
tion. The basic requirement for including the electromagnetic interaction is gauge
invariance which means that the Lagrangian has to be invariant under local U(1)
transformations. The standard procedure to include the electromagnetic interac-
tion is provided by minimal substitution of the free meson Lagrangians. In order to
guarantee invariance of the Lagrangian with respect to the local field transformation
Φ(x) → eieα(x)Φ(x), where e is the charge and α(x) a local real phase, one has to in-
clude an external gauge field Aµ(x), which transforms as Aµ(x) → Aµ(x) + ∂µα(x).
To compensate the field transformation in the free meson Lagrangian the four–
derivative needs to be complemented by an additional term leading to the covariant
derivative

Dµ = ∂µ − ieAµ . (4.10)

The additional term leads to one– and two–photon couplings of the charged mesons
M± (see Fig. 4.3).

In the present approach we also deal with a nonlocal Lagrangian in Eq. (4.2) due to
the spatially extended structure of the bound state. The corresponding expression
in Eq. (4.2) is not gauge invariant with respect to the transformations of the meson
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γ γ γ

M± M±M± M±

(a) (b)

Figure 4.3.: One– and two–photon couplings from minimal substitution.

field with M± → e±ieα(x)M± and the gauge field Aµ(x) → Aµ(x)+∂µα(x). In order
to restore gauge invariance of nonlocal Lagrangians we use the method introduced
in [143], where each charged meson field is multiplied by an exponential containing
the gauge field

M± → e∓ieI(x,y)M± , (4.11)

with

I(x, y, P ) =

y∫

x

dzµA
µ(z) . (4.12)

Superficially the results appear to depend on the path P which connects the end–
points in the path integral in Eq (4.12). However, one only needs to know derivatives
of the path integrals when doing the perturbative expansion. One can make use of
the formalism developed in [143] which is based on the path–independent definition
of the derivative of I(x, y, P ):

lim
dxµ→0

dxµ
∂

∂xµ
I(x, y, P ) = lim

dxµ→0
[I(x+ dx, y, P ′)− I(x, y, P )] (4.13)

where the path P ′ is obtained from P by shifting the end–point x by dx. Use of the
definition (4.13) leads to the key rule

∂

∂xµ
I(x, y, P ) = Aµ(x) (4.14)

which states that the derivative of the path integral I(x, y, P ) does not depend on
the path P originally used in the definition. The non–minimal substitution (4.11) is
therefore completely equivalent to the minimal prescription ∂µM

± → (∂µ∓ieAµ)M±

as is evident from the identities (4.13) or (4.14).

The gauging of the nonlocal Lagrangian leads diagrammatically to new vertex struc-
tures which are illustrated in Fig. 4.4. In summary, the nonlocality of the present
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approach leads to additional diagrams contributing to the respective decay which
are required to guarantee full gauge invariance of the method. It is important to

H(p)

M1(p1)

M2(p2)

γ(q)

H(p)

M1(p1)

M2(p2)

γ(q1)γ(q2)

Figure 4.4.: Contact vertices arising due to the nonlocality of the interaction between
bound state and constituents.

note that not necessarily each graph separately but only the sum of all diagrams
leads to a gauge invariant structure of the matrix element. However, we will see later
on that the inclusion of the contact vertices only leads to a negligible contribution
to the transition amplitude.
Gauge invariance not only requires an invariant form of the Lagrangian but also
leads to a certain structure of the transition amplitudes for processes with gauge
fields involved. In the following we demonstrate this issue by means of the two–
photon decay of a scalar or pseudoscalar particleM . We denote the momenta of the
two photons by q1 and q2. The most general structure of the transition amplitude
contains five form factors Fi

Mµν
H→γγ = F1g

µν + F2q
µ
2 q

ν
1 + F3q

µ
1 q

ν
2 + F4q

µ
1 q

ν
1 + F5q

µ
2 q

ν
2 . (4.15)

Since above matrix element is finally contracted with the photon polarizations ǫµ1 and
ǫν2, the last three terms of Mµν

H→γγ are zero since four–momentum and polarization
are perpendicular in the Lorentz gauge ǫµ(q)q

µ = 0. Furthermore, it is also required
that, in the case of real photons, the matrix element is perpendicular to the photon
momenta, i.e. Mµν

H→γγq1µq2 ν = 0. The second condition leads to

F1 = −F2 q1q2 , (4.16)

hence, the two–photon transition is characterized by only one form factor

Mµν
H→γγ = F1

(
gµν − qµ2 q

ν
1

q1q2

)
= FHγγb

µν , (4.17)

when dealing with on-shell photons as is the case of decay and production processes.
The structure bµνreads

bµν = gµνq1q2 − qν1q
µ
2 . (4.18)
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Off-shell photons, which differ by an additional longitudinal component of the po-
larization vector ǫµ from real photons, lead to a second form factor GHγγ

Mµν
H→γγ = FHγγb

µν +GHγγc
µν , (4.19)

which needs to be considered in case of radiative form factors where at least one
photon is considered off–shell with

cµν = gµνq21q
2
2 + qµ1 q

ν
2q1q2 − qµ1 q

ν
1q

2
2 − qµ2 q

ν
2q

2
1 . (4.20)

4.2. Light meson bound states

Before we study the interesting hadronic molecule candidates recently discovered in
the heavy meson sector we focus on the light scalar mesons f0(980) and a0(980). The
advantage is that the f0 and a0 mesons are known for a long time and experimentally
well studied. Therefore, many data are available on the strong and radiative decay
pattern of these states. In contrast, when dealing with the hidden–charm X , Y
and Z mesons the experimental knowledge is restricted. In particular, only a few
decay modes are experimentally observed and precise data are not available and
often not confirmed by a second experiment. For these reasons, the f0 and a0
mesons provide an excellent test case for the present Lagrangian approach applied
to hadronic molecules.

4.2.1. a0(980) and f0(980)

The a0(980) and f0(980) were controversially discussed in different structure inter-
pretations ranging from qq̄ [144], q2q̄2 [17, 19] to (qq̄)(qq̄) [20, 26, 145] meson bound
state assignments (for an overview see [13]). However, the proximity of the f0 and a0
to the nearby KK threshold and their mass degeneracy strongly suggest a molecular
substructure assignment (see discussion in Section 2.1). In the following we study
both mesons by assuming pure bound states of kaons. In this framework we analyze
their radiative decays, including two-photon and photon-vector meson decay pro-
cesses, and the strong two-pion and πη decays. Furthermore, we also compute the
f0/a0 production in φ decays, which are sensitive to the strange-quark component
of the mesons. Besides the extended structure of the scalar mesons we also include
a possible isospin violating mixture of the f0(980) and a0(980) mesons, originally
discussed in [146]. f0 − a0 mixing is motivated by their near degenerate masses but
also by the mass gap between the nearby charged K+K− and neutral K0K̄ 0 thresh-
olds (see e.g. [147, 148]). Further isospin violating processes like photon exchange
and isospin-violating vertices are found to play a minor role compared to the f0−a0
transition induced by kaon loops [149]. For this reason, in the following we restrict
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to the kaon loop mixing mechanism. By considering f0 − a0 mixing we also get
access to the isospin violating decays f0 → πη and a0 → ππ.
In the first step we express the f0 and its isovector partner a0 by the corresponding
isosinglet and triplet states of the kaon–antikaon systems

∣∣f 0
0

〉
=

1√
2

(∣∣K+K−〉+
∣∣K0K̄ 0

〉)
, (4.21)

∣∣a00
〉
=

1√
2

(∣∣K+K−〉−
∣∣K0K̄ 0

〉)
, (4.22)

where the upper index 0 refers to the unmixed states. The interaction between the
hadronic molecules a00 and f

0
0 is described by the phenomenological Lagrangians (see

also (4.2))

Lf00KK =
gf00KK√

2
f 0
0 (x)

∫
dyΦ(y2)K

(
x− y

2

)
K
(
x+

y

2

)
,

La00KK =
ga00KK√

2
~a00(x)

∫
dyΦ(y2)K

(
x− y

2

)
~τK
(
x+

y

2

)
,

(4.23)

where the kaon and scalar fields are collected in the kaon isospin doublets and the
scalar meson triplet

K =

(
K+

K0

)
, K =

(
K−

K̄ 0

)
and ~a0 = (a+0 , a

0
0, a

−
0 ) . (4.24)

The different sign of the couplings between a0 and the charged and neutral kaon
components together with the mass gap leads to a non–vanishing a0 − f0 transition
in Fig. 4.5 driven by kaon loops. We can therefore express the physical f0 and a0

6= 0f0 a0 f0 a0

K+

K−

K0

K̄0

p p p p

Figure 4.5.: f0 − a0 mixing due to the mass gap between K+K− and K0K̄ 0

thresholds.

mesons by the unmixed states f 0
0 and a00

∣∣f0
〉
=
∣∣f 0

0

〉
cos θ −

∣∣a00
〉
sin θ∣∣a0

〉
=
∣∣f 0

0

〉
sin θ +

∣∣a00
〉
cos θ .

(4.25)
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The coupling constants gf0KK and ga0KK to the constituents are determined by the
compositeness condition (4.4) which is based on the mass operator of the physical
states f0 and a0 (see Fig. 4.1). By using the mixing matrix of Eq. (4.25) we can
rewrite the mass operator of the physical particle (here the f0) by the unmixed states
f 0
0 and a00

Πf0f0(p
2) = cos2 θ

g2
f00KK

2
Σf00 f00 (p

2)− cos θ sin θ gf00KKga00KK Σf0a0(p
2)

+ sin2 θ
g2
a00KK

2
Σa00a00(p

2) , (4.26)

which leads to the compositeness condition

1 = Π′
f0f0

(p2)
∣∣
p2=m2

f0

=
[
cos2 θ

g2
f00KK

2
Σ′
f00 f

0
0
(p2)− sin θ cos θgf00KKga00KKΣ

′
a00f

0
0
(p2)

+ sin2 θ
g2
a00KK

2
Σ′
a00a

0
0
(p2)

]∣∣
p2=m2

f0

. (4.27)

In order to determine the couplings to the charged and neutral kaons gSK+K− and
gSK0K̄ 0 (S = f0, a0) we substitute

Σf00 f00 (p
2) = Σa00a00(p

2) = ΣK+K− + ΣK0K̄ 0

Σa00f00 (p
2) = Σf00 a00(p

2) = ΣK+K− − ΣK0K̄ 0

(4.28)

and obtain

1 = Π′
f0f0

(p2)
∣∣
p2=m2

f0

=
[( gf00KK√

2
cos θ −

ga00KK√
2

sin θ

︸ ︷︷ ︸
≡ gf0K+K−

)2
Σ′
K+K−(p2)

+
( gf00KK√

2
cos θ +

ga00KK√
2

sin θ

︸ ︷︷ ︸
≡ gf0K0K̄ 0

)2
Σ′
K0K̄ 0(p

2)
]∣∣
p2=m2

f0

.
(4.29)

By analogy we evaluate the compositeness condition for the physical a0(980) meson

1 = Π′
a0a0

(p2)
∣∣
p2=m2

a0

=
[( ga0KK√

2
cos θ +

gf00KK√
2

sin θ

︸ ︷︷ ︸
≡ ga00K+K−

)2
Σ′
K+K−(p2)

+
( ga0KK√

2
cos θ −

gf0KK√
2

sin θ

︸ ︷︷ ︸
≡ ga0K0K̄ 0

)2
Σ′
K0K̄ 0(p

2)
]∣∣
p2=m2

a0

.
(4.30)
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In the following we pursue two ways of considering the f0− a0 mixing in our model.
In the first version referred to as Model A we treat the mixing angle as free param-
eter and, hence, determine the couplings to the charged and neutral kaon pairs in
dependence on θ. From experiment it is known that isospin mixing effects are small.
In Model B we therefore approximate the couplings to the constituents for small
mixing angles θ.

1. Model A: First we compute the decay properties in dependence on θ by
inserting gSK+K− and gSK0K̄ 0 for the coupling to the charged and neutral
kaons in the loops. The dependence of the nonlocal coupling constants gSK+K−

and gSK0K̄ 0 between the scalars and the charged or neutral constituent kaon
pairs on the a0 − f0 mixing is demonstrated in Fig. 4.6. We plot the coupling
constants for the size parameter Λ = 1 GeV as functions of the mixing angle θ.
Without the inclusion of mixing effects, i.e. θ = 0 we reproduce the couplings
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Figure 4.6.: Influence of mixing effects on the couplings gSK+K− and gSK0K̄ 0 at Λ = 1
GeV.

gf0KK ≡ gf0K+K− = gf0K0K̄ 0 and ga0KK ≡ ga0K+K− = ga0K0K̄ 0 of our previous
work [26]

gf0KK;L√
2

= 2.90 GeV (local),
gf0KK√

2
= 3.09 GeV (Λ = 1 GeV) ,

ga0KK;L√
2

= 2.32 GeV (local),
ga0KK√

2
= 2.42 GeV (Λ = 1 GeV) ,

(4.31)

where the index L refers to the local limit (Λ → ∞).

2. Model B: In the second version we approximate the couplings to the con-
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stituents by the modified couplings Gf0KK
and Ga0KK

which include one–loop
corrections due to a0 − f0 mixing as depicted in Fig. 4.7 (a) and 4.7 (b).
Here we use the couplings gf0KK and ga0KK of (4.31) derived in [26]. For the

f0

K

K̄

f0

K

K̄

f0

(a)

K

K
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K

K̄

a0

K

K̄

a0

K

K̄

a0

(b)

K

K

f0

K

K̄

Figure 4.7.: Renormalization of the gf0KK̄ and ga0KK̄ couplings due to f0−a0 mixing.

intermediate scalar propagator we use the Breit–Wigner form:

DS(p
2) =

1

M2
S − p2 + iMSΓS

(4.32)

where ΓS = Γ(M2
S) is the total width of the S = f0(a0) meson.

For the coupling constants between the hadronic molecules and the constituent
kaons we obtain

Gf0KK;L√
2

= 2.87 GeV (local),
Gf0KK√

2
= 3.06 GeV (Λ = 1 GeV) , (4.33)

Ga0KK;L√
2

= 2.44 GeV (local),
Ga0KK√

2
= 2.55 GeV (Λ = 1 GeV) . (4.34)

In model B mixing effects result in slight modifications of the couplings and
therefore only play a minor role with respect to decay and production proper-
ties as we will compute in the following. We will see later on that the second
variant corresponds to a mixing angle θ of about 1◦ used in model A.

Radiative Decays

As a first application we study the radiative two–photon and photon–vector meson
decays of the f0(980) and a0(980) mesons as well as their production in φ decays.
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As already discussed in the introduction of this chapter electromagnetic interaction
is included by minimal substitution in the free meson Lagrangian of the kaons

LK = ∂µK
+∂µK− −M2

KK
+K− + ie

(
M−∂µM

+ −M+∂µM
−)Aµ + e2AµAµM

+M− .

The resulting one– and two–photon interaction vertices are contained in the decay
diagrams (a) and (b) of Figs. 4.8 and 4.9, and (a) to (c) of Fig. 4.10. The interac-
tion of the intermediate kaons and the final vector mesons is given by the effective
Lagrangian

LVKK = gρKK~ρ
µ(K~τ i∂

↔

µK) + (gωKKω
µ + gφKKφ

µ)(K i∂µK −K i∂µK) . (4.35)

where the respective gV KK and gωKK couplings are fixed using the SU(3) symmetry
constraint:

gρKK = gωKK =
gφKK√

2
=
gρππ
2

= 3 (4.36)

with gρKK = 6 extracted from the ρ→ π+π− decay data. Note, that the SU(3) value
for the gφKK coupling (4.24) is close to the one predicted by data on the φ→ K+K−

decay. In particular, using the formula for the φ → K+K− decay width

Γ(φ → K+K−) =
g2
φKK

48π
Mφ

(
1− 4M2

K

M2
φ

)3/2
(4.37)

and the central value for Γ(φ→ K+K−)=2.10 MeV we deduce gφKK=4.48.

In the local limit the decay amplitude would be completely described by the sum
of these Feynman diagrams. However, the nonlocal strong interaction Lagrangians
require special care in establishing gauge invariance. In doing so the charged fields
are multiplied by exponentials [143] containing the electromagnetic field

K±(y) → e∓ieI(y,x,P )K±(y) (4.38)

with I(y, x, P ) =
y∫
x

dzµA
µ(z). This gives rise to the electromagnetic gauge invariant

Lagrangian

LGI
f0KK

=
gf0KK√

2
f0(x)

∫
dyΦ(y2)

[
e−ieI(x+,x−,P )K+

(
x+
)
K−(x−

)
+K0

(
x+
)
K

0(
x−
)]
,

with x± = x ± y
2
and a corresponding expression for the a0 meson. The interac-

tion terms up to second order in Aµ are obtained by expanding LGI
SKK

in terms of
I(y, x, P ). Diagrammatically, the higher order terms give rise to nonlocal vertices
with additional photon lines attached. Altogether, we obtain further graphs (Fig. 4.8
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(c), (d) and (e)) governing the two-photon decay and the diagrams of Figs. 4.9 (c)
and 4.10 (d) when massive vector mesons are involved. Quantitatively, the de-
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Kq1 q2
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Figure 4.8.: Diagrams contributing to the electromagnetic f0 → γγ and a0 → γγ
decays.

cay amplitude is dominantly characterized by the triangle diagram. The Feynman
graphs containing contact vertices arising due to the non-locality only give a minor
contribution to the transition amplitude but are required in order to fully restore
gauge invariance.

The diagrams are evaluated by separating each Feynman integral into a part obeying
gauge invariance and a remainder term. Details of this procedure can be found in
Ref. [135, 26] in case of two–photon decays and in the present Appendix A.2 for
the S → V γ transitions. The remainder terms of each graph cancel each other in
total and only the gauge invariant structure of the decay matrix element is left.
According to Eq. (4.19) the matrix element can be written by a linear combination
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Figure 4.9.: Diagrams contributing to the charged a±0 → γρ± decay.
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Figure 4.10.: Diagrams describing the neutral S → γV decays (V = ρ0, ω0).
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of the form factors F (p2, q21, q
2
2) and G(p

2, q21, q
2
2) of the respective decay

Mµν = e2
(
F (p2, q21, q

2
2)b

µν +G(p2, q21, q
2
2)c

µν
)
, (4.39)

where the tensor structures are given by Eqs. (4.18) and (4.20). Here, p and q1
denote the four-momenta of the scalar meson and photon, q2 is the momentum of
the vector meson or second photon depending on the respective decay.

Since we deal with real photons in the transition processes discussed here, the sec-
ond part of Mµν , proportional to cµν , vanishes. The decay constant is therefore
characterized by the form factor F which is obtained by evaluating the Feynman
integrals for on-shell initial and final states, where V = ρ, ω, φ, γ represents the
vector particle appropriate for the respective decay.

The issue of f0 − a0–mixing we study within the two above mentioned frameworks
A and B. In the first version A we use the mixing angle dependent couplings

gf0K+K− = gf00KK cos θ − ga00KK sin θ (4.40)

ga0K+K− = ga00KK cos θ + gf00KK sin θ (4.41)

of Eqs. (4.29) and (4.30) to compute the couplings characterizing the electromag-
netic decays

gSγγ ≡ FSγγ(M
2
S, 0, 0) =

2

(4π)2
· gSK+K−√

2
ISγγ(M

2
S, 0, 0)

gSγV ≡ FSγV (M
2
S , 0,M

2
V ) =

2

(4π)2
gV KK

gSK+K−√
2

ISγV (M
2
S, 0,M

2
V ) (4.42)

gφSγ ≡ FφSγ(M
2
φ,M

2
S, 0) =

2

(4π)2
gφKK

gSK+K−√
2

IφSγ(M
2
φ,M

2
S, 0) ,

where I denotes the loop integrals. The explicit expressions for the loop integrals I
are given in Appendix A.1.

In the second approach B we simply replace the couplings gSK+K− by the modified
dressed couplings GSKK due to f0 − a0 mixing (see Eqs. (4.34) and (4.33)) which
are based on the approximation of small mixing angles.

The expressions for the electromagnetic decay widths are given by

ΓSγγ =
α2π

4
M3

Sg
2
Sγγ ,

ΓSγρ/ω =
α

8

(M2
S −M2

ρ )
3

M3
S

g2Sγρ/ω , (4.43)

ΓφSγ =
α

24

(M2
φ −M2

S)
3

M3
S

g2φSγ ,
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where the coupling constants describing the radiative decays are related to the form
factors F as described in (4.42).

Two–photon decays

The results for the two–photon decay widths obtained by using the mixing angle
dependent couplings of model A are summarized in Tab. 4.1. Here we vary the
mixing angle θ from −3◦ to 3◦ since data suggests small mixing angles which will
also be confirmed by the results of model B. For completeness, we also indicate the
decay properties for a larger mixing angle. The mixing angle θ = 45◦ corresponds
to the configurations

∣∣f0
〉
=
∣∣K0K̄ 0

〉
and

∣∣a0
〉
=
∣∣K+K−〉 which leads to a zero

radiative decay width for the f0 and a maximal one for the a0 → γγ width since
photons only couple to charged kaons.

θ gf0γγ Γf0γγ ga0γγ Γa0γγ

[TeV−1] [keV] [TeV−1] [keV]

-3◦ 82.6 90.2 0.27 0.32 65.0 71.5 0.17 0.20

-2◦ 81.4 88.9 0.26 0.31 66.3 73.0 0.18 0.21

-1◦ 80.3 87.6 0.25 0.30 67.7 74.6 0.18 0.22

0◦ 79.1 86.3 0.25 0.29 69.1 76.1 0.19 0.23

1◦ 77.9 85.0 0.24 0.28 70.5 77.6 0.20 0.24

2◦ 76.6 83.6 0.23 0.28 71.9 79.1 0.21 0.25

3◦ 75.3 82.2 0.22 0.27 73.2 80.6 0.21 0.26

5◦ 72.7 79.3 0.21 0.25 75.9 83.5 0.23 0.28

10◦ 65.6 71.5 0.17 0.20 82.3 90.4 0.27 0.33

20◦ 49.3 53.7 0.10 0.11 93.5 102.6 0.35 0.42

45◦ 00.0 0.00 0.00 0.00 106.6 116.7 0.45 0.54

Table 4.1.: Two–photon decay properties for different mixing angles (first value of
each column nonlocal with Λ = 1 GeV, second local).

The use of the dressed couplings of model B leads to decay widths which are rather
close to the unmixed results. In fact the results of variant B correspond to a mixing
angle θ ≈ 1◦

Γ(f0 → γγ) = 0.29 (0.29) keV (local) ,

Γ(f0 → γγ) = 0.24 (0.25) keV (Λ = 1 GeV) .
(4.44)
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The value in brackets refers to the corresponding value when neglecting f0 − a0
mixing effects (see also Tab. 4.1). The sensitivity of the f0 → γγ decay properties
on finite size effects has been intensely studied in [26], even in case of virtual photons,
and leads to a variation of Γ(f0 → γγ) with the result

Γ(f0 → γγ) = 0.21 keV (Λ =0.7 GeV)− 0.26 keV (Λ = 1.3 GeV) . (4.45)

In Tables 4.2 and 4.3 we draw the comparison with data and other approaches,
respectively. The f0 → γγ width predicted by our model matches the range of
values currently deduced in experiment.

Experiment [22] [150] [151] [124]

Γf0→γγ [keV] 0.29+0.07
−0.09 0.205+0.095+0.147

−0.083−0.117 0.31± 0.14± 0.09 0.29± 0.07± 0.12

Table 4.2.: Electromagnetic decay width f0(980) → γγ: experimental data.

Reference [152] [37] [153] [154] [155] [156] [145]

Meson structure (qq̄) (qq̄) (qq̄) (qq̄) (q2q̄2) (hadronic) (hadronic)

Γf0→γγ [keV] 0.24 0.28+0.09
−0.13 0.31 0.33 0.27 0.20 0.22± 0.07

Table 4.3.: Electromagnetic decay width f0(980) → γγ: theoretical approaches.

For the two-photon decay of the a0 meson our results lie between

Γ(a0 → γγ) = 0.26 (0.23) keV (local) ,

Γ(a0 → γγ) = 0.21 (0.19) keV (Λ = 1 GeV) ,
(4.46)

where again results without mixing are put in parentheses. By considering in addi-
tion the f0 − a0 mixing contributions our estimates are in good agreement with the
experimental result 0.3 ± 0.1 keV of Crystal Barrel [12]. Finite size effects play a
comparable role as f0− a0 mixing since the variation of Λ from 0.7 GeV to 1.3 GeV
changes Γ(a0 → γγ) by

Γ(a0 → γγ) = 0.16 keV (Λ = 0.7 GeV) - 0.21 keV (Λ = 1.3 GeV) . (4.47)

The decay widths obtained in other approaches are combined in Tab. 4.4 and show
a large discrepancy even for models with the same structure assumptions.
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Reference [37] [21] [155] [156]

Meson structure (qq̄) (qq̄) (q2q̄2) (hadronic)

Γ(a0 → γγ) [keV] 0.3+0.11
−0.10 1.5 0.27 0.78

Table 4.4.: Electromagnetic decay width a0(980) → γγ: theoretical approaches.

One–photon decays

In analogy to the two–photon decays we first evaluate the ργ and ωγ decay widths
of the f0(980) and a0(980) in dependence on the mixing angle θ (model A). Our
results are given in Tab. 4.5, where we concentrate on small mixing angles between
−3◦ and 3◦ but for completeness we also indicate the results for maximal mixing at
θ = 45◦. From our results it is obvious that with increasing θ the K+K− component
decreases in case of the f0 which leads to smaller radiative decay widths while the
charged component increases for the a0.

θ Γf0ργ Γf0ωγ Γa0ργ Γa0ωγ

-3◦ 8.37 8.85 7.86 8.29 5.89 6.37 5.56 6.00

-2◦ 8.13 8.60 7.64 8.05 6.13 6.64 5.79 6.25

-1◦ 7.90 8.34 7.42 7.81 6.39 6.91 6.03 6.50

0◦ 7.65 8.09 7.19 7.57 6.64 7.18 6.27 6.76

1◦ 7.41 7.83 6.96 7.33 6.90 7.46 6.51 7.02

2◦ 7.17 7.57 6.73 7.09 7.16 7.73 6.76 7.28

3◦ 6.92 7.31 6.50 6.84 7.43 8.01 7.01 7.54

5◦ 6.44 6.79 6.04 6.84 7.95 8.58 7.50 7.54

10◦ 5.21 5.49 4.90 5.14 9.29 10.0 8.77 9.41

20◦ 2.92 3.07 2.74 2.87 11.86 12.7 11.18 12.0

45◦ 0.00 0.00 0.00 0.00 15.20 16.2 14.32 15.2

Table 4.5.: f0(a0) → V γ decay widths in keV for different mixing angles (first value
of each column nonlocal with Λ = 1 GeV, second local).

As in the case of the two–photon decays model B leads to minor mixing effects for



92 4.2. Light meson bound states

the decays involving ρ and ω mesons

Γ(f0 → ργ) = 7.93 (8.09) keV (local), 7.44 (7.58) keV (Λ = 1 GeV) , (4.48)

Γ(f0 → ωγ) = 7.43 (7.57) keV (local), 6.99 (7.12) keV (Λ = 1 GeV) , (4.49)

Γ(a0 → ργ) = 7.94 (7.18) keV (local), 7.29 (6.59) keV (Λ = 1 GeV) , (4.50)

Γ(a0 → ωγ) = 7.47 (6.76) keV (local), 6.88 (6.22) keV (Λ = 1 GeV) . (4.51)

The deviations from the predicted widths of Ref. [36] for the a0/f0 → γρ/ω decays
arise because of different assumptions for the scalar masses and couplings. In [157]
the decay width a0 → γρ/ω calculated within the framework of a Chiral Unitarity
Approach is larger than our result because of the additional inclusion of vector
mesons in the loop diagrams.

φ decays

We first study the mixing angle dependence of the decay properties within model
A. As in the one- and two photon decays the φ production rate depends sensitively
on the K+K− constituents of the scalar mesons which leads again to a decrease of
the φ→ a0γ width while the a0 production in φ decays increases with larger values
of θ. Physically reasonable results are found for small mixing angles.

θ gφf0γ Γφf0γ gφa0γ Γφa0γ

[GeV−1] [keV] [GeV−1] [keV]

-3◦ 2.06 0.70 1.71 0.33

-2◦ 2.03 0.68 1.75 0.34

-1◦ 2.00 0.66 1.78 0.36

0◦ 1.97 0.64 1.82 0.37

1◦ 1.94 0.62 1.85 0.39

2◦ 1.91 0.60 1.88 0.40

3◦ 1.87 0.58 1.92 0.42

5◦ 1.81 0.54 1.98 0.44

10◦ 1.62 0.44 2.14 0.52

20◦ 1.21 0.24 2.41 0.66

45◦ 0.00 0.00 2.73 0.84

Table 4.6.: φ→ f0(a0)γ decay properties for different mixing angles.
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The radiative φ decay widths calculated in the local limit within the framework of
model B are given by

Γ(φ → f0γ) = 0.63 keV ,

Γ(φ→ a0γ) = 0.41 keV ,

where without mixing we obtain Γ(φ→ f0γ)=0.64 keV and Γ(φ→ a0γ)=0.37 keV.

Our result for the φ → f0γ decay overestimates the value quoted by PDG (2010)
[158], where the branching ratio Γ(φ → f0γ)/Γtotal = (1.11 ± 0.07) · 10−4 yields
Γ(φ → f0γ)=0.44-0.51 keV. In the 2010 edition of PDG [22] the ratio is increased
Γ(φ → f0γ)/Γtotal = (3.22± 0.19) · 10−4 which gives 1.28-1.47 keV for the φ → a0γ
decay width. However our results lie within the error bars of the CMD2 data [41]
Γ(φ→ f0γ) = 0.48− 2.00 keV.

The decay width for the φ → a0γ decay slightly overestimates the PDG (2008)
average value 0.3-0.35 keV (Γ(φ → a0γ)/Γtotal = (0.76 ± 0.06) · 10−4) but is in
agreement with the experimental data of [159] predicting 0.30-0.45 keV for Γ(φ →
a0γ).

Due to the self-consistent determination of the ga0KK coupling constant our result
in case of the a0 production is smaller than the width Γ(φ→ a0γ) quoted in [45, 36],
but we have quite good agreement with the predictions for the φ-production of the
f0.

Strong Decays

To calculate the strong decays of the f0 and a0 mesons we proceed in analogy to
the computation of the f0 → ππ decay in [26]. Here we extend the formalism by
including the a0 → πη decay and, additionally, by considering mixing between both
scalars.

According to the interaction Lagrangians

LK∗Kπ =
gK∗Kπ√

2
K∗
µ
†~π~τ i∂

↔ µ
K + h.c. ,

LK∗Kη =
gK∗Kη√

2
K∗
µ
†η i∂

↔ µ
K + h.c. ,

(4.52)

the final-state interaction effect in the t-channel proceeds via K∗ exchange (see Fig.
4.11 (a)), where the massive vector meson is described by an antisymmetric tensor
field [4, 160, 161]. The K∗ propagators in vector representation SVK∗;µν,αβ(x) and
tensorial description SWK∗;µν,αβ(x) differ by a term which is reflected in a second
diagram containing an explicit four meson vertex (see Fig. 4.11 (b))

SWK∗;µν,αβ(x) = SVK∗;µν,αβ(x) +
i

M2
K∗

[gµαgνβ − gµβgνα]δ
4(x) . (4.53)
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Figure 4.11.: Diagrams contributing to the strong decays.

Note that we include the interaction of four pseudoscalar mesons at leading O(p2)
order in the chiral expansion given by chiral perturbation theory (ChPT) [4, 6]:

LU(x) =
F 2

4
〈DµU(x)D

µU †(x) + χU †(x) + χ†U(x) 〉 , (4.54)

which leads to the four meson ππKK interaction vertex. Inclusion of e.g. scalar
resonances in the s-channel is of higher order, O(p4). In the t-channel we include
the important vector meson exchange which also is of higher order, O(p4), but is
important for the inclusion of final-state interactions. Here we use the standard
notations of ChPT. The fields of pseudoscalar mesons are collected in the chiral
matrix U = u2 = exp(i

∑
i φiλi/F ) with F = 92.4 MeV being the leptonic de-

cay constant and Dµ is the covariant derivative acting on the chiral field. Fur-
thermore, χ = 2BM + · · · , where B is the quark vacuum condensate parameter
B = −〈0|ūu|0〉/F 2 = −〈0|d̄d|0〉/F 2 and M = diag{m,m,mS} is the mass matrix
of current quarks with m = (mu +md)/2. In the leading order of the chiral expan-
sion the masses of pions and kaons are given by M2

π = 2mB, M2
K = (m +mS)B .

In summary, second order ChPT gives rise to a second diagram being of the same
structure as graph b) but opposite in sign. Therefore, the triangle diagram a) gives
the dominant contribution to the decay amplitude.
The couplings for the strong decays are defined by

gf0ππ = gf0π+π− = 2gf0π0π0 = G(M2
f0
,M2

π ,M
2
π) (4.55)

ga0πη = G(M2
a0 ,M

2
π ,M

2
η ) , (4.56)

where, in the case of the two-pion decay, we have to consider the ratio between the
charged and neutral decay modes. Here, G(p2, q21, q

2
2) is the structure integral of the

f0 → ππ and a0 → πη transitions which are conventionally split into the two terms
G(a)(p2, q21, q

2
2) and G

(b)(p2, q21, q
2
2). They refer to the contributions of the diagrams
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of Figs. 4.11 (a) and 4.11 (b), respectively, with

G(p2, q21, q
2
2) = G(a)(p2, q21, q

2
2) +G(b)(p2, q21, q

2
2) . (4.57)

The expressions for the structure integrals G can be found in Appendix A.1.2.

The strong two–pion and πη decay modes are studied within model A considering
the mixing angle dependence of the couplings to the charged and neutral kaon pairs.
Therefore, the kaon loop integrals need to be expressed in terms of the charged and
neutral couplings gSK+K− and gSK0K̄ 0

G(p2, q21, q
2
2) =

gSK+K−√
2

· I(M2
K±, p2, q21, q

2
2) +

gSK0K̄ 0√
2

· I(M2
K0, p2, q21, q

2
2) , (4.58)

where I(M2
K , p

2, q21, q
2
2) denote the contributions from the intermediate charged and

neutral kaons which are explicitly indicated in Appendix A.1.2.

In the second approach (method B), which restricts to small mixing angles, we use

G(p2, q21, q
2
2) =

GSKK√
2

·
(
I(M2

K±, p2, q21, q
2
2) + I(M2

K0 , p2, q21, q
2
2)
)
, (4.59)

The expressions for the decay widths are finally given by

Γ(f0 → ππ) = Γf0π+π− + Γf0π0π0 =
3

2
Γf0π+π− =

3

32π

g2f0ππ
Mf0

√
1− 4M2

π

M2
f0

, (4.60)

Γ(a0 → πη) =
1

16π

g2a0πη
Ma0

λ1/2(M2
a0
,M2

π ,M
2
η )

M2
a0

, (4.61)

with the Källen-function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

In the numerical computations of the strong f0 → ππ and a0 → πη decays we
restrict to the charged pion mass (Mπ ≡Mπ±139.57 MeV) but consider explicit kaon
masses MK0 6= MK±. The influence of mixing effects can be studied in Tab. 4.7 by
means of the decay properties f0(a0) → ππ(η) obtained within method A for Λ = 1
GeV. The size parameter dependence can be found in [26]. From the radiative decay
properties it is known that isospin–violating mixing can be considered small. Hence,
by assuming a mixing angle between −3◦ and 3◦, the strong f0 → ππ and a0 → πη
widths lie in the range of values

Γ(f0 → ππ) = 55.7− 58.9 MeV ,

Γ(a0 → πη) = 58.9− 63.4 MeV .
(4.62)

As expected the results of model B are rather close to the decay widths when
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θ -3◦ -2◦ -1◦ 0◦ 1◦ 2◦ 3◦ 5◦ 10◦ 20◦ 45◦

gf0ππ [GeV] 1.46 1.44 1.42 1.40 1.38 1.36 1.34 1.29 1.17 0.89 0.00

Γf0ππ [MeV] 62.3 60.7 59.0 57.4 55.7 54.0 52.3 48.9 40.1 23.0 0.0

ga0πη[GeV] 2.02 2.07 2.11 2.16 2.20 2.25 2.29 2.38 2.59 2.97 3.43

Γa0πη [MeV] 53.8 56.2 58.8 61.3 63.9 66.5 69.2 74.6 88.7 116.5 154.6

Table 4.7.: Strong a0 and f0 decay properties in dependence on θ (Λ = 1 GeV).

neglecting mixing effects (see θ = 0 in Tab. 4.7)

Γ(f0 → ππ) = 57.4 MeV ,

Γ(a0 → πη) = 61.0 MeV .
(4.63)

Since experimental uncertainties are quite large in case of the strong decay proper-
ties, our results obtained within method A and B are consistent with the data listed
in Tabs. 4.8 and 4.9.

Data PDG [22] BELLE [150] WA102 [162]

Γ(f0 → ππ) [MeV] 40− 100 51.3+20.8+13.2
−17.7−3.8 80± 10

Table 4.8.: Strong decay width f0(980) → ππ: experimental data.

Reference [22] [163] [164] [21] [153]

experimental data qq̄ qq̄

Γ(a0 → πη) [MeV] 50-100 50± 13± 4 61± 19 225 138

Table 4.9.: Strong decay width a0(980) → πη: data and theoretical approaches.

We compare our result obtained within the hadronic molecule picture to other theo-
retical predictions which are indicated in Tab. 4.9 for the a0 decays and in Tab. 4.10
in case of the f0. The theoretical results for the f0 → ππ decay in Tab. 4.10, unfor-
tunately, cover a large range of values, even within the same structure assumption.
Again, the present situation for Γ(f0 → ππ) does not allow for a clear statement
concerning the f0 structure. In contrast, in the case of the a0 → πη decay the
quarkonium models of [21] and [153] deliver much larger results compared to the
one of the molecular interpretation and data. The strong a0(980) decay properties
clearly favor the present meson molecule picture.
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Reference [152] [165] [166] [153] [167] [168]

Meson structure qq̄ qq̄ qq̄ qq̄ qq̄ hadronic

Γ(f0 → ππ) [MeV] 20 28 52-58 53 56 18.2

Table 4.10.: Strong decay width f0(980) → ππ: theoretical approaches.

In the strong decay sector f0− a0 mixing also generates the isospin violating decays
f0 → πη and a0 → ππ. In the context of our approach we obtain the results

Γ(f0 → πη) = 0.57 MeV , (4.64)

Γ(a0 → ππ) = 1.59 MeV , (4.65)

which, since the processes are forbidden by isospin symmetry, are strongly sup-
pressed compared to the dominant strong decays discussed above.

Summary

In summary, our results for the electromagnetic f0 and a0 decay properties are
in quite good agreement with present experimental data. Therefore, the hadronic
molecule approach is suitable to describe radiative f0 and a0 decays. However, other
subleading structure components besides the KK configuration can possibly be
realized. For this reason, current data do not allow any definite and final conclusion
concerning the substructure of the scalar mesons since calculations based on other
approaches give similar results and even overlap with each other as demonstrated
in Tables 4.3 and 4.4.

A further step forward would be a more precise experimental determination of the
decay properties but also of the f0 − a0 mixing strength to shed light on the isospin
violating mixing mechanisms. A possible access to mixing is given by the ratio
between charged and neutral a0 meson decays since the coupling to the charged a±0
mesons is not affected by mixing.

The present framework, assuming f0 and a0 to be hadronic KK molecules, provides
a straightforward and consistent determination of the decay properties, in particu-
lar the coupling constants and decay widths. The radiative decay properties of the
a0 and f0 mesons have been studied comprehensively within a clear and consistent
model for hadronic bound states. At the same time essential criteria such as covari-
ance and full gauge invariance with respect to the electromagnetic interaction are
satisfied.

Despite that we deal with a rather simple model, it allows to study the influence
of the spatial extension of the meson molecule and isospin violating mixing. The
coupling of the hadronic bound state to the constituent kaons, including f0 − a0
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mixing effects, has been determined by the compositeness condition which reduces
the number of free parameters to only one, the size parameter Λ.

Our results for the electromagnetic decays (a0/f0 → γγ and φ → γa0/f0) and, in
addition, the strong decay widths (f0 → ππ and a0 → πη) are analyzed with respect
to f0 − a0 mixing and finite size effects.

We come to the conclusion that the hadronic molecule interpretation is sufficient
to describe both the electromagnetic and strong a0/f0 decays, based on the current
status of experimental data. Furthermore, the f0 − a0 mixing strength could be
determined by a precise measurement of the ratio of the charged and neutral a0
meson decays. The f0 − a0 mixing strength could deliver new insights into the
contributions being responsible for isospin-violating mixing and the meson structure
issue.

4.2.2. Weak non–leptonic decays of hadron molecules

After the study of radiative and strong decay and production modes of the light
scalar mesons f0(980) and a0(980) we now turn to the weak production properties. In
the present section we especially deal with weak hadronic transitions of initial and fi-
nal hadronic molecules involving the f0(980). In particular, we concentrate on transi-
tions including the scalarD∗

s0(2317) and its bottom-strange counterpart B∗
s0(5725) as

well as the weak non–leptonic decay processes of the axial-vector mesons Ds1(2460)
and Bs1(5778). The masses of the two charmed mesons are located slightly be-
low the DK and D∗K thresholds and are candidates for hadronic molecules with
the configurations D∗

s0(2317) = DK and Ds1(2460) = D∗K. In addition, these
considerations can be extended to the bottom sector, where we treat the scalar and
axial-vector mesons B∗

s0(5725) and Bs1(5778) as the equivalents of the charm-strange
mesons D∗

s0(2317) and Ds1(2460). The bottom-strange counterparts B∗
s0(5725) and

Bs1(5778) are consequently also described as bound states B∗
s0(5725) = BK̄ and

Bs1(5778) = D∗K. The properties of all those hadronic molecules are hence studied
within the same effective Lagrangian approach [26, 27, 169, 170, 171], where the
following dominant composite structure has been used

∣∣D∗+
s0

〉
=

1√
2

(∣∣D+K0
〉
+
∣∣D0K+

〉)
, (4.66)

∣∣D+
s1

〉
=

1√
2

(∣∣D∗+K0
〉
+
∣∣D∗ 0K+

〉)
, (4.67)

∣∣B∗ 0
s0

〉
=

1√
2

(∣∣B+K−〉+
∣∣B0K̄ 0

〉)
, (4.68)

∣∣B0
s1

〉
=

1√
2

(∣∣B∗+K−〉+
∣∣B∗ 0K̄ 0

〉)
. (4.69)

Since in the following we deal with transition processes involving the f0(980) in the
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final state, the decay properties involve twice the effect of meson bound states: On
the one hand by the initial heavy meson system, on the other hand by the final
scalar f0. For this reason the results might provide a sensitive observable to test the
issue of hadronic molecule structure accessible in future experiments.

The charmed and bottom hadronic molecules are set up by the same nonlocal La-
grangian (4.2) which is also used for the f0 and a0 mesons

LHM1M2 = gHH(x)

∫
dyΦH(y

2)MT
1 (x+ w21y)M2(x+ w12y) + h.c. , (4.70)

where we refer to the hadronic molecules H = f0, D
∗−
s0 , D−µ

s1 , B̄∗ 0
s0 and B̄0µ

s1 the
corresponding constituent meson pairs M1M2 = KK̄, DK, D∗

µK, BK̄, B∗
µK̄. The

constituent mesons are combined in the isospin doublets

K =

(
K+

K0

)
, K =

(
K−

K̄ 0

)
, D =

(
D0

D+

)
,

D∗
µ =

(
D∗ 0

D∗+

)

µ

, B =

(
B+

B0

)
, B∗

µ =

(
B∗+

B∗ 0

)

µ

. (4.71)

Details and further definitions of the Lagrangian can be found in the discussion of
Eq. (4.2). For each hadronic molecule we consider the correlation function Φ which
is expressed by a Gaussian form factor

Φ̃(k2E) = exp(−k2E/Λ2) (4.72)

in Euclidean momentum space. The size parameters of the scalar f0 and the heavy
mesons – Λf0 and ΛD/B – are the only adjustable parameters in our approach.

As discussed in the beginning of this chapter, the coupling constants between the
hadronic molecules and its building blocks, the constituent mesons, are fixed self-
consistently by the compositeness condition [142]. Below we list our predictions
for the couplings gH obtained for the respective molecular states. The coupling
constants of the f0, D

∗
s0 and Ds1 mesons have already been calculated in [26, 27,

169, 171]:

gD∗
s0
= 11.26 GeV (ΛD = 1 GeV) gD∗

s0
= 9.9 GeV (ΛD = 2 GeV) (4.73)

gDs1 = 11.62 GeV (ΛD = 1 GeV) gDs1 = 10.17 GeV (ΛD = 2 GeV) . (4.74)

The results for the couplings of the B∗
s0 and Bs1 mesons to their constituents for
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different size parameters ΛD are [172]:

gB∗
s0
= 27.17 GeV (ΛB = 1 GeV) gB∗

s0
= 23.21 GeV (ΛB = 2 GeV) (4.75)

gBs1 = 25.64 GeV (ΛB = 1 GeV) gBs1 = 22.14 GeV (ΛB = 2 GeV) . (4.76)

In the mesonic molecule picture all decays proceed via intermediate states which are
the composite mesons of the hadronic bound states.

D∗
s0
(2317) → f0X and B∗

s0
(5725) → f0X decays

In the following we deal with the f0-production properties in weak hadronic decays of
the heavy scalar mesons D∗

s0
(2317) and B∗

s0
(5725). Since both heavy quark systems

are assumed to be of molecular structure the decays proceed via intermediate kaons
and D or B mesons as indicated in the diagrams of Figs. 4.12 and 4.13.

D∗+
s0

D+

K0

K̄0

p

p1

p2

π+, K+, ρ+

f0

(b)

D∗+
s0

D0

K+

K−

p

p1

p2

π+, K+, ρ+

f0

(a)

Figure 4.12.: Diagrams contributing to the D∗+
s0 → f0X decays with X = π+, K+

and ρ+.

B∗
s0

B0

K̄0

K0

p

p1

p2

X

f0

(b)

B∗
s0

B+

K−

K+

p

p1

p2

X

f0

(a)

Figure 4.13.: Diagrams contributing to the B∗
s0 → f0X decays with X =

π, K, ρ, ω, η and η′.

While the couplings of the constituent mesons to the hadronic molecules in the
loop are fixed by the compositeness condition, the coupling constants between the
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intermediate K, D and B mesons and the final decay products π,K, ρ, ω η and η′

are determined by the D and B meson decay widths:

gc,n
MKP

=

√
16π Γ(M → K P )m3

M

λ
1
2 (m2

M , m
2
K , m

2
P )

, (P = K, π, η, η′, M = D,B) , (4.77)

gc,nMKV =

√
64π Γ(M → K V )m3

M m2
V

λ
3
2 (m2

M , m
2
K , m

2
V )

, (V = ρ, ω, M = D,B) . (4.78)

The superscript c (n) denotes the decays of the charged (neutral) D and B mesons.
In Appendix A.3 we summarize the branching ratios as taken from [173, 174] and
the resulting couplings gc,nX (via Eqs. (4.77) and (4.78)) involving charged (c) and
neutral (n) B and D mesons.

We first consider the D∗
s0 (B

∗
s0) decays to f0 and a pseudoscalar P . The correspond-

ing coupling constants we calculate from the expressions

g
D∗
s0f0 P

=
g
D∗
s0
gf0

(4π)2
[
gcHKP I(m

2
D+, m2

K0) + gnHKP I(m
2
D0 , m2

K+)
]
, (4.79)

g
B∗
s0f0 P

= 2
g
B∗
s0
gf0

(4π)2
[
gcHKP I(m

2
D+ , m2

K+) + gnHKP I(m
2
D0, m2

K0)
]
. (4.80)

I(m2
H , m

2
K) denotes the loop integral over the intermediate particles

I(m2
H , m

2
K) =

∫
d4k

π2i
Φ̃f (−k2)Φ̃H∗

s0

(
− (k − p

2
+ ωp

H∗
s0

)2
)
×

× SM
(
k − p

2
+ p

H∗
s0

)
SK
(
k − p

2

)
SK
(
k +

p

2

)
, (4.81)

with the hadronic molecules H∗
s0 = B∗

s0, D
∗+
s0 and the constituent mesonsM = D, B.

The decay widths are finally obtained from

Γ(H∗
s0 → f0 P ) =

λ
1
2 (m2

H∗
s0
, m2

f0
, m2

P )

16πm3
H∗
s0

· g2
H∗
s0f0 P

. (4.82)

When dealing with the decays D∗
s0/B

∗
s0 → f0V (V = ρ, ω) we proceed in complete

analogy. For simplicity, we restrict in the following to the D∗+
s0 → f0ρ

+ decay since
the corresponding expressions for the bottom B∗

s0 decays only differ in the masses
and couplings while the structure remains the same.

The starting point is the Feynman integral of Fig. 4.12 which reads

Iµ(m2
D, m

2
K) =

∫
d4k

π2i

Φ̃f (−k2) Φ̃D∗
s0

(
− (k − p

2
+ ωpD∗

s0
)2
)
(2k + pD∗

s0
)µ

S−1
D

(
k − p

2
+ pD∗

s0

)
S−1
K

(
k − p

2

)
S−1
K

(
k + p

2

) (4.83)
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and defines the transition matrix element Mµ which is given by

Mµ(m2
D∗
s0
, m2

f0 , m
2
ρ) =

gD∗
s0
gf

(4π)2
[
gcHKρI

µ(m2
D+ , m2

K0) + gnHKρI
µ(m2

D0 , m2
K+)
]
(4.84)

= F1(m
2
D∗
s0
, m2

f0
, m2

ρ) p
µ
f + F2(m

2
D∗
s0
, m2

f0
, m2

ρ) p
µ
ρ . (4.85)

In the second line Mµ is expressed in terms of the form factors F1 and F2 by writing
the matrix element as a linear combination of the f0 and ρ meson momenta pf and
pρ. We perform this decomposition since the form factor F1 defines the coupling
constant of the decay

F1(m
2
Ds0
, m2

f0
, m2

ρ) ≡ gD∗
s0f0ρ

(4.86)

and therefore characterizes the decay width

Γ(D∗
s0
→ f0ρ

+) =
λ

3
2 (m2

D∗
s0
, m2

f0
, m2

ρ)

64πm3
D∗
s0
m2
ρ

g2D∗
s0f0ρ

. (4.87)

The results for the weak D∗
s0 → f0X and B∗

s0 → f0X decay properties are summa-
rized in Tab. 4.11, where we also indicate the dependence of the results for different
sets of size parameters ΛD/B and Λf0. Compared to the local case (LC) finite size
effects induce a reduction of the decay widths by up to 50%. For the D∗+

s0 decays we

Channel
local limit, ΛD,B = 2 GeV, ΛD,B = 1 GeV,

ΛD,B = Λf = ∞ Λf = 1 GeV Λf = 1 GeV

D∗+
s0 → f0π

+ 2.35 · 10−5 1.26 · 10−5 1.14 · 10−5

D∗+
s0 → f0K

+ 2.75 · 10−6 1.53 · 10−6 1.42 · 10−6

D∗+
s0 → f0ρ

+ 1.60 · 10−4 1.08 · 10−4 1.11 · 10−4

B∗
s0 → f0π

0 5.66 · 10−10 9.93 · 10−11 5.03 · 10−11

B∗
s0 → f0η

′ 3.67 · 10−9 6.69 · 10−10 3.49 · 10−10

B∗
s0 → f0η < 1.16 · 10−10 < 2.05 · 10−11 < 1.05 · 10−11

B∗
s0 → f0K

0 5.88 · 10−11 GeV 1.04 · 10−11 5.32 · 10−12

B∗
s0 → f0ρ

0 4.64 · 10−10 9.22 · 10−11 5.75 · 10−11

B∗
s0 → f0ω 5.86 · 10−10 1.17 · 10−10 7.31 · 10−11

Table 4.11.: Widths of the D∗+
s0 → f0X and B∗+

s0 → f0X decays in eV.

predict a decay pattern with Γ(D∗+
s0 → f0ρ

+) > Γ(D∗+
s0 → f0π) > Γ(D∗+

s0 → f0K
+).
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In the case of B∗
s0 the weak decay mode B∗

s0 → f0η
′ dominates the transition pattern.

D+
s
→ f0π

+ decay

For the calculation of the Ds1 → f0π decay width, which we will discuss in the
next section, we need to derive a value for the D∗Kπ coupling constant gπ. For
this purpose we analyze the D+

s → f0π
+ transition of Fig. 4.14 from which we

obtain the decay width Γ(D∗ → Kπ) as an additional result. The expression for the

D+
s

D+∗

K0

K̄0

p

p1

p2

π+

f0

(b)

D+
s

D0∗

K+

K−

p

p1

p2

π+

f0

(a)

Figure 4.14.: D+
s -decay.

D+
s → f0π

+ reads

Γ(D+
s → f0π

+) =
λ

1
2 (m2

Ds
, m2

f0
, m2

π)

16 πm3
Ds

· g2Dsf0π , (4.88)

where we determine the coupling gDsf0π from the structure integral of Fig. 4.14

gDsf0π =
gfgDsgπ
(4π)2

[
I(m2

D∗+ , m2
K0) + I(m2

D∗ 0, m2
K+)
]
. (4.89)

The loop integral I(m2
D∗ , m2

K) is given by

I(m2
D∗ , m2

K) =

∫
d4k

π2i
Φ̃f (−k2)

(
pπ − k − p

2

)
µ

(
k − p

2
− pDs

)
ν
×

× SµνD
(
k − p

2
+ pDs

)
SK
(
k − p

2

)
SK
(
k +

p

2

)
. (4.90)

The coupling constant gDs of the DsD
∗K interaction vertex has been estimated in

two different QCD sum rule approaches [175, 176], where both results do not vary
significantly from each other. Here we use the result of [175] with gDs = 2.02. By
using the branching ratio BR(DS → f0π

+) = (6.0±2.4)·10−3 [174], corresponding to
Γ(DS → f0π

+) = 7.9 · 10−15 GeV, gπ can be easily derived by combining Eqs. (4.88)
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and (4.89):
gπ = 6.41 · 10−5 . (4.91)

From above coupling we can determine the D∗ → Kπ decay width given by

Γ(D∗ → Kπ) = g2π
λ

3
2 (m2

D∗ , m2
K , m

2
π)

48πm5
D∗

= 4.45 · 10−11 GeV . (4.92)

Ds1(2460) and Bs1(5778) decays

As a final task we study the properties of the weak transitions between the axial
vector hadronic molecules Ds1(2460) and Bs1(5778) and the scalar f0(980) which
are represented by the diagrams in Fig. 4.15. The determination of gπ in the last
section enables us to compute the decay D+

s1(2460) → f0π
+ within the K D∗ bound

state framework. In the first step we define the matrix element of the D+
s1 → f0π

+

D+
s1

D+∗

K0

K̄0

p

p1

p2

π+

f0

(b)

D+
s1

D0∗

K+

K−

p

p1

p2

π+

f0

(a)

Figure 4.15.: D∗
s1(2460) decay.

transition in terms of the form factors F± and p± = pf ± pπ

Mµ =
gfgDs1gπ
(4π)2

(
Iµ(m2

D∗+ , m2
K0) + Iµ(m2

D∗ 0 , m2
K+)
)

= F+(mDs1 , mπ, mf0)p
µ
+ + F−(mDs1 , mπ, mf0)p

µ
− ,

(4.93)

where pµf and pµπ are the f0 and π momenta, respectively.
The loop integral involving the constituent kaons and D∗ meson is of the structure

Iµ(m2
D∗ , m2

K) =

∫
d4k

π2i
Φ̃f (−k2)Φ̃Ds

(
−
(
k − p

2
+ ωpD∗

)2) (
pπ − k − p

2

)
ν
×

× SµνD∗

(
k − p

2
+ pDs1

)
SK
(
k − p

2

)
SK
(
k +

p

2

)
,

(4.94)

where gπ = 6.40 · 10−5 was already determined in Eq. (4.91).

The form factor F− defines the coupling gDs1f0π ≡ F− which characterizes the decay
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width given by the expression

Γ(D+
s1 → f0π

+) =
g2Ds1f0π

48πm5
D+
s1

λ
3
2 (m2

D+
s1
, m2

f0
, m2

π+) . (4.95)

We compute the decay width D+
s1 → f0π

+ for the size parameter Λf=1 GeV while
ΛD is varied between 1 GeV and 2 GeV. The results for the Ds1 → f0π decay width
obtained within our hadronic molecule approach range from

Γ(Ds1 → f0π) = 2.85 · 10−2 eV (ΛD = 1 GeV) (4.96)

to

Γ(Ds1 → f0π) = 4.35 · 10−2 eV (ΛD = 2 GeV) . (4.97)

By analogy, we also study the Bs1 → f0P decay, where P represents a pseudoscalar
final state. However, since no data is available to determine the B∗f0P coupling
strength gB∗ , we quote the width and corresponding decay coupling in dependence
on gB∗ . By varying ΛD from 1.0 GeV to 2 GeV the width lies between

Γ(Bs1 → f0π) = 8.82 · 10−6 · gB∗ GeV (ΛD = 1 GeV) (4.98)

and

Γ(Bs1 → f0π) = 4.03 · 10−5 · gB∗ GeV (ΛD = 2 GeV) . (4.99)

Summary

We focused on hadronic production processes of the scalar f0(980) in weak non–
leptonic decays of the D∗

s0, B
∗
s0, Ds1 and Bs1 considered as hadronic molecules.

Since all coupling constants are either fixed self-consistently by the compositeness
condition or are deduced from data, the only adaptive variables are the size param-
eters of the meson molecules which allow for their extended structure. Finite size
effects are studied by varying the size parameters within a physically reasonable re-
gion between 1 and 2 GeV. Additionally, we also compare the results including finite
size effects to the local case where point-like interactions are used. The molecular
interpretation of both, the initial heavy mesons and the final decay product, the
kaonic bound state f0, offers a sensitive tool to study the structure issue in weak
decays. In particular for the D∗

s0(2317) → f0X transitions we give clear predictions
for the decay pattern arising in the hadronic molecule picture. Similarly, the re-
sult for the process Ds1 → f0π is a straightforward consequence of the molecular
interpretation. Presently no comparative calculations, as for example in the full or
partial quark-antiquark interpretation, of the weak processes studied here exist and,
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hence, the real sensitivity of the results on details of the meson structure remains
to be seen. But judging from previous model calculations [171, 170] of for example
the dominant observed decay modes of the D∗

s0 and Ds1 a strong dependence on
the structure models can be expected. Therefore, upcoming experiments measuring
the weak production processes involving the scalar meson f0(980) could lead to new
insights into the structure issue of meson molecule candidates.

4.3. Heavy Charmonium–like Hadronic Molecules

In the previous section we applied our model to candidates for molecular structure
namely the experimentally long established f0 and a0 mesons. It was found that the
present hadronic molecule approach is well suited to describe the production and de-
cay properties of these states. After these introductory cases of f0(980) and a0(980)
we now turn to the case of the hidden–charm mesons. As it was already discussed
in Chapter 3, the last 10 years were characterized by the discovery of charmonium–
like resonances which are not easily explained by simple cc̄ states. Hence, this
observation lead to a lot of speculations about structure issues beyond the quark
model in the heavy meson sector. In the following we study three charmonium–
like resonances which all show common features like the proximity to thresholds
and the unexpectedly large hidden–charm decay widths which clearly disfavor a
charmonium–assignment of these states.

4.3.1. Y(3940) and Y(4140)

The discussion of the Y (3940) and Y (4140) mesons we combine since both states are
very similar with respect to their properties and also to the way how decay modes
are computed in the effective Lagrangian approach.

The first charmonium–like state is the well–established Y (3940) which is known for
several years. It was originally observed by the BELLE [68] and then confirmed
by the BABAR collaboration [68, 69]. Nevertheless, the mass and width of the
resonance are slightly different with mY (3940) = 3943 ± 11(stat) ± 13(syst) MeV,
ΓY (3940) = 87± 22(stat)± 26(syst) MeV measured by the BELLE collaboration [68]
and mY (3940) = 3914.6+3.8

−3.4(stat) ± 2.0(syst) MeV, ΓY (3940) = 34+12
−8 (stat) ± 5(syst)

MeV published by BABAR [69].

The Y (3940) was discovered in B decays with a subsequent decay to the hidden–
charm mode J/ψω. In particular, the large hidden–charm decay to J/ψω is a striking
property which almost rules out a cc̄ assignment. A conventional cc̄ charmonium
interpretation is disfavored since open charm decay modes would dominate while the
J/ψω decay rate is essentially negligible. Note, current data deduce a lower bound
for the Γ(Y (3940) → J/ψω) > 1 MeV [61] which is an order of magnitude higher
than typical rates between known charmonium states and could therefore indicate
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first evidence for a hadronic molecule structure of the Y (3940).

The second property which suggests a meson molecule interpretation of the Y (3940)
is the proximity to the D∗D̄∗ threshold. Already several years before the discov-
ery of the Y (3940) binding of the D∗D̄∗ system was predicted in meson exchange
models [70], although many other states not observed yet were also claimed to be
bound.

Some of these properties allow a connection to the Y (4140) [56] which was announced
in 2009 by the CDF Collaboration at Fermilab as a narrow near–threshold structure
with natural width ΓY (4140) = 11.7+8.3

−5.0(stat)± 3.7(syst) MeV. The Y (4140) is so far
the latest discovery of charmonium-like X , Y and Z mesons which are not easily
explained as quark-antiquark configurations.

Similar to the previously discussed Y (3940) the Y (4140) was found in the hidden–
charm J/ψφ mass spectrum in exclusive B+ → J/ψφK+ decays. Because of several
common properties with the Y (3949) the Y (4140) is often considered as the heav-
ier partner of the Y (3940). Among them there is the closeness to open charm
thresholds. The Y (4140) mass mY (4140) = 4130.0 ± 2.9(stat) ± 1.2(syst) MeV lies
close to the D̄∗

sD
∗
s threshold. The Y (4140) was found in the J/ψφ mass spectrum

with a unusually large hidden-charm decay width for a charmonium state. From
experimental observations and from the upper limit for the branching fraction for
B-decays to a charmonium state Br(B → K(cc̄) of about 10−3 we can estimate
Γ(Y (4140) → J/ψφ) > 100 keV. A detailed discussion of the Y (4140) properties
can be found in the overview on meson spectroscopy in section 2.2. For compari-
son, the Y (3940) shows rather similar decay patterns since it was observed in J/ψω
decays.

From the theoretical point of view the Y (4140) is dominantly considered as a
hadronic molecule. For instance in one of the first follow-ups to the CDF result
the Y (4140) is suggested to be composed of a D∗+

s D∗−
s system bound by strong

interaction. For example the authors of Ref. [66] show that binding for above meson
configurations can be achieved in the context of meson-exchange potentials generated
by the Lagrangian of heavy hadron chiral perturbation theory (HHChPT) [177, 178].
As discussed in Section 2.2 different theoretical approaches based on meson exchange
processes, QCD sum rules or lattice studies come to the conclusion that JPC = 0++

or 2++ are possible quantum numbers allowing for a binding of the D̄∗−
s D∗+

s system.

In the following we adopt the idea of a meson molecule picture and study the Y (3940)
and Y (4140) as pure hadronic molecules of the D∗D̄∗ and D∗+

s D∗−
s systems with

|Y (3940)〉 = 1√
2

(
|D∗+D∗−〉+ |D∗0D

∗ 0〉
)
,

|Y (4140)〉 = |D∗+
s D∗−

s 〉 .
(4.100)

Since we deal with pure hadronic molecules all decay processes proceed via meson
loops involving the constituents. The interactions between the hadronic molecule
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and its constituents and couplings of the constituents to the final decay products are
defined by effective Lagrangians. Besides the positive charge parity the quantum
numbers of the Y (4140) are unknown. However s-wave binding is most likely for
molecular bound states. We consider both possible quantum numbers JPC = 0++

and 2++. The bound system of the two charmed mesons which form the Y mesons
Y (3940) and Y (4140) is given by

LY D∗

(s)
D∗

(s)
= gY Y (x)

∫
d4yΦ(y2)D

∗
(s)µ(x−

y

2
)D∗µ

(s)(x+
y

2
) (4.101)

for scalar quantum numbers and

LY D∗

(s)
D∗

(s)
= g′Y Y

µν(x)

∫
d4yΦ(y2)D

∗
(s)µ(x−

y

2
)D∗

(s) ν(x+
y

2
) (4.102)

in the case of tensor-like Y (3940) and Y (4140) mesons, where we also consider finite
size effects by including a Gaussian form factor Φ(y2).

As already discussed we use the so-called compositeness or Weinberg condition to
set up the bound structure of the state and to determine the couplings g

(′)
Y . When

considering the tensor quantum numbers for the Y states, we neglect the longitudinal
components of the vector meson propagators and obtain for the mass operator the
following structure

Π(p2)µναβ = Π(T )(p
2)gµνgαβ . (4.103)

We obtain for the couplings

gY (3940) = 14.08± 0.30

gY (4140) = 13.20± 0.26
(4.104)

for JPC = 0++. When neglecting the longitudinal components of the constituent
vector mesons (see Eq. (4.103)) the values of the couplings g′Y (3940) and g

′
Y (4140) for

JP = 2+ are equal to those for JP = 0+ in Eq. (4.104). The numerical results
for the couplings determined by the original Weinberg formula (4.6) of gWY (3940) =

9.16 GeV and gWY (4140) = 8.91 GeV are in good agreement with nonlocal results
of gY (3940) = 14.08 GeV and gY (4140) = 13.20 GeV. The nonlocality is contained
in the vertex function Φ(y2) which allows for a spatially extended structure of the
hadronic bound state. The Gaussian form Φ(p2) = exp(p2/Λ2

Y ), which is the Fourier
transform of the vertex function, contains the size parameter Λ with a value of about
2 GeV — a typical scale for the masses of the constituents of the Y states.

In the following we analyze the strong Y (4140) → J/ψφ and radiative Y (4140) → γγ
decay widths by using an effective Lagrangian approach. As in the case of the
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previously discussed f0 and a0 mesons, decay processes are described by the coupling
of the final state particles via one–loop meson diagrams to the constituents of the
molecular state. The couplings of the molecular bound state to their hadronic
constituents and of the constituents to other hadrons and photons are defined by
effective Lagrangians. While the interaction between the hadronic molecule and
the constituent mesons is already determined in the framework of the Weinberg
condition, the remaining couplings have to be taken from data or other theoretical
approaches.

Strong hidden-charm decay

We first investigate the Y → J/ψω hidden-charm decay mode in which the Y (3940)
was discovered. The J/ψω decay proceeding from the D̄∗D∗ interpretation is de-
picted in Fig. 4.16. The final vector mesons couple via an intermediate open charm
meson loop to the molecular Y state. The interaction is characterized by the

Y

D∗
(s)

D∗
(s)

D∗
(s)

p

q1

q2

J/ψ

ω (φ)

Figure 4.16.: Hidden-charm decay of the Y mesons.

HHChPT Lagrangian [177, 178]:

LD∗D∗Jψ = ig
D∗D∗Jψ

Jµψ

(
D∗†
µi

↔
∂ νD

∗ν
i +D∗†

νi

↔
∂
ν

D∗
µi −D∗†ν

i

↔
∂µD

∗
νi

)
,

LD∗D∗V = ig
D∗D∗V

V µ
ijD

∗†
νi

↔
∂µD

∗ν
j + 4if

D∗D∗V
(∂µV ν

ij − ∂νV µ
ij )D

∗
µiD

∗†ν
j

(4.105)

where A
↔
∂B ≡ A∂B − B∂A; i, j are flavor indices; Vij = diag{ω/

√
2, ω/

√
2, φ} is

the diagonal matrix containing ω and φ mesons (we omit the ρ and K∗ mesons);
D∗
i = (D∗0, D∗+, D∗+

s ) is the triplet of vector D∗ mesons containing light antiquarks
ū, d̄ and s̄, respectively. The chiral couplings g

D∗D∗Jψ
, g

D∗D∗V
and f

D∗D∗V
are taken

from [177, 178]:

g
D∗D∗V

= βgV /
√
2 , f

D∗D∗V
= mD∗λgV /

√
2 , g

D∗D∗Jψ
= (mDmJψ)/(mD∗fJψ) ,

where fJψ = 416.4 MeV is the J/ψ leptonic decay constant. The parameters gV ≈
5.8 and β ≈ 0.9 are fixed using vector dominance and λ = 0.56 GeV−1 is extracted by
matching HHChPT to lattice QCD and light cone sum rules (see details in [179]).
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The leading-order process relevant for the strong decays Y (3940) → J/ψω and
Y (4140) → J/ψφ is the diagram of Fig. 4.16 involving the vector mesons D∗ or D∗

s

in the loop.

The transition matrix element is given by

Mµν(Y → J/ψV ) = gµν gY JψV + v2µv1ν fY JψV , (4.106)

where v1(q1) and v2(q2) are the four–velocities (momenta) of Jψ and V . The con-
stants g

Y JψV
and f

Y JψV
are products of the coupling gY , the chiral couplings in

Eq. (4.105) and the generic D∗ meson loop structure integral (see Fig. 4.16). The
coupling constant g

Y JψV
characterizes the decay properties, in particular the decay

width, with

Γ(Y → J/ψV ) =
3P ∗

8πm2
Y

g2
Y JψV

(1 + β + 2wrβ + 3r2β2) ,

where

r =
f
Y JψV

g
Y JψV

, β =
1

3

(
P ∗mY

mJψmV

)2

, w = v1v2. (4.107)

For the strong hidden–charm decay properties of the Y (3940) we obtain

g
Y (3940)Jψω

= (1.72± 0.03) GeV, for JPC = 0++

f
Y (3940)Jψω

= (1.64± 0.01) GeV, for JPC = 0++

Γ(Y (3940) → J/ψω) = (5.47± 0.34) MeV, for JPC = 0++

g
Y (3940)Jψω

= (2.01± 0.03) GeV, for JPC = 2++

f
Y (3940)Jψω

= (1.92± 0.01) GeV, for JPC = 2++

Γ(Y (3940) → J/ψω) = (7.48± 0.27) MeV, for JPC = 2++

(4.108)

The strong J/ψ decays of the Y (3920) by assuming the quantum numbers 2++

are quite similar to the 0++ case. Therefore, from the large hidden–charm decay
mode a 2++ scenario cannot be ruled out and is also consistent within a molecular
interpretation of the Y states.
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For the heavier Y (4140) we obtain

g
Y (4140)Jψφ

= (1.46± 0.03) GeV, for JPC = 0++

f
Y (4140)Jψφ

= (1.84± 0.01) GeV, for JPC = 0++

Γ(Y (4140) → J/ψφ) = (3.26± 0.21) MeV, for JPC = 0++

g
Y (4140)Jψφ

= (1.70± 0.03) GeV, for JPC = 2++

f
Y (4140)Jψφ

= (2.14± 0.01) GeV, for JPC = 2++

Γ(Y (4140) → J/ψφ) = (4.41± 0.16) MeV, for JPC = 2++

(4.109)

In analogy with the Y (3940) the strong decay properties of the Y (4140) are not
sensitive to the total spin since the decay width for JP = 2+ is similar to the case
of JP = 0+.
The sizable strong decays widths are fully consistent with the upper limits set by
present data on the total widths. The result for Γ(Y (3940) → J/ψω) is also consis-
tent with the lower limit of about 1 MeV [61]. Values of a few MeV for these decay
widths naturally arise in the hadronic molecule interpretation of the Y (3940) and
Y (4140), whereas in a conventional charmonium interpretation the J/ψV decays
are strongly OZI suppressed [61]. In addition to the possibility of binding the D∗D̄∗

and D∗+
s D∗−

s systems [66], present results on the J/ψV decays give further strong
support to the interpretation of the Y states as heavy hadron molecules.

Radiative decay

In order to study radiative decays we include the electromagnetic interaction by
means of minimal substitution in the free meson Lagrangians of the charged vector
mesons D∗±

(s) which reads

Lem = eAα

(
gανD∗−

(s)µi∂
µD∗+

(s) ν − gµνD∗−
(s)µi∂

αD∗+
(s) ν +H.c

)

+ e2D∗−
(s)µD

∗+
(s) ν

(
AµAν − gµνAαAα

)
. (4.110)

The resulting diagrams connected with the two–photon decays of the Y (3940) and
Y (4140) are illustrated in Fig. 4.17 (a) and (b). However, the non-local Lagrangians
(4.101) and (4.102) need to be modified in order to fulfill electromagnetic gauge
invariance. As already discussed in detail in Sec. 4.1 the inclusion of the gauge
field exponential: H±(y) → e∓ieI(y,x,P )H±(y), where I(x, y, P ) =

∫ x
y
dzµA

µ(z) leads
to further diagrams containing vertices where the photons couple directly to the
Y D̄∗D∗–vertex (see diagrams (c) and (d)). The contribution of these additional
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Figure 4.17.: Diagrams characterizing the radiative decay.

processes is significantly suppressed (of the order of a few percent of the total result)
compared to the leading diagram of Fig. 4.17 (a). The matrix element of the two-
photon transition can be expressed by the full gauge-invariant structure

Mµν(Y → γγ) = (gµνq1q2 − q2µq1ν) gY γγ . (4.111)

From the coupling g
Y γγ

we can easily calculate the two-photon decay width

Γ(Y → γγ) =
π

4
α2m3

Y g
2
Y γγ

, (4.112)

where α is the fine structure constant.

Our results for the radiative decay properties are summarized in the box below.

g
Y (3940)γγ

= (1.15± 0.01)× 10−2 GeV−1

Γ(Y (3940) → γγ) = (0.33± 0.01) keV, for JPC = 0++

Γ(Y (3940) → γγ) = (0.27± 0.01) keV, for JPC = 2++

(4.113)

g
Y (4140)γγ

= (1.46± 0.01)× 10−2 GeV−1

Γ(Y (4140) → γγ) = (0.63± 0.01) keV, for JPC = 0++

Γ(Y (4140) → γγ) = (0.50± 0.01) keV, for JPC = 2++
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The error bars refer to the experimental uncertainties of the Y masses. The decay
properties for the quantum numbers JPC = 0++ and 2++ are very similar, so that
even a precise measurement of the decay widths cannot be used to pin down the
total spin of the two Y states.

For the ratio of the two–photon and strong decay widths of the Y (3940) we obtain

R = Γ(Y (3940) → γγ)/Γ(Y (3940) → J/ψω) = 6.03× 10−5 . (4.114)

In the case of the Y (4140) the ratio

R =
Γ(Y (4140) → γγ)

Γ(Y (4140) → J/ψφ)
= 1.93× 10−4 (4.115)

is one order of magnitude larger than for the Y (3940).

Present results should be compared to the ones obtained in the approach of Chap-
ter 3 [23] which is based on the dynamically generation of the Y mesons. There
we had a smaller decay width of the Y (3940) with Γ(Y (3940) → γγ) = 0.085 keV
(JP = 0+). Furthermore, we compare the D∗+

s D∗−
s molecule Y (4140) with the

dynamically generated resonance X(4190) of the previous model discussed in Chap-
ter 3. The X(4140) has the same molecular D∗+

s D∗−
s structure and the spin–parity

quantum numbers JP = 2+. In both theoretical approaches the two–photon de-
cay widths of the respective D∗+

s D∗−
s bound states are very similar. The hadronic

molecule model leads to Γ(Y (4140) → γγ) = 0.50 keV for JPC = 2++ while the
dynamical method of the previous chapter leads to 0.54 keV for the X(4160) → γγ
decay. Since the underlying molecular structure and the masses of the Y and X
mesons are almost equal, it is not surprising that both theoretical frameworks lead
to the same result.

Experimentally there is not too much known about the radiative decay modes of
the two Y mesons. The only investigation of the two–photon production of the
Y (3940) and Y (4140) was performed by the BELLE collaboration. The search for
charmonium–like states in the process γγ → J/ψω [134] resulted in an enhancement
with massM = 3915±3±2 MeV termed X(3915). According to its mass and width
it is a good candidate for the Y (3940) meson. The measured observable, which is
the product of the two–photon width and the branching ratio of the strong decay,
is given by [134]

ΓX(3915)→γγ Br(X(3915) → J/ψω) =

{
(61± 17± 8) eV for JP = 0+

(18± 5± 2) eV for JP = 2+
. (4.116)

If we compare above observations with the results in Eq. (4.113) and Eqs. (4.108)–
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(4.109) of the present model calculation we obtain

ΓY (3940)→γγ Br(Y (3940) → J/ψω) =

{
(21± 11) eV for JP = 0+

(23± 13) eV for JP = 2+
(4.117)

by using the BELLE data for the total width of ΓY (3940) = 87± 22± 26 MeV [68].
Given that we do not deal with a high–precision calculation, but rather an esti-
mate, above results are in good agreement. As expected the values of (4.117) are
independent of the total spin of the Y (3940), where the result for JP = 2+ is
even closer to experiment. If we perform the same analysis using the total width
ΓY (3940) = 4+12

−8 ± 5 MeV [69] deduced by BABAR we obtain

Γ(Y (3940) → γγ) Br(Y (3940) → J/ψω) = (53± 20) eV (4.118)

for 0++ and 2++ which is also in agreement with the data in Eq. (4.116). Therefore,
the observed two–photon decay properties also support the D∗D̄∗ bound state inter-
pretation of the Y (3940) pursued in this theoretical analysis. For comparison, in the
coupled channel analysis of Chapter 3 the X(3915) was assigned to the Z(3930) me-
son instead of the Y (3940). The underlying structure is similar to the Y (3940) since
the Z(3930) is interpreted as a dynamically generated D∗D̄∗ state (see discussion in
Chapter 3). The reason is that in the present approach, the strong hidden–charm
and two–photon decay widths of the Y (3940) are by a factor of about 3−4 larger in
comparison to the results in the dynamical picture. Therefore, a more precise study
of the X(3915) is required in order to clarify its identity with one of the nearby
states Y (3940) and Z(3930).
At the same time the BELLE collaboration [71] also searched for the Y (4140) in the
two–photon process γγ → J/ψφ. In this framework they tested our prediction for
the Y (4140) → γγ decay width by experiment and obtained

Γ(Y (4140) → γγ) Br(Y (4140) → J/ψφ) < 40 eV for JP = 0+ (4.119)

which results in a much smaller upper bound for the two-photon widths of about
0.2 keV. This finding is presently in conflict with a possible molecular interpretation
of the Y (4140) (see Eq. (4.113)).

Summary

A full interpretation of the Y (3940) and Y (4140) states requires:

1. an experimental determination of the JPC quantum numbers, ii) a consistent
and hopefully converging study of binding mechanisms in the D∗

(s)D
∗
(s) systems

2. theory and experiment to consider the open charm decay modes, such as DD̄,
DD̄∗, DD̄∗γ, etc., which are also naturally fed in a charmonium picture.
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Ultimately, only a full understanding of the decay patterns of the Y (3940) and
Y (4140) can lead to a unique structure interpretation, yet present results clearly
support the notion of the establishment of hadronic molecules in the meson spec-
trum.

4.3.2. Z(4430)

The experimental situation of the Z± was already discussed in Chapter 2 where
one of the outstanding properties is the rather large hidden-charm decay width
Z± → π±ψ′ while the decay to the π±ψ channel is not observed. In the present
work we reconsider and pursue a quantitative explanation of the hidden charm
decay modes Z± → π±ψ and π±ψ′ in the context of a molecular D1D̄

∗ bound state
interpretation [180]. In addition we determine the radiative decay width Z± → π±γ
as a further key feature of the molecular idea. Since the Z±(4430) was observed in
the ψ′π± final state, isospin and G−parity assignments are IG = 1+. If the Z±(4430)
is a S-wave D1D

∗
molecule the JP quantum numbers are 0−, 1− or 2−. Here we

restrict the study to the 0− and 1− cases since JP = 2− seems excluded by the
small phase space in the B → Z±K production process [90]. Two-body decays of
the Z± were also analyzed in effective Lagrangian methods. The open charm decays

D+D
∗ 0
, D∗+D

0
and D∗+D

∗ 0
were studied in [72] and argued to be suppressed in

the molecular interpretation while dominant for the tetraquark configuration. The
hidden-charm decay modes was previously only investigated in the unpublished work
of [76]. The results for the decay widths and in particular the possible suppression of
J/ψ depends very much on form factors and the regularization in the loop diagrams.

In the present study we assume the Z± to be a pure bound state of an axial D
(′)
1

and a vector D∗ meson. In the charmed D meson spectrum two nearby P -wave
excitations with JP = 1± are expected. These two axial D1 states can be identified
with the D1(2420) ≡ D1 and the D1(2430) ≡ D′

1. In the heavy quark limit the
two degenerate 1+ states are characterized by the angular momentum jq of the
light quark with jq = 3/2 and 1/2. While the strong decay D1(jq = 3/2) → D∗π
proceeds by D-wave, the transition D1(jq = 1/2) → D∗π has a final S-wave. The
state decaying via D-wave is narrow while the one decaying in an S-wave is expected
to be broad. Since heavy-light mesons are not charge conjugation eigenstates the
axial states can also be written as a superposition of the 1P1 and

3P1 configurations
(J = L and S = 0 or 1) with

∣∣D1

〉
= cosφ

∣∣1P1

〉
+ sin φ

∣∣3P1

〉
,

∣∣D′
1

〉
= − sin φ

∣∣1P1

〉
+ cos φ

∣∣3P1

〉
.

(4.120)

More detailed analyses [181, 182, 183] of the mixing scheme in terms of the total
width indicate that the mixing angle has a value of about φ = arctan

(
1/
√
2
)
≈

35.3◦, the ”magic” value expected from the heavy quark limit. With this phase
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convention (alternatively one can use φ = − arctan(
√
2) ≈ −54.7◦) the D1 state is

identified with the narrow D1(2420) (Γ ≈ 20 MeV [22]), while the broad D1(2430)
(Γ ≈ 380 MeV [22]) is connected to the D′

1. Since our aim is to study the Z±

as a mesonic bound state containing a D1 state the narrow D1(2420) with its long
lifetime is more favorable than the broad D1(2430).

Following the convention discussed in [184, 90] the particle content of the isospin
multiplet is given as:

∣∣Z+
〉
=

1√
2

(∣∣D+
1 D

∗ 0〉
+
∣∣D 0

1D
∗+〉) ,

∣∣Z0
〉
=

1

2

(∣∣D+
1 D

∗−〉−
∣∣D0

1D
∗ 0〉

+
∣∣D−

1 D
∗+〉−

∣∣D 0

1D
∗ 0〉) , (4.121)

∣∣Z−〉 = − 1√
2

(∣∣D0
1D

∗−〉+
∣∣D−

1 D
∗ 0〉) .

In technical aspects we proceed in complete analogy to the previously discussed cases
of a0/f0(980), Y (3940) and Y (4140). First the meson bound state is set up by the
effective interaction Lagrangian between the hadronic molecule and its constituent
mesons. In case of JP = 0− the Lagrangian reads

LZD1D∗ =
g
ZD1D

∗√
2

Z−(x)

∫
dyΦ(y2)×

×
{
D+

1
µ
(x−)D

∗ 0
µ (x+) +D

0

1

µ
(x−)D

∗+
µ (x+)

}
+ h.c. (4.122)

with x± = x± y
2
. For JP = 1− the respective Lagrangian LZD1D∗ is given by

LZD1D∗ =i
g′
ZD1D

∗√
2

ǫαβµν∂µZ
−
ν (x)

∫
dyΦ(y2)×

×
{
D+

1 α(x−)D
∗ 0
β (x+) + D̄0

1α(x−)D
∗+
β (x+)

}
+ h.c. (4.123)

where the definitions of the parameters can be taken from Eq. (4.23). Again we deal
with a Gaussian function in order to include the distribution of the constituents and
we determine the size parameter ΛZ in the physically meaningful region of a few
GeV. In the present work we study finite size effects by varying ΛZ in the range of
1.5− 2.5 GeV.

The coupling of Z to the virtual constituents, denoted by gZD1D∗ , is fixed by means
of the compositeness condition [142, 185] (see also 4.4).

Values for the coupling constants in dependence on the binding energy ǫ are pre-
sented in Tab. 4.12. The binding energy is defined by the difference between the

central value of the Z± mass and the lower threshold (D+
1 D

∗ 0
) with

mZ+ = mD+
1
+m

D
∗ 0 − ǫ . (4.124)
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Since the Z+ mass lies close to the (D+
1 D

∗ 0
) threshold at 4.43 GeV the values for

ǫ are of a few MeV, we therefore vary ǫ between 1 and 10 MeV. The errors on the
numerical results are due to variations of the model parameter ΛZ from 1.5 to 2.5
GeV.

ǫ [MeV] 1 5 10

gZD1D∗ (JP = 0−) 3.8± 0.1 5.6± 0.1 6.8± 0.2

g′ZD1D∗ (JP = 1−) 1.2± 0.1 1.8± 0.1 2.1± 0.1

Table 4.12.: Coupling constants gZD1D∗ (JP = 0−) and g′ZD1D∗ (JP = 1−) in GeV
for ΛZ = 1.5− 2.5 GeV and ǫ=1 − 10 MeV.

Radiative decay

Before we turn to the experimentally observed hidden–charm decay mode Z± →
J/ψ′π± we concentrate on the radiative decay Z± → π±γ which can be more pre-
cisely determined than the strong decay modes since the couplings are well known.
In analogy to the previously discussed hadronic molecules we include conventional
vertices with photons coupling to the charged constituents. Additionally we also
have to include the so-called contact vertices which arise due to the gauging of the
nonlocal interaction Lagrangian LZD1D∗ . The resulting diagrams contributing to the
radiative decay are represented in Fig. 4.18. The interaction between the final pion
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Figure 4.18.: Diagrams characterizing the radiative decay.
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and the charmed mesons D1, D
∗ in the loops is set up by the interaction Lagrangian

LD1D∗π =
g
D1D

∗π

2
√
2
Dµν

1 ~π · ~τ D ∗
µν + h.c. , (4.125)

where V µν = ∂µV ν − ∂νV µ is the stress tensor of the vector mesons V = ψ,D1

and D∗. The interaction vertex involving the D1(2420) meson should contain a
dominant D-wave D∗π coupling (see e.g. [181, 182, 186]) which leads to the two
derivatives involved in the Lagrangian in Eq. (4.125). This dynamical selection rule,
obtained in the heavy quark limit, also leads to the form of the Lagrangian (4.133)
in case of the strong decays discussed in the next section. The coupling constant
gD1D∗π is derived from the width of D1 → D∗π which is the dominant decay mode
of D1. The partial decay width is expected to be around 20 MeV [183], where
Γ(D0

1 → D∗+π−) = 2 Γ(D0
1 → D∗ 0π0). The decay width is set up as

Γ(D0
1 → D∗+π−) =

λ1/2(m2
D1
, m2

D∗ , m2
π)

16πm3
D1

∣∣M
∣∣2 , (4.126)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc denotes the Källen function and∣∣M
∣∣2 = 1/3

∑
pol

∣∣M
∣∣2 represents the spin-averaged transition amplitude squared. The

effective D-wave interaction Lagrangian of Eq. (4.125) leads to the matrix element

Mµν

D0
1→D∗+π− = gD1D∗π

(
pD∗pD1g

µν − pµD∗pνD1

)
. (4.127)

Hence, the decay width for a D-wave decay is of the form

Γ(D0
1 → D∗+π−) =

g2D1D∗π

96πm3
D1

λ1/2(m2
D1
, m2

D∗ , m2
π)
(
λ(m2

D1
, m2

D∗ , m2
π) + 6m2

D1
m2
D∗

)

with the resulting coupling gD1D∗π = 0.49 GeV−1 for Γ(D1 → D∗π) ≈20 MeV.

An interesting feature is the fact that the radiative decay Z± → π±γ is forbidden
in the case of JP = 0− while allowed in case of the 1− spin-parity of the Z±. This
selection rule becomes obvious when considering the matrix element with the general
form

Mµ = F1q
µ + F2p

µ
π . (4.128)

Terms proportional to the photon–momentum qµ vanish because of the Lorentz
gauge condition ǫµq

µ = 0. The remaining second part is not invariant under the sub-
stitution pµπ = pµ−qµ since again terms proportional to the photon four-momentum
qµ do not contribute to the transition.

The situation is different for the case of the vector quantum numbers 1−. Now the
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transition amplitude Mµν has the structure

Mµν = e FZπγ(m
2
Z , m

2
π, 0) ǫ

αβµνpαqβ , (4.129)

where gZπγ is the effective coupling. It is related to the corresponding transition
form factor gZπγ ≡ FZπγ(m

2
Z , m

2
π, 0) evaluated via the loops of Fig. 4.18. Finally, in

terms of the effective coupling gZπγ the decay width Γ(Z± → π±γ) is given by

Γ(Z± → π±γ) =
α

24
g2Zπγm

3
Z

(
1− m2

π

m2
Z

)3
≃ α

24
g2Zπγm

3
Z . (4.130)

We present the results for the decay properties in dependence on the binding energy
ǫ to study the influence of the binding strength. Since the Z± mass is very close to
threshold we vary the binding energy between 1-10 MeV. The results for the π±γ
decay are indicated in Tab. 4.13. Here, the error bars refer to finite size effects
since we vary ΛZ from 1.5 to 2.5 GeV. The hadronic molecule model leads to rather
sizable values for the radiative decay width of the order of 0.2 to 1.2 keV. In Tab.
4.13 the smaller value of each entry corresponds to ΛZ = 1.5 GeV while the larger
one is related to ΛZ = 2.5 GeV (see also Ref. [180]).

ǫ [MeV] 1 5 10

ΓZ±→π±γ [keV] 0.3+0.2
−0.1 0.6+0.3

−0.3 0.8+0.4
−0.3

Table 4.13.: Decay widths ΓZ±→π±γ in keV for JP = 1− with ǫ = 1 − 10 MeV and
ΛZ = 1.5− 2.5 GeV.

Strong hidden-charm decays

The strong hidden-charm decays proceed in the meson molecule interpretation via
open-charm meson loops which provides an opportunity to avoid the typical OZI
suppression in the cc̄ picture. Diagrammatically, the hidden-charm decay is repre-
sented by the two interfering diagrams of Fig. 4.19 which only differ in the D and
D∗ exchange and the corresponding couplings. To study the strong hidden-charm
decays Z± → π±ψ(′) we first set up the interaction between the final state and the
constituent D1 and D∗ mesons. We use the effective Lagrangians

LD∗Dπ =
g
D∗Dπ

2
√
2
D∗ †
µ ~π ~τ i∂µ

↔

D + h.c. , (4.131)

LD∗D∗ψ = ig
D∗D∗ψ

(
ψµνD

∗
µD

∗
ν + ψµD

∗ν
D∗
µν + ψνD

∗
µνD

∗µ) , (4.132)

LD1Dψ =
g
D1Dψ

2
Dµν

1 ψµνD + h.c. . (4.133)
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While the coupling g
(′)
ZD1D∗ to the initial hadronic molecule is determine by the

compositeness condition of Eq. (4.4), the couplings to the final decay products have
to be taken from other sources—data or theoretical predictions. The coupling gD1D∗π

was already determined from the D1 decay width in the context of the radiative
Z± → π±γ transition (4.125). Furthermore, the coupling strength gD∗Dπ = 17.9
is also experimentally fixed by the D∗ → Dπ decay. The couplings of the D∗

mesons to the ψ and its radial excitation ψ′ are estimated from heavy hadron chiral
perturbation theory (HHChPT) [139, 171]. Within this framework the coupling to
the ground state is given by gD∗D∗J/ψ ≈ 8 and the coupling constant gD∗D∗ψ′ can
be determined from the ratio gψ′D∗D∗/gψD∗D∗ = mψ′fψ/(mψfψ′) = 1.67 [139, 171],
where fψ(′) is the leptonic decay constant. The remaining couplings gD1Dψ and gD1Dψ′
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Figure 4.19.: The hidden-charm decay represented by Feynman diagrams.

of the diagram in Fig. 4.19 (b) are more difficult to estimate since neither data nor
precise and reliable theoretical predictions are available. In a first step we relate
the coupling between the final ψ and the intermediate D1 and D mesons of the
diagram on the right panel (Fig. 4.19 b) to the well-determined coupling gD1D∗π of
the left diagram. For this purpose we define the ratio r1 = gD1Dψ/gD1D∗π ≈ 0.4±0.2
which we estimate from the couplings |gD1D∗π| ≈ 72 MeV and |gD1Dψ| ≈ 29 MeV
obtained by using the coupled channel model in [187]. We allow for the uncertainty
of the model by including an error of 50%. By using the ratio r1 and gD1Dπ = 0.49
GeV−1, as defined above, we can give a rough estimate of gD1Dψ ≈ 0.2± 0.1 GeV−1.
The second task is the determination of the coupling of D1D to the excited ψ′. We
relate gD1Dψ′ to the previously estimated coupling gD1Dψ by introducting the ratio
r2 = gD1Dψ′/gD1Dψ which we esimate by using the 3P0 model [188, 189]. Details
of our calculation and a short introduction to the 3P0 model can be found in the
Appendix A.4. The advantage of computing gD1Dψ′ via the ratio r2, in comparison
to the direct calculation, is the reduced parameter dependence. In the 3P0 model
the couplings are proportional to the quark-antiquark-pair production strength α
and are therefore rather sensitive to this parameter. Since in the 3P0 model the qq̄
creation parameter is assumed to be universal in for all transitions, this parameter
cancels in case of ratios of couplings. We therefore only deal with the dependence on
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the meson radii when computing the coupling ratio r1. As a further positive aspect
the ratio r1 is characterized by very similar transitions D1 → Dψ and D1 → Dψ′

where all particles involved remain the same except the replacement of ψ by ψ′. The
ratio r1 is therefore very stable with respect to variations of the meson radii. We
find for the ratio of couplings gD1Dψ′/gD1Dψ a value which is close to 2 and of the
same order as the above mentioned ratio gψ′D∗D∗/gψD∗D∗ = 1.67. This hierarchy of
couplings involving the ψ and ψ′ charmonium states is consistent with the HHChPT
scaling indicated above. Furthermore, we include uncertainties in the predictions
of the 3P0 model which for example might arise due to variations of the quark pair
production amplitude (as e.g. discussed in [190]) which is usually fitted to data. In
literature the quark-pair production strength ranges between 0.4 [181] to 0.5 [191].
We therefore consider an uncertainty of 50% in the ratio r2 = gD1Dψ′/gD1Dψ = 2±1.

Provided that the Z± is a pseudoscalar with JP = 0− the transition amplitude for
the hidden charm decay mode can be expressed by two form factors F1,2:

Mµ
Z±→π±ψ = F1(m

2
Z , m

2
ψ, m

2
π)p

µ
π + F2(m

2
Z , m

2
ψ, m

2
π)p

µ
ψ . (4.134)

Here only the first form factor contributes to the decay width Γ(Z± → π±ψ(′)):

Γ(Z± → π±ψ(′)) =
λ1/2

16πm3
Z

∣∣M
∣∣2 = g2

Zπψ

λ
3
2 (m2

Z , m
2
ψ, m

2
π)

64πm3
Zm

2
ψ

, (4.135)

where g
Zπψ

≡ F1(m
2
Z , m

2
ψ, m

2
π).

If we deal with a vector Z± the matrix element is given by

Mµν = F3(m
2
Z , m

2
ψ, m

2
π)ǫ

αβµνpπ αpβ (4.136)

and by analogy we use g′Zπψ ≡ F3(m
2
Z , m

2
ψ, m

2
π) in order to calculate the decay width

Γ(Z± → π±ψ(′)) = g′ 2
Zπψ

λ
3
2 (m2

Z , m
2
ψ, m

2
π)

96πm3
Z

. (4.137)

Due to the the sizable D∗Dπ-coupling and the lighter D-meson mass (compared to
D∗ exchange) in the rescattering process, it becomes obvious that the diagram (b)
of Fig. 4.19 dominates the transition amplitude. In fact, the ratio between diagram
(a) and (b) can be about one order of magnitude depending on the size parameter
and ratios r1 and r2. Therefore, in leading order the Z± → π±ψ(′) transition can
be regarded to be proportional to gD1Dψ(′) . As a consequence the decay widths are
very sensitive to variations of the couplings gD1Dψ(′) since it enters approximately
quadratically in the decay widths.

In analogy to the radiative decay the results for the hidden-charm decays are pre-
sented in dependence on the binding energy of the hadronic molecule [180]. We have
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to consider the relatively large uncertainties of the coupling constants. The decay
properties of the Z± are studied for the full range of possible values of the couplings
by indicating the decay properties in dependence on the ratios r1 =

gD1Dψ

gD1D
∗π

= 0.4±0.2

and r2 =
gD1Dψ

′

gD1Dψ
= 2± 1. Under the assumption that we deal with a JP = 0− state

the decay widths for the hidden charm decay channels Z → πψ and Z → πψ′ are
given in Tab. 4.14. In case of the spin-parity quantum numbers 1− the results are
summarized in Tab. 4.15. In both tables the error bars indicate changes in the finite
size with ΛZ varied from 1.5 to 2.5 GeV.

ǫ ΓZ→πψ ΓZ→πψ′ R = ΓZ→πψ′/ΓZ→πψ

r2 = 1 r2 = 2 r2 = 3 r2 = 1 r2 = 2 r2 = 3

gD1Dψ

gD1D
∗π

= 0.2

1 0.2+0.1
−0.1 0.1+0.0

−0.1 0.3+0.1
−0.1 0.8+0.2

−0.3 ≈ 0.2 ≈ 1.5 ≈ 3.8

5 0.4+0.2
−0.2 0.1+0.1

−0.0 0.6± 0.2 1.5+0.4
−0.5 ≈ 0.3 ≈ 1.5 ≈ 3.9

10 0.5+0.3
−0.2 0.1+0.1

−0.0 0.8+0.2
−0.3 2.0+0.5

−0.6 ≈ 0.3 ≈ 1.5 ≈ 3.7

gD1Dψ

gD1D
∗π

= 0.4

1 0.9+0.3
−0.3 0.3+0.1

−0.1 1.5+0.4
−0.4 3.5+0.9

−0.9 ≈ 0.3 ≈ 1.6 ≈ 4.0

5 1.7+0.5
−0.6 0.6+0.2

−0.2 2.8+0.6
−0.8 6.7+1.3

−1.7 ≈ 0.3 ≈ 1.7 ≈ 4.0

10 2.3+0.7
−0.8 0.8+0.2

−0.3 3.7+0.8
−1.1 8.7+1.8

−2.3 ≈ 0.3 ≈ 1.6 ≈ 3.8

gD1Dψ

gD1D
∗π

= 0.6

1 2.1+0.5
−0.7 0.8+0.2

−0.3 3.5+0.9
−0.9 8.3+1.9

−2.0 ≈ 0.4 ≈ 1.7 ≈ 4.0

5 3.9+1.2
−1.2 1.5+0.4

−0.5 6.7+1.3
−1.7 15.6+2.8

−3.8 ≈ 0.4 ≈ 1.7 ≈ 4.0

10 5.3+1.5
−1.7 2.0+0.5

−0.6 8.7+1.8
−2.3 20.1+3.9

−4.9 ≈ 0.4 ≈ 1.6 ≈ 3.8

Table 4.14.: Decay widths ΓZ→ψ(′)π in MeV for JP = 0−, ΛZ = 1.5 − 2.5 GeV,
ǫ = 1− 10 MeV and r2 = gD1Dψ′/gD1Dψ = 1− 3.

There are two experimental observations that limit the range of the coupling values,
here represented by the ratios r1 and r2. First of all, the Z± is found in π±ψ′

decay while there is no evidence for the kinematically favored π±ψ decay mode.
This implies that the branching ratio R = ΓZ→πψ′/ΓZ→πψ is expected to be much
bigger than one. In the present meson molecule model the branching ratio R is
given in the last three columns of Tabs. 4.14 and 4.15. R is obviously sensitive to
the ratio r2 relating the couplings of D1D to ψ and ψ′. The lower limit r2 = 1 can
be immediately ruled out since in this case the ratio R is inverted compared to the
experimental expectation.
The second condition is provided by the unexpectedly large Z± → π±ψ′ hidden–
charm decay width. In particular it is predicted to be bigger than 1 MeV [50] (see
also discussion in Chapter 2.2.3). This fact disfavors values of r1 smaller than 0.4.
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ǫ ΓZ→πψ ΓZ→πψ′ R = ΓZ→πψ′/ΓZ→πψ

r2 = 1 r2 = 2 r2 = 3 r2 = 1 r2 = 2 r2 = 3

gD1Dψ

gD1D
∗π

= 0.2

1 0.1 0.1 0.3+0.1
−0.1 0.8+0.2

−0.1 ≈ 0.8 ≈ 5.5 ≈ 14.0

5 0.1 0.1 0.6+0.0
−0.1 1.5+0.2

−0.3 ≈ 0.8 ≈ 5.3 ≈ 13.6

10 0.1 0.1 0.7+0.1
−0.1 1.9+0.3

−0.4 ≈ 0.8 ≈ 5.2 ≈ 13.6

gD1Dψ

gD1D
∗π

= 0.4

1 0.4+0.1
−0.1 0.3− 0.4 1.6+0.3

−0.4 3.8+0.7
−0.8 ≈ 0.7 ≈ 3.5 ≈ 8.3

5 0.8+0.2
−0.2 0.6+0.1

−0.1 2.9+0.4
−0.7 6.9+1.0

−1.6 ≈ 0.8 ≈ 3.6 ≈ 8.6

10 1.1+0.2
−0.3 0.7+0.1

−0.1 3.6+0.6
−0.7 8.7+1.5

−1.9 ≈ 0.6 ≈ 3.3 ≈ 7.9

gD1Dψ

gD1D
∗π

= 0.6

1 1.2+0.3
−0.3 0.8+0.2

−0.1 3.8+0.7
−0.8 9.0+1.7

−2.1 ≈ 0.7 ≈ 3.1 ≈ 7.4

5 2.3+0.4
−0.6 1.5+0.2

−0.3 6.9+1.0
−1.6 16.2+2.6

−3.8 ≈ 0.7 ≈ 3.0 ≈ 7.0

10 2.9+0.6
−0.8 1.9+0.3

−0.4 8.7+1.5
−1.9 20.4+3.6

−4.5 ≈ 0.7 ≈ 3.0 ≈ 7.0

Table 4.15.: Decay widths ΓZ→ψ(′)π in MeV for JP = 1−, ΛZ = 1.5 − 2.5 GeV,
ǫ = 1− 10 MeV and r2 = gD1Dψ′/gD1Dψ = 1− 3.

If the ratio r1 is relatively small as in the case of r1 = 0.2 the decay width ΓZ→πψ′

becomes smaller than one MeV, which seems excluded by observation.

In summary, the unusual decay pattern of the Z± meson can be explained by the
meson molecule model in a certain window for the values of the couplings constants.
For the quantum numbers JP = 0− the decay mode Z → πψ is suppressed relative
to πψ′ by a factor ≈ 2 for r2 = 2 and about 4 for r2 = 3, respectively. In case of
1− the ratio of decay rates R = Γ(Z± → π±ψ′)/Γ(Z± → π±ψ) is even larger with
R ≈ 3 for r2 = 2 and R ≈ 8 for r2 = 3. This is at least qualitatively in line with
the experimental observation that the π+ψ′ decay mode dominates the π+ψ partial
decay width. The ratio R is rather insensitive to variations of the model parameter
ΛZ and the binding energy ǫ as indicated in Tabs. 4.14 and 4.15 for JP = 0− and
JP = 1−. On the contrary, for equal couplings gD1Dψ′ and gD1Dψ, i.e. r2 = 1,
the branching ratio R = Γ(Z± → π±ψ′)/Γ(Z± → π±ψ) is smaller than one which
presently is in contradiction with experimental observations.

Since the decay properties are not very sensitive to the choice of JP , for JP = 1− the
decay widths are only slightly smaller than for 0−, the hidden-charm decay modes
cannot be used to finally pin down the quantum numbers of the Z± without precise
data.

The hidden-charm decays of the Z± are also discussed in the unpublished work
of [76]. Here the Z± is studied within an effective model assuming a bound D1D̄

∗

structure. There are two significant differences between this model and the present
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approach. First of all, the kinematic background is different in Ref. [76] since the
Z± is considered as a resonance above threshold while in the present work the Z± is
bound (indicated by a positive binding energy ǫ) and is therefore below threshold.
Second, in the present evaluation the contributions of the D∗ and D rescattering
processes represented in Fig. 4.19 are significantly different. In our case diagram
4.19 (b) is dominant because of the sizable coupling of the D∗ meson to the Dπ
mode. On the contrary in [76] the diagram of Fig. 4.19 (b) is highly suppressed
by a factor of about 15 − 30 compared to the D∗ exchange process, which was
explained by the small gD1Dψ coupling. In this context it is important to remind
that the prediction for R = Γ(Z± → π±ψ′)/Γ(Z± → π±ψ) primarily depends on
the explicit values of the coupling gD1Dψ(′) and therefore on the ratio gD1Dψ′/gD1Dψ,
while variations of ΛZ and ǫ only play a minor role. In comparison, in [76] sizable
values for the ratio R are only obtained for small hidden charm decay widths.

Summary

In this section we studied hidden-charm and radiative decays of the Z±(4430) in a
D1(2420)D

∗
+h.c. molecular structure interpretation. The peculiar decay properties

of the meson bound state were analyzed in a effective model for hadronic bound
systems by considering the influence of finite size effects and the dependence on
the exact value of the binding energy. As guided by previous studies of possible
binding mechanisms in this system we choose the preferred JP = 0− and 1− quantum
numbers for the Z±.

For the first time the radiative decay width Z+(4430) → π+γ is studied in the
hadron molecule picture. This transition is forbidden for JP = 0− and possibly
can be used to determine the spin-parity quantum numbers of the Z±. For a 1−

assignment of the Z± we obtain a radiative decay width of about 0.5 to 1 keV which
should allow for a possible detection.

Besides the Z± → π±γ transition we also analyzed the hidden-charm decays which
were the only transitions observed by experiment so far. As discussed previously, the
hidden-charm decays are characterized by a number of strange properties which up
to now are not fully explained by theoretical investigations. For example we analyzed
the hidden charm decays Z± → π±ψ, presently not observed, and Z± → π±ψ′, the
discovery mode of the Z±. Both processes proceed in the meson molecule picture by
loops containing open charm mesons, in particular byD∗ orD rescattering processes.
This formalism does not suffer from the typical OZI-suppression of hidden-charm
modes as in the case of cc̄ states and can reproduce the rather sizable Z± → π±ψ′

decay width which according to experimental observations is expected to be above
1 MeV. The decay processes where analyzed for different values of the coupling
constants. Since the D rescattering process is dominant, our predictions depend
crucially on explicit values for the couplings gD1Dψ(′) . Concerning this issue we took
guidance from a coupled channel analysis [94, 187] which essentially fixes gD1Dψ and
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from the 3P0 model estimating the ratio r2 = gD1Dψ′/gD1Dψ. Finally we obtain a
window for the coupling constants here expressed by the two ratios r1 and r2 for
which we obtain a large branching ratio R = ΓZ→πψ′/ΓZ→πψ which is in line with the
non observation of the πψ mode. At the same time we can reproduce the Z± → π±ψ′

decay width in the MeV range. For JP = 1− the ratio R is slightly larger, but in
general a sizable dependence of the predictions on the choice of JP is not observed.
Also, finite size effects are contained in the size parameter ΛZ which was varied.
Present experimental observations suggest a D1D

∗
bound state interpretation of

the Z±(4430). From the theoretical side the present effective Lagrangian approach
seems to confirm a dominant molecular structure of the Z± and is capable to explain
at least the hidden charm decay properties. In addition we give predictions for the
radiative decay mode Z± → π±γ which might offer a further test for the structure
issue of the Z±. A further evaluation of open charm decay modes does not seem to
be decisive since predictions also depend crucially on principally unknown coupling
constants [72]. In this respect the radiative mode π+γ offers a further test for the
structure issue of the Z±.
From the experimental side it is clear that the existence and, if possible, quantum
numbers of the Z+(4430) still have to be firmly established. As long as the charged
charmonium-like structures are not ruled out they remain an interesting object for
future experiments e.g. the Z± could be studied in nucleon-antinucleon annihilation
processes in the upcoming PANDA experiment [192].

4.4. Two–photon decay of heavy hadron

molecules

The purpose of the present study is a more detailed discussion of the two-photon
decays of heavy hadron molecules [193]. We want to work out the influence of the
binding energy and the constituent meson masses on quantities like couplings (of the
molecular state to its constituent mesons) and electromagnetic decay amplitudes.
Under certain circumstances, as for a local theory, the results are analytical and the
dependence on the above mentioned quantities can be shown explicitly. Especially
ratios of two-photon decay rates of bound states, also in different flavor sectors,
provide a simple and clear estimate whether a molecular structure is likely or not.
For the physical or nonlocal case, which effectively models finite size effects of
hadronic molecules, results can deviate sizeably from the limiting case of a local
theory. Here we find that the two-photon decay properties of heavy bound states
are more sensitive to finite size effects than hadronic molecules of light mesons.
For the present study of two-photon decays of heavy meson molecules we concentrate
on hadronic bound states in the meson sector. We further restrict to S-wave hadron
molecules with quantum numbers JPC = 0++ whose constituents are pseudoscalar
or scalar charmed/bottom mesons. The basis is again provided by the effective La-
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grangian of Eq. (4.2) describing the interaction between the hadronic bound state
and the constituents, where we again consider finite size effects by means of a Gaus-
sian form factor Φ(k2) = exp(−k2/Λ2

Hi
). Here, Hi denotes the hadronic molecule H

composed of two equal mesons i. Further on we determine the coupling gH by the
compositeness condition.

In the following we first restrict to the case of a local coupling of the H state to its
respective constituents. In case of a local interaction the vertex function is replaced
by Φ̃H(−k2) = exp(k2/Λ2

Hi
) ≡ 1. Then the coupling gH can be expressed in the

analytical form [26, 145]:

g−2
H =

1

(8πmζ)2

[
β(ζ)√
1− ζ2

− 1

]
, (4.138)

where ζ =M/(2m), β(ζ) = arcsin(ζ)/ζ and m is the mass of the constituent meson.

Inclusion of the electromagnetic interaction in a gauge invariant way is discussed
in our previous works [26, 135]. In the local approximation we deal with the two
diagrams (a) and (b) of Fig. 4.8 or 4.17. The extension to the nonlocal case leads to
further diagrams, which need to be included in order to guarantee gauge invariance
(see also Figs. 4.8 and 4.17).

The gauge invariant form of the matrix element for the radiative transition in case
of real photons reads as:

Mµν = (gµνq1q2 − q2µq1ν) gHγγ , (4.139)

where q1 and q2 are the 4-momenta of the photons (see also Eq. (4.19)). For the local
case the expression for the effective coupling constant gHγγ is given by the simple
form:

gHγγ =
gH

(4πmζ)2

[
β2(ζ)− 1

]
. (4.140)

However, this expression becomes more complicated and can only be solved numer-
ically when including finite size effects (see e.g. Appendix of [26]). The radiative
decay width of the 0++ molecule is calculated according to the formula

Γ(H → γγ) =
π

4
α2M3g2Hγγ . (4.141)

In the local limit we can write the decay width in terms of the quantity ζ by using
Eq. (4.140)

Γ(H → γγ) =
α2

2π
mI(ζ) , (4.142)
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with

I(ζ) = ζ
√
1− ζ2

(β2(ζ)− 1)2

β(ζ)−
√

1− ζ2
. (4.143)

Since in the case of hadronic bound states the binding energy ǫ is small in comparison
to the masses of the constituent mesons m we can perform an expansion of gH , gHγγ
and Γ(H → γγ) in x = ǫ/(2m), where ζ = 1− x. In order to guarantee an accurate
approximation of the observables we need to include the leading (LO) and next-
to-leading order (NLO) terms in the expansion of gH and gHγγ . Therefore, the
expansion of Γ(H → γγ) includes three terms up to the next–to–next–to–leading
order (NNLO) contribution.

The corresponding x–expansions of the quantities of interest are given by:

gH = mIH(x) , gHγγ = m−1 IHγγ(x) ,

Γ(H → γγ) =

(
πα

4

)2

mJHγγ(x) ,
(4.144)

where

IH(x) =8
√
2π (2x)1/4

(
1 +

2

π

√
2x

)
+O(x5/4) ,

IHγγ(x) =

√
2π

8
(2x)1/4

(
1− 4

π2
− 2

π

(
1 +

4

π2

)√
2x

)

+O(x5/4) ,

JHγγ(x) =
√
2x

((
1− 4

π2

)2

− 4

π

(
1− 16

π4

)√
2x

+ 2x

(
7

8
+

9

π2
− 50

π4
+

256

π6

))
+O(x2) .

(4.145)

In the next step we consider bound states of the pseudoscalar D, Ds and B mesons
which have the following structure

|HD〉 =
1√
2

(
|D+D−〉+ |D0D0〉

)
,

|HDs〉 = |D+
s D

−
s 〉 (4.146)

|HB〉 =
1√
2

(
|B+B−〉+ |B0B0〉

)
.

Note, the existence of bound states of two heavy pseudoscalar mesons was proposed
before in Ref. [95] where hadronic molecules are dynamically generated in a coupled
channel formalism. Based on the identifications of Eq. (4.146) additional flavor
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factors have to be considered in Eq. (4.144) which leads to:

gHi = mi IH(xi) , gHiγγ =
cHiγγ
mi

IHγγ(xi) ,

Γ(Hi → γγ) =

(
πα

4

)2

mi c
2
Hiγγ

JHγγ(xi) ,
(4.147)

where xi = ǫ/(2mi), cHiγγ = 1/
√
2 for i = D,B and 1 for i = Ds. From last equation

follows the ratio of the two-photon widths of two different molecular states which is
characterized by the respective constituent masses and binding energies. At leading
order we deal with the simple expression:

Γ(HB → γγ)

Γ(HD → γγ)
∼
(mBǫB
mDǫD

)1/2
. (4.148)

Varying the binding energy ǫ from 10 to 100 MeV which (besides the exception of
the X(3872)) are typical values in the heavy meson sector, the two-photon decay
widths are evaluated as

Γ(HD → γγ) = 0.25− 1.19 keV ,

Γ(HDs → γγ) = 1.31− 2.58 keV , (4.149)

Γ(HB → γγ) = 1.19− 2.78 keV .

Since Γ(Hi → γγ) ∝ √
mǫ the smaller value of the binding energy also results in a

smaller radiative decay width.

Up to now the results for the coupling and the two-photon decay widths were given
in the local limit. For the physically appropriate description of an extended object,
the hadronic molecule, finite size effects in terms of the vertex function have to
be included. This will lead to a suppression of the couplings and the two-photon
decay widths, hence the local case presents an upper limit for these quantities. In
the following we study in addition to the influence of mass and binding energy the
dependence on the size parameter ΛHi, which models the nonlocality.

The dependence of the couplings gHiγγ on the size parameter ΛHi , typically chosen
in the range from 1 to 3 GeV, is illustrated in the logarithmic plots of Figs. 4.20
and 4.21 for different values of ǫ ranging from 10 to 100 MeV. For comparison
we also include the coupling gHKγγ of f0(980)/a0(980) to two photons with the
well determined binding energy of ǫ = 7.35 MeV. The local case, i.e. ΛHi → ∞,
characterizes the asymptotics of the curves. The convergence of the coupling gHiγγ
towards the local or asymptotic value depends on the constituent meson masses.
The coupling gHKγγ is almost stable with respect to variations of ΛHi near 1 GeV.
The couplings of the heavy hadron molecules are more sensitive to finite size effects
for values near ΛHi ≈ 1 GeV, note that in Figs. 4.20 and 4.21 the dependence on
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Figure 4.20.: Couplings gHKγγ and gHiγγ with i = D,Ds, B in dependence on ΛHi
for ǫK = 7.35 MeV and ǫi = 10 MeV.

ΛHi is displayed on a log scale. In fact, the coupling gHKγγ reaches 90% of the
asymptotic value (local approximation) already at ΛHi ≈ 0.6 GeV. In contrast, the
couplings of heavy bound states approach 90% of the local value at around 4 GeV in
case of the D and Ds–meson bound states and at about 9 GeV for the even heavier
hidden-bottom molecule.

The behavior of the couplings gHiγγ , which enter quadratically in the expression for
the radiative decay width, shows that the suppression due to the size parameter ΛHi
is larger in case of heavier constituents. Phenomenologically, the values for ΛHi tend
to increase in case of heavy bound states. This behavior was already observed in
earlier analyses in the framework of meson molecules [25, 171, 26] but also in case
of baryons [138]. But still, for reasonable values of ΛHi heavier systems are strongly
influenced by finite size effects as reflected in the two-photon coupling gHiγγ.

In practice ΛHi should also depend in average on the binding energy. For instance,
a small binding energy would lead to a loose bound state with a more extended
structure than a strongly bound compact state. Therefore ΛHi should decrease with
smaller binding energies, increasing the deviation from the local limit even more.

To quantify the inclusion of finite size effects for the two-photon decay widths we
also give results for two values of ΛHi. For ΛHi = 1 GeV and ǫ = 10− 100 MeV we
have [193]

Γ(HD → γγ) = 0.05− 0.34 keV ,

Γ(HDs → γγ) = 0.32− 0.68 keV , (4.150)

Γ(HB → γγ) = 0.05− 0.12 keV .
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Figure 4.21.: Couplings gHKγγ and gHiγγ with i = D,Ds, B in dependence on ΛHi
for ǫK = 7.35 MeV and ǫi = 100 MeV.

When increasing ΛHi to 2 GeV the results are by a factor 2−3 larger

Γ(HD → γγ) = 0.13− 0.73 keV ,

Γ(HDs → γγ) = 0.71− 1.52 keV , (4.151)

Γ(HB → γγ) = 0.18− 0.44 keV .

These results should be compared to the local limits of Eq. (4.149).

From previous discussions it should be clear that finite-size effects are quite impor-
tant for a quantitative determination of the radiative decay width of heavy hadron
molecules. The same observation holds for molecular states composed of vector
mesons [25], where we showed that for ΛHD∗ = ΛHD∗

s
= 1 − 2 GeV the radiative

widths of the molecules Y (3940) = {D∗D∗†} and Y (4140) = {D∗
sD

∗†
s } are of the

order of 1 keV for ΛHi = 2 GeV.

For completeness, we compare the two-photon decays of the heavy systems to the
one of the light scalars f0/a0. The stability of the coupling in case of a KK̄ bound
state already implies that the radiative decay width Γ(f(980) → γγ) is not sensitive
to the cutoff or finite-size effects provided ΛHi is above 0.5 GeV. Here we completely
agree with the conclusions of Ref. [145]). In particular, in order to reproduce the
current data on strong and radiative decays of f(980) we fixed the cutoff parameter
to the value ΛHK ≡ Λf = 1 GeV [26] with

Γ(f(980) → γγ) = 0.25 keV , (4.152)
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a value which is very close to the result of the local approximation:

Γ(f(980) → γγ) = 0.29 keV . (4.153)

Similar results are obtained by the molecular approaches in [145] and [156]. However,
for smaller values of Λf < 0.6 GeV the radiative decay width decreases which means
that such small values of the cutoff parameter Λf are unlikely according to present
data.

4.5. Quark–antiquark mesons

In the previous sections the effective Lagrangian approach was used to study bound
states of mesons. In the following we apply this method to hadronic bound states
on the quark level. In particular, we study mesons which are well established qq̄
valence objects ranging from the light pseudoscalar and vector nonets to heavy–
light and double–heavy quarkonia. In principle, we deal with the same problems as
in the case of hadronic molecules. We simply replace the constituent meson fields
by constituent quark fields. The resulting relativistic constituent quark model can
be viewed as an effective quantum field approach to hadronic interactions which is
based on an interaction Lagrangian of hadrons and their constituent quarks. For
the description of the qq̄ mesons we again use the compositeness condition where
we set the field renormalization constant of the bound state (here the qq̄ meson) to
zero. The decays proceed via loops of the constituent quarks.
In analogy to bound states of mesons the present hadronic bound state approach
includes finite size effects and full gauge invariance. However, we face one difficulty
when dealing with quark–antiquark states. Except for the pion and sigma mesons all
masses of the qq̄ mesons are heavier than the masses of the two constituent quarks
together. A problem arises if we deal with ’free’ constituent quark propagators
not containing confinement i.e. quark propagators with poles at the constituent
quark mass. The evaluation of quark loops can lead to the appearance of threshold
singularities corresponding to free quark production in the transition amplitudes.
Therefore, the original application of the relativistic quark model is restricted to
ground state mesons and baryons with masses less than the sum of the constituent
quark masses and processes with relatively small energies.
The aim of the present work is to improve the relativistic approach and to extend
its applicability to heavier mesons, i.e. to remove the above mentioned threshold
restriction. Our ansatz to avoid the problem is contained in the description of the
quark propagator. When dealing with excited hadron states the underlying quark
propagators should reflect the confinement property. In quantum field theoretical
approaches one can interpret confined quarks through the absence of quark poles
and thresholds in Green’s functions and matrix elements.
For example, in the Quark Confinement Model of Ref. [152] quark confinement was
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implemented by assuming that, at low energies, the constituent quark interacts with
some given nontrivial gluon configurations in the QCD vacuum. As a result quark
Green’s functions and matrix elements become free of quark poles. Models which
are based on results obtained via QCD Dyson–Schwinger equations [194] possess the
feature that quark propagation is described by fully dressed Schwinger functions. In
summary dressing of the quarks removes the threshold problem which is somehow
equivalent to working with confined quarks.

In the present work we propose a refinement of the model [135] by effectively imple-
menting quark confinement into the model. Before we turn to the modifications of
the model we introduce the basic method to study quark–antiquark mesons.

Similarly to the hadronic molecules the relativistic constituent quark model is based
on an effective interaction Lagrangian describing the coupling of hadrons to their
constituent quarks. Here we limit ourselves to the meson sector where mesons are
described as quark–antiquark bound states. An extension of the model to baryons
(three–quark states) and multiquark states is straightforward. The coupling of a
meson M(q1q̄2) to its constituent quarks q1 and q̄2 is described by the nonlocal
Lagrangian

Lstr
int(x) = gMM(x)

∫
dx1

∫
dx2Φ(x, x1, x2) q̄1(x1) ΓM λM q2(x2) + h.c. (4.154)

Here, λM and ΓM are Gell–Mann and Dirac matrices chosen appropriately to de-
scribe the flavor and spin quantum numbers of the meson field M(x). We set
Γ = 1, γ5, γµ, γ5γµ when dealing with scalar, pseudoscalar, vector or axialvector
mesons, respectively. In the case of pseudoscalar mesons we introduce singlet–octet
mixing with a mixing angle of θP = −11◦, while the vector mesons are assumed to
be ideally mixed.

We include the vertex function Φ to allow for the distribution of the constituent
quarks since mesons are not pointlike particles. For its Fourier transform Φ̃(k2) =
exp(−k2/Λ2) we choose a simple form in terms of a Gaussian function.

In previous works [135] for the quarks a free fermion propagator was taken

Sq(k) =
1

mq− 6k − iǫ
(4.155)

with an effective constituent quark mass mq. Note that the fully dressed quark
propagator takes the form

Sq(k) =
Z(k2)

iγµkµ +M(k2)
(4.156)

in the framework of Dyson–Schwinger approaches (see e.g. Ref. [194]). As already
mentioned the local form of the quark propagator leads to the appearance of thresh-
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old singularities corresponding to free quark production which restricts the model
to states which lie below the corresponding threshold of the constituents. Therefore,
processes involving light vector mesons, e.g. the ρ and K∗, and excited states cannot
be treated within the model. In the following we demonstrate how we implement
confinement into our model in order to extend its application to the full range of
qq̄–mesons.
The implementation of confinement effects is demonstrated by means of the denomi-
nator of an arbitrary one–pole propagator. First of all, we represent the denominator
by its Schwinger representation

1

m2 − p2
=

∞∫

0

dα exp[−α(m2 − p2)] . (4.157)

The pole of this expression can be removed by introducing an upper integration
limit 1/λ2. We call the parameter λ with mass dimension [m]−1, the infrared con-
finement scale. By means of the cut–off one obtains an entire function which can be
interpreted as a confined propagator

1/λ2∫

0

dα exp[−α(m2 − p2)] =
1− exp[−(m2 − p2)/λ2]

m2 − p2
. (4.158)

In general, singularities in the finite p2–plane correspond to the mass of a free phys-
ical particle. Hence, the absence of poles indicates that one does not deal with a
freely propagating particle and, therefore, it is confined.
Similar ideas have also been pursued in Refs. [195, 196] where an infrared cut–off
has been introduced in the context of a Nambu–Jona–Lasinio model. Note that
the propagator for a particle in a constant self–dual field has a form similar to
Eq. (4.158). Such vacuum gluon configurations have been studied in [197] and were
then employed e.g. in [198] to construct a model with confined constituent quarks.
However, the use of confined propagators in the form of entire functions has its own
difficulties. The convolution of entire functions leads to a rapid growth of physical
matrix elements once the hadron masses and energies involved in the transition
amplitude have been fixed. The numerical results become very sensitive to changes
of the input parameters which requires extreme fine–tuning. For these reasons, we
do not explicitly use confined propagators but we pursue an alternative approach
which is introduced in the following.

4.5.1. Implementation of confinement

In the relativistic constituent quark model matrix elements are represented by a
set of quark loop diagrams which are described by a convolution of the local quark
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propagators and vertex functions. Using Schwinger’s α–representation for each local
quark propagator the loop momenta can be integrated out. One can write the
resulting expression of the matrix element as an integral which includes integrations
over the α–parameters and an integration over a scale variable t extending from
zero to infinity. By introducing an infrared cutoff on the upper limit of the scale
integration one can avoid the appearance of singularities in any matrix element. The
new infrared cutoff parameter λ effectively introducing confinement will be taken to
have a common value for all processes. We determine λ and the other parameters
of the model by a fit to available experimental data.

First, we consider a general l–loop Feynman diagram with n propagators by using
the Schwinger parameterization

Π(p1, . . . , pn) =

∞∫

0

dnα

∫
[d4k]l Φ exp[−

n∑

i=1

αi(m
2
i − p2i )] (4.159)

where Φ stands for the numerator of the original product of propagators and vertex
functions. After doing the loop integrations one obtains

Π =

∞∫

0

dnαF (α1, . . . , αn) , (4.160)

where F stands for the whole structure of a given diagram. The set of Schwinger
parameters αi can be expressed by an additional t–integration via the identity

1 =

∞∫

0

dt δ(t−
n∑

i=1

αi) (4.161)

leading to

Π =

∞∫

0

dttn−1

1∫

0

dnα δ
(
1−

n∑

i=1

αi

)
F (tα1, . . . , tαn) . (4.162)

As in Eq. (4.158) we set a cutoff for the upper limit of the integration at 1/λ2 and
obtain

Πc =

1/λ2∫

0

dttn−1

1∫

0

dnα δ
(
1−

n∑

i=1

αi

)
F (tα1, . . . , tαn) . (4.163)

By introducing the infrared cutoff all possible thresholds in the quark loop diagram
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are removed, where the cutoff parameter λ is uniquely determined for all physical
processes.

As a first application of the infrared confinement effect we consider the expression
for the mass operator which we need for the compositeness condition:

Π2(p
2) =

∫
d4k

π2
Φ2(−k2) N(p)

[m2 − (k + 1
2
p)2][m2 − (k − 1

2
p)2]

. (4.164)

Here p is the momentum of the meson and N(p) is the numerator of the expression
which we drop in the following for the sake of readability. By carrying out the loop
integration one obtains

Π2(p
2) =

∞∫

0

dt
t

(s+ t)2

1∫

0

dα exp
{
− t[m2 − α(1− α)p2] +

st

s+ t

(
α− 1

2

)2
p2
}
.

The integral Π2(p
2) can be seen to have a branch point at p2 = 4m2. By introducing

a cutoff on the t–integration one obtains

Πc
2(p

2) =

1/λ2∫

0

dt
t

(s+ t)2

1∫

0

dα exp
{
− t[m2 − α(1− α)p2] +

st

s+ t

(
α− 1

2

)2
p2
}
,

where the two–point function Πc
2(p

2) is free of singularities.

In our approach such a confinement scenario can be realized with only minor changes
by shifting the upper t–integration limit from infinity to 1/λ2. The confinement sce-
nario also allows to include all possible excited states in our calculations. The first
calculations performed in this work show that the limited set of adjustable param-
eters of the model (size parameters, constituent quark masses and the confinement
scale λ) leads to a consistent description of a large number of low–energy mesonic
processes. We envisage a multitude of further applications as e.g. in the baryon
sector.

The coupling constant gM in Eq. (4.154) is, as in the case of hadronic molecules,
determined by the compositeness condition:

ZM = 1− Π′
M(m2

M) = 0 . (4.165)

Here it is important to note that the alpha–parameterization including the intro-
duction of the cutoff 1/λ2 does not commute with taking the derivative of the mass
operator. Therefore, by determining the coupling constants via the compositeness
condition, the derivative has to be carried out before doing the manipulations on the
momentum integration. The meson–quark coupling constants are then determined
from the compositeness condition Eq. (4.165). This requires the evaluation of the
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derivative of the mass operator. For the pseudoscalar and vector mesons treated in
this paper the derivatives of the mass operators read

Π′
P (p

2) =
g2M
2p2

pα
d

dpα
Nc

∫
d4k

(2π)4i
Φ2
P (−k2)tr

[
γ5S1(k + w1p)γ

5S2(k − w2p)

]

= g2M
Nc

2p2

∫
d4k

(2π)4i
Φ2
P (−k2) (4.166)

×tr

[
γ5S1(k + w1p)w16p S1(k + w1p)γ

5S2(k − w2p)

]
+ (m1 ↔ m2),

Π′
V (p

2) = g2M
1

3

[
gµν − pµpν

p2

]
1

2p2
pα

d

dpα
Nc

∫
d4k

(2π)4i
Φ2
V (−k2)

×tr

[
γµS1(k + w1p)γ

νS2(k − w2p)

]
(4.167)

= g2M
1

3

[
gµν − pµpν

p2

]
Nc

2p2

∫
d4k

(2π)4i
Φ2
V (−k2)

× tr

[
γµS1(k + w1p)w16p S1(k + w1p)γ

νS2(k − w2p)

]
+ (m1 ↔ m2).

Because of the the pµ–derivative Eqs.(4.166,4.168) contain three propagator factors.

4.5.2. Inclusion of the electromagnetic interaction

The interaction with the electromagnetic field is introduced in analogy to the pre-
viously discussed meson bound states in two stages. First, the free Lagrangian of
quarks and charged hadronsM± is gauged in the standard manner by using minimal
substitution:

∂µM± → (∂µ ∓ ieAµ)M±, ∂µq → (∂µ − ieqA
µ)q, ∂µq̄ → (∂µ + ieqA

µ)q̄, (4.168)

where e is the positron (or proton) charge and eq represents the quark charges
(eu = 2

3
e, ed = − 1

3
e, etc.). Minimal substitution leads to the first part of the

electromagnetic interaction Lagrangian

Lem(1)
int (x) =

∑

q

eq Aµ(x) J
µ
q (x) + eAµ(x) J

µ
M(x) + e2A2(x)M−(x)M+(x) ,

Jµq (x) = q̄(x)γµq(x), (4.169)

JµM(x) = i
(
M−(x)∂ µM+(x)−M+(x)∂ µM−(x)

)
.

In the second step we also gauge the non–local strong interaction Lagrangian in
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Eq. (4.2) and proceed in the same way as discussed in the previous sections (see
also [143]) by multiplying each quark field q(xi) in Lstr

int with a gauge field exponential
according to

Lstr
int(x) =gMM(x)

∫
dx1

∫
dx2FM(x, x1, x2)

× q̄1(x1) e
ieq1I(x1,x,P ) ΓM λM e−ieq2I(x2,x,P ) q2(x1), (4.170)

where

I(xi, x, P ) =

xi∫

x

dzµA
µ(z). (4.171)

In analogy to the meson molecules these interaction term lead to further interaction
vertices with photon lines directly attached to the meson–quark–antiquark vertex.
Due to this procedure the full Lagrangian is invariant under the local gauge trans-
formations

qi(x) → eieqif(x)qi(x), q̄i(x) → q̄i(x)e
−ieqif(x), (4.172)

M(x) → eieM f(x)M(x) , Aµ(x) → Aµ(x) + ∂µf(x) , (4.173)

where eM = eq2 − eq1 is the electric charge of the meson.
The second term of the electromagnetic interaction Lagrangian Lemint;2 arises when
one expands the gauge exponential in powers of Aµ up to the order of perturbation
theory considered.
For example, expanding the Lagrangian Eq. (4.170) up to the first order in Aµ one
obtains (l = w1p1 + w2p2)

Lem(2)
int (x) = gMM(x)

∫
dx1

∫
dx2

∫
dy Eµ

M (x, x1, x2, y)Aµ(y) q̄1(x1)ΓMλMq2(x2) ,

Eµ
M(x, x1, x2, y) =

∫
dp1
(2π)4

∫
dp2
(2π)4

∫
dq

(2π)4
eip1(x1−x)−ip2(x2−x)+iq(y−x)Eµ

1 (p1, p2, q) ,

Eµ
1 (p1, p2, q) = −eq1w1(w1q

µ + 2lµ)

1∫

0

dtΦ′
H

(
−t(w1q + l)2 − (1− t)l2

)

+ eq2w2(w2q
µ − 2lµ)

1∫

0

dtΦ′
M

(
−t(w2q − l)2 − (1− t)l2

)
,

At this stage we are able to compute the electromagnetic form factor Λµ(p, p′) de-
scribed by the diagrams shown in Fig. 4.22, which is closely connected to the Ward
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Figure 4.22.: Diagrams describing the electromagnetic meson vertex function.

identity. The Ward identity relates the electromagnetic vertex function at zero mo-
mentum transfer to the derivative of the mass operator for an on–mass–shell particle
by

qµΛµ(p, p
′) = Π(p′)−Π(p) (4.174)

Λµ(p, p) =
d

dpµ
Π(p2) = 2pµ

d

dp2
Π(p2) . (4.175)

4.6. Basic properties of π and ρ mesons

In a first step, we apply the relativistic constituent quark model including infrared
confinement to the decays of the π and ρ mesons. The available data on the lep-
tonic constants fπ, gργ and the electromagnetic couplings gπγγ and gρπγ allows us
to fit the model parameters which are the constituent quark mass m ≡ mu(d), the
size parameters Λπ and Λρ, and the scale parameter λ characterizing the infrared
confinement.

The quark model diagrams for the leptonic decay constant and the vector–photon
transition gργ are illustrated in Fig. 4.23. The corresponding one-loop Feynman
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Figure 4.23.: Diagrams describing the M± →W± (upper panel) and V → γ (lower
panel) transitions.

integrals read:

fπ p
µ =Ncgπ

∫
d4k

(2π)4i

{
Φπ(−k2) tr

[
OµS(k + 1

2
p)γ5S(k − 1

2
p)
]

+

1∫

0

dαΦ′
π(−zα)(2 k + 1

2
p)µtr

[
S(k)

]}
, (4.176)

gργ
(
gµνp2 − pµpν

)
=
Ncgρ√

2

∫
d4k

(2π)4i

{
Φρ(−k2) tr

[
γµS(k + 1

2
p)γνS(k − 1

2
p)
]

−
1∫

0

dαΦ′
ρ(−zα)(2 k + 1

2
p)µtr

[
γνS(k)

]}
, (4.177)

with zα = α(k+ 1
2
p)2+(1−α)k2, Nc = 3 is the number of colors and Oµ = γµ(1−γ5)

is the left–chiral weak coupling matrix. In Appendix A.5 it is explicitly shown that
the vector meson–photon transition fulfills gauge invariance.

The photon decays of pseudoscalar (P → γγ) and vector mesons (V → Pγ) are
diagrammatically illustrated in Fig. 4.24. The respective expressions for the quark



140 4.6. Basic properties of π and ρ mesons

P

p

q1

q2

γ

γ

(a)

V

p

q1

q2

γ

P

(b)

Figure 4.24.: Diagrams describing P → γγ and V → Pγ transitions.

loops are given by

gπγγ ǫ
µν =

√
2Nc

3

∫
d4k

(2π)4i
Φπ(−k2)

× tr
[
iγ5S(k + 1

2
p)γµS(k − 1

2
p)γνS(k + 1

2
p− q1)

]
, (4.178)

gρπγ ǫ
µν =

Ncgρgπ
3

∫
d4k

(2π)4i
Φρ(−k2)Φπ

(
− (k + 1

2
q2)

2
)

× tr
[
iγ5S(k + 1

2
p)γµS(k − 1

2
p)γνS(k + 1

2
p− q1)

]
. (4.179)

The evaluation of the one–loop integrals of Eqs.(4.176)–(4.179) and Eqs.(4.166) and
(4.168) is described in Appendix A.6.
A least square fit to the observables yields the fit parameters:

m Λπ Λρ λ

0.217 0.711 0.295 0.181 GeV
. (4.180)

Here we deal with the constituent quark mass while the cutoff parameters Λ deviate
from the natural scale around 1-2 GeV (see [135]) due to the introduction of the
universal cutoff λ. The fitted value of the confinement scale parameter λ is very close
to ΛQCD. In Tab. 4.16 we compare the results of the fit with available experimental
data.
As a further application of our approach, now free of parameters, we calculate the
pion electromagnetic form factor Fπ generated by the diagrams in Fig. 4.22, and
the pion transition form factor Fπγγ∗ generated by the diagram in Fig. 4.24 (a). In
the first case we are interested in the space–like region q2 = −Q2. In the second
case one photon is on–mass–shell q21 = 0 and the second photon has a space–like
momentum squared q22 = −Q2. The electromagnetic radii are related to the slope
of the form factors at the origin r2 = −6F ′(0). Our result for the electromagnetic
radius rπ = 0.612 fm is in good agreement with the present world average data of
rπ = (0.672±0.008) fm [174]. The result for the radius of the transition form factor
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Quantity Our Data [174]

fπ, MeV 130.2 130.4± 0.04± 0.2

gπγγ , GeV−1 0.23 0.276

gργ 0.2 0.2

gρπγ , GeV−1 0.75 0.723 ± 0.037

Table 4.16.: Basic properties of the π and ρ meson.

r2πγ = 0.315 fm2 confirms the monopole–type approximation of the CLEO data [199]
and is close to the CELLO measurement [200] of r2πγ = 0.42± 0.04 fm2.

The electromagnetic pion transition form factor is displayed in Fig. 4.25 and com-
pared with data from the DESY [201], the Jefferson Lab Fπ Collaboration [202] and
the CERN NA7 Collaboration [203].

In Fig. 4.26 we display the Fπγγ∗(Q
2) form factor in the space–like region Q2 up to

4 GeV2. Here the slopes of the theoretical curves are quite sensitive to variations of
the size parameter Λπ. In order to exhibit the sensitivity to Λπ we plot three curves
for Λπ = 0.711, 1 and 1.3 GeV.

One should mention that our Fπγγ∗(Q
2) form factor behaves as 1/Q2 at large Q2 in

accordance with perturbative QCD. The calculated form factor behavior disagrees
with the new data above 4 GeV2 presented by the BABAR Collaboration [204]. For
a recent theoretical analysis of the BABAR data, see e.g. Ref. [205].

4.7. An extension to strange, charm and bottom

flavors

In this subsection we extend our approach to mesons containing strange, charm
and bottom quarks. We accordingly have to introduce further model parameters
which are the values of constituent quark masses mq (q = s, c, b) and the values of
the size parameters ΛM for the corresponding mesons indicated in Tab. 4.17. In
contrast, the value of the confinement scale parameter λ remains the same for all
physical processes. To determine the parameters we perform a least square fit to
the weak and electromagnetic leptonic decay constants defined by fV = mV gV γ (see
Tabs. 4.18 and 4.19). The dimensionless constant gV γ was previously introduced in
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Q2. Data is taken from CLEO [199].
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Eq. (4.177). The fit yields the quark masses

ms mc mb

0.360 1.6 4.8 GeV
(4.181)

which can be identified with the constituent quark masses. Due to the introduction
of the cutoff λ the size parameters ΛM in Tab. 4.17 are no longer correlated with
the size of the meson. In Tabs. 4.18 and 4.19 we list the results of our numerical

Λρ/ω/φ Λη Λη′ ΛK ΛK∗ ΛD ΛD∗ ΛDs ΛD∗
s

0.295 1.0 2.0 0.87 0.30 1.4 2.3 1.95 2.6

ΛB ΛB∗ ΛBs ΛB∗
s

ΛJ/ψ Ληc ΛΥ Ληb ΛBc

3.35 3.35 4.4 4.4 3.3 3.0 5.07 5.0 3.0

Table 4.17.: Size parameters

fit to the weak and electromagnetic leptonic decay constants together with their
experimental values. Once the fit parameters are fixed one can use them to calculate
a wide range of electromagnetic decay widths. The results of the calculation are
presented in Tab. 4.20 which also includes experimental results whenever they are
available.

4.8. Dalitz decays

As a final task we apply our approach to the Dalitz decays P → γl+l− and V →
P l+l− (for a theoretical review, see e.g. [209]). In particular, we analyze the tran-
sition form factors of the Dalitz decays η → γµ+µ− and ω → π0µ+µ− which have
recently been measured by the NA60 collaboration at the CERN SPS [210]. The
ω → π0µ+µ− transition form factor has also been analyzed by the SND Collabora-
tion at the BINP (Novosibirk) [211]. Here data is usually plotted as function of the
dilepton mass M =

√
q2, see e.g. [210].

The diagrams describing the Dalitz decays are shown in Fig. 4.27. They include
both the diagrams with direct emission of the photon and resonance diagrams with
an intermediate V → γ transition. The differential cross sections in dependence on
the dilepton mass squared q2 = (pl+ + pl−)

2 reads

dΓ(P → γl+l−)

dq2
=
2

3

α

π

Γ(P → γγ)

q2

(
1 +

2m2
l

q2

)(
1− 4m2

l

q2

)1/2(
1− q2

m2
P

)3
×
∣∣∣FP (q2)

∣∣∣
2

,

4m2
l ≤ q2 ≤ m2

P , (4.182)
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Meson Our Data [174]

π− 130.2 130.4± 0.04± 0.2

K− 155.4 155.5± 0.2± 0.8

D+ 206.2 205.8± 8.9

D+
s 273.7 273± 10

B− 216.4 216± 22

B0
s 250.2 253± 8± 7

Bc 485.2 489± 5± 3 [206]

ρ+ 209.3 210.5± 0.6 [174]

D∗+ 187.0 245± 20+3
−2 [207]

D∗+
s 273.6 272± 16+3

−20 [208]

B∗+ 210.6 196± 24+39
−2 [207]

B∗0
s 264.6 229± 20+41

−16 [207]

Table 4.18.: Weak leptonic decay constants fP (V ) in MeV.

Meson Our Data [174]

ρ0 148.0 154.7 ± 0.7

ω 51.7 45.8 ± 0.8

φ 76.3 76 ± 1.2

J/ψ 277.4 277.6 ± 4

Υ(1s) 238.4 238.5 ± 5.5

Table 4.19.: Electromagnetic leptonic decay constants fV of hidden flavor vector
mesons in MeV.
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Process Our Data [174]

π0 → γγ 6.03 × 10−3 7.7± 0.6 10−3

η → γγ 0.44 0.510± 0.026

η′ → γγ 7.21 4.28± 0.19

ηc → γγ 4.95 7.2± 0.7± 2.0

ηb → γγ 0.47

ρ0 → e+e− 6.33 7.04± 0.06

ω → e+e− 0.76 0.60± 0.02

φ→ e+e− 1.27 1.27± 0.04

J/ψ → e+e− 5.54 5.55± 0.14± 0.02

Υ → e+e− 1.34 1.34± 0.018

ρ± → π±γ 70.25 68± 7

ρ0 → ηγ 42.48 62± 17

ω → π0γ 677.80 788± 12± 27

ω → ηγ 5.5 6.1± 2.5

η′ → ωγ 4.5 9.06± 2.87

φ→ ηγ 57.0 58.9± 0.5± 2.4

φ→ η′γ 0.12 0.27± 0.01

K∗± → K±γ 40.86 50± 5

K∗0 → K±γ 122.85 116± 10

D∗± → D±γ 0.62 1.5± 0.8

D∗0 → D0γ 22.02 < 0.9 × 103

D∗±
s → D±

s γ 0.30 < 1.8 × 103

B∗± → B±γ 0.36

B∗0 → B0γ 0.12

B∗0
s → B0

sγ 0.12

J/ψ → ηcγ 1.89 1.58 ± 0.37

Υ → ηbγ 0.02

Table 4.20.: Electromagnetic and leptonic decay widths in keV.
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Figure 4.27.: Diagrams describing the Dalitz decays P → γl+l− (upper panel) and
V → P l+l− (lower panel).

dΓ(V → P l+l−)

dq2
=
1

3

α

π

Γ(V → Pγ)

q2

(
1 +

2m2
l

q2

)(
1− 4m2

l

q2

)1/2(
1− q2

(mV −mP )2

)3/2

×
(
1− q2

(mV +mP )2

)3/2 ∣∣∣FV (q2)
∣∣∣
2

,

4m2
l ≤ q2 ≤ (mV −mP )

2 . (4.183)

In our approach the normalized transition form factors are calculated in terms of
the diagrams Fig. 4.27. The form factors are given by

FP (q
2) =

1

gPγγ
×
{
gPγγ(q

2) +
∑

V=ρ, ω, φ

gPV γ(q
2)DV (q

2) q2gV γ(q
2)
}
, (4.184)

FV (q
2) =

1

gV Pγ
×
{
gV Pγ(q

2) +
∑

V ′=ρ, ω, φ

gV PV ′(q2)DV ′(q2) q2gV ′γ(q
2)
}
. (4.185)

The contributions of the intermediate vector meson resonances are described by a
Breit–Wigner form where we have used a constant width in the imaginary part, i.e.
we have used

DV (q
2) =

1

m2
V − q2 − imV ΓV

. (4.186)

In Figs. 4.28 and 4.29 we plot the transition form factors for the two Dalitz decays
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η → µ+µ−γ and ω → π0µ+µ− measured by the CERN NA60 Collaboration [210]
and the SND Collaboration BINP (Novosibirk) [211]. One can see that our approach
gives a reasonable description of the experimental data. In Tab. 4.21 we present
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Figure 4.28.: The form factor of the Dalitz decay ω → π0l+l− as function of the
dilepton mass M =

√
q2. Experimental data is taken from [210]. For

comparison we also show the VDM–curve with Λ = 1.68GeV2 taken
from [209].

our results for the slope parameters defined by F ′
X(0). Finally, our predictions for

the Dalitz decay widths are given in Tab. 4.22.

Summary

We have refined a relativistic constituent quark model [135] to include quark confine-
ment effects. Quark confinement was implemented by introducing an upper cutoff
on a scale integration which, in the original quark model, extends to infinity. The
introduction of such an infrared cutoff removes all physical quark thresholds in the
original quark transition diagrams. The cutoff parameter is taken to be the same
for all physical processes. We adjust the model parameters by fitting the calculated
quantities of the basic physical processes to available experimental data. As an ap-
plication we calculate the electromagnetic form factors of the pion and the transition
form factors of the Dalitz decays.
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Figure 4.29.: Our result for the η → γl+l− Dalitz decay in dependence on the
dilepton mass M =

√
q2. Experimental data is taken from [210] and

[211]. We also indicate the VDM–curve with Λ = 1.8GeV2 (see [209]).

Decay mode Our Data

π0 → γl+l− 1.4 5.5± 1.6 [212]

η → γl+l− 1.5 3± 1 [213]

1.95± 0.17± 0.05 [210]

η′ → γl+l− 1.2 1.68 [214]

ρ0 → π0l+l− 1.8

ω → π0l+l− 1.8 2.24± 0.06± 0.02 [210]

ρ0 → ηl+l− 1.9

ω → ηl+l− 1.1

φ→ ηl+l− 1.1

φ→ η′l+l− 0.4

Table 4.21.: Slope parameters of the Dalitz transition form factors in GeV−2.
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Decay mode Our Data [174]

π0 → γe+e− 7.2×10−5 (9.39± 0.72)× 10−5

η → γe+e− 7.28 ×10−3 (8.84± 1.14) ×10−3

η → γµ+µ− 0.31 ×10−3 (4.03± 0.56) ×10−3

η′ → γe+e− 0.1 < 0.2

η′ → γµ+µ− 1.8×10−2 (3.2± 1.2) ×10−2

ρ0 → π0e+e− 1.1 < 2.3

ρ0 → π0µ+µ− 0.1

ω → π0e+e− 10.4 6.54± 0.77

ω → π0µ+µ− 1.2 0.82± 0.20

ρ0 → ηe+e− 1.1 < 1

ω → ηe+e− 0.1 < 9.3× 10−2

φ → ηe+e− 0.67 0.49± 0.04

φ → η′e+e− 5.2 ×10−3

φ → ηµ+µ− 1.5 ×10−2 < 4 ×10−2

Table 4.22.: Dalitz decay widths in keV.

4.9. Conclusions

In this chapter we introduced a theoretical approach for the description of hadronic
bound states. Despite that we deal with a rather simple model it is successfully ap-
plied to various kinds of hadron structures ranging from conventional qq̄ mesons (and
qqq baryons, not discussed in this thesis) to bound states on the hadron level, here
meson–meson molecules. The method is obviously not restricted to particular flavor
sectors as in the cases of ChPT or heavy quark effective theory. In the present work
we studied meson molecules in the light sector, heavy charmonium–like hadronic
molecules and finally discussed an extensive application to light, heavy–light and
double–heavy qq̄ mesons. The compositeness condition provides a self–consistent
method to determine the coupling between the bound state and its constituents
once the bound state mass is chosen. Thus the number of free parameters is re-
duced to the size parameters Λ of the respective hadrons. Here we do not fit Λ to
each hadron (molecule) but rather determine its value for each hadron and flavor
sector (e.g. 1–2 GeV for light and heavy meson molecules). Since we work in a fully
covariant Lagrangian approach a further introduction of the electroweak interaction
is rather straightforward. Especially the basic requirement of gauge invariance both
in the Lagrangian and on the level of transition amplitudes can be shown to be
fulfilled.



Chapter 4. Effective Model for Hadronic Bound States 151

Our results confirm the assumption that the light scalars a0(980) and f0(980) can
be interpreted by a dominant kaon and antikaon bound state configuration. In
particular, the hadronic molecule interpretation is sufficient to describe both the
electromagnetic and strong a0 and f0 decays based on the current status of experi-
mental data. Furthermore, the f0−a0 mixing strength could deliver new insights into
contributions being responsible for isospin–violating mixing and the meson structure
issue.
We also applied this bound state method to the charmonium–like mesons Y (3940)
and Y (4140), which are not simply explained as cc̄ states due to the large hidden–
charm decay widths, and to the Z±(4430) which cannot be assigned to a cc̄ state
because it is charged. Our results confirm the strong suspicion that the three candi-
dates are possibly bound states of charmed mesons. The meson molecule approach
allows to circumvent the OZI suppression of hidden charm decay modes and repro-
duces the experimental observations.
Finally, we applied the covariant method as a relativistic quark model. Color con-
finement is effectively modeled by introducing the infrared confinement parameter
λ, which removes the threshold restriction that the mass of the bound state has to
be smaller than the sum of the constituents. This modification allows e.g. for the
application of the model to the full range of qq̄ states including excited ones. First,
we use the pion and ρ properties to fit the infrared cutoff which allows us to study
for example the Dalitz decays of the π, ω and η(′) mesons.
In conclusion, the bound state model provides a very clear and straightforward
approach to determine the decay properties of a whole kind of hadronic bound
states.





5. Holographic model AdS/QCD

With the AdS/QCD model we present the last approach for the description of hadron
structure. The present holographic model deviates from the more standard meth-
ods which were introduced in the previous chapters since now we deal with extra
dimensions. In general, the AdS/QCD correspondence is probably one of the most
significant results of string theory since it provides a connection between the physical
world of hadron matter and string theory based on extra dimensions. Holographic
approaches are a very contemporary research topic which attracted much interest
in recent years. It offers an interesting and promising method to apply perturbative
string theory calculations to nonperturbative QCD problems with the hope to make
the theory of strong interactions analytically tractable. The aim of AdS/QCD is to
provide a description of hadrons in terms of their QCD degrees of freedom—quarks
and gluons—which allows for the computation of mass spectra and other observ-
ables. Holographic approaches find their application in more and more research
fields like strong interaction, quantum gravity and astronomy.
In the present work based on Ref. [28] the AdS/QCD model is applied to mesons
which are reduced to their qq̄ valence quarks. We calculate the mass spectrum of
light, heavy–light and double heavy mesons, where we include explicit quark masses,
color Coulomb and hyperfine–splitting corrections. Finally, we also study the decay
constants of the ground state mesons.

5.1. Basic approach

AdS/QCD is often also termed AdS/CFT correspondence which already indicates
the two basic blocks of the theory. AdS/CFT approaches provide a relation between
string theory, which is a quantum theory of gravity and other fields, and a quantum
field theory with conformal invariance. The string theory part of the model is
represented by the Anti–de–Sitter space (AdS) containing an extra dimension, in
particular we deal with a five–dimensional AdS5 space. The complementary part
of the model represents the physical hadronic objects which are described in the
framework of a conformal field theory (CFT).

In the following we will introduce the AdS/CFT approach in more detail. The
starting point is a general overview of the model before we discuss the basic blocks
of AdS/CFT separately. To simplify matters we start with the most simple case
of AdS/CFT. Then we introduce successively breaking of the conformal invariance

153



154 5.1. Basic approach

(equivalent to confinement) and quark masses. We perform a refinement of the model
by considering one–gluon exchange terms and hyperfine–splitting effects. Finally,
we use the present holographic model to compute the mass spectra of mesons and
decay constants, where the method is not restricted to light mesons, i.e. pions,
as in the pioneering works (see e.g. [215]) but we consider light, heavy–light and
double–heavy mesons.
The AdS/CFT formalism is schematically depicted in the following diagram which
will be discussed below.

String–Theory
in AdS space

– 5 dimensions
4 space–time coordinates x,
one holographic variable z

– state:
string mode Φ(z)

Matching
⇔

CFT
in physical space–time

– (3+1) dimensions
4 space–time coordinates x

– physical states:
light cone wave functions ψ(ζ)
ζ : impact variable
(extension of hadron)

Figure 5.1.: Overview diagram of the AdS/CFT model.

The basis of the holographic model is provided by the additional fifth coordinate
z which is included in the five–dimensional AdS5 space (left box of Diagram 5.1).
The scenario is schematically depicted in Fig. 5.2: The four–dimensional surface
of the AdS5 space represents the flat four–dimensional space we know containing
three space coordinates plus a time dimension. The holographic variable z is per-
pendicular to the four space–time coordinates since we deal with a flat metric and
it is in the interior of the AdS space. The string modes Φ(x, z) living on the extra
dimensional holographic variable z included in the AdS5 space are projected on our
four–dimensional space–time as hadronic objects. For this reason AdS/CFT models
are also called holographic approaches. Similar to a hologram, which encodes in-
formation of three dimensional objects in a two dimensional image, in holographic
approaches string theory states of higher space–time dimensions are mapped on
the four–dimensional space–time (boundary) which are identified with the hadron
states in the conformal field theory. Of course the projection of the string states,
corresponding to the size of the hadronic object or rather the impact variable ζ ,
cannot become arbitrary large because of confinement. Therefore we need to intro-
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duce a cutoff along the z–coordinate at a value of about z0 = 1/ΛQCD which will be
discussed later on.

Figure 5.2.: Graphical representation of holographic models.

The counterpart of the AdS/CFT approach is the (hadronic) QCD–side of the the-
ory which is addressed by means of a conformal field theory representing our four–
dimensional space–time (see right box of Diagram 5.1). Hadronic states are ex-
pressed by its light front wave functions (LFWF) depending on the impact variable
ζ which denotes the spatial extension of the hadron. The light front Fock expansion
of the physical states is necessary in order to be able to perform the matching of the
projection of the string mode on the AdS side and the hadronic object on the CFT
side of the model. We will see that the holographic variable z can be identified with
the impact variable ζ . In the following sections we shortly introduce the building
blocks of the AdS/CFT approach.

5.1.1. Anti–de–Sitter space

Topologically the Anti–de–Sitter (AdS) space is a maximally symmetric Lorentzian
manifold with constant negative curvature which leads to an effective attractive
potential. The curvature leads to some special physical properties of the AdS–
space: each object which is emitted from an observer returns after a constant time
duration—only the distance changes with the initial velocity. Even when emitting a
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light signal to infinity it comes back at the same time duration as a nonrelativistic
object. The reason is a kind of a time dilatation which increases with the distance
from the observer.

In physics the Anti–de–Sitter space is often mentioned in the context of General
Relativity, where it provides the vacuum solution of Einstein’s field equations. Fur-
thermore the Anti–de–Sitter space also plays an important role in astronomy since
in some theoretical models the universe is represented by a five–dimensional AdS5

space. A well–known example is the Randall–Sundrum–Model [216, 217] considering
the observable world to be a part of a higher dimensional space. More precisely the
universe might consist of two branes which are connected by the fifth dimension.
Here the notation ’brane’ is derived from the word membrane which refers to the
lower dimensional boundary of the respective space (here AdS5). Our observable
world is represented by one of the branes containing the Standard Model fields. Due
to the curved space–time we do not have access to the other brane and in contrast
to the electroweak and strong forces only the gravitational force can act along the
fifth dimension. This ansatz yields an explanation for the weakness and special
nature of gravity, i.e. to solve the hierarchy problem which was one reason for the
development of the Randall–Sundrum–Model.

The metric in AdS5 space is given by

ds2 =
R2

z2
(
ηµνdx

µdxν − dz2
)
=
(
gMNdx

MdxN
)
. (5.1)

Here R is the AdS radius, the x are the four–dimensional space–time coordinates
and z is the fifth dimension (holographic variable). Therefore, the indices µ and ν
run from 0 to 3 and the tensor ηµν is the well known metric tensor gµν in Minkowski
space. The metric can also be expressed by the metric tensor in d+ 1 dimensions

gMN =
R2

z2




1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1




, (5.2)

where M,N = 0, ..., 4. From Eq. (5.1) it is obvious that the AdS metric is invariant
with respect to the scale transformations xµ → λxµ, z → λz. Therefore, scale
transformations in the holographic variable z are mapped onto the four–dimensional
space–time and vice versa (see also Fig. 5.2).
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Figure 5.3.: Strong coupling constant αs(Q
2) taken from [218].

5.1.2. Conformal field theory

The scale invariance of the AdS/CFT approach leads us to the next topic which is
conformal field theory (CFT). As the name already says a CFT is invariant under
conformal transformations which here is equivalent to scale invariance. One might
ask how a scale invariant theory is capable to describe QCD which is rather known
to be scale dependent. As depicted in Fig. 5.3 the strong coupling is very small at
small scales, known as asymptotic freedom, while it becomes large in the strongly
coupled region which makes QCD nonperturbative (see Fig.5.3). However, several
theoretical investigations like the Dyson–Schwinger analyses for 3- and 4–gluon ver-
tices [219, 220] or lattice gauge theory [221, 222] predict an infrared fixed point which
is equivalent to a conformal window at large distances where the strong coupling αs
is almost stable (in Fig.5.3 between Q =0.1 and 0.4 GeV). Of course the conformal
invariance has to be broken at some point since the issue of confinement needs to be
implemented in the present model. Usually this problem is solved by introducing
boundary conditions in the holographic variable z at the scale z0 = 1/ΛQCD which
simulates confinement. In particular, we differentiate between hard–wall and soft–
wall approaches. In the case of the hard–wall approach a hard cut–off is introduced
in the holographic variable z while when dealing with soft–wall approaches a soft
cut–off is realized e.g. by a introducing a dilaton field or by modifying the metric of
the AdS space (introducing a warp factor in the metric). Since hard–wall approaches
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fail to reproduce the Regge–like behavior L ∝M2 of the mass spectrum of hadrons
in the following we pursue the soft–wall method.

5.1.3. Light front Fock representation

To perform the matching between the string mode φ(z) and the hadron wave function
ψ(ζ) as indicated in the diagram of Fig. 5.1 it is necessary to perform the analysis
in the light front formalism. We will see later that matrix elements in light front
representation are similar to the corresponding expressions derived in the AdS space
which is a necessary condition to perform the matching. The light–cone coordinate
system [223] was originally proposed by Dirac around 1950 to provide an effective
method for treating the geometry of the Lorentz transformation in a rectangular
coordinate system.
In order to switch from instant to light front representation we have to introduce
new coordinates x = (x+, x−, ~x⊥) which are related to the Minkowski coordinates
xµ = (x0, x1, x2, x3) by

x± = x0 ± x3 ,

~x⊥ =

(
x1

x2

)
.

(5.3)

x± and ~x⊥ are called the longitudinal and transversal coordinates. For example, in
the case of a parton with momentum p the coordinate p+ denotes the forward while
~p⊥ is related to the transversal momentum component. In light front representation
the scalar product is given by x · y = (x+y− + x−y+)/2− ~x⊥ · ~y⊥.
To demonstrate the advantage of the light front representation we consider a Lorentz–
boost in x1–direction with velocity v in the instant and front form. In the instant
form the Minkowski coordinates transform as

x0
′
= cosh η x0 − sinh η x1 ,

x1
′
= − sinh η x0 + cosh η x1 , (5.4)

x2
′
= x2, x3

′
= x3 ,

where cosh η = 1/
√
1− v2/c2 and sinh η =

√
cosh2 η − 1. In the light front repre-

sentation the Lorentz transformation takes the simple form

x+
′
= x0

′
+ x1

′
= x+ e−η ,

x−
′
= x0

′ − x1
′
= x− eη , (5.5)

~x ′
⊥ = ~x⊥ .

In contrast to the Minkowski coordinates in Eq. (5.4) the x± variables are not linearly
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dependent under this transformation but they only undergo scale transformations,
where the scalar product remains constant.

The difference between light front and instant (ordinary) time evolution is graphi-
cally illustrated by the conic sections in Fig. 5.4. For the instant time evolution, we
are used to, a light signal expands spherically from a light source which is depicted in
the left panel of Fig. 5.4: The intersection of the light cone (in blue) and the plane,
which is moved in x0 ≡ ct–direction to simulate the time evolution, represents the
two–dimensional expansion of the light. While in the instant time evolution the time
at which objects are illuminated increases linearly with the distance from the light
source the situation is completely different in the front form. Here all objects that
are placed in one particular direction are illuminated at the same time no matter at
which distance from the light source they are placed. This property is graphically
depicted in the right panel of Fig. 5.4: At time t = 0 when the flash is emitted the
intersection of the plane with the light cone is represented by a line which is the
x−–axis. Therefore all objects that are placed in x−–direction are illuminated at
this time. Then the light expands parabolically from this line which is equivalent to
moving the plane in direction of the x+–axis (indicated by the red arrows).

Figure 5.4.: Time evolution in instant and light front time.

The aim of the AdS/QCD approach is to derive hadron wave functions which allow
for the computation of a large variety of hadron observables. For this purpose we
write down the light–front Hamiltonian for the composite hadron system

HLF = P+P− − ~p 2
⊥ (5.6)
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which has the eigenvalues M2 of the hadron mass M :

HLF

∣∣ψH
〉
=M2

∣∣ψH
〉
. (5.7)

Here
∣∣ψH

〉
is the expansion of the hadron state in multi–particle Fock eigenstates{∣∣n

〉}
of the free light–front Hamiltonian

∣∣ψH
〉
=
∑

n

ψn/h
∣∣ψH

〉
. (5.8)

At this stage it is required to introduce the light front Fock representation of hadrons
in more detail. For this purpose we first express the hadron state

∣∣ψH(P+, ~P⊥, S)
〉

with momentum P and spin S by the sum over all possible configurations containing
n constituents starting with the valence quark state. For example when dealing with
mesons the minimal number of constituents is n = 2, the valence quark–antiquark
pair qq̄. Further Fock states contain additional gluons and sea–quark–antiquark
pairs. The full expansion of the hadron state

∣∣ψH(P+, ~P⊥, S)
〉
in n–parton Fock

states reads

∣∣ψH(P+, ~P⊥, S)
〉
=
∑

n,λi

n∏

i=1

∫
dxi√
xi

d2k⊥i
2(2π)3

(16π3)δ
(
1−

n∑

j=1

xj
)
δ(2)
(∑

j

k⊥j
)

× ψn/H(xi, ~k⊥i, λi)
∣∣n : xiP

+, xi ~P⊥ + ~k⊥i, λi
〉
. (5.9)

Here we denote the spin, longitudinal and relative transverse momentum of the

respective constituent i by λi, k
+
i and ~k⊥i. The variable xi =

k+i
P+ represents the

longitudinal momentum fraction of parton i. Momentum conservation leads to two
simple conditions: The sum over all momentum fractions is one and all transverse
momentum contributions of the partons cancel each other which leads to the follow-
ing equations

∑

i

xi = 1 ,

∑

i

~k⊥i = 0 .
(5.10)

A special feature of the coefficients of the Fock expansion

ψn/H(xi, ~k⊥i, λi) =
〈
n : xiP

+, xi ~P⊥ + ~k⊥i, λi
∣∣ψH

〉
(5.11)

is the boost invariance with respect to the momentum P . This is fulfilled since
the wave functions ψn/H(xi, ~k⊥i, λi) only depend on the relative partonic coordi-

nates xi, ~k⊥i and λi and not on the total momentum and spin of the hadron. The
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normalization of the hadron state is as follows

〈
ψH(P

′+, ~P ′
⊥, S

′)
∣∣ψH(P+, ~P⊥, S)

〉
= 2P+(2π)3δ(P+−P ′+)δ(2)(~p⊥−~p ′

⊥i)δS,S′ . (5.12)

For our calculations we express the n–particle Fock state
∣∣n : xiP

+, xi ~P⊥ + ~k⊥i, λi
〉

with the help of creation and annihilation operators b†λ, bλ and d†λ, dλ of quarks and
antiquarks, respectively, which fulfill the operator relations

{
bλ(p), b

†
λ′(p

′)
}
= {dλ(p), d†λ′(p′)} = (2π)3δλλ

′

δ(p+ − p′+)δ(2)(~p⊥ − ~p′⊥) . (5.13)

A n particle Fock state is then defined by

∣∣n : p+i , ~pi⊥, λi
〉
=
∏

i

√
2p+i b

†
λi
(pi)
∣∣0
〉

(5.14)

and has the normalization

〈
p+i , ~p⊥i, λi

∣∣p′+i , ~p′⊥i, λ′i
〉
= 2p+i (2π)

3δ(p+i − p′+i )δ(2)(~p⊥i − ~p′⊥i)δλi,λ′i . (5.15)

Considering the normalizations of the hadron and Fock states of Eqs. (5.12) and

(5.15) the norm of the coefficients ψn/H(xi, ~k⊥i) can be easily derived as:

∑

n

∫
dxid

2~k⊥i
∣∣ψn/H(xi, ~k⊥i)

∣∣2 = 1 . (5.16)

In the present thesis we apply the AdS/CFT approach to mesons where we restrict
to the lowest Fock state (n = 2) which is the two–parton system of the valence
quark–antiquark pair. The corresponding truncated Fock expansion of Eq. (5.9)
reads

∣∣ψH(P+, ~P⊥, S)
〉
=

∑
λi

2∏
i=1

∫
dxi√
xi

d2k⊥i
2(2π)3

(16π3)δ
(
1−

2∑
j=1

xj
)
δ(2)
(∑

k⊥j
)

×ψ2/H(xi, ~k⊥i, λi)
∣∣2 : xiP

+, xi ~P⊥ + ~k⊥i, λi
〉
. (5.17)

Above expression can be simplified with the δ–function and by defining x1 ≡ x,
x2 ≡ 1− x, and ~k1⊥ = −~k2⊥ ≡ ~k⊥ which leads to

∣∣ψH(P+, ~P⊥, S)
〉
=
∑

λi

∫
dx√

x(1− x)

d2k⊥
2(2π)3

ψ2/H(x,~k⊥)

2∏

i=1

∣∣2 : xiP
+, xi ~P⊥ + ~k⊥i, λi

〉
.

The operator representation (5.14) of the two–particle (quark–antiquark) Fock state
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leads to

2∏

i=1

∣∣2 : xiP
+, xi ~P⊥ + ~k⊥i, λi

〉
= 2
√
p+1 p

+
2 b

†
λ1
d†λ2
∣∣0
〉
, (5.18)

with the quark momenta p1 = (xP+, x ~P⊥+~k⊥) and p2 = ((1− x)P+, (1− x)~P⊥ − ~k⊥).
Finally, we can express the meson state in the simple form

∣∣ψH(P, S)
〉
=

2P+

√
2Nc

1∫

0

dx

∫
d2k⊥
16π3

ψ(x,~k⊥)
∑

λ1,λ2

b†λ1(p1)d
†
λ2
(p2)

∣∣0
〉

(5.19)

where Nc = 3 is the number of colors.
Now we can easily generate the Fock states of pseudoscalar (P ), scalar (S), vec-
tor (V ) and axial (A) mesons, restricting again to the valence quark-antiquark
contribution only. The corresponding mesonic eigenstates with momentum P =
(P+, P−, ~P⊥) are given by

∣∣MP,S(P )
〉
=

2P+

√
2Nc

1∫

0

dx

∫
d2~k⊥
16π3

ψq1q̄2(x,
~k⊥)
[
d†aq1↑(p1)q2↓(p2)− d†aq1↓(p1)b

†a
q2↑(p2)

]
|0〉

(5.20)

∣∣MV,A(P, λ)
〉
=

2P+

√
2Nc

1∫

0

dx

∫
d2~k⊥
16π3

ψq1q̄2(x,
~k⊥)

×





d†aq↑(xP ) b
†a
q↑((1− x)P )

∣∣0
〉√

2 , λ = +1

d†aq↑(xP ) b
†a
q↓((1− x)P ) + d†aq↓(xP ) b

†a
q↑((1− x)P )

∣∣0
〉
, λ = 0

d†aq↓(xP ) b
†a
q↓((1− x)P )

∣∣0
〉√

2 , λ = −1

,

(5.21)

where the polarization vectors ǫµ(P, λ) in the light-cone representation read as

ǫµ(P, λ) =





(
P+

MV
,
~P 2
⊥
−M2

V

MV P+ ,
~P⊥

MV

)
, λ = 0

(
0, 2~e⊥(±1)~P⊥

P+ , ~e⊥(±1)

)
, λ = ±1

(5.22)

with ~e⊥(±1) = ∓ (1,±i)√
2
.
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5.2. AdS/QCD – the method

After we introduced the basic blocks of the AdS/QCD approach in the previous
section we are now able to focus on the technical procedure of this method.
In the following we demonstrate the method where we start with the most simple
case and step by step we include the basic requirements to be contained in the model
as confinement and finite quark masses.

5.2.1. Action of a string

The starting point of the AdS/QCD approach is provided by the action of a string
mode Φ in five–dimensional AdS5 space. More precisely, we set up the action of a
spin–J field Φ with momentum P and mass M :

SΦ =
(−1)J

2

∫
ddxdz

√
g

(
∂NΦJ∂

NΦJ − µ2
J ΦJΦ

J

)
, (5.23)

g denotes the metric of the AdS space given by g = |detgMN | = (R/z)2(d+1) (see
Eq. (5.2)). We separate the holographic variable z from the flat 4–dimensional
coordinates x by choosing a plain wave ansatz along the Poincaré coordinates x
while we assume a profile function ΦnJ(z) in the holographic variable z

Φν1···νJ (x, z) → e−iPnxΦnJ(z) . (5.24)

The equation of motion (EoM) of the string ΦnJ (z) can be easily derived by means
of variational calculus which leads to a Schrödinger–type equation

(
− d2

dz2
− 1− 4L2

4z2
)
ϕnJ(z) = M2ϕnJ(z) , (5.25)

where ϕnJ(z) is defined by ϕnJ(z) = e−φ(z)/2
(
R
z

)−J+(d−1)/2
ΦnJ(z). Up to now we

assumed a fully conformal behavior of the model which of course is not correct
since we have to consider the effect of confinement. In the introduction of this
chapter we already mentioned the different possibilities to implement confinement.
The hard– and soft–wall approaches, which are compared in the following graphics,
put limits on the z–values for example near z0 = 1/ΛQCD which leads to additional
potentials U(z) in the EoM. Both approaches are compared in the following graphic
representation:
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Two scenarios for AdS/QCD backgrounds

ւ ց

Hard Wall Model

IR cutoff in the holographic
variable

U(z) =

{
0 z ≤ 1

ΛQCD

∞ z ≥ 1
ΛQCD

M ∝ L

Soft Wall Model

Soft cutoff by dilaton field
⇒ HO–Potential ∝ z2:

U(z) = κ4z2 + 2κ2(J − 1)
κ: scale parameter.

Regge trajectory: M2 ∝ L.

In the case of the hard–wall model the infrared cutoff leads to a step potential which
is the cause for the major problem of the hard–wall scenario: The hadron masses of
orbital excitations have linear dependence on the orbital angular momentum with
M ∝ L instead of the experimentally favored quadratic behavior M2 ∝ L known as
Regge trajectory. This problem is circumvented in the soft–wall approach, where the
introduction of a dilaton field (see below) leads to an effective harmonic oscillator
potential. In fact, the soft–wall model was initiated in order to solve the problem
of the hadronic mass spectrum.
For these reasons we restrict in the following to the soft–wall approach. Here we
include an additional field which breaks the dilatation symmetry under x → λx,
hence it is called dilaton field. The dilaton field φ(z) = κ2z2 is dependent on the
scale parameter κ. The action of the string is modified by

SΦ =
(−1)J

2

∫
ddxdz

√
g e−φ(z)

(
∂NΦJ∂

NΦJ − µ2
J(z) ΦJΦ

J

)
. (5.26)

In order to allow for the interaction of the dilaton field with the string mode ΦnJ(z)
we include a nontrivial z–dependence of the mass term which now is ’dressed’ with
µ2
J → µ2

J(z) = µ2
J+gJφ(z) which is an additional source for breaking of the conformal

symmetry.
The equation of motion now reads as

(
− d2

dz2
− 1− 4L2

4z2
+UJ(z)

)
ϕnJ(z) =M2

nJϕnJ(z) (5.27)

where the additional potential UJ (z) = κ4z2 + 2κ2(J − 1) arises due to the dila-
ton field. By solving the differential equation (5.27) we can easily determine the
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eigenfunctions

ϕnL(z) =

√
2n!

(n+ L)!
κ1+L z1/2+L e−κ

2z2/2LLn(κ
2z2) , (5.28)

where

Lmn (x) =
x−mex

n!

dn

dxn

(
e−xxm+n

)
(5.29)

are the generalized Laguerre polynomial. The corresponding eigenvalues

M2
nJ = 4κ2

(
n +

L+ J

2

)
(5.30)

we will later identify with the meson masses.
Here we do not divide the total angular momentum J into the quantum numbers
of the quark–antiquark pair – orbital angular momentum L and internal spin S.
Such a model ansatz was done in Refs. [215]-[224]. Because of J = L or J = L± 1
the present Soft-Wall model generates linear Regge trajectories in both quantum
numbers n and J (or L): M2

nJ ∼ n+ J .

5.2.2. Matching procedure

So far we only dealt with the ’string side’ of the model. In the next step we want
to make contact with the hadronic world. In order to relate the AdS string mode
ΦnJ(z) to physical states we express for example the pion form factor F defined by

〈
P ′∣∣Jµ(0)

∣∣P
〉
= 2(P + P ′)µ F (Q2) (5.31)

in the AdS and light front formalism. In AdS space the form factor is characterized
by the transition amplitude between initial and final string mode ΦnJ (z) [225]

F (Q2) =

∞∫

0

dzΦnJ (z)J(Q
2, z)ΦnJ (z) (5.32)

and the current J is given by

J(Q2, z) =

1∫

0

dx J0

(
zQ

√
1− x

x

)
, (5.33)

where J0 are the Bessel functions.
Due to the use of light front coordinates and the introduction of the impact variable
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ζ the corresponding expression for the electromagnetic form factor of the pion in
the light front formalism can be written in a similar form as in Eq. (5.32)

F (Q2) = 2π

1∫

0

dx
1− x

x

∞∫

0

dζζJ0
(
ζQ

√
1− x

x

)
ρ̃(x, ζ) , (5.34)

where ρ̃(x, ζ) is the effective parton distribution (details see [225]).

By matching the expressions in Eqs. (5.32) and (5.34) we immediately see that the
holographic and impact variables z and ζ have to be equal. Furthermore we obtain
the relation

ρ̃(x, ζ) =
x

1− x

∣∣ΦnJ(ζ)
∣∣2

2πζ
. (5.35)

Since we deal with qq̄ mesons we can insert the density for a two–parton system
which is proportional to the absolute value of the meson wave function squared

ρ̃n=2(x, ζ) =

∣∣ψ̃nJ(x, ζ)
∣∣2

(1− x)2
1

Pq1q̄2
. (5.36)

Here we also consider the the probability Pq1q̄2 of finding the valence Fock state∣∣q1q̄2
〉
in the meson M. By inserting the two–parton density in Eq. (5.35) we can

express the meson wave function ψ̃(ζ) by the string mode ΦnJ (z):

∣∣ψ̃q1q̄2nJ (x, ζ)|2 = Pq1q̄2 x(1 − x)
|ΦnJ(ζ)|2

2πζ
. (5.37)

Since the expression for the string mode ΦnJ(z) is known (see Eq. (5.28)) we can
write down the explicit form of the meson wave function

ψ̃q1q̄2nL (x, ζ) =

√
Pq1q̄2
π

√
x(1− x)

√
n!

(n+ L)!
κ1+LζL exp

(
− κ2ζ2/2

)
LLn(κ

2ζ2) . (5.38)

For the following calculations it is advantageous to express ζ by the transverse
coordinate ~b⊥ which is the Fourier conjugate to the transverse momentum ~k⊥.

ζ2 = ~b 2⊥x(1 − x) . (5.39)
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Therefore we obtain

ψ̃q1q̄2nL (x,~b⊥) =

√
Pq1q̄2
π

√
x(1 − x)

L+1

√
n!

(n+ L)!
κ1+L

∣∣~b⊥
∣∣L exp

(
− κ2~b 2⊥x(1− x)/2

)

× LLn(κ
2~b 2⊥x(1 − x)) (5.40)

and the corresponding expression in momentum space ψ̃q1q̄2(x,
~k⊥) is derived by

taking the Fourier transformation resulting in

ψq1q̄2nL (x,~k⊥)

=
√
4π

∫
d2~b 2⊥e

i~k⊥~b⊥ψ̃q1q̄2(x,
~b⊥) (5.41)

=

√
Pq1q̄2√

x(1− x)
L+1

√
n!

(n+ L)!
κ1+L

∣∣~k⊥
∣∣L exp

(
−

~k2⊥
2κ2x(1− x)

)
LLn

( ~k2⊥
κ2x(1 − x)

)
.

With the representation (5.40) the probability for a two–parton state can be deter-
mined from

Pq1q̄2 =

1∫

0

dx

∫
d2b|ψ̃q1q̄2(x,~b⊥)|2 ≤ 1 , (5.42)

where we restrict in the following to the case of Pq1q̄2 = 1. The only exceptions are
the pions and kaons with Pq1q̄2 = 0.6 and 0.8, respectively. Here the probabilities
for the two–parton states were fitted to data.

In the next step we consider the quark masses which have been neglected so far. The
inclusion of finite quark masses has been considered by Brodsky and de Téramond
[226]. We illustrate this procedure by means of the ground state LFWFs in momen-
tum space (5.41)

ψq1q̄2n=0,L=0(x,
~k⊥) =

4π

κ
√
x(1− x)

exp
(
−

~k2⊥
2κ2x(1− x)

)
. (5.43)

The quark masses are introduced by extending the kinetic energy of massless quarks
by

~k 2
⊥

x(1− x)
→

~k 2
⊥

x(1− x)
+m2

12 , m2
12 =

m2
1

x
+

m2
2

1− x
. (5.44)

which is equivalent to the following modification of the kinetic term in the Schrödinger
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EoM (5.27)

− d2

dζ2
→ − d2

dζ2
+m2

12 . (5.45)

Finally, we obtain for the ground state wave function

ψq1q̄2n=0,L=0(x,
~k⊥) =

4πN

κ
√
x(1− x)

e
−

~k2⊥
2κ2x(1− x)

− m2
12

2κ2 . (5.46)

The quark mass term in the exponential of Eq. (5.46) can be absorbed in the longi-
tudinal mode f(x,m1, m2) (see [227])

f(x,m1, m2) ≡ N e
−m

2
12

2κ2 , (5.47)

where N is the normalization constant determined from

1 =

1∫

0

dx f 2(x,m1, m2) . (5.48)

Hence, when dealing with meson LFWFs with massive quarks we only have to
multiply the transversal wave function for massless quarks in Eq. (5.37) by the
longitudinal mode [227]:

ψ̃q1q̄2nJ (x, ζ,m1, m2) =
ΦnJ (ζ)√

2πζ
f(x,m1, m2)

√
x(1− x) . (5.49)

In this context we would like to mention that the way how massive quarks are in-
troduced is not unique. In particular, the dimensional parameter entering in the
longitudinal mode f(x,m1, m2) should not necessarily be identified with the param-
eter κ characterizing the dilaton field. Later, in the analysis of the mass spectrum
and the decay constants of heavy–light mesons, we will show that the dilaton pa-
rameter κ should scale as O(1) in the 1/mQ expansion, where mQ is the heavy
quark mass, while the dimensional parameter in the longitudinal mode behaves like
O(m

1/2
Q ). In the case of heavy quarkonia the dimensional parameter in the longitu-

dinal mode should scale as O(mQ). Hence, we will replace κ by an additional scale
parameter parameter λ12 for the longitudinal mode of Eq. (5.46)

f(x,m1, m2) ≡ N e
−m2

12

2λ212 . (5.50)
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The values for λ12 are determined for each meson flavor separately while the param-
eter κ in the transversal part of Eq. (5.46) is kept constant for all mesons.

Due to the inclusion of massive quarks the meson mass spectrum is modified which
is now derived by computing the matrix element

〈
φ
∣∣M2

nJ

∣∣φ
〉
=
〈
φ
∣∣HLF

∣∣φ
〉
[227]:

M2
nJ =

∞∫

0

dζ ΦnJ(ζ)

(
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(J − 1)

)
ΦnJ(ζ)

+

1∫

0

dx

(
m2

1

x
+

m2
2

1− x

)
f 2(x,m1, m2) . (5.51)

The inclusion of finite quark masses leads to an additional term in the mass spectrum
which results in a shift of the meson masses. It is important to note that the
potential in Eq. (5.51) is not complete since it includes confinement forces but does
not consider all effects of chiral symmetry breaking, which are important for the
infrared structure of QCD (see e.g. the discussion in Refs. [228, 229, 230, 125,
231, 232, 233, 224]). Moreover, it does not contain hyperfine splitting terms and
the one–gluon exchange term, which is sufficient for the description of bottomia
hadrons. In the following we will improve the AdS/CFT model accordingly by
including hyperfine–splitting and one–gluon exchange.

5.2.3. One–gluon exchange and hyperfine–splitting

contributions to the effective meson potential

In the following sections we discuss the phenomenological inclusion of one–gluon
exchange and hyperfine–splitting terms by extending the effective potential by ap-
propriate terms

U → U + UC + UHF , (5.52)

where UC is the color Coulomb potential arising due to the one–gluon exchange and
UHF represents the hyperfine (HF) splitting contribution (see Ref. [28]).

From experiment it is known that the Regge–trajectories of bottomia states deviate
from linearity [234, 235] since the one–gluon exchange term gives rise to an additional
Coulomb–like interaction between quarks V (r) = −4αs/3r, where αs is the strong
coupling constant. The contribution of the effective meson potential UC(ζ)to the
mass spectrumM2 is negative and proportional to the quark mass squared [235, 234]

UC(ζ) = −σ
ζ
, (5.53)
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where the coupling constant σ is determined by

σ =
64α2

sm1m2

9 (n+ L+ 1)2

{ ∞∫

0

dζ

ζ
Φ2
nJ(ζ)

}−1

. (5.54)

The inclusion of the Color coulomb potential leads to the following shift of the mass
spectrum

∆M2
C = − 64α2

sm1m2

9 (n+ L+ 1)2
, (5.55)

where αs is the QCD coupling considered as a free parameter. Since the quark masses
enter linearly the one–gluon exchange term can be neglected for light mesons and
charmonia while it becomes important for the bottomia states.

For the hyperfine–splitting potential UHF(ζ) one can use an effective operator con-
taining a free parameter v (softening the original δ-functional form of the HF-
potential) with dimension M3 (see details in Refs. [236, 237]):

UHF(ζ) =
32παs

9

~σ1 · ~σ2
µ12

v , (5.56)

where ~σ1 and ~σ2 are the spin operators of the quarks;

µ12 = 2m1m2/(m1 +m2) . (5.57)

Projecting the operator ~σ1 · ~σ2 between meson states with S = 0 and 1 gives

βS = 〈MS|~σ1 · ~σ2|MS〉 =
{

−3 , S = 0

1 , S = 1
. (5.58)

Therefore, the mass shift due to the hyperfine–splitting potential is

∆M2
HF =

32παs
9

βS v

µ12
. (5.59)

Finally, the master formula for meson masses including confinement, finite quark
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masses, color Coulomb and hyperfine–splitting effects reads

M2
nJ =4κ2

(
n+

L+ J

2

)
+

1∫

0

dx

(
m2

1

x
+

m2
2

1− x

)
f 2(x,m1, m2)

− 64α2
sm1m2

9 (n+ L+ 1)2
+

32παs
9

βS v

µ12

.

(5.60)

There are two comments that should be made with respect to further modifications
of the potential U :

1. In principle it is not excluded that the dilaton scale parameter might be differ-
ent for distinct types of mesons – light and heavy ones (details see Ref. [238]).
In particular, we observe that the use of a larger value for κ for heavy mesons
helps to improve the description of the mass spectrum and the leptonic decay
constants.

2. One could add a constant term c2 to the effective potential which is inde-
pendent on the parameter κ and controls the masses of the ground states as
discussed in Ref. [239]. In our formalism such a constant term in the effective
potential can be e.g. generated by an additional shift of the “dressed” mass
term µ2

J(z) → µ2
J(z) + c2z2/R2, which leads to the following modification of

the mass spectrum: M2
nJ →M2

nJ + c2.

Although, both of these modifications can improve the description of meson prop-
erties, their appearance in the AdS action is not well justified. Therefore, in the
present discussion we do not consider these options and postpone them for future
study.

5.3. Properties of light and heavy mesons

In the following we compute the mass spectra and decay constants of light and heavy
mesons within the framework of the AdS model introduced in the previous sections.
There are several model parameters which need to be determined: quark masses,
the dilaton parameter κ, the scale parameter λ12 of the longitudinal mass term, the
strong coupling constant αs and the parameter v entering in the HF splitting term.
In particular we use the following constituent quark masses

m = 420 MeV , ms = 570 MeV , mc = 1.6 GeV , mb = 4.8 GeV , (5.61)

where we restrict ourselves to the isospin limit, hence, we set mu = md = m.
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The parameters are determines from a least square fit to the mass spectrum and the
decay constants of light and heavy mesons [28]. Here the unified value of the dilaton
parameter κ = 550 MeV remains constant for all mesons while the dimensional
parameters λ12 in the longitudinal wave functions are fitted as:

λqq = 0.63GeV , λus = 1.2GeV , λss = 1.68GeV ,

λqc = 2.5 GeV , λsc = 3.0 GeV , λqb = 3.89 GeV , (5.62)

λsb = 4.18 GeV , λcc = 4.04 GeV , λcb = 4.82 GeV ,

λbb = 6.77 GeV .

The strong coupling constant αs ≡ αs(µ
2
12) which enters in the additional Color

coulomb and HF splitting potentials is consistently calculated using the parametriza-
tion of αs with “freezing” [240]:

αs(µ
2) =

12π

(33− 2Nf ) ln
µ2 +M2

B

Λ2

(5.63)

where Nf is the number of flavors, Λ is the QCD scale parameter and MB is the
background mass. Choosing Λ = 420 MeV and MB = 854 MeV we obtain the
following set of parameters αs:

αs(µ
2
qq) = 0.79 , αs(µ

2
qs) = 0.77 , αs(µ

2
ss) = 0.78 ,

αs(µ
2
qc) = 0.68 , αs(µ

2
sc) = 0.67 , αs(µ

2
ub) = 0.64 , (5.64)

αs(µ
2
sb) = 0.61 , αs(µ

2
cc) = 0.52 , αs(µ

2
cb) = 0.42 ,

αs(µ
2
bb) = 0.33 ,

where q = u, d.
Finally, the hyperfine–splitting parameter v has the value v = 10−4 GeV3.

5.3.1. Mass spectrum of light mesons

The mass spectrum of mesons can now be easily computed from the expression of
Eq. (5.60). In the case of the light mesons we only need to consider the probabilities
of the ground state pion and kaon, Pπ = 0.6 and PK = 0.8, which were fitted to
data. For all other mesons the probabilities are supposed to be equal to one.
The predictions of our approach for the light meson spectrum according to the
n2S+1LJ classification are given in Tab. 5.1. For the scalar mesons f0 we present
results for two limiting cases: with nonstrange flavor content f0[n̄n] = (ūu+ d̄d)/

√
2

and with a strange one f0[s̄s] = s̄s. Provided data are available, the mass spectra
are graphically depicted in Fig. 5.5. The mass spectrum obtained by the AdS model
(solid line) slightly overestimates the meson masses determined from experiment
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Meson n L S Mass [MeV]

π 0 0,1,2,3 0 Mπ(140) = 140 Mb1(1235) = 1355 Mπ2(1670) = 1777 Mπ4 = 2099

π 0,1,2,3 0 0 Mπ(140) = 140 Mπ(1300) = 1355 Mπ(1800) = 1777 Mπ(4s) = 2099

K 0 0,1,2,3 0 MK = 495 MK1 = 1505 MK2 = 1901 MK3 = 2207

η 0,1,2,3 0 0 Mη(1s) = 544 Mη(2s) = 1552 Mη(3s) = 1946 Mη(4s) = 2248

f0[n̄n] 0,1,2,3 1 1 Mf0(1p) = 1114 Mf0(2p) = 1600 Mf0(3p) = 1952 Mf0(4p) = 2244

f0[s̄s] 0,1,2,3 1 1 Mf0(1p) = 1304 Mf0(2p) = 1762 Mf0(3p) = 2093 Mf0(4p) = 2372

a0(980) 0,1,2,3 1 1 Ma0(1p) = 1114 Ma0(2p) = 1600 Ma0(3p) = 1952 Ma0(4p) = 2372

ρ(770) 0,1,2,3 0 1 Mρ(770) = 804 Mρ(1450) = 1565 Mρ(1700) = 1942 Mρ(4s) = 2240

ρ(770) 0 0,1,2,3 1 Mρ(770) = 804 Ma2(1320) = 1565 Mρ3(1690) = 1942 Ma4(2040) = 2240

ω(782) 0,1,2,3 0 1 Mω(782) = 804 Mω(1420) = 1565 Mω(1650) = 1942 Mω(4s) = 2240

ω(782) 0 0,1,2,3 1 Mω(782) = 804 Mf2(1270) = 1565 Mω3(1670) = 1942 Mf4(2050) = 2240

φ(1020) 0,1,2,3 0 1 Mφ(1s) = 1019 Mφ(2s) = 1818 Mφ(3s) = 2170 Mφ(4s) = 2447

a1(1260) 0,1,2,3 1 1 Ma1(1p) = 1358 Ma1(2p) = 1779 Ma1(3p) = 2101 Ma1(4p) = 2375

Table 5.1.: Results for the light meson spectrum.
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Figure 5.5.: Mass spectra of π, K, ρ and ω mesons in dependence on L and n. Ex-
perimental meson states are indicated by black dots where mass values
in MeV are indicated in brackets.
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In Fig. 5.6 we indicate the contributions of the one–gluon and HF splitting terms
for the mass spectrum of the ρ mesons. The solid line represents the full potential
including the one–gluon and HF splitting potentials UHF and UC , whereas the dot-
ted line corresponds to the mass spectrum when neglecting both contributions. The
difference between the two spectra arises almost completely from the color coulomb
potential which is proportional to 1/(n + L + 1)2. Therefore its contribution be-
comes larger for small values of n. In contrast, as it is expected hyperfine–splitting
contributions only lead to a negligible offset by about 2 · 10−3 GeV which cannot be
displayed in Fig. 5.6.
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Figure 5.6.: Contributions of the color coulomb and HF potentials to the mass spec-
trum of the ρ mesons.

5.3.2. Mass spectrum of heavy–light mesons

Before we apply our approach to the properties of heavy–light mesons we need to
check if our LFWFs are consistent with model–independent constraints imposed e.g.
by heavy quark symmetry (mQ → ∞).
The mass spectrum of heavy-light mesons is also given by Eq. 5.60 and the longitu-
dinal mode for heavy–light mesons is of the form

f(x,mq, mQ) ≡ N e
−
m2
qQ

2λ2qQ , (5.65)
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where λqQ is the dimensional parameter which scales as O(m
1/2
Q ). In the following we

express λqQ as λ2qQ = mqmQ/r, where r is a parameter of order O(1). The scaling
of the parameter κ ∼ O(1) is fixed by the scaling law of the leptonic constants
of heavy–light mesons in the heavy quark limit (see discussion in section 5.3.4).
This behavior of κ is also consistent with the mass spectrum of heavy–light mesons
constrained by heavy quark effective theory (HQET) [9]. In particular, the 1/mQ

expansion of their masses should be

MqQ = mQ + Λ̄ +O(1/mQ) , (5.66)

where the scale parameter Λ̄ is of order O(1), and the mass splitting of vector and
pseudoscalar states ∆MqQ =MV

qQ −MP
qQ should be of order 1/mQ:

∆MqQ =
2

MV
qQ +MP

qQ

(
κ2 +

64παs
9

βS v

mq

)
∼ 1

mQ
. (5.67)

The mass splitting ∆MqQ gets contributions from two sources — confinement and
the hyperfine–splitting potential. Both contributions are of order O(1) in the heavy
quark mass expansion. In Appendix B.1 we evaluate the r.h.s. of Eq. (5.60) and
give an expression for the scale parameter Λ̄.

Meson JP n L S Mass [MeV]

D(1870) 0− 0 0,1,2,3 0 1857 2435 2696 2905

D∗(2010) 1− 0 0,1,2,3 1 2015 2547 2797 3000

Ds(1969) 0− 0 0,1,2,3 0 1963 2621 2883 3085

D∗
s(2107) 1− 0 0,1,2,3 1 2113 2725 2977 3173

B(5279) 0− 0 0,1,2,3 0 5279 5791 5964 6089

B∗(5325) 1− 0 0,1,2,3 1 5336 5843 6015 6139

Bs(5366) 0− 0 0,1,2,3 0 5360 5941 6124 6250

B∗
s (5413) 1− 0 0,1,2,3 1 5416 5992 6173 6298

Table 5.2.: Masses of heavy–light mesons

Our results for the mass spectra of heavy–light mesons are indicated in Tab. 5.2 for
different spin–parity quantum numbers (n2S+1LJ), where the first column contains
the ground state mesons.
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5.3.3. Mass spectrum of heavy quarkonia

In analogy to the heavy–light mesons we first consider the heavy quark limit of
our expressions before we turn to the numerical results. Here we follow the idea
suggested in [227], and express the longitudinal momentum fractions through the

z-component of the internal momentum ~k = (~k⊥, kz) as (see also [241]):

x =
e1 + kz
e1 + e2

, 1− x =
e2 − kz
e1 + e2

, (5.68)

where ei =
√
m2
Qi

+ ~k 2 and ~k 2 = ~k2⊥ + k2z . When considering the heavy quark limit

mQ1, mQ2 ≫ ~k⊥, kz we get

x =
mQ1 + kz
mQ1 +mQ2

+O(1/m2
Q) , 1− x =

mQ2 − kz
mQ1 +mQ2

+O(1/m2
Q) . (5.69)

Hence, we have

m2
Q1

x
+

m2
Q2

1− x
= (mQ1 +mQ2)

2 +O(1) . (5.70)

The leading term of the integral containing the longitudinal mode is simply given
by (mQ1 +mQ2)

2 which is the leading contribution to the mass squared of the heavy
quarkonia. This means that we correctly reproduce the expansion of the heavy
quarkonia mass in the heavy quark limit:

MQ1Q̄2
= mQ1 +mQ2 + E +O(1/mQ1,2) , (5.71)

where E is the binding energy.

For the mass spectrum of heavy (Q1Q̄2) quarkonia, charmonium and bottomium
mesons, we present our results in Tab. 5.3. The quality of our theoretical model can
be judged from Figs. 5.7 and 5.8 where we graphically compare the mass spectrum of
the AdS/CFT approach to data (central values by black circles and sizable error bars
by vertical lines). Here we find that the calculated mass spectra are in agreement
with predictions of other holographic models (see e.g. Refs. [242, 11, 228]). We
clearly see that the masses of bottomia states, at least the low lying ones, strongly
deviate from the Regge–like behavior. This fact can be reproduced by the present
holographic model due to the consideration of the Color coulomb potential which
bends down the lines for low values of L or n. Since the Color coulomb potential is
proportional to 1/(n + L + 1) its influence is stronger for the fitted ground states
J/ψ, ηc(1S), Υ(1S) and ηb(1S) than for the orbital excitations χcn(1P ) and χbn(1P ).
This is the reason for the overestimate of the χcn(1P ) and χbn(1P ) meson masses in
Figs. 5.7 and 5.8.
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Meson JP n L S Mass [MeV]

ηc(2986) 0− 0,1,2,3 0 0 2997 3717 3962 4141

ψ(3097)) 1− 0,1,2,3 0 1 3097 3798 4038 4213

χc0(3414) 0+ 0,1,2,3 1 1 3635 3885 4067 4226

χc1(3510) 1+ 0,1,2,3 1 1 3718 3963 4141 4297

χc2(3555) 2+ 0,1,2,3 1 1 3798 4038 4213 4367

ηb(9300) 0− 0,1,2,3 0 0 9428 10190 10372 10473

Υ(9460) 1− 0,1,2,3 0 1 9460 10219 10401 10502

χb0(9860) 0+ 0,1,2,3 1 1 10160 10343 10444 10521

χb1(9893) 1+ 0,1,2,3 1 1 10190 10372 10473 10550

χb2(9912) 2+ 0,1,2,3 1 1 10219 10401 10502 10579

Bc(6276) 0− 0,1,2,3 0 0 6276 6911 7092 7209

Table 5.3.: Masses of heavy quarkonia cc̄, bb̄ and cb̄
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Figure 5.7.: Mass spectra of charmonium states.

The influence of the one–gluon exchange term can also be seen from Fig. 5.9, where
we compare the mass spectra of the full potential (solid line) and when neglecting
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Figure 5.8.: Mass spectra of bottonium states.
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Figure 5.9.: Contribution of the color coulomb potential to the mass spectrum of
the Υ(ns) mesons.
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HF and Color coulomb terms are switched off (dotted line). In analogy to the mass
spectrum of the ρ meson the hyperfine–splitting term leads to a negligible offset.
Therefore the difference between both lines can be traced to the influence of the
Color coulomb potential. When neglecting the one–gluon exchange term the lines
show a linear Regge behavior which leads to a severe overestimate for the n = 0 and
1 states.

5.3.4. Leptonic and radiative meson decay constants

Besides the masses of the light and heavy mesons we also use the holographic ap-
proach to calculate the radiative and leptonic decay constants of the ground state
mesons.
The decay constants are defined by

〈0|q̄2(0)γµγ5q1(0)|MP (P )〉 = iP µ fP (5.72)

for pseudoscalar (fP ) mesons and

〈0|q̄2(0)γµq1(0)|MV (P, λ)〉 = ǫµ(P, λ)MV fV (5.73)

when dealing with vector (fV ) mesons. For the Fock states MP and MV we use the
definitions of Eqs. (5.20) and (5.21).
For convenience we determine the decay constants by restricting to the µ = +
component and spin projection λ = 0. In this case Eqs. (5.72) and (5.73) read

〈
0
∣∣q̄2(0)γ+γ5q1(0)

∣∣P
〉
= P+fP , (5.74)〈

0
∣∣q̄2(0)γ+q1(0)

∣∣V (P, λ = 0)
〉
= P+fV . (5.75)

A detailed description of the calculational technique for determining these quantity
can be found in Appendix B.2. Finally, we get for the decay constants of the ground
state mesons:

fP = fV = 2
√
6

1∫

0

dx

∫
d2~k⊥
16π3

ψq1q̄2(x,
~k⊥) f(x,m1, m2) (5.76)

=

√
6

π

1∫

0

dx ψ̃q1q̄2(x,
~b⊥ = 0) f(x,m1, m2)

= κ

√
6

π

1∫

0

dx
√
x(1− x) f(x,m1, m2) . (5.77)

In the case of massless quarks fP and fV are proportional to the dilaton scale
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parameter κ and the fP (V ) are of the simple form:

fP = fV =
κ
√
6

8
. (5.78)

In the other extreme of the heavy quark limit (mQ → ∞) the scaling of the leptonic
decay constants of heavy–light mesons is in agreement with HQET:

fHQL
P = fHQL

V = κ

√
6

π

√
mq

mQ

∞∫
0

dz e−
r
2
(z+ 1

z
)

[ ∞∫
0

dz e−r(z+
1
z
)

]1/2 ∼ 1
√
mQ

. (5.79)

Again, as in the case of the mass spectrum of heavy–light mesons, it is sufficient to
propose the following scaling of dimensional parameters in our holographic approach:
κ ∼ O(1) and λqQ ∼ O(

√
mQ).

When dealing with vector mesons with hidden flavor one additionally needs to con-
sider the flavor factor cV

cV =





1/
√
2 , V = ρ0

2/3 , V = J/ψ

1/3 , V = φ,Υ

1/(3
√
2) , V = ω

(5.80)

which arises from the flavor structure of the vector mesons

ρ0 =
1√
2

(
ūu− d̄d

)
, ω =

1√
2

(
ūu+ d̄d

)
, φ = −s̄s, J/ψ = c̄c, Υ = −b̄b (5.81)

and the structure of the corresponding electromagnetic quark currents

V µ
ρ,ω = euūγ

µu+ edd̄γ
µd , (5.82)

V µ
φ,J/ψ,Υ = eq q̄γ

µq, with q = s, c, b . (5.83)

Our results for fP and fV are presented in Tabs. 5.4-5.6, where in particular the
decay constants of the light mesons are in good agreement with data.

The decay constants for heavy–light and double–heavy mesons underestimate avail-
able data. The reason for this effect is the use of the universal dilaton scale parameter
κ = 550 MeV which enters linearly in the leptonic decay constants (see Eq. (5.77)).
Therefore we would need a slightly enhanced value for the parameter κ in the case of
heavy–light mesons and an even larger value for κ in the case of the leptonic decay
constants of heavy quarkonia states. In particular, it should be roughly 2, 3 and 4
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times larger for cc̄, cb̄ and bb̄ states, respectively, than the unified value of 550 MeV.

Meson Data [174] [MeV] fP [MeV]

π− 130.4± 0.04± 0.2 131

K− 155.5± 0.2± 0.8 155

D+ 205.8± 8.9 167

D+
s 273± 10 170

B− 216± 22 139

B0
s 253± 8± 7 144

Bc 489± 5± 3 [206] 159

Table 5.4.: Decay constants fP of pseudoscalar mesons

Meson Data [MeV] fV [MeV]

ρ+ 210.5± 0.6 [174] 170

D∗ 245± 20+3
−2 [207] 167

D∗
s 272± 16+3

−20 [208] 170

B∗ 196± 24+39
−2 [207] 139

B∗
s 229± 20+41

−16 [207] 144

Table 5.5.: Decay constants fV of vector mesons with open flavor

Meson Data [174] [MeV] fV [MeV]

ρ0 154.7 ± 0.7 120

ω 45.8 ± 0.8 40

φ 76 ± 1.2 58

J/ψ 277.6 ± 4 116

Υ(1s) 238.5 ± 5.5 56

Table 5.6.: Decay constants fV of vector mesons with hidden flavor
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5.4. Summary

In summary, we present an analysis of the mass spectrum and decay properties of
light, heavy–light mesons and heavy quarkonia in an holographic soft-wall model
using the conventional sign of the dilaton profile with φ(z) = κ2z2. In our calcula-
tions we consider in addition one-gluon exchange and hyperfine–splitting corrections
phenomenologically by modifying the potential. The improvement of the present ap-
proach is that a consistent description of light, heavy-light and double-heavy mesons
is achieved within the same holographic model. So far in the literature different val-
ues for the dilaton parameter κ have been used for mesons with different JP and
flavor quantum numbers. Furthermore we show that the obtained results for heavy–
light mesons are consistent with constraints imposed by HQET.
As already mentioned, we use a universal value of κ which leads to mass spectra
which are in quite good agreement with available data. The holographic approach
reproduces the decay constants of the light mesons while the decay properties for
the mesons containing heavy quarks are underestimated. Adjusted flavor dependent
values for κ for different types of mesons lead of course to a better fit to the data.
The present AdS/QCD approach can also be extended to baryons which is an in-
teresting topic for future research projects.





6. Conclusions

The identification and description of the structure of hadrons is still one of the
major challenges in particle physics. Especially recently discovered meson states in
the heavy sector cannot be explained in the standard description of the constituent
quark model extending the list of ’unusual’ hadron resonances. It is very likely that
this trend will continue with the running and upcoming experiments giving access to
a higher mass range and, because of higher statistics, delivering more precise data.
In this thesis we discussed different aspects of meson spectroscopy and the related
problems in the light of the recent experimental advances. Since it is clear that the
naive approach or the constituent quark model is not sufficient to explain the full
features of the meson spectrum interest grew over the last years in the subject of
hadron spectroscopy. Here, the discovery of numerous charmonium-like X , Y and
Z states at the B factories (see Chapters 3 and 4) and of narrow DsJ states (see
D∗
s2(2573) in Chapter 3) were among the highlights in the last decade and have fueled

non–qq̄ structure interpretations. These are some of the reasons why we focus on
both structures—ordinary qq̄ mesons but we also discussed exotic meson structures,
in particular we studied bound states of mesons.
At the beginning, in Chapter 2, we shortly introduced the mesons discussed here
including the present experimental status and the most common theoretical inter-
pretations. The structure issues of mesons and their properties were analyzed with
three different theoretical methods ranging from the dynamical generation of meson
resonances to an holographic AdS/QCD model based on extra dimensions. The
aim of this work was to cover several issues of meson spectroscopy and to discuss
different theoretical methods for the description of meson structure.
The main part of this thesis was formed by the three theoretical methods each of
them we introduced in a separate chapter. First we focused on unconventional meson
structures namely bound states of two mesons which we looked at from two different
viewpoints—as dynamically generated resonances and as bound states with small
binding energies lying close to the corresponding thresholds.
In this context the first theoretical model introduced in Chapter 3 was very useful
to study the possible existence of meson–meson states and their pole positions giv-
ing information on mass and decay width. In this model the interaction between
mesons was studied in coupled channels of meson degrees of freedom. Provided the
interaction is attractive enough one obtains dynamically generated meson–meson
resonances. In the present case we studied coupled channels of vector mesons, where
the interaction was given by the SU(4) hidden gauge Lagrangian. More precisely
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we studied channels with hidden– and open–charm flavors and additionally applied
the coupled channel approach for the first time to flavor exotic states. In particu-
lar, the detection of flavor exotic quantum numbers, which cannot be built up by
a qq̄ state, would be a strong hint for a multiquark meson structure either real-
ized as a tetraquark or a meson–meson bound state. In total, we obtained nine
resonances, four in the charm–strange sector and five with exotic flavor quantum
numbers. One charm–strange resonance which is dominantly formed by the D∗K∗

system turned out to be a good candidate for the D∗
s2(2573) meson. This molecular

structure interpretation would be consistent with the results of earlier works assign-
ing the D∗

s0(2317) and D∗
s1(2460) as DK and D∗K resonances. The flavor exotic

structures could not be compared to experimental observations but to theoretical
calculations for double–charmed tetraquarks cc(q̄q̄) with J = 1 where the result is in
the same mass region (around 4 GeV) as the corresponding dynamically generated
state. In summary, the flavor exotic states provide a interesting research topic for
future experiments.

In the second part of Chapter 3 we discussed the radiative decays of dynamically gen-
erated states. First we applied the method to the dynamically generated resonances
from coupled vector meson channels containing three flavors (SU(3)). Some of the
resonances showed similar properties as the well–established qq̄ mesons f2(1270),
f0(1370), f

′
2(1525), f0(1710) and K

∗
2(1420). Despite that a possible molecular struc-

ture of these states is not the mainstream interpretation, the coupled channel ap-
proach can be considered as a complementary or alternative interpretation of the
scalar and tensor mesons. The radiative decay properties of these states were in
good agreement with available data. Furthermore, our results for the two–photon
and V γ decay properties could give further insight into the substructure of this
states when corresponding experiments will be available in the future.

Then we turned to the more interesting case of the recently discovered hidden–
charm mesons Y (3940), Z(3930) and X(4160) which are most likely not cc̄ states
but good candidates for molecular meson structures. The radiative decay properties
were compared to data from BELLE and to the results obtained within the second
model for hadronic bound states discussed in the following Chapter 4. We found
that the results in both approaches are consistent within one order of magnitude
which was expected since the underlying structures were the same.

The second theoretical model for hadron structure was introduced in Chapter 4.
It is based on effective Lagrangians describing the interaction between the bound
state and its constituents. Since we dealt with a clear and straightforward method,
the compositeness condition, it has a wide range of applications. For example,
in previous works [135] it was successfully used to study ordinary qq̄ mesons and
baryons as qqq states in the light and heavy sector. But it could also be applied to
bound states of hadrons as for example the meson molecules discussed here. Further
important features of the model are gauge invariance concerning the electroweak
interaction and the consideration of finite size effects arising due to the spatially



Chapter 6. Conclusions 187

extended structure of hadronic bound states by a minimal amount of free parameters.

In the first part of Chapter 4 we continued the study of meson molecules. First we
applied the model to the light scalar a0(980) and f0(980) mesons which are prime
candidates for a KK bound state structure. Since both mesons are experimentally
intensively studied there is much data available which provides an excellent reference
for our results. Therefore, the a0(980) and f0(980) served as ideal test cases for this
model. We did a comprehensive study of the radiative γγ and V γ decay modes,
computed the φ → f0(a0)γ production rate and also considered the strong ππ and
πη decay widths. Furthermore, in our calculations we included the isospin violating
f0 − a0 mixing. The results were found in very good agreement with data and
clearly support the KK hadronic molecule structure. Finally, we also studied the
f0 production in weak D∗

s0(B
∗
s0) and Ds1(Bs1) meson decays.

After this introductory examples we applied the effective Lagrangian approach to
the more interesting cases of the charmonium–like resonances Y (3940), Y (4140)
and Z±(4430). The unusually large hidden–charm decay widths of these states
are in disagreement with the cc̄ expectations since the hidden–charm modes are
OZI suppressed. In the case of the Z± we additionally dealt with a charged state,
hence, a standard cc̄ assignment can be ruled out. Provided the Z± is confirmed
by a second experiment it would be a clear signal for a q2q̄2 state or a hadronic
molecule. We studied the hidden charm and radiative decay modes within the
meson molecule interpretation assigning the Y (3940), Y (4140) and Z±(4430) to
the following meson bound states: D∗D

∗
, D∗+

s D∗−
s and D1D

∗. The results for
the decay widths of the hidden–charm modes were in all cases larger than 1 MeV
and could therefore reproduce the experimental observations. Our results for the
radiative decays Y → γγ were found in agreement with data for the Y (3940) which
supports the D∗D

∗
interpretation while the result for the two–photon decay of the

Y (4140) overestimated the upper limit set by experiment. Hence, the molecular
interpretation of the Y (4140) needs further consideration.

Along the same lines, theD∗D1 interpretation of the Z± could reproduce the unusual
properties of this charmonium–like state. For example, in analogy to the Y states the
hadronic molecule model could explain the large π±ψ′ hidden–charm decay widths
and furthermore the suppression of the kinematically favored π±ψ channel. Our
results for the Z± → π±γ decay widths could be useful to determine the quantum
numbers of the Z± since this mode is forbidden for JP = 0−.

In the second part of Chapter 4 we also applied the effective Lagrangian framework
to qq̄ states. Since our aim was to study excited states as well we faced the difficulty
that the quark loops became divergent as soon as the mass of the bound states
exceeded the threshold of the respective constituents. To circumvent the problem we
improved the phenomenological model by introducing a confinement scale parameter
which enlarged the application range of the model to the whole qq̄ spectrum. We first
applied the approach to the pion and rho mesons to determine the scale parameter
then we calculated the radiative and strong decay properties of light and heavy
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mesons. We also studied the Dalitz decays of the ω, η and η′ mesons. Altogether
we found that our results are in good agreement with data.
The last of the three models introduced in this thesis was very different from the
previously discussed coupled channel and effective Lagrangian approaches. The
holographic AdS/QCD method is based on extra dimensions and contains elements
of string theory. More precisely, we dealt with a mapping between string modes
existing in an extra dimension and meson wave functions in four–dimensional space
time. We implemented the effect of confinement by using a soft–wall approach
which allowed for the Regge–behavior of the meson masses. This method was used
to compute the mass spectrum of light and heavy qq̄ mesons. After the inclusion
of one–gluon exchange terms we obtained good agreement with the meson mass
spectra for light, heavy–light and heavy quarkonia states. Furthermore, we studied
the decay constants of the ground state mesons. The present discussion of two
parton states provided only the first step for further investigations of the AdS/CFT
approach as for example its extension to baryon states.
Since at present the situation and understanding of the meson spectrum is far from
clear future experimental investigations are necessary to get a comprehensive view.
In particular, precise data and more information on decay and production channels
in the charmonium sector are essential to pin down the structure of the puzzling
X , Y and Z states. Hopes are placed on the new generation of experiments as
for instance the LHC which is the leading facility at present. The LHCb detector
designed for precision measurements of CP violating and rare B–decays is expected
to be an excellent environment for charmonium observation as known from other
B–factories. Furthermore, the GSI future project PANDA in Darmstadt and the
upgrade of BES, the BES–III experiment, will certainly lead to interesting and, as
usual, unexpected new observations which again give a new momentum to the field
of meson spectroscopy.



A. Appendix: Effective Model for
hadronic bound states

A.1. Loop Integrals

Here we give a short presentation of the structure integrals and its evaluation relevant
for the derivation of the transition form factors.

A.1.1. Radiative transitions

For simplicity we restrict to the diagrams of Figs. 4.8 (a,b), 4.9 (a,b) and 4.10 (a) to
(c), which do not contain contact vertices. The additional diagrams generated due
to nonlocal effects are discussed in detail in [26, 135]. The full structure integrals
characterizing the electromagnetic decays are given by

IµνSγV (m
2
S, 0, m

2
V ) =

∫
d4k

π2i
Φ̃(−k2)

(
(2k + p− q)µ(2k − q)νSK

(
k +

p

2

)
SK
(
k − p

2

)

× SK
(
k +

p

2
− q
)
+ gµνSK

(
k +

p

2

)
SK
(
k − p

2

))
, (A.1)

IµνφSγ(m
2
φ, m

2
S, 0) =

∫
d4k

π2i
Φ̃(−k2)

( (2k − q − p)ν(2k − q)µ

SK
(
k +

p

2

)
SK
(
k − p

2

)
SK
(
k − p

2
− q
)

×+
gµν

SK
(
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2

)
SK
(
k − p

2

)
)
, (A.2)

where q is the photon momentum and p of the scalar. In the case of the two-photon
decay the expressions corresponding to all the diagrams of Fig. 4.8 are quoted in
[26]. We use the expression for the S → V γ decay (Eq. A.1) as an example to
demonstrate the technique for the derivation of the loop integral ISγV (m

2
S , 0, m

2
V ).

In the first step we separate the gauge invariant part of the full expression Iµν by
writing

IµνSγV (m
2
S, 0, m

2
V ) = ISγV (m

2
S, 0, m

2
V )b

µν + I
(2)
SγV (m

2
S, 0, m

2
V )c

µν + δISγV , (A.3)

where the remainder term δISγV contains the non-invariant terms. The tensor
structures bµν and cµν have already been defined in (4.18). Since we deal with
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real photons only the first term of (A.3), proportional to bµν , is relevant. In the
second step Feynman-parameterization is introduced and the integration over the
four-momentum k is performed. For instance, in the local limit we obtain

ISγV (m
2
S, 0, mV ) =

1∫

0

d3α δ(1−
∑

i

αi)
4α1α3

m2
K −m2

Sα1α3 −m2
V α2α3

. (A.4)

The mathematical treatment of the diagrams including contact vertices is straight-
forward and in complete analogy with above example.

A.1.2. Strong decays

The loop integrals of the diagrams contributing to the strong decays (Fig. 4.11 (a)
and (b)) read as

I(a)(m2
K , p

2, q21, q
2
2) =

gπgπ(η)
(4π)2

∫
d4k

π2i
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, (A.5)
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2
2) =− 1
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. (A.6)

Again, we evaluate above expressions by introducing Feynman parameters and in-
tegrating over the loop-momentum k. The full structure integral G(p2, p21, p

2
2) is ob-

tained when multiplying above expression by the couplings gf0KK̄/
√
2 or ga0KK̄/

√
2.

A.2. Gauge invariance

In this Appendix gauge invariance is demonstrated by means of the charged a0
meson decays. The kaon loop integral corresponding to the diagrams (a) and (b) of
Fig. 4.9 is given by

Iµν△ =

∫
d4k

π2i
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, (A.7)
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where q = q1 − q2. The part Iµν△⊥
being gauge invariant with respect to the photon

momentum qµ1 is separated from the so-called remainder term δIµν△ by using
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(A.8)

Therefore, the non-invariant term is given by
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For the bubble diagram (c) of Fig. 4.10 the loop integral reads as (see [135])
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This leads to the remainder

δIµνbub =

∫
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Φ̃(−k2)q
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νS
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)
S
(
k − q
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(A.11)

which cancels with δIµν△ and therefore

δIµν = δIµν△ + δIµνbub = 0 . (A.12)

A.3. Coupling constants for the weak nonleptonic

decays

In Tab. A.1 we indicate the results for the coupling constants at the secondary
interaction vertex involving charged (c) and neutral (n) B and D mesons. The
coupling strengths are deduced from the decays B/D → KX (X = π, K, η′, η, ω, ρ)
and the branching ratios are taken from [173, 174].
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Channel Branching Ratio gnX Channel Branching Ratio gcX

D0 → K−π+ (3.89± 0.05)% 2.88 · 10−6 GeV D+ → π+K̄0 (2.83± 0.18)% 0.14 · 10−5 GeV

D0 → K+K− (3.93± 0.08) · 10−3 0.83 · 10−6 GeV D+ → K+K̄0 (5.7± 0.5) · 10−3 0.63 · 10−6 GeV

D0 → ρ+K− (10.8± 0.7)% 2.92 · 10−6 D+ → ρ+K̄0 (7.3± 2.5)% 0.15 · 10−5

B0 → K0π0 (9.8± 0.6) · 10−6 3.36 · 10−8 GeV B+ → K+π0 (1.29± 0.06) · 10−5 3.73 · 10−8 GeV

B0 → K0η′ (6.5± 0.4) · 10−5 0.91 · 10−7 GeV B+ → K+η′ (7.02± 0.25) · 10−5 8.84 · 10−8 GeV

B0 → K0η < 1.9 · 10−6 < 0.15 · 10−7 GeV B+ → K+η (2.7± 0.9) · 10−6 0.17 · 10−7 GeV

B0 → K0K̄0 (9.6+2.0
−1.8) · 10−7 1.06 · 10−8 GeV B+ → K+K̄0 (1.36± 0.27) · 10−6 1.22 · 10−8 GeV

B0 → K0ω (5.0± 0.6) · 10−6 1.41 · 10−9 B+ → K+ω (6.7± 0.8) · 10−6 1.57 · 10−9

B0 → K0ρ0 (5.4± 0.9) · 10−6 0.14 · 10−8 B+ → K+ρ0 (4.2± 0.5) · 10−6 1.23 · 10−9

Table A.1.: Coupling constants deduced from the decays B/D → KX , (X = π, K, η′, η, ω, ρ). Branching ratios are
taken from [173, 174].
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A.4. Coupling ratio gD1Dψ′/gD1Dψ

Here we give an estimate for the ratio of couplings for the D1DJ/ψ and D1Dψ
′

vertices by using the 3P0 model [188, 189, 243, 181, 191]. The 3P0 model is a
standard phenomenological tool to analyze hadron decays. Thereby a qq̄ pair is
created from the vacuum with quantum numbers IG(JPC) = 0+(0++), hence 3P0 in
spin-orbit coupling. The 3P0 model is rather sensitive to variations of the parameters
i.e. the elementary pair creation strength and the radii of the hadron wave functions
involved. The model can deliver meaningful results for strong hadronic decay rates
when evaluated in the center of mass frame and provided that all initial or final
state particles are on-shell. Further extensions of the 3P0 model concern for example
nucleon-antinucleon annihilation processes [244, 33] and the determination of baryon
meson coupling constants [245, 181] where the emitted meson is not necessarily
on-shell anymore. Since in the present work we deal with transitions between off-
shell mesons, the D1 → Dψ and D1 → Dψ′ decays are kinematically forbidden.
Also, since the ratio of transition matrix elements has a less pronounced parameter
dependence, we use the 3P0 model to determine the ratio of the couplings r2 =
gD1Dψ′/gD1Dψ.
In the 3P0 model the transition amplitude for the process A→ BC is given by

TA→BC =
〈
ΨB
nB ,lB,mB

(1, 3)ΨC
nC ,lC ,mC

(2, 4)
∣∣Ô3P0

(3, 4)
∣∣ΨA

nA,lA,mA
(1, 2)

〉
, (A.13)

where the indices i = 1, 2, 3, 4 refer to the respective quarks (see Fig. A.1).

q2

q1

q2

q1

q4

q3

A

C

B

Figure A.1.: The decay process A→ BC in the 3P0 model.

For the initial and final mesons we use, as usual, simple harmonic oscillator wave
functions

ψn,l,m(~p) =Nn,lL
l+1/2
n (R2p2) exp

(
− R2

2
~p 2
)
(Rp)l

[∣∣(s1s2)sms

〉
⊗ Ylm(p̂)

]
J,mJ

× δ(3)(~P − ~p1 − ~p2)χ
s
m(12)χ

f+c(q1q2) , (A.14)

with the normalization Nn,l = (−i)2n+l
√

2n!R3

Γ(n+l+3/2)
, the radius R and the relative

momentum ~p = m1~p2−m2~p1
m1+m2

. Quark qi is characterized by its mass mi and spin
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si. Lln and Ylm represent the Legendre polynomials and the spherical harmonics,
respectively. χs and χf+c denote the spin and flavor-color wave functions.

The additional quark-antiquark pair required for the decay of a meson into a two-
body final state is generated by the 3P0 operator

Ô3P0
= λV 34

3P0

†
δ(3)(~p1 − ~p ′

1)δ
(3)(~p2 − ~p2

′)︸ ︷︷ ︸
spectator quarks

(A.15)

where λ is the creation strength assumed to be independent of the scale set by the
total energy and

V 34
3P0

†
=

∑

µ

(−)1+µ
〈
1 1 − µµ

∣∣00
〉
Y∗

1µ(~p3 − ~p4)δ
(3)(~p3 − ~p4)σ

(34)
−µ

†
(A.16)

with the Pauli matrix σ and Ylm(~p) =
∣∣p
∣∣Ylm(p̂).

In the following we give the final result for the amplitudes characterizing the ψ(′) →
D1D transitions (2)13S1 →1 P1(

3P1) +
1 S0, where only the D-wave contribution

(L = 2) is relevant

TL=2 = λδ(3)(~PA − ~PB − ~PC)
∑

L,mL

YLmL(P̂ )T
space
L fL(µ,mlB , mL) (A.17)

with
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and

fL(µ,mlB , mL) =
〈
1 1 0 0

∣∣2 0
〉〈
1 1 − µ −mlB

∣∣LmL

〉
(−)mLδL,2 (A.20)

(see also in e.g. [243]). Here L is the relative angular momentum between the final
mesons and JBC is the total spin of the two final states B and C. The different
quark masses of the charm mesons are accounted for by the factor α = mc

mq+mc
. The

last expression (A.20) represents the spin part of the amplitude for a 1P1 and 3P1
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state, respectively

T spin
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(A.21)

Finally we consider the mixing |D1〉 =
√

2
3
|1P1〉+

√
1
3
|3P1〉 which leads to

T
space,n=0(1)+spin
ψ→D1D

=

√
3

2
T

space,n=0(1)
L=2 T spin

1P1
. (A.22)

Due to this mixing pattern the D1 couples via D-wave only.

We find that the ratio gD1Dψ′/gD1Dψ = T space,n=1
L=2 /T space,n=0

L=2 = 2.15 is independent of
the radii R and the coupling strength λ. The amplitudes are evaluated at threshold,
i.e. P=0, which is in analogy to the determination of the nucleon-meson couplings
in [190]. The quark masses mq = 0.33 GeV and mc = 1.6 GeV are taken from [181].

A.5. Gauge invariance of the ρ0 → γ transition

amplitude

In this Appendix we want to demonstrate in an explicit calculation that the tran-
sition amplitude ρ0 → γ written down in Eq. (4.177) satisfies gauge invariance, i.e.
that e.g. the on–shell photon has only two transverse degrees of freedom. According
to the formalism developed in Sec. 4.9 there are the two contributions to the tran-
sition ρ0 → γ. The first contribution results from the minimal substitution in the
free quark Lagrangian and is depicted in Fig. 4.23(a). In Fig. 4.23(b) we consider
in addition the point interaction resulting from gauging the nonlocal Lagrangian.

We begin by looking at the transition of an on–shell ρ to an off–shell photon with
invariant mass p2. The corresponding transition amplitude Mµν(p) must satisfy the
gauge invariance condition pνM

µν(p) = 0 as has already been assumed in writing
down Eq. (4.177). Now we shall show by explicit calculation that the non–gauge
invariant pieces in the two contributions cancel each other resulting in an overall
gauge invariant contribution. First we isolate the non–gauge invariant pieces in the
two respective contributions by writing

Mµν
a (p) =

∫
d4k

4π2i
Φρ(−k2) tr

(
γµS(k + 1

2
p)γνS(k − 1

2
p)
)

= gµν
[
I(1)a (p2) + I(2)a (p2)

]
+ (gµνp2 − pµpν) I⊥a (p

2) . (A.23)
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The non–gauge invariant contributions are given by

I(1)a (p2) =

∞∫

0

dt
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, (A.24)
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whereas the gauge invariant term is given by

I⊥a (p
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. (A.26)

Similarly we have

Mµν
b (p) =−

∫
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4π2i
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I⊥b (p
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s+ t
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s α
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, (A.29)

z3 = tm2 −
(
1− s α

s+ t

)s α
4
p2 ,

where s = 1/Λ2
ρ. The non–gauge invariant pieces I

(1,2)
a and I

(3)
b cancel each other as

can be seen after the following transformations. First we note that the integrands
of the integrals I

(2)
a (p2) and I

(3)
b (p2) may be expressed via the derivatives of z2 and
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z3, respectively:

I(2)a (p2) → − 1
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The α–integration can be done by using the bound–state conditions z2(α = 1) =
z2(α = 0) = z3(α = 1) = z1. One obtains

I(2)a (p2) = −
∞∫
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dt t
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d
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Finally, one has

I(1)a (p2) + I(2)a (p2) + I
(3)
b (p2) =
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0

dt

(s+ t)2
e−z1

[
1− t

s+ t
− s

s+ t

]
≡ 0 . (A.32)

The gauge invariance condition pνM
µν(p) = 0 also guarantees that the longitudinal

component of the photon decouples as p2 → 0.

A.6. Loop integration techniques

In order to demonstrate how the loop integrations are performed we consider a
n–point one–loop diagram with n local propagators Si(k + vi) and n Gaussian ver-
tex functions Φi (−(k + vi+n)

2). In Minkowski space the one–loop diagram can be
written as

In(p1, ..., pn) =

∫
d4k

π2i
tr

n∏

i=1

Φi
(
−(k + vi+n)

2
)
Γi Si(k + vi) (A.33)

where the vectors vi are linear combinations of the external momenta pi to be spec-
ified in the following, k is the loop momentum, and the Γi are Dirac matrices (or
strings of Dirac matrices) for the ith meson. The external momenta pi are all cho-

sen as for an initial state such that
n∑
i=1

pi = 0. Due to translational invariance the

integral Eq. (A.33) is invariant under a shift of the loop momentum k → k + l by
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any four–vector l. The four–vector l may be any linear combination of the external
momenta pi.

Using the Schwinger representation of the local quark propagator one has

Si(k + vi) = (mi+ 6k+ 6vi)×
∞∫

0

dβi exp
[
−βi (m2

i − (k + vi)
2)
]
. (A.34)

For the vertex functions one takes the Gaussian form. One has

Φi
(
−(k + vi+n)

2
)

= exp
[
βi+n (k + vi+n)

2
]

i = 1, ..., n , (A.35)

where the βi+n = si = 1/Λ2
i are related to the size parameters Λi. The factors

mi+ 6 k+ 6 vi in the numerator can be replaced by a differential operator in the
following manner:
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i=1

∞∫

0

dβi e
−βim2

i

(
mi+ 6vi +

1

2
6∂r
)

× exp

(
βk2 + 2kr +

2n∑

i=1

βi v
2
i

)
(A.36)

where β =
2n∑
i=1

βi and r =
2n∑
i=1

βi vi. Next we perform the loop integration and move

the Gaussian exp
(
− r2/β

)
to the left of the differential operator. By using the

identity

− r2

β
+

2n∑

i=1

βi v
2
i =

1

β

∑

1≤i<j≤2n

βi βj (vi − vj)
2 (A.37)

one obtains

In(p1, ..., pn) =

n∏

i=1

∞∫

0

dβi
β2

× exp

{
−

n∑

i=1

βim
2
i +

1

β

∑

1≤i<j≤2n

βi βj (vi − vj)
2

}

× tr

n∏

i=1

Γi

(
mi+ 6vi −

1

β
6r + 1

2
6∂r
)
. (A.38)

As described in the main text the set of Schwinger parameters βi (i = 1, ..., n) can
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complemented by an additional parameter t by writing

∞∫

0

dnβF (β1, ..., βn) =

∞∫

0

dt tn−1

∫
dnα δ

(
1−

n∑

i=1

αi

)
F (t α1, ..., t αn) . (A.39)

One then arrives at the final representation of the one–loop n–point diagram in the
form

In(p1, ..., pn) =

∞∫

0

dt
tn−1

(s+ t)2

∫
dnα δ

(
1−

n∑

i=1

αi

)
exp

{
− t z loc +

s t

s+ t
z1 +

s2

s+ t
z2

}

× tr

n∏

i=1

Γi

(
mi+ 6vi −

1

s+ t
6r + 1

2
6∂r
)
, (A.40)

where

z loc =
n∑

i=1

αim
2
i −

∑

1≤i<j≤n
αi αj Aij ,

z1 =
n∑

i=1

αi

2n∑

j=n+1

β̄j Aij −
∑

1≤i<j≤n
αi αj Aij ,

z2 =
∑

n+1≤i<j≤2n

β̄i β̄j Aij ,

r = t

n∑

i=1

αi vi + s

2n∑

i=n+1

β̄i vi .

Here, β̄i+n = si/s, s =
n∑
i=1

si. The matrix Aij = (vi − vj)
2 (1 ≤ i, j ≤ 2n) depends

on the invariant variables of the process.

Altogether there are n numerical integrations, n− 1 α–parameter integrations and
the integration over the scale parameter t. For the derivative of the (two–point
function) mass operator one has to do one more α–parameter integration due to
the extra propagator which enters after the differentiation. The integration of the
derivative of the mass operator proceeds in analogy to the case of the n point function
described in this Appendix. We mention that the correctness of the numerical
integration procedure can be checked very conveniently by shifting the momentum
of the loop integration by a fixed four–momentum.

Some further remarks are in order. The convergence of the loop integral Eq. (A.40)
is defined by the local α form z loc. If z loc ≤ 0 the t–integration becomes divergent
due to contributions from the large t–region. The large t–region corresponds to
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the regime where the singularities of the diagram with its local quark propagators
appear. However, as described before, if one introduces an infrared cutoff on the
upper limit of the t–integration, all singularities vanish because now the integral is
convergent for any value of the set of kinematical variables. Note that the one–loop
integration techniques described in this Appendix can be extended to an arbitrary
number of loops in a straightforward manner. Of particular interest is the extension
to the two–loop case needed for the description of baryon transitions.



B. Appendix: AdS/QCD

B.1. Evaluation of integrals in the heavy quark

limit

We evaluate the integral in the r.h.s. of Eq. (5.60) with

J =

1∫

0

dx

(
m2
q

x
+

m2
Q

1− x

)
f 2(x,mq, mQ) =

1∫
0

dx

(
m2
q

x
+

m2
Q

1−x

)
exp

(
− m2

q

λ2qQx
+

m2
Q

λ2qQ(1−x)

)

1∫
0

dx exp

(
− m2

q

λ2qQx
+

m2
Q

λ2qQ(1−x)

) .(B.1)

Scaling the variable x = zmq/mQ and then performing an expansion in powers of
1/mQ we get:

J = m2
Q +mQmq

∞∫
0

dz
(
z + 1

z

)
exp

(
−mqmQ

λ2qQ

(
z + 1

z

))

∞∫
0

dz exp

(
−mqmQ

λ2qQ

(
z + 1

z

)) +O(1) (B.2)

where the parameter λqQ scales as
√
mQ. Such a scaling of λqQ is consistent with

the scaling of the leptonic coupling constants of heavy–light mesons (see Sec. 5.3.4).
For convenience we introduce the parameter r = mqmQ/λ

2
qQ. Finally, the expansion

of the heavy–light meson mass reads

MqQ = mQ + Λ̄ +O(1/mQ) (B.3)

where

Λ̄ = mqI (B.4)

and

I =
1

2

∞∫
0

dz
(
z + 1

z

)
e−r(z+

1
z
)

∞∫
0

dz e−r(z+
1
z
)

. (B.5)
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B.2. Decay constants

The leptonic decay constant fπ of the pion is taken as an example to demonstrate
the computation of matrix elements in our approach. We start with the expression

〈
0
∣∣ūλ1(q1)γ+dλ2(q2)

∣∣π−(P )
〉
= P+fπ (B.6)

The current is given by

ūλ1(q1)γ
+dλ2(q2) =

∑

λ1,λ2

∫
dq+1√
2q+1

dq+2√
2q+2

d2~q1⊥
(2π)3

d2~q2⊥
(2π)3

×
[
ū(q1, λ1)b

†
dλ1

(q1) + v̄(q1, λ1)duλ1(q1)
]

(B.7)

× γ+
[
bdλ2(q2)u(q2, λ2) + d†uλ2(q2)v(q2, λ2)

]

and the state
∣∣π−〉 is set up as

∣∣π−(P+)
〉
=

2P+

√
2Nc

1∫

0

dx

∫
d2~k⊥
(2π)3

ψūdnL(x,
~k⊥)
[
b†ad↓(p1)d

†a
u↑(p2)− b†ad↑(p1)d

†a
u↓(p2)

]∣∣0
〉

with p1 = (xP+, x ~P⊥ + ~k⊥) and p2 = ((1 − x)P+, (1 − x)~P⊥ − ~k⊥). By using the
anticommutator relations (5.13) one easily derives

fπ =2
√
6

1∫

0

dx

∫
d2~k⊥
(2π)3

ψūdnL(x,
~k⊥)

∫
dq+1 dq

+
2 d

2~q1⊥d
2~q2⊥δ(q

+
2 − p+1 )δ(q

+
1 − p+2 )

× δ(2)(~q2⊥ − ~p1⊥)δ
(2)(~q1⊥ − ~p2⊥) = 2

√
6

1∫

0

dx

∫
d2~k⊥
(2π)3

ψ̃ūdnL(x,
~k⊥)

=2
√
6

1∫

0

dx
ψ̃q̄1q2nL (x,~b⊥ = 0)√

4π
. (B.8)
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