
Magnetised Neutron Stars

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Antonella Colaiuda

aus Rom
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Abstract

In the last decades, great attention was devoted to the study of highly magnetised
neutron stars. These compact objects are usually divided in Anomalous X-ray Pulsars
(AXPs) and Soft Gamma Repeaters (SGRs). AXPs are characterised by a narrow
spin period (P ' 5− 12 secs) and high X-ray emission (L ' 1036− 1044erg/s) while
the SGRs, among other features, show huge peaks in their luminosity spectra, that
could reach also L ' 1046erg/s. Such luminosity is associated with a huge release
of energy that cannot be supported by rotational energy. It was then proposed that
a huge magnetic field (B > 1014 Gauss) could provide the appropriate reservoir of
energy for these events. In fact, such a strong magnetic field could apply an intense
magnetic pressure to the crust and eventually could break it. The breaking of the
crust, followed by a readjustment of the magnetic field, could release the energy
observed during the giant peaks of SGRs. In addition, such mechanism could also
explain the soft tail observed some seconds after the giant flare. In this tail, a carefully
analysis shows the presence of quasi periodical oscillations (QPOs), with frequencies
going from few Hz to kHz. Here we proposed that the QPOs are Alfvén torsional
oscillations, a type of oscillations generated and associate with the presence of a
magnetic field.

In this thesis, we construct models of relativistic axisymmetric , non-rotating,
magnetised neutron stars constituted of a fluid core and a thin solid crust. We derived
the perturbation equations for these magnetar models and by using a linear evolution
code, we study the various patterns of oscillations for different configurations and
strengths of the magnetic field. We compare the frequencies found with the ones
observed in the tail of the SGRs and we demonstrate that a magnetar model with
specific solid crust and specific equation of state for the fluid core can explain all
the observed frequencies. In this way we are able to constrain the parameters of
the observed magnetars, such as the mass, the radius, the equation of state and the
strength of the magnetic field.
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1
Introduction

The hypothesis of the existence of very compact objects, with small radii and very
high densities, was formulated first by Baade and Zwicky in 1934 [1]. The first
pulsar was only observed accidently many years later, in 1968 [2]. After a more
consistent sample of observations, it was discovered that the rotational period of
pulsars decreases very slowly but in a regular manner. The causes of this were
unknown until Pacini [3], and later Gold [4] and Ostriker and Gunn [5], built
a model where the pulsars are magnetized rotating neutron stars: the magnetic
field on the surface (estimated Bsurf = 1011 − 1013 Gauss) is responsible for the
observed spin-down. This model was successfully used to explain the observed
spin-down of the Crab pulsar. The same model but with a lower magnetic field,
Bsurf = 1011 Gauss, can explain the spin down of the millisecond pulsars.

In 1980, a neutron star with a really narrow period, P ' 5− 11 seconds was
discovered. Not long afterwards other stars with the same narrow period were
detected. First, it was proposed that those stars could be accreting neutron stars,
but the lack of observed companions made this hypothesis inconsistent. Then, it
was argued that a very high surface magnetic field, Bsurf = 1014 − 1015 Gauss,
could explain the observed period. The decay of such a strong magnetic field
could also explain the detected X-ray luminosity of those objects. This new class
of objects was called Anomalous X-ray Pulsars (AXPs).

It was only the discovery of the soft gamma repeaters (SGRs), that really val-
idates the hypothesis of the existence of such high magnetic fields inside neutron
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CHAPTER 1. INTRODUCTION

stars. The SGRs emit short bursts (P < 1 sec) with a luminosity L ' 1041erg/s
in the X-ray/soft gamma ray range. For this reason, they were initially consid-
ered a subclass of the gamma ray bursts. However, the detection of giant peaks
with a luminosity L ' 1047erg/s implied that SGRs could not be a sub class
of gamma ray bursts, because no emission mechanism in gamma ray bursts can
produce such high luminosity: new sources of energy would need to be found
in order to explain the giant peak. Thompson and Duncan [6] proposed that a
huge magnetic field, B ' 1015 Gauss, could be the sources not only of the burst
emission but also of the persistent one, observed during the quiescent period. It
is also responsible for the fast spin down of those neutron stars.

How can the magnetic field be responsible of such emission? The mechanism
could be really similar to the one present in magnetically active main sequence
stars, where convective motion is the trigger of the magnetic field instability:
such motion inside the convective zone can move the footpoints of the magnetic
field on the stellar surface, creating tangential discontinuities. The created dis-
continuities imply that the magnetic field undergoes catastrophic reconnection,
trying to achieve a new equilibrium configuration: the catastrophic magnetic re-
connection could easily break the crust and trigger the flare. It must be noticed
that in magnetars, the displacement of the footpoints is not caused by connec-
tive motions but instead by diffusive processes. In [6], Thompson and Duncan
developed a toy model, where a circular displacement of the crust, caused by a
readjustment of the magnetic field configuration, facilitates the breaking of the
crust by the magnetic field. In addition, the interior magnetic field could twist
with the exterior magnetic field, and raise the currents inside the magnetosphere
or even drive new ones. This mechanism could be responsible for the quiescent
X-ray emission observed in magnetars.

Thompson & Duncan also assumed that the huge magnetic field could not
break the crust but instead just deform it plastically. High plasticity may be
efficient at high temperatures, T = 109 K. This temperature can be reached in
magnetar’s crust due to magnetic heating. However, the magnetic stress over-
comes the elastic stress for a magnetic field B > Bcri = (4πµ)1/2 = 4 × 1015ρ0.4

14

Gauss, where µ is the shear modulus and ρ14 is the mass-density expressed in
terms of 1014 g/cm3 (see [7]). This strength of magnetic field is usually reached,
and sometimes also overtaken, in magnetars. When this happens, the magnetic
pressure is so strong that it can eventually break the crust.

Another possible explanation of giant flares was formulated by Thompson,
Lyutikov and Kulkarani (see [8]), who considered an instability of the magnetic
field, and its consequent readjustment in the magnetosphere as the only trigger
for the giant flare. In this case, energy from the interior is not required and,
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consequently, the magnetic field inside the star does not play any role. However,
in the same paper, the authors compare the observed outburst data with the data
given by such a model and they found that the magnetosphere-instabilitiy model
does not fit consistently the observed data, while a crust fracture is more efficient
in fitting them.

Until now eight confirmed SGRs have been detected: among these, only
three of them (SGR 0526-66 in 1978, SGR 1806-20 in 2004 and SGR 1900+14 in
1998) emitted a giant flare and only two, SGR 1806-20 and SGR 1900+14, show
a periodicity in the soft tail that follows the giant flare.

The SGR 0526-66 was the first to be seen emitting a giant flare on the 5th of
March 1979. At that time, no satellite was designed to measure such huge fluxes
of photons, and nearly all of them saturated. However, by comparing the signals
from the different satellites and by performing simulations of the emission and
of its travel pattern in the Galaxy, it was shown that the emission constituted
a hard impulse, lasting 0.2 sec, which was responsible of the saturation of the
instruments, and by a modulation in soft X-rays that lasted several seconds.
Furthermore, the SGR was found to be located near a supernova remnant in the
Large Magellan Cloud. In addition, an 8 seconds modulation of the signal was
measured by many detectors on Earth. This modulation seemed to suggest that
the star was rotating with a period of about 8 seconds. Such period indicates
that the stars rotates slowly compared to the other know neutron stars; which
was the first hint in understanding the complete new nature of those objects.

The SGR 1806-20 was detected for the first time in January 1979, emitting
moderate bursts. In the middle-1980’s it was very active, frequently emitting large
amount of bursts (more than 100). Since this time it was sporadically active and
for many years was thought that, in the absence of bursts (i.e. in the so called
quiescent period), the SGR did not emit any signal in any electromagnetic band.
However, in the 1990’s, many satellites observed quiescent X-ray activity from
this source, showing clearly that, even in absence of bursts, the source is still a
bright X-ray neutron star. The position of the star in the sky is contained in
its name: 18 hours, 06 minutes ascension and -20 degrees declination. These
coordinates correspond to the centre of the Galaxy, in a region quite populated
by stars. For this reason for many years, it was thought that the SGR 1806-
20 could have a companion, contradicting the hypothesis that stars with such
high magnetic fields could not live in a binary system. This hypothesis, first
confirmed from optical observations, was then discharged by more precise X-ray
observations that made clear how no companions were present in the neighbour
of the SGR. For this SGR, no sure association with supernovae remnants was
found.
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CHAPTER 1. INTRODUCTION

The SGR 1900+14 was located in the constellation Aquila: some recent
observations show that the SGR is located near a young supernovae. The SGR
1900+14 was discovered in March 1979, however, it emitted a considerably smaller
number of bursts than SGR 1806-20 (just three) and it was not active for a long
period. On 27th August 1998, the SGR 1900+14 emitted a giant burst that was
observed by three satellites: the Italian-German satellite Beppo-sax, the Russian
experiment Konus, on board of an spacecraft orbiting around the Earth, and the
Ulysse spacecraft, a joint experiment by ESA and NASA. Other satellites that
did not point at the source during that time registered some traces of the event,
because of the emission of a huge amount of energy. In fact, it was so strong that
the outer layer of the Earth’s atmosphere was ionized, causing some problems in
the radio communications on Earth. The giant flare peak did not last long: after
10s its intensity was already an order of magnitude less than at the beginning.
However, in the seconds after the giant peak, a tail was observed, lasting several
seconds. After 380s, the activity of the SGR dropped again to normal. The
analysis of the tail showed some quasi periodic oscillations (QPOs). The cause
and explanation of these type of QPOs is the aim of this thesis .

All these characteristics make the magnetars really peculiar objects among
the neutron stars. In particular, the huge magnetic field strength and the young
age of these objects are quite different from those of normal neutron stars. This
difference could be better understood looking at the P − Ṗ diagram, see Figure
1.1. In this diagram the period P and its derivative Ṗ are used as axis coordinates,
since for many neutron stars (included magnetars), it is possible to measure them
quite accurately. In addition, the period and its derivative play an important role
in estimating the magnetic field of a neutron star as well as its age. In fact, the
magnetic field can be estimated, using the dipole radiation formula:

B = 3.2× 1019(PṖ )1/2Gauss (1.1)

The value of the magnetic field is represented by continuous green lines in Figure
1.1 The dashed green line represents the characteristic age of neutron stars, as it
is calculated from the formula:

τ =
P

2Ṗ
(1.2)

Old neutron stars that are already slowed down by electromagnetic radiation
are located manly in the bottom part of Figure 1.1, while the AXPs and the SGRs,
indicated as red points, are located in the upper right corner of Figure 1.1. Their
estimated age is about 104yr and their magnetic field is stronger than 1014G. A
lower limit for the magnetic field of magnetars was estimated by Harley et al.
[10] and by Kouvelitou et al. [11], who set this limit around B = 4 × 1014G for
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Figure 1.1: The P − Ṗ plot for neutron stars (Figure by McLaughlin et al. [9]).

SGR 1900+14 and B = 8 × 1014G for SGR 1806-20. In a paper by Nagakawa
et al [12], this limit was also higher. To be consistent with these estimates, we
chose a magentic field on the surface B = 4× 1015G. In fact for higher values of
the magnetic field, the crust is plastically deformed but not broken [13]. Without
a breaking of the crust, is not possible to explain coherently all the observed
features of the magnetars.

1.1 Neutron star structure

Although magnetars possess an extraordinary magnetic field, their interior struc-
ture is similar to other neutron stars. As is schematically drawn in Figure 1.2, a
neutron star can be divided, with the following components:

core: the core constitutes up to 99% of the neutron star mass. The density
is around ρ > 2.6 × 1014 gcm−3 and the matter is composed of neutron,
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CHAPTER 1. INTRODUCTION

protons and electrons in β-equilibrium. The protons are just a 10% of
the total mass, and the main contribution to the pressure comes from the
neutrons, since they are more massive than electrons. Also, at such high
densities, neutrons cannot be treated as a non-interactive particle gas: they
can form a superfluid and the protons can form a superconductor. Exotic
particles can also appear in the inner part of the core.

crust: the crust extends for about 1-2 km and is usually subdivided in outer
and inner crust. The density goes from ρ = 2 × 1014 gcm−3 (in the inner
crust) to ρ = 107gcm−3 (in the outer crust). In the inner crust the matter
is composed of a mixture of two phases: one is rich in protons and one is a
neutron gas. An electron gas is also present in order to preserve the charge
neutrality. The dominant contribution to pressure is due to the neutron
gas. At very high densities, at the interface between the crust and the core,
the matter in the crust can form the so called ‘pasta’ phase, a status where
nuclei display in different configurations (spheres, bar-type structures and
slab-type structures). In the outer crust, a heavy nuclei lattice is immersed
in an electron gas. In fact, the β-decay process is very effective at such
densities, and, as a consequence, a large amount of neutrons are generated.
As the pressure decreases, the β-decay process is not longer efficient and
the neutrons are trapped in the nuclei. It is worth pointing out that while
in ordinary neutron stars the crust is stable, in magnetars it is stressed by
the huge magnetic pressure generated by the extraordinary high magnetic
field.

envelope and atmosphere: they form a tiny layer, situated on the outer
crust. They contain a negligible amount of mass, but they are really im-
portant for the radiative and transport properties of the star, influencing
the thermal energy at the surface.

magnetosphere: the magnetosphere is created by charged particles, transported
by electric currents. In fact, the strong electric field, generated by the mag-
netic field, is parallel to the stellar surface and rips off charged particle from
the star, creating a dense magnetosphere. In magnetars, the magnetic field
is strong enough to create long living currents in the magnetosphere, so
that the latter is continuously filled with particles from the surface of the
star. The magnetosphere could explain the non thermal persistent emission
present in magnetar’s spectrum.

6



Figure 1.2: A schematic representation of neutron stars interior (Figure from
Page & Reddy [14]).

1.2 Magnetic field in neutron stars and magnetar progenitors

The presence of a magnetic field in a neutron star is always an important issue,
because its presence affects the internal and microscopic properties of the star:
its period, its emission, its spin down, etc. However, it is not in neutron stars
that the presence of magnetic field was first discovered, but instead on Earth.

The discovery that the Earth posses a magnetic fields goes back to the six-
teenth century and it is attributed to William Gilbert. Not long after, Edmund
Halley pictured the first world magnetic chart, although he was thinking of the
Earth as permanently magnetized matter. When the variability of Earth’s mag-
netic field was discovered, together with its dipole structure, it was inferred that
the Earth’s interior must be partially fluid in order to yield the observed magnetic
variations. In 1909, the geophysicist Mohorovic noted that some characteristics
of the seismometer’s trace could be understood only if the Earth has a stratified
structure. This was the first time seismic waves were used to study the internal
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CHAPTER 1. INTRODUCTION

structure of an extended body. The first global shear modes in Earth were dis-
covered after the earthquake in Chile in 1960. These modes were twisting the
two hemispheres in opposite directions, involving no radial displacement.

The first study of extraterrestrial magnetism was made on the Sun by Hale,
who proposed that the sunspots posses a magnetic field. The study was then
continued, including the photosphere, solar prominences and filaments, and it was
discovered that the magnetic field on the Sun changes every 11 years. Starting
from 1940, the Zeeman effect was used to study the magnetic field on others stars.
The magnetic field on a normal star is estimated to be around B ' 103 − 104

Gauss.

It is then natural to ask how such a weak magnetic field could generate the
magnetic field that we actually measure on pulsars and magnetars. There are two
competitive physical scenarios: the fossil-field scenario and the dynamo-scenario.
The dynamo mechanism was investigated by Thompson and Duncan in [15]: in
this scenario, in the first seconds of the magnetar’s life, a rapid rotation, together
with an effective convection, can create a favourable magnetic dynamo site, where
an amplification of the magnetic field is not suppressed by turbulent diffusion. A
magnetic field up to B ' 1016 Gauss can be created, if the nascent neutron star
is rotating very fast. The major objection to this theory is the present period
measured in magnetars, between P ' 2− 12sec: that means that the magnetars
are actually rotating too slowly to support this hypothesis. However, in the
very first few moments of their life, magnetars are thought to be fast rotating,
although no measurement can support this hypothesis. In the fossil field scenario,
proposed in [16] and [17] , the large magnetic field is a remnant of the one owned
from the progenitor star, amplified during the collapse of this latter, that leads
to the neutron star formation.

The progenitor of magentars are thought to be O stars and early type B stars
with surface magnetic field around B = 103 Gauss and mass 20M� < M < 45M�.
Ferrario and Wickramasinghe in [17] pointed out how a progenitor with a too
low mass (M < 18M�) would be in conflict with the birth rate of radio pulsars,
that usually descend from star with M < 18M�. On the other hand, a too
large progenitor mass would produce a number of magnetars strongly below the
present number of magentars observed. Assuming a progenitor mass M ' 20M�,
the number of magnetars in our Galaxy is estimated to about 26. However, the
observed number of magnetars in our Galaxy is 14. For this reasons, the authors
supposed that not all magnetars are actually active and so detectable from the
satellites: some magnetars could also be in the quiescent state where no bursts
or giant flare are present, making heir detection extremely difficult. It is worth
stressing that the study by Ferrario and Wickramasinghe in [17] assumes that all
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the stars with mass 20M� < M < 45M� would produce a magnetar. With this
assumpion, the birth rate of magnetars in our Galaxy would be 3 × 10−3 yr−1.
However, the number of magnetars in our Galaxy is about 14, so if no additional
magnetar exists, this means that 50% of the stars with 20M� < M < 45M�
could instead produce a black hole and the birth rate of magnetars is lowered to
1.5× 10−3 yr−1.

The progenitors play an important role also in determining how the magnetic
field distributes in the new born star as well as in the magnetic field strength.
Heger et al. [18] proposed that the mass of the progenitor could somehow influ-
ence the spin of the nascent highly magnetised star. As we said before, if a star
is fast rotating, then a dynamo process can occur leading to an amplification of
the magnetic field. In addition, the shearing of a poloidal field of fossil origin
together with a dynamo scenario may lead to the birth of a neutron star with
both poloidal and toroidal strong magnetic field components. In fact the toroidal
field could be produced by the twisting of the magnetic field line of a poloidal
field. This twisting could be generated by the dynamo mechanism, due to the
fast rotation of young and hot magnetars.

1.2.1 Association of magnetars with clusters and supernova rem-

nants

As we discussed in the previous section, the origin of magnetars and of their
strong magnetic field is still unclear. In particular, it is not well known how
and where the progenitors of magnetars are formed. The most popular scenario
involves the core-collapse of a massive star that generates a supernova. The
supernova gives then birth to a neutron star. This scenario is supported by the
observed association of supernova remnants to magnetars.

Sometimes, magnetars are associated with stellar clusters, in which case, it
is possible to estimate the mass of the progenitor empirically using the cluster’s
lifetime. In fact, a measure of the age of the stellar cluster could help us to put
some constraints not only on the time when the progenitor became supernovae
but also on their mass. It is indeed known that the initial mass of a star is a strong
function of the star’s lifetime, so the initial mass can be estimated by knowing
the stellar lifetime. For example, the SGR 1860-20, that was associated with
stellar cluster C1 is estimated to have a progenitor with M & 40 M�, confirming
the hypothesis that magnetars are born from massive stars. Such a hypothesis
was confirmed by the observation of a supermassive star with M ' 40 M� that
ended its life as a magnetar [19]. Also the SGR 1900+14 belongs to a cluster,
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a hypothesis that was first made when the presence of an infrared ring around
it was discovered. Spectroscopic observations confirmed that SGR 1900+14 is
part of this cluster, estimated to be at a distance D ' 12.5 Kpc. The progenitor
mass is estimated to be M = 17 M�, sensitive lower than the progenitor’s mass
estimated for the other magnetars. Since it is almost impossible that a single star
of such a mass could develop a rich-hydrogen envelope without involving a strong
spin down of the star, it is not clear how a strong magnetic field can be created
in lack of fast rotation. It was then supposed that in this case the magnetar was
born by a binary system, so that the magnetar could be the product of a merger
and the magnetic field could increase during the inspiral and the merger phase.
This scenario could also explain the lack of counterpart optical/IR detection in
the spectrum of SGR 1900-14.

1.3 Magnetar emission

To obtain a proper understanding of the magnetars emission, it is necessary
to monitor the source for extensive periods of times and in different spectral
electromagnetic bands. The SGR 1806-20 was monitored by the satellite XMM-
Newton in the 1-10 KeV range in 2003-2004. It was then possible to study the
long term evolution of this object, with particular attention to the persistent
emission in X-ray at energies 1036 − 1039 erg/s. A model was suggested by
Perna et al. [20] in order to explain the SGR spectrum. It consists of two
components, a blackbody part and a power law one. The black body could explain
the thermal emission of SGR, while the power law could explain the non-thermal
emission. The power law could be produced by the cyclotron scattering of the X-
rays in the magnetosphere with high-energy photons: such an effect was computed
both analytically and by simulations. In this case, the thermal emission from
the surface of the star is processed in the hot-plasma of the magnetosphere by
multiple cyclotron scattering . Actually, this model could also explain the gamma
rays observed during the quiescent emission of magnetars. A quiescent period
is defined as a period where neither giant nor intermediate bursts are emitted
from the source (see below). However, the detection of optical and infrared
counterparts has emphasized that the multi-wavelength spectra is much more
complex than a simple superposition of a black body and a power law.

Further monitoring of SGR 1806-20 and SGR 1900+14 were performed by
the satellite INTEGRAL in the range 15keV-200keV, for hard gamma. Both
sources show quiescent period in their life. It is also important to stress that the
size of burst varies in SGRs, apart from the giant flares, also intermediate bursts
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have been observed. Those latter last more than 500 seconds and release lower
energy than the giant flares. They can also last from a few days up to a month.
Some intermediate bursts were detected within a month from the giant flares:
for this reason they are considered hints of the aftershocking, following the giant
flares. On the other hand, they are also observed not in correlation with giant
flares, suggesting that a continuum emission is coming from the SGRs.

Four observations of the SGR 1806-20 from the XMM-Newton satellite have
been taken before the giant flare and show an increase of the activity of the
source, in particularly of the flux, and a change in the spectrum shape, that
shows a different structure after the giant flares. This increase and the change of
the burst activity was attributed to a change in the magnetic field. As we explain
in the next section, a magnetic field instability and its subsequent readjustment
could explain these features and also the giant flare burst and the following soft
tail. In this tail that lasts 200 sec quasi periodic oscillations have been found.

1.3.1 The emission mechanism

The paper by Thompson and Duncan [6] was the first attempt to explain co-
herently the emission of the SGRs as a consequence of the presence of a strong
magnetic field B > 1014 Gauss. They looked for a mechanism that could take
into account the age of the magnetars, the lack of radio emission, the duration of
the giant flare and the presence of the soft tail that follows the giant flare. They
found that the presence of a strong magnetic field could successfully explain the
SGRs emission mechanism. In addition, by developing a consistent model, they
suggested an alternative strategy for searching for magnetars. Let’s see in some
more detail this model.

Magnetars are not detectable in the radio band due to the presence of a
strong magnetic field. A star with a strong magnetic field spins down so effec-
tively that it crosses the dead line of the pulsars quite early compared on the
normal pulsars. This rapid evolution together with a relative small beaming ra-
dio makes detections in the radio band very difficult. However, the presence of
a strong magnetic field offers new possible ways for detection. In fact, there is a
characteristic age for which the energy of the magnetic field exceeds the rotational
energy, which is estimated to be:

tmag ' 400
(
Bdipole

BQED

)−4

yr (1.3)

where BQED = m2
ec

3/e~ = 4.4 × 1013 Gauss is the magnetic field strength at
which the non-relativistic Landau energy ~eB/mec becomes equal to the electron
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rest energy mec
2. The external magnetic dipole field is estimated to be around

Bdipole = 6 × 1014 Gauss: the internal magnetic field could be also one order of
magnitude greater. After this time, the rotational energy can not support the
high luminosity observed in the giant flare. In fact, at the estimated magnetar
age of 104 years, the maximum luminosity available from rotation is:

LX '
1
2t
I

(
2π
P

)2

' 2× 1033 erg s−1 (1.4)

where I is the inertia moment of the star. Also, the X-ray emission that is
detected is quiescent and is supported only by the decay of the magnetic field
that lasts 104 years.

The most powerful phenomena in neutron stars are the giant flares, during
which a luminosity L > 1051erg/s is reached. The giant flares could be explained
by a catastrophic instability of the magnetic field due to hydromagnetic motions
in the core. The consequent reconnection of the magnetic field at the base of the
crust could break this latter and lead to the observed giant flare. The breaking
of the crust also has an effect on the magnetic field lines. In fact, their footpoints
are subjected to a torque, because of the displacement of the crust at which they
are anchored. This torque produces a twist in the magnetic field lines that is
schematically represented in Figure 1.3. The magnetic field reconnection takes
place on a time scale of about' 0.1 sec, that is comparable with the observed raise
time of the giant flare. As consequence of the breaking of the crust, protons and
electrons are ripped away from the surface and are injected in the magnetosphere.
Here this plasma is trapped because of the optical thickness of the magnetosphere.
In fact, the cross section of a photon is strongly suppressed in the presence of the
strong magnetic field

σ =
1

sin2 θkB

(
ωme

eB

)2

σT (1.5)

where ω is the cyclotron frequency, σT is the Thompson cross section and θkB
is the angle between the photon’s wave vector and the magnetic field. Because
of the suppressed cross section, the photons and the electrons pairs cannot leave
the magnetosphere and trapped plasma is formed.

This trapped plasma (also called ‘trapped fireball’) is left behind when the
outflow from the surface of the star ceases. This optically thick photon-pair
plasma is trapped by the closed magnetic lines within a distance of 10km from
the star. Then, the fireball starts to cool down: the velocity of the cooling down
is limited by the transparency of its external layers. In fact, a sharp temperature
gradient is created on the external layer of the fireball, generating cooling waves
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Figure 1.3: A schematic view of the crust displacement and of the magnetic field
twisting (courtesy of Robert Duncan)

that propagate from the exterior of the fireball till to the internal hot region,
cooling it effectively down. The luminosity of the fireball (about L ' 1041 erg/s)
and the cooling time of the fireball (around few hundreds seconds) are compatible
with the ones of the soft tail detected in SGRs. In addition, the fireball contracts
and expands during its cooling because of the scattering processes that take place
inside the fireball between electron pairs and photons. These oscillations could
be identified with QPOs in the soft tail of SGRs. However, this model doesn’t
fit the present observed QPOs: at the contrary in this thesis we will show that
torsional oscillations modes in a star composed of a fluid core and a solid crust
can explain the observed QPOs.

Apart from the giant flares, small bursts have been detected in all three
SGRs. They are thought to be caused by small fractures of the crust that follow
the major one. In this case no reconnection is present. The small fracture of the
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CHAPTER 1. INTRODUCTION

crust could happen only when the magnetic energy is stronger than the tensile
energy, caused from the plastic deformation of the crust. This happens for B <
6× 1015 Gauss.

1.4 Magnetic oscillations

Two of the three giant flares that have been detected until now ( SGR 1900+14
in 1998, and SGR 1806-20 in 2004) show a decay tail that accompanies the
giant flare. The timing analysis of the latter two events revealed several QPOs
in the decaying tail, whose frequencies are approximately 18, 26, 30, 92, 150,
625, and 1840 Hz for SGR 1806-20 (see Figure 1.4), and 28, 53, 84, and 155 Hz
for SGR 1900+14, see [21]. It is believed, that during an SGR event, torsional
oscillations in the solid crust of the star could be excited [22], leading to the
observed frequencies in the X-ray tail. Actually, the frequency of many of these
oscillations fits to the values of the torsional mode oscillations of the solid crust of
a compact star, see [23], [24]. However, since not all of the observed frequencies
could be explained by pure crust oscillations ([24] and [23]) alternative scenarios
have also been suggested. For example, Glampedakis at al. [25] claimed that
the observed spectra may explained via global magneto-elatsic oscillations (see
also [26] for more recent discussion) while Levin in [27] pointed out that the
Alfvén oscillations of magnetars could be a continua. Recently, a toy model
calculation by Levin [28] indicated that the edges or turning point of the continua
could corrspond to long-lived QPOs. Following Levin’s suggestion, Sotani et al.
[29] construct a numerical code for more realistic magnetar configurations and
confirmed the Alfvén oscillations of magnetars could be a continua which could
explain the lower observed frequencies. In a more recent paper by Sotani &
Kokkotas [30] it was shown that the spectrum of the polar Alfvén oscillations is
actually discrete. Their results are confirmed by recent work by Lander & Jones
[31], where the authors study polar oscillations in the presence of a poloidal field.

Sotani et al. [29] performed two-dimensional numerical simulations of lin-
earized Alfvén oscillations in magnetars. Their model improves the previously
considered toy models in various ways. General relativity is assumed, various re-
alistic equations of state (EOS) were considered and a consistent dipolar magnetic
field is constructed. However, it does not take into account the presence of a solid
crust and only examines the response of the ideal magnetofluid to a chosen initial
perturbation. The two-dimensional partial differential equation (PDE) that they
used to study the Alfvén oscillations has a mathematical pathological behavior,
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Figure 1.4: The observed QPOs tail in SGR 1806-20 (from Strohmayer and Watts
[21])

as will be explained in chapter 3, and forced them to introduce artificial numer-
ical viscosity in an attempt to stabilize the numerical evolution. The numerical
results presented in [29] are compatible with the observations, as for example,
they found two families of QPOs corresponding to the edges or turning points
of a continua with harmonics at near integer multiples. With this identification,
they could set an upper limit to the dipole magnetic field of ∼ 3 to 7 × 1015G
and they could limit the models to very stiff EOSs for values of the magnetic
field strength near to its upper limit, or moderately stiff for lower values of the
magnetic field.

In an extension of that paper [32], we have studied the axisymmetric crust
torsional modes of magnetars with poloidal and toroidal magnetic fields, where
both components are confined in the crust. We present these results in Chapter
4. The numerical results showed that this magnetic configuration cannot explain
the actual observational data of SGRs and it is in agreement with a more recent
result by Van Hoven & Levin [33].

Some recent works by Gabler et al. [34] and by Van Hoven & Levin [35]
take into account the presence of an elastic crust, using different techniques.
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While Gabler et al. develop a non-linear code, Van Hoven & Levin use a toy-
model. The two works find different results: Van Hoven & Levin find Alfvén
continua accompanied by some discrete modes near the edges of the continua,
while Gabler et al. find no discrete modes for magnetic field B > 1014Gauss. In
both the papers, no identification of observed QPOs was made.

In this thesis, we will present the results of our study of the QPOs oscilla-
tions for two types of magnetars configurations: a star composed only of a fluid
and a star with fluid core and solid crust. In our study we have used a new
transformation of coordinates that simplifies the numerical study and allows us
to give a phenomenological interpretation of our results. We will show that our
model could consistently explain all the observed data.

1.5 Plan of this thesis and convention

In chapter two we will shortly review the equilibrium configuration of a neutron
star in the absence of a magnetic field. We will then add a magnetic field and
derive the Grad-Shafranov equation, i.e. the equation that describes the equi-
librium configuration of the magnetic field in the star, including both a poloidal
and a toroidal component. In chapter three we will perturb the equilibrium con-
figuration in order to derive the equation that describe the torsional oscillations
in a neutron stars. In chapter four, we study the torsional oscillations for a star
composed exclusively from a perfect fluid. In chapter five, we add a solid crust to
the previous configuration and show how a stellar model with fluid core and solid
crust could explain all the observed frequencies in SGRs. In the last chapter, we
will present and discuss the results obtained in this thesis.

In this thesis, we will use the following conventions:

• the signature of the metric is -,+,+,+, i.e. the time like vectors have nega-
tive norm,

• we use units where G = c = 1,

• we use the summation convention of Einstein. Latin indices indicate spatial
components and run from 1 to 3 (unless otherwise states) and the Greek
indices indicate spacetime components and run from 0 to 3 (the 0-th com-
ponent is the temporal component),

• the covariant derivative of an arbitrary quantity, u, with respect to the
coordinate, xµ, are written as Dµu or u;µ, while partial derivatives are
denoted with ∂µu or u,µ.
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2
Static magnetic equilibria

In this chapter, we derive the equations describing a spherically, symmetric, non-
rotating, magnetised neutron star. The derivation consists of two steps:
• firstly, we derive the equilibrium model that is spherically, symmetric, non

rotating neutron star, by solving the Tolmann Oppenheimer-Volkoff equa-
tions (TOV equations),
• then, we review the Maxwell equations in general relativity and derive the

Grad-Shafranov equation for a mixed poloidal-toroidal field. This equation
describes the distribution of the magnetic field inside the star.

We will use this type of equilibrium models as the background on which small
perturbations are evolving. In this way, in the following chapters, we will address
the problem of quasi periodic oscillations in magnetars.

2.1 Equilibrium model of a non-magnetised star

In this section we will derive the Tolmann Oppenheimer-Volkoff equations (TOV
equations, see [36]). The solutions of these equations for a given central den-
sity and a given equation of state describe uniquely the internal structure of a
spherically symmetric, non-rotating relativistic star without magnetic field. In
the exterior, this solution describe a spherically symmetric spacetime.

The line element that describes a static and spherically symmetric spacetime
without the presence of a magnetic field has the form:

ds2 = −e−2Φdt2 + e2Λdr2 + r2(dθ2 + sin2 θdφ2) = gµνdx
µdxν . (2.1)
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CHAPTER 2. STATIC MAGNETIC EQUILIBRIA

The TOV equations can be derived by using the metric (2.1) and the Einstein
equations:

Gµν = 8πTµν (2.2)

together with the conservation law of the energy tensor:

Tµν;ν =
1√
g

∂

∂xν
(−√−gTµν) + ΓµανT

µν = 0 (2.3)

where g is the determinant of the metric gµν and Tµν is the energy-momentum
tensor, that, with the assumption that the star is composed by a perfect fluid,
has the form:

Tµν = (P + ρ)uµuν + Pgµν . (2.4)

In the equation (2.4) P, ρ and uµ are, respectively, the pressure, the density and
the four-velocity of the star. Because the fluid is at rest in the background metric,
the four velocity has only one non-zero component. The ut component can be
derived from:

gµνu
µuν = −1 → ut = e−Φ or ut = −eΦ. (2.5)

We consider first the equation (2.3). The only not trivial component is the one
with µ = r:

1√−g
∂

∂xν
(
√−gT rν) + ΓrνλT

νλ = 0 (2.6)

where Γανµ are the Christoffel symbols given by:

Γαµν =
1
2
gασ(gµσ,ν + gνσ,µ − gµν,σ). (2.7)

Substituting equation (2.4) and (2.7) in equation (2.6), we get the relativistic
version of the equation for hydrostatic equilibrium:

∂Φ
∂r

= − 1
ρ+ P

∂P

∂r
. (2.8)

Now we can examine the Einstein equations (2.2). Because of the form of the
metric (2.1) and the energy-momentum tensor Tµν (see equation (2.4)), the only
non-zero Einstein equation are:

a) Gtt = 8πTtt
b) Grr = 8πTrr
c) Gθθ = 8πTθθ.

(2.9)
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The first member of the equations (2.9) is given by:

Gµν = Rµν −
1
2
gµνR (2.10)

where Rµν and R are respectively the Ricci tensor and the Ricci scalar given by:

Rµν = Rγµγν = Γγµν,γ − Γγµγ,ν + ΓγµνΓααγ − ΓγαµΓανγ (2.11)

R = Rµµ = gµαRαµ. (2.12)

After some calculations, the equations (2.9) become:

d

dr

[
r(1− e−2Λ)

]
= 8πρr2 (2.13)

−
(
1− e−2Λ

)
+ rΦ,re

−2Λ = 8πPr2 (2.14)

r2
(
2Φ,rr + Φ2

,r + 2
Φ,r

r
− Φ,rΛ,r − 2Λ,r

)
= 16πr2Pe2Λ. (2.15)

Setting:

m(r) =
1
2
r(1− e−2Λ) → e−2Λ = 1− 2m(r)

r
(2.16)

the equation (2.13a) becomes:

dm(r)
dr

= 4πr2ρ (2.17)

that is the first TOV equation: it describes the mass distribution in the star.
Using equation (2.16) and (2.13b) we get:

dΦ(r)
dr

=
m(r) + 4πr3P (r)
r(r − 2m(r))

. (2.18)

Finally, by substituting t equation (2.8) into equation (2.18), we get the second
TOV equation:

dP (r)
dr

= − [ρ(r) + P (r)][m(r) + 4πr3P (r)]
r[r − 2m(r)]

. (2.19)

Outside the star, for r > R, the metric reduced to the Schwarzschild metric: the
solutions for the functions Φ and Λ are then:

e2Φ = e−2Λ = 1− 2M
r

(r ≥ R) (2.20)

where M is the total mass of the star in geometrical units (M is a constant).
In order to integrate the two TOV equations (2.17) and (2.19), we need:
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• an equation of state (EOS) that links density and pressure so that:

P = P (ρ) (2.21)

• to assign the initial conditions (i.e. the central density),

• and to demand that, on the stellar surface (r = R) the metric (2.1) must
be smoothly with the Schwarzschild metrc.

With those requests, we can solve the TOV equations and obtain the radius and
the mass of the background stars, as well as its profiles of pressure and density.

2.2 Equilibrium model of a magnetised star

In this section we will review the Maxwell equations following the formalism
used in [37]. We will then derive the form of the magnetic field, including both
a poloidal and a toroidal component, and we will explain what is the source of
both its poloidal and toroidal part.

In the following, we assume that the magnetic field of the star is:

• axisymmetric,

• created by a stationary current Jµ

• owns both a poloidal and a toroidal component.

A magnetic field Bµ is defined:

poloidal if its spatial components Bi (with i = 1, 2, 3) are in the meridional
plane defined by the coordinate xa (with a = r, θ), i.e. if the magnetic field
has components along the r and θ coordinate :

Bi = (Br, Bθ, 0); (2.22)

toroidal if its spatial components are parallel to the vector ξ = ∂/∂φ, i.e. if the
magnetic field has a component along φ

Bi = (0, 0, Bφ). (2.23)

As a consequence a magnetic field, with both a poloidal and a toroidal component,
has the following form:

Bi = (Ba, Bφ) (xa = r, θ). (2.24)
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2.2.1 Fundamental equations in relativistic magnetohydrodynam-

ics (MHD)

In a stationary and axisymmetric space time, it is always possible to define two
Killing vectors η = ∂/∂t and ξ = ∂/∂φ. As a consequence, all the stationary
and axisymmetric quantities will not depend on the time and on the azimuthal
coordinate φ but only on the radial and angular coordinate xa = r, θ with a = 1, 2
(hereafter with the index a we will refer to the radial and angular coordinate) .

The magnetic field is governed by the Maxwell equations:

F[µν; α] = 0 (2.25)

Fµν;ν = 4πJµ (2.26)

where Fµν and Jµ are respectively the electromagnetic tensor and the four-
current. The equation (2.25) implies the existence of a potential vector Aµ so
that :

Fµν = ∂µAν − ∂νAµ. (2.27)

It is obvious that by construction the tensor Fµν is antisymmetric. Because of
the antisymmetry, equation (2.25) can be reduced to:

F[µν, α] = 0 (2.28)

since the Christhoffel’s symbols Γαµν are symmetric in the indices µ, ν and so they
cancel out in the expression for the covariant derivative. Moreover, due to the
existence of the Killing vectors, the potential vector Aµ is a function only of the
xa coordinate:

Aµ = Aµ(xa), xa = r, θ. (2.29)

From the equation (2.27) and the dependence of Aµ only on r and θ , we get:

Ftφ = ∂φAt − ∂tAφ = −Fφt = 0. (2.30)

In the reference system moving with the fluid, the electric and the magnetic field
are given, as functions of the electromagnetic tensor by:

Eµ = Fµνu
ν (2.31)

Bµ = −1
2
εµναβu

νFαβ (2.32)

where εµναβ = (−g)1/2ε[µναβ] (with ε[0123] = 1) is the Levi-Civita antisymmetric
tensor. Inverting the equations (2.31) and (2.32), we can rewrite Fµν as:

Fµν = uµEν − uνEµ + εµναβu
αBβ. (2.33)
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We can further simplify the equation (2.33), by making the assumption, that the
star has infinity conductivity, i.e. the electric field Eµ is null:

Eµ = Fµνu
ν = 0 (2.34)

and as consequence:
Eµu

µ = 0 (2.35)

Bµu
µ = 0 (2.36)

as we can see from the equations (2.31) and (2.32) because of the antisymmetry
of Fµν .

2.2.2 Structure of the potential vector and of the magnetic field

The temporal component of the potential vector Aµ is null because the star is
not rotating, while the spatial components are all functions of the coordinates
xa:

Aµ(xa) = (0, Ar, Aθ, ψ) (2.37)

where ψ = Aφ and, in literature, is called magnetic flux.
It is possible to find an explicit expression of the potential vector Aµ, con-

sidering an auxiliary function Λ such that:

Λ,θ = Aθ. (2.38)

Performing a gauge transformation, we get:

Aµ → Aµ − ∂µΛ = (0, Ar − Λ,r, 0, ψ). (2.39)

In such a way, we eliminate the component along θ of Aµ. We can further
compact the expression (2.39) for Aµ, by defining a function Σ(r, θ) such as:

Σ(r, θ) = eΦ−Λ(Ar − Λ,r). (2.40)

Substituting the expression for Σ in the equation (2.39), this latter gives :

Aµ = (0, eΦ−ΛΣ, 0, ψ). (2.41)

In order to simplify the expression (2.41), we need to use the Lorentz force,
defined as:

fν ≡ FµνJµ (2.42)

where Jµ is the four-current, defined as:

Jµ =
1

4π
√−g (

√−gF νµ ) , ν . (2.43)
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The Lorentz force is present also in the Euler equation that describes the motion
of the fluid in the star. In fact, the Euler equation is given by:

(P + ρ)aµ + P,µ + uµu
νP,ν − fµ = 0 (2.44)

where aµ is the acceleration of the fluid, defined as:

aµ = uνuµ; ν (2.45)

where uµ is the four-velocity of the fluid. If we calculate the φ component of the
Lorentz force from the equation (2.44), we find that fφ is equal to zero, because
uφ is equal to zero, this leads to the conclusion that the pressure P is function
inly of the radius. Then we can set:

fφ = FφνJ
ν = (Aν , φ−Aφ , ν)Jν = −Aφ , νJν = −Aφ , rJr−Aφ , θJθ = 0. (2.46)

From the equation (2.43), we obtain the componets Ja of the four-current:

Jr =
1

4π
√−g (

√−gF rb),b =
1

4π
√−g (

√−gF rθ) , θ =

= − 1
4π
√−g (

√−g grrgθθAr , θ) , θ
(2.47)

Jθ =
1

4π
√−g (

√−gF θb),b =
1

4π
√−g (

√−gF θr) , r =

=
1

4π
√−g (

√−g grrgθθAr , θ) , r
(2.48)

where we have considered that Aθ = 0 and Aµ = Aµ(xa). Using the expression
for the potential vector Aµ given in (2.41), we get:

Jr =− 1
4π
√−g (

√−g grrgθθAr , θ) , θ =

= − 1
4π
√−g (eΦ−Λ sin θAr , θ) , θ = − 1

4π
√−g (eΦ−Λ sin θeΛ−ΦΣ, θ) , θ =

=− 1
4π
√−g (cos θΣ, θ + sin θΣ, θθ) = − 1

4πr2
(cot θΣ, θ + Σ, θθ)eΦ−Λ

(2.49)

Jθ =
1

4π
√−g (

√−g grrgθθAr , θ) , r =

=
1

4π
√−g (eΦ−Λ sin θAr , θ) , r =

1
4π
√−g (eΦ−Λ sin θeΛ−ΦΣ, θ) , r =

=
sin θΣ, θr

4π
√−g =

eΦ−Λ(Σ, θ), r
4πr2

.

(2.50)
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Substituting Jr, Jθ and Aφ = ψ in equation (2.46) we obtain:

fφ =
eΦ−Λ

4πr2
(cot θΣ, θ + Σ, θθ)ψ,r −

eΦ−ΛΣ, θr

4πr2
ψ,θ = 0 (2.51)

i.e.:
(Σ,θθ + cot θΣ,θ)ψ,r − Σ,θrψ,θ = 0. (2.52)

By defining:
ψ̃ ≡ sin θΣ,θ (2.53)

equation (2.52) becomes:
ψ̃, θψ, r − ψ̃, rψ, θ = 0 (2.54)

that means that ψ̃ is function of ψ:

ψ̃ = ψ̃(ψ). (2.55)

Because ψ and ψ̃ are of the same order the dependence of ψ̃ on ψ must be linear.
A possible solution is given by:

ψ̃ = ζψ (2.56)

with ζ constant coefficient. Using (2.53), the equation (2.56) becomes:

sin θΣ,θ = ζψ (2.57)

that is satisfied only if:
Σ = ζa (2.58)

ψ = sin θ a,θ (2.59)

where a is a function of r and θ: a = a(xa). Considering (2.58) and (2.59), the
potential vector defined in (2.41) becomes:

Aµ = (0, ζeΛ−Φa, 0, sin θ a, θ) (2.60)

i.e. Aµ depends only on the xa = r, θ coordinates because a is a function of r, θ
( a = a(xa)) and ζ is a constant.

The relation between the magnetic field and the potential vector is given by:

Bµ = −εµναβuν∂βAα. (2.61)

From equation (2.61) we can find the form of the magnetic field and, in partic-
ularly, we will show that the toroidal component of the magnetic field (Bφ ) is
linked to the Ar component while the poloidal component of the magnetic field
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(Br, Bθ) is linked to the Aφ component of the potential vector. If we substi-
tute in the equation (2.61) the components Ar and Aφ ( the only non-zero two
components of the potential vector Aµ), we get

Bµ = −εµνrβuν∂βAr (2.62)

Bµ = −εµνφβuν∂βAφ. (2.63)

The Levi Civita tensor εµναβ for the metric (2.1) is εtrθφ = (
√−g)−1 = (eΦ+Λr2 sin θ)−1

and it is zero if two of its indices are equal. Because of the antisymmetry of the
Levi-Civita tensor and because of the dependence of Aµ just on the xa = r, θ
coordinates, the equations (2.62) and (2.63) become:

Br = −ρrνφθuν∂θAφ = −εrtφθut∂θAφ =
e−Λ

r2 sin θ
(sin θa, θ), θ (2.64)

and

Bθ = −εθνφruν∂rAφ = −ρθtφrut∂rAφ = − e−Λ

r2 sin θ
(sin θa, θ), r. (2.65)

From those two equations it is clear that the poloidal component of the magnetic
field is function only of Aφ. For the toroidal component Bφ of the magnetic field,
it follows from equation (2.62) that the only non trivial contribution is the one
for the index Φ = t and so we get:

Bφ = −εφtθrut∂θAr = − e−Λ

r2 sin θ
(ζeΛ−Φa, θ) (2.66)

that shows the dependence only on Ar of the toroidal magnetic field. At the end,
we can write the magnetic field as:

Bµ =
e−Λ

sin θ

(
0,
eΛ

r2
(sin θa, θ), θ,−(sin θa,θ), r,−ζ sin2 θeΛ−Φa, θ

)
. (2.67)

Note that for ζ = 0 the toroidal field is null.

2.3 The source of the magnetic field

The magnetic field given in (2.67) is created by a four-current Jµ: we will show
that the toroidal and the poloidal magnetic fields are generated by different com-
ponents of the four-current. The component of the four-current Jµ can be cal-
culated by the equations (2.49) and (2.50), by substituting Σ = ζa(r, θ) (as it
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follows from equations (2.58)):

Jr = −e
Φ+Λ

4πr2
(cot θΣ, θ + Σ, θθ)

= −ζe
Φ+Λ

4πr2
(cot θa, θ + a, θθ) = − ζeΦ+Λ

4πr2 sin θ
(sin θa, θ) , θ

(2.68)

Jθ =
eΦ+Λ

4πr2
(Σ, θ), r =

ζeΦ+Λ

4πr2
(a, θ), r =

ζeΦ+Λ

4πr2 sin θ
(sin θa, θ), r. (2.69)

The calculation for the Jφ component is more complicated and it is more con-
venient to calculate it, starting from the Lorentz force fa, defined in equation
(2.42)), and using the expression for the tensor Fµν defined in equation (2.27).
In this way we get:

fa = FaαJ
α → fa = (sin θa,θ),a

J̃φ

r2 sin2 θ
(2.70)

where we defined:

J̃φ = Jφ −
ζ2e−Φ

4π
sin θa ,θ. (2.71)

The first member of equation (2.70) can be written using the Euler equation
(2.44):

fa = (P + ρ)uµua;ν + P, a + uau
µP, µ (2.72)

so that we get:
(P + ρ)uµua;ν + P, a + uau

µP, µ = FaµJ
µ. (2.73)

From the definitions for Jr and Jθ given in equations (2.68) and (2.69), equation
(2.73) for µ ≡ r, θ can be written as:

χ,r = Aφ,rJ̃φ and χ,θ = Aφ,θJ̃φ (2.74)

where χ is a function of r and θ, given by:

χ, a = [Φ + C2
s (ln n)], a (2.75)

where Cs is the sound speed and n is the number density of the particles. In the
equation (2.75) we have use the first law of thermodynamics:

dρ = (ρ+ P )
dn

n
(2.76)
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where ρ is the energy density of the fluid. Using the integrability condition
χ,rθ − χ,θr = 0 together with the equations (2.75) , we get:

χ, rθ − χ, θr = 0 =

= (sin θ a,θ),r

(
J̃φ

r2 sin2 θ(P + ρ)

)
,θ

− (sin θ a,θ),θ

(
J̃φ

r2 sin2 θ(P + ρ)

)
,r

(2.77)

From this equation we can deduce that J̃φ/(r2 sin2 θ) is a function of (sin θ a,θ)
and, because J̃φ/(r2 sin2 θ(P + ρ)) and (sin θ a,θ) are of the same order of
magnitude then the dependence of J̃φ/(r2 sin2 θ(P + ρ)) on (sin θ a,θ) must be:

J̃φ

(r2 sin2 θ(P + ρ))
= c0 + c1 sin θ a,θ (2.78)

where c0 and c1 are constants. From the definition of J̃φ given in (2.71), we
obtain the Jφ component of the four current:

Jφ =ζ2 e
−Φ

4π
sin θ a,θ + J̃φ

=ζ2 e
−Φ

4π
sin θ a,θ + [c0 + c1 sin θ a,θ](P + ρ)r2 sin2 θ

(2.79)

To summarize the components of the four-current are given by:

Jt = 0

Jr = − ζeΛ−Φ

4πr2 sin θ
(sin θa, θ), θ

Jθ =
ζe−(Φ+Λ)

4π sin θ
(sin θa, θ), r

Jφ = ζ2 e
−2Φ

4π
sin θa,θ + [c0 + c1 sin θa,θ](P + ρ)r2 sin2 θ

(2.80)

We can divide the four-current Jµ in two parts:

Jµ = Jpol
µ + J force free

µ (2.81)

where

Jpol
µ = (0, 0, 0, [c0 + c1 sin θa,θ](P + ρ)r2 sin2 θ) (2.82)

J force free
µ = −ζe

−2Φ

4π
Bµ (2.83)
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as we can find, substituting in (2.80) the expression for Bµ given in (2.67). The
Jpol
µ current is the source of the poloidal magnetic field, while J force free

µ is the
source of a mixed magnetic field, with both poloidal and toroidal components.
The J force free

µ is parallel to the magnetic field and it is called force-free current,
because the Lorentz force associated with it is null. In fact, if we consider the
Lorentz force given in (2.42)

fµ = FµαJ
α (2.84)

we can see that FµαBα = 0, and so there is no Lorentz force associated with
J force free
µ .

We observe that if c0 = c1 = 0, then Jpol
µ = 0: J force free

µ is the only current
present, and the total Lorentz force is equal to zero. On the other hand, if ζ = 0,
then J force free

µ = 0, and the magnetic field is just poloidal.

2.4 The Grad-Shavranov equation

Now, we know the expression for the magnetic field, as well as the expression for
the source of this latter. We will use those information to derive the equation
that describes the magnetic field inside the star as well as outside the star, in
the vacuum. This equation is know in literature as the Grad-Shafranov equation
[38], [39].

We start expanding in Legendre Polynomials P` the function a(xa), present
in the potential vector (2.60):

a(r, θ) =
∞∑
`=1

a`(r)P`(θ). (2.85)

In this way Aµ defined in (2.60) becomes:

Aµ =
(

0, ζe2Λ−2Φ
∑
`

a`P`, 0,
∑
`

a` sin θ∂θP`

)
(2.86)

while the magnetic field Bµ given in (2.67) becomes:

Bµ =
(

0,−`(`+ 1)P`a`
r2

eΛ,−a′`∂θP`e−Λ,− sin θζ∂θP`a`e−Φ

)
(2.87)

where with the symbol (′) we indicate the derivative respect to r. In the equation
(2.87), we have used the following properties of the Legendre Polynomials:

∂θθP` + cot θ∂θP` − `(`+ 1)P` = 0 (2.88)
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Figure 2.1: The magnetic field lines for the equilibrium stellar model with ζ = 0
and equation of state APR14, where the subscript 14 refers to the stellar mass.
i.e. the mass of the model is M = 1.4M�.

and P1 = cos θ. Note that in the case of a dipole field (for ` = 1) our equation
becomes:

Bµ =
(

0,−2 cos θa1

r2
eΛ, a

′
1 sin θe−Λ, sin2 θζa1e

−Φ

)
. (2.89)

A plot of the magnetic field lines is shown in Figure 2.1.
To calculate the Grad-Shafranov equation, we need to calculate the φ com-

ponent of the Maxwell equations:

F µ
φ ;µ = 4πJφ. (2.90)

We can rewrite the first term of the (2.90) equations as:

F µ
φ ;µ = (gµδFφδ); µ = [gµδ(Aδ, φ −Aφ, δ)]; µ

= −[gµδAφ, δ]; µ = −[gθθAφ, θ]; θ − [grrAφ, r]; r.
(2.91)

Using (2.86), we get:

F µ
φ ;µ = −sin θ

4π

∑
`

∂θP`

(
e−2Λ∂rra` + (Φ,r−Λ,r)e−2Λ∂ra`−

`(`+ 1)
r2

a`

)
. (2.92)

The Jφ component of the four-current, given in equation (2.79), when it is ex-
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panded in Legendre Polynomials, becomes :

Jφ =ζ2 e
−2Φ

4π

∑
`

a` sin θ∂θP` + (P + ρ)r2 sin2 θ

[
c0 + c1 sin θ

∑
`

a`∂θP`

]

=
∑
`

sin θ
(
a`ζ

2 e
−Φ

4π
∂θP` − (P + ρ)r2c0∂θP1

)
+ terms in c1

(2.93)

where we set P1 = cos θ and sin θ = −∂θP1.
Now we project the expression (2.93) on different Legendre Polynomials,

calculating the integrals: ∫ π

0
Jφ(θ)P`′(θ) sin θdθ (2.94)

and using the orhtogonality property:

2`+ 1
2

∫ π

0
P`(θ)P`′(θ) sin θdθ = δ``′ . (2.95)

The terms in c1 couple terms with ` indice to terms with indices ` ± 2. We will
neglect such terms because the contribution of terms with ` > 2 to the magnetic
field is negligible. In this way we have for ` = 1:

e−2Λa′′1 + (Φ
′ − Λ

′
)e−2Λa′1 +

(
ζ2e−2Φ − 2

r2

)
a1 = 4π(ρ+ P )r2c0, (2.96)

while for ` > 1, the Grad-Shafranov equation gets the form:

e−2Λa′′` + (Φ
′ − Λ

′
)e−2Λa′` +

(
ζ2e−2Φ − `(`+ 1)

r2

)
a` = 0. (2.97)

In the following we will consider just the ` = 1 term in (2.96), because this is the
one that gives the dominant contribute to the magnetic field of the star.

The equation (2.96) is a non-homogeneous, ordinary, differential equation of
second order, linear in a1, with a source term given by 4π(ρ+P )r2c0. This term
is linked to the Jµpol current (see equation (2.82)). For the numerical integration
of the equation (2.96), we have to separate them in two differential equations of
the first order in a1:

da1

dr
= a′1 (2.98)

da′1
dr

= e2Λ
(
−ζ2e−2Φ +

2
r2

)
a1 − 4π(ρ+ P )r2c0e

2Λ − (Φ′ + Λ′)a′1 (2.99)

The next step is to assign the initial conditions and the boundary conditions
on the stellar surface. On the exterior, in the vacuum, we assume the existence
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of a magnetic dipolar field. The presence of a poloidal magnetic field outside
the star doesn’t imply the presence of currents there. Since we assume that the
exterior magnetic field is just poloidal, then we must demand that the J force free

µ

is zero in the exterior of the star, because this current is proportional to ζ, the
constant that represents the ratio between toroidal and poloidal components of
the magnetic field. Setting ζ = 0 implies automatically J force free

µ = 0. The second
current Jpol

µ is equal to zero outside, since it is proportional to the pressure and
the density of the star (that outside, in the vacuum, are vanishing)

The condition at the center of the star is:

a1 ' α0r
2 + ... (2.100)

where α0 is an arbitrary constant and it can be found integrating the equation
(2.96) and putting α0 = 1 and then searching for the value of α0 that allows a1

to match on the surface, with the analytic solution of dipole magnetic field on
the exterior of the star, given by [40],[41]:

adip
1 = − 3µ0

8M3
r2

[
ln
(

1− 2M
r

)
+

2M
r

+
2M2

r2

]
(2.101)

where µ0 is a constant that represents the magnetic-dipole momentum of the
star, M is the mass of the star. The value of µ0 is chosen so that the magnetic
field on the stellar surface is around B = 4× 1015 Gauss.

Our configurations can have both a poloidal and a toroidal component, with
different strength. This can be achieve by choosing different values for the con-
stant ζ. A value of ζ different from zero means that a toroidal field is present. ζ
can take amy value from zero until a maximal value ζmax. If ζ exceeds this max-
imum, then the current changes sign in some region inside the star. A change
in the sign of the current could drive the magnetic field towards a catastrophic
instability, although the star will remain stable. For this reason, we will analyse
only models that have ζ 6 ζmax. Note that the maximum value of ζmax takes
different values when we consider different stellar models.

Solving equation (2.96) we can find the distribution of the magnetic field
in the star and, as next step, we can derive the perturbation equations for the
oscillations of a star endowed with a magnetic field described by (2.96). In figure
(2.2), different models of stellar equilibrium with a dipole magnetic field are
plotted. The subscript in each model indicates the mass: for all the models
plotted in figure (2.2) the mass is M = 1.4 M� and no toroidal field is present
(ζ = 0).
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Figure 2.2: Plot of a1(r) for different EOS. The coordinate r is normalized to the
stellar radius

2.4.1 Equation of state used

The description the state of the matter above the nuclear density (ρ = 2.67 ×
1014 g/cm3) is not an easy task. Since it is not possible to reproduce these
extreme density in the laboratory, it is necessary to model the nuclear matter, and
to constrain the models with observations either in the electromagnetic spectrum
or in the near future in the gravitational wave spectrum. Two approaches are
used:

• non relativistic nuclear many bodies theories

• relativistic mean field theory.

The model based on the WFF EOS [42] is based on the first approach and
models the stellar matter as a mixture of neutrons, protons, electrons and muons
in β−equilibrium. A three body potential is added to a two nucleon potential, in
order to fit better the observed properties of a three nucleons bound state. The
APR model [43] shares the basic properties of the WFF EOS and it is based on
the two- and three- body interaction, but it uses the potential (Argonne v18) and
a large number of nucleon-nucleon scattering data were used in its construction.
This leads to a qualitative change in the high density region of the neutron star
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with respect to other models: i.e. a phase transition is allowed to occur in this
region.

The APR2 [44] is an improvement of the APR1 model: it takes into account
relativistic effects and the three-body potential is modified in order to better
fit the experimantal three-nucleon scattering data. The BSS model [45] is a
modification of the APR1 model and it consists in nucleons and leptons (as for
the APR1) with addition of strange baryons, as Λ0 and Σ−. Hyperon-nucleon
interactions are taken into account while the hyperon-hyperon interactions are
neglected.

The EOS L [46] is based on the relativistic mean field theory: the neutrons
are assumed to interact through the two vector mesons, ω and ρ, and one scalar
meson, σ. This latter interaction is completely based on relativistic mean fields,
while the other two are governed by non relativistic field theory. This equation
of state is particular stiff (the stiffness is defined as the ratio between radius
and mass). Also the EOS G240 is based on relativistic mean field theory and
includes the full baryons octet, consisting of protons, neutrons and Σ±0, Ξ± and
Λ0 particles .
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3
Magnetic oscillations equation

In this chapter, we study linear perturbation of a magnetised, non-rotating neu-
tron stars. We perturb the equilibrium model described in the previous chapter,
using the so called Cowling approximation. This approximation, introduced for
first by Cowling in his study on Newtonian polytropic neutron stars ( see[47]),
consists on neglecting the perturbation of the gravitational potential. The Cowl-
ing approximation is a quite good approximation, if the mass of the star is con-
centrated near the centre: in this case, density variation will not cause large
variations of the gravitational field on the outer layers of the neutron star, that
are the ones that influence stronger the frequency of the oscillation modes. In
general relativity, the Cowling approximation leads in neglecting the metric per-
turbations [48] , i.e. setting δgµν = 0. The quality of this approximation depends
on the type of oscillations modes under consideration, as well as, on the order
of the mode. The torsional oscillation modes, that we consider there, can be
computed accurately, since those oscillations are of axial types and don’t induce
a density variation in a spherical star. Using the Cowling approximation, the
number of the equations to deal is reduced considerably, because we don’t have
to consider the evolution in time of the metric perturbation δgµν .

Let’s see in more details the effect of a perturbation on a star in equilibrium.

When a perturbation is introduced on a star, it responds with oscillations
of different type. A classification of those modes can be based on their parity.
In fact, by decomposing them in spherical harmonics and by operating a parity
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transformation r → −r, we can determine if a mode transforms as (−1)` or as
(−1)`+1: in the first case the modes are called polar modes (or spheroidal modes)
while in the second case they are called axial modes (or toroidal modes). Among
these two kinds of oscillations, an additional distinction can be made considering
what kind of force is acting in order to restore any deviation from equilibrium. For
example, for a Newtonian, non-rotating star, the polar modes could be classified
as:

p(ressure)−modes: they are high frequency modes and their restoring force is
pressure. The amplitude of these modes is larger in the outer layers of the
star than in the central part. The lowest p−mode has a frequency around
5kHz. For a fixed n (order of the mode), their frequency increases with `.

g(ravity)−modes: for these modes, the restoring force is the gravity. Unlike
the p−modes, the g−modes have larger amplitude in the centre than in the
outer layers. Their frequencies are usually smaller than the p−modes. The
g−modes are non radial oscillations: in fact, they are generated when a fluid
element, that has moved upwards, is pushed back in its original position
by the buoyancy force. In order to move vertically the fluid element has
to displace the surrounding stellar matter horizontally. In this way a non
radial oscillation is created in response.

f(undamental)−mode: it is the fundamental mode and its eigenfunction has
no-radial nodes. Its frequency is around few kHz and is lower than the
p−modes. Sometimes, it can be considered as the fundamental p−modes.

i(nertial)−modes: the restoring force of these modes is the Coriolis force: for
this reason, they exists only in rotating stars. The r−modes are a subgroup
of inertial modes and are characterized by their non-axisymmetric nature.

It is worth to mention that Robé shown in [49] that the mode that it is predomi-
nantly affected by the Cowling approximation is thef−mode while the g−modes
and p−modes are affected only slightly.

w−modes: if we consider a relativistic neutron stars, a family of modes that
has not Newtonian counterpart, shows up. This family of modes was first
discovered by Kokkotas & Schutz [50]: they call these modes w−modes
(gravitational ‘w’ave), because these particular modes are directly related
to perturbations in the space-time while they hardly produce any significant
fluid oscillations. The lowest frequency occurs at 5 kHz. These modes have
been divided in many subgroups, see Kokkotas & Schmid [51] for more
details.
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Among the axial modes, we remember:

t(orsional)−modes: these modes imply a torsion of the crust, so no perturbation
of the fluid density is involved. They are called torsional modes and their
lower frequency is about few Hz.

In this thesis, we focus on the last type of axial modes: the torsional oscillation
modes. Those modes are most likely to be excited by a crust fracture because they
are divergence free toroidal excitation and involve just a small density fluctuation
(that can be neglect), as it was already noticed in [22].

In the following, we will not consider deformation on the stellar shape due
to the presence of the magnetic field, because the magnetic energy EM is many
orders of magnitude smaller than the gravitational bounding energy EG:

EM
EG

=
B2R2

GM2/R
∼ 10−4

(
B

1016G

)2

(3.1)

3.1 Perturbation equations

For a magnetised star in equilibrium the energy-momentum tensor is given by
the sum of the perfect fluid energy-momentum (Tµνfluid) and the one given by the
magnetic field (Tµνem) :

Tµνtot = Tµνfluid + Tµνem (3.2)

Tµνem =
1

4π
[(
uµuν +

1
2
gµν
)
B2 −BµBν

]
(3.3)

Tµνfluid = (P + ρ)uµuν + Pgµν . (3.4)

In equation (3.3), uµ is the four velocity that, in the not perturbed case, has only
one non-zero component, ut, and it is given by:

gµνu
µuν = −1 → ut = e−Φ ut = −eΦ (3.5)

The energy-momentum tensor (3.2) obeys to a conservation law:

T σν;ν = 0 (3.6)

The equations of the fluid’s motion can be obtained by projecting equation (3.6)
on the hypersurface normal to uµ, in the following way:

hµσT
σν
;ν = 0 (3.7)
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where
hνµ = gνµ + uµu

ν (3.8)

is the projection tensor. From the equation (3.7), we obtain:

(ρ+ P +B2)uµ;νu
ν = −hµν

(
P +

1
2
B2

)
+ hµσ(BσBν);ν . (3.9)

In order to study the torsional oscillations, we need a second equation that in-
volves the magnetic field: the magnetic induction equation. This equation can
be derived from the Maxwell equation (2.25) and it is given by:

(uµBν − uνBµ);µ = 0 (3.10)

The equation (3.10) can be rewritten as:

Bµ
;νu

ν = uαBµ + uµBν +Bαuα;βu
βuµ. (3.11)

Equation (3.11) together with equation (3.9) give us a set of equations, that
connect with each other the magnetic field structure and the fluid proprieties,
as density and pressure. In order to study the toroidal oscillations, we have to
perturb both equations (3.9) and (3.11) and find how matter embedded in a
magnetic field reacts to such perturbation. We perform a linear perturbation of
such equation. In a linear perturbation, each tensorial quantity Xµ1... is indicated
as:

Xµ1... = Xµ1... + δXµ1... (3.12)

where δ indicates the perturbations to the first order. All the physical quantities
will be perturbed in such way, except the metric tensor gµν , because, as we already
pointed out, we work in the Cowling approximation, that means δgµν = 0.

The linearized form of the equation of motion (3.9) is given by:

(ρ+ P +B)δuµ;νu
ν = −(δρ+ δP + 2BσδBσ)uµ;νu

ν − (ρ+ P +B)uµ;νδu
ν

+ (uµδuσ + uσδu
µ)
[
BµBν − gσν

(
P +

1
2
B2
)]

;ν

+ hµ;σ

[
BσδBν + δBσBν − gσν(δP +BαB

α)
]

;ν

− hµσδT σν(s)
;ν

(3.13)

where Tµν(s) is the linearized shear stress tensor. The shear tensor is related to
the linearized shear tensor δSµν through (see [52]):

δT σν(s) = −2µδSµν (3.14)
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where µ is the shear modulus. The linearized form of equation (3.11) is instead
( see [24]) given by:

δBµ
,νu

ν =Bµ
,νδu

ν + hµαuα;σδB
σ + hµαδuα;σB

σ

+ uµδuαBσuα;σ + uµBα(δuα;σu
σ + uα;σδu

σ)+
(Bαδuµ + δBαuµ)uα σuσ + δuσ;σB

µ + uσ;σδB
µ

(3.15)

where we used uαδuα;β = −δuαuα;β. Equations (3.13) and (3.15) can be simplified
even further since we are considering axial-type perturbations, i.e. perturbations
that don’t involve density variation and we are neglecting the presence of merid-
ional currents (that can be present when a toroidal field is present, see [53]). In
this special case, we can set:

δρ = 0, δP = 0 (3.16)

δut = 0, δur = 0, δuθ = 0. (3.17)

The only perturbation on the fluid’s velocity is then given by δuφ. A per-
turbation on the fluid velocity means that a fluid element is displaced from its
original position: we indicate such angular and radial displacement of the stellar
matter as Y(r, θ), following the formalism of [24]. The link between the per-
turbation of the azimuthal velocity δuφ and the stellar displacement, is given
by:

δuφ = e−Φ∂tY(t, r, θ) (3.18)

where with ∂t we indicate the partial derivative respect to the time.

Our aim is to obtain a unique equation for the time-space evolution of the
quantity Y(r, θ) by using the linearized induction equations (3.15) and the lin-
earized equations of motion (3.13). In order to proceed, we have, then, to get
an explicit expression for all the quantities included in this two expressions, like,
for example the stress energy tensor Tµν(s), present in equation (3.13), and the
perturbed magnetic field δBµ.

We begin by deriving the explicit form of the stress energy tensor Tµν(s)

, present in equation (3.13), for our model. The stress energy tensor Tµν(s) is
related to the shear tensor Sµν by the equation (3.14). Then we need to find the
components of the shear tensor Sµν , in order to define the stress energy tensor
Tµν(s) .

First we consider that in a comoving frame, the components of Sαβ are
purely spatial, i.e.:

S00 = 0, Si0 = 0, S0i = 0. (3.19)
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In addition, we should take into account the stress tensor Sαβ is traceless:

Sii = 0. (3.20)

The remaining components of Sµν can be calculated, using the rate of shear σαβ,
defined as:

σαβ =
1
2

(uα;µh
µ
β + uµ;αh

µ
α)− 1

3
hαβu

µ
;µ. (3.21)

In fact, the rate of shear σαβ is linked to the shear tensor Sαβ by the relation:

σαβ = LuSαβ (3.22)

where L is the Lie derivative of the shear tensor along a world line. The equation
(3.22) can be written as

σαβ = uµ,αSµβ + uµ,βSµα + uµSαβ ;µ. (3.23)

Keeping only the linear terms, the equation (3.23) reduces to:

σαβ = e−φSαβ, t (3.24)

from which we find easily:
Sαβ, t = σαβe

φ. (3.25)

Our aim is to find an explicit expression for the perturbed stress tensor δSαβ
present in equation (3.14): for this reason we perturb equation (3.25) and find:

δSαβ, t = δσαβe
φ (3.26)

The perturbed terms of the rate of shear σαβ can be derived from equation
(3.21). In the Cowling approximation and linear regime, the only non-trivial
components of the perturbed equation (3.21) are:

δσrφ =
1
2
r2e−ΦY,tr sin2 θ and δσθφ =

1
2
r2e−ΦY,tθ sin2 θ. (3.27)

Substituting the results (3.27) in equation (3.26) and by integrating in time, we
find:

δSrφ =
1
2
r2Y,r sin2 θ and δSθφ =

1
2
r2Y,θ sin2 θ (3.28)

Substituting the equation (3.28) in equation (3.14), we get finally:

δT
(s)
rφ = −µr2Y,r sin2 θ (3.29)
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δT
(s)
θφ = −µr2Y,θ sin2 θ (3.30)

The next step is to derive an explicit expression for the perturbed mag-
netic field δBµ, Using the linearized induction equations (3.15), together with
the relations (3.16) - (3.18), we obtain the first time derivative of the quantity
δBµ:

δBt
,t = e−ΦBφδuφ,t, (3.31)

δBr
,t = e−ΦBr

,φδu
φ, (3.32)

δBθ
,t = e−ΦBθ

,φδu
φ, (3.33)

δBφ
,t = eΦ

[
(Φ,rB

r −Bφ
,φ)δuφ +Brδuφ,r +Bθδuφ,θ

]
. (3.34)

Because the perturbed four velocity δuφ depends on the time, (through the time
derivative of the stellar displacement Y(r, θ), see equation (3.18)), we can then
integrate equations (3.31)-(3.34) in time and obtain an expression for δBµ. thus,
we finally get:

δBt = e−2ΦBφY(r, θ), (3.35)
δBr = e−2ΦBr

,φY(r, θ), (3.36)

δBθ = e−2ΦBθ
,φY(r, θ), (3.37)

δBφ =
[
(Φ,rB

r −Bφ
,φ)Y(r, θ) +Br∂rY(r, θ) +Bθ∂θY(r, θ)

]
. (3.38)

The next step is to substitute in the linearized equations of motion (3.13),
the first time derivative of δBµ, obtained in equations (3.35)-(3.36), and the
expressions of the stress energy tensor (3.29) and (3.30). We get a unique equation
given by:

−[16π2(ρ+ P ) +B2 − (Bφr sin θ)2]Y,tt = (Bθ)2Y,θθ + 2BrBθY,θr + (Br)2Y,rr

+
[
2 cot θBrBθ +

(
Φ,r +

2
r

)
(Br)2 +BrBr

,r +BθBr
,θ

]
Y,r

+
[
2 cot θ(Bθ)2 +

(
Φ,r +

2
r

)
BrBθ +BrBθ

,r +BθBθ
,θ

]
Y,θ

+ e−2ΛµY,rr +
[(

4
r

+ Φ,r − Λ,r

)
µ+ µ,r

]
e−2ΛY,r −

µ

r2
Y,θθ

+ 3 cot2 θµY,θ
(3.39)
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Since we study just axisymmetric perturbations, all physical quantities are
independent from φ, thus the derivatives with respect to φ are all equal to zero.

The equation (3.39) is a second order partial differential equation in time
and space. It can be rewritten also as:

Att
∂2Y
∂t2

= A20
∂2Y
∂r2

+A11
∂2Y
∂r∂θ

+A02
∂2Y
∂θ2

+A10
∂Y
∂r

+A01
∂Y
∂θ

(3.40)

All the coefficients Att, A20, A11, A02, A10 and A01 depend on the coordinates r
and θ but not on time. They have the following form:

Att =
[
ρ+ ρ+

a2
1

πr4
cos2 θ +

a1
′2

4πr4
e−2Λ sin2 θ

]
e−2(Φ−Λ) , (3.41)

A20 =
a2

1

πr4
cos2 θ + µ , (3.42)

A11 = −a1a1
′

πr4
cos θ sin θ , (3.43)

A02 =
a1
′2

4πr4
sin2 θ +

µ

r2
e2Λ , (3.44)

A10 = (Φ
′ − Λ′)

a2
1

πr4
cos2 θ (3.45)

+
a1a1

′

2πr4
sin2 θ +

[
µ′ + µ

(
4
r
− Λ′ + Φ′

)]
,

A01 =
[
a1

πr4

(
2πj1 −

a1

r2

)
e2Λ (3.46)

+ 3
a1
′2

4πr4

]
sin θ cos θ +

3
r2
µ cot θe2Λ ,

where we make use of the explicit form of the magnetic field Bµ given in equation
(2.89). We recall that a1(r) and j1(r) are the radial components of, respectively,
the electromagnetic four-potential and the four-current. In the above equations,
the prime indicates the derivative with respect the radius.

The equation (3.40) must be solved with the appropriate boundary condi-
tions. Those condition are given by (see [29]):

• regularity at the center: Y = 0 for r = 0,

• no traction on the surface: Y,r = 0 at r = R,

• axisymmetry at θ = 0: Y,θ = 0,
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• equatorial plane symmetry Y = 0 for ` = 3 initial data at θ = π/2,

• for ` = 2 initial data: Y,θ = 0 at θ = π/2.

3.1.1 Crustal fields vs global fields

Equation (3.40) was first derived by Sotani et al. in [24]. In this paper, the
authors simplify that equation, using an expansion in Legendre Polynomials and
neglecting the higher order coupling terms induced by the magnetic field, i.e the
terms with harmonics indices `± 2. In this way, they obtain an one dimensional
equation that they study extensively for each value of ` and for different overtones.
They used a variety of samples of different stellar models, varying the EOS,
the mass, the density and the crust thickness of the star. They find that the
torsional stellar oscillations are influenced by the presence of a dipole magnetic
field greater than B = 1015G. In another paper [29], the same authors implement
the equation (3.40) without operating an expansion in Legendre Polynomials
but instead using a two-dimensional simulation. They find that the oscillation
spectrum is continuum, according to the suggestion by Levin [28]. However, in
both the papers [24] and [29], the only configuration of magnetic field used was
a dipole magnetic field that permeates all the star.

In an extension of these papers, [32], we implement the equation (3.40) for
different configurations of the magnetic field and confront our results with the
observed data, in order to check if it was possible to disentangle among different
configurations of magnetic field, looking for the one that better fit the observed
data. In [32], then, we investigated two different configurations of the magnetic
field: a magnetic field, with both a poloidal and a toroidal components, that
permeates all the star (we will call it ‘global’ field, see left panel of Figure 3.1),
and a magnetic field, also with both poloidal and toroidal components, that
its confined just in the crust (we will call this configuration ‘crustal’ field, see
right panel of Figure 3.1). The choice of these two particular configurations
is motivated by some observational suggestions by Aguilera et al.[54] and by
Braithwaite & Spruit [55]. In both the papers, the magnetic field evolution is
studied in detail. In [55], the authors study the evolution of the magnetic field,
with particularly attention to its stability. They found that a magnetic field with
both poloidal and toroidal components doesn’t fall in an unstable configuration.
Aguilera et al.[54], instead, study the impact on the thermal evolution of the
stellar surface of a magnetic field confined in the crust, with both a toroidal and
a poloidal component. Their aim is to explain the observed thermal spectra of
magentars, with particular attention to the sensitively hot spots observed on the
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Figure 3.1: Left panel :Global magnetic field.Right panel : crustal magnetic field

surface of highly magnetised neutron stars: these spots are surface region that
are hotter than their surrounding area. They could be heated by the magnetic
field, as it evolves and decades, accumulating a lot of its energy in some preferred
area, that the authors show to be the polar caps for a dipole magnetic field
and the equator for a toroidal magnetic field. For these reasons we choose to
investigate both the ‘global’ field and ‘crustal’ field. Note that, in the latter case,
the core of the star is a superconductor of type I: this type of superconductors
expels completely the magnetic field from its interior via Meissner effect, so no
residual magnetic field, neither toroidal neither poloidal, is left there. In this
way, the oscillations are confined inside the crust, and the equation (3.40) must
be implemented just there.

To stabilise the equation (3.40) an artificial viscosity (implemented as a four
derivative term) is needed to be added in the code. The reason for the needing
of such artificial viscosity will be explained in the next section. Observing the
Figure 3.1, it is evident that in the case of the crustal magnetic field, the magnetic
field lines are denser than in the global field case. In fact, while in the ‘global’
field case the magnetic field can permeate all the star, in the ‘crustal’ field the
magnetic field lines are confined in a layer of few kilometres (the crust): in this
latter configuration is then obvious to expect denser magnetic field lines for the
same magnetic field strength on the pole.

The absence of magnetic fields inside the core implies that no Alfvén modes
are present in the core. So the lowest mode that it is found, is the crustal mode
for ` = 2. The fundamental crustal mode is inversely proportional to the radius
of the star, as was found by Schumaker & Thorne [52], and its expression is given
by:

f crust
` =

√
`(`+ 1)

vs
2πR

(3.47)

44



where R is the radius inside where the magnetic field is confined and vs is the
shear velocity, that it is considered constant at the crust density and can be set as
vs = 108 cm/s. The relativistic form of equation (3.48) was found by Samuelsson
& Andersson [23] and has the form:

f crust
` =

√
(`+ 2)(`− 1)

vs
2πR

(3.48)

In the case of the crustal field, R is really thin, just 1 Km, and so the fundamental
crustal frequency will increase considerably. In fact, its value was found to be
around 40Hz for a magnetic field B = 8 × 1014 Gauss, see Figure 3.2, where a
2D simulation study (as the one performed in [29]), represented by the dot, is
compared to a truncated calculation, obtained by expanding the equation (3.40)
in Legendre Polynomials and truncating it, excluding the (`±2) coupling (see [24]
for more details). In Figure 3.2, the frequencies are plotted against the magnetic
field strength: it is evident that for a magnetic field B/Bµ ' 0.04 (where Bµ =
4× 1015 Gauss) the lower torsional frequency starts to increase rapidly. For the
lower limit of the magnetic field in SGR1806-20 and SGR 1900+14 (respectively
B = 8 × 1014 G and B = 4 × 1014 G, as it is represented by the vertical lines),
the lower crustal frequency is around 30Hz or even higher in the case of SGR
1806-20. This means that a magnetic field confined in the crust cannot explain
the lower frequencies observed in SGRs, that are at 18Hz, 26Hz and 29HZ.

Since the first frequency observed in both SGR 1806-20 and SGR 1900+14
is below 20Hz, crustal fields cannot explain the observed data. Our results agree
with the suggestions made by Glampedakis et al. [25] and by Levin [27], for the
need of global modes in explaining magnetars QPOs.

For this reason, in the following, we will consider just global fields.

3.2 A new transformation of coordinates

The equation (3.40) was already studied in [24]. We found that such equation
cannot be evolved in a stable way for a long time and so they needed to add an
artificial fourth order dissipation term in order to avoid the numerical instability.
The origin of this instability is due to a singular mathematical behaviour of
the equation (3.40). To show this, we neglect , as first approximation, the first
derivatives in the direction of r and θ in the equation (3.40). Then only the
coefficients A20, A11 and A02 remain. A calculation of the determinant D of the
principal part of the equation (3.40) leads to:
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Figure 3.2: The torsional mode oscillations as a function of the strength of the
magnetic field. The dots correspond to the results of a 2D simulations while the
continuous line is the result of a truncate calculation on which the equation (3.40)
was expanded in Legendre Polynomials and the (`±2) coupling is neglected. The
two vertical lines correspond to the estimated lower limit of magnetic field for
SGR 1900+14 and SGR 1806-20 (respectively B = 4× 1014 G and B = 8× 1014

G).

D ≡ A20A02 −
(
A11

2

)2

=
a2

1a1
′2

4π2r8
cos2 θ sin2 θ − a2

1a1
′2

4π2r8
cos2 θ sin2 θ = 0 .

(3.49)

Hence the equation is parabolic in every point of its domain and therefore
does not describe propagation of 2D waves.

To avoid this pathological behaviour, we introduce a new coordinate system
given by the transformation

X =
√
a1 sin θ Y =

√
a1 cos θ . (3.50)

This new coordinates system is a kind of Cartesian coordinate system where,
instead of the radial coordinate r, we use the radial component of the magnetic
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field, a1(r). The behavior of a1 inside the star is determined via the equation
(2.96). On the surface, we require the continuity of a1 with the dipole solution
outside given in equation (2.101).

Using the new coordinates (3.50), the equation (3.40) is transformed in:

Att
∂2Y
∂t2

= Ā20
∂2Y
∂X2

+ Ā11
∂2Y
∂Y ∂X

+ Ā02
∂2Y
∂Y 2

+ Ā01
∂Y
∂Y

+ Ā10
∂Y
∂X

,

(3.51)

where

Ā02 =
1

4πr4
a1a1

′2 + µπr2

(
a1
′2

4a1
cos2 θ + a1e

Λ sin2 θ

)
(3.52)

Ā20 = µπr4

(
a1
′2

4a1
sin2 θ +

a1e
Λ cos2 θ

r2

)
(3.53)

Ā11 = µπr4

(
a1
′2

2a1
− 2

a1e
Λ

r2

)
sin θ cos θ (3.54)

Ā01 =
X

2πr4
a1

(
2
r2
a1e

2Λ − 4πj1e2Λ − a1
′2

2

)
(3.55)

+ µ′
a1
′2

2
√
a1

(3.56)

+
µπr4

√
a1

(
a1
′2

a1
− 2

a1

r
− a1e

Λ

r2
− 2πJ1

)
cos θ (3.57)

Ā10 =
[
µ√
a1

(
−a1

′2

4a1
+ 2

a1
′

r
− 2πJ1

)
sin θ (3.58)

− 3µ
√
a1e

Λ cos θ
r2

+ µ′
a1
′2

2
√
a1

cos θ
]
πr4 (3.59)

The equation (3.51) doesn’t show a pathological behaviour and can be
evolved in a stable way for long time with the appropriate boundary conditions,
listed at the end of section (3.1).

In the (X,Y) coordinates those conditions translate to:

• regularity at the center: Y(X,Y ) = 0 for X = 0 and Y = 0,

• no traction on the surface for the open lines:[
X
∂Y
∂X

+ Y
∂Y
∂Y

]
= 0; (3.60)
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• axisymmetry at X = 0:

Y
∂Y
∂X

= 0; (3.61)

• equatorial plane symmetry for ` = 3 initial data at Y = 0:

Y
∂Y
∂X

= 0; (3.62)

• equatorial plane symmetry for ` = 2 initial data: Y(X,Y ) = 0 at Y = 0.

An important task, that we will discuss in the next chapters, is what is the con-
dition to require at the crust-core interface. This condition depends strongly on
the structure of stellar model we consider: a fluid star, without crust, will require
just the continuity of the stellar displacement Y on the crust-core interface, while
the presence of a solid crust will require that the radial derivative of the stellar
displacement must be continuous, leading to a coupling between crust and core.
In the next two chapters, we will study both configurations.

3.2.1 Open and close magnetic field lines

The construction of the grid in the new (X,Y ) coordinates needs special attention.
The function a1 has a maximum inside the star (see Figure 2.2) and the position
of this maximum inside the star depends on the strength and the topology of the
magnetic field. A strong magnetic field, as well as a toroidal field added to the
standard poloidal field, pushes the maximum near the surface of the star. The
position of a1 max determines also the presence or not of the closed magnetic field
lines confined inside the star: if a1 max is really near the surface, then we will
not have any closed magnetic field lines , i.e. magnetic field lines that confine
themselves in the interior of the star forming close loops, and never reaching the
surface (see Figure 2.1). For this reason, they are subject to different boundary
conditions than the open magnetic field lines, that instead reach the surface and
match with the dipole magnetic field outside the star. This difference leads to
a different behaviour of the oscillations of open and close magnetic lines, as it
will be shown later. We note also that closed and the open magnetic lines don’t
interact with each other. For this reason, in our code, we split the problem into
two parts, one for the closed and one for the open magnetic field lines. For the
open magnetic field lines, the perturbation function Y(X,Y) is evolved until some
points Xmax and Ymax that correspond to the maximum of a1 max i.e we work on
the part A of Figure 3.3. Then the evolution continues, in the part A′ of Figure
3.3, from the points Xmax and Ymax and ends at the points Xsurf and Ysurf that
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Figure 3.3: Plot of the magnetic field lines in the (X,Y ) coordinates. Note
that, after the point X(a1 max) and Y (a1 max) lines of the same color continue
in different quadrants: for example, the lines of the domain A continue to the
domain A

′
.

correspond to the surface of the star. Note that in this second part we have to
use the transformation

X = −√a1 sin θ Y = −√a1 cos θ (3.63)

due to the sign change of the derivative of a1.

In a similar fashion for the closed magnetic lines, we evolve Y(X,Y) up to
Xmax and Ymax, but then the simulation doesn’t end on the surface but at Xeq

and Yeq, that correspond to points on the equator, since this type of magnetic
field lines do not reach the surface but instead close themselves on the equator.

From a technical point of view, the transformation that we have just de-
scribed “open” the field lines: when the field lines reach the point where the
function a1 has a maximum, the transformation (3.63) must be used. We evolve
the oscillation of the part before Xmax and Ymax and the part after these points
as two separate problems. Then, we match them in each time step via the bound-
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ary conditions. This procedure will be explained later. Figure 3.3 may help in
understanding the procedure followed in solving this problem.
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4
Global torsional oscillations

In this chapter, we study in the (X,Y ) coordinates the linear equation derived
in chapter 3 for a non-rotating relativistic neutron star, endowed within a strong
magnetic field. For example, at the surface we set Bsurf = 4 × 1015 Gauss. We
study two types of magnetic field: a purely poloidal magnetic field (where the
constant ζ in equation (2.96) is set to zero) and a mixed configuration, where
both poloidal and toroidal magnetic field are present.

The star is assumed to be composed by a normal fluid, and we don’t take
into account the presence of a crust. We don’t include superfluidity, as first
approximation, although it is thought that superfluidity could influence neutron
star oscillations [56]. It is, in any case, a hard task to predict and model how a
strong magnetic field influences the microscopic property of neutron star matter.
For this reason, we will concentrate on the macroscopic effects that a strong
magnetic field produce, studying carefully the QPOs introduced by the presence
of a magnetic field.

We relate our results with the present observed data for QPOs in SGR
1806-20 and SGR 1900+14.
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4.1 Equation for the fluid star

For a star mode out of a fluid, without crust, since the shear viscosity µ is
vanishing, the coefficients A20, A11 and A10 are equal to zero (see equations
(3.42), (3.43) and (3.45). The equation (3.51) is then reduce to a 1+1 time
evolution equation, given by

Att
∂2Y
∂t2

= Ã02
∂2Y
∂Y 2

+ Ã01
∂Y
∂Y

, (4.1)

where

Ã02 =
1

4πr4
a1a1

′2 (4.2)

Ã01 =
X

2πr4
a1

(
2
r2
a1e

2Λ − 4πj1e2Λ − a1
′2

2

)
. (4.3)

This equation describes waves propagating along the Y direction and it reminds
waves propagating on the strings of a musical instrument, e.g. a piano. When we
switch the sign of our coordinates after the maximum of a1 (see equation (3.63),
the continuity of the function must be required:

Y ′+ = Y ′− (4.4)

which in the (X,Y) coordinates, translates in:[
X
∂Y
∂X

+ Y
∂Y
∂Y

]
−

=
[
X
∂Y
∂X

+ Y
∂Y
∂Y

]
+

. (4.5)

4.1.1 Crank-Nicholson scheme

We evolve equation (4.1) by using an explicit Crank-Nicholson scheme. In gen-
eral, the Crank-Nicholson scheme is an implicit scheme that ensures accuracy
but not speed. Its explicit variation can be implemented easily and guarantees
second order accuracy both in space and in time. Actually, in ([57]), the author
demonstrates that such a scheme exhibits an oscillatory convergence, becoming
stable after exactly two iterations. Performing additional iterations, it does not
improve neither the convergence or the accuracy. Since the scheme converges
with only two iterations, the computation time is considerably reduced. To show
this advantage, we consider a simple wave equation:

∂u

∂t
=
∂u

∂x
. (4.6)
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Using a first-order accurate differencing forward in time and centered in space
scheme, we get:

un+1
j − unj

∆t
=
unj+1 − unj−1

2∆x
. (4.7)

This scheme is known to be unstable. It is possible to make the system stable,
by using an intermediate variable ũ and calculating:

ũn+1
j − unj

∆t
=
unj+1 − unj−1

2∆x
. (4.8)

Then, by averaging we get:

ū
n+1/2
j =

1
2

(ũn+1
j + unj ). (4.9)

The second iteration is performed, following the step (4.8) and (4.9), but for
ū
n+1/2
j , i.e. :

ũn+1
j − unj

∆t
=
ū
n+1/2
j+1 − ūn+1/2

j−1

2∆x
(4.10)

and
ū
n+1/2
j =

1
2

(ũn+1
j + unj ) (4.11)

Using ū in the right side of equation (4.7), we finally get:

un+1
j − unj

∆t
=
ū
n+1/2
j+1 − ūn+1/2

j−1

2∆x
. (4.12)

The stability of this procedure can be studied by putting:

unj = ξneıkj∆x (4.13)

where ξ is the amplification factor given by:

ξ = 1 + 2ıβ (4.14)

with β = [∆t/(2∆x)](sin k∆x). The amplification factor is given by:

(0)ξ = 1 + 2ıβ (4.15)

(1)ξ = 1 + 2ıβ − 2β2 (4.16)
(2)ξ = 1 + 2ıβ − 2β2 − 2ıβ3 (4.17)
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(3)ξ = 1 + 2ıβ − 2β2 − 2ıβ3 + 2β4 (4.18)

and so on. To check the stability, one must calculate the behaviour of the square
modulus of the amplification factor |ξ2| for each of the equations above. It results
that equations (4.15) and (4.18) are unstable while equations (4.16) and (4.17)
are stable if β2 6 1. This means that for each wave numbers k, we must have
∆t 6 2∆x. In order to study the convenience of the scheme, we must analyse its
accuracy and its convergence. While the amplification factor does converge to 1
as the number of iterations increases, the convergence is not monotonic but has
an oscillatory behaviour, i.e. it oscillates below and above 1 during the iterations.
All the case where the amplification factor takes values above 1 are unstable. On
the contrary, the accuracy of the scheme is determined by its truncation error.
This error is of the second order in ∆t and ∆x from the first iteration on. This
means that doing more iterations changes the oscillatory behaviour but not the
accuracy of the scheme. Since the scheme converges after the first two iterations,
there are no advantages to perform more than two iterations.

4.2 Numerical implementation

We consider first a fluid star with a purely dipole magnetic field both inside and
outside the star. The magnetic field strength is set to Bsurf = 4× 1015 Gauss on
the stellar pole.

We construct a numerical equidistant grid 90×90 in the (X,Y ) coordinates,
setting Xmax =

√
a1 max sin θ and Ymax =

√
a1 max cos θ and varying θ from 0 to

π/2. The structure of our grid is displayed in the first quadrant of Figure 3.3.
Note that each ‘magnetic string’ in the first quadrant continues in the third one.
For example, a ‘magnetic string’ in quadrant A will continue in quadrant A1, due
to the change of sign in the radial component of the magnetic field a1 derivative.
We evolve in time these two parts like two separate problems, and link them in
every time step, requiring the continuity of the function Y and its derivative Y ′.
We let an open magnetic field line to interact with the two nearest open magnetic
field lines on the stellar surface, as required by the boundary condition (3.60).
On the contrary, we don’t let open and closed magnetic field lines to interact
to each other, because the closed magnetic lines don’t reach the surface and so
they cannot connect with the open magnetic lines. For our evolution, we use an
iterative Cranck-Nicholson scheme ([57]), as explained in section 4.1.1.

Using this scheme, we evolve the perturbations for more than 1s. In order
to check the stability of the system, we performed even evolutions for 2s and
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found that our scheme was still stable. As results of the time evolution, we
obtain for each ‘magnetic string’ a value of the first time derivative of the stellar
displacement Y. We compute the FFT of this value on various ‘strings’ and
find that each ‘string’corresponds to a different frequency. We compare these
frequencies with the ones present in literature.

In [29], the authors find a family of upper frequencies near the magnetic
axis for θ = 0, corresponding to points along the Y-axis in our coordinates, and
a family of lower frequencies for θ = π/2, corresponding to points along the X-
axis in our coordinates. They identify the fundamental frequency peaks of the
two families of QPOs with the edges or turning points of the Alfvén continua
suggested by [28]. These two frequencies were named fundamental lower L0,
for θ = π/2, and fundamental upper U0, for θ = 0 QPOs. The overtones are
indicated by Ln and Un. In the following, we adopt these symbolism when we
refer to the oscillations of the open field lines, while we call the frequencies of the
close field lines Cn.

Our results confirm partially the results of [29] but add also some new fea-
tures. For open lines, a family of upper frequencies appears near the Y-axis while
a family of lower frequencies appears near the last open magnetic field line, just
at the edge with the region of close lines.

This can be explained by the fact that the ‘strings’ near the Y-axis corre-
spond to stronger magnetic field on average because in the (r, θ) coordinates they
correspond to denser field lines, see Figure 2.1.

In fact, the frequency of the Alfvén oscillations is proportional to the strength
of the magnetic field:

f =
vA
L

=
B√
4πρ

1
L

(4.19)

where vA = B/
√

4πρ is the Alfvén velocity and L is the length on which the
perturbation propagates. Since the magnetic field B is stronger near the magnetic
axis, we expect that these frequencies are the upper ones. In addition, we find
that, for all the ‘magnetic strings’, the upper frequencies are multiples of the
fundamental frequency both in the case of Ln and in the case of Un (see Figure
4.1). However, we find a different multiplicity respect on the one found in [29],
depending if we consider even ` = 2 or odd ` = 3 initial data. This is new
results was also confirmed in [58]. We obtain such relations between fundamental
frequency and overtones:

fLeven
n

' (2n+ 1)fL0 (4.20)
fUeven

n
' (2n+ 1)fU0 (4.21)
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Figure 4.1: The FFT of a point near the Y-axis (green/dashed line) and near the
critical point (red/continuous line) for open lines and even parity (` = 2).The
stellar model is WFF14.

fLodd
n

' (n+ 1)fL0 (4.22)
fUodd

n
' (n+ 1)fU0 (4.23)

where the superscripts even and odd indicate results derived for even (` = 2)
and odd (` = 3) parity initial data and boundary conditions on the equator.
The different scaling shown in the relations (4.20) - (4.21) and (4.22)-(4.23) is
due to the different boundary conditions used for odd and even values of `. The
problem can be understood by looking at a simple problem like the one of two
strings of finite length connected by another spring. If the two strings are coupled
togheter at just one of their ends while the others are kept fixed, like in the case
of even parity, where the ‘magnetic strings’are coupled just near the surface and
are fixed at the equator, then we obtain the relations (4.20) and (4.21). This
type of configuration was analyzed in [50], in order to explain the w-modes of
neutron stars. Actually, the analytic derivation of the relations (4.20) and (4.21)
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Figure 4.2: A schematic representation of the coupling between two adjacent
magnetic ‘strings’ in the case of: (a) even parity condition at the equator, (b)
odd parity condition at the equator.

can be found there. If instead the two strings are coupled in both ends (like in
the case of odd parity) then the relations (4.22) - (4.23) follow. See Figure (4.2)
for a schematic representation of the two types of coupling.

The frequencies of the closed magnetic field lines show a different behaviour:
the upper and lower frequencies are scaling as (see also Figure 4.3):

fCn ' (n+ 1)fC0 (4.24)

The difference between the relations (4.20) and (4.24) is due to the different
boundary conditions: the closed lines never reach the surface. They actually
begin from the equator where they also close. This means that they admit the
same boundary condition at both their ends which resembles the toy problem of
a string that oscillates with both ends fixed, that gives the n+ 1 behaviour, as in
the case odd values of ` for the open field lines. The frequencies that we find for
close lines initially decrease up to a minimum and then increase. This behaviour
results from two factors. First, from the fact that closes lines are shorter than
the open lines (decreasing the length L in equation (4.19) a maximum frequency
is reached), and, second, from the fact that the magnetic field becomes somehow
locally weaker as we move off the axis (decreasing the magnetic field B in equation
(4.19) a minimum frequency is reached). Our results are summarised in Table
4.1.
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Figure 4.3: The FFT of a closed line near the critical point for the stellar equilib-
rium model WFF14. It is worth noticing the spacing of the peaks in accordance
to (4.24)

4.3 The effect of the toroidal field on the spectrum

We now study how the presence of a mixed field, both toroidal and poloidal,
affects the spectrum of oscillations. According to equation (2.87) the toroidal
magnetic field will be given by:

Bφ = −ζe−φa1 sin θ , (4.25)

where ζ is a constant only depending on the ratio between the toroidal and
poloidal magnetic fields. By increasing or decreasing ζ, we can influence the
strength of the toroidal magnetic field. So ζ can be interpreted as a param-
eter that describes the strength of the toroidal magnetic field with respect to
the poloidal field, see [53] for details. The presence of a toroidal field modifies
equation (2.96), by adding an extra term ζ2e−2Φa1 (see [32]). Thus, the Grad-
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Table 4.1: Frequencies of Alfvén QPOs for representative sample of equilibrium
models, constructed for different EOS and fixed magnetic field strength B =
4 × 1015 Gauss. The frequencies are computed for points near the critical point
(Ln) and near the Y-axis (Un) for open lines (both for even and odd parity) and
for the close line (Cn).

Model M/R n fLodd
n

(Hz) fLeven
n

(Hz) fUodd
n

(Hz) fUeven
n

(Hz) fCn(Hz)
0 23.00 46.56 28.05 58.90 23.56

WFF14 0.189 1 69.55 93.11 84.15 118.4 47.68
2 116.1 139.1 144.3 178.5 70.11
0 13.46 27.48 16.27 33.09 14.02

WFF18 0.264 1 39.82 54.41 48.24 66.75 28.05
2 67.31 81.89 80.21 99.84 42.06
0 23.01 47.06 28.24 61.18 24.04

APR14 0.178 1 70.60 95.17 86.28 121.8 74.78
2 117.1 142.2 144.3 182.5 180.0
0 12.53 25.06 15.25 31.60 13.07

APR20 0.269 1 37.59 50.09 44.12 61.56 25.60
2 62.10 74.63 74.63 92.61 38.13
0 13.10 27.83 16.78 35.61 13.52

L20 0.198 1 40.11 55.66 51.16 70.40 27.85
2 68.35 83.50 85.54 105.6 41.34

Shafranov becomes:

a1
′′e−2Λ + (Φ + Λ) ′e−2Λa1

′ +
(
ζ2e−2Φ − 2

r2

)
a1 = −4πj1 . (4.26)

Even if a toroidal field is present, the magnetic field on the surface is always set
to Bsurf = 4 × 1015 Gauss. In fact, making this assumption, the toroidal and
poloidal magnetic field adjust themselves inside the star, contributing both to
the energetic magnetic balance: a presence of the toroidal field implies a decrease
of the poloidal field energy, and such decrease is governed by the strength of
the constant ζ in the equation (4.26): if ζ takes high values, then the poloidal
magnetic field decreases significantly and the toroidal field contribute is significant
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in thr intensity of the surface magnetic field.

The influence of the toroidal fields on the evolution equation (4.1) is included
implicitly in a1

′′. By solving equation (2.96) for a1
′′ and subsequently substituting

into equation (4.1), the toroidal magnetic field appears in the 1+1 equation (4.1)
through the parameter ζ in the term:

Ã01 =
X

2
a1

(
2e2Λa1

r2
− ζ2a1e

−2Φ − a1
′2

2
− 4πj1

)
. (4.27)

This means that the toroidal field affects the local propagation speed of the Alfvén
modes.

The toroidal field has also another important effect in our problem: it pushes
the position of a1 max outwards and contributes to the stability of the magnetic
field in the star. In Figure 4.4, we plot the function a1 for the EOS WFF14 and
for different values of the parameter ζ. It is clear that when ζ increases, i.e., the
strength of the toroidal magnetic field increases, then a1 max is pushed closer to
the surface.

Because our coordinates depend on the position and strength of a1max, it is
natural to expect changes in the oscillation spectrum due to the presence of the
toroidal component of the magnetic field. We find that the Alfvén frequencies for
both open and closed field lines are lower compared to the case in which only a
dipole field was present, see Table 4.2, especially for the close magnetic ‘strings’.
This can be explained by the presence of a toroidal magnetic field, which means
that the point where the magnetic field line converges, moves outwards, hence the
‘magnetic strings’ becomes longer. Since the frequency is inversely proportional
to the length of the ‘strings’, as the length increases, the frequency decreases see
equation (4.19).

4.4 Identification of the QPOs frequencies

Strohmayer and Watts [21] have performed a timing analysis of the SGR 1806-20
and the SGR 1900+14. This study shows the appearance of several QPOs in the
tail of these events. In particular, for SGR 1806-20, the identified frequencies are
18, 26, 30, 92, 150, 625 and 1840 Hz while for SGR 1900+14 the frequencies are
28, 53, 84 and 155 Hz.

Using the relations (4.22) and (4.23), we can easily show that for SGR
1900+14, if we consider fUodd

0
= 28Hz, then we can identify fUodd

1
= 56Hz, and

fUodd
2
' 84Hz. In a similar way for SGR 1806-20, we have fLeven

0
= 18Hz and
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Figure 4.4: The function a1 in function of the normalized coordinates r/R for
an equilibrium model constructed with the equation of state WFF and a mass
M = 1.4M�. Different curves represent different value of the parameter ζ, i.e.
different strength of the toroidal magnetic field.

fLodd
0

= 30Hz, and consequently fLeven
2
' 92Hz (or fLodd

2
' 92) , fLeven

4
' 150Hz

(or fLodd
4
' 150). If we look at our results in the Tables 4.1 and 4.2, we can

identify the QPOs in SGR 1900+14 with the lower frequencies for odd parity of
a model with equation of state WFF and a mass around 1.8M�. For the QPOs
from SGR 1806-20, we can fit the observative data by a model with equation of
state APR, mass around 1.4M� and a toroidal field a little stronger than the
poloidal one (ζ = 0.18).

Based on these results, it is clear that the presence of a toroidal field allows
us to explain most of the lower frequencies. We argue that also a quadrupole
field or other more complicated mixted magnetic field configuration, will lower
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Table 4.2: Frequencies of Alfvén QPOs and their ratios for different stellar model
with a toroidal component of the magnetic field and a surface magnetic field
B = 4 × 1015 Gauss. For open magnetic ‘string’ the frequencies are taken for
points near the critical point (Ln) and near the Y-axis (Un), both for even and
odd parity. We also give the value of the frequencies for the lower close magnetic
‘string’ (Cn).

Model ζ (km−1) n fLodd
n

(Hz) fLeven
n

(Hz) fUodd
n

(Hz) fUeven
n

(Hz) fCn(Hz)
0 15.15 30.30 16.24 33.94 15.76

WFF14 0.24 1 46.06 61.20 50.91 66.66 31.15
2 75.75 90.90 81.20 99.99 79.38
0 18.95 38.46 22.85 49.6 19.51

APR14 0.18 1 56.83 76.91 69.67 98.65 39.01
2 95.30 114.8 117.0 147.7 57.96
0 16.21 32.42 19.35 41.84 16.73

APR14 0.20 1 48.11 64.84 59.05 83.67 33.47
2 64.84 97.79 99.88 125.5 51.25
0 11.47 22.93 13.92 29.90 11.88

L14 0.20 1 34.40 45.46 42.18 58.57 23.75
2 56.52 68.39 70.05 88.46 35.63

the frequencies, as the toroidal one does: that is due to the position of a1 max

that will be pushed outwards. In this case, as we already pointed out, the part
with the closed lines occupy a smaller area in the star. One may ask how the
presence of the closed lines can be detected, since they don’t reach the surface
of the star and so they are not connected with the magnetosphere. As shown in
some recent works [59], [60], the presence of closed lines could originate anisotropy
in the surface temperature, heating the equator more than the stellar poles, and
producing in this way a strong signature on the thermal spectrum, that could be
easily detected by satellites as ROSAT or CHANDRA.

Even if the presence of a toroidal field can explain many of the lower fre-
quencies, there are still some frequencies that we cannot explain, like for example
the 26 Hz frequency in SGR 1806-20. This frequency is most probably associ-
ated with a pure crustal oscillation and since in our model we don’t consider the
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presence of the crust, we cannot find it. This calls for the inclusion of the crust
in our calculation in order to incorporate the effect of the crust and its coupling
with the core, as it was already pointed out in [25], [28] and [26].

In the next chapter we will show that a model with a fluid core and a solid
crust, coupling to each others through the appropriate boundary conditions, can
explain all the observed frequencies. In addition, in this new model, interesting
new features in the spectruum are emerging.
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5
Coupled crust-core magneto-oscillations

The crust of a neutron star has a complex structure, not yet completely under-
stood (see [61] and references in there). Especially, at the boundary with the
core, the structure of the crust is still subject to hypothesis. The most credible
one is that a solid lattice structure, although not perfectly crystalline, is formed
by an array of positively charged nuclei. Those nuclei can become really heavy
with the increasing density towards the core, until they touch each other and the
crystalline structure dissolves in an uniform structure, called ‘nuclear pasta’ that
can take different shapes: road-like (‘spaghetti’ pasta) or even slab-like (‘lasagna’
pasta) are formed when the density is extremely high, at the boundary between
the crust and the core [62].

Going towards the surface of the star, the density decreases until a point
where the neutrons form a fluid Fermi sea. Above the neutron density drip, at
ρdrip ' 4.6 × 1011 g cm−3, a Fermi sea of relativistic electrons is responsible for
the crustal pressure.

All those components, present in usual neutron stars, are deeply modified
by the presence of a magnetic field, for details see [63]. Although it is difficult
to understand completely what is going on for matter embedded in a strong
magnetic field, and many questions are still without answers, it is clear that the
crust is subject to a big stress produced by the magnetic pressure that could also
break it. The magnetic pressure is increased during the evolution of the magnetic
field: while the magnetic field evolves, in fact, magnetic stress can be built up,
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trough a diffusion of the magnetic field and the consequent instability of this
latter.

There are essentially two ways in which the magnetic field can diffuse: by
ambipolar diffusion in the liquid core and by Hall drift in the solid crust (see
[64]). The ambipolar diffusion is a drift of the magnetic field and the charged
particles relative to the neutrons. Due to the presence of ambipolar diffusion, the
magnetic energy decreases and the magnetic field decays. For strong magnetic
field, B > 1014 Gauss, the ambipolar decay time is τamb ' 103 − 104 years, in
agreement with the present estimates of the magnetar age.

The Hall drift is a drift of the magnetic fluxes respect to the currents con-
stituted by the electrons. The Hall effect is not acting to dissipate magnetic
field: during the Hall drift, the magnetic energy is conserved. To explain this,
in [65] it was shown how the Hall drift creates small scale magnetic field, using
the energy of the large scale magnetic field: in this way, the magnetic energy is
never completely lost. In addition, those small scale magnetic fields could gen-
erate also current sheets, if the star is stratified. Both ambipolar and Hall drift
build up a magnetic stress respectively on the interface crust-core and on the
upper part of the crust, just near the surface. The effects of this stress can be
dramatically when the magnetic field is so strong as in magnetars, leading to the
crust’s breaking.

In fact, the soft gamma repeaters are strongly connected to the stress that
the magnetic pressure applies to the crust. It is thought that the breaking of
the crust could release an energy as big as the one releases by a giant flair in a
SGR. This energy and the subsequent stress S(B) can be calculated, using the
magnetic pressure [13]:

S(B) ' B2

8π
= 7× 1029

(
B

4× 1015

)2

g cm−1 s−2. (5.1)

The maximal stress that the crust can bear before yielding is:

Smax =
l

R
µθmax ∼ 3× 1026

(
θmax

10−2

)(
l

105cm

)
g cm−1 s−2 (5.2)

where l ∼ 105 cm is the thickness of the crust, µ is the shear modulus that can
be calculated from the shear velocity vs[52]:

vs = 108

(
µ

ρ

)1/2

cm s−1. (5.3)

In equation (5.1) and in equation (5.2), θ is a dimensionless parameter that
measures the change in length per unit of length under tension or compression.
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This parameter is poorly known, it is possible to put some constrains on it, so
that the value of θ are estimated to be:

10−5 . θ . 10−2 (5.4)

where the minimum value θmin can be obtained from experiments in laboratory on
stress of Coulomb lattices, while the maximum value θmax can be inferred by Vela
glitches. Recently, in a paper by Horowitz & Kadau [66], a dynamical simulation
of maximal strength that could be sustained by a Coulomb lattice, finds out that
the lattice seems to be more resistant as thought before and that θmax could be
reach also θmax = 10−1. However, even if we use this value in expression (5.2),
we have always (for a magnetic field as strong as the one present in magnetars):

S(B) > Smax (5.5)

this means that the crust will always break up by such a strong magnetic field.
As it was also shown in [6], a magnetic field B = 1013 Gauss like the ones in the
ordinary pulsars, cannot break the crust. The energy releases by crust breaking
from the magnetic field is comparable with the one released in the main peak in
the SGR:

Ebreak ' lR2µθmax ' 1039

(
θmax

10−3

)(
∆θ

10−4

)(
l

105 cm

)
erg (5.6)

where ∆θ is the crust motion around an angle θ.

From those considerations, it appears to be really important to include a
solid crust to explain the observed QPOs in SGRs. In the following sections, we
investigate the impact of a solid crust on QPOs frequencies and we show, that a
model with a solid crust and a fluid core, could explain all the observed data in
SGRs tail.

5.1 Model

We model the star as a fluid core enclosed in a solid crust. We used two represen-
tative EOS for the fluid core and match them at the interface between crust and
core with an equation of state for the crust derived by Negele & Vautherin (in
the following NV, see [67] for more details). We choose the NV equation of state
for the crust because it describes a thicker crust: this give as the opportunity to
use a wider grid for our simulation and so to study in details the phenomena that
happen in the crust. The thickness of the solid crust depends on the equation of
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Figure 5.1: A schematic representation of the structure of the crust of a neutron
star (Credit: Université of Libre de Bruxells).

state that we use, but in all the models, the relative thickness ∆r/R is less than
1%. We construct a numerical equidistant grid 90×90 in the (X,Y ) coordinates,
setting Xmax =

√
a1 max sin θ and Ymax =

√
a1 max cos θ and varying θ from 0 and

π/2. The bottom limit of the crust (that we identify with Xcrust, Ycrust ) is taken
at ρ = 2.4× 1014 g/cm3, according to the value predicted by NV.

First, we evolve the one-dimensional equation (4.1) through all the core,
until the points (Xcrust, Ycrust) that correspond to the bottom of the crust. We
have to pay a special attention when the perturbation crosses the maximum of a1,
(Xmax =

√
a1 max sin θ, Ymax =

√
a1 max cos θ): at this point the sign in the first

derivative of a1 changes and then from here until the surface we have to use the
transformation of coordinate (3.63) instead of (3.50). Apart from this device, the
perturbation evolves on each magnetic “strings” independently from the others:
no matching among them is present beside the one on the interface between crust
and core. In this way no information is exchanged among the strings, that then
will still conserve their own frequency, which is different for each string, as we
will explain later.

In the crust until the surface (i.e. from the points (Xcrust, Ycrust) to the
points (Xsurf , Ysurf)), the equation to use is (3.40): the problem becomes then
two dimensional, and each string is linked to the nearest strings in both the
Y direction and in the X direction, forming a kind of membrane. The strings
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oscillate then together: the frequency on one string is not independent from the
presence of the other strings as in the case treated in the previous chapter. We
need an extra boundary condition on the base of the fluid-core interface: this
condition in (r, θ coordinates) is given by (see [24] and [25]):

Y,r(−) =
[
1 +

(2`− 1)(2`+ 3)
3(`2 + `− 1)

v2
s

v2
A

]
Y,r(+) (5.7)

where vA and vs are defined respectively in equation (4.19) and equation (5.3).
In the (X,Y ) coordinates the conditon above becomes:[

X
∂Y
∂X

+ Y
∂Y
∂Y

]
(−) =[
1 +

(2`− 1)(2`+ 3)
3(`2 + `− 1)

v2
s

v2
A

] [
X
∂Y
∂X

+ Y
∂Y
∂Y

]
(+)

.

(5.8)

We tested the stability of the code by performing a quite long simulations lasting
2 seconds. We found that the code didn’t show an exponential growth or any
other form of numerical instability.

5.2 Results

We study models with different masses and radius and we find that the observed
data can be reproduced for stellar model with mass of M = 1.4 M�. The radius
varies from R = 10.9 km (for the model WFF) to R = 11.9 km (for the model
APR). The magnetic field on the surface is set to B = 4 × 1015 Gauss. We
analyse the results that we get from our code, finding the frequencies through a
Fourier Transform and reconstructing the eigenfunctions of these frequencies in
order to explore what parts of the star are excited most and to find out if the
specific frequency set the whole star in oscillation (discrete mode) or if it is part
of a continuum. The eigenfunctions are reconstructed using the eigenfunctions
recycling program already used in [68] (see there for more details).

The frequencies that we find must be compared with the observed data and
with our precedent model, presented in chapter 4.

In the previous chapter, where we studied the oscillations of a fluid star
model without crust, we discovered that the axisymmetric torsional oscillations
formed a continuos spectrum. Now, we find that although the core still maintains
this behaviour, i.e. the oscillations form a continua, the oscillations associated
with the crust show a discrete spectrum as was found in [24]. In addition to the
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discrete crust frequencies and to the continuum spectrum of the core, we find a
new family of discrete modes: we labelled those modes ‘discrete Alfvén modes’,
because, although they have a discrete spectrum, they scale with the magnetic
field, in the same way as the Alfén continua do.

The continuous spectrum is emerging for magnetic fields stronger than B =
1014 Gauss. To verify this, we perform simulation with weaker and stronger
magnetic field than B = 4×1015 Gauss. We find that an increase of the magnetic
field generates a wider continua, i.e. the edge of the continua are moving far away
from each other. On the contrary, a decrease in the strength of the magnetic field
leads to weaker oscillations in the continua, up to a point where the continuum
disappears and only the crust frequencies do show up (the critical transition
value is around B = 1014 Gauss, see next section for more details). Changing
the strength of the magnetic field is also changing the ratio among the crustal
frequencies. It was noted by Schumacker & Thorne [52] and McDermott et al.
[69] , that the fundamental crustal frequencies f crust

0 and the overtones f crust
` are

linked by the following relation:

f crust
`+1 =

√
`+1
` f

crust
` for n = 0 (5.9)

f crust
n = nf crust

0 for n & 1 (5.10)

Those results are confirmed by Sotani et al. [24]. We verify these relations
in presence of a low magnetic field B = 1013 Gauss, but as the magnetic field
increases, the effect of the continua begins to become important. Initially, it
affects the scaling in relation (5.9) for intermediate magnetic field strengths, but
as the strength of the magnetic field increases, the continuum totally absorb
some of crustal frequency. This is the case when the magnetic field strength is
B > 4 × 1015 Gauss. For a magnetic field B = 4 × 1015 Gauss, that we use in
most of our calculations in this thesis, the crust frequencies behave as:

f crust
` = (`− 1)f crust

`=2 for ` > 2 (5.11)

see the continua line in Figure 5.2 and Figure 5.3. We stress that the transition
from the relation (5.9) to (5.11) is not sudden but smooth, with the spacing of
the different frequencies becoming wider as the magnetic field becomes stronger.
This will be discussed in more details in the next section.

Another important issue is the comparison of our data with the timing
analysis of the SGR 1806-20 and SGR 1900+14 calculated in [70]. In this paper,
the authors identified several QPOs, of different duration, in the tail of the two
events. In particular, for the more recent event, SGR 1806-20, the identified
frequencies are 18, 26, 30, 92,150, 625 and 1840 Hz while for the SGR 1900+14
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Figure 5.2: Identification of the frequencies of SGR 1806-20(16Hz, 18Hz, 26Hz,
30Hz, 36Hz, 92Hz), using the stellar model APR with mass M = 1.4M�
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Figure 5.3: Identification of the frequencies of SGR 1900+14,using the stellar
model WFF with mass M = 1.4M�. The ‘discrete Alfvén frequencies’ (22Hz,
55Hz, 83Hz) could be identified with the observed frequencies of SGR 1900+14.
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they found the following frequencies: 28, 53, 84 and 155 Hz. A more recent, yet
unpublished study by Hambaran et al. [71], based on predictions by Colaiuda et
al. [72], confirms, by using a different analysis technique, the earlier results by
Strohmayer & Watts and reveals, in addition, at least three new frequencies for
the SGR 1806-20 these are 16.88, 21.36 and 36.84 Hz.

All the previous model, that studied the QPOs in magnetars, have difficulties
to explain the lower frequencies, narrow spacing among those frequencies. For
this reason, it was really difficult to explain the triad 18Hz-26Hz-30Hz and if we
consider also the new frequencies found in [71], then it is really a hard task to
explain them via crust oscilations alone or via the Alfvén continua in the core
[72, 58] . In fact, as we have shown in chapter 4, a stellar model constituted
by a fluid core, without a solid crust, cannot explain the lower frequencies. This
observation lead to the conclusion that the coupling between crust and core is the
only way for explaining all the observed data. Here we show that such hypothesis
is true and that our model with a consistent coupling between solid crust and fluid
core, can not only explain the observed data but also can predict non-observed
ones.

We will focus on the lower frequencies since the higher ones could be ex-
plained easily, and not in a unique way, as multiples of the lower ones.

In Figure 5.2 for the model APR14 and Figure 5.3 for the model WFF14,
we show the range of the continua (light blue bars) as well as the discrete crust
(continue blue line) and ‘discrete Alfvén’ frequencies (dotted red line), a new type
of frequencies that are not present in absence of crust (see previous chapter). In
the following sections, we will analyse the characteristics of all those three types
of frequencies.

5.2.1 The continua

The continua is a feature of the fluid core, and their presence is expected from our
study described in the previous chapter. However, the presence of a crust and
the coupling between crust and core at the interface influences the continuous
spectrum, not only in the values of the frequencies but also in some of their
features. It is evident that the continua present gap in its structure, as it was
recently pointed out in [35] where the authors use a toy model with coupled
oscillators. In addition, the upper frequencies are not evidently located near the
magnetic axis, as in the case of a totally fluid star (see for example the bottom plot
in Figure 5.6). Despite those differences, the frequencies of the continua show still
a relation between upper and lower frequencies, as the ones in equations (4.20-
4.23): if we consider fL0 = 16Hz and fU0 = 18Hz respectively as fundamental
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lower and upper frequencies, then the others frequencies can be explained as
their multiples. In fact, the edges of the second continuum (presented in Figure
5.5) are roughly following the equations (4.22) and (4.23), for n = 1. The third
continua (see Figure 5.6) is generated from the fL0 = 16Hz and fU0 = 18Hz by
the equations (4.20) and (4.21), for n = 1. Note that, while the crust frequencies
are multiple of the fundamental frequency with a multiplicity given by `, the
multiplicity of the continua is given by n.

A few words about the features of the continua. It can be seen from Figure
5.4 and Figure 5.5, that the edges of different continua present the same features:
the 16 Hz and the 30Hz frequencies, respectively the lower edge of the first and
second continua (see upper plot in both Figure 5.4 and Figure 5.5), are located
closer to the beginning of the closed lines, i.e. the magnetic field lines that close
inside the star, not reaching the surface and obviously not matching the exterior
magnetic field. The 18Hz and the 39Hz, set respectively the upper edge of the
first and second continua (see bottom plot in both Figure 5.4 and Figure 5.5),
seem to excite large amplitude motion towards the center, with branches near
the magnetic axis.

The form of the eigenfuctions changes at higher frequencies: in fact, they
show a more complicated structure, given by the presence of more nodes of the
eigenfunctions inside the star, with the increase of n (for the core) or ` (for
the crust). The higher family of QPOs is not anymore strictly located near the
magnetic axis as in the case of a pure fluid star, but the fU0 frequencies occupy
the central-inner part of the core and part of the crust, demonstrating how the
crust-core coupling changes dramatically the features of the continua.

The gaps in the continua, suggested by van Hooven and Levin [35], are
present in both the models that we analyse, but while in the APR14 model we
can observe gaps also at relatively high frequencies, in the WFF14 model the third
and the fourth continua merge and the gap disappears (see Figure 5.2 and Figure
5.3). We can then conclude that the presence of the gaps in the continuum
spectrum is more a characteristic of the model than a sign of the crust-core
coupling.

Regarding the close magnetic fields line, that are located in the outer region
of the star, beginning at (x = 0.8, y = 0.0) and ending at (x = R, y = 0.5),
one can barely see some kind of structure: this is because, the amplitude of the
perturbation brought by the closed magnetic field lines is orders of magnitude
lower than the open ones in the core and in the crust, when they are bot excited
with the same initial perturbation (as we did).
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Figure 5.4: Oscillation patterns (eigenfunction) of the edges of the first continua
for the model APR14 (better fit for the SGR 1806-20): the yellow part corre-
sponds to the not perturbed part of the star, while the blue and the red parts
represent respectively an intense and a medium perturbation in the star.
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Figure 5.5: Oscillation patterns (eigenfunction) of the edges of the second con-
tinua for the model APR14 (better fit for the SGR 1806-20).
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Figure 5.6: Oscillation patterns (eigenfunction) of the edges of the third continua
for the model APR14 (better fit for the SGR 1806-20).

74



5.2.2 The crust frequencies

The crust frequencies are known to have a discrete nature. In [24], the authors cal-
culate the crustal frequencies for a non-magnetized model and then show through
a 2d-simulation how the presence of a magnetic field is influencing those results.
They find that the magnetic field begins to have a significant effect on the fre-
quencies, only if it is stronger than Bcri & 1014 Gauss. Otherwise its effect is
negligible. In our model, choosing a magnetic field lower than Bcri and imposing
a non-traction condition at the interface between crust and core (cancelling in
such a way the coupling effect between them), we recover the results in [24], with
an accuracy of about 1%. However, the presence of a fluid core permeating by
a magnetic field of the same strength of the one in the crust and the coupling
between crust and core, change this picture. The crust frequencies are strongly
damped and transfer a significant part of their initial oscillations energy to the
core, driving it to oscillate even if no initial perturbation is present there. This
means that the crust frequencies are not strictly confined in the crust but they
propagate their energy also in the core as can be seen from Figure 5.11 and Figure
5.14. Note that, analysing different FFT on points in the crust, we can confirm
the discrete nature of these frequencies. The transfer of the energy of a crust os-
cillation is even worst if the crust frequency is embedded in the continua: in this
case, the oscillation energy of the crust is transferred in the continuous spectrum
mainly the edges of the continua as we will explain in details in the next section.

5.2.3 Discrete Alfvén modes

We identify the eigenfunctions represented in Figure 5.12a and Figure 5.12b as
‘discrete Alfvén’ modes. Those modes appear just when a coupling between crust
and core is present: in fact, we don’t find them when the star is constituted by a
pure fluid. The presence of discrete Alfvén modes was also noted in [35], where
the authors find some discrete modes near the edges of the continua. Also In our
case, the location of those discrete Alfvén modes is near the edges of the continua,
except the fundamental one that is always located a little more far away from
the edge of the first nearest continua. The eigenfunctions of those frequencies are
similar to the one in the crust (see Figure 5.12a and Figure 5.12b for an example
of discrete Alfvén modes and Figure 5.14 for an example of crust frequencies).
Despite to this similarity and of their discrete nature, those modes scale with
the magnetic field, getting lower or higher, depending of the magnetic field is
increased or decreased, as it can be seen in Figure 5.9 and Figure 5.10, where
we plot the results of our simulations for a magnetic field’s strength respectively
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of B = 2 × 1015 Gauss and B = 4.25 × 1015 Gauss. This behaviour reveals the
Alfvén nature of those modes. In fact, the frequencies of those modes change
according to:

f =
vA
L

where vA =
B√
4πρ

(5.12)

where L is the distance that the wave ‘travels’, vA is the Alfvén velocity, B is the
magnetic field that permeates the star and ρ is the density of the star. Figure 5.10
and Figure 5.9 show how this prediction is true for the ‘discrete Alfvén frequency’
(the pointed red line moves with increasing or decreasing of the strength of the
magnetic field, as predicted by equation (5.12)).

Finally, the scaling of these modes follows the scaling observed in the con-
tinua i.e.

f (D)
n ≈ (n+ 1)f0

(D) . (5.13)

5.3 From discrete crustal modes to a continuum spectrum

As test run for our model, we reproduce the results derived in [24] for pure
crust oscillations. In this paper, the authors studied the torsional oscillations
of both a non magnetised and a magnetised star. They also consider, as a first
approximation, the no-traction condition in the core-crust interface, i.e. instead
of the condition (5.7), they require that Y must be continous through the interface
i.e. Y ′(+) = Y ′(−).

Here, we cannot set the magnetic field equal to zero since our coordinate
system (X,Y ) is based on the strength of the magnetic field i.e. on a1(r). How-
ever, as it was already been shown in [24], the influence of the magnetic field on
the frequencies becomes important only if B > 1015 Gauss, thus we can choose
a very low magnetic field for magnetars, e.g. B = 1014 Gauss, and perform test
runs in order to compare our results with the ones in [24]. Using this magnetic
field and the no-traction condition on the interface, we find the results reported
in [24]. This test verified that the code could reproduce the previous results for
the torsional oscillations of the crust (see Figure 5.7).

In a similar way we could isolate the continuum spectrum as it has been
found in [72] and try to check if we can reproduce these results by varying the
strength of the magnetic field. In fact, we expect that from sufficiently strong
magnetic field, the effect of the crust can be neglected since the continua assumes
the predominant role, being based on the magnetic field’s strength. In addition, at
the interface, the formula (5.8) is reduced to the formula (3.61), since the second
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term at the right side of the equation (5.8), tends to zero for high magnetic field,
since the Alfvén velocity vA increases, while the shear velocity is not affected.
We find that for a magnetic field B > 1016 Gauss, the results for a purely fluid
star, as the one of the previous section, are reproduced.

From those two simulations, it is clear that the crust frequencies are the ones
whose nature and spectral properties are changing the most, due to the presence
of the magnetic field. In fact, it is known (see [52] ), that crustal frequencies can
be estimated quite well from the following relation:

f crust
` =

√
`(`+ 1)− 2

vs
2πR

for n = 0 (5.14)

where vs is shear velocity, that we set vs = 108 cm s−1 and R is the stellar radius,
while for the higher harmonics, we got:

f crust
n = nf0 for n > 0 . (5.15)

However, we observe this behaviour only for very low magnetic field (see Figure
5.7), while for stronger magnetic fields, the crust frequencies do not scale anymore
in this way. Already in the simulation with B = 4× 1015 Gauss, the frequencies,
that we can associate with the crust, follow a law different than (5.14), given by:

f crust
` = (`− 1)f crust

`=2 for ` > 2 (5.16)

where we assume f crust
`=2 = 22 Hz. We want then to understand, when the transi-

tion between the law (5.14) and the law (5.16) takes place. For this reason, we
perform several runs with intermediate strengths of the magnetic field, i.e. we
let the magnetic field vary between the valueB = 1014 Gauss and B = 4 × 1015

Gauss.

We start with a magnetic field B = 6 × 1014 Gauss. For such magnetic
field, although the continua is still not too strong, the crustal frequencies begin
to deviate from the law (5.14), see Figure 5.7, while some frequencies disappear,
as for example, does the 30Hz frequency. When we increase the magnetic field
to B = 2 × 1015 Gauss, the continua begins to dominate and it is evident that
due to their presence, we observe those dramatic change in the behaviour of the
crust frequencies. In fact, as it can be seen from Figure 5.9, every second crustal
frequency is lost, probably absorbed in the continua.

In order to understand how a crustal frequency could be absorbed by the
continua, we perform a run with a magnetic field strength B = 4.25×1015 Gauss
(see Figure 5.10). We choose this value, because we want to construct a model,
where the 66 Hz crustal frequency is not embedded in the continua, as it is for
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Figure 5.7: Discrete QPOs in the presence of weak magnetic fields. Left Panel:
the magnetic field strength is B = 1014 Gauss. Right Panel: the magnetic field
strength is B = 6× 1014 Gauss.
Note that, the plot on the left is scaling according to equation (5.14), while in
the one on the right, the frequencies scale according to the relation (5.16). In
addition, it is possible to observe the disappearance of some of the frequencies,
comparing the left panel to the right one.
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Figure 5.8: The oscillation pattern (eigenfunction) for the ` = 2 ‘crustal’ fre-
quency of 22Hz. The model is the APR14 with a magnetic field B = 4× 1015G.
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Figure 5.9: QPOs frequencies for a magnetic field strength B = 2× 1015 Gauss
and the APR14 stellar model.
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Figure 5.10: QPOs frequencies for the APR14 stellar model with a magnetic field
strength B = 4.25× 1015 Gauss.
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Figure 5.11: The oscillation patterns (eigenfunctions) for the 66Hz ‘crustal’ fre-
quency for the stellar model APR14 . Left Panel: For a magnetic field strength
B = 4 × 1015 Gauss, the 66Hz is located in the fourth continua and its eigen-
function has the same feature of one of the third continuum (see left panel in
Figure 5.6). Right Panel: When the magnetic field strength is B = 4.25× 1015

Gauss, the 66Hz frequency is located outside the continua and it looks like the
fundamental 22Hz ‘crustal’ frequency (see Figure 5.8), with an additional node,
since the 66Hz frequency represents the ` = 3 ‘crustal’ frequency.

B = 4 × 1015 Gauss, see Figure 5.2. The structure of the eigenfunction of the
66Hz frequency when it is embedded in the continua and when it is outside of
the continua are reported respectively, in the left and right panel of Figure 5.11.
In the first case, the eigenfunction trace the structure of the continua that hosts
the crustal frequency, while in the second case, the eigenfunction of the crustal
frequency resemble the one of the first crust frequency, the 22Hz plotted in Figure
5.8, but with one more node, since the 66Hz frequency corresponds to the first
high ` that we find in our simulation. In addition, we find that, when the crust
frequency is embedded in the continua, a big part of its energy is transferred
during the time evolution in favour of the edges of the continua that hosts it.
On the contrary, in the case where the crustal frequency is outside, the continua
we cannot observe such behaviour. The evidence of such loss is given by the
amplitudes of the FFT peaks, that change, showing a decreasing, when they are
calculated at the beginning and at the end of our simulation.

Finally, we made some additional numerical tests, in order to understand
how an initial perturbation propagates in the crust and in the core. We set
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Figure 5.12: Typical eigenfunction (oscillation patterns) of the fundamental ‘dis-
crete Alfvén modes’, for both the models under discussion with magnetic field
strength B = 4× 1015Gauss.

initial data in order to excite only the crust and to study the diffusion of the
initial energy in the system. We assume two different observers inside the star,
one in the core and one in the crust. We then calculate the FFT for them at the
beginning and at the end of our simulation. We compare their amplitude and
we find that the energy quickly flows from the crust towards the core exciting
the Alfvén continua. The inverse mechanism did not show the same efficiency
i.e. oscillations initiated only in the core find it very hard to propagate into the
crust. The conclusion of this test is in agreement with earlier suggestions given in
[25] that when the magnetic field permeates the whole the star, the perturbations
cannot be confined in the crust.

5.4 Identification of the QPOs observed

As we already pointed out, our model with the coupling between crust and core
can satisfactorily explain all the QPOs observed, both in the SGR 1806-20 and
SGR 1900+14. We start with the identification of the QPOs detected in the
SGR 1806-20, taking into account both the study in [70] and [71]. For this SGR,
we find that the model that better fits the observed frequencies is the stellar
model APR, with mass M = 1.4M�, radius R = 11.57km and crust thickness
∆r/R = 0.099.

The lower QPOs, the 16 Hz, found by [71] and the 18 Hz frequency discovered
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by [70], are the first edge of the continua: they are then core frequencies (see
Figure 5.4). The 22Hz is a crust frequency, since we observed it as a discrete
frequency in the crust. The 26Hz is part of the new family of discrete frequencies
that we find (see section 5.2.3 and Figure 5.12a): the discrete Alfvén frequencies.
The 29Hz frequency is the lower edge of the second continua (see Figure 5.5)
while the 92 Hz can be a high frequency belonging to upper edge of the fifth
continua. The higher frequencies can all be explained as multiples of the lower
ones following the relations (4.20)-(4.21).

For the SGR 1900+14, few QPOs were identified. This paucity of observa-
tions makes difficult to constrain univocally the equation of state of this magnetar.
For this reason, two stellar models could explain satisfactory the observed fre-
quencies: the APR model with mass M = 1.4M�, radius R = 11.57km, crust
thickness ∆r/R = 0.099 and magnetic field strength B = 4.25× 1015 Gauss (see
Figure 5.10) and the WFF model, with mass M = 1.4M�, radius R = 10.91km
and crust thickness ∆r/R = 0.085. The value of the magnetic field B = 4× 1015

Gauss, see Figure 5.3.

When the APR14 model is used, then the 28Hz, 54Hz and the 84Hz can be
all identified with the discrete Alfvén modes. Contrary, using the WFF14 model,
the frequencies can be identified both with global modes both with crustal modes.
In particular, the 28 Hz frequencies is a crust frequencies (see Figure 5.14) while
the 53 Hz frequency can be identify as an upper edge of the continua (see Figure
5.14). Also the 84 Hz is a crust frequency, owing consequently a discrete nature
(see Figure 5.14). Note that the model APR (Figure 5.2) shows gaps in the
continuum spectrum, according to [35], while in the model WFF (Figure 5.3)
there is no gap between the fourth and the fifth continua. This is a propriety of
the model WFF, and it was already noted in the case of a purely fluid star (see
Table (4.1)).

5.4.1 Time intervals of the detected QPOs

In the study of QPOs, another important issue is their time intervals. Under-
standing which QPOs are excited first means also to be able to follow the per-
turbation propagates inside the star. In table (5.1), the QPOs observed for the
SGR 1806-20 both by [21] and by [71] are listed. We can see that some QPOs last
longer than others: in particular the 17.9Hz and the 25.7Hz set up quite early
(just 60 seconds after the giant burst) and last for more than 100 seconds. Their
structure inside the star (see respectively the second plot in Figure 5.4 and the
plot in Figure 5.12a) presents some similarities respectively with the others fre-
quencies in the continua and with the crust frequencies. The 18Hz eigenfunction
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is located mainly inside the star, near the magnetic axis, with a branch localized
near the last open line extending through all the star. The 16Hz, that sets up
some seconds after the end of the 18Hz oscillations, is quite similar to the struc-
ture of the eigenfunction of this latter frequency, with a lesser strong oscillations
near the magnetic axis and near the last open line. It seems that the perturbation
first present in the 18Hz is passed to the 16Hz, with some loss of energy. The
same behaviour can be seen also in the WFF model, for the 15Hz and the 18Hz
frequencies (see Figure 5.13)).

Also the 21.36 Hz lasts less than 10 seconds: its behaviour could seem a
little more tricky because it is located mainly near the last open magnetic lines
(see Figure 5.8), contradicting our hypothesis that the propagation is spreading
through out the star and it is moving towards the magnetic axis when the fre-
quency increases. However, the 22Hz frequency is a crust frequency: we know
from our simulation that crust frequencies tend to transfer their energy quickly
to the core. This could explain why the 22Hz frequency has a so low energy-
perturbation pattern. The same behaviour is seen in the 26Hz frequency (see
Figure 5.12a), a discrete Alfvén mode: its pattern is really similar to the 22Hz
frequency and it sets up early in time, ending just 14 seconds before the beginning
of the 22Hz oscillation. It is quite possible that those two frequencies are related,
with the 22Hz carrying on the perturbation of the 26Hz.

The remaining frequencies are most likely connected to each other: this
could be seen also from the similar time intervals, that indicate an energy passing
throughout the star.

Table 5.1: The frequency of the detected QPOs and their duration (in seconds).
The data are from [21] and [71].

fQPO(Hz) Time intervals of detected QPOs (s)
16.88 259.4-267.4
17.9 60-230
21.36 244.3-251.9
25.7 60-230
29.0 190-260
36.84 183.8-191.2
59.04 146.0-176.2
61.26 251.9-395.6
116.27 168.7-198.9
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Figure 5.13: Oscillation patterns (eigenfunction) of the edges of the first continua
for the model WFF14 (better fit for the SGR 1900+14).
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Figure 5.14: Oscillation patterns (eigenfunction) of the edges of the second con-
tinua for the model WFF14 (better fit for the SGR 1900+14).
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Figure 5.15: Oscillation patterns (eigenfunctions) of two “crust” modes for the
model WFF14 (better fit for the SGR 1900+14).
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6
Summary

In this thesis, we investigated the torsional oscillations of spherically symmetric,
non-rotating, relativistic neutron stars, with large magnetic field B ' 1014−1016.
Such magnetic field strengths make the star a magnetar, a word coined to indicate
a Magne(tic) (S)tar, with a very huge magnetic field compared to the one of the
ordinary neutron star, B . 1013 Gauss.

In Chapter 1, we give a brief introduction to magnetar observations and to
their properties.

In Chapter 2 we derived the equilibrium configuration for a non-rotating,
relativistic, spherically symmetric neutron star from Einstein’s equations. A sta-
tionary magnetic field with both poloidal and toroidal components was added to
the equilibrium configuration. Using Euler’s equation and Maxwell’s equations
we could derive the Grad-Shafranov equation, that describes how the magnetic
field distributes in the star. Outside the star, we assumed a dipole magnetic field
that matches on the stellar surface to the interior magnetic field.

In Chapter 3, we worked out a linearized formulation of oscillations for
torsional modes, i.e. non-radial modes that do not involve density perturbation.
The coupling of the torsional oscillations to spacetime perturbations is weak and
since the evolution of both the fluid and the spacetime is quite cumbersome, we
chose to work in the Cowling approximation, i.e. to neglect the evolution of the
spacetime. In this way, the treatment of the problem becomes significantly simple,
without any serious compromises on the actual physics problem. In addition, we
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did not take into account the deformation of the shape of the star by the presence
of the magnetic field because the magnetic energy is many orders of magnitude
smaller than the bounding energy. By using those approximations, we derived
an unique 1+2 time-evolution equation that describes torsional oscillations of a
magnetised star. This equation shows a parabolic behaviour in every point of
its domain that leads to an instability during time evolutions. To stabilise the
equation, the introduction of an artificial viscosity was necessary. This artificial
viscosity appears in the equation as a fourth-order derivative and could distort the
final results. In order to avoid it, we introduced a new coordinate transformation
based on the magnetic field strength. The effect of this transformation on the
the magnetic field lines is to make them straight, so that they appear similar
to ‘strings’ coupled only at the surface. The perturbation then evolve along
these magnetic field ‘strings’ and the 1+2 evolution equation is reduced to a
1+1 evolution equation (along the time and one space direction). At the end of
Chapter 3, we described the boundary conditions required for the solution of the
new 1+1 evolution equation.

In Chapter 4, we studied the 1+1 time evolution equation found previously
in Chapter 3 for a star composed solely of a perfect fluid without the presence of
a crust. We showed that, in this case, the problem is reduced to an evolution of
the perturbation along the magnetic ‘strings’, where every magnetic ‘string’ does
not communicate with the others (except for a weak coupling at the surface), due
to the 1+1 nature of the equation. We noted that not all the magnetic ‘strings’
behave in the same way: in fact, we have two types of magnetic strings, the
‘closed’ and the ‘open’ magnetic ones. The first group comes from the stretching
of the ‘closed’ magnetic lines i.e. the magnetic lines that close themselves inside
the star and do not reach the surface. They, then, do not communicate at all with
each other and are totally separated from the open magnetic ‘strings’. Those
latter are created by the open magnetic field lines, that reach the surface and
match the dipole magnetic field outside the star. Then, there is a weak coupling
of the ‘strings’ on the surface, where there is a weak transfer of energy between the
‘strings’ due to the boundary condition that is implemented there, i.e the traction
should vanish. We discovered that the oscillations spectrum forms a continuum,
delimitated by two edges that we identified with two different families of QPOs:
an ‘upper family’ with higher frequencies located near the magnetic axis and
a ‘lower family’ (with lower frequencies) located near the last open magnetic
‘string’. We showed that the frequencies found explain most of the observed
QPOs but not all. In particular it is difficult to explain the spacing of the lower
QPOs.

In Chapter 5, we investigated a more complex model, analysing the torsional
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oscillations of a star with a fluid core and a solid crust. We found out that,
while in the fluid core the problem is still a 1+1 evolution equation, in the crust
the problem becomes a 1+2 evolution equation due to the presence of a non-
vanishing shear modulus. The scheme to evolve is then still formed by single
magnetic ‘strings’ in the core but in the crust the magnetic ‘strings’ are linked
together to form a membrane. We coupled the single magnetic strings in the
core with the membrane in the solid crust by appropriate boundary conditions
on the interface, which corresponds to the base of the crust. We found that
the spectrum of the core oscillations still forms continua but the presence of the
crust adds new discrete frequencies, which seems to be fossils of the pure crust
oscillations when the magnetic field is weak or absent. In addition, we found a
new family of modes that behave as Alfvén modes but have a discrete character.
We called those modes ‘discrete Alfvén modes’. Finally, we analysed how the core
and the crust interact with each other and found that a considerable amount of
energy is passed from the crust to the core, especially when crust modes are
embedded in the continua. In addition, we performed several tests with different
strength of the magnetic field, to study its influence on the oscillation spectrum.
We found that for a magnetic field around B = 1014G the crustal frequencies
discovered by Sotani et al. [24] appear, while as the magnetic field increases the
continua appear, together with the discrete Alfvén modes. For a magnetic field
strength B > 1016G, the continuous spectrum dominates and absorbs the crustal
frequencies.

To conclude, we showed that a star model with fluid core and solid crust,
could explain all the observed QPOs frequencies, including the lower ones. In
this way we proposed that specific magnetar models can uniquely explain the
observed QPOs. This can be an alternative way for constraining neutron star
parameters, as mass, radius, equation of state and magnetic field strength.

In future, it will be interesting to include in our model, the magnetosphere
that it is known to play a major role in the observed magnetar emission and also
to simulate the sequence of events, i.e how the various QPOs are excited one
after the other, and to find out why some of them last for very long and others
for considerably shorter time intervals. Finally it will be of great importance the
study of the influence of the superfluidity in our results.
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Deutsche Zusammenfassung

Der Untersuchung stark magnetisierter Neutronensterne wurde in den let-
zten zehn Jahren, nicht zuletzt durch Satellitenbeobachtungen, große Aufmerk-
samkeit zuteil. Für gewöhnlich unterscheidet man bei diesen kompakten Ob-
jekten zwischen sogenannten AXPs (Anomalous X-ray Pulsars) und SRGs
(Soft Gamma Repeater). Die Winkelgeschwindigkeit von AXPs ist in einem
engen Bereich konzentriert (P ' 5 − 12 secs); außerdem sind sie starke
Röntgenstrahlungsquellen (L ' 1036 − 1044 erg/s). SGRs zeigen aperiodisch
Ausbrüche von Gamma- und Röntgenstrahlung die im Maximum Werte von
L ' 1046 erg/s erreichen kann. Diese große Leuchtkraft wird durch eine
entsprechende Freisetzung von Energie erzeugt, die ihren Ursprung jedoch nicht
in der Umwandlung von Rotationsenergie haben kann. Im Gegensatz dazu kann
ein genügend starkes Magnetfeld (B > 1014 Gauss) sehr wohl als Energiereservoir
für diese Ereignisse dienen. Es ist in der Tat so, daß ein derartiges Magnetfeld
einen immensen Druck auf die Neutronensternkruste ausüben kann und diese zu
guter Letzt brechen kann. Dieses Brechen der Kruste, gefolgt von einer Neuord-
nung des Magnetfeldes kann die gewaltigen Energiemengen liefern, die in SGRs
beobachtet werden. Zusätzlich liefert dieser Mechanismus auch eine Erklärung
für die Variationen der Leuchtkraft von SGRs einige Sekunden nach dem Aus-
bruch. Eine sorgfältige Analyse des Signals zeigt quasi-periodische Oszillationen
(QPOs) mit Frequenzen von einigen Hz bis in den kHz-Bereich. Wir haben dazu
ein Erklärungsmodell vorgeschlagen, das die QPos mit Torsionsschwingungen von
sogenannten Alfvén-Moden, Schwingungen des Magnetfeldes, erklärt.

In dieser Doktorarbeit konstruieren wir Gleichgewichtsmodelle nichtrotieren-
der, stark magnetisierter relativistischer Neutronensterne mit flüssigem Kern und
dünner äußerer Kruste. Wir leiten in linearer Näherung die Störungsgleichungen
für diese Magnetar-Modelle her und implementieren diese anschliessend in
einem Computerprogramm. Damit untersuchen wir schließlich die möglichen
Schwingungsformen für verschiedene Magnetfeldkonfigurationen und -stärken.
Wir vergleichen auch die numerisch gefundenen Frequenzen mit aktuellen
Beobachtungen in SGRs und zeigen, dass ein bestimmtes Magnetar-Modell,
also die Wahl einer Zustandsgleichung für das flüssige Innere und der festen
Kruste zusammen mit einer Magnetfeldkonfiguration, alle beobachteten Frequen-
zen erklären kann. Dadurch sind wir in der Lage, wichtige Kenngrößen der Mag-
netare, also etwa Masse, Radius und Magnetfeldstärke, einzugrenzen.
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